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Abstract. In recent years several novel algorithms have been developed
for maximizing the instance-wise Fβ-measure in multi-label classifica-
tion problems. However, so far, such algorithms have only been tested
in tandem with shallow base learners. In the deep learning landscape,
usually simple thresholding approaches are implemented, even though
it is expected that such approaches are suboptimal. In this article we
introduce extensions of utility maximization and decision-theoretic meth-
ods that can optimize the Fβ-measure with (convolutional) neural net-
works. We discuss pros and cons of the different methods and we present
experimental results on several image classification datasets. The results
illustrate that decision-theoretic inference algorithms are worth the
investment. While being more difficult to implement compared to thresh-
olding strategies, they lead to a better predictive performance. Overall, a
decision-theoretic inference algorithm based on proportional odds models
outperforms the other methods. Code related to this paper is available
at: https://github.com/sdcubber/f-measure.
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1 Introduction

Amongst other utility measures, the Fβ-measure is commonly used as a perfor-
mance metric for multi-label classification (MLC) problems, especially in the case
of imbalanced label occurrences. Given a prediction h(x) = (h1(x), . . . , hm(x))T

of an instance x with m-dimensional binary label vector y = (y1, . . . , ym)T ,
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where both h(x) and y belong to {0, 1}m, the Fβ-measure is usually computed
in an instance-wise manner:

Fβ(y,h(x)) =
(1 + β2)

∑m
i=1 yihi(x)

β2
∑m

i=1 yi +
∑m

i=1 hi(x)
∈ [0, 1] , (1)

where 0/0 = 1 by definition. Alternative ways of computing the Fβ-measure are
macro-averaging, in which the Fβ-measure is not computed per instance, but
per label, and micro-averaging, in which the computation is done over the whole
instance-label matrix for a predefined dataset. The instance-wise Fβ-measure
will be the focus of this work. It is a very relevant measure for many practical
MLC problems.

In recent years, specialized algorithms have been developed for optimizing
the instance-wise Fβ-measure. Roughly speaking, existing methods can be sub-
divided into two categories: utility maximization methods and decision-theoretic
approaches. Algorithms in the first category intend to minimize a specific loss
during the training phase. Many of those algorithms seek for thresholds on scor-
ing functions [1–4], but also a few more complicated approaches have been pro-
posed [5,6]. For the related problem of binary classification, Fβ-measure maxi-
mization at training time can be achieved via extensions of logistic regression [7],
boosting [8] or support vector machines [9,10]. However, Fβ-measure maximiza-
tion is simpler in binary classification than in multi-label classification, because
predictions for subsequent instances are independent, while predictions for sub-
sequent labels are not.

Decision-theoretic methods depart from a different perspective. These meth-
ods usually fit a probabilistic model P (y |x) to the data during training, followed
by an inference procedure at prediction time. This inference procedure consists
of optimizing the following optimization problem:

hF (x) = argmax
h∈{0,1}m

EY | x [Fβ(Y ,h)] = argmax
h∈{0,1}m

∑

y∈{0,1}m

P (y |x)Fβ(y,h), (2)

in which the ground-truth is a vector of random variables Y = (Y1, Y2, . . . , Ym),
EY | x denotes the expectation for an underlying probability distribution P over
{0, 1}m, and h denotes a potential prediction. This is a non-trivial optimization
problem without closed-form solution. Moreover, a brute-force search requires
checking all 2m combinations of h and summing over an exponential number of
terms in each combination and is hence infeasible for moderate values of m [11].

For solving (2), one can distinguish approximate inference algorithms, such
as those of [12–17], and Bayes optimal methods [18–20]. Approximate algorithms
depart from the assumption of independence of the Yi, i.e.,

P (y |x) =
m∏

i=1

(pi(x))yi(1 − pi(x))1−yi , (3)

with pi(x) = P (yi = 1 |x). In contrast, exact algorithms do not require the inde-
pendence assumption, which is not realistic for many MLC problems. Optimiza-
tion problem (2) seems to require information about the entire joint distribution
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P (y |x). However, exact algorithms have been proposed that solve the problem
in an efficient way, by estimating only a quadratic instead of an exponential
(with respect to m) number of parameters of the joint distribution.

The main goal of this article is to provide additional insights on how the
instance Fβ-measure can be optimized in the context of (convolutional) neural
networks. Multi-label classification methods are commonly used in image anal-
ysis, for classical tasks such as tagging, segmentation or edge detection. In such
studies the Fβ-measure is often reported as a performance measure that reflects
the practical performance of a classifier in a realistic way. However, the Fβ-
measure maximization methods that are discussed above have only been tested
on simple MLC problems with shallow base learners that do not involve fea-
ture learning. Likewise, deep convolutional neural networks, which dominate the
image classification landscape, usually only consider crude solutions when opti-
mizing the Fβ-measure. Researchers often stick to simple approaches that are
easy to implement, while ignoring the shortcomings of those approximations. In
a recent Kaggle competition which involved the multi-label classification of satel-
lite images1, one could observe that almost all top-scoring submissions applied
simple thresholding strategies, which are known to be suboptimal. Only one
author in the top ten reported improvement gains by testing something differ-
ent than thresholding strategies. It is therefore interesting to investigate in a
more systematic way how the instance-wise Fβ-measure can be maximized in
the context of deep neural networks.

This article is organized as follows. In Sect. 2, we will introduce neural net-
work extensions of different algorithms, including several thresholding strategies,
and approximate and exact inference methods. Moreover, we introduce a new
model based on proportional odds to estimate the set of parameters of the joint
label distribution, required to perform exact inference with existing methods.
All those methods have pros and cons, which will be discussed without imposing
sympathy for one particular method from the beginning. In Sect. 3, we present
the results of a comparative experimental study on four image classification
datasets, illustrating the behavior of the methods that we introduce. Our pro-
portional odds model outperforms the alternatives in almost all scenarios. We
end with a few clear conclusions.

2 Algorithms for Deep Fβ-Measure Maximization

In this section we present six different algorithms that can be applied in tandem
with (convolutional) neural networks to optimize the Fβ-measure. To this end,
we make a major distinction between three utility maximization methods and
three decision-theoretic methods.

2.1 Utility Maximization Methods

When optimizing Fβ-measure during training with (deep) neural networks, engi-
neers usually consider thresholding strategies on marginal probabilities via a
1 https://www.kaggle.com/c/planet-understanding-the-amazon-from-space.

https://www.kaggle.com/c/planet-understanding-the-amazon-from-space
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simple line search. Other existing utility maximization methods usually lead to
constrained optimization problems, making them not immediately applicable to
neural network training. We present three algorithms that seek to optimize the
Fβ-measure by means of applying specific thresholds to the predicted marginal
probabilities p1(x), . . . , pm(x). To this end, we assume that those marginals are
modelled with a (convolutional) neural network with one output neuron per
label, obtained via a logistic output layer:

pi(x) =
exp(wT

i φ(x;ψ))
1 + exp(wT

i φ(x;ψ))
, (4)

in which wi represents parameter vectors, and φ denotes the map from the input
layer to the one-but-last layer, parameterized by a parameter set ψ.

This approach is in multi-label classification often referred to as binary rel-
evance (BR). In the results section, the three BR-inspired algorithms will be
referred to as threshold averaging (BRavg

t ), global thresholding (BRglob
t ) and

threshold stacking (BRstack
t ), respectively.

Threshold Averaging (BRavg
t ). The first thresholding approach consists of

computing a specific optimal threshold θ
(i)
∗ for each instance x(i) during training

time. The algorithm passes over the data exactly once and considers the marginal
probabilities p1(x(i)), . . . , pm(x(i)) in decreasing order as candidate thresholds.
At test time, the average optimal threshold over the training dataset is applied
as a common threshold. Algorithm 1 provides pseudocode for a single instance;
the algorithm can be applied on an entire training dataset with O(mn) time
complexity, by vectorizing the counter variables.

Algorithm 1. Threshold Averaging
1: Input: a training instance (x, y), predictions p(x) = (p1(x), . . . , pm(x))

2: compute sy =
∑m

i=1 yi

3: p ← sort(p(x)) s.t. p1 ≥ p2 ≥ . . . ≥ pm, store the sorting indices in a list L

4: set sh = 0, sy h = 0, Fmax = 0, θ∗ = p1

5: for k = 1 to m − 1 do
6: sy h ← sy h + yL[k]

7: compute F = (1 + β2) sy h

β2sy +k

8: if F > Fmax then
9: Fmax ← F , θ∗ ← pk+1

10: end if
11: end for
12: return optimal threshold θ∗

Global Thresholding (BRglob
t ). Algorithm 2 directly finds a single global

optimal threshold θ∗ at training time. The method acts on the entire training
data set by concatenating all marginal probabilities p1(x), . . . , pm(x) for differ-
ent x, and considering each value as candidate threshold. This second thresh-
olding method seeks to improve over the previous method by considering much
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more candidate thresholds. However, this comes at the expense of an increas-
ing time complexity. Sorting the vector of all marginals takes O(mn log(mn))
time, and the computation of the optimal threshold takes O(m2n). Each of those
two factors might be dominating, depending on m and n. Let us remark that
Algorithm 2 could be substantially simplified if the macro or micro Fβ-measure
would be optimized instead of the instance-wise Fβ-measure. For the instance-
wise Fβ-measure one needs to keep track of the score for every instance individ-
ually for different thresholds, resulting in a higher time complexity compared to
the micro and macro Fβ-measures. Algorithmically, too, threshold-based opti-
mization of the latter two measures is easier.

Algorithm 2. Global Thresholding
1: Input: tr. data {(x(1), y(1)), . . . , (x(n), y(n))}, predictions {p(x(1)), . . . , p(x(n)))}
2: q ← concatenate({p(x(1)), . . . , p(x(n))})
3: r ← concatenate({y(1), . . . , y(n)})
4: q ← sort(q) s.t. q1 ≥ q2 ≥ . . . ≥ qn×m

5: compute sy : sy
j =

∑m
i=1 y

(j)
i ∀j ∈ {1, . . . , n}

6: set sh = 0n, sy h = 0n, Fmax = 0, θ∗ = q1

7: for k = 1 to (n × m) − 1 do
8: j ← index of the training instance that corresponds to qk

9: sh
j ← sh

j + 1, sy h
j ← sy h

j + rj

10: compute F = 1
n

∑n
i=1(1 + β2)

s
y h
i

β2s
y
i +sh

i

11: if F > Fmax then
12: Fmax ← F , θ∗ ← qk+1

13: end if
14: end for
15: return global optimal threshold θ∗

Threshold Stacking (BRstack
t ). The final thresholding method presented here

tries to predict the instance-wise optimal thresholds for each test instance, in
an approach similar to stacking, see e.g. [21,22]. A set of marginal probabili-
ties and optimal thresholds {(p(x(1)), θ(1)∗ ), . . . , (p(x(n)), θ(n)∗ )} is obtained via
Algorithm 1 and serves as training data to learn a mapping from probability
vectors to thresholds. As such, one ends up with a stacked model structure:

x �→ p1(x), . . . , pm(x) �→ θ∗(x).

The first mapping consists of a (convolutional) neural network that predicts
marginal probabilities, and the second mapping will be a ridge regression model
that transforms the distribution over marginals to a distribution-specific thresh-
old. The distribution of marginal probabilities depends on x, so one can argue
that the predicted threshold is instance-specific.
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2.2 Decision-Theoretic Methods

We present in total three algorithms that optimize the Fβ-measure in a decision-
theoretic perspective using so-called plug-in classifiers, i.e. classifiers that fit
a probabilistic model at training time, followed by an inference phase at test
time. We first mention an approach that departs from marginal probabilities
and optimizes (2) in an approximate way by assuming label independence. This
approach will be referred to as the label independence Fβ plug-in classifier (LFP).
Subsequently, we introduce two methods that do not have this restriction and
provide exact solutions for (2). These methods do not require the plugin of m
estimated marginal probabilities but rather a set of m2 + 1 parameters of the
joint distribution. To this end, we propose a neural network architecture with
an output layer that is modified compared to the models that are typically used
for BR estimation of marginal probabilities. The two exact methods differ in the
hypothesis class that is considered.

All the methods in this section rely on solving (2) via outer and inner maxi-
mization. Let Hk denote the space of all possible predictions that contain exactly
k positive labels: Hk = {h ∈ {0, 1}m | ∑m

i=1 hi = k}. The inner maximization
then solves

hk(x) = argmax
h∈Hk

EY | x [Fβ(Y ,h)] , (5)

for each k. Subsequently, the outer maximization seeks to find the Fβ-
maximizer hF :

hF (x) = argmax
h∈{h0(x),...,hm(x)}

EY | x [Fβ(Y ,h)] . (6)

The solution to (6) is found by checking all m + 1 possibilities. The algorithms
discussed below differ in the way they solve the inner maximization (5).

Label Independence Fβ Plug-In Classifier (LFP). By assuming indepen-
dence of the random variables Y1, . . . , Ym, optimization problem (5) can be sub-
stantially simplified. It has been shown independently in [12] and [14] that the
optimal solution then always contains the labels with the highest marginal prob-
abilities, or no labels at all.

Theorem 1 [12]. Let Y1, Y2, . . . , Ym be independent Bernoulli variables with
parameters p1, p2, . . . , pm respectively. Then, for all j, k ∈ {1, . . . ,m}, hF,j = 1
and hF,k = 0 implies pj ≥ pk.

As a consequence, only a few hypotheses h (m+1 instead of 2m) need to be
examined, and the computation of the expected Fβ-measure can be performed
in an efficient way. [13–16] have proposed exact procedures for computing the
Fβ-maximizer under the assumption of label independence. All those methods
take as input predicted marginal probabilities (p1, p2, . . . , pm) with shorthand
notation pi = pi(x), and they all obtain the same solution. In what follows
we only discuss the method of [16], which is the most efficient among the four
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implementations. This method only works for rational β2; in other cases a less
efficient algorithm can be used.

As a starting point, let us assume that the labels are sorted according to the
marginal probabilities and let hk(x) be the prediction that returns a one for the
labels with the k highest marginal probabilities and zero for the other labels.
Furthermore, let sy

i:j =
∑j

l=i yl, then one can observe that

E [Fβ(Y ,hk(x))] =
∑

y∈{0,1}m

Fβ(y,hk(x))P (y |x) (7)

=
∑

0≤k1≤k
0≤k2≤m−k

P (sy
1:k = k1)P (sy

k+1:m = k2)(1 + β2)k1
k + β2(k1 + k2)

=
k∑

k1=0

(1 + β−2)k1P (sy
1:k = k1)s(k, kβ−2 + k1) ,

where s(k, α) =
∑m−k

k2=0 P (sy
k+1:m = k2)/(α + k2). Now observe that

P (sy
k:m = i) = pkP (sy

k+1:m = i − 1) + (1 − pk)P (sy
k+1:m = i) .

As a result, the s-values for different values of k in (7) can be computed
recursively:

s(k − 1, α) =
m−k+1∑

k2=0

P (sy
k:m = k2)
α + k2

= pk

m−k+1∑

k2=0

P (sy
k+1:m = k2 − 1)

α + k2
+ (1 − pk)

m−k+1∑

k2=0

P (sy
k+1:m = k2)
α + k2

= pk

m−k∑

k2=0

P (sy
k+1:m = k2)

α + k2 + 1
+ (1 − pk)

m−k∑

k2=0

P (sy
k+1:m = k2)
α + k2

= pks(k, α + 1) + (1 − pk)s(k, α) ,

with s(m,α) = 1/α and s(k, α) = 0 when k < 0 or k > m. Remark that the
transition from the second to the third line follows from an index change.

The recursive formula suggests a dynamic programming implementation with
k ranging from k = m to k = 1, as given in Algorithm 3. Here we first introduce
a list of lists, using double indexing, such that L[k][j] = P (sy

1:k = j) with
j ∈ {−1, 0, . . . , k + 1}. This data structure can also be initialized via dynamic
programming:

L[k][j] = pkP (sy
1:k−1 = j − 1) + (1 − pk)P (sy

1:k−1 = j)
= pkL[k − 1][j − 1] + (1 − pk)L[k − 1][j]

using L[1] = [0, (1 − p1), p1, 0] and L[k][−1] = L[k][k + 1] = 0. After initializing
those lists, one can proceed with computing s(k, α) for rational β2. To this end,
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we introduce S[i] = s(k, i/q) with β2 = q/r, which leads to the implementa-
tion given in Algorithm 3. Further speed-ups can be obtained via Taylor series
approximations, which might be useful when m becomes very large.

Algorithm 3. LFP – Ye et al. (2012)
1: Input: predictions p(x) = (p1(x), . . . , pm(x)), β2 = q/r

2: p ← sort(p) s.t. p1 ≥ . . . ≥ pm

3: initialize L ← a list of m empty lists
4: set L[1] = [0, (1 − p1), p1, 0]

5: for k = 2 to m do
6: L[k] ← a list of k + 3 zeros with index starting at −1
7: for j = 0 to k do
8: L[k][j] ← pk × L[k − 1][j − 1] + (1 − pk) × L[k − 1][j]
9: end for

10: end for
11: For 1 ≤ i ≤ (q + r)m: S[i] ← q/i

12: for k = m to 1 do
13: E [Fβ(Y , hk(x))] ← ∑k

k1=0(1 + r/q)k1L[k][k1]S[rk + qk1]
14: for i = 1 to (q + r)(k − 1) do
15: S[i] ← (1 − pk)S[i] + pkS[i + q]
16: end for
17: end for
18: k ← argmaxkE [Fβ(Y , h∗

k(x))]
19: return hF (x) by setting hi = 1 for the k labels with the highest pi

General Fβ Maximizer (GFM). The algorithm that was explained in the
previous section assumed that the labels are independent, so that only marginals
need to be modelled in order to solve inner problem (5). In what follows we
discuss two different extensions of an alternative algorithm that does not assume
label independence [19]. The algorithm is Bayes optimal for any probability
distribution, but the price one has to pay for this is that more parameters of
P (y |x) must be estimated. As a starting point, we introduce the following
shorthand notations:

sy = sy
1:m and Δik =

∑

y :yi=1

P (y |x)
β2sy + k

.

By plugging (1) into (5), one can write

hk = argmax
h∈Hk

∑

y∈{0,1}m

(1 + β2)
∑m

i=1 yihiP (y |x)
β2sy + k

. (8)
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Swapping the sums in (8) leads to

hk = argmax
h∈Hk

(1 + β2)
m∑

i=1

hi

∑

y∈{0,1}m

yiP (y |x)
β2sy + k

= argmax
h∈Hk

(1 + β2)
m∑

i=1

hiΔik . (9)

The inner maximization is solved by setting hi = 1 for the top k values of Δik.
For each hk, E [Fβ(Y ,hk)] is stored and used to solve the outer maximization.
For the specific case of h0, E [Fβ(Y ,h0)] equals P (y = 0 |x), which needs to
be estimated separately. Algorithm 4 provides pseudocode for the complete pro-
cedure. This algorithm requires Δik for 1 ≤ i, k ≤ m and P (y = 0 |x), that
is, m2 + 1 parameters to obtain hF . With these parameters, the solution can
be obtained in O(m2) time, i.e., the dominating part of the procedure is the
inner maximization: for each k, a selection of the top k elements must be done,
which can be accomplished in linear time. Thus, compared to the approach
that assumed label independence, more parameters need to be estimated. The
advantage of not imposing any distributional assumptions brings a more difficult
estimation problem as disadvantage. Depending on the distributional properties
of a specific dataset, it can therefore be the case that one algorithm outperforms
the other, or the other way around.

Algorithm 4. General Fβ Maximizer (GFM)
1: Input: matrix Δ with elements Δik and P (y = 0)

2: set E [Fβ(Y , h0)] = P (y = 0)
3: for k = 1 to m do
4: solve inner maximization: hk(x) = argmaxh∈Hk

E [Fβ(Y , h)]
by setting hi = 1 for the k labels with the highest Δik

5: set E [Fβ(Y , hk)] ← (1 + β2)
∑m

i=1 hiΔik

6: end for
7: for k = 0 to m do
8: solve outer maximization: hF = argmaxh∈{h0(x),...,hm(x)}E [Fβ(Y , h)]
9: end for

10: return hF (x)

Estimating Δ with Multinomial Regression (GFMMR). [19] proposed the
following scheme to estimate the probabilities Δik. Let P and W denote two
m × m matrices with elements

pis = P (yi = 1, sy = s |x), wrk = (β2r + k)−1,

respectively. Then, the m × m matrix Δ with elements Δik can be obtained by

Δ = PW .



Deep F-Measure Maximization 299

When using simple base learners, one can proceed to estimate P by reducing
the problem to m independent problems, each with up to m + 1 classes. Each
subproblem i involves the estimation of

P (y =[[yi = 1]] · sy |x), ∀ y ∈ {0, . . . , m}, (10)

which sum to one. The subproblems can hence be solved with multinomial regres-
sion. For y = {1, . . . , m}, these probabilities make up the elements of the rows
of P . Similarly as for the deep neural network that estimated marginal proba-
bilities, we model the i-th row of P via a softmax layer:

pis(x) =
exp(wT

isφ(x;ψ))
∑m

s=0 exp(wT
isφ(x;ψ))

,

with i = 1, . . . ,m, wis parameter vectors, and φ the map that originates from
the feature learning phase, again parameterized by parameter set ψ.

It should be noted that sy equals m only in the worst case where an instance
is attributed with all possible labels. This is rarely encountered in practice. Let
sm = max1≤j≤n

∑m
i=1 y

(j)
i , then the total number of output classes for each

subproblem (10) can be reduced to sm +1. Nevertheless, fitting each of multino-
mial regression problems independently is undesirable when the cost of training
the base learners becomes higher, as with deep (convolutional) neural networks,
especially for large m. We propose the natural solution of estimating P in its
entirety as the output of a single neural network. The two-dimensional final layer
of the network should contain m rows of (sm + 1) output neurons, where a row-
wise soft-max transformation is applied. Then the loss to be minimized during
training is composed of m cross-entropy losses, which can be minimized using
stochastic gradient descent. The m2 entries required for P can be obtained from
the output of the network by discarding the first column and by adding m − sm

columns with zeros.

Estimating Δ with Ordinal Regression (GFMOR). Additionally, we pro-
pose to reformulate the problem of estimating the elements of Δ as an ordinal
regression problem. The key insight is to factorize the probabilities pis as follows:

pis = P (yi = 1, sy = s |x) = P (sy = s | yi = 1,x)P (yi = 1 |x).

As before, P (yi = 1 |x) can be estimated by means of BR. In the conditional prob-
ability P (sy = s | yi = 1,x), sy can take on values from 1 to sm. By exploiting
the ordinal nature of the variable sy , one can estimate the conditional probability
with proportional odds models, while reducing the number of parameters, com-
pared to GFMMR [23]. After estimating these conditional probabilities, they can
be multiplied with the marginals to obtain the probabilities pis required for GFM.

Taking into account the conditioning on yi = 1, one can choose to estimate
m independent proportional odds models. However, we will consider a global
proportional odds model, consisting of m proportional odds submodels which
are optimized jointly in a multi-task learning way. As such, the i-th submodel is
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characterized by sm classes, a parameter vector wi and a vector of bias terms
b(i) = (b(i)0 , b

(i)
2 , . . . , b

(i)
sm), subject to

b
(i)
0 < b

(i)
1 < · · · < b(i)sm

, (11)

with b
(i)
0 = −∞ and b

(i)
sm = ∞.

Formally speaking, the i-th proportional odds model will estimate the cumu-
lative probabilities

P (sy ≤ s | yi = 1,x) =
exp(wT

i φ(x;ψ) − b
(i)
s )

1 + exp(wT
i φ(x;ψ) − b

(i)
s )

, for i ∈ {1, . . . , m} , (12)

where we depart from some learnable feature representation φ(x;ψ), as in the
other methods. Consequently, the conditional distribution of sy can then be
retrieved as follows:

P (sy = s | yi = 1,x) = P (sy ≤ s | yi = 1,x) − P (sy ≤ s − 1 | yi = 1,x).

Furthermore, we estimate the model parameters in (12) jointly for i ∈ {1, . . . , m},
by minimizing the following log-likelihood function:

argmin
W ,B ,ψ

(

−
∑

n

m∑

i=1

sm∑

s=1

Inis T
(
P (sy = s | yi = 1,x)

)
)

, (13)

with W = (w1, . . . ,wm), B = (b(1), . . . , b(m)) and Inis a binary indicator,
which is one when the n-th training instance (x,y) has yi = 1 and sy = s. T is
a transformation function

T (z; ε) =

{
log ε if z ≤ 0
log z if z > 0

,

for ε > 0, that defines a truncated log-likelihood.
This transformation can be seen as the modified negative log-likelihood of

the proportional odds model. It is needed to guarantee numerical stability of
the optimization algorithm, in case P (sy = s | yi = 1,x) becomes negative. This
might happen in the early optimization steps, as (11) is not necessarily obeyed.
Moreover, when the ordering constraint on the thresholds is not fulfilled, this will
be directly penalized by the truncated log-likelihood, provided that ε is chosen
sufficiently small, e.g. ε = 1e−10. The truncated log-likelihood will hence yield a
similar effect as logarithmic barrier penalty terms, which are sometimes used to
enforce monotonicity as in (11).

Although GFMOR needs less parameters to estimate pis than GFMMR, it
requires m values for the marginals as additional input. In case a separate model
is used to estimate the marginals (starting from the same feature representation
of size d), the parameter requirements for BR + GFMOR are dm + m + dm +
m(sm − 1), which boils down to m × (2d + sm). This number will still be lower
than the number of parameters required for GFMMR, which can be rewritten as
m × ((sm + 1)d + sm + 1).
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3 Empirical Analysis

3.1 Experimental Setup

We compare the discussed methods by means of empirical evaluation on real-
world datasets. Estimates of the marginal probability vectors are made by means
of BR in the form of a convolutional neural network with m output nodes
subject to a sigmoid non-linearity in the output layer, as given in Eq. 4. Our
results include the Fβ-measure scores obtained with BR, without any form of Fβ-
measure maximization. The marginal probabilities for the training data obtained
by BR serve as input for the thresholding methods BRavg

t , BRglob
t and BRstack

t .
GFMMR and GFMOR estimate the m2 + 1 parameters of P (y |x), required
for GFM, with multinomial regression and proportional odds, respectively. The
GFM algorithm is then used in tandem with these methods to obtain opti-
mal predictions. Finally, the LFP method starts from the marginal probabilities
obtained with BR for the test data.

We report both the F1 and F2-measure scores obtained on four publicly avail-
able multi-label classification image datasets: PASCAL VOC 2007 [24], PASCAL
VOC 2012 [25], Microsoft COCO [26] and the Kaggle Planet dataset [27]. We use
the recommended train-val-test split for VOC 2007 and perform custom train-
ing/validation splits for the other datasets. Table 1 provides some summarizing
statistics. All experiments were carried out on a single NVIDIA GTX 1080Ti
GPU. All algorithms were implemented in Python using TensorFlow [28], Keras
[29] and Pytorch [30].

When it comes to the experiments, for each dataset, the features are vec-
tors of size 512 obtained by resizing the images to 224× 224 pixels and passing
them through the convolutional part of an entire VGG16 architecture, includ-
ing a max-pooling operation [31]. The final fully connected classification layers
from the original architecture are replaced by a single fully connected layer with
128 neurons (ReLu activation), followed by either a single-layer BR, GFMMR or
GFMOR classifier, as described in Sect. 2. The weights and biases of this archi-
tecture were set to those obtained by training the network on ImageNet; these
are publicly available and accessible through the Keras API. First, the convo-
lutional layers are fixed and the fully connected classification layers are trained
until convergence. Then, the entire network is fine-tuned with a lower learning
rate. In both stages, early stopping is applied, similarly as before. Moreover, the
BR estimator consists of a single-layer neural network with m output nodes.
Likewise, the GFMBR and GFMOR models consist of single-layer neural net-
works parameterized as described in the previous section. A small amount of
dropout regularization was applied (dropout probability 0.2) at the input level.
All models were trained with the Adam optimization algorithm (learning rate
1e−3), where early stopping was applied with a five epochs patience counter.

3.2 Experimental Results

The results for the conducted experiments are presented in Table 2. As expected,
BR without any attempt at maximizing the Fβ-measure leads to the worst
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Table 1. Summary statistics for the four datasets. m is the number of labels, sm the
maximum number of labels attributed to a single instance in the training data.

ntrain nval ntest m sm

PLANET 32383 8096 61191 17 9

VOC 2007 2501 2510 4952 20 7

VOC 2012 4859 858 5823 20 6

COCO 65665 16416 40137 80 18

performance in almost all cases. Rather surprising is the fact that BRavg
t per-

forms worse than BR for the F1-measure in several cases, meaning that the
average optimal threshold for the training instances is not better than just 0.5
as a threshold. This is especially true for the Planet dataset, which has the small-
est m and an imbalanced label distribution. Conversely, this does not occur for
the COCO dataset, where, due to a larger number of labels, more candidate
thresholds are considered for each instance by Algorithm 1. BRglob

t consistently
outperforms both BR and BRavg

t . This is as expected, since BRglob
t considers all

m × n predicted marginal probabilities as candidates. However, this comes at
the cost of higher time complexity, as discussed in Sect. 2.

The performance of BRstack
t varies across datasets and seems to depend on

whether F1 or F2 is the measure of interest. For F1 it performs substantially
worse than BRglob

t , whereas it even becomes competitive with the decision-
theoretic approaches for F2. Figure 1 gives further insights w.r.t. the behavior
of BRstack

t . It shows for training data the empirical distribution of instance-
wise thresholds obtained by Algorithm 1, as well as the thresholds predicted by
BRstack

t . One can observe that for all four datasets the two distributions differ
substantially, indicating that the threshold stacking method is not always capa-
ble of predicting a good threshold. The empirical distribution of instance-wise
thresholds obtained by Algorithm 1 is here considered as the ground truth. The
dotted line indicates the threshold that will be returned by Algorithm 1 after
training.

More generally, the decision-theoretic approaches seem to outperform the
thresholding methods on all datasets. The GFM algorithm, which is the only
algorithm that does not require the assumption of label independence, is the
best algorithm in all but one setting. In almost all cases the proportional odds
model outperforms the multinomial regression model, which might indicate that
the assumption of ordinality for sy is a valid assumption. However, the differences
between both methods are small, so the benefit of a more parsimonious model
structure is limited. In addition, the LFP method also yields rather good results.
Therefore, we hypothesize that for the analyzed datasets the dependence among
the labels is not very strong. Moreover, even though LFP assumes independence,
it requires less parameters than the GFM methods.
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Fig. 1. Empirical distributions of instance-wise thresholds obtained by Algorithm 1
(blue, optimal thresholds), as well as the thresholds predicted by BRstack

t (red, predicted
thresholds). Here, the thresholds for training data are shown, and F2 is the performance
measure. The thresholds are obtained by using the convolutional part of a high-quality
pre-trained VGG16 architecture (R2 indicates the quality of the predictions). The
dotted line indicates the mean optimal instance-wise threshold, which is returned by
BRavg

t after training. See main text for more details. (Color figure online)

Table 2. Comparison of the different methods, with training strategy described in
Sect. 3.1.

Planet VOC 2007 VOC 2012 COCO

F1 F2 F1 F2 F1 F2 F1 F2

BR 0.8997 0.8918 0.7398 0.7282 0.7539 0.7405 0.6534 0.6179

BRavg
t 0.8787 0.9135 0.7241 0.8055 0.7286 0.8064 0.6852 0.7170

BRglob
t 0.9017 0.9149 0.7701 0.7973 0.7769 0.8020 0.6846 0.7163

BRstack
t 0.8772 0.9091 0.7121 0.8011 0.7142 0.8007 0.6752 0.7174

GFMMR 0.9044 0.9164 0.7918 0.8108 0.7988 0.8154 0.6955 0.7230

GFMOR 0.9026 0.9172 0.8005 0.8211 0.8035 0.8205 0.7040 0.7316

LFP 0.9023 0.9107 0.8007 0.8177 0.8032 0.8184 0.7011 0.7177

4 Conclusion

In this article we introduced extensions of utility maximization and decision-
theoretic methods that can optimize the Fβ-measure with (convolutional) neu-
ral networks. We discussed pros and cons of the different methods and we pre-
sented experimental results on several image classification datasets. The results
illustrate that decision-theoretic inference algorithms are worth the investment.
While being more difficult to implement compared to thresholding strategies,
they lead to a superior predictive performance. This is a surprising result, given
the popularity of thresholding in deep neural networks. For most of the datasets,
the inferior performance of thresholding strategies was remarkable, while also big
differences could be observed among the different ways of defining a threshold.
Overall, the best performance was obtained with an exact decision-theoretic
method based on proportional odds models. This is interesting, because this
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method is at the same time the most novel among the different methods that
were analyzed in this paper.
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for F-measure maximization. In: Advances in Neural Information Processing Sys-
tems, vol. 25 (2011)
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