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Abstract. The success of portable electronics, remote sensing, and
surveillance equipment is dependent upon the availability of remote
power. While batteries can sometimes fulfill this role over short time
intervals, batteries are often undesirable due to their finite life span,
need for replacement and environmental impact. Instead, researchers
have begun investigating methods of scavenging energy from the environ-
ment to eliminate the need for batteries or to simply prolong their life.
While solar, chemical and thermal sources of energy transfer are some-
times viable, many have recognized the abundance of environmental dis-
turbances that cause either rigid body motion or structural vibrations.
This paper describes recent research efforts focused on the intentional
use of nonlinearity to enhance the capabilities of energy harvesting sys-
tems. In addition, this paper identifies some of the primary challenges
that arise in nonlinear harvesters and some new strategies to resolve
these challenges. For example, nonlinearities can often result in multi-
ple attractors with both desirable and undesirable responses that may
co-exist. I will describe an approach that uses small perturbations to
steer the dynamic response to the desirable attractor, thus leveraging
the basins of attraction. Other examples will highlight the potential for
nonlinear electromechanical transduction and comparisons for single fre-
quency, multi-frequency, and stochastic environments.

10.1 Introduction

The success of portable electronics and remote sensing devices is dependent upon
the availability of remote power. While batteries can sometimes fulfill this role
over short time intervals, they are often undesirable due to their finite life span,
need for replacement, and environmental impact. Instead, researchers are now
investigating methods of scavenging energy from the environment to eliminate
the need for batteries or to prolong their life [1]. While solar, chemical, and
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thermal sources of energy transfer are sometimes viable, many have recognized
the abundance of environmental disturbances that cause either rigid body motion
or structural vibrations. This has led to a dramatic increase in the number of
studies for vibration-based energy harvesting [2–8].

Most prior works have focused on the power harvested when the response
behavior is adequately characterized as a linear oscillator being driven by har-
monic excitation. For this type of design, the optimal performance is realized
when the natural frequency of the oscillator is nearly identical to a dominant
frequency in the ambient environment. Thus, the prototypical approach is to
frequency match or to design and fabricate energy harvesting devices to have
a natural frequency that coincides with a dominant frequency in ambient envi-
ronment [5,9–11]. This equates to building a vibrational harvesters with very
specific mass-spring-damper properties that set the resonant frequency to a dom-
inant frequency of their host environment. As such, they can be highly sensi-
tive to uncertainties which may arise from the imprecise characterization of the
host environment or, alternatively, from manufacturing defects and tolerances.
This design-for-resonance approach places several performance limitations on
the energy harvester. Specifically, a linear device will perform poorly when the
system’s resonance and excitation frequency do not coincide. Additionally, very
little energy will be extracted from multi-frequency and/or random excitation
sources. Problems also arise in applications where the excitation frequency drifts
or changes over time [3,4].

The vast majority of past research has focused on inertial generators that
operate in a linear regime [9,12–19]. However, it has recently been suggested
that the intentional use of nonlinearity enable future harvesters to overcome the
limitations of a linear device. More specifically, there is great interest in the
concept of intentionally using nonlinearity to enhance performance. In fact, sev-
eral recent works have suggested the intentional use of nonlinearity might be
beneficial to energy harvesting systems [8,14,20,21]. More specifically, several
studies have explored the use of nonlinearities broaden the frequency spectrum,
to extend the bandwidth, engage nonlinear resonances, and/or to facilitate tun-
ing [14,20–28]. These efforts take aim at overcoming the limitations of linear
devices, which only perform well under very specific circumstances [8].

The content of this paper is organized as follows. The next section summa-
rizes the limitations of a linear harvester by simply examining the response and
uncertainty in the response of a linear oscillator. This is followed by a concep-
tual discussion prior attempts to use nonlinearity in energy harvesting devices.
Section 10.3.2 describes several examples where researchers have explored bista-
bility in both piezoelectric and electromagnetic harvesters. This is followed by
a discussion of dynamic magnifiers and a summary of potential future research
avenues.

10.2 Linear Energy Harvester Limitations

Oscillators are often designed to operate within a linear regime in vibratory
energy harvesters. While restricting the oscillator to operate in a linear regime



86 B. P. Mann et al.

can greatly simplify the math analysis, it also limits the harvester’s performance
in several ways. To illustrate these points, we consider the following contrived
example of a dimensionless linear oscillator

y′′ + μy′ + y = Γ sin ητ , (10.1)

where y is the dimensionless displacement, a ()′ denotes a derivative with respect
to dimensionless time, μ is a damping coefficient, η is the ratio of the excitation
frequency to the natural frequency, and Γ is the excitation level. For the typical
case where μ > 0, the steady-state response of Eq. (10.1) is given by

y = r cos(ητ − φ) , (10.2)

where the amplitude of the response, r, is given by

r =
Γ√

(1 − η2)2 + (μη)2
. (10.3)

Here, it is important to note that the power harvested will be proportional to
the response amplitude. To both quantify and unveil the robustness of the linear
oscillator’s response to parameter variations, an expression for total uncertainty
in the oscillator’s response Ur is introduced

U2
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)2
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where Uxi
represents the uncertainty in the variable xi at the same confidence

level. It is common to express the uncertainty at the 95% confidence level (or
20:1 odds) and, consequently, 95% of the physical realizations can be expected
to lie within the confidence intervals [29].

Figure 10.1 shows the nominal response amplitude and clearly affirms a large
nominal response near resonance. A more in-depth study of Fig. 10.1 also reveals
that the response away from this narrow-band peak is rather small. While these
result highlight the importance of aligning the natural frequency with the exci-
tation frequency, a more complete understanding of the robustness of the fre-
quency matching strategy is obtained by also considering the uncertainty in the
oscillator’s response for uncertainties in the system’s parameters. As noted pre-
viously, uncertainties in these parameters are quite common and arise from the
imprecise characterization of the host environment or, alternatively, from imper-
fections in manufacturing and/or tolerances. The dashed lines of Fig. 10.1 show
the confidence intervals or expected deviation in the oscillators response. Note
that the dashed lines were obtained by first determining the uncertainty in the
response Ur; next, the upper and lower confidence intervals were determined
from ru = r + Ur and rl = r − Ur where ru is the upper confidence inter-
val and rl is the lower. In essence, the confidence intervals provide a measure
of the robustness in the response of the system when parameter uncertainty is
considered.
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Fig. 10.1. Nominal response (solid line) and confidence intervals (dashed lines) of a
linear oscillator for μ = 0.02 and Γ = 0.1 and parameter uncertainties Uμ = μ/5,
Uη = 0.02, and UΓ = Γ/10. Confidence intervals show a lack of robustness in the
nominal response in the vicinity of resonance

The confidence intervals highlight the lack of robustness in a frequency-
matching strategy, since even small parameter variations, or uncertainty, can
cause large differences in the expected response. More specifically, the upper and
lower confidence intervals, dashed lines in Fig. 10.1, show the uncertainty in the
oscillator response can sometimes be as large as the nominal value (solid line).
Armed with this understanding, we now focus our attention on the intentional
use of nonlinearity to address the limitations imposed by the linear oscillator.

10.3 Nonlinear Examples

Despite the fact that nonlinearities are inherent in many natural and engineered
systems, it is common for engineers to remove, or attempt to remove, all nonlin-
earity from their designs. Although this simplifies the performance analyses, it
also overlooks a wide array of phenomena, that could potentially enable the har-
vesting of more energy. Improving the performance of inertial harvesters requires
that they become more robust to uncertainties and/or subtle changes in their
environment. More specifically, the ideal harvester would perform well in a vari-
ety of settings and could scavenge energy from a broad range of frequencies.
This means the harvester must be able to adjust, adapt, or tune into its current
environment. Furthermore, it is essential that future harvesters have a broader
frequency response - thus enabling energy to be scavenged over a wider range of
frequencies.
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This section will discuss select past works that sought to use nonlinear
behavior to improve the performance of energy harvesting systems. The section
starts with some examples of using some common structural nonlinearities and
describes their potential benefits and pitfalls for different environments. This
followed by a discussion of some past works that used nonlinearity in the elec-
tromechanical coupling of a harvester device. It is important to note that many
of the provided examples will show a benefit to the intentional use of nonlinear-
ity; however, as one might expect, nonlinearity must be intelligently designed
into a device to reap these benefits. Furthermore, the mere introduction of non-
linearity into these systems also introduces new problems to consider, such as
the presence multiple attractors, i.e. both a high and low energy response. Addi-
tional works, which have considered different types of random excitation, such
as broadband white noise and colored noise, are also discussed in Sect. 10.3.2.

10.3.1 Hardening and Softening Systems

Several researchers have studied energy harvesting systems with either hardening
or softening-spring-like behavior. For example, Ref. [8] considered a electromag-
netic inductions system with nonlinear restoring forces that were created from
a magnet levitation system. The restoring force in that system was a hardening
type spring and it showed the ability to tune by peak in its frequency response by
changing the relative magnet positions. However, a hardening system can only
alter its peak response to one side of linear resonance. Systems displaying similar
hardening type behavior have been investigated in many other references. Upon
comparing the peak response of the linear oscillator to that of the hardening sys-
tem, it may seem problematic that the linear oscillator has a larger response for
single frequency excitation. However, an uncertainty analysis on the frequency
response of the hardening system has shown its response is more robust [30].

To help cover a broader range of frequencies, some investigators have sought
to combine hardening and softening type effects into a single device. For example,
Fig. 10.2 shows a harvester that demonstrated the potential of adding nonlinear-
ity from magnet-magnet interactions to create either a hardening and softening
effect [21]. More specifically, positioning the adjustable magnets behind the tip
mass creates a hardening frequency response - thus extending the region of a rel-
atively large response to higher frequencies. If the adjustable magnets are pushed
forward of the tip mass, a softening type behavior is created, thus the region of
relatively large responses switches directions and extends to frequencies lower
than the linear natural frequency.

10.3.2 Bistable Systems

The concept of a bistable system can be brought into focus by considering the
motion of a small ball rolling on the surface under the influence of gravity, see
Fig. 10.3, where the ball height is proportional to the potential energy. Consider
first the potential energy of a linear oscillator, shown in Fig. 10.3a. This sys-
tem has a linear relationship between the restoring force and deflection which
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Fig. 10.2. Illustration of an experimental system from Ref. [21] that demonstrated
that the nonlinear restoring forces enable tuning and a broader range of frequencies
with a large amplitude response
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Fig. 10.3. Potential energy curves for: a the quadratic potential well of a linear oscil-
lator and b a nonlinear oscillator with two stable equilibria separated by an unstable
equilibrium position. The energy difference between the potential energy barrier and
the stable equilibria, labeled ΔU , is an important factor for determining the threshold
for an escape

results in a quadratic potential energy well with a single equilibrium. Regardless
of where the ball placed, it will eventually come to rest at the bottom of the
potential energy well. Shaking the parabola laterally yields the linear harmonic
oscillator with the largest response occurring when it is shaken at its resonance
frequency.

Consider next the same ball under the influence of a nonlinear restoring force
where the potential energy description may be more complex - see Fig. 10.3b.
Consider again the same ball under the influence of small lateral excitations. This
results in a system that behaves linearly for small-amplitude motions with oscil-
lations that remain confined to a single well. For increasingly large excitations,
motion amplitudes grow until the threshold for a potential well escape occurs
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(i.e. where an escape is imminent for energy levels above the threshold criteria
ΔU in Fig. 10.3b). Once exceeding the threshold criteria, the small ball would
then escape from the potential well and traverse both potential wells, sometimes
called well-mixing behavior, with large-amplitude displacements and velocities.
Acknowledging the dramatic increase in the energetic response of the oscillator
in the post-escape regime [31], several researchers have become interested in this
type of system [32].

Figure 10.4 shows example responses from a prototypal bistable harvester.
In contrast to the hardening and softening cases, the bistable system shows the
emergence of additional solution branches. More specifically, these solutions are
associated with the oscillations within a single potential well and those that
cross the center potential well barrier and are the result of a potential well
escape phenomenon. This system can exhibit similar Pa (dimensionless power)
values to those of the linear system, but, as in the case of the softening and
hardening system, displays more complex scaling in its response behavior as
Γ , the dimensionless excitation, is increased. In addition, the plots of ρ vs. Pa,
where ρ is the dimensionless electrical load, show the system can have even more
local maxima. Further examples of bistable energy harvesters can be found in
references [14,20,24,27,33,34].

As a summary, a bistable harvester introduces some new considerations. For
example, while the strategy of matching the natural frequency of the device to
a frequency in the environment still exists, an alternative strategy also exists.
In particular, one can instead focus on designing the potential energy curves to
ensure a potential well escape. Similar to the hardening and softening cases, the
responses of the bistable system can be more robust than the linear system (see
reference [30] for further details).

The bistable system has also been studied for other forms of excitation,
such as random excitation [35–37]. One result worth mentioning is the finding
of reference [35]. In this study, it was shown that a bistable harvester could
outperform a linear harvester in an environment with colored noise.

10.3.3 Coupling Nonlinearity

The work of Ref. [22] was the first to consider the influence of nonlinear elec-
tromechanical coupling in PZT systems. Since then, the inherent nonlinearities
in piezoelectric harvesters have been studied in greater detail [38]. Outside of
piezoelectric systems, inherent nonlinearities have also been studied in electro-
magnetic induction systems [28]. One interesting finding worth mentioning is
that nonlinear coupling appears to be particularly suited to multi-frequency
excitation [28]. However, further research needs to be done to further explore
the potential benefits and pitfalls of nonlinear coupling.

10.3.4 Dynamic Magnifier

The use of a dynamic magnifier has been another area of inquiry for linear and
nonlinear systems. A dynamic magnifier is a dummy oscillator, essentially an
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Fig. 10.4. Plots showing the stable (green dots) and unstable (red dots) response trends
for a harvester with a bistable potential well. Graphs show frequency responses for
a the oscillation amplitude of the mechanical system and b the dimensionless average
power; graphs (c) and d plot the dimensionless average power for changes in Γ and ρ,
respectively

oscillator without any electromechanical coupling, that is used to magnify the
response of the primary oscillator, i.e. the one with electromechanical coupling.
As a brief summary, several researchers have now shown that a dynamic mag-
nifier can successfully increase the energy harvested from the primary oscillator
and even be used to modify the corresponding basins of attraction [39].

10.4 Further Considerations

Many recent works have explored the use of nonlinearity in vibratory energy
harvesters, e.g. see [8,14,18,22,30,34,35,38,40–42]. While these investigations,
along with many other recent works, have advanced the current understanding
on the beneficial use of nonlinearity, the introduction of nonlinearity can also
cause many additional difficulties. Paramount amongst these challenges, and
a common issue in nearly all nonlinear harvesting systems, is the presence of
coexisting solutions. To illustrate the problem, Fig. 10.5a shows the frequency
response for a Duffing Oscillator with coexisting solutions over the dimension-
less frequency range of ≈1.25 < η < 2. Assuming the environmental excitation
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Fig. 10.5. Illustrative example of a system with coexisting periodic solutions, i.e. two
or more stable periodic solutions for the same system parameters. Plots illustrate the
challenge of attractor selection in energy harvesting systems. Plot a shows a bifurcation
diagram illustrating a hardening spring nonlinearity in response to dimensionless fre-
quency η, and plots (b) and c show the corresponding periodic attractors and repellers
in phase space for two different values of η. Curves are labeled stable (green) and
unstable (red)

remains constant, only the initial conditions determine whether a higher or lower
energy solution is obtained. Furthermore, if the basins of attraction are studied
for this range of η, one finds that the more desirable response (higher amplitude)
is unlikely to be obtained when the excitation frequency is closer to the peak
response. Thus a fundamental challenge prevalent in nearly all nonlinear energy
harvesting approaches is a strategy to select a desired attractor.

Vibratory energy harvesters convert mechanical energy into electrical energy
with electromechanical coupling, e.g. piezoelectric, electromagnetic, or capaci-
tive. While these transduction schemes allow some form of control to be applied
to alter the response of the mechanical system, a number of challenges prevent
the use of continuous control. To elaborate, the power required to apply con-
tinuous control is typically larger than the power harvested. It is also common
that the electromechanical coupling is not strong enough to drastically alter the
response of the mechanical system in a single application of control, unless exter-
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nal energy is provided. Thus methods to choose the desired attractor present an
on-going area of research.

10.5 Conclusions

This paper discusses select past works on the intentional use of nonlinear behav-
ior in inertial energy harvesters. Many forms of nonlinearity have been investi-
gated and many have shown some potential benefit. However, the fact remains
that analyzing these nonlinear systems can be much more difficult than their
linear counterpart. The introduction of nonlinearity adds an interesting feature
that can allow effecting device tuning in a semi-active or passive way to over-
come uncertainties in the environmental excitation or physical parameters of the
system.

Nonlinear energy harvesting systems often have co-existing solutions. When
one of the responses is desirable and the other undesirable, it becomes critically
important to have methods to select the desired attractor with minimal energy
expenditure. A great solution to this problem should be the target of future
investigations.
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