
Rebeca Marfil
Mariletty Calderón
Fernando Díaz del Río
Pedro Real
Antonio Bandera (Eds.)

 123

LN
CS

 1
13

82

7th International Workshop, CTIC 2019
Málaga, Spain, January 24–25, 2019
Proceedings

Computational Topology
in Image Context

Lecture Notes in Computer Science 11382

Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, Lancaster, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Friedemann Mattern
ETH Zurich, Zurich, Switzerland

John C. Mitchell
Stanford University, Stanford, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

C. Pandu Rangan
Indian Institute of Technology Madras, Chennai, India

Bernhard Steffen
TU Dortmund University, Dortmund, Germany

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

More information about this series at http://www.springer.com/series/7407

http://www.springer.com/series/7407

Rebeca Marfil • Mariletty Calderón
Fernando Díaz del Río • Pedro Real
Antonio Bandera (Eds.)

Computational Topology
in Image Context
7th International Workshop, CTIC 2019
Málaga, Spain, January 24–25, 2019
Proceedings

123

Editors
Rebeca Marfil
Universidad de Málaga
Málaga, Spain

Mariletty Calderón
Universidad de Málaga
Málaga, Spain

Fernando Díaz del Río
University of Seville
Sevilla, Spain

Pedro Real
University of Seville
Sevilla, Spain

Antonio Bandera
Universidad de Málaga
Málaga, Spain

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISBN 978-3-030-10827-4 ISBN 978-3-030-10828-1 (eBook)
https://doi.org/10.1007/978-3-030-10828-1

Library of Congress Control Number: 2018965613

LNCS Sublibrary: SL1 – Theoretical Computer Science and General Issues

© Springer Nature Switzerland AG 2019
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors, and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, express or implied, with respect to the material contained herein or for any errors or
omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

http://orcid.org/0000-0003-1573-5096
http://orcid.org/0000-0001-6184-1629
http://orcid.org/0000-0002-6853-0505
http://orcid.org/0000-0003-3147-0307
https://doi.org/10.1007/978-3-030-10828-1

Preface

This book constitutes the proceedings of the 7th International Workshop on Computa-
tional Topology in Image Context, CTIC 2019, held in Málaga, Spain, in January 2019.
From the 21 proposals submitted, we selected the present 14 contributions that, after
being revised by qualified reviewers, were accepted for presentation. All papers were
accepted for oral presentation.

CTIC 2019 was organized by the Engineering of Integrated Systems and the
Topological Pattern Analysis and Recognition research groups, from the Universities of
Málaga and Seville, respectively. The conference was supported by the University of
Málaga through the I Plan Propio de Investigación. We also thank the Higher Technical
School of Telecommunications Engineering for hosting the event and providing all the
necessary facilities. As with previous editions, CTIC 2019 was also accepted for
publication by Springer as an LNCS proceedings volume.

The papers deal with theoretical issues but most of them place the attention on the
applicability of concepts and algorithms. These were designed to deal with objects and
images, but also with the speech signal. The final application must be, for instance, in
the medical domain or in the robotics one.

It has been a great honor for us to count on the participation of two international
renowned researchers as invited speakers: Carme Torras, Research Professor at the
Spanish Scientific Research Council (CSIC) and head of the Perception and Manipu-
lation group at the Robotics Institute (CSIC-UPC) in Barcelona, and Herbert Edels-
brunner, Professor of Mathematics and Computer Science at the Institute of Science
and Technology Austria (IST Austria) in Klosterneuburg.

Finally, we would like to express our gratitude to the Scientific Committee members
for their helpful comments, which enabled the authors to improve the quality of their
contributions.

January 2019 Rebeca Marfil
Mariletty Calderón

Fernando Díaz del Río
Pedro Real

Antonio Bandera

Organization

CTIC 2019 was organized by the Engineering of Integrated Systems and the
Topological Pattern Analysis and Recognition research groups, from the Universities of
Málaga and Seville, respectively.

Organizing Committee

Rebeca Marfil University of Málaga, Spain
Mariletty Calderon University of Málaga, Spain
Fernando Díaz del Río University of Seville, Spain
Pedro Real University of Seville, Spain
Antonio Bandera University of Málaga, Spain

Scientific Committee

Jacques-Olivier Lachaud
Pascal Lienhardt
Joakim Lindblad
Jeac-Luc Mari
Serge Miguet
Helena Molina-Abril
Marian Mrozek
Mateusz Juda
Nicolas Normandt
Nicolas Passat
Patrizio Frosini
Laurent Funchs
Herbert Edelsbrunner
Pawel Pilarczyk
Sanjoy Pratihar
Pedro Real
Eric Remy
Tristan Roussillon
Ana Romero

Gabriella Sanniti di Baja
Henrik Schulz
Isabelle Sivignon
Natasa Sladoje
Michela Spagnuolo
Robin Strand
Edouard Thiel
Ricardo Uribe Lobello
Antoine Vacavant
José Antonio Vilches
Sophie Viseur
Alexandra Bac
Reneta Barneva
Arindam Biswas
Isabelle Bloch
Srecko Brlek
Didier Coquin
Michel Couprie
Guillaume Damiand

Leila de Floriani
Massimo Ferri
Fabien Feschet
Rocio Gonzalez-Diaz
Aldo Gonzalez-Lorenzo
Isabelle Debled
María J. Jiménez
Bertrand Kerautret
Reinhard Klette
Walter Kropatsch
Guillermo Barcena
Pedro Galindo
Raul Reina Molina
Darian M. Onchis
Vitaliy Kurlin
Akira Nakamura
Nicolai Petkov
María Carmen Escribano

Sponsoring Institution

I Plan Propio de Investigación, Universidad de Málaga, Spain

Contents

Discrete Analog of the Jacobi Set for Vector Fields. 1
A. N. Adilkhanov, A. V. Pavlov, and I. A. Taimanov

Computing and Reducing Slope Complexes . 12
Walter G. Kropatsch, Rocio M. Casablanca, Darshan Batavia,
and Rocio Gonzalez-Diaz

Persistent Homology Computation Using Combinatorial
Map Simplification . 26

Guillaume Damiand and Rocio Gonzalez-Diaz

Inferring Underlying Manifold of Data by the Use of Persistent
Homology Analysis . 40

Rentaro Futagami, Noritaka Yamada, and Takeshi Shibuya

Gaps and Well-Composed Objects in the Triangular Grid. 54
Lidija Čomić

Generating Second Order (Co)homological Information within
AT-Model Context . 68

Pedro Real, Helena Molina-Abril, Fernando Díaz del Río,
and Darian Onchis

Computing the Component-Labeling and the Adjacency Tree of a Binary
Digital Image in Near Logarithmic-Time . 82

Fernando Díaz del Río, Helena Molina-Abril, and Pedro Real

Towards Emotion Recognition: A Persistent Entropy Application 96
Rocío González-Díaz, Eduardo Paluzo-Hidalgo, and José F. Quesada

Harmonic Holes as the Submodules of Brain Network
and Network Dissimilarity . 110

Hyekyoung Lee, Moo K. Chung, Hongyoon Choi, Hyejin Kang,
Seunggyun Ha, Yu Kyeong Kim, and Dong Soo Lee

Persistent 1-Cycles: Definition, Computation, and Its Application 123
Tamal K. Dey, Tao Hou, and Sayan Mandal

A Persistence-Based Approach to Automatic Detection of Line
Segments in Images. 137

Vitaliy Kurlin and Grzegorz Muszynski

On the Nonlinear Statistics of Optical Flow . 151
Henry Adams, Johnathan Bush, Brittany Carr, Lara Kassab,
and Joshua Mirth

Topological Homogeneity for Electron Microscopy Images 166
Helena Molina-Abril, Fernando Diaz del Rio,
Maria P. Guerrero-Lebrero, Pedro Real, Guillermo Barcena,
Veronica Braza, Elisa Guerrero, David Gonzalez, and Pedro L. Galindo

Characterising Epithelial Tissues Using Persistent Entropy 179
N. Atienza, L. M. Escudero, M. J. Jimenez, and M. Soriano-Trigueros

Author Index . 191

X Contents

Discrete Analog of the Jacobi Set
for Vector Fields

A. N. Adilkhanov1, A. V. Pavlov2(B), and I. A. Taimanov3

1 National Laboratory “Astana”, Nazarbayev University, Kabanbay Batyr Ave. 53,
Astana 010000, Republic of Kazakhstan

aadilkhanov@nu.edu.kz
2 North-Eastern Federal University, 677000 Yakutsk, Russia

av.pavlov@s-vfu.ru
3 Sobolev Institute of Mathematics, Novosibirsk State University,

630090 Novosibirsk, Russia
taimanov@math.nsc.ru

Abstract. The Jacobi set is a useful descriptor of mutual behavior of
functions defined on a common domain. We introduce the piecewise lin-
ear Jacobi set for general vector fields on simplicial complexes. This
definition generalizes the definition of the Jacobi set for gradients of
functions introduced by Edelsbrunner and Harer.

Keywords: Jacobi set · Vector fields · Simplicial complex

1 Introduction

In this article we give a construction of a piecewise linear analog of the Jacobi
set for vector fields. This set serves as a descriptor of the relation between vector
fields defined on a common domain.

For the gradient fields of Morse functions f1, . . . , fk : D → R, where D is a
domain in R

N , or more generally an N -dimensional manifold, the Jacobi set is
the subset of D formed by all points at which the gradients of these functions
are linearly dependent. This set can be used for extracting useful information
about the mutual behavior of multiple functions [1]. As Jacobi sets for a pair of
functions on the plane it appears for different reasons in [2] (see also [3]), and in
general form it was introduced in [4].

For applications, it is helpful to have a discrete analog of the Jacobi set, and
such an analog for functions defined on triangulated complexes was introduced
in [4]. In the same article, the problem of extending the proposed methods to
general vector fields was posed. We demonstrate how to do that on the example
of pairs of vector fields on the plane.

This work was supported by the Ministry of Education and Science of the Republic
of Kazakhstan (program 0115PK03029) and Russian Foundation for Basic Research
(grant 15-01-01671a).

c© Springer Nature Switzerland AG 2019
R. Marfil et al. (Eds.): CTIC 2019, LNCS 11382, pp. 1–11, 2019.
https://doi.org/10.1007/978-3-030-10828-1_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-10828-1_1&domain=pdf
https://doi.org/10.1007/978-3-030-10828-1_1

2 A. N. Adilkhanov et al.

2 The Piecewise Linear Jacobi Set

We recall the main definitions and results from [4].
A Morse function on a compact manifold M is a function f : M → R that

has only a finite number of critical points, where the matrix of second derivatives
is nondegenerate and the function values are distinct from each other. For two
Morse functions f, g : M → R defined on a compact manifold M , their Jacobi
set is defined as the set J(f, g) where their gradients are linearly dependent.
Equivalently, J(f, g) can be described as the set of all critical points of functions
hλ = f + λg and eλ = λf + g for all λ ∈ R. For two generic Morse functions f ,
g having no common critical points, J(f, g) is a 1-submanifold of M .

In the discrete case of two functions f , g defined on the vertices of a triangu-
lation K of a d-dimensional manifold, we can extend f and g to PL-functions on
the entire complex K and view each as a limit of a series of smooth functions.
Motivated by this viewpoint, the discrete Jacobi set J(f, g) is introduced [4] as a
1-dimensional subcomplex of K consisting of edges uv, with multiplicity, along
which, in the limit, the critical points of hλ and eλ travel as λ varies.

To state the precise definition, we need some notation. Let K be a simplicial
complex. The star of its simplex σ is the set of all simplices containing σ, and the
link Lk σ consists of all simplices in the closure of the star of σ that are disjoint
from σ. Note that Lkσ is itself a complex. Let h be a real-valued function on
the vertices of a simplicial complex K. For a simplex σ ∈ K, define the lower
link Lkσ in K with respect to h to be the portion of Lk v that bounds the set
of all simplices in the star of v that have v as the vertex with the maximal value
of h.

Consider an edge uv ∈ K. We disregard the edges with g(u) = g(v). Denote
by λ∗ = λ∗(u, v) the value of λ that equalizes the values of the linear combination
f + λg at both ends of the edge: f(u) + λ∗g(u) = f(v) + λ∗g(v). Denote this
linear combination by h: h = f +λ∗g. The link of the vertex u is a triangulation
of a (d − 1)-sphere containing v. The multiplicity of the edge uv is defined as
the sum of reduced Betti numbers β̃i of the lower link Lkuv with respect to
h. The piecewise linear Jacobi set of two functions f , g on K is defined as the
one-dimensional subcomplex J(f, g) of K consisting of all edges having nonzero
multiplicity, together with their endpoints.

We now review the general definition for the special cases of 2- and
3-dimensional simplicial complexes.

In two dimensions, the star of an edge uv consists of two 2-simplices neighbor-
ing along uv, and Lkuv is just two vertices a, b opposite uv in these 2-simplices
(Fig. 1a). Thus, the edge uv belongs to J(f, g) if and only if the values h(a),
h(b) are either both greater or both smaller than the value of h(u) = h(v),
where h = f +λ∗g, and λ∗ = (f(u)− f(v))/(g(v)− g(u)). This condition can be
rewritten in terms of function differences in adjacent vertices. For any function
f : K → R and edge xy, denote df(xy) = f(y) − f(x). Then we can write

uv ∈ J(f, g) ⇔ dh(ua) and dh(ub) have the same sign,
where h = f + λ∗g and λ∗ = df(uv)/df(vu). (1)

Discrete Analog of the Jacobi Set for Vector Fields 3

Fig. 1. The link of an edge in a triangulation of (a) 2-manifold (b) 3-manifold

This condition is actually symmetric in u and v, since dh(vx) = dh(ux)−dh(uv)
for any vertex x, and dh(uv) = 0.

In a triangulation of a three-dimensional manifold, the link Lkuv of an edge
uv is a triangulation of a circle. The multiplicity of an edge uv in the Jacobi set
J(f, g) is equal to the sum of the reduced Betti numbers of the lower link Lkuv
with respect to h:

β̃−1 + β̃0 + β̃1,

where β̃−1 is 1 if the lower link is empty, and 0 otherwise; β̃0 is one less than
the number of connected components in Lkuv if this number is positive, and 0
otherwise; β̃1 is 1 if the lower link is the entire circle, and 0 otherwise.

In Fig. 1b, the link of uv is shown in bold lines. This link is a triangulation
of a circle. Denote its consecutive vertices by a0, a1, . . . , ak−1, and put ak = a0.
As previously, dh(xy) stands for the difference h(y)−h(x). Count the number of
times the difference dh(uai) changes from negative to positive along the circle:

β0 = #{i : dh(uai) < 0 and dh(uai+1) > 0, 0 ≤ i < k}.

Then the multiplicity of the edge uv in J(f, g) is |β0 − 1|. In particular, if the
lower link of the edge uv with respect to h consists of just a single component
that is not the entire circle, the edge does not belong to the Jacobi set.

The functions hλ(v) = f + λg are linear in λ for any given v. Because of
that, any v ∈ Lk u changes its status as inside/outside the lower link of u with
respect to hλ exactly once as λ grows from −∞ to +∞, namely at λ = λ∗(u, v) =
df(uv)/dg(vu). So in dimension 2, the number of connected components β0 in
the lower link of u is either the same at both extremes, or 0 for one of them and 1
at the other. Obviously, for an edge uv /∈ J, passing λ∗(u, v) does not change β0.
For uv ∈ J, passing λ∗ either changes β0 by one or does not change β0 = 1 if on
either side of λ∗ the lower link is all of the link of u. Counting the parity of β0,
we see that the number of edges uv ∈ J for a fixed vertex u, i.e. the degree of u
in J, must be even. A similar argument, after unfolding each multiple critical
point into multiple simple critical points, holds in any dimension:

4 A. N. Adilkhanov et al.

Even-degree lemma [4]. The degree of any vertex u in J is even.

Although the even-degree lemma guarantees that the discrete Jacobi set can
be represented as a continuous polyline, it may contain spurious cycles and
zigzags, becoming inconveniently large. For example, if the simplicial complex
in question is a fine enough regular triangulation of a plane, the discrete Jacobi
set may appear to fill entire 2-dimensional regions on the plane (Fig. 2). A variety
of simplification techniques exist for the smooth as well as discrete versions of
the Jacobi set [6,7].

Fig. 2. Zigzags in a simplicial Jacobi set (red) for functions f = ((x − 1)2 + y2)((x +
1)2 + y2) (dotted level lines) and g = (x − 1)2 + (y − 1)2 (dashed level lines). The
triangulation is obtained from a square grid with step 1

6
. The continuous black line is

the smooth Jacobi set. (Color figure online)

3 The Piecewise Linear Jacobi Set for Vector Fields

The main idea behind our definition is as follows. The gradient

df =
(

∂f

∂x1
, . . . ,

∂f

∂xN

)

of a function f : D → R is in fact a 1-form which is a linear form on vector
fields. Indeed, its value for a vector field X is the derivative of f in the direction
of X:

DXf = Xi ∂f

∂xi
,

where we assume the summation over the repeated index. To obtain the gradient
vector field we have to raise the index by using some non-degenerate quadratic
form gik (usually the inverse of the metric tensor gik):

(∇f)i = gik ∂f

∂xk
,

Discrete Analog of the Jacobi Set for Vector Fields 5

where again we assume the summation over the repeated index k. The Euclidean
metric is given by the tensor

gik = gik =

{
1 for i = k

0 otherwise,

the gradient of the function and the gradient vector field look the same, but
in general coordinates their numerical expressions are different. We refer for
detailed discussion, for instance, to [5].

Since the lowering of the index (the convolution)

Xi → Yk = gikXi

maps linearly dependent vector fields into linearly dependent 1-forms, it is
enough to define the Jacobi sets for 1-forms.

For a triangulated complex K, 1-forms Y are linear functions on oriented
1-chains, i.e., on oriented edges:

Y (uv) ∈ R where uv is an oriented edge inK.

We interpret the Edelsbrunner–Harer definition of the Jacobi set of two gra-
dient vector fields as the definition of the Jacobi set of two 1-forms that are
coboundaries of linear functions on the vertices of K:

Y (uv) = df(uv) = f(v) − f(u).

For a triangulation of a smooth manifold K and a smooth function f : K → R

the discretization of its gradient (covector) field is exactly given by the formula
above where f is evaluated in the vertices of the triangulation.

Given a smooth 1-form ω on a triangulated manifold, we have to construct
a 1-form on oriented edges. The most natural way is to consider an edge as an
oriented path and take an integral of ω over the path:

Y (uv) =
∫ v

u

ω.

For a smooth gradient field df in Euclidean space we get

Y (uv) =
∫ u

v

df = f(v) − f(u).

A non-gradient vector field corresponds to a non-closed 1-form. Circular
integrals of such a form may not vanish, so generally, it is not true that
Y (uw) = Y (uv) + Y (vw).

Let K be a simplicial complex that is a triangulation of a d-dimensional
manifold, and F , G be discrete 1-forms given by their values on all oriented
edges uv of K:

F (uv) = −F (vu), G(uv) = −G(vu).

6 A. N. Adilkhanov et al.

Denote by Hλ the linear combination F +λG. For each edge uv with G(uv) �= 0,
as previously, denote by λ∗ the value of the coefficient that makes this linear
combination vanish along uv:

λ∗ =
F (uv)
G(vu)

, Hλ∗(uv) = 0.

For a vertex w in Lkuv define the average of the values of the form Hλ∗ on the
edges connecting u and v to w:

h(w) =
1
2
(Hλ∗(uw) + Hλ∗(vw)).

Multiplicity of an edge uv is defined as the sum of the reduced Betti numbers of
the lower link of uv with respect to h, and we define the Jacobi set J(F,G) of two
discrete 1-forms F and G as the one-dimensional subcomplex of K consisting of
all edges having nonzero multiplicity, together with their endpoints.

Fig. 3. The edge test for 1-forms on a 2-dimensional complex

In two dimensions (d = 2), this definition means that the Jacobi set of F and
G consists of all edges uv for which the average of the values of Hλ∗ = F + λ∗G
along ua and va has the same sign as the average of its values along ub and vb,
where a and b are the two points of the link of uv (Fig. 3).

uv ∈ J(F,G) ⇔ (Hλ∗(ua) + Hλ∗(va))(Hλ∗(ub) + Hλ∗(vb)) > 0. (2)

Note that, as was the case for the condition (1), this condition is also sym-
metric in u, v. It is symmetric in F and G as well when all values of the forms
F , G on the edges are nonzero.

However, the even degree lemma no longer holds for nongradient 1-forms.
This is illustrated below for the approximation of the Jacobi set for two smooth
1-forms on the plane (Fig. 4). The smooth Jacobi set is the set of points where
the forms are linearly dependent, and is shown with continuous green lines, while
the piecewise linear Jacobi set for the triangulation of a square grid with step
size h = 0.1 is shown in red.

Still, as can be seen in Table 1, with the refinement of the grid the approxi-
mation converges to the smooth Jacobi set.

Discrete Analog of the Jacobi Set for Vector Fields 7

Fig. 4. Continuous Jacobi set (green line) and its piecewise linear approximation for
the forms F (x, y) = (y + 1)dx + 2(x + 1)dy and G(x, y) = (2x − 3y)dx + (2x + 3y)dy,
grid step size h = 0.1 (Color figure online)

Fig. 5. Plane triangulations

In applications, a vector field X is usually given by its coordinates on a plane
grid. A reasonable approximation for the integrals of the corresponding 1-form
Y on the edges are scalar products of the mean value of the vector field on the
edge with the edge vector itself:

Y (uv) =
1
2
(Xv + Xu, uv).

We have also tested our definition for three different regular triangulations
on the plane, shown in Fig. 5: the diagonal grid T1 (invariant with respect to
rotations by π), crossed T2 (invariant with respect to rotations by π/4), and
hexagonal T3 (invariant with respect to rotations by π/6).

8 A. N. Adilkhanov et al.

Table 1. Approximations for the Jacobi set in Fig. 7 for various h and ε

Results of these calculations are shown in Fig. 6. As was the case for the
Jacobi sets of Morse functions, the approximations differ, with no clear winner.

For better connectivity of the produced approximation, the edge test (2) can
be modified to include cases where the absolute value of at least one of the
factors is smaller than some threshold value ε:

J(F,G) = {uv ∈ K | (Hλ∗(ua) + Hλ∗(va))(Hλ∗(ub) + Hλ∗(vb)) > 0.

or |Hλ∗(ua) + Hλ∗(va)| < ε or |Hλ∗(ub) + Hλ∗(vb)| < ε} (3)

This will improve the connectivity at the cost of thickening the Jacobi set.

Discrete Analog of the Jacobi Set for Vector Fields 9

Fig. 6. Piecewise linear Jacobi set of F (x, y) = (y + 1)dx + 2(x + 1)dy and G(x, y) =
(2x − 3y)dx + (2x + 3y)dy for various triangulations on the plane

Fig. 7. The fields f , g and the smooth Jacobi set J(F, G) for the corresponding forms
F (x, y) = y(x2 + y2 +1)dx−x(x2 + y2 − 1)dy, G(x, y) = (2x− 3y− 6)dx+(2x− 3y)dy

10 A. N. Adilkhanov et al.

Fig. 8. The discrete Jacobi set for the nongradient wind speed vector field and the
gradient of temperature over a part of Asia Pacific. GFS forecast data for 1 November
2018 used [8].

In Fig. 7, we show the smooth Jacobi set, and in Table 1 illustrate the depen-
dence of approximation, using the T1 triangulation scheme, on the grid step size
h and the threshold ε in (3) for the forms

F (x, y) = y(x2+y2+1)dx−x(x2+y2−1)dy, G(x, y) = (2x−3y−6)dx+(2x−3y)dy.

As in the case of the Jacobi set for functions, numerically approximated
Jacobi set for vector fields may turn out to be very complicated. Sometimes,
it might be an indication of a strong similarity between the vector fields, as in
Fig. 8. However, it would be interesting to develop methods for its simplification
similar to those proposed in [6,7].

References

1. Edelsbrunner, H., Harer, J., Natarajan, V., Pascucci, V.: Local and global com-
parison of continuous functions. In: Proceedings of 16th IEEE Conference on Visu-
alization, pp. 275–280. IEEE Computer Society (2004). https://doi.org/10.1109/
VISUAL.2004.68

2. Wolpert, N.: An exact and efficient approach for computing a cell in an arrangement
of quadrics. Ph.D. thesis, Universität des Saarlandes (2002)

https://doi.org/10.1109/VISUAL.2004.68
https://doi.org/10.1109/VISUAL.2004.68

Discrete Analog of the Jacobi Set for Vector Fields 11

3. Wolpert, N.: Jacobi curves: computing the exact topology of arrangements of non-
singular algebraic curves. In: Di Battista, G., Zwick, U. (eds.) ESA 2003. LNCS,
vol. 2832, pp. 532–543. Springer, Heidelberg (2003). https://doi.org/10.1007/978-
3-540-39658-1 49

4. Edelsbrunner, H., Harer, J.: Jacobi sets of multiple morse functions. In: Cucker,
F., DeVore, R., Olver, P., Süli, E. (eds.) Foundations of Computational Mathe-
matics, Minneapolis 2002. London Mathematical Society Lecture Note Series, pp.
37–57. Cambridge University Press, Cambridge (2004). https://doi.org/10.1017/
CBO9781139106962.003

5. Novikov, S., Taimanov, I.: Modern Geometric Structures and Fields. American
Mathematical Society, Providence (2006)

6. Natarajan, N.S.: Simplification of jacobi sets. In: Pascucci, V., Tricoche, X., Hagen,
H., Tierny, J. (eds.) Topological Methods in Data Analysis and Visualization: The-
ory, Algorithms, and Applications. MATHVISUAL, pp. 91–102. Springer, Heidel-
berg (2011). https://doi.org/10.1007/978-3-642-15014-2 8

7. Bhatia, H., Wang, B., Norgard, G., Pascucci, V., Bremer, P.T.: Local, smooth, and
consistent jacobi set simplification. Comput. Geom.: Theory Appl. 48(4), 311–332
(2015). https://doi.org/10.1016/j.comgeo.2014.10.009

8. NOAA Operational Model Archive and Distribution System. Data Transfer: NCEP
GFS Forecasts (0.25 degree grid). http://nomads.ncep.noaa.gov/cgi-bin/filter gfs
0p25 1hr.pl?dir=%2Fgfs.2018110100

https://doi.org/10.1007/978-3-540-39658-1_49
https://doi.org/10.1007/978-3-540-39658-1_49
https://doi.org/10.1017/CBO9781139106962.003
https://doi.org/10.1017/CBO9781139106962.003
https://doi.org/10.1007/978-3-642-15014-2_8
https://doi.org/10.1016/j.comgeo.2014.10.009
http://nomads.ncep.noaa.gov/cgi-bin/filter_gfs_0p25_1hr.pl?dir=%2Fgfs.2018110100
http://nomads.ncep.noaa.gov/cgi-bin/filter_gfs_0p25_1hr.pl?dir=%2Fgfs.2018110100

Computing and Reducing Slope
Complexes

Walter G. Kropatsch1(B), Rocio M. Casablanca2, Darshan Batavia1,
and Rocio Gonzalez-Diaz2

1 Pattern Recognition and Image Processing Group 193/03,
TU Wien, Vienna, Austria

{krw,darshan}@prip.tuwien.ac.at
2 University of Seville, Seville, Spain

{rociomc,rogodi}@us.es

Abstract. In this paper we provide a new characterization of cell
decomposition (called slope complex) of a given 2-dimensional contin-
uous surface. Each patch (cell) in the decomposition must satisfy that
there exists a monotonic path for any two points in the cell. We prove
that any triangulation of such surface is a slope complex and explain how
to obtain new slope complexes with a smaller number of slope regions
decomposing the surface. We give the minimal number of slope regions
by counting certain bounding edges of a triangulation of the surface
obtained from its critical points.

1 Introduction

Discrete representations of surfaces in 2.5D like images or digital terrain models
are discretizations of 2-dimensional (2D) continuous surfaces. Important prop-
erties of such surfaces are their critical points: local minima, maxima and saddle
points. These points can be connected by monotonic paths that either go up or
go down. These paths delineate surface patches that can be characterized by the
property that every pair of points inside such a patch can be connected by a
monotonic path: slope regions. Slope regions may be seen as “filling the space
between the critical points of the surface” [8]. A planar triangle is an example
of a slope region and any triangular mesh subdivides the surface into a set of
slope regions. Critical points can appear in many different configurations. Also
the subdivision into slope regions may take different arrangements.

In this paper, we explain how to create and reduce slope complexes (decom-
position of the given 2D continuous surfaces in slope regions), and we also address
the question whether there is a minimal number of slope regions that completely
fill the surface between a given set of critical points.

Similar considerations have been published by Edelsbrunner et al. [3–5] with
the intention to construct a hierarchy of increasingly coarse Morse complexes.
The concept of ‘integral line’ (defined in [3]) has great similarity to the mono-
tonic paths of our approach although we may have less geometric constraints.
c© Springer Nature Switzerland AG 2019
R. Marfil et al. (Eds.): CTIC 2019, LNCS 11382, pp. 12–25, 2019.
https://doi.org/10.1007/978-3-030-10828-1_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-10828-1_2&domain=pdf
https://doi.org/10.1007/978-3-030-10828-1_2

Computing and Reducing Slope Complexes 13

Specifically, our definition does not need smooth surfaces and monotonic paths
do not necessarily follow the steepest slope.

The paper is organized as follows: First we give some basic definitions. We
then introduce slope complexes as abstract cellular complexes built by slope
regions. We then study the properties of the boundaries of the slope regions
and identify particular slope regions, named simple and non-simple triangles,
that serve us to construct slope complexes composed only by triangles. We then
enumerate the conditions to merge slope regions, the basic process to reduce
the number of slopes without affecting the bounding critical points. Finally, we
compute the minimum number of slope regions needed to cover the surface given
its critical points.

2 Preliminaries

Let us introduce the terminology and main definitions which will be used
throughout this paper.

Given a continuous function g : �2 �→ �, a 2-dimensional (2D) continuous
surface S = {(x, y, z) ∈ �3 : z = g(x, y)} can be defined. Given a point p =
(x, y, z) ∈ S, we sometime denote g(x, y) by g(p) by abuse of notation.

Definition 1 (local neighborhood). Let p ∈ �k where k = 1, 2, . . . and r ∈ �,
with r > 0. The local neighborhood of p is a k-dimensional open ball of radius
r and center p, denoted by Bk(p, r), that is the set of points q ∈ �k such that
d(p, q) < r.

Definition 2 (1-extrema). Let a, b ∈ �, with a < b. Let γ : [a, b] → �2 be a
continuous curve and t ∈ [a, b]. If there exists ε > 0 such that g(γ(t)) ≤ g(γ(s)),
for every s ∈ B1(t, ε)∩ [a, b], then γ(t) is a 1-minimum. Similarly, if there exists
ε > 0 such that g(γ(t)) ≥ g(γ(s)), for every s ∈ B1(t, ε) ∩ [a, b], then γ(t) is a 1-
maximum. Finally, γ(t) is a 1-extremum if it is a 1-maximum or a 1-minimum.

Definition 3 (monotonic path). Let a, b ∈ �, with a < b. A monotonic path
π : [a, b] → �2 between p = γ(a) and q = γ(b) is a continuous curve satisfying
that there is no t ∈ (a, b) such that γ(t) is a 1-extrema.

A level curve is a particular case of monotonic path.

Definition 4 (level curve). Let a, b ∈ �, with a < b. A level curve γ :
[a, b] → �2 is a continuous function such that there exists a constant c ∈ �
where g(γ(t)) = c, for all t ∈ [a, b].

A monotonic path is either non increasing or non decreasing and, then, it is
always bounded by a 1-maximum and a 1-minimum. This allows us to provide
monotonic curves (excluding level curves) with a natural orientation (in our
illustrations: an arrow from point a to point b means an edge with endpoints a
and b such that g(a) > g(b).

Different types of points in S can be described depending on their 2-
dimensional local neighborhood.

14 W. G. Kropatsch et al.

Definition 5. Let p be a point of �2. Three categories for p can be distinguished:

– For a 2-minimum point p there exists r > 0 such that g(p) < g(q), for every
q ∈ B2(p, r).

– For a 2-maximum point p there exists r > 0 such that g(p) > g(q), for every
q ∈ B2(p, r).

– A point p is a saddle point if for all r > 0 there are two points that cannot be
connected by a monotonic path in B2(p, r).

A 2-extremum is either a 2-minimum or a 2-maximum and a critical point is
either a 2-extremum or a saddle point. Critical points are also referred to and
denoted as follows: 2-min 	, 2-max ⊕ and saddle ⊗.

Observe that two 2-maxima (resp. 2-minima) cannot be connected by a mono-
tonic path. Equivalently, two 1-maxima (resp. 1-minima) cannot be connected
by a monotonic path (except for level curves).

Remark 1. In this paper, we exclude plateaus (connected component of points
with the same g-value) from the considered surfaces that emerge from the expan-
sion of critical points.

3 Slope Complexes

Roughly speaking, a finite regular CW complex [6] can be seen as a partition, in
basic building blocks called cells, of a given topological space X. More concretely,
for each k-dimensional cell (k-cell) c in the partition of X, there exists a homeo-
morphism f (attaching map) from the k-dimensional closed ball to X such that
the restriction of f to the interior of the closed ball is a homeomorphism onto
the cell c, and the image of the boundary of the closed ball is a homeomorphism
onto the union of a finite number of cells of the partition, each having dimension
less than k. The closed k-cell c̄ is the image of such homeomorphism f .

The CW complexes considered in this paper will be cell decomposition,
denoted by K[S], of the 2D continuous surface S, obtained from a continuous
function g : �2 �→ �, satisfying that all critical points of the surface are 0-cells.

Observe that only 0-, 1- and 2-cells are permitted in K[S]. From now on, we
use equivalently the notions vertex, edge, and region as 0-cell, 1-cell and 2-cell
respectively similar to [3]. Finally, observe that the boundary of a 2-cell is a
continuous closed curve.

Let us introduce the main concept of our paper, slope regions, which are
different to the regions defined in [3].

Definition 6 (slope region). Let K[S] be a cell decomposition of a 2D con-
tinuous surface S. A slope region R is a 2-cell in K[S] with the constraint that
all pairs of points in R are connected by a monotonic path inside R, where R is
the closure of R (that is, R together with its boundary).

Definition 7 (slope complex). A cell decomposition K[S] of a 2D continuous
surface S is a slope complex if all its 2-cells are slope regions.

Computing and Reducing Slope Complexes 15

Now we describe the boundary of any slope region.

Lemma 1. The boundary of a slope region is composed by either a level curve
or two monotonic paths connecting a 1-maximum and a 1-minimum.

Proof. The boundary of the slope region is a continuous closed curve γ : [a, b] →
�2, since a slope region is a 2-cell of K[S]. This curve can be a level curve,
which is a trivial monotonic path. Alternatively, suppose that the g-values (i.e.
the values of g) along the boundary vary. Consider the values of g(γ(t)), with
t ∈ [a, b]. Reasoning now by contradiction, assume that γ(t) have two 1-maxima
and two 1-minima. Since γ(t) is a continuous curve, observe that 1-minima and
1-maxima alternate along γ(t). By definition of a slope region, the two 1-maxima
are connected by a monotonic path, denoted by πmax, inside the slope region.
All points along πmax have g-values between the two 1-maxima, that is, not
below the smallest 1-maximum. The path πmax splits the slope region into two
or more sub-regions. The two 1-minima appear in two different sub-regions and
they have smaller g-values than the smallest maximum. By the definition of
slope region, there is also a path between the two 1-minima, denoted by πmin,
which cross πmax because the extrema are alternating along γ(t). Let us see that
πmin cannot be monotonic. Let p = πmax ∩ πmin. Notice that g(p) is a value
greater than or equal to the smallest 1-maximum and the smallest 1-maximum
is greater than all the possible g-values between the two 1-minima. It means
that the g-values in πmin first increase from one 1-minimum to g(p) and then
the g-values decrease from g(p) to the other 1-minimum. Hence, πmin is not a
monotonic path. Consequently there exists only one local 1-maximum and one
local 1-minimum along the boundary of a slope region. �

The boundary of a slope region R can also be folded such that a part of the
boundary lies “inside” the region R. When following the boundary such parts
are traversed twice.

Definition 8 (inner and outer boundary point). Let R be a slope region
bounded by a continuous closed curve γ : [a, b] → �2. Let p ∈ �2 be a point for
which there exists t ∈ [a, b] such that γ(t) = p. The point p is an inner point of
R if there exists r > 0 such that B2(p, r) \ Γ ⊆ R, being Γ = {γ(t) : t ∈ [a, b]}.
The outer boundary of R is the set of points of Γ that are not inner boundary
points.

Observe that the outer boundary of R is a simple continuous closed curve.
The following result characterizes the critical points on the inner boundary

of a slope region. They can be 2-extrema but never saddle points.

Lemma 2. The boundary of a slope region R may contain as inner boundary
points: a 2-maximum, a 2-minimum, or both simultaneously, but never a saddle
point.

Proof. Neither two 2-maxima nor two 2-minima can be connected by a mono-
tonic path, then the first part of the statement is trivial. Now, let us see that a

16 W. G. Kropatsch et al.

saddle point cannot be an inner boundary point of a slope region. A saddle point
is characterized by its local neighborhood. By contradiction, assume that R is
a slope region with an inner boundary point x being a saddle point. Consider a
small enough r such that B2(x, r) ⊆ R, then, by definition of saddle point, there
exists p and q in B2(x, r) such that there is no monotonic path between them,
which is a contradiction with the definition of slope region. �

Fig. 1. Prototype of a slope region R.

We finish this section by giving a prototype of a general slope region R.
Figure 1a shows all the components that R can have. We use following notation
in describing a traversal of a complete boundary: curves with arrows indicate
descending orientation in g-values, the boundary segments in which the boundary
curve is subdivided are denoted with characters a, b, c, d, e, f and g in counter
clockwise orientation around the boundary of R with notations ˆ and ,̌ where
for example f̂ denotes that we follow the boundary uphill and ǎ denotes that
we follow the boundary downhill (see Fig. 1d for the intuition of descending,
ascending, downhill and uphill).

Computing and Reducing Slope Complexes 17

Following the outer boundary we encounter following monotonic paths: ǎ, ĉ, f̂
connecting the up-most (highest g-value) point u with the lowest point l. While
the inner boundary includes b̌, b̂, d, e, ĝ, ǧ. Boundary segments d and e are level
curves triggered by the hole • and has no orientation. All inner boundaries are
single monotonic paths connecting the outer boundary to the inner boundary
points of R which are traversed twice and return to the same outer boundary
point where they started. A complete traversal of the boundary of this slope
region R is

(u, ǎ, l, b̌,	, b̂, l, ĉ, h, d, •, e, h, f̂ , u, ĝ,⊕, ǧ).

Furthermore, R may encapsulate one or more other slope regions which for
R appear as holes. See Fig. 1b in which the boundary of the hole is spotted
in the contour plot of a grayscale image (Fig. 1c) with similar configuration as
prototype. Figure 1d is the mesh plot, where the height corresponds directly
to the intensity (g-value) of the image. The boundary of these holes and its
connection d and e to the point h on the outer boundary of R should all be level
curves.

The other possible cases of the slope region R may exclude any one of the
2-extrema 	,⊕ or the holes •. The absence of 	 will infer that l becomes the
1-minimum of R. Similarly in absence of ⊕, u becomes the 1-maximum of R.

The formal proof that this general prototype is always a slope region is left
to future work. The idea of the prove is as follows1: Take two points p and q in
R, then g−1(g(p)) and g−1(g(q)) are level curves inside R. These level curves:
either (1) cross the connection between the 2-max the 2-min or one hole to the
outer boundary; or (2) connect the two monotonic paths of the outer boundary.
Then it is possible to construct a monotonic path from p to q following the level
curves inside R and the monotonic paths in the boundary of R.

4 Creating Slope Complexes

In this section we prove that a triangulation of a 2D continuous surface is a slope
complex.

A simple triangle is defined as a simply-connected planar region in �3 (i.e. a
connected region without holes and embedded in a plane not parallel to xz- or
yz-plane in �3) bounded by three edges (not necessarily straight line segments)
connecting three vertices a, b and c. Figure 2 shows the different types of triangles
that exist. We distinguish between simple triangles (Fig. 2a) and non-simple
triangles (Fig. 2b and c) where two of the three vertices coincide. Observe that
the edge from a to b is counted twice in Fig. 2b.

Lemma 3. Simple and non-simple triangles are slope regions.

Proof. Since any (simple or non-simple) triangle T is simply-connected and
embedded in a plane, there is a monotonic path connecting any two points in T .

�
1 For “gray value” z, g−1(z) = {p ∈ �2 | g(p) = z} is the level set of gray value z.

18 W. G. Kropatsch et al.

Fig. 2. Simple and non-simple triangles.

As immediate consequence, next result follows.

Corollary 1. A triangular mesh is a slope complex.

Let us explore the triangular slope regions. First, consider a simple triangle
abc in �3 with edges being monotonic paths. Assume g(a) ≥ g(b) ≥ g(c), then
we have the three following cases:

1. If g(a) = g(b) = g(c), the triangle is a plateau (i.e., all points of the triangle
having same g-value).

2. If g(a) = g(b) and g(b) > g(c) then, the triangle have one edge with constant
g-value, vertices a and b are 1-maxima and vertex c is a 1-minimum. If g(a) >
g(b) and g(b) = g(c) we can follow a similar reasoning than above.

3. If g(a) > g(b) > g(c) (Fig. 2a), then, vertex a is a 1-maximum and vertex c is
a 1-minimum along the boundary of the triangle and vertex b is in-between.
Vertex a does not need to be a 2-maximum since other neighbors outside
the triangle can be larger. Analogously, vertex c does not need to be a 2-
minimum. Vertex b cannot be a 1-maximum or a 1-minimum. If we restrict
our vertices to 2-dimensional critical points then b must be a saddle point.
We discuss these cases below (Sect. 6.1).

Second, in the non-simple case, the outer boundary (self-loop attached to ver-
tex a) is a level curve surrounding vertex b. Since g(b) �= g(a) vertex b is an
extremum surrounded by level curves with g-values between g(a) and g(b). The
edge connecting vertices a and b is a monotonic path. Any point p inside the
non-simple triangle must satisfy that g(p) ∈ [min(g(a), g(b)),max(g(a), g(b))]
and can be connected to the edge (a, b) following a level curve.

The third type of triangle (Fig. 2c) contains a self-loop attached to vertex
a inside the triangle as a level curve. Observe that a sub-complex bounded by
the level curve can exist but is not part of the triangle, seen from the triangle
it is a hole. In this case g(a) �= g(b) are the 1-extrema of the triangle and the
connections between vertices a and b are monotonic paths. The points in the
loop has the same g-value as g(a) and any point of the loop as well as inside the
triangle can be connected to vertex b by a monotonic path.

Computing and Reducing Slope Complexes 19

5 Merging of Slope Complexes

In this section we establish conditions to obtain a new slope region as a result
of merging two slope regions. The final aim is to start from a slope complex
(which can be, for example, a triangular mesh) and produce a new slope complex,
homeomorphic to the former, obtained by merging slope regions, decreasing, in
this way, the initial number of slope regions of the complex.

Fig. 3. Merging two slope regions R1 and R2

Let R1 and R2 be two slope regions sharing a common edge (a, b). Since
R1 and R2 are slope regions then the edge (a, b) is a level curve or a monotonic
path. Without loss of generality, Suppose g(a) ≥ g(b). Let t1, s1, t2, s2 denote the
1-maxima and 1-minima of R1 and R2 respectively. Then, the two slope regions
R1 and R2 can be merged into a new slope region U , by removing the common
edge (a, b) if the following properties are satisfied:

1. The common edge is not a self-loop, that is, vertex a is different to vertex b.
2. One of the two 1-minima is on the common boundary.
3. One of the two 1-maxima is on the common boundary.

Now, let us see that there exists a monotonic path between two any points of U :

• Any pair of points in R1 are connected by a monotonic path because R1 is a
slope region. The same is true for R2.

• Any pair of points r1 ∈ R1 and r2 ∈ R2 with g(a) ≥ g(r1), g(r2) ≥ g(b) can
be connected by a level curve to points on the common edge (a, b) which is a
level curve or a monotonic path.

20 W. G. Kropatsch et al.

• We now consider points outside the range of [g(b), g(a)]. Let us assume that
g(t1) > g(a) (see Fig. 3). Then, clearly, point t1 is not on the common edge
(a, b). By requirement 3, point t2 must be on the common edge (a, b). Hence
for all points r2 ∈ R2, g(r2) is not higher than g(t2) and then any point r2 ∈
R2 can be connected by a monotonic path to point r1 ∈ R1 for g(r1) > g(t2).
The same holds for the case of g(t2) > g(a) with the roles of R1 and R2

interchanged. Analogously we argue for the 1-minima s1 and s2.

6 On the 1-Skeleton of a Slope Complex

The 1-skeleton of a slope complex K[S] is the graph formed by the vertices and
edges of K[S]. Recall that K[S] should contain at least all the critical points of
the 2D continuous surface S. Now, in order to provide the minimum number of
slope regions that a 2D continuous surface S can be decomposed, we assume that
the vertices of K[S] are only the critical vertices of S, i.e., denote by G = (V,E)
the 1-skeleton of K[S], then V (the set of vertices of K[S]) coincides with the
set of critical points of S, being E the set of edges of K[S]. We also assume that
there is only one infinite region called the infinite background. Finally, observe
that G is planar. The set of maxima, minima and saddle vertices will be denoted
respectively by V⊕, V� and V⊗. The set of edges between the set of vertices will
be denoted by E⊕, E� and E⊗, respectively.

In Subsect. 6.1 we explore the induced subgraphs G⊗ ⊂ G of saddle vertices
and in Subsect. 6.2 we consider induced subgraphs G± = G\G⊗ ⊆ G of extrema
only.

6.1 Forest of Saddles

Adding the constraints given in [3] to the 2D continuous surface S, we can
assume that saddle points are vertices of G = (V,E) of degree 4, since saddle
points with higher degree can be unfolded into a set of connected saddle points
of degree 4 (see [3]). Besides, vertices can be characterized by edges incident to
it and their respective orientation: (1) all the edges incident to a saddle point
have alternating directions; (2) the in-degree of a maximum is 0; and (3) the
out-degree of a minimum is 0.

Remark 2. Every extremum on the boundary of any slope region with more than
two vertices is adjacent to a saddle.

By Remark 3, saddle points can be connected but cannot form cycles.

Remark 3. Any connected configuration of saddles G⊗ = (V⊗, E⊗) ⊂ G is
acyclic, i.e., they form tree structures.

Therefore the saddle points form a forest.

Computing and Reducing Slope Complexes 21

Lemma 4. Let G⊗ = (V⊗, E⊗) be the subgraph of G induced by the set of
vertices V⊗ and let Ti, i = 1, . . . n, be the n maximal connected components of
G⊗ which are trees by Remark 3. Let V⊗,i, i = 1, . . . n, be the set of vertices of
Ti. Let us focus on the edges in (V⊗,i × V) ∩ E of the ith connected component
of G⊗ and ignore if extrema at the leafs are shared by several trees.

1. If the tree Ti contains |V⊗,i| = ki connected saddle points then there are
2(ki + 1) pending edges (i.e., edges incident to leafs). The end points of
these pending edges are extrema determined by the orientation of the edges.
That is, if (s, v) is one of these pending edges then (s, v) ∈ V⊗,i × V� or
(v, s) ∈ V⊕ × V⊗,i.

2. Furthermore the pending edges have alternating orientations leading to an
alteration of ki + 1 minima and ki + 1 maxima as leafs when moving around
the tree.

3. The extrema of a connected component of saddle points are connected by
monotonic paths formed by the oriented edges of the internal nodes of the
tree.

Proof. We prove the three properties separately.

1. Each saddle point of Ti generates four edges in G. Besides, the ki saddle
points are connected by ki − 1 edges in the tree. Since each edge is counted
twice from each end point we have a total of 4ki −2(ki −1) = 2ki +2 pending
edges in each connected component Ti. As end points of the pending edges
only extrema are available since all saddle points have been collected in the
forest and Ti is maximal.

2. All the edges of a saddle point have alternating directions in clockwise and
counter-clockwise orientation. If two saddle points are connected then adja-
cent leafs are connected by a monotonic path. Since the connected component
of saddle points is supposed to be maximal no saddle point can appear as a
leaf. Hence the target of an outgoing edge is a minimum and the start of an
outgoing pending edge is a maximum.

3. A connected component Ti consists of saddle points inside the tree and of
extrema at the leafs. Starting with a maximum we follow the tree downwards
keeping the tree always on the same (e.g. left-hand) side. This monotonic
path ends in the adjacent minimum. Similarly we can start at a minimum
and follow the tree up-wards keeping the tree on the same side. We find the
next maximum as end point of a monotonic path.

�
Figure 4a illustrates the main content of the above lemma by an example.

Remark 4. Each connected component Ti is connected to |V⊗,i|+1 maxima and
to the same amount of minima in G. Ignoring the sharing of extrema between
different components, altogether the saddle points are connected to |V⊗| + n
maxima and to |V⊗| + n minima in G.

22 W. G. Kropatsch et al.

Fig. 4. Folding a configuration with four saddles.

Slope regions are generated by connecting the alternating extrema in the
order of the leafs of each saddle tree. Observe that this is not necessarily the
smallest number of slope regions decomposing the 2D continuous surface S and
extrema may not be connected originally.

Remark 5. This new graph is also denoted by G = (V,E) and its faces generate
a slope complex K[S] which is again a cell decomposition of S in slope regions.

6.2 Graph of Extrema

Here we consider the subgraph G± = (V±, E±) of G obtained after the removal
of all saddles. Then, V± = V⊕ ∪ V� and E± = (V⊕ × V�) ∩ E.

These graphs of extrema have another interesting property: they form alter-
nating sequences of maxima and minima connecting an extremum to itself along
a closed level curve. In contrast to connected saddle components minimax-
sequences can form cycles of lengths 2 (double edge), 4 (non-well-formed), 6
and so on.

Cycles of lengths 2 surround slope regions. The regions surrounded by longer
cycles do not form slope regions since they contain more than one minimum and
more than one maximum by Lemma 1.

The cycle of length 4 corresponds to the well-known checkerboard pattern,
the non-well-composed configurations [7]. It “hides” a saddle point inside the
cycle (compare with [2]). This is true for all longer cycles of extrema, a cycle of
2n length needs n−1 saddle vertices to subdivide the interior region completely
into slope regions. The insertion of one additional (saddle) vertex in such non-
well-composed configuration with successive triangulation produces a set of slope
regions covering the previous non-slope region [2, Sect. 3.1].

We have seen in Lemma 1 that any slope region with n critical points have
a 1-maximum and a 1-minimum in its boundary. Consequently the other n − 2
vertices in its boundary must be saddle points.

Computing and Reducing Slope Complexes 23

6.3 Operations Required to Generate a Minimal Slope Complex

We finish this section with the study of generating a minimal slope complex K[S]
which is a decomposition of S in the smallest number of slope regions. Observe
that this complex satisfies at least that its vertices are only the critical points
of S.

First, after contraction of saddle points in each saddle tree, we only have
slope regions formed by two edges connecting a saddle point and another edge
connecting two vertices in V±. Figure 4b shows the graph where all saddle points
are contracted into a single saddle point.

Lemma 5. The number of slope regions remains the same if all edges between
saddle points are contracted.

Proof. Edges between saddle points are oriented and, hence, cannot form self-
loops, a pre-condition for contraction. The contraction of an edge (x, y) ∈ E, x �=
y, identifies vertices x and y and removes the edge (x, y) from E: The graph
after contracting one edge has one less vertex and one less edge. There are no
changes in the number of slope regions due to Euler’s number is the same after
contracting the edge. �

Finally, the combination of slope regions formed by two triangles may still
be simplified. Let us denote by ±-edge an edge in E±.

Remark 6. Removing the ±-edge shared by two slope regions produces a new
slope region.

Fig. 5. Merging two triangles
into one slope region with 4
edges.

The dotted edge in Fig. 5 connects the two
extrema. By removing the ±-edge we obtain a
new slope region. In this way, the total number
of slope regions can be reduced.

Remark 7. The total number of slope regions
decreases when two slope regions sharing a
±-edge merge.

Observe that if the ±-edge bounds the infi-
nite background or it is in the boundary of
exactly one slope region, then it cannot be con-
tracted.

Now, we apply the following operations to a given 1-skeleton G(V,E)
obtained from a slope complex K[S] with vertices being the critical points of
S, to generate a minimal slope complex G′(V,E′) preserving all the vertices
of G and having the minimum number of slope regions satisfying the Euler’s
formula:

1. Contract all edges in E⊗.
2. Keep outer ±-edges (i.e., ±-edges in the boundary of the infinite background).

24 W. G. Kropatsch et al.

3. Keep all inner ±-bridges (i.e., ±-edges in the boundary of exactly one slope
region),

4. Delete all other inner ±-edges (i.e., ±-edges that are not outer ±-edges and
are shared by exactly two slope regions).

Lemma 6. The minimal graph G′ is plane, all faces are slope regions and it
cannot be further reduced without destroying the property that all faces are slope
regions.

Proof. Deletion of an edge does not change the planarity of a graph. We show that
the deletion of a ±-edge merges two slope regions into a new region which is a slope
region. A ±-edge of the slope complex G of critical points may be on the boundary
or may be a ±-bridge or it may be an inner ±-edge of G. In the first two cases the
±-edge bounds a single slope region. Notice that a bridge need not be an outer
edge and is therefore separately mentioned. An inner ±-edge in a slope complex
is adjacent to two other minimal slope regions each being a slope region with the
same two local extrema. Hence the quadrilateral formed after the removal of the
±-edge is also a slope region. This corresponds to the Quadrangle Lemma in [3].
The argument remains true after the first ±-edge of multiple ±-edges is removed.
Therefore all multiple ±-edges can be removed and the merged slope regions still
share the same two extrema in a single slope region. �

Finally we proceed to show the given count of slope regions. We have seen
that all edges attached to saddle points do not have any influence on the number
of slope regions. All edges between two saddle points can be contracted without
reducing the number of slope regions and saddle points cannot form cycles.

Remark 8. The total number of slope regions of G′ if the graph doesn’t contain
any multiple edges or self-loops is:

|{e ∈ E± | e is not an inner ±-edge | (1)

Observe that Eq. (1) counts only one slope for outer ±-edges and inner
±-bridges.

7 Conclusions and Future Work

In this paper, we begin with a 2D continuous surface where we define the critical
points using local neighborhoods. The surface need not be necessarily piecewise
linear or from the smooth category but it should satisfy that critical points are
distinct. We then explore the topological properties exhibited by the configura-
tion of given critical points and the space enclosed (slope region) between them.
We define slope regions as simply connected components such that any two points
in them are connected by a monotonic path. Unlike [3], we allow intersection of
monotonic paths and provide a more general topological aspect of the given sur-
face. We show that any 2D continuous surface can be represented as a slope
complex and the combinations of different slope regions can be merged to obtain

Computing and Reducing Slope Complexes 25

a simplified slope complex. For realization and processing, we use graph-based
entities (vertices, edges, and slope regions) similar to [3]. We end the paper by
giving the formula to count the minimum number of slope regions required to
represent a 2D continuous surface, given the number of critical points.

We started our research on slope regions to better understand the results of
our previous work [2] with LBP pyramids where the focus was on critical points.
These multiresolution hierarchies of images were built based on a criterion of
minimal contrast when merging regions and yields excellent reconstructions with
only a very small fraction of image regions. The concept of slope region should
enable additional rules to improve the efficiency of our computation.

We know that the partition into slope regions is not unique. What looks as a
disadvantage could be used to optimize the receptive field of important critical
points and shrink slope regions with “minor importance”. Persistent homology
should enable further removal of critical points that are due to noise.

Extensions to higher dimensional spaces would establish an interesting con-
nection to frequently used optimization processes. They seek extrema in the
space spanned by objective functions. Iterative optimization approaches could
be constrained to slope regions leading to the global optimum.

Acknowledgments. This research has been partially supported by MINECO,
FEDER/UE under grant MTM2015-67072-P. We thank the anonymous reviewers for
their valuable comments.

References

1. Cerman, M., Gonzalez-Diaz, R., Kropatsch, W.: LBP and irregular graph pyramids.
In: Azzopardi, G., Petkov, N. (eds.) CAIP 2015. LNCS, vol. 9257, pp. 687–699.
Springer, Cham (2015). https://doi.org/10.1007/978-3-319-23117-4 59

2. Cerman, M., Janusch, I., Gonzalez-Diaz, R., Kropatsch, W.G.: Topology-based
image segmentation using LBP pyramids. Mach. Vis. Appl. 27(8), 1161–1174 (2016)

3. Edelsbrunner, H., Harer, J., Zomorodian, A.: Hierarchical Morse - Smale complexes
for piecewise linear 2-manifolds. Discrete Comput. Geom. 30(1), 87–107 (2003)

4. Edelsbrunner, H., Harer, J., Natarajan, V., Pascucci, V.: Morse-Smale complexes
for piecewise linear 3-manifolds. Symp. Comput. Geom. 2003, 361–370 (2009)

5. Edelsbrunner, H., Harer, J.: The persistent Morse complex segmentation of a 3-
manifold. In: Magnenat-Thalmann, N. (ed.) 3DPH 2009. LNCS, vol. 5903, pp. 36–
50. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-10470-1 4

6. Hatcher, A.: Algebraic Topology. Cambridge University Press, Cambridge (2002)
7. Latecki, L.J., Eckhardt, U., Rosenfeld, A.: Well-composed sets. Comput. Vis. Image

Underst. 61, 70–83 (1995)
8. Kropatsch, W.G., Casablanca, R.M., Batavia, D., Gonzalez-Diaz, R.: On the space

between critical points. Submitted to 21st International Conference on Discrete
Geometry for Computer Imagery (2019)

9. Peltier, S., Ion, A., Haxhimusa, Y., Kropatsch, W.G., Damiand, G.: Computing
homology group generators of images using irregular graph pyramids. In: Escolano,
F., Vento, M. (eds.) GbRPR 2007. LNCS, vol. 4538, pp. 283–294. Springer, Heidel-
berg (2007). https://doi.org/10.1007/978-3-540-72903-7 26

https://doi.org/10.1007/978-3-319-23117-4_59
https://doi.org/10.1007/978-3-642-10470-1_4
https://doi.org/10.1007/978-3-540-72903-7_26

Persistent Homology Computation Using
Combinatorial Map Simplification

Guillaume Damiand1(B) and Rocio Gonzalez-Diaz2

1 Univ. Lyon, CNRS, LIRIS, UMR5205, 69622 Villeurbanne Cedex, France
guillaume.damiand@liris.cnrs.fr

2 Dpto. de Matemática Aplicada I, Universidad de Sevilla, 41012 Seville, Spain
rogodi@us.es

https://liris.cnrs.fr/guillaume.damiand/, http://personal.us.es/rogodi/

Abstract. We propose an algorithm for persistence homology computa-
tion of orientable 2-dimensional (2D) manifolds with or without bound-
ary (meshes) represented by 2D combinatorial maps. Having as an input
a real function h on the vertices of the mesh, we first compute persis-
tent homology of filtrations obtained by adding cells incident to each
vertex of the mesh, The cells to add are controlled by both the function
h and a parameter δ. The parameter δ is used to control the number
of cells added to each level of the filtration. Bigger δ produces less lev-
els in the filtration and consequently more cells in each level. We then
simplify each level (cluster) by merging faces of the same cluster. Our
experiments demonstrate that our method allows fast computation of
persistent homology of big meshes and it is persistent-homology aware
in the sense that persistent homology does not change in the simplifica-
tion process when fixing δ.

Keywords: Persistent homology computation
2D combinatorial map · Mesh simplification

1 Introduction

Topological data analysis (TDA) is a relatively new field in computer science.
One of the most useful concept in TDA is the one of persistent homology which is
an algebraic method for measuring topological features (connected components,
voids, cavities, etc) of shapes and functions. Two of the crucial ingredients of
persistence are: (1) a cell complex to structure the data; and (2) a filtration which
is a nested sequence of subcomplexes that starts with the empty complex and
ends with the whole complex. See [1,2] for initial reports and [3,4] for a modern
exposition of the field.

In [5], the authors proposed an efficient algorithm that computes persistent
homology for 3D gray-scale images using the Morse-Smale complex previously
obtained, which is much smaller than the input data, but with all necessary
information. The authors first computed a combinatorial gradient vector field
c© Springer Nature Switzerland AG 2019
R. Marfil et al. (Eds.): CTIC 2019, LNCS 11382, pp. 26–39, 2019.
https://doi.org/10.1007/978-3-030-10828-1_3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-10828-1_3&domain=pdf
https://doi.org/10.1007/978-3-030-10828-1_3

Persistent Homology Computation Using Combinatorial Map Simplification 27

(GVF) by a process presented in [6]. To do this, the cell complex is decomposed
into the lower star of its vertices. The authors then computed persistent homol-
ogy from the boundary map of the chain complex associated to the Morse-Smale
complex induced by GVF.

In [7], we proposed an efficient algorithm for computing the homology of
meshes (orientable manifolds with or without boundary), represented by 2D
combinatorial maps (which are models of representation of meshes composed by
vertices, edges linking two vertices, and 2D faces bounded by a closed path of
edges), avoiding the time-consuming step of constructing and modifying bound-
aries and coboundaries of cells. The process consists of merging faces if they share
a common edge, guaranteeing that the structure of combinatorial map and the
homology information of the mesh is preserved until the end of the process.

In this paper we extend our work to compute persistent homology of meshes.
First, as in [7], a simplification process is made to improve computation time.
Now, faces as dispatched in clusters depending on a parameter δ and only faces
of the same cluster are merged. For constructing the cluster the following rule
is used: two faces are in a same cluster if there is a path of vertices of these
two faces of length smaller than δ. At the end of the process, a smaller than the
input 2D combinatorial map is obtained. To obtain persistent homology of the
simplified mesh, lower-start filtration induced by a function h on its vertices (in
our case, h is the height function) is computed. Varying the parameter δ, the
filtration varies and also its persistent homology.

The paper is organized as follows. Section 2 recalls the background of the
paper regarding combinatorial maps and persistent homology. Section 3 is the
main section of the paper and presents our method to compute persistent homol-
ogy starting from a particular filtration constructed from the height function and
a parameter δ. Several experimental and computational results are presented in
Sect. 4. Finally, we summarize the paper with a brief discussion about future
work in Sect. 5.

2 Preliminary Notions

In this section we recall the needed background of the paper regarding combi-
natorial maps and persistent homology.

2.1 2D Combinatorial Maps

A 2D combinatorial map [8,9], called 2-map, is a model of representation of a
mesh, which is composed by i-cells: vertices or 0-cells associated with points,
edges or 1-cells which link two vertices, and faces or 2-cells which are bounded
by a closed path.

Two cells are incident if one cell belongs to the boundary of the other one;
while two i-cells c1 and c2 are adjacent if it exists one (i−1)-cell incident to both
c1 and c2. An edge e is dangling if it is incident to one vertex v such that no
other edge than e is incident to v. An edge is isolated if it has no adjacent edge.

28 G. Damiand and R. Gonzalez-Diaz

An edge incident to two different faces is called inner. Such an edge is necessarily
not dangling nor isolated. Lastly, an edge is called border if it is incident to only
one face and if it touches the boundary of the mesh. See Fig. 1(a).

f3

1e
4e

5e

f2
2e 3e

f4

v2

v1

f1

v3

6e

7e

(a)

4

5

1
2

3

6

11

12

9

8

10

7

13

16

17

14
15

18

20

19

(b)

Fig. 1. (a) Example of a mesh having 5 faces (the four faces incident to vertex v1,
and the “degenerated one” bounded twice by edge e7), 14 edges (e6 is dangling, e7
is isolated, {e1, e2, e3, e4} are inner and the rest are border) and 12 vertices. (b) The
corresponding 2-map has 20 darts. Images taken from [7].

The different elements of a mesh are encoded in a 2-map by darts and two
mappings between these dart: β1 and β2:

β2: A dart is an orientation of an edge. If an edge separates two faces, it
is described by two darts d1, d2 in the 2-map linked by β2 (i.e., β2(d1) = d2
and β2(d2) = d1). These two darts represent the two possible orientations of the
edge (for example β2(8) = 11 and β2(11) = 8 in Fig. 1(b)). Each border edge is
described by only one dart d in the 2-map, linked by β2 with a special element
∅ (cf. for example dart 10 in Fig. 1(b) which describes border edge e5). β1: For
each dart d, β1(d) is the dart following dart d and belonging to the same face
than d (for example β1(1) = 2 in Fig. 1(b)). Note that a 2-map is oriented and
thus described a given orientation of the mesh.

A dart belongs exactly to one vertex, one edge and one face, and thus each
cell of the mesh is described by a set of darts in the 2-map. For example, in
Fig. 1(b), vertex v1 is described by the set of darts {2, 5, 8, 12}. Note that this is
a very important property of 2-map. Even an isolated edge (like e7 in Fig. 1(a))
belongs to one face (which explain why we have 5 faces and not 4 in Fig. 1(a)).

The different type of edges can be detected in a 2-map thanks to particular
configurations of darts and β links (for example an edge is isolated if β1(β1(d)) =
d, d being of the dart of the edge).

The algorithm presented in this paper for computing persistent homology
on meshes used a modified version of Algorithm 1 detailed below which was
presented in [7] to compute the minimal 2-map (i.e. with minimal number of
cells) describing a given mesh. The algorithm uses two operations on 2-maps:
edge removal and edge contraction. It simplifies a given combinatorial map in

Persistent Homology Computation Using Combinatorial Map Simplification 29

its minimal form while preserving all the homology information. The proof that
Algorithm 1 preserves homology information is given in [10].

Algorithm 1. Simplification of a mesh (modified version of Algorithm 1
of [7]).
Input: A 2-map M representing the mesh.
Output: The simplified 2-map corresponding to M.

foreach edge e of M do
if e is an inner edge then remove e;

foreach edge e of M do
while e is dangling do

e′ ← one edge adjacent to e;
remove e; e ← e′;

foreach edge e of M do
if e is not a loop then

contract e;

2.2 Persistent Homology

In this subsection we give elementary notions from topology needed to under-
stand the rest of the paper. In particular, we introduce the notion of homology
and persistent homology. Precise definitions of homology can be found for exam-
ple in [11], and definition of persistent homology for example in [4].

Homology can be thought as a method for defining k-dimensional holes (con-
nected components, tunnels, voids) in a given mesh. For example. a 1-cycle
is a closed path and a 1-boundary is the boundary of a 2D manifold. Then,
1-homology classes (which represent tunnels) are equivalence classes of 1-cycles
modulo 1-boundaries. This concept can be generalized to k-homology classes.
Finally, k-homology groups are the groups of k-homology classes.

Persistent homology captures the topological changes occurring in a growing
sequence of meshes, called filtration. During the growth of a mesh, homology
classes of different dimension may appear (be born) and disappear (die). Filtra-
tions are frequently constructed using a real-valued function h on the vertices of
the mesh M . For example, the lower-start filtration is computed as follows:

– First, order the vertices of M in a non-decreasing way,

h(v1) ≤ h(v2) ≤ · · · ≤ h(vn).

– Second, compute the lower-star of a vertex v in M , which is the set of cells
of M incident to v whose vertices all have function values at most h(v).

30 G. Damiand and R. Gonzalez-Diaz

– Define Mi as the union of the lower-star of all vertices of M whose function
value is at most h(vi).
This way, if h(vi−1) < h(vi) then Mi \ Mi−1 is the set of cells of M having a
vertex with function value exactly h(vi).
And if h(vi−1) = h(vi) then Mi−1 = Mi.

The lower-star filtration of the mesh M induced by the function h is the sequence
of nested meshes:

∅ = M0 ⊆ M1 ⊆ M2 ⊆ · · · ⊆ Mn−1 ⊆ Mn = M.

Intuitively, imagine we sweep the mesh M in increasing values of the function
h. At any real-value α, we consider the set of cells whose function value on their
vertices is below or equal to α. As α increases, this gives us a sequence of subsets
of M , growing larger and larger.

The topological evolution along the filtration is expressed by the correspond-
ing sequence of homology groups. When adding the cells in order according to
the filtration, new homology classes may born and some of them may later die
when they become trivial or merge with another class. If a homology class γ is
born at Mi and dies entering Mj then h(vj) − h(vi) is the persistence of γ. If
γ is born at Mi but never dies then its persistence is set to infinity. Homology
classes with low persistence are considered noise and the ones that persist are
considered features of the mesh.

The information obtained when computing persistent homology can be visu-
alized as a persistence barcode which consists of the set of (birth, death) intervals,
each interval recording a persistent homology event. The bottleneck distance is
used to compare two persistence barcodes corresponding to two different filtra-
tions of the same mesh. Given a bijection η between two persistence barcodes,
we take the supremum L∞-distance1 between matched points and define the
bottleneck distance by taking the infimum over all supremums.

In order to compute persistent homology, in this paper we have implemented
a simplified version of the incremental algorithm for computing AT-models given
in [12]. Given an ordering of the cells of the mesh, Algorithm2 computes a triplet
(M,H, f) where:

– M is the given mesh (decomposed in cells obtained from the combinatorial
map). If σ is a k-cell, then ∂(σ) is the set of (k − 1)-cells in its boundary.

– H is a subset of cells of M called surviving cells. Fixed k, the set of all
the surviving k-cells together with the addition operation + (here + means
the disjoint union of sets) form the group Ck(H) which is isomorphic to the
k-dimensional homology group Hk of M .

– f : C(M) → C(H) maps each k-cell in M to a sum of surviving cells, satis-
fying that if a, b ∈ Ck(M) are two homologous k-cycles then fk(a) = fk(b).
Let Mσi

be the set of cells {σ1, . . . , σi}. Then, in the ith step of Algorithm 2,

1 The L∞-distance between points u = (u1, u2) and v = (v1, v2) in the extended plane
is max{|u1 − v1|, |u2 − v2|}.

Persistent Homology Computation Using Combinatorial Map Simplification 31

Algorithm 2. Computing persistent homology (Algorithm 2 of [12]).
Input: An ordering of the cells of M : {σ1, . . . , σm}.
Output: Persistent homology.

Initialize H := ∅ and f(σi) := 0, for 1 ≤ i ≤ m.
for i = 1 to m do

if f∂(σi) = 0 then
f(σi) := σi, H := H ∪ {σi} (a new homology class was born).

if f∂(σi) �= 0 then
Let σj ∈ f∂(σi) s t. j = max{ index(μ) : μ ∈ f∂(σi) }
H := H \ {σj} (an old homology class died).
foreach x ∈ M such that σj ∈ f(x) do

f(x) := f(x) + f∂(σi).

σi belongs to a k-cycle c in C(Mσi
) if and only if f∂(σi) = 0. This is why

if f∂(σi) = 0 then a new homology class was born (the one represented by
the k-cycle c) and σi enters H. Otherwise, if f∂(σi) �= 0, then a homol-
ogy class died, which is equivalent to say that an element of f∂(σ) ⊆ H is
removed from H. The element to be removed from H will be the youngest one:
max{ index(μ) : μ ∈ f∂(σi) }, being index(μ) the position of the cell μ in the
given ordered list of cells {σ1, . . . , σm}.

In [13] the authors establish a correspondence between the incremental algo-
rithm for computing AT-models given in [12] and the one for computing per-
sistent homology [4]. Since we are only interested in computing the persistence
events, we only compute the set H and the map f . See Algorithm 2.

3 Computing Persistence

Our starting point is a subdivision of a mesh M (with or without boundaries)
into vertices, edges and faces, and a real-valued function h on the vertices of the
mesh.

Our method is based on three steps:

1. Simplification of the 2-map according to a parameter δ;
2. Computation of the lower-star filtration of the simplified mesh;
3. Computation of persistent homology of the given filtration.

Our goal in step 1 is to simplify the 2-map decreasing the number of faces in
each level of the filtration in order to improve the computation time in Step 3
which is the more time-consuming step. Observe that persistent homology varies
when δ varies since the filtration computed is different. Nevertheless, we have
observe in the experiments that our simplification can be seen as a filtering of
small persistent homology events.

32 G. Damiand and R. Gonzalez-Diaz

3.1 2-Map Simplification

In this step, the 2-map is simplified by dispatching the faces into clusters and
applying Algorithm1 with constraints.

First, faces are dispatched into clusters according to the parameter δ. To
compute such clusters, vertices of the mesh are ordered in a non-decreasing way
by their height values h(v). We assign a height value to each face with is the
maximum value of the height of its vertices.

Then in the first cluster we add the first face f in the ordering and all the
faces “at distance” less than δ. which means that there exists a path of vertices
of these two faces of length smaller than δ. For example, if δ = 0, only one face
per cluster is added. If δ = 1 all the faces sharing an edge with f are added. For
any δ > 1 all the faces at distance less than or equal to δ to f are added to the
cluster. We repeat the process with the next face provided by the ordering that
was not included in any cluster. We repeat the process until all faces are in a
cluster.

After dispatching the faces in clusters, we apply Algorithm1 with the follow-
ing constraints:

– Faces merge (i.e, the inner shared edge e is removed) only if they belong to
the same cluster.

– Besides, contrary to Algorithm 1, critical edges (separating faces belonging to
two different clusters) are not removed here. Merging faces belonging to two
different clusters could lead to loose a persistent event, and this is why we do
not merge such faces.

– We do not use the contraction step (last foreach in Algorithm 1). Indeed,
the simplified 2-map obtained here has several faces, contrary to Algorithm 1
computed without constraints that always produces one face per connected
component. For this reason, the number of possible edges to contract is here
smaller and thus we have observed no gain (and even sometimes a loss) when
using the contraction step comparing to not use it.

3.2 Filtration

The second step in our algorithm for computing persistent homology is to com-
pute the lower-star filtration (see Sect. 2.2) of the simplified mesh SM .

Observed that increasing the value of δ in Step 1 will decrease the different
number of SMj sets (i.e., the number of levels in the filtration), which increases
the average number of cells belonging to a same SMj , as illustrated in Fig. 3
for the Neptune mesh and three different δ values. Note that bigger δ increases
the number of simplifications done and thus decreases the size of the simplified
combinatorial map. In this case, the persistent homology computed is not the
same than the one obtained by the lower-star filtration on the original mesh
(they only coincides when δ = 0). Nevertheless, we have seen in our tests that
the effect of the parameter δ > 0 is to remove small persistent homology events.
However this new possibility gives to users a way to choose a level to analyze a
given mesh, while allowing to speed-up the method.

Persistent Homology Computation Using Combinatorial Map Simplification 33

3.3 Computation of Persistent Homology

The last step of our method is the computation of persistent homology of the
simplified mesh SM .

We order the cells in SM according to the given filtration and obtain the
ordered set of cells {σ1, . . . , σm} such that if i < j then there exist i′, j′ such
that i′ ≤ j′, σi ∈ SMi′ , σj ∈ SMj′ and σj is not in the boundary of σi. We then
apply Algorithm2 to compute persistent homology.

The persistence barcode is stored in a list L with the (birth, death) events
as follows: if σ ∈ M� \ M�−1 is born and dies entering μ ∈ Mm \ Mm−1, then
store (birth, death) in L being birth = h(vi�

) and death = h(vim
).

Finally, bottleneck distance between different filtrations of the same mesh
obtained from different values of δ can be computed to measure the effect of the
parameter δ in the persistent homology information obtained.

4 Experiments

We have implemented our algorithm for persistent homology computation by
using the CGAL implementation of combinatorial maps [14] and the additional
layer, called linear cell complex, which additionally represents the geometry [15].
All our experiments were run on an Intel R©i7-4790 CPU, 4 cores @ 3.60 GHz with
32 Go RAM. All the computation times given here are averages of 10 consecutive
runs of the same method.

In our tests, we used the six meshes shown in Fig. 2, having between 703, 512
and 10, 000, 000 faces. All these meshes have only one connected component,
except Blade which has 295 connected components because it contains many
small isolated closed meshes inside the blade.

In our experiment, we compared the persistent homology computation of the
six meshes for the following values of δ: 0, 1, 2, 4, 8, 16, 32 and 64. For δ = 0,
the persistent homology computed is the one of the lower-star filtration induced
by the height function on the vertices of the original mesh. When δ increases,
the number of faces in a same cluster increases also and thus the combinatorial
map becomes more and more simplified. Nevertheless, persistent homology varies
since the filtration varies, although differences are “small”.

We can see an illustration of the effect of the δ parameter on the size of the
different clusters in Fig. 3. The number of cells of the different simplified 2-maps
for each value of δ is given in Fig. 4 (average values for the six meshes).

The effect of δ on the computation time is analyzed in Fig. 5 where the
six meshes shown in Fig. 2 are used, and our method of persistent homology
computation based on the 2-map simplification is ran by using different values
of δ. Obviously, computation time decreases while δ increases, since more faces
belong to the same cluster, and thus the combinatorial map becomes more and
more simplified. We can see that the computation time decreases a lot even for
small value of δ which is very interesting. For example, for δ = 2, computation
time is divided by 2.75 in average.

34 G. Damiand and R. Gonzalez-Diaz

Fig. 2. The six meshes used in our experiments. The table gives the number of i-cells,
#i-cells, and the number of Hi generators, #Hi, for i = 0, 1, 2.

Persistent Homology Computation Using Combinatorial Map Simplification 35

Fig. 3. Effect of the δ parameter on the size of the different clusters for the Neptune
mesh, zoom in on the trident. (a) δ = 0. (b) δ = 1. (c) δ = 4. (c) δ = 32.

 4096

16,384

65,536

262,144

1,048,576

4,194,304

 0 2 4 8 16 32 64

N
um

be
r

of
 c

el
ls

Delta

0-cells
1-cells
2-cells

Fig. 4. Number of vertices, edges and faces of the simplified combinatorial maps (in
log2 scale) depending on the value of δ. δ = 0 is the original (non-simplified) 2-map.
These numbers are average values for the six meshes.

Table 1. Bottleneck distance between 0-dimensional persistent homology computed
on: (1) the lower-star filtration for δ = 0, and (2) the lower-star filtration for different
values of δ.

δ 1 2 4 8 16 32 64

Blade 0.64 1 1.53 2.5 3.43 16.25 10.30

DrumDancer 0.10 0.87 0.62 1.25 1.18 3.31 3.31

Neptune 1.10 1.25 1.67 3.08 5.41 8.00 13.41

HappyBuddha 0.00025 0.0005 0.0014 0.0017 0.0024 0.0060 0.010

Iphigenia 0.88 1.19 1.64 2.71 4.51 9.87 19.22

Statuette 0.90 12.37 12.37 12.24 18.39 26.20 27.41

36 G. Damiand and R. Gonzalez-Diaz

 0

 1

 2

 3

 4

 5

 6

 7

 8

0 1 2 4 8 16 32 64

T
im

e
(s

ec
)

Delta

Filtration
Simplification

AT-model

δ 0 1 2 4 8 16 32 64
Blade 13.81 5.94 1.69 1.14 0.93 0.80 0.72 0.69
DrumDancer 2.73 2.37 1.79 1.62 1.48 1.36 1.24 1.19
Neptune 8.42 5.23 3.59 2.92 2.63 2.46 2.29 2.26
HappyBuddha 3.39 1.92 0.99 0.73 0.62 0.56 0.52 0.50
Iphigenia 0.77 0.58 0.40 0.35 0.34 0.31 0.29 0.28
Statuette 13.75 10.13 7.15 6.05 5.30 4.89 4.69 4.49
Average 7.15 4.36 2.60 2.14 1.88 1.73 1.63 1.57

Fig. 5. Computation time (in seconds) of our method by using the patch filtration with
increasing δ starting from 0 and going to 64. The graph shows average values for the
six meshes, and details time spent in the different parts of the method: computation of
the filtration, combinatorial map simplification and persistence computation by using
AT-model. The array gives global computation time for each mesh.

We can see in Fig. 6 the effect of δ on the results of the persistent homology
computation. First, it should be notice that infinite events are always the same
whatever the value of δ is. This is a direct consequence of the fact that the
homology of the mesh is preserved by our simplification algorithm. For finite
events, we can see that their numbers decrease when δ increase. Indeed, the
combinatorial map becomes more and more simplified, and thus the number of
cells becomes smaller and smaller (as seen in Fig. 4).

In Table 1 we can see the bottleneck distance with respect to the 0-
dimensional persistent homology between the persistence barcodes correspond-
ing to the lower-star filtration and the filtration obtained when varying δ. Table 2
shows the same information for the 1-dimensional persistent homology. To com-
pute the bottleneck distance we used the package TDA of R2. We can observe
that, in general, the distance increases when δ increases and the distance is
bounded by the value of δ. Sometimes, δ increases and the distance is a bit lower.

2 https://cran.r-project.org/web/packages/TDA/vignettes/article.pdf.

https://cran.r-project.org/web/packages/TDA/vignettes/article.pdf

Persistent Homology Computation Using Combinatorial Map Simplification 37

 4

 16

 64

 256

 1024

 4096

16,384

 0 2 4 8 16 32 64

N
um

be
r

of
 e

ve
nt

s

Delta

Betti 0
Bettti 1

Fig. 6. Number of finite persistence events (in log2 scale) depending on the value of
δ. δ = 0 is the original (non-simplified) 2-map. Betti i is the number of i-homology
classes that were born and later died when computing persistent homology, for i = 0, 1.
These numbers are average values for the six meshes.

This could occurs due to small pockets in the considered mesh. Moreover we can
see that in some meshes the effect of δ is more important than in others. See for
example Table 1: for Statuette, the difference between the bottleneck distance
for δ = 0 and δ = 4 and for δ = 0 and δ = 8 is only 12.37 − 12.24 = 0.13 which
means that we obtain similar persistent homology information when computing
persistent homology using δ = 8 instead of δ = 4. Nevertheless, bottleneck dis-
tance for δ = 0 and δ = 8 and for δ = 0 and δ = 16 is 18.39−12.24 = 6.14 which
means that we could loss important details if we simplify the mesh using δ = 16
instead that δ = 8.

Table 2. Bottleneck distance between 1-dimensional persistent homology computed
on: (1) the lower-star filtration for δ = 0, and (2) the lower-star filtration for different
values of δ.

δ 1 2 4 8 16 32 64

Blade 0.97 1.0 2.0 4.0 7.0 14.0 21.0

DrumDancer 0.14 0.19 0.38 0.58 1.06 2.40 1.89

Neptune 0.53 1.32 1.82 3.15 5.15 8.28 12.41

HappyBuddha 0.00039 0.00067 0.0010 0.0015 0.0028 0.0034 0.005

Iphigenia 0.6 1.2 1.45 2.87 3.59 9.97 7.27

38 G. Damiand and R. Gonzalez-Diaz

5 Conclusion

In this paper, we have defined an algorithm for computing persistent homology
of a given filtration defined on a 2D mesh. Persistent homology is computed
on different filtrations depending on a parameter δ. When δ = 0, the filtration
coincides with the lower start filtration. When δ > 0 the filtration takes, pro-
portionally to δ, more faces in each level. Our method provides high flexibility
which allows easily to change the filtration due to the new parameter δ, allowing
to speed-up (increasing δ) and giving to users a parameter allowing to tune their
results depending on their needs.

One of our future work is to test the different possibilities for clusters regard-
ing to the parameter δ. For example, as one reviewer suggested, it would be
interesting not only to take into account the distance between faces but also to
consider the height of a face relatively to the seed before adding it to a cluster.

Since we have observed in the experiments that our simplification filters small
persistent homology events, we plan to provide theoretical results to this new
approach stating that the filtration is stable with respect to δ. That is, the
bottleneck distance between two filtrations of the same mesh is bounded by a
function on δ. We think we can prove it using the classical result of Edelsbrunner
et al. on stability of persistence diagrams [4].

Finally, we plan to extend our work to non-orientable manifolds by using the
generalized maps package (the non-orientable extension of combinatorial maps)
of CGAL. We also would like to define a parallel version of our method: the com-
binatorial map simplification was already defined in parallel in [7] but we need
now to study if it is possible to parallelize some parts of the AT-model computa-
tion algorithm. Extension in nD could be given based on the theoretical results
for removal and contraction operations in any dimension given in [16,17]. Indeed,
all basic tools used in this work, combinatorial maps, removal/contraction oper-
ations and AT-model computation, are defined in any dimension.

Acknowledgments. This research has been partially supported by MINECO,
FEDER/UE under grant MTM2015-67072-P. We thank the anonymous reviewers for
their valuable comments.

References

1. Dey, T.K., Edelsbrunner, H., Guha, S.: Computational topology. In: Advances in
Discrete and Computational Geometry. American Mathematical Society, pp. 109–
143 (1999)

2. Bern, M.W., et al.: Emerging challenges in computational topology, CoRR
cs.CG/9909001

3. Carlsson, G.: Topology and data. Bull. Am. Math. Soc. 46(2), 255–308 (1999)
4. Edelsbrunner, H., Harer, J.: Computational Topology - An Introduction. American

Mathematical Society (2010)
5. Günther, D., Reininghaus, J., Wagner, H., Hotz, I.: Efficient computation of 3D

Morse-Smale complexes and persistent homology using discrete Morse theory. Vis.
Comput. 28(10), 959–969 (2012)

Persistent Homology Computation Using Combinatorial Map Simplification 39

6. Robins, V., Wood, P., Sheppard, A.: Theory and algorithms for constructing dis-
crete morse complexes from grayscale digital images. IEEE Trans. Pattern Anal.
Mach. Intell. 33(8), 1646–1658 (2011)

7. Damiand, G., Gonzalez-Diaz, R.: Parallel homology computation of meshes. In:
Bac, A., Mari, J.-L. (eds.) CTIC 2016. LNCS, vol. 9667, pp. 53–64. Springer,
Cham (2016). https://doi.org/10.1007/978-3-319-39441-1 6

8. Lienhardt, P.: N-dimensional generalized combinatorial maps and cellular quasi-
manifolds. Int. J. Comput. Geom. Appl. 4(3), 275–324 (1994)

9. Damiand, G., Lienhardt, P.: Combinatorial Maps: Efficient Data Structures for
Computer Graphics and Image Processing. A. K Peters/CRC Press (2014)

10. Damiand, G., Peltier, S., Fuchs, L.: Computing homology for surfaces with gen-
eralized maps: application to 3D images. In: Bebis, G., et al. (eds.) ISVC 2006.
LNCS, vol. 4292, pp. 235–244. Springer, Heidelberg (2006). https://doi.org/10.
1007/11919629 25

11. Hatcher, A.: Algebraic Topology. Cambridge University Press, Cambridge (2002)
12. Gonzalez-Diaz, R., Real, P.: On the cohomology of 3D digital images. Discrete

Appl. Math. 147(2–3), 245–263 (2005)
13. Gonzalez-Diaz, R., Ion, A., Jimenez, M.J., Poyatos, R.: Incremental-decremental

algorithm for computing AT-models and persistent homology. In: Real, P., Diaz-
Pernil, D., Molina-Abril, H., Berciano, A., Kropatsch, W. (eds.) CAIP 2011. LNCS,
vol. 6854, pp. 286–293. Springer, Heidelberg (2011). https://doi.org/10.1007/978-
3-642-23672-3 35

14. Damiand, G.: Combinatorial maps. In: CGAL User and Reference Manual, 3.9 edn
(2011). http://www.cgal.org/Pkg/CombinatorialMaps

15. Damiand, G.: Linear cell complex. In: CGAL User and Reference Manual, 4.0 edn
(2012). http://www.cgal.org/Pkg/LinearCellComplex

16. Damiand, G., Gonzalez-Diaz, R., Peltier, S.: Removal operations in nD generalized
maps for efficient homology computation. In: Ferri, M., Frosini, P., Landi, C., Cerri,
A., Di Fabio, B. (eds.) CTIC 2012. LNCS, vol. 7309, pp. 20–29. Springer, Heidelberg
(2012). https://doi.org/10.1007/978-3-642-30238-1 3

17. Damiand, G., Gonzalez-Diaz, R., Peltier, S.: Removal and contraction operations
in nD generalized maps for efficient homology computation, CoRR abs/1403.3683

https://doi.org/10.1007/978-3-319-39441-1_6
https://doi.org/10.1007/11919629_25
https://doi.org/10.1007/11919629_25
https://doi.org/10.1007/978-3-642-23672-3_35
https://doi.org/10.1007/978-3-642-23672-3_35
http://www.cgal.org/Pkg/CombinatorialMaps
http://www.cgal.org/Pkg/LinearCellComplex
https://doi.org/10.1007/978-3-642-30238-1_3

Inferring Underlying Manifold
of Data by the Use of Persistent

Homology Analysis

Rentaro Futagami(B) , Noritaka Yamada(B) , and Takeshi Shibuya(B)

University of Tsukuba, Tsukuba, Ibaraki, Japan
{futagami,okayasu}@fz.iit.tsukuba.ac.jp, shibuya@iit.tsukuba.ac.jp

Abstract. Inferring underlying manifold of data is one of the important
issues for point cloud data analysis. This is accomplished by inferring the
topological shape of the underlying manifold. This is done by estimating
the number of holes in the underlying manifold in each dimension.

Persistent homology is one of the means of estimating the number of
holes in the underlying manifold. Calculating the persistent homology
of data determines the size, number, and dimensions of holes produced
from data points. However, the number of holes represented through per-
sistent homology is far greater than that in underlying manifold. This
problem is caused by noises in a result of calculating persistent homol-
ogy. Therefore, reducing noises that result from calculating persistent
homology is necessary to estimate the number of holes in the underlying
manifold.

Conventional methods cannot reduce noises adequately when data are
of low density and thus cannot estimate the number of holes in the under-
lying manifold without manual analysis by experts.

In this study, we propose a new method to estimate automatically
the number of holes in the underlying manifolds. We also compare the
proposed and conventional methods and show the effectiveness of the
former.

Keywords: Persistent homology · Topological data analysis
Underlying manifold · Topological features · Persistent landscape

1 Introduction

Inferring underlying manifold of data is efficient for point cloud data analysis. For
example, ensuring that the topology of a graph for an self-organizing map (SOM)
is the same as that of the underlying manifold of data is critical [1]. This enable the
SOM to preserve the topological relationship among data points. Inferring under-
lying manifold of data is accomplished by estimating the number and dimensions
of “holes” in the underlying manifold and inferring the topological shape based on
the same number and dimensions of “holes”. A “hole” is defined as a topological
feature such as the ring of a donut and a void in a sphere.
c© Springer Nature Switzerland AG 2019
R. Marfil et al. (Eds.): CTIC 2019, LNCS 11382, pp. 40–53, 2019.
https://doi.org/10.1007/978-3-030-10828-1_4

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-10828-1_4&domain=pdf
http://orcid.org/0000-0003-2273-7137
http://orcid.org/0000-0003-2862-490X
http://orcid.org/0000-0003-4645-5898
https://doi.org/10.1007/978-3-030-10828-1_4

Inferring Underlying Manifold of Data 41

The size, number, and dimensions of holes composed of point cloud data are
determined by calculating the persistent homology [2,3]. However, in many cases,
the number of holes represented through persistent homology is greater than the
number of holes in the underlying manifold. This problem is derived from holes
in calculation result of persistent homology that are noises composed of cracks
among points on a surface of the underlying manifold. Therefore, reducing noises
in the calculation result of persistent homology is necessary. Conventional meth-
ods [4,5] cannot entirely reduce noises when the density of data points is not suf-
ficiently high to reconstitute the underlying manifold completely. Furthermore,
experts must derive the number of holes contained in the underlying manifold
from visualized calculation results.

Techniques that accurately and automatically estimate the number of holes
in an underlying manifold regardless of the density of data points are required.
These are useful for applications of persistent homology.

This study proposes a method to infer holes in an underlying manifold auto-
matically from the calculation results of persistent homology. In a comparison,
we show that the proposed method infers holes in an underlying manifold from
low-density data more accurately than when using conventional methods.

2 Persistent Homology

Persistent homology is a recently developed novel data analytical tool. It is a
method that detects holes that are areas where are surrounded by data points
and data points do not exist in point cloud data in a n-dimensional space. Persis-
tent homology is used for not only SOMs but also structural analysis of proteins
[6], optimization of sensor networks [7] and natural language processing [8].

Let X be the point cloud data to be calculated using persistent homology,
where X is sampled from a D-dimensional manifold M ⊂ R

D. In addition,
let hn(X) = {(b, d)|b, d ∈ R} denote n-dimensional holes in data X derived
from calculating persistent homology, where b, d represent birth time and death
time of a hole, respectively. Suppose that (n + 1)-dimensional balls with radius
r centering each data point are drawn and r increase, an n-dimensional hole
births among balls when r = b and the hole death when r = d. A persistent
diagram is a graph that maps hn(X) as coordinate and thus represents persistent
homology [9].

Figure 2 is a persistent diagram representing the calculation results of persis-
tent homology shown in Fig. 1. The red triangle in Fig. 2 indicate 1-dimensional
holes. An 1-dimensional hole is a loop. In the graph, distances between each
point and the diagonal (d − b) represents the size of each hole (known as “per-
sistence”). The larger the persistence is, the larger hole is. Similarly, the green
crosses in Fig. 2 indicate 2-dimensional holes, which are enclosed solid voids.
The black circles are 0-dimensional holes, which are clusters of data X with d
as clustering parameter.

Please see references [2,3] for a more detailed description of persistent homol-
ogy. This paper describe a method to estimate the number of holes in underlying
manifold automatically.

42 R. Futagami et al.

Fig. 1. Example data with sphere
topology

Fig. 2. Persistent diagram of example
data with sphere topology (Color figure
online)

Table 1. The number of holes in topological shapes

Topological shape 1-dimensional holes 2-dimensional holes

Circle 1 0

Sphere (S2) 0 1

Torus (S1 × S
1) 2 1

2.1 Inferring Underlying Manifold by Persistent Homology

The topological shape of the underlying manifold of data is inferred by estimating
the number of holes in the underlying manifold in each dimension and inferring
the topological shape based on the same number of holes. For example, if the
underlying manifold have one 1-dimensional hole and two 2-dimensional holes,
the topological shape of the underlying manifold is a torus. Table 1 shows a few
examples of topological shape and the number of holes in each shape.

In general, the number of holes derived from calculating persistent homology
is greater than that in the underlying manifold. Cracks on a surface of underlying
manifold produce noises when calculating persistent homology. For example, a
sphere that is the underlying manifold of Fig. 1 does not have 1-dimensional hole
but only a single 2-dimensional hole. However, in Fig. 2, there are red triangles
that indicate 1-dimensional tiny holes on the surface of the sphere. These 1-
dimensional holes are noises. The 2-dimensional hole with largest persistence
in Fig. 2 corresponds to a hole in the underlying manifold. We call this hole a
“cycle” in this paper. We call 1- or more dimensional holes “noise” except holes
that are actually in the underlying manifold.

Statistically analyzing the calculation results persistent homology of several
samples is effective for data that cannot easily discriminate between cycle and
noise [5]. However, obtaining so many data set is not possible in reality. In
addition, the computation time and complexity increase depending on the scale

Inferring Underlying Manifold of Data 43

of the data. Instead, we used nBi points subsamples Bi extracted from nX points
data X and calculate persistent homology of these subsamples.

Fig. 3. Example of persistent landscape of data with sphere topology

2.2 Related Works

Several studies have attempted to reduce noises in the calculation results of
persistent homology. Fasy et al. proposed a confidence interval of noises in a
persistent diagram derived from the Hausdorff distance between subsamples [4].
They also provided proofs of the theorems. However, the calculated confidence
interval derived from using this method is a pessimistic threshold based on the
premise that extremely many data points exist. Most cycles are considered as
noises by this method.

Bubenik focused on that noises tend to have near birth and death time to
cycles and slightly smaller persistence than cycles [5]. In addition, they proposed
a persistent landscape that maps each coordinate p = (b, d) to a piecewise liner
function such that

Λp(t) =

⎧
⎪⎨

⎪⎩

t − b t ∈ [b, b+d
2]

d − t t ∈ (b+d
2 , d]

0 otherwise.
(1)

Figure 3 is a graph of Fig. 2 mapped using persistent landscape. Persistent land-
scape identifies a hole that has the largest persistence in a domain as a cycle
and holes that have “lower-ranked” persistence than cycles as noises. We call a
local maximum in persistent landscape graphs a “tent”. Counting the number of
tents indicating “higher-ranked” holes in a persistent landscape graph, as shown
in Fig. 3, can derive the number of cycles in Fig. 2. Moreover, excluding “lower-
ranked” holes makes analyzing a graph easier. However, determining whether
small tents appearing on the sides of large tents in persistent landscape graphs
indicate cycles or noises is necessary.

Bubenik also proposed a mean landscape, which average persistent landscape
graphs with a confidence interval [5]. The confidence interval is derived from per-
sistent landscape graphs of subsamples of given data. However, mean landscape

44 R. Futagami et al.

graphs also have small tents on the sides of large tents, and determining whether
small tents indicate noises or cycles is still necessary.

2.3 Purpose of This Study

The conventional methods cannot estimate the number of cycles without manual
analysis by experts. In this study, we propose an improved method of persis-
tent landscape to estimate the number of cycles automatically. We compare the
proposed method and conventional methods and show the effectiveness of the
proposed method.

We determine whether each hole is a noise or a cycle to estimate the number
of cycles. In the first step of our method, we employ persistent landscape as an
efficient means of reducing noises greatly.

A threshold must be established to discriminate holes based on persistence of
holes. This threshold is also necessary to consider holes to be noises in dimensions
where there are no cycles or only noises exist. In the second step, we establish
a threshold to determine whether or not each dimension has cycles and to dis-
criminate holes. The confidence interval that Fazy et al. proposed is a possible
threshold [4]. However, this threshold is not practical. In this study, we propose
a new useful threshold.

Finally, as a third step, we analyze small tents that appear on the sides of
large tents in persistent landscape graphs. We derive the most probable number
of cycles by considering the variation of small tents in persistent landscapes
graphs of subsamples statistically. Setting standards to determine whether each
small tent indicates a cycle or a noise is difficult. Small tents must be analyzed
in somewhat a fuzzy manner. In this study, we propose a statistical method to
analyze persistent landscape graphs in a fuzzy manner.

3 Proposed Method

In this section, we describe the method used to estimate the number of cycles
automatically. First, we use two kinds of thresholds to reduce noises and then
analyze small tents fuzzily by smoothing persistent landscape graphs. The algo-
rithm of the our proposed method to estimate the number of cycles in underlying
manifold of data X is shown in Algorithm 1.

With the first threshold, we infer whether data have or do not have a cycle
in each dimension. If only extremely small n-dimensional holes exist when com-
pared to the distribution range of data, we determine that the data do not have
an n-dimensional cycle. To infer the existence of cycles, we use the mean of
the persistence of 0-dimensional holes h0(X) = {(0, d)|d ∈ R} as the threshold.
The persistence of 0-dimensional holes indicates the proximity of data points. If
the variance of data is large, many small holes appear as noises. However, this
threshold changes in proportion to the variance of the data and thus accurately
identifies the existence of cycles.

Inferring Underlying Manifold of Data 45

Algorithm 1. Estimate the number of n-dimensional cycles in underlying man-
ifold of X
1: Inputs:

X = a input data
i = the intrinsic dimension of X
B1(X), · · · , Bm(X) = subsamples of X
spar ∈ S = a set of smoothing parameters
n = a target dimension

2: Outputs:
b̂n(X) = estimated the number of n-dimensional cycles in X

3: for l ← 1 to m do
4: hk(Bl(X)) ← calculate k-dimensional holes of Bl(X), (k = 0, · · · , i)
5: t1 ← the mean of persistence for all holes in h0(Bl(X))
6: t1̂ ← the mean of persistence for all holes in hk(Bl(X)), (k = 1, · · · , i)
7: h′

n(Bl(X)) ← find holes by thresholding the persistence of hn(Bl(X)) with t1
8: if h′

n(Bl(X)) = ∅ then
9: b̄n(Bl(X)) ← 0

10: go to next loop
11: end if
12: S(1), S(n) ← calculate formula (2)

13: t2 ← 2t1̂ × S(1)
S(n)

14: for spar ∈ S do
15: Ln(Bl(X)) ← the n-degree smoothed persistent landscape of Bl(X) with

spar
16: bn,spar(Bl(X)) ← the number of local maxima above t2 in Ln(Bl(X))
17: end for
18: b̄n(Bl(X)) ← the mean of bn,spar(Bl(X)) for all spar ∈ S
19: end for
20: b̌n(X) ← the mean of b̄n(Bl(X)) for all l(= 1, · · · ,m)
21: b̂n(X) ← round b̌n(X)

At second threshold process, we discriminate between cycles and noises. Let
us assume that the number of noises exceeds the number of cycles. The mean
of the persistence of all holes can be considered as an approximation of the
mean of the persistence of noises. In addition, we assume that the persistence of
noises follows the normal distribution in which the mean is equal to that of the
persistence of noises. Then, as a threshold, we use the value of the tail opposite
to that of the normal distribution whose persistence is 0. In practical term, we
double the mean of the persistence of all holes and use this as the threshold.
The process of determining the threshold is conducted in each dimension where
a cycle is found based on first threshold.

The dimension of hole is larger, the more hole rarely appear. In these thresh-
old process, we must weigh the persistence while considering the dimensions of
holes. For example, the unit circle is a 1-dimensional hole and its surface area
(circumference) is 2π. In addition, the unit sphere is a 2-dimensional hole and
its surface area is 4π. To form both the unit circle and the unit sphere with data

46 R. Futagami et al.

Fig. 4. Example of estimating the number of topological features by proposed method

points having the same variance, the unit sphere must have twice as many data
points as the unit circle. The surface area of an n-dimensional hypersphere is
given by

S(n) =
2π

n+1
2

Γ (n+1
2)

. (2)

Therefore, to compensate the differences in easiness of appearing of holes that
depend on the dimensions of holes, the n-dimensional persistence must be mul-
tiplied by S(n)/S(1).

Third, we reduce noises that appear with cycles in persistent landscape
graphs. Let bn(X) be the number of tents in the n-degree persistent landscape
graph, where the number of times that sgn(Λp(t)) become 0 when t starts from
0 to infinity in Eq. 1 and bn(X) is the estimated number of n-dimensional cycles
in data X. However, bn(X) is not always correct because it may contain small
tents that are on the sides of large tents and that are formed by noises. Ana-
lyzing small tents on the sides of large tents is difficult. A universal standard
for analyzing small tents has not been proposed. Whether small tents indicate
cycles or noises is typically determined in a subjective manner.

To discriminate between cycles and noises automatically, we smooth per-
sistent landscape graphs using various smoothing parameters. We consider that
tents that exist even after high smoothing indicate cycles. We fit a cubic smooth-
ing spline using B-spline based on a generalized additive model (GAM) to per-
form smoothing [10]. Concretely, we find f(x) that minimize σ in Eq. 3:

σ =
n∑

i=1

(
yi − f(xi)

)
+ λ

∫
{
f ′′(x)

}2
dx. (3)

λ is given by
λ = ρ ∗ 2563∗spar−1, (4)

and ρ is given by

ρ =
∑n

i=1

{
Bi(xi)

}2

∑n
i=1

∫ {
B′′

i (t)
}2

dt
, (5)

Inferring Underlying Manifold of Data 47

where Bk(·) is k-th B-spline. We smooth one persistent landscape graph sev-
eral times, changing a parameter spar in Eq. 4 sequentially, such as spar =
{0, 0.1, . . . , 1}. This smoothing process estimates the number of cycles b̄n(X) =
∑

spar∈S
bn,spar(X)

||S|| , where S is a set of spar and bn,spar(X) is bn of the smoothed
persistent landscape graph with the smoothing parameter spar.

Figure 4 shows an example of smoothing by fitting cubic smoothing splines.
The persistent landscape graph shown on the left side of Fig. 4 has a large tent
with small tents to its side. In addition, a medium tent appears a little above
threshold 0.0075. The right side of Fig. 4 shows the result of smoothing the persis-
tent landscape graph shown in Fig. 4 with the parameter spar ∈ {0, 0.1, . . . , 1}.
In Fig. 4, the small tents on the side of the large tent are merged. The medium
tent becomes small and lower than the threshold as smoothing parameter
increase. However, the large tent remains. We smooth the persistent landscape
graph with each smoothing parameter and count the number of tents above
the threshold in each smoothed persistent landscape graph. We then average
the number of tents in each smoothed persistent landscape graph and obtain a
mean of 2.27. We consider this mean to be the number of cycles in this persistent
landscape graph. In Sect. 4, we smooth persistent landscape graphs using same
smoothing parameter spar ∈ {0, 0.1, . . . , 1}.

Finally, we describe a statistical method to estimate the number of cycles
using subsample. Subsampling yield a smaller size of data than that of the orig-
inal data and enable faster calculation of persistent homology. In addition, sub-
sampling enables us to use the many calculation results of persistent homology.
When subsampling excludes some data points, the persistence of existing holes
in the data rarely changes. Therefore, when using subsampling, the number b̂n
of n-dimensional cycles in data X is given as

b̌n(X) =
∑

B(X)∈B

b̄k(B(X))
||B|| , (6)

b̂n(X) = �b̌n(X)� + �2(b̌n(X) − �b̌n(X)�)�, (7)

where B is a set of B(X), and B(X) = {xi|i ∈ I ⊂ (1, · · · , nX), I i.i.d∼ p(I)} rep-
resents subsampled nB points without overlap from nX points data X according
to the uniform probably distribution p(I) = 1

nX
CnB

.
We can now summarize the proposed method. First, we subsample the given

data to obtain some subsamples. Second, we estimate the number of cycles in
each subsample through the two threshold and smoothing processes previously
described. Third, we average the estimated number of cycles in the subsamples.
We then round off the mean of the number of cycles in the subsamples. Finally,
we consider the rounded mean to be the number of cycles in the given data. The
topological shape of the underlying manifold is inferred based on the estimated
number of cycles by the proposed method.

48 R. Futagami et al.

Fig. 5. Experimental data with the torus
topology

Table 2. Settings of experiment

Data set 100

Major radius R 2.5

Minor radius r 1

Data points 500

Subsamples 10

Points of a subsample 300

Smoothing parameter {0, 0.1, . . . , 1}

3.1 Restriction of the Proposed Method

Most practical cases demand to estimate the number of only 1- and 2-dimensional
cycles. The proposed method is effective for practical cases.

However, like manual analysis by human experts, the proposed method is
difficult to infer that the underlying manifold has no cycles when data is too low
density. For example, a 400 points spherical data set sampled uniformly from the
unit sphere is inferred that it has one 1-dimensional cycle and one 2-dimensional
cycle by the proposed method using 240 points subsamples. 1-dimensional cycles
do not exist in the unit sphere actually.

We could not examine that the proposed method is effective at how much
density of data because of the computational complexity of persistent homology
in the large scale data.

4 Experiments

We compared the proposed method with conventional methods that calculate
the confidence interval of noises in a persistent diagram [4], persistent landscape,
or mean landscape [5].

We compared the proposed and conventional methods based on their ability
to accurately estimate the number of cycles in some data. We calculated the
persistent homology using optimum parameters to estimate the number of cycles.
These optimum parameters are set to increase the computation speed; they are
easy to set if users ignore limits of computational resources.

4.1 Torus

Figure 5 shows comparatively low-density data on the torus. The underlying
manifold of data shown in Fig. 5 has two 1-dimensional cycles and one 2-
dimensional cycle. We estimated the number of cycles in 100 set of data sampled

Inferring Underlying Manifold of Data 49

Table 3. Estimates of the number of 1-dimensional cycles

Cycles 0 1 2 3 4 Success rate

Confidence interval 100 0 0 0 0 0%

Persistent landscape 0 6 81 10 3 81%

Mean landscape 0 11 80 9 0 80%

Proposed method 0 10 90 0 0 90%

Table 4. Estimates of the number of 2-dimensional cycles

Cycles 0 1 2 Success rate

Confidence interval 100 0 0 0%

Persistent landscape 42 58 0 58%

Mean landscape 100 0 0 0%

Proposed method 43 57 0 57%

from the uniform distribution on the torus, as shown in Fig. 5. Table 2 shows the
settings for this experiment. Tables 3 and 4 show the comparative results of the
estimations using the proposed and conventional methods.

Table 4 shows that both the proposed method and persistent landscape accu-
rately estimated the number of cycles from many set of data. No significant
difference was found between the results of the proposed method and persis-
tent landscape. Two explanation can be given for these results. One is that
2-dimensional cycles are difficult to detect in the data because the persistence
of 2-dimensional cycles is originally small. Another is the bias in the variance
of data. The method employing the confident intervals inferred that all holes
are noises and estimated an incorrect number of cycles in all set of data. Mean
landscape seemed to estimate an incorrect number of cycles in many set of data
because the persistence of 2-dimensional cycles became smaller than the original
persistence after the persistence was averaged.

Table 3 shows that the proposed method, persistent landscape, and mean
landscape all estimated the accurate number of 1-dimensional cycles in most set
of data. Persistent landscape sometimes estimated that the underlying manifold
had three or four 1-dimensional cycles after it counted the number of small tents
formed by noises. Mean landscape rarely counted the number of small tents
formed by noises as compared to persistent landscape. However, mean landscape
also estimated that the underlying manifold had three 1-dimensional cycles in
some data.

By contrast, the proposed method did not estimate that the underlying man-
ifold had three or more 1-dimensional cycles. In addition, the proposed method
could determine whether small tents indicated cycles or noises and it estimate
the number of cycles accurately.

50 R. Futagami et al.

200 300 400 500 600

0.
00

0.
05

0.
10

0.
15

0.
20

0.
25

0.
30

Confidence Interval

Data Points

Va
rie

nc
e 0

0
0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0
0

0

0

0

0

0

0

0

0

0
0
0

0

0

0

0

0

0

0

0
0

0

0

0
0

0

0

0

0

0

0

0

0

0
0 0

0

0

0

0

0

0
0

0

0

0

0

0

0

0

0

0

0

0

0

0
0

0

0

0

0

200 300 400 500 600

0.
00

0.
05

0.
10

0.
15

0.
20

0.
25

0.
30

Persistent Landscape

Data Points

Va
rie

nc
e 4

2
5

2

1

3

3

2

4

4

4

2

1

2

2

2

4

2

3

5

4

3

2

2

3

3

3

3

5

2

2

3

2

2

4

3

2

2

5
2

2

2

2

1

2

3

3

3

2
3
2

3

3

4

3

2

3

2

3
4

3

3

3
2

3

2

3

2

2

2

3

4

2
3 2

1

3

2

2

2

2
1

2

4

3

2

2

3

3

3

1

2

3

2

3
3

2

3

3

3

200 300 400 500 600

0.
00

0.
05

0.
10

0.
15

0.
20

0.
25

0.
30

Mean Landscape

Data Points

Va
rie

nc
e 1

1
1

2

1

2

1

2

3

1

4

3

2

2

3

2

3

2

2

2

1

2

2

2

3

3

2

1

1

1

2

1

3

1

3

2

2

2

3
1

2

3

1

4

1

1

3

2

2
2
3

2

3

1

2

1

1

3

2
1

3

2

2
1

1

1

3

2

2

2

1

2

2
1 2

2

3

2

2

1

2
1

2

1

1

2

2

3

1

1

1

2

2

3

1
2

2

2

4

2

200 300 400 500 600

0.
00

0.
05

0.
10

0.
15

0.
20

0.
25

0.
30

Proposed Method

Data Points

Va
rie

nc
e 1.6

1.6
1.6

1.5

1.7

1.6

2.3

1.5

2

1.1
1.6

1.7

1.9

1.5

1.6

1.6

2

1.6

1.6

1.8

1.5

1.6

1.7

1.8

2.1

1.6

1.8

1.5

1.5

1.5

1.5

1.9

1.5

1.6

1.9

1.6

1.6

1.4

1.7
1.5

1.9

1.5

1.5

1.6

1.5

1.6

2.1

1.4

1.7
1.9
1.6

1.8

1.7

1.7

1.7

1.5

1.5

1.7

1.7
1.1

1.6

1.9

1.6
1.5

1.4

1.6

1.7

1.8

1.5

1.7

1.6

1.9

1.6
1.4 1.7

1.5

1.5

1.3

1.7

1.9

1.6
1.2

1.5

1.7

1.5

1.7

1.9

1.6

1.6

1.5

1.4

1.6

1.5

1.6

1.6
1.7

1.7

1.6

1.9

1.6

Fig. 6. Estimated number of 1-dimensional cycles in noisy toruses (Color figure online)

4.2 Noisy Torus

Second, we estimated the number of cycles in 100 set of noisy data. Concretely,
we sampled from the uniform distribution on the torus. The major radius and
the minor radius of the torus are 2.5 and 1, respectively. The number of data
points was determined randomly based on the uniform distribution of the interval
[200, 600] for every set of data. In addition, we added Gaussian noise to each data
point on the torus. The variance of Gaussian noise was determined the uniform
distribution of the interval [0.0, 0.3] for every set of data.

Figures 6 and 7 show the results of this experiment. The vertical and hor-
izontal axes of graphs represent the number of data points and the variance
of Gaussian noise, respectively. The plotted numbers in the graphs represent
the estimated number of cycles in each set of data. The correct and incorrect
number of cycles are colored in red and blue, respectively. The results of the
proposed method as shown in Fig. 6 (bottom right) and Fig. 7 (bottom right)
are represented with real numbers as a result of statistical analysis.

Inferring Underlying Manifold of Data 51

200 300 400 500 600

0.
00

0.
05

0.
10

0.
15

0.
20

0.
25

0.
30

Confidence Interval

Data Points

Va
rie

nc
e 0

0
0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0
0

0

0

0

0

0

0

0

0

0
0
0

0

0

0

0

0

0

0

0
0

0

0

0
0

0

0

0

0

0

0

0

0

0
0 0

0

0

0

0

0

0
0

0

0

0

0

0

0

0

0

0

0

0

0

0
0

0

0

0

0

200 300 400 500 600

0.
00

0.
05

0.
10

0.
15

0.
20

0.
25

0.
30

Persistent Landscape

Data Points

Va
rie

nc
e 0

0
0

1

0

0

0

1

0

0

1

0

0

0

0

1

0

0

2

1

1

0

0

0

0

1

0

0

1

0

1

1

0

1

0

0

1

1

1
0

0

0

0

0

0

0

0

0

1
0
0

1

0

1

0

0

1

0

0
0

0

0

0
0

1

1

0

0

1

0

0

1

0
1 0

1

0

0

0

0

0
0

0

1

0

0

0

1

2

0

0

0

0

0

1
0

0

0

0

0

200 300 400 500 600

0.
00

0.
05

0.
10

0.
15

0.
20

0.
25

0.
30

Mean Landscape

Data Points

Va
rie

nc
e 0

0
0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0
0

0

0

0

0

0

0

0

0

0
0
0

0

0

0

0

0

0

0

0
0

0

0

0
0

0

0

0

0

0

0

0

0

0
0 0

0

0

0

0

0

0
0

0

0

0

0

0

0

0

0

0

0

0

0

0
0

0

0

0

0

200 300 400 500 600

0.
00

0.
05

0.
10

0.
15

0.
20

0.
25

0.
30

Proposed Method

Data Points

Va
rie

nc
e 0.6

0.7
0

0.7

0

0.3

0

0.7

0.7

0.7

0.1

0.5

0

0.8

0.7

0.7

0

0.7

0.6

0.8

0

0.7

0.6

0

0

0.1

1.3

0

1.5

0

0.8

1.4

0.8

0.9

0

0.8

0.9

0.7

0.7
0.5

0.8

0.7

0.8

0.5

0.8

0.9

0

0

1
0
0

1.2

0

1.3

0

0.6

0.6

0

0
0

0

0

0
0.7

1

0.8

0

0.6

0.8

0.5

0.8

0.7

0
0.8 0.7

0.7

0

1.3

0.7

1.3

0.6
0.7

0.6

0.8

0.1

0.7

0

0.7

1.3

0

0

0

0.9

0.7

0.7
0

0.7

0.7

0

0

Fig. 7. Estimated number of 2-dimensional cycles in noisy toruses (Color figure online)

Figure 6 shows that the proposed method estimated the correct number of 1-
dimensional cycles in most set of data. A success rate of the proposed method was
86% in 1-dimensional cycles. By contrast, both persistent landscape and mean
landscape estimated the correct number of cycles in only 42% and 45% the data
sets, respectively. The method employing the confidence interval estimated the
incorrect number of cycles in all set of data.

Figure 7 shows that the proposed method estimated the incorrect number of
2-dimensional cycles in small sized data. The reason for this result is that 2-
dimensional holes cannot be formed when only a few data points exist. However,
the proposed method estimated the correct number of 2-dimensional cycles in
most set of data that had more than 400 points. A success rate of the proposed
method was 61% in 2-dimensional cycles.

By contrast, persistent landscape estimated the incorrect number of cycles in
many set of data. A success rate of persistent landscape was 27%. The methods
employing the confidence interval or mean landscape estimated the incorrect
number of cycles in all set of data.

52 R. Futagami et al.

Fig. 8. Samples of annular data set

Table 5. Estimates of the num-
ber of 1-dimensional cycles in
annular data set

Method Cycle

Confidence interval 0

Persistent landscape 1

Mean landscape 1

Proposed method 1

The proposed method estimated the number of cycles most accurately in
noisy data.

4.3 High Dimensional Image Data

Figure 8 is part of the image data set known as Columbia Object Image Library
(COIL-20) [11]. Images of the objects were taken at pose intervals of 5◦. These
images are on a annular manifold, therefore this image data set has one 1-
dimensional cycle.

We estimated the number of cycles in this image data set by the proposed
and conventional methods. Table 5 shows that the proposed method, persistent
landscape and mean landscape estimated the number of 1-dimensional cycles
to be one correctly. By contrast, the methods employing the confidence interval
estimated the number of 1-dimensional cycles to be zero incorrectly.

The result insisted the proposed method is effective for high dimensional
data.

As the aforementioned results indicate, the proposed method estimates the
number of cycles more accurately than conventional methods. Estimation the
number of cycles as a real number using subsamples and smoothing enables the
proposed method to help inferring the underlying manifold like human experts.
Therefore, we get not a single inferring result but several inferred candidates of
the underlying manifold with the likelihood.

5 Conclusion

In this study, we proposed the method to estimate the number of cycles in the
underlying manifold automatically.

We then estimate the number of cycles in the torus without noise, the noisy
torus and the high dimensional data by the proposed method and conventional
methods. As a result, the proposed method estimated more accurately the num-
ber of cycles than conventional methods regardless noise and extrinsic dimension
of data. Using subsamples and smoothing enables the proposed method to esti-
mate the number of cycles with high likelihood. The topological shape of the
underlying manifold can be inferred based on the estimated number of cycles.

Inferring Underlying Manifold of Data 53

References

1. Futagami, R., Shibuya, T.: A method deciding topological relationship for self-
organizing maps by persistent homology analysis. In: Proceedings of SICE Annual
Conference 2016, pp. 1064–1069 (2016)

2. Zomorodian, A., Carlsson, G.: Computing persistent homology. Discret. Comput.
Geom. 33(2), 249–274 (2005)

3. Edelsbrunner, H., Harer, J.: Persistent homology-a survey. Contemp. Math. 453,
257–282 (2008)

4. Fasy, T.B., Lecci, F., et al.: Confidence sets for persistence diagrams. Annu. Stat.
42(6), 2301–2339 (2014)

5. Bubenik, P.: Statistical topological data analysis using persistent landscapes. J.
Mach. Learn. Res. 16(1), 77–102 (2015)

6. Gameiro, M., et al.: A topological measurement of protein compressibility. Jpn. J.
Ind. Appl. Math. 32(1), 1–17 (2013)

7. Zhang, W., et al.: An optimized degree strategy for persistent sensor network data
distribution. In: Euromicro International Conference on Parallel, Distributed and
Network-Based Processing (2012)

8. Zhu, X.: Persistent homology: an introduction and a new text representation for
natural language processing. In: Proceedings of the Twenty-Third International
Joint Conference on Artificial Intelligence (2013)

9. Steiner, D.C., Edelsbrunner, H., Harer, J.: Stability of persistence diagrams. Dis-
cret. Comput. Geom. 37(1), 103–120 (2007)

10. Hastie, T.J., Tibshirani, R.J.: Generalized Additive Models, 1st edn. Chapman &
Hall/CRC, Boca Raton (1990)

11. Nene, S.A., Nayar, S.K., Murase, H.: Columbia object image library (COIL-20).
Technical report, No. CUCS-005-96 (1996)

Gaps and Well-Composed Objects
in the Triangular Grid

Lidija Čomić(B)

Faculty of Technical Sciences, University of Novi Sad, Novi Sad, Serbia
comic@uns.ac.rs

Abstract. We extend the notion of a gap from the square to the trian-
gular grid, and we propose a possible classification of gaps in this grid.
We give four definitions of well-composed objects in the triangular grid
by translating the existing definitions of such objects in the square grid.
We show that these definitions in the triangular grid are equivalent, as
they are in the square grid.

We give a formula relating the number of gaps of different types in an
object in this grid with the number of boundary cells in the object, as
well as three short intuitive proofs of this formula.

Keywords: Digital topology · Triangular grid · Gaps
Well-composedness

1 Introduction

There are three regular grids in the plane, inducing the tiling of the plane
into regular triangles, squares or hexagons. Although the square grid remains
the most popular in the literature, the two alternative grids have also been
widely investigated in different frameworks, such as topology-preserving transfor-
mations [15,16,21,26,27,43], computation of the Euler characteristic [6,24,41],
analytical [17,20,37] or computational [38,39] geometry, tomography [36], topo-
logical/combinatorial coordinate systems [25,35], distance transform [1,2] and
neighborhood sequences [18], to name just a few. Each grid has specific geo-
metric and topological properties. One of such topological properties is well-
composedness [31,32] of binary objects in the given grid. Closely related is the
notion of gaps [9,11], their classification and their number in non-well-composed
objects. Despite this close relation, the two notions have been defined and stud-
ied independently in the literature, and only in the case of the square (and the
nD cubical) grid.

A gap in an object in the square grid is a vertex v incident to exactly two
black squares and exactly two white ones, the black and white squares alternating
cyclically around v. Intuitively, it is a location in O through which a discrete
curve can penetrate [7].

c© Springer Nature Switzerland AG 2019
R. Marfil et al. (Eds.): CTIC 2019, LNCS 11382, pp. 54–67, 2019.
https://doi.org/10.1007/978-3-030-10828-1_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-10828-1_5&domain=pdf
https://doi.org/10.1007/978-3-030-10828-1_5

Gaps and Well-Composed Objects in the Triangular Grid 55

There are several approaches to well-composedness in the square grid. A
well-composed object can be defined based on

– the absence of certain (forbidden) configurations of squares in 2× 2 blocks of
squares, containing two diagonally placed black squares and two diagonally
placed white ones,

– the manifoldness of its topological boundary,
– the manifoldness of its combinatorial boundary,
– the independence of the connectedness of the object and its complement on

the chosen adjacency relation.

Note that a forbidden configuration occurs exactly when the central vertex of
the configuration is a gap. These four definitions of a well-composed object agree
in the 2D square grid [5]. Thus, a gap in an object O in this grid is a vertex at
which O fails to be well-composed.

Well-composed objects were also defined in the 3D [31] (and nD [3]) cubical
grids. The problem of repairing non-well-composed objects in the 3D cubical
grid, i.e., of transforming such objects into well-composed ones, has received a
lot of attention recently [4,14,22,23,40,42].

We define a gap in an object O in the triangular grid based on the number
of boundary edges incident to the vertex, i.e., as a central vertex of certain
configurations of black and white triangles. We propose a classification of gaps
in the triangular grid based on the ‘degree of non-manifoldness’ of O at such
vertices. We translate the four definitions of well-composed objects from the
square to the triangular grid and we show that these definitions are equivalent
also in the triangular grid. We give a formula for the number of gaps in O, as
an extension of the known formula for the number of gaps in the square grid.

To summarize, the contributions of this paper are:

– an extension of the notion of gaps from the square to the triangular grid, and
their tentative classification,

– a translation of the notion of well-composed objects from the square to the
triangular grid, with four different definitions of such objects,

– a proof of equivalence of the four definitions,
– three short and intuitive proofs of a formula expressing the number of gaps

in an object O through the number of boundary edges and vertices in O.

2 Preliminaries

We give some basic notions on the regular grids in 2D [16,28], the Euler char-
acteristic [29], gaps and well-composed objects in the square grid [5,32] and the
number of gaps in the non-well-composed such objects [9,11].

2.1 Regular Grids in the Plane

The only regular grids in the plane are the triangular, square and hexagonal
grids, which induce the tessellations of the plane into regular triangles, squares

56 L. Čomić

and hexagons, respectively. The triangles, squares and hexagons are called pixels.
Each triangle, square and hexagon is bounded by three, four and six edges and
vertices, respectively. Each edge (in all three grids) is bounded by two vertices,
and bounds two pixels. Each vertex in the triangular, square and hexagonal grid
bounds six, four and three pixels and edges, respectively.

Different types of adjacency relation are defined between the pixels in these
grids, depending on their intersection. Two pixels are 1-adjacent (edge-adjacent)
if they share an entire edge; they are (strictly) 0-adjacent (vertex-adjacent) if
they share (only) a vertex.

Each triangle is 1-adjacent to three triangles, one across each of its edges. It
is strictly 0-adjacent to another nine triangles, three across each of its vertices.
Each square is 1-adjacent to four squares, and is strictly 0-adjacent to other four
squares. Each hexagon is 1-adjacent to six hexagons. Two hexagons that share
a vertex, share also an entire edge. Thus, there is no strict 0-adjacency in the
hexagonal grid.

A (binary) object O in these grids is a finite set of pixels in the grid. The
associated cell complex [30] is denoted as Q. It consists of all pixels in O and
all their edges and vertices. (Recall that a k-cell is a homeomorphic image of
a k-ball. A cell complex is a collection Q of cells that fit nicely together: the
boundary of each cell in Q, and each non-empty intersection of two cells in Q is
composed of cells in Q.) The number of k-cells in Q is denoted as ck. Thus, c2 is
the number of pixels, c1 is the number of edges and c0 is the number of vertices
in Q. The pixels in O are called black (object), those in the complement Oc of
O are called white (background).

A boundary edge (vertex) in Q is an edge (vertex) incident both to a pixel in
O and a pixel in Oc. An interior edge (vertex) is incident to pixels in O only. The
number of interior and boundary k-cells in Q is denoted as c′

k and c∗
k, k = 0, 1,

respectively, and
ck = c′

k + c∗
k.

Two pixels p and q in an object O are 1-connected (0-connected) in O, if
there is a sequence of pixels in O, starting at p and ending in q, such that
any two consecutive pixels in the sequence are 1-adjacent (0-adjacent). The 1-
connected components (0-connected components) of O are maximal subsets of
O with respect to the chosen connectedness. The number of 1-connected (0-
connected) components is denoted c1 (c0). A hole is a finite connected component
of the complement Oc of O. If connected components of O are defined with
respect to 1-adjacency, then holes are defined with respect to 0-adjacency and
vice versa. (In the hexagonal grid, both the connected components and holes
are defined with respect to 1-adjacency.) The number of holes with 1-adjacency
for O and 0-adjacency for Oc is denoted h0. Similarly, the number of holes with
0-adjacency for O and 1-adjacency for Oc is denoted h1.

We say that a cell complex Γ (a finite set of pixels, edges and vertices in a
grid that forms a cell complex) is connected if for any two cells in Γ there is a
sequence of cells in Γ starting at one and ending at the other cell, such that two
consecutive cells share at least one common vertex.

Gaps and Well-Composed Objects in the Triangular Grid 57

2.2 The Euler Characteristic of 2D Digital Objects

The Euler characteristic is one of the basic topological descriptors of objects
(images or shapes). It can be defined in two equivalent ways:

– through the topological properties related to connectedness of O, or
– through the number of cells in the complex Q associated to O.

In both cases, its value depends on the chosen adjacency relation. We denote
as χα(O) the Euler characteristic of O with α-adjacency for black pixels and
(1 − α)-adjacency for white pixels, α = 0, 1. The Euler characteristic χα(O) of
a 2D digital object O with α-adjacency, α = 0, 1, is equal to the number of
connected components of O minus the number of holes in O, i.e.,

χα(O) = cα − h1−α.

For an object O with 0-adjacency (and for the associated complex Q), the Euler
characteristic can be computed as the alternating sum of the number ci of i-cells
in Q, i = 0, 1, 2, i.e.,

χ0(O) = χ0(Q) = c0 − c1 + c2.

2.3 Gaps and Well-Composed Objects in the Square Grid

A gap in an object O in the square grid occurs at a vertex v incident to two black
and two white squares, that alternate cyclically around v. There is only one type
of gaps in the square grid, due to the restricted number (four) of squares incident
to a vertex in this grid.

There are several equivalent definitions of well-composed objects (sets or
images) in the square grid [3,5]. A 2D object O in the square grid is well-
composed if:

– the object O contains no forbidden configurations, i.e., (boundary) vertices
incident to exactly two strictly vertex-adjacent black squares (and to two
strictly vertex-adjacent white ones), that is, O contains no gaps,

– the topological boundary bd O of O (the set of points in the plane for which
every neighborhood has a nonempty intersection both with the object O
and with its complement Oc) is a topological 1-manifold (a topological space
in which every point has a neighborhood homeomorphic to the open unit
interval, i.e., a union of disjoint curves),

– the combinatorial boundary ∂O of O (the cell complex composed of boundary
edges and vertices of O) consists of discrete 1-surfaces [19] (every edge is
incident to exactly two distinct vertices and every vertex is incident to exactly
two distinct edges),

– the connected components of O and of the complement Oc of O do not depend
on the chosen adjacency relation (0- or 1-adjacency), i.e., each 0-connected
component of O (and of Oc) is also a 1-connected component.

58 L. Čomić

2.4 The Number of Gaps in the Square Grid

Several formulae have been proposed for the number g of gaps in a binary object
O in the square grid [8,9,13]. One of them [9] expresses g in terms of the boundary
cells in the associated complex Q as

g = c∗
1 − c∗

0,

or equivalently as
g = c1 − c′

1 − c0 + c′
0.

In higher dimensions, different types of gaps can be defined. Formulae for the
number of 1-gaps in 3D [33] and (n − 2)-gaps in nD [7,11,34] binary objects in
the cubical grid have also been proposed.

3 Gaps in the Triangular Grid

Up to rotation and symmetry, there are thirteen different configurations of the
six triangles around a vertex v in the triangular grid, as illustrated in Fig. 1. We
classify the vertices in O based on the number of boundary edges in O incident
to the vertex.

(a)

(b)

(c)

(d)

Fig. 1. The possible configurations (up to rotation and symmetry) of black and white
triangles around a vertex in the triangular grid: (a) non-boundary vertices (interior or
exterior to the object O); (b) non-gap boundary vertices; (c) simple gaps; (d) double
gaps.

Gaps and Well-Composed Objects in the Triangular Grid 59

The vertices incident to six black triangles are interior vertices of O, and
those incident to six white triangles are exterior vertices of O (they are interior
vertices of Oc). Interior and exterior vertices are illustrated in Fig. 1(a). Other
vertices are boundary vertices of O.

We call the boundary vertices incident to exactly two boundary edges non-
gap boundary vertices of O. (Such vertices in the square grid are called also
totally boundary cells [7,11] or nubs [34].) The six triangles incident to a non-
gap boundary vertex can be grouped in two sets of contiguous triangles: a set
of 1-connected black triangles and a set of 1-connected white ones. The possi-
ble configurations of black and white triangles around a non-gap vertex v are
illustrated in Fig. 1(b).

We call the boundary vertices incident to exactly four boundary edges simple
gaps. The six triangles incident to a simple gap can be grouped in four sets of
contiguous triangles: two sets of 1-connected black triangles and two sets of 1-
connected white ones. The possible configurations of black and white triangles
around a simple gap v are illustrated in Fig. 1(c).

We call the boundary vertices incident to exactly six boundary edges double
gaps. The three black and three white triangles incident to a double gap v
alternate cyclically around v, as illustrated in Fig. 1(d).

Thus, a gap is a vertex incident to at least two strictly 0-adjacent black
triangles that are not 1-connected in the set of black triangles incident to v (and
to at least two strictly 0-adjacent white triangles that are not 1-connected in the
set of white triangles incident to v).

We denote the number of non-gap boundary vertices as ḡ, the number of
simple and double gaps as g(1) and g(2), respectively, and the total number of
gaps as g. Thus,

g = g(1) + g(2).

Let us consider a cell complex Q′, obtained from the complex Q associated
with an object O by deleting a gap v, together with all the black triangles and
all their edges that are incident to v. Let us consider how the topology of Q′

changes when we reintroduce the deleted cells.
At each simple gap v, either

– two connected components of Q′ meet (and merge) at the vertex v, or
– one connected component of Q′ meets itself forming a hole (a loop),

in both cases decreasing the Euler characteristic χ0(Q′) by 1, i.e.,

χ0(O) = χ0(Q) = χ0(Q′) − 1.

Each double gap is incident to exactly six boundary edges. The three black
and three white triangles incident to a double gap alternate cyclically around
the gap.

At each double gap v, either

– three connected components of Q′ meet and merge at v, or
– one component forms a loop and merges with another component, or

60 L. Čomić

– one component meets itself two times, forming two independent loops, or
– one component meets itself three times, forming three dependent (and two

independent) loops.

In any case, the Euler characteristic χ0(Q′) is decreased by 2 at a double gap,
i.e.,

χ0(O) = χ0(Q) = χ0(Q′) − 2.

Thus, when counting gaps, we will count double gaps twice, and we will give a
formula for the number g + g(2) = g(1) + 2g(2).

4 Well-Composed Objects in the Triangular Grid

We give four definitions of well-composed objects in the triangular grid, analo-
gous to the definitions of well-composed objects in the square grid, and we show
that the four definitions are equivalent.

Definition 1. An object O in the triangular grid is well-composed if it has no
gaps (i.e., if all its boundary vertices are non-gaps).

Definition 2. An object O in the triangular grid is well-composed if its topo-
logical boundary is a topological 1-manifold.

Definition 3. An object O in the triangular grid is well-composed if its combi-
natorial boundary ∂O consists of discrete 1-surfaces.

Definition 4. An object O in the triangular grid is well-composed if each 0-
connected component of O (and of the complement Oc of O) is also a 1-connected
component.

Proposition 1. Definitions 1 and 2 are equivalent, i.e., an object O in the trian-
gular grid has no gaps if and only if its topological boundary bd O is a topological
1-manifold.

Proof. (⇒) If the object O has no gaps, then each boundary vertex is a non-
gap boundary vertex and is incident to two boundary edges. The topological
boundary bd O of O is composed of boundary edges and vertices in O, considered
as a set of points in the plane. The points in the interior of boundary edges have a
neighborhood homeomorphic to the open unit interval, e.g. the open edge itself.
For the end points of the edges (the boundary vertices), such neighborhood is
e.g. the union of the two incident (open) edges and the vertex itself.

(⇐) Let the object O contain at least one gap v. By inspecting the possible
configurations of boundary edges around v (see Fig. 1(c) and (d)), we see that
the topological boundary bd O of O is not a topological 1-manifold at v (as each
gap v is incident to four or six boundary edges).

Proposition 2. Definitions 1 and 3 are equivalent, i.e., an object O in the tri-
angular grid has no gaps if and only if its combinatorial boundary ∂O consists
of discrete 1-surfaces.

Gaps and Well-Composed Objects in the Triangular Grid 61

Proof. (⇒) The combinatorial boundary ∂O of an object O in the triangular
grid is a cell complex composed of boundary edges and vertices in O. If the
object O has no gaps, then each boundary vertex in O, being a non-gap vertex,
is incident to exactly two boundary edges in ∂O. Each (boundary) edge is a
straight line segment, and thus it is incident to exactly two distinct (boundary)
vertices. Thus, ∂O is composed of discrete 1-surfaces.

(⇐) Conversely, if ∂O is composed of discrete 1-surfaces, then each vertex
in ∂O is incident to exactly two (boundary) edges in ∂O. Thus, O has no gaps,
since each gap is incident to four or six (and not two) boundary edges.

Proposition 3. Definitions 1 and 4 are equivalent, i.e, an object O in the tri-
angular grid has no gaps if and only if each 0-connected component of O (and
of the complement Oc of O) is also a 1-connected component.

Proof. (⇒) If there is a 0-connected component in O that is not a 1-connected
component (and similarly for the complement Oc of O), then there are two
black triangles in this component such that for each sequence of 0-adjacent
black triangles connecting them, at least one adjacency is strict. Let v be one
such vertex incident to two strictly 0-adjacent black triangles t1 and t2 in the
same 0-connected component of O. The triangles t1 and t2 are not 1-connected
in the set of black triangles incident to v. This implies that there are at least two
sets B1 and B2 of contiguous (1-connected) black triangles around v (incident to
v), and at least two such sets of white triangles. There are at least four distinct
edges, each shared by a black triangle in Bi, i = 1, 2, and a white triangle incident
to v. Each of these edges is a boundary edge and is incident to v, implying that
the vertex v is a gap.

(⇐) Let the object O have at least one gap v. There are at least two sets
of contiguous (1-connected) black triangles around v, and at least two such sets
of white triangles. Let B1 and B2 be such sets of black triangles. The set B1

is surrounded on both sides with two white triangles t1 and t2 (B1 contains a
black triangle 1-adjacent to a white triangle t1 in one of the sets of white triangles
incident to v, and a black triangle 1-adjacent to a white triangle t2 in the other
set of white triangles incident to v).

– If B1 and B2 are 1-connected in O (if some black triangle in B1 is 1-connected
in O to some black triangle in B2), then we can construct a polygonal Jordan
curve J passing through the vertex v, and through the interior of all the black
triangles in the sequence of 1-connected triangles connecting B1 and B2. Each
such black triangle is 1-adjacent to the previous and the next triangle in the
sequence through one of its three edges each (with the exception of the first
and the last triangle in the sequence, which are edge-adjacent to the next
and the previous triangle only, respectively, through one of the three incident
edges).
The curve J can be constructed by connecting the vertex v with the mid-
points of these edges of the first and the last triangle in the sequence and by
connecting the midpoints of the two “connecting” edges inside the other black
triangles in the sequence, as illustrated in Fig. 2(a) for one of the configuration

62 L. Čomić

of black and white triangles around the gap v. One of the two (0-adjacent)
white triangles t1 and t2 is inside J , the other is outside, and the two white
triangles, being separated by the curve J lying (with the exception of the
vertex v) completely in the interior of the object O, cannot be connected
through a sequence of 1-adjacent white triangles. Thus, the triangles t1 and
t2 belong to a 0-connected component of the complement Oc of O, which is
not a 1-connected component.

– If B1 and B2, apart from being 0-adjacent through the vertex v, can be con-
nected through a sequence of 0-adjacent black triangles not containing v (with
at least one adjacency being strict), as illustrated in Fig. 2(b), or if B1 and B2

are not connected at all (except through v), as illustrated in Fig. 2(c), then
the black triangles in B1 and those in B2 belong to a 0-connected component
of O which is not a 1-connected component.

Thus, if the object O contains a gap, there is either a 0-connected component of
Oc that is not a 1-connected component, or there is a 0-connected component
of O that is not a 1-connected component.

v v v

(a) (b) (c)

Fig. 2. Illustration of the (⇐) part of the proof of Proposition 3 when (a) B1 and B2

belong to a 1-connected component of O (the polygonal Jordan curve is drawn in red),
(b) B1 and B2 do not belong to the same 1-connected component of O and a triangle
in B1 is connected to a triangle in B2 through a sequence of pairwise 0-adjacent black
triangles, with at least one adjacency being strict and (c) B1 and B2 are disconnected
in O, with the exception of the 0-adjacency between a triangle in B1 and a triangle in
B2 through the vertex v. (Color figure online)

5 The Number of Gaps in the Triangular Grid

We give a formula for the number of gaps in the triangular grid, as an extension
of the known formula for the number of gaps in the square grid. It expresses
the number of gaps in an object O through the numbers c∗

1 and c∗
0 of boundary

edges and vertices in O, respectively.

Proposition 4. The number of gaps in an object O in the triangular grid, with
double gaps counted twice, is given by

g(1) + 2g(2) = g + g(2) = c∗
1 − c∗

0.

Gaps and Well-Composed Objects in the Triangular Grid 63

Proof. We can prove this claim by induction on the number of triangles in O.
For the base case, an object O consisting of a single triangle has three boundary
edges, three boundary vertices and no gaps. Thus, the formula is valid for O.

Let us suppose the formula is valid for objects with n triangles, and let O
be an object with n + 1 triangles. We can assume, without loss of generality,
that the grid is oriented so that it consists of ∇ and Δ triangles. Let t be the
rightmost of the uppermost triangles in O and let O′ = O\{t}. For a Δ triangle
t, there are 27 cases to consider, depending on the color (black or white) of the
left and lower neighbors of t. For a ∇ triangle t, there are 24 such cases. For each
case, we can show that the change in the number of gaps (taking into account
their multiplicity) induced by adding the triangle t to O′ is equal to the change
in the difference between the number of boundary edges and vertices.

Instead of giving details on all the cases, we give three alternative proofs of
this statement, inspired by the proofs of the analogous statement in the square
grid [12,13]. The first proof is combinatorial, the second and the third one are
based on graph theory.

First Proof: Note that c∗
0 is the number of boundary vertices that may or may

not be gaps. Thus,
c∗
0 = ḡ + g

(recall that ḡ denotes the number of non-gap boundary vertices).
Let us consider the set of all ordered pairs (e, v), where e is a boundary edge

and v is a boundary vertex (non-gap or gap) incident to e. There are c∗
1 cells e

and c∗
0 = ḡ + g cells v.

Each boundary edge is incident to two boundary vertices. Each boundary
non-gap vertex is incident to two, each simple gap is incident to four, and each
double gap is incident to six boundary edges. Consequently, each boundary edge
is in two, each boundary non-gap vertex is in two, each simple gap is in four and
each double gap is in six such pairs (e, v). Thus

2c∗
1 = 2ḡ + 4g(1) + 6g(2)

c∗
1 = ḡ + 2g(1) + 3g(2)

c∗
1 = ḡ + g(1) + g(1) + g(2) + 2g(2)

c∗
1 = c∗

0 + g(1) + 2g(2)

and
g(1) + 2g(2) = c∗

1 − c∗
0

g + g(2) = c∗
1 − c∗

0.

Second Proof: Let us consider the graph G = (N,A), where the nodes in
N correspond to the boundary edges in O. Recall that each non-gap vertex
is incident to two, each simple gap is incident to four and each double gap is
incident to six boundary edges.

– For a non-gap vertex v, we connect the two nodes in N corresponding to the
two boundary edges incident to v through an arc in A.

64 L. Čomić

– For a simple gap v, the six triangles incident to v can be grouped into 1-
connected sets of triangles of the same color (black or white). There are two
such sets B1 and B2 of black triangles and two sets W1 and W2 of white ones.
Two of the four boundary edges incident to v are both incident to triangles
in W1. We connect the two nodes in N corresponding to these two edges
through an arc in A. The other two of the four boundary edges are incident
to triangles in W2. We connect the corresponding nodes in N through an arc
in A.

– For a double gap v, there are three such sets of black and white triangles
(each consisting of a single triangle). The six boundary edges incident to v
can be grouped in three pairs, with the two edges in each pair being both
incident to the same white triangle. We connect the nodes corresponding to
the paired edges through an arc in A.

Thus, each non-gap boundary vertex generates one arc in A, each simple
gap generates two arcs in A and each double gap generates three arcs. Each
boundary edge is connected in the graph to exactly one edge across each of its
two incident vertices.

There are c∗
1 nodes in N and ḡ + 2g(1) + 3g(2) arcs in A. The degree of each

node in N is equal to two (the number of vertices in the boundary of the edge
corresponding to the node). The sum of degrees of the nodes in N is equal to
twice the number of arcs in A, i.e.,

2c∗
1 = 2(ḡ + 2g(1) + 3g(2))

c∗
1 = ḡ + g(1) + g(1) + g(2) + 2g(2)

c∗
1 = c∗

0 + g(1) + 2g(2)

and
g(1) + 2g(2) = c∗

1 − c∗
0

g + g(2) = c∗
1 − c∗

0.

Third Proof: Let us consider the graph G = (N,A), with nodes in N corre-
sponding to boundary vertices in O, and arcs in A corresponding to boundary
edges. Each node in N has an even degree: two if it corresponds to a non-gap
boundary vertex, four if it corresponds to a simple gap and six if it corresponds
to a double gap. Thus, there is an Eulerian cycle (containing all arcs in A exactly
once) in the graph G. Let v1, e1, . . . , vc∗

1
, ec∗

1
be a cyclic ordering of nodes vi and

arcs ei in C, 1 ≤ i ≤ c∗
1. The number c∗

1 of arcs in C is equal to the number of
nodes in C. Non-gap boundary vertices appear once in C, simple gaps appear
twice and double gaps appear three times. Thus

c∗
1 = ḡ + 2g(1) + 3g(2)

c∗
1 = ḡ + g(1) + g(1) + g(2) + 2g(2)

c∗
1 = c∗

0 + g(1) + 2g(2)

and
g(1) + 2g(2) = c∗

1 − c∗
0

g + g(2) = c∗
1 − c∗

0.

Gaps and Well-Composed Objects in the Triangular Grid 65

6 Summary and Future Work

We defined gaps in binary objects in the triangular grid based on the number of
incident boundary edges, i.e., as central vertices of certain configurations of the
incident triangles, and we proposed a possible taxonomy for the gaps. We gave
four definitions of well-composed objects in the triangular grid: based on the
absence of gaps in O, based on the properties of the topological or combinatorial
boundary of the object, and based on the influence of the chosen adjacency
relation on the connectivity properties of the object, and we proved that the
four definitions are equivalent. We gave a formula for the number of gaps (with
double gaps counted twice), and three short and intuitive proofs of this formula.

Alternative formulas for the number of gaps in an object O in the triangular
grid could be obtained, like in the square grid [10,13], expressing the number of
gaps through the Euler characteristic of the object O. Another possible research
direction could be an extension of this work to the 3D face centered cubic and
the diamond grids.

Acknowledgement. We are grateful to the anonymous reviewers for careful reading
of the paper and constructive comments. This work has been partially supported by
the Ministry of Education and Science of the Republic of Serbia within the Project No.
34014.

References

1. Borgefors, G.: Distance transformations on hexagonal grids. Pattern Recognit.
Lett. 9(2), 97–105 (1989)

2. Borgefors, G., Sanniti di Baja, G.: Skeletonizing the distance transform on the
hexagonal grid. In: 9th International Conference on Pattern Recognition, ICPR,
pp. 504–507 (1988)

3. Boutry, N.: A study of well-composedness in n-D (Une étude du bien-composé en
dimension n). Ph.D. thesis, University of Paris-Est, France (2016)

4. Boutry, N., Géraud, T., Najman, L.: How to make nD images well-composed with-
out interpolation. In: 2015 IEEE International Conference on Image Processing,
ICIP 2015, pp. 2149–2153 (2015)

5. Boutry, N., Géraud, T., Najman, L.: A tutorial on well-composedness. J. Math.
Imaging Vis. 60(3), 443–478 (2018)

6. Bribiesca, E.: A new chain code. Pattern Recognit. 32(2), 235–251 (1999)
7. Brimkov, V.E.: Formulas for the number of (n− 2)-gaps of binary objects in arbi-

trary dimension. Discret. Appl. Math. 157(3), 452–463 (2009)
8. Brimkov, V.E., Maimone, A., Nordo, G.: An explicit formula for the number of

tunnels in digital objects. CoRR abs/cs/0505084 (2005). http://arxiv.org/abs/cs/
0505084

9. Brimkov, V.E., Maimone, A., Nordo, G.: Counting gaps in binary pictures. In:
Reulke, R., Eckardt, U., Flach, B., Knauer, U., Polthier, K. (eds.) IWCIA 2006.
LNCS, vol. 4040, pp. 16–24. Springer, Heidelberg (2006). https://doi.org/10.1007/
11774938 2

http://arxiv.org/abs/cs/0505084
http://arxiv.org/abs/cs/0505084
https://doi.org/10.1007/11774938_2
https://doi.org/10.1007/11774938_2

66 L. Čomić

10. Brimkov, V.E., Maimone, A., Nordo, G., Barneva, R.P., Klette, R.: The number
of gaps in binary pictures. In: Bebis, G., Boyle, R., Koracin, D., Parvin, B. (eds.)
ISVC 2005. LNCS, vol. 3804, pp. 35–42. Springer, Heidelberg (2005). https://doi.
org/10.1007/11595755 5

11. Brimkov, V.E., Moroni, D., Barneva, R.: Combinatorial relations for digital pic-
tures. In: Kuba, A., Nyúl, L.G., Palágyi, K. (eds.) DGCI 2006. LNCS, vol. 4245,
pp. 189–198. Springer, Heidelberg (2006). https://doi.org/10.1007/11907350 16

12. Brimkov, V.E., Nordo, G., Barneva, R.P., Maimone, A.: Genus and dimension of
digital images and their time- and space-efficient computation. Int. J. Shape Model.
14(2), 147–168 (2008)

13. Čomić, L.: On gaps in digital objects. In: Barneva, R., Brimkov, V., Tavares, J.
(eds.) IWCIA 2018. LNCS, vol. 11255, pp. 3–16. Springer, Cham (2018). https://
doi.org/10.1007/978-3-030-05288-1 1

14. Čomić, L., Magillo, P.: Repairing 3D binary images using the BCC grid with a
4-valued combinatorial coordinate system. Inf. Sci. (2019, to appear)

15. Deutsch, E.S.: On parallel operations on hexagonal arrays. IEEE Trans. Comput.
19(10), 982–983 (1970)

16. Deutsch, E.S.: Thinning algorithms on rectangular, hexagonal, and triangular
arrays. Commun. ACM 15(9), 827–837 (1972)

17. Dutt, M., Andres, E., Largeteau-Skapin, G.: Characterization and generation of
straight line segments on triangular cell grid. Pattern Recognit. Lett. 103, 68–74
(2018)

18. Dutt, M., Biswas, A., Nagy, B.: Number of shortest paths in triangular grid for 1-
and 2-neighborhoods. In: Barneva, R.P., Bhattacharya, B.B., Brimkov, V.E. (eds.)
IWCIA 2015. LNCS, vol. 9448, pp. 115–124. Springer, Cham (2015). https://doi.
org/10.1007/978-3-319-26145-4 9

19. Evako, A.V., Kopperman, R., Mukhin, Y.V.: Dimensional properties of graphs and
digital spaces. J. Math. Imaging Vis. 6(2–3), 109–119 (1996)

20. Freeman, H.: Algorithm for generating a digital straight line on a triangular grid.
IEEE Trans. Comput. 28(2), 150–152 (1979)

21. Golay, M.J.E.: Hexagonal parallel pattern transformations. IEEE Trans. Comput.
18(8), 733–740 (1969)

22. González-Dı́az, R., Jiménez, M.-J., Medrano, B.: 3D well-composed polyhedral
complexes. Discret. Appl. Math. 183, 59–77 (2015)

23. González-Dı́az, R., Jiménez, M.-J., Medrano, B.: Efficiently storing well-composed
polyhedral complexes computed over 3D binary images. J. Math. Imaging Vis.
59(1), 106–122 (2017)

24. Gray, S.: Local properties of binary images in two dimensions. IEEE Trans. Com-
put. 20, 551–561 (1971)

25. Her, I.: Geometric transformations on the hexagonal grid. IEEE Trans. Image
Process. 4(9), 1213–1222 (1995)

26. Kardos, P., Palágyi, K.: Topology preservation on the triangular grid. Ann. Math.
Artif. Intell. 75(1–2), 53–68 (2015)

27. Kardos, P., Palágyi, K.: On topology preservation of mixed operators in triangular,
square, and hexagonal grids. Discret. Appl. Math. 216, 441–448 (2017)

28. Klette, R., Rosenfeld, A.: Digital Geometry: Geometric Methods for Digital Picture
Analysis. Morgan Kaufmann Publishers, San Francisco, Amsterdam (2004)

29. Kong, T.Y., Rosenfeld, A.: Digital topology: introduction and survey. Comput.
Vis., Graph., Image Process. 48(3), 357–393 (1989)

https://doi.org/10.1007/11595755_5
https://doi.org/10.1007/11595755_5
https://doi.org/10.1007/11907350_16
https://doi.org/10.1007/978-3-030-05288-1_1
https://doi.org/10.1007/978-3-030-05288-1_1
https://doi.org/10.1007/978-3-319-26145-4_9
https://doi.org/10.1007/978-3-319-26145-4_9

Gaps and Well-Composed Objects in the Triangular Grid 67

30. Kovalevsky, V.A.: Geometry of Locally Finite Spaces: Computer Agreeable Topol-
ogy and Algorithms for Computer Imagery. Editing House Dr. Bärbel Kovalevski,
Berlin (2008)

31. Latecki, L.J.: 3D well-composed pictures. CVGIP: Graph. Model Image Process.
59(3), 164–172 (1997)

32. Latecki, L.J., Eckhardt, U., Rosenfeld, A.: Well-composed sets. Comput. Vis. Image
Underst. 61(1), 70–83 (1995)

33. Maimone, A., Nordo, G.: On 1-gaps in 3d digital objects. Filomat 22(3), 85–91
(2011)

34. Maimone, A., Nordo, G.: A formula for the number of (n − 2)-gaps in digital
n-objects. Filomat 27(4), 547–557 (2013)

35. Nagy, B.: Cellular topology and topological coordinate systems on the hexagonal
and on the triangular grids. Ann. Math. Artif. Intell. 75(1–2), 117–134 (2015)

36. Nagy, B., Lukic, T.: Dense projection tomography on the triangular tiling. Fundam.
Inform. 145(2), 125–141 (2016)

37. Nagy, B., Strand, R.: Approximating Euclidean circles by neighbourhood sequences
in a hexagonal grid. Theor. Comput. Sci. 412(15), 1364–1377 (2011)

38. Sarkar, A., Biswas, A., Dutt, M., Bhowmick, P., Bhattacharya, B.B.: A linear-time
algorithm to compute the triangular hull of a digital object. Discret. Appl. Math.
216, 408–423 (2017)

39. Sarkar, A., Biswas, A., Dutt, M., Mondal, S.: Finding shortest triangular path and
its family inside a digital object. Fundam. Inform. 159(3), 297–325 (2018)

40. Siqueira, M., Latecki, L.J., Tustison, N.J., Gallier, J.H., Gee, J.C.: Topological
repairing of 3D digital images. J. Math. Imaging Vis. 30(3), 249–274 (2008)

41. Sossa-Azuela, J.H., Cuevas-Jiménez, E.V., Zaldivar-Navarro, D.: Computation of
the Euler number of a binary image composed of hexagonal cells. J. Appl. Res.
Technol. 8, 340–350 (2010)

42. Stelldinger, P., Latecki, L.J., Siqueira, M.: Topological equivalence between a 3D
object and the reconstruction of its digital image. IEEE Trans. Pattern Anal. Mach.
Intell. 29(1), 126–140 (2007)

43. Wiederhold, P., Morales, S.: Thinning on quadratic, triangular, and hexagonal cell
complexes. In: Brimkov, V.E., Barneva, R.P., Hauptman, H.A. (eds.) IWCIA 2008.
LNCS, vol. 4958, pp. 13–25. Springer, Heidelberg (2008). https://doi.org/10.1007/
978-3-540-78275-9 2

https://doi.org/10.1007/978-3-540-78275-9_2
https://doi.org/10.1007/978-3-540-78275-9_2

Generating Second Order
(Co)homological Information
within AT-Model Context

Pedro Real1, Helena Molina-Abril1(B), Fernando Dı́az del Ŕıo1,
and Darian Onchis2,3

1 H.T.S. Informatics’ Engineering, University of Seville, Seville, Spain
{real,habril}@us.es, fdiaz@atc.us.es

2 Faculty of Mathematics, University of Vienna, Vienna, Austria
darian.onchis@univie.ac.at

3 Faculty of Mathematics and Computer Science, West University of Timisoara,
Timişoara, Romania

Abstract. In this paper we design a new family of relations between
(co)homology classes, working with coefficients in a field and starting
from an AT-model (Algebraic Topological Model) AT (C) of a finite cell
complex C These relations are induced by elementary relations of type
“to be in the (co)boundary of” between cells. This high-order connec-
tivity information is embedded into a graph-based representation model,
called Second Order AT-Region-Incidence Graph (or AT-RIG) of C. This
graph, having as nodes the different homology classes of C, is in turn,
computed from two generalized abstract cell complexes, called primal
and dual AT-segmentations of C. The respective cells of these two com-
plexes are connected regions (set of cells) of the original cell complex C,
which are specified by the integral operator of AT (C). In this work in
progress, we successfully use this model (a) in experiments for discrimi-
nating topologically different 3D digital objects, having the same Euler
characteristic and (b) in designing a parallel algorithm for computing
potentially significant (co)homological information of 3D digital objects.

Keywords: Cell complex · Algebraic-topological model
Homology computation · Primal and dual AT-segmentation
AT-model region-incidence-graph · nD digital object

1 Introduction

(Co)homology (see for instance [33]) provides valuable information about topo-
logical spaces, by observing sets that intuitively have no (co)boundary, but are

This work has been supported by the Spanish research projects MTM2016-81030-P
(AEI/FEDER, UE) and TEC2012-37868-C04-02, and by the VPPI of the University
of Seville. Darian Onchis gratefully acknowledges the support of the Austrian Science
Fund FWF-P27516.

c© Springer Nature Switzerland AG 2019
R. Marfil et al. (Eds.): CTIC 2019, LNCS 11382, pp. 68–81, 2019.
https://doi.org/10.1007/978-3-030-10828-1_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-10828-1_6&domain=pdf
https://doi.org/10.1007/978-3-030-10828-1_6

Generating Second Order (Co)homological Information 69

on the (co)boundary of other sets. These sets are representative (co)cycles of
a (co)homology hole, seen as an equivalence class. Algebraic (co)homological
information with coefficients in a field could be defined as the set of processed
and structured linear algebraic data describing in some sense its (co)homology
classes and the relations between them. We talk about homology and coho-
mology information as a whole due to the fact that homology and cohomology
classes are measured using different strategies (delineating or cutting holes) for
detecting homological holes over the initial topological data. A simple example
of (co)homology information is provided by the numerical topological invariants
called Betti numbers. For instance, if X is a cell complex embedded in R

3, Betti
numbers β0, β1 and β2 respectively measure the number of different connected
components, tunnels and cavities of X.

Roughly speaking, (co)homotopy holes of objects (those related to delin-
eating or cutting generalized “parametrized and oriented closed curves”) are
theoretically attainable from homology’s ones [23], but these methods have an
enormous complexity in time and space [4]. An easier relation between homology
and homotopy is given by the Euler characteristic (see [1]), defined in local terms
as the alternate sum of the number of cells in each dimension. This number is
the most simple example of homotopy invariant, that can also be obtained from
the global homological information provided by the Betti numbers.

Now, (co)homology information of X is not reduced in general to that pro-
vided by Betti numbers. For example, a torus T and a three-dimensional sphere
with two handles S have the same Betti numbers (and, consequently the same
Euler characteristic) but they are not (co)homologically equivalents. The two
tunnels of T are related to its cavity in a much more “stronger” way that the
tunnels of S are with regards to the corresponding cavity.

We progress here in discovering the homotopy nature of homology, by cre-
ating two (non-unique) abstract cell complexes, called primal and dual AT-
segmentations, both with significantly smaller number of cells than the original
geometric cell complex C and from which it is possible to detect topological
relationships between (co)homology classes of C with coefficient in a field F.
We construct the primal and dual segmentation with the help of an algebraic-
topological model AT (C) of C (or AT-model for short) [17,18,34,35]. Using the
bounding functions of a primal and dual AT-segmentations and the relationship
between cells “to be in the boundary of”, we are finally able to compute a graph-
based model P(AT (C)), called AT-model Region-Incidence-Graph (or, AT-RIG,
for short), whose nodes are the different homology classes of C.

We successfully use this technique in a set of experiments for discriminating
topologically different 3D digital objects with the same Euler characteristic. We
also use this modus operandi in designing a parallel algorithm for computing
potential high-order homology statistics for a 3D digital objects. In a near future,
we intend to study the corresponding degrees of independence with regards the
AT-model chosen and of homology and homotopy invariances of an AT-RIG.

70 P. Real et al.

1.1 Related Works

Focusing on homotopy representation models of digital objects and images, there
are numerous works that arise from sources of digital topology [2,21,25], contin-
uous or cellular topology [9,20,26] and nD shape search with three clearly differ-
entiated notions: Reeb graphs [5,13], skeletons [6,36,41] and boundary represen-
tations [3,16,28]. Relative to the intermediary step of homological computation
of cell complexes, there is plenty of literature based on a pure algebraic perspec-
tive devoted to this issue. The classical method is based on the diagonalization
of cell-incidence matrices to Smith normal form (SNF) [33]. Some advances in
the computation of the SNF have been achieved [10], but the most successful
approaches consist of reducing the number of cells in the complex using discrete-
vector-field dynamics (Discrete Morse theory [12]) before computing the SNF
for the small resulting cell complex (see, for instance, [7,14,19,22,32,35,39,40]).
This paper goes beyond homological computation and designs (sequential and
parallel) algorithms for computing a new graph-based representation that allows
to discriminate homologically different geometric objects embedded in R

n hav-
ing the same Betti numbers. In this sense, AT-segmentation theory extend and
greatly improve both the algebraic model called Algebraic-Topological model
[17,18,34,35,37] and the combinatorial model called Homological Spanning For-
est (HSF, for short) [8,30,31,38] in this search of topological representations
within digital image context.

2 Cell Complexes and Algebraic-Topological Models

We work in this paper with cell complex representations (composed of cells and
bounding relations between them), that allow to model, for example, not only
an n-dimensional digital object at sub-n-xel level but also significant algebraic
(co)homological information (with coefficient in a field F).

First at all, we provide a slightly modified version of the classical abstract
cell complex notion (see [24] for a survey).

We say that C = (C,B, dms) is an abstract cell complex (or ACC, for short)
if:

– C = {Cq}q∈N∪{0} is a finite set with a gradation dms : C → N
⋃{0} defined

by dms(c) = q for c ∈ Cq;
– B : C × C → N ∪ {0} is a map such that satisfies the following condition:

B(c, c′) �= 0 implies c ∈ Cq−1, c′ ∈ Cq.

We refer to the elements of C as cells and to B(c, c′) as the bounding function
of the ACC C applied to the couple (c, c′). If we extend the bounding function
of the ACC in an antisymmetric and transitively way, we recover the classical
notion of ACC.

The connectivity-graph G(C,B, dms) = (V,E) of an abstract cell complex
(C,B, dms) is the graph whose set of nodes is C and an edge {c, c′} ∈ E if
B(c, c′) or B(c′, c) is different from zero.

Now, let us define the (algebraic) notion of geometric cell complex. We say
that C = (C, κ, dms) is a Lefschetz complex [27] if:

Generating Second Order (Co)homological Information 71

– C = {Cq}q∈N∪{0} is a finite set with a gradation dms : C → N
⋃{0} defined

by dms(c) = q for c ∈ Cq;
– κ : C × C → F is a map such that κ(c, c′) �= 0 implies c ∈ Cq−1, c′ ∈ Cq. For

any c, c′′ ∈ C we have
∑

c′∈C κ(c, c′)κ(c′, c′′) = 0.

We refer to the elements of C as cells and to κ(x, y) as the incidence coefficient
of x, y.

In fact, an equivalent definition of a Lefschetz complex is that of a free chain
complex (F[C], ∂C) with boundary ∂C : F[C] → F[C] defined on generators by
∂C(c) =

∑
c′∈C κ(c′, c)c′. Its coboundary δC : F[C] → F[C] is defined on gener-

ators by δC(c) =
∑

c′∈C κ(c, c′)c′. The Lefschetz homology (resp. cohomology)
of (C, κ, dms), denoted H(C, ∂C) (resp. H(C, δC)) is the homology of the chain
complex (F[C], ∂) (resp. (F[C], δ)). We are interested here in Lefschetz com-
plexes satisfying that for any c, c′ ∈ C the incidence coefficient κ(c, c′) is either
zero or ±1 of F. These structures are simply called here geometric cell com-
plexes. The identity function 1C : C → C is defined by 1C(c) = c, ∀c ∈ C.
Associated to a geometric cell complex (C, κ, dms), there is a bounding function
B : C × C → N ∪ {0} defined by B(c, c′) = 1 if κ(c, c′) �= 0 and B(c, c′) = 0 in
the rest of cases. If c ∈ C and R is a set of cells of (C, κ, dms), we define the
bounding function B(c,R) =

∑
c′∈R B(c, c′) (resp. B(R, c) =

∑
c′∈R B(c, c′)).

From now on, we use the triplet (C, ∂, dms) for denoting a geometric cell
complex. We use the notation c′ ∈ f , being f ∈ F[C], for indicating that the cell
c′ is involved as a non-null summand in this linear combination.

It is straightforward to specify geometric cell complexes structures modeling
n-dimensional digital images at sub-n-xel level. In fact, we are mainly inter-
ested in running the designed algorithms for “cellularizations” of digital objects
and images, in order to progress in topological acuity and representation within
digital image context.

Now, we are able to define an algebraic-topological model (or AT-model, for
short) (C, ∂, φ, dms) of a geometric cell complex (C, ∂, dms) (see [17]). The homo-
morphism φ : F[Cq] → F[Cq+1], called integral operator, satisfies the following
three conditions: (a) φφ = 0; (b) ∂φ∂ = ∂; (c) φ∂φ = φ. From this data, we can
construct an explicit homology equivalence between the chain complex (F[C], ∂)
and a free chain complex with null differential (which, obviously, is isomorphic
to the homology H(C, ∂)). The germ idea of the AT-model comes back to the
original notion of chain contraction exhaustively used by Samuel Eilenberg and
Saunder Mac Lane in their works of homological computation (see, for example,
[11]) in the fifties of the twentieth century.

3 AT-Segmentations

In this section and with the help of an AT-model (C, ∂, φ, dms), we construct
two special partitions of C into connected regions from which it is possible to
compute “strong” topological relations between homology classes, derived from
the elementary relation “to be in the boundary of”. From now on, we work
with F = Z2, in order to avoid the use of signs in the AT-model construction.

72 P. Real et al.

Let us emphasize that all the study done here can be correctly developed for
any ground field.

Some terminology relative to primal regions of the primal AT-segmentation
we want to construct is necessary. The dimension of a primal region R composed
by cells of C of dimension t (0 ≤ t ≤ n − 1) and, possibly, of dimension t + 1
is dimpr(R) = (t, t + 1). Its criticality number crt(R) is given by the difference
between the number of t-cells and (t + 1)-cells. All the regions of a primal AT-
segmentation have criticality number greater or equal to zero. A primal region
R with crt(R) > 0 is called homologically essential. If crt(R) = 0 is called
homologically inessential.

Algorithm 1 uses as input a filtration of the geometric cell complex C. It is
possible to design an algorithm for computing a primal AT-segmentation inde-
pendent of this restriction. Such algorithm is based on the construction of hier-
archical “spanning forests” within the global connectivity graph of C as ACC.
There is no space here to address this question in detail. The reference [37] can
be of help in the planning of such algorithm.

Figure 1 shows a primal AT-segmentation over an ACC version Cell(O) of a
2D digital object.

Fig. 1. (Left) ROI consisting of the set of black pixels. The implicit cellularization of
the ROI -using 8-adjacency and being the 0-cells the square physical pixels- is superim-
posed. (Center) Vectors of cracks involved in the AT-model construction of Algorithm 1
are highlighted. (Right) The associated AT-segmentation of the ROI. There are three
regions. Region A is drawn in red and is composed by all the 24 (NA

0) 0-cells and 23
(NA

1) 1-cells (a subdivision of the spanning tree of the 0-cells). Region B is drawn in
yellow and is composed by 18 (NB

1) 1-cells and 16 (NB
2) 2-cells. Region C is drawn in

green and its tree has one 1-cell and one 2-cell (thus, it is inessential). Regions A and
B are homologically essential, due to the fact that crt(R) = NR

i − NR
i+1 = 1 > 0, for

(R, i) = {(A, 0), (B, 1)}. In fact, A detects one 0-dimensional homology class and B
two 1-dimensional holes. (Color figure online)

Let us note that the connectivity graph of regions of the primal AT-segmenta-
tion HSpr(C) is not necessarily a tree. For each critical cell e

dq
q , (1 ≤ q ≤ m)

its corresponding primal segmentation region Spr
� (edq

q) of dimension (dq, dq + 1)
has a criticality number crt(Spr

� (edq
q)) greater than zero. The rest of the primal

segmentation regions have a criticality number equal to zero.

Generating Second Order (Co)homological Information 73

Algorithm 1. [primal AT-segmentation]
Input: A geometric cell complex C := {C, ∂, dms}. C is a list with all the cells of C ordered

by increasing dimension c01, . . . c0�1
, c11, . . . , c1�2

, . . . , cn
1 , . . . , cn

�n
. Here, dms(ck

j) = k, ∀k, j and
∑

1≤q≤n �q = �. Let us also use the cell ordering ck
j = cj+

∑
q<k �q . The boundary operator

∂|F[c1,...,ci] is denoted by ∂i.

1: H∂
0 ← ∅; Kφ

0 ← ∅; J φ
0 ← ∅; Spr

0 ← ∅;
2: for k = 0 to n do

3: for j = 1 to �k do

4: i ← j +
∑

q<k �q ;

5: φi−1(ci) ← 0;

6: Ri ← {ci};
7: Spr

i ← Spr
i−1 ∪ {Ri}. Let us denote by Spr

i (cq) the region of Spr
i containing the cell cq

(1 ≤ q ≤ i). In this way, Spr
i is handled as the union

⋃
1≤q≤i{Spr

i (cq)}.
8: Bndi ← {e ∈ ∂i(ci)}; � Boundary of the current cell

9: c̄i ← ci + φi−1∂i(ci); � Potential cycle associated to ci

10: Bndi ← {e ∈ ∂i(c̄i)}; � Algebraic boundary of c̄i

11: B̃ndi ← {e ∈ (1C + ∂iφi−1)(c), for some c ∈ Bndi}; � Combinatorial boundary of c̄i

12: Ni ← {e ∈ Bndi : dimpr(Spr
i (e)) = (dms(ci) − 1, dms(ci)) ∧ crt(Spr

i (e)) = 0};
� Homologically inessential regions in the boundary of ci

13: H∂
i ← H∂

i−1
⋃{c̄i}; Kφ

i ← Kφ
i−1

⋃{ci}; J φ
i ← J φ

i−1
⋃{ci}; � Homology generators,

combinatorial kernel, critical cells

14: if ∂i(c̄i) == 0 then � Equivalent to Bndi == ∅
15: for r = 1 to i do

16: φi(cr) ← φi−1(cr);

17: else � In case in which ci does not generate a cycle

18: J i ← Bndi

⋂ J φ
i

19: J̃i ← B̃ndi

⋂ J φ
i

20: Spr
i (ci) ← Spr

i (ci)
⋃

e∈J̃i∪Ni
Spr

i (e); � Updating the primal partition

21: for e ∈ J̃i ∪ Ni do

22: Spr
i (e) ← Spr

i (ci);

23: Choose one of the cells e ∈ J i � Updating AT-model

24: φ̃(e) ← ci;

25: φ̃(c) ← 0 for each c ∈ Kφ
i−1 \ {e};

26: ē ← e + φi−1∂i(e);

27: for q = 1 to i − 1 do

28: φi(cq) ← (φi−1 + (idCi
− φi−1∂i−1)φ̃(idCi

− ∂i−1φi−1))(cq), ∀cq ∈ Ci

29: H∂
i ← H∂

i \ {ē, c̄i}; � Updating homology generators

30: Kφ
i ← Kφ

i \ {e}; � Updating combinatorial homology kernel

31: J φ
i ← J φ

i \ {e, ci}; � Updating set of critical cells

32: Bpr[C](R, R′) ← #{c′ ∈ R′ : dms(c′) = t ∧ B(R, c′) =
∑

c∈R B(c, c′) �= 0}
∀R, R′ ∈ Spr

� , with dimpr(R) = (t − 1, t) and dimpr(R′) = (t, t + 1) (1 ≤ t ≤ n).

� Specifying primal AT-segmentation bounding function

Output:

· An AT-model (C, ∂�, φ�, dms) and a combinatorial basis (set of critical cells) specified by

J φ
� and ordered by increasing dimension {e

d1
1 , . . . , edm

m } (with dms(e
dq
q) = dq , 1 ≤ q ≤ m)

for the homology H(C, φ) given by Hφ
� .

· An abstract cell complex HSpr(C), called primal AT-segmentation of C, whose set of cells

is the partition in regions Spr
� of C and its bounding function is Bpr[C].

74 P. Real et al.

From this output, it is possible to define a dual AT-segmentation HSdl(C)
in this simple manner:

– [Initial dual AT-partition]. We consider as initial dual AT-partition Sdl

� a
refinement of the primal segmentation partition Spr

� , in which each critical cell
(as sets formed by one element) is considered as a new region of the partition.
Let us note that all the regions of Sdl

� have now zero as criticality number,
excepting the sets formed by one critical cell, which have one as criticality
number.

– [Updating initial dual AT-partition]. For each critical cell e
dq
q ∈ Hφ

�

(1 ≤ q ≤ m), let us construct the region of the dual segmentation Sdl

� (edq
q) =

{e
dq
q }⋃

c∈∂(e
dq
q)

Spr

� (c) of dimension dimdl(Sdl
� (edq

q)) = (dq − 1, dq). After
updating the regions of the partition corresponding to the critical cells, the
rest of regions of Sdl

� remain unaltered. The resulting partition describes at
set level the desired dual AT-segmentation and it is denoted by Sdl

� . Let us
emphasize that the ranks (that is, the difference between the number of cells
of C and the number of regions of the partition) of the primal and dual AT-
partitions can be different. This is mainly due to the fact that, in general,
there is no one-to-one relation between critical cells and regions of the primal
or dual AT-segmentations.

– [Dimension and Bounding Function]. The dimension of a region R ∈ Sdl
� ,

having t-cells and, possibly t − 1 cells is dimdl(R) = (t, t − 1). Its bounding
function is defined by Bdl[C](R,R′) = #{c ∈ R : dms(c) = t ∧ B(c,R′) =∑

c′∈R′ B(c, c′) �= 0} ∀R,R′ ∈ Sdl
� , with dimdl(R) = (t, t − 1) and dimdl

(R′) = (t + 1, t) (1 ≤ t ≤ n).

At the end of this process, we get a dual AT-segmentation HSdl(C) =
(Sdl

� , Bdl[C], dimdl).
Let us note that the connectivity graph of regions of HSdl(C) is not neces-

sarily a tree.
We are now ready to build a second order AT-RIG associated with the primal

and dual AT-segmentations. AT-RIGs measure all the relationships between two
homology classes of dimension t and t+1, ∀0 ≤ t ≤ n. Let us write in pseudocode
the construction of the second order primal AT-RIG (see Algorithm 2). The
construction of the dual one is completely analogous.

Finally, the second order AT-RIG G1(AT (C)) is the graph whose nodes are
the different homology classes (represented by their corresponding critical cell)
and whose edges are those belonging to both primal and dual AT-RIGs.

4 Operations with AT-Segmentations

Given a primal (or dual) AT-segmentation, it is possible to create a new one
changing only the participation of two cells. This operation is called crack trans-
port and is exhaustively used in the parallel methods for computing homology
information designed in [38].

Generating Second Order (Co)homological Information 75

Algorithm 2. [Second order Primal AT-RIG]
Input:

– an AT-model (C, ∂�, φ�, dms) and a combinatorial basis (set of critical cells) ordered

by increasing dimension {ed1
1 , . . . , edm

m } (with dms(e
dq
q) = dq, 1 ≤ q ≤ m) for the

homology H(C, φ).
– a primal AT-segmentation HSpr(C) = (Spr

� , Bpr[C], dimpr)

1: for i = 1 to m do
2: vi ← edi

i ; � the nodes of the RIG are the critical cells
3: N(vi) ← ∅ � The set of all the neighbors of the region of the primal

AT-segmentation containing vi

4: Ns(vi) ← ∅ � the set of neighbors of vi in the second order AT-RIG
5: for j = 1 to i do
6: if Bpr[C](Spr

� (vj), Spr
� (vi)) �= 0 then

7: N(vi) ← N(vi) ∪ {vj};
8: if Bpr[C](Spr

� (vj), Spr
� (vi)) = #{di − cells ∈ Spr

� (vi)} then
9: Ns(vi) ← Ns(vi) ∪ {vj};

10: Bpr
rig[C](vj , vi) ← 1;

11: else
12: Bpr

rig[C](vj , vi) ← 0
Output: The region-incidence-graph Gpr

1 (AT (C)) associated to the abstract cell
complex ({ed1

1 , . . . , edm
m }, Bpr

rig[C], dms).

Algorithm 3 shows the admissible Crack Transport Algorithm. Crack trans-
ports can be used for AT-segmentation parallel computation.

Algorithm 3. [Admissible Crack Transport Algorithm].
Let HS(C) be a primal AT-segmentation of a geometric cell complex C. Let R1

and R2 be two regions of dimension (k − 1, k) and (k, k + 1) respectively, and c ∈ R1

and c′ ∈ R2 be two k-cells. Let us denote by ˜HS(C) the segmentation HS \ {c, c′}.
The new segmentation [c ↔ c′]HS(C) resulting from the initial one, assigning c to
R2 and c′ to R1 is a new primal AT-segmentation if (a) c is incident to R2, c′ is

incident to R1;(b) there is at least a pair (S1, S2) of regions of ˜HS(C) with S1 ⊂ R1

(dimpr(S1) = (k − 1, k)) and S2 ⊂ R2 (dimpr(S − 2) = (k, k + 1)), satisfying that:

– #(S1 ∩ ∂c) = 1 and #(S1 ∩ ∂c′) = 1;
– #(S2 ∩ δc) = 1 and #(S2 ∩ δc′) = 1;
– Bpr[C](S1, S2) > 1.

In Fig. 2, an internal (within the ROI) crack transport defined as an
admissible interchange of cells between “connected” homological regions of the
AT-segmentation of Fig. 1 is shown.

Another example of application of crack transport is shown in Fig. 3.

76 P. Real et al.

Fig. 2. (Left) AT-segmentation of Fig. 1. 1-cells involved in the internal crack transport
are surrounded by black closed curves; (Right) Result of the crack transport. There
are now three 1–2 regions B, B’, C being the first two ones homologically essentials
(βB = 1 = βB′

). Both AT-segmentations present the same second order AT-RIG: a
tree with three hole-nodes (α0, β1, γ1), connecting α0 with β1 and γ1.

Fig. 3. A ROI composed of three segments parallel to the axis (a total of 5 black
voxels). Points represent 0-cells (voxels), triangles 1-cells, squares 2-cells and stars 3-
cells. Two AT-segmentations of the whole image that embeds the ROI are drawn. The
AT-segmentation on the right is the result of several crack transport operations on the
AT-segmentation on the left. Obviously, both have the same trivial AT-RIG: a trivial
tree composed by one node (0-dimensional homology class of the image)

5 AT-RIG: Homological Tool or Topological Invariant?

The proof of homology and homotopy invariance of the AT-RIG is an issue
out of the scope of this paper. The first part of this section is employed in
supporting the thesis that the AT-RIG notion allows us to discriminate two
non homologically equivalent objects having the same Betti numbers. Different
instances (configurations spheres with handles, Menger sponges, torus, double
torus, etc) are successfully examined with specific AT-segmentations. We only
show here the example of AT-segmentations of simple cellular versions of the
torus and the sphere with two handles.

Generating Second Order (Co)homological Information 77

On the other hand, we have only implemented software that calculates AT-
segmentations (based on AT-models) but not AT-RIGs. Due to this reason, we
expand the second part of this section to evaluate AT-segmentations of digital
objects with known homology.

Given a torus (see Fig. 4), Fig. 5(a) shows a primal AT-segmentation,
Fig. 5(b) an associated dual AT-segmentation, Fig. 6(a) its primal AT-RIG and
Fig. 6(b) its dual AT-RIG.

Fig. 4. Torus identification space

(a) Primal segmentation (b) Dual segmentation

Fig. 5. Torus primal and dual segmentations

In Fig. 7, given a cell model of a sphere with two handles, we provide a primal
AT-segmentation Fig. 7(a), an associated dual AT-segmentation Fig. 7(b), its
primal AT-RIG Fig. 8(a) and its dual AT-RIG Fig. 8(b).

Figure 9 shows an example of partition of a primal AT-segmentation of the
Menger Sponge of recursion depth 2 [29], computed from an AT-model. The left
side shows a Menger sponge with 400 0-cells, 1224 1-cells, 1056 2-cells and 312
3-cells. On the right side, a primal AT-partition is shown. The segmentation
region of dimension (0, 1) is shown in red. The regions of dimension (1, 2) and
(2, 3) are shown in yellow and blue respectively. The second order primal AT-RIG
is a star-type tree having as center the 0-dimensional homology generator (red
region) and as leafs the 1-dimensional 81 homology classes (yellow regions R with
crt(R) > 0). The blue regions do not appear in the second order primal AT-RIG
due to the fact that their criticality number is zero. A similar example is shown
in the lower part of Fig. 9 with a double torus. This example is composed by 714
0-cells, 1728 1-cells, 1280 2-cells and 268 3-cells. The second order primal AT-RIG

78 P. Real et al.

(a) Primal AT-RIG (b) Dual AT-RIG

Fig. 6. AT-RIGs for a torus

(a) Primal segmentation (b) Dual segmentation

Fig. 7. AT-segmentations for a sphere with two handles

(a) Primal AT-RIG (b) Dual AT-RIG

Fig. 8. AT-RIGs for a sphere with two handles

for this example has a 0-dimensional homology generator (red region) connected
to 4 1-dimensional homology classes (yellow regions R with crt(R) > 0) and
all of them connected to a single 2-dimensional homology class representing the
cavities (blue region R with crt(R) > 0).

Generating Second Order (Co)homological Information 79

Fig. 9. (Left) A Menger Sponge of recursion depth 2 and a double torus (Right) Result
of their respective primal AT-partitions, where the region of dimension (0, 1) is colored
in red, (1, 2)-regions in yellow and (2, 3) regions in blue. (Color figure online)

6 Conclusions

In this paper, a new topological tool, called second order AT-RIG, for distin-
guishing cell complexes beyond Betti numbers or Euler characteristic is algorith-
mically designed. This tool allows to discover relationships between homology
classes of dimension differing in one. The concise experimentation carried out
supports the hypothesis that the AT-RIG is a well-defined notion and that these
relations are “up to homology”. To theoretically prove these results would sup-
pose a true revolution in the field of the topological representation. Anyway,
negative answers would still mean a step forward because we have a useful topo-
logical tool properly working within an AT-model context.

References

1. Alexandroff, P.S.: Combinatorial Topology. Dover, New York (1998)
2. Ayala, R., Domı́nguez, E., Francés, A.R., Quintero, A.: Homotopy in digital spaces.

In: Borgefors, G., Nyström, I., di Baja, G.S. (eds.) DGCI 2000. LNCS, vol. 1953,
pp. 3–14. Springer, Heidelberg (2000). https://doi.org/10.1007/3-540-44438-6 1

3. Boykov, Y.Y., Jolly, M.P.: Interactive graph cuts for optimal boundary and region
segmentation of objects in ND images. In: Proceedings of Eighth IEEE Interna-
tional Conference on Computer Vision, vol. 1, pp. 105–112 (2001)

4. Cadek, M., Krcal, M., Matousek, J., Vokrinek, L., Wagner, U.: Polynomial-time
computation of homotopy groups and Postnikov systems in fixed dimension. SIAM
J. Comput. 43(5), 1728–1780 (2014)

5. Carr, H.A., Weber, G.H., Sewell, C.M., Ahrens, J.P.: Parallel peak pruning for
scalable SMP contour tree computation. In: IEEE 6th Symposium on Large Data
Analysis and Visualization (LDAV), pp. 75–84 (2016)

6. Couprie, M., Bertrand, G.: Asymmetric parallel 3D thinning scheme and algo-
rithms based on isthmuses. Pattern Recogn. Lett. 76, 22–31 (2016)

7. Delfinado, C.J.A., Edelsbrunner, H.: An incremental algorithm for Betti numbers
of simplicial complexes on the 3-sphere. Comput. Aided Geom. Des. 12(7), 771–784
(1995)

https://doi.org/10.1007/3-540-44438-6_1

80 P. Real et al.

8. Dı́az-del-Ŕıo, F., Real, P., Onchis, D.: A parallel homological spanning forest frame-
work for 2D topological image analysis. Pattern Recogn. Lett. 83, 49–58 (2016)

9. De Floriani, L., Mesmoudi, M.M., Morando, F., Puppo, E.: Decomposing non-
manifold objects in arbitrary dimensions. Graph. Models 65(1), 2–22 (2003)

10. Dumas, J.G., Saunders, B.D., Villard, G.: On efficient sparse integer matrix Smith
normal form computations. J. Symbol. Comput. 32(1), 71–99 (2001)

11. Eilenberg, S., Mac Lane, S.: On the groups H(π, n), II: methods of computation.
Ann. Math. 60, 49–139 (1954)

12. Forman, R.: Morse theory for cell complexes. Adv. Math. 134, 90–145 (1998)
13. Hilaga, M., Shinagawa, Y., Kohmura, T., Kunii, T.L.: Topology matching for fully

automatic similarity estimation of 3D shapes. In: Proceedings of the 28th Annual
Conference on Computer Graphics and Interactive Techniques, pp. 203–212. ACM
(2001)

14. De Floriani, L., Fugacci, U., Iuricich, F.: Homological shape analysis through dis-
crete morse theory. In: Breuß, M., Bruckstein, A., Maragos, P., Wuhrer, S. (eds.)
Perspectives in Shape Analysis. MV, pp. 187–209. Springer, Cham (2016). https://
doi.org/10.1007/978-3-319-24726-7 9

15. Dumas, J.G., Heckenbach, F., Saunders, D., Welker, V.: Computing simplicial
homology based on efficient Smith normal form algorithms. In: Joswig, M.,
Takayama, N. (eds.) Algebra, Geometry and Software Systems, pp. 177–206.
Springer, Heidelberg (2003). https://doi.org/10.1007/978-3-662-05148-1 10

16. Fiorio, C.: A topologically consistent representation for image analysis: the frontiers
topological graph. In: Miguet, S., Montanvert, A., Ubéda, S. (eds.) DGCI 1996.
LNCS, vol. 1176, pp. 151–162. Springer, Heidelberg (1996). https://doi.org/10.
1007/3-540-62005-2 13

17. González-Dı́az, R., Real, P.: On the cohomology of 3D digital images. Discret.
Appl. Math. 147(2), 245–263 (2005)

18. González-Dı́az, R., Jiménez, M.J., Medrano, B., Real, P.: Chain homotopies for
object topological representations. Discret. Appl. Math. 157(3), 490–499 (2009)

19. Gonzalez-Lorenzo, A., Bac, A., Mari, J.L., Real, P.: Allowing cycles in discrete
Morse theory. Topol. Appl. 228, 1–35 (2017)

20. Günther, D., Reininghaus, J., Wagner, H., Hotz, I.: Efficient computation of 3D
Morse-Smale complexes and persistent homology using discrete Morse theory. Vis.
Comput. 28(10), 959–969 (2012)

21. Haarmann, J., Murphy, M.P., Peters, C.S., Staecker, P.C.: Homotopy equivalence
in finite digital images. J. Math. Imaging Vis. 53(3), 288–302 (2015)

22. Harker, S., Mischaikow, K., Mrozek, M., Nanda, V.: Discrete Morse theoretic algo-
rithms for computing homology of complexes and maps. Found. Comput. Math.
14(1), 151–184 (2014)

23. Hurewicz, W.: Homology and homotopy theory. In: Proceedings of the Interna-
tional Mathematical Congress, p. 344 (1950)

24. Klette, R.: Cell complexes through time. In: International Symposium on Optical
Science and Technology, pp. 134–145. International Society for Optics and Pho-
tonics (2000)

25. Kong, T.Y., Rosenfeld, A.: Topological Algorithms for Digital Image Processing,
vol. 19. Elsevier, Amsterdam (1996)

26. Kovalevsky, V.: Algorithms in digital geometry based on cellular topology. In:
Klette, R., Žunić, J. (eds.) IWCIA 2004. LNCS, vol. 3322, pp. 366–393. Springer,
Heidelberg (2004). https://doi.org/10.1007/978-3-540-30503-3 27

27. Lefschetz, S.: Algebraic Topology, American Mathematical Society Colloquium
Publications, vol. 27. American Mathematical Society, New York (1942)

https://doi.org/10.1007/978-3-319-24726-7_9
https://doi.org/10.1007/978-3-319-24726-7_9
https://doi.org/10.1007/978-3-662-05148-1_10
https://doi.org/10.1007/3-540-62005-2_13
https://doi.org/10.1007/3-540-62005-2_13
https://doi.org/10.1007/978-3-540-30503-3_27

Generating Second Order (Co)homological Information 81

28. Lienhardt, P.: Topological models for boundary representation: a comparison with
n-dimensional generalized maps. Comput. Aided Des. 23(1), 59–82 (1991)

29. Menger, K.: Allgemeine Räume und Cartesische Räume, Teil I, Amsterdam, pp.
476–482 (1926)

30. Molina-Abril, H., Real, P., Nakamura, A., Klette, R.: Connectivity calculus of
fractal polyhedrons. Pattern Recogn. 48(4), 1150–1160 (2015)

31. Molina-Abril, H., Real, P.: Homological spanning forest framework for 2D image
analysis. Ann. Math. Artif. Intell. 64, 1–25 (2012)

32. Molina-Abril, H., Real, P.: Homological optimality in Discrete Morse Theory
through chain homotopies. Pattern Recogn. Lett. 11, 1501–1506 (2012)

33. Munkres, J.R.: Elements of Algebraic Topology. Addison-Wesley, Boston (1984)
34. Palmieri, J.H: Sage Module: Algebraic-Topological Model for a Cell Complex

(2015). http://doc.sagemath.org/
35. Pilarczyk, P., Real, P.: Computation of cubical homology, cohomology and

(co)homological operations via chain contractions. Adv. Comput. Math. 41(1),
253–275 (2015)

36. Pudney, C.: Distance-ordered homotopic thinning: a skeletonization algorithm for
3D digital images. Comput. Vis. Image Underst. 72(3), 404–413 (1998)

37. Real, P., Molina-Abril, H., Gonzalez-Lorenzo, A., Bac, A., Mari, J.L.: Searching
combinatorial optimality using graph-based homology information. Appl. Algebra
Eng. Commun. Comput. 26(1–2), 103–120 (2015)

38. Real, P., Diaz-del-Rio, F., Onchis, D.: Toward parallel computation of dense homo-
topy skeletons for nD digital objects. In: Brimkov, V.E., Barneva, R.P. (eds.)
IWCIA 2017. LNCS, vol. 10256, pp. 142–155. Springer, Cham (2017). https://
doi.org/10.1007/978-3-319-59108-7 12

39. Romero, A., Rubio, J., Sergeraert, F.: Effective homology of filtered digital images.
Pattern Recogn. Lett. 83, 23–31 (2016)

40. Robins, V., Wood, P.J., Sheppard, A.P.: Theory and algorithms for constructing
discrete Morse complexes from grayscale digital images. IEEE Trans. Pattern Anal.
Mach. Intell. 33(8), 1646–1658 (2011)

41. Saha, P.K., Borgefors, G., di Baja, G.S.: A survey on skeletonization algorithms
and their applications. Pattern Recogn. Lett. 76, 3–12 (2016)

http://doc.sagemath.org/
https://doi.org/10.1007/978-3-319-59108-7_12
https://doi.org/10.1007/978-3-319-59108-7_12

Computing the Component-Labeling
and the Adjacency Tree of a Binary

Digital Image in Near Logarithmic-Time

Fernando Dı́az del Ŕıo1, Helena Molina-Abril2(B), and Pedro Real2

1 Department of Computer Architecture and Technology, University of Seville,
Seville, Spain

2 Department of Applied Mathematics, University of Seville, Seville, Spain
habril@us.es

Abstract. Connected component labeling (CCL) of binary images is
one of the fundamental operations in real time applications. The adja-
cency tree (AdjT) of the connected components offers a region-based
representation where each node represents a region which is surrounded
by another region of the opposite color. In this paper, a fully parallel
algorithm for computing the CCL and AdjT of a binary digital image
is described and implemented, without the need of using any geometric
information. The time complexity order for an image of m × n pixels
under the assumption that a processing element exists for each pixel is
near O(log(m+ n)). Results for a multicore processor show a very good
scalability until the so-called memory bandwidth bottleneck is reached.
The inherent parallelism of our approach points to the direction that
even better results will be obtained in other less classical computing
architectures.

Keywords: Component-Labeling · Adjacency tree · Digital image
Parallelism

1 Introduction

Connected component labeling (CCL) of binary images is one of the fundamen-
tal operations in real time applications, like fiducial recognition [6] or classifying
objects as connected components (CCs). The labeling operation transforms a
binary image into a symbolic matrix in which every element (pixel) belonging to
a connected component is assigned to a unique label. Currently, there are mainly
four classes of CCL algorithms: Multi-scan algorithms, Two-scan algorithms,
Tracing-type algorithms and Hybrid algorithms mixing the previous ones.
All of them (including the fastest one) use raster or Tracing-type approaches,

This work has been supported by the Spanish research projects MTM2016-81030-P
(AEI/FEDER, UE) and TEC2012-37868-C04-02 of Ministerio de Economı́a y Com-
petitividad and the VPPI of the University of Seville.

c© Springer Nature Switzerland AG 2019
R. Marfil et al. (Eds.): CTIC 2019, LNCS 11382, pp. 82–95, 2019.
https://doi.org/10.1007/978-3-030-10828-1_7

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-10828-1_7&domain=pdf
https://doi.org/10.1007/978-3-030-10828-1_7

Computing the Component-Labeling and the Adjacency Tree 83

scanning the whole binary image or its contours in a sequential manner. They
begin labeling the first pixel and so the second one as a function of the first pixel
label. This local processing proceeds progressively until the last pixel is reached.
This fact necessarily implies data dependencies between the labeling of one pixel
and the previous one, which prevents these methods from using a pure paral-
lel approach. In terms of time complexity, this means that linear order O(N)
(being N the number of pixels) cannot decrease independently of the number of
available processing units.

In relation to the representation of digital objects or, alternatively, binary
digital images, various topological models have been exhaustively used. Adja-
cency trees (also called topological, inclusion or homotopy trees [2,16,17], and
here AdjT, for short) offer a classical region-based representation in terms of
rooted tree of certain topological and spatial properties of the connected com-
ponents in a binary image. Within an AdjT, each node represents a distinct
foreground (FG) or background (BG) component, and an edge between two
nodes means that one of them is surrounded by the other. The root in an AdjT
always represents the unique BG component “surrounding” the image (if it does
not exist, it can be artificially created) and two 2D binary digital images are
topologically equivalent if and only if their AdjTs are equivalent. An example of
an AdjT of the binary image in Fig. 2 is shown in Fig. 4 (left). Aside from image
understanding [18] and mathematical morphology applications [7,10,15], AdjTs
have encountered exploitation niches in geoinformatics, dermatoscopics image,
biometrics, etc. (see [3,5,6] for instance). Therefore, finding fast algorithms for
segmenting and computing the AdjT of a 2D digital binary image is crucial for
solving important problems related to topological interrogation in the current
technological context.

It is evident that the compression of those nodes of a CCL tree (CCLT)
satisfying the neighboring condition “having the same color”, directly yields to
the AdjT. In this paper we present a novel method for computing CCL and
AdjT but reducing the number of operations, so that computation time and
memory consumption are sensibly decreased, whereas the degree of parallelism
is extended to every single pixel.

2 Related Works

Parallel implementations for computing topological magnitudes can be achieved
via two approaches. On the one hand, there is some space for parallelism when
codifying scan or tracing-based CCL algorithms. These algorithms contain two
main stages: the scanning phase where provisional labels are assigned to pixels
depending on their neighbors, and some kind of union-find technique to collect
label equivalence information in the previous assignment. For example, divid-
ing the image into strips is a classical data partition technique for obtaining
parallelism. The second stage must then use a more sophisticated union-find
technique for the provisional labels to get to the CCL. There is also some room

84 F. Dı́az del Ŕıo et al.

for parallelism in this phase, and many works have addressed different varia-
tions (see [8,10,15]) including tuning parallel algorithms for specific computers
(see [1]).

On the other hand, topology is the ideal mathematical scenario for promot-
ing parallelism in a natural way, although it drives to less classical parallelism
approaches. The nature of the topological properties is essentially qualitative and
local-to-global, having the additional advantage that its magnitudes are robust
under deformations, translations and rotations. Nevertheless, the results in the
literature in that sense are rare. Up to now, the only topological invariant that
has been calculated using a fully parallel computation is the Euler number [3].
Other authors have recently proposed other parallel algorithms that compute
some aspects of the homological properties of binary images [13]. In [4], a digi-
tal framework for parallel topological computation of 2D binary digital images
based on a sub-pixel scenario was developed, modeling the image as a special
abstract cell complex [11], in order to facilitate the generalization of this work to
higher dimensional images. In addition, some software libraries of flexible C++
(RedHom [16]) have appeared for the efficient computation of the homology
of sets. These libraries implement algorithms based on geometric and algebraic
reduction methods.

Fig. 1. Holes of 4-adjacent CCs are 8-adjacent CCs and vice versa for 2D binary digital
images based on square pixel.

In relation to previous works, we construct our scaffolding on the basis of
the two following basic topological properties: “being adjacent to” and “being
surrounded by”. Moreover, we take advantage of the powerful duality properties
that the topological invariants of connected components and holes have in the
context of 2D binary digital images based on square pixel. In other words, we
exploit that the holes of 4-adjacent CCs must be 8-adjacent CCs and vice versa
(see Fig. 1). As a result, all the algorithms of this work use simple connectivity
graphs (CGs) as their basis. Our simplification allows us to reduce the number of
operations, the computation time and the memory consumption, and to extend
the degree of parallelism to every single pixel.

3 A Convenient Topological Framework for Computing
CCL and AdjT

In a few words, topological analysis of digital images studies their degree of
connectivity, defining fixed adjacency relations between pixels as “local neigh-
borhood measures”. It is obvious that a unique tree covering all the pixels of

Computing the Component-Labeling and the Adjacency Tree 85

an image can be built (no matter the intensity of the pixels) going through all
the pixels of the image using always, for example, the North direction, until the
upper border is found and then change to East direction until the most north-
eastern pixel is reached. Pixels that connect different colors should be marked
as candidates of frontiers between CCs (region frontiers). Any tree covering the
image plus the region frontier candidates is then an instance of a connectivity
tree that holds the complete information of the binary image. Note that for 2D
binary digital images, there are two types of connectivity we must deal with,
which are: CCs and holes. However, these two concepts can be reduced to one
for a binary image since a hole can be seen as a CC that is surrounded by
another CC of different color. Concerning topological analysis, all local neigh-
boring conditions used here are derived from 4-adjacency relations. Concerning
the output of this processing, the white nodes of the AdjT are 4-CCs and the
black ones are 8-CCs. Let us limit ourselves to say that a hole of a 4-connected
FG object can be interpreted as an 8-connected component of the BG. For this
reason the algorithm presented here considers the FG with 4-adjacency and the
pixels of the BG with 8-adjacency. Then, a minimal tree can be computed having
always the correct number of FG 4-connected components and BG 8-connected
components.

Using a combinatorial optimization process, it is possible to find a connectiv-
ity tree in which every CC has only one region frontier pixel. Each one of these
special pixels marks a bond between two neighboring CCs of different color. For
example, in Fig. 3 these pixels are marked with a number, which is the repre-
sentative label of each CC. In the figure, black regions can be compressed to the
pixels labeled with the numbers 92, 165, 194, 200, 226, 258, whereas white areas
are represented by the pixels 49, 77, 179. We can say that these region frontier
pixels are the “attractors” of each one of the trees that contain a CC. In this
paper, a connectivity tree that holds this property is called a connected compo-
nent labeling tree (CCLT). Following the path given by this compression (that
is going along the connectivity tree) the different frontier pixels can be found.
In the light of the above, in this paper a fully parallel algorithm for computing
the CCL (and the AdjT) of a binary digital image based on square pixels is
implemented through the building of one CCLT. This is achieved without the
need of using any geometric information. Once the combinatorial optimization
process has been carried out, the whole image (and, thus, every CC) can be
compressed to just one pixel. Hence, the compression of those nodes of a CCLT
whose neighboring condition is “having the same color” directly yields to the
AdjT. To carry out this process, the local neighboring connectivity information
(that is, those of the adjacent pixels) is first transformed into a global connec-
tivity graph (CG) tracking a unique direction in a number of iterations equal
to log(m+ n) (being m the image width, and n the image height). Finally, CCs
are extracted by fusing the regions of the previous global graph in a parallel
way using a reduced number of iterations (see Sect. 4). A more detailed example
is shown in Fig. 2. On the left a face-like binary image is depicted, whereas on
the right, its corresponding black (FG) 4-connected components are identified.

86 F. Dı́az del Ŕıo et al.

Note that 4-adjacency prevents the nose from being connected with the glasses.
Each FG CC has been assigned a black representative pixel (marked with little
triangles in Fig. 2 right), which can be called “attractor” as every link of the
simplified CCLT collapses in them. Conversely, FG holes can be represented by
attractors of the BG CCs. These are marked with little downwards arrows, and
can be called BG attractors, for analogous reasons (that is, all the BG CC col-
lapses in it). An additional BG attractor in the most left-bottom corner has been
added to represent a virtual attractor for the whole image. Whereas the meaning
of an attractor is intuitive and sufficient for understanding these concepts, an
exact definition of the attractors is given in Sect. 4.

Fig. 2. Left: original face-like image. Right: FG attractors (little triangles) and BG
attractors (downwards arrows).

The results for Fig. 3 (left) returned by our algorithm that generates the CCL
and the AdjT (see next section) are summarized in the table in Fig. 3 (right)
and Table 1. These tables contain the FG and BG ordered pairs. The silhouette
contained in Fig. 2 has a total of 6 FG attractors and 4 BG attractors. For
each FG attractor, FG attractor pair table (Fig. 3) gives the BG attractor that
goes to (that is, the hole that surrounds this component) and some additional
information (area and perimeter of each region). Numbers for attractors are pixel
labels, that is, linear indexes over the image (following a column convention, that
is, the linear indexes for a matrix when all its elements are numbered following
its columns). The perimeter is computed by counting the 8-adjacent pixels that
enclose a CC (which means that a CC composed of a single pixel has a perimeter
of 8 pixels).

Likewise, BG attractor pair table (Table 1, left) gives the FG attractor where
each BG attractor points to (that is, the black component that surrounds a hole).
Note that AdjT can be automatically extracted from these tables. The matrix of
Table 1 (right) is a possible compact representation of the AdjT and it gives the
crossed including relations of FG and BG attractors using this notation: rows
are FG attractor indexes (labels); columns are BG attractor labels; 1 means
that a BG attractor is included on an FG attractor, −1 means that an FG
attractor is included on a BG attractor. Finally Fig. 4 (left) comprises a graphical

Computing the Component-Labeling and the Adjacency Tree 87

FG BG Attr. FG CC FG CC

Attr. Index where area perimeter

index it points to (in pixels) (in pixels)

92 77 2 10
165 49 4 14
194 179 2 10
200 49 9 24
226 49 37 48
258 17 54 62

Fig. 3. Left: final CCLT having the minimal number of FG 4-connected components
and BG 8-connected components. Indexes of BG/FG attractors are on the right of
each attractor. Right: FTABLE : the corresponding FG attractor table. Numbers are
the linear indexes for a matrix numbered following its columns.

Table 1. Left: AdjT of Fig. 3. Rows are FG attractor labels; columns are BG attractor
labels; values are: 1 = BG attractor included on the FG attractor, −1 = FG attractor
included on the BG attractor. Right: BTABLE : BG attractor table of Fig. 3. Numbers
are the linear indexes for a matrix numbered following its columns

BG FG Atractor BG CC BG CC
Attractor index where area perimeter
index it points to (in pixels) (in pixels)
49 258 82 54
77 226 10 18
179 226 10 18

49 77 179
92 0 -1 0
165 -1 0 0
194 0 0 -1
200 -1 0 0
226 -1 1 1
258 1 0 0

representation of a weighted AdjT of Fig. 3. Filled (empty, resp.) circles are
FG (BG, resp.) CC. The notation for the numbers i : {a, p} represents: i =
index(label), a = area of the CC, p = perimeter of the CC.

4 A Parallel Algorithm for Building the CCLT

As previously explained, CG should pair any FG pixel with another FG pixel,
except those that are the possible attractors of a CC. The key point is that
each pairing must be done in a convenient direction so that only one unpaired
pixel (the attractor) exists for each CC. In this case, if we followed the links
from any pixel, this stream of links would fall on this attractor. In Fig. 5 (left) a
simple shape is depicted where every FG pixel has been linked following a simple
criterion: if its North neighbor were an FG pixel, it would be linked to it; if it were
not, it would be linked with its East adjacent pixel if it had the FG color; if East
adjacent pixel had not FG color either, it is marked as a possible attractor and
connected to the north BG pixel. This pairing is called here “North-then-East
criterion” or simply NE criterion. For the 8-adjacent BG pixels it is convenient

88 F. Dı́az del Ŕıo et al.

that the criterion uses the opposite direction: SswW (South-then-Southwest-
then-West), thus obtaining a set of possible BG attractors. This would complete
a possible CG. Hence, a false FG attractor can be defined as a pixel whose north
and east adjacent BG pixels points to two different BG attractors (little triangles
in Fig. 7, left). Likewise, a false BG attractor is a pixel whose south, southwest
and west adjacent FG pixels points to two different FG attractors (downward
arrows in Fig. 7, left).

Fig. 4. Left: a graphical representation of the AdjT of Fig. 3. Filled (empty, resp.)
circles are FG (BG, resp.) CCs. Notation i : {a, p} represents: i = index (label), a= area
of the CC, p = perimeter of the CC. Right: The 2× 2 patterns that represent attractors
in F*. B* matrices are resp. (pixel of reference in bold).

However, things are not so simple in the general case, because many pixels
can have both: a North and an East neighbor, and only one must be selected for
the pairing. For instance, the right picture of Fig. 5 shows a spiral shape where
the direction of the every pairing was done in an ad-hoc form, so that only one
unpaired pixel remains (the most northeast FG pixel). Note that the NE criterion
is not preserved for many FG pixels (correspondingly with respect to the SswW
criterion for BG pixels). The same for the BG: its only unpaired pixel is the
dummy attractor on the most southwest corner. The key is how these directions
are selected in parallel to produce the desired pairing. Global information about
the shape of every CC is needed to choose this correctly, that is, it is impossible
a priori to discover which pairing must select every pixel to get to the correct
CCLT. Nevertheless, there exists a high amount of parallelism in this process.
In order to get to the CCLT, we propose two main steps: Generating a CG as
parallel as possible; and secondly, transforming this CG into a correct CCLT
through the cancellation of pairs of a false FG attractor with a BG one. This
process must be iterated until no false attractor remains.

As stated before, an algorithm that tries to extract global information of an
image must include some pieces to search the relation between remote parts of
the image. Using the properties of the tree-like structures, those sequential pieces
can be reduced significantly. Figure 6 draws a sketch of the process to obtain the
minimal tree structures needed to extract the CCLT and AdjT of an image,
preserving its combinatorial nature. From the image I, a local CG based on the
local information of each pixel can be first computed. Here “local” means that

Computing the Component-Labeling and the Adjacency Tree 89

Fig. 5. Two figures with one CC. Left: a simple shape where the pixel pairing is accurate
by NE criterion. Right: a spiral, where this simple criterion is not valid.

the computation of every link is based only on the values of its (e.g. 4-) adjacent
pixels. This tree will contain the links from each pixel to its immediate neighbors.
Then, through successive iterations we can get to a different global CG. Here
“global” means that each pixel knows the link to its (possibly far) attractor in
this CG. FG, BG attractors of the initial CG are not yet the true attractors
(see Fig. 7, where the FG CC has resulted in two attractors; one of them must
be false). This tree must be transformed so as to contain only true attractors,
which means that we have reached the correct CCLT. Using the CCLT, every
attractor can be related with another attractor of opposite color that contains
the first. This is a representation of the AdjT.

Fig. 6. Left: steps involved in a sequential CCLT building. Right: a cycle from an FG
attractor AFG to CFG through a BG attractor ABG, where CFG = AFG.

From now on, let us suppose that the border of the whole image is composed
of BG pixels, which belongs to an external dummy BG attractor. The aim is to
build an optimal gradient vector field with only one (FG or BG) attractor for each
(resp. FG or BG) CC. The first step of Fig. 6 computes an initial CG of the image
I. The computation of every link is exclusively based on the values of its adjacent
pixels. The rest of the steps are necessary to transform this CG into a CCLT
detecting the representative FG, BG attractors. The second step determines
which pixels are possible BG/FG attractors, that is, those that have a link that
connects FG and BG pixels. The key point is that the FG graph must be built
on the opposite direction than that of the BG. Next, the third step introduces
global relations between pixels and attractors, so that the attractor for each pixel
is determined when following the vector field of the CG. In sequential form, a
pixel can track its links and then check if its neighbor pixel is an attractor. If
not, this operation would be repeated for the next neighbor and so on, until
an attractor is reached. Each pixel can store a label of the attractor to which

90 F. Dı́az del Ŕıo et al.

it points. Finally, we have a label matrix representing the CG. The matrix of
Fig. 7 (right) is ann example of this representation for the simple image in Fig. 7
(left). Using a column convention, the dummy BG attractor has the label 7, and
the FG attractor, representative of the FG CC (see Fig. 7, center) is numbered
with label 38. Meanwhile, there is another false BG attractor (label 18) and
another false FG attractor (label 23), which are underlined in Table 4. These
false attractors must be coupled (step 4 of Fig. 6) for the final CCLT, so that the
underlined label 23 would be substituted by 38, and the underlined label 18 for
7. The next step consists of transports, or equivalently the fusion of those parts
of a same CC, performed by a CG combinatorial optimization process in order
to get a tree that has as many nodes as 4-connected components the image has.

7 7 7 7 18 18 7
7 23 23 23 18 18 7
7 23 18 18 18 38 7
7 23 18 18 18 38 7
7 23 38 38 38 38 7
7 7 7 7 7 7 7
7 7 7 7 7 7 7

Fig. 7. A transport that transforms an initial CG into the corresponding simplified
CCLT (Left). Links enclosed by a rectangle are to be transported to the thicker links
in the CCLT (Center). Label representation, containing for each pixel a label to an
FG/BG attractor in the initial CG (Right). (Color figure online)

Graphically, a simple conversion of an initial CG (left) into the CCLT (center)
is shown in Fig. 7. Note that the CG of Fig. 7 (left) has one cycle (see the red and
green edges surrounding the word “cycle”). Only one cancellation of a pair of
false attractors is needed to get the CCLT. CG links that are enclosed by a dotted
rectangle are transported to the thicker links for the CCLT. FG attractors are
depicted with little triangles, whereas the BG attractors with downward arrows.
It can be easily shown that selecting opposite directions for the BG pixel and
for the FG pixels when building the CG implies that every BG attractor breaks
an FG CC, and vice versa. Thus, by canceling FG-BG attractor pairs until only
one attractor would remain for each FG and BG CC, so the transformation from
CG into the CCLT is accomplished. After this process there must be only one
attractor for each FG (resp. BG) CC. It is worth to note that the process of link
transporting is done exclusively handling the CG. The links in the CG enclosed
by a dotted rectangle in Fig. 7 (left) are transported, in such a way that both false
FG and BG attractors disappear. This is depicted with thicker links in the CCLT
(Fig. 7, center). Any transport implies the re-labeling of the label representation
(like the matrix of Fig. 7, right). Note that finally the remaining BG attractor
is located on the SW corner of the image. The couples to be cancelled can be

Computing the Component-Labeling and the Adjacency Tree 91

found by following a path along the CG and by transporting its corresponding
links. Yet more, it can be shown that most of these cancellations can be done in
parallel, as demonstrated below.

Finally these attractors will define the AdjT in a straightforward form with-
out any geometric computation: Simply, each FG attractor is connected through
the CCLT to another BG attractor. And vice versa: each BG attractor is linked
to another FG attractor (Fig. 3). So the question is now: what parts of a CCLT
building can be done in parallel for the huge amount of pixels that a digital image
can have? Whereas first two steps of Fig. 6 are independent for every pixel (thus
trivially parallel), the crucial step Fig. 6 requires in principle a sequential pro-
cessing. Nevertheless, most of the attractors can be coupled in parallel if next
properties are taken into account. Let us consider the FG attractor AFG in Fig. 6
(right). The adjacent East BG pixel of AFG fell (going to South direction along
the BG path defined by the CG) to a BG attractor BFG. Likewise, the adjacent
West FG pixel of BFG arrives (going to North direction along the FG path of
the CG) to an FG attractor CFG. All the pairs of FB and BG attractors that
fulfill AFG = CFG can be cancelled in parallel, because (a) there are BG and
FG paths that connect them, and (b) any tree structure has a unique root. Due
to (a) the link of the false FG attractor can be transported so as to join the
two FG pixels that the BG attractor was separating. Likewise for the link of the
false BG attractor. These are the transports from Fig. 7, left to center. Moreover
because of (b), there cannot exist two false FG attractors that use the same false
BG attractor to be cancelled.

The parallel Algorithm 1 consists of the following steps. From image I, the
possible attractors based on the local information of each pixel can be fully
determined in parallel, and the same for the initial CG, for example using the
North-then-East criterion (steps 1–4 of Algorithm 1). Using this local informa-
tion and through successive iterations, the global CG can be obtained, which
corresponds to the steps 5 to 9 of Algorithm 1). Now the possible FG, BG attrac-
tors can be efficiently coupled in parallel (steps 10–21 of Algorithm1). At the
end of this stage, we obtain the CCLT comprised in the final pointer matrix P
of Algorithm 1, and in the true attractors, one for each FG and BG CC. Note
that BG attractors now are the holes of the FG CCs (and vice versa). Finally,
by means of steps 22–23, inclusion relations between BG and FG CCs can be
extracted from the label pointed by each attractor.

As our aim is to describe the inherent parallelism that can be exploited in
the CCL tree building, the notation followed here describes the algorithm in
an OCTAVE/MATLAB-like form, which indicates in an direct way what are
the data parallelism and the real data dependences. Therefore it is evident how
each sentence could be implemented in a SIMD processor (or in SIMD ker-
nels) or in SIMT oriented GPUs. Also OpenMP codes can be written almost
directly through this notation, just by transforming each matrix operation into
two nested loops, the outer of which can be commanded by a directive #pragma
omp parallel for. An additional advantage is that the memory access patterns can

92 F. Dı́az del Ŕıo et al.

be clearly observed with this notation. This can give a fast idea of the computing
times because memory access is currently the most important bottleneck in cur-
rent multicore processors [14,21]. For similar reasons, those sentences that can
be executed in parallel (which have no real data dependences) are grouped in the
same step. For example, the range of elements that can be processed in parallel
is shown for each matrix (vector) with the notation A(1 :m, 1 : n). This means
that the operation is extended all over the elements in rows 1, 2, 3, . . . ,m and
in columns 1, 2, 3, . . . , n. Furthermore, we have avoided those matrix operations
that cannot be done in an element-by-element way (like matrix inversions, matrix
multiplication, etc.). Nevertheless, matrix operations that can be executed in a
fully parallel form are introduced with the OCTAVE/MATLAB notation (e.g.
A. ∗ B means an element-by-element multiply). Therefore, only one loop “for”
and another one loop “while” that present dependences among its iterations are
encountered. In addition, the algorithm does not have any conditional sentence.
Some auxiliary matrices and predicative-like code, have transformed conditional
operations into element-by-element logical ANDs or multiply operations for the
possible results. This also promotes efficiency when using SIMD kernel codifica-
tion and prevents the so-called thread divergence for GPUs, promoting a better
performance on these platforms [14]. Supposing an image of m×n pixels and p
processing elements, time complexity order can be trivially obtained according
to the notation of Algorithm1, and because most of the operations are done in
an element-by-element form. Steps 1–4 are of this kind, so their time complexity
is O(m× n/p). Steps 6–8 proceed in the same manner, but they are surrounded
by a “for” loop (steps 5 and 9) with log2(m + n − 1) iterations. Thus, their
complexity is O((m × n/p) × log(m + n)). Next step 10 can be computed fully
in parallel, which supposes a complexity of O(m × n/p). Step 15 is similar to
10, but because many false attractors were previously deleted from matrixes F∗
and B∗ in 10, each “surviving” possible attractor has to be found. This sup-
poses a searching of a variable length s10 that depends on the characteristic of
the image. Steps 17 and 19 have the same complexity of 10 with different lengths
s17 and s19, respectively. Moreover, steps 17 and 19 are enclosed by a while loop
(16 and 21), with a number of iterations q, that is in general very little. These
searching lengths s10, s17 and s19, and the number of iterations q can be related
with image shapes; but for the random images of different densities [22], max-
imum values smax = max{s10,max, s17,max, s19,max, s22,max} were very
low: 72 for 512× 512 pixels, 94 for 1 Mpixels and 176 for 4 Mpixels. Besides, q
reached 3 only for one of the random images, whereas was 1 for all the tested
real ones. In other words, the most time consuming steps are 5 to 9. Summa-
rizing previous steps 1–21, it can be stated that, under the assumption that a
processing element exists for each pixel (p = m × n), time complexity order for
computing the CCL is very near to the logarithm of the width plus the height of
the image. Step 22 involves only the true FG and BG CC (namely v), and can
be done in parallel for any CC because matrix P comprises all the connectiv-
ity information. The only iterative procedure here is again the number of hops

Computing the Component-Labeling and the Adjacency Tree 93

needed to find a true attractor. Thus, the time complexity order for this step is
O(s22×v/p+s22,max), where s22,max is the maximum number of hops along
the pointer matrix P to find an attractor. Step 23 can be done in parallel, being
O(v/p) its time complexity. To sum up, time complexity order for computing
the CCL and the AdjT, under the assumption that a processing element exists
for each pixel, is O(log(m + n)) + O(q × smax).

5 Testing Results and Conclusions

A complete implementation was done in C++/OpenMP through a direct trans-
lation of Algorithm1. The compiler was Microsoft Visual Express. The server
where tests were carried out was an Intel Xeon E5 2650 v2 with: 2.6 GHz, 8
cores, 8 × 32 KB data caches, Level 2 cache size 8 × 256 KB, Level 3 cache size
20 MB, maximum RAM bandwidth: 59.7 GB/s. Experiments were run 25 times
and minimum times were collected, because this server runs concurrently lots
of processes and this increases unfairly timing measurements. However, mean
times differs only by a 10% wrt. to the minimum ones. Figure 8 shows the results
for random images (taken from YACCLLAB [22]) with different sizes and den-
sities (percentage of FG pixels). Although absolute computation times (being
between 0.3 and 0.5 s for 512× 512 images of different densities) are not faster
than that of YACCLAB, this comparison is not fair since our method computes
both black and white CCs, thus having a complete representation in terms of
the AdjT, whereas classical CCL methods return only black CC labels. Never-
theless, speedup (time for various threads divided by time for 1 thread) is near
the number of threads (Fig. 8), which points out that achieved scalability is very
satisfactory for all image sizes and densities.

Fig. 8. Left: speedup for 1 to 8 threads for images of different sizes and: Right: density
of 0.9. Left: density of 0.4.

In future works we will define more formally the notions of our algorithm so
that additional properties will be exhibited. This would also serve to extend our
method to bigger dimensions.

94 F. Dı́az del Ŕıo et al.

Algorithm 1. Given a binary matrix I, computes P (CCL), BTABLE , FTABLE

(column 1: index of the BG/FG attractor resp.; column 2: index of the FG/BG
attractor, resp.), and AdjT. B means BG and F FG value
1: ICC ← I(2 : m − 1, 2 : n − 1); % Central matrix

INC ← I(1 : m − 2, 2 : n − 1); % North adjacent matrix. Similar for other 4-adjacent
matrices IEC , ISC , IWC (East, South, West) and 8-adjacent matrices ISW , ISE , INW , INE

2: F ∗ ← (INC == BG). ∗ (IEC == BG). ∗ (ICC == FG);
B∗ ← (INC == FG). ∗ (INE == BG). ∗ (ICC == FG). ∗ (IEC == FG);
% See 2x2 patterns in Figure 4 (right)

3: R,C ← ndgrid(1 : m, 1 : n); % auxiliary matrices that contain a grid of row and column
indexes.

4: XNE ← (INC == BG). ∗ (IEC == FG). ∗ (ICC == FG);
YNE ← (INC == FG). ∗ (ICC == FG) % initial X,Y directions
P ← F ∗. ∗ ((C − 1) ∗m+R); % initial local CG as an NE pointer matrix. Only attractors
are set with column indexes.

5: for k = 1 : log2(m+ n − 1) do

6: Rhop,NE ← R − YNE ;
Chop,NEC+XNE ; % row, column indexes are “moved” to the North or East according
to XNE , YNE values.

7: Lhop,NE ← sub2ind(YNE , Rhop,NE , Chop,NE); % R, C matrices are converted into
column indexes.

8: P ← P (Lhop,NE); % pointer matrix is updated.
XNE ← XNE +XNE(Lhop,NE);
YNE ← YNE + YNE(Lhop,NE); % XNE, YNE are updated

9: end for% After this loop, P contains the global CG

10: %First coupling using East BG pixel to each FG attractor.
AFG ← P (F ∗(2 : m − 1, 2 : n − 1)); % Vector of FG attractors
AFG,East ← P (F ∗(2 : m − 1, 3 : n));% East BG pixels to FG attractors

11: ABG ← P (AFG,East); % Vector of BG attractors

12: CFG ← P (ABG +m); %FG attractors from West FG ABG pixels

13: Acancel = (AFG == CFG); % Logical Vector of FG/BG attractors that must be cancelled
in parallel.

14: Ncancel = count(Acancel);% # FG/BG attractors cancelled.
B∗(P (ABG(Acancel))) ← 0; % BG attractors are deleted from logical matrix of BG attrac-
tors and from auxiliary matrices.
F ∗(P (AFG(Acancel))) ← 0; % The same for FG attractors. % Here, labels in matrix P
are also updated according to the link transport of section 4.

15: % Step 10 is repeated for Vectors of North BG pixels to the FG attractors and FG
attractors from the South FG pixels to ABG. Each addressing along P must be iterated
until an FG or BG attractor is found (because, in previous steps, many false attractors
were deleted from F ∗ and B∗).

16: while Ncancel > 0 do
17: % Step 10 is repeated. Each addressing along matrix P must be iterated until an FG

or BG attractor is found.

18: Ncancel = count(Acancel)
19: % Step 15 is repeated. Again addressing along matrix P must be iterated until an FG

or BG attractor is found.

20: Ncancel = count(Acancel)+Ncancel; % total number of FG/BG attractors cancelled in
current “while” iteration.

21: end while
22: % Extract attractor pair tables FTABLE , BTABLE from previous attractors using P.

23: % Compute AdjT using attractor pair tables FTABLE , BTABLE

Computing the Component-Labeling and the Adjacency Tree 95

References

1. Bhattacharya, P.: Connected component labeling for binary images on a reconfig-
urable mesh architecture. J. Syst. Arch. 42(4), 309–313 (1996)

2. Buneman, O.P.: A grammar for the topological analysis of plane figures. Mach.
Intell. 15, 383–393 (1969)

3. Chiavetta, F., Di Gesù, V.: Parallel computation of the Euler number via connec-
tivity graph. Pattern Recognit. Lett. 14, 849–859 (1993)

4. Diaz-del-Rio, F., Real, P., Onchis, D.: A parallel homological spanning forest frame-
work for 2D topological image analysis. Pattern Recognit. Lett. 83, 49–58 (2016)

5. Cohn, A., Bennett, B., Gooday, J., Gotts, N.: Qualitative spacial representation
and reasoning with the region connection calculus. GeoInformatica 1(3), 275–316
(1997)

6. Costanza, E., Robinson, J.: A region adjacency tree approach to the detection and
design of fiducials. Video Vis. Graph., 63–99 (2003)

7. Cucchiara, R., Grana, C., Prati, A., Seidenari, S., Pellacani, G.: Building the topo-
logical tree by recursive FCM color clustering. In: 16th IEEE ICPR, vol. 1, pp.
759–762 (2002)

8. Gupta, S., Palsetia, D., Patwary, M.M.A., Agrawal, A., Choudhary, A.N.: A new
parallel algorithm for two-pass connected component labeling. In: IEEE IPDP
Symposium, pp. 1355–1362 (2014)

9. Heijmans, H.J.: Connected morphological operators for binary images. Comput.
Vis. Imag. Understand. 73(1), 99–120 (1999)

10. Kalentev, O., Rai, A., Kemnitz, S., Schneider, R.: Connected component labeling
on a 2D grid using CUDA. J. Parallel Distrib. Comput. 71, 615–620 (2011)

11. Kovalevsky, V.: Algorithms in digital geometry based on cellular topology. In:
Klette, R., Žunić, J. (eds.) IWCIA 2004. LNCS, vol. 3322, pp. 366–393. Springer,
Heidelberg (2004). https://doi.org/10.1007/978-3-540-30503-3 27

12. Keshet, R.: Shape-tree semilattice. J. Math. Imag. Vis. 22(2–3), 309–331 (2005)
13. Murty, A., Natarajan, V., Vadhiyar, S.: Efficient homology computations on mul-

ticore and manycore systems. In: 20th Annual International Conference on High
Performance Computing, pp. 333–342 (2013)

14. Oxley, J.G.: Matroid Theory, vol. 3. Oxford University Press, Oxford (2017).
NVIDIA, Cuda C best practices guide version. http://developer.nvidia.com/

15. Patwary, M., Ali, M., Refsnes, P., Manne, F.: Multi-core spanning forest algorithms
using the disjoint-set data structure. In: 26th IEEE IPDP Symposium, pp. 827–835
(2012)

16. Institute of Computer Science, Jagiellonian University (2017). REDHOM, Redhom.
http://redhom.ii.uj.edu.pl/

17. Ranwez, V., Soille, P.: Order independent homotopic thinning for binary and grey
tone anchored skeletons. Pattern Recognit. Lett. 23(6), 687–702 (2002)

18. Rosenfeld, A.: Adjacency in digital pictures. Inf. Control 26, 24–33 (1974)
19. Serra, J.: Image Analysis and Mathematical Morphology. Academic Press,

Cambridge (1982)
20. Stell, J., Worboys, M.: Relations between adjacency trees. Theor. Comput. Sci.

412(34), 4452–4468 (2011)
21. Williams, S., Waterman, A., Patterson, D.A.: Roofline: an insightful visual perfor-

mance model for multicore architectures. Commun. ACM 52, 65–76 (2009)
22. YACCLAB - Yet Another Connected Components Labeling Benchmark (2017).

https://github.com/prittt/YACCLAB

https://doi.org/10.1007/978-3-540-30503-3_27
http://developer.nvidia.com/
http://redhom.ii.uj.edu.pl/
https://github.com/prittt/YACCLAB

Towards Emotion Recognition:
A Persistent Entropy Application

Rocio Gonzalez-Diaz1, Eduardo Paluzo-Hidalgo1(B), and José F. Quesada2

1 Department of Applied Mathematics I, University of Seville, Seville, Spain
2 Department of Computer Science and Artificial Intelligence, University of Seville,

Seville, Spain
{rogodi,epaluzo,jquesada}@us.es

Abstract. Emotion recognition and classification is a very active area of
research. In this paper, we present a first approach to emotion classifica-
tion using persistent entropy and support vector machines. A topology-
based model is applied to obtain a single real number from each raw
signal. These data are used as input of a support vector machine to clas-
sify signals into 8 different emotions (neutral, calm, happy, sad, angry,
fearful, disgust and surprised).

Keywords: Persistent homology · Persistent entropy
Emotion recognition · Support vector machine

1 Introduction

Emotion recognition is not a trivial task and different approaches have been
explored so far (see for example [12]). Additionally, its applications are really
important, such as gathering and processing satisfaction feedback in customers’
services, generating statistical studies over a population, using emotion recog-
nition to improve spoken language understanding during a conversation. Fur-
thermore, it can help in human interaction as in KRISTINA project1, where
emotion recognition is applied in order to help the interaction between health
professionals and migrated patients. Among the different theories about emo-
tions proposed in the specialized literature, we follow the model described in
[10,14], where a discrete theory of emotions is given, differentiating several basic
groups of emotions (neutral, happy, sad and surprised) and organizing them
in a spatial model. In [16] a review of different emotional speech recognition
techniques can be consulted.

Topological data analysis is a well substantiated field useful to extract infor-
mation from data (see [17]). Concretely, a recent tool in this area called persis-
tent entropy has been successfully applied to distinguish discrete piecewise-linear
functions (see [13]).

1 http://kristina-project.eu/en/.

c© Springer Nature Switzerland AG 2019
R. Marfil et al. (Eds.): CTIC 2019, LNCS 11382, pp. 96–109, 2019.
https://doi.org/10.1007/978-3-030-10828-1_8

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-10828-1_8&domain=pdf
http://kristina-project.eu/en/
https://doi.org/10.1007/978-3-030-10828-1_8

Towards Emotion Recognition: A Persistent Entropy Application 97

In this paper, persistent entropy is used to model arousal (i.e., emotional
state) and emotion recognition as follows. First, speech signals are consid-
ered as piecewise linear functions. Second, persistent entropy is computed from
the lower-star filtration obtained from these functions. This persistent entropy
embedding can be considered as a summary of the features that appear in raw
signals, as intensity and intonation. The stability theorem for persistent entropy
computed from lower-star filtrations [13] guarantees right comparison between
signals and robustness against noise. Finally, a support vector machine is used
to classify emotions via persistent entropy values. As far as our knowledge, no
topology approaches have been previously applied to emotion recognition.

This paper is organized as follows: Basic emotion theory, the notions of persis-
tent homology and persistent entropy, and machine learning knowledge required
for the model are introduced in Sect. 2. In Sect. 3, the methodology followed in
the experiments is explained. Results obtained from different training approaches
are shown in Sect. 4. Finally, Sect. 5 provides conclusions and future work ideas.

2 Background

In this paper, different tools are mixed up in order to propose a unified and
coherent framework for emotion classification. In this section, the basic concepts
about acoustics, topology, machine learning and statistics are introduced.

Acoustic and Psychoacoustic Features. Emotions constitute the main field
largely studied by psychologists. Following [14], we consider that emotions can be
modeled spatially in a circle, being arousal and valence their main characteristic
features. Accordingly, prosodic attributes of speech [7] are strongly related with
emotion recognition. This research area takes into account several features of
speech, in conjunction with gesticulation of the speaker. Some of those features
are: pitch signal, number of harmonics, vocal tract, and speech energy.

Along this paper, just the physical features of the acoustic signal along with
the processing results available from this signals (such as the contour of speech
signal which is a feature affected by the arousal of the speaker), will be taken into
account. The inclusion of visual features will be proposed in Sect. 5 as a natural
continuation of this research. Sentences will be processed, assuming that certain
attributes, like the fundamental frequency, intensity and duration, of a sound
are meaningful for emotion production and recognition. These attributes are
encapsulated under the notion of prosody. Depending on the prosodic pattern,
a sentence can have very different emotional features. For example, happiness
is linked usually with large fundamental frequency and, loudness, in contrast
with sadness, normally related to the opposite. For further explanations about
psychoacoustics, [8] can be consulted.

In the literature, some emotion classification techniques have been proposed
(see [18]). Some of them employ prosody contours information of speech in order
to recognize emotions, as, for example: artificial neural networks, the multichan-
nel hidden Markov model, and the mixture of hidden Markov models. For a
further approximation to paralinguistic theory see [15].

98 R. Gonzalez-Diaz et al.

Topology Background. Topological data analysis (TDA) studies the shape of
data. In our case, we apply topological data analysis tools to distinguish between
piecewise linear function shapes. For an introduction to topological data analysis,
[5] can be consulted.

Persistent entropy is the main tool from TDA that will be used in this paper.
It sums up persistent homology information which “measures” homological fea-
tures of shapes and of functions.

Informally, homology provides the number of n-dimensional holes, called the
n-th Betti numbers and denoted by βn. Intuitively, β0 is the number of connected
components, β1 the number of tunnels and β2 the number of cavities. However,
for dimensions higher than 2, we lose the intuition about what a hole is.

Definition 1 (Betti number, informal, [2]). If X is a topological space, then
Hn(X) � Z

βn is called the n-th homology group of X if the power βn is the
number of independent n-dimensional ‘holes’ in X. We call βn the n-th Betti
number of X. Finally, the homology of X is defined as H(X) = {Hn(X)}∞

n=0.

Observe that the concept of homology is not useful in practice. For exam-
ple, suppose a dataset V of 10 points sampling a circumference. We expect that
H0(V) � Z since a circumference has one connected component. However, the
exact 0-th homology of V is Z10. Therefore, we need a tool to compute the homol-
ogy of the underlying space sampled by a dataset. Following this idea, Edels-
brunner et al. [5] introduced the concept of persistent homology together with
an efficient algorithm and its visualization as a persistence diagram. Carlsson
et al. [20] reformulated and extended the initial definition and gave an equiva-
lent visualization method called persistence barcodes.

Given a dataset V and a simplicial complex K constructed from it, persistent
homology measures homology by a filtration during time, obtaining births and
deaths of each homology class (‘hole’). Consequently, those classes that persist
are better candidates to be representatives of the homology of the underlying
space.

Definition 2 (Abstract simplicial complex). Let V be a finite set. A family
K of subsets of V is an abstract simplicial complex if for every subsets σ ∈ K
and μ ⊂ V , we have that μ ⊂ σ implies μ ∈ K. A subset in K of m+1 elements
of V is called a m-simplex and V is called the set of vertices of K.

Definition 3 (Filtration). Given a set V and a simplicial complex K
constructed from it, a filtration is a finite increasing sequence of simplicial
complexes:

∅ = K0 ⊂ K1 ⊂ K2 ⊂ · · · ⊂ Kn = K

A particular filtration that will be used in this paper is the lower-star filtration.

Definition 4 (Lower-star filtration [5]). Let K be a simplicial complex with
real (distinct) values specified on the set V of all the vertices in K. Since vertices
have distinct function values, then they can be ordered incrementally:

f(u1) < f(u2) < · · · < f(un).

Towards Emotion Recognition: A Persistent Entropy Application 99

The lower star of ui is the subset of simplices of K for which ui is the vertex
with maximum function value,

Ki = {σ ∈ K : for all vertex v of σ ⇒ f(v) ≤ f(ui)}.

Once the lower-star filtration is obtained, persistent homology can be com-
puted as follows. The inclusion Ki ⊂ Kj induces a homomorphism f i,j :
H(Ki) → H(Kj) on homology. Its image is the persistent homology, letting
βij

p be the number of n-dimensional ‘holes’ that are born at Ki and die entering
Kj . During the computation of persistent homology along the filtration, an elder
rule is applied. For example, when there are two connected components that get
joined at some Kj , the older one (the one that was born earlier) remains, and the
younger one dies. A persistence barcode is a representation of births and deaths
of homology classes along time using bars. An example is shown in Table 1.

Finally, once persistence barcodes are obtained, persistent entropy can be
computed.

Definition 5 (Persistent entropy [13]). Given a filtered simplicial complex
{K(t) : t ∈ F}, and the corresponding persistence barcode B = {ai = [xi, yi) :
i ∈ I}, the persistent entropy E of the filtered simplicial complex is calculated as
follows:

E = −
∑

i∈I

pilog(pi)

where pi = li
L , li = yi − xi, and L =

∑
i∈I li. In the case of an interval with no

death time, [xi,∞), the corresponding barcode [xi,m) will be considered, where
m = max {F} + 1.

The robustness of persistent homology to noise is guaranteed thanks to the
following result, letting a stable comparison between signals.

Theorem 1 ([13]). Given two functions, f : V → R and g : V → R, defined
on a set of vertices V of Rn, then for every ε > 0, there exists δ > 0 such that

||f − g||∞ ≤ δ ⇒ |E(f) − E(g)| ≤ ε.

Machine Learning Background. Machine learning techniques are nowadays
widely applied to solve classification problems.

A classification technique will use a ‘training’ dataset

D = { (vi, ci) | vi ∈ R
n, ci ∈ {0, . . . , k}, i ∈ {1, . . . , m} }

where {0, . . . , k} are the different possible classes. From this dataset, the classi-
fication algorithm will produce a classification model. This model can lately be
applied to new inputs in order to predict the corresponding classes. There exist
several classification techniques in machine learning. In our case, we focus our
attention on support vector machine (see [1,3,4] and [6, Chap. 5]).

100 R. Gonzalez-Diaz et al.

Table 1. Left: lower-star filtration. Right: the associated persistence barcode of the
corresponding lower-star filtration pictured on the left.

A support vector machine is a supervised learning technique that construct
a hyperplane, driven by a linear function b+

∑m
i=1 αiv

T
i vi, or a set of them that

can be used to classify data. When this data is not linearly separable, a kernel
trick is applied: the space is mapped to higher dimensions using a kernel func-
tion, k(v,v′) = φ(v)T · φ(v′). Therefore, a support vector machine just creates
hyperplanes that work as decision boundaries for classification after applying a
deformation of the dataset in order to get a linearly separable representation.
Then, formally, a support vector machine within a kernel makes predictions using

Towards Emotion Recognition: A Persistent Entropy Application 101

the following function:

f(v) = b +
m∑

i=1

αik(v,vi)

where α is a vector of coefficients, k the kernel and b is a bias term. Finally,
the coefficients are chosen as a result of an optimization problem of the sepa-
ration margin between classes. Different kernel-based functions can be used, for
example:

Kernels

Linear k(v, v′) = vT · v′

Polynomial of degree d k(v, v′) = (vT · v′ + c)d

Gaussian k(u, v) = N (u − v; 0, σ2I)

where N (v;µ, Σ) is the standard normal density.

Performance Metrics. Basically, we are dealing with a classification problem.
Therefore, our main metric will be the accuracy, considered as the percentage
of well classified data in a dataset:

Accuracy =
m

n

where m is the number of well-classified data and n is the size of the full dataset
used in the test.

Statistical Tool. The correlation coefficient of two random variables is a mea-
sure of their linear dependence. One correlation coefficient largely known and
applied is the Pearson’s correlation coefficient [11]:

Pearson’s correlation coefficient ρ(A,B) =
cov(A,B)

σAσB

where cov(A,B) is the covariance and σ the standard deviation.

3 Methodology

As was previously anticipated, the shape of the wave of a speech signal can be
meaningful to emotional speech recognition. Roughly speaking, we will compute
persistent entropy to the lower-star filtration of the raw signal and then, we
classify the signals by comparing these numbers using a support vector machine.

Let us now explain in details the methodology applied in this paper:

Step 1. Subsampling of the Signal. The size of each signal is reduced in
order to face the complexity of the persistent homology algorithm. Besides, every
signal of the dataset needs to be subsampled into the same size in order to

102 R. Gonzalez-Diaz et al.

fulfill the assumptions of Theorem 1. For example, we subsampled the signal
pictured in Fig. 1 from 196997 points to 10000. The subsampling process was
done uniformly on the signal, maintaining its shape and main distribution of the
spikes. Furthermore, the experiments of Sect. 4 were also done using the dataset
without subsampling reaching similar results. Then, we could assert that this
type of subsampling does not loose relevant information for this approach.

Fig. 1. Raw signal intensity graph of an angry emotion interpreted by the actor number
1 of the RAVDESS dataset.

Step 2. Introduction of Imperceptible Noise. Signals are slightly perturbed
to fulfill the requirement of lower-start filtrations (see Definition 2): two points
in the signal can not have the same height.

Step 3. Persistence Barcode Computation. The lower-star filtration tech-
nique is applied to the signals generated in Step 2, obtaining the associated
persistence barcode. For example, the barcode associated to the signal of Fig. 1
can be seen in Fig. 2.

Step 4. Persistent Entropy Computation. Persistent entropy is computed
applying the formula given in Definition 5 to the persistence barcodes obtained
in Step 3.

Step 5. Support Vector Machine Classification. This step consists of the
application of several support vector machines with different kernels in order
to infer results and develop a classification predictor to emotions. The different
possible kernels, previously introduced in the paper, are tested and the one with
better accuracy is chosen.

Towards Emotion Recognition: A Persistent Entropy Application 103

Fig. 2. Barcode of the signal shown in Fig. 1. The horizontal axis represents time. Every
horizontal (blue) line represents the life of a 0-dimensional homology class. (Color figure
online)

4 Experiments

The work-flow presented in the previous section was applied to the RAVDESS
dataset [9]. This dataset is composed by 24 actors interpreting 60 audios each
on different emotions and different intensity. Concretely, there are 4 audios for
the neutral emotion and 8 audios for each of the seven remaining emotions.
Consequently, there are 1440 different audios.

In Fig. 3, a box-plot of the persistent entropy of the 1440 audios grouped by
the different emotions can be seen. We can infer that persistent entropy values
vary depending on both the emotion and the person. It seems that there exists
characteristic personal values and the range of every emotion can be really wide.
For example, the persistent entropy values of the audio number 20 in Fig. 3, that
is an example of happiness, varies from 5.1713 to 0.6923 depending on the person.
Besides, the existing overlapping between the boxes tells us that emotions can
not be distinguished from the rest by just the persistent entropy values of every
script as a feature. This failure approximation is illustrated and explained in
Experiment 1. However, some emotions can be differentiated by pairs even with
this ‘naive’ approximation.

One thing that appealed our attention is the visual correlation that persistent
entropy values tend to have per sexes as shown in Figs. 4 and 5. Even if the range
is lower or higher depending on the person, in general, the peaks appear on the
same places. To illustrate it, let us consider the correlation matrix between per-
sistent homology values of the 60 audios grouped in the ones belonging to females
and the ones belonging to males. We obtain that persistent entropy values are
moderately correlated between same sex audios and badly correlated between
different sexes (see Table 2). We think that it could be interesting the use of

104 R. Gonzalez-Diaz et al.

Fig. 3. (90◦ rotated figure) Horizontal axis represents the different 60 audios. Vertical
axis represents persistent entropy. The big (red) rectangle clusters encloses persistent
entropies of the audios per emotion (the respective emotion is indicated in the hori-
zontal axis. The small (blue) rectangles are quartiles for the persistent entropy values.
The vertical (blue) dashed lines mean the range of values of persistent entropy values.
The (red) points are outliers. The horizontal (red) small lines are the mean persistent
entropy value for the corresponding audio. (Color figure online)

Towards Emotion Recognition: A Persistent Entropy Application 105

more sophisticated measures of similarity apart from correlation. Furthermore,
correlation results give us clues to the need of developing emotion classification
within the dataset separated by sexes to reach better classification accuracy.
Besides, we consider that persistent entropy values could even be a nice app-
roach to people identification and not just to emotion recognition. However, this
approach is far from the scope of this paper and its preliminary nature.

Fig. 4. Horizontal axis represents the different audios of actresses. Vertical axis repre-
sents persistent entropy value. The different persistent entropy values for the 60 audios
of the same actress are connected by an straight line. We can see that shapes are
correlated (see Table 2), showing that they tend to have the same peaks and downs.

Table 2. Mean values for the correlation coefficients of the entropy values grouped by
sexes.

Male actor Female actor

Male actor 0.43 0.23

Female actor 0.23 0.49

In all the following experiments we use as the classification technique a sup-
port vector machine with fold cross validation and the kernel that provides the
better accuracy from the ones explained previously. The training dataset will be
the 1440 persistent entropy values grouped by different ways trying to get the
features needed to reach our goal. In the first experiment we try the brute force
approach using every script as a point of the training dataset. Then, in the sec-
ond experiment, every point correspond to an emotion within its 24 persistent

106 R. Gonzalez-Diaz et al.

Fig. 5. Horizontal axis represents the different audios of male actors. Vertical axis
represents persistent entropy value. The different persistent entropy values for the 60
audios of the same actor are connected by an straight line. We can see that shapes are
correlated (see Table 2), showing that they tend to have the same peaks and downs.

entropy values by the 24 different actors. Finally, in the last experiment, the
dataset is grouped by actors and emotions.

Experiment 1: Each persistent entropy value will be a point of the training
dataset. In this case, 20.3% of accuracy is reached within a linear kernel. Some
conclusions can be pointed out from this failed approach: The emotion recog-
nition problem is a multidimensional one, in the sense that a 1-dimensional
embedding is not enough to an acceptable classification result. Furthermore,
this was anticipated by the overlapping of the different boxes at the box-plot of
persistent entropy values showed in Fig. 3. Besides, the non correlation between
persistent entropy values per sexes is a matter not taken into account in this
experiment.

Experiment 2: Each point of the dataset is a vector of 24 features which
correspond to the persistent entropy value of the same emotion interpreted by
the 24 different actors. The dataset was separated in 40 points for training
dataset and 20 points for test dataset and a gaussian kernel was used. Then,
92.5% of accuracy was reached on the training dataset and 90% on the test
dataset. Furthermore, 96.66% accuracy was obtained on the full dataset. In
our opinion, this experiment presents two main drawbacks. The first one is its
difficult applicability as it needs 24 features of every emotion. However, withing
long audio recordings, it could be cut into pieces and obtain enough features to
classify. The other drawback is the small dataset we have for this experiment
because of the way it has been grouped.

Towards Emotion Recognition: A Persistent Entropy Application 107

Experiment 3: In this experiment, each point of the dataset consists of a vector
of 8 features, corresponding each feature to the persistent entropy value of the
same emotion interpreted by the same actor. By this, the following accuracy
Table 3 for classification by pair of emotions was obtained using a second degree
polynomial kernel. Considering other results in the literature like [12] where 71%
of accuracy was reached using Artificial Neural Networks, our results are really
promising. However, we are still far from the 83% of accuracy reached in [19]
using a multi-task hierarchical model. But we can say that, with just a first
approximation, we could reach similar accuracy than those that already exist
in the literature. Furthermore, as we are considering here just intensity and one
type of filtration, only some features that characterize emotions are taken into
account. Then, it gives us a nice starting point in order to improve the model
by using different features of the signal and different filtrations.

Table 3. Prediction accuracy from pair of emotions using different support vector
machine within different kernels.

Feelings Calm Happy Sad Angry Fearful Disgust Surprised
Calm 77.1% 68.8% 81.2% 79.2% 72.9% 60.4%
Happy 62.5% 64.6% 60.4% 58.3% 64.6%
Sad 75% 62.5% 70.8% 60.4%
Angry 68.8% 77.1% 70.8%
Fearful 72.9% 72.9%
Disgust 75%
Surprised

5 Conclusions and Future Work

A persistent entropy application has been developed in order to extract infor-
mation from raw audio signals and solve a classification problem using support
vector machine. Furthermore, a descriptive analysis of the computed persistent
entropy values has been done, bringing up the characteristic values that exist
by person and the existence of moderate correlation between persistent entropy
values of emotions of people of the same sex. Additionally, we have provided
insights showing that separating the dataset by sexes would get better accu-
racy for the classification task. Finally, three different experiments have been
proposed: two of them can be considered successful. This makes evidence that
topological data analysis tools are a nice approach to this task, being interesting
the development of more sophisticated algorithms.

In this first approximation just β0 has been used. However, there exists dif-
ferent processing techniques to signals that can obtain images from them and
that would allow us to consider higher dimensional topology features that can be
meaningful for the emotion recognition task. We could combine them to reach a
better prediction skill.

108 R. Gonzalez-Diaz et al.

Another interesting approach is training the machine learning classification
tool with the audios interpreted by just one actor, obtaining a personal trained
emotion predictor. However, RAVDESS dataset is not big enough to obtain
interesting conclusions within this approach. Therefore, this would be a nice
future work, in these days that it is quite easy to obtain lot of data from users.

Fig. 6. Landmarks points of one frame of a video of the RAVDESS dataset.

Furthermore, as the associated videos of the audios are available in the
RAVDESS dataset, we would like to use the landmarks (see Fig. 6) as input
to topological data analysis tools (like a Vietoris-Rips filtration) and combine
this information within the one provided by the audios used in this paper. Simi-
larly, one of the most relevant conclusions that KRISTINA project reached was
that the combination of visual and audio features can develop better predictions
than using them separately.

Acknowledgments. This research has been partially supported by MINECO,
FEDER/UE under grant MTM2015-67072-P. We thank the anonymous reviewers for
their valuable comments.

References

1. Boser, B.E., Guyon, I.M., Vapnik, V.N.: A training algorithm for optimal margin
classifiers. In: COLT 1992, pp. 144–152. ACM, New York (1992)

2. Bredon, G.: Topology and Geometry. Springer, New York (1993). https://doi.org/
10.1007/978-1-4757-6848-0

3. Cortes, C., Vapnik, V.: Support-vector networks. Mach. Learn. 20(3), 273–297
(1995). https://doi.org/10.1023/A:1022627411411

4. Cristianini, N., Shawe-Taylor, J.: An Introduction to Support Vector Machines
and Other Kernel-Based Learning Methods, 1st edn. Cambridge University Press,
Cambridge (2000)

5. Edelsbrunner, H., Harer, J.L.: Computational Topology, an Introduction. American
Mathematical Society, Providence (2010)

https://doi.org/10.1007/978-1-4757-6848-0
https://doi.org/10.1007/978-1-4757-6848-0
https://doi.org/10.1023/A:1022627411411

Towards Emotion Recognition: A Persistent Entropy Application 109

6. Geron, A.: Hands-on Machine Learning with Scikit-Learn and TensorFlow: Con-
cepts, Tools, and Techniques to Build Intelligent Systems. O’Reilly Media,
Sebastopol (2017)

7. Globerson, E., Amir, N., Golan, O., Kishon-Rabin, L., Lavidor, M.: Psychoacoustic
abilities as predictors of vocal emotion recognition. Atten. Percept. Psychophys.
75(8), 1799–1810 (2013)

8. Howard, D.M., Angus, J.: Acoustics and Psychoacoustics, 2nd edn. Butterworth-
Heinemann, Newton (2000)

9. Livingstone, S.R., Russo, F.A.: The Ryerson audio-visual database of emotional
speech and song (RAVDESS): a dynamic, multimodal set of facial and vocal expres-
sions in North American English. PLOS ONE 13(5), 1–35 (2018)

10. Ortony, A., Turner, T.J.: What’s basic about basic emotions? Psychol. Rev. 97(3),
315 (1990)

11. Pearson, K.: Note on regression and inheritance in the case of two parents. Proc.
R. Soc. Lond. 58, 240–242 (1895)

12. Popova, A.S., Rassadin, A.G., Ponomarenko, A.A.: Emotion recognition in sound.
In: Kryzhanovsky, B., Dunin-Barkowski, W., Redko, V. (eds.) NEUROINFOR-
MATICS 2017. SCI, vol. 736, pp. 117–124. Springer, Cham (2018). https://doi.
org/10.1007/978-3-319-66604-4 18

13. Rucco, M., et al.: A new topological entropy-based approach for measuring simi-
larities among piecewise linear functions. Signal Process. 134, 130–138 (2017)

14. Russell, J.: A circumplex model of affect. J. Pers. Soc. Psychol. 39(6), 1161–1178
(1980)

15. Schuller, B., Batliner, A.: Computational Paralinguistics: Emotion, Affect and Per-
sonality in Speech and Language Processing. Wiley, Hoboken (2013)

16. Ververidis, D., Kotropoulos, C.: Emotional speech recognition: resources, features,
and methods. Speech Commun. 48, 1162–1181 (2006)

17. Wasserman, L.: Topological data analysis. Ann. Rev. Stat. Appl. 5(1), 501–532
(2018)

18. Yang, B., Lugger, M.: Emotion recognition from speech signals using new harmony
features. Signal Process. 90(5), 1415–1423 (2010). Special Section on Statistical
Signal & Array Processing

19. Zhang, B., Essl, G., Mower Provost, E.: Recognizing emotion from singing and
speaking using shared models, September 2015. https://doi.org/10.1109/ACII.
2015.7344563

20. Zomorodian, A., Carlsson, G.: Computing persistent homology. Discret. Comput.
Geom. 33(2), 249–274 (2005)

https://doi.org/10.1007/978-3-319-66604-4_18
https://doi.org/10.1007/978-3-319-66604-4_18
https://doi.org/10.1109/ACII.2015.7344563
https://doi.org/10.1109/ACII.2015.7344563

Harmonic Holes as the Submodules of
Brain Network and Network Dissimilarity

Hyekyoung Lee1(B), Moo K. Chung4, Hongyoon Choi1, Hyejin Kang2,
Seunggyun Ha1, Yu Kyeong Kim3, and Dong Soo Lee1,2

1 Seoul National University Hospital, Seoul, Republic of Korea
hklee.brain@gmail.com

2 Seoul National University, Seoul, Republic of Korea
3 SMG-SNU Boramae Medical Center, Seoul, Republic of Korea

4 University of Wisconsin-Madison, Madison, WI, USA

Abstract. Persistent homology has been applied to brain network anal-
ysis for finding the shape of brain networks across multiple thresholds. In
the persistent homology, the shape of networks is often quantified by the
sequence of k-dimensional holes and Betti numbers. The Betti numbers
are more widely used than holes themselves in topological brain network
analysis. However, the holes show the local connectivity of networks,
and they can be very informative features in analysis. In this study, we
propose a new method of measuring network differences based on the dis-
similarity measure of harmonic holes (HHs). The HHs, which represent
the substructure of brain networks, are extracted by the Hodge Laplacian
of brain networks. We also find the most contributed HHs to the net-
work difference based on the HH dissimilarity. We applied our proposed
method to clustering the networks of 4 groups, normal controls (NC),
stable and progressive mild cognitive impairment (sMCI and pMCI),
and Alzheimer’s disease (AD). The results showed that the clustering
performance of the proposed method was better than that of network
distances based on only the global change of topology.

Keywords: Topological data analysis · Brain network
Alzheimer’s disease · Harmonic holes · Hodge Laplacian

1 Introduction

Persistent homology has been widely applied to brain network analysis for find-
ing the topology of networks at multiple scales [5,16,23,25]. Since a ‘simplicial
complex’ is not a familiar term in brain network analysis, we refer to it as a
‘network’ that is generally used. It quantifies the shape of brain networks by
using k-dimensional holes and their cardinality, the kth Betti number [2,10].
A persistence diagram (PD) summarizes the change of Betti numbers during
the filtration of networks by recording when and how holes appear and disap-
pear during the filtration. The persistent homology also provides distances for

c© Springer Nature Switzerland AG 2019
R. Marfil et al. (Eds.): CTIC 2019, LNCS 11382, pp. 110–122, 2019.
https://doi.org/10.1007/978-3-030-10828-1_9

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-10828-1_9&domain=pdf
https://doi.org/10.1007/978-3-030-10828-1_9

HH Dissimilarity 111

distinguishing networks such as the bottleneck distance and kernel-based dis-
tances [10,20]. Such distances mostly find network differences in their PDs. The
Betti numbers and PDs are more often used than holes themselves in network
applications.

Holes represent the submodule of brain networks. 0-dimensional holes, i.e.,
connected components, modules or clusters have been widely studied for finding
functional or structural submodules in a brain [6,16,27]. On the other hand,
1-dimensional holes have been rarely used for brain network analysis [7,15,17,
19,24,26]. Most studies in brain network analysis do not use 2- and higher order
simplexes in networks since networks. Therefore, all cycles in a network are
considered as 1-dimensional holes. There are few network measures based on
cycles in brain network analysis such as cycle probability and the change of
the number of cycles during graph filtration [7,26]. These measures helped to
compare the global property of networks but could not find the discriminative
substructures of networks.

If higher order simplexes are introduced in a network, the number of 1-
dimensional holes is significantly reduced due to the removal of filled-in triangles.
The previous brain network studies that studied higher order simplexes mostly
found holes based on Zomorodian and Carlsson’s (ZC) algorithm [19,24,28]. The
ZC algorithm is very fast in linear-time, however, it finds the sparse representa-
tion of a hole that identifies only one path around the hole and ignores the other
paths. This introduces an ambiguity in hole identification in practice. A better
approach would be to localize the holes by the eigen-decomposition of Hodge
Laplacian of a network. Such holes are called as the harmonic holes (HHs). The
HH shows all possible paths around the hole with their weights [12,13,18]. The
HHs have been applied to brain network analysis for localizing persistent holes
[15,17]. The 1-dimensional holes in a network with higher order simplexes have
at least one indirect path between every two nodes. Thus, the holes are related
to the abnormality or inefficiency of the network. The previous studies found the
persistent holes with long duration in a network as abnormal holes, and localized
them by harmonic holes. Therefore, the duration of holes was used instead of
HHs in network discrimination.

In this paper, we propose a new measure for estimating network dissimilarity
based on persistent HHs (HH dissimilarity). The proposed HH dissimilarity is
motivated from the bottleneck distance. The bottleneck distance first estimates
the correspondence between holes between networks that are represented by
points in PDs, and then chooses the maximum among all the distances between
the estimated pairs of holes [8]. The HH dissimilarity also estimates the corre-
spondence between HHs of two different networks that are represented by real-
valued eigenvectors, and takes the averaged dissimilarities of the estimated pairs
of HHs. The advantage of HH dissimilarity is not only to measure the network
differences but also to quantify a HH’s contributions to the network differences.
We will call the amount of HH’s of contribution the citation of HH. This allows
us to identify the discriminative subnetworks of networks.

112 H. Lee et al.

The proposed method is applied to metabolic brain networks obtained from
the FDG PET dataset in Alzheimer’s disease neuroimaging initiative (ADNI).
The dataset consists of 4 groups: normal controls (NC), stable and progressive
mild cognitive impairment (sMCI and pMCI), and Alzheimer’s disease (AD).
We generated 2400 networks by bootstrap, and compared the clustering perfor-
mance with the existing network distances such as L2-norm (L2) of the differ-
ence between distance matrices, Gromov-Hausdorff (GH) distance, Kolmogorov-
Smirnov (KS) distance of connected components and cycles (KS0 and KS1), and
bottleneck distance of holes [3,6–8,16]. The results showed that the HH dissimi-
larity had the superior clustering performance than the other distance measures,
and comparing local connectivities could be more helpful to discriminating the
progression of Alzheimer’s disease.

2 Materials and Methods

2.1 Data Sets, Preprocessing, and the Construction of Metabolic
Connectivity

We used FDG PET images in ADNI data set (http://adni.loni.usc.edu). The
ADNI FDG-PET dataset consists of 4 groups: 181 NC, 91 sMCI, 77 pMCI, and
135 AD (Age: 73.7 ± 5.9, range 56.1–90.1). FDG PET images were measured 30
to 60 min and they were averaged over all frames. The voxel size in the images
were standardized in 1.5 × 1.5 × 1.5 mm resolution. The images were spatial-
lly normalized to Montreal Neurological Institute (MNI) space using statistical
parametric mapping (SPM8, www.fil.ion.ucl.ac.uk/spm). The details of data sets
and preprocessing are given in [4]. The whole brain image was parcellated into
94 regions of interest (ROIs) based on automated anatomical labeling (AAL2)
excluding cerebellum [21]. The 94 ROIs served as network nodes and their mea-
surements were obtained by averaging FDG uptakes in the ROI. The averaged
FDG uptake was globally normalized by the sum of 94 averaged FDG uptakes.
The distance between 2 nodes was estimated by the diffusion distance on positive
correlation between the measurements. The diffusion distance considers an aver-
age distance of all direct and indirect paths between 2 nodes via random walks
[9]. The diffusion distance is known to be more robust to noise and outliers.

2.2 Harmonic Holes

Simplicial Complex. The algebraic topology extends the concept of a graph
further to a simplicial complex. Suppose that a non-empty node set V is given.
If the set of all subsets of V is denoted by 2V , an abstract simplicial complex K
is a subset of 2V such that (1) ∅ ∈ K, and (2) if σ ∈ K and τ ∈ σ, τ ∈ K [10,11].
Each σ ∈ K is called a simplex. A i-dimensional simplex is an element with
i + 1 nodes, v1, ..., vi+1 ∈ V , denoted by σi = [v1, ..., vi+1]. The dimension of K,
denoted as dimK, is the maximum dimension of a simplex σ ∈ K. The collection
of σi’s in K is denoted by Ki (−1 ≤ i ≤ dimK). The number of simplices in

http://adni.loni.usc.edu
www.fil.ion.ucl.ac.uk/spm

HH Dissimilarity 113

Ki is denoted as |Ki|. The i-skeleton of K is defined as K(i) = K0 ∪ · · · ∪ Ki

(0 ≤ i ≤ dimK). Thus, a graph with nodes and edges is 1-skeleton K(1). In
this paper, we will only consider 2-skeleton K(2) of a simplicial complex that
includes nodes, edges, and triangles. For convenience, we call it a (simplicial)
network [14].

Incidence Matrix. We denote a |Ki|-dimensional integer space as Z|Ki|. Given
a finite simplicial complex K, a chain complex Ci is defined in Z

|Ki| [10,28]. The
boundary operator ∂i and coboundary operator ∂�

i for i = 1, . . . , N (N > 0) are
functions such that ∂i : Ci → Ci−1 and ∂�

i : Ci−1 → Ci, respectively. We define
∂i = 0 for i < 1 or i > N .

Given σi = [v1, ..., vi+1] ∈ Ci, the boundary of σi is algebraically defined as

∂iσi =
i+1∑

j=1

(−1)j−1[v1, . . . , vj−1, vj+1, . . . , vi+1].

If the sign of σi−1 in ∂iσi is positive/negative, it is called positively/negatively
oriented with respect to σi. We denote the positive/negative orientation by
σi−1 ∈+/− σi. The boundary of the boundary is always zero, i.e., ∂i−1∂i = 0.

If the simplicial complex K has

Ki =
{

σ1
i , · · · , σ

|Ki|
i

}
, Ki−1 =

{
σ1

i−1, · · · , σ
|Ki−1|
i−1

}
,

the boundary operator ∂i is represented by the ith incidence matrix M i ∈
Z

|Ki−1|×|Ki| such that [12,13,18]

[M i]mn =

⎧
⎨

⎩

1 if σm
i−1 ∈+ σn

j ,
−1 if σm

i−1 ∈− σn
j ,

0 otherwise.
(1)

The coboundary operator ∂�
i is represented by M�

i . σn
i in Ki is represented by

a vector in Z
|Ki| in which the nth entry is 1 and the rest is 0. The linear combi-

nation of σi’s can be represented by the linear combination of |Ki|-dimensional
vectors.

Combinatorial Hodge Laplacian. A combinatorial Hodge Laplacian Li :
Ci → Ci is defined by

Li = Lup
i + Ldown

i = M i+1M
�
i+1 + M�

i M i, (2)

where Lup
i ∈ Z

|Ki|×|Ki| and Ldown
i ∈ Z

|Ki|×|Ki| are composite functions
∂i+1∂

�
i+1 : Ci → Ci+1 → Ci and ∂�

i ∂i : Ci → Ci−1 → Ci, respectively [12–
14,18] The kernel and image of Li are denoted by kerLi and imgLi, respectively.
The kerLi is called harmonic classes Hi [14].

The ith homology and cohomology groups of C = {Ci, ∂i} are defined respec-
tively by

H̃i(C) = ker∂i/img∂i+1 and H̃i(C) = ker∂�
i+1/img∂�

i .

114 H. Lee et al.

Theorem 1 (Combinatorial Hodge Theory [12,14,18]). Suppose that a
chain complex {Ci(X;R), ∂i} is given for i = 0, . . . , N , and Ci(X;R) is consid-
ered as an R-vector space. Harmonic classes Hi obtained by the combinatorial
Laplacian Li are congruent to the ith homology and cohomology groups, H̃i and
H̃i of C, i.e.,

Hi
∼= H̃i(C;R) ∼= H̃i(C;R).

Proof. rankHi = rankCi − rankLi = rankCi − (rank∂i + rank∂i+1) = rankH̃i(C;R).

The harmonic classes Hi = kerLk is also called a harmonic space [14]. The
homology group H̃i in persistent homology can be replaced with a harmonic
space Hi, and the rank of Hi is the same as the ith Betti number. We call a hole
in Hi a harmonic hole (HH), and a hole in H̃i estimated by Smith normal form
a binary hole [28].

Given a simplicial network with p nodes, q edges, and r filled-in triangles,
we estimate L1 ∈ Z

q×q in (2), and Hi =
{
x ∈ R

q×1|L1x = 0
}
. The eigenvector

of L1 with zero eigenvalue, x ∈ R
q×1 represents a HH. The entry of x can

be positive or negative depending on the orientation of edges in the hole. The
absolute value of the entry of x represents the weight of the corresponding edge
in the hole. Since x and −x have zero eigenvalue, they represent the same hole,
and ‖ x ‖= 1.

Computing Persistent HHs. In this study, we have the distances between
pairs of nodes in a brain network. Given a set of nodes and their distances,
Rips complex with threshold ε is the clique complex induced by a set of edges
with their distances less than ε. Rips filtration is the nested sequence of Rips
complexes obtained by increasing threshold ε. To compute persistent holes over
threshold, we perform Rips filtration on brain network nodes [2,10].

Zomorodian and Carlsson developed an efficient algorithm for computing
persistent holes based on the Smith normal form [28]. It is an incremental algo-
rithm that updates the range and null spaces of incidence matrices during Rips
filtration. The representation of a persistent binary hole is changed by adding
simplexes during Rips filtration. The ZC algorithm chose the youngest binary
hole at the birth of the persistent hole. The ZC algorithm is fast in practically
linear-time, however, the obtained binary hole shows only one path around the
hole and the other paths are ignored. On the other hand, a HH shows all possible
paths around the persistent hole, and represents the contribution of a path to
the generation of the hole by edge weights in the path. Thus, the HH is better
in localizing a persistent hole than a binary hole when we want to extract local
connectivity in a brain network. However, there is no algorithm for estimating
persistent HHs during the filtration in literature.

In this study, we will estimate the youngest persistent HHs just like the ZC
algorithm. First, we sort edges e1, . . . , eq in the ascending order of an edge dis-
tance, and perform the Rips filtration by the fast ZC algorithm. To avoid having
the same edge distance, we select the ordered index 1, . . . , q as the filtration
value, instead of the edge distance. The reason for performing the ZC algorithm

HH Dissimilarity 115

first is that the computation of eigen-decomposition at every filtration value is
too expensive. Then, we obtain a PD which is the set of the birth and death
thresholds of persistent holes. If a persistent hole appears at iX and disappears
at iZ , we perform the eigen-decomposition of Hodge Laplacian at iX , iZ , and
iY = iZ − 1 to estimate the corresponding HH. The iY is the threshold just
before the death of the persistent hole.

The harmonic spaces at iX , iY , and iZ are written by matrices

HX = [x 1, · · · , x l] ∈ R
q×l, HY = [y1, · · · , ym] ∈ R

q×m, HZ = [z 1, · · · , zn] ∈ R
q×n,

respectively. The HH appearing at iX and disappearing at iZ will be in HX and
HY , but not in HZ . We find which y ∈ HY does not depend on z i’s in HZ .
If y ∈ HY depends on HZ , the smallest singular value of the matrix [HZ ,y] is
close to 0. It implies that y still exists in HZ . Therefore, we choose y ∈ HY such
that

y = arg max
y∈HY

{the smallest singular value of [HZ ,y]} . (3)

The chosen y by (3) is the oldest persistent HH. Next, we choose the youngest
persistent HH x ∈ HX such that

x = arg min
x∈HX

{the smallest singular value of [x ,y]} = arg min
x∈HX

{
1 − |x�y |} .

(4)

This procedure is repeated for all persistent holes. The incidence matrices
are already estimated during the ZC algorithm. Since the incidence matrices
and their combinatorial Hodge Laplacian are very sparse, the computation of
persistent HHs is not so hard in our experiments. In our experiments, the total
number of persistent holes during the filtration is not more than 50, and the
number of persistent holes at each filtration value is not more than 20.

2.3 HH Dissimilarity

Bottleneck Distance. If Ka and Kb have m and n persistent holes. The PDs
of Ka and Kb are denoted respectively by PDa = {ta

1 , · · · , ta
m} and PDb ={

tb
1, · · · , tb

n

}
, where t i is a point with the birth and death thresholds of the

corresponding hole. Bottleneck distance between two simplicial complexes, Ka

and Kb is defined by [8]

DB(Ka,Kb) = d(PDa, PDb) = inf
η:PDa→PDb

sup
t∈PDa

‖ t − η(t) ‖∞,

where η is a bijection from PDa to PDb and ‖ (x, y) ‖∞= max {|x|, |y|} is the
L∞−norm. If there is no corresponding hole in the other PD because of m 	= n,
the points on the diagonal line x = y that have the shortest distance from
the point t are included. In this way, the bottleneck distance measures network
distance by the difference of the birth and death thresholds of holes, not by the
difference between holes themselves.

116 H. Lee et al.

Dissimilarity Between HHs. If the eigenvectors with zero eigenvalues of two
different combinatorial Laplacians are denoted by x and y , their dissimilarity is
defined by one minus the absolute value of their inner product, i.e.,

dh(x ,y) = 1 − |x�y |. (5)

This is the smallest singular value of the matrix [x ,y] in (4) that shows the
dependency between x and y . If x and y are similar, their dissimilarity is close
to 0; otherwise, it is close to 1.

HH Dissimilarity. Suppose that two networks Ka and Kb have m and n persis-
tent HHs, denoted by H a = [xa

1 , · · · ,xa
m] and H b =

[
x b
1, · · · ,x b

n

]
, respectively.

The dissimilarity based on persistent HHs (HH dissimilarity) is defined by

DH(Ka,Kb) = d(H a,H b) = inf
ζ:Ha→Hb

1
min(m,n)

∑

x∈Ha

dh(x , ζ(x)), (6)

where ζ is a bijection from H a to H b.
The correspondence ζ between persistent HHs in two different networks is

determined by minimizing the total distances between the pairs of HHs based
on Munkres assignment algorithm, also known as Hungarian algorithm. Some
of persistent HHs can not find their corresponding HHs in the other network
because of m 	= n. In this study, we ignore them and average the dissimilarities
of the obtained pairs of persistent HHs.

Citation of HH. The advantage of using HH dissimilarity is the ability to
quantify how much a persistent HH contributes in differentiating networks. The
degree of the contribution of HH is called the citation of HH. If a persistent HH x
in H a corresponds to a persistent HH y = ζ(x) in H b in (6), their dissimilarity
is dh(x ,y) = 1−|x�y |, and their similarity is defined by |x�y |. If the persistent
HHs of l networks are denoted by H = {H 1, · · · ,H l} and they are compared
with H a, the citation of x is defined by

∑

ζ(x)∈H,∀H∈H
|x�ζ(x)|.

If we find the most cited HHs by comparing networks within a group, we can
determine which submodule makes two networks in a group close to each other.
Furthermore, if we find the most cited HHs by comparing network between
groups, we can determine which submodule makes differences.

3 Results

3.1 Brain Network Construction

We had 4 groups, NC, sMCI, pMCI, and AD which had 181, 91, 77 and 135
subjects, respectively. The subjects in a group could be heterogeneous. Thus, we

HH Dissimilarity 117

obtained 600 bootstrap samples from each group by randomly selecting the sub-
set of the number of subjects in each group with replacement [22]. The number
of bootstrap samples was heuristically determined in comparison with previous
study [22]. We constructed 600 bootstrapped networks from bootstrap samples
in each group by diffusion distance in Sect. 2.1. The total number of generated
brain networks was 2400.

3.2 Network Clustering

We clustered 2400 bootstrapped brain networks into 4 groups by Ward’s hierar-
chical clustering method. The Ward’s hierarchical clustering method found the
group labels based on the distance between data points, which is a network in
our application. The network distance was estimated by (a) L2, (b) GH distance,
(c) KS0, (d) KS1, (e) bottleneck distance of holes, and (f) HH dissimilarity [3,6–
8,16]. The obtained distance matrices of 2400 networks were shown in Fig. 1.
After clustering networks, we matched the estimated group label with the true
group label of networks and calculated the clustering accuracy of 8 distance
matrices. The clustering accuracy of 8 distance matrices was shown in Table 1.
We also clustered 1200 bootstrapped networks in sMCI and pMCI into 2 groups
by the same way. The clustering accuracy was shown in Table 1.

Fig. 1. Distance of 2400 networks. (a) L2, (b) GH, (c) KS0, (d) KS1, (e) Bottleneck,
and (f) HH. The 2400 networks were sorted in the order of NC, sMCI, pMCI, and AD.
Each group had 600 networks. The clustering accuracy is shown in Table 1.

118 H. Lee et al.

Table 1. Clustering accuracy

Distance 4 groups (NC, sMCI,
pMCI, and AD)

2 groups (sMCI and
pMCI)

(a) L2 66.09% 98.50%

(b) GH 45.96% 87.58%

(c) KS0 52.54% 74.00%

(d) KS1 77.38% 79.83%

(e) Bottleneck 45.71% 76.58%

(f) HH 100% 100%

3.3 The Most Cited HHs

We selected the 600 most cited HHs within NC, sMCI, pMCI, and AD, and
divided them into 5 clusters based on the dissimilarity between HHs in (5). In
Fig. 3(a–d), because the dissimilarity of HHs in the cluster 5 was large, we con-
sidered HHs in the cluster 5 as outliers. We calculated the center of HHs in
clusters 1, 2, 3, and 4, by selecting the HH with the minimum sum of dissimilar-

Fig. 2. (a) Clustering of the 600 most cited HHs when sMCI and pMCI were compared.
(b) Representative HHs in cluster 1, 2, 3 and 4. The left two columns showed HHs in
sMCI and the right two columns showed the corresponding HHs in pMCI. Each HH
was visualized in a brain and in a 2-dimensional plane. The shape of the HH was more
clearly shown in the plane, and the location of the HH could be checked in the brain.
The color of nodes was determined by the location of nodes in a brain: frontal (red),
parietal (blue), temporal (green), occipital (purple), subcortical (yellow), and limbic
(orange) regions. If the edge weight was larger in a HH, the color of edge was darker
and the width of edge was larger. (Color figure online)

HH Dissimilarity 119

Fig. 3. Distance matrix of the 600 most cited HHs within (a) NC, (b) sMCI, (c) pMCI,
and (d) AD. The most cited holes were clustered into 5 groups. The last cluster 5 had
outliers with large dissimilarities between HHs. The representative HHs of the first 4
clusters were plotted on the right. The upper row showed the HHs in a brain and the
lower row showed the HHs in a 2-dimensional plane. (Color figure online)

120 H. Lee et al.

ities with the other HHs in the cluster. The 4 representative HHs of 4 clusters
were shown on the left of Fig. 3(a–d). In each panel, the upper row showed the
HHs in a brain, and the lower row showed the HHs in a 2-dimensional plane. The
location of nodes in the 2-dimensional plane was estimated by Kamada-Kawai
algorithm implemented in a network analysis/visualization toolbox, Pajek [1].
In Fig. 3(a–d), the width of an edge was proportional to the edge weight in the
HH. The larger the weight of an edge, the darker the color of an edge. The color
of nodes represented the location of nodes in a brain. If a node was located in
frontal, parietal, temporal, occipital, subcortical, and limbic regions, the color
of the node was red, blue, green, purple, yellow, and orange, respectively.

We also selected the 600 most cited HHs when we compared networks between
sMCI and pMCI, and divided them into 5 clusters. In Fig. 2(a), the cluster 5
contained the outliers. Thus, we estimated the center HHs in cluster 1–4. The
representative HHs in sMCI and the corresponding holes in pMCI were shown
in Fig. 2(b).

4 Discussion and Conclusions

In this study, we proposed a new network dissimilarity, called HH dissimilarity.
Unlike a binary hole estimated by the ZC algorithm, a HH show all possible
paths of edges around a hole, and the contribution of paths to forming the hole
is represented by the weight of edges on the paths. If an edge belongs to a unique
path that forms a hole, its edge weight will be large. If an edge belongs to one
of many alternative paths as in a module, its edge weight will be small. In this
way, HHs can extract the substructures of a brain network including holes and
modules. Moreover, since the HHs can be represented as real-valued orthonormal
vectors we can define the dissimilarity between HHs as well as HH dissimilarity
between brain networks easily using vector product.

Brain networks of different groups may share common substructure as well as
have different substructures that make individual and group differences. The pro-
posed HH dissimilarity first finds candidates of common substructures between
brain networks and estimates the over all dissimilarities between candidates.
The clustering results showed that brain networks of different groups had simi-
lar substructures, however, the averaged similarities was much larger than that
of brain networks within a group.

The goal of persistent homology may be to find persistent features that last
for a long duration. However, in brain network analysis, it has been applied for
finding the change of topology, especially the change of connected components,
instead of the persistence of topology. This study suggested a more coherent
framework to observe, capture, and quantify the change of holes in brain net-
works. Depending on imaging modality and study populations, brain networks
may have different characteristics of shapes. Therefore, it is necessary to apply
proper network measures to brain networks depending on modality and popula-
tion. The results showed that when the Alzheimer’s disease progresses, the hole
structure was changed in metabolic brain networks, and HHs and HH dissimi-
larity could predict the disease progression.

HH Dissimilarity 121

Acknowledgements. Data used in preparation of this article were obtained from
the Alzheimer’s Disease Neuroimaging Initiative (ADNI) database (adni.loni.usc.edu).
As such, the investigators within the ADNI contributed to the design and imple-
mentation of ADNI and/or provided data but did not participate in analysis or
writing of this report. A complete listing of ADNI investigators can be found at
http://adni.loni.usc.edu. This work is supported by Basic Science Research Pro-
gram through the National Research Foundation (NRF) (No. 2013R1A1A2064593
and No. 2016R1D1A1B03935463), NRF Grant funded by MSIP of Korea (No.
2015M3C7A1028926 and No. 2017M3C7A1048079), NRF grant funded by the Korean
Government (No. 2016R1D1A1A02937497, No. 2017R1A5A1015626, and No. 2011-
0030815), and NIH grant EB022856.

References

1. Batagelj, V., Mrvar, A.: Pajek - analysis and visualization of large networks. In:
Jünger, M., Mutzel, P. (eds.) Graph Drawing Software. Mathematics and Visual-
ization, pp. 77–103. Springer, Heidelberg (2003). https://doi.org/10.1007/978-3-
642-18638-7 4

2. Carlsson, G., Collins, A., Guibas, L.J.: Persistence barcodes for shapes. Int. J.
Shape Model. 11, 149–187 (2005)

3. Carlsson, G., Ishkhanov, T., de Silva, V., Zomorodian, A.: On the local behavior
of spaces of natural images. Int. J. Comput. Vis. 76(1), 1–12 (2008)

4. Choi, H., Jin, K.H.: Predicting cognitive decline with deep learn-
ing of brain metabolism and amyloid imaging. Behav. Brain
Res. 344, 103–109 (2018). https://doi.org/10.1016/j.bbr.2018.02.017.
https://www.sciencedirect.com/science/article/pii/S0166432818301013

5. Chung, M.K., Bubenik, P., Kim, P.T.: Persistence diagrams of cortical surface data.
In: Prince, J.L., Pham, D.L., Myers, K.J. (eds.) IPMI 2009. LNCS, vol. 5636, pp.
386–397. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-02498-
6 32

6. Chung, M.K., Villalta-Gil, V., Lee, H., Rathouz, P.J., Lahey, B.B., Zald, D.H.:
Exact topological inference for paired brain networks via persistent homology. In:
Niethammer, M., et al. (eds.) IPMI 2017. LNCS, vol. 10265, pp. 299–310. Springer,
Cham (2017). https://doi.org/10.1007/978-3-319-59050-9 24

7. Chung, M.K., et al.: Topological brain network distances. arXiv:1809.03878
[stat.AP] (2018). https://arxiv.org/abs/1809.03878

8. Cohen-Steiner, D., Edelsbrunner, H., Harer, J.: Stability of persistence diagrams.
Discrete Comput. Geom. 37, 103–120 (2007)

9. Coifman, R.R., Lafon, S., Lee, A.B., Maggioni, M., Warner, F., Zucker, S.: Geo-
metric diffusions as a tool for harmonic analysis and structure definition of data:
diffusion maps. In: Proceedings of the National Academy of Sciences, pp. 7426–
7431 (2005)

10. Edelsbrunner, H., Harer, J.: Persistent homology - a survey. Contemp. Math. 453,
257–282 (2008)

11. Edelsbrunner, H., Harer, J.: Computational Topology: An Introduction. American
Mathematical Society Press, New York (2009)

12. Friedman, J.: Computing Betti numbers via combinatorial Laplacians. In: Pro-
ceedings of the 28th Annual ACM Symposium on the Theory of Computing, pp.
386–391 (1996)

http://adni.loni.usc.edu
https://doi.org/10.1007/978-3-642-18638-7_4
https://doi.org/10.1007/978-3-642-18638-7_4
https://doi.org/10.1016/j.bbr.2018.02.017
https://www.sciencedirect.com/science/article/pii/S0166432818301013
https://doi.org/10.1007/978-3-642-02498-6_32
https://doi.org/10.1007/978-3-642-02498-6_32
https://doi.org/10.1007/978-3-319-59050-9_24
http://arxiv.org/abs/1809.03878
https://arxiv.org/abs/1809.03878

122 H. Lee et al.

13. Horak, D., Jost, J.: Spectra of combinatorial Laplace operators on simplicial com-
plexes. Adv. Math. 244, 303–336 (2013)

14. Kim, Y.-J., Kook, W.: Harmonic cycles for graphs. Linear Multilinear Algebra,
1–11 (2018). https://doi.org/10.1080/03081087.2018.1440519

15. Lee, H., Chung, M.K., Kang, H., Choi, H., Kim, Y.K., Lee, D.S.: Abnormal hole
detection in brain connectivity by kernel density of persistence diagram and Hodge
Laplacian. In: 2018 IEEE 15th International Symposium on Biomedical Imaging
(ISBI 2018), pp. 20–23, April 2018. https://doi.org/10.1109/ISBI.2018.8363514

16. Lee, H., Chung, M.K., Kang, H., Kim, B.N., Lee, D.S.: Persistent brain network
homology from the perspective of dendrogram. IEEE Trans. Med. Imaging 31,
2267–2277 (2012)

17. Lee, H., Chung, M.K., Kang, H., Lee, D.S.: Hole detection in metabolic connec-
tivity of alzheimer’s disease using k–laplacian. In: Golland, P., Hata, N., Barillot,
C., Hornegger, J., Howe, R. (eds.) MICCAI 2014, LNCS, vol. 8675, pp. 297–304.
Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10443-0 38

18. Lim, L.H.: Hodge Laplacians on graphs. Geometry and topology in statistical infer-
ence. In: Proceedings of Symposia in Applied Mathematics, vol. 73 (2015)

19. Petri, G., et al.: Homological scaffolds of brain functional networks. J. Roy. Soc.
Interface 11(101), 20140873 (2014). https://doi.org/10.1098/rsif.2014.0873

20. Reininghaus, J., Huber, S., Bauer, U., Kwitt, R.: A stable multi-scale kernel for
topological machine learning. In: The IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), pp. 4741–4748, June 2015

21. Rolls, E.T., Joliot, M., Tzourio-Mazoyer, N.: Implementation of a new parcellation
of the orbitofrontal cortex in the automated anatomical labeling atlas. Neuroimage
122, 1–5 (2015)

22. Sanabria-Diaz, G., Mart̀ınez-Montes, E., Melie-Garcia, L., Alzheimer’s Disease
Neuroimaging Initiative: Glucose metabolism during resting state reveals abnor-
mal brain networks organization in the Alzheimer’s disease and mild cognitive
impairment. PLOS ONE 8(7), 1–25 (2013). https://doi.org/10.1371/journal.pone.
0068860

23. Singh, G., Memoli, F., Ishkhanov, T., Sapiro, G., Carlsson, G., Ringach, D.L.:
Topological analysis of population activity in visual cortex. J. Vis. 8, 1–18 (2008)

24. Sizemore, A., Giusti, C., Kahn, A., Vettel, J., Betzel, R., Bassett, D.: Cliques and
cavities in the human connectome. J. Comput. Neurosci. 44, 115–145 (2018)

25. Solo, V., et al.: Connectivity in fMRI: blind spots and breakthroughs. IEEE
Trans. Med. Imaging 37(7), 1537–1550 (2018). https://doi.org/10.1109/TMI.2018.
2831261

26. Sporns, O., Tononi, G., Edelman, G.: Theoretical neuroanatomy: relating anatom-
ical and functional connectivity in graphs and cortical connection matrices. Cereb.
Cortex 10(2), 127–141 (2000). https://doi.org/10.1093/cercor/10.2.127

27. Sporns, O., Betzel, R.F.: Modular brain networks. Ann. Rev. Psychol. 67, 19.1–
19.28 (2016)

28. Zomorodian, A., Carlsson, G.: Computing persistent homology. Discrete Comput.
Geom. 33, 249–274 (2005)

https://doi.org/10.1080/03081087.2018.1440519
https://doi.org/10.1109/ISBI.2018.8363514
https://doi.org/10.1007/978-3-319-10443-0_38
https://doi.org/10.1098/rsif.2014.0873
https://doi.org/10.1371/journal.pone.0068860
https://doi.org/10.1371/journal.pone.0068860
https://doi.org/10.1109/TMI.2018.2831261
https://doi.org/10.1109/TMI.2018.2831261
https://doi.org/10.1093/cercor/10.2.127

Persistent 1-Cycles: Definition,
Computation, and Its Application

Tamal K. Dey, Tao Hou(B), and Sayan Mandal

Department of Computer Science and Engineering, The Ohio State University,
Columbus, OH, USA

{dey.8,hou.332,mandal.25}@osu.edu

Abstract. Persistence diagrams, which summarize the birth and death
of homological features extracted from data, are employed as stable sig-
natures for applications in image analysis and other areas. Besides simply
considering the multiset of intervals included in a persistence diagram,
some applications need to find representative cycles for the intervals.
In this paper, we address the problem of computing these representa-
tive cycles, termed as persistent 1-cycles. The definition of persistent
cycles is based on the interval module decomposition of persistence mod-
ules, which reveals the structure of persistent homology. After showing
that the computation of the optimal persistent 1-cycles is NP-hard, we
propose an alternative set of meaningful persistent 1-cycles that can be
computed with an efficient polynomial time algorithm. We also inspect
the stability issues of the optimal persistent 1-cycles and the persistent
1-cycles computed by our algorithm with the observation that the per-
turbations of both cannot be properly bounded. We design a software
which applies our algorithm to various datasets. Experiments on 3D point
clouds, mineral structures, and images show the effectiveness of our algo-
rithm in practice.

Keywords: Persistent homology · Persistent cycle · Minimal cycle
NP-hardness · Image segmentation

1 Introduction

Persistent homology [18] is an important invention leading to Topological Data
Analysis, where the associated persistence diagrams serve as stable signatures
for various datasets [10] including the ones in image analysis [6,15]. Persistent
homology has its theoretical foundations rooted in quiver theory [11], in which
case any persistence module indexed by a finite subcategory of R can be decom-
posed into a direct sum of interval modules and the set of intervals of the interval
modules, which constitute the persistence diagram, is unique for a persistence
module [7].

Supported by NSF grants CCF-1740761 and CCF-1839252.

c© Springer Nature Switzerland AG 2019
R. Marfil et al. (Eds.): CTIC 2019, LNCS 11382, pp. 123–136, 2019.
https://doi.org/10.1007/978-3-030-10828-1_10

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-10828-1_10&domain=pdf
https://doi.org/10.1007/978-3-030-10828-1_10

124 T. K. Dey et al.

Fig. 1. (a) Point cloud of Botijo model. (b,c) Barcode and persistent 1-cycles for Botijo,
where the 3 longest bars (dark blue, light blue, and green) have their corresponding
persistent 1-cycles drawn with the same colors. (d,e) Barcode and persistent 1-cycles
for the retinal image, with each green cycle corresponding to a red bar. (Color figure
online)

Besides simply incorporating the persistence diagrams, some applications
bring about the need of finding representative cycles for persistent homology
[19,26]. The computation of representative cycles for homology groups with Z2

coefficients has been extensively studied over the decades. While a polynomial
time algorithm computing an optimal basis for first homology group H1 [14] has
been proposed, finding an optimal basis for dimension greater than one and local-
izing a homology class of any dimension are proved NP-hard [9]. There are a few
works addressing the problem of finding representatives for persistent homology,
some of which compute an optimal cycle at the birth index of an interval but do
not consider what actually die at the death index [19,20]. Obayashi [23] formal-
izes the computation of optimal representatives for a finite interval as an integer
programming problem. He advocates solving it with linear programs though the
correctness is not necessarily guaranteed. Wu et al. [26] proposed an algorithm
for computing an optimal representative for a finite interval with a worst-case
complexity exponential to the cardinality of the persistence diagram.

In this paper, we study the problem of computing representative cycles for
persistent first homology group (H1-persistent homology) with Z2 coefficients.
We term theses cycles as persistent 1-cycles and show that the computation of
the optimal cycles is NP-hard. Then, we propose an alternative set of meaning-
ful persistent 1-cycles with an efficient polynomial time algorithm. Specifically,
as interval module decomposition reveals the structure of persistence modules,
we define persistent cycles which fit into this structure directly. Although sim-
ilar definitions for finite intervals have already been proposed [23,26], to our
knowledge, explicit explanation of how the representative cycles are related to
persistent homology has not been addressed. Furthermore, we inspect the sta-
bility of the minimal persistent 1-cycles and persistent 1-cycles computed by
our algorithm. The perturbations of both classes of cycles turn out to be unsta-
ble. So, in this regard, our polynomial time algorithm is not any worse than an

Persistent 1-Cycles: Definition, Computation, and Its Application 125

optimal cycle generating algorithm though is much more efficient in terms of the
time complexity.

We use a software based on our algorithm to generate tight persistent 1-cycles
on 3D point clouds and 2D images as shown in Fig. 1. We experiment with various
datasets commonly used in geometric modeling, computer vision and material
science, details of which are given in Sect. 6. The software, named PersLoop,
along with an introductory video and other supplementary materials are available
at the project website http://web.cse.ohio-state.edu/∼dey.8/PersLoop.

2 Background

In this paper, we adopt the categorical definition of persistence module [4]. A
category C consists of objects and morphisms from an object to another object.
A functor F : C → B from C to another category B is a mapping such that any
object c of C is mapped to an object F (c) of B and any morphism f : c → c′ of
C is mapped to a morphism F [f] : F (c) → F (c′) of B. We recommend [1] for the
exact definitions of categories and functors. The definition of persistence module
relies on some common categories: The category Z

+ (the category {1, . . . , n}
alike) consists of objects from Z

+ and a unique morphism from i to j if i ≤ j.
We also denote the morphism from i to j as i ≤ j. The category Simp consists of
objects which are all the simplicial complexes and morphisms which are simplicial
maps. The category Vect consists of objects which are all the vector spaces over
Z2 and morphisms which are linear maps. A persistence module P is then defined
as a functor P : Z

+ → Vect1.
A persistence module is usually induced by a filtration F = F(K) of a

simplicial complex K, where the filtration F : ∅ = K0 ⊆ K1 ⊆ . . . ⊆ Km = K
is a filtered sequence of subcomplexes of K such that Ki+1 and Ki differ by one
simplex σi+1. We can also interpret a filtration F as a functor F : Z

+ → Simp,
where F(i) = Ki for i ≤ m, F(i) = K for i > m, and a morphism F [i ≤ j] :
F(i) → F(j) is the inclusion. Denoting Hq : Simp → Vect as the qth homology
functor with Z2 coefficients, the Hq-persistence module PF

q of F is obtained
by composing the two functors Hq and F , that is, PF

q = HqF . Specifically,
PF

q (i) = Hq(Ki) for i ≤ m, PF
q (i) = Hq(K) for i > m, and the morphism

PF
q [i ≤ j] : Hq(Ki) → Hq(Kj)2 is the linear map induced by the inclusion.

A special class of persistence modules is the interval modules. Given an
interval [b, d) ⊂ Z

+, an interval module I [b,d) is defined as: I [b,d)(i) = Z2 for
i ∈ [b, d) and I [b,d)(i) = 0 otherwise; I [b,d)[i ≤ j] is the identity map for
i, j ∈ [b, d) and I [b,d)[i ≤ j] is the zero map otherwise. By quiver theory, a
Hq-persistence module obtained from a finite complex K has a unique decompo-
sition PF

q =
⊕

j∈J I [bj ,dj) in terms of interval modules, where J ⊂ Z is a finite
index set [7]. Let D(PF

q) = {[bj , dj) | j ∈ J} denote the set of intervals of the
interval modules which PF

q decomposes into. Observe that D(PF
q) is also called

1 Sometimes we also call a functor P : {1, . . . , n} → Vect as a persistence module.
2 Kj = K when j > m.

http://web.cse.ohio-state.edu/~dey.8/PersLoop

126 T. K. Dey et al.

the barcode or persistence diagram in the literature [17]. Sometimes we will abuse
the notation slightly to write Dq(F), where the argument is the filtration instead
of the module PF

q it generates.

3 Persistent Basis and Cycles

Definition 1 (Persistent Basis). An indexed set of q-cycles {cj | j ∈ J} is
called a persistent q-basis for a filtration F if PF

q =
⊕

j∈J I [bj ,dj) and for each
j ∈ J and bj ≤ k < dj, I [bj ,dj)(k) = {0, [cj]}.
Definition 2 (Persistent Cycle). For an interval [b, d) ∈ D(PF

q), a q-cycle
c is called a persistent q-cycle for the interval, if one of the following holds:

– d �= +∞, c is a cycle in Kb containing σb, and c is not a boundary in Kd−1

but becomes a boundary in Kd;
– d = +∞ and c is a cycle in Kb containing σb.

Remark 1. Note that the definition of persistent cycles for finite intervals is
identical to that of [23,26].

The following theorem characterizes each cycle in a persistent basis:

Theorem 1. An indexed set of q-cycles {cj | j ∈ J} is a persistent q-basis for a
filtration F if and only if PF

q =
⊕

j∈J I [bj ,dj) and cj is a persistent q-cycle for
every interval [bj , dj) ∈ D(PF

q).

Proof. Suppose {cj | j ∈ J} is an indexed set of q-cycles satisfying the above
conditions. For each j ∈ J , we construct an interval module Ij , such that Ij(i) =
{0, [cj]} for bj ≤ i < dj and Ij(i) = 0 otherwise. We claim that PF

q =
⊕

j∈J Ij .
We first prove that PF

q (i) =
⊕

j∈J Ij(i) for each i ∈ Z
+, by proving that {[cj] |

j ∈ J, i ∈ [bj , dj)} forms a basis of PF
q (i). Using mathematical induction, since

σ1 is a vertex, this is trivially true. Suppose for i − 1 this is true. If σi is neither
positive nor negative, i.e., Hq(Ki−1) ≈ Hq(Ki) by the isomorphism induced
from the inclusion, this is also trivially true for i. If σi is positive, suppose the
corresponding interval of σi is [bj′ , dj′) (note that bj′ = i and dj′ could possibly
be +∞). Since {[cj] | j ∈ J, i − 1 ∈ [bj , dj)} are still independent in PF

q (i) and
[cj′] is not in the span of them, then {[cj] | j ∈ J, i − 1 ∈ [bj , dj)} ∪ [cj′] = {[cj] |
j ∈ J, i ∈ [bj , dj)} are independent in PF

q (i). Since the cardinality of {[cj] |
j ∈ J, i ∈ [bj , dj)} equals the dimension of PF

q (i), it must form a basis of PF
q (i).

If σi is negative, then there must be a [cj′] for a j′ ∈ J such that dj′ = i. For
any [c] ∈ PF

q (i) = Hq(Ki), [c] =
∑

j∈J ′ [cj], where J ′ ⊆ {j ∈ J | i − 1 ∈ [bj , dj)}.
If j′ ∈ J ′, then [c] =

∑
j∈J ′−{j′}[cj], because [cj′] = 0 in Hq(Ki). Then {[cj] |

j ∈ J, i − 1 ∈ [bj , dj)} − {cj′} = {[cj] | j ∈ J, i ∈ [bj , dj)} spans Hq(Ki). This
means that it also forms a basis of Hq(Ki). It is then obvious that the direct
sums of the maps of the interval modules are actually the maps of PF

q , so {cj |
j ∈ J} is a persistent q-basis for F .

Persistent 1-Cycles: Definition, Computation, and Its Application 127

Suppose {cj | j ∈ J} is a persistent q-basis for F . For each j ∈ J , cj must not
be in Kbj−1, because otherwise [cj] would be in the image of PF

q [bj −1 ≤ bj]. It is
obvious that cj must contain σj . Note that for each j ∈ J and each i ∈ [bj , dj),
PF

q [i ≤ i + 1]([cj]) = I [bj ,dj)[i ≤ i + 1]([cj]). Then for each j ∈ J such that
dj �= +∞, [cj] �= 0 in Kdj−1 and [cj] = 0 in Kdj

.

With Definition 2 and Theorem 1, it is true that for a persistent q-cycle c of
an interval [b, d) ∈ Dq(F), we can always form an interval module decomposition
of PF

q , where c is a representative cycle for the interval module of [b, d).

4 Minimal Persistent q-Basis and Their Limitations

We have already defined persistent basis, the optimal versions of which are of
particular interest because they capture more geometric information of the space.
The cycles for an optimal (minimal) persistent basis have already been defined
and studied in [20,23]. In particular, the author of [23] proposed an integer
program to compute these cycles. Although these integer programs can be solved
exactly by linear programs for certain cases [12], the integer program is NP-hard
in general. This of course does not settle the question of whether the problem
of computing minimal persistent 1-cycles is NP-hard or not. We prove that it is
indeed NP-hard and thus has no hope of admitting a polynomial time algorithm
unless P = NP.

Consider a simplicial complex K with each edge being assigned a non-
negative weight. We refer to such K as a weighted complex. For a 1-cycle c
in K, define its weight to be the sum of all weights of its edges.

Definition 3 (Minimal Persistent 1-Cycle and 1-Basis). Given a filtration
F on a weighted complex K, a minimal persistent 1-cycle for an interval of
D1(F) is defined to be a persistent 1-cycle for the interval with the minimal
weight. An indexed set of 1-cycles {cj | j ∈ J} is a minimal persistent 1-basis for
F if for every [bj , dj) ∈ D1(F), cj is a minimal persistent 1-cycle for [bj , dj).

We prove that the following special version of the problem of finding a min-
imal persistent 1-cycle is NP-hard. This special version reduces to the general
version straightforwardly in polynomial time by assigning every edge a weight
of 1.

Problem 1 (LST-PERS-CYC). Given a filtration F : ∅ = K0 ⊆ K1 ⊆ . . . ⊆
Km = K, and a finite interval [b, d) ∈ D1(F), find a 1-cycle with the least
number of edges which is born in Kb and becomes a boundary in Kd.

Similar to [8], we reduce the NP-hard MAX-2SAT [24] problem to LST-
PERS-CYC. MAX-2SAT is defined as:

Problem 2 (MAX-2SAT). Given N variables x1, . . . , xN and M clauses
c1, . . . , cM , with the clauses being the disjunction of at most two variables. Find
an assignment of Boolean values to all the variables such that the maximal
number of clauses are satisfied.

128 T. K. Dey et al.

Theorem 2. The problem LST-PERS-CYC is NP-hard

Proof (sketch). Because of the space restriction, we only give a sketch of the
reduction from MAX-2SAT to LST-PERS-CYC. The entire proof can be seen in
the full version of this paper. Given an instance of MAX-2SAT, we first construct
a simplicial complex K as in [8], by forming a triangulated cylinder Ci for each
variable xi and a cycle wj for each clause cj , such that the two ends zi and z′

i

of Ci correspond to xi and ¬xi. Each zi or z′
i has 3M edges and each wj has

three edges. We make zi’s and z′
i’s share edges with wj ’s such that there is an

assignment of Boolean values making k clauses satisfied if and only if there is a
cycle in [z] with 3MN + 3M − 2k edges, where z =

∑N
i=1 zi +

∑M
j=1 wj .

We construct a filtration F of K, with the restriction: Pick an edge e of a
clause cycle, which is not shared with any end cycle of the variable cylinders, and
take e as the last simplex added to the filtration. We then construct a filtration
F ′ appending some simplices to F such that the only negative triangle of F ′

�F
is the last added triangle t, and the adding of t only make [z] become 0. Let
the indices of e and t in F ′ be b and d, then [b, d) is an interval of D1(F ′).
Now we have an instance of LST-PERS-CYC: Given the filtration F ′ and the
interval [b, d) ∈ D1(F ′), find a persistent 1-cycle with the least number of edges.
Computing the answer to the instance of LST-PERS-CYC gives the answer to
the instance of MAX-2SAT. Furthermore, the reduction is in polynomial time
and the size of the constructed instance of LST-PERS-CYC is a polynomial
function of that of MAX-2SAT, so LST-PERS-CYC is NP-hard.

4.1 Instability of Minimal Persistent 1-Cycles

In this section, we inspect if the minimal persistent 1-cycles are stable against
perturbation of the filtration. Note that there may be multiple minimal persistent
1-cycles for an interval and an algorithm may choose anyone of them. This means
that the cycles cannot be stable under those measures that take into account
the entire geometry of the cycles (e.g., Hausdorff distance). In an attempt to
sidestep this problem, we take a ‘weaker’ measure of the cycles which is still
meaningful, namely their lengths. We show that even under such a measure,
minimal persistent 1-cycles are unstable. Specifically, we consider the lower star
filtration [17] of a vertex sequence, and inspect the perturbation of the lengths
of persistent 1-cycles under the perturbation of the sequence. Since each interval
I in the H1-persistence diagram of a lower star filtration can be derived from an
interval I ′ in the H1-persistence diagram of a corresponding insertion filtration3,
we can associate a persistent 1-cycle for I ′ to I. The readers can verify that
this assignment gives representatives for the decomposed interval modules of
the H1-persistence module induced by the lower star filtration.

Figure 2a presents an example for which the perturbation of the minimal
persistent 1-cycles cannot be properly bounded. The object in Fig. 2a is a sphere
with two holes (i.e., c1 and c2). We can assume that the object is nicely triangu-
lated so that it becomes a simplicial complex. Let v1 and v2 be vertices from c1
3 The insertion filtration is actually the filtration defined in Sect. 2.

Persistent 1-Cycles: Definition, Computation, and Its Application 129

c1
c2

(a)

v

c

ec1 c2

(b)

Fig. 2. (a) A sphere with two holes shows the instability of the minimal persistent
1-cycles. (b) The simplicial complex shows the instability of the cycles of Algorithm 2.
c1 and c2 are the two red simple cycles; e is the edge adjacent to v. (Color figure online)

and c2. We can construct a filtration4 by first forming the two cycles c1 and c2,
with v1 and v2 being the last two vertices added, then adding the other parts of
the simplicial complex. We then add a cone around c1 to the filtration. We can
first assume v1 is added before v2, and the indices of v1 and the apex vertex of
the cone in the sequence are b and d. Then the minimal persistent 1-cycle for
the interval [b, d) is c1. If we switch v1 and v2, the minimal cycle for the interval
[b, d) becomes c2. The difference of c1 and c2 can be made arbitrary under a
single switch, which is the smallest possible perturbation of lower star filtration.

5 Computing Meaningful Persistent 1-Cycles
in Polynomial Time

Because the minimal persistent 1-cycles are not stable and their computation is
NP-hard, we propose an alternative set of meaningful persistent 1-cycles which
can be computed efficiently in polynomial time. We first present a general frame-
work. Although the computed persistent 1-cycles have no guaranteed properties,
the framework lays the foundation for the algorithm computing meaningful per-
sistent 1-cycles that we propose later.

Algorithm 1. Given a simplicial complex K, a filtration F : ∅ = K0 ⊆ K1 ⊆
. . . ⊆ Km = K, and D1(F), this algorithm finds a persistent 1-basis for F .
The algorithm maintains a basis Bi for H1(Ki) for every i ∈ [0,m]. Initially, let
B0 = ∅, then do the following for i = 1, . . . , m:

– If σi is positive, find a 1-cycle ci containing σi in Ki and let Bi = Bi−1 ∪{ci}.
– If σi is negative, find a set {cg | g ∈ G} ⊆ Bi−1 so that

∑
g∈G[cg] = 0.

This can be done in O(βi = |Bi|) time by the annotation algorithm in [13].
Maintaining the annotations will take O(nω) time altogether where K has n
simplices and ω is the matrix multiplication exponent. Let g∗ be the greatest
index in G, then [g∗, i) is an interval of D1(F). Assign

∑
g∈G cg to this interval

as a persistent 1-cycle and let Bi = Bi−1 � cg∗ .
– Otherwise, let Bi = Bi−1.

4 Note that we are constructing an insertion filtration for a lower star filtration.

130 T. K. Dey et al.

At the end, for each cycle cj ∈ Bm, assign cj as a persistent 1-cycle to the interval
[j,+∞).

To prove the correctness of the algorithm, we need the following fact:

Proposition 1. For a persistence module P : {1, . . . , n} → Vect and a finite set
of persistence modules {Qj : {1, . . . , n} → Vect|j ∈ J}, P =

⊕
j∈J Qj if and only

if P(i) =
⊕

j∈J Qj(i) for each 1 ≤ i ≤ n and P[i ≤ i + 1] =
⊕

j∈J Qj [i ≤ i + 1]
for each 1 ≤ i < n.

Proof (Correctness of Algorithm 1). Denoting all the intervals [g∗, i) found by
the algorithm as D, we want to inductively prove that for all i = 1, . . . ,m, the
persistence module Pi, which is the restriction of PF

1 to {1, ..., i}, satisfies:

Pi =
⊕

[bj ,dj)∈D,dj≤i

I [bj ,dj) ⊕
⊕

cj∈Bi

I [j,i] (1)

where the representative of I [bj ,dj) is the persistent 1-cycle computed by the
algorithm and the representative of I [j,i] is cj . When i = 1, P1 is trivial and
the equation is certainly true. Suppose for Pi, the equation is satisfied. If σi+1

is neither positive nor negative, or positive, then it is not hard to verify that
the equation is still valid for Pi+1 by Proposition 1. If σi+1 is negative, then we
can let the persistent 1-cycle computed by the algorithm for σi+1 be

∑
g∈G cg

and g∗ be the greatest index in G. Since
∑

g∈G cg is also created by σg∗ , we can
let the representative of the interval module I [g∗,i] for Pi be

∑
g∈G cg. It is not

hard then to verify that the equation is still satisfied for Pi+1 by Proposition 1.

Based on Algorithm 1, we present another algorithm which produces mean-
ingful persistent 1-cycles.

Algorithm 2. In Algorithm 1, when σi is positive, let ci be the shortest cycle
containing σi in Ki. The cycle ci can be constructed by adding σi to the short-
est path between vertices of σi in Ki−1, which can be computed by Dijkstra’s
algorithm applied to the 1-skeleton of Ki−1.

Note that in Algorithm 2, a persistent 1-cycle for a finite interval is a sum
of shortest cycles born at different indices. Since a shortest cycle is usually a
good representative of its class, the sum of shortest cycles ought to be a good
choice of representative for an interval. In some cases, when σi is negative, the
sum

∑
g∈G cg contains only one component. The persistent 1-cycles computed

by Algorithm 2 for such intervals are guaranteed to be optimal as shown below.

Proposition 2. In Algorithm2, when σi is negative, if |G| = 1, then
∑

g∈G cg

is a minimal persistent 1-cycle for the interval ending with i.

Persistent 1-Cycles: Definition, Computation, and Its Application 131

In Sect. 6 where we present the experimental results, we can see that, scenar-
ios depicted by Proposition 2 occur quite frequently. Especially, for the larvae
and nerve datasets, nearly all computed persistent 1-cycles contain only one
component and hence are minimal.

A practical problem with Algorithm2 is that unnecessary computational
resource is spent for computing tiny intervals regarded as noise, especially when
the user cares about significantly large intervals only. We present a more efficient
algorithm for such cases.

Proposition 3. In Algorithms 1 and 2, when σi is negative, for any g ∈ G, one
has bg ≤ g∗ and dg ≥ i.

Proof. Note that σbg must be unpaired before σi is added, this implies that
dg ≥ i. Since g∗ is the greatest index in G, bg = g ≤ g∗.

Proposition 3 leads to Algorithm 3 in which we only compute the shortest
cycles at the birth indices whose corresponding intervals contain the input inter-
val [b, d). In the worst case, Algorithms 2 and 3 run in O(nω +n2 log n) = O(nω)
time. However, since an user often provides a long interval, the intervals con-
taining it constitute a small subset of all the intervals. This makes Algorithm3
run much faster than Algorithm2 in practice.

Algorithm 3
Input: The input of Algorithm 2 plus an interval [b, d)
Output: A persistent 1-cycle for [b, d) output by Algorithm 2.

1: G′ ← ∅

2: for i ← 1, . . . , b do
3: if σi is positive and (σi is paired with a σj s.t j ≥ d

or σi never gets paired) then
4: ci ← the shortest cycle containing σi in Ki

5: G′ ← G′ ∪ {i}
6: end if
7: end for
8: find a G ⊆ G′ s.t.

∑
g∈G[cg] = 0 in Kd

9: output
∑

g∈G cg as the persistent 1-cycle for [b, d)

Proposition 4 reveals some characteristics of the persistent 1-cycles computed
by Algorithms 2 and 3:

Proposition 4 (Minimality Property). The persistent 1-cycle
∑

g∈G cg

computed by Algorithms 2 and 3 has the following property: There is no non-
empty proper subset G′ of G such that

∑
g∈G′ [cg] = 0 in H1(Kd), where d is the

death index of the interval to which
∑

g∈G cg is associated.

Given that the minimal persistent 1-cycles are not stable, it is not surprising
that the cycles computed by Algorithm 2 are also not stable under perturbation.

132 T. K. Dey et al.

Figure 2b presents an example for which the perturbation of persistent 1-cycles
computed by Algorithm 2 cannot be properly bounded. We can construct a fil-
tration by first forming the cycle c then adding the other parts of the simplicial
complex in Fig. 2b, making v the last vertex and e the last simplex. We then add
a cone around c1 to the filtration. Let the indices of v and the apex vertex of the
cone in the vertex sequence be b and d. When c is formed, the last edge e′ of c is
positive, and c is chosen as the shortest cycle containing e′. When e is added, we
can make c1 and c2 be the two shortest cycles containing e. When c1 is coned,
if c1 is chosen as the shortest cycle containing e, then the persistent 1-cycle for
the interval [b, d) would be c1. Otherwise, the persistent 1-cycle would be c+ c2.
The length of c can be arbitrary, so that the difference of the two persistent
1-cycles can be arbitrary under the same insertion filtration of the same lower
star filtration.

Fig. 3. PersLoop user interface demonstrating persistent 1-cycles computed for a 3D
point cloud (a) and a 2D image (b), where green cycles correspond to the chosen bars.
(Color figure online)

6 Results and Experiments

Our software PersLoop implements Algorithm 3. Given a raw input, which is
a 2D image or a 3D point cloud, and a filtration built from the raw input, the
software first generates and plots the barcode of the filtration. The user can then
click an individual bar to obtain the persistent 1-cycle for the bar (Fig. 3). The
experiments on 3D point clouds and 2D images using the software show how our
algorithm can find meaningful persistent 1-cycles in several geometric and vision
related applications.

6.1 Persistent 1-Cycles for 3D Point Clouds

We take a 3D point cloud as input and build a Rips filtration using the Gudhi
library [25]. As shown in Fig. 4, persistent 1-cycles computed for the three point

Persistent 1-Cycles: Definition, Computation, and Its Application 133

Fig. 4. Persistent 1-cycles (green) corresponding to long intervals computed for three
different point clouds (Color figure online)

clouds sampled from various models are tight and capture essential geometrical
features of the corresponding persistent homology. Note that our implementation
of Algorithm 3 runs very fast in practice. For example, it took 0.3 secs to generate
50 cycles on a regular commodity laptop for the Botijo (Fig. 1a) point cloud of
size 10,000.

6.2 Image Segmentation and Characterization Using Cubical
Complex

In this section, we show the application of our algorithm on image segmentation
and characterization problems. We interpret an image as a piecewise linear func-
tion on a 2-dimensional cubical complex. The cubical complex for an image has
a vertex for each pixel, an edge connecting each pair of horizontally or vertically
adjacent vertices, and squares to fill all the holes such that the complex becomes
a disc. The function values on the vertices are the density or color values of the
corresponding pixels. The lower star filtration [17] of the PL function is then built
and fed into our software. We use the coning based annotation strategy [13] to
compute the persistence diagrams. In our implementation, a cubical tree, which
is similar to the simplicial tree [3], is built to store the elementary cubes. Each
elementary cube points to a row in the annotation matrix via the union find data
structure. The simplicial counterpart of this association technique is described
in [2].

Our first experiment is the segmentation of a serial section Transmission
Electron Microscopy (ssTEM) data set of the Drosophila first instar larva ventral
nerve cord (VNC) [5]. The segmentation result is shown in Fig. 5a and b, from
which we can see that the cycles are in exact correspondence to the membranes
hence segment the nerve regions quite appropriately. The difference between
Fig. 5a and b shows that longer intervals tend to have longer cycles. Another
similar application is the segmentation of the low magnification micrographs of
a Drosophila embryo [22]. As seen in Fig. 5c, the cycles corresponding to the top
200 longest intervals indicate that the larvae image is properly segmented.

134 T. K. Dey et al.

Fig. 5. Persistent 1-cycles computed for image segmentation. Green cycles indicate
persistent 1-cycles consisting of only one component (|G| = 1) and red cycles indicate
those consisting of multiple components (|G| > 1). (a,b) Persistent 1-cycles for the top
20 and 350 longest intervals on the nerve dataset. (c) Persistent 1-cycles for the top
200 longest intervals on the Drosophila larvae dataset. (Color figure online)

We experiment on another dataset from the STARE project [21] to show how
persistent 1-cycles computed by our algorithm can be utilized for characteriza-
tion of images. The dataset contains ophthalmologist annotated retinal images
which are either healthy or suffering from diseases. Our aim is to automatically
identify retinal and sub-retinal hemorrhages, which are black patches of blood
accumulated inside eyes. Figures 1e and 3b show that a very tight cycle is derived
around each dark hemorrhage blob even when the input is noisy.

6.3 Hexagonal Structure of Crystalline Solids

In this experiment, we use our persistent 1-cycles to describe the crystalline
structure of silicate glass (SiO2) commonly known as quartz. Silicate glass has a
non-compact structure with three silicon and oxygen atoms arranged alternately
in a hexagon as shown in Fig. 6a. We build a 8×8×8 weighted point cloud with
the silicon and oxygen atoms arranged according to the space group on the
crystal structure as illustrated in Fig. 6b. The weights of the points correspond
to the atomic weights of the atoms. On this weighted point cloud, we generate
a filtration of weighted alpha complexes [16] by increasing α from 0 to ∞.

Persistent 1-cycles computed by our algorithm for this dataset reveal both
the local and global structures of silicate glass. Figure 6d lists the barcode of
the filtration we build and Fig. 6b shows the persistent 1-cycles corresponding
to the medium sized green bars in Fig. 6d. We can see on close observation that
the cycles in Fig. 6b are in exact accordance to the hexagonal cyclic structure
of quartz shown in Fig. 6a. The larger persistent 1-cycles in Fig. 6c, which span
the larger lattice structure formed by our weighted point cloud, correspond to
the longer red bars in Fig. 6d. These cycles arise from the long-range order5 of
5 Long-range order is the translational periodicity where the self-repeating structure

extends infinitely in all directions.

Persistent 1-Cycles: Definition, Computation, and Its Application 135

Fig. 6. (a) Hexagonal cyclic structure of silicate glass. (b) Persistent 1-cycles computed
for the green bars with red points denoting silicate atoms and grey points denoting
oxygen atoms. (c) Persistent 1-cycles computed for the red bars. (d) Barcode for the
filtration on silicate glass. (Color figure online)

the crystalline solid. This is evident from our experiment because if we increase
the size of the input point cloud, these cycles grow larger to span the entire
lattice.

References

1. Awodey, S.: Category Theory. Oxford University Press, Oxford (2010)
2. Boissonnat, J., Dey, T.K., Maria, C.: The compressed annotation matrix: an effi-

cient data structure for computing persistent cohomology. CoRR abs/1304.6813
(2013). http://arxiv.org/abs/1304.6813

3. Boissonnat, J.D., Maria., C.: The simplex tree: an efficient data structure for gen-
eral simplicial complexes. In: 20th Annual European Symposium, Ljubljana, Slove-
nia, vol. 2, pp. 731–742 (2012)

4. Bubenik, P., Scott, J.A.: Categorification of persistent homology. Discret. Comput.
Geom. 51(3), 600–627 (2014)

5. Cardona, A., Saalfeld, S., Preibisch, S., Schmid, B., Cheng, A., Pulokas, J., et al.:
An integrated micro- and macroarchitectural analysis of the drosophila brain by
computer-assisted serial section electron microscopy. PLoS Biol. 8, e1000502 (2010)

6. Carlsson, G., Ishkhanov, T., de Silva, V., Zomorodian, A.: On the local behavior
of spaces of natural images. Int. J. Comput. Vis. 76(1), 1–12 (2008). https://doi.
org/10.1007/s11263-007-0056-x

7. Chazal, F., de Silva, V., Glisse, M., Oudot, S.: The Structure and Stability of
Persistence Modules. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-
42545-0

8. Chen, C., Freedman, D.: Quantifying homology classes II: localization and stability.
arXiv preprint arXiv:0709.2512 (2007)

9. Chen, C., Freedman, D.: Hardness results for homology localization. Discret. Com-
put. Geom. 45(3), 425–448 (2011)

10. Cohen-Steiner, D., Edelsbrunner, H., Harer, J.: Stability of persistence diagrams.
In: Proceedings of the Twenty-First Annual Symposium on Computational Geom-
etry, pp. 263–271. ACM (2005)

http://arxiv.org/abs/1304.6813
https://doi.org/10.1007/s11263-007-0056-x
https://doi.org/10.1007/s11263-007-0056-x
https://doi.org/10.1007/978-3-319-42545-0
https://doi.org/10.1007/978-3-319-42545-0
http://arxiv.org/abs/0709.2512

136 T. K. Dey et al.

11. Derksen, H., Weyman, J.: Quiver representations. Not. AMS 52(2), 200–206 (2005)
12. Dey, T.K., Hirani, A., Krishnamoorthy, B.: Optimal homologous cycles, total uni-

modularity, and linear programming. SIAM J. Comput. 40(4), 1026–1044 (2011).
https://doi.org/10.1137/100800245

13. Dey, T.K., Fan, F., Wang, Y.: Computing topological persistence for simplicial
maps. In: Proceedings of the Thirtieth Annual Symposium on Computational
Geometry, p. 345. ACM (2014)

14. Dey, T.K., Sun, J., Wang, Y.: Approximating loops in a shortest homology basis
from point data. In: Proceedings of the Twenty-Sixth Annual Symposium on Com-
putational Geometry, pp. 166–175. ACM (2010)

15. Dey, T.K., Mandal, S., Varcho, W.: Improved image classification using topological
persistence. In: Hullin, M., Klein, R., Schultz, T., Yao, A. (eds.) Vision, Modeling
& Visualization. The Eurographics Association (2017). https://doi.org/10.2312/
vmv.20171272

16. Edelsbrunner, H.: Weighted alpha shapes. Technical report, Champaign, IL, USA
(1992)

17. Edelsbrunner, H., Harer, J.: Computational Topology: An Introduction. American
Mathematical Society, Providence (2010)

18. Edelsbrunner, H., Letscher, D., Zomorodian, A.: Topological persistence and sim-
plification. In: Proceedings of the 41st Annual Symposium on Foundations of Com-
puter Science, pp. 454–463. IEEE (2000)

19. Emmett, K., Schweinhart, B., Rabadan, R.: Multiscale topology of chromatin fold-
ing. In: Proceedings of the 9th EAI International Conference on Bio-inspired Infor-
mation and Communications Technologies (formerly BIONETICS), pp. 177–180.
ICST (Institute for Computer Sciences, Social-Informatics and Telecommunica-
tions Engineering) (2016)

20. Escolar, E.G., Hiraoka, Y.: Optimal cycles for persistent homology via linear pro-
gramming. In: Fujisawa, K., Shinano, Y., Waki, H. (eds.) Optimization in the Real
World, vol. 13, pp. 79–96. Springer, Tokyo (2016). https://doi.org/10.1007/978-4-
431-55420-2 5

21. Hoover, A., Goldbaum, M.: Locating the optic nerve in a retinal image using the
fuzzy convergence of the blood vessels. IEEE Trans. Med. Imaging 22(8), 951–958
(2003). https://doi.org/10.1109/TMI.2003.815900

22. Kiehart, D.P., Galbraith, C.G., Edwards, K.A., Rickoll, W.L., Montague, R.A.:
Multiple forces contribute to cell sheet morphogenesis for dorsal closure in
Drosophila. J. Cell Biol. 149(2), 471–490 (2000). https://doi.org/10.1083/jcb.149.
2.471. http://jcb.rupress.org/content/149/2/471

23. Obayashi, I.: Volume optimal cycle: tightest representative cycle of a generator on
persistent homology. arXiv preprint arXiv:1712.05103 (2017)

24. Papadimitriou, C.H., Yannakakis, M.: Optimization, approximation, and complex-
ity classes. J. Comput. Syst. Sci. 43(3), 425–440 (1991)

25. The GUDHI Project: GUDHI User and Reference Manual. GUDHI Editorial Board
(2015). http://gudhi.gforge.inria.fr/doc/latest/

26. Wu, P., et al.: Optimal topological cycles and their application in cardiac trabeculae
restoration. In: Niethammer, M., et al. (eds.) IPMI 2017. LNCS, vol. 10265, pp.
80–92. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-59050-9 7

https://doi.org/10.1137/100800245
https://doi.org/10.2312/vmv.20171272
https://doi.org/10.2312/vmv.20171272
https://doi.org/10.1007/978-4-431-55420-2_5
https://doi.org/10.1007/978-4-431-55420-2_5
https://doi.org/10.1109/TMI.2003.815900
https://doi.org/10.1083/jcb.149.2.471
https://doi.org/10.1083/jcb.149.2.471
http://jcb.rupress.org/content/149/2/471
http://arxiv.org/abs/1712.05103
http://gudhi.gforge.inria.fr/doc/latest/
https://doi.org/10.1007/978-3-319-59050-9_7

A Persistence-Based Approach
to Automatic Detection

of Line Segments in Images

Vitaliy Kurlin1(B) and Grzegorz Muszynski1,2

1 Department of Computer Science, University of Liverpool, Liverpool L69 3BX, UK
vkurlin@liverpool.ac.uk

2 Lawrence Berkeley National Laboratory, Berkeley, CA, USA
gmuszynski@lbl.gov

Abstract. Edge detection algorithms usually produce a discrete set of
edgels (edge pixels) in a given image on a fixed pixel grid. We consider
the harder problem of detecting continuous straight line segments at sub-
pixel resolution. The state-of-the art Line Segment Detection Algorithm
(LSDA) outputs unordered line segments whose total number cannot be
easily controlled. Another motivation to improve the LSDA is to avoid
intersections and small angles between line segments, hence difficulties
in higher level tasks such as segmentation or contour extraction.

The new Persistent Line Segment Detector (PLSD) outputs only non-
intersecting line segments and ranks them by a strength, hence the user
can choose a number of segments. The main novelty is an automatic selec-
tion of strongest segments along any straight line by using the persistence
from Topological Data Analysis. The experiments on the Berkeley Seg-
mentation Database of 500 real-life images show that the new algorithm
outperforms the LSDA on the important measure of Boundary Recall.

Keywords: Topological persistence · Edge detection · Skeletonization

1 Introduction

1.1 The Edge Detection Problem in the Continuous Setting

Detecting edges in images is a key problem in the low-level vision that aims to
identify pixels where the image intensity suddenly changes. The edge detection
was usually considered in the discrete setting when an output consists of pixels
from a given pixel grid. However, pixel-based images represent a continuous
world, where the most basic objects are continuous line segments, which may
have arbitrary directions and endpoints with any real coordinates.

The hard version of edge detection is to find straight line segments at
subpixel resolution that approximate boundary contours in pixel-based images.

The state-of-the-art algorithm [11] solving the above problem is the Line
Segment Detection Algorithm (LSDA). The main advantage of the LSDA over
past edge detection algorithms is the “a contrario” approach that theoretically
guarantees at most one false alarm on random data, see details in Subsect. 2.2.
c© Springer Nature Switzerland AG 2019
R. Marfil et al. (Eds.): CTIC 2019, LNCS 11382, pp. 137–150, 2019.
https://doi.org/10.1007/978-3-030-10828-1_11

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-10828-1_11&domain=pdf
http://orcid.org/0000-0001-5328-5351
https://doi.org/10.1007/978-3-030-10828-1_11

138 V. Kurlin and G. Muszynski

1.2 Motivations to Detect Line Segments Without Intersections

The LSDA often outputs line segments that intersect each other near their end-
points, see 48 intersections for the image in Fig. 1 from the Berkeley Segmenta-
tion Database [1]. Duan and Lafarge [6] have proposed a refinement of the LSDA
edge for producing Voronoi superpixels at subpixel resolution. This refinement
has revealed that some LSDA edges are too close and almost parallel to each
other as clearly illustrated in [10, Fig. 1.1 on p. 1]. So these close lines should be
removed or carefully repaired to avoid very narrow superpixels. Figure 1 shows
how the PLSD avoids all intersections of edges in comparision with the LSDA.

Fig. 1. Left: 193 LSDA edges with 48 intersections. Right: the PLSD outputs exactly
100 edges without any intersections of edges, which is the key advantage over LSDA.

The hard difficulties above are understandable taking into account that the
LSDA attempts to capture line segments with any possible slope. Since approxi-
mate solutions are acceptable in real-life, we simplify the problem and will detect
line segments that are parallel to one of 8 directions: horizontal (1, 0), vertical
(0, 1), two diagonal (±1, 1) and four non-diagonal directions (±2, 1), (±1, 2).

We believe that 8 directions are enough to approximate any reasonable shapes
in images, e.g. a large round disk in Fig. 2 can be well approximated by polygonal
curves with 16 edges split into 8 pairs of opposite parallel edges.

One more important motivation to improve the LSDA is to control the num-
ber of edges in a final output. When LSDA edges are included into a polygonal
mesh, the size of the mesh (number of polygons) may depend on the number of
original edges. Hence, it would be great to order detected edges by some sort of
strength so that a smaller number of strongest edges can be selected.

1.3 Automatic Selection of Persistent Segments

The main novelty of the proposed algorithm PLSD (Persistent Line Segment
Detector) is the automatic selection of strongest segments in any straight line.

A grayscale image on Ω = [0, w]× [0, h] is a function I : Ω → [0, 255] sampled
at pixel positions p ∈ Ω with integer coordinates in the image [0, w] × [0, h]. An

Automatic Detection of Line Segments 139

edge detection algorithm outputs pixels p1, . . . , pk ∈ Ω, where the function I
substantially changes (depending on an algorithm) along some direction. This
change at a fixed pixel is measured as the magnitude of the image gradient.

For a function f : L → R of contrast values along a fixed straight line L in
an image, we analyze the sequence of superlevel sets f−1[u,+∞) = {p ∈ L :
f(p) ≥ u}. For every fixed level u of the contrast, the superlevel set splits into a
few continuous segments over which the contrast is at least u.

When the contrast level u goes down, new segments appear around local
maxima of f and then merge with each other, see Fig. 4. So each segment S
persists from its birth (at the maximum value of u) to its death (at the value
when S merges with another segment having a higher birth), see Definition 2.

A segment S is usually characterized by its persistence = birth-death (when
the parameter u is decreasing). We suggest another characteristic (the strength
|S| =

∫
S

f(p)dp), which is more stable under perturbations of contrast values,
hence is more suitable for noisy data, see formal details in Definition 3.

Line segments are ranked according to the concept of persistence, which was
introduced in Topological Data Analysis [7]. The idea of persistence is to study
a nested sequence of shapes parameterized across all potential thresholds.

At every level u the strongest segments are separated from noisy artefacts by
a widest gap in strength, which is the maximum difference between successive
ordered strength values over all current segments, see Definition 3.

The same widest gap in persistence was successfully used for segmenting
clouds of points [14–17] that are not restricted to a fixed pixel grid as in digital
images. So the strongest segments are independently selected along every straight
line L considered in an image. Hence there is no uniform thresholding for the
whole image, see details of this new automatic method in Subsect. 3.2.

Here is the summary of key contributions.

• The edge detection is studied in the continuous setting, which is harder than
for discrete square-based pixels.

• The algorithm PLSD can output a desired number of strongest straight line
segments that have no intersections guaranteed by Stage 2 in Subsect. 3.3.

• The main innovation of the Persistent Line Segment Detector is a data-driven
automatic selection of persistent line segments without manual thresholding.

• The PLSD runs in a near linear time, see Theorem 5, and outperforms the
state-of-the-art Line Segment Detector on the Boundary Recall benchmark
from the Berkeley Segmentation Database 500 [1].

2 Review of the Past Closely Related Work

This section discusses a few representative algorithms for detecting only straight
line segments at subpixel precision.

140 V. Kurlin and G. Muszynski

Fig. 2. The new algorithm PLSD outputs line segments in 8 directions, which can well
approximate complicated shapes, even a large round disk in the last image above.

2.1 From Discrete Pixels to Continuous Arcs

Many past algorithms are based on the famous Canny detector of edge pixels
[3], which already requires three parameters. The next usual step is to apply a
Hough transform [2] to find lines passing through a certain number of edgels.

The Hough transform often leads to many false positives in textured regions.
Another approach by Kahn et al. [12] uses only orientations of image gradients,
but not their magnitudes. Their algorithm produces well localized edges, but
requires carefully chosen thresholds.

A different “a contrario” (by contraries) approach is to validate potential
candidates by setting thresholds on random data as follows. If a parametric
algorithm on random data outputs a small number of false positives on average,
the corresponding thresholds should be fixed and applied to real data. The only
drawback was the exhaustive search through O(P 4) possible straight lines, where
P is the perimeter of an image. This method has led to the fast LSDA below.

2.2 The State-of-the-Art Line Segment Detection
Algorithm (LSDA)

The LSDA outputs line segments detected in a grayscale image at subpixel res-
olution [11]. The first step is to estimate the image gradient dI as the vector
(gx, gy) whose components are obtained by convolving with these 2 × 2 masks:

gx =
[−1 +1

−1 +1

]

, gy =
[

+1 +1
−1 −1

]

. (2.2)

The operators above estimate the image derivatives in the x, y directions at
the corner point shared by 4 pixels (x, y), (x, y + 1), (x + 1, y), (x + 1, y + 1). So
ideal edges were expected to be along boundaries of square pixels, but the original
LSDA code shifted the final edges by (0.5, 0.5). After normalising the gradient
by its Euclidean length, the resulting field consists of unit length vectors.

Pixels whose estimated unit vectors are almost parallel (within a default
tolerance τ = 22.5◦ for angles) are clustered. The resulting clusters are approx-
imated by thin rectangles whose long middle lines are the final line segments.
The output is an unordered list of line segments whose total number depends on
a given image, so users may struggle to get a specific number of line segments.

Automatic Detection of Line Segments 141

2.3 Applications of Line Segments for Superpixels

Since rectangles covering adjacent clusters may overlap, LSDA edges may have
intersections close to their endpoints. The LSDA outputs line segments with
intersections on about 80% of 500 BSD images without any order. Hence any
further application of the LSDA for segmentation or contour extraction requires
a careful refinement of LSDA edges. The LSDA output was used for Voronoi
superpixels by Duan and Lafarge [6], who designed a multi-step post-processing
to repair segments that intersect each other or have very close endpoints.

The main result of Duan and Lafarge [6] is probably the first algorithm split-
ting an image into convex polygons whose vertices may have any real coordinates.
Forsythe and Kurlin [8,9] used a more sophisticated refinement of the LSDA out-
put and proved that the resulting Convex Constrained Meshes (CCM) have no
small angles and approximate LSDA edges considered as hard constraints.

Fig. 3. Left: first 4 basic directions of line segments in the current implementation of
the PLSD. Middle: for more directions. Right: the contrast function fL : L → R from
Definition 1 is computed at all red points (x, y) ∈ L with both integer coordinates.
(Color figure online)

The new detector PLSD can be used in both methods above without extra
refinement, because all final edges have no intersections by construction.

3 PLSD: The New Persistent Line Segment Detector

This section describes the following 3 stages of the PLSD algorithm.

Stage 1: estimating the change of contrast along every straight line dxx+dyy+
t = 0, where (dx, dy) is one of the 8 slopes in Fig. 3, the shift t takes all integer
values when the resulting line L intersects the image Ω = [0, w] × [0, h].
Stage 2: automatic selection of strongest line segments by their persistence
using the contrast function along every line dxx + dyy + t = 0 from Stage 1.
Stage 3: choosing a required number of strongest segments (one by one) so that
any weaker segments don’t intersect already chosen stronger segments.

142 V. Kurlin and G. Muszynski

3.1 Stage 1: Computing the Contrast Functions f Along Lines L

The first step convolves a given image I with the Gaussian kernel 3 × 3 with
the default parameter σ = 0.8 using the GaussianBlur function in OpenCV. The
second step considers all straight lines that intersect the image and are parallel
to one of the 8 directions: (1, 0), (0, 1), (±1, 1), (±1, 2), (±2, 1) in Fig. 3. These
8 directions are chosen for simplicity and speed of the current implementation.

Let the image domain Ω be a rectangle [0, w] × [0, h]. Then we consider all
points (x, y) with integer coordinates b ≤ x ≤ w − b, b ≤ y ≤ h − b. Here b
is a small offset (the default value 3 pixels) that allows us to convolve I with
gradient masks and avoid boundary effects. For a fixed point (x, y) with integer
coordinates, the current implementation uses the simplest 2 × 2 masks gx, gy in
formulae (2.2) to estimate the image gradient as DI = (gx ∗ I, gy ∗ I). If I is a
color image, the same linear operators gx, gy are applied to every color channel.

Definition 1. For each of the 8 directions d = (dx, dy) in Fig. 3, the change of
contrast at an integer point (x, y) in an image Ω = [0, w] × [0, h] is estimated as

the directional derivative f(x, y) = ||DI(x, y) · d⊥||, where (3.1)

d⊥ is the unit vector orthogonal to d. The norm || · || is the absolute value for
grayscale images and is ||(R,G,B)||∞ = max{|R|, |G|, |B|} for color images. For
every straight line L intersecting the image Ω, formula (3.1) defines the contrast
function fL : L → R sampled at points (x, y) ∈ Ω with integer coordinates.

Definition 1 may use another norm for RGB images and mentions only 8
directions d for simplicity of the current implementation, The derivatives in (3.1)
can be computed for any direction d. For a fixed directional vector d, consider all
straight lines L given by dxx+dyy+t = 0 with the gradient d such that the shift
t takes all integer values when the line intersects the image Ω = [0, w] × [0, h].

We select segments S ⊂ L such that the contrast function fL over S has
persistently larger values than over the rest of L. Here are the steps of Stage 1.

Step (1a). After Gaussian filtering an image I, compute the image gradient DI
using 2 × 2 masks in (2.2). Any more advanced de-noising is possible. One can
consider more sophisticated estimates of DI instead of 2 × 2 masks in (2.2).
Step (1b). For every line L parallel to one of 8 directions d and an integer point
(x, y) ∈ Ω estimate the derivative of I in the direction orthogonal to d by (3.1).

The naive edge detection in the discrete setting can actually stop at this stage
and output all points whose gradient magnitudes are above a certain threshold.

3.2 Stage 2: Finding Strongest Segments by Their Persistence

The aim of this Stage 2 is to automatically select one or several segments within
a fixed line L that well approximate contours of an image I within L.

Stage 1 has essentially reduced the detection problem from dimension 2 to
1. Indeed, the input for Stage 2 is a graph of the contrast function fL : L → R

Automatic Detection of Line Segments 143

sampled at integer points in the line L. The output will be segments S1, . . . , Sk ⊂
L over which the function f is substantially larger than over the rest of L.

The traditional approach is to manually choose a contrast threshold u and
consider line segments where the contrast is sufficiently high: f ≥ u.

Fig. 4. Segments in superlevel sets f−1
L [u,+∞) of a contrast function fL grow and

merge when the contrast level u goes down. The strength of a segment S is
∫
S
f(p)dp.

The new approach is very different and has no thresholds at this stage. Fol-
lowing the key idea of Topological Data Analysis, we consider the sequence of
all superlevel sets f−1

L [u,+∞) when the level u goes down from a global max-
imum to a reasonable minimum. During this evolution, connected components
of f−1

L [u,+∞) appear at local maxima of f , grow and merge into larger compo-
nents. Figure 4 shows two segments that merge into a longer one.

Definition 2. The birth of each component (line segment S) is the maximum
value of fL over S. The death of S is the level where S merges with another
component. By the standard elder rule of persistence [7, p. 150], the older com-
ponent (with a larger birth here) survives and the younger one dies. The whole
process can be combinatorially described by a topological barcode of intervals
(death, birth] or a persistence diagram of pairs (birth, death).

The main advantage of the persistence diagram is the stability under bounded
noise. If a function fL is perturbed up to ε (say with respect to the L∞ norm),
the diagram is perturbed also up to ε with respect to the so-called bottleneck
distance [5]. Since outliers may destroy this stability we suggest a new measure
for selecting segments by analyzing the sequence of superlevel sets.

Definition 3. At every fixed level u, any current segment (a connected compo-
nent of f−1

L [u,+∞)) has the strength |S| =
∫
S

fL(p)dp, which is approximated
for a pixel-based image as the sum of fL(p) for all points p ∈ S with integer
coordinates. Figure 4 shows the strength |S| as the area below the graph of fL.

Now all segments at the fixed level u can be ranked according to their
strengths, say S1 > · · · > Sk. To separate strongest segments from the rest,
below we use the heuristic of the widest gap between these ordered strengths.

144 V. Kurlin and G. Muszynski

Find an index i such that the difference Si−Si+1 (the gap between successive
strengths) is largest over all i = 1, . . . , k − 1. The segments with the strengths
S1, . . . , Si(u) above this widest gap are called strongest at the current level u.

Contrast values of real images have wide gaps usually in a high-value range,
because low values tend to be densely packed. Hence selecting segments with
strengths above the widest gap (in every line L individually) is a better data-
driven approach than guessing one threshold for contrast over the whole image.

3.3 Stage 3: A Required Number of Segments Without Intersections

After Stage 2 above we have one or more strongest segments within every line
L parallel to one of 8 directions. So a straight line may continue a few disjoint
segments, not necessarily one. Final Stage 3 greedily selects a required number
of strongest segments without intersections. In more details, we first take the
strongest segment S from those obtained at Stage 2 in all lines L. Then we
remove all line segments that contradict the strongest segment S as follows.

Definition 4. A line segment S′ contradicts another line segment S if either
(4a) S′ is parallel to S and is away from S within 3 pixels (a default value) or
(4b) S′ intersects the segment S, endpoints of S can be inside S′ and vice

versa.

The default value of 3 pixels between line segments is the reasonable min-
imum, because the accuracy of human-drawn contours in the BSD is 2 pixels.
After removing the chosen segment S1 all segments contradicting S1, we select
the strongest segment S2 from the remaining ones, again remove all segments
contradicting S2 and so on until we have found a required number of segments
or there are no segments left from Stage 2.

To quickly check the conditions of Definition 4, we keep all segments parallel
to one of 8 directions d in a binary tree Td ordered by the following identifier of
a line parallel to d. This tree is implemented as a multi-map structure of pairs
(identifier of a line L, a segment S within L).

For any non-horizontal infinite line L, this identifier is the x-coordinate at
the intersection of L with the x-axis. For a horizontal line L parallel to d = (1, 0),
the identifier of L is the constant y-coordinate of L.

Since the number k of required segments is usually much smaller than the
number n of pixels, Theorem 5 justifies that the PLSD algorithm is near linear.

Theorem 5. For any image consisting of n pixels, the algorithm PLSD outputs
k straight line segments in time O(kn log n) and requires O(n) space.

Proof. For an image of n = w × h pixels and any of the 8 basic directions d,
there at most w + h = O(

√
n) straight lines L parallel to d. Each of these lines

contains at most w + h = O(
√

n) points (x, y) with integer coordinates.

Automatic Detection of Line Segments 145

For every fixed line L, we use a union-find structure to analyze the evo-
lution of segments S ⊂ L, which are connected components of superlevel sets
f−1
L [u,+∞). We sort the contrast values of O(

√
n) points p within the line L in

time O(
√

n log n) and process them starting from the largest.
All current segments are kept in a binary tree of size O(

√
n). When a new

point p is added to a superlevel set f−1
L [u,+∞), we have one of three cases:

(5a) p forms a new segment consisting of a single node.
(5b) p joins one of existing straight line segments S.
(5c) p is the merge point of two segments S1 and S2.

In case (5a) a new segment is added to the binary tree Td in time O(log n).
In case (5b) the existing segment is found and its strength is updated in time
O(log n). In case (5c) two segments are removed and a new larger one is inserted
in time O(log n). In general, making O(

√
n) updates, the union-find structure [18]

maintains connected components of O(
√

n) points p ∈ L in time O(
√

n log n).
At every step of Stage 2 we update the binary tree of O(

√
n) segments (par-

allel to a fixed direction d) as we need to know the widest gap between successive
strengths. The binary trees Td ordered by unique identifiers of lines L parallel
to d help to remove in time O(

√
n log n) all segments contradicting a current

strongest segment in the sense of Definition 4. The factor k in the complexity is
from the number of strongest segments that are searched in the trees Td. �

4 Experiments on 500 BSD Images

4.1 The Boundary Recall Benchmark BR(2) from BSD500

The Berkeley Segmentation Database (BSD) [1] consists of 500 images widely
used for evaluating segmentation algorithms due to human-sketched ground
truth boundaries. The human-drawn boundaries for each image are discretized
and saved as a set G of ground-truth pixels. If E is another set of pixels produced
by an edge detection algorithm, the standard Boundary Recall is

BR(G,E, ε) =
#{pixels p ∈ G : distance(p,E) ≤ ε}

|G| ,

where distance(p,E) is the Euclidean distance between (centers of) p and its
closest neighbor in E. The standard offset of ε = 2 pixels for the Boundary
Recall is usually chosen, because human drawings cannot be more accurate.

Since there are up to 7 human-drawn boundaries B per image, the convention
is to compute BR(E, ε) for a fixed image as the maximum of BR(G,E, ε) over
all ground-truths G, hence over the best human drawing. The final Boundary
Recall BR(ε) in Fig. 8 is the average of BR(E, ε) over all 500 images.

For any line detector at subpixel resolution, there is little sense to discretize
its output set S of line segments. We compute the Euclidean distance (p, S) from
a ground truth pixel p ∈ G to a closest line segment in the output S.

BR(G,S, ε) =
#{pixels p ∈ G : distance(p, S) ≤ ε}

|G| .

146 V. Kurlin and G. Muszynski

4.2 LSDA vs PLSD on the Boundary Recall BR(2)

Since the LSDA was extensively compared with past line segment detections in
[10, Sect. 4], this paper quantitatively compares the PLSD only with the LSDA.
The LSDA “was designed as an automatic image analysis tool and must work
without requiring any parameter tuning” [10, p. 2]. We followed the advice of
Grompone von Gioi [10] to run the LSDA with the default parameters. Hence the
LSDA results are represented by a single black dot whose horizontal coordinate
is the average number of line segments across BSD500.

For each BSD image, the LSDA produced a number of line segments accord-
ing to the “a contrario” model. The PLSD algorithm is more flexible and can
output a smaller or larger number of segments by users’ choice, see Figs. 5, 6
and 7.

For a fair comparison, on every image we first ran the LSDA code and then
asked PLSD to output the same number of line segments as LSDA. However, in
some cases the PLSD algorithm outputs a smaller number of edges because all
edges are required to be non-intersecting.

Fig. 5. Left: LSDA output on image 56028 in BSD. Right: More and longer straight
line segments are found by PLSD.

Fig. 6. Left: the LSDA output has too short segments in image 223060 from the
BSD500. Right: many longer line segments are found by the new PLSD algorithm.

Automatic Detection of Line Segments 147

Fig. 7. Left: the LSDA missed some vertical lines in image 5096 from the BSD500.
Right: many longer line segments are found by the new PLSD algorithm.

Fig. 8. Boundary Recall BR(2) for PLSD and LSDA on 500 BSD images, the horizontal
axis shows the average number of segments.

The graph in Fig. 8 shows one black dot for LSDA and the blue polygonal
curve with 4 dots corresponding to offset = 2, 3, 4, 5 pixels (from right to
left). This offset parameter is used in condition (4) to avoid very close parallel
segments.

Any straight line segment found by LSDA or PLSD is discretized by drawing
black lines on a white background and extracting resulting black pixels as the
discrete output, because the human drawings were discretized in BSD.

148 V. Kurlin and G. Muszynski

Fig. 9. Average TPR in percents vs the number of segments over BSD500.

Let P be the number of output boundary pixels by an algorithm and TP
be the number of those output pixels that are also in a ground truth boundary.
The best suitable ground truth human drawing is chosen for every image.

The sensitivity or True Positive Rate is TPR =
TP

P
. The precision or Pos-

itive Predictive Value is PPV =
TP

TP + FP
, where FP is the number of false

positives (all pixels that are in the output, but not in the ground truth).
Figure 9 shows that the PLSD has the True Positive Rate (TPR) almost

twice better than the LSDA. Figure 10 shows that the PLSD outperforms the
LSDA on the Positive Predictive Value (PPV).

5 Discussion and Conclusions

The experiments in Sect. 4 have demonstrated that the proposed detection of line
segments parallel to one of 8 directions already outperforms the state-of-the-art
algorithm that allows line segments with any slope. The data-driven approach
of selecting strongest segments can be extended to more than 8 directions.

Other possible improvements are better filtering, e.g. optimizing the size and
sigma in the Gaussian kernel, and more advanced de-noising before Step (3.1a).
The current non-optimized code runs for about 1 sec per BSD image on a laptop
with 8Gb Ram, which is a bit slower than the LSDA on the same machine.

Automatic Detection of Line Segments 149

Fig. 10. Average PPV in percents vs the number of segments over BSD500.

The straight line segments can be used as very economical descriptors of com-
plicated scenes. For example, training convolution neural networks on straight
line sketches can be much faster than on original images.

The novel method of automatic selection in Subsect. 3.2 can be used for
finding skeletons of objects [4,13,15,16], where thresholds should be avoided.
Here is the summary of contributions to the line segment detection problem.

• The PLSD allows a user to fix a desired number of strongest line segments.
• All line segments in the output have no intersections by Definition 4, hence

PLSD can be easily extended to planar skeletons and polygonal meshes.
• The PLSD has a near linear computational complexity by Theorem 5.
• A thresholding of contrast values was avoided due to the new data-driven

method motivated by a multi-scale approach of Topological Data Analysis.
• The PLSD has outperformed the LSDA on the Boundary Recall, e.g. for the

default offset of 3 pixels the measure BR(2) has improved from 0.517 to 0.559.

Acknowledgments. We thank all reviewers for helpful suggestions. This work was
supported by the EPSRC grant “Application-driven Topological Data Analysis”
(EP/R018472/1).

150 V. Kurlin and G. Muszynski

References

1. Arbelaez, P., Maire, M., Fowlkes, C., Malik, J.: Contour detection and hierarchical
image segmentation. Trans. PAMI 33, 898–916 (2011)

2. Ballard, D.: Generalizing the hough transform to detect arbitrary shapes. Pattern
Recogn. 13, 111–122 (1981)

3. Canny, J.: A computational approach to edge detection. Trans. PAMI 8, 679–698
(1986)

4. Chernov, A., Kurlin, V.: Reconstructing persistent graph structures from noisy
images. Image-A 3, 19–22 (2013)

5. Cohen-Steiner, D., Edelsbrunner, H., Harer, J.: Stability of persistence diagrams.
Discrete Comput. Geom. 37, 103–130 (2007)

6. Duan, L., Lafarge, F.: Image partitioning into convex polygons. In: Proceedings of
CVPR (Computer Vision and Pattern Recognition), pp. 3119–3127 (2015)

7. Edelsbrunner, H., Harer, J.: Computational Topology: An Introduction. AMS,
Providence (2010)

8. Forsythe, J., Kurlin, V.: Convex constrained meshes for superpixel segmentations
of images. J. Electron. Imaging 26(6), 061609 (2017)

9. Forsythe, J., Kurlin, V., Fitzgibbon, A.: Resolution-independent superpixels based
on convex constrained meshes without small angles. In: Bebis, G., et al. (eds.)
ISVC 2016. LNCS, vol. 10072, pp. 223–233. Springer, Cham (2016). https://doi.
org/10.1007/978-3-319-50835-1 21

10. Grompone von Gioi, R.: A Contrario Line Segment Detection. Briefs in Computer
Science. Springer, New York (2014). https://doi.org/10.1007/978-1-4939-0575-1

11. Grompone von Gioi, R., Jakubowicz, J., Morel, J.M., Randall, G.: LSD: a line
segment detector. Image Process. Line 2, 35–55 (2012)

12. Kahn, P., Kitchen, L., Riseman, E.: A fast line finder for vision-guided robot nav-
igation. Trans. PAMI 12, 1098–1102 (1990)

13. Kalisnik, S., Kurlin, V., Lesnik, D.: A high-dimensional homologically persistent
skeleton. Adv. Appl. Math. 102, 113–142 (2019)

14. Kurlin, V.: Auto-completion of contours in sketches, maps and sparse 2D images
based on topological persistence. In: Proceedings of SYNASC 2014 Workshop
CTIC: Computational Topology in Image Context, pp. 594–601. IEEE (2014)

15. Kurlin, V.: A homologically persistent skeleton is a fast and robust descriptor
of interest points in 2d images. In: Azzopardi, G., Petkov, N. (eds.) CAIP 2015.
LNCS, vol. 9256, pp. 606–617. Springer, Cham (2015). https://doi.org/10.1007/
978-3-319-23192-1 51

16. Kurlin, V.: A one-dimensional homologically persistent skeleton of a point cloud
in any metric space. Comput. Graph. Forum 34, 253–262 (2015)

17. Kurlin, V.: A fast persistence-based segmentation of noisy 2d clouds with provable
guarantees. Pattern Recogn. Lett. 83, 3–12 (2016)

18. Tarjan, R.: Data Structures and Network Algorithms. SIAM, Philadelphia (1983)

https://doi.org/10.1007/978-3-319-50835-1_21
https://doi.org/10.1007/978-3-319-50835-1_21
https://doi.org/10.1007/978-1-4939-0575-1
https://doi.org/10.1007/978-3-319-23192-1_51
https://doi.org/10.1007/978-3-319-23192-1_51

On the Nonlinear Statistics of Optical
Flow

Henry Adams(B), Johnathan Bush, Brittany Carr, Lara Kassab,
and Joshua Mirth

Colorado State University, Fort Collins, CO 80523, USA
{adams,bush,carr,kassab,mirth}@math.colostate.edu

Abstract. In A naturalistic open source movie for optical flow evalua-
tion, Butler et al. create a database of ground-truth optical flow from
the computer-generated video Sintel . We study the high-contrast 3 × 3
patches from this video, and provide evidence that this dataset is well-
modeled by a torus (a nonlinear 2-dimensional manifold). Our main tools
are persistent homology and zigzag persistence, which are popular tech-
niques from the field of computational topology. We show that the opti-
cal flow torus model is naturally equipped with the structure of a fiber
bundle, which is furthermore related to the statistics of range images.

Keywords: Optical flow · Computational topology
Persistent homology · Fiber bundle · Zigzag persistence

1 Introduction

A video records a moving three-dimensional world as a sequence of two-
dimensional images. The apparent motion of the two-dimensional images, due
to changing brightness, is called optical flow. The optical flow at a frame is a
vector field, where the vector at each pixel points to where that pixel appears
to move for the subsequent frame [10].

A fundamental problem is to estimate optical flow from a video sequence
[7,23]. It is impossible to recover the optical flow field exactly using only a video
sequence; for example, if one is given a video of a spinning barber’s pole, one does
not know (without prior knowledge) whether the pole is moving up or instead
spinning horizontally. Given these difficulties, algorithms estimating optical flow
must exploit or make assumptions about the statistics of optical flow, and hence
there is interest in understanding these statistics.

As no instrument measures ground-truth optical flow, databases must be
generated. One example database is from the 3-D, animated, open source, short
film Sintel, which has several desirable features. The scenes are long, and the
movements and textures are more complex than in some of the other datasets.
Since the film is open source, the optical flow data is available for analysis (see
Fig. 1). The Sintel optical flow dataset is described in detail in [14].

c© Springer Nature Switzerland AG 2019
R. Marfil et al. (Eds.): CTIC 2019, LNCS 11382, pp. 151–165, 2019.
https://doi.org/10.1007/978-3-030-10828-1_12

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-10828-1_12&domain=pdf
https://doi.org/10.1007/978-3-030-10828-1_12

152 H. Adams et al.

Fig. 1. Two sample optical flows extracted from the Sintel database. Horizontal com-
ponents in (a) and (c); vertical components in (b) and (d). White corresponds to flow
in the positive direction (right or up) and black corresponds to the negative direction.

In this paper we use the topological machinery of [2,17] to study the nonlinear
statistics of optical flow from the Sintel dataset. First, we build a space of high-
contrast 3 × 3 optical flow patches. Using Vietoris–Rips complexes and persistent
homology, we identify the topologies of dense subsets of this space. The densest
patches lie near a circle, the horizontal flow circle [1]. Then, in a more refined
analysis, we select out the optical flow patches whose predominant direction of
flow is a small bin of angle values. We show that the patches in each such bin are
well-modeled by a circle; each such circle is explained by the nonlinear statistics
of range image patches. We show that these circles at each angle piece together,
via the structure of a fiber bundle, into a torus model for optical flow.

The torus model for the nonlinear statistics of optical flow could also be used
for optical flow compression. Indeed, one can express a 3 × 3 optical flow patch
as an average flow vector, plus a patch on a 2-dimensional torus, plus a 3 × 3
error vector whose entries will tend to be small in magnitude.

We survey related work in Sect. 2, and in Sect. 3 we introduce our topological
methods. We describe the spaces of high-contrast optical flow patches in Sect. 4,
and present our main results in Sect. 5. Our code is available at https://bitbucket.
org/Cross Product/optical flow/.

2 Related Work

2.1 Optical Flow Datasets

There are a variety of databases that reconstruct ground truth optical flow sam-
ples. The Middlebury dataset in [5] ranges from real stereo imagery of rigid
scenes to realistic synthetic imagery; the database contains public ground truth
optical flow training data along with sequestered ground truth data for the pur-
pose of testing algorithms. The data from [30] consists of twenty different syn-
thetic scenes with the camera and movement information provided. The KITTI
Benchmark Suite [24] uses a car mounted with two cameras to film short clips
of pedestrians and cars; attached scanning equipment allows one to reconstruct
the underlying-truth optical flow for data testing and error evaluation.

Another example is the database created by Roth and Black [33] to study the
statistics of optical flow. Unlike databases used to test optical flow estimation, the
Roth and Black database does not include accompanying video sequences. Freed
from this constraint, Roth and Black generate optical flow for a wide variety

https://bitbucket.org/Cross_Product/optical_flow/
https://bitbucket.org/Cross_Product/optical_flow/

On the Nonlinear Statistics of Optical Flow 153

of natural scenes by pairing range images1 with camera motions. The resulting
optical flow can be calculated from the geometry of the static scene and of the
camera motion. The database includes only optical flow from static scenes seen
by a moving camera: no objects in the field of view move independently.

By contrast, the ground-truth Sintel optical flow database [14], which we
study in this paper, is computed directly from the film’s motion vectors; there
is no need to reconstruct the flow via computations from laser scans.

2.2 Optical Flow Applications

Optical flow estimation is most commonly used in computer vision tasks. Com-
puter vision is a process wherein a computer takes in visual data, analyzes the
data via various statistics (for example after estimating optical flow), and then
outputs information or a decision based on the data. Computer vision algo-
rithms utilizing the estimation of optical flow can be found in facial recognition
software [6], in driving autonomous cars [24], and in robotic tracking [26].

2.3 Optical and Range Image Work from the Topological
Perspective

We briefly describe a subset of papers that have analyzed the statistics of optical
images, range images, and optical flow from the perspective of computational
topology. Foundational papers in this area include [28], which proposes a circular
model for 3 × 3 optical image patches, and [17], which uses persistent homology
to extend this circular model to both a three-circle model and a Klein bottle
model for different dense core subsets.

The nonlinear statistics of range image patches (which contain a distance at
each pixel) will play an important role in our work. In [28], the authors observe
that high-contrast 3 × 3 range patches from [27] cluster near binary patches.
The paper [2] uses persistent homology to find that the densest range clusters
are arranged in the shape of a circle. After enlarging to 5 × 5 or 7 × 7 patches,
the entire primary circle in Fig. 2(a) is dense. The patches forming the range
primary circle are binary approximations to linear step edges; see Fig. 2(b).

Fig. 2. (Left) Range patch primary circle [2]. White regions are far; black regions are
near. (Right) The top row contains linear step edges; the bottom row contains their
range image binary approximations.

1 A range image contains a distance at each pixel.

154 H. Adams et al.

The paper [1] uses the nudged elastic band method to propose the horizontal
flow circle model for (horizontal) optical flow patches.

3 Topological Machinery

In this section we describe how to use only a finite sampling from some unknown
underlying space to estimate the underlying space’s topology. The first step is
to build a nested family of simplicial complexes, and the second is to apply per-
sistent homology. This is the same topological approach used to analyze optical
and range image patches in [2,17]. We refer the interested reader to [4,25] for
more information on homology, to [15,21,22,37] for introductions to persistent
homology, and to [3,8,11,12,19,29,34–36] for example applications of persistent
homology to sensor networks, machine learning, biology, medical imaging, etc.

3.1 Vietoris–Rips Complexes

Our nested complexes will be Vietoris–Rips simplicial complexes. The main idea
is to define all data points to be vertices of the complex, and to define a sim-
plex σ on each finite set of vertices within a given diameter. Indeed, let (X, d)
denote a metric space, and fix a scale parameter r ≥ 0. The Vietoris–Rips sim-
plical complex with vertex set X and scale parameter r, denoted VR(X; r), is
defined as follows. A finite subset σ = {x1, . . . , xn} ⊆ X is a face of VR(X; r)
whenever diam(σ) ≤ r (i.e., whenever sup1≤i≤j≤n{d(xi, xj)} ≤ r). By definition,
VR(X; r) ⊆ VR(X; r′) whenever r ≤ r′, so this family is indeed nested.

Let us consider an example. Let X be 21 points which (unknown to us) are
sampled with noise from a circle. Figure 3 contains four nested Vietoris–Rips
complexes built from X, with r increasing from left to right. The black dots
denote X. In (a), r is small enough that a loop has not yet formed. In (b), r is
such that we recover instead a figure-eight. In (c), VR(X; r) recovers a circle. In
(d), r is large enough that the loop has filled to a disk.

Fig. 3. Four nested Vietoris–Rips complexes, with β0 equal to 1 in all four complexes,
and with β1 equal to 0, 2, 1, and 0.

On the Nonlinear Statistics of Optical Flow 155

3.2 Persistent Homology

Betti numbers are one way of distinguishing between different topological spaces:
a necessary condition for two spaces to be homotopy equivalent is for all of their
Betti numbers to be equal. The k-th Betti number of a topological space, denoted
βk, is the rank of the k-th homology group. Roughly speaking, βk is the number
of “k-dimensional holes” in a space, where the number of 0-dimensional holes is
the number of connected components. For an n-dimensional sphere with n ≥ 1,
we have β0 = 1 and βn = 1.

Fig. 4. (Top) The 0-dimensional persistence barcode associated to the dataset in Fig. 3.
(Bottom) The 1-dimensional persistence barcode associated to the same dataset.

If we want to estimate the topology of the underlying space by the topology
of VR(X; r), the choice of r is important. However, without knowing the under-
lying space, we do not know how to make this choice. Hence, we use persistent
homology [22,37], which allows us to compute the Betti numbers over a range of
r-values and to display the result as a persistent homology barcode. See Fig. 4.

Persistent homology depends on the the fact that the map from a topological
space Y to its k-th homology group Hk(Y) is a functor. This means that for
r ≤ r′, the inclusion VR(X; r) ↪→ VR(X; r′)) of topological spaces induces a
map Hk

(
VR(X; r)

) → Hk

(
VR(X; r′)

)
between homology groups [21].

The horizontal axis in Fig. 4 contains the varying r-values. At a given scale
r, the Betti number βk is the number of intervals in the dimension k plot that
intersect the vertical line through scale r. In the dimension 0 plot, we see the
21 disjoint spaces joining into one connected component as r increases. The two
intervals in the dimension 1 plot correspond to the two loops that appear: each
interval begins when a loop forms and ends when that loop fills to a disk.

The topological profile of this example, β0 = 1 and β1 = 1, is obtained for
a long range of r-values in Fig. 4. The idea of persistent homology is that long
intervals in the persistence barcodes correspond to real topological features of
the underlying space. We often disregard short intervals as noise. Hence, this
barcode reflects the fact that our points X were noisily sampled from a circle.

156 H. Adams et al.

3.3 Zigzag Persistent Homology

Zigzag persistence [16,18] provides a generalization of the theory of persistent
homology. In zigzag persistence, the direction of maps along a sequence of topo-
logical spaces is arbitrary, as opposed to the unidirectional sequence of maps
in persistent homology. Given a large dataset Y , one may attempt to estimate
the topology of Y by instead estimating the topology of a number of smaller
subsets Yi ⊆ Y . Toward that end, consider the following diagram of inclusion
maps between subsets of the data.

Y1 ↪→ Y1 ∪ Y2 ←↩ Y2 ↪→ Y2 ∪ Y3 ←↩ Y3 ↪→ · · · ←↩ Yn. (1)

Applying the Vietoris–Rips construction at scale parameter r and k-dimensional
homology, we obtain an induced sequence of linear maps

Hk

(
VR(Y1; r)

)→ Hk

(
VR(Y1∪Y2; r)

)← Hk

(
VR(Y2; r)

) → · · · ← Hk

(
VR(Yn; r)

)

which is an example of a zigzag diagram. Crucially, such a sequence of linear
maps provides the ability to track features contributing to homology among the
samples Yi. In other words, generators for homology of two spaces VR(Yi; r) and
VR(Yi+1; r) which map to the same generator of Hk

(
VR(Yi ∪ Yi+1; r)

)
indicate

a feature common to both Yi and Yi+1. Hence, by tracking features common to
all samples Yi, one may estimate the topology of Y without explicitly computing
the persistent homology of the entire dataset.

3.4 Fiber Bundles

Our identification of a torus model for the MPI-Sintel optical flow dataset is
guided by the notion of a fiber bundle. Precisely, a fiber bundle is a tuple
(E,B, f, F), where E, B, and F are topological spaces and f : E → B is a
continuous map satisfying a so-called local triviality condition, described below.
We call B the base space, E the total space, and F the fiber. The local triviality
condition on f is as follows: given b ∈ B, there exists an open set U ⊆ B contain-
ing b and a homeomorphism ϕ : f−1(U) → U ×F such that projU ◦ϕ = f |f−1(U),
where projU denotes the projection onto the U–component. In other words, we
require f−1(U) to be homeomorphic to U ×F in a particular way. Therefore, for
any p ∈ B, we have f−1({p}) ∼= F . Locally, the total space E looks like B × F ,
while globally, a fiber bundle contains information about how these copies of the
fiber F may be “twisted”.

As an example, both the cylinder and the Möbius band may be realized as
fiber bundles with base space the circle S1, and with fibers the unit interval
[0, 1]. In the case of the Möbius band, the global structure of the fiber bundle
gives a “half twist” as one loops around the circle, whereas the global structure
of the cylinder does not contain a twist. Locally, however, both spaces look the
same, as each have the same fiber above each point of S1.

Analogously, both the torus and the Klein bottle may be realized as fiber
bundles over S1, with fibers homeomorphic to S1. In this case, the fibers of the
Klein bottle “twist” in a particular way, whereas the fibers of the torus do not.

On the Nonlinear Statistics of Optical Flow 157

In Sect. 5, we use persistent homology to provide evidence that the MPI-
Sintel dataset is naturally equipped with the structure of a fiber bundle over a
circle, with each fiber being a circle. It is not a priori clear whether this fiber
bundle model should be the orientable torus or the nonorientable Klein bottle;
indeed, the space of optical image patches as studied in [17] is well-modeled by
a Klein bottle. However, in Sect. 5.2, we provide evidence that this optical flow
fiber bundle is a torus.

4 Spaces of Flow Patches

The MPI-Sintel optical flow dataset [14] contains 1041 optical flow fields, each
1024 × 436 pixels. The dataset originates from the open-source animated film
Sintel [32], which contains a variety of realism-enhancing effects, including widely
varied motion, illumination, and blur. This data is extracted from 23 scenes of
indoor and outdoor environments, with up to 49 frames per scene.

We create spaces of high-contrast optical flow patches, X(k, p) or Xθ(k, p).
The version Xθ(k, p) includes only those optical flow patches whose predominant
angle is near θ ∈ [0, π). Our preprocessing is similar to that done in [2,17,28].

Step 1: We randomly choose 4 · 105 size 3 × 3 optical flow patches from the
MPI-Sintel database. Each patch is a matrix of ordered pairs, where ui and vi

are the horizontal and vertical components of the flow vector at pixel i.
⎡

⎣
(u1, v1) (u4, v4) (u7, v7)
(u2, v2) (u5, v5) (u8, v8)
(u3, v3) (u6, v6) (u9, v9)

⎤

⎦

For convenience, we rearrange each patch x to be a length-18 vector,
x = (u1, . . . , u9, v1, . . . , v9)T ∈ R

18. We define u and v to be the vectors of
horizontal and vertical flow: u = (u1, u2, . . . , u9)T and v = (v1, v2, . . . , v9)T .

Step 2: Let i ∼ j denote that pixels i and j are adjacent in the 3 × 3 patch.
For each patch x, we compute the contrast norm ‖x‖D by summing the squared
differences between all adjacent pixels and then taking the square root, namely:

‖x‖2D =
∑

i∼j

‖(ui, vi) − (uj , vj)‖2 =
∑

i∼j

(ui − uj)2 + (vi − vj)2 = uT Du + vT Dv.

Matrix D, which stores the adjacency information of the pixels in a 3× 3 patch,
is a symmetric positive definite 9 × 9 matrix given in [28].

Step 3: We select out the patches that have a contrast norm in the top 20% of
the entire sample; hence we are only studying high-contrast flow patches, which
we expect to follow a different distribution than low-contrast patches. After
doing so, we replace each patch x with its contrast-normalized patch x/‖x‖D;
this places each patch on the surface of an ellipsoid. We need not worry about
dividing by contrast norm zero, as such patches are not high-contrast.

158 H. Adams et al.

Step 4: We further normalize the patches to have zero average flow. For a
patch x, let ū = 1

9

∑9
i=1 ui be the average horizontal flow, and let v̄ = 1

9

∑9
i=1 vi

be the average vertical flow. We replace each contrast-normalized vector x with
(u1 − ū, . . . , u9 − ū, v1 − v̄, . . . , v9 − v̄)T . The purpose of studying mean-centered
optical flow patches is that one can represent any optical flow patch as its mean
vector plus a mean-centered patch.

Step 5: If we are computing Xθ(k, p) (as opposed to X(k, p)), then we com-
pute the predominant direction of each mean-centered flow patch, as follows. For
each 3 × 3 patch, construct a 9 × 2 matrix X whose i-th row is (ui, vi) ∈ R

2.
We apply principal component analysis (PCA) to X in order to retrieve the
principal component with the greatest component variance (i.e., the direction
that best approximates the deviation from the mean). The angle of this line (in
[0, π) or RP1) is defined to be the predominant direction of the patch. We select
out only those patches whose predominant direction is in the range of angles on
RP

1 = [0, π) from θ − π
12 to θ + π

12 .
Step 6: If we have more than 50,000 patches, then we randomly subsample

down to 50,000 random patches for the sake of computational feasibility.
Step 7: We now have at most 50,000 high-contrast normalized optical flow

patches. Instead of trying to approximate the topology of such a diverse space,
we restrict to dense core subsets. We use the density estimator ρk, where ρk(x)
is the distance from x to its k-th nearest neighbor. Note that ρk is inversely
proportional to density. Decreasing (or increasing) the choice of k produces a
more local (or global) estimate of density. We select out the top p% densest
points, based on the density estimator ρk. We denote this set of patches by
X(k, p) (or by Xθ(k, p), in the case where Step 5 is performed).

5 Results

5.1 The Horizontal Flow Circle

The dataset X(300, 30) is well-modeled by the horizontal flow circle, as identified
in [1] via the nudged elastic band method. We locate this circle by projecting
onto suitable basis vectors. Let e1, e2, . . . , e8 be the discrete cosine transform
(DCT) basis for 3 × 3 scalar patches, normalized to have mean zero and con-
trast norm one. This basis is given in [28]. For convenience, we rearrange each
ei to be a length-9 vector. Now, let z be the length-9 zero vector. For each

i = 1, 2, . . . , 8, we define optical flow vectors eu
i =

(
ei

z

)
and ev

i =
(

z
ei

)
. Note

that eu
i , ev

i ∈ R
18 correspond respectively to optical flow in the horizontal and

vertical directions. We change coordinates from the canonical basis for R
18 to

the 16 basis vectors eu
1 , . . . , eu

8 , ev
1, . . . , e

v
8. Some of these basis vectors are in

Fig. 6 (left). The projection of X(300, 30) onto basis vectors eu
1 and eu

2 , shown
in Fig. 5 (left), reveals the circular topology.

On the Nonlinear Statistics of Optical Flow 159

Fig. 5. (Left) Projection of X(300, 30) onto eu
1 and eu

2 . (Right) The horizontal flow
circle. The patch at angle α is cos(α)eu

1 + sin(α)eu
2 .

z

y

x

Fig. 6. (Left) In the e1 and e2 DCT patches, white pixels are positive and black neg-
ative. The arrows in the flow patches eu

1 , eu
2 , ev

1 , and ev
2 show the optical flow vector

field patch. (Right) Camera axes.

Let S1 denote the interval [0, 2π] with endpoints identified. The patches in
X(300, 50) lie near {cos(α)eu

1 + sin(α)eu
2 | α ∈ S1}, which we call the horizontal

flow circle. We will use the statistics of both the camera motion database and
the range image database to explain why the horizontal circle is high-density.

Camera motion can be decomposed into six sub-motions. The first three are
translation in the x, y, or z direction, commonly referred to as right-left, up-
down, or inward-outward translation. The remaining three are rotation about
the x, y, or z axis, commonly referred to as pitch, yaw, or roll. See Fig. 6 (right).
We will refer to θ ∈ S1 camera translation, by which we mean translation of
cos(θ) units to the right, sin(θ) units up, and no units inwards or outwards.
Some of the most common camera translations are when θ = 0 or π, i.e. when
the camera is translated to the left or right, for example if the camera is mounted
on a horizontally moving car or held by a horizontally walking human [33].

In [2] the authors find that high-contrast range patches are dense near the
range patch primary circle, defined as {cos(α)e1+sin(α)e2 | α ∈ S1} and depicted
in Fig. 2(a). Negative and positive pixel coordinates correspond, repectively, to
near and far.

Let us consider pairing the common θ = 0 or π camera translations with
primary circle range patches. Under camera translation in the xy plane, the flow
vector at a foreground pixel has the same direction but greater magnitude than at
a background pixel. After the mean-centering normalization in Step 4 of Sect. 4,

160 H. Adams et al.

a θ = 0 camera translation over the range patch cos(α)e1+sin(α)e2 produces the
optical flow patch cos(α)eu

1 +sin(α)eu
2 . Similarly, θ = π translation produces flow

patch − cos(α)eu
1 −sin(α)eu

2 . Hence θ = 0 or π translation applied to all primary
circle range patches produces the horizontal flow circle {cos(α)eu

1 +sin(α)eu
2 | α ∈

S1} (Fig. 5 (right)).

5.2 A Torus Model for Optical Flow

Define the map f : S1 × S1 �→ R
18 as follows. Given (α, θ) ∈ S1 × S1, let f(α, θ)

be the optical flow patch produced from θ camera translation over the primary
circle range patch cos(α)e1 + sin(α)e2. More explicitly,

f(α, θ) = cos(θ)
(
cos(α)eu

1 + sin(α)eu
2

)
+ sin(θ)

(
cos(α)ev

1 + sin(α)ev
2

)
. (2)

The horizontal flow circle is obtained by restricting to common camera motions
θ ∈ {0, π} and allowing α to vary. We hypothesize that when neither parameter
is restricted, a good model for flow patches is obtained. Hence we ask, what is
the image space im(f)?

Fig. 7. (Left) The domain of f , namely {(α, θ) ∈ S1 × S1}. (Middle, Right) The flow
torus im(f). The horizontal axis is the angle α, and the vertical axis is the angle θ
(respectively θ − α on the right). The horizontal flow circle is in red. (Color figure
online)

Fig. 8. Consider the set of image patches in Xθ(300, 50), projected to R
2 via the

orthogonal projection onto the basis vectors cos(θ)eu
1 + sin(θ)ev

1 (horizontal axis) and
cos(θ)eu

2 + sin(θ)ev
2 (vertical axis). The above image shows the resulting plots for θ =

0, π
6
, 2π

6
, 3π

6
, 4π

6
, 5π

6
. Note that each projection is a circle; we will later show these circles

group together to form a torus.

On the Nonlinear Statistics of Optical Flow 161

Consider Fig. 7 (left), which shows the domain of f , namely {(α, θ) ∈
S1 ×S1}. This space is a torus, obtained by identifying the outside edges
of the figure as indicated by the arrows. A sample patch on this torus
is shown in the insert to the right. The black and white rectangles are the
foreground and background regions, respectively, of the underlying range patch.
Parameter α is the angle of the line separating these regions. The black arrow
(>, ∨, <, or ∧) in the white rectangle is the direction θ of camera translation.
Together, the black and white arrows show the induced optical flow f(α, θ). In
Fig. 7 (left), parameter α varies in the horizontal direction, and parameter θ
varies in the vertical direction.

Fig. 9. The 1-dimensional persistent homology of Vietoris–Rips complexes of
Xθ(300, 30), computed in Ripser [9], confirms that these data sets are well-modeled
by a circle (one significant 1-dimensional feature in the top left of each plot). These
diagrams contain the same content as persistence intervals, just in a different format:
each point is a topological feature with birth scale and death scale given by its x and y
coordinates. Above we plot only two sample angles: θ = 3π

12
(left) and θ = 7π

12
(right).

Note that for two points (α, θ) and (α′, θ′) on the torus S1 × S1, we have

f(α, θ) = f(α′, θ′) ⇐⇒ (α, θ) = (α′, θ′) or (α, θ) = (−α′,−θ′). (3)

In other words, antipodal points in Fig. 7 (left) produce the same flow patch
under the map f . For instance, the horizontal flow circle in red appears twice
(note the top and bottom edges are identified).

The image space im(f) is homeomorphic to the quotient space {(α, θ) ∈
S1 × S1}/ ∼, where ∼ denotes the identification (α, θ) ∼ (−α,−θ). A torus
with antipodal points identified remains a torus, and we refer to im(f) as the
flow torus. See Fig. 7. The right and left edges of the middle image are identified
by shifting one upwards by half its length (not by twisting) before gluing. This
suggests a change of coordinates: in Fig. 7 (right) we plot the same flow torus,
except we replace the vertical parameter with θ − α. The horizontal flow circle
in red now wraps once around one circular direction and twice around the other.

We hypothesize that im(f), the flow torus, is a good model for high-contrast
optical flow. This is confirmed in part by Figs. 8 and 9, which show that for any

162 H. Adams et al.

angle θ, the patches Xθ(300, 30) (with predominant flow in direction θ) form a
circle. Together these circles group together to form a torus, equipped with the
structure of a fiber bundle. Indeed, the map from the torus to the predominant
angle θ of each patch is a fiber bundle with total space a torus, with base space
the circle of all possible predominant angles θ, and with each fiber a circle (arising
from the primary circle of range images in Fig. 2).

We do a zigzag persistence computation in order to confirm that the circular
fibers glue together to form a torus. Consider the following zigzag diagram.

X0(300, 50) ↪→ X0(300, 50) ∪ X π
12

(300, 50) ←↩ X π
12

(300, 50) ↪→ . . . ←↩ X 11π
12

(300, 50).

The one-dimensional zigzag persistence computation of Vietoris–Rips complexes
built on top of these datasets (see Fig. 10) shows that the circles piece together
compatibly into a fiber bundle structure.

In more detail, we construct the dense core subsets Xθ(300, 50) in twelve
different angle bins θ ∈ {0, π

12 , . . . 11π
12 }. For computational feasibility, we then

apply sequential maxmin downsampling [20] to reduce each set Xθ(300, 50) to
a subset of 50 data points. Based on Ripser computations we observe that the
persistent homology is robust with regard to this downsampling procedure. We
then build a zigzag filtration as described above, and use Dionysus [31] to com-
pute the zigzag homology barcodes in Fig. 10. The long interval confirms that
the circles indeed piece together compatibly. Furthermore, by checking that the
orientation on a generator for the 1-dimensional homology of X0(300, 50) is pre-
served after looping once around the circle, we confirm that this fiber bundle
structure is that of a torus (instead of a Klein bottle). We remark that another
way to verify that this fiber bundle is a torus instead of a Klein bottle would be
to use persistence for circle-valued maps [13] (on the map from the total space
to the circle that encodes the predominant angle θ of each flow patch).

Fig. 10. A 1-dimensional zigzag persistence computation, showing that the circles in
Fig. 8 glue together in the structure of a fiber bundle.

We would like to emphasize that the 2-dimensional flow torus model does
not model all common optical flow patches, such as zooming in, zooming out, or
roll (rotation around the z-axis in Fig. 6 (right)).

On the Nonlinear Statistics of Optical Flow 163

6 Conclusions

Using topological machinery, including persistent homology and zigzag persis-
tence, we explore the nonlinear statistics of high-contrast 3 × 3 optical flow
patches from the computer-generated video short Sintel. We find that with a
global estimate of density, the densest patches lie near a circle. Furthermore, after
selecting the optical flow patches whose predominant direction of flow lies in a
small bin of angle values, we find that the patches in each such bin are well-
modeled by a circle. Combining these bins together provides a torus model for
optical flow, which furthermore is naturally equipped with the structure of a fiber
bundle over a circular base space of range image patches. As no instrument can
measure ground-truth optical flow, an understanding of the nonlinear statistics of
flow is needed in order to serve as a prior for optical flow estimation algorithms.

Acknowledgements. We would like to thank Gunnar Carlsson, Bradley Nelson, Jose
Perea, and Guillermo Sapiro for helpful conversations.

References

1. Adams, H., Atanasov, A., Carlsson, G.: Nudged elastic band in topological data
analysis. Topological Methods Nonlinear Anal. 45(1), 247–272 (2015)

2. Adams, H., Carlsson, G.: On the nonlinear statistics of range image patches. SIAM
J. Imaging Sci. 2(1), 110–117 (2009)

3. Adams, H., et al.: Persistence images: a vector representation of persistent homol-
ogy. J. Mach. Learn. Res. 18(8), 1–35 (2017)

4. Armstrong, M.A.: Basic Topology. Springer, Heidelberg (2013). https://doi.org/
10.1007/978-1-4757-1793-8

5. Baker, S., Scharstein, D., Lewis, J., Roth, S., Black, M.J., Szeliski, R.: A database
and evaluation methodology for optical flow. Int. J. Comput. Vis. 92(1), 1–31
(2011)

6. Bao, W., Li, H., Li, N., Jiang, W.: A liveness detection method for face recognition
based on optical flow field. In: 2009 International Conference on Image Analysis
and Signal Processing, IASP 2009, pp. 233–236. IEEE (2009)

7. Barron, J.L., Fleet, D.J., Beauchemin, S.S.: Performance of optical flow techniques.
Int. J. Comput. Vis. 12(1), 43–77 (1994)

8. Baryshnikov, Y., Ghrist, R.: Target enumeration via euler characteristic integrals.
SIAM J. Appl. Math. 70(3), 825–844 (2009)

9. Bauer, U.: Ripser: a lean C++ code for the computation of Vietoris-Rips persis-
tence barcodes. Software (2017). https://github.com/Ripser/ripser

10. Beauchemin, S.S., Barron, J.L.: The computation of optical flow. ACM Comput.
Surv. (CSUR) 27(3), 433–466 (1995)

11. Bendich, P., Marron, J.S., Miller, E., Pieloch, A., Skwerer, S.: Persistent homology
analysis of brain artery trees. Ann. Appl. Stat. 10(1), 198 (2016)

12. Bubenik, P.: Statistical topological data analysis using persistence landscapes. J.
Mach. Learn. Res. 16(1), 77–102 (2015)

13. Burghelea, D., Dey, T.K.: Topological persistence for circle-valued maps. Discrete
Comput. Geom. 50(1), 69–98 (2013)

https://doi.org/10.1007/978-1-4757-1793-8
https://doi.org/10.1007/978-1-4757-1793-8
https://github.com/Ripser/ripser

164 H. Adams et al.

14. Butler, D.J., Wulff, J., Stanley, G.B., Black, M.J.: A naturalistic open source movie
for optical flow evaluation. In: Fitzgibbon, A., Lazebnik, S., Perona, P., Sato, Y.,
Schmid, C. (eds.) ECCV 2012. LNCS, vol. 7577, pp. 611–625. Springer, Heidelberg
(2012). https://doi.org/10.1007/978-3-642-33783-3 44

15. Carlsson, G.: Topology and data. Bull. Am. Math. Soc. 46(2), 255–308 (2009)
16. Carlsson, G., De Silva, V., Morozov, D.: Zigzag persistent homologyand real-valued

functions. In: Proceedings of the Twenty-Fifth annual Symposium on Computa-
tional Geometry, pp. 247–256. ACM (2009)

17. Carlsson, G., Ishkhanov, T., De Silva, V., Zomorodian, A.: On the local behavior
of spaces of natural images. Int. J. Comput. Vis. 76(1), 1–12 (2008)

18. Carlsson, G., de Silva, V.: Zigzag persistence. Found. Comput. Math. 10(4), 367–
405 (2010)

19. Chung, M.K., Bubenik, P., Kim, P.T.: Persistence diagrams of cortical surface data.
In: Prince, J.L., Pham, D.L., Myers, K.J. (eds.) IPMI 2009. LNCS, vol. 5636, pp.
386–397. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-02498-
6 32

20. De Silva, V., Carlsson, G.: Topological estimation using witness complexes. SPBG
4, 157–166 (2004)

21. Edelsbrunner, H., Harer, J.L.: Computational Topology: An Introduction. Ameri-
can Mathematical Society, Providence (2010)

22. Edelsbrunner, H., Letscher, D., Zomorodian, A.: Topological persistence and sim-
plification. In: 2000 Proceedings of 41st Annual Symposium on Foundations of
Computer Science, pp. 454–463. IEEE (2000)

23. Fleet, D., Weiss, Y.: Optical flow estimation. In: Paragios, N., Chen, Y., Faugeras,
O. (eds.) Handbook of Mathematical Models in Computer Vision, pp. 237–257.
Springer, Boston (2006). https://doi.org/10.1007/0-387-28831-7 15

24. Geiger, A., Lenz, P., Stiller, C., Urtasun, R.: Vision meets robotics: the KITTI
dataset. Int. J. Robot. Res. (IJRR) 32, 1231–1237 (2013)

25. Hatcher, A.: Algebraic Topology. Cambridge University Press, Cambridge (2002)
26. Horn, B.K., Schunck, B.G.: Determining optical flow. Artif. Intell. 17(1–3), 185–

203 (1981)
27. Huang, J., Lee, A.B., Mumford, D.B.: Statistics of range images. In: Proceedings of

the IEEE Conference on Computer Vision and Pattern Recognition, pp. 324–332
(2000)

28. Lee, A.B., Pedersen, K.S., Mumford, D.: The nonlinear statistics of high-contrast
patches in natural images. Int. J. Comput. Vis. 54(1–3), 83–103 (2003)

29. Lum, P., et al.: Extracting insights from the shape of complex data using topology.
Sci. Rep. 3, 1236 (2013)

30. Mac Aodha, O., Humayun, A., Pollefeys, M., Brostow, G.J.: Learning a confidence
measure for optical flow. IEEE Trans. Pattern Anal. Mach. Intell. 35(5), 1107–1120
(2013)

31. Morozov, D.: Dionysus. http://www.mrzv.org/software/dionysus2/
32. Roosendaal, T.: Sintel. Blender Foundation, Durian Open Movie Project (2010).

http://www.sintel.org/
33. Roth, S., Black, M.J.: On the spatial statistics of optical flow. Int. J. Comput. Vis.

74(1), 33–50 (2007)
34. de Silva, V., Ghrist, R.: Coordinate-free coverage in sensor networks with controlled

boundaries via homology. Int. J. Robot. Res. 25(12), 1205–1222 (2006)

https://doi.org/10.1007/978-3-642-33783-3_44
https://doi.org/10.1007/978-3-642-02498-6_32
https://doi.org/10.1007/978-3-642-02498-6_32
https://doi.org/10.1007/0-387-28831-7_15
http://www.mrzv.org/software/dionysus2/
http://www.sintel.org/

On the Nonlinear Statistics of Optical Flow 165

35. Topaz, C.M., Ziegelmeier, L., Halverson, T.: Topological data analysis of biological
aggregation models. PloS One 10(5), e0126383 (2015)

36. Xia, K., Wei, G.W.: Persistent homology analysis of protein structure, flexibility,
and folding. Int. J. Numer. Methods Biomed. Eng. 30(8), 814–844 (2014)

37. Zomorodian, A., Carlsson, G.: Computing persistent homology. Discrete Comput.
Geom. 33(2), 249–274 (2005)

Topological Homogeneity for Electron
Microscopy Images

Helena Molina-Abril1(B), Fernando Diaz del Rio1, Maria P. Guerrero-Lebrero2,
Pedro Real1, Guillermo Barcena2, Veronica Braza3, Elisa Guerrero2,

David Gonzalez3, and Pedro L. Galindo2

1 H.T.S. Informatics’ Engineering, University of Seville, Seville, Spain
habril@us.es

2 Department of Computer Science and Engineering, University of Cadiz,

11510 Puerto Real, Cadiz, Spain
3 University Research Institute on Electron Microscopy and Materials (IMEYMAT),

University of Cadiz, 11510 Puerto Real, Cadiz, Spain

Abstract. In this paper, the concept of homogeneity is defined, from a
topological perspective, in order to analyze how uniform is the material
composition in 2D electron microscopy images. Topological multireso-
lution parameters are taken into account to obtain better results than
classical techniques.

Keywords: Topology · Homogeneity · Electron microscopy · Images

1 Introduction

Microscopy imaging techniques are employed by scientists and researchers to
improve their ability to view the microscopic world. The obtained 2D images
are used to get information about structure and/or composition distributions
of the studied objects and one of the parameters to be usually required is the
analysis of the homogeneity. Certainly, the two-dimensional homogeneity ques-
tion crops up in many different scientific fields. Thus, in quality assurance pro-
grams, surface smoothness may be checked in different blocks of material. In
biological investigations, the density of a biological tissue may be recorded for
purposes of detecting regions of different contrasts [1]. In material science, elec-
tron microscopy images are used to evaluate the elemental distribution or strain
fields in order to characterize its structure.

In all these situations, the same issue arises. Given a two-dimensional matrix
of measurements, it is necessary to assess the randomness [2], the apparition of
patterns or microstructure, the lack of gradients, etc. in the image. The formula-
tion of this question overlooks any concept of a formal statistical distribution [5].

This work has been supported by the Spanish research projects MTM2016-81030-P,
TEC2012-37868-C04-02 (AEI/FEDER, UE) and the VPPI of the University of Seville.

c© Springer Nature Switzerland AG 2019
R. Marfil et al. (Eds.): CTIC 2019, LNCS 11382, pp. 166–178, 2019.
https://doi.org/10.1007/978-3-030-10828-1_13

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-10828-1_13&domain=pdf
https://doi.org/10.1007/978-3-030-10828-1_13

Topological Homogeneity for Electron Microscopy Images 167

The question is not how to characterize in a probabilistically way the observa-
tions [3,4]; rather it is to characterize how observations could relate with each
other locally. In this paper, the concept of homogeneity is defined, from a topolog-
ical perspective, in order to analyze the homogeneity in 2D electron microscopy
images. Topological multiresolution parameters are taken into account to obtain
better results than classical techniques.

2 Electron Microscopy Image Data

In recent years, GaAsSbN alloys have been established as an effective material
for solar cell applications. To solve the problems that are recurrent in quaternary
alloys, a new approach has been adopted by means of the growth of superlattice
(SL) structures. These SL structures consists in very thin layers epitaxially grown
that could give supplementary advantages over bulk counterparts, such as an
extra bandgap tunability via period thickness or better crystal qualities.

In this work, two SL structures have been studied before and after an
annealing at 800 ◦C: type-I (GaAsSbN/GaAs) and type-II (GaAsSb/GaAsN)
grown over a GaAs substrate. HAADF and LAADF images were simultaneously
acquired in STEM mode in a double aberration corrected FEI Titan3 Cubed
Themis operated at 200 kV and used to obtain distribution maps of N from a
methodology through the suitable normalization and discrimination of the inten-
sity ratios of HAADF and LAADF images [12]. Figure 1 shows these calculated
N mappings where (a) and (b) belong to type-I SL images (before and after RTA
process respectively) and (c) and (d) correspond to type-II SL images.

These mappings are built to characterize the distribution of N inside these
SL and find its relationship with the photoluminescence and photocurrent prop-
erties. Ideally, N should incorporate in a square-wave profile with a constant
and homogeneous composition obtained by random distribution of N in V-sites.
However, N competes for these lattice positions with As and Sb so there are
serious difficulties in the precise control of the Sb and N contents [7,11]. In addi-
tion, the extremely low solubility of N in these alloys could favors the formation
of N-rich regions [10,13,16]. All of this suggests that the growth of high quality
III-V-N structures may be difficult to achieve [7,8,14]. Several approaches has
been proposed to overcome these issues. On one hand, it is suggested the spatial
separation of Sb and N atoms as in type-II SL could avoid the ubiquitous growth
problems during the simultaneous growth of Sb and N that happens in type-I
improving crystal quality [9]. On the other hand, it is believed that post-growth
annealing processes may also increase the homogeneity of N within the layer by
decreasing composition fluctuations. In addition, device performance is a strong
function of the quality of the interfaces. The formation of atomically flat inter-
faces by suppressing surface undulations is fundamental to enhance their optical
properties [6,15]. In each case, to check the possible improvements of the crystal
quality, it is necessary to compare and evaluate both approaches and the effect
of the thermal annealing in terms of homogeneity.

The study of homogeneity, among others, could determine this close-
ness/distance of the ideal design. Until now, to calculate the homogeneity of

168 H. Molina-Abril et al.

Fig. 1. Mappings of the N distribution of type-I (a) and type-II (c) as grown and after
annealing (b) y (d), respectively. We used a grey scale, where white is indicative of the
highest N content and black of the lowest one.

these images, the standard deviation of the values has been used to estimate
it. The higher the standard deviation, the lower the homogeneity. However, this
procedure is too simple for 2D analyses, as they do not take into account the
possibility of regular gradients or patterns that may add a certain degree of
symmetry or order to the material, the presence or degree of clusters as well
as the abruptness or roughness of the interfaces. Considering all this, it seems
necessary to use topological techniques to define homogeneity in order to obtain
better results.

3 Related Works

Current methods dealing with the problem of measuring how far a given material
is from a constant composition, clearly fail when trying to analyze the homo-
geneity of 2D electron microscopy images.

Topological Homogeneity for Electron Microscopy Images 169

Linear homogeneity measures have been used in some cases for some simple
images. For example, the mean and standard deviation of the gray frequency
histogram can give an approximate idea of the two-dimensional homogeneity
when the set of images are very different in gray levels. However, for the general
case these simple values are not relevant at all. Some plain examples illustrate
this issue. Let us consider two 256×256 images with very different “homogeneity
aspects”. Firstly, a chessboard-like image with interlaced values of 0 and 255,
and secondly an image with two parts: one is pure black (0) and the other pure
white (255). Neither arithmetic mean nor standard deviation provide distinction
at all among these extreme cases (they are 127.500 and 127.501 resp.). We are
conscious that the concept of “homogeneity” is being intuitively expressed by
now, but the difference between both images obvious. Another almost homoge-
neous image where mean and deviation return paradoxically high values is an
image where each row has the gray level of the precedent plus one (in our case,
256 rows with grey from 0 to 255). In this case, mean results also in 127.500
and deviation in 73.901. Hence, it is clear that simple measures are not valid to
express the homogeneity of grey level images.

Here we present a topology-based method, in which standardized topological
numbers provide a robust quantity for measuring how uniform is the material
composition.

There have been another more sophisticated attempts in using digital topol-
ogy for measuring image’s homogeneity. One of the first one was presented in [19].
However, authors there did not provide a quantity for comparing homogeneity
among images, but a multiresolution representation that can be used for texture
characterization. More recent methods dealing with texture classification can be
seen in [17,20]. These works deal with texture classification by applying machine
learning algorithms to a set of features obtained from the image. Other more
complicated functionals have also been proposed for comparing noisy experi-
mental image data with statistical models (see [18]). However, to the best of our
knowledge, there are no results satisfying that: (1) Have been successfully applied
to Electron Microscopy Image data, and (2) provide a normalized homogeneity
measure for image comparison.

4 Topological Techniques

Let us first recall basic notions in the field of digital images and digital topology.
We denote by Z the set of relative integers. A point x ∈ Z

2 is defined by (x1, x2)
with xi ∈ Z. A 2D grayscale image may be seen as a map I from Z

2 to Z. For
each point x ∈ Z

2, I(x) is the (graylevel) intensity value of x. A binary 2D image
is then seen as the map B from Z

2 to {0, 1}.
For each point (pixel) in a given 2D image, we consider two local adjacency

relations Γ4 and Γ8 defined: For each point x ∈ Z
2:

Γ4(x) = {y ∈ Z
2; |y1 − x1| + |y2 − x2| ≤ 1}

Γ8(x) = {y ∈ Z
2;max(|y1 − x1|, |y2 − x2|) ≤ 1}

170 H. Molina-Abril et al.

In the following, we will denote by n a number such that n = 4 or n = 8.
We define Γ ∗

n(x) = Γn(x)\{x}. The point y ∈ Z
2 is n-adjacent to x ∈ Z

2 if
y ∈ Γn(x).

In this section, electron microscopy images will be analyzed from a topological
point of view, by first of all, creating their corresponding so called “crack images”.
Crack images are binary images created by considering each possible gray level
difference among adjacent pixels. That is, if the gray-scale of image I is composed
by G gray levels, we will create G − 1 binary crack images for image I (plus an
initial gray scale image denoted as ICrk

0). From now on, the number of possible
gray levels in a given image I will be denoted as G, and the different levels of
gray that are actually present in I will be denoted as g1, . . . gl. In the following
Figures with binary images, value zero will be represented in black color, and
value one in white color.

First of all, if I is a (Nrows × Ncols) image, a new gray-scale image ICrk
0

with ((2∗Nrows+1)× (2∗Ncols+1)) pixels is created by adding a black frame
of width 1 surrounding the original image, and adding a new pixel between each
pair of 4-adjacent pixels in I. All these added pixels are set to the following
values: Pixels belonging to the frame surrounding the original image are set to
zero, and will be denoted as F . Pixels added between each pixel in I are set to
one. These pixels in ICrk

0 will be denoted as A. All the other pixels (the ones
corresponding to the original image) are set to their corresponding value in I
and will be denoted as O. Figure 2(a) shows a synthetic image whose gray-scale
contains 6 levels that are all of them present in the image (G = 6, l = 6, g1 = 0
and g6 = 5). An example of its corresponding ICrk

0 image is depicted in Fig. 2(b),
where F are set to zero, A are set to one and O are set to their original values.
Then, for the construction of the corresponding crack images, the gray level will
be used as a threshold for checking intensity differences among each 4-adjacent
pixel in the original image.

Fig. 2. (a) Synthetic image I showing different gray intensities and (b) its correspond-
ing ICrk

0

Topological Homogeneity for Electron Microscopy Images 171

Algorithm 1 shows the process of crack images generation. The main idea
here, is that for each possible gray-value difference d, the corresponding crack
image ICrk

d represents fissures separating image regions whose gray-level differ-
ence is above (or equal to) this quantity d.

Algorithm 1. [Creating crack images]
Input: A digital 2D Image I in a gray-scale of G values

Generate ICrk
0 , and define pixels in A and pixels in O

for d = 1 to G do
for each point x ∈ A do

if ∃ y, z ∈ Γ ∗
4 (x) : y, z ∈ O and |ICrk

0 (y) − ICrk
0 (z)| >= d then

IC
d (x) = 0

for each point x ∈ A do
if ∃ y, z ∈ Γ ∗

4 (x) : y, z ∈ A, ICrk
d (y) = 0 and ICrk

d (z) = 0 then
ICrk
d (x) = 0

for each point x ∈ O do
n0 = #{y ∈ Γ ∗

8 (x) : ICrk
d (y) = 0}

n1 = #{y ∈ Γ ∗
8 (x) : ICrk

d (y) = 1}
if n0 > n1 then

IC
d (x) = 1

else
IC
d (x) = 0

Output:A set of G crack images ICrk
d

The corresponding crack images for the synthetic image in Fig. 2(a) are shown
in Fig. 3(a) to (e) for d = 1, d = 2, d = 3, d = 4 and d = 5 respectively. Note
that at the beginning of the algorithm, all the pixels inserted between two pixels
of the original image (denoted as A) are set to one in ICrk

0 . Taking for instance
d = 1, and following Algorithm1 the intensity difference among pixels is almost
always greater or equal to one, so most of the added pixels will change their
value to zero, giving as a result the image shown in Fig. 3(e) in which only six
of these added pixels remain unchanged (value equal to one, colored in white).

Once a crack image is created for each gray-level difference, the number of
connected black and connected white components are computed for each one
of them. These numbers, corresponding to the well known Betti numbers of
dimension 0 and 1 respectively, will be used a signature of the original image
homogeneity. More exactly, the normalized sum of these Betti numbers along
the gray spectrum is going to be demonstrated as a very robust measure of real
image homogeneity. From now on, these sums will be referred here as B0 (for
the black components) and B1 (for the white components).

The computation of a normalized sum of the well-known Euler number along
the gray spectrum, i.e. B1 − B0 in our notation, is shown in Algorithm2.
The resulting value will be the homogeneity index for the analyzed images.
Figure 3(f), shows the evolution of β0 and β1 with the progress of Algorithm 2

172 H. Molina-Abril et al.

Fig. 3. Crack images corresponding to image in Fig. 2(a) and the evolution of homo-
geneity measures along all the possible gray differences. The line with crosses represents
the β0 whereas line with circles the β1

(with d going from 1 to 5) for Image in Fig. 2(a). The evolution of β0 is repre-
sented with crosses, and the evolution of β1 with circles in the image.

According to previous construction of the crack images and homogeneity
measures, it is interesting to observe the behavior of extremal (homogeneous
vs. heterogeneous) images. Those images have the biggest and smallest B1 − B0

values respectively. These values, will be used for normalizing our B0 and B1

measures, so at the end, −1 ≤ B1 − B0 ≤ 1. On one hand, given a pure
homogeneous image (of any gray constant level), all its crack images are the
same (differing in size) as the one shown in Fig. 4(a). Analyzing β0 and β1 in
these crack images, we will obtain the maximum number of connected black

Topological Homogeneity for Electron Microscopy Images 173

Algorithm 2. [Computing the homogeneity measure]
Input: A set of ICrk

d Crack Images

B0 = 0, B1 = 0
for d = 1 to G do

β0 = Betti number of dimension 0 of ICrk
d

β1 = Betti number of dimension 1 of ICrk
d

B0 = B0 + β0

B1 = B1 + β1

B0 = Normalize(B0)
B1 = Normalize(B1)
Output:B1 − B0

components β0 and only one connected white component β1. Note that the sur-
rounding black frame inserts a black component that “touches” all the compo-
nents in the four image borders, thus the number of maximum connected black
components in the crack images is 1+(Nrows−2)∗(Ncols−2), and the number
of maximum connected white components is (Nrows) ∗ (Ncols), where Nrows
and Ncols are the number of rows and columns of the original image. In the same
way, the minimum number of connected black components and connected white
components is one. Therefore, the crack image shown in Fig. 4(a) corresponding
to a 5 × 5 homogeneous image, has β0 = 10 and β1 = 1.

On the other hand, Fig. 4(b) depicts the crack image for the maximum pos-
sible heterogeneous 5 × 5 image: a chessboard-like image with interlaced gray
values of g1 and gl. All the possible crack images for gray-level differences in
the range [1, (gl − g1)] result in the same form (that of Fig. 4(b)), thus having
the maximum number of white components (5 × 5 in this case) but only one
black component. Therefore, the crack image shown in Fig. 4(b) has β0 = 1 and
β1 = 25.

Fig. 4. (a) Crack image corresponding a homogeneous image. (b) Crack image corre-
sponding to a heterogeneous chess-like image.

174 H. Molina-Abril et al.

Thus, summing up β0 and β1 for any possible gray difference, in the case of an
homogeneous image, B1 has the minimum value (G − 1) (the result of summing
up G − 1 times the value one for β1 = 1), and B0 has the maximum value
(G∗(1+(Nrows−2)∗(Ncols−2))) where G is the number of possible gray-levels
in the original image. Therefore, the normalization of our homogeneity measure
B1−B0 will be commputed by dividing B0 by (G∗(1+(Nrows−2)∗(Ncols−2)))
and B1 by (G ∗ ((Nrows) ∗ (Ncols))). Doing that, we obtain B1 − B0 = 1 for
a purely heterogeneous image (a chessboard-like image with interlaced extreme
gray values) and B1 − B0 = −1 for a purely homogeneous image.

5 Experimentation

The relation between parameter B1 −B0 and homogeneity can be demonstrated
by analyzing random synthetic images with different maximum and minimum
gray levels. It is expected that those images with bigger gray contrasts between
their pixels will be more heterogeneous, whereas the images with similar gray
levels will present a high degree of homogeneity. Besides it is also required for a
good homogeneity parameter that the size of the image has no influence on its
value.

Table 1 shows the homogeneity results for different random gray-scale 28×28
images in which the maximum grey level has been modified. Figure 5 shows the
evolution of the number of holes and connected components when the contrast
is increased for the crack images of two synthetic random images. As stated in
previous section, the more contrast the crack image has, the more connected
components appear (that is, bigger β0) and the less holes are found (i.e., smaller
β1). It is worth to mention that the size of the image has a negligible influence
on the homogeneity values (slight variations because of the random generation
of the images). Therefore, we can conclude that the bigger B1 − B0 is, the more
heterogeneous the image is. No doubt that this analysis is far obvious for simple
images like those presented in Sect. 3 (chessboard-like image, an image with a
half part of pure black color and other in pure white, etc.).

Table 1. Homogeneity results for random 28 × 28 images varying the maximum gray
difference

Maximum grey level B1 − B0

10 −0.9735

50 −0.8645

100 −0.7257

150 −0.5883

200 −0.4655

255 −0.2908

Topological Homogeneity for Electron Microscopy Images 175

Fig. 5. (a) Representation of the number of holes and connected components vs. grey
level for the crack images of two synthetic random images with maximum gray inten-
sities of 100 (Left) and 255 (Right). The line with crosses represents the β0 whereas
line with circles the β1

Experimentation has been carried out using images described in Sect. 2. Four
of these images are shown in Fig. 1. Three samples of 100× 100 pixels belonging
to the white bands have been taken for each image (see Fig. 6 where samples (a)
correspond to Fig. 1(a), samples (b) to Fig. 1(b), etc.).

Fig. 6. Electron microscopy samples corresponding to images in Fig. 1

The resulting homogeneity measure B1 − B0 is shown in Table 2. As we can
see, B1−B0 values are very similar for any fragment extracted for the same image
(around −0.960 for image (a), around −0.950 for image (b), around −0.976 for
image (c) and around −0.972 for image d). More exactly, means for the three
segments of images (a), (b), (c) and (d) are −0.9600, −0.9497, −0.9762, −0.9719,
whereas standard deviation results to be 0.0007, 0.0006, 0.0006, 0.0010. This
clearly points out the robustness of the proposed homogeneity measure B1 −B0.

Besides, the resemblance of all B1 − B0 values and their proximity to −1.0
indicate that the white bands are very homogeneous for all the tested electronic
microscopy images. In fact, image histograms reveal that more than 95% of the

176 H. Molina-Abril et al.

pixels have less than 100 different gray levels. In order to distinguish more clearly
and with divergent measures these specific microscopy images, one can extend
the normalized sum of the Euler numbers to a narrower range. The range [1, 50]
is discovered to represent more than 99% of all the possible contrasts (that is, β0

reaches a value bigger than the 99% of its maximum). Computing the B1 − B0

for this reduced range we obtain Table 3.
As discussed in Sect. 3, we find also for these 4 images that the parameter

B1 − B0 has any relation neither with the standard deviation nor with the
mean. In Table 4 these linear values are presented for these images in order to
corroborate that they would arrange the images in a completely different order
than B1 − B0 would.

Finally, we can conclude for the microscopy images that they can be arranged
with respect to their homogeneity in this order (from smaller to bigger): b, a, d, c.
This parameter is currently helping microscopy imaging experts to analyze how
thermal processes affect the structure and/or composition of different material.

In future works we expect that the homogeneity parameter described here,
being a well defined and robust measure, would serve to analyze other images
where texture and regularity play an important role, like those of skin cancer,
granulometry, porosity materials, etc.

Table 2. Homogeneity results for samples in Fig. 6

Image (a)
B1 −B0

Image (b)
B1 −B0

Image (c)
B1 −B0

Image (d)
B1 −B0

Sample 1 −0.9603 −0.9504 −0.9769 −0.9708

Sample 2 −0.9592 −0.9495 −0.9759 −0.9723

Sample 3 −0.9605 −0.9492 −0.9758 −0.9727

Table 3. Homogeneity results for samples in Fig. 6 in the range [1, 50]

Image (a)
B1 −B0

Image (b)
B1 −B0

Image (c)
B1 −B0

Image (d)
B1 −B0

Sample 1 −0.7651 −0.7172 −0.8467 −0.8166

Sample 2 −0.7598 −0.7128 −0.8416 −0.8242

Sample 3 −0.7665 −0.7113 −0.8413 −0.8261

Table 4. Standard deviation and mean for samples in Fig. 6

Image (a) Image (b) Image (c) Image (d)

Standard deviation 45.0804 45.1256 37.4100 27.7506

Mean 194.4156 189.1598 159.2374 92.0668

Topological Homogeneity for Electron Microscopy Images 177

6 Conclusions

In this paper, the concept of homogeneity is defined, from a topological perspec-
tive, in order to analyze the homogeneity in 2D electron microscopy images. A
standardized topological number is provided as a robust quantity for measuring
how uniform is the material composition.

The proposed topological number has been applied to numerically analyze
the homogeneity of nitrogen distribution in composition maps obtained from
ADF STEM images in type I (GaAsSbN/GaAs) and type II (GaAsSb/GaAsN)
superlattice structures before and after RTA. A range of homogeneity between
the samples has been established. First, it is shown that the SL-I image gives a
parameter B1 − B0 higher than the SL-II. Secondly, our calculations show that
annealing treatment results in a significant increase in uniformity in both types of
SLs, i.e. better diffusion leads to a homogenization of the distribution of N within
the layer. Our analysis has revealed that this increase during RTA is higher in
SL-II than in SL-I and this result is in agreement with the photoluminescence
results.

Further work extending this measure to higher dimensions and considering
other more sophisticated topological relations will be performed in the future.
Extensions to other possible applications in which homogeneity measures might
be useful will be assessed as well (biomedical, astronomical images, etc.).

References

1. Miller, R.L., Kahn, J.S.: Statistical Analysis in the Geological Sciences. Wiley,
New York (1962)

2. Yaglom, A.M.: An Introduction to the Theory of Stationary Random Functions.
Prentice Hall, Englewood Cliffs (1962)

3. Materm, B.: Spatial variation. Comm. Swed. For. Res. Inst. 49, 144 (1960)
4. Ripley, B.: Spatial Statistics. Wiley, New York (1981)
5. Cramer, H., Leadbetter, M.R.: Stationary and Related Stochastic Processes. Wiley,

New York (1967)
6. Ahsan, N., Miyashita, N., Islam, M., Yu, K., Walukiewicz, W., Okada, Y.: Effect of

Sb on GaNAs intermediate band solar cells. IEEE J. Photovoltaics 3(2), 730–736
(2013)

7. Braza, V., et al.: Sb and N incorporation interplay in GaAsSbN/GaAs Epilayers
near lattice-matching condition for 1.0–1.16-eV photonic applications. Nanoscale
Res. Lett. 12(1), 356 (2017)

8. Cheah, W.K., Fan, W.J., Wicaksono, S., Yoon, S.F., Tan, K.H.: Low antimony-
doped GaNxAs1-x on GaAs grown by solid-source molecular-beam epitaxy. J.
Cryst. Growth 254(3–4), 305–309 (2003)

9. Gonzalo, A., et al.: Strain-balanced type-II superlattices for efficient multi-junction
solar cells. Sci. Rep. 7(1), 4012 (2017)

10. Ho, I.H., Stringfellow, G.B.: Solubility of nitrogen in binary III–V systems. J.
Cryst. Growth 178(1–2), 1–7 (1997)

11. Reyes, D.F., et al.: Modelling of the Sb and N distribution in type II
GaAsSb/GaAsN superlattices for solar cell applications. Appl. Surf. Sci. 442, 664–
672 (2018)

178 H. Molina-Abril et al.

12. Ruiz-Marin, N., et al.: Nitrogen mapping from (HA) ADF analysis in quaternary
dilute nitride superlattices 1 introduction. Appl. Surf. Sci. (in Review)

13. Stringfellow, G.B.: Thermodynamic considerations for epitaxial growth of III/V
alloys. J. Cryst. Growth 468, 11–16 (2017)

14. Wu, L.J., et al.: MBE growth and properties of GaAsSbN/GaAs single quantum
wells. J. Cryst. Growth 279(3–4), 293–302 (2005)

15. Wu, Z.H., et al.: Spontaneous formation of highly regular superlattice structure in
InGaN epilayers grown by molecular beam epitaxy. Appl. Phys. Lett. 98(14), 4–7
(2011)

16. Zhang, S.B., Wei, S.H.: Nitrogen solubility and induced defect complexes in epi-
taxial GaAs:N. Phys. Rev. Lett. 86(9), 1789–1792 (2001)

17. Barros Neiva, M., Vacavant, A., Martinez Bruno, O.: Improving texture extraction
and classification using smoothed morphological operators. Digit. Sig. Process. 83,
24–34 (2018)

18. Mantz, H., Jacobs, K., Mecke, K.: Utilizing Minkowski functionals for image anal-
ysis: a marching square algorithm. J. Stat. Mech. Theory Exp. 12, 12015 (2008)

19. Pikazi, A., Averbuch, A.: An efficient topological characterization of gray-levels
textures, using a multiresolution representation. Graph. Models Image Process.
59(1), 1–17 (1997)

20. Sonali Dash, S., Ranjan Jena, U.: Multi-resolution Laws’ Masks based texture
classification. J. Appl. Res. Technol. 15, 571–582 (2018)

Characterising Epithelial Tissues Using
Persistent Entropy

N. Atienza1, L. M. Escudero2,3, M. J. Jimenez1(B), and M. Soriano-Trigueros1

1 Departamento Matematica Aplicada I, Universidad de Sevilla,
Campus Reina Mercedes, 41012 Sevilla, Spain

{natienza,majiro,msoriano4}@us.es
2 Departamento de Bioloǵıa Celular, Universidad de Sevilla, Sevilla, Spain

3 Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocio,
CSIC, Universidad de Sevilla, 41013 Sevilla, Spain

lmescudero-ibis@us.es

Abstract. In this paper, we apply persistent entropy, a novel topologi-
cal statistic, for characterization of images of epithelial tissues. We have
found out that persistent entropy is able to summarize topological and
geometric information encoded by α-complexes and persistent homol-
ogy. After using some statistical tests, we can guarantee the existence of
significant differences in the studied tissues.

Keywords: Topological data analysis · Persistent entropy
Epithelial tissues

1 Introduction

Topological Data Analysis (TDA), originally, had its main motivation in the
study of topological analysis of point cloud data. Nowadays is becoming a pow-
erful tool for the study of shape of data, in its most general meaning. The
main tool used in TDA is persistent homology [4,16], which studies the evolu-
tion of homology classes and their life-times (persistence) in an increasing nested
sequence of spaces (that is called a filtration) and which is more informative that
the homology class of the whole space.

Persistent homology has proved to be a useful tool in the study of shape
analysis (in [9], some trends are described). Lately, most of the efforts in the area
have been focused on developing a vector representation (obtained via persistent
homology) that can be treated, afterwards, from machine learning point of view
(see, for example, [1]). Such approaches have got the drawback of the need of
large sample datasets, which is not usually the case in practice. For that reason,

Partially supported by MINECO, FEDER/UE under grant MTM2015-67072-P.
Authors names are listed in alphabetical order.

c© Springer Nature Switzerland AG 2019
R. Marfil et al. (Eds.): CTIC 2019, LNCS 11382, pp. 179–190, 2019.
https://doi.org/10.1007/978-3-030-10828-1_14

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-10828-1_14&domain=pdf
https://doi.org/10.1007/978-3-030-10828-1_14

180 N. Atienza et al.

we are concerned with exploring the power of persistent entropy, which is a
simple parameter that can be obtained from persistent homology and can be
statistically studied.

Our main contribution is the application of persistent entropy as a tool for
the characterization of biological tissues.

In the following Section, we describe the biological problem that motivated
this work. Section 3 recalls main concepts from TDA that will be used in the
sequel. Section 4 describes the particular way in which we make use of persis-
tent homology concepts to topologically analyze the input data. Reports on the
computations performed as well as some conclusions are collected in Sect. 5. We
draw some ideas for future work in the last section.

2 Motivation

Epithelial cells are cells from animal embryos that will transform into one of
the 4 types of adult tissues: epithelia, connective tissue, nervous tissue and mus-
cle tissue. Epithelia are packed tissues formed by tightly assembled cells. Their
apical surfaces are similar to convex polygons forming a natural tessellation.
Epithelial organization has been analyzed in various systems from a topological
and biophysical perspective [8,10,13,14]. These studies have been mainly based
in the analysis of the polygon distribution of the tissues. A new approach has
just been developed in [15], were the authors have provided an image analy-
sis tool (implemented in the open-access platform FIJI) to quantify epithelial
organization based in computational geometry and graph theory concepts.

Another work that has to be mentioned is [12], where the authors make use
of some image processing tools, like morphological gradient, to classify coating
epithelial cells into three different types.

In [11], the authors first applied persistent homology, looking for other organi-
zational traits that could improve the characterization of epithelia. Some initial
experiments were described, working on two types of tissues: chick neuroep-
ithelium (cNT) from chicken embryos and wing imaginal disc in the prepupal
stage (dWP) from Drosophila. However, we would like also to compare the latter
(dWP) with middle third instar wing discs (dWL), which are two proliferative
stages separated by 24 h development (and hence, with very similar organiza-
tion). In this paper, we are concerned with the study of the discriminative abil-
ity of persistent entropy, discovering statistically significant differences between
images of the three tissues. This work may open a door to the inclusion of per-
sistent entropy as one more parameter to be taken into account in analysis tools
like [15].

3 Background

The input used more frequently in topological data analysis is a point cloud in
a metric space. In particular, we will work with points in the Euclidean space
R

2 obtained from images. The procedure when applying persistent homology

Characterising Epithelial Tissues Using Persistent Entropy 181

is the following. First, transform the information carried by the point cloud
into a sequence of geometric figures called a filtration of simplicial complexes.
Then, compute the homology (which intuitively can be seen as “holes”) for each
simplicial complex and track how it evolves along the filtration. Finally, use a
suitable way of representing the output and apply statistical methods to reach
the conclusions.

In this section we will define briefly these concepts. For a more concise intro-
duction the reader could refer to [5].

Simplicial Complex. A simplex is the convex hull of a finite set of linearly inde-
pendent points τ = {p1, . . . , pn}. Any of the possible simplices contained in τ are
called its faces. A simplicial complex K is formed by a set of simplices satisfying:

1. Every face of a simplex in K is also in K.
2. The intersection of two simplices in K is a face of both.

Filtration. A filtration is a finite increasing sequence of simplicial complexes

K1 ⊂ K2 . . . ⊂ Kn = K
It is commonly defined using a monotonic function f : K → R by which we mean
that for δ, τ ∈ K, f(δ) ≤ f(τ) if δ ⊂ τ . In this way, if a1 ≤ . . . ≤ an are the
function values of the simplices in K, then Ki = f−1(−∞, ai].

Persistent Homology. The inclusion Ki ⊂ Ki+1 induces a linear map between
vector spaces H∗(Ki) → Hn(Ki+1), where Hn is the homology of dimension n.
Intuitively when a homology class disappears (i.e., it is in Ki but not in Ki+1

for some i), we say that it dies at time i. When a homology class appears by the
first time (i.e., it is in Ki but not in Ki−1 for some i), we say that it has been
born at time i.

Barcodes. The fact that an homology class is born at time i and dies at j can be
represented by an interval (i, j). Then, the output of persistent homology can be
represented as a multiset {(i, j)}, where (i, j) are birth-death values of arising
homology classes. This is usually represented using barcodes as in Fig. 1.

Persistent Entropy. Persistence barcodes represent reliably the persistent homol-
ogy output that could be treated statistically. However, the statistical tools used
should be stable and robust to noise in the input data. Under this premise, we
make use of persistent entropy [3], which can be defined as an adaptation of
Shannon entropy to this context.

Represent the multiset of birth and death using pairs {(xi, yi)}ni=1 (note that
there might be repeated pairs). Consider the length of each of them �i = yi − xi

and the total length L = �1 + . . .+ �n. Then, the persistent entropy of a barcode
is the value

E = −
n∑

i=1

�i
L

log(
�i
L

).

182 N. Atienza et al.

Fig. 1. Top: example of a filtration K. Bottom: barcodes representing connected com-
ponents (0-th dimensional Betti numbers) and cycles (1-th dimensional).

The maximum possible value of persistent entropy is log(n) and is reached when
all intervals have the same length. The minimum value is 0 and coincides with
the case n = 1. In general, the greater the number of intervals is and the more
homogeneous they are, the greater the persistent entropy is.

The following result guarantees that persistent entropy is robust to small
perturbations in the input data (the proof appears in [2]). Before, we need
some notation remarks: consider two barcodes {Bj}j=1,2, given by Bj =
{(xj

i , y
j
i)}i=1...nj

. The lengths of the bars are �ji = yj
i − xj

i and their total length
Lj = �j1 + . . . �jnj

. We denote the bottleneck distance for barcodes as d∞.

Theorem 1. Let K be a simplicial complex and let f1, f2 : K → R be two mono-
tonic functions, B1,B2 their corresponding barcodes and nmax = max{n1, n2}.
Then, if d∞(B1, B2) ≤ 1

8
max{L1,L2}

nmax
and ||f1 − f2|| ≤ δ, we have:

|E(B1) − E(B2)| ≤ 4δnmax

max{L1, L2}
[
log(nmax) − log

(
4δnmax

max{L1, L2}
)]

.

In other words, this theorem implies that if a maximum number of bars and
a minimum length are fixed, then persistent entropy is uniformly continuous
respect to the maximum norm of filter functions.

4 Methodology

In this section we will explain the steps involved in the method developed in this
paper:

1. Normalize each image so that they all have the same number of cells.
2. Consider the point cloud given by the centroids of the cells.

Characterising Epithelial Tissues Using Persistent Entropy 183

3. Construct a simplicial complex called Delaunay Triangulation and a filtration
on it, called the α-complex, from the point cloud.

4. Compute its persistent homology and persistent entropy.
5. Perform a statistical study and analyze the results.

The input is an image with 1024 × 1024 pixels. This image is a gray scale
image in which each segmented region corresponding to a cell has been labeled
with an ID number and pixels on the boundary of cells are labeled by 0. In any
case, the images from the database were revised manually to remove small noise
and abnormal situations like disconnected cells. In fact, in practice, boundaries
of regions are made up by a (at least) 2-pixels thick edge of 4-connected pixels
what ensures a good separation of connected components representing each cell.

Now, we further develop some steps in the process:
As for Step 1, an important drawback when using persistent entropy is that

the number of cells affects its value. Then, if we want to measure topological
features using this parameter, we need to have the same number of cells for
each sample. This way, under the assumption that cells have a homogeneous
distribution across the images, we have designed the next algorithm:

Input: n ∈ N and M ∈ (N0)1024×1024.
Output: A set C of n cells.
C := ∅
x = y = 512
i f M(x, y) �= 0

C := {M(x, y)}
i = 0
whi le #C < n

i = i+1
Repeat i t imes

i f #C < n
y := y + (−1)i+1

i f M(x, y) �= 0 and M(x, y) /∈ C
then C := C ∪ {M(x, y)}

Repeat i t imes
i f #C < n

x := x + (−1)i

i f M(x, y) �= 0 and M(x, y) /∈ C
then C = C ∪ {M(x, y)}

The starting point and the orientation do not pursuit any special goal. Their
choice has been arbitrary and has been taken always the same for all the images.
This fact does not affect the independence of samples. Figure 2 (bottom) shows
a simple example in which, taking as input n = 6 and the depicted pixel values,
the output set of cells would be C = {4, 3, 5, 8, 1, 7}.

Centroids of the cells are obtained using the Matlab command regionprops.
Regarding Step 3, the main difficulty of this methodology is finding the proper
filtration to distinguish the cell tissues: α-complex represents a good approxi-
mation for cells which are close to be convex. Therefore, this study will focus

184 N. Atienza et al.

7 0 3 3 0 1 1

0 0 3 0 0 0 1

5 0 0 0 4 0 0

5 5 0 4 4 0 9

5 0 0 0 0 0 0

0 0 0 0 0 8 8

6 6 6 0 8 8 8

Fig. 2. Top picture illustrates the intuition behind the algorithm to restrict to a proper
number of cells. Bottom: flow of the process at pixel level. Each pixel value is the label
corresponding to each segmented cell, while label 0 means boundary pixels.

in epithelial cells with this property. Nevertheless, we plan to design in future
a new and more general filtration, as mentioned in Sect. 6. Here, we recall the
basic concepts involved in the construction of an α-complex:

Voronoi Diagram. A Voronoi Diagram is a partitioning of the plane depending
on a set of vertices. For each vertex vi and x ∈ R

2 we define the function
fi(x) = d(vi, x) and a region given by

Vi = {x | fi(x) ≤ fj(x) ∀j}.

We will define a filtration in the following simplicial complex: consider a
finite set of points; an edge joins two vertices if the intersection of their Voronoi
regions is not empty; the 2-simplices are formed when three points have all
possible edges between them. When the points are in general position, there are

Characterising Epithelial Tissues Using Persistent Entropy 185

no simplex with greater dimension and it is called a Delaunay triangulation.
Nevertheless, as we are only interested in dimension 0 and 1 we do not need
general position assumption and just ignore the higher dimensional simplices.

Alpha Complex. Define Bi
r as the ball of center ui and radius r. For each r,

consider the region U i
r = Bi

r ∩ Vi and define the simplicial complex Kr with
simplices

τ = [u0 . . . uk] ∈ Kr ⇔ U i
r ∩ U j

r �= ∅ i, j = 0 . . . k.

This filtration is called α-complex. See Fig. 3 for a picture.

Fig. 3. Example of an Alpha Complex for a fixed r appearing in [5].

In our context, the starting points will be the centroids of the cells. After
computing their α-complex, we compute persistent entropy from persistence bar-
codes and make a statistical analysis of the results, what will be detailed in the
next section.

5 Experiments and Results

Our database consists on 16 images of chick neuroepithelium (cNT), 15 images
of Drosophila wing imaginal disc from the third instar larva (dWL) and 13 from
the prepual state (dWP). All the images are obtained in a standard way. More
information about the database is available in [6].

Table 1. Number of cells in each picture.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

cNT 666 661 565 573 669 532 419 592 743 527 594 473 704 747 469 834

dWL 426 555 491 522 510 936 890 789 977 913 604 835 785 747 622

dWP 748 805 566 414 454 654 751 713 503 430 516 413 455

186 N. Atienza et al.

Fig. 4. A dWL image (top-left) and a dWP image (top-right) and their corresponding
barcodes at the bottom row.

8.0

8.2

8.4

8.6

8.46 8.50 8.54
PE0

PE
1

Tissue
cNT
dWL
dWP

0 and 1 dimensional PE

9.3

9.4

9.5

cNT dWL dWP
Tissue

PE
Al

l Tissue
cNT
dWL
dWP

PE of all dimensions

Fig. 5. The left image displays PE0 versus PE1 and the right one PEall of the three
groups of epithelial tissues.

Characterising Epithelial Tissues Using Persistent Entropy 187

Table 2. These are the entropy values obtained for each of the barcodes in each image
of dimension 0 (PE0), dimension 1 (PE1) and dimension 0 and 1 together (PEall)

cNT dWL dWP

PE0 PE1 PEall PE0 PE1 PEall PE0 PE1 PEall

1 8.472098 8.054819 9.271538 8.530091 8.314505 9.405349 8.532141 8.544773 9.485134

2 8.510505 8.211333 9.354456 8.499180 8.373499 9.405761 8.528216 8.590107 9.497458

3 8.501578 8.189123 9.340218 8.474973 8.558060 9.450642 8.565301 8.592294 9.528683

4 8.494586 8.224712 9.349211 8.500253 8.321634 9.389122 8.528192 8.113923 9.330351

5 8.467424 8.035914 9.262924 8.518621 8.320296 9.397914 8.541004 8.540452 9.493262

6 8.476784 8.072562 9.280356 8.487827 8.429975 9.416421 8.539995 8.333815 9.421127

7 8.465893 8.109965 9.287608 8.489042 8.327057 9.382901 8.491693 8.337785 9.389088

8 8.496788 8.167088 9.327743 8.522213 8.354212 9.413363 8.551742 8.549792 9.501880

9 8.469002 8.121784 9.294830 8.469478 8.363328 9.382133 8.540177 8.532990 9.490416

10 8.495054 8.224863 9.347665 8.494662 8.436416 9.423835 8.525426 8.558831 9.490213

11 8.431788 7.977363 9.216531 8.560159 8.559574 9.507645 8.537906 8.498011 9.474403

12 8.491598 8.082377 9.294716 8.474200 8.436416 9.406070 8.552638 8.432509 9.459623

13 8.458547 8.169347 9.304405 8.540980 8.468567 9.466096 8.557452 8.404452 9.454019

14 8.482832 8.151599 9.314709 8.530418 8.486440 9.463861

15 8.478163 8.092100 9.289523 8.544339 8.389995 9.440765

16 8.429276 7.992755 9.222562

Table 3. Kruskal-Wallis Test for comparing the persistent entropies of the processed
tissue images.

KWT PE0 PE1 PEall

p-value 1.427e−05 5.768e−07 2.005e−07

Table 4. Dunn Test for comparing the persistent entropies of the processed tissue
images.

DT p-value
adjusted

dWL vs dWP cNT vs dWL dWP vs cNT

PE0 0.02671554 0.01600541 7.574294e−06

PE1 0.3271768 5.791831e−05 2.162007e−06

PEall 0.1537159 1.024837e−04 3.865447e−07

The number of cells of each image is shown in Table 1. As explained before,
We need to fix a number of cells before the experiment. We choose n = 400 since
this is, approximately, the minimum number of cells appearing in the different
samples.

After selecting 400 cells from each image and taking their centroids, we com-
pute their Alpha Complex and persistent homology using the R package [7]. See

188 N. Atienza et al.

8.46

8.50

8.54

cNT dWL dWP

Tissue

cNT

dWL

dWP

PE of dimension 0

8.0

8.2

8.4

8.6

cNT dWL dWP

Tissue

cNT

dWL

dWP

PE of dimension 1

9.3

9.4

9.5

cNT dWL dWP

Tissue

cNT

dWL

dWP

PE of All dimensions

Fig. 6. From top to bottom, the botplox of persistent entropy of dimensions 0, 1 and
0 and 1 together.

Characterising Epithelial Tissues Using Persistent Entropy 189

Fig. 4 for two examples of processed images and corresponding barcodes. The
later statistical analysis and plots are computed using R as well. Then, we cal-
culate their persistent entropy and display it in Table 2. The whole code used in
the process can be found here http://grupo.us.es/cimagroup/downloads.htm.

First, we perform a small descriptive statistical study. In Fig. 5 we display
PE0 versus PE1 in one window and PEall in the other one. Although cNT, dWL
and dWP are not perfectly separated, they seem to follow different distributions.
These differences are clarified by the boxplots of Fig. 6.

Thanks to the boxplot representation, it is clear that there may exist differ-
ences between the three groups. In order to sustain this idea, we perform the
non-parametric multivariate test Kruskal-Wallis to see if there are differences
between the three groups simultaneously. After that, we perform a Dunn Test to
see the pairwise differences. We will consider that the topology of the cell orga-
nization produces different distributions of persistent entropy when the p-value
is smaller than 0.05. Our results are shown in Tables 3 and 4.

PEall has the best p-value when using the Kruskal-Wallis Test although it
cannot differentiate dWP and dWL in the Dunn test. The other variables give
a small p-value as well in Kruskal-Wallis, being PE0 the only one distinguishing
all tissues pairwise and PE1 the best for separating cNT from dWL.

6 Conclusions and Future Work

We have shown the potential of persistent entropy as a useful topological statis-
tic. In particular, we have applied it to images of three different cellular tissues
(cNT, dWL, dWP) to find significant differences between them.

One of the main problems of this technique is that not all epithelial tissues
are well approximated using α-complexes. Therefore, it would be interesting to
define new filtrations using proper cell regions instead of the Voronoi diagram
and their centroids. This would allow us to study more epithelial tissues in which
the cells are not convex-like.

The initial good results presented here may open a door to the inclusion of
persistent entropy as one more parameter to be taken into account in analysis
tools like [15].

References

1. Adams, H., et al.: Persistence images: a stable vector representation of persistent
homology. J. Mach. Learn. Res. 18, 1–35 (2017)

2. Atienza, N., Gonzalez-Diaz, R., Soriano-Trigueros, M.: On the stability of persis-
tent entropy and new summary functions for TDA (Preprint). https://arxiv.org/
abs/1803.08304

3. Chintakunta, H., Gentimis, T., Gonzalez-Diaz, R., Jimenez, M.J., Krim, H.: An
entropy-based persistence barcod. Pattern Recogn. 48(2), 391–401 (2015)

4. Edelsbrunner H., Letscher D., Zomorodian A.: Topological persistence and simpli-
fication. In: FOCS 2000, pp. 454–463. IEEE Computer Society (2000)

http://grupo.us.es/cimagroup/downloads.htm
https://arxiv.org/abs/1803.08304
https://arxiv.org/abs/1803.08304

190 N. Atienza et al.

5. Edelsbrunner, H., Harer, J.L.: Computational Topology: An Introduction. Ameri-
can Mathematical Society, Providence (2010)

6. Escudero, L.M., Costa, L.d.F., Kicheva, A., Briscoe, J., Freeman, M., Babu, M.M.:
Epithelial organisation revealed by a network of cellular contacts. Nat. Commun.
2, 526 (2011)

7. Fasy, B.T., Kim, J., Lecci, F., Maria, C., Rouvreau, V., The included GUDHI is
authored by Maria, C., Dionysus by Morozov, D., PHAT by Bauer, U., Kerber, M.,
Reininghaus, J.: TDA: Statistical Tools for Topological Data Analysis. R Package
Version 1.6 (2017). https://CRAN.R-project.org/package=TDA

8. Farhadifar, R., Roper, J.C., Aigouy, B., Eaton, S., Julicher, F.: The influence of
cell mechanics, cell-cell interactions, and proliferation on epithelial packing. Curr.
Biol. 17(24), 2095–2104 (2007)

9. Ferri, M.: Progress in persistence for shape analysis (extended abstract). In: Bac,
A., Mari, J.-L. (eds.) CTIC 2016. LNCS, vol. 9667, pp. 3–6. Springer, Cham (2016).
https://doi.org/10.1007/978-3-319-39441-1 1

10. Gibson, M.C., Patel, A.B., Nagpal, R., Perrimon, N.: The emergence of geometric
order in proliferating metazoan epithelia. Nature 442(7106), 1038–1041 (2006)

11. Jimenez, M.J., Rucco, M., Vicente-Munuera, P., Gómez-Gálvez, P., Escudero,
L.M.: Topological data analysis for self-organization of biological tissues. In:
Brimkov, V.E., Barneva, R.P. (eds.) IWCIA 2017. LNCS, vol. 10256, pp. 229–242.
Springer, Cham (2017). https://doi.org/10.1007/978-3-319-59108-7 18

12. Mazo, C., Trujillo, M., Salazar, L.: Automatic classification of coating epithelial tis-
sue. In: Bayro-Corrochano, E., Hancock, E. (eds.) CIARP 2014. LNCS, vol. 8827,
pp. 311–318. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-12568-
8 38

13. Sánchez-Gutiérrez, D., Tozluoglu, M., Barry, J.D., Pascual, A., Mao, Y., Escudero,
L.M.: Fundamental physical cellular constraints drive self-organization of tissues.
The EMBO J. 35(1), 77–88 (2016)

14. Shraiman, B.I.: Mechanical feedback as a possible regulator of tissue growth. Proc.
Natl. Acad. Sci. USA 102(9), 3318–3323 (2005)

15. Vicente-Munuera, P., Gomez-Galvez, P., Tagua, A., Letran, M., Mao, Y.,
Escudero, L.M.: EpiGraph: an open-source platform to quantify epithelial orga-
nization. BioRxiv:217521, https://doi.org/10.1101/217521

16. Zomorodian, A., Carlsson, G.: Computing persistent homology. Discret. Comput.
Geom. 33(2), 249–274 (2005)

https://CRAN.R-project.org/package=TDA
https://doi.org/10.1007/978-3-319-39441-1_1
https://doi.org/10.1007/978-3-319-59108-7_18
https://doi.org/10.1007/978-3-319-12568-8_38
https://doi.org/10.1007/978-3-319-12568-8_38
https://doi.org/10.1101/217521

Author Index

Adams, Henry 151
Adilkhanov, A. N. 1
Atienza, N. 179

Barcena, Guillermo 166
Batavia, Darshan 12
Braza, Veronica 166
Bush, Johnathan 151

Carr, Brittany 151
Casablanca, Rocio M. 12
Choi, Hongyoon 110
Chung, Moo K. 110
Čomić, Lidija 54

Damiand, Guillaume 26
Dey, Tamal K. 123
Díaz del Río, Fernando 68, 82, 166

Escudero, L. M. 179

Futagami, Rentaro 40

Galindo, Pedro L. 166
Gonzalez, David 166
González-Díaz, Rocío 12, 26, 96
Guerrero, Elisa 166
Guerrero-Lebrero, Maria P. 166

Ha, Seunggyun 110
Hou, Tao 123

Jimenez, M. J. 179

Kang, Hyejin 110
Kassab, Lara 151
Kim, Yu Kyeong 110
Kropatsch, Walter G. 12
Kurlin, Vitaliy 137

Lee, Dong Soo 110
Lee, Hyekyoung 110

Mandal, Sayan 123
Mirth, Joshua 151
Molina-Abril, Helena 68, 82, 166
Muszynski, Grzegorz 137

Onchis, Darian 68

Paluzo-Hidalgo, Eduardo 96
Pavlov, A. V. 1

Quesada, José F. 96

Real, Pedro 68, 82, 166

Shibuya, Takeshi 40
Soriano-Trigueros, M. 179

Taimanov, I. A. 1

Yamada, Noritaka 40

	Preface
	Organization
	Contents
	Discrete Analog of the Jacobi Set for Vector Fields
	1 Introduction
	2 The Piecewise Linear Jacobi Set
	3 The Piecewise Linear Jacobi Set for Vector Fields
	References

	Computing and Reducing Slope Complexes
	1 Introduction
	2 Preliminaries
	3 Slope Complexes
	4 Creating Slope Complexes
	5 Merging of Slope Complexes
	6 On the 1-Skeleton of a Slope Complex
	6.1 Forest of Saddles
	6.2 Graph of Extrema
	6.3 Operations Required to Generate a Minimal Slope Complex

	7 Conclusions and Future Work
	References

	Persistent Homology Computation Using Combinatorial Map Simplification
	1 Introduction
	2 Preliminary Notions
	2.1 2D Combinatorial Maps
	2.2 Persistent Homology

	3 Computing Persistence
	3.1 2-Map Simplification
	3.2 Filtration
	3.3 Computation of Persistent Homology

	4 Experiments
	5 Conclusion
	References

	Inferring Underlying Manifold of Data by the Use of Persistent Homology Analysis
	1 Introduction
	2 Persistent Homology
	2.1 Inferring Underlying Manifold by Persistent Homology
	2.2 Related Works
	2.3 Purpose of This Study

	3 Proposed Method
	3.1 Restriction of the Proposed Method

	4 Experiments
	4.1 Torus
	4.2 Noisy Torus
	4.3 High Dimensional Image Data

	5 Conclusion
	References

	Gaps and Well-Composed Objects in the Triangular Grid
	1 Introduction
	2 Preliminaries
	2.1 Regular Grids in the Plane
	2.2 The Euler Characteristic of 2D Digital Objects
	2.3 Gaps and Well-Composed Objects in the Square Grid
	2.4 The Number of Gaps in the Square Grid

	3 Gaps in the Triangular Grid
	4 Well-Composed Objects in the Triangular Grid
	5 The Number of Gaps in the Triangular Grid
	6 Summary and Future Work
	References

	Generating Second Order (Co)homological Information within AT-Model Context
	1 Introduction
	1.1 Related Works

	2 Cell Complexes and Algebraic-Topological Models
	3 AT-Segmentations
	4 Operations with AT-Segmentations
	5 AT-RIG: Homological Tool or Topological Invariant?
	6 Conclusions
	References

	Computing the Component-Labeling and the Adjacency Tree of a Binary Digital Image in Near Logarithmic-Time
	1 Introduction
	2 Related Works
	3 A Convenient Topological Framework for Computing CCL and AdjT
	4 A Parallel Algorithm for Building the CCLT
	5 Testing Results and Conclusions
	References

	Towards Emotion Recognition: A Persistent Entropy Application
	1 Introduction
	2 Background
	3 Methodology
	4 Experiments
	5 Conclusions and Future Work
	References

	Harmonic Holes as the Submodules of Brain Network and Network Dissimilarity
	1 Introduction
	2 Materials and Methods
	2.1 Data Sets, Preprocessing, and the Construction of Metabolic Connectivity
	2.2 Harmonic Holes
	2.3 HH Dissimilarity

	3 Results
	3.1 Brain Network Construction
	3.2 Network Clustering
	3.3 The Most Cited HHs

	4 Discussion and Conclusions
	References

	Persistent 1-Cycles: Definition, Computation, and Its Application
	1 Introduction
	2 Background
	3 Persistent Basis and Cycles
	4 Minimal Persistent q-Basis and Their Limitations
	4.1 Instability of Minimal Persistent 1-Cycles

	5 Computing Meaningful Persistent 1-Cycles in Polynomial Time
	6 Results and Experiments
	6.1 Persistent 1-Cycles for 3D Point Clouds
	6.2 Image Segmentation and Characterization Using Cubical Complex
	6.3 Hexagonal Structure of Crystalline Solids

	References

	A Persistence-Based Approach to Automatic Detection of Line Segments in Images
	1 Introduction
	1.1 The Edge Detection Problem in the Continuous Setting
	1.2 Motivations to Detect Line Segments Without Intersections
	1.3 Automatic Selection of Persistent Segments

	2 Review of the Past Closely Related Work
	2.1 From Discrete Pixels to Continuous Arcs
	2.2 The State-of-the-Art Line Segment Detection Algorithm (LSDA)
	2.3 Applications of Line Segments for Superpixels

	3 PLSD: The New Persistent Line Segment Detector
	3.1 Stage 1: Computing the Contrast Functions f Along Lines L
	3.2 Stage 2: Finding Strongest Segments by Their Persistence
	3.3 Stage 3: A Required Number of Segments Without Intersections

	4 Experiments on 500 BSD Images
	4.1 The Boundary Recall Benchmark BR(2) from BSD500
	4.2 LSDA vs PLSD on the Boundary Recall BR(2)

	5 Discussion and Conclusions
	References

	On the Nonlinear Statistics of Optical Flow
	1 Introduction
	2 Related Work
	2.1 Optical Flow Datasets
	2.2 Optical Flow Applications
	2.3 Optical and Range Image Work from the Topological Perspective

	3 Topological Machinery
	3.1 Vietoris–Rips Complexes
	3.2 Persistent Homology
	3.3 Zigzag Persistent Homology
	3.4 Fiber Bundles

	4 Spaces of Flow Patches
	5 Results
	5.1 The Horizontal Flow Circle
	5.2 A Torus Model for Optical Flow

	6 Conclusions
	References

	Topological Homogeneity for Electron Microscopy Images
	1 Introduction
	2 Electron Microscopy Image Data
	3 Related Works
	4 Topological Techniques
	5 Experimentation
	6 Conclusions
	References

	Characterising Epithelial Tissues Using Persistent Entropy
	1 Introduction
	2 Motivation
	3 Background
	4 Methodology
	5 Experiments and Results
	6 Conclusions and Future Work
	References

	Author Index

