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Abstract. In Machine Learning, it is common to distinguish different
degrees of supervision, ranging from fully supervised to completely unsu-
pervised scenarios. However, lying in between those, the Learning from
Label Proportions (LLP) setting [19] assumes the training data is pro-
vided in the form of bags, and the only supervision comes through the
proportion of each class in each bag. In this paper, we present a novel
version of the LLP paradigm where the relationship among the classes
is ordinal. While this is a highly relevant scenario (e.g. customer surveys
where the results can be divided into various degrees of satisfaction), it
is as yet unexplored in the literature. We refer to this setting as Ordinal
Label Proportions (OLP). We formally define the scenario and introduce
an efficient algorithm to tackle it. We test our algorithm on synthetic and
benchmark datasets. Additionally, we present a case study examining a
dataset gathered from the Research Excellence Framework that assesses
the quality of research in the United Kingdom.
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1 Introduction

According to the nature of their output, the two dominating tasks in Machine
Learning are those of regression and classification. Attracting an increasing inter-
est, Ordinal Classification (also termed Ordinal Regression) [2,5,6,12] falls some-
where in between the two. Similarly to multiclass classification tasks, the prac-
titioner is provided with a set of data points with their corresponding labels
coming from a discrete set C = {r1, · · · , rk}, but opposed to its nominal sibling,
in ordinal classification, the labels exhibit a natural ordering: r1 ≺ r2 ≺ · · · ≺ rk.
There is an abundance of examples, ranging from categorizing responses to ques-
tions such as “how much do you like Greek food?” to movie ratings or grade
prediction. The difference between the labels in these tasks, e.g. {very bad, bad,
good, great, excellent} and the standard categorical labels, e.g. {car, pedestrian,
bicycle}, is clear.
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Let us consider opinion polls where acceptable outcomes range from strongly
agree to strongly disagree on a given topic. There is a clear ordinal relation-
ship among the outcomes. However, for privacy reasons, it is often not possible
to publish each individual’s opinion. On the other hand, it may be possible to
aggregate the results over several demographic subsets (e.g., by region). There-
fore, this is data that naturally comes in the forms of bags and where, although
the ground truth labels might not be available, we might have access to the
proportion of each class in each bag. We can also argue that, in many cases,
individuals’ opinions are not as relevant as an accurate prediction of the bag
proportions. A specific example of such tasks is that of rating research papers
according to quality, mapping each of them to a set of predefined categories. In
the United Kingdom, publicly funded research is regularly assessed under the
Research Excellence Framework (REF)1. In order to preserve anonymity, based
on the papers submitted by the different research units, REF provides a his-
togram stating how many of the papers submitted were placed in each category,
without revealing which specific paper was in each of these classes. As before,
individual paper ratings are sensitive, but aggregates per submission are fine to
publish. Importantly, funding levels are then based on these histograms. A diffi-
culty for universities is that REF does not rely on a public and formal procedure
to classify papers, but on the judgment of a panel. Therefore, although this can
be cast as an ordinal classification task, unfortunately, the ground truth labels
are not available.

As an aggregate supervision is accessible through the histograms, this prob-
lem sits in between fully supervised and unsupervised learning. In the non-
ordinal case, this has been studied under the name of learning from label pro-
portions [9,14,15,20], where the data is assumed to be given in the form of bags
(e.g., research units) and only the proportion of each class in each bag is given
(histograms). Up to the authors’ knowledge, learning a classifier with this level
of supervision, in the ordinal setting, has not yet been explored. We call this
setting Ordinal Label Proportions (OLP). The OLP methodology developed in
this work is able to efficiently make use of the ordinal constrains in order to learn
from the past REF data and unveil how the expert panel operated by inferring
a scoring function for papers as a function of various properties, such as journal
and conference rankings, citation half life, impact factor, number of authors, or
Google scholar citation count at time of submission.

The contributions of this paper are threefold. Firstly, we introduce and rig-
orously define the new learning paradigm of learning from Ordinal Label Pro-
portions. Secondly, we present an efficient algorithm for learning a classifier in
this setting based on discriminant learning. Thirdly, we produce a dataset for
REF and present our analysis.

The paper is structured as follows. In Sect. 2 we review the related work.
In Sect. 3 we introduce the basic formulation of Linear Discriminant Analysis
(LDA) in the ordinal setting and show how it can be adopted to be trained

1 https://www.ref.ac.uk/.

https://www.ref.ac.uk/
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with label proportions. In Sect. 4 we respectively present the empirical analysis
in both real and synthetic datasets. Section 5 is devoted to the conclusions.

1.1 Problem Formulation

We assume that we have access to a set of observations X = {x1, . . . ,xn} where
xi ∈ R

d. The true labels, y = {y1, . . . , yn} with yi being the label of observation
xi, also exist but are hidden. Also, the class labels {r1, · · · , rk} have a natural
order, i.e. r1 ≺ r2 ≺ . . . ≺ rk. The set X is separated into distinct bags X =⋃K

k=1 Bk, where each Bk corresponds to the subset of points assigned to the k-th
bag, and Bk ∩ Bj = ∅,∀k, j ∈ [K]. Moreover, for each bag Bk we have access
to its class proportions, πk = {πk,1, . . . , πk,c}, where

∑c
h=1 πk,h = 1, πk,h ≥ 0,

with πk,h corresponding to the proportion of class h in bag Bk and c being the
number of classes (c = 2 being the binary classification setting).

The OLP task is then cast as minimizing the following objective:

d(π, π̂[s]) + λR[s]
s.t. s(xi) ≥ s(xj),∀i, j ∈ C

(1)

where π̂ and R are functionals of a scoring function s(.). The former is the
estimate of the bag proportions, while the later acts as a regularizer, and λ
controls the strength of the penalty term. C is the set of all pairwise ordinal
relationships that should hold, i.e. s(xi) ≥ s(xj) for yi = rc and yj = rh, with
rc � rh. The functional d(., .) provides a measure of distance between the true
and estimated proportions.

2 Related Work

In this section we review related work for both ordinal classification and learning
from label proportions.

2.1 Ordinal Classification

For a paper length discussion of the approaches to ordinal classification and their
taxonomy we refer the reader to [6] and the references therein. Here, we briefly
outline the main approaches.

The assumption of a natural ordering of the labels, which underlies ordi-
nal classification is a strong one, as it states that the ordinal structure of the
labels is also present in the feature space, or as stated in [8] “the ordinal class
structure induces an ordinal instance structure”. One could of course reduce the
ordinal classification problem to a nominal one and make use of plenty of exist-
ing algorithms, but this would amount to ignoring available information about
the structure of the data, that could otherwise be used to improve performance,
reduce computation and in general help in building a more consistent classifier.
On the other hand, the task could also be transformed to a regression problem
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by mapping the class labels onto the real line (while respecting the ordering)
and then proceed by applying standard regression techniques. A technique in
this category is that of training a regression tree [2]. However, one disadvantage
of this method is that there is no principled way of choosing the map [6]. In the
taxonomy of ordinal classification approaches, presented in [6], this falls under
the naive approaches category, as they are basically the result of other standard
techniques in machine learning. An alternative approach, still naive but more
advanced, is that of cost-sensitive classification, where the order of the classes is
taken into account in the sense that not all mistakes carry equal weight [16].

The second group of techniques is referred to as Ordinal Binary Decomposi-
tions (OBD). In most cases multiclass classification is tackled through the use of
one-vs-one or one-vs-all voting schemes. In the OBD group, some of the schemes
used are one-vs-next, one-vs-followers and one-vs-previous, which clearly make
explicit the ordering of the classes (consult [6] for a longer discussion of these
schemes and for their properties). One such models is presented in [5], where the
original problem is decomposed into a series of binary classification tasks.

The third and final group includes the threshold models, which are based
on the assumption of a latent continuous variable underlying the ordered dis-
crete labels [6]. These methods have two main ingredients; a function trained
to estimate the latent variable and a set of thresholds that distinguish between
the classes (in the ordered setting). The reader would be right in noting the
similarity of these models with the naive regression approaches. The difference
between the two categories is that in the threshold models, there is no mapping
from discrete (ordered) labels onto the real line (which, as previously discussed
would require prior knowledge about the distances of the classes), but rather
thresholds are being used, which are learned during training.

One of the first attempts was the proportional odds model [12], which extends
logistic regression to the ordinal setting. The Support Vector Machine is one of
the most eminent machine learning techniques due to its generalization perfor-
mance, and has therefore inevitably seen many adaptations to the ordinal clas-
sification setting [2,7]. Finally, and also belonging to the category of threshold
models, discriminative learning [17] will be discussed in Sect. 3.

2.2 Learning from Label Proportions

The level of supervision of bag proportions is very similar to the one of Multiple-
Instance Learning [4,11], where the practitioner is provided with logical state-
ments indicating the presence of a class in a bag. For example, in binary classi-
fication, a bag would have a positive label if it had at least one positive point in
it, while it would be labeled as negative if all of the points belonging to it were
negative.

Existing algorithms designed for learning from label proportions fall in three
main categories. Bayesian approaches such as [9] approach the problem by gener-
ating labels consistent with bag proportions. In [14] the authors propose an algo-
rithm that relies on the properties of exponential families and the convergence of
the class mean operator, computed from the means and label proportions of each
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bag. Lastly, maximum-margin approaches [15,20] pose the problem as either an
extension of maximum-margin clustering [18] or Support Vector Regression.

Conditional Exponential Families. The notation, as well as the overall treat-
ment, in this section follow from [14]. For further clarification please consult the
original paper. Let X and Y denote the space of the observations and the (dis-
crete) label space respectively, and let φ(x, y) : X × Y → H be a feature map
into a Reproducing Kernel Hilbert Space H with kernel k((x, y), (x′, y′)). A con-
ditional exponential family is stated as follows:

p(y|x,θ) = exp
(
φ(x, y)Tθ − g(θ|x)

)
with

g(θ|x) = log
∑

y∈Y
exp

(
φ(x, y)T ,θ

)

where g(θ|x) is a log-partition function and θ is the parameter of the distri-
bution. Under the assumption that {(xi, yi)ni=1} are drawn independently and
identically distributed by the distribution p(x, y), one usually optimizes for θ by
minimizing the regularized negative conditional log-likelihood:

θ∗ = arg min
θ

{
n∑

i=1

[g(θ|xi)] − nμT
XY θ + λ||θ||2

}

,

where μXY := 1
n

∑n
i=1 φ(xi, yi). Unfortunately, in the LLP setting we cannot

compute this quantity directly, as the labels are unknown.

MeanMap. In [14] the authors build upon conditional exponential fami-
lies and present MeanMap, which exploits the theoretical guarantees of uni-
form convergence of the expectation operator to its expected value, μxy :=
E(x,y)∼p(x,y)[φ(x, y)]. Expanding we get:

μxy =
∑

y∈Y
p(y)Ex∼p(x|y)[φ(x, y)] (2)

A critical assumption is that conditioned on its label, a point is independent
of its bag assignment, that is, p(x|y, i) = p(x|y). Based on this we get p(x|i) =∑

y p(x|y)πiy and subsequently

μset
x [i, y′] = Ex∼p(x|i)[φ(x, y′)] =

∑

y

πiyEx∼p(x|y)[φ(x, y)]

=
∑

y

πiyμ
class
x [y′]

Putting these in matrix notation we get to M set
x = πM class

x . Assuming π has full
column-rank, we can obtain μclass

x = (πTπ)−1πTμset
x , to be used as an approxi-

mation of Ex∼p(x|y)[φ(x, y)] in Eq. 2.
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Maximum Margin Approaches. The maximum margin principle has been
widely used in both supervised and semi-supervised learning [3]. In [18] it was
also introduced to the unsupervised setting under the name Maximum Margin
Clustering (MMC).

Informally, the labels are arranged in a way such that, had an SVM been
trained on the (labeled) data, it would achieve a maximum margin solution. A
treatment of MMC can be found in [10]. In [20] the authors present ∝SVM, based
on MMC with an extra term in the loss function, depending on the provided and
estimated bag proportions.

In [15] the authors follow the maximum margin principle by developing a
model based on the Support Vector Regression. They present Inverse Calibration
(InvCal) that replaces the actual dataset with super-instances [19], one for each
bag, with soft-labels corresponding to their bag-proportions.

3 Discriminant Learning with Ordinal Label Proportions

In this section we first present some necessary background on Linear Discrim-
inant Analysis (LDA), then proceed with the adaptation to the ordinal setting
and finally introduce our algorithm.

3.1 Preliminaries

LDA is one of the main approaches in supervised dimensionality reduction, but is
also widely used as a classification technique. LDA aims at finding a projection
of the data that both minimizes the within-class variance and maximizes the
between-class variance.

Following [17], let us define the within-class and between-class scatter matri-
ces (denoted by the w and b subscripts, respectively):

Sw =
1
N

K∑

k=1

∑

x∈Ck

(x − mk)(x − mk)T (3)

where the first sum runs over the K classes, and the second over the elements in
each class (where Ck is used to denote the set of data-points in each class) and
where mk = 1

Nk

∑
x∈Ck

x denotes the mean of each class.
The between-class scatter matrix is defined as:

Sb =
1
N

K∑

k=1

Nk(mk − m)(mk − m)T (4)

where m = 1
N

∑N
i=1 xi is used to denote the global mean.

The projection is found by minimizing the following generalized Rayleigh
quotient:

w∗ = arg min
w

J(w), where J(w) =
wTSww

wTSbw
(5)
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This can be solved as a generalized eigenvalue problem. As with many popular
techniques, such as Support Vector Machines and Principal Component Analysis,
LDA can be kernelized as well and give rise to Kernel Discriminant Analysis (see
for example, [1,13]).

3.2 Kernel Discriminant Learning for Ordinal Regression (KDLOR)

As mentioned earlier, in the Ordinal Classification setting the classes exhibit a
natural ordering. This statement can be easily formulated as a constraint to an
optimization problem. Similarly to LDA, the projection should be such that the
between-class scatter is high and within-class scatter is small. This gives rise to
the following problem [17]:

min J(w, ρ) = wTSww − Cρ
s.t. wT (mk+1 − mk) ≥ ρ, for k = 1, · · ·,K − 1 (6)

where C can be understood as the parameter controlling the penalty on the mar-
gin between the means and where ρ > 0 defines the margin between the class
means. Also, without loss of generality, we have assumed the class numbering
(the subscript) is in accordance with the natural ordering of the classes. It can
be easily seen that this problem gives rise to a projection that abides to the
desired properties. We want our projection to have: (1) small within-class vari-
ance, (2) large distances between the means of the classes, and (3) a projection
that respects the inherent ordering.

To solve the above problem we proceed by forming the Lagrangian as follows:

L(w, ρ, α) = wTSww − Cρ −
K−1∑

k=1

αk

(
wT (mk+1 − mk) − ρ

)
(7)

where αk ≥ 0 are the Lagrange multipliers. Differentiating with respect to w
and ρ we get:

∂L
∂w

= 0 → w =
1
2

S−1
w

K−1∑

k=1

αk(mk+1 − mk)

∂L
∂ρ

= 0 →
K−1∑

k=1

αk = C

The so-called dual problem is formulated as follows:

min f(α) =
K∑

k=1

αk(mk+1 − mk)TS−1
w

K∑

k=1

αk(mk+1 − mk)

s.t. αk ≥ 0, k = 1, · · ·,K − 1
K∑

k=1

αk = C

(8)
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Fig. 1. Ordinary label proportions toy setup. Shape is as indication of class assignment,
while colour is an indication of bag assignment. On the figure, we also see three possible
projections, that all allow for perfect separation of the data. (Color figure online)

This is an example of (convex) Quadratic Programming with linear con-
straints and can be solved via a variety of methods. After solving this optimiza-
tion program for α∗, the projection can be obtained using

w∗ =
1
2

S−1
w

K−1∑

k=1

α∗
k(mk+1 − mk) (9)

and the derived decision rule is as follows,

f(x) = min
k∈{1, ···,K}

{k : w∗Tx − bk < 0} (10)

where bk = wT Nk+1mk+1+Nkmk

Nk+1+Nk
.

3.3 Discriminant Learning for Ordinal Label Proportions (DL-OLP)

The algorithm presented in the previous subsection (KDLOR) is suitable for the
fully supervised learning setting. Though, when the level of supervision is that
of learning with label proportions, KDLOR cannot be employed as the class
means are required for both the main problem Eq. 8 and for the computation of
the within-class scatter matrix in Eq. 3. To that end, we choose to estimate the
class means building upon [14]. Figure 1 demonstrates the setting through a toy
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example, where we have three (well) separated clusters (as shown by shape) with
the only supervision available being the label proportions (as shown by colour).
In the Figure we also see three possible projections, which all fully separate the
clusters.

Key to this derivation is the underlying (but often realistic) assumption of
conditional independence of a data point and its bag assignment, given its class
assignment. Formally, p(x|y, i) = p(x|y), which gives us:

p(x|i) =
∑

y

p(x|y, i)p(y|i) =
∑

y

p(x|y)πiy (11)

where πiy = p(y|i). Let μk denote the mean of x in bag k and mc the mean of
class c. Following Eq. 11,

μk := Ex∼p(x|i)[φ(x)] =
∑

y

πiymy (12)

Putting these in matrix form, with M bag and M class denoting the matrices
of means for the bags and classes, respectively, we have M bag = πM class, from
which we can obtain a least squares estimate of M class:

M̂
class

= π+M bag (13)

where the + superscript denotes the Moore–Penrose pseudo-inverse. (For the
sake of clarity, it should be noted that π denotes a matrix, and not a vector).

Having shown how to estimate the class means, let us make explicit how to
compute the within-class scatter matrix, as it requires a sum over data points
in each class.

Sw =
1
N

K∑

k=1

∑

x∈Ck

(x − mk)(x − mk)T (14)

=
1
N

K∑

k=1

∑

x∈Ck

xxT − 2xmT
k + mkm

T
k

=
1
N

∑

x∈X
xxT +

1
N

K∑

k=1

Nkmkm
T
k − 2

N

K∑

k=1

mk

∑

x∈Ck

x

=
1
N

∑

x∈X
xxT − 1

N

K∑

k=1

Nkmkm
T
k

The procedure is finally summarized in Algorithm 1. When new instances are
observed, one can plug in w∗ into Eq. 10 to obtain the corresponding prediction.

4 Experiments

In our experiments we consider both synthetic and real-world datasets. We first
describe the datasets and then present the empirical results. In our experiments
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Algorithm 1. LDA for OLP
Input: π,X , bag assignments
Output: w∗

1 Compute the means of each bag, M bag.
2 Compute the means of each class using Eq. 13.
3 Compute the within-class scatter matrix, Sw using Eq. 14.
4 Solve the problem defined by Eq. 8 for α∗.
5 Obtain the projection w∗ using Eq. 9

we want to test the relevance of the ordinal constraints as well as the trade-off in
accuracy when using aggregated proportions instead of the actual labels. To that
end we compare against: KDLOR - trained with the actual labels, MeanMap -
trained with bag proportions. Additionally, we use Clustering as a baseline. For
clustering, we first run k-means, with the number of components correspond-
ing to the number of classes. Then, in order to classify each cluster, we con-
sider a voting scheme, where each data point’s vote is its corresponding bag’s
proportions.

Regarding the first two types of experiments (Synthetic and Benchmark
datasets) we make the following notes.

Evaluation. In our experiments (except REF) we consider the test data to be
provided without bag proportions. In the case of the test data set being pro-
vided in the form of a bag, one could do the training in the exact same manner
as presented in the paper and during testing, after the predictions have been gen-
erated, sort the data points of each bag according to their scores and re-arrange
predictions to account for the provided bag proportions. For the synthetic and
benchmark datasets we have access to the ground truth (the true labels) and
our evaluation is based on those.

Results. These should be read as follows. The first column is the name of the
dataset. The rest of the values should be read as mean(one standard deviation).

4.1 Synthetic Dataset

Data. In our experiments we consider one synthetic dataset configuration as
shown in Fig. 2. The data samples (100, 1000) were generated as coming from
three Gaussian distributions with means lying on a line on equal intervals and
identity covariance matrix.

Model Setup. In our experiments we focus on problems involving three classes of
equal size, and three bags, again, of equal size – but different proportions. The
proportions used are: {(0.25, 0.25, 0.50, 0.50, 0.25, 0.25, 0.25, 0.50, 0.25)}. The
data is first generated according to the desired total size and then separated into
the bags, respecting the desired bag proportions.
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Fig. 2. Configuration used for the synthetic dataset. On the left, colour indicates class,
while on the right, colour indicates bag assignment. (Color figure online)

Results. Results for the synthetic dataset are shown in the first two rows
of Tables 1 and 2. Table 1 shows results on Zero-One accuracy while Table 2
shows results on Mean Absolute Error (MAE) loss. This simple example is only
intended to show the difference between the two evaluation metrics. In terms of
MAE, as expected the best performing method is the inherently ordinal KLDOR,
while DL-OLP outperforms MeanMap. The Clustering baseline works particu-
larly well due to the underlying distribution of the data.

4.2 Benchmark Datasets

Data. In our experiments we also consider various benchmark datasets for ordi-
nal classification. The datasets can be found in the repository provided2.

Model Setup. For these datasets, three classes were chosen and then three bags
were created by randomly picking points from the classes to fulfill the desired
bag proportions. The bag proportions used are: {(0.25, 0.25, 0.50, 0.50, 0.25,
0.25, 0.25, 0.50, 0.25)}.

Results. Results for the benchmark datasets are shown in Tables 1 and 2. Again,
in most cases, in terms of MAE, as expected the best performing method is
the inherently ordinal KLDOR, while DL-OLP makes better use of the label
proportions than MeanMap by respecting the ordinal constraints.

4.3 REF Dataset

The final experiment is a real-world case study illustrating the effectiveness of
DL-OLP in a problem of actual importance, both for accurate prediction and
for interpretation of the prediction model (i.e., the weight vector).

2 The benchmark datasets are also available at http://www.gagolewski.com/
resources/data/ordinal-regr.

http://www.gagolewski.com/resources/data/ordinal-regr
http://www.gagolewski.com/resources/data/ordinal-regr


Ordinal Label Proportions 317

Table 1. Zero-one accuracy

KDLOR MeanMap Clustering DL-OLP

Synthetic100 0.98(0.014) 0.49(0.056) 0.97(0.018) 0.97(0.026)

Synthetic1000 0.98(0.003) 0.53(0.052) 0.98(0.006) 0.97(0.002)

Cali/Housing 0.67(0.015) 0.35(0.032) 0.29(0.011) 0.53(0.018)

Cement-Strength 0.93(0.004) 0.72(0.012) 0.66(0.013) 0.87(0.026)

Fireman 0.83(0.011) 0.70(0.008) 0.64(0.019) 0.81(0.023)

Kinematics 0.66(0.016) 0.62(0.012) 0.68(0.015) 0.62(0.022)

Skill 0.66(0.028) 0.55(0.042) 0.59(0.04) 0.59(0.012)

Stockord 0.68(0.042) 0.40(0.049) 0.59(0.061) 0.80(0.078)

Table 2. Mean absolute error

KDLOR MeanMap Clustering DL-OLP

Synthetic100 0.023(0.016) 0.66(0.090) 0.26(0.018) 0.031(0.026)

Synthetic1000 0.024(0.003) 0.61(0.031) 0.024(0.006) 0.028(0.009)

Cali/Housing 0.35(0.016) 0.69(0.036) 0.77(0.025) 0.51(0.022)

Cement-Strength 0.073(0.004) 0.28(0.012) 0.35(0.013) 0.14(0.034)

Fireman 0.17(0.011) 0.32(0.010) 0.38(0.029) 0.20(0.023)

Kinematics 0.40(0.016) 0.44(0.015) 0.36(0.017) 0.42(0.013)

Skill 0.35(0.034) 0.52(0.057) 0.44(0.068) 0.42(0.011)

Stockord 0.36(0.086) 0.61(0.056) 0.42(0.086) 0.16(0.057)

Data. In the United Kingdom, the Research Excellence Framework (REF)
assesses the research of all university departments. This is done by asking all
departments to send in a list of the 4 best publications for each academic staff
member. Then a panel decides how many of these submissions are awarded 4*
(world-leading), 3* (internationally recognized), 2* (nationally leading), and 1*
(nationally recognized) or unclassified). At the end of the process, the outcome
is a histogram for each department stating how many research outputs were
in each category, but not revealing which paper was in each of these classes.
Funding levels are then based on this histogram. As the panel do not reveal how
they classify papers, in deciding which papers to submit, the departments have
to guess which papers the panel would rank most highly. This also affects the
individuals’ and departmental publication strategy. In this experiments we aim
to reverse engineer the panel’s thinking, and work out a classifier that mimics
the way the panel operates.

The data is online for all university departments: all the papers each depart-
ment submitted, and the histogram saying how many were in each class for each
department. We use the 2008 submission for all Computer Science departments
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in the country to compile our REF dataset3. For each book, book chapter, con-
ference or journal paper, we collect the following features whenever available:

1. Number of citations: total number of citations for a given paper at the
time of submission from Google Scholar (integer).

2. Number of authors: total number of authors for a given paper (integer).
3. IsMultidisciplinary: whether the outcome is categorized by the author

as a multidisciplinary piece of research (boolean).
4. Ranking ERA: ranking provided by the Excellence in Research for Australia

(ERA)4 for journals and conferences (ordinal categorical).
5. JCR total citations: total number of citations for every article published

in the journal from the Journal Citation Reports (JCR)5 (integer).
6. JCR impact factor: frequency with which an average article from a journal

is cited in a particular year (positive real).
7. JCR Immediacy index: frequency with which the average article from a

journal is cited within the same year as publication (positive real).
8. JCR total number of articles of the journal: total number of arti-

cles published in the publication for a specific year (integer).
9. JCR Cited half-life: median age of the articles in the journal that were

cited in the year (positive real).
10. Additionally, we compute a feature based on the product of the JCR impact

factor and the JCR cited half-life, as this was traditionally thought to
be a good proxy for the behaviour of the panel.

This leads to a total of 10 features for the 4966 research outputs over the 81
Computer Science departments.

For non-journal papers, the JCR measures (features 5–10) are not available,
and feature 4 is not available for contributions other than conference and journal
papers. There are many possible approaches for filling out these missing values.
For the sake of simplicity, we set all missing feature values to zero. While this
is clearly not very sophisticated or well-founded (and alternative approaches are
subject of ongoing investigations), we will show later in the discussion that it
nonetheless leads to informative and interpretable results.

Model Setup. For the REF dataset, we consider each department as being one
bag and each paper’s (hidden) rating to range between 4* and no-stars. We
therefore have a total of 81 bags and 5 classes. Even though we do not include
experiments using the kernel extension of the algorithm for interpretability pur-
poses, we do provide some guidelines as to how one could use it. The standard
approach to learning parameters of a model is through k-fold cross-validation
(where one splits the dataset in k folds, trains the model on k − 1 of them,
and tests on the k-th one). In the LLP setting one does not have access to the
true labels, so the standard CV procedure cannot be employed. One can though
3 https://www.rae.ac.uk/pubs/2008/01/.
4 http://www.arc.gov.au/excellence-research-australia.
5 http://jcr.incites.thomsonreuters.com/.

https://www.rae.ac.uk/pubs/2008/01/
http://www.arc.gov.au/excellence-research-australia
http://jcr.incites.thomsonreuters.com/
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adapt it to this setting by using the bags as folds. In order to evaluate the per-
formance on the ‘test-bag’, the practitioner can consider how well the estimated
bag proportions match the provided ones.

Discussion. For the REF data, the ground truth (the actual rating for each
paper) is not available and therefore our evaluation is limited. Therefore, we
focus on discussing our model parameters. With regards to MAE on the bag
proportions, our approach achieves a value of 12.14, outperforming clustering
which achieves a value of 19.76.

Based on the empirical long-tail distribution of Number of Citations, it
was believed sensible to apply a log-transform on the feature (the difference
between 0 and 10 citations is a lot more important than the difference between
1000 and 1010 citations). The rest of the features are standardized. The weight
vector obtained by DL-OLP is as follows (numbers are given in the same order
as the numbered list of features shown before):

[0.179,−0.025, 0.158, 0.026,−0.020,−0.095,−0.074, 0.032, −0.110, −0.081].

Not only does DL-OLP allow one to predict the histogram for a given REF sub-
mission well – the weight vector also provides insight into what the panel val-
ues. The (positive) dominating features are the Number of citations, together
with multidisciplinary nature of the submission. The importance of the number
of citations comes at no surprise. The latter is in accordance with the widely
held belief that multidisciplinary contributions are valued more highly by the
REF panels.

It is worth noting that the number of authors has a negative weight. Thus,
a large number of authors is perceived as a lowering the quality of a sub-
mission (perhaps as one’s contribution to it is considered inversely propor-
tional to the number of authors). However, many authors are justified from
a REF optimization perspective if necessitated by the paper’s multidisciplinary
nature. To further illustrate this point, we proceeded by combining these two
features into one, by multiplying Number of authors with +1 in the case of
isMultidisciplinary being true, and −1 otherwise. The new weight vector is
shown below (N/A is inserted for the third feature, as it is now combined with
the second):

[0.102, 0.153,N/A,−0.019,−0.019,−0.051,−0.033, 0.002,−0.104,−0.036].

Interestingly, the new feature now dominates the weight vector, with a positive
effect, with the number of citations coming second.

A final observation is that the JCR features (with the exception of the 8’th
feature, total number of articles in the journal), are negative. This may seem
counter intuitive at first, but there are two logical explanations. The first is that
journal-level metrics are only proxies for a paper’s actual impact, which is better
quantified by the actual number of citations (which does have a large positive
weight). To test this explanation, we also ran our method after removing the
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first feature, yielding the following weights (again with N/A for the first as this
one is removed):

[N/A,−0.004, 0.078, 0.019,−0.000,−0.068,−0.072, 0.090, 0.003, −0.055].

We do indeed see that the JCR measures (features 5–10) all increase, yet, most
of them remain negative. This can be explained by our approach of filling in
missing values for non-journal papers. Actually, these have JCR measures that
are set to zero (i.e. the minimum possible). The result thus implies that the REF
panels do value strong non-journal contributions, contrary to popular belief.

5 Conclusion

In this paper we have introduced a new learning task which we have called
Ordinal Label Proportions. We have also presented a method to tackle the
problem based on discriminant learning and a sound estimation of class means.
The method aims to find a projection that minimizes the within-class scatter
while also respecting the natural ordering of the classes. Our approach compares
favourably with MeanMap, that does not exploit the ordinal nature of the data.
Moreover, even though DL-OLP has the benefit of training with the true labels,
instead of label proportions, only a minor setback is observed empirically. In the
future we wish to examine more real world data sets that exhibit the character-
istics of Ordinal Label Proportions.
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