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Abstract. Many anomaly detection methods exist that perform well
on low-dimensional problems however there is a notable lack of effective
methods for high-dimensional spaces, such as images. Inspired by recent
successes in deep learning we propose a novel approach to anomaly detec-
tion using generative adversarial networks. Given a sample under con-
sideration, our method is based on searching for a good representation of
that sample in the latent space of the generator; if such a representation is
not found, the sample is deemed anomalous. We achieve state-of-the-art
performance on standard image benchmark datasets and visual inspec-
tion of the most anomalous samples reveals that our method does indeed
return anomalies.

1 Introduction

Given a collection of data it is often desirable to automatically determine which
instances of it are unusual. Commonly referred to as anomaly detection, this is a
fundamental machine learning task with numerous applications in fields such as
astronomy [11,43], medicine [5,46,51], fault detection [18], and intrusion detec-
tion [15,19]. Traditional algorithms often focus on the low-dimensional regime
and face difficulties when applied to high-dimensional data such as images or
speech. Second to that, they require the manual engineering of features.

Deep learning omits manual feature engineering and has become the de-
facto approach for tackling many high-dimensional machine learning tasks. This
is largely a testament of its experimental performance: deep learning has helped
to achieve impressive results in image classification [24], and is setting new stan-
dards in domains such as natural language processing [25,50] and speech recog-
nition [3].
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In this paper we present a novel deep learning based approach to anomaly
detection which uses generative adversarial networks (GANs) [17]. GANs have
achieved state-of-the-art performance in high-dimensional generative modeling.
In a GAN, two neural networks – the discriminator and the generator – are
pitted against each other. In the process the generator learns to map random
samples from a low-dimensional to a high-dimensional space, mimicking the tar-
get dataset. If the generator has successfully learned a good approximation of the
training data’s distribution it is reasonable to assume that, for a sample drawn
from the data distribution, there exists some point in the GAN’s latent space
which, after passing it through the generator network, should closely resembles
this sample. We use this correspondence to perform anomaly detection with
GANs (ADGAN).

In Sect. 2 we give an overview of previous work on anomaly detection and
discuss the modeling assumptions of this paper. Section 3 contains a description
of our proposed algorithm. In our experiments, see Sect. 4, we both validate our
method against traditional methods and showcase ADGAN’s ability to detect
anomalies in high-dimensional data.

2 Background

Here we briefly review previous work on anomaly detection, touch on generative
models, and highlight the methodology of GANs.

2.1 Related Work

Anomaly Detection. Research on anomaly detection has a long history with
early work going back as far as [12], and is concerned with finding unusual or
anomalous samples in a corpus of data. An extensive overview over traditional
anomaly detection methods as well as open challenges can be found in [6]. For
a recent empirical comparison of various existing approaches, see [13].

Generative models yield a whole family of anomaly detectors through esti-
mation of the data distribution p. Given data, we estimate p̂ ≈ p and declare
those samples which are unlikely under p̂ to be anomalous. This guideline is
roughly followed by traditional non-parametric methods such as kernel density
estimation (KDE) [40], which were applied to intrusion detection in [53]. Other
research targeted mixtures of Gaussians for active learning of anomalies [42], hid-
den Markov models for registering network attacks [39], and dynamic Bayesian
networks for traffic incident detection [48].

Deep Generative Models. Recently, variational autoencoders (VAEs) [22] have
been proposed as a deep generative model. By optimizing over a variational
lower bound on the likelihood of the data, the parameters of a neural network
are tuned in such a way that samples resembling the data may be generated from
a Gaussian prior. Another generative approach is to train a pair of deep convo-
lutional neural networks in an autoencoder setup (DCAE) [33] and producing



Image Anomaly Detection with Generative Adversarial Networks 5

samples by decoding random points on the compression manifold. Unfortunately,
none of these approaches yield a tractable way of estimating p. Our approach
uses a deep generative model in the context of anomaly detection.

Deep Learning for Anomaly Detection. Non-parametric anomaly detection meth-
ods suffer from the curse of dimensionality and are thus often inadequate for the
interpretation and analysis of high-dimensional data. Deep neural networks have
been found to obviate many problems that arise in this context. As a hybrid
between the two approaches, deep belief networks were coupled with one-class
support vector machines to detect anomalies in [14]. We found that this tech-
nique did not work well for image datasets, and indeed the authors included no
such experiments in their paper.

A recent work proposed an end-to-end deep learning approach, aimed specifi-
cally at the task of anomaly detection [45]. Similarly, one may employ a network
that was pretrained on a different task, such as classification on ImageNet [8],
and then use this network’s intermediate features to extract relevant information
from images. We tested this approach in our experimental section.

GANs, which we discuss in greater depth in the next section, have garnered
much attention with its performance surpassing previous deep generative meth-
ods. Concurrently to this work, [46] developed an anomaly detection framework
that uses GANs in a similar way as we do. We discuss the differences between
our work and theirs in Sect. 3.2.

Fig. 1. An illustration of ADGAN. In this example, ones from MNIST are considered
normal (yc = 1). After an initial draw from pz, the loss between the first generation
gθ0(z0) and the image x whose anomaly we are assessing is computed. This information
is used to generate a consecutive image gθ1(z1) more alike x. After k steps, samples are
scored. If x is similar to the training data (red example, y = yc), then a similar object
should be contained in the image of gθk . For a dissimilar x (blue example, y �= yc), no
similar image is found, resulting in a large loss. (Color figure online)

2.2 Generative Adversarial Networks

GANs, which lie at the heart of ADGAN, have set a new state-of-the-art in
generative image modeling. They provide a framework to generate samples
that are approximately distributed to p, the distribution of the training data
{xi}n

i=1 � X ⊆ R
d. To achieve this, GANs attempt to learn the parametriza-

tion of a neural network, the so-called generator gθ, that maps low-dimensional
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samples drawn from some simple noise prior pz (e.g. a multivariate Gaussian)
to samples in the image space, thereby inducing a distribution qθ (the push-
forward of pz with respect to gθ) that approximates p. To achieve this a second
neural network, the discriminator dω, learns to classify the data from p and qθ.
Through an alternating training procedure the discriminator becomes better at
separating samples from p and samples from qθ, while the generator adjusts θ
to fool the discriminator, thereby approximating p more closely. The objective
function of the GAN framework is thus:

min
θ

max
ω

{
V (θ, ω) = Ex∼p[log dω(x)] + Ez∼pz

[log(1 − dω(gθ(z)))]
}

, (1)

where z are vectors that reside in a latent space of dimensionality d′ � d.1 A
recent work showed that this minmax optimization (1) equates to an empirical
lower bound of an f -divergence [37].2

GAN training is difficult in practice, which has been shown to be a conse-
quence of vanishing gradients in high-dimensional spaces [1]. These instabilities
can be countered by training on integral probability metrics (IPMs) [35,49],
one instance of which is the 1-Wasserstein distance.3 This distance, informally
defined, is the amount of work to pull one density onto another, and forms the
basis of the Wasserstein GAN (WGAN) [2]. The objective function for WGANs is

min
θ

max
ω∈Ω

{
W (θ, ω) = Ex∼p[dω(x)] − Ez∼pz

[dω(gθ(z))]
}

, (2)

where the parametrization of the discriminator is restricted to allow only 1-
Lipschitz functions, i.e. Ω = {ω : ‖dω‖L ≤ 1}. When compared to classic GANs,
we have observed that WGAN training is much more stable and is thus used in
our experiments, see Sect. 4.

3 Algorithm

Our proposed method (ADGAN, see Algorithm 1) sets in after GAN training has
converged. If the generator has indeed captured the distribution of the training
data then, given a new sample x ∼ p, there should exist a point z in the latent
space, such that gθ(z) ≈ x. Additionally we expect points away from the support
of p to have no representation in the latent space, or at least occupy a small
portion of the probability mass in the latent distribution, since they are easily
discerned by dω as not coming from p. Thus, given a test sample x, if there
exists no z such that gθ(z) ≈ x, or if such a z is difficult to find, then it can

1 That p may be approximated via transformations from a low-dimensional space is
an assumption that is implicitly motivated from the manifold hypothesis [36].

2 This lower bound becomes tight for an optimal discriminator, making apparent that
V (θ, ω∗) ∝ JS[p|qθ].

3 This is achieved by restricting the class over which the IPM is optimized to functions
that have Lipschitz constant less than one. Note that in Wasserstein GANs, an
expression corresponding to a lower bound is optimized.
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be inferred that x is not distributed according to p, i.e. it is anomalous. Our
algorithm hinges on this hypothesis, which we illustrate in Fig. 1.

Fig. 2. The coordinates (z1, z2) of 500 samples from MNIST are shown, represented in
a latent space with d′ = 2. At different iterations t of ADGAN, no particular structure
arises in the z-space: samples belonging to the normal class (•) and the anomalous
class (•) are scattered around freely. Note that this behavior also prevents pz(zt) from
providing a sensible anomaly score. The sizes of points correspond to the reconstruction
loss between generated samples and their original image �(gθ(zt), x). The normal and
anomalous class differ markedly in terms of this metric. (Color figure online)

3.1 ADGAN

To find z, we initialize from z0 ∼ pz, where pz is the same noise prior also used
during GAN training. For t = 1, . . . , k steps, we backpropagate the reconstruc-
tion loss � between gθ(zt) and x, making the subsequent generation gθ(zt+1)
more like x. At each iteration, we also allow a small amount of flexibility to
the parametrization of the generator, resulting in a series of mappings from the
latent space gθ0(z0), . . . , gθk

(zk) that more and more closely resembles x. Adjust-
ing θ gives the generator additional representative capacity, which we found to
improve the algorithm’s performance. Note that these adjustments to θ are not
part of the GAN training procedure and θ is reset back to its original trained
value for each new testing point.

To limit the risk of seeding in unsuitable regions and address the non-convex
nature of the underlying optimization problem, the search is initialized from nseed

individual points. The key idea underlying ADGAN is that if the generator was
trained on the same distribution x was drawn from, then the average over the
final set of reconstruction losses {�(x, gθj,k

(zj,k))}nseed
j=1 will assume low values,

and high values otherwise. In Fig. 2 we track a collection of samples through
their search in a latent space of dimensionality d′ = 2.

Our method may also be understood from the standpoint of approximate
inversion of the generator. In this sense, the above backpropagation finds latent
vectors z that lie close to g−1

θ (x). Inversion of the generator was previously
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Algorithm 1. Anomaly Detection using Generative Adversarial Networks
(ADGAN).

Input: parameters (γ, γθ, nseed, k), sample x, GAN generator gθ, prior pz, recon-
struction loss �

Initialize {zj,0}nseed
j=1 ∼ pz and {θj,0}nseed

j=1 � θ
for j = 1 to nseed do

for t = 1 to k do
zj,t ← zj,t−1 − γ · ∇zj,t−1�(gθj,t−1(zj,t−1), x)
θj,t ← θj,t−1 − γθ · ∇θj,t−1�(gθj,t−1(zj,t−1), x)

end for
end for

Return: (1/nseed)
∑nseed

j=1 �(gθj,k (zj,k), x)

studied in [7], where it was verified experimentally that this task can be carried
out with high fidelity. In addition [29] showed that generated images can be
successfully recovered by backpropagating through the latent space.4 Jointly
optimizing latent vectors and the generator parametrization via backpropagation
of reconstruction losses was investigated in detail by [4]. The authors found that
it is possible to train the generator entirely without a discriminator, still yielding
a model that incorporates many of the desirable properties of GANs, such as
smooth interpolations between samples.

3.2 Alternative Approaches

Given that GAN training also gives us a discriminator for discerning between
real and fake samples, one might reasonably consider directly applying the dis-
criminator for detecting anomalies. However, once converged, the discriminator
exploits checkerboard-like artifacts on the pixel level, induced by the generator
architecture [31,38]. While it perfectly separates real from forged data, it is not
equipped to deal with samples which are completely unlike the training data.
This line of reasoning is verified in Sect. 4 experimentally.

Another approach we considered was to evaluate the likelihood of the final
latent vectors {zj,k}nseed

j=1 under the noise prior pz. This approach was tested
experimentally in Sect. 4, and while it showed some promise, it was consistently
outperformed by ADGAN.

In [46], the authors propose a technique for anomaly detection (called Ano-
GAN) which uses GANs in a way somewhat similar to our proposed algo-
rithm. Their algorithm also begins by training a GAN. Given a test point x,
their algorithm searches for a point z in the latent space such that gθ(z) ≈ x
and computes the reconstruction loss. Additionally they use an intermediate

4 While it was shown that any gθ(z) may be reconstructed from some other z0 ∈ R
d′

,
this does not mean that the same holds for an x not in the image of gθ.
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Table 1. ROC-AUC of classic anomaly detection methods. For both MNIST and
CIFAR-10, each model was trained on every class, as indicated by yc, and then used
to score against remaining classes. Results for KDE and OC-SVM are reported both
in conjunction with PCA, and after transforming images with a pre-trained Alexnet.

Dataset yc KDE OC-SVM IF GMM DCAE AnoGAN VAE ADGAN

PCA Alexnet PCA Alexnet

MNIST 0 0.982 0.634 0.993 0.962 0.957 0.970 0.988 0.990 0.884 0.999

1 0.999 0.922 1.000 0.999 1.000 0.999 0.993 0.998 0.998 0.992

2 0.888 0.654 0.881 0.925 0.822 0.931 0.917 0.888 0.762 0.968

3 0.898 0.639 0.931 0.950 0.924 0.951 0.885 0.913 0.789 0.953

4 0.943 0.676 0.962 0.982 0.922 0.968 0.862 0.944 0.858 0.960

5 0.930 0.651 0.881 0.923 0.859 0.917 0.858 0.912 0.803 0.955

6 0.972 0.636 0.982 0.975 0.903 0.994 0.954 0.925 0.913 0.980

7 0.933 0.628 0.951 0.968 0.938 0.938 0.940 0.964 0.897 0.950

8 0.924 0.617 0.958 0.926 0.814 0.889 0.823 0.883 0.751 0.959

9 0.940 0.644 0.970 0.969 0.913 0.962 0.965 0.958 0.848 0.965

0.941 0.670 0.951 0.958 0.905 0.952 0.919 0.937 0.850 0.968

CIFAR-10 0 0.705 0.559 0.653 0.594 0.630 0.709 0.656 0.610 0.582 0.661

1 0.493 0.487 0.400 0.540 0.379 0.443 0.435 0.565 0.608 0.435

2 0.734 0.582 0.617 0.588 0.630 0.697 0.381 0.648 0.485 0.636

3 0.522 0.531 0.522 0.575 0.408 0.445 0.545 0.528 0.667 0.488

4 0.691 0.651 0.715 0.753 0.764 0.761 0.288 0.670 0.344 0.794

5 0.439 0.551 0.517 0.558 0.514 0.505 0.643 0.592 0.493 0.640

6 0.771 0.613 0.727 0.692 0.666 0.766 0.509 0.625 0.391 0.685

7 0.458 0.593 0.522 0.547 0.480 0.496 0.690 0.576 0.516 0.559

8 0.595 0.600 0.719 0.630 0.651 0.646 0.698 0.723 0.522 0.798

9 0.490 0.529 0.475 0.530 0.459 0.384 0.705 0.582 0.633 0.643

0.590 0.570 0.587 0.601 0.558 0.585 0.583 0.612 0.524 0.634

discriminator layer d′
ω and compute the loss between d′

ω(gθ(z)) and d′
ω(x). They

use a convex combination of these two quantities as their anomaly score.
In ADGAN we never use the discriminator, which is discarded after train-

ing. This makes it easy to couple ADGAN with any GAN-based approach, e.g.
LSGAN [32], but also any other differentiable generator network such as VAEs or
moment matching networks [27]. In addition, we account for the non-convexity of
the underlying optimization by seeding from multiple areas in the latent space.
Lastly, during inference we update not only the latent vectors z, but jointly
update the parametrization θ of the generator.

4 Experiments

Here we present experimental evidence of the efficacy of ADGAN. We compare
our algorithm to competing methods on a controlled, classification-type task and
show anomalous samples from popular image datasets. Our main findings are
that ADGAN:

– outperforms non-parametric as well as available deep learning approaches on
two controlled experiments where ground truth information is available;
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– may be used on large, unsupervised data (such as LSUN bedrooms) to
detect anomalous samples that coincide with what we as humans would deem
unusual.

4.1 Datasets

Our experiments are carried out on three benchmark datasets with varying com-
plexity: (i) MNIST [26] which contains grayscale scans of handwritten digits. (ii)
CIFAR-10 [23] which contains color images of real world objects belonging to
ten classes. (iii) LSUN [52], a dataset of images that show different scenes (such
as bedrooms, bridges, or conference rooms). For all datasets the training and
test splits remain as their default. All images are rescaled to assume pixel values
in [−1, 1].

4.2 Methods and Hyperparameters

We tested the performance of ADGAN against four traditional, non-parametric
approaches commonly used for anomaly detection: (i) KDE [40] with a Gaussian
kernel. The bandwidth is determined from maximum likelihood estimation over
ten-fold cross validation, with h ∈ {20, 21/2, . . . , 24}. (ii) One-class support vec-
tor machine (OC-SVM) [47] with a Gaussian kernel. The inverse length scale is
selected with automated tuning, as proposed by [16], and we set ν = 0.1. (iii) Iso-
lation forest (IF) [30], which was largely stable to changes in its parametrization.
(iv) Gaussian mixture model (GMM). We allowed the number of components to
vary over {2, 3, . . . , 20} and selected suitable hyperparameters by evaluating the
Bayesian information criterion.

For the methods above we reduced the feature dimensionality before perform-
ing anomaly detection. This was done via PCA [41], varying the dimensionality
over {20, 40, . . . , 100}; we simply report the results for which best performance
on a small holdout set was attained. As an alternative to a linear projection, we
evaluated the performance of both methods after applying a non-linear transfor-
mation to the image data instead via an Alexnet [24], pretrained on ImageNet.
Just as on images, the anomaly detection is carried out on the representation
in the final convolutional layer of Alexnet. This representation is then projected
down via PCA, as otherwise the runtime of KDE and OC-SVM becomes prob-
lematic.

We also report the performance of two end-to-end deep learning approaches:
VAEs and DCAEs. For the DCAE we scored according to reconstruction losses,
interpreting a high loss as indicative of a new sample differing from samples
seen during training. In VAEs we scored by evaluating the evidence lower bound
(ELBO). We found this to perform much better than thresholding directly via
the prior likelihood in the latent space or other more exotic approaches, such as
scoring from the variance of the inference network.

In both DCAEs and VAEs we use a convolutional architecture similar to that
of DCGAN [44], with batch normalization [20] and ReLU activations in each
layer. We also report the performance of AnoGAN. To put it on equal footing,
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Fig. 3. ROC curves for one-versus-all prediction of competing methods on MNIST
(left) and CIFAR10 (right), averaged over all classes. KDE and OC-SVM are shown in
conjunction with PCA, for detailed performance statistics see Table 1.

we pair it with DCGAN [44], the same architecture also used for training in our
approach.

ADGAN requires a trained generator. For this purpose, we trained on the
WGAN objective (2), as this was much more stable than using GANs. The archi-
tecture was fixed to that of DCGAN [44]. Following [34] we set the dimensionality
of the latent space to d′ = 256.

For ADGAN, the searches in the latent space were initialized from the same
noise prior that the GAN was trained on (in our case a normal distribution). To
take into account the non-convexity of the problem, we seeded with nseed = 64
points. For the optimization of latent vectors and the parameters of the generator
we used the Adam optimizer [21].5 When searching for a point in the latent space
to match a test point, we found that more iterations helped the performance, but
this gain saturates quickly. As a trade-off between execution time and accuracy
we found k = 5 to be a good value, and used this in the results we report. Unless
otherwise noted, we measured reconstruction quality with a squared L2 loss.

4.3 One-Versus-All Classification

The first task is designed to quantify the performance of competing methods.
The experimental setup closely follows the original publication on OC-SVMs [47]
and we begin by training models on data from a single class from MNIST. Then
we evaluate each model’s performance on 5000 items randomly selected from
the test set, which contains samples from all classes. In each trial, we label the
classes unseen in training as anomalous.

Ideally, a method assigns images from anomalous classes (say, digits 1-9) a
higher anomaly score than images belonging to the normal class (zeros). Varying
the decision threshold yields the receiver operating characteristic (ROC), shown

5 From a quick parameter sweep, we set the learning rate to γ = 0.25 and (β1, β2) =
(0.5, 0.999). We update the generator with γθ = 5 · 10−5, the default learning rate
recommended in [2].
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in Fig. 3 (left). The second experiment follows this guideline with the colored
images from CIFAR-10, and the resulting ROC curves are shown in Fig. 3 (right).
In Table 1, we report the AUCs that resulted from leaving out each individual
class.

Fig. 4. Starting from the top left, the first three rows show samples contained in the
LSUN bedrooms validation set which, according to ADGAN, are the most anomalous
(have the highest anomaly score). Again starting from the top left corner, the bottom
rows contain images deemed normal (have the lowest score).

In these controlled experiments we highlight the ability of ADGAN to out-
perform traditional methods at the task of detecting anomalies in a collection of
high-dimensional image samples. While neither table explicitly contains results
from scoring the samples using the GAN discriminator, we did run these exper-
iments for both datasets. Performance was weak, with an average AUC of 0.625
for MNIST and 0.513 for CIFAR-10. Scoring according to the prior likelihood
pz of the final latent vectors worked only slightly better, resulting in an average
AUC of 0.721 for MNIST and 0.554 for CIFAR-10. Figure 2 gives an additional
visual intuition as to why scoring via the prior likelihood fails to give a sensible
anomaly score: anomalous samples do not get sent to low probability regions of
the Gaussian distribution.

4.4 Unsupervised Anomaly Detection

In the second task we showcase the use of ADGAN in a practical setting where
no ground truth information is available. For this we first trained a generator on
LSUN scenes. We then used ADGAN to find the most anomalous images within
the corresponding validation sets containing 300 images. The images associated
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with the highest and lowest anomaly scores of three different scene categories
are shown in Figs. 4, 5, and 6. Note that the large training set sizes in this
experiment would complicate the use of non-parametric methods such as KDE
and OC-SVMs.

Fig. 5. Scenes from LSUN showing conference rooms as ranked by ADGAN. The top
rows contain anomalous samples, the bottom rows scenes categorized as normal.

Fig. 6. Scenes from LSUN showing churches, ranked by ADGAN. Top rows: anomalous
samples. Bottom rows: normal samples.



14 L. Deecke et al.

To additionally quantify the performance on LSUN, we build a test set from
combining the 300 validation samples of each scene. After training the generator
on bedrooms only we recorded whether ADGAN assigns them low anomaly
scores, while assigning high scores to samples showing any of the remaining
scenes. This resulted in an AUC of 0.641.

As can be seen from visually inspecting the LSUN scenes flagged as anoma-
lous, our method has the ability to discern usual from unusual samples. We infer
that ADGAN is able to incorporate many properties of an image. It does not
merely look at colors, but also takes into account whether shown geometries
are canonical, or whether an image contains a foreign object (like a caption).
Opposed to this, samples that are assigned a low anomaly score are in line with
a classes’ Ideal Form. They show plain colors, are devoid of foreign objects, and
were shot from conventional angles. In the case of bedrooms, some of the least
anomalous samples are literally just a bed in a room.

5 Conclusion

We showed that searching the latent space of the generator can be leveraged for
use in anomaly detection tasks. To that end, our proposed method: (i) delivers
state-of-the-art performance on standard image benchmark datasets; (ii) can be
used to scan large collections of unlabeled images for anomalous samples.

To the best of our knowledge we also reported the first results of using VAEs
for anomaly detection. We remain optimistic that boosting its performance is
possible by additional tuning of the underlying neural network architecture or
an informed substitution of the latent prior.

Accounting for unsuitable initializations by jointly optimizing latent vectors
and generator parameterization are key ingredients to help ADGAN achieve
strong experimental performance. Nonetheless, we are confident that approaches
such as initializing from an approximate inversion of the generator as in ALI
[9,10], or substituting the reconstruction loss for a more elaborate variant, such
as the Laplacian pyramid loss [28], can be used to improve our method further.
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