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Preface

The field of Nonlinear Science involves the study of phenomena that changes in
both space and time. Examples include: the flocking of birds, laser systems, central
pattern generators in biological systems, collective behavior of bubbles in
fluidization systems, nano-oscillators in microelectronics, communication systems,
and electronic nonlinear oscillators in antennas and radars. Regardless of the
applications, nonlinear science provides methods to study the long-term behavior of
how a system evolves in space and time. Yet, while there has been significant
progress in developing theoretical ideas and methods to study nonlinear phenomena
under an assortment of system boundary conditions, there exist comparatively
fewer experiments and technological devices that actually take advantage of the rich
behavior exhibited by theoretical models. Consider, for instance, the fact that a
shark’s sensitivity to electric fields is 400 times more powerful than the most
sophisticated, currently available, electric-field sensor. In fact, in spite of significant
advances in material properties, in many cases it remains a daunting task to
duplicate the superior signal processing capabilities of most animals.

Bridging the gap between theory and biologically inspired devices can only be
accomplished by bringing together researchers working in theoretical methods in
nonlinear science with those performing experimental works. Other areas of strong
interest among the research community, where theoretical findings can one day lead
to novel technologies that exploit nonlinear behavior, include: chaos gates, social
networks, communication, sensors, lasers, molecular motors, biomedical anomalies,
and stochastic resonance. A common theme among these and many other related
areas is the fact that nonlinear systems tend to be highly sensitive to perturbations
when they appear near the onset of a bifurcation. This behavior is universal among
many nonlinear phenomena and, if properly understood and manipulated, it can
lead to significant enhancements in systems response. Representative examples
have been observed in a large number of laboratory experiments on systems ranging
from solid-state lasers to superconducting loops, and such behavior has been
hypothesized to account for some of the more striking information-processing
properties of biological neurons. Furthermore, background noise can precipitate this
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behavior, thereby playing a significant role in the optimization of the response
of these systems to small external perturbations.

Since 2005, we have held a series of meetings to bring together researchers
across various disciplines working on theory and experiments in nonlinear science.
The first meeting was 2005 DANOLD (Device Applications of Nonlinear
Dynamics) meeting, held in Catania, Italy. Then, in 2007 ICAND, the research
community met again in Poipu Beach, Koloa (Kauai), Hawaii, USA. More recently,
the 2010 ICAND meeting was held in Alberta, Canada, at the luxurious Fairmont
Chateau in Lake Louise. The 2012 ICAND was held in Seattle, Washington and
then in 2016 in Westminster, Colorado. This last meeting brought together
researchers from physics, engineering, and biology who were involved in the
analysis and development of applications that incorporate and, indeed, exploit the
nonlinear behavior of certain dynamical systems. The focus for 2018 ICAND was
equally divided between theory and implementation of theoretical ideas into actual
devices and systems. Contemporary topics on complex systems, such as social
networks, were also featured among selected lecturers.

The organizers extend their sincerest thanks to the principle sponsors of the
meeting: Army Research Office (Washington, DC), Office of Naval Research
(Washington, DC), Office of Naval Research-Global (Tokyo), San Diego State
University (College of Sciences), and SPAWAR Systems Center Pacific. A special
mention to Dr. Samuel Stanton from the Army Research Office and to Dr. Michael
Shlesinger from the Office of Naval Research for their support and insight to hold
such a diverse meeting. In addition, we extend our appreciation to Tania Gomez at
SDSU for their hard work in preparation and financial duty, which enabled the
conference to run smoothly. We would also like to thank our colleagues who
chaired the session and to all the personal who spent many hours making this
meeting a success. Finally, we thank Springer for their production of an elegant
proceeding.

San Diego, USA Visarath In
October 2018 Patrick Longhini

Antonio Palacios
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Chapter 1

The Cost of Remembering

Luca Gammaitoni1(B), Igor Neri1, Miquel López-Suárez2, Davide Chiuchiù3,
and Maria Cristina Diamantini4

1 Dipartimento di Fisica e Geologia, NiPS Laboratory, Università degli studi di
Perugia, 06123 Perugia, Italy

luca.gammaitoni@nipslab.org, igor.neri@unipg.it
2 Institut de Ciència de Materials de Barcelona (ICMAB-CSIC), Campus de

Bellaterra, 08193 Bellaterra (Barcelona), Spain
mlopez@icmab.es

3 Okinawa Institute for Science and Technology, Okinawa, Japan
davide.chiuchiu@oist.jp

4 Dipartimento di Fisica e Geologia and INFN, NiPS Laboratory, Università degli
studi di Perugia, Sezione di Perugia, 06123 Perugia, Italy

cristina.diamantini@pg.infn.it

Abstract. In 1961, Rolf Landauer pointed out that resetting a binary
memory requires a minimum energy of kBT ln(2). However, once written,
any memory is doomed to loose its content if no action is taken. To
avoid memory losses, a refresh procedure is periodically performed. In
this work we present a theoretical and experimental study of sub-kBT
system to evaluate the minimum energy required to preserve one bit of
information over time. Two main conclusions are drawn: (i) in principle
the energetic cost to preserve information for a fixed time duration with a
given error probability can be arbitrarily reduced if the refresh procedure
is performed often enough; (ii) the Heisenberg uncertainty principle sets
an upper bound on the memory lifetime, thus no memory can last forever.

1.1 Introduction

The act of remembering is of fundamental importance in human experience.
While usually we refer as remembering as an act to preserve information the
concept can be easily extended to any aspect of human life which is subject to
deterioration as in objects and artifacts that tend to loose their original shape.
In order to preserve the original shape, i.e. in order to keep the memory, we usu-
ally perform restoration work/memory reinforcement. Among others, memory
degradation is a common problem also for computer memories that tend to lose
their content over time. In order to counterbalance the memory degradation, a
periodic refresh operation is performed, which consists in periodically reading
and writing back the content of the memory.

c© Springer Nature Switzerland AG 2019
V. In et al. (Eds.): Proceedings of the 5th International Conference
on Applications in Nonlinear Dynamics, Understanding
Complex Systems, https://doi.org/10.1007/978-3-030-10892-2_1
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2 L. Gammaitoni et al.

Fig. 1.1. Bistable energy potential and relative probability density function at thermal
equilibrium of a single-degree-of-freedom system used to represent a memory device

The scope of this work is to study the fundamental energetic cost associated
to preserve a given bit of information for a given time, t̄, with a final probability
of failure PE , while executing a refresh procedure with periodicity tR. To perform
this study we first define a physical model for a 1-bit memory. Then, we compute
the minimum required refresh time to satisfy the required probability of failure
and retention time. Finally we experimentally evaluate the energetic cost of
a single refresh operation and estimate the overall fundamental energetic cost
associated to preserve the memory.

1.2 Physical Model for 1-Bit Memory

Information is encoded in a memory device by means of a physical property,
like charge on a capacitor or orientation of the magnetic field on a magnetic
dot. A single physical property can be used to represent an arbitrary number of
bits in memory devices, however for sake of simplicity we will consider a single
bit. The bit is encoded in the physical property of the device respect to a fixed
threshold value. Without loss of generality we can consider as a memory device
a particle trapped inside a bistable energy potential where the position, x, of
the particle encodes the information [1–5]. Such a memory is represented as a
single-degree-of-freedom system as pictured in Fig. 1.1.

We can now set the threshold value at x = 0 and thus we can define the
logic state 0 if the particle is in the left well (x < 0) and the logic state 1 if
the particle is in the right well (x > 0). The energy barrier, with a maximum
at x = 0, separates the two stable states. To take into account a more realistic
representation of the memory device dynamics we should assume that the single
degree-of-freedom system is coupled to a thermal bath at temperature T . The
effect of this coupling is that the dynamics of the system depend not only on its
potential energy and initial conditions but also on the stochastic fluctuating force
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Fig. 1.2. Energy potential (in red) of a bistable system used to encode one bit of
information and time evolution of the probability density function of the observable
(in blue) once the bit is stored

and relative damping coefficient. According to this description the dynamics of
the system can be described in terms of a Langevin equation in the form of:

mẍ = −dU(x)
dx

− mγẋ + ξ + F (1.1)

where U(x) is a bistable potential, γ is the friction coefficient, ξ is the fluctuating
force due to the contact with the thermal bath, and F is an arbitrary force used
to modify the state of the memory. The equation of motion has now become a
stochastic dynamical equation and its solution can be approached in statistical
terms. One relevant quantity for describing the system dynamics is represented
by the probability density function P (x, t). Specifically, P (x, t)dx represents the
probability for the observable x (the position of the particle) to be at time t

within the interval between x and x + dx. In particular p0(t) =
∫ 0

−∞ P (x, t)
and p1(t) =

∫ ∞
0

P (x, t) are respectively the probability to find the bit 0 and 1
encoded on the system at a given time t.

Once written, the stored information is doomed to be lost due to thermal
fluctuations. The average retention time depends on the physical parameters of
the system. A schematic of the time evolution of the probability density function
of the observable used to encode the information, relative to the energy potential
represented in Fig. 1.2a, is represented with a blue curve in Fig. 1.2, panels from
(b) to (f).

Initially the bit is stored with a given probability of error. Then, the prob-
ability density function relaxes mostly inside the well encoding the desired bit.
Afterward the system relaxes between the two wells increasing the probability
of finding the wrong bit encoded on the system. Finally, once the system is
completely thermalized, the information is statistically lost.

The probability to find the bit in the wrong state increases over time, this
is due to the fact that we start from an out of equilibrium condition and the
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system evolves towards equilibrium. To prolong the information life-span it is
possible to periodically refresh the information stored, to counteract the effect
of relaxation to thermal equilibrium. Each refresh-operation consists of reading
and writing back the read information [6,7]. Once the operation of refresh is
performed the potential error is not corrected but only the probability density
function of the physical observable is modified.

1.3 Relation Between Probability of Error, Refresh and
Retention Time

Assuming to start from having the bit 1 encoded in the memory, p0(t) defines
the time evolution of the probability of finding the wrong value in the memory.
Whit this assumption it is possible to define an overall probability of error of
finding the wrong bit stored in the system at any time between the initial writing
and any interrogation as function of the refresh time, tR, as [5]:

PE = [1 − p0(tR)]�
t

tR
� (1.2)

where � t
tR

� represents the number of refresh operations performed in the time
interval [0 − t].

A good model for the energy potential, able to capture the main character-
istics of a bistable memory device, is the Duffing potential:

U(x) = 4
(

−x2

2
+

x4

4

)

(1.3)

and its statistical time evolution can be obtained solving the relative Fokker–
Plank equation [8,9]:

∂

∂t
p(x, t) =

∂

∂x

(
∂U

∂x
p(x, t)

)

+ T
∂2

∂x2
p(x, t), (1.4)

where T is the temperature of the thermal bath.
The evolution of the system depends on its initial condition, more specifically

it depends on the starting probability density function distribution. Considering
to have the bit 1 stored on the system the initial probability density function
can be approximated to a Gaussian distribution centered in x = 1:

p(x, 0) =
exp

(
− (x−1)2

2σ2
i

)

√
2πσi

. (1.5)

where σi is the initial standard deviation of the Gaussian peak of the observable.
The solution of Eq. (1.4) permits to obtain the maximum refreshing interval

tR that satisfies the a priori requirements for t and PE . The results agree with
the common sense: large times t and small probabilities of error PE yield short
refresh times tR.
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Fig. 1.3. Schematic of the experimental setup. The interaction between a magnet
applied on the tip of the cantilever and an external electromagnet permits to control
the effective stiffness of the beam

1.4 Experimental Evaluation of Energetic Costs for
Refresh Operation

We now consider the energy cost of a single refresh operation. Based on our
model, the refresh operation consists in bringing the p(x, t) back to its initial
condition:

p(x, tR) → p(x, 0) (1.6)

We now assume that the motion of the system when it is trapped inside one
well can be approximated by the dynamics of a harmonic oscillator. This is
reasonable if the refresh time is much smaller than the system relaxation time
(tR << τk). Considering the refresh protocol described above the probability
density function of the system at any time is approximated to the sum of two
Gaussian peaks centred around the minima of U(x), each one with the same
standard deviation. The refresh operation consists in applying an external force
that shrinks the potential wells and thus change the standard deviation inside
each well, from σf = σ(tR) to σi = σ(0). The value of σf changes in time
according to the physical parameter of the system, and initial distribution σi as
[5]:

σf =
√

σ2
w + exp

(
− tR

τw

)
(σ2

i − σ2
w) (1.7)

where τw is the relaxation time of the harmonic oscillator approximating the
single well.

1.4.1 Experimental Measurement of Energy Required for a Single
Refresh Operation

To measure the minimum energy required for the refresh, i.e. to “squeeze” the
density function inside an harmonic well, we perform an experiment with a
micro-mechanical V-shaped cantilever where the relevant observable, x, is the tip
position. The interaction between a magnet applied on the tip of the cantilever
and an external electromagnet permits to control the effective stiffness of the
beam and thus the standard deviation of x at equilibrium. Figure 1.3 shows a
schematic of the experimental setup.
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Fig. 1.4. Produced heat in the quasi-static regime during a single refresh operation for
different entropy variations. Squares represent the estimated heat from experiments
while the solid line is the theoretical prediction

The experimental realization of the refresh operation in this setup consists
in changing the stiffens of the cantilever by means of the electromagnetic force
and restoring the initial configuration, allowing the system to relax.

We expect each refresh operation to have a minimum energy cost related
to the entropy variation of the system. This limit is met for quasi-static trans-
formations, when frictional phenomena become negligible. The energy required
to perform the refresh operation is estimated computing the work done on the
system using the trajectory of the tip position and the variation of the potential
energy of the system [5,10–12]. Without loss of generality, we can consider the
approximation of harmonic potential inside each potential well. This assumption
leads to the approximation of Gaussian distribution for the probability density
function. The refresh procedure thus modifies the standard deviation of the prob-
ability density function of the system from its relaxed value, σf , to the initial one
σi. These two quantities define the entropy variation during the refresh operation
as:

ΔS = kB ln
(

σi

σf

)

(1.8)

In Fig. 1.4 we report the measured energy required for a single refresh opera-
tion (dots) as function of entropy variation, along with the theoretical prediction
(continuous line).

Experimental data and theoretical prediction are in good agreement confirm-
ing that the harmonic model assumption for the mechanical system holds.
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Fig. 1.5. Plots of Qm to preserve the memory for t = 1e3τk as a function of tR a and
σi b. Blue (dotted) lines are obtained with PE=1e-6, red (dashed) lines with PE=1e-4,
and yellow (solid) lines with PE=1e-2

1.4.2 Evaluation of Energy Requirement for Memory Preservation

Now that we have demonstrated that the theoretical limit can be achieved exper-
imentally we can write the expression of the minimum energetic cost for preserv-
ing a memory for a given time with a finite probability of error as [5]:

Qm = −NTΔS =
t

tR
kBT ln

⎛

⎝

√
σ2

w+e
− tR

τw (σ2
i −σ2

w)

σi

⎞

⎠ (1.9)

In Fig. 1.5 we report the minimum energetic cost Qm as function of the refresh
time tR (Fig. 1.5a) and σi (Fig. 1.5b) for different values of probability of error
PE .

From the results it is evident that we can preserve a memory for a given
time with a given error probability while spending an arbitrarily little amount
of energy. This is accomplished if the refresh procedure is performed arbitrarily
often or arbitrarily close to thermal equilibrium.

1.5 Discussion

So far we have shown that preserving a memory for a given time and probability
of error is possible expending an arbitrarily little amount of energy. However it
should be noted that the initial standard deviation of the system σi, and thus the
target standard deviation σf cannot be made arbitrarily small without spending
an infinite amount of energy. This is also clear considering the Heisenberg inde-
termination principle that prevents the arbitrary confinement of the probability
density, without spending an infinite amount of energy: the uncertainty on the
impulse diverges when the uncertainty on the position shrinks [13]. In the best
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scenario we have σxσp = �

2 . If the memory refresh operation is performed at
thermal equilibrium we have:

σp = m
√

〈v2〉 − 〈v〉2 =
√

mkBT (1.10)

and thus:
σx =

�

2
√

mkBT
(1.11)

Since σi describes the uncertainty of the initial x value, we therefore have that
σi ≥ σiMin = �

2
√

mkBT
. The existence of a σiMin implies that, even at t = 0,

the probability of error p0 is greater than zero. This probability of error then
accumulates accordingly to Eq. 1.2 implying a minimum amount of error PE .

It is thus possible to preserve your memory only for a limited amount of
time for a fixed required probability of error. Within this limit, if the refresh
procedure is done carefully enough, there is no need to spend any energy.
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3. D. Chiuchiù, M.C. Diamantini, L. Gammaitoni, Europhys. Lett. 111, 40004 (2015)
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Abstract. Neurofilaments (NFs) are the most abundant cytoskeletal
structures in the axon and also cargo of axonal transport. Neurofilaments
are synthesized in the neuronal cell body and transported bidirectionally
along microtubule tracks in the axon with a net anterograde movement
toward the nerve terminal. Based on this dual role of neurofilaments as
space filling structures and cargo of axonal transport we hypothesize that
neurofilament transport velocity regulates axon caliber. In this study, we
combine results from a previous study of neurofilament kinetics in optic
nerve with published morphometric features of the mouse optic nerve
near the excavation to show that the sharp increase in the caliber of
optic nerve is consistent with a slowing of neurofilament velocity.

2.1 Introduction

Neurons send electric signals, called action potentials, to other neurons along
their axons, and the speed of this electric wave is proportional to their diameter
(for a review see e.g. [1]). This linear relation renders axon caliber critical for
neuron function and we are interested in how axons acquire their shape and
caliber.

The cytoskeleton of the axon is composed of mainly three cytoskeletal
proteins: neurofilaments, microtubules, and microfilaments (actin fibers) [2–5].
Among these cytoskeletal filaments, neurofilaments are the most abundant fila-
ments and space filling structures determining the axonal caliber [2–4,6]. Besides
being space-filling structures, neurofilaments are also cargo of slow transport.
Neurofilaments are assembled in the cell body and transported bidirectionally
along microtubule tracks with a net average velocity of 0.1–3 mm/day [2,7–9]
towards the nerve terminal. This dual role has important implications for the

c© Springer Nature Switzerland AG 2019
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formation of axon caliber and axon morphology [10] and potentially also for the
understanding of neurodegenerative diseases such as ALS, associated with local
swelling of axons [11–13]. For a constant neurofilament flux J , a decrease of the
average transport velocity v, will give rise to an increase of neurofilament con-
tent and axon caliber controlled by the relation J = ρv, where ρ denotes the
linear density of neurofilaments, while an increase in velocity will give rise to a
thinning of the axon.

Neurofilament transport kinetics has been modeled with a stop and go model
(see Fig. 2.1) [14,15], where neurofilaments alternate stochastically between
kinetic states a and r in which they move either anterogradly toward the nerve
terminal, or retrogradely toward the cell body, states a0 and r0 in which they
pause briefly for seconds to few minutes before they move again, and states ap
and rp, in which they pause extensively for hours. We have termed the states,
a, a0, r, r0, in which neurofilaments move or pause briefly, on-track moving and
on-track pausing states, and the states, ap, rp, where they pause extensively off-
track states. The underlying motivation for this nomenclature is that we envision
that neurofilaments, which require a microtubule track for movement, move in a
stop-and-go fashion along those tracks and pause extensively when they detach
from the microtubule tracks and search diffusively for another one.

Transition rates of the neurofilaments between their 6 kinetic states (see
Fig. 2.1), γ10, γ01, γoff , γon, γar, γra, have been obtained by either direct observa-
tion of single neurofilaments in single small axons for minutes, analyzing in-vivo
movement of ensembles of radio-labeled neurofilaments for weeks and months
[14,15], and by using the novel fluorescent pulse-escape method [16] which reveals
all except the reversal rates between anterograde and retrograde movement.
Reversal rates γar and γra are small and therefore difficult to determine directly.
Estimates of reversal rates of the order of 10−5s−1–10−4s−1 have been reported
based on the fraction of neurofilaments moving anterogradely and retrogradely
[15], and an overall small reversal rate [17] of about 10−4s−1. A schematic of this
model is shown in Fig. 2.1.

Neurofilament transport can be heterogeneous along the axon and this has
implications for axon caliber. In myelinating cultures, for example, it was found
that axons have a larger caliber Am and exhibit a larger abundance of neu-
rofilaments Nm along the myelinated segments than along the non-myelinated
segments [10] with caliber An and abundance Nn. These differences in axon
caliber correlated with a reduced neurofilament transport rate in myleinated
segments vm versus non-myelinated segments vn. More specifically, the trans-
port velocity of neurofilaments in the myelinated sections vm was smaller than
in the non-myelinated sections vn, consistent with the prediction of the equa-
tion of continuity, i.e. vnNn = vmNm. This equation implies, that the number
of neurofilaments moving into a segment of an axon per unit time must be the
same as moving out. If that would not be the case, neurofilaments would accu-
mulate and the axon would swell or neurofilaments would decline and the axon
atrophy. It also implies, that in segments where neurofilaments move slower, the
axon will be fatter, and vice verse. More recently, a study with ex-vivo extracted
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Fig. 2.1. 6-state model for neurofilament transport: Neurofilaments move
anterograde and retrograde with velocities va and vr in states a and r, respectively, are
interrupted by brief pauses of seconds to few minutes in states a0 and r0, and pause
extensively for hours in states ap and rp

myelinated axons of the mouse tibial nerve [18] revealed similar insights. In fully
developed tibial nerve axons, with a regular repeated pattern of nodes of Ran-
vier and internodes, myelination at the internodes is far more substantial than
the myelination seen in segments of axons in the myelinating cultures [10] and
the axon exhibited a substantial reduction in caliber at the nodes of Ranvier
(a factor of 10 in this particular experiment). It was found in that study, that
the decrease in axon caliber at the nodes of Ranvier is accompanied with a pro-
portionate increase of the transport velocity of neurofilaments, again, consistent
with the equation of continuity vnodeNnode = vinterNinter, where vnode and vinter

are the neurofilament transport velocities in the nodal and internodal segments
of the axon, and Nnode and Ninter the corresponding abundances of neurofila-
ments. Hence, local axon caliber correlates with neurofilament transport velocity.
What the analysis in [10,18] has also revealed is that the increase of axon caliber
and neurofilament content along the myelinated sections of axons is facilitated
by larger fractions of neurofilaments in the off-track states.

In this paper, we consider the morphologically heterogeneous structure of
the mouse optic nerve near the retinal excavation [5,19] (see Fig. 2.1). The cross
sectional area (caliber) of the optic nerve undergoes a sharp, approximately
2.5-fold, expansion about 150µm distal of the retinal excavation. The number
of neurofilaments approximately doubles across this expansion and the number
of microtubules increases approximately 1.5-fold. In this paper we explore the
mechanism for the increased accumulation of neurofilaments in the optic nerve
150µm distal from the retinal excavation and beyond.

2.2 Modeling Neurofilament Transport

Approximating the axon as a one-dimensional structure, we describe the trans-
port of neurofilaments mathematically by the following set of partial differential
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equations [15],

∂ρa
∂t

= −va
∂ρa(x, t)

∂x
+ γ01ρa0 − γ10ρa + jinδ(x − x0)

∂ρa0

∂t
= −(γ01 + γar + γoff)ρa0 + γ10ρa + γraρr0 + γonρap

∂ρap
∂t

= −(γon + γar)ρap + γoffρa0 + γraρrp

∂ρr
∂t

= −vr
∂ρr(x, t)

∂x
+ γ01ρr0 − γ10ρr

∂ρr0
∂t

= −(γ01 + γra + γoff)ρr0 + γ10ρr + γarρa0 + γonρrp

∂ρrp
∂t

= −(γon + γra)ρrp + γoffρr0 + γarρap, (2.1)

where, ρa(x, t) and ρr(x, t) describe the linear densities of neurofilaments in the
on-track moving states, ρa0(x, t) and ρr0(x, t) in the on-track pausing states, and
ρap(x, t) and ρrp(x, t) in the off-track pausing states. The partial derivatives in
the equations for the motile neurofilaments indicate convective terms associated
with their movement.

The transition rate γ10 represents the rate at which the NFs switch from
the on-track running states, a and r, to the on-track pausing state, a0 and r0,
(anterograde and retrograde), and γ01 represents the rate of the transition from
the on-track pausing states, a0 and r0, back to the on-track running states,
a and r. The rate constant γon represents the rate at which NFs switch from
the off-track pausing states, ap and rp, to the on-track pausing states, a0 and
r0. γoff represents the transition from the on-track pausing state to the off-track
pausing state. The reversal rate constants, γra, γar, represent the rates at which
NFs switch from the retrograde pausing states, r0 and rp, to the anterograde
pausing states, a0 and ap, and vice verse, respectively.

The last term on the right hand side of the first equation in Eq. 2.1 models
injection of neurofilament at the proximal end x0 of the axon at a rate of jin.

2.2.1 Detailed Balance and Transport Velocity

A system is said to obey detailed balance if the number of transitions between
any two kinetic states, A and B, is the same as for the reverse transition. For
our kinetic 6-state model these conditions result in the following equations

ρaγ10 = ρa0γ01; ρa0γoff = ρapγon; ρa0γar = ρr0γra

ρrγ10 = ρr0γ01; ρr0γoff = ρrpγon; ρapγar = ρrpγra , (2.2)

and consequently

∂ρa
∂x

= 0 ,
∂ρr
∂x

= 0 . (2.3)
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If the rate constants do not vary along the axon, the distribution of neurofila-
ments in each state is uniform along the axon and are given by

ρa =
jin
va

, ρa0 =
jin
va

q1, ρap = q1q2
jin
va

ρr = q3
jin
va

, ρr0 =
jin
va

q3q1, ρrp = q3q1q2
jin
va

. (2.4)

where q1 = γ10/γ01, q2 = γoff/γon, q3 = γar/γra. The transport velocity is deter-
mined by the fraction of neurofilaments in the mobile states a and r and their
respective velocities va and vr. i.e.

v̄ = va
ρa
ρall

+ vr
ρr
ρall

=
1

((1 + q1(1 + q2))(γra + γar))
(γrava + γarvr) , (2.5)

where ρall = ρa + ρa0 + ρap + ρr + ρr0 + ρrp.
Of importance in this paper are situations, where some rate constants vary

along the axon. Modulation of the reversal rate constants γar and γra, as pro-
posed in [20] to model a heterogeneous steady-state distribution of neurofila-
ments, is not consistent with detailed balance since the requirement of spatial
constancy (see Eq. 2.3) of the distributions ρa0,r0 and ρa,r is in conflict with
ρa0γar(x) = ρr0γra(x), which is obtained from Eq. 2.2. This means that the
expression for the velocity in Eq. 2.5, which is based on detailed balance, is not
an exact solution if the reversal rates vary along the axon. If the spatial modu-
lation of the reversal rates, however, is weak, such as in the study in [20], Eq. 2.5
is still a good approximation for the transport velocity.

A more serious problem with using a spatially dependent reversal rate is that
a sharp spatial modulation of the reversal rate does not result in a sharp change
in neurofilament velocity because the reversal rates are small, i.e of the order
of 10−5–10−4s−1. For a reversal rate of 10−5s−1 the average time between two
reversals is 105s. For an average transport velocity of 1mm/day ≈ 0.01µms−1, a
neurofilament will travel a distance of 105s ·0.01µm/s = 1000µm before it will
respond to a changed reversal rate. The resulting velocity and hence axon-caliber
profile, even for a sharp change in a reversal rate, will be too smooth to model
the sharp transition of the caliber of the optic nerve we are considering.

A spatial change of the on-track rate γon(x) (or off-track rate γoff) does
not destroy detailed balance. The conditions for detailed balance (see Eq. 2.2)
where the on-track rate γon(x) is involved, i.e. ρa0,r0γoff = ρap,rpγon(x) still
allow spatially constant distributions ρa0, ρr0 and hence ρa, ρr, as it is required
for detailed balance (see Eq. 2.3). The densities of neurofilaments in the off-track
states, however, will vary along the axon and are given by ρap(x, t) = q1q2(x)jin,
and ρrp(x, t) = q1q2(x)q3jin, with q2(x) = γoff/γon. Hence the equation for the
transport velocity (see Eq. 2.5) where q2 = γoff/γon is replaced by a variable
q2(x) = γoff/γon(x) is still valid for a heterogeneous rate γon(x).
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2.3 Modeling Neurofilament Transport in the Optic
Nerve

We have studied in earlier work [20] neurofilament transport in mouse optic
nerve to address the controversial proposal in [21] that only a small fraction
of neurofilaments are motile and the majority of neurofilaments are deposited
in a stationary cross-linked cytoskeletal network. In that computational study
we have been using a wealth of published kinetic and morphometric data to
calibrate our mathematical model. The values of the transition rates in the
above described 6-state model have been estimated by matching simulations of
Eq. (2.1) to measured kinetic and morphometric features in mouse optic nerve
[21]. These features included the propagation of a radioactively labeled pulse of
neurofilaments over a time period of about 6 months, the decline of radioactivity
in a 7mm window along the mouse optic nerve, and the observed linear increase
of the abundance of neurofilaments along the nerve.

Of particular interest here is that the distribution of neurofilaments is not
uniform along the optic nerve. It increases distally approximately linearly along
the nerve [21]. To address this heterogeneity we followed the idea outlined earlier
in this paper that if all neurofilaments are motile, neurofilament abundance N(x)
along the axon is controlled by their transport velocity v(x), i.e. J = N(x)v(x),
where J is the net flux of neurofilaments. An increase in neurofilament abundance
is therefore associated with a decrease of their transport velocity. Given the
abundance profile N(x) along the axon, we reconstructed the velocity profile v(x)
and then translated this into a profile of the reversal rate γra(x). A modulation
of the on-rate γon accomplished the same goal. The required relative change of
the on-rate, however, is larger than that of the reversal rate, because the velocity
is more sensitive to changes in the reversal rates.

The study in [20] was focussed on the optic nerve, 1mm and further away from
the retinal excavation, i.e. beyond the onset of myelination. In this study we focus
on the first 1mm distal of the retinal excavation, where the nerve exhibits the
above-described sharp increase in caliber. We follow the same modeling strategy
as in [20]. We first extract neurofilament abundance from [5], i.e.

N(x) = 103

⎧
⎨

⎩

14.5 for 0 < x < 50µm
8.5 + 0.12x for 50µm < x < 150µm
29 + 2.7 · 10−3x for 150µm < x < 700µm

, (2.6)

where we connected the data points extracted from [5] linearly. The number
of neurofilaments, N(x), denotes the number of neurofilaments per thousand
axons in the optic nerve. Given the expression for the velocity in Eq. 2.5, which
is exactly valid even for heterogeneous on-rates γon(x), the velocity profile then
is v(x) = J/N(x), with the neurofilament flux J . Resolving Eq. 2.5 for q2(x), i.e.

q2(x) =
1
q1

(
γrava + γarvr

v(x)(γar + γra)
− 1

)

− 1 , (2.7)

and γon(x) = γoff/q2(x). As in the previous study of the optic nerve [20]
we use the rate constants γ10 = 0.093s−1, γ01 = 0.041s−1 and velocities
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Fig. 2.2. Retina and optic nerve: This figure shows the eye, the retina, a represen-
tative retinal ganglion cell (full circle) with its axon (solid line), the retinal excavation,
and the optic nerve with a sharp increase in caliber at about 150µm distal from the
retinal excavation. The sketched location of the sharp increase of the caliber of the
optic nerve is not drawn to scale. Radioactive proteins are injected into the eye, are
absorbed by retinal ganglion cells and incorporated into the neurofilaments which are
assembled in their cell bodies for about 6 hours. The ensuing wave of radio-labeled neu-
rofilaments travels through the axons of the retinal ganglion cells the average distance
of about 1mm before it enters the optic nerve (see also [20]). The dotted rectangular
regions of width of 1mm are the segments in which the abundance of radio-labeled
neurofilaments are recorded in [21] (see Fig. 2.3)

va = 0.53µms−1, vr = −0.60µms−1 which we obtained from in-vitro single-
neurofilament tracking experiments [9,15]. The rates γoff and γon have been
obtained in the same neuronal culture using a fluorescent photoactivation pulse-
escape method [16] resulting in γoff = 4.5 · 10−3s−1 and γon = 2.75 · 10−4s−1.
In this study, the on-rate γon is replaced by the heterogeneous on-rate Eq. (2.7)
reconstructed from the morphometric profile of the optic nerve near the reti-
nal excavation. Reversal rates γar and γra have been obtained in [15] from the
fraction of retrogradely moving neurofilaments, given in terms of the model as
γar/γra, and rough estimates of the number of rare reversals, given by γar and
γra, resulting in γar = 3.1 · 10−5s−1 and γra = 6.9 · 10−5s−1. These values for the
reversal rates served as a starting point in this study and have been adjusted as
described below.

The last unknown parameter is the neurofilament flux J , which we obtain by
simulating the fate of a pulse of radio-labeled neurofilaments injected into the
retina for a duration of about 5 hours [21], i.e. J(t) = j0 for 0 < t < 1.8 · 104s
and otherwise J(t) = 0. The pulse of radio-labeled neurofilaments propagates
into the optic nerve, spreads in width, and was recorded for about 6 months.
We model the injection of neurofilaments into the retina with the source-term
for neurofilaments in the anterograde moving state a, i.e.

∂ρa
∂t

= −va
∂ρa
∂x

− γ10ρa + γ01ρa0 + J(t)δ(x + 1) . (2.8)

The source term δ(x + 1) incorporates the average distance of about 1mm of
the retinal excavation, the beginning of the optic nerve, to the retinal ganglion
cells (see Fig. 2.2). In the domain −1mm < x < 0, we use a constant on-rate
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γon = γon(x = 0) which connects continuously to the on-rate extracted from
morphometric data at x = 0. We compare the resulting pulse of neurofilaments
10 days after injection with the corresponding distribution reported in [21] and
find good agreement for J = 0.083 s−1 and the fine tuned reversal rates of
γar = 5.0 · 10−5s−1 and γra = 7.2 · 10−5s−1 (see Fig. 2.3).

Fig. 2.3. Distribution of radio-labeled neurofilaments: The distribution of radio-
labeled neurofilament subunits L and M along 8mm of the optic nerve is shown 10 days
after injection [21] alongside the distribution of neurofilaments predicted by our model
(solid line)

2.4 Results

The main goal of this paper is to elucidate the mechanism by which the optic
nerve generates the sharp increase in caliber near the retinal excavation. We have
constructed the rate constants for our kinetic model consistent with a number of
key-experiments as described in the previous section. The solid line in Fig. 2.4a
represents the reconstructed profile of the neurofilament distribution. The cor-
responding distributions of neurofilaments in their kinetic states is shown in
Fig. 2.5a. The significance of the results shown in this figure is that the number
of neurofilaments in on-track states (labeled with a, a0, r and r0) is constant
along the optic nerve, implying the validity of detailed balance. The numbers of
neurofilaments in the off-track states ap and rp exhibit sharp increases at about
150µm distal from the retinal excavation (x = 0), providing the space-filling
structures necessary for the structural integrity along the expanded caliber of
the axon. As the axon expands in caliber distally, the average velocity of the
neurofilaments decreases accordingly (Fig. 2.5b). The decrease of the velocity
is facilitated by a decrease of the on-rate γon (Fig. 2.5c), as this causes more
neurofilaments to accumulate off-track.
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Fig. 2.4. Neurofilament, microtubules and axon caliber: In a, the numbers of
neurofilaments (solid circles) and microtubules (solid squares) recorded in [5] are shown
along the first mm of the optic nerve. The numbers of neurofilaments and microtubules
shown are the average numbers recorded in 1000 axons at the respective locations in
the optic nerve. The solid line shows the neurofilament content generated by our model.
In b, we show the corresponding cross sectional areas (for thousand axons) along the
optic nerve. Most importantly, the sharp increase in axon caliber of a factor of about
2.5 at about 150µm distal from the retinal excavation nerve correlates with an increase
of neurofilaments of about a factor of 2 and an increase of microtubules of a factor of
1.5. All data points are taken from [5] and redrawn

While our model doesn’t provide the actual mechanism by which the average
neurofilament velocity decreases, or equivalently, by which the on-rate decreases,
it reveals that the on-rate, γon, is reduced by about 60% (see Fig. 2.5b) where
the caliber of the nerve (see Fig. 2.4b) and the abundance of neurofilaments (see
Fig. 2.4a) exhibit sharp increases of about a factor of two. This behavior can
be explained if we assume that the long-term pausing of the neurofilaments is
associated with a diffusive search of neurofilaments for microtubules [22] after
disengaging from another microtubule track to become motile again.

In the following we estimate a relation between the areal density of micro-
tubules ρM and the expected on-rate γon. 150µm distal from the retinal exca-
vation, the caliber of the optic nerve (per 1000 axons) exhibits an increase from
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Fig. 2.5. Distribution of neurofilaments In panel a, we show the distributions of
neurofilaments in the 6 kinetic states. The distributions of neurofilaments in the on-
track states (moving and pausing),a,a0,r,r0, are constant along the axon. The numbers
of neurofilaments in the off-track states, ap,rp, exhibit a sharp increase at 150µm,
where the optic nerve increases sharply in caliber (see Fig. 2.4b). In panel b, we show
the reconstructed average velocity of the neurofilaments along the optic nerve. The
decreasing velocity is associated with a decreasing on-rate γon as shown in the panel
of c

about 150µm2 to about 400µm2 (see Fig. 2.4b) and the number of microtubules
increases from 20 to about 30 (see Fig. 2.4a). This corresponds to a decrease of
the microtubule areal density, ρM , of about 45%, from 0.13µm2 to 0.075µm2.
Assuming a uniform distribution of microtubules in the cross section of each
axon, we can calculate the average distance between two nearest-neighbor micro-
tubules as d0 = 1/(2

√
ρM ) [23]. Assuming that neurofilaments detach from one

microtubule, loose motility along the axon, but search by radial diffusion with
diffusion constant D for another microtubule, the mean first passage time for
neurofilaments to reach the distance of d0 at which they, in the statistical average,
will find another microtubule, is given by T = d2

0/(4D). The on-rate, accord-
ingly, is then gon ≈ 1/T ∝ ρM . Hence, the 45% decrease of microtubule density
is expected to result in a 45% decrease of the on-rate γon. Our predictions in
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Fig. 2.5, based on our modeling is a decrease of the on-rate γon of about 60%.
The discrepancy between the estimate and the model predictions is probably due
to the fact that we lumped 1000 axons together into one fat axon to estimate
the change of microtubule densities. In reality, axons of retinal ganglion cells are
very thin with an area of about 0.2–0.4µm2 and the diffusion of neurofilaments
is more constrained. Hence, we expect to over estimate diffusivity and on-rate.

2.5 Summary

We discuss the formation of a sharp increase in the caliber of the optic nerve
near the retinal excavation within the paradigm that the dual role of neurofil-
aments as space-filling structures and cargo of slow axonal transport provides
a mechanism to regulate axon caliber through changes of neurofilament kinet-
ics. Our model predicts that the increase in the caliber of the optic nerve is
generated by an increased fraction of off-track neurofilaments, reducing their
average transport velocity. We further hypothesize that the increased fraction of
off-track neurofilaments is related to the decreased density of microtobule tracks
increasing the time it takes off-track neurofilaments to find a microtubule track
necessary for motility by radial diffusion.
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Abstract. At the National Observatory in Washington D.C., time is
measured by averaging the times of an uncoupled ensemble. The mea-
surements show a scaling law for phase-error reduction as, where is the
number of crystals in the ensemble. Analytical and computational works
show that certain patterns of collective behavior produced by a network
of nonlinear oscillators leads to optimal phase-error that scales down as.
In this talk we use symmetry-based methods to classify all possible pat-
terns of oscillations, and their stability properties. Then we show why,
among all possible patterns, a traveling wave, in which consecutive oscil-
lators are out of phase by, yields the best phase-error reduction. Finally,
we prove, analytically, that is the fundamental limit of of phase-error
reduction that can be obtained with a network of nonlinear oscillators of
any type, not just crystals.

3.1 Introduction

We present a computational and analytical study of a network-based model of
a high-precision, inexpensive, Coupled Crystal Oscillator System and Timing
(CCOST) device. A bifurcation analysis of the network dynamics shows a wide
variety of collective patterns, mainly various forms of discrete rotating waves and
synchronization patterns. Results from computer simulations seem to indicate
that, among all patterns, the standard traveling wave pattern in which consecu-
tive crystals oscillate out of phase by 2π/N , where N is the network size, leads
to phase drift error that decreases as 1/N as opposed to 1/

√
N for an uncoupled

ensemble. The results should provide guidelines for future experiments, design
and fabrication tasks.

c© Springer Nature Switzerland AG 2019
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3.2 Modeling

A crystal oscillator circuit sustains oscillation by taking a voltage signal from
the quartz resonator, amplifying it, and feeding it back to the resonator. The
frequency of the crystal is slightly adjustable by modifying the attached capac-
itances. A varactor, a diode with capacitance depending on applied voltage, is
often used in voltage-controlled crystal oscillators, VCO. The analog port of the
VCO chip is modeled by a nonlinear resistor R−, which obeys the voltage-current
relationship

v = −ai + bi3,

where a and b are constant parameters. In addition, parasitic elements can be
represented by a series resonator (L2, C2, R2) connected in parallel with the
nonlinear resistor. The resulting circuit, depicted in Fig. 3.1(left), forms a two-
mode resonator model. See Fig. 3.1.

Fig. 3.1. (Left) Two-mode crystal oscillator circuit. A second set of spurious RLC
components (R2, L2, C2) are introduced by parasitic elements. (Right) CCOST Concept

Applying Kirchhoff’s voltage law yields the following governing equations

Lj
d2ij
dt2

+ Rj
dij
dt

+
1
Cj

ij = [a − 3b(i1 + i2)2]
[
di1
dt

+
di2
dt

]
, (3.1)

where j = 1, 2 and Lc has been included in L1.

3.3 Governing Equations for Coupled System

In this section we consider a Coupled Crystal Oscillator System (CCOST) made
up of N , assumed to be identical, crystal oscillators. Typical coupling topolo-
gies include unidirectional and bidirectional coupling in a ring fashion. Figure
3.1(right) shows the former case. The spatial symmetry of the unidirectionally
coupled ring is described by the group ZN of cyclic permutations of N objects.
In the bidirectionally coupled case the symmetry group is dN , which describes
the symmetries of an N -gon.
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Applying Kirchhoff’s law to the CCOST network with unidirectional coupling
yields the following (dimensionless version) governing equations

d2ik,1

dt2
+ Ω2

1ik,1 =

ε

{
−R1

dik,1

dt
+

[
a − 3b

(
ik,1 + ik,2 − λ

[
ik+1,1 + ik+1,2

] )2]
[
dik,1

dt
+

dik,2

dt
− λ

(
dik+1,1

dt
+

dik+1,2

dt

)]}

d2ik,2

dt2
+ Ω2

2ik,2 =

εLr

{
−R2

dik,2

dt
+

[
a − 3b

(
ik,1 + ik,2 − λ

[
ik+1,1 + ik+1,2

] )2]
[
dik,1

dt
+

dik,2

dt
− λ

(
dik+1,1

dt
+

dik+1,2

dt

)]}
,

(3.2)

where Lk,1 = L1, Lk,2 = L2, Rk,1 = R1, Rk,2 = R2, Ck,1 = C1 and Ck,2 = C2.

Letting t =
√

L1C1τ , Ω2
1 = 1, Ω2

2 = L1
L2

C1
C2

, Lr = L1
L2

, ε =
√

C1
L1

. The new time
variable τ has been relabeled as t.

3.4 Averaging

After applying the following set of invertible coordinates transformations

ikj = xkj cos φkj ;
i′kj = −Ωjxkj sin φkj ;
i′′kj = −Ωjx

′
kj sin φkj − Ω2

jxkj cos φkj − Ωjxkjψ
′
kj cos φkj ;

φkj = Ωj t + ψkj ;

(3.3)

for j = 1, 2 we arrive at the following set of equations, written symbolically as:
⎡
⎣x′

k

φ′
k

φ′
s

⎤
⎦ =

⎡
⎣ 0

0
Ω0

⎤
⎦ + ε

⎡
⎣X[1](xk, φk + φs, φk+1 + φs, ε)

Ω[1](xk, φk + φs, φk+1 + φs, ε)
0,

⎤
⎦ . (3.4)

where xk = (xk1, xk2), φk = (φk1, φk2) and Ω0 = (Ω1,Ω2). These equations
include the shift φk �→ φk + φs and φk+1 �→ φk+1 + φs, where φs = (φs1, φs2).

After applying the averaging method, we arrive at a new set of equations,
which can be written in complex form to facilitate analysis. The equations are
of the form

żk1 = f1(zk1, zk2, zk+1,1, zk+1,2, μ)
żk2 = f2(zk1, zk2, zk+1,1, zk+1,2, μ), (3.5)

where μ is a vector of parameters. A similar set of equations are obtained for
the bidirectional case. The complete equations can be found in [1,2]. The sym-
metry of these averaged amplitude-phase equations is captured by the groups
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ZN ×O(2)×O(2) and dN ×O(2)×O(2) for the unidirectional and bidirectional
coupling cases, respectively. A complete analysis of the equations can be found
in [1,2]. We summarize the main results. Steady-states of the averaged system
with symmetry group Σ ⊂ Γ×SO(2), with Γ = ZN and Γ = dN lead to periodic
solutions with spatio-temporal symmetry Σ ⊂ Γ × S1. Then, the tangent space
to the trivial steady-state can be decomposed along irreducible representations
of the ZN and dN actions and thus we obtain a block diagonalization of the
linearization of the complexified governing equations. Symmetry-preserving and
symmetry-breaking bifurcations are then determined by examining the eigenval-
ues computed directly from the block diagonalization. Criticality computations
are also performed to determine the direction of bifurcations.

3.5 Phase Drift

Phase error is defined as the drift of the period of oscillation of an oscillating
system away from the expected period length. To study phase drift, the governing
equations are rewritten in Langevin form

dtXk = F (Xk) − λ

N∑
j→k

h(Xj ,Xk) + ηk

dtηk = −ηk

τc
+

√
2D

τc
ξk,

(3.6)

where the noise function ηk is assumed to be Gaussian, band-limited, having a
zero mean, a variance σ2, and have a specific correlation time, τc. The noise is
assumed to not drive the dynamics of the system, this corresponds to τf � τc,
where τf is the time-constant of each oscillator [3,4]. Xk = [ik1, i′k1, ik2, i

′
k2] is

the state variable of each crystal oscillator, τc, D are correlation time and noise
intensity respectively, F represents the internal dynamics of each oscillating unit,
i.e., each crystal oscillator, h is the coupling function between two oscillators,
in which the summation is taken over those cells j that are coupled to each cell
k, λ is the coupling strength, ξk is a Gaussian distributed random variable with
zero mean, and standard deviation σ.

Figure 3.2(top-left) illustrates the performance with respect to the scaling
exponent, i.e., this figure is a log plot phase error, Err(N,λ) = Nm(λ). Samples
are taken for 100 values of λ. For each value of λ, the mean phase error for
50 repeated simulations is calculated for N = 3, 5, . . . , 21. Then a least squares
regression is performed on the log of these values, producing the scaling expo-
nents depicted in Fig. 3.2. This analysis suggests that strong coupling is prefer-
able to weak coupling to produce optimal scaling. From Fig. 3.2, the optimal
scaling is found at λ = 0.99 with m = −0.8947. Figure 3.2(top-right) illustrates
the design and network response captured by an oscilloscope. The white box in
the figure contains appropriate potentiometers to control the gain of the opera-
tional amplifiers, which in turn, are used to manipulate coupling strength, and
thus, control the network response to the desired pattern of oscillation.



Coupled Crystal Oscillator System and Timing Device 25

0 0.2 0.4 0.6 0.8 1

 Coupling ( )

-1

-0.9

-0.8

-0.7

-0.6

-0.5
Sc

al
in

g 
E

xp
on

en
t m

 (
1/

N
m

) 
 

Experimental Data

Fig. 3.2. (Top) Experimental realization of a network of coupled crystal oscillators
implemented via PIC boards. (Bottom-left) Experimental measurements for N = 2 and
N = 3 reveal, as expected, a traveling wave pattern among the oscillations. (Bottom-
right) When the oscillators are uncoupled the pattern disappears
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Abstract. Synthetically engineered single-cellular biological systems
could be designed to classify patterns of chemical signals with high speci-
ficity and invoke appropriate responses. This requires cells to produce
accurate logical computation over their multiple inputs and then trig-
ger cellular response in a binary form like the signals YES and NO.
However, current engineered biological systems, as a rule, are built from
components like combinatorial promoters that, although displaying ’logic
like’ capabilities, fall short of supporting true binary (Boolean) compu-
tation. Consequently misclassification of inputs or errors in processing
commonly occur that in turn lead to an incorrect cellular response. Here
we show how that increased nonlinearity combined with noise suppres-
sion leads to genetic circuits capable of true Boolean logic operation able
to support scalable logic circuit design.

4.1 Introduction

Potential applications of engineered single-cellular biosensory systems (biosen-
sors) could be very broad, examples include identification of specific cancer
cells [11,14] or the detection of heavy metals like lead and mercury in the environ-
ment [8,10,13]. Furthermore, multi-input biosensors could produce more com-
plex functions, for example they could classify patterns of chemical signals with
high specificity [11,14]. To do this the biosensors must produce logical computa-
tions over their multiple inputs and trigger cellular responses in a form of high
and low levels of chemical signals that is similar to 1 and 0 of the Boolean alge-
bra [7]. For example, in cancer therapy biosensors can trigger apoptosis in the
presence of a specific set of cancer-specific biomarkers only [14]. However, mod-
ern biosensors generally are not robust, i.e. frequently their response to inputs
holds significant errors. In cancer therapy such errors mean that some healthy
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cells are killed by mistake and some cancer cells survive [11,14]. Error reduc-
tion in biosensors is an open problem [11,14] and hence mainstream therapeutic
interventions or applications in environmental sensing are still to be realised.

There are lots of sources of errors that include not only fluctuations of dif-
ferent sorts [12] but also stem from the inherent analogue response of genetic
components [6]. Indeed, transfer functions of genetic circuits are similar to the
Hill function [9] rather than the ideal Heaviside step function. Here we show
that even if a genetic gate is able to produce digital-like computations with
an acceptable small error (a deviation from the true binary levels), the non-
Heaviside nonlinearity leads to the non-scaleability in large genetic circuits due
to an amplification and propagation of this error.

Here we report the design of genetic gates capable of true logic function that
suppress propagation error. These gates can therefore be combined in complex
circuits that are scalable and operate with high accuracy. We also present a
theoretical framework that can briefly be formulated as a synthesis of scalable
digital circuits from non-digital genetic components.

4.2 Non-scalability of Digital-Like Genetic Circuits

According to the thermodynamic models of gene expression it is assumed that
the level of gene expression is proportional to the equilibrium probability that
RNA polymerase is bound to the promoter of interest [2]. Statistical mechanics
provides a framework for computing this probability as a function of concentra-
tions of regulatory proteins and molecular complexes in the cell [2]. For example,
if the regulatory protein is an activator then the level of gene expression has the
following form,

R = μ
C + Γ

C + M
, (4.1)

where μ, Γ and M are positive constants, and C is the concentration of the
protein that plays a role of an activator when Γ � M . It is easy to show that
there are two saturation levels corresponding to two limits limC→0 R = μΓ/M
and limC→∞ R = μ. i.e. the digital-like inputs in the form of low and high
concentrations of the activator induces the digital-like response in the form of
the low and high levels of gene expression correspondingly.

It is easy to see that the thermodynamic model Eq. (4.1) is similar to the
Hill function [9] a phenomenological model commonly used in the mathematical
description of gene expression.

Because gene expression could support Boolean-like logic there have been
significant efforts to create digital circuits in cells [1,3–5]. For example the genetic
AND gate can be created by manipulating gene expression using two molecules
A and B that, due to mutual interactions, create a complex AB. In turn complex
AB is an activator for a gene whose expression leads to a synthesis of a protein D.
If the concentration of A and B represent logical inputs then the concentration
of D approximates the AND operation.
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Equilibrium mechanics can be used to undertake a more detailed analysis.
The stationary value of the concentration CAB of the complex AB is proportional
to the concentrations CA and CB of the molecules A and B respectively. Corre-
spondingly, CAB ∝ CACB , and the expression rate of D takes on the following
form,

RD = μD
CACB + ΓD

CACB + MD
, (4.2)

where ΓD and μD are MD are positive constants. According to the rate equation

dCD

dt
= RD − kDCD, (4.3)

the stationary concentration of the protein D is

CD = F (CA, CB) ≡ μD

kD

CACB + ΓD

CACB + MD
. (4.4)

In Eqs. (4.3) and (4.4) the coefficient kD describes the degradation of the protein
D.

Let CA and CB be binary quantities, i.e. they are able to take on the low
and high values. In practice, the low chemical value is rarely zero and hence the
concentration of the complex AB can deviate significantly from binary values.
Consequently the output of the gate will take on four values corresponding to
four cases: (i) both CA and CB are low, (ii) CA is low and CB is high, (iii) CA

is high and CB is low, and (iv) both CA and CB are high. We can introduce the
normalised output of the gate Q = CD/F (CA,h, CB,h) where CA,h and CB,h are
the high levels of the inputs CA and CB , and Boolean inputs of the gate IA and IB

take on 0 and 1 when CA and CB take on their low and high values respectively.
Because the AND gate is not ideal, the truth Table 4.1 shows deviations of Q
from the expected Boolean quantity Qe.

But the deviation of the output Q from the expected ideal output Qe is not
significant. Therefore we may suppose that the AND logic gate is acceptable for
integration in large-scale circuits.

Is this assumption correct? The answer depends on the architecture of the
circuit but we can use some common types of circuits as a test-bed to investigate

Table 4.1. Two-input AND gate. The nondimentional low value of CA and CB equals
1.0 and the high value equals 80.0. The parameters are μD = 5, ΓD = 32, MD = 1600
and kD = 0.05

Inputs Expected output Output

IA IB Qe Q

0 0 0 0.03

0 1 0 0.08

1 0 0 0.08

1 1 1 1.00
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Fig. 4.1. The digital like circuits. a The chain of AND logic-like gates. b The circuit
that functions like a multi-input AND logic gate

Table 4.2. Two-input AND gate. The parameters are identical to the parameters in
Table 4.1

Inputs Expected outputs Outputs

IA IB Q1e Q2e Q3e Q1 Q2 Q3

0 0 0 0 0 0.03 0.03 0.03

0 1 0 0 0 0.08 0.33 0.72

1 0 0 0 0 0.08 0.03 0.03

1 1 1 1 1 1.00 1.00 1.00

their robustness. Here our choice is a simple chain of similar AND gates with
one common input (see Fig. 4.1a). The chain allows investigation of important
problems such as error propagation and parametric stability.

In the circuit shown in Fig. 4.1a the outputs of the gates are indexed. The
truth table of the logical circuit is drawn in Table 4.2.

Indeed, for some inputs the output Q takes on a value of 0.72 instead of the
correct value 0. This error occurs due to error propogation and would clearly
lead to incorrect cellular response if implemented as designed. Finding a solution
to the problem of the nonscaleability of the AND gate is the goal of this study.

4.3 Circuit with the Correction Module

The AND gate can be modified by adding a correction module. The main func-
tion of the correction module is to keep the output in the right range of values
and prevent error propagation in the circuit. The correction module should mod-
ify the common nonlinearity of the system so that the attractor must lose its
uniqueness, and the output must gain a dependence on the input IA (Fig. 4.2).

The role of the correction module can equivalently be performed by a gene
activated by the AND gate or a double inversion module (see Appendix). This
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Fig. 4.2. The normalised outputs Qn of the chain A → D1 → · · · → D10 with the com-
mon input B. The circuit for the first three gates is shown in Fig. 4.1a. The parameters
are identical to Table 4.1

statement gives us some flexibility in a choice of interpretations for the model
of the correction module,

CZn
= Ψ(CDn

, κZ) ≡ νZ

Cm
Dn

+ Γm
Z

Cm
Dn

+ Mm
Z

, (4.5)

where κZ denotes the set of parameters νZ , ΓZ and MZ . Here νZ = μZ/kZ , μZ

describe an expression rate, and kZ is the degradation of the protein Z.
With the correction module Eq. (4.5) the new circuit is organized as a chain

A → D1 → Z1 → D2 → Z2 → · · · → Dn → Zn → Dn+1 → Zn+1 → · · · , where
the same signal B is applied to all AND gates. In this circuits, Dn is the result
of the nth AND gate and Zn is the output of its correction module.

By substitution of the equation

CDn+1 = Φ(CZn
, κD) (4.6)

into Eq. (4.5) it is easy to obtain a combined transfer function of the computation
module and the correction module,

CZn+1 = Ψ(Φ(CZn
, κD), κZ)

= νZ
νm

D (CZn
CB + ΓD)m + Γm

Z (CZn
CB + MD)m

νm
D (CZn

CB + ΓD)m + Mm
Z (CZn

CB + MD)m

= νZ

∑m
k=0 Ck

zn
Ck

B

(
m
k

) [
νm

D Γm−k
D + Γm

Z Mm−k
D

]

∑m
k=0 Ck

zn
Ck

B

(
m
k

) [
νm

D Γm−k
D + Mm

Z Mm−k
D

] .

(4.7)
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In limit n → ∞, we can expect CZn+1 = CZn
. Such solution to Eq. (4.7) we

denote φ. In this case, Eq. (4.7) can be transformed into the following,

m+1∑

k=0

akφk = 0, (4.8)

where the coefficients

a0 = −νZ(νm
D Γm

D + Γm
Z Mm

D ), am+1 = Cm
B (νm

D + Mm
Z ),

ak = Ck−1
B

(
m

k − 1

)
[
νm

D Γm−k−1
D + Mm

Z Mm−k−1
D

]

− νZCk
B

(
m

k

)
[
νm

D Γm−k
D + Γm

Z Mm−k
D

]
, 1 ≤ k ≤ m, (4.9)

were introduced.
The case m = 1 corresponds to a simple activator or two simple repressors

in the correction module. If m = 1, Eq. (4.8) becomes the parabolic equation
a2φ

2 + a1φ + a0 = 0 with the coefficients

a2 = CB(νD + MZ),
a1 = νDΓD + MZMD − νZCB(νD + ΓZ),
a0 = −νZ(νDΓD + ΓZMD) (4.10)

The solution to the parabolic equation is well known,

φ± =
−a1 ±

√
a2
1 − 4a2a0

2a2
. (4.11)

According to Eq. (4.10) the inequality a2a0 < 0 holds, therefore one root of
the equation always is positive, φ+ > 0, and the other one always is negative,
φ− < 0. Because the concentration CZ cannot be negative, the positive solution
φ+ only is observed. It is easy to show the positive solution φ+ always has a
stable point, i.e. it is an attractor.

Moreover, the value φ+ is a monotonic function of CB , i.e. it increases with
increasing CB . In addition the dependence of φ+ on the input CA is completely
lost like in the previously observed case of the chain with the AND gates without
the correction modules. This means that the module characterized by m = 1
cannot be exploited for corrections of the output levels in the AND gate.

The case m = 2 corresponds to a dimer activator in the correction module
or one dimer repressor and one simple repressor in the double inversion module.
If m = 2, Eq. (4.8) becomes the cubic equation a3φ

3 + a2φ
2 + a1φ + a0 = 0. It

is easy to show that there is one real solution to the cubic equation for small
(and very large) values of CB , and there are three real solutions for large values
of CB , All solutions are positive, φ1 > 0, φ2 > 0 and φ3 > 0. They are fixed
points of Eq. (4.7). The stability analysis shows that φ1 and φ3 are stable, and
φ2 is the unstable fixed point. I.e., if the input CB is low then the system is
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Fig. 4.3. Case m = 1: the solution φ+ (Eq. (4.11)) is always monotonic. Case m = 2:
the stable solutions φ1 and φ3, and the unstable solution φ2. If the input CB is low
(CB < 35) then the system is monostable and its output CZ always corresponds the
low level. If the input CB is high (35 < CB < 92) then the system is bistable. The case
of very large input CB when the system is monostable is not observed in this paper.
Parameters: μD = 5, kD = kZ = 0.05, ΓD = 32, MD = 1600, μZ = 10.2, ΓZ = 1.41,
and MZ = 100

monostable and its output always corresponds the low level (see Fig. 4.3); if the
input CB is high then the system is bistable and its output could be in the low
or high levels that are dependent on the input CA. The unstable solution φ2

separates the basins of two attractors φ1 and φ3 (see Fig. 4.3). The bistability
is able to suppress possible small deviations near the low and high levels, and
prevent transitions between them.

4.4 Conclusion

Here we report the requirements and theoretical background for the design of
digital genetic AND gates that are suitable for integration into large scale genetic
circuits. The genetic circuits constructed from such gates can be characterized
by their improved robustness and predictable function. Indeed, the correction
modules are able to tune the output levels of the digital-like processing units
to the right values so that small deviations of digital signal levels and random
fluctuations will be supressed and not propagated along the large-scale genetic
circuits. We hope that such circuits will pave the way for the development of
real world applications.

Acknowledgements. We thank Alfonso Jaramillo for fruitful discussions. This work
was funded by the BBSRC/EPSRC grant to WISB (BB/M017982/1).
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Appendix

Let the circuit D � E � Z represents a double inversion module, where the
protein D is repressing the synthesis of the protein E, and the protein E is
repressing the synthesis of the protein Z. According to the thermodynamic model
of transcription [2], the stationary concentration of the protein E is dependent
on the concentration of D as following,

CE = ω
Ωm

Cm
D + Ωm

, (4.12)

where the coefficients ω and Ω are some constants, m is integer, m =
1, 2, 3, 4, . . .. It is assumed that ω > 0 and Ω > 0. Here m = 1 corre-
sponds to a case of the protein D that is a simple repressor of E. In contrast
to m = 1, the case m > 1 means the protein D is assembled into a complex to
be the repressor of E. For examples, m = 2 corresponds to a dimer, and m = 4
means the complex is a tetramer, e.t.c. We can write a similar equation for a
relationship between the concentrations of the proteins Z and E,

CZ = λ
Λi

Ci
E + Λi

, (4.13)

where the coefficients λ and Λ are some positive constants, λ > 0 and Λ > 0,
the index i is integer, i = 1, 2, 3, 4, . . ..

By substitution Eq. (4.12) into Eq. (4.13), we obtain the transfer function of
the double inversion module,

CZ = λ
Λi (Cm

D + Ωm)i

ωiΩim + Λi (Cm
D + Ωm)i

= λ
Λi

∑i
k=0

(
i
k

)
Cmk

D Ω(i−k)m

ωiΩim + Λi
∑i

k=0

(
i
k

)
Cmk

D Ω(i−k)m
, (4.14)

where
(

i
k

)
are the binomial coefficients.

In case i = 1, Eq. (4.14) can be simplified,

CZ =
λ

Λ

Cm
D + Ωm

Cm
D +

(ω

Λ
+ 1

)
Ωm

. (4.15)

It is easy to find a similarity between Eq. (4.15) and the thermodynamic model
of transcription with a simple activator [2], D → Z,

CZ = ν
Cn

D + Γm

Cm
D + Mm

. (4.16)

Indeed, Eqs. (4.15) and (4.16) are identical when Mm = (ω/Λ + 1)Ωm, Γ = Ω
and ν = λ

Λ . Therefore, the double inversion module can be replaced by the single
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activator module with the same order m of the complex, i.e. a dimer activator
can be used instead of a dimer repressor and a single represser together. On one
hand, the simplification of the genetic circuit could be an advantage. On the
other hand, the double inversion module has an advantage over the activation
module. The number of free parameters in the double inversion module is greater
than in the activation module therefore the circuit with double inversion module
could easily be tuned to parameter levels of interest. For example, we need a
module with a very low saturation level in limit CD → 0. Then, Eq. (4.14) is
transformed into the following,

lim
CD→0

CZ = λ
ΛiΩim

ωiΩim + ΛiΩim
= λ

1
(ω

Λ

)i

+ 1
. (4.17)

According to Eq. (4.17), the low saturation level is independent from the param-
eters Ω and m. If the ratio ω/Λ > 1 then limCD→0 CZ rapidly approaches to
zero with growing i. Therefore the low level limit can be reduced by increasing
both the ratio ω/Λ and i.

In contrast to the low saturation level, the high saturation level is only depen-
dent on one parameter, limCD→∞ CZ = λ.
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Abstract. In a brainmorphic computing paradigm, a hardware system
should process information imitating the anatomical and physiological
mechanisms of the brain by naturally using physical and dynamical char-
acteristics of the constituent devices, especially through nonlinear analog
circuits and devices. The latest knowledge from brain science, especially,
on high-order brain functions emerged from high-dimensional complex
neuro-dynamics, are reflected in the design of brainmorphic hardware.
In addition, the bodily and environmental constraints are considered
and utilized as embodiment in this hardware paradigm. In this paper,
we propose a brain/body whole organism computation paradigm where
brain-intrinsic efficient and distinct information-processing styles and
functions are expected to emerge through high-dimensional complex non-
linear dynamics and the embodiment. In particular, we employ a chaotic
neuron in a reservoir neural network to emerge the reference-self in the
brain/body whole organism computing framework. Chaotic behavior is
usually avoided in the reservoir computing because it will violate the
echo state property. However, we deliberately introduce high-dimensional
chaotic dynamics through the chaotic neurons, but preserving the echo
state property. The high-dimensional chaotic dynamics create a rich vari-
ety of neural patterns, and at the same time, integrate information in
the neural patterns into a unique dynamical state as a high-dimensional
attractor. We show preliminary results for chaotic time-series predictions
through the chaotic reservoir neural network to demonstrate feasibility
of the chaotic dynamics introduced in the reservoir.

5.1 Introduction

Although the current brain-inspired VLSI hardware systems employ some brain-
like architecture such as fine-grained local memories and in-situ learning, they
are far from the real brain. For example, information is not really distributed
and integrated for representation, processing, and storage. In addition, they
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largely ignore high-complexity and complex dynamics of the brain, which are
particularly important for high-order brain functions [1–3]. Moreover, they do
not consider enough the bodily and environmental constraints and interactions
(embodiment), which may lead to a unique and efficient information-processing
paradigm of the brain [4].

In order to get one step closer to the brain, we propose a “brainmorphic”
hardware paradigm [5,6], which is a natural extension of the neuromorphic
paradigm [7]. In this paradigm, the brainmorphic hardware

1. processes information imitating the anatomical and physiological structure
and mechanisms of the brain;

2. naturally mimics physicochemical biophysics directly using physics and
dynamics of the circuits and devices, especially through analog nonlinear
circuits and devices;

3. reflects the latest knowledge from brain science, especially, on high-order brain
functions including emotion and consciousness; and

4. considers and utilizes the bodily and environmental constraints with a com-
plex dynamical internal state (reference-self).

In this paper, we propose a novel “Brain/Body Whole Organism Comput-
ing” framework [5,6] focusing on the bodily and environmental constraints as an
embodiment [4], which is one of the key elements for emergence of unique and
efficient brain-like information processing. In particular, we employ a reservoir
network [8] consisting of chaotic neurons to generate the reference-self in this
framework. Although chaotic behavior is usually avoided in the reservoir com-
puting, we deliberately introduce high-dimensional chaotic dynamics to obtain
a rich variety of neural patterns to represent information, and at the same time,
to integrate the information as a unique state for implementing the dynamical
internal state. We illustrate preliminary simulation results for chaotic time-series
predictions with the chaotic reservoir neural network showing feasibility of the
chaotic dynamics in the reservoir network.

5.2 Brain/Body Whole Organism Computing Framework

We are advocating the brain/body whole organism computing framework [5,6]
in order to overcome the problems in recent brain-inspired computers. Our initial
target in this framework is a small and low-power integrated circuit implemen-
tation of brainmorphic hardware, especially for intelligent edge computational
devices.

Possible required elements of brainmorphic hardware for the whole organism
computing would be:

A Generation of stable and rich neural patterns that dynamically represent
“reference-self,” which consistently keeps an internal state of the system itself.

B Dynamical generation of sensitive neural patterns that represent the corre-
sponding external objects.
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Fig. 5.1. A possible architecture of the brain/body whole organism computing hard-
ware

C A quick change in the internal state by mutual interaction between A and B
above.

D Mechanisms for the embodiment, and interaction with external objects and
environment.

E Conscious and sub-conscious processes, and high-order functions arisen from
the mutual interaction of them.

F Memory creations and retrievals through a macroscopic learning mechanism.
G Global regulations to rapidly control and modify processing modes.

High-dimensional complex nonlinear dynamics play an important role, especially,
in A–C and E [9].

Figure 5.1 shows a construction example of the brain/body whole organism
computing hardware [5,6], which consists of “reference-self subsystem,” “body
subsystem,” and “conscious/subconscious hybrid subsystem.”

5.2.1 Hardware Architecture

Although we have shown possible hardware architecture for each subsystem in
Fig. 5.1 [5,6], we will concentrate, in this paper, on the reference-self subsystem,
in which we employ the reservoir computing framework [8].

The reference-self subsystem in Fig. 5.1 consists of three elements, that is,
1© robust but dynamic retention of a neural pattern that represents the internal
state as “reference-self,” 2© rich neural pattern generation in response to the
external objects, and 3© mutual interaction between 1© and 2©, resulting in a
novel neural pattern.

Possible hardware architecture for the reference-self subsystem is shown in
Fig. 5.2 [5,6]. As shown in the figure, this subsystem is constructed with three
neural networks (NNs), each of which corresponds to 1© to 3© above; that is,
1© an internal state NN, 2© an object representation NN, and 3© a state-change
detection NN. High-dimensional complex dynamics, especially chaotic dynamics,
are deeply involved in these neural networks as follows.
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Fig. 5.2. A possible hardware architecture for the reference-self subsystem

The NN for 1© should robustly maintains a high-dimensional attractor as its
internal state even if the environmental parameters are changed. Therefore, we
utilize a robust property of high-dimensional chaotic systems such as consistency
[10,11] in this NN.

In contrast, the NN for 2© should rapidly respond to the external input by
changing its neural pattern. In addition, this NN should be able to produce a rich
variety of neural patterns (attractors). Therefore, a possible candidate of this NN
is a reservoir neural network [8], but with chaotic dynamics. For example, the
default state of this NN would be chaotic itinerant dynamics [12], and an infinite
number of low-dimensional quasi-attractors represent external objects.

Finally, 3© will have a triple NN structure with (i) a NN that retains a copy
of the reference state of 1©, and whose internal state is altered by 2©, (ii) a NN
that extracts the change in the NN of (i), and (iii) a NN that produces a neural
pattern according to (ii). The NN in (i) uses the same neuron circuit as that
in 1©, while a simple integrated-and-fire based spiking neuron circuit would be
used in (ii). The reservoir network would also be suitable for the NN in (iii) for
a variety of complex spatio-temporal spiking patterns.

5.3 Chaotic Reservoir with Chaotic Neurons

A general structure of the reservoir neural network is shown in Fig. 5.3 [8]. As
shown in the figure, the network consists of the input layer, the reservoir layer
(recurrent neural network), and the output layer. One of the distinct features
of the reservoir network is that only connection weights from the reservoir to
the output layer are updated during the learning process, so that even simple
learning algorithm can be used [8]. In addition, other fixed connection weights
can be randomly chosen.

Since the reservoir network with chaotic dynamics is a strong candidate for
the NNs in the reference-self subsystem shown in Sect. 5.2, we propose a chaotic
reservoir network using the chaotic neural network model [9,13].
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Fig. 5.3. A general structure of the reservoir neural network

Typical approach to destabilize the reservoir network into a chaotic state is
to make the spectral radius ρ(W ) be greater than 1 by properly choosing the
connection weight matrix W [8]. This may violate the echo state property, so
that the chaotic behavior was avoided in the conventional reservoir networks [8].
However, we deliberately introduce chaotic dynamics into the reservoir network
without completely destroying the echo state property by replacing ordinary
neurons with chaotic neurons [13] (Eqs. (5.1) and (5.2)) while keeping ρ(W ) < 1.

yi(t + 1) = kyi(t) +

M∑

j=1

Wijf(yj(t)) +

P∑

l=1

VilIl(t)− αf(yi(t))− θi(1− k), (5.1)

xi(t + 1) = f(yi(t + 1)), (5.2)

where yi(t) and xi(t) are the internal state and output of the neuron i at time t,
respectively, Wij and Vil are the connection weights from neuron j to neuron i
in the reservoir, and that from the lth-input Il to neuron i as shown in Fig. 5.3,
α = 0.01 and k = 0.01 are the parameters for refractoriness, M is the number
of neurons in the reservoir, P is the number of inputs, and f(·) is a sigmoidal
function with ε = 0.02.

While the chaotic neurons are used in the reservoir network, one standard
sigmoidal neuron o is used in the output layer. The connection strength to the
output neuron o from the chaotic neuron k is Wok as shown in Fig. 5.3. For
learning, we employ a standard mean square method where only connection
weights to the output neuron from the reservoir neurons are changed, while
other weight values are kept.

In order to verify feasibility of the reservoir network with chaotic neurons,
preliminary simulations for one-step predictions of chaotic time-series from the
logistic map (Eq. (5.3)), and Hénon map (Eqs. (5.4) and (5.5)) are used.

r(t + 1) = pr(t)(1 − r(t)), (5.3)
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Table 5.1. Network parameters for simulations

The number of neurons in the reservoir, M 100

The percentage of connections among neurons inside the
reservoir

10%

The percentage of the reservoir neurons connected to the
output layer

20%

Distributions of the random values of Wij in the reservoir Uniform [−0.01; 0.01]

Spectrum radius ρ(W ) <0.01

Distributions of the random values of θi in the reservoir Uniform [−0.01; 0.01]

Training length 1900 steps

Testing length T 600

Fig. 5.4. Attractors obtained from the original and predicted time-series for (a) logistic
map (r(t)), and (b) Hénon map (q(t) and s(t))

and

q(t + 1) = 1 − aq2(t) + s(t), (5.4)
s(t + 1) = bq(t). (5.5)

In the simulations, p = 3.7, a = 1.3, and b = 0.4 are used for the above maps.
The network parameters for the simulations are summarized in Table 5.1. In

the case of logistic map, we used one input neuron, that is, P = 1, while for
Hénon map, P = 2.

The 1-step prediction results after the learning are shown in Fig. 5.4. In the
figure, the blue dots show the predicted points, while red dots are correct points.
The average errors AE defined in Eq. (5.6) were of the order of <10−2 for both
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Fig. 5.5. Time waveforms of the internal state y1(t) of the chaotic neuron 1 in the
reservoir for (a) logistic map, and (b) Hénon map

maps.

AE =
1
T

T∑

t=1

√
(O(t) − teach(t))2, (5.6)

where T = 600 is the length of testing phase, O(t) is an output value of the
output neuron o at time t, and teach(t) is a correct value of the time series.

In addition, we confirmed the chaotic dynamics in the reservoir network
during the testing phase as shown in Fig. 5.5.

The obtained results confirm that the proposed chaotic reservoir network has
an ability to work as an efficient reservoir. Therefore, we will apply the chaotic
reservoir in the reference-self subsystem.

5.4 Conclusions

We proposed a brainmorphic hardware paradigm in which complex nonlinear
dynamics play an important role. As one of the important ingredients of this
paradigm, the brain/body whole organism computing framework with its possi-
ble hardware architecture was proposed. We also proposed the reservoir network
with chaotic neurons to generate a variety of neural patterns, and at the same
time, to regulate these patterns into an integrated state, for the reference-self
system in the brain/body whole organism computing framework. We confirmed
feasibility of the chaotic dynamics introduced in the reservoir via chaotic neurons,
instead of destabilizing the reservoir with ρ(W ) > 1, by preliminary simulations
for chaotic time-series predictions. We will further study on the properties of
the chaotic reservoir. At the same time, we are currently working on the chaotic
reservoir with spiking neurons for efficient hardware implementation.
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Abstract. The importance and the necessity of nonlinearity in Arti-
ficial Intelligence, AI, and deep learning are very well understood. A
multi-layer neural network with linear activation function is equivalent
to a single layer of neurons. It is nonlinearity of activation functions that
adds complexity to each layer, transforming the network to a univer-
sal computing machine that can approximate any continuous function.
However, nonlinearity and the complexity that it creates have not been
investigated enough in AI and modern deep learning systems. NC State
University’s Nonlinear Artificial Intelligence Lab focuses on nonlinearity
and the complexity that comes with it, and investigates how this can be
an engine of artificial intelligence. We peruse our research at different
levels with different goals. In this article we explain our approach, and
present an overview of our results.

6.1 Introduction

We live in a nondeterministic, noisy, and stochastic world. Furthermore, it is
believed that noise, stochasticity, and chaos play a crucial role in our brain and
the way it processes information [1–3]

Transistors are the basic computer systems. The main approach to improve
the performance of the computers has been following the Moore’s law -scaling
down the size of transistors and integrating more transistors into a computer
chip [4]. The Moore’s law has provided us with a roadmap to improve the per-
formance of the computers for decades. But the challenge is that after decades
of scaling the transistors, we have reached to a point that as we further scale
down the size of transistors, we are reaching fundamental physical limitations
of these devices, and we are losing the determinism of these binary switches.
For example, electrons can tunnel through an open switch (quantum tunnel-
ing) [5]. And it is becoming exponentially harder and more expensive to design
and fabricate fully deterministic systems that perform deterministic comput-
ing. On top of it, we are moving towards stochastic processing and computing,
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and the most notable example is AI. So why not utilize and embrace nonlin-
ear, chaos-based hardware, and use it to perform computing methods that are
inherently robust to noise? This is the approach that we have picked, and we
design and fabricate nonlinear, chaotic hardware, and we utilize this platform
to implement nondeterministic computation and AI. However, there is a lot of
challenges facing adoption and utilization of nonlinear dynamics and chaos in
artificial intelligence.

Adopting and engineering chaos and nonlinear dynamics into an engineering
application is a two-edged sword. From one perspective, we can enjoy the great
amount of processing power that chaos can deliver. For example, it is shown
that a simple nonlinear circuit can represent an infinite number of different
functions. On the other hand, chaos comes at a great cost too. Designing a
robust, stable nonlinear, chaotic circuit, and manually or adaptively programing
it to implement desired tasks is not a simple job, and furthermore, noise and
fabrication nonidealities can degenerate the performance of the circuit.

There is a lot to learn from the story of deep learning. Deep neural
networks—neural networks with multiple hidden layers—were very well known
to researchers and machine learning practitioners, and their great performance
as universal function approximators was very well understood. But they were
deemed unpractical because when the nonlinear operations of multiple layers of
neurons are composed together, the training of resulting function is mathemati-
cally intractable. In other words, training a multilayer deep neural network is a
non-convex optimization problem to solve [6]. As a result, many abounded the
idea of deep neural network in favor of simpler, but less powerful, machine learn-
ing methods such as Support Vector Machines (SVM) that are mathematically
tractable [7]. But expressing the learning mechanism as a non-convex optimiza-
tion problem brings immense representation, modeling, and learning power. In
2012, with the help of GPUs and large data sets for training, finally a practical
method was introduced to optimize these non-convex learning problems, and
after that AI never became the same [8]. The main take-home note from deep
learning story is that if we manage to tame very complex nonlinear systems, we
can unshackle the unprecedented high-performance that these complex systems
can provide. This has been our mission in our research group from day one.
Take a chaotic system that brings the maximum possible amount of diversity in
behavior and complexity, tame it and utilize the performance that it can offer.
In [9] we demonstrated that a simple nonlinear circuit contains an infinite num-
ber of different functions. In [10] we introduced nonlinear dynamics as an engine
of computing.

In Sect. 6.2 we explain the main idea behind how we can utilize chaos and
nonlinear dynamics in computation. In Sect. 6.3 we will overview our recent non-
linear hardware designs. And describe what type of processing we can perform
on top of this hardware. In Sect. 6.4 we review sample applications that we have
implemented. In Sect. 6.5 we discuss where our designs fit in the industry, how
much compatible they are with exiting technology, and we conclude the article.
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Fig. 6.1. A 3-dimensional dynamical system that maps an initial state x0 to a future
state xt. Obviously, the dynamical system can be considered as a function

6.2 The Main Idea

A dynamical system is a system that evolves over time and maps states in its
state space to some other future states. Let f be a dynamical equation, mapping
initial states to future states:

f : �n → �n (6.1)

Figure 6.1 shows an example visualization of a dynamical system in 3-
dimensional state space, n = 3.

It is clear from the definition and visualization of dynamical system that a
dynamical system embodies a function, it implements a function.

A dynamical system can be linear or nonlinear. A linear dynamical system
tends to build a simple, basic function, whereas a nonlinear dynamical system
can implement much more complex functions. Much more importantly, a non-
linear dynamical system usually happens to be sensitive to its parameters. This
provides us with a parametric function builder that given different parameters
can implement different functions. See Fig. 6.2 where a parametric nonlinear
dynamical system fp is implementing two different functions for two different p
values.

It is shown that indeed a nonlinear dynamical system contains an infinite
number of functions [9], and nonlinear dynamics can be considered as an engine of
computation [10]. In [10] it is shown that the number of distinguishable functions

Nf ∝ eλCn (6.2)

increases exponentially with evolution time, where λC is the computing expo-
nent, and n is the number of iterations the iterative dynamical system makes
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Fig. 6.2. A 3-dimensional parametric dynamical system that maps an initial state x0

to two different future state xt. With different parameter values one can potentially
implement different functions

before producing the final state (or in continuous-time dynamical systems we
will have evolution time t instead of iteration number n). The computing expo-
nent λC was defined in parallel to Lyapunov exponent, with this difference that
computing exponent measures and captures the number of different functions
that a dynamical system can implement. Nonlinear dynamical system can have
positive computing exponent, therefore the number of functions that they can
implement exponentially increases as the iteration number n (or evolution time
t) linearly increases. This demonstrate the capacity of the nonlinear systems in
approximating and implementing different functions.

Our research has bifurcated into two avenues: first, manually finding and
setting the parameters in order to program the nonlinear dynamical system
to implement a desired function, and second, letting the nonlinear dynamical
system itself learns which parameters it needs to select in order to implement
the desired function. In the next sections we explain these two avenues, and what
type of applications we can implement.

6.3 Hardware Design

We have designed and developed multiple generations of hardware for nonlinear
computing. We have followed a similar path to design and develop nonlinear
dynamics-based hardware that is simple in design, while complex in behavior.
Such nonlinear hardware can implement complex and diverse tasks and functions
using fewer transistors and less energy [11]. And they create an ideal hardware
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Fig. 6.3. Four generations of hardware developed by Nonlinear Artificial Intelligence
Lab

platform to implement nonlinear computation. Currently we have designed and
developed four generations of nonlinear dynamics-based hardware, and with each
generation we have advanced both the hardware as well as the applications that
it can enable and implement (Fig. 6.3).

It is important to note that this is a technology platform in the sense that
many different applications can be designed and deployed. Figure 6.4 shows a
model for our technology platform.
Device Level: We use conventional CMOS devices to design our circuits and
we use conventional CMOS technology to fabricate our circuits and chips. Our
hardware technology is a new design method that makes use of current devices
in order to design nonlinear circuits that exhibit very complex behaviors.

It is worth noting that beyond CMOS devices can also be used to design
nonlinear circuits. As an example, memristors can be suitable nonlinear devices
to implement nonlinearity and complex behavior at the circuit level. However,
for practical reasons at this point, we are mostly focused on conventional CMOS
devices as the building blocks of our circuits.
Circuit Level: At the circuit layer, we design circuits that have nonlinear,
complex behavior. This circuit design is nothing more that connecting a series
of basic CMOS devices together, but with the crucial difference that we purpose-
fully create nonlinearity and complexity in behavior, and thus derive complex
processing out of this complex behavior. This is a philosophical and engineering
departure from the conventional norm. In conventional design methods, design-
ers make sure that all of their circuits have simple, fully predictable, stable
dynamics. And then they put together many of these simple circuits in order to
implement complex systems. In other words, complexity is achieved through a
complex design with many devices and circuits. But in our approach, we develop
simple-in-design, but complex-in-behavior, circuits and systems. Therefore, com-
plex processing emerges from the complex dynamics of simple circuits that have
fewer transistors and lower energy requirements.
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Fig. 6.4. Model of Nonlinear Artificial Intelligence’s technology platform, showing its
different layers of design

Processing Type: The main processing capabilities of this hardware emerge
from its complex dynamics, and since complex dynamics is flexible in behavior,
the nonlinear circuit can implement many different functions and tasks. More
specifically, we have shown that the hardware can implement all of the following
types of processing:

• Digital Computing: The circuits can emulate operations of different digital
functions.

• Reconfigurable computing: Complex dynamics is flexible and contains many
different behaviors; therefore it can emulate many different functions. And
reconfiguration is instant since they all coexist within the same circuit as
opposed to FPGAs, which require halting the processing and loading new
control bits.

• Probabilistic Computing: The complex dynamics of the nonlinear circuits
can operate as a probabilistic system and therefore can perform probabilistic
computing.

• Analog computing: These nonlinear circuits are analog in nature, and they
can receive and process both analog and digital inputs.

Application Layer: This hardware is a platform with all of the unique pro-
cessing capabilities listed above, so many different applications can be designed
and developed based on it. The Fig. 6.2 model shows some of these applica-
tions. These applications are enabled by one or more processing capabilities in
the processing layer. We have designed different proof-of-concept examples to
demonstrate the processing capabilities and possible applications the hardware
can perform. Some of these examples are listed below.
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6.4 Example Applications

In introduction we mentioned that a nonlinear chaotic system contains many
different functions. Basically, what this means is that a chaotic system embodies
many different functions that are selectable. This provides us with a platform for
representation; representation of different functions or behaviors. We can take
two different approaches to utilize this rich library of functions, (1) manually pick
and choose them, and (2) let the system learn to pick and choose automatically.
We first started from the manual selection, where the designer/programmer picks
and choose it by direct coding. The result was an ALU unit.

6.4.1 Adaptive Hardware

Since our new hardware is flexible and programmable, it can adapt to different
internal or external changes, and also adapt to its changing environment. This
adaptation can be manually administrated, or it can be autonomous. For exam-
ple, we purposefully overheated one of our fabricated hardware to a level (82 ◦C)
well beyond its specification and tolerance level. As a result, it eventually failed
to do what it is was programmed to do. However, because the hardware was
flexible, we reprogrammed with a new set of control inputs to perform the same
task, albeit using different control inputs [12] (Fig. 6.5).

6.4.2 Learning and Artificial Intelligence

By utilizing nonlinear dynamics, living systems exhibit diverse and complex
behaviors while conserving their energy. And they can explore many different
behaviors or reactions that their nonlinearity provides to them in order to (adap-
tively) pick and choose the ones that best meet their needs and conditions at the
time. We explore such connections, and design and build intelligent hardware
based on this concept. Our main hypotheses toward achieving artificial intelli-
gence with morphable nonlinear systems are that: (1) nonlinear dynamics pro-
vides flexibility and morphability, and therefore it creates a suitable platform for

Fig. 6.5. An adaptive hardware maintaining operational capability despite external
and internal changes (overheating in this specific experiment)
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plasticity and learning (or intelligence in general); and (2) machine intelligence
should be hardware based, as opposed to being software based. In nature there
is no separate software; it is the physical organism itself that shows intelligence,
and that intelligence is intertwined with the inherited genetics and physical make
up of the organism. Combining these two hypotheses, we propose that to achieve
nature-like intelligence, we need a nonlinear dynamics-based hardware that pro-
vides flexibility and plasticity at the hardware level. We have trained one of our
fabricated hardware chips to evolve and learn different tasks, such as summation
or subtraction, with no need for direct programing. The problem of automati-
cally training a chaotic system to implement a given function can be formulated
as an optimization problem below:

pf = argmin
p

∑

i

cost(xi, yi, ŷi) (6.3)

where p is parameter of the chaotic system, xi,yi is a pair of input-output that
the chaotic system is supposed to learn how to map (such pairs of given inputs-
outputs are called training data in the context of AI; the data drawn from a
desired function that maps x to y, and we use this training data to tune the
parameters of chaotic system to implement the desired function), ŷi is what
chaotic system produces as the output to xi, cost function can be defined as
squared error if the outputs are continuous valued, or as binary hit/miss if the
outputs are binary, i.e. cost(xi, yi, ŷi) = 0 if yi = ŷi, otherwise 1, and we
calculate cost function over the entire training data (all i values). Now the prob-
lem of learning a desired function using a chaotic system is transformed to an
optimization problem where we reduce the distance between yi,ŷi for all i values,
and different optimization techniques can be used to minimize this cost function.
The results of this experiment are under review to be published as a separate
research article.

6.4.3 IoT Hardware

This application is a mixture from the examples above. We are introducing
hardware for IoT nodes, where there is a massive influx of sensor data, and this
data is filtered and processed to extract information to be sent to the higher
layers of an IoT network. Figure 6.6 below shows the conventional general data
acquisition and processing signal chain for IoT nodes and edge computing.

Our new hardware can implement the IoT node and computing at the node
(edge computing) with a much more efficient chain shown in Fig. 6.7 below:

Our nonlinear dynamics-based hardware can:

• Directly receive analog inputs from sensors;
• Filter noise from analog signals;
• Convert analog signals to digital;
• Digitally process these digital inputs;
• Morph into new configurations at any cycle, and therefore digital processing

can be reconfigurable, adaptive, and evolvable;
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Fig. 6.6. Conventional data acquisition and processing signal chain

Fig. 6.7. Alternative chain, enabled by our hardware

• Implement many different operations including multiplications efficiently,
which means it can implement multiplication-intensive applications such as
deep learning with minimal power and silicon area requirements.

6.5 Conclusion

A chaotic system is hard to work with, it scares the engineers away, it is unstable,
hard to design, fabricate, and utilize. But if all is done correctly, a chaotic system
provides an unprecedented amount of performance, unmatched by any conven-
tional linear system. The AI community has fully experienced this transforma-
tion of moving from tractable, elegant methods and mathematics to intractable,
hard to optimize models, and this move resulted in huge leap in AI. We believe
chaos is another uncharted territory that despite the challenges that come with
it, can provide huge rewards.

Here we discussed our fabrications, sample applications, and the results. The
main conclusion is that chaos can provide extremely fascinating features and
capabilities with unique applications, however, there are challenges to overcome.
NAIL has been following multiple different tracks to AI. On one extreme, we
teach and practice the conventional AI and deep learning and team with gov-
ernment, research and technology companies to apply conventional AI to their
needs. On the other extreme, NAIL is pioneering a novel approach to AI based
on nonlinear dynamics and chaos to develop AI systems that demonstrate aware-
ness, cognition and deeper intelligence and interactions.
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Abstract. A mathematical model of an analog tape recorder is devel-
oped and shown to exhibit linear chaos. The playback dynamics act as a
wave and are modeled by a linear partial differential equation with a sim-
ple analytic solution. This linear dynamical system is shown to exhibit
three properties commonly used to define chaotic dynamics: the solution
set is dense with periodic orbits, contains transitive orbits, and exhibits
extreme sensitivity to initial conditions. Thus, a tape recorder provides
a common physical example of linear chaos.

7.1 Introduction

It is lore in the study of dynamical systems that chaos is an inherently non-
linear phenomenon [1]. However, examples of chaos in linear [2–5] and quasi-
linear [6–12] systems have been known for some time now—a situation that
many researchers still find surprising and even disturbing. This lore persists
despite the fact that a positive Lyapunov exponent, a common indicator of chaos,
indicates linear instability and can also be displayed by linear systems [13]. Ana-
lytic intractability is another closely held belief of chaotic dynamics, yet there
are counterexamples here, too. Recent research has identified chaotic piecewise-
linear oscillators that admit exact analytic solutions, which can be written as a
linear convolution of a discrete information sequence and a fixed basis function,
similar to a modern communication waveform [14–16]. Altogether, these coun-
terexamples suggest a larger view of chaotic phenomena that may have practical
implications. In this paper, we expand the sphere of linear, tractable chaos to
include a common physical system, namely, an analog tape recorder.

The recognition and development of linear chaotic dynamics may be techno-
logically important, as it enables the intriguing aspects of chaotic dynamics to be
accessible to standard engineering practice [17]. For example, chaotic oscillators
have been proposed as low-cost, high-speed physical random number genera-
tors to support encryption and Monte Carlo simulations [18]. Also, the wide
bandwidth and non-repeating nature of chaotic waveforms suggest benefits for
random-signal radar [19] and spread-spectrum communications [20,21]. Using
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Fig. 7.1. Audio tape recorder

chaos with linear characteristics may enable these benefits to be engineered into
these and other technologies without paying the price for using highly nonlinear
devices.

7.2 Model

Figure 7.1 shows a reel-to-reel tape recorder, which was a common analog tech-
nology for capturing and playing back audio signals prior to the advent of digital
technologies. This electromechanical device uses a motor to move a magnetic
tape across fixed read and write heads at a constant linear speed. The tape
stores time-varying signals as magnetic spatial variations along the tape. In
record mode, an input signal is written on the moving tape using the record
head. In playback mode, the audio signal is reproduced as the tape moves across
the read head.

We wish to develop a mathematical model of a tape recorder operating in
playback mode. We define the state of the tape recorder at time t as u(x, t),
where u is the signal stored on the tape at the position x relative to the read
head at x = 0. See Fig. 7.2. The time dependence of the state reflects that the
tape is moving. We have an initial condition

u(x, 0) = f(x) (7.1)

where f(x) is a previously recorded waveform stored on the tape. During play-
back, the tape moves across the tape head at a constant speed, so the state of
the machine evolves as

u(x, t) = f(x + t) (7.2)
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Fig. 7.2. Tape recorder model

where we assume unit velocity without loss of generality. For times t > 0, the read
head detects the signal at position x = 0, so that playback provides u(0, t) = f(t)
which effectively converts the spatially stored waveform to a time signal.

Examining Eq. (7.2), we recognize the time-evolving state as a leftward-
propagating wave. For sufficiently smooth signals f(x), the tape recorder state
formally satisfies the partial differential equation

∂u

∂t
=

∂u

∂x
(7.3)

which is a one-way wave equation. Established methods extend this equation for
non-smooth and discontinuous functions and are consistent with a model of a
physical tape recorder. For a mathematical model, we assume the domain t ≥ 0
and 0 ≤ x < ∞, which represents a never-ending, infinitely long-playing tape.
Here, we do not include states for x < 0, since such states do not affect future
playback. In this idealized model, Eq. (7.2) provides the solution to the partial
differential equation (7.3) subject to the initial condition given in Eq. (7.1).

7.3 Devaney’s Chaos

The most widely accepted definition of chaos is due to Devaney [22]. This def-
inition was originally developed in the context of an iterated, one-dimensional
map function. However, the spirit of that definition has been extended and is
often applied to a larger class of dynamical systems, including higher-dimensional
maps and differential equations [5].

A partial generalization of Devaney’s original definition formally considers
a metric space Y and a mapping function φ : Y → Y . The function φ defines
a dynamical system by the repeated iteration from an initial condition. For a
continuous function φ, the associated dynamical system is chaotic on Y if it
satisfies three requirements. First, periodic points are dense in Y , which can be
rigorously written as

∀U ⊂ Y ⇒ ∃y ∈ U, n > 0 : φn(y) = y (7.4)

where ⊂ implies an open subset. Second, the iterated function is topologically
transitive, or

∀U, V ⊂ Y ⇒ ∃y ∈ U, n > 0 : φn(y) ∈ V (7.5)
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which implies that the set Y cannot be decomposed into smaller, disconnected
open sets. Third, the iterated function exhibits sensitive dependence, or

∃δ > 0 : {∀y ∈ U ⊂ Y ⇒ ∃z ∈ U, n > 0 : ‖φn(y) − φn(z)‖ ≥ δ}. (7.6)

Of these three conditions for chaos, only the last explicitly requires a metric to
define distance. This definition can be further generalized for continuous time
dynamics by applying analogous requirements to dynamical systems comprising
ordinary and partial differential equations.

7.4 Linear Chaos

Despite common lore, it is well known that certain linear systems can formally
satisfy the requirements in Devaney’s definition of chaos [2–5]. Such systems
are collectively referred to as linear chaos. Here, we claim the tape recorder
model satisfies Devaney’s definition for chaos, thereby providing a physically
realizable example of linear chaos. In making this claim, we assume an extension
of Devaney’s definition that accommodates a partial differential equation for the
dynamical system. For the tape recorder model, we explicitly show there exists a
metric space in which the general solution u(x, t) exhibits dense periodic orbits,
a transitive orbit, and sensitive dependence on initial conditions.

First, we identify a metric space for the state of the dynamical system. Since
the system is a partial differential equation, the time evolving state is a function
of the spatial coordinate x. Thus, we use the notation ut(x) = u(x, t) to empha-
size this function state at a fixed time t. Using this notation, we define a norm
to measure the size of a function state using

‖ut‖ = sup
x≥0

{|ut(x)| e−λx
}

(7.7)

where λ > 0 is a fixed parameter and sup is the supremum of the function over
the indicated range. We then identify a metric space using the set

W =
{

ut : sup
x≥0

{|ut(x)|} < ∞
}

(7.8)

and the metric induced by the norm in Eq. (7.8).
The first of Devaney’s conditions for chaos is that periodic orbits are dense.

That is, for any initial condition f ∈ U ⊂ W , where ⊂ implies an open subset,
there exists an initial condition f̃ ∈ U such that the resulting solution trajec-
tory ũ(x, t) = f̃(x + t) is periodic with some period T . In this definition, U is
any neighborhood containing f , and it is most demanding to consider a small
neighborhood so that f and f̃ must be nearby (in the sense of the metric). We
show this requirement by considering the particular initial condition

f̃(x) = f(x − nT ), nT ≤ x < (n + 1)T, n ∈ Z (7.9)
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where f̃ ∈ W by construction, T is an arbitrary period, and Z is the set of
integers. By design we have f̃(x) = f̃(x + T ), so that ũ(x, t) = ũ(x, t + T ) and
the corresponding solution is periodic. Furthermore, we have that

lim
T→∞

‖f̃(x) − f(x)‖ = 0 (7.10)

which implies that the initial condition for the periodic orbit can be made arbi-
trarily close to f(x) by increasing the period T . Recalling U is an open set, we
are then assured that f̃ ∈ U for sufficiently large T , thereby showing periodic
orbits are dense in W .

The second of Devaney’s conditions is topological transitivity. We consider
two arbitrary functions f ∈ U ⊂ W and g ∈ V ⊂ W . We then construct the
initial condition

f̃(x) =
{

f(x), x < T
g(x − T ), x ≥ T

(7.11)

where f̃ ∈ W and T is an arbitrary interval. The corresponding solution is
ũ(x, t) = f̃(x + t), so that

lim
T→∞

‖ũ(x, 0) − f(x)‖ = 0 (7.12)

and we are assured that ũ(x, 0) ∈ U for sufficiently large T . Also, we have
ũ(x, T ) = g(x) ∈ V , which implies there exists a transitive orbit that connects
U to V . Thus, the tape recorder model is topologically transitive on W .

The third of Devaney’s conditions is sensitive dependence. Rigorous mathe-
matical results have shown that dense periodic orbits and a transitive orbit are
usually sufficient for a topological definition of chaos [23]. However, it is useful
to also explicitly show sensitive dependence as implied by a positive Lyapunov
exponent, since it is the famous hallmark of chaotic dynamics. To this end, we
consider a function f(x) ∈ W and choose f̃(x) ∈ W such that

sup
0≤x<T

{
|f(x) − f̃(x)| e−λx

}
= 0, sup

x≥T

{
|f(x) − f̃(x)| e−λx

}
= ε (7.13)

which implies that f(x) and f̃(x) are identical on the interval 0 ≤ x < T . We
then consider the solution trajectories u(x, t) = f(x + t) and ũ(x, t) = f̃(x + t)
resulting from these initial conditions. For t ≤ T , we find

‖u(x, t) − ũ(x, t)‖ = ε eλt (7.14)

which follows from the requirements in Eq. (7.13). Thus, this result explicitly
shows an exponential growth in the initial separation of solution trajectories
starting from f(x) and f̃(x). For an arbitrary δ > 0, we may always choose T
large enough such that ε eλT > δ, which meets the requirement that arbitrarily
small perturbations grow to a significant size. Thus, the wave equation exhibits
sensitive dependence on W , thereby completing the claim that the wave equation
model of a tape recorder is chaotic.
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In establishing sensitive dependence, we find that Eq. (7.14) reveals that λ
quantifies the growth rate of the exponential separation and, thus, acts like a
positive Lyapunov exponent for the system. We note that the parameter λ does
not appear in the original wave equation. Instead, this parameter was defined for
the norm in Eq. (7.7), so that it is a characteristic of the metric used to measure
the system. To define a norm using Eq. (7.7), it is only required that λ > 0. As
such, only the existence of a positive Lyapunov exponent is fundamental to the
nature of the physical system, while its magnitude depends on the measurement
system and relays nothing about the physical system.

7.5 Discussion

We presented a linear wave-equation model for an analog tape recorder and
showed that it meets the requirements for the most commonly cited definition
of chaos. As such, this system provides a physical example that realizes lin-
ear chaos [5]. However, the chaos of this simple system is certainly not the
same intriguing complex behavior that inspires the lore of conventional nonlin-
ear chaos. Indeed, dynamical chaos was originally coined to describe the complex
intractable oscillations observed in simple nonlinear systems, such as the iter-
ated logistic map or the famous Lorenz oscillator [1,13]. Quite different are the
dynamics of a linear wave equation, for which an analytic solution is straight-
forward and its behavior is completely transparent. It may be argued that such
trivial dynamics are not what chaos was intended to describe. Thus, one might
reasonably conclude that the common definition of chaos has limitations, that it
does not correctly identify what we know should and should not be chaos, and
that it cannot be mechanically applied without potentially devaluing what we
mean by chaos.

However, such a conclusion may be precarious and potentially dangerous.
We note that the most fundamental chaotic dynamical system is a Bernoulli
shift, with the mapping function φ(x) = 2x mod 1 on the unit interval. Indeed,
establishing conjugacy to a shift is considered conclusive evidence for the fold
and shift dynamics that are essential for low-dimensional chaos [22]. However, it
is also reasonable to argue that the dynamics of the Bernoulli shift are obvious
and transparent, since this system exhibits an exact analytic solution and simple
behavior [6,7,10]. If we accept the reasons for denying linear dynamics as chaotic,
we might also rule out the trivial shift dynamics, which would be a conundrum.
Perhaps we can only conclude that formally recognizing and defining chaos is a
complex matter.

Acknowledgements. The author recognizes Dr. Daniel Hahs, Dr. Shawn Pethel, and
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Chapter 8
Piezoelectric Cantilevers, Magnets
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Abstract. Vibration Energy Harvesting has received a lot of attention in recent
years, because of the ubiquitous existence of vibrations in a variety of envi-
ronments. In real-world device implementation, however, several problems are
encountered particularly when the harvesters are intended to power miniaturized
systems at micro and/or nano scale; in these cases, to store the harvested energy
can pose significant problems due to the very low level of voltages involved,
thereby conflicting with the threshold of blocking diodes. Investigations on this
specific subject have lead us to the development of a family of devices which
exploits the synergetic use of piezoelectric materials, flexible beams, magnets
and mechanical stoppers together with some concepts of nonlinear dynamics
used to accurately model and understand the device behaviors. Here we present
an excursion that begins with the genesis of these ideas and leads to a family of
devices able to capture mechanical energy, convert it into electrical energy, and
store this energy regardless of the voltage level. The switching mechanism with
the mechanical stopper is used to overcome the diode threshold. Few building
blocks (Piezoelectric cantilevers, magnets and stoppers) have been identified
that, once suitably arranged and used, can lead to novel devices operating as
detectors and/or energy harvesters. Beyond energy harvesting, devices able to
multiply voltages and rectify signals will be presented, these devices can per-
form, even at very low voltages because do not use diode. A review of these
devices together with working principles, models and experimental characteri-
zation results is reported in this review paper.

8.1 Introduction

Environmental kinetic energy represents one of the richest sources for energy har-
vesting and has been, in recent years, frequently targeted by a number of research
efforts aimed at providing an autonomous solution to power up small-scale and low-
power electronic devices. In fact several applications exist [1] in which energy
harvesting plays a crucial role e.g. self-powered sensors [2], implanted sensor nodes
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[3], and in general autonomous microsystems and smart systems [4] wherein batteries
need to be replaced or recharged [5]. Kinetic energy comes in a large variety of forms,
and, more generally, as noisy environmental vibrations [6]. While sometimes energy
appears at specific frequencies, as in the case of rotating machinery [7], it is more
common that it is distributed over a wide spectrum of frequencies [8]. Most devices for
vibration energy harvesting were originally based on linear resonant systems that show
optimal operating conditions when they are excited at resonance [9, 10].

Our work has been focused on the problem of collecting, most efficiently, electrical
energy from noisy mechanical environmental vibrations whose energy often appears
with a wide frequency spectrum at low frequencies. To tackle this issue we have
switched from the traditional harmonic oscillator approach to a more complex, but
richer in performance, strategy that exploits nonlinear dynamics and in particular
bistable behaviors.

The conversion from kinetic to electrical energy is accomplished by using piezo-
electric materials embedded into flexible cantilever beams with an inertial mass that
deform in response to the inertial forces acting on the mass. Bistability has been
obtained by adding two magnets to the original cantilever beam [11]. A better use of
the magnets has led us to exploit other features in piezoelectric cantilever beam. In fact
antiphase bistable systems [12], tri-stable [13] and 2D vibration harvesters [14] have
been developed and characterized.

The need for miniaturized devices results in smaller amplitudes of the signals that
convey the harvested energy to be stored. This scenario is not compatible with the use
of diode, or other threshold current blocking components, which however are necessary
to accumulate the energy harvested. The addition of mechanical stoppers, operated also
as electrical contacts, to the piezo electric cantilever beam has led to a device that
operates in such a way to harvest kinetic energy and transfer the electric energy into
magnetic first, and then back to electric when it has to be stored into the capacitor [15].
This Random Mechanical Switching Harvester on Inductor (RMSHI) device lets us
overcome the threshold of the blocking diodes at any input signal amplitude. Adding
magnets to this device has led to the bi-RMSHI [16] which efficiently responds to noisy
incoming vibrations.

By looking beyond the limit of the energy harvesting problem the above mentioned
building blocks have been mixed and matched so that the result is some other devices
and working principles that have been exploited for signal processing e.g. rectification
[12] or amplification [17] of signals whose amplitude is smaller than diode threshold.
Beyond this, the above strategies have been extended to exotic solutions for switched
capacitor systems [18] wherein environmental vibrations and piezoelectric materials are
still present to supply the power needed for basic functions and to convert mechanical
to electric energy.

8.2 Cantilevers and Magnets for Energy Harvesting

The main components in a vibration energy harvesting system are shown in
Fig. 8.1.
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The coupling is implemented through an inertial mass and therefore a force that
deforms the flexible beam. The deformations are then picked by the piezoelectric
material and converted into electrical signals whose energy can finally be stored.

8.2.1 Bistable Systems

Figure 8.2 shows the bistable setup using two magnets with opposing magnetization
placed at the cantilever tip and the fixed frame respectively. The bistable potential
energy function is also shown together with the conceptual drawing and the images of a
MEMS scale prototype [19].

This system can be modeled as [20]:

m€xþ d _xþW ¼ f ðtÞ ð8:1Þ

Fig. 8.1. Main functional blocks in a vibration energy harvesting system

Fig. 8.2. Conceptual drawing of the bistable cantilever for efficient environmental vibration
energy harvesting [19] shown together with the working principle and a MEMS prototype
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W, @UðxÞ
@x

¼ U0ðxÞ ð8:2Þ

UðxÞ ¼ kx2 þðax2 þ bD2Þ�3
2 þ cD2 ð8:3Þ

Figure 8.3 shows the typical benefit gained via the bistable approach.

Opposing magnetic forces can also be used to improve the efficiency in vibration
energy harvesters with respect to various parameters e.g. volume, or the direction of the
incoming kinetic energy. Figure 8.4 shows the use in a “parallel” arrangement,
opposed to the “inline” one, leading to a double bistable system that behaves in an
“anti-phase” manner.

Fig. 8.3. Effect of bistability on the frequency spectrum of the harvesting device [19]. Blue
signal refers to the intrinsic linear behavior of the cantilever in Fig. 8.2 while the red plot shows
the effects of the bistability induced by the magnets

Fig. 8.4. “Parallel” use of the magnets to obtain bistable and “anti-phase” vibrating beams
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A simple mathematical model can be written down [12]:

m€x1 ¼ �d _x1 � kx1 þ knl1x1 þ knl accðx2 � x1Þþ dmð _x2 � _x1ÞþFðtÞ
m€x2 ¼ �d _x2 � kx2 þ knl2x2 þ knl accðx2 � x1Þ � dmð _x2 � _x1ÞþFðtÞ ð8:4Þ

with reference to the symbols defined in Fig. 8.5.

8.2.2 Beyond Bistable Systems

The approach outlined above can be extended to tri-stable or multistable systems [13],
that improve the efficiency of the system, as well as 2D bistable devices [14] that
respond to vibrations arriving from different direction. In Fig. 8.6 some of the proto-
types developed are shown.

y

x = 0

k

k

knl

knl

knl_acc

knl_acc

Fig. 8.5. Conceptual scheme used to develop the mathematical model of bistable and “anti-
phase” vibrating beams and definition of the elastic constants (left) [12]

Fig. 8.6. From top left in clockwise direction: Bistable anti-phase device [12], multistable
device, tri-stable [13] and 2D bistable [14] vibration energy harvester device protoypes
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8.3 Adding Mechanical Stoppers to the Beam

As discussed above, our interest is focused on piezoelectric transducers that produce an
AC output voltage in response to mechanical deformations induced into an elastic
beam by the external vibrations whose energy is to be harvested. If dimension
shrinkage is taken into account as a logical consequence of a possible MEMS scale
realization, a significant reduction of the output voltage amplitude has to be faced.

In order to store the energy (the rightmost block in Fig. 8.1) a current rectification is
necessary and this is usually tackled using diode bridge circuits that, however, fail
when the input has amplitude lower than the diode threshold. Several approaches have
been presented in the literature aiming to overcome this drawback by boosting the
voltage across the diodes [21, 22]. Our approach focuses on the development of sys-
tems for energy harvesting from random, low amplitude, broadband vibrations that
includes a piezoelectric harvester, an inductor, the current rectifying section, the charge
storage section and, finally, a mechanical switch driven by the same environmental
vibrations to be harvested [15].

8.4 RMSHI and Bi-RMSHI for Low Level Vibration Energy
Harvesting

Figure 8.7 shows the functional block scheme of the system Random Mechanical
Switching Harvesting on Inductor (RMSHI).

Fig. 8.7. Top. Schematic of the RMSHI system. The switch must be mechanical here. Bottom
left. The experimental prototype. Bottom right. Signals. It is possible to observe as the inductor
voltage (red) spikes every time the beam leaves the stopper thus allowing the magnetic energy
stored into the inductor to be transferred to the capacitor [15]
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One experimental prototype is also shown in Fig. 8.7 together with a screenshot of
the signals in the system. When vibrations drive the beam to one of the stoppers
(Fig. 8.7 bottom left) electric contact is made, the piezoelectric beam is connected to
the circuit and current flows into the inductors because the voltage is smaller than the

Fig. 8.8. Comparison between the output voltage in the RMSHI (red) and traditional diode
bridge rectifier (blue) vibration energy harvester [23]

Fig. 8.9. Bistable RMSHI. From top left clockwise: the system schematic, relevant waveforms
simulated, experimental test conditions, comparison with the RMSHI, experimental prototype
[23]
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diode thresholds. As soon as the beam leaves the stopper an over-voltage appears
across the inductor that allows the magnetic energy stored in the inductance to be
transferred to the capacitor through the diode bridge. Some experimental results are
shown in Fig. 8.8 [23] where the voltage across the storage capacitor is shown in the
case of a random vibration (bandwith 100 Hz) with acceleration 1.5 m/s2 rms. The
large difference with respect to the case of the same signal arriving into a regular diode
bridge rectifier can be appreciated. If the bistable concept is exploited here we will
obtain, as expected, advantages with random incoming vibrations. In Fig. 8.9 the bi-
RMSHI device drawing is shown together with some experimental results.

The bistable strategy thus helps enforce the transfer of energy from the piezo
electric element to the inductor and, finally, to the capacitor.

8.5 Diodeless Voltage Rectifiers and Multipliers

As a final section of this overview, we show some other non typical uses of the building
blocks that have been introduced earlier in the paper.

While dealing with the antiphase devices [12] we observed that the piezoelectric
nature of the beam ensures that the polarity of the voltage produced is coherent with the
direction of the displacement. This consideration has been exploited to realize voltage
rectifiers that, instead of diodes, use piezoelectric cantilever beams and stoppers that
operate as electric contacts. This device is shown in Fig. 8.10. The conceptual drawing
(upper left) is reported together with the working principle (upper right), the experi-
mental prototype (bottom left) and some sample signals (bottom right). Here the
contacts “B”&”D” are closed when the voltage is positive while, due to the antiphase
behavior, the contacts “A”&”C” are open. The opposite configuration is obtained when
the beams switch positions and the voltage changes polarity.

The result of this is that the current through the load always flows in the same
direction. No diodes are used to block the reverse current, so no threshold opposes the
rectification of even very small voltages.

As a final example of the family of devices built around the few building blocks
considered in this paper, a diodeless voltage multiplier is shown [17]. Figure 8.11
shows the system scheme together with the working principle, the experimental pro-
totype and some results.

The basic idea here is that even diodes are always forward biased when the odd
ones are reverse biased. By using an array of parallel piezoelectric beams and a suitably
distributed array of upper and lower stopper/electric contacts the working principle has
been replicated without the use of diodes. Also, the polarity of the voltage produced by
the piezo electric beams is always coherent with the beam displacement thus resulting
in a continuous accumulation of charges in the capacitors and, consequently, an
increase in voltage at each circuit stage.
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Fig. 8.10. Diodeless piezo electromechanical voltage rectifier [12]. From upper left in clockwise
order: the conceptual scheme of the system, the working principle, the experimental prototype
and experimental validation measures

Fig. 8.11. Diodeless piezo electromechanical voltage multiplier [17]. From upper left in
clockwise order: the conceptual scheme of the system, the working principle, the experimental
prototype and experimental validation measures
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8.6 Conclusions

This review paper reports the development of a family of devices that are all based on a
few building blocks: piezo electric beams, magnets, and mechanical stoppers that act as
electric contacts. Starting from the application of magnets to obtain bistable behavior in
vibration energy harvesting applications, we have moved along different combination
of the proposed building blocks that result in more complex devices for harvesting
kinetic energy from weak and wide spectrum sources. But a proper use of these blocks
has been also exploited here to demonstrate the realization of devices which can
perform well, under the sole stimulus of external vibrations, as voltage rectification and
multiplication systems.
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Abstract. Measurement choices in weakly-measured open quantum sys-
tems can affect quantum trajectory chaos. We consider this scenario
semi-classically and show that measurement acts as nonlinear generalized
fluctuation and dissipation forces. These can alter effective dissipation
in the quantum spread variables and hence change the dynamics, such
that measurement choices can enhance quantum effects and make the
dynamics chaotic, for example. This analysis explains the measurement
dependence of quantum chaos at a variety of parameter settings, and in
particular we demonstrate that the choice of monitoring scheme can be
more relevant than system scale β in determining the ‘quantumness’ of
the system.

9.1 Introduction

Measuring a quantum system has an unavoidable effect on its state. This is a fea-
ture with no classical counterpart that introduces an entirely quantum pathway
to manipulate quantum systems. In particular, the continuous monitoring of a
quantum system provides the ability to implement real-time control, which can
be used to enhance or suppress desirable effects in the system dynamics. Recent
work has shown that continuously measured open quantum system trajectory
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dynamics can change between the qualitatively dramatic different regimes of
chaos (with high dynamical algorithmic complexity) and regularity (with quali-
tatively different dynamical complexity) depending on parameter choices [3,12].
In particular, the phase φ setting on a laser used as the local oscillator for
making a homodyne measurement of the signal from a driven dissipative non-
linear quantum oscillator was shown to considerably affect the system dynamics
[3]. The back-action from this kind of measurement manifests as a generalized
dissipation F(φ) and ‘noise’ N(φ) where changes in φ can strongly affect the
quantum dynamics sometimes making them chaotic, depending in a puzzling
way on a combination of system parameters, including size, and the behavior of
the classical limit. Understanding this puzzle would help us use φ, an external
experimentally accessible parameter, to control quantum trajectories in useful
ways.

We consider this system in the semi-classical regime where the measure-
ment localization allows us to accurately and efficiently simulate the quan-
tum state as a wave packet described completely by the coupled dynamics
of its expectation values (centroid) and variances (spread). We use a formal-
ism [10] representing |ψ(t)〉 as the dynamics of two oscillators: the centroid
(x, p) and the spread (χ,Π) of the wave packet (detailed definitions below).
Without environmental coupling these evolve according to the Hamiltonian
H(x, p, χ,Π) = p2/2 + Π2/2 + U(x, χ) = H1(x, p) + H2(χ,Π) + U12(x, χ) where
the relative size of the ‘quantum’ Hamiltonian H2 and the coupling U12 change
with size, such that the influence of the quantum oscillator on the classical motion
increases with β via U12(x, χ). The environment acts with N coupling only to
(x, p) and the φ−dependent part of F coupling only to (χ, π). Energy analy-
sis is useful to understand the non-trivial effect of changing N and F with φ.
Small changes in the fluctuation and dissipation N,F change how the nonlinear
dynamics amplify the quantum fluctuations and significantly change the energy
range for the dynamics for χ,Π. This change alters the U12(x, χ) coupling and
hence the influence of the quantum oscillator on the classical dynamics.

We consider several such (Γ, β, φ) combinations to consider the effects of
changing these parameters on the various competing effects. Our simulations
verify our energy-based explanation for φ-dependent quantum trajectory chaos.
We also find that measurement angle φ can affect the relative quantum energy
scale compared to classical one by orders of magnitude more than the system
scale β.

Below, we review the coupled-oscillator formalism then focus on the φ depen-
dence of F and N before presenting our results and analysis. We conclude with
a discussion about adaptive control of quantum trajectories as well as prospects
for experimental implementations of these ideas.

9.2 Semi-classical Coupled Oscillator Model

Our analysis starts with the quantum model of a damped driven Duffing oscil-
lator [2,3,6,9,12]. The Hamiltonian ĤD = 1

2 P̂ 2 + β2

4 Q̂4 − 1
2 Q̂2 − g

β Q̂ cos(ωt)
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describes the double-well oscillator driven sinusoidally with strength g in terms
of dimensionless position (Q̂) and momentum (P̂ ) operators. β serves as a dimen-
sionless effective Planck’s constant [2,9]: larger β describe a smaller system and
β → 0 is the classical limit. Quantum mechanical damping is introduced via
the interaction of the system with a zero-temperature Markovian bath, which
corresponds to having â = (Q̂ + iP̂ )/

√
2 in the decoherence superoperator [4,8].

Furthermore, we consider that this dissipative quantum channel is being weakly
and continuously monitored, such that the state of the system evolves condi-
tioned on the measurement outcomes as given by the following Ito stochastic
equation [13,15]

|dψ〉 =

(
− i

�
Ĥ + 〈L̂†〉L̂ − L̂†L̂

2
− 〈L̂†〉〈L̂〉

2

)
|ψ〉dt + (L̂ − 〈L̂〉)|ψ〉dξ. (9.1)

Here, L̂ =
√

2Γ â represents the dissipative environmental interaction of strength
Γ , and Ĥ = ĤD + ĤR. Since the quantum dissipation is symmetric in Q̂ and P̂ ,
the term ĤR = Γ

2

(
Q̂P̂ + P̂ Q̂

)
is added to yield the correct classical limit where

dissipation appears only in the momentum variable. The noisy dynamics is given
in terms of a complex-valued Wiener process, dξ, with M(dξ) = 0,M(dξdξ∗) =
dt, and M(dξdξ) = u dt, where M(·) denotes the mean over realizations and
the complex parameter u = |u|e−2iφ must satisfy the condition |u| ≤ 1 [13,
15]. Here we will consider the situation where |u| = 1, which has been shown
to correspond to monitoring the dissipative channel with a quantum optical
homodyne measurement [3,15] with φ being the phase of the local oscillator.
In this case, the noise can be written as dξ = e−iφdW , where dW is a real
Wiener process. Recent analysis [7] shows that nano-electro-mechanical systems
are well described by this model and current experiments are within range of
the phenomena we report.

A semi-classical analysis starting with the dynamics of 〈Q̂〉 = x, 〈P̂ 〉 = p
proves very useful [5,9,12]; the centroid variables’ dynamics depend on second
moment terms VQQ, VPP , VPQ where VAB = 〈(Â† − 〈Â〉∗)(B̂ − 〈B̂〉)〉. In this
limit, |ψ(t)〉 is accurately and completely described by the 4D phase-space vector
X = (x, p, χ,Π) with dynamics given by

ẋ = p +
√

ΓNx(φ, χ,Π) dW, (9.2a)

ṗ = x − β2x3 +
g

β
cos ωt + ΓFp + 3xβ2χ2 +

√
ΓNp(φ, χ,Π) dW, (9.2b)

χ̇ = Π + ΓFχ(φ, χ,Π), (9.2c)

Π̇ = χ(−3β2(x2 + χ2) + 1) +
1

4χ3
+ ΓFΠ(φ, χ,Π), (9.2d)

with the change of variables Vx = χ2, Vxp = χΠ, Vp = 1/4χ2+Π2 for convenience
below. The random effect of the continuous monitoring is given by the stochastic
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terms N = (Nx, Np, Nχ, NΠ) with

Nx = 2
(

χ2 − 1
2

)
cos (φ) − 2χΠ sin (φ), (9.3a)

Np = −2
(

1
4χ2

+ Π2 − 1
2

)
sin(φ) + 2χΠ cos(φ), (9.3b)

while Nχ = 0 = NΠ . The dissipation F = (Fx, Fp, Fχ, FΠ) has Fx = 0, Fp =
−2Γ and

Fχ =
[
χ − χ3 + χΠ2 − 1

4χ

]
cos(2φ) − Π

[
− 1 + 2χ2

]
sin(2φ)

+ χ − χ3 − χΠ2 +
1
4χ

, (9.4a)

FΠ =
[
Π3 − Π +

3Π

4χ2
− Πχ2

]
cos(2φ) +

[
− 1

4χ3
+

1
χ

− χ + 2χΠ2

]
sin(2φ)

+
(

−Π3 − Π − 3Π

4χ2
− Πχ2

)
. (9.4b)

9.3 Coupling Between Centroid and Spread Oscillators

With the model from the previous section, we can now describe how the spread
oscillator, given by the canonically conjugate pair (χ,Π), influences the dynamics
of the classical oscillator, given by the centroid variables (x, p).

For Γ → 0, Eqs. (9.2) have a Hamiltonian structure with

H(x, p, χ,Π) =
1
2
p2 +

1
2
Π2 + U(x, χ, t). (9.5)

Thus, we can represent X(t) as a point trajectory traveling in a time-dependent
2D semi-classical potential, U(x, χ, t) = U1(x, t) + U2(χ) + U12(x, χ), given in
terms of

U1(x, t) = −1
2
x2 +

1
4
β2x4 +

g

β
x cos ωt, (9.6)

U2(χ) =
3
4
β2χ4 − 1

2
χ2 +

1
8χ2

, (9.7)

U12(x, χ) =
3
2
β2x2χ2. (9.8)

The U(x, χ, t) potential is shown in Fig. 9.1 for g = 0 and two different values
of β. The driving sinusoidally tilts the potential along x, rocking the particle
between the two classical wells depending on the amplitude.

The inter-oscillator coupling U12, which allows the classical and quantum
oscillators to influence each other, only exists for nonlinear systems. Different
dynamical regimes can be quantified via the relative β dependence of U1, U2, U12

where the overbar represents a time average over the trajectory:
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Fig. 9.1. Potential U(x, χ, t) for g = 0 and a β = 0.05, and b β = 0.3. For larger β, a
path between the two wells is possible through higher values of χ

• For β → 0, U12 → 0 and the quantum (χ,Π) dynamics do not influence the
classical (x, p) dynamics. These latter are invariant [2,6,9] under change of
β. That is, the phase-space dynamics are identical except that the scale of x
increases as β−1, and U1 ∼ β−2.

• The near-classical limit β � 1 has U1 >> U12 	 U2. In Fig. 9.1 at β = 0.05
we can see that this results in a well where the classical double-well shape is
seemingly barely altered by quantum effects in the typical dynamical range
for χ, which is natural since U1 >> U12.

• As β increases, we get that U1 ≥ U12 	 U2. We see in Fig. 9.1 that for β = 0.3
this changes U(x, χ) in the χ direction, and creates a non-classical path from
one x well minimum to the other that avoids the well maximum at increased
χ, considerably altering the dynamics for (x, p) in the process.

This β regime where U1 ≥ U12 	 U2 is our focus. When U1 	 U12 	 U2 we
expect quantum effects to matter in a way that is not visible in semi-classical
dynamics. It is important to realize that systems dynamics and dissipation can
alter U12 dramatically. In particular, the time dependence of quantum spread
variables depends on the components of the Jacobian of classical dynamics. That
is, not only does the U12 coupling between the two oscillators only exist for non-
linear systems, but as (χ, π) is being dragged around by (x, p) in this regime,
the same dynamical properties that cause the chaotic separations of (x, p) tra-
jectories in time causes the (χ, π) spread oscillators to grow and oscillate more
rapidly; that is, chaotic dynamics can nonlinearly amplify U12 in principle. The
constraining factor is the dissipation, as we see below.
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9.4 Measurement-Dependent Dissipative Forces and
Oscillator Energetics

To see how the measurement angle φ affects the dynamics, we rewrite the dis-
sipative forces as F = (Fx, Fp, Fχ, FΠ) = Fc cos 2φ + Fs sin 2φ + F0, where
the definitions of Fc,Fs,F0 are evident from the form of Eqs. (9.4). Defining
these three components, which are shown in Fig. 9.2, is useful since all F are
weighted superpositions of them. In particular, at φ = 0, F = F0 + Fc and
at φ = π/2,F = F0 − Fc. In the latter, the contributions of F0 and Fc along
the Π = 0 axis are in opposite directions and tend to cancel out, while in the
former, they add up, forcing the system towards small values of χ. Note that,
in this case, by suppressing higher χ values, the dissipative force works against
the non-classical mechanism for inter-well transitions explained in the previous
section. In either case, while the size of the Γ governs how the driving energy
absorbed is dissipated, it is the measurement angle φ that effectively alters the
energy flow between the two oscillators.

To make the connection with energy flow more evident, we can look at how
the input power, introduced by the external driving term, is distributed over the
different available channels. From conservation of energy, we can write that

dEg(X(t))
dt

+
dEΓ (X(t))

dt
+

dE√
Γ (X(t))
dt

+
dEH(X(t))

dt
= 0, (9.9)

where we used g, Γ,
√

Γ ,H to label the energy terms originated from driving, dis-
sipation, noise, and the time-independent part of Eq. (9.5), respectively. For the
time-independent Hamiltonian term, ĖH = 0. If we now take the time average,
the contribution from the noise Ė√

Γ also vanishes. This means that, focusing

only on the average values, the input power from the drive Ėg balances the dissi-
pated energy ĖΓ . The dynamics, in particular the Lyapunov exponent λ for X(t),
depends strongly on the Gaussian curvature of the U(x, χ) potential [1,11,14]
along X(t), which can be sensitive to small changes in the steady-state mean
(H) and variance (ΔH) of the total oscillator energy given by Eq. (9.5).

9.5 Simulation Results

Finally, we put together all the understanding developed in the previous sections
to explain the semiclassical mechanism responsible for the reported [3] effects
of measurement angle on quantum trajectory chaos. While for some parameter
values the underlying phenomenon was shown to be purely quantum, for others,
semiclassical effects seemed to play a role, but remained unexplained [3].

We consider the same two dissipative couplings Γ1 = 0.05, Γ2 = 0.10 pre-
viously studied in [3]. It is important to understand the the difference in the
classical limiting behavior at the two Γ values. Consider the Poincaré sections
(shown on top of corresponding trajectories) in the (x, p) (classical) phase space
in Fig. 9.3. We notice that at low dissipation Γ1 yields a simple inter-well periodic
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Fig. 9.2. Plots depicting the magnitude and direction of F0,Fc,Fs. Different mea-
surement angles correspond to a weighted superposition. The differences in the Fc,Fs

components pushes the (χ, Π) orbit to different scales, changing the coupling to the
classical (x, p) oscillator

orbit that never goes inside the classical separatrix defined by the H1(x, p) = 0
curve and has λ < 0. Hence the energy absorbed is dissipated exactly over
a single period (although ΔH �= 0). However, at higher Γ2, even though the
orbit must dissipate what it absorbs on average since it stays confined in energy,
the time-dependence of the dissipation term ĖF does not synchronize with the
driving Ėg, such that the orbit wanders chaotically in a bounded energy range
spanning the separatrix with λ > 0.

To understand the semiclassical behavior, for each Γ we use both φ = 0, π/2
settings, and examine all these cases at two different length scales β. For each
of these parameter combinations, we show the Poincaré sections in (x, p) as well
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Fig. 9.3. Phase space trajectories (blue) superimposed with Poincaré sections (black)
for the classical Duffing oscillator. Chaotic and regular behaviour are shown for Γ = 0.1
(top) and Γ = 0.05 (bottom), respectively

as the (x, χ) space, the latter demonstrating how the range of χ affects classical
behavior.

The first case analysed was for Γ = 0.1. Here we see that for both β =
0.01 and β = 0.05, and irrespective of φ, the quantum perturbations do not
seem to visibly change the chaotic (x, p) Poincaré sections. The (x, χ) Poincaré
sections are very instructive, however. First note that the range of χ is essentially
independent of β for both φ values. On the other hand, the β−independent χ
range for φ = π/2 is much greater than for φ = 0, consistent with our analysis
of the role of the dissipative force for different measurement angles. As already
observed in [3], for this case, strong dependency of the Lyapunov exponent with
the measurement angle is purely a quantum effect, with little contribution of
semiclassical origin (Fig. 9.4).

On the other hand, the case shown in Fig. 9.5 for Γ1 is emblematic of the
interplay between the two competing factors analysed in this paper: the coupling
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Fig. 9.4. x-p (left) and x-χ (right) trajectories for Γ = 0.1. The values of β were 0.01
(a–d) and 0.05 (e–h). For each case, the two measurement angles φ = 0 (a, b, e, f)
and φ = π/2 (c, d, g, h) were considered
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Fig. 9.5. x-p (left) and x-χ (right) trajectories for Γ = 0.05 and two values of β: 0.15
(a–d) and 0.3 (e–h). For each case, the two measurement angles φ = 0 (a, b, e, f) and
φ = π/2 (c, d, g, h) were considered
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between centroid and spread variables, and measurement-dependent dissipation.
At β = 0.15, the φ = 0 case has smaller U2, U12 (visible in the range in χ) than
for φ = π/2. Consistent with our previous discussion, for φ = 0, the dissipative
force pulls the system towards smaller values of χ, leading, therefore, to the
observed smaller values of U2 and U12. For φ = π/2, the dissipative force is not
as effective in suppressing the effect of the nonlinear spread-centroid coupling,
therefore the quantum corrections perturb the classical energy synchronization
and induce chaos. At β = 0.3, the semiclassical approximation is in principle not
valid, but we find the same qualitative behavior with a full quantum simulation.
Semiclassically, U2, U12 for φ = 0 is smaller than for φ = π/2. But the larger
value of β allows both angle settings to destroy the periodic motion although,
again, chaos is stronger for φ = π/2. It is worth noticing, from both the visual
Poincaré sections as well as quantitatively from the λ obtained, that β = 0.15,
φ = π/2 shows larger U2, U12 values than for β = 0.3, φ = 0 case such that it is
effectively a more quantum system, and affects the classical motion to a greater
extent.

9.6 Conclusion

In closing, we have shown that a semi-classical nonlinear oscillator that is weakly
monitored and coupled to the environment can be accurately understood as
a classical centroid oscillator coupled to a ‘quantum’ spread oscillator via a
nonlinear U12 coupling. We find that the the choice of measurement angle φ
should be understood through its change on the dissipative measurement back-
action that can dramatically alter how the nonlinear dynamics amplifies the size
of U12 to perturb the classical dynamics, sometimes substantially.

This leads to the remarkable observation that, comparing across all the
parameter combinations presented, the measurement angle φ is more relevant
than system scale β in determining the dynamical regime of the system.

We are currently working on applications of these insights deep in the quan-
tum regime where different mechanisms apply, as well as to adaptive control and
quantum thermodynamics.
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Abstract. The success of portable electronics, remote sensing, and
surveillance equipment is dependent upon the availability of remote
power. While batteries can sometimes fulfill this role over short time
intervals, batteries are often undesirable due to their finite life span,
need for replacement and environmental impact. Instead, researchers
have begun investigating methods of scavenging energy from the environ-
ment to eliminate the need for batteries or to simply prolong their life.
While solar, chemical and thermal sources of energy transfer are some-
times viable, many have recognized the abundance of environmental dis-
turbances that cause either rigid body motion or structural vibrations.
This paper describes recent research efforts focused on the intentional
use of nonlinearity to enhance the capabilities of energy harvesting sys-
tems. In addition, this paper identifies some of the primary challenges
that arise in nonlinear harvesters and some new strategies to resolve
these challenges. For example, nonlinearities can often result in multi-
ple attractors with both desirable and undesirable responses that may
co-exist. I will describe an approach that uses small perturbations to
steer the dynamic response to the desirable attractor, thus leveraging
the basins of attraction. Other examples will highlight the potential for
nonlinear electromechanical transduction and comparisons for single fre-
quency, multi-frequency, and stochastic environments.

10.1 Introduction

The success of portable electronics and remote sensing devices is dependent upon
the availability of remote power. While batteries can sometimes fulfill this role
over short time intervals, they are often undesirable due to their finite life span,
need for replacement, and environmental impact. Instead, researchers are now
investigating methods of scavenging energy from the environment to eliminate
the need for batteries or to prolong their life [1]. While solar, chemical, and
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thermal sources of energy transfer are sometimes viable, many have recognized
the abundance of environmental disturbances that cause either rigid body motion
or structural vibrations. This has led to a dramatic increase in the number of
studies for vibration-based energy harvesting [2–8].

Most prior works have focused on the power harvested when the response
behavior is adequately characterized as a linear oscillator being driven by har-
monic excitation. For this type of design, the optimal performance is realized
when the natural frequency of the oscillator is nearly identical to a dominant
frequency in the ambient environment. Thus, the prototypical approach is to
frequency match or to design and fabricate energy harvesting devices to have
a natural frequency that coincides with a dominant frequency in ambient envi-
ronment [5,9–11]. This equates to building a vibrational harvesters with very
specific mass-spring-damper properties that set the resonant frequency to a dom-
inant frequency of their host environment. As such, they can be highly sensi-
tive to uncertainties which may arise from the imprecise characterization of the
host environment or, alternatively, from manufacturing defects and tolerances.
This design-for-resonance approach places several performance limitations on
the energy harvester. Specifically, a linear device will perform poorly when the
system’s resonance and excitation frequency do not coincide. Additionally, very
little energy will be extracted from multi-frequency and/or random excitation
sources. Problems also arise in applications where the excitation frequency drifts
or changes over time [3,4].

The vast majority of past research has focused on inertial generators that
operate in a linear regime [9,12–19]. However, it has recently been suggested
that the intentional use of nonlinearity enable future harvesters to overcome the
limitations of a linear device. More specifically, there is great interest in the
concept of intentionally using nonlinearity to enhance performance. In fact, sev-
eral recent works have suggested the intentional use of nonlinearity might be
beneficial to energy harvesting systems [8,14,20,21]. More specifically, several
studies have explored the use of nonlinearities broaden the frequency spectrum,
to extend the bandwidth, engage nonlinear resonances, and/or to facilitate tun-
ing [14,20–28]. These efforts take aim at overcoming the limitations of linear
devices, which only perform well under very specific circumstances [8].

The content of this paper is organized as follows. The next section summa-
rizes the limitations of a linear harvester by simply examining the response and
uncertainty in the response of a linear oscillator. This is followed by a concep-
tual discussion prior attempts to use nonlinearity in energy harvesting devices.
Section 10.3.2 describes several examples where researchers have explored bista-
bility in both piezoelectric and electromagnetic harvesters. This is followed by
a discussion of dynamic magnifiers and a summary of potential future research
avenues.

10.2 Linear Energy Harvester Limitations

Oscillators are often designed to operate within a linear regime in vibratory
energy harvesters. While restricting the oscillator to operate in a linear regime
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can greatly simplify the math analysis, it also limits the harvester’s performance
in several ways. To illustrate these points, we consider the following contrived
example of a dimensionless linear oscillator

y′′ + μy′ + y = Γ sin ητ , (10.1)

where y is the dimensionless displacement, a ()′ denotes a derivative with respect
to dimensionless time, μ is a damping coefficient, η is the ratio of the excitation
frequency to the natural frequency, and Γ is the excitation level. For the typical
case where μ > 0, the steady-state response of Eq. (10.1) is given by

y = r cos(ητ − φ) , (10.2)

where the amplitude of the response, r, is given by

r =
Γ√

(1 − η2)2 + (μη)2
. (10.3)

Here, it is important to note that the power harvested will be proportional to
the response amplitude. To both quantify and unveil the robustness of the linear
oscillator’s response to parameter variations, an expression for total uncertainty
in the oscillator’s response Ur is introduced

U2
r =

(
∂r

∂μ

)2

U2
μ +

(
∂r

∂η

)2

U2
η +

(
∂r

∂Γ

)2

U2
Γ (10.4)

where Uxi
represents the uncertainty in the variable xi at the same confidence

level. It is common to express the uncertainty at the 95% confidence level (or
20:1 odds) and, consequently, 95% of the physical realizations can be expected
to lie within the confidence intervals [29].

Figure 10.1 shows the nominal response amplitude and clearly affirms a large
nominal response near resonance. A more in-depth study of Fig. 10.1 also reveals
that the response away from this narrow-band peak is rather small. While these
result highlight the importance of aligning the natural frequency with the exci-
tation frequency, a more complete understanding of the robustness of the fre-
quency matching strategy is obtained by also considering the uncertainty in the
oscillator’s response for uncertainties in the system’s parameters. As noted pre-
viously, uncertainties in these parameters are quite common and arise from the
imprecise characterization of the host environment or, alternatively, from imper-
fections in manufacturing and/or tolerances. The dashed lines of Fig. 10.1 show
the confidence intervals or expected deviation in the oscillators response. Note
that the dashed lines were obtained by first determining the uncertainty in the
response Ur; next, the upper and lower confidence intervals were determined
from ru = r + Ur and rl = r − Ur where ru is the upper confidence inter-
val and rl is the lower. In essence, the confidence intervals provide a measure
of the robustness in the response of the system when parameter uncertainty is
considered.
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Fig. 10.1. Nominal response (solid line) and confidence intervals (dashed lines) of a
linear oscillator for μ = 0.02 and Γ = 0.1 and parameter uncertainties Uμ = μ/5,
Uη = 0.02, and UΓ = Γ/10. Confidence intervals show a lack of robustness in the
nominal response in the vicinity of resonance

The confidence intervals highlight the lack of robustness in a frequency-
matching strategy, since even small parameter variations, or uncertainty, can
cause large differences in the expected response. More specifically, the upper and
lower confidence intervals, dashed lines in Fig. 10.1, show the uncertainty in the
oscillator response can sometimes be as large as the nominal value (solid line).
Armed with this understanding, we now focus our attention on the intentional
use of nonlinearity to address the limitations imposed by the linear oscillator.

10.3 Nonlinear Examples

Despite the fact that nonlinearities are inherent in many natural and engineered
systems, it is common for engineers to remove, or attempt to remove, all nonlin-
earity from their designs. Although this simplifies the performance analyses, it
also overlooks a wide array of phenomena, that could potentially enable the har-
vesting of more energy. Improving the performance of inertial harvesters requires
that they become more robust to uncertainties and/or subtle changes in their
environment. More specifically, the ideal harvester would perform well in a vari-
ety of settings and could scavenge energy from a broad range of frequencies.
This means the harvester must be able to adjust, adapt, or tune into its current
environment. Furthermore, it is essential that future harvesters have a broader
frequency response - thus enabling energy to be scavenged over a wider range of
frequencies.
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This section will discuss select past works that sought to use nonlinear
behavior to improve the performance of energy harvesting systems. The section
starts with some examples of using some common structural nonlinearities and
describes their potential benefits and pitfalls for different environments. This
followed by a discussion of some past works that used nonlinearity in the elec-
tromechanical coupling of a harvester device. It is important to note that many
of the provided examples will show a benefit to the intentional use of nonlinear-
ity; however, as one might expect, nonlinearity must be intelligently designed
into a device to reap these benefits. Furthermore, the mere introduction of non-
linearity into these systems also introduces new problems to consider, such as
the presence multiple attractors, i.e. both a high and low energy response. Addi-
tional works, which have considered different types of random excitation, such
as broadband white noise and colored noise, are also discussed in Sect. 10.3.2.

10.3.1 Hardening and Softening Systems

Several researchers have studied energy harvesting systems with either hardening
or softening-spring-like behavior. For example, Ref. [8] considered a electromag-
netic inductions system with nonlinear restoring forces that were created from
a magnet levitation system. The restoring force in that system was a hardening
type spring and it showed the ability to tune by peak in its frequency response by
changing the relative magnet positions. However, a hardening system can only
alter its peak response to one side of linear resonance. Systems displaying similar
hardening type behavior have been investigated in many other references. Upon
comparing the peak response of the linear oscillator to that of the hardening sys-
tem, it may seem problematic that the linear oscillator has a larger response for
single frequency excitation. However, an uncertainty analysis on the frequency
response of the hardening system has shown its response is more robust [30].

To help cover a broader range of frequencies, some investigators have sought
to combine hardening and softening type effects into a single device. For example,
Fig. 10.2 shows a harvester that demonstrated the potential of adding nonlinear-
ity from magnet-magnet interactions to create either a hardening and softening
effect [21]. More specifically, positioning the adjustable magnets behind the tip
mass creates a hardening frequency response - thus extending the region of a rel-
atively large response to higher frequencies. If the adjustable magnets are pushed
forward of the tip mass, a softening type behavior is created, thus the region of
relatively large responses switches directions and extends to frequencies lower
than the linear natural frequency.

10.3.2 Bistable Systems

The concept of a bistable system can be brought into focus by considering the
motion of a small ball rolling on the surface under the influence of gravity, see
Fig. 10.3, where the ball height is proportional to the potential energy. Consider
first the potential energy of a linear oscillator, shown in Fig. 10.3a. This sys-
tem has a linear relationship between the restoring force and deflection which
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Fig. 10.2. Illustration of an experimental system from Ref. [21] that demonstrated
that the nonlinear restoring forces enable tuning and a broader range of frequencies
with a large amplitude response
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Fig. 10.3. Potential energy curves for: a the quadratic potential well of a linear oscil-
lator and b a nonlinear oscillator with two stable equilibria separated by an unstable
equilibrium position. The energy difference between the potential energy barrier and
the stable equilibria, labeled ΔU , is an important factor for determining the threshold
for an escape

results in a quadratic potential energy well with a single equilibrium. Regardless
of where the ball placed, it will eventually come to rest at the bottom of the
potential energy well. Shaking the parabola laterally yields the linear harmonic
oscillator with the largest response occurring when it is shaken at its resonance
frequency.

Consider next the same ball under the influence of a nonlinear restoring force
where the potential energy description may be more complex - see Fig. 10.3b.
Consider again the same ball under the influence of small lateral excitations. This
results in a system that behaves linearly for small-amplitude motions with oscil-
lations that remain confined to a single well. For increasingly large excitations,
motion amplitudes grow until the threshold for a potential well escape occurs
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(i.e. where an escape is imminent for energy levels above the threshold criteria
ΔU in Fig. 10.3b). Once exceeding the threshold criteria, the small ball would
then escape from the potential well and traverse both potential wells, sometimes
called well-mixing behavior, with large-amplitude displacements and velocities.
Acknowledging the dramatic increase in the energetic response of the oscillator
in the post-escape regime [31], several researchers have become interested in this
type of system [32].

Figure 10.4 shows example responses from a prototypal bistable harvester.
In contrast to the hardening and softening cases, the bistable system shows the
emergence of additional solution branches. More specifically, these solutions are
associated with the oscillations within a single potential well and those that
cross the center potential well barrier and are the result of a potential well
escape phenomenon. This system can exhibit similar Pa (dimensionless power)
values to those of the linear system, but, as in the case of the softening and
hardening system, displays more complex scaling in its response behavior as
Γ , the dimensionless excitation, is increased. In addition, the plots of ρ vs. Pa,
where ρ is the dimensionless electrical load, show the system can have even more
local maxima. Further examples of bistable energy harvesters can be found in
references [14,20,24,27,33,34].

As a summary, a bistable harvester introduces some new considerations. For
example, while the strategy of matching the natural frequency of the device to
a frequency in the environment still exists, an alternative strategy also exists.
In particular, one can instead focus on designing the potential energy curves to
ensure a potential well escape. Similar to the hardening and softening cases, the
responses of the bistable system can be more robust than the linear system (see
reference [30] for further details).

The bistable system has also been studied for other forms of excitation,
such as random excitation [35–37]. One result worth mentioning is the finding
of reference [35]. In this study, it was shown that a bistable harvester could
outperform a linear harvester in an environment with colored noise.

10.3.3 Coupling Nonlinearity

The work of Ref. [22] was the first to consider the influence of nonlinear elec-
tromechanical coupling in PZT systems. Since then, the inherent nonlinearities
in piezoelectric harvesters have been studied in greater detail [38]. Outside of
piezoelectric systems, inherent nonlinearities have also been studied in electro-
magnetic induction systems [28]. One interesting finding worth mentioning is
that nonlinear coupling appears to be particularly suited to multi-frequency
excitation [28]. However, further research needs to be done to further explore
the potential benefits and pitfalls of nonlinear coupling.

10.3.4 Dynamic Magnifier

The use of a dynamic magnifier has been another area of inquiry for linear and
nonlinear systems. A dynamic magnifier is a dummy oscillator, essentially an
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Fig. 10.4. Plots showing the stable (green dots) and unstable (red dots) response trends
for a harvester with a bistable potential well. Graphs show frequency responses for
a the oscillation amplitude of the mechanical system and b the dimensionless average
power; graphs (c) and d plot the dimensionless average power for changes in Γ and ρ,
respectively

oscillator without any electromechanical coupling, that is used to magnify the
response of the primary oscillator, i.e. the one with electromechanical coupling.
As a brief summary, several researchers have now shown that a dynamic mag-
nifier can successfully increase the energy harvested from the primary oscillator
and even be used to modify the corresponding basins of attraction [39].

10.4 Further Considerations

Many recent works have explored the use of nonlinearity in vibratory energy
harvesters, e.g. see [8,14,18,22,30,34,35,38,40–42]. While these investigations,
along with many other recent works, have advanced the current understanding
on the beneficial use of nonlinearity, the introduction of nonlinearity can also
cause many additional difficulties. Paramount amongst these challenges, and
a common issue in nearly all nonlinear harvesting systems, is the presence of
coexisting solutions. To illustrate the problem, Fig. 10.5a shows the frequency
response for a Duffing Oscillator with coexisting solutions over the dimension-
less frequency range of ≈1.25 < η < 2. Assuming the environmental excitation
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Fig. 10.5. Illustrative example of a system with coexisting periodic solutions, i.e. two
or more stable periodic solutions for the same system parameters. Plots illustrate the
challenge of attractor selection in energy harvesting systems. Plot a shows a bifurcation
diagram illustrating a hardening spring nonlinearity in response to dimensionless fre-
quency η, and plots (b) and c show the corresponding periodic attractors and repellers
in phase space for two different values of η. Curves are labeled stable (green) and
unstable (red)

remains constant, only the initial conditions determine whether a higher or lower
energy solution is obtained. Furthermore, if the basins of attraction are studied
for this range of η, one finds that the more desirable response (higher amplitude)
is unlikely to be obtained when the excitation frequency is closer to the peak
response. Thus a fundamental challenge prevalent in nearly all nonlinear energy
harvesting approaches is a strategy to select a desired attractor.

Vibratory energy harvesters convert mechanical energy into electrical energy
with electromechanical coupling, e.g. piezoelectric, electromagnetic, or capaci-
tive. While these transduction schemes allow some form of control to be applied
to alter the response of the mechanical system, a number of challenges prevent
the use of continuous control. To elaborate, the power required to apply con-
tinuous control is typically larger than the power harvested. It is also common
that the electromechanical coupling is not strong enough to drastically alter the
response of the mechanical system in a single application of control, unless exter-
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nal energy is provided. Thus methods to choose the desired attractor present an
on-going area of research.

10.5 Conclusions

This paper discusses select past works on the intentional use of nonlinear behav-
ior in inertial energy harvesters. Many forms of nonlinearity have been investi-
gated and many have shown some potential benefit. However, the fact remains
that analyzing these nonlinear systems can be much more difficult than their
linear counterpart. The introduction of nonlinearity adds an interesting feature
that can allow effecting device tuning in a semi-active or passive way to over-
come uncertainties in the environmental excitation or physical parameters of the
system.

Nonlinear energy harvesting systems often have co-existing solutions. When
one of the responses is desirable and the other undesirable, it becomes critically
important to have methods to select the desired attractor with minimal energy
expenditure. A great solution to this problem should be the target of future
investigations.
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Abstract. It is often assumed, and has been shown experimentally,
that nonlinear operation of inertial sensors–in particular gyroscopes–can
degrade or trivially improve performance. As such, the standard practice
is to operate below or near the threshold where nonlinear effects become
significant. The limitation with this method is that the dynamic range, or
the range of excitations where the sensor behaves linearly, shrinks as the
dimensions of the sensor decrease. Thus, while relatively large mechani-
cal gyroscopes, such as hemispherical resonator gyroscopes (HRGs), can
achieve navigation-grade performance, microelectromechanical system
(MEMS) gyroscopes, being orders of magnitude smaller, have orders of
magnitude worse performance. A relatively new class mechanical gyro-
scope, the frequency modulated (FM) gyroscope, is able to address long-
term noise performance issues. The trade-off with FM gyroscopes, com-
pared to the standard amplitude modulated ones, is that short-term
noise can be elevated. One means of improving short-term gyroscope
performance is improving short-term frequency stability. It has been
shown theoretically and experimentally that while most states within
the nonlinear regime of an oscillator degrade frequency stability, a select
few allow operation at a lower fundamental limit. This work describes
and provides some preliminary experimental work on the constructive
exploitation of nonlinear operation with FM gyroscopes.

11.1 Introduction

When cost, size, weight, and power (CSWaP) are not constrained, current tech-
nology utilizing inertial sensors allows for navigation in the absence of GPS.
Classically inertial navigation relies on the fusion of measurements of accelera-
tion and rotation rate to estimate position. Depending on the sensor technol-
ogy, the position estimate exhibits a random drift that grows with time. While
schemes that utilize velocity measurements instead of acceleration have been
shown to reduce this drift [1], the drift is dominated by noise associated with
the gyroscopes. Navigation-grade gyroscopes are often based on ones that exploit
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the Sagnac effect, but mechanical gyroscopes like hemispherical resonator gyro-
scopes (HRGs) are also in this class. Miniaturized mechanical gyroscopes based
on silicon microelectromechanical systems (MEMS) technology perform much
worse in part due to the scaling of noise processes with size and the differences
between quartz and silicon.

Conventional mechanical gyroscopes employ an amplitude modulated (AM)
scheme. Utilizing a structure with degenerate modes that can be coupled via the
Coriolis effect during rotation, energy can be exchanged between these modes.
A relatively new class of mechanical gyroscope, the frequency modulated gyro-
scope, uses the same structure as an AM gyroscope, however a frequency modu-
lation (FM) effect associated with angular momentum conservation is employed.
In a comparison study between operating the same structure in AM and FM
modes, it was found that FM operation had superior long-term stability [2]. This
may in part be due the ease of automatic mode matching with FM operation, as
AM operation with similar matching capabilities is able to significantly reduce
long-term drift [3]. Both results are significant as they afford a path towards
reducing the elevated frequency random walk of silicon resonators as compared
to quartz resonators.

One of the limitations with silicon MEMS technology, and in particular,
FM gyroscopes, is the elevation of short-term noise processes. The associated
gyroscope metric is angular random walk (ARW). With a well designed AM
MEMS gyroscope, theromechanical noise is the limiting process for ARW that
scales poorly with size [4]. For FM gyroscopes, oscillator instabilities as well as
noise from frequency demodulation can also significantly contribute to ARW [5].
This work seeks to reduce ARW via nonlinear operation by enhancing frequency
stability. Other recent works have shown significant ARW improvements with
nonlinear AM gyroscopes [6]. This work is distinct in that instead of seeking to
maximize displacement, frequency stability is optimized.

The following section describes nonlinear FM operation. It is a variant of
Lissajous FM operation that accounts for nonlinear operation. Following this,
regimes that optimize frequency stability are explored. It is shown experimentally
that nonlinear operation provides significant improvements, and operation in
nonlinear regimes with a linear design degrades stability. These regimes are then
used to reduce gyroscope ARW. Concluding remarks are then made.

11.2 Nonlinear FM Gyroscope Operation

In order to implement an amplitude modulated gyroscope, a structure with
degenerate modes that can be effectively coupled via the Coriolis effect is, typ-
ically, needed. Examples of such structures can be found in [7], but the one
used in this study is discussed in the following section. A controller is imple-
mented; it maintains the oscillations of one of these modes at a frequency close
to its resonant frequency. Due to the Coriolis effect, in the presence of rotation,
energy from the oscillation mode is transferred to the other. Thus, by measur-
ing the amplitude of the other mode, rotation rate can be estimated following
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calibration. While conceptually simple, imperfections associated with the struc-
ture, temperature changes that effect the oscillating frequency, and variability of
the gains of the needed amplifiers–to name just a few–can degrade performance.
Adding complexity to the calibration process can help to mitigate some–but not
all–of these issues.

In order to address some of the previously noted challenges, FM operation
can be used. A variety of FM modes have been implemented, but the nonlinear
FM mode described here is based upon a more generalized version of Lissajous
FM operation [8]. Consider the equations of motion for the generic vibratory
gyroscope with the modification of cubic stiffness terms [9]

z′′
1 − εAgΩz′

2 + εc1z
′
1 + εc12z

′
2 +

(
ω2
0 − AcΩ

2) z1 + εδz1 + εqcz2 + εα1z
3
1 = εF1(t),

z′′
2 + εAgΩz′

1 + εc2z
′
2 + εc21z

′
1 +

(
ω2
0 − AcΩ

2) z2 − εδz2 + εqcz1 + εα2z
3
2 = εF2(t),

(11.1)
where z1 and z2 are the displacements of mode 1 and 2, respectively, (•)′ denotes
the time-derivative, and ε is a smallness parameter. Effects associated with rota-
tion rate Ω are captured with Ag and Ac where Ag is the angular gain due to the
Coriolis effect and Ac is the centripetal force coefficient. The modes are nominally
assumed to be matched with a natural frequency of ω0, but frequency mismatch
is captured with δ. Damping is captured with the c terms that allow for a more
general case of unequal cross-axis damping. Note that the damping and quality
factor terms are inversely related and of the form c = ω0/Q. Quadrature error,
or mechanical coupling between the two modes, is described by qc. The forces
that are used to excite and drive the modes, as well as noise, are captured by F1

and F2. Lastly, nonlinear effects (e.g. geometric and electrostatic nonlinearities
[6]) are given by α1 and α2.

Unlike AM operation, in FM operation, both modes are operated with feed-
back to create self-sustaining oscillators at set amplitudes. Assuming that damp-
ing is weak, the forces needed to sustain the oscillations can be ignored in
the present analysis. Noise is also ignored in the present analysis. However,
as will be shown in Sect. 11.4, frequency stability can be dramatically improved
or degraded based on the feedback structure. Moreover, while the optimal lin-
ear feedback structure seeks to maximize displacement, the optimal nonlinear
feedback structure depends on the time scale under consideration. This distinc-
tion separates Lissajous FM operation from nonlinear FM operation. Using the
method of averaging, one can analyze the oscillations of the coupled system in
Eq. (11.1). Assuming the following coordinate transformation

z1(t) = a1(t) cos[ω0t + φ1(t)],
z′
1(t) = −a1(t)ω0 sin[ω0t + φ1(t)],

z2(t) = a2(t) cos[ω0t + φ2(t)],
z′
2(t) = −a2(t)ω0 sin[ω0t + φ2(t)],

(11.2)
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the slow-flow equations are given by

a
′
1 = ε

[
− 1

2
c1a1 +

1

2
a2

(
AgΩ − c12

)
cos(φ1 − φ2) +
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2ω0
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]
+ O(ε

2
),

φ
′
1 = ε
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(11.3)
The equations that describe the amplitude dynamics are given for completeness,
but effectively can be ignored for low rotation rates as amplitude controllers are
used. If the oscillation frequencies of z1 and z2 are given by ω0 +φ′

1 and ω0 +φ′
2,

respectively, then the sum of the oscillation frequencies Σ12 to first-order is

Σ12 = 2ω0 + ε

[
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8
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ω0
a2
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3
8

α2
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a2
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2

ω0
+

1
2
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(
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a2
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)
+ c12

a2

a1
− c21

a1

a2

]
sin(φ1 − φ2)

]
.

(11.4)
A rate estimate can be produced by demodulating the sin(φ1 − φ2) term. To be
more explicit in regards to the needed signal processing to estimate rate, first
the signals produced by modes 1 and 2 are frequency demodulated. Next these
demodulated signals are summed together and are multiplied by sin(φ1 − φ2).
The product is then low-pass filtered to reject the high-frequency component
produced by multiplication.

Equation (11.4) implies several features of FM operation. If the cross-axis
damping terms are equal, as is classically assumed [9], then the estimate is
unbiased. The rate estimate requires tracking the relative phase, as quadrature
error (cos(φ1 − φ2) term) is often greater than the rate signal. However, under
certain conditions, tracking the relative phase can be simplified as it can be a
linear function of time. Consider the difference of the oscillation frequencies Δ12

Δ12 = ε

[
δ

ω0
+

3
8

α1

ω0
a2
1 − 3

8
α2

ω0
a2
2 +

1
2

qc
ω0

(
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)
cos(φ1 − φ2)

−1
2

[
AgΩ

(
a2

a1
− a1

a2

)
+ c12

a2

a1
+ c21

a1

a2

]
sin(φ1 − φ2)

]
.

(11.5)

If a1 and a2 are assumed to be equal and cross-axis damping is ignored, then the
frequency difference is independent of relative phase and is set by the uncoupled
dynamics. More simply,

φ1 − φ2 ≈ ε

[
δ

ω0
+

3
8

α1

ω0
a2
1 − 3

8
α2

ω0
a2
2

]
t. (11.6)

Thus, for the purposes of providing a simplified understand of FM operation,
rate information is encoded as a frequency modulation at approximately the
uncoupled frequency difference.
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11.3 Resonator Design

The resonator designed for this effort is a variant of the quadruple mass gyro-
scope (QMGs) with internal levers [10] that has been miniatured to fit the
2×2 mm form factor of the Episeal process [6,11]. The use of internal levers alters
the ordering of the modes such that lowest modes can be utilized for gyroscope
operation. This is an advantage with AM gyroscopes as sensitivity increases with
decreasing operating frequency. Careful design of the levers can also increase the
relative separation between the modes utilized for gyroscope operation and par-
asitic modes. This, in turn, aids in improving the quality factor. In practical
applications, the sensitivities to linear acceleration are important metrics. It has
been shown that internal levers aid in rejecting in-plane acceleration (Fig. 11.1).

Fig. 11.1. Degenerate modes utilized for gyroscope operation have simulated natural
frequencies close to 24 kHz

Compared to similarly sized QMGs with spring coupling, the dynamic range,
or the range of excitations where the response of the system is linear, is dramati-
cally decreased with the use of lever coupling [6]. This is experimentally shown in
the following section. Thus, optimum operation, from a frequency stability per-
spective, requires careful consideration of nonlinear effects [12–14]. A challenge
with designing for the Episeal process, in particular a QMG with internal levers,
is careful attention to the fabrication process. The minimum feature size allowed
is 3µm, but some blowout, or over-etching, is expected. The QMG described in
this effort was designed to the minimum feature size, and as a result, there is
significant variability between the designed and measured operating frequencies.
The device selected for study in the following sections has natural frequencies in
the 16 kHz range. The sub-micron blowout is believed to be the suspect for the
significant difference between design and measurement. Even in the absence of
blowout, the anisotropic nature of silicon contributes to breaking the degeneracy
of the modes. The native split between the modes utilized for gyroscope opera-
tion is close to 300 Hz, but electrostatic actuation can be utilized to decrease it.
The minimum frequency split is limited by synchronization effects during FM
gyroscope operation.
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11.4 Frequency Stability

Closed-loop frequency response measurements [6] were combined with frequency
stability measurements to find regimes that optimize frequency stability [12–14].
In open-loop testing, the frequency of the oscillator used to excite a resonator is
swept in proximity of a resonant frequency. In the case that nonlinear effects are
significant, hysteresis can be observed ( i.e. the steady-state response switches
between two different branches). Repeating the experiment allows one to provide
different initial conditions to the system such that a more complete picture of
the bifurcation structure can be recorded. However, operation near a saddle-
node bifurcation point can slow the dynamics of the system and delay the switch
between branches [15]. Closed-loop frequency response measurements overcome
this limitation as they allows for the complete stabilization of the steady-state
response.

The closed-loop frequency response method is very similar to experimental
continuation [16] in that feedback control is used is used to stabilize states that
are unstable in the open-loop configuration. Using a Zurich Instruments HF2LI,
a phase locked-loop (PLL) was used to control the relative phase between the
input and output of the resonator. This converts the dynamics of the system
to an autonomous one such that period of oscillation is a measured instead of
specified. Thus, while in open-loop testing one sweeps frequency and measures
amplitude and phase, in closed-loop testing one sweeps phase and measures
amplitude and frequency. By measuring frequency for a long enough period of
time, one can quantify frequency stability. For a confident measure of fractional
frequency stability using an Allan deviation method at a given integration time,
the measurement period is typically greater than the given integration time
by an order of magnitude. The challenge with combining closed-loop frequency
response measurements with frequency stability measurements is that parame-
ters of the resonator, such as the natural frequency, may drift. Frequency ran-
dom walk was shown to be significant on time scales greater than 10 s, so the
measurement duration was set at 10 s to allow for accurate frequency stability
measurements on time scales less than 1 s. A delay of 2 s was used to allow for
the system to settle between set phase values.

Experimental results showing the normalized steady-state amplitude and
fractional frequency stability for relatively low excitation cases are shown in
Fig. 11.2. The device was biased at 10 V and in the rest of the experimental
result shown here. The fractional frequency stability is shown at 0.2 s. The inte-
gration time that would optimize gyroscope operation would be the one that
corresponds to the frequency split. The selected integration time was the one
that balanced white noise and frequency random walk. As mentioned in the
previous section, even for the lowest excitation case, nonlinear effects are sig-
nificant. Dots have been added to the figures to show common amplitude and
phase states. The primary results that these figures display are that frequency
stability can be further improved as nonlinear effects become significant and
that optimum frequency stability does not always correspond with the peak
amplitude. The improvement is subtle at the selected integration time, but the
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contour diagrams of the Allan deviation in Fig. 11.3 shows that the improve-
ment is particularly significant on shorter time scales associated with gyroscope
operation.

Fig. 11.2. Normalized steady-state amplitude response (a) and Allan deviation at an
averaging time of 0.2 s (b). For even very low excitations, the device exhibits nonlinear
behavior

Fig. 11.3. Contour diagrams of the Allan deviation measurements for 500µV (a) and
1000 µV (b) excitations. The larger excitation case provides a significant improvement
on the short-term time scales associated with gyroscope operation

There are however, limits to the improvements that nonlinear operation can
provide [13]. Figure 11.4 shows the steady-state amplitude and fractional fre-
quency stability for larger excitation cases. At an integration time of 0.2 s, the
lower excitation case is more stable. While at the shorter time-scales associ-
ated with gyroscope operation, the larger excitation case is more stable, there
are other limits to nonlinear operation such as resonant pull-in effects. Ignoring
phase delays associated with the electronics, linear design principals dictate that
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frequency stability is optimized at the peak amplitude; based on the employed
configuration, that corresponds to a feedback phase of −90◦. Operation at this
point in the nonlinear regime can dramatically degrade stability. Lastly, it is
important to note that between trials, the natural frequency of the device shifted,
but the phase values that minimized the associated Allan deviation values stayed
relatively constant.

Utilizing the test results discussed in this section, and similarly for the other
mode of the gyroscope, phase and excitation values for gyroscope operation were
selected based on those that minimized frequency fluctuations at a time scale of
0.2 s.

Fig. 11.4. Steady-state amplitude response (a) and Allan deviation at an averaging
time of 0.2 s (b). While there is significant natural frequency drift between the trials,
the Allan deviation measurements are much more stable

11.5 Gyroscope Operation

Using the results from the previous section, preliminary test results (see Fig.
11.5) of the nonlinear FM gyroscope are discussed. Over the selected time scale,
white noise is the dominant noise process. This is characterized by the approxi-
mately 1/

√
τ slopes of the Allan deviation measurements. As mentioned in the

introduction, the gyroscope metric associated with white noise processes is angu-
lar random walk (ARW). Both trials were conducted in regimes where nonlinear
effects are observed, but these result show that operation with significant non-
linear effects can be used reduce ARW. These findings are in accord with other
recent works [6].

The frequency split used in these experiments was selected to be the min-
imum before synchronization between the two modes was observed. For the
100µV trial, the frequency split was approximately 12 Hz. For the larger excita-
tion case, the frequency split was 33 Hz. It has been shown that decreasing the
frequency split, until effects associated with close to carrier noise become sig-
nificant, decreases ARW [5]. Thus, while it is possible that nonlinear operation
may increase the effective coupling between the two modes, implementation of
techniques to decrease this coupling while operating with significant nonlinear
effects may further reduce ARW.
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Fig. 11.5. Allan deviation of rate output for two different excitation cases. These
results show that nonlinear operation can be utilized to decrease ARW

11.6 Conclusions and Future Directions

This work documents preliminary work on the nonlinear FM gyroscope. Com-
pared to AM gyroscopes, FM gyroscopes have been shown to have excellent
long-term stability, but degraded short-term stability. By operating in regimes
that improve frequency stability, it was demonstrated that ARW, the gyroscope
metric associated with short-term noise, can be reduced. While theoretically
there are limits to the improvements that nonlinear operation can bring, the
limit for the associated time scale for gyroscope operation has yet to be reached
with the tested device. Future work will focus on reaching that limit.
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Abstract. The prediction of the critical point of a phase transition is
useful in many practical contexts. Therefore, the identification of precur-
sors, or early warning signals of the critical point, has become the focus of
current interest. Recent model studies have shown that a series of small
transitions, which have been called microtransitions, act as precursors to
the percolation transition. Here, we identify the existence of microtransi-
tions in the process of avalanche transmission on a specific realisation of
branching hierarchical networks. We note that microtransitions are seen
clearly in this realization, which we call the V − lattice. Additionally, the
positions of the microtransitions show scaling behaviour here. This can
be used to calculate the position of the critical point, which is seen to be
in agreement with the observed result. The correlation function of the
time series of the weight transmission also shows interesting behaviour,
which can be used to draw inferences about the structure and behaviour
of the system. Additionally we utilise the structure factor, and the ratio
of the heights of the peaks of the Fourier transform of the correlation
function to infer information about the structure of the lattices. We dis-
cuss the utility of our results and generalisability to other contexts.

12.1 Introduction

The identification of precursors of phase transitions has been a topic of current
research interest. The existence of phase transitions in real life situations such
as congestion in road and internet traffic [1], blackouts in power grids [2], and
monsoon dynamics [3] has lead to the realisation that the the prediction of phase
transitions is a problem of great practical utility. It is in these contexts that the
identification of precursors to the transitions assumes great importance. Early
warning signals of transitions have been found in diverse phenomena ranging
from the medical sciences, to ecosystems and climate phenomena [4]. In the
context of theoretical models, microtransitions, where functions of the order
parameter show small, but abrupt changes, have been used as precursors and
predictors of the phase transition in the case of the percolation transition [5].
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The present paper discusses a set of microtransitions which serve as precursors
of a phase transition, in the context of the transmission of avalanches on a 2− d
branching hierarchical lattice.

The specific model considered here, is a 2−d load bearing hierarchical network
which can serve as a model of diverse systems ranging from natural systems such
as river networks [6] and granular media [7], as well as for social systems [8] and is
also similar to models that arise in biological contexts as models of lung inflation
[9]. Studies of packet transmission and avalanche transmission on such networks
have been carried out to understand phenomena like internet traffic congestion,
and jamming.

Here, we investigate the microtransitions in avalanche transmission on a spe-
cial realisation of 2 − d load bearing hierarchical network, where the network
shows a transition from a state where most of the transmissions are successful,
i.e. all test weights get absorbed, to one where most of the transmissions fail.
This transition has been seen to be a discontinuous transition for this special
realization (which we call the V − lattice). We see the presence of microtran-
sitions, signalled by oscillations in the relative variance of the order parameter
in avalanche transmission for the V − lattice. We have seen that the positions
of microtransitions act as precursors to the transition point for this case. These
follow a scaling law, and the critical point can be predicted with good accuracy,
using the scaling behavior.

The microtransitions of the system can also be analysed using the correlation
function. We analyse the peaks in the Fourier spectrum of the correlation func-
tion of the absorbed weight. The positions of the peaks follow a scaling relation
with a power similar to the scaling relation for the microtransitions in the order
parameter. We also analyse the structure factor of the V − lattice network. A
comparison of the ratio of the peaks in the structure factor, and that of the
peaks in the Fourier transform of the correlation function can be used to infer
information about the actual cluster geometry and capacity distribution. We
discuss the implications of our results.

12.2 The Network

The 2-dimensional load bearing hierarchical network considered here, is based
on a regular triangular lattice [10]. Every node can connect with its nearest
neighbours in the layer below with probability 1

2 . Thus a site i in the layer L
can connect to either of its nearest neighbours in the layer L + 1. Each node
is assigned a number, which represents its capacity. Every node in the topmost
layer has unit capacity. The capacity wL

i of a site i in the layer L is sum of
the capacities of sites to which it is connected in the layer above and its own
capacity one. The capacities obey the following equation;

wL
i = l(iL−1

l , iL)w(iL−1
l ) + l(iL−1

r , iL)w(iL−1
r ) + 1 (12.1)

L = 1, . . . , N , where N is the total number of layers in the network. The link
l(iL−1

l , iL) takes value 1 if a connection exists between iL−1
l and iL, otherwise
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(1) (1) (1) (1) (1) (1) (1) (1) 1L =    

C1

(3) (2) (2) (2) (2) (2) (2) (1) 2L = 

2C 

(1) (6) (3) (3) (3) (3) (3) (2) 3L = 

3C 

(2) (10) (4) (4) (4) (4) (1) (3) 4L =

4C

(3) (1) (15) (5) (5) (5) (2) (4) 5L = 

 5C

(5) (1) (21) (6) (6) (3) (1) (5) 6L = 

6C  

(1) (7) (1) (28) (7) (1) (5) (6) 7L = 

C7
(9) (2) (1) (36) (1) (2) (12) (1) 8L = 

8C 

Fig. 12.1. The critical realisation of the 2 − d load bearing hierarchical network, the
V − lattice of size M = 8 × 8. The solid circles are nodes and solid lines are links of
the network. The beaded line is the trunk of the network. C1, C2 are the clusters. The
capacity of each node is indicated next to it in the bracket

it takes the value zero. The link l(iL−1
r , iL) for the right connection has similar

behaviour. Here, iL−1
r and iL−1

l are the sites which lie in the L − 1th layer, and
lie to the right and the left of the site i in the Lth layer.

The network consists of many clusters, where a cluster is the collection of
connected sites of the network. The size of a cluster is defined as the total
number of connected sites in that cluster. The cluster having the largest number
of connected sites is the maximal cluster. The strongest path from the topmost
layer to the bottommost layer in the maximal cluster is called the trunk of the
network.

Figure 12.1 shows the critical realisation of the 2−d load bearing hierarchical
network. All the sites in the topmost row and the (N − L + 1) sites of the Lth
row constitute a V − shaped maximal cluster. One of its arms constitutes the
trunk and other arms run parallel to each other opposite to the trunk. This
structure is called the V − lattice because of its “V” shaped maximal cluster.
Similar structures have been seen in a model of river deltas [11], as well as in
Martian gullies [12,13].

This realization is called the critical realisation because the distribution of
avalanche times shows power law behaviour for this realisation, as do other quan-
tities [14]. On the other hand, the original lattice, i.e. typical realizations show
Gaussian behavior for the avalanche distribution, and non power law behavior
for other quantities [15]. We discuss here the microtransitions seen for the crit-
ical realisation of the 2 − d load bearing hierarchical network, the V − lattice
network, and the behavior of the structure factors and correlation functions. A
similar analysis can be carried out for typical realizations and will be discussed
elsewhere.
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12.3 The Avalanche Transmission

The avalanche transmission process, or the process of weight or packet trans-
mission along the connected paths of the network [10,15] is defined as follows:
when a weight W is deposited on a site in the first layer it retains a weight equal
to its capacity Wc and transmits the rest W − Wc to the site it is connected
to in the layer below. Thus the weight is transmitted in the downward direc-
tion and the sites involved in this process constitute the path of connection. If
there is still excess weight left at the bottommost layer of the network it is then
transmitted to a randomly chosen unoccupied site of the first layer. Let PL be

the site on such path P . We can write, W ex(PL) = W −
L∑

K=1

Wc(PK). If a test

weight transmitted in this way encounters a fully saturated site, and also has no
alternate path to take, then the transmission is considered to have failed. If the
transmitted weight is absorbed at some site in the network then the transmission
corresponds to a successful transmission. The order parameter in an avalanche
process on the 2−d load bearing hierarchical networks is defined as the fraction
of transmissions that are successful. The order parameter for the typical realisa-
tions, i.e. the original lattice varies continuously with the test weight, whereas it
shows a discontinuous variation with the test weight for the critical realisation
i.e. the V − lattice case (Fig. 12.2) [16]. Thus the critical geometry of the V −
lattice, leads to a situation where there is a discontinuous phase transition. We
note that the transmission of messages on these base substrates shows a perco-
lation transition on the original lattices, and an explosive percolation transition
on the V − lattices [16].

We have seen that microtransitions appear very clearly in the case of the
V − lattice network and the positions of microtransitions follow a power law
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Fig. 12.2. The order parameter as a function of test weight for the V − lattice of size
M = 50 × 50. Here the order parameter shows a discontinuous transition
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behaviour, which helps to calculate the critical point of the phase transition
with good accuracy. All these results are discussed in detail in the next section.

12.4 Microtransition in Avalanche Transmission for the
V − Lattice

We now study microtransitions for this case. The microtransitions are signalled
by microscopic changes in the order parameter. The major transition in the
system, is the transition of the order parameter at the critical point, from values
of order zero to values of order one, whereas the microtransitions are small
changes in the order parameter well before the transition point. The study of
the avalanche transmission on the network shows a transition of the network from
the state where all avalanche transmissions are successful, i.e. all the test weights
get absorbed, to a state where almost all transmissions fail, as the test weight,
which is placed on the top layer, increases. In order to study the microtransitions
which occur before the transition, we look at the variance and relative variance
of the absorbed weight, which is the weight absorbed by the occupied nodes of
the network for a given test weight. The absorbed weight has nonzero value in
the free flow state and it is zero in the state where all avalanche transmissions
fail. The variance V and relative variance RV of the absorbed weight is defined

as, V =
(〈O2〉 − 〈O〉2) and RV = (〈O2〉−〈O〉2)

〈O〉2 where, O is the weight absorbed
by the occupied nodes of the network for a given test weight. The average is
taken over the total number of nodes which are occupied. If a node is partially
occupied we consider that as a occupied node.

We see that the variance of the absorbed weight shows a set of sharp peaks
before the transition point (Fig. 12.3a). These peaks arise when a node with
very high capacity becomes occupied in the course of the transmission. For the
V − lattice, these peaks occur when the nodes which belong to the trunk of the
maximal cluster of the network become occupied.

The details of the simulation are as follows. We start our simulation by
putting the test weight at the right most channel of the V − lattice. When the
nodes of a given channel becomes occupied (i.e. have absorbed all the weight that
their capacity permits), we deposit the excess test weight (if any) on the nearest
unoccupied node in the topmost row next to the channel. This process continues
until the entire test weight gets absorbed by the network or the unabsorbed
or residual weight does not have any alternate path to take. Clearly, as the
nodes of the trunk become occupied, the available capacity of unoccupied nodes
decreases, and the fluctuation in absorbed weight decreases, hence the amplitude
of the peaks in the variance of the absorbed weight decreases. The positions of
the peaks are the positions of the microtransitions (See Fig. 12.3a). The relative
positions of the microtransitions follow a power law with a power close to −1.
Figure 12.3b shows the scaling relations for the positions of microtransitions
for different lattice sizes. The exponent does not depend on the lattice size for
larger lattice sizes. Figure 12.4 shows the log-log plot of the scaling relation. We
calculate the critical point from the scaling relation for the V − lattice. From
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the scaling law we can write, Pi+1 =
i∏

j=1

(ajb + c + 1)P1. Using this equation, we

can calculate the position of any peak if we know the value of the position of
the first peak. As the peaks in the variance plot arise because of the nodes that
belong to the trunk, the number of peaks are the same as the total number of
sites of the trunk. The number of such sites in a N × N site V −lattice is N , so
there will be at most N peaks in the variance plot. Hence the parameter value
which corresponds to the P50 peak is the critical point, for a 50 × 50 lattice. For
this case we calculate P50 = Pc = 0.669 using P1 = 0.039. The value of Pc from
the order parameter plot is 0.675. Both the results are in good agreement. We
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also study the finite size scaling of the scaling relation, which shows a nice data
collapse for the scaling relations of different sizes of the V − lattice (Fig. 12.3b).

We see microtransitions in the avalanche transmission on the V − lattice,
where we see a discontinuous transition from a free flow state to a jamming like
state.We note that the microtransitions act as precursors of the phase transition
in avalanche transmissions on the V − lattice. The peaks i.e. the microtransitions
are sharp here because the V − lattice has more nodes of high capacity. The
positions of the microtransitions helps to predict the parameter value which is
very close to actual critical point. Therefore, the microtransitions are a good
predictor of the critical point of a phase transition.

12.5 Microtransitions in Correlation Function for the
V − Lattice

Microtransitions can also be identified in other quantities. In this section, we
analyse microtransitions in the correlation function which is a function of the test
weight as well as a time lag (τ). The correlation function in any variable relates
the value of the variable at any instant t with the value after certain time interval
t + τ of the time series data. Here, we generate a time series of the absorbed
weight for a given test weight. The test weight we choose is the maximum weight
that the network can bear. The weight on the topmost layer now propagates in
the network using the weight transmission process defined in Sect. 12.3. The
hopping of the test weight from one node to another node is considered as a
unit time step. If the test weight reaches the lowest layer of the network starting
from the topmost row of the rightmost channel, we deposit the weight remaining
unabsorbed on the nearest unoccupied node in the topmost row next to the
channel. This process continues until all the connected paths from the topmost
layer become occupied. During this process we calculate the weight absorbed by
a node at each time step and the correlation function of the time series, which
is defined as, ρ(τ,Wtest) =< W (t,Wtest)W (t + τ,Wtest) > − < W (t,Wtest) >2.

Here, < W (t,Wtest)W (t + τ,Wtest) >= 1
tmax

tmax−τ∑

t=1

(
W (t,Wtest) × W (t +

τ,Wtest)
)

and < W (t,Wtest) >2=
(

1
tmax

tmax−τ∑

t=1
W (t,Wtest)

)2

.

Here the avalanche transmission, takes place as described earlier. The cor-
relation function for the V −lattice shows oscillatory behavior (See Fig. 12.5a)
and the amplitude of oscillation varies with the increase of the time lag. We also
evaluate the discrete Fourier transform of the correlation function. The Fourier
spectrum shows several peaks for the V − lattice (Fig. 12.5b). We analyse the fre-
quencies corresponding to the peaks in the Fourier spectrum. For the V −lattice,
the relative frequencies fi+1−fi

fi
show power law behavior, with a power close to

−1 (Fig. 12.6). This exponent value is close to the exponent of the scaling rela-
tion for the microtransitions in the avalanche transmission. Therefore the peaks
in the Fourier spectrum scale in a way which is similar to the microtransition
peaks.
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12.6 Structure Factors

In the previous section we have analysed the positions of the peaks in the Fourier
spectrum of the correlation function and seen that they follow the same scal-
ing relation as the positions of microtransitions seen in the variance. We have
discussed in Sect. 12.4 that the microtransitions appear when the channels of
the network become occupied via the avalanche process. The nodes of the trunk
become occupied when the parallel arms of the V − lattice are occupied. These
results indicate that the channels of the network can be identified from the peaks
of the Fourier spectrum. In a more general sense, information about the structure
of the network can be extracted from the knowledge of the processes that occur
on the networks. We test this notion in the context of the structure factor of the
network, and the peaks of the Fourier spectrum of the correlation function.

We calculate the structure factor for the parallel arms of the V − shaped
unit cell. The basis of the network is the 2−d triangular lattice. The translation
lattice vectors of the V − shaped unit cell are chosen as the basis vectors of
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the triangular lattice. In the calculation of the structure factor for the V lattice
the reciprocal lattice vectors corresponding to a node i are the reciprocal lattice
vectors of the links through which it is connected to the nodes in layer above.
We have defined a reciprocal lattice vector Gi which is the sum of the reciprocal
lattice vectors of the links through which ith node in the layer L is connected
to the nodes in the layer L − 1. Each node can have at most two connections
in the layer above. So we can write Gi = Gi1 + Gi2, where Gi1 and Gi2 are
the reciprocal lattice vectors for the left and right connections respectively. If
there is a node for which either the left or right connection exists then Gi is
equal to Gi1 or Gi2 depending on the existence of the left or right connection.
Gi1 and Gi2 can be written as the linear combination of the basis vectors of the
reciprocal lattice:Gi1 = v11b1 + v12b2 and Gi2 = v21b1 + v22b2, where, v11, v12 are
the intercepts of the Gi1 on the basis vectors and similarly v21, v22 are intercepts
of Gi2. If Gi1 and Gi2 are parallel to b2 and b1 respectively, then we choose the
corresponding intercept to be zero. The structure factor of the V − shaped unit
cell is given by,

S =
n∑

i=1

fi exp (iri · Gi) (12.2)

where i is the node index and runs from 1 to n, the total number of nodes in the
V-shaped unit cell. Here, fi is the form factor of the ith node, ri is the position of
the ith node and Gi is the corresponding reciprocal lattice vector. The reciprocal
lattice vectors of the topmost nodes are found by using the connection pattern;
e.g. for our V − lattice the leftmost node in the first layer will have both left and
right connections and the rest of the nodes in the first layer will have only right
connections.

We need to identify the form factor fi in the usual definition of the structure
factor, in the context of the network. This quantity can be compared with the
connectivity of the nodes. A node with high connectivity is connected to many
paths in the network and is also accessible with greater probability. Therefore, it
will have a larger contribution in the structure factor. In the case of our network
the capacity of a node is dependent on the connectivity of the nodes to which it
is connected in the layer above it. Thus, if the form factor is identified with the
capacity, it can encode information about the structure and connectivity of the
network. To test this idea, we calculate the structure factor considering equal
as well as unequal form factors for each node and compare the result with the
Fourier transform of the structure function.

We first discuss the structure factor of the V lattice with equal form factor
f for each node. This situation represents the regular V shaped unit cell. We
see that for an even lattice the structure factor of each odd arm is nif , where
ni is the number of nodes in the ith arm and for each even arm, it turns out to
be f . For the odd lattice, the structure factor for each odd arm is nif but for
each even arm it is zero. We arrange the structure factors for the each arm in
decreasing order and calculate the ratios of the consecutive values. We also use
the Fourier spectrum of the correlation function defined earlier, and compare
the ratios of the peaks seen here, with the structure factor ratios of the arms of
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Table 12.1. The ratios of the peak values of the Fourier spectrum, the ratios of the
calculated structure factors considering equal form factors for each node of the V −
lattice and the ratios of the peaks of the correlation function for the M = 100 × 100
V − lattice

FFT-peak ratios SF ratios Correlation function peak ratios

0.965080 0.9655 0.965517

0.964187 0.9643 0.964283

0.803984 0.8000 0.8000

0.855609 0.8571 0.8571

0.985813 – –

0.956847 0.9565 0.956522

0.906445 0.9091 0.909091

0.982580 – 0.962456

0.853807 0853 –

0.946950 – 0.947368

0.834599 0.833 0.8333

0.981879 – 0.981818

0.976152 0.9762 0.976190

0.972843 0.9730 0.972973

0.937364 0.9373 0.9375

0.985540 – 0.985507

the V lattice network, after arranging both sets of peaks in decreasing order. A
comparison of these ratios shows that some of the peak ratios of the correlation
function and its Fourier spectrum match with the structure factor ratios for the
V − lattice (Table 12.1). We have seen that microtransitions in the avalanche
transmission on the V − lattice correspond to transmission along each parallel
arm of the lattice. These parallel arms can be identified from the ratios of the
structure factor for the arms.

However, it is clear that the form factor of each node is not equal. For the
V − lattice, the nodes have different capacities at different layers, and so have
different form factors. Our calculation shows that for the V − lattice of both even
and odd size, the structure factors for the odd arm is proportional to the total
capacity of the nodes which constitute the arm; whereas for the even arm it is
(N−i+1)(N−i+2)

2 − N−i
2 for the ith arm, where i = 1 for the right most arm, and

N is the total number of layers of the network. We again compare the ratios of
the structure factor of the parallel arms of the V − lattice with the ratios of the
peaks of the Fourier spectrum after arranging both in decreasing order. We have
shown some of the ratios of the structure factors in the Table 12.2 which match
with the peak ratios of the Fourier spectrum. It is clear from the table that the
two sets of ratios match well (Fig. 12.7).
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Table 12.2. Comparison of the FFT peak ratios with the ratios of the structure factors
of the parallel arms of the M = 100 × 100 V − lattice, considering the unequal form
factor for each node, where the form factor is equal to node capacity. These ratios are
chosen from the ratios of the structure factors which match with the peak ratios of the
Fourier spectrum (which are about 48% of the total no, of calculated ratios)

FFT-peak ratios SF ratios FFT- peak ratios SF ratios

0.9568 0.957 0.9652 0.9651

0.9559 0.956 0.9929 0.9929

0.9469 0.9467 0.9891 0.9891

0.945 0.9454 0.9669 0.967

0.9998 0.9998 0.9706 0.9705

0.9827 0.9828 0.9847 0.9847

0.976 0.976 0.9964 0.9964

0.9562 0.9565 0.9752 0.9753
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Fig. 12.7. Fourier spectrum for the 100 × 100 V − lattice. Peak indices are according
to their values in decreasing order

The ratios of the structure factor that correspond to the arms with low
capacity are not seen in the ratios of the amplitude of the peaks in Fourier
spectrum. The set of ratios that match for the unequal case is much larger
than that seen for the equal form factor case, reflecting the true structure of
the capacity distribution. Here, 26% of the ratios of the structure factor match
with the Fourier spectrum peak ratios for the equal form factor case whereas
this percentage increases to 48% when we consider unequal form factors for
each node, reflecting the fact that the actual capacity distribution is now taken
into account. This kind of comparison can thus be used to infer the capacity
distribution for actual situations, e.g. in the case of force chains in granular
media.
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12.7 Conclusions

We have seen that microtransitions appear in the process of avalanche transmis-
sion on the V − lattice network. The relative positions of these microtransitions
obey a power law with power nearly equal to −1. The calculated value of the
critical point from the scaling relation is close to the value of critical point
from the order parameter for the V −lattice. Thus, the microtransitions behave
as precursors of the phase transition and can be used to predict the point of
transition.

We also analyze the microtransitions in the correlation functions of the time
series arising from weight transmission. The correlation function here is an oscil-
latory function of τ . We observe that the peaks in the Fourier spectrum of the
correlation function scale in a manner similar to the peaks in the variance of
order parameter. Thus we see microtransitions in another quantity also.

We also calculate the structure factor to identify the channels corresponding
to the microtransitions of the V − lattice, considering both equal and unequal
form factors of the nodes. We compare the ratios of the structure factors of the
parallel arms for both the cases with the ratios of the peaks of the Fourier spec-
trum. It is seen that for the case where the form factors reflect the capacities,
the structure factor can pick up many more ratios seen in the Fourier spectrum
in the correlation function, compared to the equal form factor case. Thus, the
structure factor can be used to estimate the way in which capacities are dis-
tributed in the lattice. This can be useful in many practical cases, e.g. in the
identification of force chains in granular media, the jamming nodes of commu-
nication networks and the vulnerable nodes of power grids. We hope to pursue
some of the applications in future work.
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Chapter 13
Pseudospin-1 Systems as a New Frontier
for Research on Relativistic Quantum

Chaos
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Abstract. Pseudospin-1 systems are characterized by the feature that
their band structure consists of a pair of Dirac cones and a topologi-
cally flat band. Such systems can be realized in a variety of physical
systems ranging from dielectric photonic crystals to electronic materials.
Theoretically, massless pseudospin-1 systems are described by the gener-
alized Dirac-Weyl equation governing the evolution of a three-component
spinor. Recent works have demonstrated that such systems can exhibit
unconventional physical phenomena such as revival resonant scattering,
superpersistent scattering, super-Klein tunneling, perfect caustics, van-
ishing Berry phase, and isotropic low energy scattering. We argue that
investigating the interplay between pseudospin-1 physics and classical
chaos may constitute a new frontier area of research in relativistic quan-
tum chaos with significant applications.

13.1 Introduction: What Are Pseudospin-1 Systems and
Where Do They Arise?

Solid state materials whose energy bands contain a Dirac cone structure
have been an active area of research since the experimental realization of
graphene [1,2]. From the standpoint of quantum transport, the Dirac cone struc-
ture and the resulting pseudospin characteristic of the underlying quasiparticles
can lead to unconventional physical properties/phenomena such as high car-
rier mobility, anti-localization, chiral tunneling, and negative refractive index,
which are not usually seen in traditional semiconductor materials. Moreover,
due to the underlying physics being effectively governed by the Dirac equation,
relativistic quantum phenomena such as Klein tunneling, Zitterbewegung, and
pair creations can potentially occur in solid state devices and be exploited for
significantly improving or even revolutionizing conventional electronics. Uncov-
ering/developing alternative materials with a Dirac cone structure has also been
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extremely active [3,4]. In this regard, the discovery of topological insulators [5,6]
indicates that Dirac cones with a topological origin can be created, leading to
the possibility of engineering materials to generate remarkable physical phenom-
ena such as zero-field half-integer quantum Hall effect [7], topological magneto-
electric effect [8], and topologically protected wave transport [9,10].

A parallel line of research has concentrated on developing photonic materials
with a Dirac cone structure, due to the natural analogy between electromagnetic
and matter waves. For example, photonic graphene [11,12] and photonic topolog-
ical insulators [13–18] have been realized, where novel phenomena of controlled
light propagation have been demonstrated. Due to the much larger wavelength
in optical materials as compared with the electronic wavelength, synthetic pho-
tonic devices with a Dirac cone structure can be fabricated at larger scales with
a greater tunability through modulations. The efforts have led to systems with
additional features in the energy band together with the Dirac cones, opening
possibilities for uncovering new and “exotic” physics with potential applications
that cannot even be conceived at the present.

The materials to be discussed in this article are those whose energy bands
consist of a pair of Dirac cones and a topologically flat band, electronic or opti-
cal. For example, in a dielectric photonic crystal, Dirac cones can be induced
through accidental degeneracy that occurs at the center of the Brillouin zone.
This effectively makes the crystal a zero-refractive-index metamaterial at the
Dirac point where the Dirac cones intersect with another flat band [19–23]. Alter-
natively, configuring an array of evanescently coupled optical waveguides into a
Lieb lattice [24–27] can lead to a gapless spectrum consisting of a pair of common
Dirac cones and a perfectly flat middle band at the corner of the Brillouin zone.
As demonstrated more recently, loading cold atoms into an optical Lieb lattice
provides another experimental realization of the gapless three-band spectrum
at a smaller scale with greater dynamical controllability of the system param-
eters [28]. With respect to creating materials whose energy bands consist of a
pair of Dirac cones and a topologically flat band, there have also been theoretical
proposals on Dice or T3 optical lattices [29–34] and electronic materials such as
transition-metal oxide SrTiO3/SrIrO3/SrTiO3 trilayer heterostructures [35], 2D
carbon or MoS2 allotropes with a square symmetry [36,37], SrCu2(BO3)2 [38]
and graphene-In2Te2 bilayer [39]. Dirac cones with a flat band can also arise in
a class of mechanical lattices [40].

In spite of the diversity and the broad scales to realize the band struc-
ture that consists of two conical bands and a characteristic flat band
intersecting at a single point in different physical systems, there is a unified
underlying theoretical framework: generalized Dirac-Weyl equation for massless
spin-1 particles [31]. Comparing with the conventional Dirac cone systems with
massless pseudospin/spin-1/2 quasiparticles (i.e., systems without a flat band),
pseudospin-1 systems can exhibit quite unusual physics such as super-Klein tun-
neling for the two conical (linear dispersive) bands [23,32,41,42], diffraction-free
wave propagation and novel conical diffraction [24–27], flat band rendering diver-
gent dc conductivity with a tunable short-range disorder [43], unconventional
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Anderson localization [44,45], flat band ferromagnetism [28,46,47], and peculiar
topological phases under external gauge fields or spin-orbit coupling [35,48–50].
Especially, the topological phases arise due to the flat band that permits a num-
ber of degenerate localized states with a topological origin (i.e., “caging” of
carriers) [51]. Most existing works, however, focused on the physics induced by
the additional flat band, and the scattering/transport dynamics in pseudospin-1
systems have begun to be studied [52–54].

13.2 Generalized Dirac-Weyl Equation

The effective low-energy Hamiltonian associated with pseudospin-1 Dirac cones
can be written, in the unit � = 1, as [23,24,41]

H0 = vgS · k, (13.1)

where vg is the magnitude of the group velocity associated with the Dirac cone,
k = (kx, ky) denotes the wavevector, and S = (Sx, Sy) is a vector of matrices
with components

Sx =
1√
2

⎛
⎝

0 1 0
1 0 1
0 1 0

⎞
⎠ and Sy =

1√
2

⎛
⎝

0 −i 0
i 0 −i
0 i 0

⎞
⎠ . (13.2)

Along with another matrix

Sz =

⎛
⎝

1 0 0
0 0 0
0 0 −1

⎞
⎠ ,

the three matrices form a complete representation of spin-1, which satisfies the
angular momentum commutation relations [Sl, Sm] = iεlmnSn with three eigen-
values: s = ±1, 0, where εlmn is the Levi-Civita symbol. It follows from Eq. (13.1)
that the energy spectrum consists of three bands that intersect at the Dirac
point: a dispersionless flat band E0(k) = 0 and two linearly dispersive bands
Eτ (k) = τvg|k| with τ = ±1 being the band index. The corresponding eigen-
functions in the position representation r = (x, y) are

ψk,τ (r) = 〈r|k, τ〉 =
1
2

[
e−iθ,

√
2τ, eiθ

]T

eik·r , (13.3)

for the dispersive bands and

ψk,0(r) = 〈r|k, 0〉 =
1√
2

[−e−iθ, 0, eiθ
]T

eik·r , (13.4)

for the flat band, where θ = tan−1(ky/kx). The current operator is defined from
Eq. (13.1) as

ĵ = ∇kH0 = vgS. (13.5)
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The local current in a given state ψ(r) = [ψ1, ψ2, ψ3]T can thus be expressed as

j(r) = vgψ
†Sψ ≡ (jx, jy)

=
√

2vg (�[ψ∗
2(ψ1 + ψ3)],−�[ψ∗

2(ψ1 − ψ3)]) ,
(13.6)

which satisfies the common continuity equation

∂

∂t
ρ + ∇ · j = 0, (13.7)

where ρ = ψ†ψ is the probability density associated with state ψ. From
Eqs. (13.3) and (13.4), it can be seen that the associated local current density
satisfies j0 = 0 for the flat band plane-wave, and

jτ = vg(cos θ, sin θ) = τvg
k

|k| , (13.8)

for the dispersive band plane-wave. In terms of the Berry phase associated with
the band structure, one obtains from Eqs. (13.3) and (13.4) the corresponding
Berry connections

A τ
k = 〈k, τ |i∇k |k, τ〉 = 0,

A 0
k = 〈k, 0|i∇k |k, 0〉 = −2A τ

k = 0

for all three bands. The Berry phase is thus given by

Φτ,0
B =

∮

C τ,0
k d

dk · A τ,0
k = 0, (13.9)

for any closed path C τ,0
kd

encircling the degeneracy point kd of the momentum
space defined in each band. It should be noted that the vanishing or 2π quantized
Berry phase is consistent with the fundamental properties of spin-1 particles.

A remarkable phenomenon for pseudospin-1 Dirac cone systems, which is not
usually seen in conventional Dirac cone systems such as graphene and topologi-
cal insulators, is super-Klein tunneling [23]. Specifically, following the standard
treatment of Klein tunning for graphene systems [55], one can consider the basic
problem of wave scattering from a rectangular scalar (electrostatic) potential
barrier defined as V (x, y) = V0Θ(x)Θ(D − x) with barrier width D and height
V0. The transmission probability based on the effective Hamiltonian Eq. (13.1)
for incident energy E 	= 0, V0 is given by

T =
(1 − γ2)(1 − γ′2)

(1 − γ2)(1 − γ′2) + 1
4 (γ + γ′)2 sin2 (qxD)

, (13.10)

where γ = τ sin θ, γ′ = τ ′ sin θ′ with τ = sgn(E), τ ′ = sgn(E − V0),
θ = tan−1 (ky/kx) is the incident angle, and θ′ = arctan (ky/qx) with qx =√

(E − V0)2 − k2
y. A striking feature of Eq. (13.10) is that, when the incident

wave energy is one half of the potential barrier height, i.e., E = V0/2, one has
τ = −τ ′, θ = θ′ and, consequently, perfect transmission with T ≡ 1 for any
incident angle θ - hence the term “super-Klein tunneling.”
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13.3 Transport Properties of Pseudospin-1 Systems

A recent work [52] addressed the following question: what types of transport
properties can arise form pseudospin-1 systems whose band structure is charac-
terized by coexistence of a pair of Dirac cones and a flat band? To address this
question in the simplest possible setting while retaining the essential physics, bal-
listic wave scattering from a circularly symmetric potential barrier was studied.
For conventional Dirac cone systems with pseudospin or spin-1/2 quasiparticles,
there has been extensive work on scattering [56–58] with phenomena such as
caustics [59], Mie scattering resonance [60], birefringent lens [61], cloaking [62],
spin-orbit interaction induced isotropic transport and skew scattering [63,64],
and electron whispering gallery modes [65]. However, there had been no cor-
responding studies for pseudospin-1 Dirac cone systems prior to the work in
Ref. [52].

More specifically, scattering was studied [52] of pseudospin-1 particle from
a circularly symmetric scalar potential barrier of height V0 defined by V (r) =
V0Θ(R−r), where R is the scatterer radius and Θ denotes the Heaviside function.
To characterize the scattering dynamics quantitatively, the scattering efficiency
can be used, which is defined as the ratio of the scattering to the geometric cross
sections [60]:

Q = σ/(2R), (13.11)

where the scattering cross section σ can be calculated through the far field radial
reflected current [52].

There were three main results [52]: revival resonant scattering, super-Klein
tunneling induced perfect caustics, and universal low-energy isotropic transport
without broken symmetries for massless quasiparticles. First, for small scatterer
size, the effective three-component spinor wave exhibits revival resonant scat-
tering as the incident wave energy is varied continuously - a phenomenon that
has not been reported in any known wave systems. Strikingly, the underlying
revival resonant modes show a peculiar type of boundary trapping profile in
their intensity distribution. While the profile resembles that of a whispering
gallery mode, the underlying mechanism is quite different: these modes occur
in the wave dominant regime through the formation of fusiform vortices around
the boundary in the corresponding local current patterns, rather than being sup-
ported by the gallery type of orbits through total internal reflections. Second,
for larger scatterer size where the scattering dynamics are semiclassical, a per-
fect caustic phenomenon arises when the incident wave energy is about half of
the barrier height, as a result of the super-Klein tunneling effect. A consequence
is that the scatterer behaves as a lossless Veselago lens with effective negative
refractive index resulting from the Dirac cone band structure. Compared with
conventional Dirac cone systems for pseudospin-1/2 particles, the new caustics
possess remarkable features such as significantly enhanced focusing, vanishing
of the second and higher order caustics, and a well-defined static cusp. Third,
in the far scattering field, an isotropic behavior arises at low energies. Consid-
ering that there is no broken symmetry so the quasiparticles remain massless,
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the phenomenon is quite surprising as conventional wisdom would suggest that
the scattering be anisotropic. An analysis of the characteristic ratio of the trans-
port to the elastic time as a function of the scatterer size revealed that the
phenomenon of scattering isotropy can be attributed to vanishing of the Berry
phase for massless pseudospin-1 particles that results in constructive interference
between the time-reversed backscattering paths. Because of the isotropic struc-
ture, the emergence of a Fano-type resonance structure in the function of the
ratio versus the scatterer size can be exploited to realize effective switch of wave
propagation from a forward dominant state to a backward dominant one, and
vice versa. In Ref. [52], an analytic theory with physical reasoning was developed
to understand the three novel phenomena.

It is possible to conduct experimental test of the phenomena. For exam-
ple, in a recent work [23], it was demonstrated for a class of two-dimensional
dielectric photonic crystals with Dirac cones induced accidentally [19–22] that
the Maxwell’s equations can lead to an effective Hamiltonian description shar-
ing the same mathematical structure as that of massless pseudospin-1 particles.
Especially, the photonic analogy of the gate potential in the corresponding elec-
tronic system can be realized by manipulating the scaling properties of Maxwell’s
equations. Recent experimental realizations of photonic Lieb lattices consisting
of evanescently coupled optical waveguides implemented through the femtosec-
ond laser-writing technique [24–27] make them prototypical for studying the
physics of pseudospin-1 Dirac systems. With a particular design of the refrac-
tive index profile across the lattice to realize the scattering configuration, the
phenomena can be experimentally tested. Loading ultracold atoms into an opti-
cal Lieb lattice fabricated by interfering counter-propagating laser beams [28]
provides another versatile platform to test the phenomena, where appropriate
holographic masks can be used to implement the desired scattering potential
barrier [32,66]. In electronic systems, the historically studied but only recently
realized 2D magnetoplasmon system [67] is described by three-component lin-
ear equations with the same mathematical structure of massless pseudospin-1
particles, which can serve as a 2D electron gas system to test the phenomena.

From an applied perspective, the phenomenon of revival resonant scattering
can be a base for articulating a new class of microcavity lasers based on the
principles of relativistic quantum mechanics. It may also lead to new discoveries
in condensed matter physics through exploiting the phenomenon in electronic
systems. The phenomenon of perfect caustics can have potential applications in
optical imaging defying the diffraction limit as well as in optical cloaking.

13.4 Superscattering of Pseudospin-1 Wave in Photonic
Lattice

Another phenomenon is superscattering of pseudospin-1 wave from weak scat-
terers in the subwavelength regime where the scatterer size is much smaller than
wavelength [53]. The phenomenon manifests itself as unusually strong scattering
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characterized by extraordinarily large values of the cross section even for arbi-
trarily weak scatterer strength. The physical origin of superscattering is revival
resonances [53], for which the conventional Born theory breaks down. The phe-
nomenon can be experimentally tested using synthetic photonic systems.

In wave scattering, a conventional and well accepted notion is that weak
scatterers lead to weak scattering. This can be understood by resorting to the
Born approximation. In particular, consider a simple 2D setting where particles
are scattered from a circular potential of height V0 and radius R. In the low
energy (long wavelength) regime kR < 1 (with k being the wavevector), the
Born approximation holds for weak potential: (m/�

2)|V0|R2 
 1. Likewise, in
the high energy (short wavelength) regime characterized by kR > 1, the Born
approximation still holds in the weak scattering regime: (m/�

2)|V0|R2 
 (kR)2.
In general, whether scattering is weak or strong can be quantified by the scatter-
ing cross section. For scalar waves governed by the Schrödinger equation, in the
Born regime the scattering cross section can be expressed as polynomial func-
tions of the effective potential strength and size [68]. For spinor waves described
by the Dirac equation (e.g., graphene systems), the 2D transport cross section
is given by [58] Σtr/R � (π2/4)(V0R)2(kR) (under �vF = 1). In light scatter-
ing from spherically dielectric, “optically soft” scatterers with relative refractive
index n near unity, i.e., kR|n − 1| 
 1, the Born approximation manifests itself
as an exact analog of the Rayleigh-Gans approximation [69], which predicts that
the scattering cross section behaves as Σ/(πR2) ∼ |n − 1|2(kR)4 in the small
scatterer size limit kR 
 1. In wave scattering, the conventional wisdom is then
that a weak scatterer leads to a small cross section and, consequently, to weak
scattering, and this holds regardless of nature of the scattering particle/wave,
i.e., vector, scalar or spinor.

Superscattering of pseudospin-1 wave defies exactly the conventional wis-
dom [53]. The striking and counterintuitive phenomenon is that extraordinar-
ily strong scattering can emerge from arbitrarily weak scatterers at sufficiently
low energies (i.e., in the deep subwavelength regime). Accompanying this phe-
nomenon is a novel type of resonances that can persist at low energies for weak
scatterers. An analytic understanding of the resonance was obtained [53] and the
resulting cross section was derived, with excellent agreement with results from
direct numerical simulations.

13.5 Non-equilibrium Transport in the Pseudospin-1
Dirac-Weyl System

Quantum transport beyond the linear response and equilibrium regime is of
great practical importance, especially in device research and development.
There have been studies of nonlinear and non-equilibrium transport of relativis-
tic pseudospin-1/2 particles in Dirac and Weyl materials. For example, when
graphene is subject to a constant electric field, the dynamical evolution of the
current after the field is turned on exhibits a remarkable minimal conductivity
behavior [70]. The scaling behavior of nonlinear electric transport in graphene
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due to the dynamical Landau–Zener tunneling or the Schwinger pair creation
mechanism has also been investigated [71,72]. Under a strong electrical field, due
to the Landau–Zener transition, a topological insulator or graphene can exhibit
a quantization breakdown phenomenon in the spin Hall conductivity [73]. In
addition, non-equilibrium electric transport beyond the linear response regime
in 3D Weyl semimetals has been studied [74]. In these works, the quasiparticles
are relativistic pseudospin-1/2 fermions arising from the Dirac or Weyl system
with a conical type of dispersion in their energy momentum spectrum.

Recently, the transport dynamics of pseudospin-1 quasiparticles were stud-
ied [75]. Under the equilibrium condition and in the absence of disorders, the flat
band acts as a perfect “caging” of carriers with zero group velocity and hence
it contributes little to the conductivity [43,76,77]. However, the flat band can
have a significant effect on the non-equilibrium transport dynamics. Through
numerical and analytic calculation of the current evolution for both weak and
strong electric fields, it was found [75] that the general phenomenon can arise
of current enhancement as compared with that associated with non-equilibrium
transport of pseudospin-1/2 particles. In particular, for a weak field, the inter-
band current is twice as large as that for pseudospin-1/2 system due to the
interference between particles from the flat band and from the negative band,
the scaling behavior of which agrees with that determined by the Kubo formula.
For a strong field, the intraband current is

√
2 times larger than that in the

pseudospin-1/2 system, as a result of the additional contribution from the par-
ticles residing in the flat band. In this case, the physical origin of the scaling
behavior of the current-field relation can be attributed to Landau–Zener tunnel-
ing. These findings suggested that, in general, the conductivity of pseudospin-1
materials can be higher than that of pseudospin-1/2 materials in the nonequi-
librium transport regime. Indeed, the interplay between the flat band and the
Dirac cones can lead to interesting physics that has just begun to be understood
and exploited.

13.6 Discussion: Relativistic Quantum Chaos in
Pseudospin-1 Systems

The field of quantum chaos aims to uncover the quantum manifestations or
fingerprints of classical chaotic behaviors in the semiclassical limit [78,79]. A
vast majority of the works were for nonrelativistic quantum systems described
by the Schrödinger equation. Recent years have witnessed a rapid development
of Dirac materials [80,81] such as graphene and topological insulators, which
are described by the Dirac equation in relativistic quantum mechanics. A new
field has thus emerged: relativistic quantum chaos [82,83]. To study the unique
physics of classical chaos in relativistic quantum systems is fundamental with
potentially significant applications.

Existing works on relativistic quantum chaos [82,83] focused on pseudospin-
1/2 systems such as graphene, which are described by the conventional Dirac
equation for two-component spinors. Pseudospin-1 systems, due to their unusual
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physics, can present a new platform to study relativistic quantum chaos. A tech-
nical difficulty that must be overcome is to solve the generalized Dirac-Weyl
equation for three-component spinors in arbitrary geometrical domains that gen-
erate classical chaos. For example, while scattering of pseudospin-1 particles from
a circular potential can be analytically solved [52], at the present there exists no
method to solve the scattering problem for a chaotic geometry, e.g., a stadium
shaped potential. At the time of writing, author’s group is developing a multiple
multipole technique to solve the generalized Dirac-Weyl equation for pseudospin-
1 system with any given piecewise homogeneous potential, where the multipoles
(or “fictitious” sources) are defined in terms of the analytic three-component
spinor cylindrical wave basis of eigen-solutions in each sub-region separated by
the potential boundaries. In addition, a wave-function matching based scatter-
ing matrix approach is being developed to deal with potential of the eccentric
annular shape. Both methods are semi-analytic, while the former is more power-
ful for near-field calculations and is in principle applicable to arbitrary shape of
the scattering potential. Preliminary studies have revealed that the methods are
highly efficient and accurate, enabling unexpected phenomena to be uncovered
such as the existence of an energy range in which pseudospin-1 chaotic cavities
defy well known phenomena in quantum chaos such as Q-spoiling [84–86]. It
is likely that uncovering, understanding, and exploiting the interplay between
pseudospin-1 physics and classical chaos can represent a new frontier in rela-
tivistic quantum chaos.
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Abstract. Complex dynamical networks may exhibit graph symmetries.
These symmetries leave an imprint on network behaviour and statis-
tics. This effect is first demonstrated in a small opto-electronic network.
We then present the general conditions under which network statistics
become invariant under the action of network symmetries. Statistical
analyses can help reveal the symmetry group of a network graph with-
out knowledge of the underlying network model. Finally, results from
numerical experiments additionally demonstrate this.

14.1 Introduction

Network symmetries exist in many networks and give essential information about
their structure. The difficult problem of reconstructing the graph of a complex
network by studying its dynamics has been studied before [1,2]. In this arti-
cle we demonstrate a tool that instead of resolving individual network connec-
tions, reconstructs the symmetry group of a network using time-series statistics.
This article details how network symmetries manifest themselves in network
behaviour and time-series statistics and gives methods to infer network symme-
tries from statistics in the general case. In this article, unless otherwise stated,
we study a dynamical system as in Definition 1. In this article we study net-
works which contain symmetries. Definition 2 details the conditions for such a
symmetry.
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Definition 1 A dynamical network is defined by the dynamics of N nodes, each
represented by state vectors, adhering to the following equation:

ẋi = Fi(x1(t), . . . ,xN (t)) for i ∈ {1, . . . , N}. (14.1)

Here, xi are the state vectors of the nodes in the dynamical system and
Fi(x1, . . . ,xN ) represents the functions that give the derivative of each node
as a function of all other nodes.

Definition 2 A dynamical system is defined to have symmetry g if
Fg(i)(x1, . . . ,xN ) = Fi(xg(1), . . . ,xg(N)), where g is a permutation g :
{1, . . . , N} → {1, . . . , N}.

A consequence of the above definition of a symmetry of a dynamical system is
that if there is a solution si(t), then sg(i)(t) is also a solution.

This article is organised as follows. In Sect. 14.2 we discuss an opto-electronic
network experiment which demonstrates symmetries in time-averaged behaviour.
In Sect. 14.3 we present a theorem stating the conditions required for symme-
tries in network dynamics to appear in network statistics. We give a more elab-
orate example of the consequences of this theorem in Sect. 14.4. In Sect. 14.5 we
conclude and discuss the possibility of using the presented methods to retrieve
general network symmetries.

14.2 Statistical Symmetries in a Small Opto-Electronic
Network

In this section we detail an experiment with a small opto-electronic network
that demonstrates how network graph symmetries affect network behaviour and
present themselves in network statistics.

14.2.1 Experimental Setup

A network of four coupled opto-electronic time-delayed feedback systems is
used [3]. Each of these systems, ‘nodes’, depicted in Fig. 14.1, consists of a laser
diode which passes a light signal through an integrated Mach–Zehnder modula-
tor, altering the intensity of the signal with a cos2(x + φ0) nonlinearity, where x
is the normalised input voltage to the modulator. This signal is then passed on
to other nodes through optical fibres and returned for self-feedback.

The two input signals, being the self-feedback signal and the inputs from
the other nodes respectively, are measured in separate photoreceivers. A Digital
Signal Processing (DSP) board is then used to apply a feedback and coupling
delay, apply a digital filter, and amplify the signal. The signal is then fed back
into the Mach–Zehnder modulator. In this way, a coupled nonlinear chaotic
oscillator with time delays is produced incorporating both coupling and self-
feedback time delays. A two-pole digital Butterworth filter is used to filter the
signal, with a high-pass frequency of ωH/2π = 100 Hz and a low-pass frequency
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Fig. 14.1. a Possible connections in network, with self-feedback time delays τf and cou-
pling time delays τc included. b Schematic of an opto-electronic node with connections
to neighbours. Red connections are through optical fibres, whereas black connections
are electronic. Figure from [3]

of ωL/2π = 2.5 kHz, operating at a sampling rate of 24 kSamples/s. Connections
between nodes can be controlled by variable fibre-based attenuators.

Equations 14.2–14.5 well describe the dynamics of the network. In reality, due
to the digital sampling of the DSP board, the system dynamics is partitioned
into discrete time steps. In these equations, ui represents the state of the digital
filter corresponding to each node, ε the coupling strength (ranging from 0-1),
and β the round-trip gain. Furthermore, τf is the self-feedback time delay of
each node, whereas τc is the coupling time delay, which controls the input delay
from other nodes. The DC offset of the Mach-Zehnder modulator is given by
φ0, and ωH and ωL are the high-pass and low-pass filter constants respectively.
Finally, Aij is the network connectivity matrix and ni

in is the number of input
nodes per node.

u̇i(t) = Eui(t) − Fβ cos(xi(t) + φ0), (14.2)
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xi(t) = G
(
ui(t − τf ) +

ε

ni
in

∑
j

Aij(uj(t − τc) − ui(t − τf ))
)
, (14.3)

where,

E =
[−(ωL + ωH) −ωL

ωH 0

]
,F =

[
ωL

0

]
,G =

[
1 0

]
,

τf = τc = 1.9 ms, φ0 = π/4, ωH/2π = 100 Hz, and ωL/2π = 2.5 kHz.

14.2.2 Method

Trials on two different network configurations were conducted: the bidirectionally
coupled star and chain networks in Fig. 14.2a, c. Consecutive runs were done on
each network configuration, where ε, the coupling strength was increased in
steps of 0.025, from 0 to 1. Measurement runs of length 2 s were recorded on an
oscilloscope. During the first 0.5 s, the nodes were allowed to oscillate with only
self-feedback, and no coupling, in order to set them in a random, independent
state. Coupling was then enabled and the next 0.1 s of data discarded. The
remaining 1.4 s were used for data analysis.

14.2.3 Results

Root mean square differences between nodes were calculated as a function of ε for
each possible combination of nodes in both networks (

√〈||xi − xj ||2〉 for i < j)
and then plotted in Fig. 14.2b, d. As is visible, the star network achieved syn-
chronisation between outer nodes for high values of coupling, whereas the chain
network did not synchronise in any way, since the difference did not approach
zero.

It can be seen in Fig. 14.2b that the RMS differences for node combinations
2-1, 2-3 and 2-4, and 1-3, 3-4 and 4-1 line up for all values of ε. This is due to
the fact that there exist symmetries in the graph permuting these nodes to each
other, since interchanging the ‘arms’ of the star graph does not alter the topology
of the graph. Therefore one would expect that their general behaviour, and so
any generic statistics, such as the one used here, would line up and give equal
results. If these results were not equal, then that would suggest that symmetry
had been broken in the experiment.

Similarly, it can be seen that in the chain network diagram 1-4 and 3-4 line
up, as well as 1-3 and 2-4. This is due to the fact that the reflection symmetry
in the chain graph permutes nodes 1 and 2 to 4 and 3, meaning that they have
similar behaviour, and so one expects RMS12 = RMS43 = RMS34. For the
same reason, RMS13 = RMS24. Combinations 1-4 and 2-3 can not be permuted
to any other combination of nodes without changing the graph topology, and
so they stand alone and do not cluster. We have now effectively identified the
orbits of all two-node combinations under the action of the symmetry group in
this graph.

These results may seem trivial. However, they are not. Many factors exist in
this real-world setup that break the symmetry of the network. The round-trip
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(a) Star network. (b) Star network.

(c) Chain network. (d) Chain network.

Fig. 14.2. a, c Networks used in experimental setup. b, d RMS difference calculated
for each possible node combination as a function of coupling strength ε

gain β varies slightly in the different systems and can not be fixed exactly. The
phase of the Mach–Zehnder modulators may shift slightly from the rest position
and often needs to be recalibrated. Different lasers operate at slightly different
intensities. These are all reasons for why the systems used in this setup are
nominally homogeneous, but in reality only approximately the same. It can be
concluded from this that network graph symmetries can robustly present them-
selves as symmetries in the statistics of real-world experimental setups where
different factors break exact symmetries.

14.3 Statistical Symmetries in the General Case

The previous section shows that network symmetries can cause symmetries in
statistical data to arise. In this section we will detail which conditions are nec-
essary for this to happen in the general case. This effort culminates in the ‘Main
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Theorem’ presented at the end of this section. We make use in the following
of a so-called statistic of shape S(a1, . . . ,aN ) = H(s1(t), . . . , sN (t)). H can be
imagined to be any calculation of the properties of a solution si(t), such as the
root mean square of the first node: H(s1(t), . . . , sN (t)) =

√〈||s1||2〉, or a cross-
correlation between two nodes. First we define when a symmetry is present in a
statistic using Definition 3.

Definition 3 Define as a statistic a function S(a1, . . . ,aN ) = H(s1(t), . . . ,
sN (t)) that when applied to a particular initial condition (a1, . . . ,aN ),
applies a function H to the corresponding solution of the initial conditions
(s1(t), . . . , sN (t)). Call a statistic S invariant under the action of symmetry g
when it is averaged over some distribution of initial conditions p, if:

∫
S(x1, . . . ,xN )p(x1, . . . ,xN )(dx)n×N =

∫
S(xg(1), . . . ,xg(N))p(x1, . . . ,xN )(dx)n×N .

(14.4)

In order to prove the main theorem we must first prove the following Lemmas
1 and 2.

Lemma 1 (Symmetries in initial conditions continue down the line)
Let φ(x1, . . . ,xN ) be a function of the variables of a dynamical system with
symmetry g. Examine the initial conditions ci and cg(i), with si(t) and zi(t) as
respective solutions. Then:

• zi(t) = sg(i)(t)
• φ(zg−1(1)(t), . . . ,zg−1(N)(t)) = φ(s1(t), . . . , sN (t))

Proof Due to the symmetry of the system, sg(i)(t) is also a solution. Since
sg(i)(0) = cg(i) = zi(0), it follows from the uniqueness theorem that
sg(i)(t) = zi(t) and so, inserting g−1(i), we get φ(zg−1(1)(t), . . . ,zg−1(N)(t)) =
φ(s1(t), . . . , sN (t)).

�

Lemma 2 Let ai be the initial conditions for a dynamical system with symmetry
g and corresponding solution si(t). Let bi = ag(i) and zi(t) be the correspond-
ing solution to the initial conditions bi. Define the statistics S(a1, . . . ,aN ) =
H(s1(t), . . . , sN (t)) and T (b1, . . . , bN ) = H(zg−1(1)(t), . . . ,zg−1(N)(t)).
Then S(a1, . . . ,aN ) = T (b1, . . . , bN ).

Proof

T (b1, . . . , bN ) = H(zg−1(1)(t), . . . ,zg−1(N)(t)) (14.5)
= H(s1(t), . . . , sN (t)) = S(a1, . . . ,aN ).

�
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Main Theorem
Let p(x1, . . . ,xN ) be a distribution over the possible initial conditions.
Let statistics S(a1, . . . ,aN ) = H(s1(t), . . . , sN (t)) and T (b1, . . . , bN ) =
H(zg−1(1)(t), . . . ,zg−1(N)(t)). If p is invariant under the symmetry g, that is,
p(x1, . . . ,xN ) = p(xg(1), . . . ,xg(N)), then:
∫
RN×n

p(x1, . . . ,xN )S(x1, . . . ,xN )(dx)N×n =

∫
RN×n

p(x1, . . . ,xN )T (x1, . . . ,xN )(dx)N×n.

(14.6)
In other words, if a network has symmetry g and its initial conditions are invari-
ant under g, then the statistic over the initial conditions will also be invariant
under the action of g when averaged using distribution p.

Proof
∫

RN×n

p(x1, . . . ,xN )T (x1, . . . ,xN )(dx)N×n (14.7)

=
∫

RN×n

p(yg(1), . . . ,yg(N))T (yg(1), . . . ,yg(N))(dy)N×n ∗

=
∫

RN×n

p(y1, . . . ,yN )S(y1, . . . ,yN )(dy)N×n

=
∫

RN×n

p(x1, . . . ,xN )S(x1, . . . ,xN )(dx)N×n.

* Here the change of variables xi = yg(i) has been used, which has |J | = 1. �

This theorem is the main result of this article. It states that if an experiment
on a network with a symmetry g is done in such a way that the choice of initial
conditions for all trials p does not break the symmetry of the experiment, then
all statistics which are averaged over the initial conditions will also be invariant
under g. If the system is ergodic then the conditions can be much more lax: any
time-averaged statistic will be invariant under g when averaged over sufficiently
long time-series. In an ergodic system all symmetries will therefore be present
in the data of a single run, instead of having to require that the statistics are
averaged over the intial conditions.

14.4 Numerical Results

The results from the previous theoretical section have been demonstrated in
two different, small opto-electronic networks. The experimental setup is lim-
ited to experiments with at most 4 nodes. Simulations allow the results to be
demonstrated in larger networks, with more control over the circumstances. The
8-node opto-electronic network from Fig. 14.3a was simulated using Equations
14.2–14.5. Simulation data from 100 trials with randomised initial conditions
were combined. The root mean square amplitude (

√〈||xi||2〉) of each node was
calculated for every trial simulation of the opto-electronic network, as compared
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(a) 8-node opto-electronic network (b) Average RMS after N runs

Fig. 14.3. a Network used in simulation trials with nodes grouped into orbits by colour.
b Combined root mean square amplitudes from 100 trials of 2000 timesteps each

to the root mean square difference in Sect. 14.2. This was done to identify the
orbits of the nodes of the graph.

The nodes of any graph can be partitioned into distinct orbits Oi. An orbit Oi

is a subset of the nodes of a graph with symmetry group G, where for each node
a, b ∈ Oi, ∃g ∈ G, such that a = g(b), and each orbit is closed under the action
of the G. As is visible in Fig. 14.3a, there are 4 orbits {1, 2, 3, 4}, {5, 6}, {7}, and
{8}. Based on the main theorem, if network statistics are averaged over initial
conditions in such a way that the conditions are invariant under the action
of any symmetry, then one would expect these statistics to be invariant under
the action of the network symmetries. Polling a network randomly over many
different initial conditions is a close approximation to a continuous integral as
stated in the main theorem, which is impossible to do in reality. Define a statistic
RMSi, which gives the root mean square of the signal from node i. If this
network has symmetry g, then one expects that RMSi = RMSg(i). This implies
that any two nodes in the same orbit will have the same root mean square. We
therefore expect in this numerical experiment to see the root mean squares of
the separate nodes to cluster along the lines of their respective orbital partitions
as a consequence of the main theorem.

The data were found to converge into distinct groups. As is visible in
Fig. 14.3b, the four separate orbits of the graph in Fig. 14.3a can clearly be
identified. We therefore confirm that the prediction of the main theorem holds
in this case.

14.5 Conclusion

The main theorem in this work states that, when sampled under a distribu-
tion of initial conditions which is invariant under a symmetry g, any statistics
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calculated on these data must also be invariant under the action of the symme-
try g. Symmetric networks therefore imply symmetric statistics. The converse
was not shown to be true. Symmetries in time-series statistics are however still
strong indicators of symmetries existing in a network. The work presented in
both real and numeric experiments has shown that this result is indeed robust
under ordinary real-world circumstances in real experiments, where symmetries
are necessarily broken by small differences in the experiment. It has also been
shown that the converse also reasonably holds for small networks. The question
is whether the converse generally holds given that sufficient statistical testing
and comparisons are done, and whether this can easily be extended to larger
networks.

Assuming that the presence of network symmetries can be verified with a sim-
ple test, then in theory, the symmetry group of a network can be retrieved from
experimental data. Since the symmetry group of a network with N nodes has
up to N ! symmetries, it is unreasonable to check every symmetry. The question
therefore arises how many tests need to be done to retrieve the full symmetry
group, and what the algorithmic complexity is of this calculation. Regardless of
the complexity of identifying the full group, this method can readily identify the
orbits under the action of the entire network symmetry group, thereby already
giving vital information about the network, and which clusters of synchrony may
form [4,5].
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Abstract. Synchronization phenomena are ubiquitous around us and
are observed in various real systems, for example, hands clapping (rhyth-
mic applause) at the concert hall, light emission of fireflies, callings
of frogs, circadian rhythms, pendulum clocks, mechanical metronomes
placed on a plate, pedestrians on a suspension bridge, water flowing
out of plastic bottles connected by hoses, candle flames fluctuation.
In this paper, we focused on the synchronization phenomena observed
in a mechanical system: mechanical metronomes on a plate. In par-
ticular, we discussed how to construct a mathematical model, or the
equations of motion, which describe dynamical behavior of synchroniza-
tion of mechanical metronomes put on a plate hung by strings. We
also investigated their dynamical behavior by solving the equations of
motions numerically. In the numerical experiments, parameter values of
the equations of motion are experimentally obtained from the experi-
mental equipment. We found that synchronization behavior of mechan-
ical metronomes depends on the following two factors: relation between
the frequencies of the metronomes and the plate, and initial angles of the
metronomes. We also found the individual difference of the metronomes
strongly affects the final behavior. In addition, the results also indi-
cate that if the number of mechanical metronomes increases, it becomes
extremely harder to observe the in-phase synchronization until energy
applied to the metronomes through spiral springs is exhausted.

15.1 Introduction

If a dynamical system has a unique rhythm such as limit cycles, it is called
an autonomous oscillator. In order to create a stable rhythm, the existence
of nonlinear dynamics inherent in the system is essential. Therefore, these
autonomous oscillators are sometimes referred to as nonlinear oscillators. When
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these autonomous nonlinear oscillators are weakly coupled, it is possible to
observe an interesting phenomenon called synchronization [1]. For example,
synchronized flashing of fireflies [2], frog calls [3], mechanical metronomes [4–
7], pedestrians on suspension bridges [8,9], water flowing out of plastic bottles
[10,11], flame of candles [12,13], inflow and outflow of salt water in a cup with
a small hole at the bottom [14,15] and so on.

In this paper, we focused on the synchronization phenomena observed in
mechanical systems, which is movements of mechanical metronomes put on a
swinging plate. We analyzed nonlinear dynamical behavior of the mechanical
metronomes and their synchronization behavior. In particular, we focused on
how to construct a mathematical model, or the equations of motion, which
describe dynamical behavior of synchronization of mechanical metronomes put
on a plate hung by strings. We also investigated their dynamical behavior by
solving the equations of motion numerically. We analyzed the synchronization
phenomenon of mechanical metronomes by using a mathematical model of the
motion equation. We put several mechanical metronomes on a plate hung by
strings. When we conduct numerical simulations, we used the parameter values
in the mathematical model estimated from the handmade experimental equip-
ment. As a result, the time required for the in-phase synchronization becomes
short when the frequency of the plate becomes large.

15.2 Synchronization of Mechanical Metronomes

The metronome is a typical example of a nonlinear oscillator. We can observe
mutual coupling synchronization using the mechanical metronomes. For exam-
ple, using a swinging plate hung by wires, we can observe synchronization phe-
nomena [4,6]. Alternatively, using columnar objects like an empty can and laying
a plate placed on them, we can observe synchronization phenomena [7].

We have already made an experimental equipment by the former method.
Arranging mechanical metronomes on the plate, we conducted physical experi-
ments to observe what kind of synchronization phenomenon occurs. One of the
famous examples is the synchronization experiment with 32 metronomes [4]. In
this experiment [4], a heat insulation board with vertical 600 [mm] × horizontal
1000 [mm] dimension is used as a plate to arrange the metronomes. A rectangu-
lar parallelepiped frame using a resin pipe (Vertical 800 [mm] × Wide 900 [mm]
× Height 600 [mm]) We are hanging the platform with wire (Fig. 15.1a).

The metronome used for the experiment is called “Lupina,” manufactured
by Nikko Seiki Co., Ltd. The size of this mechanical metronome is 110 [mm]
in height, 32 [mm] in width, 51 [mm] in depth, The mass is about 200 [g]
(Fig. 15.1b). Then, mechanical metronomes are placed on the plate, then the
initial position of the rod is randomly applied. As you can see from the movie [4]
even if the number of mechanical metronomes is not so small, for example 32, it
is possible to observe in-phase synchronization. Now, we have already succeeded
in case that the number of metronomes is 100. In [5], successful observation of
in-phase synchronization with 100 mechanical metronomes is published.
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Fig. 15.1. a Experimental equipment with 32 mechanical metronomes, In this equip-
ment, the plate is hung by four strings. b The mechanical metronome called “Lupina,”
which is used in the experiments of metronome synchronization

15.3 Mathematical Model of Metronome Synchronization

In this section, to analyze synchronous behavior using multiple metronomes,
we derive a mathematical model. The results of numerical investigation will be
introduced in the next section. In the following, taking multiple metronomes and
the plate carrying them as a single system, we derive the equation of motion of
the metronomes and the plate.

15.3.1 Experimental Setups and Introduction of Several Variables

The experimental equipment (Fig. 15.1a) consists of multiple metronomes and
the plate hung by four strings. To derive the equations of motions of the
metronomes and the plate, we define several variables. These are shown in
Fig. 15.2.

θp

θi mi

(xi, yi)

x

y

hp

(xp, yp)

Fig. 15.2. Definition of variables to describe dynamical behavior of mechanical
metronomes. In this figure, only one metronome is shown
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First, defining the length of the strings that hung the plate as hp, the dis-
placement of the plate, or the position of the plate (xp, yp), is given by the
following equations:

{
xp = hp sin θp,
yp = hp cos θp.

(15.1)

Then, we obtain the velocity and the acceleration of the motion of the plate:
{

ẋp = hpθ̇p cos θp,

ẏp = −hpθ̇p sin θp,
(15.2)

and
{

ẍp = −hpθ̇
2
p sin θp + hpθ̈p cos θp,

ÿp = −hpθ̇
2
p cos θp − hpθ̈p sin θp.

(15.3)

In the similar way, we obtain the position of the ith metronome (i =
1, 2, . . . , n), defining the length of the pendulum of the ith metronome hi

{
xi = xp + hi sin θi,
yi = yp + hi cos θi.

(15.4)

Then, the velocity and the acceleration can be obtained:
{

ẋi = ẋp + hiθ̇i cos θi,

ẏi = ẏp − hiθ̇i sin θi,
(15.5)

and
{

ẍi = ẍp − hiθ̇
2
i sin θi + hiθ̈i cos θi,

ÿi = ÿp − hiθ̇
2
i cos θi − hiθ̈i sin θi.

(15.6)

15.3.2 The Equation of Motion of the ith Metronome

The equation of motion of the ith metronome can be described by the following
equations:

{
miẍi = Fxi

,
miÿi = mig + Fyi

,
(15.7)

where mi is the mass of the ith metronome, g is the acceleration of gravity, Fxi

and Fyi
are the forces applied to the metronome in horizontally and vertically.

Let us define the moment of inertia of the ith metronome at its center of gravity,
IGi

, the equation of motion of the rotation can be described as

IGi
θ̈i = x′

i × F i = x′
iFyi

− y′
iFxi

, (15.8)
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where x′
i = (x′

i, y
′
i)

ᵀ = (xi−xp, yi−yp)ᵀ and F i = (Fxi
, Fyi

)ᵀ. Using Eq. (15.7),

IGi
θ̈i = mix

′
i(ÿi − g) − miy

′
iẍi

= mihi sin θi(ÿi − g) − mihi cos θiẍi.

In addition, using Eqs. (15.3) and (15.6), we obtain

IGi
θ̈i = −mihig sin θi + mihi sin θiÿi − mihi cos θiẍi

= −mihig sin θi

+mihi sin θi(−hpθ̇
2
p cos θp − hpθ̈p sin θp − hiθ̇

2
i cos θi − hiθ̈i sin θi)

−mihi cos θi(−hpθ̇
2
p sin θp + hpθ̈p cos θp − hiθ̇

2
i sin θi + hiθ̈i cos θi)

= −mihig sin θi

+mihihp sin(θp − θi)θ̇2p − mihihp cos(θp − θi)θ̈p − mih
2
i θ̈i. (15.9)

Then,

(IGi
+ mih

2
i )θ̈i = −mihig sin θi + mihihp

{
sin(θp − θi)θ̇2p − cos(θp − θi)θ̈p

}
.

(15.10)

Here, let us ω2
i = mighi/(IGi

+ mih
2
i ),

θ̈i = −ω2
i sin θi +

ω2
i hp

g

{
sin(θp − θi)θ̇2p − cos(θp − θi)θ̈p

}
. (15.11)

Adding the viscosity term to the equation, we obtain

θ̈i = −ω2
i sin θi +

ω2
i hp

g

{
sin(θp − θi)θ̇2p − cos(θp − θi)θ̈p

}
− 2ζiωiθ̇i.(15.12)

where ζi is the dumping ration of the ith metronome. To derive the dimension-

less equation, we introduce dτ = ωpdt; namely, we use ϕi =
dθi
dτ

, ϕp =
dθp
dτ

,

ϕ̇i =
d2θi
dτ2

and ϕ̇p =
d2θp
dτ2

. Then, Eq. (15.12) can be rewritten in the following
style:

ϕ̇i = −
(

ωi

ωp

)2

sin θi − 2ζi

(
ωi

ωp

)
ϕi

+
(

ωi

ωp

)2

sin(θp − θi)ϕ2
p −

(
ωi

ωp

)2

cos(θp − θi)ϕ̇p. (15.13)

15.3.3 The Equation of Motion of the Plate

In this subsection, we will derive the equation of motion of the plate on which n
metronomes are put. Let us define the mass of the plate mp, and its displacement
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in the horizontal and vertical directions. Then, the equations of motion can be
described: ⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

mpẍp = −Tp sin θp −
n∑

j=1

Fxj
,

mpÿp = mpg − Tp cos θp −
n∑

j=1

Fyj
,

(15.14)

where Tp is the tension of the strings. Using these two equation to remove Tp,
we obtain

mp(ẍp cos θp − ÿp sin θp) = − cos θp

n∑
j=1

Fxj

− mpg sin θp + sin θp

n∑
j=1

Fyj
. (15.15)

From Eq. (15.7),
{

Fxi = miẍi = mi(−hpθ̇2p sin θp + hpθ̈p cos θp − hiθ̇
2
i sin θi + hiθ̈i cos θi),

Fyi = miÿi − mig = mi(−hpθ̇2p cos θp − hpθ̈p sin θp − hiθ̇
2
i cos θi − hiθ̈i sin θi)− mig.

(15.16)

Substituting them into Eq. (15.15),

mphpθ̈p =
n∑

j=1

mj

{
− cos θp(−hpθ̇

2
p sin θp + hpθ̈p cos θp − hj θ̇

2
j sin θj + hj θ̈j cos θj)

+ sin θp(−hpθ̇
2
p cos θp − hpθ̈p sin θp − hj θ̇

2
j cos θj − hj θ̈j sin θj)

}

−
(

mp +
n∑

j=1

mj

)
g sin θp

=
n∑

j=1

mj

{
−hpθ̈p − hj θ̇

2
j sin(θp − θj) − hj θ̈j cos(θp − θj)

}

−
(

mp +
n∑

j=1

mj

)
g sin θp. (15.17)

Let us define γi = mi/mp and ηi = hi/hp,
⎛
⎝1 +

n∑
j=1

γj

⎞
⎠ θ̈p = −

n∑
j=1

γjηj

{
sin(θp − θj)θ̇2j + cos(θp − θj)θ̈j

}

−ω2
p sin θp

⎛
⎝1 +

n∑
j=1

γj

⎞
⎠ . (15.18)
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because ω2
p = g/hp. Here, defining γ1 = · · · = γn = γ and β = γ/(1 + nγ),

θ̈p = −β

n∑
j=1

ηj

{
sin(θp − θj)θ̇2j + cos(θp − θj)θ̈j

}
− ω2

p sin θp. (15.19)

Adding the viscosity term, we have

θ̈p = −β

n∑
j=1

ηj

{
sin(θp − θj)θ̇2j + cos(θp − θj)θ̈j

}
− ω2

p sin θp − 2ζpωpθ̇p

(15.20)

where ζp is the dumping ratio of the plate. Finally, we obtain the following
dimensionless form

ϕ̇p = −β

n∑
j=1

ηj
{
sin(θp − θj)ϕ2

j + cos(θp − θj)ϕ̇j

} − sin θp − 2ζpϕp,(15.21)

by dτ = ωpdt. In Eq. (15.20), ϕi =
dθi
dτ

and ϕp =
dθp
dτ

.

15.3.4 How to Solve the Equations of Motion Numerically

Substituting Eq. (15.21) into Eq. (15.13),

ϕ̇i = −
(

ωi

ωp

)2

cos(θp − θi)

{
−β

n∑
j=1

ηj sin(θp − θj)ϕ
2
j − β

n∑
j=1

ηj cos(θp − θj)ϕ̇j

}

−
(

ωi

ωp

)2

cos(θp − θi) {− sin θp − 2ζpϕp}

+

(
ωi

ωp

)2

sin(θp − θi)ϕ
2
p −

(
ωi

ωp

)2

sin θi − 2ζi

(
ωi

ωp

)
ϕi. (15.22)

Then,

ϕ̇i − β

n∑
j=1

(
ωi

ωp

)2

ηj cos(θp − θi) cos(θp − θj)ϕ̇j

=

(
ωi

ωp

)2

cos(θp − θi)

{
β

n∑
j=1

ηj sin(θp − θj)ϕ
2
j + sin θp + 2ζpϕp

}

+

(
ωi

ωp

)2

sin(θp − θi)ϕ
2
p −

(
ωi

ωp

)2

sin θi − 2ζi

(
ωi

ωp

)
ϕi. (15.23)

Let us define the right hand side of Eq. (15.23) as bi, and b = (b1, . . . , bn)ᵀ,
ϕ = (ϕ1, . . . , ϕn)ᵀ, ϕ̇ = (ϕ̇1, . . . , ϕ̇n)ᵀ, and introduce two matrices Z and Θ by
the following definitions:

Zij =
(

ωi

ωp

)2

ηj cos(θp − θi) cos(θp − θj), (15.24)

Θ = E − βZ. (15.25)
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where E is an n×n unit matrix. Then, we have the following form of the equation,

Θϕ̇ = b. (15.26)

The determinant of Θ is calculated as

det Θ = 1 − β

n∑
j=1

(
ωj

ωp

)2

ηj cos2(θp − θj). (15.27)

If det Θ �= 0, the inverse of Θ is

Θ−1 = E +
β

det Θ
Z. (15.28)

Then, we can express ϕ̇ as follows:

ϕ̇ = Θ−1b =
(

E +
β

det Θ
Z

)
b. (15.29)

In the similar way, substituting Eq. (15.13) into Eq. (15.21), we have
(

1 − β
n∑

j=1

(
ωj

ωp

)2

ηj cos2(θp − θj)

)
ϕ̇p

= β

n∑
j=1

ηj

{
− sin(θp − θj)ϕ

2
j −

(
ωj

ωp

)2

cos(θp − θj) sin(θp − θj)ϕ
2
p

+

(
ωj

ωp

)2

cos(θp − θj) sin θj + 2ζj

(
ωj

ωp

)
cos(θp − θj)ϕj

}

− sin θp − 2ζpϕp,

which is reduced to the following equation:

det Θϕ̇p = β

n∑
j=1

ηj

{
− sin(θp − θj)ϕ2

j −
(

ωj

ωp

)2

cos(θp − θj) sin(θp − θj)ϕ2
p

+
(

ωj

ωp

)2

cos(θp − θj) sin θj + 2ζj

(
ωj

ωp

)
cos(θp − θj)ϕj

}

− sin θp − 2ζpϕp. (15.30)

It is also essential how to decide the impulsive forces of the metronome. The
power of the spring acts as the impulsive force twice per one period to keep a
fixed amplitude with the real metronome. However, it is difficult to measure the
impulsive force mechanically. Therefore, we estimated it from the damping ratio
that we measured from the amplitude. Then, we set the power that absolute value
of angular velocity 25.8 [deg/s] due to the impulsive force of the metronome when
the angle θi becomes ±10◦, and then the pendulum can continue to oscillate.
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15.4 Results

In Fig. 15.3, we show the temporal changes of the angle values of the pendulum
rods of each metronome. We can see that even if the number of metronomes is
large, for example 100, we can observe in-phase synchronization after 60[s] in
this numerical experiments.
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Fig. 15.3. The time series traces of angle values of the pendulum rods of 100
metronomes
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Fig. 15.4. The time required for achieving in-phase synchronization

In Fig. 15.4, the time required for in-phase synchronization was investigated
in case of increasing the number of metronomes. To calculate the time required
for in-phase synchronization, first, we used arbitrary two metronomes from n
metronomes. The possible pair of two metronomes is nC2. Then, we calcu-
lated the correlation coefficients between two time series observed from these
two metronomes. If the minimum value of the correlation coefficients is larger
than 0.9, we defined that in-phase synchronization of metronomes is achieved.
From Fig. 15.4, even if we increased the number of metronomes, the time for
in-phase synchronization shows a tendency to converge. However, this tendency
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does not match to real physical experiments. In the physical experiments, if we
increase the number of metronomes, it becomes very hard to achieve in-phase
synchronization. The reason why all the metronomes exhibit in-phase synchro-
nization relatively easily is that we did not introduce the small difference between
metronomes. Namely, we assume that all the metronomes are homogeneous in
this numerical experiments.

Thus, we conduct numerical experiments in case that metronomes have indi-
vidual difference. In fact, even if we set the natural frequency of the metronomes
to the same value, real oscillation frequencies become slightly different from each
other. For example, if we set the frequency by adjusting the sliding weight of
pendulum in Lupina, such as f = 1.4 [Hz] (168[bpm]), measured values become
as follows: 1.385, 1.376, 1.389 and 1.382 [Hz]. Namely, it is very important to
introduce the individual difference between the metronomes to discuss how the
in-phase synchronization is achieved.

In Fig. 15.5, we show the probability of in-phase synchronization of two
metronomes, if we changed the natural frequency of the plate fp. To evaluate
the synchronizability, we used the probability of achieving in-phase synchroniza-
tion for 100 trials with different initial position of the pendulum rods of two
metronomes. In Fig. 15.5, we expressed the individual difference by ε. Namely,
the frequency of the first metronome f1 is assumed to be 1.06 [Hz], and the
frequency of the second metronome f2 = 1.06 + ε.

If ε = 0 (inverted triangles), we can observe that the in-phase synchronization
is achieved in case that fp (the natural frequency of the plate) is smaller than
the frequency of the metronomes. In addition, we confirmed that there exists
relatively broader range of fp (the natural frequency of the plate) for achieving
in-phase synchronization. However, if we increased the value of ε, the regions for
achieving the in-phase and anti-phase synchronization become smaller.
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Fig. 15.5. Synchronizability measured by the probability of achieving in-phase syn-
chronization for 100 trials with different initial conditions if the natural frequency of
the plate fp is changed

In Fig. 15.6, we evaluated how the individual differences affect the synchroniz-
ability. We defined the individual difference in the frequency of the metronome.
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Using the nominal frequency f = 1.06 [Hz], we decided the frequency of each
metronome by f+ε×u, where ε = 0.015 and u is a uniformly distributed random
numbers between −1 and 1.

In Fig. 15.6a, we show the distribution of the correlation coefficients (gray
circles) and their averaged values (the solid blue line) in case of increasing the
number of metronomes. In Fig. 15.6b, we derived probabilities of in-phase syn-
chronization if we increased the number of metronomes. From these figures, we
can see that if the number of metronomes is 30, the probability of in-phase syn-
chronization becomes almost 0.5, and it becomes almost zero if the number of
metronomes is 100, which indicates that it is almost impossible to achieve the
in-phase synchronization with 100 metronomes until the energy source of the
mechanical metronome is not exhausted.
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Fig. 15.6. How the individual difference between metronomes affect the synchironiz-
ability in case of increasing the number of metronomes. a The distribution of the
correlation coefficients and b the probability of in-phase synchronization

15.5 Conclusion

In this paper, we discussed how to construct the equations of motion of syn-
chronization of mechanical metronomes. We also investigated their dynamical
behavior by solving the equations of motions numerically. In the numerical exper-
iments, parameter values of the equations of motion are experimentally obtained
from the experimental equipment.

We found that synchronization behavior of mechanical metronomes depends
on the following two factors: the frequency of the metronomes and the natural
frequency of the plate and initial angles of the metronomes. We also found the
individual difference of the metronomes strongly affect the final behavior. In
addition, if the number of mechanical metronomes increases, for example 100, it
becomes extremely harder to observe the in-phase synchronization due to indi-
vidual difference of metronomes until energy which is applied to the mechanical
metronomes through spiral springs is consumed.
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Chapter 16
Hardware Implementation of Chaos

Control Using a Proportional Feedback
Controller
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Abstract. This paper presents an electronic implementation of a con-
troller for an exact solvable chaotic oscillator. The controller uses a pro-
portional feedback control scheme to stabilize the chaotic oscillator, with
both analog and digital components. The analog hardware implementa-
tion uses commercial-off-the-shelf (COTS) digital logic components and
an analog feedback path in order to generate a control signal that pro-
duces small voltage perturbations in the oscillator’s trajectory. The dig-
ital portion of the control effort is contained on a single microcontroller,
which contains the information to be encoded into the chaotic oscillator.
The perturbations are aperiodically applied using a clock that is gener-
ated from the oscillator’s output signal so that the pulses can be applied
to the oscillator at the correct times. In order to achieve different stabi-
lized orbits, a variable gain stage was added to the controller, using an
operational amplifier and a potentiometer, such that the magnitude of
the control pulses can be adjusted. This controller is used to demonstrate
stabilization of various periodic orbits in a double scroll exact solvable
chaotic oscillator, which is shown in the time domain and in phase por-
traits. This type of controller could be used to encode information into
chaotic waveforms for communication systems.

16.1 Introduction

Presented here is a mixed-signal proportional feedback controller implemented in
hardware. This controller is demonstrated using a mixed-signal chaotic oscillator
that is based on an exactly solvable piecewise-linear system. One potential appli-
cation for chaos control is for encoding information into the resulting waveform
for communication systems. Chaos based communications have been demon-
strated using small voltage perturbations to control the symbolic dynamics of
an electronic chaotic oscillator [6,7].

The controller is comprised of two primary blocks, a digital portion and an
analog portion. The digital portion of this controller contains information on
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two known trajectories’ general time domain responses. These trajectories are
stored in memory on a microcontroller. One of these trajectories is mapped to
a logic level high, “1”, and the other one is mapped to a logic level low, “0”.
The analog controller compares the desired trajectory with the current state of
the oscillator, which determines how large of a voltage perturbation to apply.
These voltage perturbations are applied at the local maxima and minima of the
oscillator’s trajectory. The analog controller determines when to apply this by
tracking the derivative of the oscillator’s output.

Using both digital and analog controller sections provides flexibility in how
the controller can be used. Different trajectories can be saved in memory with-
out any modification to the analog portion. This could allow for more complex
encoding schemes. The analog portion is capable of fine-tuning the magnitude
of the voltage perturbations across a wide range of values. This is important
since both negative and positive voltage perturbations need to be applied to
the oscillator in order to follow the desired trajectory. This is not possible using
just a digital microcontroller, which typically operates on a single positive power
supply only.

16.2 Background

16.2.1 Controlling Chaotic Oscillators

Chaotic oscillators present interesting challenges and opportunities for control-
ling them. Generally speaking, a chaotic oscillator is controlled by forcing it to
maintain its trajectory in a periodic orbit. This is referred to as stabilizing the
orbit of the oscillator. The inherent characteristics of a chaotic system, such as
extreme sensitivity to initial conditions, an infinite variety of behaviors embed-
ded in it, and an infinite number of unstable periodic orbits, can actually be
exploited in controlling its behavior with a minimal amount of energy or effort,
compared to controlling linear dynamic systems [5]. Several control techniques
have been developed for controlling chaotic oscillators: OGY control, target-
steering chaotic control, proportional feedback control, and delayed feedback
control.

16.2.2 OGY Control

Edward Ott, Celso Grebogi and James Yorke developed a technique for con-
trolling chaotic oscillators known as OGY control [9,12]. This technique takes
advantage of the properties of chaotic systems in that trajectories eventually
come very close to those of unstable periodic orbits. At that time, small pertur-
bations can be applied to the system to nudge the trajectory along the desired
periodic orbit. Additional small perturbations can be applied to keep the tra-
jectory on that orbit, including in the presence of disturbances. Since an infinite
number of unstable periodic orbits exist in the phase space of chaotic systems,
very different controlled system responses can be obtained quite easily, compared
to controlling linear systems.
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16.2.3 Target-Steering Chaotic Control

Another technique for controlling chaotic systems is target steering [4]. In this
chaos control technique, each state variable of the chaotic system is assigned a
target value. At each time step, the values of the state variables are compared
with their assigned target values. A ratio of them is then computed and used to
proportionally adjust the states to steer the trajectory to the desired location.

16.2.4 Proportional Feedback Control

Proportional feedback control is another technique that has been used to control
chaotic systems [8]. In this technique, a state or relevant signal in the system is
sampled, either continuously or periodically. The sample is then compared with
a desired level and its ratio is computed. The resulting ratio is then used to
modulate a relevant control signal in the system to produce a favorable system
response, thus completing the feedback path.

16.2.5 Delayed Feedback Control

Delayed feedback control is yet another technique that has been developed to
control chaotic systems [10]. In this technique, the current state of the system is
sampled and compared with the previously sampled state of the system, exactly
one period in the past. The deviations between the states of the two sampling
periods are computed and used to generate controlling perturbations that are
applied to the system to steer it to the desired unstable periodic orbit.

16.3 Exact Solvable Chaotic Oscillator

The chaotic oscillator that has been chosen for this controller approach is based
on the exactly solvable system previously developed by Saito and Fujita [11].
This system is a synthesis of a linear second order differential equation and non-
linear discrete switching states. This is shown in Eqs. (16.1) and (16.2), where
ln(β) is the positive dampening coefficient, ω is the fundamental frequency, u
is the continuous time variable and s(t) is the discrete state. This system is of
particular interest because it has been shown to have an exact analytical solu-
tion, which was based on the summation of fixed linear basis pulses [2]. This
system has been realized in electronic hardware [1]. From this analytical solu-
tion, a matched filter has been derived, which is the ideal filter for maximizing
single-to-noise ratio (SNR) in the presence of additive white Gaussian noise
(AWGN) [3]. This matched filter has been realized in hardware and used in a
wireless communication system [13].

ü − 2βu̇ + (ω2 + β2)(u − s(t)) = 0 (16.1)

s(t) =
{+1 u(t) ≥ 0, u̇(t) = 0

−1 u(t) < 0, u̇(t) = 0 (16.2)
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16.4 Hybrid Controller

The hybrid controller that is based on proportional feedback consists of both an
analog and a digital portion. The feedback structure has two separate paths, an
inner control loop and an outer control loop, as shown in Fig. 16.1. The digital
control portion was implemented using a microcontroller which was flashed with
code that can be configured to send a square wave signal where the logic high
maps to a specific trajectory and a logic low maps to another distinct trajectory.
This signal was sent to the analog controller, which generated the appropriate
magnitude of voltage perturbation to achieve the desired oscillator response. The
microcontroller monitors the oscillator’s analog output, V, and waits until one
of the known trajectories has been completed.

Fig. 16.1. Block diagram of the two feedback loops of the controller

The two feedback paths are physically connected using jumper wires that
interconnect directly to the microcontroller and the analog controller header
pins. The analog controller was implemented on a custom PCB using COTS
parts, with various buffered testing points. The digital portion of the controller
was programmed using C, compiled, and then flashed to an ARM NUCLEO-
F446RE microcontroller using uVision IDE by Keil. The digital portion of the
controller contains the information that is intended to be encoded into the oscil-
lator. The analog portion of the controller scales the output from the digital
controller to the appropriate voltage level and determines when to apply the
voltage pulses by monitoring the output of the oscillator. The digital controller
monitors the oscillator’s feedback signal to make sure the correct trajectory is
being encoded into the oscillator.

16.4.1 Analog Controller Section

The analog controller was realized using COTS op-amps, comparators, and a
transmission-gate (T-gate) switch, as shown in Fig. 16.2. An analog difference
amplifier compared a desired reference value that was stored on the digital micro-
controller with the current output of the oscillator, V. This comparison generated
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Fig. 16.2. Schematic of the analog controller

Fig. 16.3. Photograph of the analog controller PCB

an error signal that was aperiodically applied to the oscillator at the zero cross-
ings of the derivative of the oscillator’s output. A zero crossing detector circuit
was designed using comparators, feedback resistors, and a NOR gate. The feed-
back resistors were configured in a Schmitt trigger topology with appropriate
values for approximately 50 mV of hysteresis, in order to make the system more
robust to false triggers in the presence of noise. At each of the zero crossings, a
voltage pulse was applied to the oscillator node, V. Each of these pulses had a
magnitude that was proportional to the magnitude of the computed error. The
applied voltage perturbations had a fixed duration; however, the magnitude of
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each of these perturbations could vary in magnitude and direction. This voltage
pulse was intended to push the oscillations to the desired known trajectory. The
populated PCB is shown in Fig. 16.3.

16.4.2 Digital Controller Section

The digital portion of the controller was realized in software on an ARM micro-
controller, a photograph of which is shown in Fig. 16.4. This software contained
two arrays of data that corresponded to a known trajectory segment of the
chaotic oscillator. These trajectory segments were previously determined from
oscilloscope captures of the free running oscillator. One of these segments was
mapped to a logic level high and the other one was mapped to a logic level
low, to encode a “0” and “1” grammar. The microcontroller used a digital input
capture to monitor the current state of the oscillator. This allowed for the con-
troller to transition from a logic high to a logic low asynchronously. While this

Fig. 16.4. Microcontroller PCB for the digital controller
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additional feedback path appears unnecessary, it did improve performance of the
system. This was due to the fact that the time of the transients between these
logic switching events could vary widely, even when the same control effort was
applied.

16.5 Controller Testing

In order to demonstrate how information could be encoded into a chaotic wave-
form, two distinct orbits from the free running chaotic oscillator were chosen.
There were many different orbits that the controller can steer the free running
oscillator into; however, switching between most of these orbits resulted in unpre-
dictable transients in between each orbit. For this reason, two orbits were chosen
that were very different from each other, while still attempting to maintain the
shortest transient between the two orbits. The first orbit contained a trajectory
that the output signal, V, circles both scrolls defined by the feedback state, s(t).
This is shown in the phase space in Fig. 16.5, and in the time domain response
in Fig. 16.6. The other orbit was chosen where the output signal, V, oscillates
around only one of the two orbits of the double scroll. The phase space and the
time domain response for this orbit are shown in Figs. 16.7 and 16.8, respectively.
Alternating between these two trajectories can be seen in the the phase space in
Fig. 16.9, and in the time domain response in Fig. 16.10.

Fig. 16.5. Phase space oscilloscope image of 0-0-0 pattern

These two distinct orbits were chosen because it minimized transients of the
oscillator’s output from switching back and forth between these two orbits. This
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Fig. 16.6. Time domain oscilloscope image of 0-0-0 where green is the oscillator’s
output and yellow is the microcontroller’s logic level

Fig. 16.7. Phase space oscilloscope image of 1-1-1 pattern

makes the amount of time between each of these two orbits be more predictable.
This is important because the proposed encoding scheme relies on the two orbits
being tuned to a similar length. Another measure to help ensure that these
two orbits are of a similar duration is to repeat these patterns multiple times.
While this sacrifices channel efficiency, it does result in a more reliable encoding
and decoding scheme. Another observation, in particular, about the orbit that
is mapped to a logic high, is that it may not completely be contained within
the naturally allowable grammar of the free-running system. For this reason,
the previously developed matched filter may not yield the optimum detection
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Fig. 16.8. Time domain oscilloscope image of 1-1-1 where green is the oscillator’s
output and yellow is the microcontroller’s logic level

Fig. 16.9. Phase space oscilloscope image of 0-1-0 pattern

scheme. However, this design choice was exercised in order to realize a more
practical and reliable hardware implementation.

The fundamental frequency of the analog chaotic oscillator used in this
demonstration was approximately 18.4 kHz. Not factoring in the oscillator
design, one of the limiting factors in increasing the frequency of operation of
the overall system was the propagation delay of the feedback loop of the con-
troller. While this was not an issue using a very low frequency chaotic oscillator,
it could become a significant hurdle when looking to increase the bandwidth in
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Fig. 16.10. Time domain oscilloscope image of 0-1-0 where green is the oscillator’s
output and yellow is the microcontroller’s logic level

an application such as a communication system. These issues will be addressed
in future development.

16.6 Conclusion

Presented here is a mixed signal controller implemented in hardware with poten-
tial applications in communication systems. The controller was composed of an
analog portion and a digital portion. This controller was demonstrated by con-
trolling an electronic chaotic oscillator to two distinct orbits. Using these two
orbits, information can be embedded in the chaotic waveform by mapping one
orbit to a logic high and one to a logic low. A demonstration of encoding infor-
mation was presented using an alternating pattern of logic lows and highs. The
two orbits were chosen in order to minimize transients between switching, which
resulted in more reliable decoding.
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Abstract. We propose in this paper a new routing method that utilizes
hop distance information and transmitting history. Most of conventional
routing methods use global and real-time information such as the number
of waiting packets at nodes. In addition, they assumed that these real-
time information can be accessed instantaneously at every node. These
unrealistic network circumstances, however, limit applicability of routing
methods. On the other hand, our proposed method in this paper uses
transmitting histories held by each node to diversify routes of packets.
In addition, any packets to exchange global information is not necessary.
Numerical simulations indicate that our proposed method shows higher
arrival rate of packets for various scale-free type communication network
models.

17.1 Introduction

Congestion avoidance on networks such as the Internet, airplanes networks, vehi-
cle traffic networks are inevitable of making future green society. Based on pio-
neering discoveries of small-world phenomena [1] and scale-free features [2], sev-
eral studies for revealing congestion occurrence, or avoiding congestion on net-
works, are stimulated. Strategies for removing the congestion on the networks are
categorized into two ways. The first one is to change underlying infrastructure or
connections between nodes to alleviate congestion on networks [3]. The second
one is to change routes on the networks by using sophisticated strategy. In fact,
changing connections of networks is an effective way for removing congestion,
however, it needs huge costs. Thus, many researchers have been developing bet-
ter routing strategies for avoiding congestion, or enhancing network capacities
so far.

As an example of network model to alleviate congestion, most of researchers
uses communication network models [4]. We also employ the communication net-
work models in this paper. A basic strategy that is commonly employed as the
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routing method in real computer networks is the shortest hop method (SP) [5],
and this method has a significant problem. If the flowing of packets in the network
increases, large volumes of packets are accumulated at nodes where many trans-
mitting paths pass through. This causes delay of communication, or removal of
packets in the worst case. To overcome this problem, Yan et al. developed a rout-
ing algorithm with local information such as degrees at each node [6]. Echenique
et al. proposed a traffic aware method that uses hop distance and the number
of waiting packets at nodes [7]. Tang et al. proposed a routing algorithm that
employed a global and a local self-adjusting traffic awareness protocol [8]. Huang
et al. proposed a probabilistic routing method that utilizes degree of nodes and
hop distance information [9]. Wang et al. analyzed traffic dynamics for scale-free
networks and proposed a routing algorithm using integrating local static and
dynamic information [10,11]. A routing algorithm using link weight informa-
tion and global dynamic information concerning network traffic was proposed
in Ref. [12]. In addition, a routing method using artificial neural networks was
proposed in Refs. [13–15] and this method was further improved using mutual
connected chaotic neural networks [16–19].

As a routing method for alleviating congestion in communication network
model, a memory routing method [20] has already been proposed. In this rout-
ing method, at each node selections of nodes for packet transmission are deter-
mined using hop distance information of networks, the number of waiting pack-
ets at adjacent nodes, and transmitting history. Although the memory routing
method [20] avoids the congestion of packet effectively, each node always requires
the number of waiting packets of the adjacent nodes at each time instant. The
network model [20] is, therefore, assumed that each node instantaneously obtains
the global and real-time information with any increase of packets in the whole
networks. In addition, similar assumptions are seen in Refs. [6,7,10,12,21]. How-
ever, these unrealistic assumptions limit applicability of routing protocol for the
real computer networks. In light of the above considerations, we propose a rout-
ing method that autonomously determines the transmitting nodes of packets at
each node without global information in this paper. Numerical experiments show
that our method keeps higher average arrival rate of packets than conventional
routing methods for various scale-free type communication networks.

17.2 Communication Network Model

In this paper, an unweighted and undirected graph G = (V,E) is used as a
communication network model, where V is a set of nodes and E is a set of links.
In this communication model, each node represents a host and a router in the
network, and each link represents a connection between the nodes. A packet is
then generated at a randomly selected node, and a destination of the packet
that is different from the generated node is randomly assigned. Each node has a
buffer for storing packets. If a packet is generated at a node, the packet is stored
at the tail of the buffer of the node. In addition, a packet at the head of the
buffer is transmitted to one of adjacent nodes. Here, adjacent means that nodes
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are directly connected by a link with each other. In other words, all packets
are transmitted according to the First-In-First-Out principle. If the packet is
transmitted to the node that has full volume of the packets in its buffer, the
transmitted packet is removed from the network. Further, if a packet arrives at
its destination, the packet is also removed from the network.

Similar to techniques to diversify node processing abilities introduced by [22],
we assign to each node a packet storing capacity and transmitting performance.
The packet storing capacity is the maximum number of packets each node can
store in its buffer. In addition, the transmitting performance is the maximum
number of packets the node can transmit the packets to its adjacent nodes at
once time.

The packet storing capacity of the node i, Bi, is defined as

Bi = μki, (17.1)

where μ > 0 is a control parameter and ki is the degree of the node i. By using
Eq. (17.1), each node has the packet storing capacity that is proportional to its
degree.

The transmitting capability of the node i, Ci, is defined as

Ci = 1 + �λki + 0.5�, (17.2)

where λ > 0 is a tunable parameter.
If μ and λ are set to large values, congestion of packets hardly occurs because

each node can store a large number of packets and transmits many packets to
the adjacent nodes at once time. However, constructing such a communication
network needs a huge cost. Thus, it is desirable to develop a packet routing
strategy that works well with small values of μ and λ.

17.3 Realization of a Routing Method with Memory
Information

In our routing method, an adjacent node j to which a packet will be transmitted
from the node i at the t + 1th time is determined using the following equation:

yij(t + 1) = ξij(t + 1) + ζij(t + 1), (17.3)

where yij(t + 1) is an evaluation value of packet transmission from the node
i to adjacent node j, ξij(t + 1) is distance information from the node i to a
destination through the adjacent node j, and ζij(t + 1) is memory information
between the node i and j. ξij and ζij will be defined in Eqs. (17.4) and (17.5).
If yij(t + 1) has the smallest value of the other nodes, the node i transmits a
packet to the adjacent node j.

The distance information, ξij(t + 1), is defined as follows:

ξij(t + 1) =
dij + djg(pi(t))∑

k∈Ni

(dik + dkg(pi(t)))
, (17.4)
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where dij is the static hop distance between the node i and the adjacent node
j, Ni is a set of adjacent nodes of the node i, pi(t) is a packet transmitted from
the node i at the tth time, g(pi(t)) is the destination of pi(t), djg(pi(t)) is the
shortest distance between the adjacent node j and g(pi(t)), and this variable
dynamically changes depending on g(pi(t)).

The SP method that is commonly employed in the real communication net-
works is realized by using the distance information only: an adjacent node j to
which the packet transmitted from the node i is determined by min yij(t + 1) =
ξij(t + 1).

The memory information of the node i, ζij(t + 1), is defined as follows:

ζij(t + 1) = α

t∑

s=0

γsxij(t − s)

= αxij(t) + γζij(t), (17.5)

where α > 0 is a control parameter that determines strength of the memory
information, 0 < γ < 1 is a decay parameter of the memory information. A
memorizing variable of the packet transmission from the node i to the adjacent
node j at the tth time, xij(t), is defined as follows:

xij =

{
1 (min yij(t + 1)),
0 (otherwise).

(17.6)

By using memory information, each node successfully memorizes past trans-
mitting history. If the node i frequently transmits the packets to the adjacent
node j, ζij increases. As a result, the node i avoids to transmit the next packet
to the adjacent node j. We expect that this diversification of transmitting routes
using the memory information expands network capacities effectively. In addi-
tion, any packets to exchange the dynamic information of networks such as
the number of waiting packets at nodes is not necessary in our routing method
because diversification of transmitting routes can be realized by the transmitting
histories held by the nodes themselves. We consider this functionality increases
applicability of our proposed method for the real-world systems.

17.4 Numerical Experiments

Since real communication networks are scale-free [23], we will adopt the scale-
free topology as the communication network models. We compared performance
of our proposed method with that of a SP and a SPr methods. The SP method
transmits the packets on the fixed shortest paths between the sources and des-
tinations once the network created and the shortest paths between any nodes
are calculated by the Dijkstra algorithm. On the other hand, the SPr method
randomly selects the transmitting routes of packets if two or more nodes have
equal shortest distance to the destination.
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First, we evaluate performance of the routing methods for the BA scale-
free networks [2]. The BA scale-free networks are constructed by the following
procedure. We begin with a complete graph with m0 nodes. Then, we add a
new node with m0 links at every time step. Next, we connect m0 links of the
newly added node to the nodes that already exist in the network with probability
Π(ki) = ki/

∑N ′

j=1 kj , where ki is the degree of the ith node (i = 1, . . . , N ′), and
N ′ is the number of the nodes at the current iteration.

Numerical simulations are conducted as follows. First, R packets with ran-
domly selected sources and destinations are generated at each iteration. Here, we
defined one iteration as at every node a selection of transmitting nodes among
the adjacent nodes and transmissions of packets to the selected node. When a
packet arrives at its destination the packet is removed from the networks. In
addition, if a packet is transmitted to the adjacent node beyond its buffer size,
the packet is removed from the networks. We used the number of iterations, T ,
for T = 1, 000. In addition, α and γ in (17.5) are set to 0.01 and 0.99. We also
set μ in Eq. (17.1) and λ in Eq. (17.2) to 1, 000 and 0.4 respectively.

In these numerical experiments, we used the following four measures.

1. Average arrival rate of packets, Ā:

Ā =
1

RT

T∑

t=1

a(t), (17.7)

where R is the number of generating packets at each iteration, T is the number
of iterations, and a(t) is the number of arriving packets at the tth iteration.
The average arrival rate is an important measure to evaluate the routing
strategy. By reducing or inhibiting the packet congestion in the network, the
routing strategy keeps higher arrival rate.

2. Average hop of arriving packets, H̄:

H̄ =
1

|Pa|
∑

i∈Pa

hi, (17.8)

where Pa is a set of the arriving packets, |Pa| is the number of elements of
Pa, and hi is the number of hops of the arriving packet i.

3. Average arrival time of arriving packets, H̄:

T̄ =
1

|Pa|
∑

i∈Pa

ti, (17.9)

where Pa is a set of the arriving packets, |Pa| is the number of elements of
Pa, and ti is the total arrival times of arriving packet i. The arrival time is a
consumed time of routing path and the waiting time on nodes. By decreasing
T̄ , the packets are quickly transmitted to their destinations.

4. Standard deviation of arrival times of arriving packets, var(T ):

var(T ) =
√

1
|Pa|

∑

i∈Pa

(Ti − T̄ )2, (17.10)



Congestion Avoidance on Networks Using Independent Memory Information 169

 0.6

 0.65

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 50  100  150  200  250  300

A
ve

ra
ge

 a
rr

iv
al

 r
at

e

R

SP
SPr

Proposed

(a)

 2.65

 2.7

 2.75

 2.8

 2.85

 2.9

 2.95

 3

 3.05

 3.1

 3.15

 50  100  150  200  250  300

A
ve

ra
ge

 n
um

be
r 

of
 h

op
s

R

SP
SPr

Proposed

(b)

 0

 20

 40

 60

 80

 100

 120

 140

 50  100  150  200  250  300

A
ve

ra
ge

 a
rr

iv
al

 ti
m

es

R

SP
SPr

Proposed

(c)

 1.2

 1.3

 1.4

 1.5

 1.6

 1.7

 1.8

 1.9

 2

 2.1

 2.2

 60  80  100  120  140  160  180

V
ar

ia
nc

e 
of

 a
rr

iv
al

 ti
m

es
 

R

SPr
Proposed

(d)

Fig. 17.1. Relationship between the number of generating packets (R) versus a an
average arrival rate of packets (Ā), b an average hop of arriving packets (H̄), c an
average arrival time of arriving packets (T̄ ), and d a standard deviation of arrival time
of arriving packets (var(T )) of SP, SPr, and proposed methods for the BA scale-free
networks (N = 300, m0 = 4). In all figures, the error bars are smaller than the symbol
size

where Pa is a set of the arriving packets, |Pa| is the number of elements of
Pa, T̄ is the total arrival time of packets defined by Eq. (17.9), and Ti is the
number of arrival times of the arriving packet i.

Figure 17.1 shows the number of generating packets (R) versus an average
arrival rate of packets (Ā), an average hop of arriving packets (H̄), an average
arrival time of arriving packets (T̄ ), and (d) a standard deviation of arrival time
of arriving packets (var(T )) for the BA scale-free networks (N = 300,m0 = 4).

In Fig. 17.1a, Ā according to the SP method decreases when R becomes 100,
and that according to the SPr method start decreasing when R is larger than
190. On the other hand, the proposed method keeps 100% of arrival rate until R
becomes 270. In Fig. 17.1b, H̄ according to the proposed method is larger than
that according to the SP and SPr methods. The proposed method decentralizes
the transmitting nodes of packets using the memory information, however, H̄ is
slightly larger than that of SPr method. This result indicates that the proposed
method transmits the packets using the paths that are slightly longer than the
shortest paths. In Fig. 17.1c, T̄ according to the SP method suddenly increases
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Fig. 17.2. Relationship between the number of generating packets (R) versus an
average arrival rate of packets. The transmitting performance is set to a λ = 0.0, b
0.1, c 0.4, and d 0.7, respectively. The number of nodes is set to 300. In all figures, the
error bars are smaller than the symbol size

when R is larger than 100. This indicates that the networks are congested if
R is larger than 100. The packets are then trapped into the congested node,
and they needs long iterations to be transmitted to their destinations. On the
other hand, T̄ according to the proposed method start increasing when R is
larger than 270. In Fig. 17.1d, we compared var(T ) of the proposed method with
that of the SPr method on the condition that the networks has free-flow state.
Figure 17.1d illustrates that var(T ) according to the proposed method is larger
than that according to the SPr method. These results indicate the proposed
methods successfully diversifies the transmitting routes of the packets using the
memory information because the proposed method keeps high Ā even if H̄, T̄ ,
and var(T ) increase.

0 < λ ≤ 1 in Eq. (17.2) determines transmitting performance of each node:
the number of packets a node can transmit the packets to its adjacent node at
once time. If λ is set to a large value, the congestion hardly occurs, however,
constructing such the communication networks needs much cost. To clarity the
performance of the routing methods against rich or poor conditioned networks,
we next evaluated the routing methods for the communication networks with
different transmitting performance.
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Figure 17.2 shows the number of generating packets (R) and an average
arrival rate of packets (Ā) for the BA scale-free networks with different trans-
mitting performance. In Fig. 17.2a, each node transmits only one packet to its
adjacent node at each iteration. Even if these poor conditioned networks, the
proposed method keeps highest arrival rate of packets of the conventional rout-
ing methods. In Fig. 17.2b–d, Ā according to all the routing methods increases
as λ becomes large. Especially, a point where Ā start decreasing of the proposed
methods, i.e., the phase transition point from free-flow to congested state [24],
drastically increases as λ becomes large. These results suggest that our method
shows higher arrival rate both poor and rich conditioned communication net-
works.

Next, we evaluate the routing methods for the scale-free networks with dif-
ferent degree exponents. In scale-free networks, the degree distribution follows a
power-law distribution, P (k) ∼ k−γ , where P (k) is a probability that a node has
degree k. In most of scale-free networks, γ is in the range of [2, 3]. We are then
interested in how the performance of our method varies if the degree exponent
changes. To construct the scale-free networks with different degree exponents, we
adopted the network model proposed by Ref. [25]. The scale-free networks with
adjustable degree exponent are generated by the following procedures. First, N
isolated nodes to which positive integers (i = 1, . . . , N) are indexed are generated
in the network. Each node is then assigned an weight defined by pi = i−η where
0 ≤ η ≤ 1 is a tunable parameter. Next, nodes i and j are connected by a link
using probability defined by the normalized weight pi/

∑N
k=1 pk and pj/

∑N
k=1 pk

if there is no connection. This model [25] generates a scale-free network with the
degree exponent following the power-law distribution P (k) ∼ k−γ , where γ is
given by γ = (1 + η)/η. We added 10 N edges in these numerical simulations [9].

Figure 17.3 shows the number of generating packets (R) versus an average
arrival rate of packets (Ā) for the scale-free networks with different degree expo-
nents. In Fig. 17.3, although the BA scale-free network has approximately 4 N
links in the networks, this model has 10 N links. Thus, the transmitting routes of
this network model are much larger than that by the BA scale-free networks. By
using transmitting routes effectively, the proposed method keeps 100% of arrival
rate even if R is over 700. In addition, the performance dependency against
the different degree exponents cannot be seen in our proposed method. On the
other hand, the Ā according to the SPr method becomes higher arrival rate as
γ increases.

These numerical results indicate that our proposed method shows high per-
formance for transmitting packets by using the memory information effectively.
The memory information works to diversify the transmitting routes of pack-
ets and to prevent the communication network models from congestion. As a
result, the packets successfully been transmitted to their destinations even if the
number of packets in the networks increases.
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Fig. 17.3. Relationship between the number of generating packets (R) versus an aver-
age arrival rate of packets. Degree exponent γ of the scale-free networks is set to a
γ = 2.0, b 2.5, c 2.75, and d 3.0. The number of nodes is set to 300. In all figures, the
error bars are smaller than the symbol size

17.5 Conclusion

In this paper, we proposed a memory-based routing method that utilizes the
hop distance information and the transmitting history for selecting routes of
the packets. The key point of our method is that the global information of the
networks such as the number of packets at the adjacent nodes is not neces-
sary, however, our method shows higher arrival rate for various scale-free type
communication network model even if the number of flowing packets increases.
Autonomous selections of transmitting paths using the local information such as
transmitting history held by each node has much possibility for real applications
because no additional information exchange is required.
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Chapter 18
Opinion Network Modeling

and Experiment
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Abstract. We present a model describing the temporal evolution of
opinions due to interactions among a network of individuals. This
Accept-Shift-Constrict (ASC) model is formulated in terms of coupled
nonlinear differential equations for opinions and uncertainties. The ASC
model dynamics allows for the emergence and persistence of major-
ity positions so that the mean opinion can shift even for a symmet-
ric network. The model also formulates a distinction between opinion
and rhetoric in accordance with a recently proposed theory of the group
polarization effect. This enables the modeling of discussion-induced shifts
toward the extreme without the typical modeling assumption of greater
resistance to persuasion among extremists. An experiment is described
in which triads engaged in online discussion. Simulations show that the
ASC model is in qualitative and quantitative agreement with the exper-
imental data.

18.1 Introduction

While the experimental study of social influence and opinion change in particular
primarily remains the province of the social sciences, the modeling of social
influence dynamics, however, has extended into other fields including physics,
computer science, and electrical engineering [1–3]. The primary goal of opinion
network models is to predict final opinions from initial ones typically via a process
that updates node opinions over time. Continuous opinion models — the concern
of this paper — allow for incremental shifts in opinion where the amount of
change depends upon the distance between node opinions and the network of
interpersonal influence that couples nodes. The DeGroot and Friedkin–Johnsen
models, as well as the consensus protocol (a continuous time version of the
DeGroot model), use a linear dependence in which the shift is proportional to
the opinion difference [4–6]. Bounded confidence models posit a hard opinion
difference threshold, within which nodes interact linearly, but beyond which the
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interaction vanishes [7]. The nonlinear model of [8] uses a soft threshold so that,
rather than vanishing completely, the interaction decays smoothly with distance.

Modeling how opinions become more extreme has been of particular concern
in the opinion network modeling literature. The primary contribution of this
paper is to present an opinion network model, the Accept-Shift-Constrict (ASC)
model, which provides an experimentally-supported depiction of group polariza-
tion, a classic social psychology effect in which discussion among like-minded
group members tends to make groups more extreme. The ASC model describes
opinion change processes over a network as group members exchange messages.
These processes consist of, first, the acceptance of a persuasive message which
can then lead to a shift in the receiver’s opinion and also a constriction of the
receiver’s uncertainty level. In turn, this constriction narrows the extent to which
subsequent messages advocating distant opinions are accepted.

This paper proceeds as follows. The next section discusses the group polar-
ization effect along with its treatment in social psychology and the opinion net-
work modeling literature. Section 18.3 describes a recent experiment involving
discussion about betting on National Football League (NFL) games, the results
of which challenge existing group polarization theory. In Sect. 18.4, an alterna-
tive frame-induced theory of group polarization is presented that can account
for the experimental results. Sections 18.5 and 18.6 present the ASC model and
experimentally-relevant simulation results.

18.2 Group Polarization Effect

In the group polarization effect, discussion among group members who are all on
the same side of an issue induces more extreme decisions or opinions (“polariza-
tion” as used here connotes a group shifting further toward one pole of an issue
rather than diverging toward opposite poles as in conventional usage) [9–11]. It
was originally referred to as the “risky shift” as it was discovered in an exper-
imental context involving small groups faced with choosing among options of
varying risk levels; discussion tended to shift groups toward riskier options than
the average of their pre-discussion preferences. Subsequent research observed
systematic discussion-induced extremism in homogeneous groups in broader con-
texts including social and political attitudes and the severity of punishments in
jury deliberations. A group is considered to be homogeneous with respect to an
issue if all its members have initial preferences that lie on one side of the issue’s
neutral reference point. Group polarization is then said to occur if after the
discussion the mean preference of the group shifts further away from the refer-
ence point compared with the mean prior to discussion. Polarization is typically
observed for issues that have a substantial judgmental component as opposed to
issues like math problems that have demonstrably correct solutions.

Two distinct processes, based on informational and normative influence
respectively, are most commonly accepted in social psychology as causes of group
polarization [9,10]. The informational influence explanation, known as persuasive
arguments theory, focuses on the role of novel arguments. In essence, members



176 M. Gabbay

of a homogeneous group, although inclined toward the same side of an issue, will
typically possess different arguments in support of that side. The exchange of
these arguments in discussion then exposes group members to even more infor-
mation supporting their initial inclination and so shifts it further in the same
direction. The normative influence explanation, social comparison theory, posits
that the relationship of group member positions with respect to a culturally
salient norm is critical rather than the information underlying those positions.
The norm is taken to favor one pole of the issue. For example, a norm favor-
ing risk-taking makes riskier positions more socially ideal than cautious ones.
A major problem of the informational and normative influence theories is that
they always predict polarization for an individual group whenever the polar-
ization preconditions (homogeneous group and judgmental issue) are present,
regardless of the distribution of initial opinions within the group. This prob-
lem stems from the fact that these theories were never reconciled with stronger,
concurrent social influence phenomena such as majority influence and consensus
pressure [12].

Within the opinion network modeling literature, extremism has been pre-
dominantly modeled by attributing higher network weights to nodes with more
extreme initial opinions [13,14]. This approach, which we refer to as “extremist-
tilting,” is necessitated by the property of most continuous opinion models that
the mean opinion in networks with symmetric coupling remains constant at its
initial value — a property that is at odds with the shift in mean exhibited in
group polarization. Consequently, extremists must be assigned greater influence
over moderates than vice versa in order to shift the mean. This explanation is
different from the two more prominent theories above but shares their problem
of uniformly predicting polarization for homogeneous groups.

18.3 Experiment

This section describes the group polarization experiment conducted in [12]
in which three-person groups engaged in online discussion about wagering on
National Football League (NFL) games. As is standard practice in NFL betting,
spread betting was employed rather than wagering directly on which team will
win the game. In spread betting, the terms “favorite” and “underdog” refer,
respectively, to the likely winner and loser of the game itself. The point spread
is the expected margin of victory of the favorite team as set by Las Vegas odd-
smakers. A bet on the favorite is successful if its margin of victory exceeds the
spread; otherwise a bet on the underdog is successful.1 If Team A is the favorite
by a spread of six points over the underdog Team B, then Team A has to win
the game by more than six points in order for a bet on Team A to pay off. The
objective of the spread is to endeavor to equalize the odds for either the favorite
or underdog to win the bet.

In the experiment, an upcoming NFL game was chosen and a pre-survey
then elicited subject initial preferences with respect to team choice and a wager
1 In actual practice, bets are returned if the victory margin equals the spread.
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amount on that team from $0 to $7 (in whole-dollar increments). On the basis of
the pre-survey, discussion groups were constructed with respect to three dichoto-
mous variables. The first is policy side of favorite or underdog corresponding to
the team chosen as more likely to beat the spread. This variable imposes the
polarization precondition of having like-minded group members as the groups
are homogeneous with respect to the fundamental policy question of which team
will win the bet. The second variable is disagreement level of “high” or “low”
that depends upon the difference between the minimum and maximum wagers
in the group. Each group consisted of low, intermediate, and high wager individ-
uals with respective wagers w1, w2, and w3. In all groups, the intermediate wager
was set so that w2 ∈ {$3, $4}. In the high disagreement condition, w1 = $0 and
w3 = $7 giving a difference of $7. In the low disagreement condition w1 ∈ {$1, $2}
and w3 ∈ {$5, $6} so that the difference could be $3, $4, or $5. The third vari-
able is network structure of “complete” in which all members could communicate
with each other or “chain” in which the intermediate wager member w2 served
as the center node connecting w1 and w3. After discussion, each member made
their final wager. A group decision was not required but groups arrived at a
consensus wager far more often than the alternative outcomes of a two-person
majority or three different wagers. A winning (losing) bet resulted in a payoff of
$7 plus (minus) the wager, which was donated to a charity.

Polarization, or more specifically a risky shift, is observed for a group if its
mean wager after discussion is greater than its initial mean wager. Most of the
198 groups reached a consensus wager. For these 169 consensus groups, statisti-
cally significant results were observed for all three of the manipulated variables.
For policy side, only the favorite side exhibited a risky shift whereas the underdog
side did not. For disagreement level, restricted to favorite groups (as underdog
groups showed no systematic risky shift), high disagreement groups exhibited a
greater risky shift than low disagreement groups. For network structure, simi-
larly restricted to favorites, complete networks showed a greater risky shift than
chains. All three of these behaviors can be seen in Fig. 18.1 in which substantial
polarization is observed when the error interval is above the initial mean.

The above results are not readily explained by standard polarization the-
ory. Particularly challenging is the policy side result as standard theory predicts
that both policy sides should show a risky shift. For persuasive arguments the-
ory, members of both the favorite and underdog groups presumably possess novel
information in support of their team choice and should therefore increase their
confidence and wager. For social comparison theory, a norm toward risk taking
should cause both sides to increase their wager. The extremist-tilting explana-
tion prevalent in opinion network modeling also fails to explain this differential
polarization by policy side: if individuals with more extreme wagers are taken
to be more confident and persuasive, then both favorite and underdog groups
should display an equal tendency to increase their wagers.
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Fig. 18.1. Observed and simulated mean consensus wagers as function of initial wager
difference, w3 − w1. a Complete network. b Chain network. Favorite groups shown on
the positive x axis, underdogs on the negative. Observed consensus is average of final
consensus wager (taken as positive for both favorites and underdogs) over groups at
each difference value (no $5 difference groups were used as there were only four total).
Also shown is average of the group mean initial wager. Experimental data shown as
circles. Error bars are standard errors. χ2 value is the sum of the squared errors between
the simulated and the experimental values normalized by the standard error at each
data point. Simulation parameters: α = 0.034, λ(0) = 0.03, λmin = 0.01

18.4 Frame-Induced Polarization Theory

Reference [12] proposes a novel theoretical mechanism for group polarization
that explains the results of the experiment. Central to the proposed mechanism
is the distinction between the quantitative policy under debate and the rhetorical
frame — the aspect of the policy upon which deliberations focus. The rhetorical
frame will typically correspond to the dominant source of disagreement within
the group due, for instance, to uncertainty as to the likelihood of an outcome.
In a binary gamble such as in the experiment, the policy (e.g. wager amount)
is linked to a given outcome (e.g. team) and so the rhetorical frame should
be the subjective probability that that outcome will occur (e.g. win against
the spread). The rhetorical frame position ρ(x) is taken to be a function of
the policy x. Groups will tend to shift toward the extreme if the functional
relationship between the rhetorical position and the policy is concave (ρ′′ < 0),
that is, the rhetorical position increases more slowly as the policy becomes more
extreme. For the experiment, such a concave relationship is expected between the
subjective probability that a subject’s chosen team will win against the spread
and the wager amount (see Sect. 18.6).

The effect of concavity is to compress rhetorical distances toward the extreme
relative to the distances between more moderate members, making it easier for
majorities to form on the extreme side of the mean. Consequently, while the pol-
icy distribution may be symmetric so that no majority is favored on either side
of the mean (as is approximately the case in our experiment), the distribution of
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rhetorical positions is skewed so that there is an initial majority on the extreme
side of the rhetorical mean. This rhetorically-proximate majority (RPM) con-
verges to a policy position more extreme than the mean to which the remaining
minority of group members then concur, thereby resulting in a consensus policy
that exhibits group polarization. The members of the F group (analogous to the
favorite groups) in Fig. 18.2 provide an example of this mechanism. Although the
intermediate member F2 is equidistant in policy from the moderate F1 and the
extremist F3, F2 is rhetorically closer to F3 and therefore (F2, F3) is the RPM
pair. They agree on a policy halfway between them to which F1 comes up due
to majority influence. The RPM policy (b) is seen to be greater than the initial
mean policy (a).
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Fig. 18.2. Effect of rhetorical function concavity and offset reference. ρ(x) = 1/(1 +
e−β(x−x0)) with β = 0.13, x0 = −5. Short lines at bottom show alternative F group
consensus policies: a mean policy x̄ = x2; b RPM policy x̄23 = (x2+x3)/2. ASC model
acceptance functions in gray at bottom

Although the concavity of the rhetorical function explains the basic group
polarization effect, it cannot by itself account for unequal polarization on oppos-
ing policy sides as observed in the experiment. Capturing this differential polar-
ization involves the freedom of the rhetorical function to have a different reference
point than the policy. The policy reference is defined as the neutral point, taken
to be x = 0, that demarcates opposing policy sides. The rhetorical reference
is defined as the policy value that maps to the neutral point of the rhetorical
frame. For a proper frame, the rhetorical reference is the same as the policy
reference so that the pro and con policy sides coincide with the pro and con
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rhetorical sides. For an improper frame, the rhetorical and policy references are
offset so that the rhetorical reference splits one of the policy sides. Figure 18.2
shows how an improper frame can lead to differential polarization by policy
side. The rhetorical reference splits the con (negative) policy side, which results
in the U group (analogous to underdog groups) being arrayed on the approx-
imately linear part of the rhetorical function rather than on the shoulder as
for the F group. Consequently, U2 is roughly the same rhetorical distance from
both U1 and U3. Considering the effects of uncertainty and noise, formation of
the moderate (U1, U2) RPM pair is about as likely as the extreme (U2, U3) pair
so that systematic group polarization is absent or much reduced as observed in
the experiment for the underdog groups. An improper frame can result from the
heuristic substitution of a simpler, intuitive frame in place of a more complex
proper frame that directly corresponds to the policy [12]. In the experiment, the
heuristic frame of which team will win the game replaces the proper frame of
who will win against the spread.

18.5 Accept-Shift-Constrict Model

The ASC model evolves both the positions and uncertainties of group members
in response to their dyadic interactions. We consider position first, which can be
a policy or, more generally, an opinion about some matter. A persuasive message
sent by one group member to another must first be accepted by the recipient
in order to shift their policy. While a number of factors can affect whether a
message is accepted, the distance between the message’s rhetorical position and
that of the receiver plays the key role in the ASC model: if the distance is
within the latitude of acceptance (LOA), the message is likely to be accepted,
but the acceptance probability rapidly decays beyond the LOA. If the message is
accepted, then the receiver’s policy is shifted in proportion to its distance from
the sender’s policy.

Formally, we encode the above process as an ordinary differential equation
for xi(t), the policy position of the ith group member at time t. For a group
with N members, the rate of change of xi is given by

dxi

dt
=

N∑

j=1

νij(xj − xi) exp
{

−1
2

(ρ(xj) − ρ(xi))2

λ2
i

}
, (18.1)

where νij is the coupling strength from j → i and λi is i’s LOA. The matrix
formed by the coupling strengths defines a position-independent network of influ-
ence. In general, νij depends on communication rate and other factors such as
credibility and expertise (νii = 0).

The linear xj −xi term in Eq. (18.1) represents the shift effect. The gaussian
term represents the acceptance process and we refer to it as the acceptance
function, a(Δρ, λ) = e−Δρ2/2λ2

. Although the acceptance function is always
symmetric with respect to the sign of the rhetorical difference, a(−Δρ) = a(Δρ),
a concave ρ(x) can causes it to appear asymmetric along the policy axis as clearly
seen for F2 and F3 in Fig. 18.2.
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In addition to position change, communication can also affect a person’s
uncertainty regarding their position. Group discussion has been observed to
increase the level of certainty that members have in their quantitative judg-
ments [15]. Accordingly, we introduce an uncertainty reduction mechanism in
our model in which messages from those with similar positions constrict an indi-
vidual’s LOA so that they become more resistant to persuasion from distant
positions. Messages originating within the LOA that are accepted decrease the
LOA, but not beneath a certain minimum value λmin. This yields for the LOA
dynamics:

dλi

dt
=

{∑N
j=1 νij(λmin − λi)e−Δρ2

ij/2λ2
i , |Δρij | ≤ λi

0, |Δρij | > λi.
(18.2)

Equations (18.1) and (18.2) comprise the ASC model. Assuming no difference
between rhetorical and policy positions, i.e, ρ(x) = x, Eq. (18.1) is equivalent to
the model of [8] without the self-influence force that models a persistent effect of
an individual’s initial opinion. The uncertainty reduction dynamics represented
by Eq. (18.2) is novel in opinion network modeling. The model of [13] includes
a dyadic uncertainty interaction that results in uncertainty change only when
dyad members have different uncertainties; this requires that uncertainty levels
be visible to other group members, an assumption not present in Eq. (18.2), and
does not allow equally uncertain individuals to mutually reinforce their opinions.

A crucial consequence of the uncertainty reduction dynamics in the ASC
model is the ability for interim majorities to more effectively maintain their
position in the face of minority influence. This effect is essential to the RPM
process in the theoretical account of group polarization above (but it occurs
regardless of whether or not the rhetorical function is different from the pol-
icy). Figure 18.3a illustrates the rough persistence of the majority position for a
complete-network triad in which the intermediate member’s position is taken to
be halfway between the others. For sufficiently low initial disagreement, however,
an interim majority will not form and the group equilibrium will be close to its
initial mean (Fig. 18.3b).2

18.6 Simulation of Group Polarization

This section demonstrates the ability of the ASC model to produce the same
qualitative effects as in the frame-induced polarization theory and as observed
experimentally. Going beyond qualitative correspondence, its agreement with
the data on a quantitative level is also shown. First, we discuss how the coupling
strengths νij are set. They are treated as dyadic communication rates as deter-
mined by simple topological considerations. For a complete network, on average,
2 The persistence of majority positions on a continuous opinion axis is also found in

the agent-based model of [16], which employs a confidence variable that must be
transmitted between agents along with opinions, rather than the ASC model’s use
of an uncertainty interval not visible to others.
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Fig. 18.3. Position and LOA trajectories in ASC model for a complete network. Solid
curves show policy positions, dashed curves show LOAs. a High initial policy disagree-
ment (x3 − x1 = 10) showing substantial shift between consensus and initial mean
policy (x2(0)). b Lower initial policy disagreement (7) results in near simultaneous
convergence close to initial policy mean. λ1,2,3(0) = 0.05, λmin = 0.025; ρ(x) as in
Fig. 18.2

the communication rates are expected to be the same for all nodes, so we set
νij = 1/2 for all three dyads. For the chain, if the sequence in which nodes send
messages follows the chain path and the center node (node 2) predominantly opts
to send its messages simultaneously to both outer nodes (rather than separately),
then we expect node 2 to have about twice the communication rate with each
of nodes 1 and 3. We therefore set ν12 = ν32 = 1 and ν21 = ν23 = 1/2.3 These
communication rate expectations are approximately borne out in the experiment
[12].

Figure 18.4 displays simulation results for complete and chain network triads
that are homogeneous with respect to policy side analogous to the experimental
setup. The baseline case (dotted curve) consists of an intermediate node with an
initial policy x2(0) halfway between the initial positions of the moderate x1(0)
and the extremist x3(0). The other cases shown (light gray curves) account for
position uncertainty by allowing x2(0) to deviate by various small amounts from
the baseline case. The discussion-induced shift in the mean is plotted against
the initial policy difference between the extremist and the moderate, where the
opposing pro and con policy sides are shown on the positive and negative sides
of the horizontal axis respectively. For the pro (con) side, a positive (negative)
polarization shift indicates a shift toward the extreme — a higher wager in the
case of the experiment. The mean over all the cases (solid dark curve) can be
used to gauge the extent of systematic polarization.

The top row of Fig. 18.4 represents a proper rhetorical frame in which the
policy and rhetorical references are coincident. In the experiment, the proper

3 The sum of the communication weights is normalized to the same (arbitrary) value
of 3 in both networks, a value that only affects the transient time and not the final
equilibrium.
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Fig. 18.4. ASC simulations for triad networks with variability in intermediate node
policy. ρ(x) taken as in Fig. 18.2. Top row shows proper rhetorical frame (x0 = 0).
Bottom row shows improper rhetorical frame (x0 = −5). Positive and negative policy
sides are on positive and negative horizontal axis respectively. Polarization shift, δ =
x̄(tf )−x̄(0), plotted as a function of the initial policy difference, Δ = x3(0)−x1(0). Shift
toward the extreme corresponds to δ > 0 for positive policy side and δ < 0 for negative
side. The position of the intermediate node was varied according to x2(0) = ±(6+ε) for
the positive and negative policy sides, where ε takes on 41 uniformly-spaced values over
the interval [−1, 1]. x1(0) = 6 − Δ/2 and x3(0) = 6 + Δ/2 for Δ > 0 and analogously
for Δ < 0. ASC mean (black) taken over all ε values. Shifts for individual ε values
shown as gray curves. Dotted curve shows ε = 0 baseline case. Gap in the curves
is the region where x2(0) would go beyond x1(0) or x3(0). ASC model parameters:
λ1,2,3(0) = 0.05, λmin = 0.025

frame is the subjective probability of the favorite winning against the spread.
The rhetorical function is taken to be concave with increasing policy extremity.4

Regarding the mean, both policy sides exhibit equal polarization that increases
with disagreement level and with the complete network showing more polariza-

4 If the subjective probability of one of the binary outcomes is taken as the rhetorical
frame and opposing policy sides have opposite signs, then concavity with increasing
policy extremity yields an overall S-shaped rhetorical function as explained in [12].
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tion than the chain. Considering higher disagreement levels, the mean polarizes
less than the baseline case because some groups actually depolarize — those in
which the moderate and intermediate node are sufficiently close to overcome the
skewing effect of the rhetorical function. This ability to predict depolarization
for individual groups despite the dominant tendency toward polarization is an
important capability not present in the informational, normative, or extremist-
tilting theories. Although the proper frame does exhibit polarization, accounting
for the differential polarization by policy side observed experimentally requires
use of an improper frame as is the subjective probability that the favorite will
win the game. The bottom row of Fig. 18.4 employs an improper frame and
indeed shows substantial systematic polarization for positive policies and little
for negative ones.

The ASC model can also be quantitatively tested against the data. Groups
can be simulated using their actual initial wagers and with the coupling strengths
as set above. The rhetorical function ρ(w) that maps the (signed) wager to
the subjective probability of a favorite game victory (the improper frame) is
derived in [12] based on the theory of individual decision making under risk and
uncertainty. It depends upon the subjective probability p(w) of a favorite victory
(the proper frame)

p(w) =
1
2

− 1
8αw

± 1
2

√
1 +

1
16α2w2

, (18.3)

where the + (−) sign implies bets on the favorite (underdog). The free parameter
α is the risk aversion that quantifies how sensitive individuals are to variance
around the expected value of the payoff. It is assumed to be identical for all
subjects. The rhetorical function is then given by

ρ(w) =
1
2
erfc

{
erfc−1 (2p(w)) − s0

σ
√

2

}
, (18.4)

where erfc(u) = 2√
π

∫ ∞
u

e−v2
dv. The parameter s0 is the point spread for the

game in question and σ = 12.8 is the empirical standard deviation for the margin
of victory in NFL games. Both p(w) and ρ(w) are S-shaped implying a concave
relationship between the subjective probability of the outcome estimated as more
likely and the wager magnitude.

In addition to the risk aversion, there are two free parameters from the ASC
model that need to be fit from the data, the initial LOA, λ(0), and the minimum
LOA, λmin, both assumed identical for all subjects. The three parameters are
estimated by minimizing the sum of χ2 error values over both complete and chain
networks. The simulation results are shown in Fig. 18.1. A three-parameter χ2

goodness-of-fit test, which takes as its null hypothesis that the model is correct,
yields a probability Q = 0.33 that χ2 could have exceeded its observed value of
10.2 by chance. With a conservative threshold of Q < 0.2 for rejecting the null
hypothesis, the ASC model is found to be consistent with the data.
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18.7 Conclusion

The ASC model presented here describes a dual process of opinion and uncer-
tainty change based on the greater acceptance rate of messages within one’s LOA
and the decrease in LOA due to exposure to similar views. A key dynamic in the
model is the ability of proximate majorities to form and persist for symmetric
networks, thereby enabling majorities to exert outsized influence and produce a
consensus opinion different from the initial mean. Importantly, the ASC model
does not involve the exchange of uncertainties over the network unlike other
models in which uncertainties are directly coupled along with opinions [13,16].
Another important innovation of the ASC model is the conceptualization of dis-
tinct dimensions of opinion and rhetoric: opinion is an evaluation directly tied
to a decision or other behavioral outcome of interest while rhetoric determines
whether messages aimed at shifting opinions are found persuasive. If the rhetor-
ical function mapping opinion to rhetorical position is concave, then proximate
majority formation at the extreme is facilitated. Consequently, the ASC model
can generate systematic group polarization due to the structure of the decision
space rather than by assuming an asymmetric network structure in which influ-
ence is associated with extremity as typically done in opinion network modeling.
The ASC model simulations shown here display the same qualitative phenomena
as observed in the experiment: polarization on one policy side but not the other,
increasing polarization with disagreement level, and greater polarization for com-
plete networks than for chains. Furthermore, the ASC model is in quantitative
agreement with the experimental data.

Acknowledgements. This work was supported by the Office of Naval Research under
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Chapter 19
Analysis of Dynamics of Nonlinear Map
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Abstract. We are developing a swarm intelligence optimization algo-
rithm based on nonlinear dynamical system theory. In this article, we
introduce Nonlinear Map Optimization (abbr. NMO) which we proposed.
NMO is classified as swarm intelligence (abbr. SI) optimizer and consists
of some search individuals whose dynamics is driven by a simple non-
linear map. The simple nonlinear map is regarded as a kind of circle
map. For effective optimal solution search, the search point distribution
of each search individual is important. The search point distribution is
controlled by the simple nonlinear map. The parameters of the simple
nonlinear map are controlled so that the search point distribution can
be effectively searched for the optimal solution. Also, this map generates
a chaotic search point time series while keeping the search range. Such
a time series can efficiently search within the search range. As a result,
NMO can search along the valley of the evaluation function. Namely,
NMO is considered to have a rotation invariance and a scaling invari-
ance. NMO can also be regarded as a system in which one-dimensional
map oscillators move while being coupled with each other with a coupling
strength according to distance. Therefore, the analysis of the dynamics
of NMO gives new knowledge of the nonlinear coupled map.

19.1 Introduction

To search for an optimum value of a given objective function is a very important
problem in various engineering fields. Optimization problems can be classified
into two categories depending on whether the variables are continuous or dis-
crete. We focus on the continuous optimization problem in this article. In order
to solve the continuous optimization problem, gradient method is the most pop-
ular algorithm that the search direction is defined by the gradient of the objec-
tive function at the current search point. However, the gradient method cannot
be utilized when the gradient information of the objective function cannot be
obtained. Such problem is called as “Black-box problem”.
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In order to solve the black-box problem, various kinds of solving algorithm are
proposed [19]. Swarm Intelligence (abbr. SI) algorithm [2,3] is one of such solvers.
SI contains ant colony optimization [6], artificial bee colony algorithm [14], firefly
algorithm [21], cuckoo search [22], particle swarm optimization [5,15], and so on.
SI systems consist typically of a population of simple plural agents interacting
locally with one another and with their environment. The agents follow very
simple rules. SI algorithms sample a set of solutions which is too large to be
completely sampled, therefore the SI algorithm can find a feasible solution in a
short time. Many SI algorithms implement some form of stochastic optimization,
so that the solution found is dependent on the set of random variables generated.
Also, the SI algorithms cannot guarantee to find a globally optimal solution.
Therefore, we consider that the theoretical analysis of the dynamics of the agents
is important.

In order to clarify the search mechanism of PSO, we proposed a canoni-
cal deterministic PSO (abbr. CD-PSO) [10,20] that the stochastic factors are
removed, and we analyzed the behavior of each particle of PSO based on the
dynamical system theory [7–10,20]. The particles of the PSO are scattered into
the search space of the design variables, and the particles calculate an evalu-
ation value corresponding to the design variable. And each particle shares its
evaluation value and its parameter’s information in a swarm.

What is important in the SI algorithm are “Exploration” and “Exploita-
tion” [4] “Exploration” corresponds to a global solution search capability, and
“Exploitation” corresponds to a local solution search capability. Based on the
analysis result of the dynamics of the canonical deterministic PSO [7,10,20], the
global search capability of the CD-PSO is related to sharing best solution infor-
mation within the swarm. Also, we have clarified that a distribution of solution
search points is very important for local solution searching capability of CD-
PSO [11,16,17]. While various versions of stochastic PSOs have been proposed,
standard PSO 2011 (abbr. SPSO2011) [23] has a superior solution search capa-
bility. The search point of SPSO2011 is shown in Fig. 19.1a that is similar to
the normal distribution. The center of the horizontal axis denotes the the found
best solution point. This distribution has a high center, and therefore has high
local search capability [17]. On the other hand, Fig. 19.1b shows the distribu-
tion of the search points of the CD-PSO. The distribution at both ends is high
and the distribution at the center is low. Due to such a distribution, the local
search capability of CD-PSO is low. Therefore, we propose a new SI algorithm
to improve the search point distribution [13]. The new SI algorithm consists of
some search individuals driven by a simple nonlinear mapping which is classified
into a kind of circle map. Since each search individual is driven by a nonlinear
mapping, we call this system a nonlinear map model optimization method (abbr.
NMO) [13]. The circle map which derives the dynamics of the search individuals
can generate chaos. The chaotic motion leads diversity to the search point.

Comparing with other SI algorithms, NMO can search a feasible solution
with a small number of search individuals. Therefore, the computational amount
of NMO is smaller than other SI algorithms. Also, the dynamics of NMO is
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(a) Standard PSO 2011 (b) Canonical Deterministic PSO

Fig. 19.1. The search point distribution. The center of the horizontal axis denotes the
found best solution point

described by a deterministic difference equation. For this reason, NMO is clas-
sified into deterministic systems.

19.2 Nonlinear Map Optimization

To improve the local search capability of SI algorithms, the search point distri-
bution is important. The local search is carried out under the assumption that a
better solution exists around the good solution found until the current iteration.
Namely, we consider a search individual that can perform a local search while
keeping a certain search range. In order to realize search individual having the
above search properties, we consider a system which is consisted of some search
individuals. The current jth dimensional position of the ith individual and the
jth dimensional internal state variable of the jth individual are described by the
following difference equation.

xij(t + 1) = Rij(t) cos(θij(t)) + pij(t), (19.1)

θij(t+1) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

θij(t) + γ
∣
∣
∣
xij(t)−pij(t)

Rij(t)
+ π

2 − arccos(εc)
∣
∣
∣ + π

2 − arccos(εc)
if 0 < sin θij(t) cos θij(t) < εc,

θij(t) + γ
|xij(t)−pij(t)|

Rij(t)
otherwise.

(19.2)

where Rij(t) denotes the jth dimensional search range of the ith search individ-
ual. The current iteration is t. pij(t) is determined by the following equation.

pij(t) = ρ pbestij(t) + (1 − ρ)gbestj(t) (19.3)

where pbest i(t) denotes the personal best position of the ith search individual,
and gbest(t) denotes the global best position in the swarm as follow.

pbest i(t) = arg min
x i(τ)

f(x i(τ)),0 ≤ τ ≤ t (19.4)



Analysis of Dynamics of Nonlinear Map Optimization 189

pbest 1 = gbest

pbest 2

R11

R12

R22

R21

p2

p1

x2(t)

x2(t + 1)

x1(t + 1)
x1(t)

Fig. 19.2. The search search strategy of NMO. pk denotes the current best position of
the kth individual. The global search position is determined based on the best position
pk. Also, each rectangle region around xk denotes the local search range which is
limited by the parameter Rij(t)

gbest(t) = arg min
i

f(pbest i(τ)),0 ≤ τ ≤ t (19.5)

We assume 2 individuals are located in the search space as shown in Fig. 19.2.
In this case, we suppose the 1st individual which denotes as x 1(t) discovers the
current global best position gbest . pk denotes the current best position of the
kth individual which is calculated by Eq. (19.3). The best position of the 1st
individual is not changed, the 1st individual searches within the rectangle region
in the vicinity of x 1(t). On the other hand, the current best position of the 2nd
individual p2 is changed as shown in Fig. 19.2, the 2nd individual moves the new
position which denotes as x 2(t + 1). And the 2nd individual searches within the
rectangle region in the vicinity of the renewal position x 2(t + 1). Therefore the
global search position is determined based on the best position pk. Also, each
rectangle region around xk denotes the local search range which is limited by
the parameter Rij(t).

To analyze the dynamics of the local search capability, we consider a one-
dimensional return map of the internal state variable θij(t) as shown in Fig. 19.3.
The parameters are set as R(t) = 1∀t, pij(t) = 0∀t, γ = 0.795, and εc = 0.01.
The horizontal axis of Fig. 19.3 denotes the current internal state variable θij(t),
and the vertical axis denotes the next internal state variable θij(t + 1). Also,
Figs. 19.3b, c show the enlargement figures of the return map in the vicinity of
θij(t) = 0 and θij(t) = π/2.

Without loss of generality, we consider the case of pij(t) = 0 for simplicity.
In this cases, Eq. (19.2) is rewritten as follows.

θij(t + 1) = θij(t) + γ| cos(θij(t))|. (19.6)

The slope of the one-dimensional map around θij(t) = π/2 are given as

dθij(t + 1)
dθij(t)

=

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

1 + γ sin(θij(t)) for π
2 ≤ θij(t),

1 + γ sin(θij(t) + arccos(εc)) for π
2 − arccos(εc) < θij(t) < π

2 ,

1 − γ sin(θij(t)) for θij(t) ≤ π
2 − arccos(εc).

(19.7)
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(a) Overview (b) vicinity of (c) vicinity of i j(t) = /2
i j(t) = 0

Fig. 19.3. One-dimensional map of the internal state variable θij(t) (R(t) = 1, γ =
0.795, εc = 0.01)

Here, we consider the stability in the vicinity of θij(t) = π/2. The gradient in
θij(t) ≤ π/2−arccos(εc) is less than 1. On the other hand, the gradient in θij(t) >
π/2 arccos(εc) is greater than 1. Therefore, the individual which is located within
the region θij(t) ≤ π/2 − arccos(εc) converges toward a point. However, the
individual which is located within the region θij(t) > π/2 − arccos(εc) diverges
from a point. Namely, the system does not have a stable point, therefore, the
individual keeps to move.

Figure 19.4 shows the time evolution of the search point when the parameters
set as R(t) = 1, and εc = 0.01. In Fig. 19.4, the vicinity of the center of the
vertical axis corresponds to the best location found so far. The parameter γ
controls the convergence speed. When γ is large, the convergence speed is fast

Fig. 19.4. The time evolution of the search point (R(t) = 1, and εc = 0.01). The
convergence speed is controlled by the parameter γ
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Fig. 19.5. The search point distributions of NMO (R(t) = 1, εc = 0.01). The distribu-
tion is controlled by the parameter γ

as shown in Fig. 19.4a. Conversely, the convergence speed is slow as shown in
Fig. 19.4b. This time series indicates that each search individual keeps search
range and intensively searches the central part. Since the search range can be
limited by parameter Rij(t), the local search capability improves. Especially,
the detailed search of the central part leads to the improvement of the search
capability. Figure 19.5 illustrates the distribution of the search point of NMO.
The search points are distributed within the range [pij(t)−Rij(t), pij(t)+Rij(t)].
Figure 19.5 indicates that the search point distribution in the vicinity of the
center of the range is very high. This means that the search individual has a
high local search capability.

The distribution is controlled by the parameter γ. Namely, the parameter γ
is related to the variance of the distribution. If γ is small, the variance of the
distribution becomes sharp.

In order to improve the local search capability, it is desirable to search for
as many diverse points as possible. The system which is described by Eqs. (19.1)
and (19.2) is regarded as a kind of circle map. On circle map, the parameter
γ is the most important parameter. In order to investigate the influence of the
parameter γ on search point distribution, we create a bifurcation diagram with
the parameter γ. The bifurcation diagram is shown in Fig. 19.6a. The horizontal
axis denotes the parameter γ, and the vertical axis denotes the search point
in the search region. The γ on the horizontal axis is varied from 0.1 to 0.9.
The bifurcation diagram indicates that the search point spreads throughout the
search range at almost all parameter γ. Also, to confirm the property of the time
series of the search point we calculate the Lyapunov exponent of the time series
of the search point corresponding to Fig. 19.6a.

The one-dimensional map of the search point is given as

xij(t + 1) = f(xij(t), γ). (19.8)
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(a) The bifurcation diagram (b) The Lyapunov exponent

Fig. 19.6. The bifurcation diagram and the Lyapunov exponents of the search point
time series. (R(t) = 1, εc = 0.01)

The Lyapunov exponent λ(γ) of Eq. (19.8) is derived as follows.

λ(γ) = lim
N→∞

1
N

N∑

t=0

ln
∣
∣
∣
∣

d
dxij(t)

f(xij(t), γ)
∣
∣
∣
∣ (19.9)

If the Lyapunov exponent of one-dimensional map system takes a positive value,
the time series exhibits chaotic motion [1]. Figure 19.6b shows the Lyapunov
exponent for each parameter γ. The horizontal axis denotes the parameter γ, and
the vertical axis denotes the Lyapunov exponent. The result of Fig. 19.6b indi-
cates that the Lyapunov exponent exhibits positive values at almost all param-
eter γ. Therefore, the corresponding time series of the search points exhibits a
chaotic motion. Namely, since the time series of each dimension of each search
individual is searched chaotically, it is possible to efficiently local search within
the search range.

19.3 Search Ability

In order to confirm the search capability of NMO, we carry out some numerical
simulations by using some well-known benchmark functions. Note that the search
result of NMO depends only on the initial location of each search individual
since NMO is a deterministic system. Therefore, the distribution of the initial
arrangement of the search individuals is very important.

At first, we consider the case of ‘2D - Rotated Shift Ellipse function’ (f1)
which is described in Eq. (19.10).

f1(x, y) = 100
(
(x − 4.3) cos π

6 − (y + 0.6) sin π
6

)2

+
(
(x − 4.3) sin π

6 − (y + 0.6) cos π
6

)2 (19.10)

The global minimum value of f1 is 0 at (x, y) = (4.3,−0.6). This function has
a dependency between variables by translating the coordinates of the original
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Fig. 19.7. The trajectories of three search individuals for Rotated Shift Ellipse function
(f1(x, y)). The search individuals move along the rotation angle

function and further rotating the axis. We consider the case where the NMO
consists of only three search individuals. Figure 19.7 shows the contour map of
Eq. (19.10), and the trajectories of three search individuals. We confirm that the
search individuals move along the rotation angle and can reach the minimum
point since the local search capability is improved.

Next, we consider the case of ‘2D - Rosenbrock function’ which is described
in Eq. (19.11).

f2(x, y) = 100
(
y − x2

)2
+ (x − 1)2. (19.11)

The global minimum value of f2 is 0 at (x, y) = (1, 1) which is located inside
a long, narrow, parabolic shaped flat valley. Therefore, the searching global
minimum is difficult. The trajectories of three search individuals are shown in
Fig. 19.8.

Also in Rosenbrock function, NMO can track the valley of the evaluation
function. These results indicate that NMO is considered to have rotation invari-
ance and scaling invariance [7–9]. However, the theoretical analysis on these
invariants is insufficient at the present time.

The above two cases are unimodal functions. Next, we consider the case of
multimodal functions. The following equation is ‘2D - Ackley function’ which
has many local minima.

f3(x, y) = 20 − 20 exp

(

−0.2

√
x2 + y2

2

)

+ e − exp
(

cos(2πx) + cos(2πy)
2

)

(19.12)
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Fig. 19.8. The trajectories of three search individuals for Rosenbrock function
(f2(x, y))

(a) Outline drawing (b) Enlargement around the global minimum

Fig. 19.9. The trajectories of three search individuals for Ackley function (f3(x, y))

The global minimum value of Ackley function is 0 at (x, y) = (0, 0). Figure 19.9
shows the contour map of Eq. (19.12), and the trajectories of three search individ-
uals. In this case, NMO finds the global minimum solution. However, depending
on the search range Rij(t) and initial location of search individuals, NMO may
not search the optimal solution.

Finally, we consider the case of ‘2D - Rastrigin function’ which is described
by the following equation.

f4(x, y) = 20 +
(
x2 − 10 cos(2πx)

)
+

(
y2 − 10 cos(2πy)

)
(19.13)
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Fig. 19.10. The trajectories of three search individuals for Rastrigin function (f4(x, y))

The global minimum value of Rastrigin function is 0 at (x, y) = (0, 0).
Figure 19.10 shows the contour map of Eq. (19.13), and the trajectories of three
search individuals. In this case, NMO traps the local minimum, and cannot find
the optimum solution. The reason why the optimum value search fails in this
manner that setting of the search range is inappropriate. The search range should
be determined adaptively, but it has not been completed yet.

From the above results, the local search capability of NMO is improved, it is
possible to search along the valley of the function, whereas the problem of global
search capability remains.

19.4 Numerical Simulation

In order to confirm the fundamental solution search performance, we compare
numerical simulation results of NMO with Standard PSO2011 [23]. We apply
five 50 dimensional benchmark functions from the benchmark function set which
was proposed in IEEE CEC2013 [18]. f5 is Sphere function, f6 is Rotated High
Conditioned Elliptic function, f7 is Rotated Bent Cigar function, f8 is Rotated
Discus function, and f9 is Different Power function. Table 19.1 shows the numer-
ical simulation results. The number of trials is 51. Table 19.1 shows the obtained
minimum value, the median value, the maximum value, and the standard devia-
tion. f(∗x) denotes the global minimum value of each benchmark function. The
results indicate that the solution search performance of NMO is better than
SPSO2011.
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Table 19.1. Numerical simulation results. f(∗x) denotes the global minimum value of
each benchmark function. ‘Min’, ‘Med’, ‘Max’, and ‘Std’ denote the obtained minimum
value, the median value, the maximum value, and the standard deviation, respectively

Function f(∗x) Min Med Max Std

f5 −1.400e+03 SPSO −1.400e+03 −1.400e+03 −1.400e+03 0.000e+00

(Sphere) NMO −1.400e+03 −1.400e+03 −1.400e+03 0.000e+00

f6 −1.300e+03 SPSO +3.776e+04 +6.785e+04 +1.126e+05 1.873e+04

(Rotated High

Conditioned

Elliptic)

NMO −1.299e+03 −1.297e+03 −1.290e+03 1.332e+00

f7 −1.200e+03 SPSO +1.995e+06 +4.365e+07 +5.711e+08 9.471e+07

(Rotated Bent

Cigar)

NMO −1.180e+03 1.917e+03 2.514e+06 4.756e+05

f8 −1.100e+03 SPSO +3.113e+04 +4.987e+04 +7.704e+04 8.717e+03

(Rotated Discus) NMO −1.098e+03 −1.097e+03 −1.092e+03 1.193e+00

f9 −1.000e+03 SPSO −1.000e+03 −1.000e+03 −1.000e+03 0.000e+00

(Different Power) NMO −1.000e+03 −1.000e+03 −1.000e+03 0.000e+00

19.5 Conclusions

In this article, we analyzed the dynamics of our proposed Nonlinear Map Opti-
mization. The NMO consists of some search individuals whose dynamics is driven
by a simple circle map. The circle map generates a chaotic search point time
series, and the distribution of the search points is a desirable distribution for
the local search capability. As a result of improving the search capability in the
vicinity of a good solution after guaranteeing the search range, NMO’s solution
searching ability has improved very much. It is insufficient to adaptively change
the parameters, which is our future work. Also please note that while other SI
algorithms are stochastic systems, NMO is a deterministic system.
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Abstract. By applying information theoretic concepts to analog-to-
digital convertor (ADC) design, we have created a mathematical frame-
work from which the fundamental limit for the resolution-bandwidth
product of any ADC may be derived. We found the surprising result
that the limiting resolution of any ADC is proportional to oversampling-
ratio (OSR), as opposed to widely-held belief that the resolution is
proportional to log2(OSR), a dramatic increase in the achievable res-
olution. This result, which resembles Shannon’s well-known result for
the capacity of a communication channel, represents a paradigm shift
in our understanding of data conversion methods and provides encour-
agement that new methods may be found. Furthermore, to achieve this
theoretical limit, the internal analog modulator (or filter) of an ADC
should be a chaotic system, so that both small as well as large changes
in the input signal cause large (but bounded) deterministic changes at
the output of the modulator - analogous to the “Butterfly effect”. This
led us to discover a new class of ADCs, which we call TurboADC’s, that
can trade off resolution for bandwidth on the fly, keeping their prod-
uct equal to the fundamental information theoretic limit. These designs
impose modest requirements on the analog front-end resources and power
at the expense of greater complexity in the back-end decoder. A discrete-
time TurboADC proposed here is a hybrid of a 1st order Delta-Sigma
modulator and a Cyclic ADC, with the best features of both designs -
oversampling, noise shaping, and simplicity from the Sigma-delta ADC
approach and fast half-interval searching from Cyclic ADC’s. Simulations
of the proposed TurboADC confirm our finding that the resolution of an
ADC may approach fundamental limit of OSR bits within the baseband.

20.1 Introduction

Analog-to-digital converters and conversion methods have experienced rapid
growth in recent decades due to the steady development of CMOS technolo-
gies and the increasing demand for higher resolution and bandwidth. CMOS
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technologies have allowed more systems (both analog and digital) to be inte-
grated into a single chip; thus, reducing manufacturing costs and allowing addi-
tional functions such as calibration techniques. There are two mainstream ADC
techniques: Nyquist rate ADCs (e.g., Flash, Single-slope, Dual-slope, SAR, and
Cyclic) and oversampling ADCs (e.g., oversampling PCM and ΔΣ converters).
Nyquist rate ADCs are commonly used for low-to-moderate precision (resolu-
tion) and high bandwidth conversion applications, as seen in Fig. 20.1. Their
resolution is limited by two fundamental sources of noise, thermal and flicker
noise, as well as circuit imperfections such as DC offsets and non-linearity. A
comprehensive review of current state-of-the-art Nyquist rate ADCs is provided
in [1]. ΔΣ ADCs are used for high-precision low-to-moderate bandwidth appli-
cations. Their bandwidth is limited by the oversampling demands and the pre-
cision is limited by circuit noise and to a lesser extent by non-idealities such
as DC offset, gain error, and non-linearity. In addition, ΔΣ ADCs are prone
to instability due to the presence of a non-linear comparison operation within a
feedback loop, which limits the order of ΔΣ ADCs in practical implementations.
An overview ΔΣ ADC principles and state-of-the-art is provided in [2–4]. More
recently, novel ADC methods have been introduced that rely heavily on joint-
processing of digital samples to increase the RBW and decrease the complexity
of analog components [5–7]. However, to the best of our knowledge, no single
ADC method is able to cover the full breath of potential applications (starting
from low-power conversions for bio-sensing and IoT applications to high-speed
direct RF conversion in radar and communications).

By consolidating two distinct fields (Information theory on one side and
the principles and methods of A/D conversion on the other), we established a
mathematical framework that, among other things, helped us derive fundamen-
tal theoretical limit on the resolution-bandwidth product of Analog-to-digital
converters (ADC) and also prove many essential and often unexpected results.
For example, it is traditionally assumed that the quantization noise in ADCs is
independent of the input analog signal. As a direct consequence to this assump-
tion, the effective number of bits (ENOB) or resolution is always proportional to
log2(OSR), where the OSR is the oversampling ratio. By using Information the-
ory tools, we showed that this assumption is fundamentally flawed, and that the
quantization noise is instead fully dependent on the input analog signal because
its entropy is zero given the input analog signal. As a consequence, we show
that the resolution is instead proportional to OSR. This represents a paradigm
shift in understanding A/D conversion methods and allows us to discover novel
methods of conversion. In this work, we introduce a novel class of ADC, termed
TurboADC, that can trade resolution and bandwidth on the fly while preserv-
ing their product constant and equal to the fundamental theoretical limit with
minimal use of analog front-end resources and power. Thanks to their simple
front-end design (as simple as the 1st order ΔΣ modulator) and ease of integra-
tion, we envision that TurboADCs, will be able to replace most traditional ADC
methods and even enable new applications such as software defined radio, direct
RF signal conversion in communications, radar, ultrasound, and MRI imaging
systems.
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Fig. 20.1. TurboADC design space. Data points show effective resolution versus
Nyquist rate of existing ADC methods including switched-capacitor ΔΣ (SDDT),
continuous-time ΔΣ (SDCT), SAR and Cyclic ADC, [8]. We assume that the maxi-
mum sampling rate of CT TurboADC is close to 9 GHz, as demonstrated in [9] for CT
ΔΣ ADCs

Figure 20.1 illustrates our understanding of the design space and how Tur-
boADCs fit in. The data points represent effective resolution versus bandwidth
for more than 200 traditional ADC designs including Successive Approximation
(SA), Cyclic, Discrete-time (SDDT) and Continuous-time (SDCT) ΔΣ ADC,
[8]. Designs that include pipelining, time-interleaving, and other means of paral-
lelism (such as Flash ADC) are omitted for fair comparison due to their much-
increased complexity, area, and power. This figure also shows upper bounds on
resolution-bandwidth (RBW) product imposed by aperture jitter (for 100 and
10 fs RMS jitter), thermal noise corresponding to noise equivalent resistance of
50 Ω, and Heisenberg uncertainty principle as derived in [3]. It also shows upper
bounds imposed by quantization noise (QN) according to our theory in [10]. Our
vision is that the entire design space could be encompassed by our novel method
that includes discrete-time (DT) TurboADC for high-resolution and medium
speed, continuous-time (CT) TurboADC for high-speed conversion, and finally
a Photonic TurboADC for ultra-high conversion speeds in hundreds of GS/sec,
as shown in Fig. 20.1. The focus of this paper is on DT TurboADC’s as described
in Sect. 20.3.

20.2 ADC as Communication System and Conversion
Capacity

We assume that each ADC can be described as a communication system, as
shown in Fig. 20.2. The information source is analog, meaning it provides a
continuous-time and continuous amplitude signal such as voltage, current, or
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Fig. 20.2. Analog-to-digital converter as a communication system

charge to the ADC. The analog signal is sampled at a certain sampling rate
fs and the samples are fed to the analog filters and amplifiers of the ADC.
The amplifier/filter structures process the analog signal by performing a form
of encoding before the signal enters the comparator, which plays the role of the
‘noisy’ channel.

The output from the comparator generated at the rate of fc is then decoded
by digital circuitry and usually fed back to the encoder. In general, the rate fc at
which the comparator is operating is either equal to fs (such as in ΔΣ ADCs)
or larger (such as in SAR and Cyclic ADCs). In fact, for almost every ADC
method, we were able to find a corresponding forward-error-correction (FEC)
code. For example, the SAR ADC correspond to a form of block code with chan-
nel feedback. The ΔΣ ADCs correspond to convolutional codes, where the ΔΣ
modulator acts as a convolutional encoder and its decimation filter plays the
role of the maximum likelihood decoder. Also, the order of the ΔΣ modulator
defines the memory length of the encoder. In describing an ADC as a com-
munication system with FEC coding, we assume that the comparator(s) of an
ADC is a ‘channel’ since it injects quantization noise into the transmitted signal
even if the circuit components are otherwise noiseless. Once the comparator of
the ADC is described as a communication channel, we can derive its intrinsic
capacity (i.e., maximum number of information bits that can be digitized per
second). Since the QN is neither Gaussian nor independent of the input signal
to the comparator (in fact, the QN in an ideal ADC system is fully described
given the input signal), the Shannon capacity formula C = B ∗ log2(1 + SNR),
where B is the channel bandwidth, as derived in [11], cannot be applied to cal-
culate the capacity of such a system. A more general approach involving mutual
information and entropy must be used.

Some important conclusions from our previous work about the ADC theory
are listed below in the form of theorems (for proofs see [10]):

Theorem 1 (Capacity) Maximum information rate at the output of an ADC
employing M comparators operated at fc comparisons per second is equal to M ∗
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fc bits per second. We define this maximum information rate as a Conversion
Capacity CADC .

Theorem 2 (Existence) There exists at least one ADC that can operate at the
CADC regardless of the input signal statistics. We term this type of ADC as
TurboADC with reference to Turbo codes in communications that are able to
approach Shannon’s channel capacity.

Theorem 3 (Necessary condition) An ADC can achieve the conversion capacity
if the autocorrelation function of the input to its internal comparator(s) is a delta
function (i.e., white spectral properties) regardless of the input signal statistics.

Consequently, two properties of a TurboADC can be derived.

Corollary 1 The internal analog filter of a TurboADC that encodes the input
signal before it is fed to the comparator, must be a non-linear filter (or a non-
linear mapping).

Corollary 2 The output of the comparator in a TurboADC is a sequence of
independent uniformly distributed bits.

Theorem 4 (Oversampling) If an ADC operates at its capacity and the input
analog signal is oversampled by a factor of OSR = fc/2fin, the effective resolu-
tion in the baseband is equal to OSR bits.

Perhaps the most interesting and unexpected property of a TurboADC is
the one described in Theorem 4. It states that the resolution of a TurboADC
is proportional to the OSR. In contrast, traditional oversampling ΔΣ ADCs
achieve effective resolution that is proportional to log2(OSR). Clearly, for the
same resolution, a TurboADC may operate at an exponentially lower sampling
rate than the ΔΣ ADCs. Also, from Theorem 4 we conclude that resolution of
a TurboADC trades linearly with its bandwidth such that the R-BW product
is constant and equal to CADC . For example, to increase the resolution from 8
to 16 bits, a 2nd-order ΔΣ ADC would have to increase its sampling rate by a
factor of 9.1 while a TurboADC would only have to double it (5 times reduction
in power), which could prove crucial in battery-operated IoT devices. On the
other hand, for the same technology node and power consumption, TurboADC
may achieve data rates significantly higher than other ADC methods, which may
enable new high-speed conversion applications. Finally, from Theorems 1 and 3
we prove the following theorem.

Theorem 5 (Chaotic encoder) In order to achieve the theoretical limit to the
R-BW product (the capacity) irrespective of the input signal statistics, the ADC’s
internal analog filter must be a deterministic system with aperiodic and bounded
state trajectories for all input signal statistics − a chaotic system.
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Proof First, we prove deterministic property of the analog filter (or encoder).
As in [10], mutual information between the comparator’s 1-bit output y[n] and
the analog input Vin[n] is defined as,

I(Vin[n], y[n]) = H(y[n] | y[n − 1], . . . y[1]) − H(y[n] | y[n − 1], . . . y[1], Vin[n], . . . Vin[1]),

(20.1)
Since the first term H(y[n] | y[n − 1], . . . y[1]) can be at most equal to 1 bit,

the mutual information term is maximized if and only if the second term is equal
to zero. The second term is zero if and only if the state of the encoder is fully
described given the input analog signal (i.e., it is not stochastic). Second, we
prove the state boundedness by contradiction. If the state is unbounded it must
grow to either positive infinite or negative infinite value (not both). Otherwise,
its bandwidth would grow to infinity, which cannot be the case with discrete-
time systems. Therefore, if the state becomes unbounded the output from the
comparator y[n] would be a constant value that carries no information (i.e.,
information rate falls below the capacity). Third, according to Theorem3, since
the state value over its trajectory must have a delta autocorrelation function
it must follow aperiodic orbits (i.e., random-like nature). Finally, if an analog
encoder is to produce an output that has white spectrum (aperiodic orbits) for
any input signal statistics, it should do so even in the limiting case where the
input signal is a delta function with the maximum bandwidth of fs/2. In this
case, the input signal affects only the initial state of the analog encoder and the
subsequent state values continue to change on their own over aperiodic orbits.
Therefore, it must be sensitive to initial conditions − a “Butterfly effect”. An
alternative limiting case, when the input analog signal is a DC signal, would lead
to the same requirement about the analog encoder. �

20.3 Discrete-Time TurboADC

We first explore the use of a simple discrete-time dyadic transformation (or
Bernoulli map) that can give rise to chaotic behavior. The phase space of this
simple map is shown in Fig. 20.3a, which in its original form does not allow the
use of an independent variable to affect the state’s trajectory. There are many
ways to ensure that an input analog signal is introduced into the chaotic map
to affect the state’s aperiodic trajectory. Figure 20.3b depicts the phase space
of a modified Bernoulli chaotic map proposed in this work. This particular map
is proposed for two reasons. First, it maximizes the dynamic range and signal-
to-noise ratio (SNR) by allowing the amplitude of the input signal Vin[n] to
reach maximum level of Vref . Second, it ensures a simple switched-capacitor
circuit implementation, as shown in Fig. 20.4. Also, Eqs. (20.2a)–(20.2e) show
the dynamical law of this chaotic system, where s[n] is the internal state of the
chaotic filter and Vref is the reference analog voltage used by a TurboADC for
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Fig. 20.3. 1-dimensional chaotic maps. a Traditional Bernoulli map. b Modified
Bernoulli map as an analog encoder

digitization.

q[nTs] = s[nTs] + Vin[nTs] (20.2a)

y0[nTs] =
{

1, q[nTs] ≥ 0
−1, otherwise

(20.2b)

y+[nTs] =
{

1, q[nTs] ≥ Vref

0, otherwise
(20.2c)

y−[nTs] =
{−1, q[nTs] ≤ −Vref

0, otherwise
(20.2d)

s
[
(n + 1)Ts

]
= a · q[nTs] − Vref

(
y0 [nTs] + 2 · y+ [nTs] + 2 · y− [nTs]

)
(20.2e)

The state s[n] remains bounded in the [−aV ref, aV ref) interval and tra-
jectory is deterministic in absence of electronic noise. For certain values of the
gain (e.g., a = 2) and initial state the map exhibits a true chaotic behavior
with the Lyapunov exponent equal to log(2). A block schematic of the described
DT TurboADC based on the modified Bernoulli chaotic map in Eqs. (20.2) is
shown in Fig. 20.4. Since the input to the internal quantizer is compared against
three thresholds (−Vref , 0, Vref ), a 2-bit quantizer and 2-bit feedback DAC are
required in this implementation. In a way, DT TurboADC represents a hybrid
between the ΔΣ modulator and the Cyclic ADC, with the best features of both
designs - oversampling, noise shaping, and simplicity from the ΔΣ ADC and
fast half-interval searching from Cyclic ADC. However, unlike the ΔΣ modula-
tor that employs a DT integrator to shape the quantization noise outside the
signal band, the TurboADC employs an unstable filter (pole zp = 2 outside the
unit circle), where both signal and quantization noise are shaped over aperiodic
orbits. This allows it to achieve much higher R-BW products than the ΔΣ ADCs
as demonstrated in Sect. 20.4. Also, unlike the Cyclic ADC, where each input
signal sample is converted to digital independently of other input samples, the
present state of the internal chaotic filter in TurboADC depends on the entire
past of the analog input signal.
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Fig. 20.4. Block schematic of the DT TurboADC employing modified Bernoulli chaotic
map

The following example emphasizes the significance of this difference between
the Cyclic ADC and TurboADC. Let us assume that a Cyclic ADC is designed for
a sampling rate of fs = 8MHz with 4-bit resolution. For each of the input signal
samples, the Cyclic ADC produces 4 bits after cycling through four comparisons
(i.e., comparator operates at fc = 32MHz), followed by resetting the internal
state to a new input signal value. If we now assume that the actual analog
signal applied to the Cyclic ADC is bandlimited to 1MHz (OSR = 4), the best
resolution that the Cyclic ADC can achieve in this case is 5 bits after averaging
four original 4-bit samples. At the same time, if the TurboADC operates at
the same speed (fc = 32MHz) and the input signal bandwidth is 1MHz, the
resolution will be 16 bits, which is an improvement of 11 bits over the Cyclic
ADC. Additionally, the TurboADC would require much simpler anti-aliasing
filter.

20.3.1 Baseband Decoding Method and Implementation

The single-bit stream produced by the comparator in TurboADC’s must be
decoded to produce a meaningful multi-bit representation of the input analog
signal in baseband. Contrary to Cyclic ADC, where there is a one-to-one corre-
spondence between the amplitude bits of the input signal samples and informa-
tion bits at the output of the comparator, the TurboADC produces information
bits that are affected by many past input signal samples. Therefore, input signal
baseband samples must be estimated from the comparator’s single-bit output
stream. Unlike the ΔΣ ADC where the baseband multi-bit input signal samples
are estimated with the help of a linear decimation filter, the TurboADC is a
non-linear system, and so the baseband signal must be estimated with the help
of non-linear estimation methods.

In the absence of electronic noise, the decoding method of the TurboADC
(based on the modified Bernoulli map shown in Fig. 20.2 and Eqs. (20.2) can be
implemented similarly to the non-linear decoder for ΔΣ ADC. The method is
briefly described below (for more details see our work in [7,12]). We first assume
that the output bit streams y0[n], y+[n], and y−[n] in Eqs. (20.2b)–(20.2d) are
divided into non-overlapping frames of length N .
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Equations (20.2b)–(20.2d) can be merged into a system of 3N inequalities
and written in a matrix form as in (20.3)–(20.6).

s = A · s + B · vin − Vref · C · (y0 + 2y+ + 2y−) (20.3)
y0 ◦ (s + vin) ≥ O (20.4)

y+ ◦ (s + vin − Vref · 1) ≥ O (20.5)
y− ◦ (s + vin + Vref · 1) ≥ O (20.6)

where vector operation ◦ denotes Hadamard product, O is a zero-vector of length
N , 1 is a one-vector of length N , and vectors

s =

⎡
⎢⎢⎢⎣

s[1]
s[2]
.
.
.

s[N ]

⎤
⎥⎥⎥⎦ ; vin =

⎡
⎢⎢⎢⎣

Vin[1]
Vin[2]

.

.

.
Vin[N ]

⎤
⎥⎥⎥⎦ ; y0 =

⎡
⎢⎢⎢⎣

y0[1]
y0[2]

.

.

.
y0[N ]

⎤
⎥⎥⎥⎦ ; y+ =

⎡
⎢⎢⎢⎣

y+[1]
y+[2]

.

.

.
y+[N ]

⎤
⎥⎥⎥⎦ ; y− =

⎡
⎢⎢⎢⎣

y−[1]
y−[2]

.

.

.
y−[N ]

⎤
⎥⎥⎥⎦

Matrix A, B, and C are the state transition matrices shown below for a gain
of the internal chaotic circuit a = 2,

A =

⎡
⎢⎢⎢⎢⎢⎣

1 0 · · · 0 0
2 0 · · · 0 0
0 2 · · · 0 0
...

...
. . .

...
...

0 0 · · · 2 0

⎤
⎥⎥⎥⎥⎥⎦

; B =

⎡
⎢⎢⎢⎢⎢⎣

0 0 · · · 0 0
2 0 · · · 0 0
0 2 · · · 0 0
...

...
. . .

...
...

0 0 · · · 2 0

⎤
⎥⎥⎥⎥⎥⎦

; C =

⎡
⎢⎢⎢⎢⎢⎣

0 0 · · · 0 0
1 0 · · · 0 0
0 1 · · · 0 0
...

...
. . .

...
...

0 0 · · · 1 0

⎤
⎥⎥⎥⎥⎥⎦

We can further rearrange the matrix equation in (20.3) to express the state
vector explicitly as in (20.7).

s = (I − A)−1(B · vin − Vref · C · (y0 + 2y+ + 2y−)) (20.7)

Further constraints can be imposed on the input signal vin. For example,
a band-limitation constraint can be introduced on the input analog signal as
described in (20.8), where W is a band-limitation matrix of size N × N

OSR [12].

vin = W · v̂in (20.8)

The vector v̂in can be defined as a vector of discrete transform coefficients
corresponding to the input signal band in which case the matrix W can be
described as an inverse transform matrix. If the coefficients in v̂in are amplitudes
of orthonormal sinusoidal waves sampled at fs, then each column of W is either
a sine or cosine wave with frequencies varying from DC to fs/(2OSR).

Finally, we can combine Eqs. (20.5)–(20.8) into one matrix inequality as in
(20.9), where Π = (I − A)−1.

⎡
⎣
y0

y+

y−

⎤
⎦ ◦

⎡
⎣

Π · (B · W · v̂in − Vref · C · (y0 + 2y+ + 2y−)) + vin

Π · (B · W · v̂in − Vref · C · (y0 + 2y+ + 2y−)) + vin

Π · (B · W · v̂in − Vref · C · (y0 + 2y+ + 2y−)) + vin

⎤
⎦ ≥

⎡
⎣

O
y+ + Vref · y+

y− − Vref · y−

⎤
⎦

(20.9)
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Computation of the baseband input signal can then be described as a linear
feasibility problem (LFP) in (20.10) defined as finding a coefficient vector v̂in

that satisfies the inequality constraints in (20.9) and then transforming it to
time domain as in (20.8) to obtain an input signal estimate v̂in.

find v̂in ∈ R
N

OSR

s.t. v̂in satisfies Eq. 20.9
(20.10)

This LFP problem can be solved by using sequential projection algorithms
such as the Kaczmarz method [13] and the Agmon, Motzkin, and Schoenberg
(AMS) method, [14,15]. Let Ax = b be a linear system and N be the number
of rows of A. Each row an of matrix A together with corresponding element bn
of vector b define the hyperplane Hn = {x : anx = bn , 1 ≤ n ≤ N }. Thus, a
solution to the linear system can be obtained by sequentially projecting onto the
hyperplanes Hn , as described in [13]. A system of linear inequalities, Ax ≤ b,
can be solved in a similar manner. The AMS method treats the system of linear
inequalities as a set of half-spaces Sn = {x : anx ≤ bn , 1 ≤ n ≤ N }, where
the projection onto a half-space only occurs if the current inequality is violated,
[14,15]. Given an arbitrary initial approximation x(0), the (i + 1)th estimate of
the solution is calculated as

x(i + 1) = x(i) + min
{

0,
bn − anx(i)

‖ an ‖22

}
aT
n (20.11)

where n = i mod N + 1 and ‖ an ‖22 is the Euclidean norm. From Eq. (20.11)
the solution x at the (i+1)th iteration step is changed only if the nth inequality
is violated. Otherwise, the current estimate remains unchanged (i.e., x(i +1) =
x(i)).

20.4 Simulation Results

To demonstrate the DT TurboADC method proposed in Sect. 20.3, we set up
simulations in MATLAB environment. First, a bandlimited input signal vin of
length N = 64 is created by transforming a set of N/OSR coefficients v̂in to time
domain with the use of band-limitation matrix W as shown in Eq. (20.8). The
coefficients v̂in are chosen at random and independently from a normal distri-
bution. The input signal vin is then normalized so its amplitude does not exceed
maximum value of Vref = 1. The output bit stream y0 and auxiliary outputs
y+ and y− from the DT TurboADC are then fed to the decoder as described
in Sect. 20.3.1. The estimated input signal v̂in is then compared to the actual
input vin and the mean-squared-error (MSE) is calculated for various OSR
values. SNR is then calculated as SNR = 10log10(V 2

ref/MSE). The results
are compared against 1st order ΔΣ ADC with non-linear decoder as in [12],
as shown in Fig. 20.5. The resulting SNR of the DT TurboADC indicates the
effective resolution close to OSR (where the effective resolution is calculated as
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Fig. 20.5. Simulations results. a shows time domain waveforms of original input signal,
input signal estimated by a 1st-order ΔΣ ADC with a non-linear input signal recon-
struction as in [12], and DT Turbo ADC for OSR = 8. b shows SNR as a function
OSR for 1st-order ΔΣ ADC with a non-linear input signal reconstruction and DT
TurboADC

SNR/6.01), while the 1st order ΔΣ ADC’s resolution follows log2(OSR) trend
(see Fig. 20.5b). For example, at OSR = 8, the DT TurboADC achieves an SNR
of 47 dB (or 7.82 bits of effective resolution), while the conversion capacity limit
is 8 bits. The 1st order ΔΣ ADC achieves only 4.3 bits for the same OSR. It
should be noted that the DT TurboADC decoder as described in Sect. 20.3.1 did
not always converge occasionally producing a high MSE. The convergence of the
decoder was highly sensitive to the initial input signal estimate indicating that
the solution set to the (20.10) may not be convex. Further research is needed to
understand the convexity of the solution set to this estimation problem. If the
solution set proves to be non-convex, further efforts will be made to introduce
additional constraints to guarantee convergence of the decoder (e.g., an addi-
tional comparator with a direct access to the input analog signal might be used
to provide the polarity of the input samples to the decoder). In addition, the
decoder in Sect. 20.3.1 is deterministic assuming no electronic noise is affecting
the state of the encoder. Thus, further research is needed to understand the
effects of electronic noise on the choice for a specific decoder type and its design.

20.5 Conclusion

A new class of ADCs, termed TurboADC, capable of achieving fundamental
theoretical limit to the resolution-bandwidth product (or conversion capacity) is
presented. We prove that a TurboADC must employ a deterministic chaotic cir-
cuit to achieve the capacity. A discrete-time implementation of TurboADC with
the front-end circuit complexity similar to a simple 1st order ΔΣ modulator is
also proposed and its capacity achieving capabilities are demonstrated through
simulations. The simulation results show that the resolution in the baseband is
proportional to the OSR (defined as the ratio between one half the sampling
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frequency and the input analog signal’s bandwidth) surpassing all existing ADC
methods, whose resolution is proportional to log2(OSR), opening up possibil-
ities for new data conversion applications such as high-speed direct RF signal
conversion in radar, high-speed communications, and medical imaging.
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Abstract. We describe a method to estimate embedding dimension
from a time series. This method includes an estimate of the probabil-
ity that the dimension estimate is valid. Such validity estimates are not
common in algorithms for calculating the properties of dynamical sys-
tems. The algorithm described here compares the eigenvalues of covari-
ance matrices created from an embedded signal to the eigenvalues for a
covariance matrix of a Gaussian random process with the same dimen-
sion and number of points. A statistical test gives the probability that
the eigenvalues for the embedded signal did not come from the Gaussian
random process.

21.1 Introduction

When analyzing a dynamical system based on a single variable time series, the
first step is to embed the time series in a phase space to obtain a representation,
or embedding, of the trajectory of the dynamical system [1]. Beginning with a
digitized time series s(i), i = 1 . . . N , the method of delays [2] is used to create
a series of vectors,

s(i) = [s(i), s(i + τ), . . . s(i + (d − 1)τ)], (21.1)

where d is the embedding dimension and τ is the embedding delay. If the original
dynamical system had a dimension of k, then the largest value of d necessary
for s to be an embedding of the original dynamics is 2k + 1, although in many
cases d = k is sufficient [3].

There are a number of methods for obtaining the d and τ : correlation inte-
grals [4], false nearest neighbors [5], singular value decomposition [6], nonlinear
modeling methods [7,8] and others [9–11]. If one has a large amount of low noise
data from a low dimensional dynamical system, these methods can work well; in
practice, however, we frequently have to make do with smaller amounts of noisy
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data. The previously mentioned dimension estimation methods require the user
to estimate some parameter of the algorithm, which then affects the estimated
dimension.

21.1.1 Error Estimates

Very few dimension estimation methods include a way to estimate confidence
in the estimated dimension. One recent method does allow one to estimate the
effect of noise on the dimension calculation [12], possibly aiding in determining
the reliability of the result, although filtered noise is not discussed.

If one is 95% confident that the embedding dimension is 3, that is good;
if one is only 5% confident, that is not so good. It is necessary to develop a
method of dimension estimation that also allows the user to calculate the possible
confidence in the final number. In this work, we show how the properties of
random matrices may be used to put bounds on the eigenvalue spectrum of
covariance matrices calculated from a finite dimensional attractor.

An additional feature of this method is that there is only 1 adjustable param-
eter, and the value for that parameter is based on a reasonable physical argument
and is chosen before the calculation commences.

21.2 Covariance Matrices

The algorithm presented here has much in common with the singular value
decomposition method already mentioned. Both methods create matrices from
the data and seek to detect anisotropy in these matrices. The singular value
decomposition method does a singular value decomposition on the data and
looks at how many singular values are above the noise floor. There is no rigorous
way to determine this threshold. The current method calculates the eigenvalues
of the covariance matrix for the data and compares these eigenvalues to those
expected for a Gaussian random signal. For the method described in this paper,
the embedded time series is simply considered as a point cloud in phase space.
No assumptions are made about dynamics. The null hypothesis is that this point
cloud is drawn from a random process, and our goal is to disprove this hypothesis.

A chaotic attractor that can be embedded in a d dimensional phase space lies
on an invariant manifold with a dimension of d or less. The manifold may have a
local dimension <d. Curvature of the manifold is why the attractor itself requires
d dimensions for embedding. The local dimension can be estimated by finding
the eigenvalues of the covariance matrix for small regions on the attractor. These
eigenvalues can be used to estimate the probability that the embedded signal is
nonisotropic in a d dimensional phase space. Anisotropy is taken as an indication
that the signal can be embedded in d dimensions.

Why find the covariance for local regions and not just the entire attractor?
Chaotic attractors have a distinctive structure in phase space, as plots of attrac-
tors shown in this paper reveal. This structure means that the distribution of
points on the attractor is anisotropic even when signal is embedded in too few
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dimensions to form an embedding of the dynamical system. It is necessary is
divide the attractor into small regions for which the attractor density is approx-
imately constant.

21.2.1 Clustering

If the local region on the attractor is too small, noise and digitization errors will
obscure the local dimensionality. If the local region is too large, the curvature
of the manifold and variations in density will cause errors in dimension estima-
tion. In order to stay between these 2 size limits, local regions are found using
a clustering algorithm. A small region on the attractor is divided into K equal
size bins, and the number of points in each bin, mk is counted. The empirical
probability of finding a point in each bin is π̂k = mk/M , where M is the sum
of the points in all K bins. The model probability is a constant over al K bins.
Both sets of probabilities are used to update a prior containing the least infor-
mation, and the posterior probabilities are compared using a Kullback–Leibler
divergence, [13], a commonly used measure of the difference between probabil-
ity distributions. An analytic formula for this Kullback–Leibler divergence was
derived in [14]. An penalty function of Klog2(K) must be subtracted from this
divergence function, as creating more bins is the equivalent of overfitting the
data. The final formula for measuring how different the posterior probability
distribution inferred from the π̂k’s from the posterior model distribution is

R (mk, K) =

1
ln 2

K∑

k=1

[
(mk − ρ0V ) · ψ

(
mk + 1

2

) − ln Γ (mk + 1
2 ) + ln Γ

(
ρ0V + 1

2

)] − Klog2 (K)

K
(21.2)

where ρ0 =
K∑

k=1

mk

/

(KV ), where V is the volume of an individual bin, the

function ψ is the digamma function and Γ is the gamma function. The units
of R(mk,K) are bits/bin. A reasonable minimum threshold for R(mk,K) is 1
bit/bin. For this threshold, the attractor density is approximately constant over
the K bins.

The embedded time series vector s(i) (Eq. 21.1) is clustered by first picking
a random index point on the attractor. A set of d + 1 nearest neighbors to the
index point is found and partitioned into K = 2d bins. The Kullback–Leibler
divergence R(mk,K) is then found for this set of neighbors. If R(mk,K) <1
bit/bin, more near neighbors are included. The region around the index point is
expanded until R(mk,K) >1 bit/bin. The binning and expansion process is then
started again with a new randomly chosen index point. The clustering process is
continued until at least 90% of the points in s(i) have been included in a cluster.
The different clusters may overlap.

Points on the same trajectory may be included in the group of neighbors,
possibly introducing spurious correlations caused by time correlation in the 1-d
signal s(i). These correlations will be suppressed using a Theiler exclusion [15], in
which points within a certain number of time steps along the same trajectory are
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excluded. In addition, the method of surrogates [16] was used to below account
of the effects of time correlations.

From the Ml points in the l ’th cluster, a M×d dimensional vector x is created.
The vector x is normalized by subtracting the mean from each component and
dividing by the standard deviation

yj =
xj − x̄j√

√
√
√

[
d∑

j=1

M∑

i=1

(xj (i) − x̄j)
2

] . (21.3)

where the overbar operator indicates a mean, and the subscript j indicates one
of the d components of the vector x. Next, the d×d covariance matrix is formed:

C =
yTy
M

. (21.4)

A d dimensional Gaussian random process will be isotropic in a d dimensional
space, and the mean covariance matrix for this process will be proportional to
the identity matrix. The possible covariance matrices C for the Gaussian random
process may be drawn from a Wishart distribution [17] with a mean covariance
proportional to the identity matrix, and it is possible to place some limits on
the eigenvalues of C. If the eigenvalues of C do not fall within the limits for
a Gaussian random process, then we reject the null hypothesis that s(i) was
obtained from a Gaussian random process. The covariance eigenvalues may fall
outside the limits for a Gaussian random process if the signal is not isotropic
when embedded in a d dimensional space.

The probability distribution of random matrices X with covariance Σ is the
Wishart distribution, [17]

f (X,Σ, n) = |X|((n−d−1)/2)e(−
1
2 trace(Σ−1X))

2nd/2π(d(d−1))/4|Σ|n/2Γd(n/2)

Γd

(
n
2

)
= π

d(d−1)
4

∏d
j=1 Γ

(
n
2 + 1−j

2

)
(21.5)

where n is the number of degrees of freedom (number of points in the time
series), X and Σ are d× d matrices where n ≥ d, and || indicates a determinant.

For n and d approaching ∞, the probability distribution for the eigenvalues
of a random matrix converges to the Marchenko–Pastur distribution [18]. For
low dimensional attractors, the Marchenko–Pastur distribution is not a good
approximation, so the range of possible eigenvalues for a Gaussian random pro-
cess must be estimated from a Monte-Carlo process by drawing random n × d
matrices from the Wishart distribution.

The function wishrnd() in MATLAB was used to create covariance matrices
drawn from a Wishart distribution with a mean covariance matrix equal to the
identity.
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21.2.2 Time Series Correlations

The Wishart distribution that was used to find limiting values of eigenvalues for
the covariance matrix is a distribution for covariance matrices of Gaussian ran-
dom processes having a flat power spectrum. Such a random process is isotropic
in space. The power spectrum of a measurement of an actual physical system
is not flat, but is limited in frequency. These frequency limits cause a time
series from an experiment to have some correlation in time. When the data is
embedded in a phase space, this time correlation can make the embedded signal
non-isotropic in phase space, so the eigenvalues for a covariance matrix from
such a signal may be outside the limits for the eigenvalues of a Gaussian ran-
dom process, even if the embedded signal is just filtered noise. It is well known
that filtered noise signal can cause problems for dimension estimation algorithms
[15,19], and there have always been concerns that using embedding delays that
are too short can lead to false correlations.

To detect this time correlation, we create a surrogate signal [16] from our
original time series. The original time series is Fourier transformed, the Fourier
components are multiplied by random phase factors, and then the phase ran-
domized Fourier signal is inverse transformed. The result is a random surrogate
signal with the same power spectrum as the original signal. Because the power
spectrum is the same as the original signal, the correlation properties of the
surrogate are the same as the original signal. If the eigenvalues for the covari-
ance matrices from the surrogate signal embedded in d dimensions are outside
the limits for a Gaussian random signal, then the anisotropy could have been
caused by time correlation. It is still possible that the signal is a deterministic
signal that can be embedded in d dimensions; it just isn’t possible to tell if the
anisotropy is caused by determinism or by time correlation.

21.3 Dimension Estimates

The example attractor here came from the Rossler system [20]. A time series of
20,000 points was generated from the Rossler equations

dx
dt = −y − z
dy
dt = x + 0.2y
dz
dt = 0.2 + z (x − 5.7) .

(21.6)

The Rossler equations were integrated using a 4th order Runge-Kutta integration
routine with a time step of 0.1 s. Figure 21.1 is a plot of the attractor created by
embedding the x signal with a delay of 2. Figure ?? is the autocorrelation of the
Rossler signal.

The embedded Rossler signal was clustered according to the methods of
Sect. 21.2.1, with a threshold of R(mk,K) > 1 bit/bin. The l’th cluster con-
tained Ml points. These Ml points were used to create a d dimensional covariance
matrix, as described in Eqs. (21.3)–(21.4), and the d eigenvalues of the covariance
matrix were calculated.
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Fig. 21.1. Rossler attractor obtained by embedding the x signal from Eq. 21.6 with a
delay of 2
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Fig. 21.2. Filled circles with error bars are the mean eigenvalues λj(d, τ) j = 1 . . . d as
a function of embedding delay τ for covariance matrices for the clustered Rossler attrac-
tor. The open squares are the mean limiting values for covariance matrices of Gaussian
random d dimensional signals, based on a Monte Carlo simulation. a corresponds to
d=2, b is d=3, c is d = 4 and d is d = 5

For a given dimension d and embedding delay τ , the Rossler attractor was
clustered into Nc clusters, resulting in Nc sets of d eigenvalues λl,j(d, τ) l =
1 . . . Nc, j = 1 . . . d.
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21.3.1 Limiting Eigenvalues

For each value of d and τ , the eigenvalues λl,j(d, τ) for the Rossler system must
be compared to the limiting values for the eigenvalues λmax and λmin of the
covariance matrix of a d dimensional Gaussian random signal, as found by the
Monte Carlo process above. The limiting eigenvalues λmax and λmin depend
on the number of points in the cluster, Ml (as shown in Fig. ??). Each of the
clusters for a given d and τ may contain a different number of points. For the
l’th cluster, containing Ml points, the limiting eigenvalues are λmax(d,Ml) and
λmin(d,Ml).

Figure 21.2 shows the mean eigenvalues for the covariance matrices from the
Rossler system as a function of τ for d = 2, 3, 4, 5. In Fig. 21.2a, the mean
eigenvalues λj(d, τ) for covariance matrices for a 2-d embedding of the Rossler
system are well within the limits for the eigenvalues for the covariance matrix
for a Gaussian random process. In 2 dimensions, the null hypothesis can’t be
disproved- the covariance matrices for the clusters on the Rossler attractor could
come from a Gaussian random process. In Fig. 21.2b, the 3-d embedding, one of
the mean Rossler eigenvalues lies outside the range of eigenvalues for a Gaussian
random process for τ < 50. From Fig. 21.2b we can say that for τ < 50, the
Rossler signal is not isotropic in d = 3. The conclusion is that the Rossler system
can be embedded in 3 dimensions. Figure 21.2c, d, in 4 and 5 dimensions, also
reject the null hypothesis for those dimensions.

21.3.2 Filtered Noise

Filtered noise can be a difficult test for dimension estimation algorithms. Because
filtered noise is correlated in time, it can appear to have anisotropy in phase
space. A 20,000 point filtered noise signal was clustered as in the previous exam-
ples, with an information threshold of R(mk,K) > 1 bit. As before, the filtered
noise signal was embedded in different dimensions with different delays. As with
the Rossler system, the eigenvalues for covariance matrices from the filtered noise
signals were calculated. The mean eigenvalues and the mean limiting values of
eigenvalues for random covariance matrices are plotted in Fig. 21.3.

The filtered noise signal appears to have some anisotropy when embedded
in 4 or 5 dimensions, as seen in Fig. 21.3c, d. This apparent anisotropy is a
consequence of the time correlation of the filtered noise signal. To detect when
anisotropy could be caused by time correlation, a surrogate signal is required.

21.4 Surrogate Signals

Time correlation can produce the appearance of anisotropy in the embedded
signal, particularly for small values of the embedding delay τ . To discover this
spurious anisotropy, a surrogate signal is created as described above [16]. The
surrogate signal will have the same power spectrum as the Rossler signal, so
linear correlations will be preserved. Because the surrogate signal is otherwise
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(a) (b)

(c) (d)

Fig. 21.3. Filled circles with error bars are the mean eigenvalues λj(d, τ) j = 1 . . . d
as a function of embedding delay τ for covariance matrices for the clustered filtered
random noise signal. The open squares are the mean limiting values for covariance
matrices of Gaussian random d dimensional signals, based on a Monte Carlo simulation.
a corresponds to d = 2, b is d = 3, c is d = 4 and d is d = 5

random, any anisotropy seen in the covariance matrices for the surrogate signal
could is caused by the time correlations in the original Rossler signal.

The Rossler signal is Fourier transformed, the Fourier components are each
multiplied by a random phase factor, and the randomized Fourier is inverse
transformed to yield the surrogate signal. The surrogate signal is embedded in
the phase space, and the eigenvalues of the covariance matrices are plotted in
Fig. 21.4.

In Fig. 21.4, the eigenvalues for the surrogate signal from the Rossler signal
are outside the bounds of the eigenvalues for the covariance matrix of a Gaus-
sian random system for low values of the embedding delay τ for embedding
dimensions 4 and 5. Figure 21.4c, d would appear to show that the embedded
Rossler surrogate signal is anisotropic in dimensions 4 and 5, but this apparent
anisotropy results from the time correlation in the Rossler x signal.

In the next section, information from Figs. 21.2 and 21.4 is combined to give a
probability that the covariance matrix algorithm can determine that the Rossler
x signal is not isotropic when embedded in d dimensions.
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(a) (b)

(c) (d)

Fig. 21.4. Filled circles with error bars are the mean eigenvalues λj(d, τ) j = 1 . . . d as
a function of embedding delay τ for covariance matrices for phase randomized surrogate
signal created from the Rossler x signal. The open squares are the mean limiting values
for covariance matrices of Gaussian random d dimensional signals, based on a Monte
Carlo simulation. a corresponds to d = 2, b is d = 3, c is d = 4 and d is d = 5

21.5 Surrogate Signals and Probabilities

The simplest way to use the eigenvalue spectrum to estimate embedding dimen-
sion is to estimate the probability that the embedded signal is nonisotropic in d
or fewer dimensions. The ability to estimate probabilities is the major difference
between this dimension algorithm and other algorithms.

Because there is some deviation in the values of the eigenvalues of the covari-
ance matrices for a signal, the question of whether or not an eigenvalue λj(d, τ)
is outside the limits specified by the upper and lower limiting eigenvalues for
a Gaussian random process, λmax(d, τ) and λmin(d, τ) is not a yes or no ques-
tion. To estimate the probability ρ(d, τ) that at least one of the eigenvalues for
the covariance matrices is outside the limits for a Gaussian random process, we
count the fraction of times that this occurs for each combination of d and τ .

The probability ρn(d, τ) is the probability that the Rossler x signal does
not have the eigenvalues of a Gaussian random signal when embedded in d
dimensions or fewer using a delay of τ . The chance that the anisotropy in the
covariance matrices comes from time correlation alone, and not determinism,
must be accounted for. The probability ρsurr(d, τ) is calculated from the surro-
gate Rossler x signal. The probability that this algorithm can indicate that the
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Fig. 21.5. Probability ρd(d, τ) (Eq. 21.7) that the embedded Rossler x signal did not
come from a Gaussian random process (i. e. it is not isotropic), corrected for the time
correlation of the Rossler signal. The x signal was 20,000 points long

embedded Rossler signal does not appear to be a uniform random signal is then

ρd (d, τ) = ρn (d, τ) − ρsurr (d, τ) . (21.7)

The value of ρd(d, τ) is plotted in Fig. 21.5. The probability plotted in
Fig. 21.5 only shows the probability that this algorithm could determine that the
embedded signal was not a random signal when embedded in d dimensions with
an embedding delay of τ . It is possible that time delays that show a low prob-
ability could still be legitimate embedding delays, but this algorithm couldn’t
distinguish between a low dimensional signal and filtered noise for those delays.

The plots in Fig. 21.5 do show that for delays between 2 and 18, there is a bet-
ter than 90% probability that the embedded signal is anisotropic when embedded
in d = 3. The drop in probability for the 3-d embedding in Fig. 21.5 most likely
occurs because for larger delays, the effects of curvature of the manifold occupied
by the Rossler attractor become large enough to affect the covariance matrix.

21.5.1 Filtered Noise

The surrogate signal method was also applied to the filtered noise signal.
Figure 21.6 shows the probability that the dimension algorithm could determine
that the structure seen in the filtered noise signal was due to its finite dimension
and not caused by time correlation. A probability of <0 means that the surro-
gate probability had a higher probability of being anisotropic than the regular
signal; we take negative probabilities to be the same as 0.

In Fig. 21.6, the dimension algorithm detects no anisotropy in the filtered
random noise signal.
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Fig. 21.6. Probability ρd(d, τ) that the embedded filtered random noise signal did
not come from a Gaussian random process, corrected for the time correlation of the
filtered signal. A probability of <0 means that the surrogate probability had a higher
probability of being anisotropic than the regular signal; we take negative probabilities
to be the same as 0

21.6 Algorithm Summary

Combining all the sections above, the dimension estimation algorithm is:

1. Before starting, estimate limits on eigenvalues for covariance matrices of a
Gaussian random process for different dimensions and numbers of points,
using a Monte Carlo simulation (Eq. 21.5). Store these values in a lookup
table.

2. Embed a time series s(i), i = 1 . . . N in d dimensions with an embedding
delay of τ : s(i) = [s(i), s(i + τ), . . . s(i + (d − 1)τ)].

3. Apply clustering algorithm using probability threshold of Eq. (21.2).
4. For each of Nc clusters, calculate normalized covariance matrix of Eq. (21.3)–

(21.4).
5. Find the eigenvalues of the normalized covariance matrix for each cluster.
6. The l’th cluster contains Ml points. From the lookup table containing the

limiting eigenvalues for a random Gaussian process containing Ml points and
embedded in d dimensions, retrieve the maximum and minimum possible
eigenvalues λmax(d,Ml) and λmin(d,Ml).

7. Find the probability that one of the eigenvalues λl,j(d, τ), l = 1 . . . Nc, j =
1 . . . d is outside the limits λmax(d,Ml) and λmin(d,Ml). This probability is
ρn(d, τ).

8. Create a phase randomized surrogate signal from s(i), i = 1 . . . N .
9. Repeat steps 1–9 for the phase randomized signal to get a probability

ρsurr(d, τ).
10. Calculate the probability ρd (d, τ) = ρn (d, τ) − ρsurr (d, τ). Plot ρd(d, τ) as

a function of d and τ .
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21.7 Discussion

This algorithm, based on finding the eigenvalues of a covariance matrix for an
embedded signal, estimates the probability that the embedded signal is not
isotropic when embedded in d dimensions. Anisotropy is taken as an indica-
tion that the signal can be embedded in d dimensions. The covariance matrix
eigenvalues for filtered random signals may also lie outside the range expected
for a Gaussian (isotropic) d-dimensional process, so to eliminate this possibil-
ity, it’s necessary to generate a phase randomized surrogate of the signal to be
embedded, and calculate the eigenvalues for covariance matrices for an embedded
version of this signal.

The algorithm described here doesn’t solve the problem of finding the best
embedding delay τ . The algorithm gives the probability for some value of embed-
ding delay τ that an unknown signal is not isotropic when embedded in d dimen-
sions, and that the anisotropy could not have been a result of time correlation.
There may be legitimate values of the embedding delay τ that give a low prob-
ability in this algorithm; the low probability simply means that this algorithm
can’t tell unambiguously that a signal is nonisotropic when embedded in d dimen-
sions. There has been work that shows that different values of the embedding
delay τ are useful for different applications [1].

This dimension estimation method is not as computationally efficient as some
methods, but it outputs a confidence level, so that the user can understand how
reliable the dimension measurement is.
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Chapter 22
Bio-Inspired Approach to Quantify

Nonlinearities in Time-Series Measurements
Using the Nuttall-Wiener-Volterra

(NWV) Method
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Abstract. This research offers an additional approach to the increased interest
in information theoretic techniques utilized in the Theory of Communications,
Electrical Engineering and Signal Processing disciplines for extracting nonlinear
behavior in dynamical systems. This new approach was, in part, motivated by a
diligent effort to create a man-made system that mimics the sound generation of
a cicada. This insect has tremendous sound production capacity for its size. For
the Okanagana and Magicicada species studied in this research, these cicadae
ranged in size from five to six centimeters and produce sounds that are heard
several hundred meters away. The evolution of this new signal processing
algorithm from this bio-inspired research is explained in this article. This
investigation initially examined the cicada hypothesized nonlinear system, by
employing a number of numerical techniques in which to identify nonlinearity in
a measurement times series. One such technique, the Nuttall modified-Volterra
approach would serve as the validation and verification process for confirming
that the inherent artificiality introduced by converting the sound production
system of the biologic system to a man-made device did not corrupt the inherent
dynamics of the cicada mating call. The technical advantage gained from
quantification of the expansion kernels using the Nuttall approach, is the cre-
ation of more characterization clues by extending beyond the linear kernel
response. This unique method is based on an extension of earlier developments
of Vito Volterra and Norbert Wiener. The new Nuttall-Wiener-Volterra
(NWV) method identifies the existence of nonlinearity in a measurement time
series and determines the power distribution of individual nonlinear compo-
nents. Moreover, the NWV method, unlike other methods that are likely less
computationally efficient due to the Curse of Dimensionality (COD), signifi-
cantly reduces the computational workload, thereby making characterizations of
nonlinear systems with memory at higher orders possible. The nonlinear system
kernel responses reveal identification and characterization of linear and non-
linear dynamics contained within the system under investigation. Thus, the
nonlinear kernel responses computed for the cicada exposed a critical devel-
opment for the NWV technique, namely that in order to obtain meaningful
NWV kernel responses (i.e., to have physically and mathematically sound
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computational results), there are restrictive requirements for the system input
excitation to be (a) band-limited, (b) white Gaussian and (c) zero mean. By
studying the anatomical structures in the cicada sound production system and
developing the wave propagation and finite element (FE) models this effort also
then attempted an approach to confirm the accuracy of these models by
employing the NWV nonlinear (and linear) analysis method.

22.1 Introduction to an Investigation of Bio-Inspired Sound
Generation

The initial step in the generation of this bio-inspired source is to understand the in-air
cicada transmission capability. The effort focused on characterizing the cicada sound
production system by measuring the sound produced using microphones and a laser-
Doppler vibrometry. These measurements led to an analysis and comparison of the
sound production capabilities of the cicada as compared to traditional transducers
operating in air in order to develop a figure-of- merit relating to the sound production
efficiency gain that is produced. A second-order signal processing model using the
Volterra method was developed to verify the presence of nonlinear behavior in the
cicada mating call, leading to the development of new fundamental design equations
that replicate the cicada mating call and are able to produce accurate representations of
both the temporal and spectral signal structure. The cicada appears to down-convert
multiple higher frequency components in order to provide an inter-modulated band
pass signal structure in the 3–14 kHz region of the audio band by a technique that does
not exist in man-made systems to date. A finite element analysis model for the cicada
was created to simulate the cicada’s sound production system in-air which could help
explain the structural acoustics generated by the cicada’s anatomy.

22.2 Development of a Finite Element Analysis (FEA) Model
of Cicada Sound System

Micro-computer tomography (micro CT) images of the cicada were scanned to the
appropriate resolution to develop a meshed computer aided design (CAD) model. The
meshed CAD model is analyzed with ABAQUS Finite Element (FE) analysis software
which generates pressure values at a prescribed distance from the structures analyzed.
In Fig. 22.1, the FE model shows the essential anatomical structures that produce the
cicada mating call as well as the synthesized tymbal modeled structure.

The tymbals provide the clicking noise from the buckling of the tymbal ribs, and
the abdomen acts as an amplifier for the impulse train caused from the snap of the
tymbal ribs. A simulated tymbal muscle response is utilized as the forcing function for
the FE model. This FE model illustrated in lower part of Fig. 22.1 has air elements
placed around the structure and the pressure history is computed as a function of time
as shown in Fig. 22.2.

The simulated results depicted in Fig. 22.2 are the initially computed output for the
in-air FEA model used to compare to experimental data; however, there are several
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difficult finite element analysis (FEA) modeling problems with the sound system of the
cicada to be overcome and addressed such as the rib-stiffened buckling transduction.
Previous FEA models were built to address the step-by-step development required to
simulate the tymbal vibration. Current commercial software packages cannot address
the parameters which govern the challenges created by the cicada’s unique acoustic

Fig. 22.1. The essential anatomical sound production system

Fig. 22.2. ABAQUS pressure field results
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transduction system. The material properties of the tymbal, frequencies generated, and
the difficulties of modeling buckling acoustics have not been fully examined using
current FE software. Non-commercial software may possess the mathematical fidelity
to compute the structural acoustic interface between the tymbal and air with cicada
material properties and its operating frequencies such as hybrid fluid-structural code
(DYSMAS).

22.3 Development of a Wave Propagation Model for Cicada
Mating Call

The complexities associated with a rib-stiffened buckling transduction system are
obvious and thus a systematic methodology is being considered in this article. The
tymbals in the cicada not only are ribbed stiffened, which present modeling and
computational issues – the ribs also buckle to produce the mating call. Determining the
potential frequency ranges that are capable with a multimodal buckling structure is a
revolutionary concept in acoustic sound production. Since air does not impose a sig-
nificant surface load on an object creating sound, the opportunity to analyze multi-
modal structural acoustics is possible with the in-air FE model. The in-air FE model
simplification is to verify that the FE modeling software can maintain fluid-to-structure
contact accurately through a simulation. Consequently, the FE software requires a
qualification process, namely that the FE results match known theoretical solution. To
this end the development of an analytical solution is necessary. For example, in
Fig. 22.3, there is an end-cap portion of a sphere which vibrates at a given velocity and
frequency. The derivation to obtain the radiation pattern is as follows:

Fig. 22.3. End-cap portion of a sphere vibrating
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the velocity v,

vr ¼ Re V0e�ixtf g 0\h\ho
r ¼ R

¼ 0 ho\h\ p
2 r ¼ R

ð22:1Þ

is based on r the radius for the real portion of the velocity. Outside of the sphere the
wave equation is given by the following expression for the pressure field:

p ¼ Re
X1
l¼0

AlPl coshð Þhl krð Þe�ixt

( )
: ð22:2Þ

This equation contains the Hankel functions hl with Al coefficients and Legendre Pl

polynomials where l represents the indices. The Hankel function is shown as an out-
ward propagating wave function. Consider Euler’s equation where the velocity of the
end-cap portion of the sphere equals pressure generated by the motion the wave
number k and the radius r of the source, as follows:

v̂r ¼ 1
ixq

X
l

AlPl coshð Þ d
dr

hl krð Þ
� �

� ixqv̂r ¼ � @

@r
p̂:

ð22:3Þ

Using orthogonality with Legendre polynomials and an initial velocity Vo

Zho
0

V0Pl coshð Þsinhdh ð22:4Þ

this expression is plugged into the Euler’s equation

p ¼ 1
ixq

Al
Zp

0

Pl cos hð Þ2sin hdh d
dr

h 1ð Þ
l krð Þ

� �
r¼R

ð22:5Þ

for the Hankel function of the first kind. Continuing with the solution to Hankel
function of first kind and the Legendre polynomial indices being set to 0 and 1 the
expressions are given as follows

¼ Al

ixq
2

2lþ 1
d
dr

h 1ð Þ
l krð Þ

� �
r¼R

ð22:6Þ

P0 ¼ 1 P1 ¼ cosh ð22:7Þ

along with a few trigonometric identities (22.8)
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The Hankel solutions at equilibrium on the surface of the end cap of the sphere are
given in the following equations:

V0 1� cosh0ð Þ ¼ A0
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Now, the Hankel functions for small kr at the edge of sphere at equilibrium are
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ð22:10Þ

Then, the Hankel coefficients Al at the edge of the end cap using small angle
assumption are solved in the next set of equations:

V0 1� cosh0ð Þ ¼ A0

ixq
2

i
kR2

V0
1
2
sin2h0 ¼ A1

ixq
2
3
�2i

k2R3

A0 ¼ kR2 xq
2

V0 1� cosh0ð Þ ð22:11Þ

A1 ¼ �k2R3 3
8
xqV0sin

2h0: ð22:12Þ

In order to determine a radiation pattern or acoustic pressure field the derivation
continues as follows. The acoustic pressure for large kr is derived in the following
manner by the Hankel coefficient plugged into the Euler equation:
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Also, the angle h0 is assumed small to form the following first approximations 1�
cosh0 � 1

2 h
2
0 and sin2h0 � h20, which form this pressure

p̂ � xqV0R
2 1
4
h20 �i� 3

2
kRcosh0
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eikr

r
ð22:15Þ

approximation. Consequently, the radiation pattern is proportional to the magnitude of
bracketed expression �i� 3

2 kRcosh0
� �

. So, the radiation pattern for the acoustics is

equal to 1þ 9
4 kRð Þ2cos2h0 for a given initial velocity Vo, which generates a pressure of

around 248 kPa at 10 m/s for a 10 kHz end-cap source at standard environmental
conditions in air. The graph for the radiation pattern is shown in Fig. 22.4.

Fig. 22.4. Radiation pattern for end-cap portion of the sphere
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This radiation pattern is a key step in helping to understand the acoustic pressure
created by such a surface vibrating on a sphere.

22.4 Understanding Wave Propagation of Acoustic Signals
for Use in Cicada Generated Sound

Previous work by Young [1] and Bennet-Clark [2, 3] studied a linear model of sound
propagation in cicadas, however, linear models fail to adequately explain how the
signals interact and propagate over long distances. On the other hand, non-linear
models are more difficult to analyze. The findings presented in Edoh, Hughes, and Katz
[4] suggest that a linear model does not fully capture the acoustic waveform distortion
and proposes a nonlinear model instead, studying Burgers’ equation [5]. Burgers’
equation is a simplification of the Westervelt equation that incorporates nonlinear
effects into a forward-propagating plane-like wave, and is stated as

@v
@x

� b
c2

v
@v
@s

¼ d
c3

@2v
@s2

ð22:16Þ

where s ¼ t � x
c, x is the spatial variable measured in meters, t is time in seconds, c is

the speed of sound (c = 343.2 meters per second in air at 20 °C), and we take b = 1.2
as the parameter of nonlinearity, and d = 1.9 � 10−6, for propagation in air.

In this simulation, the study refines this wave propagation model to determine
whether the significant features observed in the recorded cicada data are present. This is
a semi-empirical approach in the sense that the theory guides the determination of
whether the propagation can be simulated using a simplified model like Burgers’
equation, or if higher order nonlinearities must be included in the model equation.
Numerical challenges are due to nonlinearity and non-smooth nature of the signals
along with high frequency content. However, Burgers’ equation solutions are known to
form multiple simultaneous solutions with smooth initial data. Therefore, the Burgers’
solution should adequately handle the frequency component interaction.

In [4], the authors implemented a Fourier spectral solver and low order time
integration method to solve Burgers’ equation. However, the performance of spectral
methods depends on the smoothness of the solution (and initial data); yet the recorded
data shows that the signals are not necessarily smooth, see Fig. 22.3 for example.

In order to gain more confidence in the results, the solver was re-implemented using
a Weighted Essentially Non-Oscillatory (WENO) finite volume approach [6] coupled
with a Runge–Kutta solver. These methods are designed specifically for functions that
have multiple simultaneous solutions (for mathematicians this is one form of shock)
and are known to perform well. Preliminary results seem to indicate that this approach
is well-suited to the problem, but the computed results at 15 inches from the insect
appear less attenuated than the recorded data. Figure 22.6 below displays the result
computed with WENO in Fig. 22.6a using the signal in Fig. 22.5 as a source, while the
image in the Fig. 22.6b right displays the recorded data, both at 15 inches from the
cicada. It is apparent that the major features of the signal are preserved, however further
analysis is necessary to study the errors and determine whether the lack of attenuation
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in computed results is due to experimental conditions or inaccuracies in the Burgers’
equation dissipation.

The cicada research has two identifiable parts; the acoustic generation and the
sound propagation. The majority of the research is performed on the creation mecha-
nism since this project has always considered the sound generation to be nonlinear.
Also, the project maintains that tymbal buckling is a nonlinear process. Therefore,
measurements were devised and obtained to quantify the cicada performance using the
following: from micro-computer tomography (micro CT) scans, acoustic beamformed
data, input-to-output data comparisons based on laser Doppler vibrometry data to
microphone recordings of the cicada and man-made devices. These steps were used to
demonstrate that the cicada sound system acoustic performance is far superior to
current man-made acoustic systems. The micro CT scans were utilized to construct a
finite element (FE) model of the cicada. In order to obtain material property values like
density, and elastic and shear moduli for the FE model, tests were conducted on the
tymbal due to the difficulty of measuring such a thin membrane. Thus, a novel dia-
magnetic normal force procedure quantified the elastic modulus for the FE model.
However, ABAQUS (FE software) could not compute a model at these frequencies
with the material properties obtained. Regarding the sound propagation portion of this
overall cicada research effort, there have been recent attempts at simulating how the
sound would propagate within approximately a foot and a half or less from the cicada.
The in-air propagation of acoustic signals generated by cicadas uses a numerical solver
for viscous the Burgers’ equation. The method employs a weighted essentially non-
oscillatory (WENO) reconstruction to approximate the first and second derivatives of
the semi-discrete operator. This choice is motivated by the non-smooth structure of the
propagating waveform. This method showed very good agreement with the

Fig. 22.5. Recorded signal level (dB) 5 inches from the cicada
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experimental cicada data and also indicated this model can be applied to further study
the propagation of cicada mating calls.

22.5 Conversion of Cicada Mating Calls into Man-Made
Projection

Subsequently, a preliminary mass-spring model was developed that captures the basic
acoustic and structural dynamics exhibited in the insect. This requires understanding
the general trends displayed in the cicada signals and translating those observable
dynamics into known ordinary differential equations (ODEs) through Newtonian
physics. Then, the ODEs are simulated and compared against actual experimental data
and refined to account for existing frictional effects. Deriving and interpreting the
appropriate type of damping and assigning the adequate damping coefficients are not
trivial tasks. Therefore, generating this analytical mass-spring model requires consid-
erable effort.

This research effort utilized an analytical model to establish an overall model to
describe the bulk of the dynamics present in the cicada’s sound generation to achieve
an answer to bound the physical understanding of the cicada sound system to the first
order. However, to provide further valuable insight into this incredibly unique sound
system, the lumped mass spring system research is studied. The mass-spring system
uses MATLAB with ODES to simulate the radiated sound loss of the cicada. For
example, in Fig. 22.7, there is a general mass-spring sound production system. The
RRad term is the sound loss from the mass-spring model shown.

The force is applied to the fixed support or arbitrary mechanical mass, and the
system oscillates based on the viscous damping coefficient Rv and stiffness K of the
model. If the mass-spring diagram is transferred into the transducer realm, this model is
considerably similar to a Tonpilz transducer, which is illustrated in Fig. 22.8. The
capacitance and voltage electrical equivalence for the force, spring and mass are
translated into electrical equivalence such as voltage V, capacitance Co and inductance.
Figure 22.8 is not a complete depiction of the total electrical circuit; however, this

Fig. 22.6. a WENO result at 15 in from the cicada. b Recorded data at 15 in from the cicada
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preliminary diagram indicates the transfer of motion to acoustics in the 1:; electrical
transfer turns representation.

When a voltage is applied to the ceramic stack, the contraction and expansion of the
assembly causes the head mass surface to oscillate back and forth. Thus, the loss
mechanism of the system is in the sound that is produced (Fig. 22.9).

This mass-spring diagram accounts for the tymbal and tympanum as a two-body
system to describe the physics that produces the velocity of the tymbal and tympanum
at their faces. Figure 22.10 depicts the results of this mass-spring system being tuned to
a similar frequency to create a beat frequency. The Newtonian ODEs are computed to
produce the following plots in Figs. 22.10, 22.11 and 22.12, which describe the effects
of altering the physical parameters of this analytical mass-spring diagram. Note that in
Eqs. (22.17) and (22.18) the stiffness values are Ktymb and Ktymp. And, Ctymb and Ctymp

are damping coefficients and Mtymb and Mtymp are the mass terms for the tymbal and
tympanum, respectively. Cairsac is the damping term for air sack.

€Mtymb€Xtymb þCtymb _Xtymb þKtymp Xtymb � Xtymp
� 	þKtymbXtymb ¼ Fapplied ð22:17Þ

€Mtymp€Xtymp þCtymp _Xtymp � _Xtymb
� 	þCairsac _Xtymp þKtymp Xtymp � Xtymb

� 	 ¼ 0 ð22:18Þ

In Fig. 22.10, the effect of the damping values for the tymbal is not significant for
this damping range. Figure 22.11 shows the effect of heavy damping in this beat

Fig. 22.7. Theoretical model of acoustic transmission

Fig. 22.8. Example of the Tonpliz transducer model
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frequency system. These over-damped systems have a lag or phase shift between the
pulses based upon the level of damping that starts at a tenth and proceeds to a critical
damping coefficient of 1. Note at critical damping, the lag in the velocity of the tymbal
is damped at 0.5. This value of 0.5 corresponds to the maximum angular frequency
difference between the natural frequency of the tymbal and tympanum, which are tuned

Fig. 22.9. Example of the mass-spring diagram for cicada

Fig. 22.10. Abdomen mass-spring system lightly damped
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Fig. 22.11. Tymbal mass-spring system heavily damped

Fig. 22.12. Tympanum and Tymbal mass ratio plot
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for a beat frequency. The beat frequency describes the cycles present in the pulses and
the spacing of the pulses.

Another important parameter for this mass-spring system is the mass ratio between
the tympanum and the tymbal. In Fig. 22.12, the mass ratios are indicated in the
legend. The effect of the mass ratio is a critical parameter in altering the angular
frequency of the beat frequency of the pulses.

Figure 22.12 indicates a change in the phase of the pulses as a result of the mass
ratio, which has the tympanum initially at 100th of the tymbal and increases. This
approach of using a ratio is required due to the fact that tympanum is a thin mucus-like
membrane. The mass of the tympanum is very difficult to measure. This membrane
breaks and deforms creating considerable uncertainty. The effect of the damping on the
tymbal and mass ratio are shown; however, damping effects from the abdomen (air
sack) and the combined effects of two parameters simultaneously require study as well.
This information is not currently found in scientific literature. These material properties
are necessary for successful and accurate transduction modeling. This basic science
research proposes to investigate these important parameters in detail along with a
comparison of these results with previously measured experimental data.

22.6 The Validation and Verification (V&V) of Cicada
to Man-Made System Conversion with Nuttall-Volterra-
Wiener (NVW) Model

In this new method, a procedure to characterize nonlinear systems with memory under
time-invariant conditions is initially examined to validate and verify the cicada system
as well as other systems. This time-invariant investigation uses the discretized standard
Volterra form taken to third-order as shown:

y nð Þ ¼ h0 þ
X~K
k1¼0

h1 k1ð Þxðn� k1Þþ
X~K
k1¼0

X~K
k2¼0

h2 k1; k2ð Þx n� k1ð Þx n� k2ð Þ

þ
X~K
k1¼0

X~K
k2¼0

X~K
k3¼0

h3 k1; k2; k3ð Þx n� k1ð Þx n� k2ð Þx n� k3ð Þ 1Að Þ

¼ y0 þ y1 nð Þþ y2 nð Þþ y3 nð Þ;

ð22:19Þ

where y nð Þ is the model output; x n� k1ð Þ is the excitation input time-delayed by k1
sample intervals; h0 is the DC component of the zeroth-order kernel; h1 k1ð Þ is the first-
order kernel; h2 k1; k2ð Þ is the second-order kernel, and h3 k1; k2; k3ð Þ is the third-order
kernel. The y0; y1 nð Þ; y2 nð Þ; y3 nð Þ are the individual functionals of the zeroth-, first-,
second-order, and third-order modeled outputs. The sampling frequency fs is in units of
Hz; and D ¼ 1=fs is the time sampling increment (in seconds). Also, xc nDð Þ ¼ x nð Þ,
zc nDð Þ ¼ z nð Þ, where xc tð Þ and zc tð Þ are the continuous excitation and response of the
nonlinear system. The memory length L ¼ ~KD ¼ ~K=fs is in seconds for the model
functionals. In general, large values for ~K are required to realize adequate memory
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length for the model. However, large values of ~K are computationally difficult at higher
orders due to storage space and execution time requirements, which are consequences
of the Curse of Dimensionality (CoD).

When confronting the CoD one must understand the relationship between memory
length and the number of coefficients, the consideration of degrees of freedom and
bandwidth. If a continuous low-pass real excitation xcðtÞ with an average voltage-
density spectrum covering the band �W ;Wð Þ Hz is used to excite a nonlinear system
the duration of the excitation be T seconds. This waveform xc tð Þ can be sampled at time
increment 1=2W seconds without loss of information, and the number of degrees of
freedom is DOF ¼ T= 1=2Wð Þ in this excitation. Also, the number of (real) coefficients
used in the first-order model kernel of the nonlinear system is K1 and the desired
memory length of this linear model is L1 seconds. Since the frequency coverage of the
model’s transfer function (first-order frequency-domain kernel) can also be limited to
�W ;Wð Þ Hz, the model’s impulse response (first-order time-domain kernel) can be
sampled at time-delay increment Ds ¼ 1=2W without loss of information. Namely,
L1 ¼ K1 1=2Wð Þ ! K1 ¼ 2L1W . The DOF available in the excitation must exceed this
number K1 of unknown coefficients. Using a symmetric time-domain kernel, the total
number of second-order coefficients is defined as C2 ¼ K2 K2 þ 1ð Þ=2� K2

2=2. Thus, a
second-order memory length L2 in seconds (per dimension) would follow as
K2 ¼ 2L2W . Since the DOF must exceed C2, number of coefficients, it follows
2TW [K2

2=2 ¼ 2 L2Wð Þ2 and finally T [ L22W . Using the same Taylor series expan-
sion approach for third-order coefficients, the observation time and memory length
relationship is T [ 2L33W

2=3. Consequently, the observation interval T may be quite
large depending on the received signal-to-noise ratio during the system excitation and
characterization.

22.7 Modified Volterra First-Order Term

For example, alleviating the CoD, a modification of the first-order term in Eq. (22.19)
reduces the number of kernel coefficients. Consider, the first-order continuous model
output:

y1c tð Þ ¼ Z
dsh1c sð Þxc t � sð Þ ¼ Z

df exp i2pftð ÞH1 fð ÞX fð Þ: ð22:20Þ

Choosing an excitation voltage-density spectrum X fð Þ ¼ 0 for frequencies
fj j[W the interest lies in characterizing the nonlinear system for frequencies fj j\W .
Thus, there is no need to characterize a system beyond the frequency region. Without
loss of generality this model first-order frequency domain kernel H1 fð Þ ¼ 0 for
fj j[W is set. However, the frequency-domain kernel H1a fð Þ content can extend to
higher frequencies. Note that the frequency kernel H1a fð Þ is only an estimate of the
condition fj j\W leading to the following expression for the first-order kernel:
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h1c sð Þ ¼
XK
k¼0

h1c
k
2W

� �
sinc 2Ws� kð Þ: ð22:21Þ

Also, note that having achieved L ¼ K=2W and not ~K=fs, this combats CoD. By taking
advantage of the fact that K\~K, equal values of memory length L are realized. This
leads to the model output:

y1c tð Þ ¼ 1
2W

XK
k¼0

h1c
k
2W

� �
xc t � k

2W

� �
�
XK
k¼0

h1 kð Þxc t � k
2W

� �
: ð22:22Þ

The original convolution (22.22) has now been discretized in the time-delay variable s,
but has not been discretized in continuous time variable t. Thus, we can sample y1c tð Þ in
(22.22) for any t values and fit to the measured data values zc nDð Þ ¼ z nð Þ. Hence, the
following expression for the first-order model solution is of the form:

y1 nð Þ : y1 nð Þ � y1c nDð Þ

¼ 1
2W

XK
k¼0

h1c
k
2W

� �
xc nD� k

2W

� �

�
XK
k¼0

h1 kð Þx n� kfs
2W

� �
:

ð22:23Þ

The last term xðÞ in (22.23) only contains integer values. Thus, fs and/or W are chosen
such that fs=2W is an integer to avoid interpolation of samples x nð Þ, which creates a
computationally burdensome algorithm. Thus, the following generalized first-order
convolution is obtained:

y1 nð Þ ¼
XK
k¼0

h1 kð Þx n� kIð Þ; Integer I ¼ fs=2W : ð22:24Þ

22.8 Explanation of Least Squares Computation on First Order

Least-squares fitting procedure is used to compute the minimum error between the
actual measured response z nð Þ and the modeled output y nð Þ. In the first-order model,
the least squares approximation is

y1 nð Þ ¼
XK
k¼0

h1 kð Þx n� kIð Þ� z nð Þfor n ¼ 1þKI : N ð22:25Þ
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and begins incrementing at n ¼ 1þKI instead of n ¼ 1. By doing so, the modeled
output avoids the requirement to interpolate the y1 nð Þ solution. Therefore, the next step
is to solve for the corresponding kernel values h1 kð Þ. This is done by solving the matrix
equation approximation:

Ah1 � z;A0A h1 ¼ A0z ð22:26Þ

For the best results, all columns of design matrix A should be uncorrelated with
each other. Also, the condition number CN is monitored to assess the quality of A
matrix. In an ideal sense, a condition number whose numerical value is one (i.e.,
CN Að Þ ¼ 1) on an ensemble-average basis, would yield column-wise basis functions
that are uncorrelated with each other. In a physical realization of a sample design
matrix A, the objective is basis functions that yield as low a condition number as
possible. Achieving low condition numbers at first order is not problematic. The
challenge has always been to derive good basis functions for the higher-order com-
ponents (i.e., y2 nð Þ and y3 nð Þ of Eq. (22.19)) whose CN values are reasonably low (i.e.,
of order 10).

22.9 The Effects of Noise on New Modified Volterra
Technique

Frequently, the major limit on kernel-estimation accuracy by means of least squares is
not the amount of data N, but rather the signal-to-noise ratio of the measured data z nð Þ;
hence, the effects of the signal-to-noise ratio on kernel estimation are analyzed via
simulation. As an example, this modified Volterra method computed simulated data
z nð Þ. Cubic and quadratic cosine functions and a third-order passband nonlinearity with
power levels were simulated. The simulated received z nð Þ sequence time duration was
1 s, while the sampling frequency was 60 kHz. The center frequency of the trans-
mission was 3 kHz, while the bandwidth W was 2 kHz. The number of model coef-
ficients per dimension was chosen as K11 ¼ 50, K22 ¼ 30, K20 ¼ 29, K22 ¼ 30,
K31 ¼ 19, K33 ¼ 20. The kernel indices K and subscripts indicate the system order and
the center frequency relationship to that order and likewise with the kernels, h0s, and
simulated data z0s. For example, the K33 kernel is the third-order component at three
times the center frequency. Meanwhile, the total received data sequence z nð Þ available
for fitting purposes was the sum z nð Þ ¼ z11 þ z20 þ z22 þ z31 þ z33 with and without
additive noise.

For this condensed manuscript, the kernels h11 and h22 are shown in Figs. 22.13
and 22.14, respectively. To illustrate and depict the effects of additive white noise on
these kernel plots, simulated noise was injected to the level in which the noise free peak
signal is submerged into the background. Hence, there are noise-free plots shown in
Figs. 22.1a and 22.14a, and the additive noise plots are shown in Figs. 22.13b and
22.14b.
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In summary, inspired by investigations of the large sound production capabilities of
an insect, the cicada, a new methodology for computing the higher-order terms in a
modified Volterra expansion is described. This article highlights: (a) a substantial
reduction in the CoD by sampling the kernel values at 1=2W vice 1=fs; and (b), the
remarkable fact that the higher-order frequency components outside of the input
excitation band are detectable for time-invariant nonlinear systems with memory. Thus,
the computation of higher-order frequency intermodulation products at reduced cost
and computational time is now possible.

Fig. 22.13. a The first-order kernel with no noise b The first-order kernel with additive noise,
where black lines represent magnitude of kernel, blue lines are real kernel component, and red is
the imaginary component

Fig. 22.14. a The second-order h22 kernel with no noise b The second-order h22 kernel with
additive noise
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22.10 Conclusions About the Conversion of Cicada Sound
Generation to Man-Made Device

The structural acoustics generated by the anatomical members in the cicada have yet to
be fully understood. The research described in this article explains the potential for the
transducer design, wave propagation, and the verification process. However, in order to
take advantage of the potential gains this bio-inspired transducer source offers for naval
and commercial applications, the mathematical intricacies associated with partial dif-
ferential equations for nonlinear frequency modulation and the structural acoustics
accounting for high deflection amplitude to aperture size, and the complex and higher
order modes from the unique shape of the tymbal must be further investigated.

After addressing the mathematical issues just highlighted, the physical system-level
challenges related to creating a cicada-like transducer must also be addressed. The
mathematical intricacies produce a number of mechanical concerns in the practical
implementation of a man-made transduction device for applications, such as complex
modes of the tymbal surface. A refined FE model will help develop the knowledge to
understand how to generate a pressure wave with the associated amplitude, mode and
beam pattern in air that is equivalent to the tymbal dynamics. Another unknown under
current investigation is the effect of air on the tymbal surface. Does the air load the tymbal
like water loads a submerged hydrophone? If so, the FE softwaremust have the capability
to maintain the appropriate frequency and surface velocity obtained with the tymbal
experimental data. The physical parameters for the transducer such as material properties
and physical dimensions are modified to meet the desired pressure levels as a function of
frequency and propagation distance to compare to the empirical data. This comparison is
met by adjusting the physical parameters such as material properties, dimensions and
boundary conditions to fit the signal dynamics created by the cicada. There are a number
of materials that could produce the appropriate scaled man-made device in accordance
with the experimentally verified FEmodel, which would transmit information to meet the
requirements for real-world applications. These materials span the gamut of shape
memory alloys, 1–3 composites, and single crystal based elements. Essentially, an
empirically validated FE model could simulate the tymbal membrane motion with suf-
ficient accuracy to help design a man-made cicada transducer. This bio-inspired source
applies the proper voltage in a prescribed time/space methodology with flexible state-of-
the-art alloy materials for transducer elements to generate acoustic signals.

Finally, the NWV method is the V&V required to state confidently that the mod-
ification to the cicada sound production system to transformation its biological struc-
tures into a man-made device was not altered beyond the dynamics seen in nature. To
date, the simulations are based upon acoustic theories that are supported by the
empirical data generated during experiments to study the cicada anatomical sound
generation system. However, anatomical biological structures operate in such a non-
linear fashion that it often requires considerable time to create the physical and
mathematical models to accurately represent the physics demonstrated in nature.
Ultimately, this research effort has also been encouraged by the development and
discovery of a new (NWV) technique in which to characterize and quantify nonlinear
(and linear) signal propagation dynamics in time-invariant systems with memory.
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Chapter 23
Fabrication of YBCO Josephson Junction
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Abstract. Nano-bridge style Josephson junctions have the possibility of
creating a dense high temperature superconducting circuits. The junc-
tions are created using to two step etch. The first, wide area etch defines
the overall shape of the Josephson junction and the second etch defines
a small non-superconducting barrier by thinning the material to a thick-
ness that cannot support the superconducting state. The wide area etch-
ing of the high temperature superconductor yttrium barium copper oxide
(YBCO) is very sensitive to high temperature and water, which can
destroy its superconducting properties. We have explored several differ-
ent methods of wet etching of YBCO and determined their effects on the
superconductivity of the material. The wet etches examined are weak
acid etches of nitric acid, phosphoric acid, and a bromine alcohol solu-
tion. The bromine alcohol solution prove to be the ideal etch for our
purposes.

23.1 Introduction

Josephson junctions are seen as the key elements for ultrafast computers using
single flux quanta, and for sensitive and broadband electromagnetic field sen-
sors in the form of superconducting quantum interference devices (SQUIDs) [1].
Josephson junctions are created from two superconducting regions separated
by a thin barrier. The barrier can be an insulating material or simply a non-
superconducting metal. Using an insulating material requires the barrier to be
less than 30 angstroms thick. Using a non-superconducting metal allows the bar-
rier to be up to a few microns thick, which is easier to fabricate. Some supercon-
ducting materials can lose their superconducting properties if there is a defect
in their lattice or if the material becomes too thin to support superconductivity
[2]. The three main designs using this idea to form a Josephson junction barrier
are the ramp, ion damage, and nanobridge, as shown in Fig. 23.1. The ramp
Josephson junction uses a “long” etched ramp to cause a lattice defect as the
material knees over the edge. The junction works but it takes up a lot of space on
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the wafer and is not ideal for dense circuity. The ion damage Josephson junction
uses a helium ion focused ion beam to damage the lattice of the superconducting
material. This junction is compact, but currently very slow to fabricate. The
third method is the nanobridge. The nanobridge Josephson junction thins an
area of the superconductor until it no longer supports the superconducting state.
This method can be written densely using electron beam lithography at a rea-
sonable speed. This is the method we are pursuing to define Josephson junctions
in the superconducting material yttrium barium copper oxide (YBCO).

Fig. 23.1. Three different examples of damage Joesphson junctions

YBCO is a high temperature superconducting material operating at 87 K.
Thin film deposition of YBCO is performed using several methods including
radio frequency sputtering, chemical vapor deposition, and pulsed laser ablation.
In each method, the material is sintered after deposit at around 900 C in an
oxygen atmosphere to achieve a dense superconducting material [3]. With such
a high temperature sinter, YBCO is usually the first layer deposited on the
substrate. The layer of YBCO is then covered with a gold layer for protection
from further processing.

Lithographic patterning of the YBCO into Josephson junction poses sev-
eral challenges. YBCO is sensitive to humidity and heat, both will degrade its
superconducting properties. This makes it unsuitable for use with most standard
photoresists, which are usually baked at 105 C and are developed in a combina-
tion of tetramethylammonium hydroxide (TMAH) and deionized water. YBCO
degradation can be addressed by using one of the few photoresists that develop
with non-aqueous solvent and the bake temperature can be lowered by baking
longer.

The next challenge is wide area etching of the YBCO to transfer the photore-
sist pattern. Dry etching usually uses accelerated plasma of chlorine or fluorine
chemistry to induce chemical breakdown of the material to improve speed and
selectivity of the etch. Unlike most materials YBCO does not chemically react
with the halogen plasma. Instead, physical removal through Argon milling can
be used to dry etch YBCO but the etch byproducts can be redeposited on the
surface. This makes dry etching ineffective if the amount of material is large.
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Although YBCO is too tough for dry etching, its chemical resistance to aque-
ous etchants is too low to easily perform a controlled etch. Since YBCO is rapidly
dissolved in weak acids, etch rates are difficult to control. The speed of wet etch is
important because the isotropic etch causes undercut, which is a big problem for
the small features required for Josephson junctions. The various etchants such
as HNO3, HCl, H3PO4, and ethylenediaminetetra-acetic acid (EDTA) are com-
bined with water to etch YBCO. Although the acids are only 1% of the solution,
the etch rates are in the 0.5–1 um/min. The etchants also are in water, which
can damage the remaining YBCO. One alternative is a 1% bromine solution in
ethyl alcohol [4].

23.2 Experimental

We have explored several different etchants to perform wide area wet etching for
nanobridge Josephson junctions. 32 nm YBCO films on sapphire substrates with
a 200 nm gold protective layer were obtained from THEVA. The wafers were cov-
ered with 950 kW poly(methyl-methacrylate) (PMMA). The pattern consisted
of groupings lines that ranged in width from 500 nm to 2.5 microns, all 5 um long
and placed between two contact pads. The pattern was written via e-beam (Vis-
tec EBPG 5200) and developed in a mixture of MIBK and isopropanol. The wafer
was loaded into a DC sputtering system and 30 nm of titanium was deposited
forming a hard mask for the wet etching. Lift off was completed in an acetone
bath and isopropanol wash to expose the area to be removed by the etch. The
pattern was transferred to the gold layer using a wet etch of potassium iodine and
iodine. At this point, the wafer was covered with a thick layer of photoresist and
diced into several samples. The photoresist was removed in acetone and rinsed
in isopropanol. Three different etchant baths were prepared, 1% phosphoric acid
in deionized water (DI), 0.5% nitric acid in DI, and 1% bromine in ethyl alcohol.
The samples were dipped in the etchant for 10 s intervals and then rinsed for 10 s
in the corresponding solvent. The sample was checked under an optical micro-
scope a after rinse to determine if the etch was complete, and the process was
repeated if necessary After complete etching, samples were observed in a FEI
scanning electron microscope to determine the quality of the etch (Fig. 23.2).

23.3 Results and Discussion

The first sample was etched for 10 s in a 0.5% solution of sulfuric acid in water.
After 10 s the pattern had been mostly etched away. Lines under 2 microns were
dissolved completely. The sulfuric etch is clearly too aggressive to etch small
features consistently for this application.

The second sample was etched for a total of 20 s in a 1% solution of phospho-
ric acid in water. The pattern was over etched eliminating the smallest features.
The 500 nm lines were etched away but all other features survived. As shown in
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Fig. 23.2. Fabrication steps for the test samples. Received sample was a sapphire
wafer with thin layers of YBCO and gold. Sample was pattern with photolithography
techniques to have a titanium hard mask for argon ion milling

Fig. 23.3. Test sample etched using 1% phosphoric acid in DI water. Bright white
edges show over etch
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Fig. 23.4. Test sample etched using 1% bromine in ethanol

Fig. 23.3, the features are slightly over etched as seen by the bright edges indi-
cating undercutting of the hard mask. The phosphoric etch is still too aggressive
for our purposes.

The third sample was etched for 45 s in a 1% bromine solution in ethyl
alcohol. This process was the slowest and most controlled etch of the group.
This sample was not over etched as seen in Fig. 23.4. The bromine etch also
etched the titanium layer on top of the gold. The titanium etching is not a
problem for our processes since the titanium was used to mask the gold etch and
will be removed before making the junction. The partial removal of the titanium
layer causes a ripple in the SEM image that does not translate to the YBCO
layer.

23.4 Conclusions

In this work we examined 3 different wet etching processes to perform wide area
etching for formation of nanobridge Josephson junctions in YBCO. Nanobridge
junctions have excellent potential for high density, high temperature super-
conducting circuits. Wet etching to define the overall junction area without
degrading superconducting behavior requires a slow, controlled etch. From our
experiments, the 1% bromine in ethyl alcohol proved to etch controllably and
yield accurate pattern transfer. Additionally, the low temperature and non- aque-
ous chemistry of the etch should maintain the quality of the YBCO material.
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This etching process is ideal to prepare the junction area for nanobridge defini-
tion using subsequent ion milling.
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Abstract. The Generalized Nonlinear Schrödinger Equation (GNLSE)
finds several applications, especially in describing pulse propagation in
nonlinear fiber optics. A well-known and thoroughly studied phenomenon
in nonlinear wave propagation is that of modulation instability (MI). MI
is approached as a weak perturbation to a pump and the analysis is based
on preserving those terms linear on the perturbation and disregarding
higher-order terms. In this sense, the linear MI analysis is relevant to
the understanding of the onset of many other nonlinear phenomena, but
its application is limited to the evolution of the perturbation over short
distances. In this work, we propose quasi-analytical approximations to
the propagation of a perturbation consisting of additive white noise that
go beyond the linear modulation instability analysis. Moreover, we show
these approximations to be in excellent agreement with numerical simu-
lations and experimental measurements.

24.1 Introduction

Pulse propagation in single-mode lossless nonlinear fibers is modeled by the
Generalized Nonlinear Schrödinger Equation [1]

∂A

∂z
− iβ̂A = iγ̂A

∫ ∞

−∞
R(T ′) |A(z, T − T ′)|2 dT ′. (24.1)
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A(z, T ) is the pulse envelope, z is the direction of propagation and T is the time
referred to a co-moving frame with group velocity vg = β−1

1 (i.e., T = t − zβ1).
Linear dispersion is modeled by the operator β̂, while γ̂ is related to the third-
order susceptibility:

β̂ =
∑
k≥2

ikβk

k!
∂k

∂T k
, γ̂ =

∑
k≥0

ikγk

k!
∂k

∂T k
. (24.2)

Finally, R(T ) models instantaneous and molecular Raman responses.
Analytical solutions of Eq. (24.1) are known in a variety of simplified cases.

For example, solitonic solutions can be found by means of the inverse-scattering
method originally proposed by Zakharov and Shabat [2] (see also, e.g., [3]), but
only under some simplifying assumptions such as neglecting higher-order disper-
sion (βk = 0 for k ≥ 3). An important family of periodic solutions, known as
Akhmediev breathers [4], has attracted attention in relation to supercontinuum
generation and rogue waves [5,6]. Although Akhmediev breathers were originally
found for low-order dispersion cases, Eq. (24.1) has been found to be integrable
in more complex cases (see, for example, [7–11] and references therein). However,
the number of exactly integrable variations of the GNLSE is still very limited.

Although exact solutions of simplified versions of Eq. (24.1) provide impor-
tant insight on many characteristics of the propagation of pulses in nonlinear
fibers, they cannot give a precise description in general. For this reason, the
GNLSE is usually studied by means of simulations based on efficient algorithms
such as split-step Fourier (SSF) [1] or a fourth-order Runge–Kutta in the inter-
action picture (RK4IP) [12].

In this work, we propose analytical approximations to the solution of
Eq. (24.1) that provide a precise description of pulse propagation for a par-
ticular case of great interest. Our analysis focuses on a continuous-wave (CW)
laser pumping the fiber. This CW pump is always accompanied by technical
and quantum noise. One possibility is to approach noise propagation as a per-
turbation of the CW state. First-order perturbation or linear stability analysis
is related to the study of the modulation instability (MI) phenomenon [4,5,13–
23,23–29] (see also Chapter 5 of Ref. [1] and references therein). Exact solutions
of MI accounting for the complete GNLSE have also been developed [30,31]. The
particular case of the propagation of additive noise has been dealt with in the
literature (see, e.g., [32,33]).

The wave propagation analysis of a noisy CW pump in an MI setting has sev-
eral limitations. The continuous-wave pump is assumed undepleted and, hence,
results are valid for short propagation distances. Furthermore, as it is a first order
perturbation analysis, it disregards the four-wave mixing ‘cascading effect’, in
the sense that perturbations to the pump, in turn, act as pumps themselves as
soon as they attain enough power. One alternative to incorporate such cascading
effect is to solve the GNLSE through Picard’s iterations. Resulting expressions
are, nevertheless, not easily tractable and even evaluating them numerically may
be an expensive computational effort as compared to pure numerical solutions
obtained from the usual SSF or RK4IP algorithms. For this reason, we put
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forth several simplifications that allow a simpler analysis of higher-order per-
turbations. The validity of these simplifications is tested through numerical and
experimental studies.

It must be mentioned that there are alternative approaches which are related
to ideas presented in this work. In particular, many tools have been developed
for the statistical analysis of optical wave turbulence (see, e.g., [34–38]).

The remaining of this paper is organized as follows. In Sect. 24.2 we develop
a higher-order perturbation analysis of the GNLSE and motivate the simplifi-
cations that allow tractability. We validate our approach with experiments and
simulations in Sect. 24.3. Finally, conclusions are presented in Sect. 24.4.

24.2 Higher-Order Perturbation

Let us again consider the generalized nonlinear Schrödinger equation. It is useful
to normalize the propagation distance as ζ = γ0P0z. We study the propagation
of a small perturbation a(ζ, T ) to the stationary solution of Eq. (24.1), i.e., we
consider A(ζ, T ) =

√
P0 [1 + a(ζ, T )] eiζ . Fourier transformation (with respect to

time T ) leads to

∂ã(ζ,Ω)
∂ζ

= A(Ω)ã(ζ,Ω) + Ñ(ã(ζ,Ω)), (24.3)

where ã(ζ,Ω) =
[
ã(ζ,Ω), ã(ζ,−Ω)

]T
, with ã(ζ,Ω) the Fourier transform of

a(ζ, T ). The linear and nonlinear terms in the right-hand side are defined by

A = i

[
B(Ω) C(Ω)

−B(−Ω) −C(−Ω)

]
, Ñ(ã(ζ,Ω)) =

[
γ̃(Ω)Ñ (ã(ζ,Ω))

γ̃(−Ω)Ñ (ã(ζ,Ω))

]
, (24.4)

where B(Ω) = β̃(Ω) + γ̃(Ω)[1 + R̃(Ω)] − 1, C(Ω) = γ̃(Ω)R̃(Ω),

β̃(Ω) =
1

γ0P0

M∑
m=2

(−1)m

m!
βmΩm, γ̃(Ω) =

1
γ0

N∑
n=0

(−1)n

n!
γnΩn, (24.5)

Ñ(ã) = R̃(Ω)
[
ã(ζ,Ω) ∗ ã(ζ,−Ω)

]
+

ã(ζ,Ω) ∗
[
R̃(Ω)

(
ã(ζ,Ω) + ã(ζ,−Ω)

)]
+

ã(ζ,Ω) ∗
[
R̃(Ω)

[
ã(ζ,Ω) ∗ ã(ζ,−Ω)

]]
,

(24.6)

and R̃(Ω) is the Fourier transform of R(T ). For the sake of simplicity, in this
work we let R̃(Ω) = 1, that is, we neglect stimulated Raman scattering in the
analysis.

Let us focus on the case where a(0, T ) is white noise. In particular, we assume
that the mean power spectral density s = 〈|ã(0, Ω)|2〉 is constant and that
〈ã(0, Ω1)ã(0, Ω2)〉 = 0 and 〈ã(0, Ω1)ã(0, Ω2)〉 = 0 for Ω1 �= Ω2. Using these
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hypotheses, it is simple to show [32,33] that the solution to Eq. (24.3) when the
nonlinear term is neglected is given by

〈|ã0(ζ,Ω)|2〉 =

⎧⎪⎨
⎪⎩cosh (2G1(Ω)ζ) −

(
B(Ω)+B(−Ω)

2

)2

− G2
1(Ω) + γ̃2(Ω)

(
B(Ω)+B(−Ω)

2

)2

+ G2
1(Ω) + γ̃2(Ω)

⎫⎪⎬
⎪⎭

×
(

B(Ω)+B(−Ω)
2

)2

+ G2
1(Ω) + γ̃2(Ω)

2G2
1(Ω)

s,

(24.7)
where G1(Ω) is the MI gain given by

G1(Ω) =

√
4c(Ω) − b2(Ω)

2
, (24.8)

with b(Ω) = B(−Ω) − B(Ω) and c(Ω) = C(Ω)C(−Ω) − B(Ω)B(−Ω). Let us
assume that there is gain, i.e., G1(Ω) ∈ R, for some Ω. Then, we may approxi-
mate

〈|ã0(ζ,Ω)|2〉 ≈ s +
(
e2G1(Ω)ζ − 1

)
|A1(Ω)|2s. (24.9)

where

|A1(Ω)|2 =

(
B(Ω)+B(−Ω)

2

)2

+ G2
1(Ω) + γ̃2(Ω)

2G2
1(Ω)

. (24.10)

Equations (24.9)–(24.10) suggest the perturbative ansatz

ã(ζ,Ω) ≈ √
seiφ0(ζ,Ω) +

∞∑
n=1

(
eGn(Ω)ζ − 1

)
An(Ω)

√
sneiφn(ζ,Ω). (24.11)

Substitution of Eq. (24.11) in Eq. (24.3), along with the formal computation of
the mean power spectral density, allows the determination of An and Gn. Since
the equations are quite involved, several simplifications must be made. One of
the main simplifying assumptions is that 〈exp{i(φn(x, μ) − φm(y, ν))}〉 = 0 if
either n �= m, x �= y or μ �= ν. After some tedious computations, it may be
shown that, for n ≥ 2

Gn(Ω) ≈ max
μ

[G1(μ) + Gn−1(Ω − μ)] , (24.12)

|An(Ω)| ≈ Δn−1
Ω J(Gn(Ω), Ω), (24.13)

where ΔΩ is a positive constant and

J(g,Ω) =

√∣∣B(−Ω) − ig
∣∣2 |γ̃(Ω)|2 +

∣∣C(−Ω)
∣∣2 ∣∣γ̃(−Ω)

∣∣2∣∣[B(Ω) + ig]
[
B(−Ω) − ig

] − C(Ω)C(−Ω)
∣∣ . (24.14)

Although we do not present the details of the calculations due to the lack of
space, some intuition on Eq. (24.12) may be gained by referring to the nonlinear
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Fig. 24.1. Normalized gain for different perturbation orders. As the order increases,
the gain captures the cascading effect of four-wave mixing

Fig. 24.2. Analytical approximation (blue dashed line) vs. experimental results (red
solid line). A CW 30-dBm pump laser at 1590.4 nm was launched at the input end of
the 770-m long dispersion-stabilized HNLF

operator in Eq. (24.6). The sum in Eq. (24.12) arises from the convolutions in
the nonlinear operator. We are able to simplify the corresponding integrals by
assuming that results are dominated by the largest gain and thus we take the
maximum value. Figure 24.1 shows that, as the perturbation order n increases,
Gn captures the cascading effect of four-wave mixing. Indeed, G1 represents the
well-known MI-gain due to the pump. Gn+1 incorporates the gain due to the
perturbations amplified by Gn acting as nth order ‘pumps’.
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Fig. 24.3. Analytical approximation (blue dashed line) versus numerical results (red
solid line) for different propagated distances: ∼0.25 km (top left), ∼0.50 km (top right),
∼0.75 km (bottom left) and ∼1 km (bottom right)

24.3 Experimental and Numerical Results

In order to test our approach we performed measurements of MI in a 770 m-
long, dispersion-stabilized [39] Highly-Nonlinear Fiber (HNLF). A CW 30-dBm
pump laser at 1590.4 nm was launched at the input end of the fiber. Figure 24.2
presents a comparison between the observed power (measured with 0.1-nm reso-
lution) and the quasi-analytical approximation. The latter was obtained by using
Eqs. (24.11)–(24.14) (adding up to n = 8) with γ0 = 8.7 W−1Km−1, γk = 0 for
k > 0, β2 = −3.9198 ps2/km, β3 = 0.1267 ps3/km, β4 = 1.7594 × 10−4 ps4/km
and βk = 0 for k > 4. As it is readily observed, experimental, and analytical
results are in excellent agreement.

In order to further explore the validity of the approximations, we performed
computer simulations using the split-step Fourier algorithm. Figure 24.3 shows
that the accuracy of the approximation decreases with the propagation distance,
although reasonable good results are obtained even after 1 km. Figure 24.4 shows
how approximations improve as the number of terms in Eq. (24.11) increases.
Comparison to Fig. 24.1 helps to understand that the increasing detail is a con-
sequence of the incorporation of the cascading four-wave mixing effect through
higher-order perturbation gains Gn.
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Fig. 24.4. Analytical approximation when increasing orders of approximation are used,
at a propagation distance ∼0.75 km

24.4 Conclusions

A continuous-wave laser pump is always accompanied with technical and quan-
tum noise. Thus, the propagation of a CW pump in a nonlinear optical fiber is
a complex process. Its study is usually based on two different tools: numerical
simulations and first-order linear stability (MI) analysis. While computer simula-
tions are useful, they tend to hide the underlying basic physics. On the contrary,
the modulation instability analysis gives some insights on the initial stages of
propagation but fails at providing an accurate picture for longer propagated
distances.

In this work, we put forth a perturbation analysis that offers both a pre-
cise description and meaningful physical insights. In particular, we showed our
formulas to be accurate by comparing their predictions to actual experimental
results. Furthermore, we validated our approximations with numerical simula-
tions for propagated distances up to 1 km. The perturbation analysis also reveals
the relevance of the cascading effect of four-wave mixing. In simple words, we
might understand how produced MI gain spectra act as a new pumps further
on.

The derivation of our approximation is complex and involves many simpli-
fying assumptions. It is a matter of future work to look for a shorter path and
less restrictive simplifications. It must be noted that, while those simplifications
lead to extremely simple formulas, they may hide some interesting phenomena.
For instance, it may be argued that the cascading effect of four-wave mixing is
implicitly embedded in our choice of keeping only the largest gain in Eq. (24.12),
but such an approximation might neglect relevant details appearing at longer
distances (see Fig. 24.2). Finally, we believe our analysis to be of value when
studying the early stages of supercontinuum generation and to contribute tools
for the better understanding of rogue-wave formation.
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Abstract. Wave turbulence concerns the study of dynamical and sta-
tistical properties of a field of random nonlinear waves in interaction.
Although it occurs in various situations (ocean surface waves, internal
waves in geophysics, Alfvén waves in astrophysical plasmas, or nonlinear
waves in optics), well-controlled laboratory experiments on wave turbu-
lence are relatively scarce despite the experimental efforts of the last
decade. At the ICAND2018 conference, I presented a short review on
laboratory experiments on wave turbulence on the surface of a fluid. I
notably discussed the role of strongly nonlinear waves to better describe
the dynamics of ocean waves. Here, I report some results obtained by our
group on wave turbulence, performed in different experimental systems.

25.1 Introduction

Wave turbulence is a domain rapidly expanding for several years. It focuses on
the properties of a field of stochastic nonlinear waves undergoing resonant inter-
actions. The latter transfer wave energy between spatial and temporal scales
leading generally to a cascade of energy from a large (forcing) scale, up to a
small (eventually dissipative) one. This phenomenon occurs in various situa-
tions ranging from spin waves in solids, nonlinear optics, internal or surface
waves in oceanography up to plasma waves in astrophysics (for reviews, see [1–
4]). The theory of weak wave turbulence, developed in the 1960s [5–7], leads to
analytical predictions on the wave energy spectrum in an out-of-equilibrium sta-
tionary state, which have been applied in almost all domains of physics involving
waves [2,3]. This theory assumes strong hypotheses such as weakly nonlinear and
random waves, infinite size system, large number of waves, scale separation (no
dissipation), constant energy flux, local interactions, etc. Moreover, the energy
transfer between waves is assumed to be governed only by resonant wave interac-
tions. In the past decade, an important experimental effort has been performed
to test the domain of validity of weak turbulence theory on different wave sys-
tems (e.g. hydrodynamics, nonlinear optics, hydro-elastic or elastic waves) [8].
These well-controlled laboratory experiments have shown the limitations of the
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current theoretical framework, which in return, arouses a theoretical and numer-
ical renewed interest.

Here, I present a brief overview of the experimental results obtained by our
group in different experimental systems: hydrodynamics wave turbulence (in
Sects. 25.2–25.4), hydroelastic wave turbulence (Sect. 25.5), and magnetic wave
turbulence (Sect. 25.6).

25.2 Gravity-Capillary Wave Turbulence: Laboratory
Experiments

We have experimentally studied and characterized gravity-capillary wave tur-
bulence on the surface of a fluid to better understand the basic mechanisms of
energy transfer between hydrodynamics waves.

We have observed in laboratory the regime of gravity-capillary wave tur-
bulence [9], and have reported the first observation of intermittency in wave
turbulence [10]. This small scale intermittency is shown to be enhanced by some
coherent structures at large scale (wavebreakings, capillary bursts on steep grav-
ity waves) [11,12], but its origin is still an open problem. Moreover, two major
experimental challenges have been faced: the measurement of the injected power
in the system [13], and a space and time resolved measurement of the wave
field [14]. At the time, those quantities were not yet been measured directly
for wave turbulence on the surface of a fluid. Two main results have then been
obtained:

• The energy transfer mechanisms are not restricted to purely resonant wave
interactions, as assumed by the theory, but involved other mechanisms related
to the presence of strong nonlinear waves (sharp crested waves, bound
waves, ...) [14],

• Large fluctuations of the power injected in the fluid are observed [13,15] that
are not taken into account by weak turbulence theory. We showed that the
probability distribution of these fluctuations is well described by a simple
model, not restricted to wave turbulence since it describes also the energy
flux distribution in other dissipative out-of-equilibrium systems [16,17].

We have then reported the first observation in laboratory of the direct
gravity-capillary cascade when the fluid departs from the deep-water regime [18].
The study of the non-stationary regime of capillary wave turbulence, when the
forcing is stopped, led to the first observation of decay wave turbulence [19].
Another optical method (different form Fourier Transform Profilometry used
in [14]) called Diffusing Light Photography, combined with a high-speed camera,
has been used to reconstruct the capillary wave field both in time and space. We
have highlighted the role of strongly nonlinear capillary waves on the turbulent
dynamics [20,21]. The study of 3-wave interactions between gravity-capillary
waves allows us to validate experimentally, for the first time for noncollinear
waves, the theory of 3-wave resonant interactions [22]. We have also obtain the
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first indirect measurement of the energy flux at each scale of the turbulent cas-
cade from the dissipated energy spectrum [23]. The energy flux is then found
to be non constant, dissipation occurring at each scale of the capillary cascade.
A good agreement with weak turbulence theory is nevertheless found for the
energy flux and the frequency scalings of the capillary wave spectrum. Indeed,
no inconsistency appears since nonlinear wave interactions occur faster than vis-
cous damping processes. The constant of the Kolmogorov–Zakharov spectrum
was also inferred experimentally for the first time and compared with its theo-
retical value [23,24]. We have also observed the occurrence of stochastic bursts
in time transferring wave energy through the spatial scales within all the iner-
tial range [20]. Numerical simulations of capillary wave turbulence were first
performed from the kinetic equation or the Hamiltonian dynamics of weak tur-
bulence [2,25,26]. We made the first direct numerical simulations of capillary
wave turbulence from the two-phase Navier-Stokes equations [27]. These simu-
lations confirm the validity of weak turbulence derivation when hypotheses are
verified. Finally, we have studied for the first time wave turbulence on the inter-
face between two immiscible fluids with free upper surface. We show that the
coupling between free surface waves and interface waves modifies strongly the
wave turbulence regime [28].

25.3 Gravity Wave Turbulence: Large Scale Experiments

Gravity wave turbulence is of primordial interest in oceanography but remains
still not well understood. Although oceanography provides more and more data
[29–32], the obtained wave spectra vary and depend on numerous and poorly
constrained parameters (wind direction, oceanic current, fetch...). Laboratory
experiments are much more relevant to accurately tune and control the system
parameters [33].

Beyond the laboratory observation of the direct cascade of gravity wave tur-
bulence (from the forcing scales to smaller scales), we showed that the frequency
power-law wave spectrum is non-universal and depends on the wave steepness [9],
as subsequently reported in other groups in different basin sizes (0.5–50 m)
[24,34–36]. Moreover, we experimentally showed that a spatially homogeneous
forcing leads to a good agreement with theoretical predictions [37], contrary to
previous observations with a localized forcing with wavemakers.

We have then performed experiments in a much larger basin size (50 m in
length, 30 m in width, 5 m in depth) at Ecole Centrale Nantes, France, involv-
ing four French laboratories: Université Paris Diderot (MSC), Ecole Normale
Supérieure (ENS, LPS), CEA Saclay (SPHINX), and Ecole Centrale Nantes
(LHEEA). The stochastic wave field is experimentally found to strongly depend
on the basin boundary conditions (absorbing, i.e with a beach, or reflecting,
i.e with a wall) although their statistical and spectral properties are close [24].
Moreover, we have shown that the self-similar wave spectra, depending on the
wave steepness, observed previously result from the modulation of coherent non-
linear structures (bound waves) [38]. This thus explains the departure from pre-
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dictions of gravity wave turbulence, observed in oceanography and in numer-
ous well-controlled experiments. In another series of experiments, we have also
studied resonant interactions between nonlinear waves that are the fundamental
mechanism that transfers energy in wave turbulence. By means of this exper-
iment on 4-wave interactions between oblique gravity surface waves, we have
validated experimentally, for the first time, the theory of 4-wave resonant inter-
actions with no fitting parameter [39]. This strongly extends previous experimen-
tal results performed mainly for perpendicular or collinear wave trains [40–42].
For stronger nonlinearities, meaningful departures from this weakly nonlinear
theory are observed [43].

Finally, an inverse cascade of wave action, from the forcing scales to larger
scales, is expected theoretically for gravity wave turbulence [2,3]. It has been
confirmed numerically [44]. We have reported the first laboratory observations
of an inverse cascade of gravity wave turbulence [45], but on a limited inertial
range due to the small container size used. Additional studies in the large-scale
basin are currently in progress in Nantes.

25.4 Wave Turbulence in Low-Gravity Environments

Many laboratory experiments have been performed with surface waves on a
horizontal layer of fluid. In this configuration, the dominant restoring force is
gravity for large wavelength and capillarity for short wavelength. The transition
between the two regimes occurs for the capillary length that depends on the
acceleration of gravity, notably. Energy transfer mechanisms are different for
gravity and capillary waves and this makes the cascade process of the energy
more difficult to understand since the mechanisms change when one crosses the
capillary length [9]. An advantage of experiments in reduced gravity is to increase
the capillary length above the size of the container and thus to have capillary
waves throughout the cascade. Another advantage is related to the geometry
of the experiment. In low gravity, the fluid inside a spherical container wets the
inner boundary and therefore takes the shape of a spherical fluid layer. Capillary
waves thus propagate on its inner surface without meeting any lateral boundary
in contrast to the configurations studied on Earth.

We have first studied purely capillary waves in a spherical container in low-
gravity environment during CNES parabolic flight campaigns. We have observed
capillary wave turbulence on a broad range of scales usually masked on Earth
by the gravity wave regime [46]. When the forcing is periodic, various patterns
(hexagons, lines) have been observed on the spherical fluid surface [46,47].
The main limitation of parabolic flights is related to the 20 s duration of each
parabola that does not allow enough statistics. To reach much longer measure-
ments, we have reported experiments conducted by ESA astronauts on the Inter-
national Space Station (ISS). Using a new device, “FLUIDICS” (Fluid Dynamics
in Space) developed by CNES and Airbus Defense and Space, they studied tur-
bulence of capillary waves on the surface of a fluid in a spherical container.
Power spectra of wave turbulence have been found to be in good agreement
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with weak turbulence theory [48]. Using higher frequency forcing will also allow
us to test whether scales larger than the one of the forcing are in statistical
equilibrium [49]. This work is currently pursued on ISS.

25.5 Hydroelastic Wave Turbulence

Hydroelastic waves, including gravity-bending waves, are found in various
domains: on the surface of lakes or oceans covered by ice, or for very large
floating structures in oceanography, flapping flags, or in biomedical applications
such as heart valves. Hydroelasticity is defined by the coupling of the elastic
medium with the hydrodynamics of the surrounding fluid.

We have reported results of laboratory experiments on nonlinear waves on
the surface of a fluid covered by an elastic sheet (where both tension and bending
are important). When a set of stochastic waves are in interaction, a regime of
wave turbulence has been observed in this new experimental system [50]. The
existence of 3-wave interactions, predicted theoretically in this system, has been
also highlighted experimentally [51].

25.6 Magnetic Wave Turbulence

When wave amplitudes are high enough, weak turbulence theory predicts a non-
linear resonant process between waves that generates smaller wavelengths. For
a ferrofluid (a liquid with a suspension of nanometric magnetic particles), the
dispersion relation of surface waves was known to be tuned by applying a mag-
netic field. We have thus studied the dynamics of random waves propagating on
the surface of a ferrofluid submitted to a magnetic field.

We have reported the first observation of a magnetic wave turbulence
regime [52]. The existence domains of gravity and capillary wave turbulence are
also documented as well as a triple point of coexistence of these three regimes.
These results are understood using dimensional analysis since weak turbulence
derivation has not been yet considered theoretically for the magnetic regime.
Such an experimental system where the dispersion relation is tuned by the oper-
ator from a non-dispersive to a dispersive system is thus of primary interest to
test the wave turbulence theory. The case of a magnetic field parallel to the fluid
surface shows several differences with the normal case. The striking one is the
meaningful broadening of the inertial domain of the magnetic wave turbulence
regime [53].

25.7 Conclusion

The experiments presented here have raised the understanding of the regime of
wave turbulence that occurs in various systems involving waves (e.g. hydrody-
namics, hydroelastic or magnetic waves). It results that the weak turbulence the-
ory gives a correct image of the underlying physical phenomena but its validity
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range in experiments appears limited. The progress realized in wave turbulence
also sheds new light to certain similar problems in usual hydrodynamic turbu-
lence (such as small scale intermittency or the statistical equilibrium of large
scales). The future study of the interaction between wave turbulence and a flow
(turbulent or not) paves the way to a better understanding of natural systems
such as the coupling between the dynamics of ocean and that of the atmosphere,
key ingredient for the climate modeling.
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17. A. Garćıa-Cid, P. Gutiérrez, C. Falcón, S. Aumâıtre, E. Falcon, Statistics of
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Abstract. The new bidirectional backpropagation algorithm converts
an ordinary feedforward neural network into a simple feedback dynam-
ical system. The algorithm minimizes a joint performance measure so
that training in one direction does not overwrite training in the reverse
direction. This involves little extra computation. The forward direction
gives the usual classification or regression network. The new backward
pass approximates the centroids of the input pattern classes in a neural
classifier. The bidirectional algorithm can also approximate inverse point
mappings in the rare cases where such mappings exist. Carefully injected
noise can speed the convergence of the bidirectional backpropagation.
This holds because backpropagation is a special case of the expectation-
maximization algorithm for maximum likelihood and because such noise
can always boost its convergence. The noise also tends to improve accu-
racy in classification and regression.

26.1 Bidirectional Neural Networks

Modern feedforward neural networks naturally define a feedback dynamical sys-
tem if one uses the network in both the forward and backward directions. This
leads to the new bidirectional backpropagation supervised learning algorithm
[1,2]. The ordinary unidirectional backpropagation algorithm remains the most
popular neural algorithm in modern machine learning [3–6]. Such unidirectional
networks simply ignore the information that the network encodes in its back-
ward direction. Figure 26.1 shows that a 3-layer neural network where the bidi-
rectional backpropagation algorithm has learned the connection weights for the
point-invertible 3-bit permutation mapping in Table 26.1. This learned network
exactly represents the 3-bit permutation mapping and its inverse through the
same set of connection weights. A basic theorem shows that a 3-layer threshold
network can exactly represent any n-bit permutation and its inverse if it uses 2n

or exponentially many threshold neurons in its hidden layer [1].
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Fig. 26.1. Learned bidirectional representation of the 3-bit permutation in Table
26.1. The bidirectional backpropagation algorithm found this representation using the
double-classification learning laws of [2]. All neurons were bipolar (emitting values 1
or −1) and had zero thresholds. The zero thresholding gave an exact representation of
the 3-bit permutation in Table 26.1

Noise injection can in principle always help backpropagation and
bidirectional-backpropagation training [7]. The probabilistic structure of all such
neural networks allows the user to noise-boost their training. A noise-boost suffi-
cient condition holds because the popular backpropagation neural learning algo-
rithm turns out to be a special case of the generalized expectation-maximization
(EM) algorithm [7]. The EM algorithm performs maximum likelihood for hidden
variables or missing data by iteratively climbing the nearest hill of probability
[8]. Carefully chosen noise can always boost the EM algorithm as it climbs a hill
of probability [9,10]. The noise is not the blind-noise dither of stochastic reso-
nance. It is just that noise or other perturbation that makes the current signal
more probable. This follows from the gradient master equation in (26.1) that
we present below for the neural network’s probability density p(y|x,Θk) for a
vector input x, a network output y, and the network parameters Θk at iteration
k.

A modern neural network N : Rn → RK is a feedforward mapping from the
input vector space Rn to the output vector space RK . The most common “deep”
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Table 26.1. 3-bit bipolar permutation function f and inverse f−1 that the network in
Fig. 26.1 encodes

Input x Output t

[+ + +] [−− +]

[+ + −] [− + +]

[+ − +] [+ + +]

[+ −−] [+ − +]

[− + +] [− + −]

[− + −] [−−−]

[−− +] [+ −−]

[−−−] [+ + −]

neural networks are feedforward classifiers. They are deep if they contain at least
two hidden layers of neurons. They map the input space to K output neurons
that define a discrete K-dimensional probability vector. The network N classifies
an input pattern vector x to pattern class j if and only if the jth output neuron
has the largest activation and thus if it has the largest output probability. So
the input image or other pattern vector x maps in one-shot fashion to an output
density N(x) in the simplex of K-dimensional probability vectors.

A natural way to turn the feedforward neural network N : Rn → RK into a
dynamical system is to pass the output y = N(x) back through the network.

An earlier version of this bidirectional strategy was the bidirectional asso-
ciative memory (BAM) in a two-layer neural network with a single connection
matrix M [11,12]. The backward pass uses the matrix transpose MT . Then
the basic BAM theorem holds for standard threshold neurons or threshold-like
neurons: Every matrix is globally bidirectionally stable [11]. All input pertur-
bations quickly converge to a bidirectional fixed point (xf , yf ). The equilibrium
dynamics are more complicated when there are intervening hidden layers of neu-
rons between the visible input and output layers. We here only mention that
then BAM fixed points need not always occur. The 3-layer threshold network in
Fig. 26.1 does produce the 8 input-output pairs of Table 26.1 as 8 bidirectional
fixed points.

The bidirectional backpropagation (henceforth B-BP) algorithm usually
operates in sequential synchronous mode. There are four main cases for learn-
ing depending on the type of neurons in the input layer and output layer: (1)
classification-classification where both layers use soft-max (or threshold) neu-
rons and encode targets with unit bit vectors, (2) regression-regression where
both layers use identity neurons, (3) regression-classification where the input
neurons are identity functions and the output neurons are softmax with 1-in-K
unit-bit-vector encoding, and (4) classification-regression where the input neu-
rons are softmax and the output neurons are identity functions. The networks
in Figs. 26.1 and 26.2 used the classification-classification version of B-BP [2].
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Fig. 26.2. Logistic-cross-entropy learning for double classification [2] using 100 hidden
neurons with forward BP training, backward BP training, and bidirectional BP train-
ing. The trained network exactly represents the 5-bit permutation function in Table
26.2. a Forward BP tuned the network with respect to logistic cross entropy for the
forward pass using Ef only. b Backward BP training tuned the network with respect to
logistic cross entropy for the backward pass using Eb only. c Bidirectional BP training
summed the logistic cross entropies for both the forward-pass error term Ef and the
backward-pass error term Eb to update the network parameters. Only the bidirectional
case (c) shows no overwriting of training in either direction

Figure 26.2 shows that unidirectional BP overwrites in the reverse direction using
the usual error function for a given direction. The last plot in Fig. 26.2 shows
that B-BP does not produce such overwriting in either direction.

The computational cost of B-BP is light because BP training in either direc-
tion has only O(n) time complexity for n training samples. So BP scales well
for problems. B-BP has the same linear complexity because O(n) + O(n) =
O(n).

The B-BP case (3) above describes the most common network set-up for a
neural network. A user feeds an image or other pattern directly into the input
identity neurons. Then the network maps that input vector to an output prob-
ability vector of K softmax neurons. The performance measure is cross entropy
in the forward direction because the implied output probability is a one-sample
multinomial or a single roll of a K-sided die. The implied performance measure
in the backward direction is squared error. This holds because the input neurons
are identity functions and because their implied probability is a conditional vec-
tor normal [7]. These probabilistic constraints imply that both classification and
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Table 26.2. 5-bit bipolar permutation function from Fig. 26.2

Input x Output t

[−−−−−] [+ + − + +]

[−−−− +] [−− + −−]

[−−− + −] [−−− + −]

[−−− + +] [+ + + − +]

[−− + −−] [+ + − + −]

[−− + − +] [+ −− + +]

[−− + + −] [− + + − +]

[−− + + +] [−− + + +]

[− + −−−] [+ − + + +]

[− + −− +] [+ −−− +]

[− + − + −] [+ − + + −]

[− + − + +] [− + + −−]

[− + + −−] [− + + + −]

[− + + − +] [+ + −−−]

[− + + + −] [+ − + − +]

[− + + + +] [−−−− +]

Input x Output t

[+ −−−−] [− + + + +]

[+ −−− +] [− + −−−]

[+ −− + −] [+ −− + −]

[+ −− + +] [−− + − +]

[+ − + −−] [− + − + +]

[+ − + − +] [+ + −− +]

[+ − + + −] [+ + + + +]

[+ − + + +] [−− + + −]

[+ + −−−] [+ + + −−]

[+ + −− +] [− + − + −]

[+ + − + −] [+ −−−−]

[+ + − + +] [−−− + +]

[+ + + −−] [−−−−−]

[+ + + − +] [− + −− +]

[+ + + + −] [+ + + + −]

[+ + + + +] [+ − + −−]

regression have the same BP learning laws [2]. So we will not review them here.
The next section summarizes the main probabilistic facts about BP and B-BP.

26.2 Backpropagation as Maximum Likelihood
Estimation

We first show why backpropagation is a form of generalized Expectation-
Maximization (EM) [7]. This new theorem gives insight into both algorithms
and allows users to modify one by modifying the other. This key result states
that the gradient of the network’s log-likelihood log p(y|x,Θk) equals the gradi-
ent of EM’s surrogate likelihood function Q(Θ|Θk):

∇Θ log p(y|x,Θk) = ∇ΘQ(Θk|Θk) (26.1)

at each iteration k for the network’s total parameter vector Θk and input x.
The BP-EM gradient identity (26.1) follows if we expand the network likeli-

hood p(y|x,Θ) = p(h,y|x,Θ)
p(h|y,x,Θ) for all hidden variables h in the network. Then EM

takes expectations of the log-likelihood log p(y|x,Θ) with respect to the hidden
posterior p(h|y, x,Θk). This gives

log p(y|x,Θk) = Q(Θ|Θk) + H(Θ|Θk) (26.2)
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for EM’s so-called surrogate likelihood Q(Θ|Θk) = Eh|y,x,Θk
[log p(h, y|x,Θ)] and

for the entropy H(Θ|Θk) = −Eh|y,x,Θk
{log p(h|y, x,Θ)}. A basic fact of EM is

the “ascent property”: Maximizing the surrogate likelihood Q can only increase
the total log-likelihood log p(y|x,Θk) [8]. The entropy inequality H(Θk|Θk) ≤
H(Θ|Θk) also holds for all Θ because of Jensen’s Inequality and the concavity
of the logarithm. So Shannon entropy minimizes cross entropy. Then taking the
gradient gives ∇ΘH(Θ|Θk) = 0 at Θ = Θk. Then taking gradients in (26.2)
gives (26.1).

A neural classifier results if p(y|x,Θ) is a multinomial or categorical proba-
bility density with softmax output neurons and 1-in-K encoding. Then the log-
likelihood log p(y|x,Θ) equals negative cross entropy. So minimizing the cross
entropy maximizes the log-likelihood. Then the gradient ∇ log p(y|x,Θ) gives
the usual BP learning law of backpropagation [3,4]. A neural regressor results if
p(y|x,Θ) equals a K-dimensional Gaussian with identity output neurons. Then
the log-likelihood log p(y|x,Θ) equals the negative squared error of regression.
Then taking the gradient also gives the same learning law [2].

We now show why a neural classifier uses a cross-entropy performance mea-
sure. The network’s K output softmax neurons are independent because they
have no intra-layer connections. Then the network likelihood pf (y|x,Θ) factors
into a product of K-many marginals [13]: pf (y|x,Θ) =

∏K
k=1 pf (yk|x,Θ). Then

taking logarithms gives

log pf (y|x,Θ) = log
K∏

k=1

pf (yk|x,Θ) (26.3)

= log
K∏

k=1

(ay
k)yk (26.4)

=
K∑

k=1

yk log ay
k (26.5)

= −Ef (Θ) (26.6)

because y is a 1-in-K-encoded unit bit vector. Then exponentiation gives
pf (y|x,Θ) = exp{−Ef (Θ)}. So minimizing the forward cross entropy Ef is the
same as maximizing the negative cross entropy −Ef . Minimizing Ef maximizes
the forward network likelihood and vice versa.

The B-BP algorithm combines the above results into a compound or bidirec-
tional network likelihood p(y|x,Θ)p(x|y,Θ). Then taking logarithms gives the
additive structure of the network’s joint performance measure:

log p(y|x,Θ)p(x|y,Θ) = log p(y|x,Θ) + log p(x|y,Θ). (26.7)

Then the same neural network N can encode a forward classifier network through
a multinomial likelihood p(y|x,Θ) and softmax output neurons while it also
encodes a backward regression network through a Gaussian p(x|y,Θ) and iden-
tity input neurons.
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B-BP does not depend on the existence of an inverse point-map. It works
instead with the set-theoretic inverse as we now explain. Forward training of
N : X → Y approximates some function f : X → Y from the input vector space
X to the output space Y . But B-BP trains the set-theoretic pullback or inverse
mapping f−1 : 2Y → 2X over the same connection weights and the same neural
units of N as in the forward direction. A function f need not have a point
inverse. Few functions do have point inverses because they are not bijective.
But any function f does have a set-theoretic inverse f−1 : 2Y → 2X such that
f−1(B) = {x ∈ X : f(x) ∈ B} for any B ⊂ Y . The backward pass N−1(y) ∈ X
approximates the corresponding input vector x. The backward mapping of a
neural classifier with K classes tends to approximate the centroids of the K
classes [2].

26.2.1 Noise-Boosting Bidirectional Backpropagation via EM

We summarize last how carefully chosen noise can boost the EM algorithm and
thereby boost the BP and B-BP algorithms. The Noisy EM Theorem shows that
injecting noise or other perturbations can only speed up the EM algorithm on
average at each iteration if the noise obeys the NEM positivity condition [9,10].
The noise need not be additive. It can be multiplicative or any other measurable
function.

We state the basic result for additive noise for simplicity. The Noisy EM
Theorem for additive noise states that a noise benefit holds at each iteration n
if the following positivity condition holds:

Ex,h,N|Θ∗

[
ln

(p(x + N,h|Θn)
p(x,h|Θn)

)]
≥ 0 . (26.8)

Then the EM noise benefit

Q(Θn|Θ∗) ≤ QN (Θn|Θ∗) (26.9)

holds on average at iteration n:

Ex,N|Θn

[
Q(Θn|Θ∗) − QN (Θn|Θ∗)

]
≤ Ex|Θn

[
Q(Θ∗|Θ∗) − Q(Θn|Θ∗)

]

where Θ∗ denotes the maximum-likelihood vector of parameters. The NEM pos-
itivity condition (26.8) has a simple form for Gaussian mixture models [14] and
for classification and regression networks [7].

The idea behind the NEM sufficient condition (26.8) is that some noise real-
izations n make a signal x more probable: f(x + n|Θ) ≥ f(x|Θ). Taking loga-
rithms gives ln( f(x+n|θ)

f(x|θ) ) ≥ 0. Then taking expectations gives a NEM-like pos-
itivity condition. The proof of the NEM Theorem uses Kullback–Liebler diver-
gence to show that the noise-boosted likelihood is closer on average at each
iteration to the optimal likelihood function than is the noiseless likelihood [10].

An important point is that the NEM positivity inequality (26.8) is not vac-
uous because the expectation conditions on the converged parameter vector Θ∗.
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Vacuity would result in the usual case of averaging a log-likelihood ratio. Take
the expectation of the log-likelihood ratio ln f(x|Θ)

g(x|Θ) with respect to the prob-

ability density function g(x|Θ) to give Eg[ln
f(x|Θ)
g(x|Θ) ]. Then Jensen’s inequal-

ity and the concavity of the logarithm give Eg[ln
f(x|Θ)
g(x|Θ) ] ≤ lnEg[

f(x|Θ)
g(x|Θ) ] =

ln
∫

X
f(x|Θ)
g(x|Θ) g(x|Θ) dx = ln

∫
X
g(x|Θ) dx = ln 1 = 0. So Eg[ln

f(x|θ)
g(x|θ) ] ≤ 0 and

thus in this case strict positivity is impossible [15]. But the expectation in (26.8)
does not in general lead to this cancellation of probability densities because
the integrating density in (26.8) depends on the optimal maximum-likelihood
parameter Θ∗ rather than on just Θn. So density cancellation occurs only when
the NEM algorithm has converged to a local likelihood maximum because then
Θn = Θ∗.

The NEM Theorem simplifies for a classifier network with K softmax output
neurons. Then the additive noise must lie above the defining NEM hyperplane
where such noise adds directly to the training output targets in the cross-entropy
(26.4) [7]. A similar NEM result holds for regression except that the noise-benefit
region is a hypersphere [7,16]. This same NEM noise-space geometry holds for
the B-BP algorithm depending on whether the system design is that of a double
classifier, double regressor, or a mixed regressor-classifier or classifier-regressor.
NEM noise can also inject into the hidden neurons.

We refer the reader to [7,16] for the detailed statements and illustrations of
injecting NEM noise into classifiers and regressors. Extensive simulations with
NEM-boosted B-BP have shown comparable improvement in speeding up train-
ing and in improving both classification and regression accuracy.

26.3 Conclusion

Bidirectional backpropagation allows a multi-layer neural network to exploit
information in the backward direction as well as in the forward direction. Care-
fully injected noise can speed B-BP training on average because the backprop-
agation algorithm is a special case of the generalized expectation-maximization
algorithm and because such noise can always speed the average convergence of
the expectation-maximization algorithm as it iteratively climbs the nearest hill
of probability or log-likelihood. The same likelihood method allows noise injec-
tion in recurrent networks [17,18] for classification and regression [16] as well as
noise injection in Markov-chain Monte Carlo estimation and simulated annealing
[19].
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Abstract. Stimulated Brillouin scattering (SBS) limits the power that
may be transmitted through an optical fiber because the pump is
depleted as energy is transferred into the backward traveling Stokes wave.
SBS occurs when the power in the pump wave exceeds a threshold power.
The SBS threshold can be easily exceeded in practical contexts (e.g. 4
mW in a typical telecommunication fiber, 25 km in length). The SBS
threshold can be increased by increasing the optical bandwidth of the
pump wave. In this work, we propose and demonstrate a novel scheme
for suppressing stimulated Brillouin scattering in optical fiber. We show
that Boolean chaotic phase modulation, which is easily generated with a
field-programmable gate array (FPGA), can raise the SBS threshold by
>12 dBm.

27.1 Introduction

Stimulated Brillouin scattering (SBS) is a non-linear process in which a forward-
traveling (Pump) light wave interacts with a backscattered (Stokes) light wave
through an acoustic wave [1,2]. Stimulated Brillouin scattering (SBS) is the most
important factor limiting the output power. In a passive fiber, SBS occurs when
the product of intensity, fiber length, and Brillouin gain reaches a threshold
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value. The SBS threshold depends on the bandwidth of the light and on the
material properties of the fiber, attenuation coefficient and its length. The SBS
threshold can be increased by increasing the optical bandwidth of the pump
wave [1,2]. The power-limiting effect of SBS is undesirable in many contexts,
and several methods have been proposed to suppress SBS [3,4]. Many of these
techniques focus on increasing the optical bandwidth of the input signal, which
in turn increases the SBS threshold [5–8]. In general phase modulation helps to
suppress SBS if the modulation signal has a wide electrical bandwidth. We use
asynchronous Boolean networks to generate wideband electrical signals.

A Boolean network is a structure of nodes that can be in one of two Boolean
states: “1” or “0” and their links are connected to nodes [9,10]. The dynamics
of the network is determined by Boolean functions of the Boolean states; this
includes the delays in signal propagation and the two methods commonly used
are synchronous and autonomous Boolean networks. Synchronous Boolean net-
works evolve in discrete time steps. These can be experimentally realized using
clocked logic circuits. Autonomous Boolean networks evolve in continuous time,
experimentally realized with unclocked logic circuits. The processing delays in
autonomous Boolean networks originate from processing times of the nodes and
propagation delays along the links. Zhang and collaborators find that unlocked
logic circuit with circuit elements that function on a timescale on the order of
nanoseconds can generate periodic dynamics or deterministic chaotic dynamics
depending on the delays in the circuit [11].

Boolean chaos offers several advantages for the suppression of SBS. We imple-
ment an experimental autonomous Boolean network. These Boolean networks
are implemented with digital electronics, they run asynchronously without any
external clock signal. This allows for the generation of higher bandwidth sig-
nals compared with clocked devices. Boolean networks can be realized in field-
programmable gate arrays (FPGAs), which are easy to reconfigure, allowing for
rapid and inexpensive development of experiments [12]. This report describes the
applications of Boolean chaos to the suppression of SBS and the main results
achieved.

27.2 Experiment and Results

Experiments were performed using the setup shown in Fig. 27.1. We measured
the reflected and transmitted power through 25 km of optical fiber. The phase
modulator (lithium niobate) has an electrical bandwidth of 10 GHz and an
optical insertion loss <3.5 dB. We measured Vπ for the phase modulator to be
6.8 V at 50 MHz. The electrical input to the phase modulator is a Boolean chaotic
signal, which was generated by a field-programmable gate array (FPGA, Altera
Cyclone III). This signal is amplified so that it has a peak-to-peak amplitude of
5.3 V. The modulated light was sent to an optical variable attenuator (VA) to
control the input power. Then the laser was launched into a 25 km single-mode
fiber by an optical circulator. One arm of the circulator gave us directly the
reflected Stokes light (PR) measured by the power meter. The other arm of the
circulator allows us to measure the transmitted power (PT) as shown.
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Fig. 27.1. Experimental setup to suppress SBS using Boolean chaos. Transmitted opti-
cal power (PT), and the power of the reflected Stokes wave (PR) are both measured.
We use an FPGA to generate a Boolean chaotic signal asynchronously

Fig. 27.2. a Measured reflected power and b transmitted power versus input optical
power. Results for unmodulated (red dots) and unmodulated (black diamonds) pump
are plotted

In Fig. 27.2a, b we show the measured transmitted and reflected power. In
Fig. 27.2a, we can observe that for no phase modulation, the reflected Stokes
wave has a low SBS threshold (6 dBm input power). When we phase modulate
input light with the Boolean chaos signal, we find that the threshold SBS is
increased by ∼12 dBm compared with the case where there is no phase modu-
lation.

In Fig. 27.2b, the transmitted power is plotted as a function of the input
power. The results show that without phase modulation the output power from
the 25 km of optical fiber quickly saturates due to SBS. When we phase modulate
the input using the Boolean chaos we see a linear increase in a transmitted power.
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27.3 Conclusions

In this work we show that the suppression of SBS depends on the bandwidth
of the optical signal injected into the fiber and in the size and bandwidth of
the Boolean chaotic phase modulation signal generated using an asynchronously
operated FPGA. We show that the threshold for SBS can be raised significantly
(by ∼12 dB), reducing the reflected power signal and eliminating the saturation
in the transmitted power. Boolean chaos signals help to achieve high bandwidth
(∼1 GHz) and since these signals are generated by asynchronous circuits, the
spectrum has no artifacts from a periodic clock. An advantage to the use of
FPGAs is that they can be reconfigured easily and can be implemented at a
very low cost using digital logic components.
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Abstract. The influence of noise levels on image classification with neu-
ral networks has been studied before. However, little is known about how
different levels of entropy affect the performance of non-linear systems
such as Convolutional Neural Networks (CNN), where the initial and
final system states are predetermined and entropy represents a perfor-
mance function. This study provides understanding on how a CNN sys-
tem evolves from the original to the final state and explains the sensitive
dependence on initial training conditions using the publicly available
architecture and the MNIST dataset and also discusses the effects of
entropy on side-scan sonar imagery. This paper describes a method of
testing the effects of varying degrees of entropy on the performance of a
non-linear neural network system. This approach allows the comparison
of performance of the “black box” system under four states: (1) origi-
nal non-altered dataset with minimal interclass variance, when a CNN
trained on an original dataset is tested on images with added levels of
entropy, (2) when a CNN trained on a dataset with varying levels of
entropy and (3) tested to recognize the original labeled class and (4) to
recognize the labeled class with varying levels of entropy. The advantage
of this approach is that we can trace the performance of a single archi-
tecture CNN under varying levels of entropy, we can demonstrate the
ability of the system to use noise to learn more abstract and complex
features of the input space, and we can discuss the results in the light of
a theoretical physical system.

Keywords: Feature selection convolution neural network (CNN) ·
Entropy · Accuracy · Information theory · Black box · Physical system

28.1 Introduction

Entropy has many interpretations such as “measurement of order” or “mea-
surement of information”. The definition of entropy used in information theory
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is directly analogous to the definition used in statistical thermodynamics [1].
Entropy is also a way to describe the number of states of a system. A non-
linear system, such as Convolutional Neural Network (CNN) may have many or
a few entropy levels. In this experiment we look at the entropy as the amount
of uncertainty about a digit image texture associated with a given probability
distribution (from 0 to 1) or as a measure of ‘disorder’ in the image [2]. We
hypothesize, that as the level of disorder rises, the entropy rises and the pattern
recognition of the digit image should become less likely with a non-linear neural
network. For demonstration we can write down entropy as:

H(sm) = −
256∑

n=1

pn(sm)log2(pn(sm)), m = 1, . . . ,M (28.1)

where, H(sm) is the entropy of the random variable sm. Here pn(sm) is the
probability that outcome sm happens and m are all the possible outcomes. The
probability density pn is calculated using the gray level histogram with levels
from 1 to 256.

In image processing, entropy is used to change the view of feature maps
textures from each non-linear convolutional layer, a certain texture might have
a certain entropy as certain patterns repeat themselves in approximately certain
ways. In the context of this paper, low entropy H(sm) means low disorder, low
variance within the component m [2]. A component with low entropy is more
homogenous than a component with high entropy. Another way of looking at
image entropy is to view it as the measure of information content ΔI. [2] A
vector I with relatively ‘low’ entropy is a vector with relatively low information
content for pixel values [0 1 0 1 1 1 0]. A vector I with relatively ‘high’ entropy is
a vector for pixel values with relatively high information content. It might be [0
242 124 222 149 13] [2]. In this study we examine case with varying information
content for a database of digit images size 28 by 28 pixels.

Convolutional neural network use non-linear set filters to process images to
derive textures or feature maps that best describe the image class. These tex-
tures are then processed with a soft-max function that represents the categorical
distribution over K different possible outcomes of the class. We wanted to test
the performance of the CNN under different levels of entropy in the input and
output space, to see if increasing entropy or information content of the dataset
would affect the performance measure of CNN.

28.2 Dataset and CNN Architecture

The MNIST database of handwritten digits is publicly available and popular
dataset that is used for testing performance of different pattern recognition algo-
rithms. It contains training set with 60,000 examples of handwritten digits, and
a test set of 10,000 examples. The digits have been size-normalized and centered
in a fixed-size image Fig. 28.1 (Table 28.1).
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Fig. 28.1. Example of original MNIST dataset. Image shows a subset of the database
with 60,000 handwritten digits

Table 28.1. MNIST dataset, each class represent digits from 0 to 9. Each digit class
has an original dataset low variance component m, which will be artificially increased
by randomly mixing order of the pixels within each class until each class becomes
homogeneous
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28.3 CNN Architecture

The CNN configuration was specified as follows and visualized in Fig. 28.2. The
input was a 1-dimensional series of 784 values that range between [0, 9]. This
corresponds to a normalized 2-dimensional input image of 28 × 28 pixels. The
first convolutional layer uses a set of 20 filters of size 5x5 pixels. Each filter
corresponds to a set of weights (5× 5 in this case) that are convolved across the
image pixels in both the X and Y dimensions, producing an output value for
every stride.

Fig. 28.2. CNN architecture showing 1 layer network of the MNIST image input.
Efficiency of the non-linear system to correctly predict image class is represented by
ΔIsystem. Where Iin is information context used for training, and Iout is information
context used for testing

The next layer is a pooling layer, non-overlapping, contiguous 2 × 2 pooling
region, configured to max-pool the activations within a 5 × 5 pixel window. It
effectively subsamples the output, reducing each dimension’s resolution by half,
choosing the maximum activation value within the window.

It partitions the input image into a set of non-overlapping rectangles and,
for each such sub-region, outputs the maximum. The intuition is that the exact
location of a feature is less important than its rough location relative to other
features [2]. The pooling layer serves to progressively reduce the spatial size of
the representation, to reduce the number of parameters and amount of compu-
tation in the network, and hence to also control overfitting. It is common to
periodically insert a pooling layer between successive convolutional layers in a
CNN architecture. The pooling operation provides another form of translation
invariance [3].

The final layer is fully-connected (FC) to the pooling layer’s output, produc-
ing N outputs, where N is the number of classes in the dataset. In this example,
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the number of classes is 9 (digits 0–9). For a given image example at the CNN
input layer, the output will most strongly activate the output neuron in this layer
corresponding to the object type it perceives as the most likely classification.

Basic CNN configuration and the MNIST dataset dimensions for this task
were chosen for simplicity. For the initial experiment we decided to concentrate
on training a CNN network under 4 states: (1) original non-altered dataset with
“natural” interclass variance of a dataset; (2) when a CNN trained on an original
dataset is tested on images with added levels of entropy; (3) when a CNN trained
on a dataset with varying levels of entropy and tested to recognize the original
labeled class and (4) to recognize the labeled class with varying levels of entropy.
The advantage of this approach is that we can trace the performance of a single
architecture CNN under varying levels of entropy, we can demonstrate the ability
of the system to use noise to learn more abstract and complex features of the
input space.

28.4 CNN Training

We have implemented a convolutional neural network for digit classification. The
architecture of the network will be a convolution and subsampling layer followed
by a densely connected output layer which will feed into the soft-max regression
and cross entropy objective. We used mean pooling for the subsampling layer.
We used the back-propagation algorithm to calculate the gradient with respect
to the parameters of the model. Finally we trained the parameters of the network
with stochastic gradient descent and momentum. Training and test were used
with the same parameters except for the change in entropy level [2].

28.5 The Experiment

During the experimentation we would like to evaluate performance of CNN under
different entropy levels (0–1) for the same non-linear network with different
training and testing configurations.

During first experiment we train with entropy and test with entropy
(TRWE/TWE). We have selected to train and test CNN under varying 0–1
entropy levels. Similarly, CNN can be viewed as a closed system where entropy
levels Iin = Iout.

During second experiment, we have trained the CNN without any introduc-
tion of entropy but have tested its performance on images with varying levels of
entropy (TRWOE/TWE). Similarly, the CNN can be viewed as a closed system,
where Iin < Iout.

Finally, we have trained CNN under varying levels of entropy (0-1) and test
its performance on unaltered images. (TRWE/TWOE). Similarly, CNN can be
viewed as a closed system, where Iin > Iout.

Results of the experiment are shown in graph 1. With long enough training,
accuracy peaks near 98%. A relatively smaller batch size of 256 images stays
constant and runs for 3 epochs yielding high accuracy. Not surprisingly, for all
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3 experiments the accuracy of correct digit declines with level of entropy, but at
different rates: the CNN with Iin < Iout gives the worst result. The CNN with
Iin = Iout performs at the same level as all other tests until the entropy level
reaches 0.3, and then starts to diverge with up to 20% at entropy level 0.8 with
Iin < Iout and up to 50% with Iin > Iout.

The performance of the CNN with Iin > Iout showed the highest level of
resilience towards inflicted noise when compared to the other two performance
curves, reaching 60 and 40% better performance at entropy level 0.8 when com-
pared with other ΔI (Fig. 28.3).

Fig. 28.3. Performance curves ΔI for a single-layer CNN: given all CNNs remain the
same, only changing in levels of entropy Iin and Iout for non-linear convolutional neural
network

28.6 Conclusions

This paper describes a method of testing the effects of varying degrees of entropy
on the performance of a non-linear neural network system. This approach allows
the comparison of performance of the “black box” system under four states,
original data set (Iin = Iout), when a CNN trained on an original dataset is tested
on images with added levels of entropy (Iin < Iout), when a CNN trained on a
dataset with varying levels of entropy and tested to recognize the original labeled



286 I. Dzieciuch and D. Gebhardt

class (Iin > Iout ), when CNN trained on a dataset with varying levels of entropy
and, recognize the labeled class with varying levels of entropy (Iin = Iout).

A CNN learns a set of shared-parameter non-linear filters to produce feature
maps that provide a fully-connected output layer with salient features it uses to
determine the class label of the input. From the following graph we can conclude
that:

1. The overall performance of the non-linear convolutional neural network ΔI
decreases with introduction of entropy to Iin and /or Iout or to simply put high
informational context will negatively alter the probability of class prediction
and low informational context will positively alter class prediction up to the
point (overfitting problem).

2. By artificially increasing informational context Iin into a CNN non-linear
network, we can substantially increase the performance ΔI of the non-linear
CNN. By altering interclass variability of the training set we can expand avail-
able data points, allowing us to reduce overfitting error. Appropriate levels
of induced noise used during training phase will increase the performance of
the CNN non-linear system.

3. Generally speaking, the accumulation of data available for training and test-
ing of neural networks across all ML applications will increase. By introducing
upper and lower limits of entropy into the CNN, we can have a better under-
standing of the behavior for different CNN architectures under varying levels
of noise with a more definite method then current “random tuning”.

A measure of the unavailability of a CNN non-linear system’s energy to
do work is similar to the physical system. In nature, for systems to become
disordered and for less energy to be available for use as work because of that
(Fig. 28.4).

Fig. 28.4. Performance curves ΔI for a single-layer CNN: given all CNNs remain the
same, only changing in levels of entropy Iin and Iout for non-linear convolutional neural
network

When ice melts, it becomes more disordered and less structured. The system-
atic arrangement of molecules in a crystal structure is replaced by a more random
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and less orderly movement of molecules without fixed locations or orientations.
Its entropy increases because heat transfer occurs into it. Energy becomes avail-
able. This is a gradual increase in entropy accompanying an increase in disor-
der [4].

If we use images of snowflakes in the CNN system we would to classify images
of:

1. snowflakes among snowflakes (no entropy) (Iin = Iout),
2. different stage–melted snowflakes among different stage melted snowflakes

(same entropy), (Iin = Iout),
3. melted snowflake (Iin < Iout) among snowflakes
4. and snowflakes among melted snowflakes (Iin > Iout).

If we draw an analogy, that after looking at the representation of 10,000 dif-
ferent types of snowflakes at melted different states, we are more likely to find a
structure of a snowflake among melted ones then a structure of melted snowflake
among structures of melted snowflakes, or even less so melted snowflakes among
snowflakes. May it be possible, that there is be innate energy conservation phe-
nomenon for some areas of a snowflake structure that allows to conserve energy,
or non-crystalline lattices which carry higher energy potential then others?

Similarly, the mass within the boundary is the information system remains
constant and only information energy transfer may take place between the sys-
tem and its surrounding. A thermodynamic quantity representing the unavail-
ability of a system’s thermal energy for conversion into mechanical work, often
interpreted as the degree of disorder or randomness in the system. Similarly,
high levels of energy in the system represent the unavailability of the system
information energy for conversion into pattern recognition work. Information
entering non-linear system and information leaving non-linear system define the
efficiency of non-linear system.
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Abstract. We show that, under certain conditions, modulation insta-
bility in nonlinear waveguides gives rise to the usual double-sideband
spectral structure, but with a Raman gain profile. This process is enabled
by the energy transfer from a strong laser pump to both Stokes and anti-
Stokes sidebands in a pseudo-parametric fashion. We believe this striking
behavior to be of particular value in the area of Raman-based sensors
which rely on sensitive measurements of the anti-Stokes component.

29.1 Introduction

Pulse propagation in a lossless nonlinear waveguide is well described by the
generalized nonlinear Schrödinger equation (GNLSE) [1]

∂A(z, T )
∂z

− iβ̂A(z, T ) = iγ̂A(z, T )
∫ ∞

−∞
R(T ′) |A(z, T − T ′)|2 dT ′, (29.1)

where A(z, T ) is the slowly-varying envelope, z is the spatial coordinate, and T

is the time coordinate in a comoving frame at the group velocity. β̂ and γ̂ are
operators related to the dispersion and nonlinearity, respectively, and are defined
by

β̂ =
∑
m≥2

im

m!
βm

∂m

∂Tm
, γ̂ =

∑
n≥0

in

n!
γn

∂n

∂Tn
. (29.2)

βm are the coefficients of the Taylor expansion of the propagation constant β(ω)
around a central frequency ω0. Similarly, γn are the coefficients of the Taylor
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expansion of the nonlinear parameter. It is usually sufficient to consider the
expansion up to the first term. Under this setting, it can be shown that the
total number of photons is conserved if γ1 = γ0/ω0 [2], which is the usual
approximation.

The function R(T ) models the Raman response of the medium. Stimulated
Raman scattering is a non-parametric process that involves the excitation of
molecular vibration modes of the waveguide and it does not conserve the energy
of the wave. However, it does conserve the number of photons. Qualitatively
speaking, the energy exchange experienced by a strong continuous-wave laser
involves the annihilation of a pump photon and the simultaneous creation of
another photon in a low-frequency (also known as Stokes) band. Similarly, a
photon in a high-frequency (anti-Stokes) band is annihilated and another photon
is created at the pump frequency. As a result, a gain is observed only in the
Stokes band, enabling the application of stimulated Raman scattering in optical
amplification [3].

First order linear perturbation analysis of the GNLSE reveals that, under
certain conditions (viz., anomalous dispersion), continuous-wave (CW) solutions
are unstable. This phenomenon, known as modulation instability (MI) [4–11],
is a parametric process where two photons from a CW pump are transferred to
both low- and high-frequency bands, one photon each. As a result, MI gain is
observed in both sides of the pump. It has been shown [12,13] that, when γ1 is
included, there is a power cutoff above which the MI gain vanishes.

In a recent work [14], we proved that there is still gain beyond the MI power
cutoff when Raman scattering is taken into account. Moreover, we showed that
the gain mimics the shape of the Raman response in the Stokes band. Here we
extend these observations to the anti-Stokes band. Indeed, in the next section
we show that there is MI gain in both sides of the pump with a Raman spectral
shape. Further, we show this to be a pseudo-parametric process, that is, a truly
MI-like process where the anti-Stokes gain is not the result of one mediated by
spectral generation in the Stokes band followed by four-wave-mixing generation
in the anti-Stokes band.

29.2 Raman and Modulation Instability

A few simulations may help to understand the behavior of stimulated Raman
scattering. Figure 29.1 shows simulation results of an average over 50 noise real-
izations of a CW pump with additive white Gaussian noise. The signal was
propagated a distance LR, defined as the inverse of the peak Raman gain, in a
normal dispersion regime. In particular, β2 = 50 ps2/km, βm = 0 for m > 2,
γ0 = 100 1/W/km, γ1/γ0 = ω−1

0 . The pump power was set to P0 = 50 W,
its frequency to ω0/2π = 376.73 THz, and the signal-to-noise power ratio was
50 dB. For the Raman response [1], we used R(T ) = (1 − fR) δ(T ) + fRhR(T ),
where fR weights the contributions of the instantaneous (electronic) and delayed
Raman response of the medium. We used the damped-oscillator approximation
hR(t) ∝ e−t/τ2 sin (t/τ1) Θ(t), where Θ(t) is the unit step function. We fixed
fR = 0.031, τ1 = 15.5 fs and τ2 = 230.5 fs.
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Fig. 29.1. Simulation results of an average over 50 noise realizations of a CW pump
with additive white Gaussian noise: a at a propagated a distance LR/2; b at LR. LR

is defined as the inverse of the peak Raman gain. The shape of the theoretical Raman
gain (black dashed line) is also presented for comparison

Figure 29.1a shows the spectral density at LR/2, as a function of frequency
deviations with respect to ω0. We observe that noise in the Stokes band (nega-
tive frequencies) grows following the Raman gain as expected. However, in the
anti-Stokes band noise decreases as photons are annihilated and new photons
are created at the pump frequency. In Fig. 29.1b, after the signal propagates
the remaining distance, it can be observed the growth of the anti-Stokes band
through a third-order parametric process known as four-wave mixing (FWM).
FWM involves the interaction between two pump photons with a Stokes and
an anti-Stokes photon. In this sense, modulation instability (in the absence of
Raman) is usually regarded as a four-wave mixing process.

A complete analysis of modulation instability includes the complex interplay
between high-order dispersion, nonlinearity, and Raman scattering (see, e.g.,
[15,16]). For the sake of simplicity, let us consider the case where βm = 0 for
m > 2 and γn = 0 for n > 1. It can be shown that the MI gain is given by [17]

gMI(Ω) = 2max{−Im{K1(Ω)},−Im{K2(Ω)}, 0}, (29.3)

K1,2(Ω) =
p|β2|

τ
Ω(1 + R̃(Ω)) ± |β2Ω|

√
Ω2

4
− pR̃(Ω)

τ2
+

p2R̃2(Ω)
τ2

, (29.4)

where Ω is the deviation from the pump frequency ω0 and R̃(Ω) is the Fourier
transform of the Raman response R(T ). For convenience, γ1 and the pump power
P0 have been normalized as τ = γ1/γ0 and p = P0/Pc, with

Pc =
|β2|γ0

γ2
1

. (29.5)

In the absence of Raman scattering, R̃(Ω) = 1. In this case, it is easy to verify
that there is no gain when p > 1, that is, when the pump power P0 is beyond
the power cutoff Pc. However, in the presence of Raman scattering (R̃(Ω) �= 1),
there exists MI gain even for p > 1.
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In order to understand the nature of the processes involved, it is convenient
to study the number of photons, a quantity conserved when τ = ω−1

0 , as it was
already explained. Let us define the quantity

Ψ(Ω) =
|A(z,Ω)|2
� (Ω + ω0)

, (29.6)

which is proportional to the number of photons at frequency Ω. Figure 29.2a
shows simulation results for the propagation of a pump and two seeds located
at the Stokes and anti-Stokes frequencies (∓10.7 THz) under the same setting
as that of Fig. 29.1 (both seeds have the same number of photons at z = 0.)
It is observed that initially the number of photons at the anti-Stokes frequency
decreases as a consequence of Raman scattering, and then begins to increase (at a
distance z ∼ 0.4LR) due to FWM. Figure 29.2b–c show the evolution of the same
quantity in a purely parametric process such as MI in the absence of Raman.
The normalized pump power is p = 0.8, the fiber dispersion is anomalous, β2 =
−50 ps2/km, and γ0 and ω0 are as in Fig. 29.1. The propagated distance is the
characteristic MI length, defined as LMI = max(g−1

MI). In Fig. 29.2b, γ1 = 0 and,
given that the number of photons is not conserved, seeds grow unevenly. On the
contrary, in Fig. 29.2c, γ1 = γ0/ω0 and both seeds grow evenly.
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Fig. 29.2. Number of photons vs. normalized propagated distance for a pump and two
seeds located at the Stokes and anti-Stokes frequencies (∓10.7 THz): a results for the
normal dispersion regime; b anomalous dispersion regime with p = 0.8, γ1 = 0 and
no Raman scattering; c anomalous dispersion regime with p = 0.8, γ1 = γ0/ω0 and
no Raman scattering; d anomalous dispersion regime with p = 1.1, γ1 = γ0/ω0 and
Raman scattering
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If the effect of Raman scattering is included, MI gain cannot be the result
of a purely parametric process. Recall Fig. 29.2a where the pump is shown to
contribute photons only to the Stokes band, as it is the case with conventional
Raman (non-parametric) amplification, and eventually the anti-Stokes band is
amplified by means of a FWM interaction between the pump and the Stokes
sideband. However, in the anomalous dispersion region of the waveguide, we
can have Raman amplification at both low- and high-frequencies simultaneously.
Indeed, Fig. 29.2d shows the evolution of both seeds for p = 1.1 and when Raman
scattering is factored in. We observe that both seeds grow almost simultaneously
(cf. Fig. 29.2a), and the slight difference in the growth rate is due to the actual
gain of the Stokes band due to Raman. We may view the resulting behavior
as intermediate between that of a purely parametric process, such as Fig. 29.2c,
where the gain evolves simultaneously for low and high frequencies, and that of
the Raman (non-parametric) gain in Fig. 29.2a.

Finally, in Fig. 29.3 the growth of noise shows clearly the amplification of
both Stokes and anti-Stokes bands for p = 3.0 and after a propagated distance
of 5LMI. Although it is not evident from this figure, it can be shown that the
gain spectra mimics the shape of the Raman response [14].

29.3 Conclusions

In this work we showed that beyond the modulation instability power cutoff
nonlinear waveguides exhibit a gain with a Raman-like spectral shape. Inclusion
of the higher-order nonlinear term γ1 allows for the growth of both Stokes and
anti-Stokes bands to be even and simultaneous, conserving the number of pho-
tons, as if in the presence of a pseudo-parametric process. As such, the nonlinear
waveguide exhibits Raman gain in the anti-Stokes band, a striking feature that
could find applications in the sensitivity enhancement of a wide variety of Raman
sensors that rely on the monitoring of the anti-Stokes spectral component.
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Abstract. Intrinsic localized modes (ILMs) are energy localizations
that may occur in arrays of discrete, nonlinear oscillators. When present
in physical systems, these energy localizations may cause undesirable
dynamics or damaging effects. If properly understood, ILMs may be used
to increase the sensing capacity of inertial sensors, store information, or
move energy through an array. Depending on the system parameters,
ILMs may have a variety of profiles (e.g., the symmetric ST-mode or the
antisymmetric P-mode). Using the method of restricted normal modes,
a displacement profile is calculated for the P-mode. After performing
numerical simulations using the P-mode profile as initial conditions, the
P-mode is found to be persistent when forced at 3 times the linear natural
frequency. Although persistent, this P-mode ILM is found to have chaotic
properties. This ILM may have been previously overlooked because of its
positive Lyapunov exponent, meaning that there might be larger ranges
of parameters capable of supporting these energy localizations.

30.1 Introduction

Intrinsic localized modes (also called discrete breathers in the physics literature)
are localized vibratory modes involving a small number of oscillators in an array,
and they may occur in spatially extended, perfectly periodic, discrete systems
[1]. These energy localizations have been observed in a range of physical systems
[2], including antiferromagnets [3], Josephson junctions [4–6], photonic lattices
[7,8], and even biopolymer chains [9]. They have been realized in both microscale
[10] and macroscale oscillator arrays [11,12].

These localizations may occur in different mode shapes, such as the Seivers-
Takeno (ST-) mode [13] and the Page (P-) mode [14]. The ST-mode may be
considered to be a forced nonlinear vibratory mode [15]. In addition, some sta-
bility studies have been performed on these modes [16–18].

In this paper, the P-mode ILM will be studied. The rest of the paper is
organized as follows. First, the mode shape will be determined through the
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method of restricted normal modes for the unforced system in Sect. 30.2. Next,
the effects of adding forcing will be studied in Sect. 30.3. A discussion of the
results will be presented in Sect. 30.4.

30.2 Restricted Normal Mode Analysis

The oscillator array under consideration has both nonlinear nominal stiffness
and nonlinear coupling. The equation of motion for the ith oscillator may be
written as

ẍi + cẋi + α1xi + β1x
3
i + α2(xi − xi+1)

+α2(xi − xi−1) + β2(xi − xi+1)3 + β2(xi − xi−1)3 = Fcos(Ωt) (30.1)

In Eq. 30.1, c is the damping, α1 is the linear onsite stiffness, α2 is the linear
intersite stiffness, β1 is the nonlinear onsite stiffness, β2 is the nonlinear intersite
stiffness, F is the forcing amplitude, and Ω is the forcing frequency.

To perform a restricted normal mode analysis of the P-mode, several initial
assumptions must be made. Previously, the authors performed this analysis on
the ST-mode, which is symmetric [19]. In this case, the center of the ILM was
located at the 0th oscillator, and the oscillators to the left and right of the
center were identical due to the symmetry condition. Proceeding in a similar
fashion for the P-mode ILM, the center of the ILM is located between oscillators
+1 and −1, and these oscillators are of equal and opposite amplitude. Two
further assumptions are that oscillators +2 and −2 are also of equal and opposite
amplitude, and oscillators +3 and −3 are equal to zero. With these assumptions,
the solution of the restricted normal mode analysis is ensured to be the anti-
symmetric P-mode ILM.

Now, setting the forcing and damping terms equal to zero, Eq. 30.1 for oscil-
lators 1 and 2 becomes

⎧
⎪⎪⎨

⎪⎪⎩

ẍ1 + α1x1 + β1x
3
1 + α2(x1 − x2) + α2(x1 − x−1)

+β2(x1 − x2)3 + β2(x1 − x−1)3 = 0
ẍ2 + α1x2 + β1x

3
2 + α2(x2 − x3) + α2(x2 − x1)

+β2(x2 − x3)3 + β2(x2 − x1)3 = 0

(30.2)

And after enforcing the assumptions stated earlier and rearranging, Eq. 30.2
becomes

{
ẍ1 + α1x1 + (β1 + 8β2)x3

1 + α2(3x1 − x2) + β2(x1 − x2)3 = 0
ẍ2 + α1x2 + (β1 + β2)x3

2 + α2(2x2 − x1) + β2(x2 − x1)3 = 0 (30.3)

Then, assuming that the two central oscillators and the oscillators directly
adjacent to them all respond with the same frequency, the assumed solution is

x1(t) = A cos(ωt)
x2(t) = B cos(ωt) (30.4)
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Fig. 30.1. By utilizing the restricted normal mode approach, an ILM profile was found
for an array of sixteen oscillators. This profile was used as the initial conditions in
Sect. 30.3

After substituting Eq. 30.4 into Eq. 30.3, ω2 may be eliminated. To enforce
that A and B are a half period out-of-phase, they are represented as

A = R cos(θ)
B = R sin(θ) (30.5)

where R2 is the total energy of the system and p = B
A = tan(θ). Substituting

Eqs. 30.4 and 30.5 into Eq. 30.3, the following polynomial may be found:

p4 +
(

α2−R2β1+R2β2
−α2−R2β2

)
p3 +

(
0
)
p2 +

(
α2+R2β1+6R2β2

−α2−R2β2

)
p +

(
α2+R2β2

−α2−R2β2

)
= 0

(30.6)
In order to obtain a profile for the P-mode ILM, R and θ are found such

that A = 1 by solving Rcos(arctan(p)) = A = 1, where p is a root of Eq. 30.6.
Choosing α1 = 1, α2 = 0, β1 = 1, and β2 = 1, the P-mode ILM profile presented
in Fig. 30.1 was calculated for an array of sixteen oscillators.

30.3 Effects of Forcing

Using the ILM profile obtained from the restricted normal mode approach
(Fig. 30.1) as initial conditions, this system was numerically integrated in MAT-
LAB. For the unforced case, the ILM is stable. However, the central oscillators
respond with a different frequency than the non-central oscillators, due to the
large nonlinearity of the system. The response and its Fast Fourier Transform
are presented in Fig. 30.2.

By setting F = 0.15 and c = 0.001 in the simulations and using the same
initial conditions as in Fig. 30.1, the ILM is still present. In this case, the fre-
quency of maximal power (as determined from the FFT) for each oscillator is
now approximately the same, as expected with a forced system. The simulation
results are presented in Fig. 30.3.
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Fig. 30.2. Without forcing or damping, the ILM is persistent. However, with the large
amount of nonlinearity, the oscillators participating in the ILM oscillate with a fre-
quency much higher than the other oscillators

Fig. 30.3. With forcing and damping, the ILM is still obtained in the simulations.
With forcing, the maximum frequency for each oscillator is approximately the same

Although the ILM in Fig. 30.3 is quite persistent, the difference in the cen-
tral oscillators’ amplitude has chaotic attributes. This difference by adding the
amplitudes of x9 and x8, and the results are shown in Fig. 30.4. In this figure,
it appears that the difference in these peak values is random, and moreover, the
FFT of this difference has broadband characteristics. Further, it was found that
the largest Lyapunov exponent for the time series in Fig. 30.4 was λ1 = 0.15 > 0,
as calculated in the method described in [20]. For these reasons, it appears that
although this forced P-mode ILM is persistent, it is also chaotic.



298 E. Perkins and T. Fitzgerald

Fig. 30.4. With forcing and damping, the ILM is still persistent. With forcing, the
maximum frequency for each oscillator is approximately the same

30.4 Conclusions

Although typically undesirable because of their damaging effects, ILMs could
lead to technological innovation in the realms of sensing, computation, and
energy transportation. While some work pertaining to stability has been per-
formed for ILMs, this paper exhibits a case in which an ILM is persistent yet
chaotic.
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Abstract. The ability for a Spin Torque Nano Oscillator (STNO) to
perform as a nano-scaled microwave voltage oscillator continues to be
the focus of exten- sive research. Due to their small size (on the order of
10 nm), low power consumption, and ultrawide frequency range STNOs
demonstrate significant potential for applications in microwave genera-
tion. To date, the ability for a STNO to produce microwave signals is
achievable, however, the low power output produced by a single STNO
currently renders them inoperable for applications. In response, vari-
ous groups have proposed the synchronization of a network of STNOs
such that the coherent signal produces a strong enough microwave signal
at the nanoscale. Achieving synchronization, however, has proven to be
a challenging task and raises complex problems related to the field of
Nonlinear Dynamical Systems. In this work we analyze the problem of
synchronization for networks of STNOs connected in parallel. Bifurca-
tion diagrams for small networks of STNOs are computed which depicts
bistability between in-phase and out-of- phase limit cycle oscillations
for much of the phase space. In order to extend the analysis for large
networks of STNOs, we exploit the SN symmetry ex- hibited by the sys-
tem all-to-all coupled STNOs. We develop implicit analytic expressions
for Hopf bifurcations which yield synchronized limit cycle oscil- lations,
allowing for the computation of the Hopf loci for an arbitrarily large net-
work of oscillators. Through stability analysis we determine the parame-
ter space for which the Hopf bifurcation is supercritical and exhibits a
stable center-manifold. This analysis is completed for large arrays and
used to nu- merically demonstrate synchronization in up to N = 1000
STNOs. These results should help guide future experiments and, eventu-
ally, lead to the design and fabrication of a nanoscale microwave signal
generator.
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31.1 Introduction

An elementary Spin Torque Nano Oscillator (STNO) consists of two ferromag-
netic layers separated by a nonferromagnetic spacer, see Fig. 31.1 (Left). In one
ferromagnetic layer, the magnetization vectors are held fixed whereas the second
ferromagnetic layer remains free in order to the Giant Magnetoresistive (GMR)
effect. Under the influence of a biased current and applied magnetic field the free
layer may exhibit steady state precessional motion. In turn, such dynamics will
generate an oscillating resistance which, by Ohm’s Law, the voltage across the
resistor must also oscillate as well, thus yielding a microwave voltage oscillator.

Perspective advantages of STNOs are their small size (on the order of
100 nm), broad tunable frequency range, small output linewidth, and low power
consumption [12]. These benefits establish STNOs as desirable commercial prod-
ucts for the many fields which utilize microwave voltage oscillators, e.g., wireless
devices, radar, air traffic control, weather forecasting, and navigation systems.
However, the power output measured in experiments are still an order of mag-
nitude short of what is required with on-chip GHz applications [6]. A promising
solution, as proposed by various group [4,5,10,11,13], is to synchronize a net-
work of STNOs so that the coherent signal generated from the network will yield
a greater power output.

Initial insights into achieving synchronization came in 2005 from two adjoin-
ing papers in Nature Letters [5,8], which showed that two STNOs tend to phase-
lock into a single resonance when they are in close proximity. This work was
followed by Grollier [4] who computationally analyzed the dynamics of a 1 D
series array of N = 10 coupled STNOs that were magnetically uncoupled but
electrically connected in series. The results showed that the microwave power
output increases as N2, where N is number of oscillators in the array. Most
recently, in 2017, work in Turtle et al. [14,15] established an analytical and com-
putational approach for achieving synchronization which is valid for networks of
arbitrary size. The work that follows utilizes the techniques developed in Turtle
et al. [14,15] to extend the analysis to the case of a parallel arrayed network
of STNOs. The motivation is for both completeness purposes and to help guide
the design and fabrication process in current ongoing experiments. The coupling
term for the parallel array is distinct from the series array and produces results
which are unique from previous works.

31.2 Modeling

For a single STNO, see Fig. 31.1 (Left), an electric current, I, is applied to the
fixed magnetic layer whose magnetization is represented by ep. As the electrons
pass through the fixed layer, their spins become aligned with the direction of
the local ferromagnetic moment, thus creating a spin-polarized current. In turn,
the polarized current exerts a spin-transfer torque on the free magnetic layer,
m, which may lead to steady state precession. The free layer magnetization
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vector m = [m1,m2,m3] for a single STNO is governed by the Landau–Lifshitz–
Gilbert–Slonczewski equation

dm
dt

= −m × Heff + λm × dm
dt

+ Iμm × (m × ep) . (31.1)

Here, γ is the gyromagnetic ratio, λ is magnitude of the Gilbert damping
term, μ contains material parameters, and Heff is the effective magnetic field.
The term Heff consists of anisotropy, demagnetization field, and applied field.
The anisotropy is defined as Han = κ (m · ean) ean, where κ is the strength of
the anistropy, which we set to be κ = 45 Oe [9], and ean is the preferred direction
of magnetization, which for this work we set to be ean = [0, 0, 1] [14]. Hd is a
demagnetization field and we set Hd = −4πS0 (Nxmxex − Nymyey − Nzmzez),
where S0 = 8400/4π is the constant magnitude of the average magnetization
vector S(t) such that m = S/S0, Nx, Ny, and Nz are dimensionless con-
stants satisfying Nx + Ny + Nz = 1 [14]. Additionally, ex, ey, and ez are the
orthonormal unit vectors. Lastly, Happ is an applied magnetic field defined by
Happ = ha[0, sin θH , cos θH ]T , which is assumed to lie on the yz-plane where
θH is the angle from the z-axis. Furthermore, ha has units of oersted, and the
direction of the fixed layer is chosen to point in the z-direction, i.e. ep = [0, 0, 1].

Fig. 31.1. (Right) Spin-valve with fixed layer in direction ep and free layer m. (Left)
Parallel arrayed STNOs with input current IDC and output resistance Rc [15]

We now consider a network of STNOs coupled in a parallel array config-
uration, see Fig. 31.1 (Left). Here, the input current I is now replaced by Ij .
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Assuming each STNO to be identical we apply Kirchhoff’s laws to calculate the
current passing through the jth STNO as

Ij =

1

1
Rc

+
N∑

k=1,k �=j

1
Rk

1

1
Rc

+
N∑

k=1,k �=j

1
Rk

+ Rj

IDC , (31.2)

where Rk = R0k − ΔRk (m · ep) is the resistance of the kth STNO, and R0 is
the mean resistance with ΔR the maximum variance in resistance. Substituting
Eq. (31.2) into Eq. (31.1) yields a system of equations which models the dynamics
for N coupled oscillators. Furthermore, in order to simplify future analysis we
convert to complex stereographic coordinates using the change of variables zj =
(mj1 + imj2)/(1 + mj3), which produces

żj = (1 + iλ)

[
ihazzj +

hay

2
(
1 + z2

j

)
+ iκ

1 − |zj |2
1 + |zj |2 zj + μĨjIDC

− i

1 + |zj |2
(

Nx − Ny

2
(
z3
j − z̄j

)
+

(
1 − 3Nx + 3Ny

2

) (
zj − zj |zj |2

))
]
,

(31.3)

with

Ĩj =

1

1
Rc

+
N∑

k=1,k �=j

1

R0 − ΔR 1−|zk|2
1+|zk|2

1

1
Rc

+
N∑

k=1,k �=j

1

R0 − ΔR 1−|zk|2
1+|zk|2

+
(

R0 − ΔR
1 − |zj |2
1 + |zj |2

)zj .

31.3 Bifurcation Analysis

31.3.1 Computational Bifurcation Diagram

This sections begins with the computational bifurcation diagram for a system
of N = 2 STNOs. The expectancy is that certain dynamics may generalize
to systems of larger N . The magnetic field is applied with θh = π/4, which
corresponds to the angle of the applied magnetic field, Ha, from the z-axis in the
direction of the y-axis. Settings for the demagnetization factors are defined to be
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Nx = 1, Ny = Nz = 0 such that the free layer resembles the yz-plane. In practice,
it is found that these settings provide an ideal configuration for fabrication. Using
the complex stereographic representation, Eq. (31.3), the input current IDC is
varied to compute a one-parameter bifurcation diagram, see Fig. 31.2.

Referring first to large negative values of the input current the magnetiza-
tion direction settles, as expected, to a stable equilibrium state marked as a
solid red line. Following this stable branch into positive IDC values, it loses sta-
bility through the onset of back-to-back Hopf bifurcations labeled HB1 and HB2,
occurring at IDC = 95.4 and IDC = 107 respectively. As a result, the correspond-
ing solution branches yield limit cycle solution trajectories. Green solid circles
indicated stable synchronized oscillations, whereas the blue open circles signify
unstable out-of-phase oscillations. It is emphasized that the initial parameter
space containing stable synchronized limit cycle oscillations (green filled circles)
exhibits no other stable solutions branches. In turn, the synchronized oscillations
occurring from the Hopf bifurcation HB1 do not appear to compete with any
other stable solutions. Additionally, it is noted that HB1 occurs at a small value
of the current IDC. Thus, in applications a relatively small current strength may
be needed to produce oscillations implying that the system could operate at
lower power. Consequently, this region exhibits multiple promising advantages
for achieving synchronization in practice.

Fig. 31.2. One parameter bifurcation diagram in IDC (μA) for a parallel array of
N = 2 STNOs (θh = π/4). Blue circles indicate out-of-phase oscillations while green
circles indicate synchronized limit cycle oscillations. Filled-in (empty) circles indicate
stable (unstable) oscillations

It is briefly mentioned that results from numerical bifurcation diagrams of the
series array configuration with N = 2 STNOs no such dynamics are exhibited.
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That is the parameter spaces which contain stable synchronized oscillations also
display competing stable solution branches yielding out-of-phase oscillations.
This further illustrate the uniqueness of the results for the system of coupled
STNOs in a parallel array configuration. Lastly, it is noted that continuing in
the positive IDC direction, the bifurcation diagram displays an overlay of mul-
tiple solutions branches indicating that the ending dynamics are dependent on
the choice of initial conditions. Hence, in applications, synchronization becomes
increasingly difficult to achieve within this parameter space.

31.3.2 Conditions for Hopf Bifurcations

This section provides an overview the analysis for determining the existence
and stability of synchronized oscillations for an arbitrarily large array of N
oscillators. Once again, the motivation is that a system of STNOs oscillating
in complete synchrony will generate a larger power output, thus meeting the
necessary power increase for applications. Now as a result of Kirchhoff’s Law,
and the assumption of identical STNOs, Eq. (31.3) exhibits all-to-all coupling
such that any permutation of the oscillators in the array leaves the coupling
term invariant [14]. Consequently, the network of parallel arrayed STNOs has
symmetry group SN , that is the group of all permutations of N objects. Defining
z = (z1, z̄1, z2, z̄2, . . . , zN , z̄N ) ∈ C

N allows Eq. (31.3) to be written as żj = fj(z).
Furthermore, by the assumption that all STNO’s are identical, it follows that
f1 = f2 = . . . = fN , which yields the system of equations for N oscillators in
the vector form as

ż = f(z). (31.4)

Next, let z0 = (z0, z̄0, z0, z̄0, . . . , z0, z̄0) be an equilibrium solution of Eq. 31.4
with isotropy subgroup SN . Then the linearization at z0 is given by

L :=

⎡

⎢⎢⎢⎢⎣

A B . . . B

B
.. . . . .

...
...

. . . . . . B
B . . . B A

⎤

⎥⎥⎥⎥⎦
,

where A = (dfjj )z=z0 and B = (dfjk)z=z0 are 2 × 2 Jacobian matrices of fj

with j �= k. Next, using symmetry techniques, we block-diagonalize L to a form
which maintains the symmetry invariant subspaces of SN . Let P be the change-
of-coordinates matrix, then applying P to L results in a block diagonalization
of the linear part of Eq. 31.4 as

L̃ := P−1LP = diag {A + (N − 1)B,A − B, . . . ,A − B} . (31.5)

The block diagonal structure of L̃ implies that eigenvalues of the blocks
A + (N − 1) B and A − B are also eigenvalues of L̃. For A + (N − 1) B, the
corresponding eigenspace is v0 = [v, . . . , v]T and the symmetry group SN acts
trivially on v0. Hopf bifurcations associated with this block correspond to a
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symmetry-preserving Hopf bifurcation which yields limit cycle solutions exhibit-
ing complete synchrony. Here, each STNO oscillates with the same wave form,
amplitude, and phase. For A − B, the eigenvalues have, generically, multiplicity
N − 1 and the emerging patterns of oscillations arise via symmetry-breaking
Hopf bifurcations [3,14].

Combining the conditions for an equilibrium solution with those that gener-
ate purely imaginary eigenvalues for the blocks A + (N − 1) B and using polar
coordinates z0 = r (cos θ + i sin θ), yields the following set of Hopf conditions as
a function of (r, cos θ, IDC, θH):

Re (fj) = 0
Im (fj) = 0

Tr (A + (N − 1)B) = 0 (31.6)

To determine the analytical expressions for the Hopf boundary curves, we
solve Eqs. (31.6) implicitly for the state variables (r, θ) as functions of the param-
eters (IDC, θH). Furthermore, a change is made by setting the configuration of
demagnetization field to Nx = Ny = 0.5, Nz = 0 in order to achieve a solvable
form of Eqs. (31.6). Next, through a series of substitutions we are able to reduce
this system of three equations with four unknowns to a single expression with
two variables (r, θH). Analytic expression for the Hopf loci are then solved in
MAPLE using the function implicitplot(). Once the boundary curves are com-
puted, a series of back substitutions are carried out to compute the point values
(Idc, θh) and it is verified that det (A − B) > 0 and det (A + (N − 1)B) > 0.
Lastly, using the continuation software AUTO [1,2], the movement of the Hopf
loci as a function of the continuation parameter Nε, with Nx = 0.5 + Nε and
Ny = 0.5 − Nε. In this way, at Nε = 0.5 we arrive at the physically relevant
configuration of easy-plane anisotropy. The Hopf loci curves for Nε = 0.5 are
depicted in Fig. 31.3 (Top) for up to N = 1000 STNOs.

Having computed the boundary curves containing the Hopf loci for an arbi-
trarily large network of STNOs, the focus now becomes determining the Hopf
criticality and the stability of the synchronization manifold. The Hopf critical-
ity is categorized as supercritical or subcritical which leads to stable or unsta-
ble synchronized oscillations, respectively. To determine the Hopf criticality we
invoke the Lyapunov constant formula [7]. Specifically, if the Lyapunov constant
is negative, the Hopf bifurcation is supercritical, whereas a positive Lyapunov
constant leads to a subcritical Hopf bifurcation. Next, the stability properties of
the synchronization manifold is determined by the eigenvalues transverse to the
manifold which are given by the N−1 copies of the eigenvalues of the block A−B.
It follows that the synchronized oscillations are asymptotically stable/unstable
whenever the above mentioned eigenvalues are negative/positive. The calcula-
tions of the Lyapunov constant and the transverse eigenvalues are technical and
lengthy and may be found in Ref. [14,15]. The results of the Hopf criticality and
asymptotic stability of the synchronization manifold are depicted in Fig. 31.3
(Bottom-Left) and Fig. 31.3 (Bottom-Right), respectively.
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The stability analysis of Fig. 31.3 is now used to demonstrate numerical vali-
dation for synchronized oscillations of large systems of STNOs. Numerical simu-
lations suggests the common equilibrium state for large arrays has a large basin
of attraction for large negative values of Idc. Therefore, the simulations start at
a large negative values of Idc in order to achieve rapid convergence. Next, guided
by the results of Fig. 31.3, the strength of Idc is increased until the parameter
space is in a region that exhibits both a supercritical Hopf bifurcation and sta-
ble asymptotic behavior of the synchronization manifold . Using this strategy,
synchronization is demonstrated for systems of N = 1000 STNOs, see Fig. 31.4.
The network of oscillators exhibit a high level of synchrony indicating that this
method could prove to be a useful path for achieving synchronization in experi-
ment work.

31.4 Conclusion

The synchronization of a network of coupled STNOs is a viable solution for
achieving the required power output for applications. Here we present the bifur-
cation analysis for a system of STNOs connected in a parallel array configu-
ration. The computational bifurcation diagram for N = 2 STNOs depicts a
favorable parameter space for achieving synchronization in experimental works.
Using equivariant bifurcation theory we calculated the existence and stability
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Fig. 31.3. (Top) Hopf loci corresponding to Tr(A + (N − 1)B) = 0, at Nε = 0.5. (Left)
Criticality of Hopf: red - supercritical, black - subcritical. (Right) Transverse Lyapunov
exponents: red - attractive, black - repulsive



308 B. Sturgis-Jensen et al.

Fig. 31.4. Locking into synchronization with N = 1000 STNOs. Top inset: Zoom-in on
the set of random initial conditions for the STNOs and evolution for small time values
showing rapid convergence to a synchronized equilibrium. Bottom inset: Zoom-in on
the bottom part of the oscillation showing a high level of synchronization between all
the STNOs

of synchronized oscillations for an arbitrarily large array of N oscillators. These
results were validated by numerically demonstrating synchronization for a sys-
tem of N = 1000 STNOs. In future work we intend to develop a rigorous method
for computing the basins of attraction in order to analyze the phase space which
leads to synchronization. Furthermore, we desire to study the stability of the sys-
tem by introducing variations in the material parameters and stochastic effects
such as noise.
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Chapter 32

Adventures in Stochastics
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Abstract. This chapter describes my personal journey in the area of
stochastic phenomena and how it has been impacted by Mike Shlesinger,
to honor his 70th birthday for this Festschrift. I discuss my early explo-
rations with Brownian ratchets and how this gave birth to the first paper
on Parrondo’s paradox. I then describe how this led to the next part of my
journey in the areas of quantum game theory, suprathreshold stochastic
resonance, and stochastic mixtures. Finally, I wrap up with discussion of
our latest Bayesian analysis showing that too many confirmatory obser-
vations can paradoxically result in reduced confidence in an outcome.

32.1 In the Beginning

I started my career at the GEC Hirst Research Labs, London, UK, in the late
seventies where I encountered luminaries such as Cyril Hilsum, who played an
important role in getting gallium arsenide off the ground [1], and Mike Pepper
who made a key step in the discovery of the quantum Hall effect [2]. One of
my early tasks was measuring semiconductor device noise, and I successfully
developed the first fully computer automated 1/f noise measurement set up
there—possibly amongst the earliest in the world. I was mainly immersed in the
literature of van der Ziel and the Dutch noise ‘mafia’ of the time. This was my
first contact with the arcane world of stochastics and its enigmatic motley crew.
The intellectual environment at Hirst was outstanding, though Hirst was not
so generous with conference travel and I only got to attend one. My first noise
conference was in the early 80s at a tiny local IEE meeting in London. There I
met Lode Vandamme and he was the very first international noise person I came
into contact with. About that time a Hirst colleague, by the name of Canute
Moglestue, scored a better trip to a different noise conference, and returned with
the news that Karel van Vliet was now to be called Carolyne.

Due to this lack of travel, I unfortunately missed many of the early con-
ferences centered round stochastic resonance (SR) and nonlinear dynamics. I
eventually left Hirst, and began research at the University of Adelaide where
I had greater freedom. Unaware of some of the key conferences of the time I

c© Springer Nature Switzerland AG 2019
V. In et al. (Eds.): Proceedings of the 5th International Conference
on Applications in Nonlinear Dynamics, Understanding
Complex Systems, https://doi.org/10.1007/978-3-030-10892-2_32

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-10892-2_32&domain=pdf
https://doi.org/10.1007/978-3-030-10892-2_32


Adventures in Stochastics 311

alas missed all the excitement of Saratov [3]. However, I attended the Unsolved
Problems of Noise (UPoN) meeting in Szeged, Hungary [4], in 1996, and it was
there that I first met a then very hirsute Mike Shlesinger for the first time. I
had no idea who this guy with the tongue-twister name was, and I would later
affectionately refer to him simply as ‘Shles.’ At the Szeged meeting I clearly
remember Shles doing a banquet speech on the history of Brownian motion—his
talk had me totally hooked. I did not even have any idea what ‘ONR’ stood for
back then, but I instantly recognized Shles’ great breadth and this led to many
enjoyable discussions.

32.2 Feynman’s Ratchet

The story behind how my Nature paper on Parrondo’s paradox [5] came about
is quite an amusing one and the space here only allows an abbreviated summary.
The story begins around 1979 when I first read Chapter 46 of Feynman’s Lectures
on Physics on the ratchet and pawl. Essentially the chapter says that at thermal
equilibrium, the probability of clockwise rotation balances the probability of
counterclockwise rotation. Feynman heuristically stated, without proof, that this
probability is e−ε/kT —this innocent looking Boltzmann factor fascinated me and
I set about proving it from first principles for the ratchet system. Ten years later
I was still obsessively going around in circles, unable to formally prove it.

So I started consulting those physicists, who I regarded a lot cleverer than
myself, to see if anyone could actually do this calculation. I got an off-hand
comment from David Mermin telling me that “Feynman is always right” and
that I must have made a simple mistake. In fact that was the typical response
I got from most physicists. Then I contacted Aephraim M. Steinberg who got
my instant admiration as he actually tried the calculation himself. Alas, he gave
up after a week. He sent me a tantalising email stating, “if the ratchet was a
quantum system I would know exactly how to solve this, but because it’s classical
it’s harder.” Then Cosma R. Shalizi, a future student of Jim Crutchfield, offered
to have a go at the challenge saying he would have it solved in “two days.” I
never heard back from him.

So needless to say when I was at the 1996 meeting in Szeged I asked around
in vain to see if anyone could help with this problem. Then when I departed
Szeged on the train to Budapest, Peter Jung happened to sit next to me. I told
him the problem and he suggested I contact the ratchet guru Peter Hänggi. At
the time, I had no idea who this guy with the double-g name and an umlaut
was, but when I got home I emailed ‘The Great Hänggi’ and asked him if he had
ever tried the calculation. His email reply simply stated “yes.” In frustration I
emailed him back and said “well, did you get it out?” After a pregnant silence
of a few days that seemed to last eternity he replied, “No, but if you are really
interested in solving this problem talk to Juan Parrondo.”

I had no idea who this Parrondo guy was, but I flew to Madrid in 1997
and sat him down for coffee. I showed him the problem and he replied it was
too hard to solve right away, but that we could work on it over time. So we
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did and published a paper on it two years later [6], ironically building on a level
crossing statistics method from one of Hänggi’s old papers. But it wasn’t straight
forward and one essentially ends up with a set of unconstrained equations that
look intractable at first sight. One of my former PhD advisors, Bruce R. Davis,
gets the credit for suggesting a cute trick that finally slew the dragon: we had
to add a superfluous term to one the equations and then let it tend to zero
at the end of the calculation! Who would have thought a sneaky math trick
well-known to quantum field theorists would be needed for a ‘simple’ classical
problem? Whilst we formally demonstrated detailed balance for the ratchet in
equilibrium, using level crossing statistics, we still to this day do not have a way
to demonstrate it using the Boltzmann factor that Feynman suggested.

32.3 The Genesis of Parrondo’s Paradox

I often get asked why I didn’t contact Feynman himself, given that he was alive
until 1988. This simple answer is that in 1988 I was still at the stage where I
thought I had made a naive error. Anyway, let us continue the story in 1997 in
the Madrid coffee shop with Parrondo—we couldn’t solve the ratchet detailed
balance problem back then, so Parrondo started talking to me about the latest
developments in Brownian ratchets and showed me his games of chance that
illustrated the ratchet mechanism. He claimed it was possible to randomly switch
between two different losing games and win. I have to admit I was skeptical and
could not believe that it was possible to mix two losing games, and yet win.
After all, everyone knows two wrongs don’t make a right, so I thought at the
time. Indeed, linear superposition would indicate that two wrongs should always
make wrong—however, this is no longer true if we chose a nonlinear parameter
space to work with.

Nevertheless, at the time I was sufficiently intrigued that I promised Parrondo
that I would try to confirm the effect on return to Australia. I told him that if I
could write a convincing paper demonstrating that it works, it would definitely
get into Nature as it is so remarkable. I asked him, “Suppose I get it into Nature,
would you prefer to be a co-author or instead shall we put your name in the title
of the paper?” After a short pause, he replied, “put it in the title.” The rest is
history, and by 1999 the Nature paper was born.

Shles comes into the story here, as he provided a strong letter of support to
ONR Asia to fund the next UPoN conference in 1999, Adelaide, Australia. With
Shles’ help, we won the funding and UPoN 99 was launched, where both the
paper on Parrondo’s paradox [7] and also our solution to the Feynman detailed
balance problem were first published [6]. This then became the mathematical
support for getting the Parrondo’s paradox paper into Nature.

The paper has now been widely cited and the ideas have been extended to
exciting areas from the control of chaos [8] through to population genetics [9].
My interest in quantum game theory [10] evolved by considering the question
of Parrondo’s paradox in the quantum domain [11]. Quantum versions of the
game are impacting on the theory of quantum walks [12]. The idea that you can
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get finite channel capacity by combining two quantum channels of zero channel
capacity is another area of related interest [13].

In the early days, one of my concerns was to constantly probe around to
ensure the idea really was original and really surprising to people. Due to Shles’
great breadth he was one of the many people I bounced this off. He loved the
idea from the beginning and saw possible connections to the so-called ‘chaos
game’ [14]. In the early noughties we met in Bethesda, Washington DC, for
lunch and discussed a vast range of topics from Parrondo’s games to protein
folding.

Take the example of stochastic resonance (SR), where some authors have
pointed out a connection between Debye’s work on the dielectric properties of
polar molecules and SR. This of course does not imply that Debye knew SR, or
that he even had an SNR curve, only that his work can now be generalised in
hindsight to connect with SR. Similarly, with Parrondo’s paradox one can see in
hindsight the ubiquity of the effect and quaint examples in the old literature [15].
However, prior to Parrondo, nowhere do we see a game-theoretic framework
where the rate of losing reverses when we randomly mix losing games.

On the other hand, as the playwright Elias Canetti once said, “It doesn’t mat-
ter how new an ideas is, what matters it how new it becomes.” Parrondo’s games
seem to be just getting newer and newer. There are known connections between
Parrondo’s paradox and volatility pumping [16] on the stock market. Essentially
they are both ratcheting mechanisms where randomness can be rectified by an
asymmetry [15]. A new Parrondian effect called the Allison mixture [17] where
a random mixture of two number sequences, possessing zero autocovariance,
results in a paradoxical increase in autocovariance [18].

Random mixing can result in a reduction in randomness. A necessary ingredi-
ent for this to work is an asymmetry in the transition probabilities that describe
the random switching between the two sequences. There are deep connections
between the mixing of these numbers, irreversible thermodynamic processes, and
information theory. In conclusion, Parrondo’s games, Brownian ratchets, Allison
mixtures, and volatility pumping are all examples where noise conspires with
an asymmetry to produce directed motion in some variable. Physicists have tra-
ditionally sought symmetry in nature. A new paradigm is to now search for
asymmetries and observe how they interact with noise or random behavior.

32.4 Suprathreshold Stochastic Resonance

It may be noted that Parrondo’s games are also a form of stochastic resonance
(SR) [19], and that my group’s major studies in SR [20] developed out of this
interest. In the early days of SR I was a skeptic, because the signal has to
be subthreshold, and should it rise above the threshold the signal degrades. In
practical applications, one has little control over where an arbitrary signal is
going to be and this was my reasoning at the time.

However, I saw the light in 1999 when I was blown off my seat during a
seminal talk [21] by Nigel G. Stocks at the Stochaos meeting in Ambleside, UK.
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This meeting as organized by Peter E. V. McClintock and was pivotal for me.
Nigel Stocks talked about suprathreshold stochastic resonance (SSR), where the
SR effect still works above threshold. I was totally gripped throughout Nigel’s
talk and it was the first stochastic resonance presentation that made real sense
to me. From that moment onward I was an SR convert. This led to a major study
now published by Cambridge University Press [20]. A rather exciting result out
of this work is the bifurcation diagram in Fig. 32.1.

Fig. 32.1. What we see here (right) is a signal x essentially being estimated at the
output y. The boxes represent different thresholds. So each box is essentially a ‘voting
element’ asking the question if the signal is above or below its threshold. The interest-
ing result (left) shows how to optimally distribute these thresholds (y-axis) for given
amounts of noise (x-axis), in order to get the best estimate y. We see that for low noise,
as expected, we must distribute the thresholds rather evenly across the signal space.
However, as noise increases we need fewer thresholds that eventually collapse to one
for very high noise. After [20]

This is an interesting setting that can be used to optimize thresholds in situ-
ations from sensor networks through to nanoelectronics. Also there are obvious
connections to the Mulloch-Pitts neural model. However, consider this bifurcat-
ing threshold diagram as applying to human behavior. Imagine each box is a
person voting on whether an ambiguous color is red or orange (for example). If
the population was homogeneous it would be like having one threshold. If we
had two populations, one with a predisposition toward red and one with leaning
toward orange it would be like a two-threshold system. We can simulate noise
in the system by dimming the lights. We may then find that for a certain light
level a diverse population gives a more reliable estimate than a homogenous
population.

Do we gain anything if political voters all had the same bias? The above exam-
ple suggests political voting systems are meaningful in an information-theoretic
sense, because we have left and right biases in the population. Homogeneity
would give a monotonous result. Vive la différence. Going back to the voters
guessing a color, we could have a homogenous population but give half the pop-
ulation rose colored spectacles—this introduces bias in a controlled way in order
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to carry out the experiment. The take home message is that bias can be a good
thing.

In conclusion, SR shows us noise can be good, Parrondo’s games show us
that asymmetry can be good, and finally SSR shows us that bias can be good.
Shles, I wish you a noisy, asymmetric, and biased 70th birthday!

32.5 The Paradox of Unanimity

We’ve discussed the Parrondian paradigm where two wrongs can make a right,
but is an anti-Parrondo effect possible, i.e. can too much good be bad? Abso-
lutely. A surprising case of this is described in the Talmud where if you are
sentenced to death unanimously by all 23 Sanhedrin judges, you are acquitted!
How do we make sense of such a counterintuitive ruling? In any decision where
there are a complex set of circumstances there is incomplete information and
a reasonable amount of uncertainty. So if all 23 judges are ostensibly forming
independent opinions, a unanimous agreement would be rather like tossing a
coin 23 times on a row and obtaining heads every time. But a run of 23 heads
is so unlikely that if it happens you are probably going to suspect the coin is
biassed.

Looking at it this way, we can say that in cases where there is uncertainty,
we should definitely expect agreement to not be unanimous. A unanimous result
is questionable in terms of bias or breakdown of independence in the system.
In our Bayesian analysis of this effect we demonstrate that in a large ensemble
of (say) 1000 trails, if only one of is them corrupted, then our then confidence
in a unanimous decision dramatically drops—unanimity any greater than 15 in
agreement rapidly drops below a 95% confidence interval [18].

32.6 Conclusion

This Chapter has been a personal journey looking the interplay between var-
ious stochastic phenomena in nonlinear systems, namely, Parrondo’s paradox,
stochastic resonance, the Allison mixture, and the paradox of unanimity together
with the influence Michael F. Shlesinger has played. To further honor Mike’s 70th
birthday, a brief biography is contained in the following appendix.

Appendix

Michael F. Shlesinger (born August 8, 1948, Brooklyn, New York) is a physicist
notable for his work in the area of nonlinear dynamics. He is the founder of the
journal Fractals. His pioneering work in statistical predictions and descriptions
of random and deterministic processes has influenced the physics of amorphous
solids and glasses, classical mechanics, and biophysics. He is known as a propo-
nent of fractal time and is also known for his work on fractal stochastic processes
related to areas such as disordered materials and turbulence.
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In 1970, he obtained his BS degree in physics and mathematics from State
University of New York at Stony Brook, and then obtained his MA in 1972 from
the University of Rochester. In 1975, he obtained his PhD from the University of
Rochester under Elliott Waters Montroll for a thesis entitled A Stochastic Theory
of Anomalous Transient Photocurrents in Certain Xerographic Films and of the
1/f Noise in Neural Membrane.

Initially he worked at the University of Maryland, College Park, then in 1983
he joined Office of Naval Research (ONR) and started their nonlinear dynamics
program in 1984. He subsequently went on to head their physics division, before
being named ONR’s chief scientist for nonlinear science. His contributions to
nonlinear dynamics and statistical physics include the publication of over 200
papers, editorship of over 20 books, and the organization of over 30 conferences.
In 2008, he took up the Kinnear Chair in Physics at the US Naval Academy,
Annapolis, United States.

He was elected to Fellow of the American Physical Society in 1993. In 2004,
he received the Presidential Rank Award. In 2006, he received ONR’s Saalfeld
Award for outstanding lifetime achievement. In 2008, the conference Nonlinear
Dynamics at ONR was held on Amelia Island, Florida, July 20–22, 2008, in
honour of his 60th birthday.

While residing in Rockville, Maryland, he once saved the life of a woman
who was being mauled by a pack of rottweilers. For putting his life at risk, the
city of Rockville presented him with a medal for heroism.

His middle name is the single initial ‘F’—he does not have a full middle
name; another famous example being the middle initial of Harry S. Truman.
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Abstract. We study the existence of different types of chimera states
in a globally coupled sine circle map lattice with different strengths of
intergroup and intragroup coupling. Some of the typical chimera phase
configurations that can be observed in this system are aperiodic chimera
states, splay chimera states and chimera states with spatiotemporally
intermittent behaviour in the desynchronised group. These states are
seen in different regions of the parameter space for three distinct kinds
of initial conditions. We obtain the phase diagram containing the third
type of chimera state, viz. the one with spatiotemporally intermittent
regions, using complex order parameters. We construct an equivalent
cellular automaton (CA) and reproduce the phase diagram in the region
of interest by solving the mean field equation obtained for the CA.

33.1 Introduction

The chimera phase pattern in spatially extended systems is a remarkable spa-
tiotemporal phenomenon, and has been extensively discussed for systems of cou-
pled phase oscillators. In this context, the chimera state of a group of oscillators
is defined to be a state where a synchronous subgroup of oscillators coexists
with a desynchronised subgroup of oscillators. This spatiotemporal behaviour
was first discovered in non-locally coupled complex Stuart–Landau oscillators
[1] and has been further analysed for diverse systems such as a ring of phase
oscillators [2–5], Stuart–Landau oscillators [6], networks of Kuramoto oscillators
[7], coupled chemical oscillators [8–10] and mechanical oscillator networks [11].
Here, we study a system of coupled maps which is a discrete analog of systems of
coupled phase oscillators, and is hence easily amenable to theoretical and numer-
ical analysis. The specific CML used here, is of the form used in Refs. [12,13]
and consists of two populations of globally coupled identical sine circle maps
where the strength of the coupling within each population and that between
maps belonging to distinct populations take different values.

Here, we show that the CML under consideration can support various types
of chimera states with distinct spatial and temporal behaviours which can be
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obtained using distinct initial conditions, and parameter regimes. Aperiodic and
stable chimera states with a synchronized subgroup and a subgroup with ran-
dom phases were seen for this system [12] for a certain class of initial condition
in a region of the parameter space. Oscillator systems also support a splay state,
i.e. a state where the phase difference between consecutive oscillators is a con-
stant. Our system can exhibit splay chimera states wherein a phase synchronised
group coexists with a group that consists of splay phase configurations and also
supports a phase kink, for a special initial condition with a system wide splay
phase configuration. The switching of synchrony and de-synchrony between the
two groups is also observed for this case with a variation of parameters. Again,
for the same system, a general initial condition with random phases evolves to
chimera states where the space time variation of the phase desynchronised group
shows spatiotemporally intermittent behaviour. We analyze this case in detail.
Using the global coupling topology of the CML, we define appropriate condi-
tional probabilities, which identify the transition between the laminar and burst
sites as the system evolves in time, and calculate these probabilities numerically
from the space time variation of the phases of the maps of the CML.

33.2 The Model

We study a globally coupled lattice consisting of identical sine circle maps which
is divided into two groups with different strengths of intergroup and intragroup
coupling. A simple schematic of the coupling topology of the system is shown in
Fig. 33.1.

The evolution equation for a single sine circle map is given by the equation

θn+1 = θn + Ω − K

2π
sin(2πθn) mod 1 (33.1)

where θn is the phase of the map at the nth time step and Ω and K are respec-
tively the frequency ratio and nonlinearity parameters. The two parameter space
of the single sine circle map shows mode locking structures or Arnold tongues,
that are organised by the Farey sequence, interspersed with regions of quasiperi-
odic behavior. This map exhibits both the quasi-periodic and period doubling
routes to chaos [14,15]. The evolution equation for the phase, θσ

n(i) of the ith
coupled sine circle map in group σ at time step n of our CML has the form,

θσ
n+1(i) = θσ

n(i) + Ω − K

2π
sin(2πθσ

n(i)) +
2∑

σ′=1

εσσ′

Nσ′

×
⎡

⎣
Nσ′∑

j=1

(θσ′
n (j) + Ω − K

2π
sin(2πθσ′

n (j)))

⎤

⎦ mod 1

(33.2)

Here, the symbols, σ and σ′ indicate the groups and each take values 1, 2, and
n is the discrete time label, as before. The total number of maps in a given
group σ is denoted by Nσ. For our study we use Nσ = Nσ′ = N . The coupling
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Fig. 33.1. The diagram illustrates the connection scheme of the globally connected
network. The circles represent the maps in each group with 3 maps in each group. Each
map in the system is coupled to all the other maps in its own group via a coupling
constant ε1 (represented by dotted edges) and to the maps in the other group via a
coupling constant ε2 (represented by solid edges)

strength parameters are, ε11 = ε22 = ε1 and ε12 = ε21 = ε2 and they are
constrained by, ε1 + ε2 = 1. Thus our CML in Eq. (33.2) is controlled by three
independent parameters, K,Ω, ε1. We restrict these parameters to lie within
the interval [0 : 1] for our analysis. We show that this simple model exhibits
diverse dynamical behaviours depending on the parameters, and different classes
of initial conditions.

Earlier studies of this system [12] showed the existence of chimera states
after the evolution of an initial condition where all of the maps in one of the
groups were assigned identical phases, and random values between zero and one
were assigned to the maps of the other group. Such initial conditions evolve
into chimera states with phase synchronised and a phase desynchronised groups
of maps for some parameter regions Fig. 33.2a. Clustered chimera states where
phase synchronised clusters coexist with the phase desynchronised maps within
same group along with the purely synchronised group (see Fig. 33.2b), can also
be found in this system using the same initial condition. In addition to this,
multiclustered phase states and globally phase synchronised state also exist at
other parameter values (see Ref. [12]).

The temporal behaviour of the chimera state can be understood via

the complex order parameters, Rσ
n = 1

N |
N∑

j=1

exp i2πθσ
n(j)| which are defined

for each group, i.e. for σ = 1, 2 and the global order parameter Rn =
1

2N |
2∑

σ=1

N∑
j=1

exp(i2πθσ
n(j))|. Clearly Rσ

n will be one if all the phases are iden-

tical in group σ and zero if the phases are uniformly distributed between zero.
Hence, for a chimera phase configuration at time step n, Rσ

n ≈ 1 while Rσ′
n ≈ 0

(σ �= σ′). Using these order parameters, we find that in the temporal variation
of the chimera states in Fig. 33.2a, b, the average phase of the desynchronised
group in both cases evolves aperiodically (see Fig. 33.2c, d).

Chimera states of the type seen in Fig. 33.2a appear at all values of Ω and
ε1 at K = 0. Additionally, the phase diagram in the K − Ω space, obtained at
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Fig. 33.2. Snapshots of the chimera state seen at the parameter values K = 0.2,
Ω = 0.15, ε1 = 0.9, N = 150, and the clustered chimera state seen at the parameter
values K = 0.07, Ω = 0.01, ε1 = 0.9, N = 150. The order parameters R1

n and R2
n is

shown for c the chimera phase state and d the clustered chimera state

ε1 = 0.9, shows multiple phase clustered states, two phase clustered states and
fully phase synchronised states along with both types of chimera states shown
in Fig. 33.2a, b. However these chimera states disappear in the ε1 −Ω parameter
space for K = 1 (see Ref. [12]). We note that this system can support some
additional classes of chimera states as identified by their temporal and spatial
properties, on evolution from other types of initial conditions.

33.3 Splay-Chimera State

To see the splay chimera states, we use an initial phase configuration where
the entire system of 2N lattice sites is oriented in a single spatial splay state
where the phase difference between any two consecutive maps is given by 1

2N
(see Ref. [13]). We note here, that the phases are placed on a 1 − d lattice
where the site labels run consecutively, so two consecutive maps means maps at
adjacent sites as indicated by site labels, e.g sites i and i + 1. Using the splay
phase initial condition if the system is evolved via Eq. (33.2) then pure splay
phase states, splay chimera states and globally synchronised states are obtained
as K is increased from zero to one, with the remaining parameters fixed at
ε1 = 0.01, Ω = 2/7.

(i) The two copy splay states appear in the range 0 < K < 10−7 (Fig. 33.3a).
(ii) On further increase of K to 10−4 we see a special chimera phase structure
where all the maps in group two are spatially synchronised whereas in group 1,
the phases of some maps are part of a splay-like state (roughly between sites
1–100 and 130–150) whereas the remaining maps show a jump (roughly between
sites 100 and 130) in their phases (see Fig. 33.3b). (iii) If we increase K to 10−2

we observe a flip in the phase configuration of the chimera state seen in figure. In
this splay chimera structure, all the maps in group one are spatially synchronised
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Fig. 33.3. a Two copy splay states were obtained at parameter values K = 10−10. b
If we increase K to 10−4 then the maps in group 2 synchronise completely while splay
like structures along with a phase kink are seen. c A structure similar to that seen in b
is observed for K = 10−2. However the behaviour between group 2 maps and group 1
maps is interchanged. d The snapshot of the globally synchronised state at K = 0.01.
The rest of parameters of the system are fixed at Ω = 2/7, ε1 = 0.01, N = 150

and maps at sites 150–200 and 250–300 show splay-like diagonal structure and
the sites 200–250 show a phase jump (see Fig. 33.3c). (iv) As we increase K to
even higher values we observe that the system settles to global synchronisation
(Fig. 33.3d).

Figure 33.4a shows that R1
n and R2

n remain constant with time for the splay
chimera state in Fig. 33.3b, implying that the temporal variation of the phases
of maps in synchronised group and desynchronised group remains structurally
stable with time while the variation of R2

n in Fig. 33.4b which is the order param-
eter for the desynchronised group in the splay chimera state shown in Fig. 33.3c
indicates its aperiodic nature. The largest Lyapunov exponents calculated for
both types of splay chimera states in Fig. 33.3b, c are 0.693 which indicates that
they are temporally chaotic. A detailed stability analysis of splay phase con-
figurations and their bifurcation to splay chimera states can be found in Ref.
[13].
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Fig. 33.4. The complex order parameters R1
n, R2

n are plotted for the chimera states in
a (K = 10−4) and b (K = 102). The CML is iterated via Eq. (33.2) for 3 × 106 steps
and then the order parameters are calculated for the next 300 time steps which are
shown here. The parameters Ω = 2/7, ε1 = 0.01, N = 150 are the same for both the
figures
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Fig. 33.5. R1
n and R2

n are plotted between the range a 10−4 and 10−3 and b 10−3 and
10−2. The parameters Ω = 2/7, ε1 = 0.01, N = 150 are kept fixed during the variation
of the K. At all the values of K we use the systemwide splay phase initial condition

We have seen that switching occurs between the two types of chimera states
in Fig. 33.3b, c where the synchronisation and desynchronisation is interchanged
between the groups one and two. Using the order parameters we show that this
interchange of the phase synchronisation and de-synchronisation of the groups
occurs in an intermittent fashion with the variation of K in the range 10−4 and
10−2. The order parameters R1

n and R2
n are plotted in Fig. 33.5 for K values that

vary between 10−4 and 10−2.
We note that splay states are observed in a variety of experimental systems,

such as crystal oscillators, and hence splay chimera states can occur in such
systems as well. It would be interesting to see if such states are seen in these
systems and to explore their consequences for quantities like output power.

33.4 Chimera States with Spatiotemporally Intermittent
Behaviour

Now we explore a third type of chimera state (see Figs. 33.6 and 33.7) where the
space time variation of the phases of the maps in the desynchronised group show
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Fig. 33.6. a The snapshot and b the space time plot of the chimera state where group
1 is completely synchronized. The parameters are K = 10−5, Ω = 0.27, ε1 = 0.82, N =
150
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Fig. 33.7. a The snapshot and b the space time plot of the chimera state with partial
synchronisation in group one. The parameters are K = 10−5, Ω = 0.27, ε1 = 0.93,
N = 150

spatiotemporal intermittent behaviour, as synchronised islands in the shape of
cones can be observed within the desynchronised phases (see Figs. 33.6 and 33.7).
This type of chimera state, which also evolves from a completely random initial
condition, can have a purely phase synchronised group as one subgroup of the
chimera (Fig. 33.6) (case 1), or this subgroup can be partially phase synchronised,
where some defects can be seen in the phase synchronized part (Fig. 33.7) (case
2) depending on the parameters of the system.

Using the order parameters, R1, R2 as defined previously, we obtain a phase
diagram (see Fig. 33.8) within the region 10−8 < K < 10−2 and 0.65 < ε1 < 1
where the chimera states of the kind shown in Figs. 33.6, 33.7 and fully phase
desynchronised states are seen. These show that the fully desynchronised state
as identified by the order parameter values (R1 ≈ 0, R2 ≈ 0) between 10−5 <
K < 10−4 and 0.65 < ε1 < 0.8 transforms to a chimera state signalled by
the values R1 ≈ 1, R2 ≈ 0 at ε1 = 0.8. The fully phase desynchronised states
((R1 ≈ 0, R2 ≈ 0)) which appear between 10−8 < K < 10−5.5 and 0.8 < ε1 < 1
transform to chimera states as K increases beyond 10−5.
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Fig. 33.8. (Left) The complex order parameters R1
n and (Right) R2

n are plotted
between the region 10−8 < K < 10−2 and 0.65 < ε1 < 1. The states that can be
found in the above plots are a chimera states (R1 ≈ 1, R2 ≈ 0), b fully synchronised
states (R1 ≈ 0, R2 ≈ 0), c globally phase synchronised states and two phase clustered
states (R1 ≈ 1, R2 ≈ 1). We have fixed the parameter values Ω = 0.27 and N = 150
to obtain these plots

33.4.1 Construction of an Equivalent Cellular Automata

The existence of spatiotemporally intermittent behaviour in the desynchronised
group of the chimera states can be analyzed by the construction of an equivalent
cellular automaton. To achieve this, we identify laminar and burst stages of a
lattice site during its space time evolution when the system settles in any of the
chimera states shown in Figs. 33.6 and 33.7. In order to do this, we consider the
phases of the maps at any two consecutive time steps n and n + 1 and calculate
the quantity Δij =

∣∣∣ 12
∣∣∣exp(2πiθσ

t (i)) + exp(2πiθσ′
t′ (j))

∣∣∣ − 1
∣∣∣ for all combinations

of i, j = 1, 2, . . . , N , for every σ, σ′ = 1, 2 with t, t′ = n, n + 1(i �= j if σ = σ′ and
t = n). The lattice sites considered are labelled laminar if Δij < δ where δ is a
preassigned value. A similar check is carried out for t = t′. Once all the laminar
sites are identified in a given space time plot of the chimera states, the rest of
the sites are labelled as burst sites.

Next we assign a state variable sσ
n(i) which takes the value 1 if the map at

the ith site at time step n is laminar and it is assigned 0 for the burst state.
The global coupling topology of the system implies that the dynamics of sσ

n(i) or
the transition probabilities to construct the CA depends on the total number of
laminar sites in groups one and two at the time step n. We calculate P (x1, x2)
which is the probability of occurrence of x1 and x2 laminar sites in groups
one and two respectively. Based on this, the transition probability is defined
as P x1,x2(sσ

n+1(i)|(sσ
n(i)) which is the transition probability that a lattice site i

chosen at random in group σ at time step n having value sσ
n(i) transforms to

sσ
n+1(i) at time step n+1, given that there are x1 and x2 laminar sites in groups

one and two respectively. Hence there are four possibilities for each combination
of x1 and x2, which are P x1,x2(0|0), P x1,x2(1|0), P x1,x2(0|1), P x1,x2(1|1). Using
these probabilities, we obtain a mean field equation for the CA model.
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A Mean Field Equation for the CA Model

By our definition, the transition probability P x1,x2(sn+1(i)σ|sσ
n(i)) is identical

irrespective of the choice of i at a time step n and can be considered as a mean
field which is the same at all sites in the group σ at that time step. This also
implies that we have two mean fields for the CA for each of the values of σ′. Now
let us assume that mσ(t) be an arbitrary initial value of the fraction of laminar
sites for the given attractor dynamics. A linear equation terms of the mean fields
or the transition probabilities and the fraction of laminar sites, mσ(t), can be
written following the prescription by Mikkelsen et al. [16] as,

mσ(t + 1) =
N∑

x′
σ=0

[
P (0, xσ′ )P 0,x

σ
′ (1|0) + P (N,xσ′ )PN,x

σ
′ (1|1)

+
N−1∑

xσ=1

(
P (xσ, xσ′ )P xσ,x

σ
′ (1|0)(1 − mσ(t))

+ P (xσ, xσ′ )P xσ,x
σ

′ (1|1)mσ(t)
)]

(33.3)

This is a linear equation of the form mσ(t + 1) = f(mσ(t)) = aσmσ(t) + bσ

where, aσ, bσ are given by,

aσ =

N∑

xσ′=0

N−1∑

xσ=1

(
P (xσ, xσ′ )Pxσ,xσ′ (1|1)− P (xσ, xσ′ )Pxσ,xσ′ (1|0)

)

bσ =

N∑

xσ′=0

[
P (0, xσ′ )P 0,xσ′ (1|0) + P (N, xσ′ )PN,xσ′ (1|1) +

N−1∑

xσ=1

P (xσ, xσ′ )Pxσ,xσ′ (1|0)
]

(33.4)
The fixed points of Eq. (33.3) in the m1,m2 space are given by,

m̃1 =
b1

1 − a1

m̃2 =
b2

1 − a2

(33.5)

We find that aσ and bσ must satisfy the conditions, a1 + b1 ≤ 1, a2 + b2 ≤
1, a1, a2 �= 1 and b1, b2 ≥ 0 since m̃1, m̃2 ∈ [0 : 1]. The Jacobian for the set of
equations given by Eq. (33.3) is written as,

J =
[
a1 0
0 a2

]

m̃1,m̃2

(33.6)

Hence the fixed points, m̃1 and m̃2 with eigenvalues λ1 = a1 and λ2 = a2 are
stable, if both |a1|, |a2| < 1. In that case any arbitrary initial value of mσ(t) must
converge to the values of average fraction of laminar sites in the two groups of
the CML. We verify this for the chimera states and list the values of m̃σ. in
Table 33.1.
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Table 33.1. The table lists the values of m̃1 and m̃2 for the parameter values K = 10−5,
Ω = 0.27, N = 150. We use ε1 = 0.82 for the chimera state of case 1 and ε1 = 0.93 for
case 2

Chimera
states

a1 b1 a2 b2 m̃1 m̃2 m̃1(numerical) m̃2(numerical)

Case 1 0.0 1.0 0.277 0.247 1.0 0.342 1.0 0.337

Case 2 0.637 0.357 0.268 0.257 0.983 0.35 0.983 0.347

We calculate m̃1 and m̃2 for group one and two, for the range of parameters
between 10−8 < K < 10−2 and 0.65 < ε1 < 1 for Ω = 0.27 in Fig. 33.9a, b.
A comparison between Figs. 33.8 and 33.9 show that our mean field analysis
reproduces accurately the phase diagram of the CML in the region of interest.
Moreover, Fig. 33.9 shows that chimera states with defects in the synchronised
group appear for increasing values of ε1 within the region 0.8 < ε1 < 1 and
10−5.5 < K < 10−4.
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Fig. 33.9. The fractions (left) m̃1 and (right) m̃2 calculated using the values of
a1, b1, a2, b2. The transition probabilities required are extracted from the behavior of
the CML using the parameters 10−8 < K < 10−2, 0.65 < ε1 < 1, Ω = 0.27, N = 150.
The states that can be found in this regime are a chimera states (m̃1 ≈ 1, m̃2 ≈ 0.35),
b fully synchronised states (m̃1, m̃2 ≈ 0.55), c globally phase synchronised states and
two phase clustered states (m̃1 ≈ 1, m̃2 ≈ 1)

33.5 Conclusion

To summarise, we have shown here that a coupled map lattice having two groups
of sine circle maps, connected via different intergroup and intragroup coupling
strength, shows a variety of spatiotemporal behaviours depending on the regions
of parameter space, and also on different initial conditions. Different classes of
chimera states can be seen here. Aperiodic and stable chimera states appear in
this system for an initial condition having identical phases in group one and
random phases between zero and one in group two. Splay chimera states appear
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for a system wide splay phase as an initial condition and a switching between
synchrony and de-synchrony between groups one and two for these states can
be seen with the variation of the K. Chimera phase states which consist of a
synchronized group and a phase desynchronised group which shows spatiotem-
porally intermittent behaviour are seen in a certain region of the parameter
space using random initial conditions. For this case, we construct an equivalent
cellular automaton to reproduce the space time evolution of these laminar and
burst sites. A mean field equation is set up whose solutions give the values of
the fraction of laminar/burst sites that match with the numerical calculation
of these quantities. We reproduce the phase diagram of system in the parame-
ter region of interest using the solutions of the mean field equation of the CA.
We hope our techniques will find wider applications in situations where chimera
states are found.
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