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Abstract. The importance and the necessity of nonlinearity in Arti-
ficial Intelligence, AI, and deep learning are very well understood. A
multi-layer neural network with linear activation function is equivalent
to a single layer of neurons. It is nonlinearity of activation functions that
adds complexity to each layer, transforming the network to a univer-
sal computing machine that can approximate any continuous function.
However, nonlinearity and the complexity that it creates have not been
investigated enough in AI and modern deep learning systems. NC State
University’s Nonlinear Artificial Intelligence Lab focuses on nonlinearity
and the complexity that comes with it, and investigates how this can be
an engine of artificial intelligence. We peruse our research at different
levels with different goals. In this article we explain our approach, and
present an overview of our results.

6.1 Introduction

We live in a nondeterministic, noisy, and stochastic world. Furthermore, it is
believed that noise, stochasticity, and chaos play a crucial role in our brain and
the way it processes information [1–3]

Transistors are the basic computer systems. The main approach to improve
the performance of the computers has been following the Moore’s law -scaling
down the size of transistors and integrating more transistors into a computer
chip [4]. The Moore’s law has provided us with a roadmap to improve the per-
formance of the computers for decades. But the challenge is that after decades
of scaling the transistors, we have reached to a point that as we further scale
down the size of transistors, we are reaching fundamental physical limitations
of these devices, and we are losing the determinism of these binary switches.
For example, electrons can tunnel through an open switch (quantum tunnel-
ing) [5]. And it is becoming exponentially harder and more expensive to design
and fabricate fully deterministic systems that perform deterministic comput-
ing. On top of it, we are moving towards stochastic processing and computing,

c© Springer Nature Switzerland AG 2019
V. In et al. (Eds.): Proceedings of the 5th International Conference
on Applications in Nonlinear Dynamics, Understanding
Complex Systems, https://doi.org/10.1007/978-3-030-10892-2_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-10892-2_6&domain=pdf
https://doi.org/10.1007/978-3-030-10892-2_6


Nonlinear Computing and Nonlinear Artificial Intelligence 45

and the most notable example is AI. So why not utilize and embrace nonlin-
ear, chaos-based hardware, and use it to perform computing methods that are
inherently robust to noise? This is the approach that we have picked, and we
design and fabricate nonlinear, chaotic hardware, and we utilize this platform
to implement nondeterministic computation and AI. However, there is a lot of
challenges facing adoption and utilization of nonlinear dynamics and chaos in
artificial intelligence.

Adopting and engineering chaos and nonlinear dynamics into an engineering
application is a two-edged sword. From one perspective, we can enjoy the great
amount of processing power that chaos can deliver. For example, it is shown
that a simple nonlinear circuit can represent an infinite number of different
functions. On the other hand, chaos comes at a great cost too. Designing a
robust, stable nonlinear, chaotic circuit, and manually or adaptively programing
it to implement desired tasks is not a simple job, and furthermore, noise and
fabrication nonidealities can degenerate the performance of the circuit.

There is a lot to learn from the story of deep learning. Deep neural
networks—neural networks with multiple hidden layers—were very well known
to researchers and machine learning practitioners, and their great performance
as universal function approximators was very well understood. But they were
deemed unpractical because when the nonlinear operations of multiple layers of
neurons are composed together, the training of resulting function is mathemati-
cally intractable. In other words, training a multilayer deep neural network is a
non-convex optimization problem to solve [6]. As a result, many abounded the
idea of deep neural network in favor of simpler, but less powerful, machine learn-
ing methods such as Support Vector Machines (SVM) that are mathematically
tractable [7]. But expressing the learning mechanism as a non-convex optimiza-
tion problem brings immense representation, modeling, and learning power. In
2012, with the help of GPUs and large data sets for training, finally a practical
method was introduced to optimize these non-convex learning problems, and
after that AI never became the same [8]. The main take-home note from deep
learning story is that if we manage to tame very complex nonlinear systems, we
can unshackle the unprecedented high-performance that these complex systems
can provide. This has been our mission in our research group from day one.
Take a chaotic system that brings the maximum possible amount of diversity in
behavior and complexity, tame it and utilize the performance that it can offer.
In [9] we demonstrated that a simple nonlinear circuit contains an infinite num-
ber of different functions. In [10] we introduced nonlinear dynamics as an engine
of computing.

In Sect. 6.2 we explain the main idea behind how we can utilize chaos and
nonlinear dynamics in computation. In Sect. 6.3 we will overview our recent non-
linear hardware designs. And describe what type of processing we can perform
on top of this hardware. In Sect. 6.4 we review sample applications that we have
implemented. In Sect. 6.5 we discuss where our designs fit in the industry, how
much compatible they are with exiting technology, and we conclude the article.
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Fig. 6.1. A 3-dimensional dynamical system that maps an initial state x0 to a future
state xt. Obviously, the dynamical system can be considered as a function

6.2 The Main Idea

A dynamical system is a system that evolves over time and maps states in its
state space to some other future states. Let f be a dynamical equation, mapping
initial states to future states:

f : �n → �n (6.1)

Figure 6.1 shows an example visualization of a dynamical system in 3-
dimensional state space, n = 3.

It is clear from the definition and visualization of dynamical system that a
dynamical system embodies a function, it implements a function.

A dynamical system can be linear or nonlinear. A linear dynamical system
tends to build a simple, basic function, whereas a nonlinear dynamical system
can implement much more complex functions. Much more importantly, a non-
linear dynamical system usually happens to be sensitive to its parameters. This
provides us with a parametric function builder that given different parameters
can implement different functions. See Fig. 6.2 where a parametric nonlinear
dynamical system fp is implementing two different functions for two different p
values.

It is shown that indeed a nonlinear dynamical system contains an infinite
number of functions [9], and nonlinear dynamics can be considered as an engine of
computation [10]. In [10] it is shown that the number of distinguishable functions

Nf ∝ eλCn (6.2)

increases exponentially with evolution time, where λC is the computing expo-
nent, and n is the number of iterations the iterative dynamical system makes
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Fig. 6.2. A 3-dimensional parametric dynamical system that maps an initial state x0

to two different future state xt. With different parameter values one can potentially
implement different functions

before producing the final state (or in continuous-time dynamical systems we
will have evolution time t instead of iteration number n). The computing expo-
nent λC was defined in parallel to Lyapunov exponent, with this difference that
computing exponent measures and captures the number of different functions
that a dynamical system can implement. Nonlinear dynamical system can have
positive computing exponent, therefore the number of functions that they can
implement exponentially increases as the iteration number n (or evolution time
t) linearly increases. This demonstrate the capacity of the nonlinear systems in
approximating and implementing different functions.

Our research has bifurcated into two avenues: first, manually finding and
setting the parameters in order to program the nonlinear dynamical system
to implement a desired function, and second, letting the nonlinear dynamical
system itself learns which parameters it needs to select in order to implement
the desired function. In the next sections we explain these two avenues, and what
type of applications we can implement.

6.3 Hardware Design

We have designed and developed multiple generations of hardware for nonlinear
computing. We have followed a similar path to design and develop nonlinear
dynamics-based hardware that is simple in design, while complex in behavior.
Such nonlinear hardware can implement complex and diverse tasks and functions
using fewer transistors and less energy [11]. And they create an ideal hardware
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Fig. 6.3. Four generations of hardware developed by Nonlinear Artificial Intelligence
Lab

platform to implement nonlinear computation. Currently we have designed and
developed four generations of nonlinear dynamics-based hardware, and with each
generation we have advanced both the hardware as well as the applications that
it can enable and implement (Fig. 6.3).

It is important to note that this is a technology platform in the sense that
many different applications can be designed and deployed. Figure 6.4 shows a
model for our technology platform.
Device Level: We use conventional CMOS devices to design our circuits and
we use conventional CMOS technology to fabricate our circuits and chips. Our
hardware technology is a new design method that makes use of current devices
in order to design nonlinear circuits that exhibit very complex behaviors.

It is worth noting that beyond CMOS devices can also be used to design
nonlinear circuits. As an example, memristors can be suitable nonlinear devices
to implement nonlinearity and complex behavior at the circuit level. However,
for practical reasons at this point, we are mostly focused on conventional CMOS
devices as the building blocks of our circuits.
Circuit Level: At the circuit layer, we design circuits that have nonlinear,
complex behavior. This circuit design is nothing more that connecting a series
of basic CMOS devices together, but with the crucial difference that we purpose-
fully create nonlinearity and complexity in behavior, and thus derive complex
processing out of this complex behavior. This is a philosophical and engineering
departure from the conventional norm. In conventional design methods, design-
ers make sure that all of their circuits have simple, fully predictable, stable
dynamics. And then they put together many of these simple circuits in order to
implement complex systems. In other words, complexity is achieved through a
complex design with many devices and circuits. But in our approach, we develop
simple-in-design, but complex-in-behavior, circuits and systems. Therefore, com-
plex processing emerges from the complex dynamics of simple circuits that have
fewer transistors and lower energy requirements.
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Fig. 6.4. Model of Nonlinear Artificial Intelligence’s technology platform, showing its
different layers of design

Processing Type: The main processing capabilities of this hardware emerge
from its complex dynamics, and since complex dynamics is flexible in behavior,
the nonlinear circuit can implement many different functions and tasks. More
specifically, we have shown that the hardware can implement all of the following
types of processing:

• Digital Computing: The circuits can emulate operations of different digital
functions.

• Reconfigurable computing: Complex dynamics is flexible and contains many
different behaviors; therefore it can emulate many different functions. And
reconfiguration is instant since they all coexist within the same circuit as
opposed to FPGAs, which require halting the processing and loading new
control bits.

• Probabilistic Computing: The complex dynamics of the nonlinear circuits
can operate as a probabilistic system and therefore can perform probabilistic
computing.

• Analog computing: These nonlinear circuits are analog in nature, and they
can receive and process both analog and digital inputs.

Application Layer: This hardware is a platform with all of the unique pro-
cessing capabilities listed above, so many different applications can be designed
and developed based on it. The Fig. 6.2 model shows some of these applica-
tions. These applications are enabled by one or more processing capabilities in
the processing layer. We have designed different proof-of-concept examples to
demonstrate the processing capabilities and possible applications the hardware
can perform. Some of these examples are listed below.



50 B. Kia and W. Ditto

6.4 Example Applications

In introduction we mentioned that a nonlinear chaotic system contains many
different functions. Basically, what this means is that a chaotic system embodies
many different functions that are selectable. This provides us with a platform for
representation; representation of different functions or behaviors. We can take
two different approaches to utilize this rich library of functions, (1) manually pick
and choose them, and (2) let the system learn to pick and choose automatically.
We first started from the manual selection, where the designer/programmer picks
and choose it by direct coding. The result was an ALU unit.

6.4.1 Adaptive Hardware

Since our new hardware is flexible and programmable, it can adapt to different
internal or external changes, and also adapt to its changing environment. This
adaptation can be manually administrated, or it can be autonomous. For exam-
ple, we purposefully overheated one of our fabricated hardware to a level (82 ◦C)
well beyond its specification and tolerance level. As a result, it eventually failed
to do what it is was programmed to do. However, because the hardware was
flexible, we reprogrammed with a new set of control inputs to perform the same
task, albeit using different control inputs [12] (Fig. 6.5).

6.4.2 Learning and Artificial Intelligence

By utilizing nonlinear dynamics, living systems exhibit diverse and complex
behaviors while conserving their energy. And they can explore many different
behaviors or reactions that their nonlinearity provides to them in order to (adap-
tively) pick and choose the ones that best meet their needs and conditions at the
time. We explore such connections, and design and build intelligent hardware
based on this concept. Our main hypotheses toward achieving artificial intelli-
gence with morphable nonlinear systems are that: (1) nonlinear dynamics pro-
vides flexibility and morphability, and therefore it creates a suitable platform for

Fig. 6.5. An adaptive hardware maintaining operational capability despite external
and internal changes (overheating in this specific experiment)
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plasticity and learning (or intelligence in general); and (2) machine intelligence
should be hardware based, as opposed to being software based. In nature there
is no separate software; it is the physical organism itself that shows intelligence,
and that intelligence is intertwined with the inherited genetics and physical make
up of the organism. Combining these two hypotheses, we propose that to achieve
nature-like intelligence, we need a nonlinear dynamics-based hardware that pro-
vides flexibility and plasticity at the hardware level. We have trained one of our
fabricated hardware chips to evolve and learn different tasks, such as summation
or subtraction, with no need for direct programing. The problem of automati-
cally training a chaotic system to implement a given function can be formulated
as an optimization problem below:

pf = argmin
p

∑

i

cost(xi, yi, ŷi) (6.3)

where p is parameter of the chaotic system, xi,yi is a pair of input-output that
the chaotic system is supposed to learn how to map (such pairs of given inputs-
outputs are called training data in the context of AI; the data drawn from a
desired function that maps x to y, and we use this training data to tune the
parameters of chaotic system to implement the desired function), ŷi is what
chaotic system produces as the output to xi, cost function can be defined as
squared error if the outputs are continuous valued, or as binary hit/miss if the
outputs are binary, i.e. cost(xi, yi, ŷi) = 0 if yi = ŷi, otherwise 1, and we
calculate cost function over the entire training data (all i values). Now the prob-
lem of learning a desired function using a chaotic system is transformed to an
optimization problem where we reduce the distance between yi,ŷi for all i values,
and different optimization techniques can be used to minimize this cost function.
The results of this experiment are under review to be published as a separate
research article.

6.4.3 IoT Hardware

This application is a mixture from the examples above. We are introducing
hardware for IoT nodes, where there is a massive influx of sensor data, and this
data is filtered and processed to extract information to be sent to the higher
layers of an IoT network. Figure 6.6 below shows the conventional general data
acquisition and processing signal chain for IoT nodes and edge computing.

Our new hardware can implement the IoT node and computing at the node
(edge computing) with a much more efficient chain shown in Fig. 6.7 below:

Our nonlinear dynamics-based hardware can:

• Directly receive analog inputs from sensors;
• Filter noise from analog signals;
• Convert analog signals to digital;
• Digitally process these digital inputs;
• Morph into new configurations at any cycle, and therefore digital processing

can be reconfigurable, adaptive, and evolvable;
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Fig. 6.6. Conventional data acquisition and processing signal chain

Fig. 6.7. Alternative chain, enabled by our hardware

• Implement many different operations including multiplications efficiently,
which means it can implement multiplication-intensive applications such as
deep learning with minimal power and silicon area requirements.

6.5 Conclusion

A chaotic system is hard to work with, it scares the engineers away, it is unstable,
hard to design, fabricate, and utilize. But if all is done correctly, a chaotic system
provides an unprecedented amount of performance, unmatched by any conven-
tional linear system. The AI community has fully experienced this transforma-
tion of moving from tractable, elegant methods and mathematics to intractable,
hard to optimize models, and this move resulted in huge leap in AI. We believe
chaos is another uncharted territory that despite the challenges that come with
it, can provide huge rewards.

Here we discussed our fabrications, sample applications, and the results. The
main conclusion is that chaos can provide extremely fascinating features and
capabilities with unique applications, however, there are challenges to overcome.
NAIL has been following multiple different tracks to AI. On one extreme, we
teach and practice the conventional AI and deep learning and team with gov-
ernment, research and technology companies to apply conventional AI to their
needs. On the other extreme, NAIL is pioneering a novel approach to AI based
on nonlinear dynamics and chaos to develop AI systems that demonstrate aware-
ness, cognition and deeper intelligence and interactions.
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