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Abstract Most biological discoveries can only be made in light of evolution. In
particular, functional annotation of genes is usually deduced from the orthology,
paralogy, or xenology relations between genes, which are inferred from the compar-
ison of a gene tree with a species tree. As sequence-only gene tree reconstruction
methods often do not allow to confidently discriminate between trees, recent “inte-
grative methods” include information from the species tree. The idea is to consider,
in addition to a value measuring the fitness of a tree to a sequence alignment, a mea-
sure reflecting the evolution of a whole gene family through gene gain and loss. One
such measure is the “reconciliation” cost, i.e., the cost of a gain and loss scenario
explaining the incongruence between the gene and species tree. This chapter begins
with a review of deterministic algorithms for computing reconciliation distances
under various evolutionary models of gene family evolution. We then review inte-
grative methods for correcting a gene tree, based on various strategies for exploring
its neighborhood. The considered algorithms are those based on polytomy resolution,
tree amalgamation and supertree reconstruction. The goal is to provide a comprehen-
sive overview of existing methods with algorithms presented in concise form. The
reader is referred to original papers for more details and proofs of complexity.
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5.1 Introduction

Genes are the molecular units of heredity holding the information to build and main-
tain cells. They are key to understanding biological mechanisms, identifying genetic
variation, and designing appropriate gene therapies.

In the course of evolution, genes are mutated, duplicated, lost, and passed to
organisms through speciation or Horizontal Gene Transfer (HGT), the exchange of
genetic material among coexisting species. Therefore, most biological discoveries
can only be made in the light of evolution. Genes originating from the same ancestral
copy are called homologs. Homologous genes are grouped into gene families, usually
via sequence similaritymethods.Moreover, they can be orthologs if their most recent
common ancestor has been subjected to a speciation event, paralogs if it has been
subjected to a duplication event and xenologs if they diverged via a HGT event.

Homologous sequences tend to have similar structure and function, and are often
located in homologous genomic regions. These properties can be exploited in various
biological applications, making deciphering the relation between genes essential
for several biological analyses. For example, because homologous genes can be
used as markers, they are essential in comparative genomics studies based on gene
order, a field widely explored by renowned researchers in computational biology.
In particular, Bernard Moret has led the development of highly efficient tools for
comparing gene orders [5, 54, 55].

Methods for inferring gene relations are subdivided into tree-based and tree-
free methods. Tree-free methods are mostly based on gene clustering according
to sequence similarity, (cf., e.g., the COG database [87], OrthoMCL [50], InPara-
noid [10]). They are often unable to detect the full set of relations between members
of a gene family and fail to differentiate orthologs fromparalogs and xenologs. On the
other hand, tree-based methods consist in reconstructing a phylogenetic tree for the
gene family and then inferring the nature of internal nodes (duplication, speciation
or HGT) from a reconciliation, i.e., an embedding of the gene tree into the species
tree. Methods relying on reconciliation, the focus of this chapter, usually yield more
accurate gene relations. However, they are very sensitive to the quality of the input
trees, a single misplaced branch likely leading to a completely different evolutionary
scenario.

Tree reconciliation can be performed through different biological models of evo-
lution, the most common being the Duplication (D), Duplication-Loss (DL) or
Duplication-Loss and Transfer (DTL) models. Incomplete lineage sorting (ILS),
i.e., imperfect segregation of alleles has also been considered, mainly for reconcil-
iation with a non-binary species tree. While most reconciliation methods are based
on the parsimony principle of minimizing the number or the cost of induced oper-
ations, probabilistic models seeking for a reconciliation with maximum likelihood
or maximum posterior probability have also been developed [2, 76, 84] (see [85]
for a review). Although relying on more realistic models of gene family evolution
through gains and losses, these methods are much slower than parsimony methods.
This chapter is dedicated to parsimony methods for reconciliation.
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As mentioned above, accurate inference of the true evolutionary history of a
gene family through reconciliation strongly depends on the accuracy of the consid-
ered gene and species trees. This is the main reason for the continuing effort made
to reduce errors in gene tree reconstruction. In particular, standard phylogenetic
methods standing solely on sequence alignment (e.g., PhyML [33], RAxML [78],
MrBayes [71], PhyloBayes [48]) are often error-prone as they are subject to, among
other systematic errors [69], errors arising from the quality of the dataset (e.g., qual-
ity of gene annotations, gene family clustering, and alignment). In addition, gene
sequences often do not contain enough differentiation (substitutions) to resolve all
the branches of a phylogeny, or alternatively, too much such that the substitution
history is saturated. The resulting low resolution of gene relations can usually be
assessed with measures of statistical support (e.g., bootstrap and posterior probabil-
ity) on tree branches.

To address the limitation of standard methods, other reconstruction methods,
accounting for fitness with the species tree, have been developed. These meth-
ods, designated as integrative methods, report gene trees with better accuracy com-
pared to sequence-only methods [14, 59, 84, 89]. Most of them rely on a two-steps
approach: first compute a tree, or a set of trees, with the best fit to the sequences,
and then “correct” the initial tree, or set of trees, according to the reconciliation
cost. Four main strategies are considered for the second step: (1) Select neighboring
gene trees of an initial tree by performing some branch swapping, typically Nearest
Neighbor Interchange (NNI), Subtree Pruning and Regrafting (SPR) or Tree Bisec-
tion and Reconnection (TBR) (e.g., GeneTree [62], TreeFix [94], TreeFix-DTL [8],
MowgliNNI [58], Notung [18]); (2) Contract branches of weak support and resolve
the obtained polytomies (non-binary nodes) (e.g., NOTUNG [18], ProfileNJ [60]);
Finally, select a set of trees or clades (leafsets) and construct (3) an amalgamated
tree (e.g., ecceTERA [36], ALE [84] or (4) a supertree (e.g., MinSGT [41, 43]).

The first strategy, relying on tree rearrangement events (NNI, SPR, TBR) near
poorly supported branches, consists of searching for alternative topologies of an ini-
tial gene tree with a better fit to the species tree. Methods based on this strategy
explore the tree space often by using search heuristics such as branch-and-bound
and hill-climbing. Some of them restrict the candidate alternative topologies to those
that cannot be rejected by sequence data. Their main drawback stems from the per-
formance of the criteria used to stop the tree space exploration, which in the worst
case can result in exploring the complete exponential-size tree space.

In this chapter, while we focus on the second step of integrative methods, we
only present the less straightforward methods based on strategies (2), (3) and (4).
After introducing the preliminary notations in Sect. 5.2, the following sections are
dedicated to the various formulations of the reconciliation problem depending on the
considered trees and evolutionarymodel (with orwithoutHGTs, considering or disre-
garding ILS). Section 5.3 is dedicated to the classical reconciliation between a binary
gene tree and a binary species tree, Sect. 5.4 presents an extension to non-binary
species trees, and Sect. 5.5 deals with the polytomy resolution problem, namely, the
reconciliation of a non-binary gene tree with a binary species tree. This latter section
is related to strategy (2) described above for integrative methods. We then move, in
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Fig. 5.1 Different strategies for gene tree construction and correction. A single gene tree is con-
structed from the sequences of all the genes of the gene family: in (1), tree rearrangement methods
around weakly supported branches are used to search an alternative tree minimizing with a better
reconciliation cost; in (2), branches with weak support are rather contracted and the obtained non-
binary nodes resolved according to the reconciliation cost with the species tree. (3) Amalgamation:
a sample of gene trees is first reconstructed from a single gene family, then a single gene tree is
reconstructed based on “trusted” clusters of the tree sample. (4) Supertree: The gene family is first
subdivided into a set of, possibly overlapping, groups of genes (usually, groups of orthologs), a tree
is reconstructed for each group and these trees are then combined into a single supertree displaying
all of them

Sect. 5.6, to strategy (3) and (4), taking advantage of a set of gene trees rather than a
single input gene tree, through amalgamation or supertree methods, as illustrated in
Fig. 5.1. Section 5.7 then presents, for the DLmodel, a unifying view simultaneously
considering polytomy resolution and supertree reconstruction in a single framework
for gene tree correction. We end this chapter with a discussion in Sect. 5.8.

5.2 Trees

We denote, respectively, by V (T ), E(T ), and L(T ) the set of nodes, edges and leaves
of a tree T . Notice that L(T ) ⊂ V (T ). We say that T is a tree on L(T ). Unless stated
differently, all trees considered in this chapter are rooted, i.e., they admit a single
node r(T ) called the root of T .

Let x be a node of V (T ); y is an ancestor of x if y is on the path from x to the
root; y is a descendant (respectively, proper descendant) of x if y is on the path from
x to a leaf of T including x (respectively, excluding x); x and y are incomparable if
y is neither an ancestor nor a descendant of x . If (x, y) is an edge of T , then x is the
parent p(y) of y and y is a child of x (y ∈ Ch(x)).

For a tree T , we denote by Tx the subtree of T rooted at x ∈ V (T ). Two subtrees
Tx and Ty of T are separated iff x and y are incomparable nodes of T . Given a subset
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L of leaves, we call the lowest common ancestor (LCA) of L in T and denote by
lcaT (L) the common ancestor of L in T that is the farthest from the root. We also
denote by T |L the tree with leafset L ∩ L(T ) obtained from the subtree of T rooted
at lcaT (L ∩ L(T )) by removing all leaves that are not in both L and L(T ), and then
all internal nodes with a single child.

A tree T ′ is said to be an extension of a tree T if it can be obtained by a sequence
of graftings, where each grafting consists of subdividing an edge (x, y) of E(T ) by
creating a new node z between x and y, then adding a leaf l with parent z.

In this chapter, all considered trees have internal nodes with at least two descen-
dants. An internal node x of T is binary if it has exactly two descendants. A binary
tree is a tree with all internal nodes being binary nodes. A non-binary tree has at least
one internal node which is a polytomy, i.e., a node with more than two descendants.

Definition 1 (binary refinement) A binary refinement B = B(T ) of a tree T , is a
binary tree such that V (T ) ⊆ V (B) and such that for every x ∈ V (T ), L(Tx) =
L(Bx).

In other words, a binary tree B(T ) is a binary refinement of T if whenever a node
x is an ancestor of y in T , x is also an ancestor of y in B(G).

Gene and species trees: Two types of trees are considered: species trees and gene
trees (see Fig. 5.2). A species tree S for a set Σ = {σ1, . . . , σt } of species represents
an ordered set of speciation events (the separation of one species into two different
species) that have led to Σ .

Inside the species’ genomes, genes undergo speciation when the species to which
they belong to speciate, but also duplication i.e., the creation of a new locus, loss
of a locus, and Horizontal Gene Transfer (HGT) when a gene is transmitted from a
source species to a different, coexisting target species.

A gene family Γ is a set of genes sharing a common ancestor, and a gene tree G is
a tree on a gene family Γ . We denote by s(x) the genome of Σ to which x belongs.

When no distinction needs to be made between gene copies in the same genome,
genes can just be identified by their corresponding genome, and thus a gene tree can
be represented as a tree on Σ with possibly repeated leaf-labels (see Fig. 5.3).

5.3 Reconciliation of a Binary Gene Tree with a Binary
Species Tree

The evolutionary history of a gene family is usually inferred from the embedding of its
corresponding gene tree into the species tree, through a process called reconciliation
explaining incongruities between gene and species trees by gene evolution events.

More precisely, a reconciliation R(G, S) of a gene tree G with a species tree
S (if no ambiguity arises, we will just write R) is a node-labeled extension of the
gene tree G reflecting a history of speciation and gene gain and loss in agreement
with S (see Fig. 5.2). Each node x of V (R) (internal or leaf) is mapped to a node
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Fig. 5.2 Top: A speciation (black circle), duplication (white rectangle), loss (dotted line) and HGT
(white circle) events. For the speciation event, σl and σr refer to the two species descendent from
the species σ ; for the HGT event, σ1 is the source and σ2 the target unrelated species. Bottom:
(left) A gene tree G for the gene family Γ = {a1, a2, b1, b2, c1}, where each lower case denotes
a gene belonging to the corresponding genome in upper case; (middle) an evolutionary history of
Γ embedded in the species tree S = (A, (B,C)); (right) the reconciliation R(G, S) corresponding
to the given evolutionary history. Each internal node and grafted leaf x of R(G, S) is labeled with
s(x). The edge (B, a2) is a HGT edge

s(x) ∈ V (S). Some branches of R may also be labeled as transfer edges. A formal
definition follows.

Definition 2 (Reconciled gene tree) Let G be a binary gene tree and S be a binary
species tree. A reconciliation R(G, S) of G with S is an extension of G such that,
for each internal node x of R(G, S)with two children xl and xr , one of the following
cases holds:

1. s(xl) and s(xr ) are the two children of s(x), in which case x is a speciation node;
2. s(xl) = s(xr ) = s(x) in which case x is a duplication node representing a dupli-

cation in s(x);
3. one of s(xl) and s(xr ) is equal to s(x) and the other is incomparable to s(x). Let

y corresponds to the element of {xl, xr } such that s(y) is incomparable to s(x).
Then x is a HGT node representing a HGT event with source genome s(x) and
target genome s(y), and (x, y) is a HGT edge.

Each grafted leaf x corresponds to a loss in s(x).

Two genes are said orthologs if their LCA in R(G, S) is a speciation event,
paralogs if it is a duplication event and xenologs if it is a HGT. For example in
Fig. 5.2, b2, c1 are orthologs, b2, a1 are paralogs and a2, b1 are xenologs.
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Remark 1 A more flexible definition of xenologs, where two genes are said to be
xenologs if the history since their LCA involves a HGT, is also considered in the
literature [27]. With this definition, a pair of xenologous genes can diverge through
speciation, duplication or transfer. For example with this definition, genes a1, b1 in
Fig. 5.2 are xenologs that diverged through a speciation. To avoid further ambiguity,
a new classification of xenologs into subtypes, which takes into account the evolu-
tionary events at the divergence of gene pairs and the relative timing of transfer and
speciation eventswas also recently proposed [20]. In this chapter,wewill consider the
simplest event-based definition of xenologs through divergence via a transfer event,
inducing a unique assignment type for each pair of genes into orthologs, paralogs
or xenologs. Notice that with this definition, orthologs are not restricted anymore to
genes from different species (see [20] for a discussion). For example, in Fig. 5.2, a1
and a2 are orthologs although they are found in the same present-day species A.

The standard parsimony criteria used to choose among the large set of possible
reconciliations are the minimum number of duplications (D), duplications and losses
(DL), or duplications, losses and HGTs (DTL) events induced by the reconciliation.
The first two distances can be computed in linear time using the LCA mapping [30,
96, 99] (see Sect. 5.3.1 below). An algorithm enumerating all solutions for general
costs with different event penalties was described in [22] for the DL model and
extended to DTL in [15].

5.3.1 DL Reconciliation

The LCA-mapping between a gene tree G and a species tree S maps each node x ∈
V (G) toward a genome s(x) ∈ V (S), such as L(Ss(x)) is the smallest set of genomes
to which all genes in L(Gx ) belong. Formally, s(x) = lcaS({s(y) : y ∈ L(Gx )}) in
the species tree. Note that the LCA-mapping is unique for any given pair (G, S).

Given that mapping, each internal node x of G can be labeled as a duplication
node if s(xl) = s(x) and/or s(xr ) = s(x), otherwise it is a speciation node. The total
number of losses correspond to the minimum number of grafting on G required to
have a reconciliation R(G, S). The reconciliation induced by the LCA-mapping,
called LCA-reconciliation is optimal for both D and DL distances. It is also the
unique reconciliation minimizing the DL distance (see Fig. 5.3(1) for an example).

We highlight two types of duplication nodes inferred from LCA mapping. Con-
sider each gene of G as simply identified by the genome it belongs to. Let x be a
duplication node ofG with children xl and xr . It is aNonapparent duplication (NAD)
iff L(Gxl ) ∩ L(Gxr ) = ∅. In other words, the reason for x being a duplication node
is not the presence of paralogs in the same genome, but rather an inconsistency with
the species tree. A duplication which is not a NAD is an Apparent Duplication (AD)
node, i.e., a node with the left and right subtrees sharing a common leaf-label.
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Fig. 5.3 Three different reconciliations for the species tree S and the gene treeG, for the gene family
Γ = {a, b, b, c, d}, where each lower case denotes a gene belonging to the corresponding genome
in upper case; (1) An evolutionary scenario optimal for the D and DL distances (two duplications
and five losses); G is labeled according to the LCA-mapping; (2) A DTL-scenario with two HGTs
and two losses. This scenario is cyclic, and is therefore infeasible; (3) An alternative and acyclic
DTL-scenario with two HGTs and one loss; this scenario is also biologically unfeasible as it is not
date-respecting, according to the considered speciation times

For example in Fig. 5.3(1), the lower duplication node of G is a NAD, while the
upper duplication node is an apparent duplication, as its left and right subtrees each
contains a leaf labeled b.

While apparent duplications are supported by the presence of paralogs, in the
same genome, that are necessarily the result of duplication, NAD nodes have been
flagged as potential errors in many studies, and in particular in the Ensembl Compara
gene tree database [28]. The distinction between these two types of duplication nodes
is required for certain formulations of the gene tree correction problem [40], or for
considering an optimal history accounting for ILS, as we will see later.

5.3.2 DTL Reconciliation

In contrast with the DL reconciliation framework, the optimal DTL reconciliation is
not unique, and cannot be computed by means of the LCA-mapping. With HGTs,
a gene evolution is not restricted anymore within the parental edges of its genome
in the species tree. As such, to the standard vertical transmission of genes from
one ancestor genome to its descendants, there is an additional need to consider
transmission between incomparable nodes of the species tree. Such transmissions
are represented in the reconciliation by a transfer edge (x, y) corresponding to a
gene transfer from a source genome s(x) to a target genome s(y). For a HGT to
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be biologically feasible, both genomes are required to be contemporary at the time
of the transfer event. Therefore, a “consistent” HGT scenario should allow a total
temporal ordering of the internal nodes of the species tree S. As demonstrated by
Tofigh et al. [91], this requires the DTL-reconciliation to be acyclic, as defined below.

Definition 3 A reconciliation R(G, S) is acyclic if and only if there is a total
order < on V (S) such that:

(1) if (s, s ′) ∈ E(S) then s < s ′ and
(2) if (x, y) and (x ′, y′) are transfer edges in G such that y′ is a descendant of y in

R(G, S), then p(s(x)) < s(y′).

For example, scenario 2 in Fig. 5.3(2) is a cyclic DTL-scenario, as the ordering
defined by the above definition would lead, for the two transfer edges ofG, to α < α.
On the other hand, scenario 3 (Fig. 5.3(3)) is acyclic.

The problem of finding a most parsimonious acyclic (i.e., time-consistent) DTL-
scenario is NP-hard [23, 24, 34, 61]. However, the problem becomes polynomial if
the acyclicity requirement is dropped [6, 91]. In that case, themain idea for computing
an optimal DTL-reconciliation is to consider all possible mappings of G nodes to S
nodes, using a dynamic programming approach.

More precisely, let c(x, s) be the minimum cost of a reconciliation of Gx with
S such that x is mapped to s ∈ V (S). The gene tree G is processed in post-order
traversal, with the base case corresponding to leaves x ∈ L(G), treated as follows:

For x ∈ L(G), c(x, s) =
{
0, If s = s(x),
+∞, Otherwise.

As for an internal node x with children y and z, we have to consider the three
possibilities of x being labeled as a speciation, duplication or HGT node, with
cs(x, s), cd(x, s), and ct (x, s) representing these three mutually exclusive cases.
Then, c(x, s) = min{cs(x, s), cd(x, s), ct (x, s)}. Finally, the minimum cost of a rec-
onciliation of G with S is mins∈V (S) c(r(G), s).

For simplicity, we report below the recurrences when considering the cost of
reconciliation as being the number of duplications and HGT [91].

cs(x, s) =
⎧⎨
⎩
min{c(y, t) + c(z, u) for all t, u
incomparable and such that lca(t, u) = s}, If s is an internal node of S,

+∞, Otherwise.

cd (x, s) = min{1 + c(y, t) + c(z, u) for all descendants t, u of s in S}
ct (x, s) = min{1 + c(y, t) + c(z, u) for all t being descendant of s in S

and all u being incomparable to s}

A straightforward implementation of these recurrences lead to an algorithm in
O(mn2) time, where m = |V (G)| and n = |V (S)|. This time complexity has been
further improved to O(mn) [90].
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Notice that losses may be essential for distinguishing between duplications and
HGT events. The above recurrences have to be adapted to handle losses. David and
Alm [21] have described an algorithm for the DTL distance running in O(mn2),
while Bansal et al. [6] described RANGER-DTL, an algorithm running in O(mn).

When divergence time information, or a temporal ordering of internal nodes, is
available for S, then theDTL-scenariomust respect this ordering (i.e.,HGTevents are
constrained to occur only between coexisting species). A DTL-scenario respecting
a dated tree is called a date-respecting DTL-scenario. Bansal et al. [6] show how the
definition of a reconciliation and the above recurrences can be adapted to solve this
problem. They give an algorithm with O(mn log n) time complexity.

For example, scenario 3 of Fig. 5.3 is not date-respecting. Notice that a date-
respecting DTL-scenario is not necessarily time-consistent. In fact, scenarios may
be locally consistent (i.e., HGT events occurring between coexisting species), but
globally inconsistent. Global consistencymay be obtained by subdividing the species
tree S into slices and exploring slices one after the other. This strategy has been first
used in [51], leading to an O(nm4) algorithm. Later, Doyon et al. [24] have improved
the computation of a most parsimonious time-consistent DTL-reconciliation with a
dated species tree to O(mn2).

5.3.3 Binary Gene Tree Reconciliation in Presence of ILS

When a population of individuals undergoes a series of speciations in a short period of
time, different alleles for the same gene locus may remain present in a given lineage,
and then eventually fixed differently in descendant lineages [52]. This phenomenon,
known as deep coalescence or Incomplete Lineage Sorting (ILS) may also explain
discrepancies between a gene tree and a species tree. For example in Fig. 5.4, the
subtree ((a, b1), c1) of G, which is incongruent with the species tree (A, (B,C)),
may be explained from the history depicted in the left backbone of (i), which involves
no duplication, but simply the fact that the allele inherited in C is different from the
one inherited in A and B.

In the absence of paralogous genes in the same genome, inconsistencies between a
gene tree and a species tree can always be explained through ILS.Wu and Zhang [93]
have shown that a unique reconciliation with minimum deep coalescence cost can be
obtained in that case, using LCA-mapping. It is, however, necessary to take dupli-
cation events into account as ILS cannot explain the presence of additional loci. For
example, in Fig. 5.4, while the NAD (nonapparent duplication) in G can be ade-
quately explained through ILS, the apparent duplication node above it necessarily
involves the creation of a second locus. As seen in Fig. 5.4(iii), (iv), ILS-aware recon-
ciliation methods may produce evolutionary histories with fewer losses, highlighting
the need of models jointly considering duplication, loss, HGT and ILS events. In a
recent paper, Bork et al. [13] have shown that the duplication-loss-ILS reconciliation
problem is NP-hard, even when only duplications are to be minimized.



5 Gene Family Evolution—An Algorithmic Framework 97

Fig. 5.4 Gene family evolution and incomplete lineage sorting. (i) Evolution of a gene family inside
a species tree S = (A, (B,C)), in the context of a population. Each species tree backbone contains
the evolution of a single locus and each row represents a generation of individuals in a population.
The lines inside the tree backbones represent the evolution of the gene family leading to the tree G
in (ii). In this example, the evolution of two loci (black and green) are depicted. Two alleles of the
black locus are present at the time of speciation 1. The first allele is fixed in A and B, whereas the
second is only fixed in C . The green locus was created after an ancestral duplication occurring just
before speciation 1, and was lost in genome A; (ii) The resulting gene tree G for the gene family
Γ = {a, b1, b2, c1, c2} is the represented reconciled tree R(G, S), ignoring losses (dotted lines) and
internal node labeling. Duplication nodes, inferred from the LCA-mapping, are not coherent with
the true evolutionary history of the gene family. (iii) A different representation of R(G, S) reflecting
the number ns of gene copies in each genome s. For example, for the branch (0, 1), we have n0 = 1
and n1 = 3. (iv) A different scenario able to explain incongruities between the gene and species
tree through duplication, loss and deep coalescence. This more parsimonious history involves one
duplication, a loss, and a deep coalescence event. It relies on the labeled coalescent tree model
which simultaneously describes the species, locus and gene trees, as well as the reconciliations
between them. (v) The locus tree (LT) induced by the scenario shown in (iv). (vi) Enumeration of
the possible locus maps for each branch of the species tree. Each locus is shown with a different
color and new locus are created by duplications. Only some locus maps for branches (0, 1) and (1,
A) are shown. The mapping is based on the total number of gene lineages at the start and end of
each edge of the species tree, which can be determined with LCA-mapping

Very fewpapers have attempted to jointlymodel ILSandothermacro-evolutionary
events during gene and species tree reconciliation. In two papers by Durand’s
group [81, 92], the problem is reformulated as a reconciliation between a binary gene
tree and a non-binary species tree minimizing the DL/DTL cost. Their algorithm first
requires contraction of short branches of the species tree into polytomies and ILS
are only allowed at those unresolved nodes and remain unpenalized. Section 5.4 is
dedicated to this algorithm.
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On the other hand, Kellis et al. [67, 95] have considered a coalescent model
for reconciling a binary gene tree with a binary species tree, accounting for dupli-
cations, losses and deep coalescence. They first devised a probabilistic algorithm,
called DLCoal [67]. Although efficient, this algorithm is highly parameterized, mak-
ing it impracticable. Subsequently, they proposed a parsimony-based algorithm,
called DLCpar [95], introducing the concept of a label coalescent tree (LCT) (see
Fig. 5.4(iv)), which simultaneously describes the reconciliation between a gene tree,
a locus tree, and a species tree. This latter algorithm proceeds in the following steps:

1. Use the LCA-mapping betweenG and S to determine all implied speciation nodes
and count, for each branch (x, y) of the species tree, the numbers nx and ny of
gene copies at x and y.

2. For each branch (x, y), in a pre-order traversal of S, enumerate all possible sce-
narios of DL and ILS events leading from nx to ny gene copies (see Fig. 5.4(vi)).
This yields the set of possible species-specific locus maps that associates each
node of the gene tree to the locus in which it evolves. The event cost for each
branch of S can be computed by counting the number of additional loci and lost
loci, respectively corresponding to duplications and losses, as well as the number
of extra lineages caused by deep coalescence (see Fig. 5.4(vi)). In practice, some
histories are not considered since they are never most parsimonious.

3. Perform a post-order traversal of S, and for each branch (x, y) and each assign-
ment (nx , ny), use dynamic programming to determine the minimum cost on
the subtree of S rooted as x , computed as the cost of the branch (x, y) plus the
minimum cost of the left and right subtrees rooted at y, where y is assigned ny

loci. The minimum among all possible choices is selected as the most parsimo-
nious reconciliation. Optimal loci at the start and end of each branch can then be
assigned with a traceback starting from the root of the species tree.

Althoughnot explicitly given in the paper, the complexity of the algorithmstrongly
depends on the size of the locus maps set and on the choices considered for each
branch of the species tree. This part is not detailed in the paper. In particular, the
method is supposed to search over the entire space of reconciliations, but it is not
clear whether it leads to a heuristic or to an exact algorithm.

In a follow-up paper, Rogers et al. [70] further attempt to extend the LCT
model in order to address one of its shortcomings, namely the assumption of a
single haploid sample for each species. More recently, Chan et al. [16] have pro-
posed the first FPT (fixed-parameter-tractable) algorithm that computes the most
parsimonious time-consistent reconciliation fully accounting for ILS, duplications,
HGTs and losses (IDTL). This algorithm is an extension of the DTL-reconciliation
described in [24] with modifications to allow ILS, and has a total complexity of
O(|VG |(|VS|2 + |VS|nk2kS )2ks ), where k is the number of branches in the largest ILS
subtree (i.e., subtrees of the species tree where ILS occur) and nk the number of ILS
subtrees.
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5.4 Reconciliation with a Non-binary Species Tree

The LCA-mapping can naturally be generalized to a non-binary species tree. How-
ever, the LCA-reconciliation used for binary gene and species trees will not produce
correct gene evolution history when applied to non-binary species trees. In fact, a
node ofG and its child mapping to the same non-binary node of the species tree does
not necessarily indicate a duplication. In [97], Zheng et al. proved that the general
reconciliation problem of a gene tree G with a non-binary species tree S via binary
refinement is NP-hard, even when only duplications are considered. In the same
paper, they proposed a heuristic for the problem also allowing for polytomies in the
gene tree.

We can distinguish two reasons for the presence of non-binary nodes in a species
tree. They can either represent “true” evolutionary events, i.e., adaptive radiations
leading to the emergence of a set of species from a single ancestral one, or can be
caused by a lack of resolution in the species tree, due to methodological reasons.
Such non-binary nodes are called hard in the former case and soft in the latter case.
A soft polytomy may be due to short time since speciation, leading to genetic drift.

In either case, non-binary nodes of a species tree often correspond to populations
with substantial genetic diversity, and coexisting multiple alleles. It is expected that
some gene families might exhibit imperfect segregation of all their alleles (in other
words ILS) at these nodes. Therefore, a subtree of the gene tree whose root maps to a
polytomy in the species tree may be differently explained by speciation, duplication
or ILS, depending on the considered resolution of that polytomy.

Vernot et al. [92] have considered the problem of finding a most parsimonious DL
scenario explaining the differences between a binary gene tree G and a non-binary
species tree S, assuming that disagreements between the two trees can stem from
either duplication or ILS. Their algorithm only considers the possibility of ILS at
non-binary nodes of S. The main idea of their algorithm is to identify required dupli-
cations, i.e., those disagreements with the species tree that can only be explained by a
duplication. Clearly, these nodes are those in G that would be labeled as duplication
in all resolutions of S. However, as shown in [92], there is no need to try all the
resolutions of S.

The procedure described in [92] consists of a post-traversal of G during which
each node x of V (G) \ {r(G)} is labeled by the set N (x), which is the subset of {h :
h ∈ Ch(s(p(x)))} such that each element h ∈ N (x) has at least one descendant in
{s(l) : l ∈ L(Gx )}. This set represents the minimum set of nodes in V (S) that would
be traversed from s(x) to the mapping of x’s children, regardless of the resolution
of S. Consequently, a node x with children xl and xr is a required duplication if and
only if N (xr ) ∩ N (xl) 	= ∅ (see Fig. 5.5 for an example).

The set labeling a node ofG is of sizeO(kS)where kS is themaximumoutdegree in
S. Based on this fact, Vernot et al. [92] have described an algorithm for the D distance
running in O(|V (G)|(kS + hS)) time, where hS is the height of S (i.e., maximum
number of nodes from the root to any leaf of S). However, inferring the induced
minimum number of losses is not as straightforward as for binary species trees. In
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Fig. 5.5 A species tree S for the genome set Σ = {A, B,C, D}; A gene tree G for the gene
family Γ = {a, a, b, c, d}, where each small letter designs a gene belonging to the corresponding
genome in upper case. The treeG is labeled according to LCA-mapping suggesting three duplication
nodes (rectangles). However, according to the N (x) labeling in brackets, only two duplications are
required, while the third (striped rectangle/circle) can be explained through ILS instead (see history
in the right side), leading to a most parsimonious DL scenario involving two duplications and four
losses

fact, for a loss associated to a polytomy, it is not generally possible to determine
the exact lineage in the gene tree in which the loss has occurred, and several edges
of G have to be tested. An exponential algorithm running in O(|V (G)|kS22kS ) was
described.

In [81], Stolzer et al. further extended the framework to HGT events and devel-
oped an algorithm running in O(|V (G)|(hS + kS)(V |S| + nk2kS )2). Although their
algorithm does not guarantee a time-consistent reconciliation, temporal feasibility
of each scenario is evaluated a posteriori. Both DL and DTL algorithms are imple-
mented in NOTUNG.

5.5 Reconciliation of a Non-binary Gene Tree with a
Binary Species Tree

We will detail the most efficient algorithms for DL reconciliation, and end up with a
brief discussion on extensions toDTL reconciliation of a non-binary gene treeG with
a binary species tree S. This problem ismotivated by the gene tree correction problem,
where a non-binary gene tree can be obtained from an initial tree by contracting
weakly supported branches. In other words, the polytomies of G are considered soft,
i.e., reflect non-resolved parts of the tree. The goal is then to find an appropriate
refinement (as defined in Sect. 5.2) of this non-binary gene tree.

Definition 4 (Resolution) A resolution of G with respect to S is a reconciliation
R(B, S) between a binary refinement B ofG and S. The set of all possible resolutions
of a gene tree G is denoted R(G).
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The optimization problem follows.

Minimum Resolution Problem:
Input: A binary species tree S and a non-binary gene tree G.
Output: A Minimum Resolution of G with respect to S (or simply Minimum Res-
olution of G), e.g., a resolution ofG ofminimum reconciliation cost with respect to S.

As first noticed by Chang and Eulenstein [17], each polytomy ofG can be consid-
ered independently and a minimum resolution of G can be obtained by a depth-first
procedure that iteratively solves each polytomy Gx for each internal node x of G.

An O
(|V (S)||V (G)|3) algorithm for the resolution of a non-binary gene tree

minimizing duplications and losses was first considered in NOTUNG [25]. The
same year, Chang and Eulenstein [17] also described an algorithm with a better
complexity, running in O

(|V (S)||V (G)|2). In 2012 [45], we developed the first
linear-time algorithm for resolving a polytomy (a single unresolved node), leading to
an overall quadratic-time algorithm for a whole tree. An algorithmic result extending
linearity to a whole gene tree was later obtained by Zheng and Zhang [98]. The key
idea is to resolve each polytomywith a species tree restricted to the smallest necessary
set of genomes. Their algorithm does not allow, however, to output all solutions and
is restricted to unit cost for duplications and losses. Based on the same optimization
idea, we developed PolytomySolver [42] which is a generalization of the dynamic
programming algorithm given in [45], allowing for both event-specific and species-
specific costs. The time complexity of PolytomySolver is linear for the unit cost and
quadratic for the general cost, which outperforms the best-known solutions so far by
a linear factor.

In the rest of this section, we describe the dynamic programming technique in
PolytomySolver for the resolution of a single polytomy under the DL distance with
unitary event costs. More details, complexity improvement, extension to other costs
and to a full non-binary gene tree, can be found in [42].

5.5.1 PolytomySolver

In the following, to prevent penalizing losses in genomes with no descendant genes
in G, the species tree is restricted to S|{s(x) : x∈L(G)} and we will simply continue to
refer to it as S.

PolytomySolver proceeds with a recursion made on the subtrees of S. Define
the multiplicity m(s) of s ∈ V (S) in G as the number of times it appears in G, i.e.,
m(s) = |{x ∈ L(G) : s(x) = s}|. An (s, k)-resolution ofG is a forest of k reconciled
gene treesT = {T1, . . . , Tk} s.t.∀ 1 ≤ i ≤ k, s(r(Ti )) = s, and each leaf x ofG with
s(x) being a descendant of s is present as a leaf of some tree of T (see Fig. 5.6 for
an example). Leaves of trees in T that do not appear in L(G) represent losses. We
denote by c(T ) the reconciliation cost of the forest T . This cost is the sum of the
reconciliation costs of all Ti ∈ T .
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Fig. 5.6 (Figure from [42]; use permitted under the Creative Commons Attribution License CC-
BY 3.0) A polytomy G and a species tree S. Squares on trees illustrate duplications, whereas
speciation are denoted by a black circle. To the right of table M , the forests corresponding to an
(a, 1) and (a, 3)-resolution are given, where the gray circled a illustrates a loss. We illustrate the
(d, 1)-resolution, rooted at a speciation node, corresponding toCd,1 = 3 (obtained from the vertical
arrows in table M), and an optimal (d, 1)-resolution, obtained from a (d, 2)-resolution (horizontal
arrow in M). The optimal cost for the resolution of G (Me,2 = 2) is highlighted in blue

The cost of a minimum resolution of G can be computed using a dynamic pro-
gramming algorithm that fills a table M . Each cell Ms,k of M corresponds to the
minimum cost of an (s, k)-resolution for a given node s of S and a given integer
k ≥ 1 (Ms,k = +∞ for k < 1). The final cost of a minimum resolution of G is given
by Mr(S),1. The table M can be computed, line by line, in a bottom-up traversal of S.
Although k is unlimited (number of gene losses is unlimited), we have shown in [42]
that there is no need to consider values larger than |V (G)| − 1.

Lemma 1 gives the base case to compute Ms,k when s ∈ L(S). It follows from
the fact that, if k is larger than the number of available leaves, then additional leaves
corresponding to gene losses are required; otherwise, leaves have to be joined under
duplication nodes. An illustration of this lemma is shown in Fig. 5.6 where it is used
to compute the first three lines of M .

Lemma 1 (Base case) For a leaf node s of S, if k > m(s) then Ms,k = k − m(s);
otherwise Ms,k = m(s) − k.

For an internal node s of S, speciation events also need to be considered.We require
an intermediate cost tableC where each entryCs,k represents the minimum cost of an
(s, k)-resolution in which every tree is rooted at a speciation node with two children
or is a leaf of G already mapped to s. For k > m(s), an (s, k)-resolution of cost
Cs,k can only be obtained from an (sl, k − m(s))-resolution and an (sr , k − m(s))-
resolution by first generating k − m(s) speciation nodes, mapped to s, each joining
a pair (sl, sr ), then adding the m(s) trees already available (see for example the
(d, 1)-resolution corresponding to Cd,1 in Fig. 5.6; in this case m(d) = 0). Thus, we
define:

Cs,k = Msl ,k−m(s) + Msr ,k−m(s) if k > m(s) and Cs,k = +∞ otherwise (5.1)
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As nodesmapped to s are not necessarily speciation nodes but can also correspond
to duplications, it is readily seen that Ms,k ≤ Cs,k . A recurrence for computing Ms,k

follows.

Lemma 2 For an internal node s of S, Ms,k = min(Ms,k−1 + 1, Ms,k+1 + 1,Cs,k).

In Lemma 2, the first term of Ms,k corresponds to a loss, while the second corre-
sponds to a duplication at s.

Since Ms,k depends on Ms,k+1 and vice-versa, the recurrence cannot be used
to compute C and M . This dependency can, however, be avoided due to a strong
property on lines of M . In [45] we have shown that each line Ms is characterized by
two values k1 and k2 such that, for any k1 ≤ k ≤ k2, all Ms,k have a single minimum
value γ , for any k ≤ k1, Ms,k−1 = Ms,k + 1, and for any k ≥ k2, Ms,k+1 = Ms,k + 1.
In other words, Ms can be treated as a convex function fully determined by k1, k2
and its minimum value γ . We say Ms has a minimum plateau between k1 and k2.
For example, line Md in Fig. 5.6 is fully determined by k1 = 2 and k2 = 3 and its
minimum value γd = 1.

Theorem 1 (Recurrence 1) Let k1 and k2 be the smallest and largest values, respec-
tively, such that Cs,k1 = Cs,k2 = mink Cs,k . Then,

Ms,k =

⎧⎪⎨
⎪⎩
Cs,k if k1 ≤ k ≤ k2
min(Cs,k, Ms,k+1 + 1) if k < k1
min(Cs,k, Ms,k−1 + 1) if k > k2

Theorem 1 shows how a row Ms for an internal node s of S can be computed:
for each k, compute Cs,k using recurrence Theorem 1 and keep the two columns k1
and k2 setting the bounds of the convex function’s plateau. The Ms,k values at the
left and right of the minimum plateau can then be easily computed from the value
of the minimum plateau. These recurrences, with the base case for S leaves given
in Lemma 1, describe how the dynamic programming algorithm of PolytomySolver
works.

Algorithm 1 describes the computation of table M . We refer the reader to [45]
for the reconstruction of a solution from M , which is accomplished using a standard
backtracking procedure. Moreover, we show in [42] that k1 and k2 for each M(s) can
be computed in constant time from Msl and Msr vectors. This implies a linear-time
algorithm for the computation of Mroot (S),k .

Unrooted trees: If the gene tree is unrooted, an exhaustive testing of all roots can
be done with PolytomySolver, ProfileNJ [60] and NOTUNG [18]. A series of papers
by Gorecki et al. also consider the properties of the plateau to avoid exploring all
branches [31, 32] of unrooted gene trees.
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Algorithm 1 Compute M(G, S)

for each node s ∈ V (S) visited in post-order do
if s is a leaf then
Ms,k = |k − m(s)| for each k;

else
Compute Cs,k = Ms1,k−m(s) + Ms2,k−m(s) for each k;
find k1, the smallest index such that Cs,k1 is minimum;
find k2, the largest index such that Cs,k2 is minimum;
Ms,k = Cs,k for each k1 ≤ k ≤ k2;
for each k < k1 do
Ms,k = min(Cs,k , Ms,k+1 + 1)

end for
for each k > k2 do
Ms,k = min(Cs,k , Ms,k−1 + 1)

end for
end if

end for

5.5.2 Extensions to DTL Reconciliation

The dated and undated formulations of the DTL reconciliation have been shown to be
NP-hard for non-binary gene trees [38]. Kordi and Bansal [39] have also shown that
the problem is Fixed-Parameter-Tractable (FPT) in themaximumdegree k of the gene
tree, and explored a O

(
2kkk(|V (S)| + |V (G)|)o(1)) algorithm testing all possible

resolutions of the gene tree.A similar algorithm, implemented inNOTUNG[47], also
tries all possible resolutions of each polytomy before computing the DTL distance
for each resolution. Heuristics for the problem, including exploration of the tree
space surrounding an initial resolution were also implemented in NOTUNG. One
such possibility consists of selecting a best tree for the DL reconciliation, and then
exploring alternative topologies at a given maximum NNI distance from the initial
topology. Finally, Jacox et al. [37] have also proposed an algorithm improving the
time complexity to O

(
(3k − 2k+1)(V (|S|) + V (|G|))o(1)) by using amalgamation

principles (see Sect. 5.6). Although this algorithm improves the running time by an
exponential factor, it runs in O(2k) space compared to the algorithm described in [39]
requiring polynomial space complexity.

5.6 Inferring a Gene Tree from a Set of Trees

We now move to a slightly different gene tree correction strategy, which consists of
taking advantage of a set of gene trees rather than a single input gene tree.
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5.6.1 Amalgamation: Gene Tree Inference from a Set of
Clades

As sequence information may contain limited signal, phylogenetic reconstruction
often involves choosing among a set of equally likely trees. This idea has inspired
the amalgamation procedure for reconstructing a tree from the clades, i.e., subtree
leafsets, of a set of gene trees. This principle was first introduced by David and
Alm [21] and a heuristic for correcting an initial gene tree based on this idea has
been described. The amalgamation principle was extended by Szöllősi et al. [84]
in a probabilistic method called ALE (for Amalgamated Likelihood Estimation)
considering conditional clade probabilities (introduced in [35]) and a joint sequence-
reconciliation likelihood score.

An alternative deterministic algorithm, called TERA (for Tree Estimation using
Reconciliation) has been developed by Scornavacca et al. [74]. This algorithm “amal-
gamates” the most parsimonious DTL reconciled gene tree from an initial set of gene
trees and achieves similar accuracy than ALE, while being much faster.

We start with some definitions, before presenting the outline of TERA.

Definition 5 Given a tree T and a node x of T , we call L(Tx ) the clade of T at x and
denote byC (T ) the set of all clades of T . If x is an internal node with children xl and
xr , a tripartition at x is defined as πx = (πx [1], πx [2], πx [3]) with πx [1] = L(Tx ),
πx [2] = L(Txl ) and πx [3] = L(Txr ). Given a set G of k gene trees on the same gene
family Γ , we denote by C (G ) the set of all the clades of G , and by �(G ) the union
of all tripartitions of G . For a given clade c ∈ C (G ), �(c) corresponds to the set of
tripartitions π of �(G ) such that π [1] = c.

Definition 6 (Amalgamation) An amalgamation of G is any gene tree G on Γ such
that C (G) ⊂ C (G ).

Most Parsimonious Amalgamation problem
Input: A set G of gene trees on the gene family Γ , and C (G ) the set of all the clades
of G .
Output: An amalgamation ofG minimizing the reconciliation cost with respect to S.

The TERA algorithm solves the amalgamation problem by computing the optimal
reconciliation of each clade (i.e., polytomy with clade as leafset) with each node of
S. For that purpose, the algorithm performs a joint traversal of the species tree S and
the clades of C (G ). In an initial step, it computes the reconciliation of each clade
c ∈ C (G ) with the leaves of S. Then S is traversed bottom-up, and for each node
s ∈ V (S), the reconciliation cost of each tripartition of c with s is computed. For
each pair (c, s), the algorithm computes the cost of reconciling the clade c with s
by testing all possible tripartitions π in �(c). As each non-trivial tripartition π can
be seen as an internal node of an amalgamated tree with children π [2] and π [3], the
cost of reconciling a tripartition π with s can be computed, using the recurrences of
the DTL-reconciliation algorithm [24] (see Sect. 5.3), from the cost of reconciling
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π [2] and π [3] respectively with nodes of V (Ss). The output of TERA is the most
parsimonious reconciliation at one of the root clades.

TheTERAalgorithm is part of a unifying software called ecceTERA [36] account-
ing for a variety of evolutionary events including duplications, losses, transfers,
transfer-loss and transfers from/to an unsampled species (not represented by the set
of genes). The software also handles fully or partially dated, as well as undated,
species trees.

5.6.2 Supertree: Inferring a Tree from a Set of Subtrees

Homology-based search tools are usually used to seek all homologs of a given gene in
a set of genomes. The resulting gene family may be very large, involving distant gene
sequences that may be hard to align, leading to weakly supported trees. Alternatively,
gene copies may be grouped into smaller sets of orthologs and inparalogs, using
clustering algorithms such as OrthoMCL [50], InParanoid [10], Proteinortho [49] or
many others.1 Trees obtained for such partial gene families should then be combined
into a single one using a supertree method.

Supertree methods have been mainly designed to reconstruct a species tree from
gene trees obtained for various gene families (see for example [7, 11, 57, 64, 65, 72,
80, 83]). However, they can have applications for gene tree reconstruction as well.
In this case, a gene tree is constructed from a set of subtrees for partial, possibly
overlapping, subsets of the gene family. Ideally, the obtained tree should display
each of the input trees, which is only possible if the partial trees are consistent, i.e.,
exhibit the same topology for each triplet of genomes (assuming genes are simply
represented by the genome they belong to).

The simplest formulation of the supertree problem is therefore to state whether
an input set of trees is consistent, and if so, find a compatible tree, called a supertree,
displaying them all. This problem is NP-complete for unrooted trees [73, 79], but
solvable in polynomial time for rooted trees [1, 19, 56, 75]. TheBUILDalgorithm [1]
can be used to test, in polynomial time, whether a collection of rooted trees is con-
sistent, and if so, construct a compatible, not necessarily fully resolved, supertree.
This algorithm has been generalized to output all supertrees [19, 56, 75], which may
be exponential in the number of genes.

Supertree methods can also be used to correct gene trees, by removing weakly
supported upper branches and then constructing a supertree from the set of termi-
nal subtrees. In contrast with the polytomy resolution approach, neither the input
subtrees, nor the gene clusters of those subtrees are necessarily preserved. In other
words, the exhibited monophyly of input gene clusters can be challenged. This is
particularly relevant because it has been shown that genes under negative selection,
while exhibiting the true topology, might be wrongly grouped into monophyletic
groups (see for example [53, 77, 82, 88]). Using a supertree method might, there-

1See Quest for Orthologs links at http://questfororthologs.org/.

http://questfororthologs.org/
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fore, be beneficial, as it preserves the topology of subtrees, while allowing to group
genes from different subtrees.

In [41, 43], we introduced the MinSGT problem defined as follows.

Minimum SuperGeneTree (MinSGT ) Problem:
Input: A species set Σ and a species tree S for Σ ; a gene family Γ of size n, a
set Γi,1≤i≤k of potentially intersecting subsets of Γ such that

⋃k
i=1 Γi = Γ , and a

consistent set G = {G1,G2, . . . ,Gk} of gene trees such that, for each 1 ≤ i ≤ k, Gi

is a tree for Γi .
Output: Among all trees G for Γ and compatible with G , one of minimum recon-
ciliation cost.

Under the D distance, we have shown that this problem is NP-hard to approximate
within a n1−ε factor, for any 0 < ε < 1, even for instances in which there is only
one gene per species in the input trees, and even if each gene appears in at most one
input tree. Although it has not been proven yet, MinSGT is conjectured NP-hard
for the DL reconciliation cost, as accounting for losses in addition to duplications is
unlikely to make the problem simpler.

We developed a dynamic programming algorithm for MinSGT with the DL
reconciliation cost, which has a time complexity exponential in the number of input
trees. The algorithm constructs the supertree G from the root to the leaves. At each
step, i.e., for each internal node x being constructed in G, all possible bipartitions
(Bl(x), Br (x)) that could be induced by x are tried, and the iteration continues on
each of Bl(x) and Br (x). The goal is to find the bipartition of Γ , that leads to the
minimum DL reconciliation cost at the root. At each step, corresponding to a node
x , the reconciliation cost is computed from a local reconciliation cost at x , and from
the best reconciliation cost of the two clusters of the considered bipartition. Because
of the constraint of being compatible with the input gene trees only a subset of the
bipartition set need to be tested at each step.

Property 1 Let G = {G1, . . . ,Gk} be a set of gene trees. The root of a supertree G
compatible with G subdivides

⋃k
i=1 L(Gi ) into a compatible bipartition (Bl, Br ),

i.e., a bipartition such that, for each i s.t. 1 ≤ i ≤ k, either: (1) L(Gi ) ⊆ Bl ; or (2)
L(Gi ) ⊆ Br ; or (3) L(Gil ) ⊆ Bl and L(Gir ) ⊆ Br ; or (4) L(Gil ) ⊆ Br and L(Gir ) ⊆
Bl .

Let B(G1, . . . ,Gk) be the set of all possible combinations of choices resulting
from Property 1 (see Fig. 5.7 for an example). Notice that not all such combinations
are valid bipartitions. For instance in Fig. 5.7, the first bipartition (top-left) cannot
be valid if G1 and G2 share a leaf with the same label, as a gene cannot be sent both
left and right. These cases, however, can be detected easily by verifying the leafset
of Bl and Br .

Denote by MinSGT (G1, . . . ,Gk) the minimum DL reconciliation cost of a
supertree compatible with G = {G1, . . . ,Gk}. The main recurrence formula of the
dynamic programming algorithm is stated as follows.
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Fig. 5.7 An illustration of the seven valid bipartitions for two trees G1 and G2. Each bipartition
is obtained by “sending” L1 ∈ {L(G1), L(G1,l ), L(G1,r ),∅} in the left part, and the complement
L(G1) \ L1 in the right part. The same process is then applied to G2. The set B(G1,G2) consists
of the set of all possible combinations of choices, after eliminating symmetric cases and partitions
with an empty side

Theorem 2 Let G = {G1, . . . ,Gk} be a set of gene trees.
1. MinSGT (G1, . . . ,Gk) = 0 if | ⋃k

i=1 L(Gi ) | = 1 (Stop condition);
2. Otherwise,

MinSGT (G1, . . . ,Gk) =

min
(Bl ,Br )∈B (G1,...,Gk )

⎧⎨
⎩
cost (Bl , Br )+
MinSGT (G1|Bl , . . . ,Gk|Bl )+
MinSGT (G1|Br , . . . ,Gk|Br )

⎫⎬
⎭

Note that, given a bipartition (Bl, Br ) ∈ B(G1, . . . ,Gk), for each i such that
1 ≤ i ≤ k, Gi |Bl and Gi |Br are equal either to ∅ or Gi or Gil or Gir . Thus, Gi |Bl

and Gi |Br are always either empty trees or complete subtrees of Gi . Furthermore,
the existence of a compatible bipartition, at each step, follows from the fact that the
input gene trees are assumed to be consistent.

In [41] we show how Theorem 2 can be modified to account for inconsis-
tencies between gene trees, by adding a third equation: If | ⋃k

i=1 L(Gi ) | > 1
and | B(G1, . . . ,Gk) | = 0, MinSGT (G1, . . . ,Gk) = +∞. We also show that
|B(G1, . . . ,Gk)| ≤ ( 4

k

2 ) − 1, resulting in the time complexity of the overall algo-
rithm being O((n + 1)k × 4k × k), where n is the maximum number of nodes in a
tree Gi .
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5.7 A Unifying View for the DL Model

The polytomy-based and supertree-based framework for gene tree correction have
been developed separately, considering separate assumptions and constraints. In the
absence of a unifyingmodel, the conservative or permissive nature of each framework
with respect to the other can only be tested empirically. A conceptual breakthrough
is the discovery that, for the DL model, the two frameworks are in fact two special
cases of a more general one: LabelGTC expressed in terms of a 0–1 edge-labeled
gene tree [26], and TripletGTC expressed in terms of preserving triplets [26]. Here,
we focus on LabelGTC.

Given an initial tree G for a gene family Γ , the correction problem can be defined
as finding a “better tree”G ′ according to a reconciliation cost. The various versions of
the problem differ on the flexibility we have in modifying G. Regarding which parts
ofG should be preserved, an intuitive way is to take advantage of the support on each
branch (x, y)which reflects the confidence we have on L(Gy) being a separate clade
in the gene family. Hence, we could allow modifications only on weakly supported
branches, i.e the ones with a support below a given threshold, while preserving all
well-supported branches. Using a threshold, we therefore obtain a 0–1 edge-labeling
of E(G), where 0 indicates a low support and 1 a high support.

If G further contains a set of separated subtrees whose topologies are to be
“trusted”, they should also be preserved during correction. For example, ortholog
groups that agree with the species tree and were separately obtained to build G may
be trusted.

Accordingly, we describe below the most general gene tree correction problem
(see Fig. 5.8 for an illustration), where a covering set of subtrees CG for G is a set of
separated subtrees ofG,CG = {Gx1 ,Gx2 , . . . ,Gxn } such that

⋃n
i=1 L(Gxi ) = L(G),

and a 0–1 edge-labeling for G is a function f defined from the set of edges E(G) to
{0, 1}. In the following formulation, edge labels are ignored for the trees of CG . For
an extension that considers edge-labeling inside the covering set, see [26].

Label Respecting Gene Tree Correction (LabelGTC) Problem:
Input: A species tree S, a gene tree G, a covering set of trees CG for G and a 0–1
edge-labeling f for G.
Output: A supertree G ′ for CG of minimum reconciliation cost such that: if
(x, y) ∈ E(G) \ E(CG) and f (x, y) = 1, then there is an edge (x ′, y′) in E(G ′)
such that L(Gy) = L(G ′

y′).

When no information on “trusted” separated subtrees is available, each tree of CG

is simply restricted to a leaf of G, and CG thus refers to the leafset of G.
In the following, we reformulate the polytomy-related (Sect. 5.5) and supertree-

related (Sect. 5.6.2) correction problems according to a 0–1 edge-labeled gene tree
(see Fig. 5.9 for an illustration of the problems). We then show that they are special
cases of the general LabelGTC problem.
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Fig. 5.8 (Figure modified from [26]; use permitted under the Creative Commons Attribution
License CC-BY 3.0) Left. A species tree S for Σ = {a, b, c, d, e}, a reconciled 0–1 edge-labeled
gene treeG for Γ = {a1, b1, c1, c2, d1, d2, d3, e1, e2, e3}where each leaf xi denotes a gene belong-
ing to genome x , and a covering set CG of subtrees for G indicated by blue circles around each
subtree. Rectangular nodes represent duplications, black dots are speciations and dotted lines are
losses. Right. A supertree for CG of minimum reconciliation cost (cost of 3) respecting the edge-
labeling of G

Fig. 5.9 (Figure from [26]; use permitted under the Creative Commons Attribution License
CC-BY 3.0) A species tree S for Σ = {a, b, c, d, e} and a gene tree G for Γ =
{a1, b1, c1, c2, d1, d2, d3, e1, e2, e3}with a covering set CG of subtrees for G as in Fig. 5.8 (without
the 0–1 labeling of edges). Bottom left. A polytomy resolution for CG of minimum reconciliation
cost (cost of 3). Bottom right. A supertree for CG of minimum reconciliation cost (cost of 2). Top
right. A triplet-respecting supertree for CG of minimum reconciliation cost (cost of 5). Note that
the solutions for the TRS, SGT and PolyRes problems may differ from the optimal supertree for the
LabelGTC problem, because of the 0–1 edge-labeling. In this particular case, the optimal supertree
for the SGT problem is identical to the one returned for LabelGTC in Fig. 5.8

In the general version of the polytomy resolution problem, all weakly supported
internal branches of G are contracted, leading to a non-binary tree Gnb. The goal is
then to find a binary refinement of Gnb minimizing the reconciliation cost.

Mutiple Polytomy Resolution (M- PolyRes) Problem:
Input: A species tree S and a 0–1 edge-labeled gene treeG and the treeGnb obtained
from G by contracting edges labeled 0;
Output: A binary refinement of Gnb minimizing the reconciliation cost.
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In the simplest form of the polytomy resolution problem, we have a single poly-
tomy which consists of a non-binary node at the root of Gnb. The subtrees rooted at
the children of r(Gnb) are the “trusted” partial trees that should remain subtrees of
the final tree (see the tree obtained from PolyRes in Fig. 5.9).

Polytomy Resolution (PolyRes) Problem:
Input: A species tree S, a gene tree G and a covering set of trees CG for G.
Output: A supertree G ′ forCG of minimum reconciliation cost such that for any tree
Gi ∈ CG , G ′

|L(Gi )
= Gi .

Now recall the MinSGT correction problem introduced in Sect. 5.6.2, but in the
simplest case of separated gene trees.

SuperGenetree (SGT) Problem:
Input: A species tree S, a gene tree G and a covering set of trees CG for G.
Output: A supertree G ′ for CG of minimum reconciliation cost.

To avoid having a supertree grouping genes that are far apart in the original tree,
we also introduced, in [41], an alternative version of the problem restricting the out-
put space to supertrees preserving the topology of any triplet of genes taken from
three different input subtrees of CG . A formulation of the triplet-based constrained
supertree problem follows.

Triplet- Respecting SuperGeneTree (TRS) Problem:
Input: A species tree S, a gene tree G and a covering set of trees CG for G.
Output: A supertree G ′ for CG of minimum reconciliation cost respecting the fol-
lowing property: for any triplet (a, b, c)where a, b and c are genes of Γ being leaves
of three different trees of CG , G ′

|{a,b,c} = G |{a,b,c}.

The difference between the TRS and SGT problems is illustrated in Fig. 5.9. The
solution of the SGTProblem shown in that figure is not a solution of the TRS problem
as the triplet (a1, c1, c2), where each gene belongs to a separate subtree of CG , has
the topology (a1, (c1, c2)) in the SGT tree while it has the topology ((a1, c1), c2) in
G.
A unifying view: Theorem 3 shows that the polytomy-related and supertree-related
problems are in fact special cases of the general LabelGTC problem. We begin by
introducing some notation.

Given a covering set of subtrees CG for G, we say that an edge (x, y) of E(G) \
E(CG) is a terminal edge if y is the root of a tree in CG . Any other edge in E(G) \
E(CG) is called a non-terminal edge (see Fig. 5.10 for an illustration).

Theorem 3 Let G be a 0–1 edge-labeled gene tree and CG be a covering set for G.
Then the LabelGTC Problem is reduced to the:
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Fig. 5.10 (Figure from [26]; use permitted under the Creative Commons Attribution License CC-
BY 3.0) (1) A gene tree G with a covering set CG composed of 7 subtrees indicated as triangles.
The set E(G) \ E(CG) contains 7 terminal edges (dotted lines) and 5 non-terminal edges (solid
lines). (2), (3) and (4) are three 0–1 edge-labeling corresponding respectively to the PolyRes, SGT
and TRS problems. (5) is a general input of the LabelGTC problem

1. M-PolyRes Problem if CG = L(G); Otherwise:
2. PolyRes Problem if all non-terminal edges are labeled 0, and all terminal edges

are labeled 1;
3. SGT Problem if all non-terminal and terminal edges are labeled 0;
4. TRS Problem if all non-terminal edges are labeled 1, and all terminal edges are

labeled 0.

Finally, we have developed an algorithm, called LabelGTC, handling the general
version of the problem, not represented by any of the special cases reflected in
Theorem 3. For any edge (x, y) in E(G) \ E(CG) labeled 1, there should exist a
node y′ in the final corrected tree G ′ such that L(y′) = L(y). So the subtree G ′

y′
of G ′ for the subset L(Gy) can first be constructed independently of the remaining
nodes of G ′, and then grafted at the appropriate location in a way minimizing the
reconciliation cost. The LabelGTC algorithm proceeds iteratively, in a bottom-up
order, on subtrees Gy with parental edge (x, y) fitting the above criterion, and is
recursively called to reconstruct G ′

y′ . Each solution G ′
y′ is implicitly treated as a leaf

in subsequent calls to avoid modifying its content.
In [26], we showed that the time complexity of the algorithm is related to the

time complexity of MinSGT , which makes it exponential in the number of terminal
subtrees. More precisely, the algorithm runs in time O(4k · (n + 1)k · k), where n =
|Γ | and k = |CG |.
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5.8 Discussion

Efficient pipelines for gene tree inference should typically include accurate gene
sequence alignment tools and use inference methods combining information from
both micro-evolutionary (sequence level) and macro-evolutionary (genome level)
information. In the recent years, new algorithms improving the accuracy of sequence
alignment and gene tree inference have been described.

In particular, probabilistic gene tree construction methods relying on complex
evolutionary models that account for both sequence and species tree data have been
developed [2, 4, 66, 67, 76, 84, 86]. These methods unfortunately present some
drawbacks inherent to probabilistic methods, namely the huge computational time
associated with the numerical integration of the likelihood, and the prior analyses
required to satisfy the input requirements (e.g., dating the species tree).

In practice, alternative parsimony-based approaches, a posteriori correcting gene
trees inferred fromsequence-only datawith species tree information, are used instead.
Such algorithms, although limited in some aspects when compared to probabilistic
ones, have consistently produced trees with high accuracy, while being much faster.
This time efficiency allows applying the correction method to a wide set of data. For
example, in [60], we used ProfileNJ to correct the PhyML trees built on the whole
Ensembl Compara gene families (20,519 families in total). According to several
criteria, including likelihood, reconciliation score, and ancestral genome content,
these corrected trees constitute an arguably better dataset than the one stored in the
Ensembl database.

Another advantage of parsimony methods is that they can be easily extended
to consider other sources of information. For example, gene order may provide
information on gene orthology and paralogy. In fact, two synteny blocks, i.e., two
chromosomal segments (in the same genome or in two different genomes) containing
genes form the same gene families are likely to have a common ancestor. Depending
on whether they diverged from a speciation or a duplication event, gene pairs in the
two synteny blocks will either be all orthologs or all paralogs. This information has
been considered for correcting a gene tree in [44, 46].

Alternatively, functional similarity between genes is also, usually, a good indicator
for orthology [3, 29]. We are presently exploring ways to efficiently use scores based
on Gene Ontology annotations to establish terminal preserved trees in LabelGTC.

The main difficulty remains how to integrate all the developed algorithmic tools,
each handling a given type of information on genes and trees, into a single robust
framework for gene tree reconstruction. In addition, rather than applying corrections
in an incremental manner, with the risk of obtaining very different trees depending
on the order of execution, the challenge is to consider the variety of sequence, func-
tional, order and evolutionary information all together in a single algorithm. The
LabelGTC algorithm, considering polytomy resolution and supertree reconstruction
in a unifying framework is an effort in this direction. However, fitness to sequence
information may still be lost after correction, unless we constraint the output to be
statistically equivalent to the best maximum likelihood tree.
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Therefore, approaches suitable for the resolution of Multi-Objective Optimiza-
tion Problems (MOOP) have to be explored. In this context, we have developed
GATC [59], a genetic algorithm minimizing a measure combining both tree likeli-
hood (according to sequence evolution) and a reconciliation score that accounts for
HGT. An advantage of this approach is its ability to improve search efficiency by
exploring a population of trees at each step. Althoughmuch slower than deterministic
methods for correction, GATC outperforms all these methods in terms of accuracy.

From an algorithmic point of view, a lot remains to be done. Unifying the diversity
of evolutionary models and datasets is still far from being reached and raises the
interesting problem of howwe can simultaneously account, in the same evolutionary
model, for sequence evolution as well as duplications, losses, HGTs, recombination,
hybridization, and ILS. Interestingly, someof themethods developed for these events,
often taken separately, might bemore related than expected. For example, as we show
in Fig. 5.11, the parsimony method described in [95] for reconciling a binary gene
tree with a binary species tree, while accounting for duplications, losses and ILS (see
Sect. 5.3.3), may be compared to the strategy using MinSGT that we explored in
Sect. 5.6.2. The latter consists of removing upper branches of the gene tree, keeping
speciation trees, i.e., subtrees with only speciation nodes, and then using a supertree
method to reconstruct a most parsimonious supertree containing them all. To which
extent the two methods are comparable from a theoretical point of view? How can
the supertree method be applied to account for ILS? Can we take advantage of the
similarity between the two problems to design more efficient algorithms than the
exponential dynamic programming algorithm developed for MinSGT ? These are
few questions that will be considered in future developments.

Fig. 5.11 (i) The same evolution with ILS represented in Fig. 5.4; (ii) The locus tree inferred by
DLCpar [95], inducing one duplication at the root and one loss. (iii) An alternative explanation of
the gene tree with ILS, the duplication occurring lower in the species tree, and no loss. This most
parsimonious DL history with ILS is not inferred by DLCpar, however the hill-climbing heuristic
described in the same paper did find it.; (iv) The gene tree/species tree reconciliation leading to two
duplications and four losses; (v) The set of largest speciation subtrees in the gene tree; (v) The tree
obtained by MinSGT reflecting the most parsimonious history represented in (iii)
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As we have no direct access to the past, it is difficult to objectively evaluate the
accuracy of gene tree reconstruction methods. The most intuitive way is to com-
pare inferences on simulated gene families, where the “true” evolutionary histories
according to some given model of evolution with controlled parameters, are known.
Aside from tree topology comparison usingmetrics such as the Robinson-Foulds dis-
tance [63, 68], we can also assess how close the evolutionary scenarios inferred are
to the true ones. In [60], we have additionally considered metrics based on ancestral
gene content inferred from reconciliation, and ancestral gene adjacencies [9]. The
latter is particularly useful as measure for gene tree accuracy for linear genomes,
given that at most two adjacencies per gene copy should be expected.

Since good results on simulated datasets do not guarantee the same on real ones,
as theymay not conform to the evolutionarymodel used for simulations, well-studied
gene families for which good trees are available have been used to construct reference
datasets. In this regard, several ongoing works, such as the SwissTree [12] project,
are undertaking great efforts to provide manually curated “gold standard” gene trees.
However, the number of available “gold standard” remains extremely low (19 in
SwissTree) and does not allow extensive covering of themany and intricate pathways
of gene evolution. Therefore, developing new sophisticated frameworks, accounting
for various gene characteristics for producing good benchmarks, is still needed.
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