
Auxiliary Guided Autoregressive
Variational Autoencoders

Thomas Lucas(B) and Jakob Verbeek

Université. Grenoble Alpes, Inria, CNRS, Grenoble INP, LJK, 38000 Grenoble, France
{thomas.lucas,jakob.verbeek}@inria.fr

Abstract. Generative modeling of high-dimensional data is a key prob-
lem in machine learning. Successful approaches include latent variable
models and autoregressive models. The complementary strengths of
these approaches, to model global and local image statistics respec-
tively, suggest hybrid models that encode global image structure into
latent variables while autoregressively modeling low level detail. Previ-
ous approaches to such hybrid models restrict the capacity of the autore-
gressive decoder to prevent degenerate models that ignore the latent
variables and only rely on autoregressive modeling. Our contribution is
a training procedure relying on an auxiliary loss function that controls
which information is captured by the latent variables and what is left to
the autoregressive decoder. Our approach can leverage arbitrarily power-
ful autoregressive decoders, achieves state-of-the art quantitative perfor-
mance among models with latent variables, and generates qualitatively
convincing samples.

1 Introduction

Unsupervised modeling of complex distributions with unknown structure is a
landmark challenge in machine learning. The problem is often studied in the con-
text of learning generative models of the complex high-dimensional distributions
of natural image collections. Latent variable approaches can learn disentangled
and concise representations of the data [3], which are useful for compression
[11] and semi-supervised learning [14,22]. When conditioned on prior informa-
tion, generative models can be used for a variety of tasks, such as attribute
or class-conditional image generation, text and pose-based image generation,
image colorization, etc. [6,20,23,26]. Recently significant advances in genera-
tive (image) modeling have been made along several lines, including adversarial
networks [1,10], variational autoencoders [16,24], autoregressive models [21,23],
and non-volume preserving variable transformations [8].

In our work we seek to combine the merits of two of these lines of work.
Variational autoencoders (VAEs) [16,24] can learn latent variable representa-
tions that abstract away from low-level details, but model pixels as conditionally
independent given the latent variables. This renders the generative model com-
putationally efficient, but the lack of low-level structure modeling leads to overly
smooth and blurry samples. Autoregressive models, such as pixelCNNs [21], on
c© Springer Nature Switzerland AG 2019
M. Berlingerio et al. (Eds.): ECML PKDD 2018, LNAI 11051, pp. 443–458, 2019.
https://doi.org/10.1007/978-3-030-10925-7_27

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-10925-7_27&domain=pdf
https://doi.org/10.1007/978-3-030-10925-7_27

444 T. Lucas and J. Verbeek

the other hand, estimate complex translation invariant conditional distributions
among pixels. They are effective to model low-level image statistics, and yield
state-of-the-art likelihoods on test data [25]. This is in line with the observations
of [17] that low-level image details account for a large part of the likelihood.
These autoregressive models, however, do not learn a latent variable representa-
tions to support, e.g., semi-supervised learning.

Fig. 1. Schematic illustration of our auxiliary guided autoregressive variational autoen-
coder (AGAVE). The objective function has three components: KL divergence regu-
larization, per-pixel reconstruction with the VAE decoder, and autoregressive recon-
struction with the pixelCNN decoder.

The complementary strengths of VAEs and pixelCNNs, modeling global and
local image statistics respectively, suggest hybrid approaches combining the
strengths of both. Prior work on such hybrid models needed to limit the capac-
ity of the autoregressive decoder to prevent degenerate models that completely
ignore the latent variables and rely on autoregressive modeling only [5,12]. In
this paper we describe Auxiliary Guided Autoregressive Variational autoEn-
coders (AGAVE), an approach to train such hybrid models using an auxiliary
loss function that controls which information is captured by the latent variables
and what is left to the AR decoder. That removes the need to limit the capacity
of the latter. See Fig. 1 for a schematic illustration of our approach.

Using high-capacity VAE and autoregressive components allows our models
to obtain quantitative results on held-out data that are on par with the state
of the art in general, and set a new state of the art among models with latent
variables. Our models generate samples with both global coherence and low-level
details. See Fig. 2 for representative samples of VAE and pixelCNN models.

2 Related Work

Generative image modeling has recently taken significant strides forward, lever-
aging deep neural networks to learn complex density models using a variety
of approaches. These include the variational autoencoders and autoregressive
models that form the basis of our work, but also generative adversarial net-
works (GANs) [1,10] and variable transformation with invertible functions [8].

Auxiliary Guided Autoregressive Variational Autoencoders 445

While GANs produce visually appealing samples, they suffer from mode drop-
ping and their likelihood-free nature prevents measuring how well they model
held-out test data. In particular, GANs can only generate samples on a non-
linear manifold in the data space with dimension equal to the number of latent
variables. In contrast, probabilistic models such as VAEs and autoregressive
models generalize to the entire data space, and likelihoods of held-out data can
be used for compression, and to quantitatively compare different models. The
non-volume preserving (NVP) transformation approach of [8] chains together
invertible transformations to map a basic (e.g. unit Gaussian) prior on the latent
space to a complex distribution on the data space. This method offers tractable
likelihood evaluation and exact inference, but obtains likelihoods on held-out
data below the values reported using state-of-the-art VAE and autoregressive
models. Moreover, it is restricted to use latent representations with the same
dimensionality as the input data, and is thus difficult to scale to model high-
resolution images.

Fig. 2. Randomly selected samples from unsupervised models trained on 32 × 32
CIFAR10 images: (a) IAF-VAE [15], (b) pixelCNN++ [25], and (c) our hybrid AGAVE
model. For our model, we show the intermediate high-level representation based on
latent variables (left), that conditions the final sample based on the pixelCNN decoder
(right).

Autoregressive density estimation models, such as pixelCNNs [21], admit
tractable likelihood evaluation, while for variational autoencoders [16,24] accu-
rate approximations can be obtained using importance sampling [4]. Naively
combining powerful pixelCNN decoders in a VAE framework results in a degener-
ate model which ignores the VAE latent variable structure, as explained through

446 T. Lucas and J. Verbeek

the lens of bits-back coding by [5]. To address this issue, the capacity of the the
autoregressive component can be restricted. This can, for example, be achieved
by reducing its depth and/or field of view, or by giving the pixelCNN only
access to grayscale values, i.e. modeling p(xi|x<i, z) = p(xi|gray(x<i), z) [5,12].
This forces the model to leverage the latent variables z to model part of the
dependencies among the pixels. This approach, however, has two drawbacks. (i)
Curbing the capacity of the model is undesirable in unsupervised settings where
training data is abundant and overfitting unlikely, and is only a partial solution
to the problem. (ii) Balancing what is modeled by the VAE and the pixelCNN
by means of architectural design choices requires careful hand-design and tuning
of the architectures. This is a tedious process, and a more reliable principle is
desirable. To overcome these drawbacks, we propose to instead control what is
modeled by the VAE and pixelCNN with an auxiliary loss on the VAE decoder
output before it is used to condition the autoregressive decoder. This allows us to
“plug in” powerful high-capacity VAE and pixelCNN architectures, and balance
what is modeled by each component by means of the auxiliary loss.

In a similar vein, [17] force pixelCNN models to capture more high-level
image aspects using an auxiliary representation y of the original image x, e.g.
a low-resolution version of the original. They learn a pixelCNN for y, and a
conditional pixelCNN to predict x from y, possibly using several intermediate
representations. This approach forces modeling of more high-level aspects in the
intermediate representations, and yields visually more compelling samples. [23]
similarly learn a series of conditional autoregressive models to upsample coarser
intermediate latent images. By introducing partial conditional independencies
in the model they scale the model to efficiently sample high-resolution images of
up to 512 × 512 pixels. [11] use a recurrent VAE model to produces a sequence
of RGB images with increasing detail derived from latent variables associated
with each iteration. Like our work, all these models work with intermediate
representations in RGB space to learn accurate generative image models.

3 Auxiliary Guided Autoregressive Variational
Autoencoders

We give a brief overview of variational autoencoders and their limitations in
Sect. 3.1, before we present our approach to learning variational autoencoders
with autoregressive decoders in Sect. 3.2.

3.1 Variational Autoencoders

Variational autoencoders [16,24] learn deep generative latent variable models
using two neural networks. The “decoder” network implements a conditional
distribution pθ(x|z) over observations x given a latent variable z, with parame-
ters θ. Together with a basic prior on the latent variable z, e.g. a unit Gaussian,
the generative model on x is obtained by marginalizing out the latent variable:

pθ (x) =
∫

p(z)pθ (x|z) dz. (1)

Auxiliary Guided Autoregressive Variational Autoencoders 447

The marginal likelihood can, however, not be optimized directly since the non-
linear dependencies in pθ (x|z) render the integral intractable. To overcome this
problem, an “encoder” network is used to compute an approximate posterior
distribution qφ(z|x), with parameters φ. The approximate posterior is used
to define a variational bound on the data log-likelihood, by subtracting the
Kullback-Leibler divergence between the true and approximate posterior:

ln pθ (x) ≥ L(θ,φ;x) = ln(pθ (x)) − DKL(qφ(z|x)||pθ (z|x)) (2)
= IEqφ

[ln(pθ (x|z)]︸ ︷︷ ︸
Reconstruction

−DKL(qφ(z|x)||p(z))︸ ︷︷ ︸
Regularization

. (3)

The decomposition in (3) interprets the bound as the sum of a reconstruction
term and a regularization term. The first aims to maximize the expected data
log-likelihood pθ (x|z) given the posterior estimate qφ(z|x). The second term
prevents qφ(z|x) from collapsing to a single point, which would be optimal for
the first term.

Variational autoencoders typically model the dimensions of x as conditionally
independent,

pθ (x|z) =
D∏

i=1

pθ (xi|z), (4)

for instance using a factored Gaussian or Bernoulli model, see e.g. [15,16,26]. The
conditional independence assumption makes sampling from the VAE efficient:
since the decoder network is evaluated only once for a sample z ∼ p(z) to
compute all the conditional distributions pθ (xi|z), the xi can then be sampled
in parallel.

A result of relying on the latent variables to account for all pixel dependen-
cies, however, is that all low-level variability must also be modeled by the latent
variables. Consider, for instance, a picture of a dog, and variants of that image
shifted by one or a few pixels, or in a slightly different pose, with a slightly lighter
background, or with less saturated colors, etc. If these factors of variability are
modeled using latent variables, then these low-level aspects are confounded with
latent variables relating to the high-level image content. If the corresponding
image variability is not modeled using latent variables, it will be modeled as
independent pixel noise. In the latter case, using the mean of pθ (x|z) as the syn-
thetic image for a given z results in blurry samples, since the mean is averaged
over the low-level variants of the image. Sampling from pθ (x|z) to obtain syn-
thetic images, on the other hand, results in images with unrealistic independent
pixel noise.

448 T. Lucas and J. Verbeek

3.2 Autoregressive Decoders in Variational Autoencoders

Autoregressive density models, see e.g. [9,19], rely on the basic factorization of
multi-variate distributions,

pθ (x) =
D∏

i=1

pθ (xi|x<i) (5)

with x<i = x1, . . . , xi−1, and model the conditional distributions using a (deep)
neural network. For image data, PixelCNNs [20,21] use a scanline pixel ordering,
and model the conditional distributions using a convolution neural network. The
convolutional filters are masked so as to ensure that the receptive fields only
extend to pixels x<i when computing the conditional distribution of xi.

PixelCNNs can be used as a decoder in a VAE by conditioning on the latent
variable z in addition to the preceding pixels, leading to a variational bound
with a modified reconstruction term:

L(θ,φ;x) = IEqφ

[
D∑

i=1

ln pθ (xi|x<i, z)

]
− DKL(qφ(z|x)||p(z)). (6)

The regularization term can be interpreted as a “cost” of using the latent vari-
ables. To effectively use the latent variables, the approximate posterior qφ(z|x)
must differ from the prior p(z), which increases the KL divergence.

[5] showed that for loss (6) and a decoder with enough capacity, it is optimal
to encode no information about x in z by setting q(z|x) = p(z). To ensure mean-
ingful latent representation learning [5,12] restrict the capacity of the pixelCNN
decoder. In our approach, in contrast, it is always optimal for the autoregressive
decoder, regardless of its capacity, to exploit the information on x carried by z.
We rely on two decoders in parallel: the first one reconstructs an auxiliary image
y from an intermediate representation fθ (z) in a non-autoregressive manner. The
auxiliary image can be either simply taken to be the original image (y = x), or a
compressed version of it, e.g. with lower resolution or with a coarser color quan-
tization. The second decoder is a conditional autoregressive model that predicts
x conditioned on fθ (z). Modeling y in a non-autoregressive manner ensures a
meaningful representation z and renders x and z dependent, inducing a certain
non-zero KL “cost” in (6). The uncertainty on x is thus reduced when condition-
ing on z, and there is no longer an advantage in ignoring the latent variable for
the autoregressive decoder. We provide a more detailed explanation of why our
auxiliary loss ensures a meaningful use of latent variables in powerful decoders
in Sect. 3.3. To train the model we combine both decoders in a single objective
function with a shared encoder network:

L(θ,φ;x,y) = IEqφ

[
D∑

i=1

ln pθ (xi|x<i, z)

]

︸ ︷︷ ︸
Primary Reconstruction

+ IEqφ

⎡
⎣ E∑

j=1

ln pθ (yj |z)

⎤
⎦

︸ ︷︷ ︸
Auxiliary Reconstruction

− λ DKL (qφ(z|x)||p(z))︸ ︷︷ ︸
Regularization

. (7)

Auxiliary Guided Autoregressive Variational Autoencoders 449

Treating x and y as two variables that are conditionally independent given
a shared underlying latent variable z leads to λ = 1. Summing the lower bounds
in Eqs. (3) and (6) of the marginal log-likelihoods of y and x, and sharing the
encoder network, leads to λ = 2. Larger values of λ result in valid but less tight
lower bounds of the log-likelihoods. Encouraging the variational posterior to be
closer to the prior, this leads to less informative latent variable representations.

Sharing the encoder across the two decoders is the key of our approach. The
factored auxiliary VAE decoder can only model pixel dependencies by means of
the latent variables, which ensures that a meaningful representation is learned.
Now, given that the VAE encoder output is informative on the image content,
there is no incentive for the autoregressive decoder to ignore the intermediate
representation f(z) on which it is conditioned. The choice of the regularization
parameter λ and auxiliary image y provide two levers to control how much and
what type of information should be encoded in the latent variables.

3.3 It Is Optimal for the Autoregressive Decoder to Use z

Combining a VAE with a flexible decoder (for instance an autoregressive one)
leads to the latent code being ignored. This problem could be attributed to
optimization challenges: at the start of training q(z|x) carries little information
about x, the KL term pushes the model to set it to the prior to avoid any
penalty, and training never recovers from falling into that local minimum. [5]
have proposed extensive explanations showing that the problem goes deeper:
if a sufficiently expressive decoder is used, ignoring the latents actually is the
optimal behavior. The gist of the argument is based on bits-back coding as
follows: given an encoder q(z|x), a decoder p(x|z) and a prior p(z), z ∼ q(z|x)
can be encoded in a lossless manner using p(z), and x can be encoded, also
losslessly, using p(x|z). Once the receiver has decoded x, q(z|x) becomes available
and a secondary message can be decoded from it. This yields and average code
length of:

CBitsBack = Ex∼D,z∼q(.|x)[log(q(z|x)) − log(p(z)) − log(p(x|z))].

CBitsBack corresponds to the standard VAE objective. A lower-bound on the
expected code length for the data being encoded is given by the Shannon entropy:
H(D) = Ex∼D[− log pD(x)], which yields:

CBitsBack = Ex∼D[− log(p(x)) + DKL(q(z|x)||p(z|x))]
≥ H(D) + Ex∼D[DKL(q(z|x)||p(z|x))].

If p(.|xj<i) is expressive enough, or if q(.|x) is poor enough, the following
inequality can be verified:

H(D) ≤ Ex∼D[− log p(x|xj<i)] < H(D) + Ex∼D[DKL(q(z|x)||p(z|x))]

This is always true in the limit of infinitely expressive autoregressive decoders. In
that case, any use of the latents that p might decrease performance. The optimal

450 T. Lucas and J. Verbeek

behavior is to set q(z|x) = p(z) to avoid the extra KL cost. Then z becomes inde-
pendent from x and no information about x is encoded in z. Therefore, given an
encoder, the latent variables will only be used if the capacity of the autoregres-
sive decoder is sufficiently restricted. This is the approach taken by [5,12]. This
approach works: it has obtained competitive quantitative and qualitative per-
formance. However, it is not satisfactory in the sense that autoregressive models
cannot be used to the full extent of their potential, while learning a meaningful
latent variable representation.

In our setting, both (Y,X) have to be sent to and decoded by the receiver. Let
us denote CV AE the expected code length required to send the auxiliary message,
y. Once y has been sent, sending x costs: Ez∼q(z|x)[−

∑
i log(p(xi|z,xj<i))], and

we have:

CV AE = Ex∼D,z∼q(.|x)[log(q(z|x)) − log(p(z)) − log(p(y|z))] (8)

CAGAV E = CV AE + Ez∼q(z|x)[−
∑

i

log(p(xi|z,xj<i))]. (9)

Using the fact that the Shannon entropy is the optimal expected code length
for transmitting X|Z, we obtain CAGAV E ≥ CV AE + H(X|Z).

The entropy of a random variable decreases when it is conditioned on another,
i.e. H(X|Z) ≤ H(X). Therefore, the theoretical lower-bound on the expected
code length in our setup is always better when the autoregressive component
takes Z into account, no matter its expressivity. In the limit case of an infinitely
expressive autoregressive decoder, denoted by ∗, the lower bound is attained
and C∗

AGAV E = CV AE + H(X|Z) ≤ CV AE + H(X). In non-degenerate cases,
the VAE is optimized to encode information about X into a meaningful Z,
with potentially near perfect reconstructions, and there exists ε > 0 such that
H(X|Z) < H(X) − ε, making the lower bound strictly better by a possibly big
margin.

This analysis shows that in our setup it is theoretically always better for the
autoregressive model to make use of the latent and auxiliary representation it
is conditioned on. That is true no matter how expressive the model is. It also
shows that in theory our model should learn meaningful latent structure.

4 Experimental Evaluation

In this section we describe our experimental setup, and present results on
CIFAR10.

4.1 Dataset and Implementation

The CIFAR10 dataset [18] contains 6,000 images of 32×32 pixels for each of the
10 object categories airplane, automobile, bird, cat, deer, dog, frog, horse, ship,
truck. The images are split into 50,000 training images and 10,000 test images.
We train all our models in a completely unsupervised manner, ignoring the class
information.

Auxiliary Guided Autoregressive Variational Autoencoders 451

We implemented our model based on existing architectures. In particular we
use the VAE architecture of [15], and use logistic distributions over the RGB color
values. We let the intermediate representation f(z) output by the VAE decoder
be the per-pixel and per-channel mean values of the logistics, and learn per-
channel scale parameters that are used across all pixels. The cumulative density
function (CDF), given by the sigmoid function, is used to compute probabilities
across the 256 discrete color levels, or fewer if a lower quantization level is chosen
in y. Using RGB values yi ∈ [0, 255], we let b denote the number of discrete color
levels and define c = 256/b. The probabilities over the b discrete color levels are
computed from the logistic mean and variance μi and si as

p(yi|μi, si) = σ (c + c�yi/c�|μi, si) − σ (c�yi/c�|μi, si) . (10)

Table 1. Bits per dimension (lower is better) of models on the CIFAR10 test data.

Model BPD .|z .|xj<i

NICE [7] 4.48 �
Conv. DRAW [11] ≤3.58 �
Real NVP [8] 3.49 �
MatNet [2] ≤3.24 �
PixelCNN [21] 3.14 �
VAE-IAF [15] ≤3.11 �
Gated pixelCNN [20] 3.03 �
Pixel-RNN [21] 3.00 �
Aux. pixelCNN [17] 2.98 �
Lossy VAE [5] ≤2.95 � �
AGAVE, λ = 12 (this paper) ≤2.92 � �
pixCNN++ [25] 2.92 �

For the pixelCNN we use the architecture of [25], and modify it to be con-
ditioned on the VAE decoder output f(z), or possibly an upsampled version if
y has a lower resolution than x. In particular, we apply standard non-masked
convolutional layers to the VAE output, as many as there are pixelCNN layers.
We allow each layer of the pixel-CNN to take additional input using non-masked
convolutions from the feature stream based on the VAE output. This ensures
that the conditional pixelCNN remains autoregressive.

To speed up training, we independently pretrain the VAE and pixelCNN in
parallel, and then continue training the full model with both decoders. We use
the Adamax optimizer [13] with a learning rate of 0.002 without learning rate
decay. We will release our TensorFlow-based code to replicate our experiments
upon publication.

452 T. Lucas and J. Verbeek

4.2 Quantitative Performance Evaluation

Following previous work, we evaluate models on the test images using the bits-
per-dimension (BPD) metric: the negative log-likelihood divided by the number
of pixels values (3×32×32). It can be interpreted as the average number of bits
per RGB value in a lossless compression scheme derived from the model.

Fig. 3. Effect of the regularization parameter λ. Reconstructions (a) and samples (b)
of the VAE decoder (VR and VS, respectively) and corresponding conditional samples
from the pixelCNN (PS).

The comparison in Table 1 shows that our model performs on par with the
state-of-the-art results of the pixelCNN++ model [25]. Here we used the impor-
tance sampling-based bound of [4] with 150 samples to compute the BPD metric
for our model.1 We refer to Fig. 2 for qualitative comparison of samples from our
model and pixelCNN++, the latter generated using the publicly available code.

4.3 Effect of KL Regularization Strength

In Fig. 3 we show reconstructions of test images and samples generated by the
VAE decoder, together with their corresponding conditional pixelCNN samples
for different values of λ. As expected, the VAE reconstructions become less
accurate for larger values of λ, mainly by lacking details while preserving the
global shape of the input. At the same time, the samples become more appealing
for larger λ, suppressing the unrealistic high-frequency detail in the VAE samples
1 The graphs in Figs. 4 and 8 are based on the bound in Eq. (7) to reduce the compu-

tational effort.

Auxiliary Guided Autoregressive Variational Autoencoders 453

Fig. 4. Bits per dimension of the VAE decoder and pixelCNN decoder, as well as
decomposition in KL regularization and reconstruction terms.

obtained at lower values of λ. Note that the VAE samples and reconstructions
become more similar as λ increases, which makes the input to the pixelCNN
during training and sampling more consistent.

For both reconstructions and samples, the pixelCNN clearly takes into
account the output of the VAE decoder, demonstrating the effectiveness of
our auxiliary loss to condition high-capacity pixelCNN decoders on latent vari-
able representations. Samples from the pixelCNN faithfully reproduce the global
structure of the VAE output, leading to more realistic samples, in particular for
higher values of λ.

For λ = 2 the VAE reconstructions are near perfect during training, and
the pixelCNN decoder does not significantly modify the appearance of the VAE
output. For larger values of λ, the pixelCNN clearly adds significant detail to
the VAE outputs.

Figure 4 traces the BPD metrics of both the VAE and pixelCNN decoder as
a function of λ. We also show the decomposition in regularization and recon-
struction terms. By increasing λ, the KL divergence can be pushed closer to
zero. As the KL divergence term drops, the reconstruction term for the VAE
rapidly increases and the VAE model obtains worse BPD values, stemming from
the inability of the VAE to model pixel dependencies other than via the latent
variables. The reconstruction term of the pixelCNN decoder also increases with
λ, as the amount of information it receives drops. However, in terms of BPD
which sums KL divergence and pixelCNN reconstruction, a substantial gain of
0.2 is observed increasing λ from 1 to 2, after which smaller but consistent gains
are observed.

4.4 Role of the Auxilliary Representation

The Auxilliary Variables are Taken into Account: Sect. 3.3 shows that in theory
it is always optimal for the autoregressive decoder to take the latent variables

454 T. Lucas and J. Verbeek

into account. Figure 5 demonstrates this empirically by displaying auxiliary rep-
resentations f(z) with z sampled from the prior f(z) as well as nine different
samples from the autoregressive decoder conditioned on f(z). This qualitatively
shows that the low level detail added by the pixelCNN, which is crucial for log-
likelihood performance, always respects the global structure of the image being
conditioned on. The VAE decoder is trained with λ = 8 and weights very little
in terms of KL divergence. Yet it controls the global structure of the samples,
which shows that our setup can be used to get the best of both worlds. Figure 6
demonstrates that the latent variables z of the encoder have learned meaningfull
structure with latent variable interpolations. Samples are obtained by encoding
ground truth images, then interpolating the latent variables obtained, decod-
ing them with the decoder of the V AE and adding low level detail with the
pixelCNN.

Fig. 5. The column labeled f(z) displays auxiliary representations, with z sampled
from the unit Gaussian prior p(z), accompanied by ten samples of the conditional
pixelCNN.

The Auxilliary Loss is Necessary: The fact that the autoregressive decoder
ignores the latent variables could be attributed to optimization challenges, as
explained in Sect. 3.3. In that case, the auxilliary loss could be used as an ini-
tialization scheme only, to guide the model towards a good use of the latent
variables. To evaluate this we perform a control experiment where during train-
ing we first optimize our objective function in Eq. (7), i.e. including the auxiliary
reconstruction term, and then switch to optimize the standard objective function
of Eq. (6) without the auxiliary term. We proceed by training the full model to
convergence then removing the auxiliary loss and fine-tuning from there. Figure 7
displays ground-truth images, with corresponding auxiliary reconstructions and

Auxiliary Guided Autoregressive Variational Autoencoders 455

Fig. 6. The first and last columns contain auxilliary reconstructions, images in between
are obtained from interpolation of the corresponding latent variables. Odd rows contain
auxilliary reconstructions, and even rows contain outputs of the full model.

Fig. 7. Auxiliary reconstructions obtained after dropping the auxilliary loss. (GT)
denotes ground truth images unseen during training, f(z) is the corresponding inter-
mediate reconstruction, (PS) denotes pixelCNN samples, conditioned on f(z).

Fig. 8. Impact of the color quantization in the auxiliary image. (a) Reconstructions of
the VAE decoder for different quantization levels (λ = 8). (b) BPD as a function of
the quantization level. (Color figure online)

456 T. Lucas and J. Verbeek

Fig. 9. Samples from models trained with grayscale auxiliary images with 16 color levels
(a), 32×32 auxiliary images with 32 color levels (b), and at reduced resolutions of 16×16
(c) and 8×8 pixels (d) with 256 color levels. For each model the auxilliary representation
f(z), with z sampled from the prior, is displayed above the corresponding conditional
pixelCNN sample. (Color figure online)

conditional samples, as well as pure samples. The reconstructions have become
meaningless and independent from the ground truth images. The samples dis-
play the same behavior: for each auxiliary representation four samples from
the autoregressive component are displayed and they are independent from one
another. Quantitatively, the KL cost immediately drops to zero when removing
the auxiliary loss, in approximately two thousand steps of gradient descent. The
approximate posterior immediately collapses to the prior and the pixel CNN
samples become independent of the latent variables. This is the behavior pre-
dicted by the analysis of [5]: the autoregressive decoder is sufficiently expressive
that it suffers from using the latent variables.

4.5 Effect of Different Auxiliary Images

We assess the effect of using coarser RGB quantizations, lower spatial resolutions,
and grayscale in the auxiliary image. All three make the VAE reconstruction task
easier, and transfer the task of modeling color nuances and/or spatial detail to
the pixelCNN.

The VAE reconstructions in Fig. 8(a) obtained using coarser color quantiza-
tion carry less detail than reconstructions based on the original images using
256 color values, as expected. To understand the relatively small impact of the

Auxiliary Guided Autoregressive Variational Autoencoders 457

quantization level on the reconstruction, recall that the VAE decoder outputs
the continuous means of the logistic distributions regardless of the quantization
level. Only the reconstruction loss is impacted by the quantization level via the
computation of the probabilities over the discrete color levels in Eq. (10). In
Fig. 8(b) we observe small but consistent gains in the BPD metric as the num-
ber of color bins is reduced, showing that it is more effective to model color
nuances using the pixelCNN, rather than the latent variables. We trained mod-
els with auxiliary images down-sampled to 16 × 16 and 8 × 8 pixels, which yield
2.94 and 2.93 BPD, respectively. This is comparable to the 2.92 BPD obtained
using our best model at scale 32 × 32. We also trained models with 4-bit per
pixel grayscale auxiliary images, as in [17]. While the grayscale auxilliary images
are subjectively the ones that have the best global structure, the results are
still qualitatively inferior to those obtained by [17] with a pixelCNN modelling
grayscale images. Our model does, however, achieve better quantitative perfor-
mance at 2.93 BPD. In Fig. 9(a) we show samples obtained using models trained
with 4-bit per pixel grayscale auxiliary images, in Fig. 9(b) with 32 color levels
in the auxiliary image, and in Fig. 9(c) and (d) with auxiliary images of size
16 × 16 and 8 × 8. The samples are qualitatively comparable, showing that in
all cases the pixelCNN is able to compensate the less detailed outputs of the
VAE decoder and that our framework can be used with a variety of intermediate
reconstruction losses.

5 Conclusion

We presented a new approach to training generative image models that combine
a latent variable structure with an autoregressive model component. Unlike prior
approaches, it does not require careful architecture design to trade-off how much
is modeled by latent variables and the autoregressive decoder. Instead, this trade-
off can be controlled using a regularization parameter and choice of auxiliary
target images. We obtain quantitative performance on par with the state of the
art on CIFAR10, and samples from our model exhibit globally coherent structure
as well as fine details.

Acknowledgments. This work has been partially supported by the grant ANR-16-
CE23-0006 “Deep in France” and LabEx PERSYVAL-Lab (ANR-11-LABX-0025-01).

References

1. Arjovsky, M., Chintala, S., Bottou, L.: Wasserstein generative adversarial networks.
In: ICML (2017)

2. Bachman, P.: An architecture for deep, hierarchical generative models. In: NIPS
(2016)

3. Bengio, Y., Courville, A., Vincent, P.: Representation learning: a review and new
perspectives. PAMI 35(8), 1798–1828 (2013)

4. Burda, Y., Salakhutdinov, R., Grosse, R.: Importance weighted autoencoders. In:
ICLR (2016)

458 T. Lucas and J. Verbeek

5. Chen, X., et al.: Variational lossy autoencoder. In: ICLR (2017)
6. Deshpande, A., Lu, J., Yeh, M.C., Chong, M., Forsyth, D.: Learning diverse image

colorization. In: CVPR (2017)
7. Dinh, L., Krueger, D., Bengio, Y.: NICE: non-linear independent components esti-

mation. In: ICLR (2015)
8. Dinh, L., Sohl-Dickstein, J., Bengio, S.: Density estimation using real NVP. In:

ICLR (2017)
9. Germain, M., Gregor, K., Murray, I., Larochelle, H.: MADE: masked autoencoder

for distribution estimation. In: ICML (2015)
10. Goodfellow, I., et al.: Generative adversarial nets. In: NIPS (2014)
11. Gregor, K., Besse, F., Rezende, D., Danihelka, I., Wierstra, D.: Towards conceptual

compression. In: NIPS (2016)
12. Gulrajani, I., et al.: PixelVAE: a latent variable model for natural images. In: ICLR

(2017)
13. Kingma, D., Ba, J.: Adam: a method for stochastic optimization. In: ICLR (2015)
14. Kingma, D., Rezende, D., Mohamed, S., Welling, M.: Semi-supervised learning

with deep generative models. In: NIPS (2014)
15. Kingma, D., Salimans, T., Jozefowicz, R., Chen, X., Sutskever, I., Welling, M.:

Improved variational inference with inverse autoregressive flow. In: NIPS (2016)
16. Kingma, D., Welling, M.: Auto-encoding variational Bayes. In: ICLR (2014)
17. Kolesnikov, A., Lampert, C.: PixelCNN models with auxiliary variables for natural

image modeling. In: ICML (2017)
18. Krizhevsky, A.: Learning multiple layers of features from tiny images. Master’s

thesis, University of Toronto (2009)
19. Larochelle, H., Murray, I.: The neural autoregressive distribution estimator (2011)
20. van den Oord, A., Kalchbrenner, N., Vinyals, O., Espeholt, L., Graves, A.,

Kavukcuoglu, K.: Conditional image generation with PixelCNN decoders. In: NIPS
(2016)

21. Oord, A.v.d., Kalchbrenner, N., Kavukcuoglu, K.: Pixel recurrent neural networks.
In: ICML (2016)

22. Rasmus, A., Berglund, M., Honkala, M., Valpola, H., Raiko, T.: Semi-supervised
learning with ladder networks. In: NIPS (2015)

23. Reed, S., et al.: Parallel multiscale autoregressive density estimation. In: ICML
(2017)

24. Rezende, D., Mohamed, S., Wierstra, D.: Stochastic back propagation and approx-
imate inference in deep generative models. In: ICML (2014)

25. Salimans, T., Karpathy, A., Chen, X., Kingma, D.: Pixelcnn++: improving the
pixel CNN with discretized logistic mixture likelihood and other modifications. In:
ICLR (2017)

26. Yan, X., Yang, J., Sohn, K., Lee, H.: Attribute2image: conditional image generation
from visual attributes. In: ECCV (2016)

	Auxiliary Guided Autoregressive Variational Autoencoders
	1 Introduction
	2 Related Work
	3 Auxiliary Guided Autoregressive Variational Autoencoders
	3.1 Variational Autoencoders
	3.2 Autoregressive Decoders in Variational Autoencoders
	3.3 It Is Optimal for the Autoregressive Decoder to Use z

	4 Experimental Evaluation
	4.1 Dataset and Implementation
	4.2 Quantitative Performance Evaluation
	4.3 Effect of KL Regularization Strength
	4.4 Role of the Auxilliary Representation
	4.5 Effect of Different Auxiliary Images

	5 Conclusion
	References

