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17.1  Introduction

The phenotype of a cell is determined by the 
amount, the proportion and the condition of pro-
teins present in this cell. Although every cell in 
an organism possesses the same genetic infor-
mation, only certain genes are transcribed into 
MESSENGER RIBONUCLEIC ACID (mRNA) 
according to the function and demands of the 
cell. Based on the information provided by the 
mRNA, the information is translated into the 
corresponding protein, contributing to a distinc-
tive set of proteins for every cell and every status 
of the cell, defining its phenotype. The mapping 
of the whole human genome was completed in 

2004 [1]. Researchers are focusing now on the 
illumination of functions and interactions of 
genes and gene products by measuring, for 
example, the number of activated genes. An 
established method is DNA MICROARRAY 
technology, which, as well as other established 
DNA and RNA detection methods, utilises the 
characteristic of RNA strands to form helices 
due to complementary sequences. This process 
of combining two RNA strands to form a double 
helix is called HYBRIDISATION. Since 
Southern introduced the blotting technique [2] 
for DNA, the HYBRIDISATION process has 
been used in a wide range of techniques for the 
recognition and quantification of DNA or 
RNA. Such “classical” HYBRIDISATION tech-
niques measure one DNA or RNA sequence per 
HYBRIDISATION using a specific probe. In 
contrast, DNA microarrays consist of several 
thousands of specific probes arrayed in a two-
dimensional pattern allowing the parallel inves-
tigation of thousands of genes. A more recent 
development in measuring the expression levels 
of genes, using next- generation sequencing 
technology, is RNA-Seq. In this method, the 
entire transcriptome (mRNA content) of the 
sample is sequenced. The read depth, or number 
of sequence reads, corresponding to each gene is 
used as a proxy of the expression level of that 
particular gene. RNA-Seq analysis is still in its 
infancy but has distinct advantages over tradi-
tional microarray.
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17.2  Principle of Microarray 
Technology

Microarrays are tiny devices made for the analy-
sis of targets of interest with a high degree of par-
allelism. Initially, the technology evolved around 
the analysis of mRNA levels in cells in different 
states, taking “classical” HYBRIDISATION- 
based technologies to a new level. For “classical” 
HYBRIDISATION-based analysis, genomic 
DNA (Southern) or RNA (Northern), extracted 
from the tissue of interest, is immobilised on a 
membrane. A single specific nucleotide sequence 
(the probe) that is complementary to the sequence 
of interest is labelled and applied to the mem-
brane to subsequently detect the corresponding 
gene or gene transcript (Fig.  17.1). For array 
analysis, this principle is reversed and applied to 
thousands of sequences of interest by immobilis-
ing DNA fragments (probes) with distinct 
sequences on a SUBSTRATE (a membrane, 
glass, silicon or plastic slides) at defined posi-
tions (see Box 17.1). Nucleic acids from the cells 

of interest are labelled and applied to the 
SUBSTRATE for HYBRIDISATION, and the 
hybridised nucleic acids are identified by their 
position on the array.
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complementary 
transcript in total RNA
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from total RNA

Labelled cDNA probe
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Fig. 17.1 Comparison of traditional Northern-blot and 
DNA microarray. (a) Total RNA of the tissue of interest is 
separated by gel electrophoresis and is blotted to a mem-
brane. A labelled cDNA probe complementary to the tran-
script of interest is labelled and hybridised to the 
membrane. If the transcript is present in the total RNA, a 
signal can be detected due to hybridisation of probe and 
transcript. One experiment—one gene using a single 

labelled probe. (b) Several cDNAs (hundreds to thou-
sands) complementary to mRNA transcripts of selected 
genes are covalently bound to a glass slide at defined posi-
tions (spots). Total RNA from the tissue of interest is tran-
scribed into cDNA and labelled by reverse transcription. 
The labelled cDNA is hybridised to the bound cDNAs. 
Signals can be detected after hybridisation of two comple-
mentary cDNAs

Box 17.1: Production of Microarrays

A variety of different array substrates 
(membranes, plastics, glass), in combina-
tion with a range of different coatings, are 
used as the solid phase for microarray pro-
duction. Coatings permit the functionalisa-
tion of substrates with reactive groups, like 
aldehyde, epoxy or isothiocyanate moieties, 
to bind DNA probes on the substrates.

The DNA probes can be directly synthe-
sised on the microarray substrate (in situ 
synthesis) or the complete DNA probes are 
spotted on the substrate. The in situ synthe-
sis, by photomediated synthesis or inkjet 
technology, allows a parallel production of 
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The workflow of this process is illustrated by 
means of a DNA MICROARRAY experiment: In 
a typical scenario, GENE EXPRESSION of 
tumour cells, for instance, is compared to that in 
normal cells. RNA from tumour and normal cells 
is extracted from the respective tissue (Fig. 17.2). 
The RNA is transcribed into its reverse compli-
mentary copy, the so-called cDNA.  The cDNA 
derived from tumour cells and normal cells is 

labelled and applied to the DNA array. During 
the HYBRIDISATION step, the labelled nucleic 
acids bind to the complementary sequences of 
the respective probes. After washing away all 
unbound labelled nucleic acids, the signal inten-
sities for each probe position are determined. 
After signal intensities have been generated for 
all probes on the array, signals derived from nor-
mal cells and tumour cells are compared, and dif-
ferences in GENE EXPRESSION are identified. 
The altered expression of certain genes in the 
tumour, such as oncogenes, can help to typify the 
tumour. Combining the expression profile with 
clinical data may then be used to decide on the 
prognosis and the best therapy for the patient.

In addition to the described GENE 
EXPRESSION PROFILING, microarrays are 
also used to investigate other nucleic acids like 
genomic DNA [9] or non-coding RNAs [10] 
including MICRORNAS (miRNAs) [11–15]. In 
addition, the array principle has also been adapted 
to other ANALYTES such as proteins [16] or car-
bohydrates [17].

Due to the parallel measurement of up to thou-
sands of ANALYTES, microarrays offer the 
opportunity to observe complex biological sys-
tems while using minimal amounts of sample 
material. Although in the following sections 
specifications and workflow procedures are 
mainly related to DNA microarrays for GENE 
EXPRESSION PROFILING, the general aspects 
hold true for other MICROARRAY-based tech-
nologies as well.

17.3  Application of Microarrays

17.3.1  Preparation and Quality 
of RNA

The first crucial step to achieve reliable GENE 
EXPRESSION results is RNA isolation. RNA is 
susceptible to chemical hydrolysis and to RNases, 
widespread enzymes that digest RNA molecules 
into small pieces. If the RNA is slightly degraded 
or contaminated by residual genomic DNA, for 
instance, the results may be biased and irrepro-
ducible (see also Box 17.2). Commonly, RNA is 

OLIGONUCLEOTIDE ARRAYS, com-
prising oligonucleotides of 20–60 nucleo-
tides in length [3, 4]. The use of short 
oligonucleotides (20–30 base pairs) is suit-
able to differentiate between perfectly 
matched duplexes and single-base or two- 
base mismatches [5–7]. When working 
with short oligonucleotide probes, the use 
of several different oligonucleotides corre-
sponding to a single gene is typically 
required to enhance the reliability of the 
hybridisation signals [8].

Alternatively, cDNA fragments or pre-
synthesised oligonucleotides with a length 
of up to 70 base pairs are spotted on the 
functionalised substrate in two manners: 
contact printing and non-contact printing.

CONTACT PRINTING typically 
involves rigid pins dipping into the spotting 
buffer containing the DNA probes. The 
drop at the tip of the pin is brought close to 
the surface at a given position, and a tiny 
drop remains on the surface. Non-contact 
printing methods are based on inkjet tech-
nology. The spotting buffer containing the 
DNA probes is dispensed as tiny droplets 
from the print head. Independent of the 
spotting mode, binding of the DNA probes 
occurs at the position of the drop. After the 
actual spotting process is completed, 
unbound DNA is removed, and the reactive 
substrate is blocked to avoid non-specific 
(independent of the provided sequence) 
binding of nucleic acids during hybridisa-
tion. The microarrays are now ready for 
processing.

17 Gene Expression
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extracted from cells or tissues using organic sol-
vents or silica filter-based methods. Since RNA 
extraction protocols may influence the outcome 
of the expression analysis, the same extraction 
procedure should be used for all samples anal-
ysed in one set of experiments.

17.3.2  Amplification of RNA

The SENSITIVITY of MICROARRAY experi-
ments strongly depends on the amount of mate-
rial used for HYBRIDISATION. As the amount 
of RNA is usually limited, different 
AMPLIFICATION methods are available. The 
most common method utilises T7 DNA- 
dependent RNA polymerase to amplify RNA. The 
mRNA is first reverse transcribed to cDNA. The 
primer used for the reverse transcription addi-
tionally comprises the sequence of the T7 promo-
tor. After the second strand synthesis, the T7 
promotor is used by the T7 DNA-dependent RNA 
polymerase for in  vitro transcription. The T7 

RNA from 
sample 1 

RNA from 
sample 2 

RT reaction 
and labelling

Hybridisation

Image capture

MEMOREC
Computation of 
Cy5/Cy3 ratios

Fig. 17.2 Workflow diagram of microarray analysis

Box 17.2: Quality of Total RNA

Integrity and purity are the most critical 
factors for the quality of RNA.

• Ratio of 28S rRNA and 18S rRNA 
should be 2, reflecting the higher molar 
mass of 28S rRNA compared to 18S 
rRNA. A more precise quality measure 
is given by the RNA integrity number 
(RIN) calculated by the Agilent 
Bioanalyzer.

• Ratio of the extinction 260 nm/280 nm 
should be between 1.8 and 2.0.

• The sample can be treated with RNase- 
free DNase to avoid contamination of 
genomic DNA.

• Protocols for RNA extraction have to be 
adapted according to the analysed tissue 
(e.g. high fat content or fibrous tissue).

• The choice of the preparation protocol 
may have an influence on the range of 
transcript lengths present in the extracted 
RNA (e.g. silica filters usually have a 
cut-off size of about 50–100 bases). 
Therefore, preparations derived in this 
way do not contain the whole range of 
fragment lengths. This might have an 
impact on the subsequent steps (label-
ling, amplification or hybridisation).

J. Tree et al.
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DNA-dependent RNA polymerase repeatedly 
transcribes the same cDNA thereby amplifying 
the original RNA (Fig. 17.3) [18]. In case even 
higher SENSITIVITY is needed, the amplified 
RNA can again be used as SUBSTRATE for 
cDNA synthesis and a second round of T7-based 
AMPLIFICATION.  Alternatively, a variety of 
other AMPLIFICATION methods like PCR- 
based AMPLIFICATION methods have been 
developed (Fig.  17.4) [19]. Due to the slightly 
different properties of the different RNAs, such 
as length, sequence or GC content, the 
AMPLIFICATION efficiency can vary for differ-
ent RNAs, again depending on the 
AMPLIFICATION method. Therefore, to allow 
comparison of different RNA samples, it is advis-
able to use the same AMPLIFICATION method 
for all samples. The most sensitive 
AMPLIFICATION methods allow 
MICROARRAY experiments from as little as a 
single cell (see also Sect. 5.1 and Fig. 17.4).

17.3.3  Dyes, Labelling and 
Hybridisation Methods

Most commonly, fluorescent dyes are used to 
detect the hybridised samples on microarrays, but 
alternative labelling methods using radioactivity 
or silver particles, for example, can also be 
applied.

In DIRECT LABELLING protocols, the 
labelled nucleotides are incorporated during the 
cDNA synthesis or the T7 DNA-dependent RNA 
polymerase-based AMPLIFICATION. Since the 
incorporation rate of labelled nucleotides is com-
promised by the partly bulky fluorescent dye, 
two-step labelling protocols (INDIRECT 
LABELLING) have also been established. 
During a two-step labelling procedure, nucleo-
tides, labelled with a small molecule like biotin 
or an aliphatic amine, are incorporated by the 
polymerase. In a second step, the fluorescent 
dyes are linked to the modified nucleotides via 

mRNA (sense)

Reverse transcription

1st strand cDNA (antisense)

2nd strand synthesis

2nd strand cDNA (sense)

In vitro transcription

Amplified RNA (antisense)

T7 rev

T7 pol

T7

T7

T7

3’ 5’

Fig. 17.3 Schematic diagram of T7 polymerase-based mRNA amplification
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streptavidin or amine reactive groups like NHS 
esters. Depending on the system, the second step 
of the labelling protocol can also be performed 
after the HYBRIDISATION step (on-chip 
labelling).

After the labelling, the samples are hybridised 
on the MICROARRAY. The HYBRIDISATION 
can either be achieved by simple diffusion of the 
TARGET DNA molecules to the corresponding 
probes, or probe TARGET interaction can be 
assisted by moving the HYBRIDISATION mix-
ture on top of the array. After the 

HYBRIDISATION step has been completed, 
unbound labelled TARGET molecules are 
removed by washing the array. Finally, the array 
is dried.

To minimise experimental variance caused by 
some of the processing steps, like the labelling or 
HYBRIDISATION, it is advisable to perform 
replicate MICROARRAY experiments using the 
same sample.

The HYBRIDISATION is usually performed 
as a one- or two-colour experiment. For one- 
colour experiments, each sample is hybridised on 
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Fig. 17.4 Schematic diagram of a global PCR-based mRNA amplification
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one array, and the signal intensities derived from 
different arrays are compared. When using two 
colours, the two samples to be compared are 
labelled with different dyes and hybridised 
together on the same array. The direct compari-
son of the two samples on one array has the 
advantage that any experimental bias related to 
the array or the HYBRIDISATION step will 
affect both samples, therefore reducing detection 
of artefacts. When working with fluorescent 
dyes, however, the integrated dyes not only differ 
in their emission wavelength but also in the fluo-
rescence intensity gained per dye, due to 
wavelength- dependent scanner properties, 
diverse quantum yields of the dyes or different 
stabilities of the dyes. Therefore, the raw data 
gained by two- colour MICROARRAY experi-
ments has to be corrected for such dye effects. 
The methods used to centre or normalise the sig-
nal intensities for both wavelengths are based on 
the assumption that some of the genes, like 
housekeeping genes, are not regulated (see Box 
17.3). The differences found for these genes can 
therefore be used to calculate a factor reflecting 
the different dye properties. As the reproducibil-
ity of array production and MICROARRAY 
HYBRIDISATIONS has dramatically improved, 
there is a trend in favour of single-colour 
HYBRIDISATIONS.

Box 17.3: Normalisation of Microarray Data

Integrity and purity are the most critical 
factors for the quality of RNA.

The main idea of NORMALISATION 
for dual-labelled samples is to adjust differ-
ences in the intensity of the two labels. 
Such differences result from the efficiency 
of dye integration, differences in amount of 
sample and label used and settings of laser 
power and photomultiplier. 
NORMALISATION of one channel arrays 
mainly corrects spatial heterogeneity. 
Although NORMALISATION alone can-
not control all systematic variations, 
NORMALISATION plays an important 

role in the earlier stage of microarray data 
analysis because expression data can vary 
significantly due to different 
NORMALISATION procedures. A num-
ber of NORMALISATION methods have 
been proposed, but there is no general rule 
which method performs best. The 
NORMALISATION method strongly 
depends on several factors like the number 
of detectable genes, the number of regu-
lated genes, signal intensities, quality of 
the hybridisation, etc.

For a rough classification, global 
NORMALISATION can be distinguished 
from local (signal intensity-dependent) 
NORMALISATION and 
NORMALISATION via transcripts known 
to be nonregulated or spike-in controls.

If global NORMALISATION is used, a 
single NORMALISATION factor is applied 
to all detectable genes, leading to a linear 
shift of all signal intensities. The underlying 
assumption is that constant systematic varia-
tions occur, including a lower integration rate 
of one dye in respect to the second dye. 
However, global NORMALISATION based 
on the median of all detected genes can only 
be used if a sufficient number of genes are 
nonregulated. If it is expected that most of the 
genes are regulated (which is of special inter-
est regarding miRNA arrays), a set of “house-
keeping genes” or spike-in controls should be 
included in the array configuration. Because 
housekeeping genes (by definition) are not 
regulated, the signal intensities of those genes 
should be the same on dual-labelled arrays. 
Using local NORMALISATION, a different 
NORMALISATION factor is calculated for 
every gene. Local NORMALISATION offers 
the opportunity of a signal intensity- 
dependent NORMALISATION. Some varia-
tions (e.g. laser settings) have different 
impacts on detected genes depending on their 
signal intensity. Thus, a non-linear shift of the 
signal intensities can be achieved based on 
the signal intensity of each single spot.

17 Gene Expression
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17.3.4  Control Samples

The measurement of GENE EXPRESSION in a 
given sample is usually referred to the GENE 
EXPRESSION in other samples, here referred to 
as “control”. Obviously, it is very important to 
choose the right control in order to gain valuable 
data. The best controls in most experiments are 
untreated cells or unaffected tissue of the same 
origin as treated cells or affected tissue, respec-
tively. However, for practical or ethical reasons, 
it is not always possible to receive untreated 
cells or healthy tissue of the same origin, which 
is especially true for material derived from 
patients. If it is impossible to get matched con-
trol samples, a “related” control can be estab-
lished, for instance, by pooling RNA from 
different individuals to reduce the effects of par-
ticular properties of single individuals in the 
control. In some cases, cell lines might also be a 
sufficient control. Alternatively, a pool of all 
samples used in an experimental series can work 
as the control (see Box 17.4). However, a sample 
pool carries the risk of missing genes that are 
consistently expressed differentially in all sam-
ples. In general, controls should either be case-
matched to the samples of interest or consist of 
pooled material to compensate for individual 
differences.

In the field of miRNA microarray 
research, NORMALISATION via spike-in 
controls is preferably used, as global 
NORMALISATION methods may fail due 
to (a) missing housekeeping miRNA, (b) 
limited number of expressed miRNAs and 
(c) a general up- or downregulation of 
many miRNAs. The used spike-ins repre-
sent a set of synthetic RNAs, which have 
no similarity to any known miRNA.  The 
spike-ins are added to all experimental and 
control samples, and all signal intensities 
of the investigated samples are normalised 
using the median of the spike-ins.

Box 17.4: The Reference Strategy for 
Two-Colour Hybridisations

In microarray experiments, the direct com-
parison of absolute signal intensities of dif-
ferent microarrays can be critical due to 
different hybridisation efficiencies. To 
avoid this obstacle, two-colour microarray 
hybridisations can be performed. In two- 
colour microarray hybridisations, the sam-
ple, labelled with Cy5, for instance, and the 
control, labelled with Cy3, are hybridised 
on the same microarray. As the labelled 
molecules compete for the same probes on 
the microarray, the hybridisation efficiency 
is also the same and allows a direct com-
parison of sample versus control. Therefore, 
the ratio of the signal intensities of the two 
dyes represents the proportion of the ana-
lyte in the sample compared to the control. 
The principle of two-colour hybridisation 
can be extended to compare more than two 
samples by applying a reference scheme. 
For a microarray reference experiment, 
each of several samples and controls is 
hybridised versus the reference. The refer-
ence can then be used to compensate differ-
ences of the hybridisation efficiency for 
each microarray and allows standardisation 
and cross-referencing of microarray experi-
ments. For the analysis of mRNA expres-
sion profiles, references consisting of total 
RNA mixtures are used [20]. For miRNA 
analysis, universal references consisting of 
known amounts of synthetic miRNAs are 
available [21]. Besides the cross- referencing 
of array experiments, such a reference 
allows the absolute quantification of miR-
NAs. The universal reference, consisting of 
an equimolar pool of about 1000 miRNAs, 
is labelled and hybridised versus each sam-
ple in a two-colour microarray approach. In 
this way, each single miRNA is quantified 
in comparison to an identical standard, 
compensating the bias related to sequence, 
labelling, hybridisation or signal detection.

J. Tree et al.
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17.4  Array Data: Acquisition, 
Analysis and Mining

17.4.1  Data Acquisition

Data acquisition of MICROARRAY experiments 
consists of two parts: the read-out of the 
MICROARRAY, meaning the detection of the 
signals, and the following image analysis. 
Whereas films have been used to detect radioac-
tive signals, nowadays predominantly 
MICROARRAY scanners are used to excite com-
monly used dyes and measure the emitted fluo-
rescence signals. The picture derived from the 
read-out of the MICROARRAY is saved as 
greyscale TIFF images for further analysis. 
During the next step, the signal intensity of each 
spot is determined and assigned to the gene rep-
resented by the given spot using appropriate 
image analysis software. In addition, the back-
ground signal, usually gained from the surround-
ing area of each spot, is subtracted from the 
signal to receive the net signal intensity. Spots of 
poor quality (empty or negative spots, irregular 
shape, spots showing background smears) can be 
excluded from further analyses. The set of data 
that results from the data acquisition step is 
referred to as primary data.

17.4.2  Data Analysis and Mining

For the analysis of the primary data, weak signals 
are excluded as non-reliable. The minimum reli-
able signal intensity of a spot can be determined 
by setting a minimum threshold for signal inten-
sities, which is either dependent on the back-
ground or on negative controls. For some 
microarrays, p-values giving an estimate of the 
likelihood of the signal differing from back-
ground signals are used to indicate the reliability 
of the detected genes. To compare different sam-
ples, ratios of the signal intensities gained, such 
as for sample versus control, are computed for 
every detected gene. To correct for different 
labelling and HYBRIDISATION efficiencies, as 
well as for potential dye bias in two-colour 

MICROARRAY hybridisations, the signal inten-
sities are centred or normalised prior to calculat-
ing the ratios (see Box 17.3).

Because of the multiparametric nature of 
MICROARRAY experiments, data mining and 
bioinformatics analysis are essential for interpre-
tation of the numerical data produced by (series 
of) MICROARRAY experiments. Starting from 
relatively simple demands for appropriate visu-
alisation of the data, bioinformatics tools are nec-
essary to focus on candidate genes and reveal 
subtle changes in expression patterns.

A reliable identification of candidate genes by 
statistical methods is only possible if a sufficient 
number of replicate experiments have been per-
formed. Technical replicates using the same 
 starting material are usually performed to define 
the overall reproducibility of MICROARRAY 
experiments. Biological replicates are important 
to discriminate individual differences (e.g. patient 
specific) from general changes of GENE 
EXPRESSION (e.g. disease specific).

Additional bioinformatics methods can be 
used to identify groups of genes showing a com-
parable regulation. One method commonly used 
is the HIERARCHICAL CLUSTER ANALYSIS 
where genes and arrays are ordered by similarity 
in expression [22]. Due to the overwhelming 
amount of data, it is often difficult to understand 
MICROARRAY results in the light of certain 
biological questions. To assist researchers in 
interpreting the results, MICROARRAY data 
can be combined with knowledge stored in 
diverse databases like pathway information, 
genomic localisation or protein family 
classification.

Different data analysis tools can be applied to 
identify genes that may be related to a disease or 
treatment of interest. Linking the data to biologi-
cal knowledge can also elucidate possible func-
tions of the genes interest. Succeeding 
experiments using mostly molecular biology 
techniques like RT-PCR, in situ 
HYBRIDISATION, RNAi, knockout experi-
ments, etc. are commonly performed to validate 
and corroborate the biological function con-
cluded from the MICROARRAY data.
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17.5  An Example of a Microarray 
Experiment

17.5.1  Global RNA Amplification 
and Microarray Analysis of T 
Cell Subpopulations

Naïve T cells differentiate in response to patho-
gens into multiple CD4+ and CD8+ subsets (see 
Chap. 3). To improve the understanding of this 
differentiation process as well as the nature of 
the different subsets, GENE EXPRESSION 
PROFILING has been used. As an example, 
MICROARRAY experiments were performed 
from ten different subpopulations covering the 
major stages of post- thymic CD4+ and CD8+ T 
cell differentiation (Fig.  17.5) [23]. The CD4+ 
and CD8+ subsets were isolated by immuno-
magnetic and flow cytometric cell sorting (see 
Chap. 16) based on the expression of CD4/CD8, 
CD27, CD28, CD45RA and CCR7. These mark-
ers characterise the major steps of T cell differen-
tiation from naïve to highly differentiated cells in 
humans [24, 25]. The GENE EXPRESSION pro-
files were generated from multiple T cell subsets 
independently gained from two blood samples. 

As only limited cell numbers can be isolated from 
20 mL of blood, a global PCR AMPLIFICATION 
method was applied allowing MICROARRAY 
experiments from 1000 cells per T cell population.

For the AMPLIFICATION of RNA from 
small cell numbers, loss of material is critical, 
and the pipetting of samples from one tube to 
another should be avoided as much as possible. 
For the global AMPLIFICATION, the cells were 
collected in a small volume of buffer and lysed 
(Fig.  17.4). Then, superparamagnetic oligo dT 
microbeads were directly added to the cell lysate 
binding the poly(A) residues of the mRNA. The 
labelled cell lysate was applied to a column that 
was placed in the magnetic field of a heatable 
permanent magnet. The magnetically labelled 
mRNA was retained in the strong magnetic field, 
while effective washing steps removed all other 
cell components. In-column cDNA synthesis and 
purification was performed in the same column 
used for mRNA isolation to avoid loss of mate-
rial. Oligo dT and randomer oligonucleotides 
coupled to microbeads were used as primers for 
the cDNA synthesis. Thereby, cDNA fragments 
of uniform size were generated, and each tran-
script was represented by several cDNA 
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 fragments enabling uniform AMPLIFICATION 
during PCR. After eluting the cDNA fragments 
from the column, a tag was added to the 3′ end of 
each cDNA fragment by utilising a terminal 
deoxynucleotidyl transferase. A global PCR 
amplified the uniform-sized cDNA fragments 
106-fold, resulting in sufficient TARGET mate-
rial for MICROARRAY HYBRIDISATION. The 
PCR performed with a single primer enabled 
unbiased AMPLIFICATION due to the uniform 
annealing temperature. The primer binding site at 
the 3′ end was added during cDNA tailing. The 
complementary sequence of the tag was inserted 
at the 5′ end of the cDNA fragments during 
cDNA synthesis. After purification of the PCR 
products, a Klenow fragment labelling procedure 
with random primers in the presence of labelled 
nucleotides, in this case, Cy3-dCTP or Cy5- 
dCTP, yielded labelled DNA fragments that were 
used for MICROARRAY HYBRIDISATION.

All differentiated T cell subsets were hybri-
dised against the corresponding naïve T cells as 
control in two-colour MICROARRAY experi-
ments. Therefore, the genes found differentially 
expressed on the microarrays represented potential 
genes related to the differentiation from naïve to 
antigen-experienced T cells.

For the first differentiation stage (CD27+/
CD28+/CCR7+/CD45RA+), about 15% of the 
detected genes were found to be differentially 
expressed, and this proportion increased for 
stages 2–5 to about 50%, which is consistent with 
the differentiation process.

A detailed analysis of the differentially 
detected genes revealed the acquisition of a cyto-
lytic program by the highly differentiated T cells 
represented by the expression of genes encoding 
for the lytic granule membrane protein LAMP-3 
and the CYTOTOXIC factors granzyme B and 
perforin. The up-regulation of these genes giving 
rise to lytic and CYTOTOXIC proteins supported 
the idea of CYTOTOXIC T cells as late differen-
tiation state.

Another interesting set of genes was found 
downregulated in highly differentiated T cells. 
These genes encode for proteins involved in cell 
cycle entry and/or cell proliferation, as well as anti-
apoptotic factors, suggesting a quiescence state and 

limited survival potential for the highly differenti-
ated T cells under stress or upon activation.

Overall, during the differentiation process, the 
changes in GENE EXPRESSION for the differ-
entiated T cells compared to the naïve T cells 
became increasingly similar between CD4+ and 
CD8+ T cells. So despite the clear differences 
between naïve CD4+ and CD8+ T cells, the dif-
ferentiation process might be orchestrated by 
analogous changes in the GENE EXPRESSION 
profile.

In summary, the GENE EXPRESSION analy-
sis using global RNA AMPLIFICATION for 
MICROARRAY experiments suggested func-
tional changes especially during the late differen-
tiation state pointing to CYTOTOXIC potential 
and limited lifespan. In addition, common 
changes in the GENE EXPRESSION pattern 
pointed to a similar differentiation process for 
CD4+ and CD8+ T cells.

17.6  RNA Sequencing

17.6.1 Introduction

Microarrays are currently the most popular choice 
for studying changes in the transcriptome, and sig-
nificant advances in medical research have been 
made possible in the last 20 years by applying this 
technique [26]. Despite this, however, microarray 
technology does have limitations. There can be 
difficulties with probe design/performance, for 
instance, some probes cross hybridise with other 
genes, while some non- specifically hybridise [27]. 
The dynamic range of a probe can be restricting 
[28]; when an mRNA is abundantly expressed, a 
DNA microarray shows saturation, while at the 
low end of abundance, it suffers a loss of signal. 
Another disadvantage of microarray technology is 
that it is generally limited only to those genomes 
that have been previously sequenced [26].

In the last 5–10 years, a new technology for 
studying changes in the host transcriptome has 
emerged; this is known as RNA sequencing 
(RNA-Seq). Instead of using molecular hybrid-
ization to “capture” transcript molecules of 
interest, RNA-Seq samples transcripts in the 
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starting material by direct sequencing using 
next- generation sequencing (NGS) technolo-
gies (Box 17.5). Once detected, transcript 
sequences are then mapped back to a reference. 
Reads that map back to the reference are then 
counted to assess the level of gene expression, 
the number of mapped reads being the measure 
of expression level for that gene or genomic 
region [26].

A comparison of RNA-Seq versus microarray 
technology is presented in Table 17.1. RNA-Seq 
has many advantages compared to microarray 

analysis, for example, it can detect novel tran-
scripts, allele-specific expression and splice junc-
tions, and it can also be applied to any species 
even if the reference genome is unknown [27]. 
RNA-Seq has a larger dynamic range than micro-
arrays and can detect more accurately transcripts 
in low abundance in the presence of highly abun-
dant transcripts [30]. Another significant advan-
tage offered by RNA-Seq is the need for a lower 
input of RNA starting material [29]. Currently, 
the challenges associated with RNA-Seq technol-
ogy are the complexity of the data analyses and 
storage of large amounts of data, which should 
not be underestimated [26]. Despite this, RNA- 
Seq technology is revolutionising transcriptomic 
analysis and provides a powerful tool to decipher 
global gene expression patterns far beyond the 
limitations of microarrays.

17.6.2  RNA-Seq Experimental 
Workflow

A typical RNA-Seq workflow, including impor-
tant factors for consideration, is shown in 
Fig.  17.6. Experimental planning is one of the 
most important factors to consider, including 
determining if RNA-Seq is the most appropriate 
technique to use. RNA-Seq generates a huge, 
potentially bewildering, amount of data, and it is 

Box 17.5: Next-Generation Sequencing 
(NGS)
Next-generation sequencing is a term used 
to describe a number of different modern 
sequencing technologies which have in 
general replaced the traditional Sanger- 
based platform. NGS is also known as 
“high-throughput” or “deep” sequencing 
which reflects the vast increase in the num-
ber of sequenced bases per run (typically 
103- to 106-fold greater), with a corre-
sponding reduction in cost per sequenced 
base. There are a number of competing 
platforms each with different characteris-
tics (e.g. read length, sequencing capacity, 
error rate, cost per base), with perhaps 
Illumina being the most widely used at 
present (a typical run generating 500 Gb of 
data), in preference to Ion Torrent, SOLiD 
and 454 platforms. These are characterised 
by relatively short reads (35–1000 bases) 
and also require significant sample prepa-
ration and amplification. More recently, 
single-molecule real-time (SMRT) meth-
ods have been introduced, which require 
less sample preparation time, and yield 
much longer read lengths (‘000’s of bases 
per run), although the error rate is rela-
tively high and they are at present more 
expensive, currently limiting the wide-
spread adoption of this technology. 
Examples of this include PacBio and 
Oxford Nanopore systems.

Table 17.1 Comparison of microarray and RNA-Seq 
technologies

Microarray RNA-Seq
Amount of RNA 
required

High Low

Resolution Several to 
100 bp

Single base

Distinguish splice 
forms?

Limited Yes

Discover new 
genes?

No Yes

Strandedness? No Yes
Dynamic range Few 

hundredfold
>8000-fold

Reproducibility Yes Yes
Cost Medium High (due to 

computation)

Adapted from Bauer et  al., BMC Bioinformatics 2014, 
15(Suppl 11):S3 [29]
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Experiment planning and design

Important considerations: What question am I trying to answer? Do I want qualitative data (such as
identifying intron/exon boundaries and transcriptional start sites) or quantitative data (such as
measuring differential expression between two different groups)?
Experimental power and sample size analysis: How many replicates do I need (biological and
technical)? What depth of sequencing is required? How am I going to analyse all the data produced?

Preserve the RNA in the sample for the time frame between harvesting and extraction e.g. RNA
preservation media or snap freezing. RNA is very sensitive to degradation.

Homogenise the sample thoroughly e.g. using mechanical disruption. Incomplete homogenisation
will reduce RNA yields. 

RNA extraction and DNase digestion

Important considerations: Which type of RNA is wanted? Not all methods and kits are suitable for
purifying small RNAs. Genomic DNA contamination needs to be removed by digestion with DNase 1
either during or after the extraction procedure.

Measure RNA quality using an Agilent Bioanalyser. RIN scores above 8 are usually required for
transcriptome analysis experiments.

Consider the addition of
RNA spike-in controls
such as those supplied by
Thermo Fisher (ERCC
spike-in Mix) or Lexogen
(SIRVs) 

The majority of total RNA is made up of ribosomal RNA (rRNA) which is
often not required in RNA-Seq experiments. Target enrichment
techniques involve the removal of ribosomal RNA e.g. using the poly
(A) tail to pull out the mRNA or removing the rRNA by affinity
purification.

Library preparation involves fragmentation of the RNA, its conversation to complementary DNA (cDNA),
the addition of sequencing adaptors and a signal amplification step usually involving PCR. Many different
commercial kits are available for this step and the user must make a selection based on their experimental
needs. Library quantification should be carried out prior to sequencing to ensure correct loading. 

Sequence the library using your chosen platform and then analyse the data; possibly the most complex
and time consuming step in the whole process.

Fig. 17.6 Flow diagram for RNA-Seq experiment
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vitally important to determine whether a more tar-
geted approach such as reverse-transcription PCR 
would be preferable. The experimental design 
must ensure that it has the capability to answer the 
research question and is sufficiently powered 
including an appropriate number of biological rep-
licates [31]. The success of RNA-Seq experiments 
is highly dependent upon recovering pure and 
intact RNA from samples which is free from DNA 
contamination. RNA is more labile than DNA, and 
RNases are very stable enzymes, so extra care 
should be taken when purifying and working with 
RNA as differential degradation of samples will 
adversely affect the experimental outcome. 
Several commercial kits exist for RNA extraction 
from various sample types ranging from bacteria 
and viruses to human and animal blood and tissue 
samples. Depending on the source of the RNA, it 
is vital to ensure the sample is thoroughly 
homogenised to ensure maximal isolation of 
RNA. Once the RNA has been isolated, the quality 
is usually assessed using an Agilent Bioanalyzer 
(see Box 17.2). In order to understand the biologi-
cal variation in RNA-Seq results, it is important to 
understand and control for the technical variation 
that can be introduced at every step in the proce-
dure from the operator carrying out the work, the 
method of homogenisation used to the methods of 
data analysis. To do this, spike-in external controls 
can be added to RNA-Seq experiments such as 
those designed by the External RNA Controls 
Consortium (ERCC; Thermo Fisher) or Spike-In 
RNA Variants (SIRVs, Lexogen).

The RNA isolated is usually the total RNA 
though most differential transcriptome analysis 
experimenters only want to look at the messenger 
RNA (mRNA). The majority (>95%) of the total 
RNA is made up of ribosomal RNA (rRNA). 
Before library preparation, many researchers 
choose to perform target enrichment to maximise 
the amount of their target RNA fraction in the 
final sample. Several commercial kits exist for 
either removing the rRNA from the sample or 
pulling out the mRNA using the poly-A tail.

The exact method of library preparation will 
depend on the sequencing platform being used and 
the experimental question being answered. 

Companies involved in sequencing sell a variety of 
library preparation kits. It is possible using RNA-
Seq, if the appropriate library preparation method 
has been used, to obtain information from both the 
sense and antisense strands of the RNA template. 
This information is important for analysis of tran-
script orientation and the detection of overlapping 
transcripts. It is essential to accurately quantify the 
sequencing library before loading on the sequenc-
ing platform to ensure optimal performance and 
success of the sequencing run. Methods of 
sequencing library quantification include quantita-
tive real-time PCR and spectrophotometry.

17.6.3  Choice of Sequencing 
Platform

A number of different NGS sequencing platforms 
(Box 17.5) are currently available for RNA-Seq 
experiments (see NGS review [32, 33]). Each 
platform has different characteristics (e.g. read 
length, number of reads per run, base-calling 
accuracy), and the choice will depend on the 
experimental question being asked. Typically, 
however, the Illumina platform (which yields 
relatively short reads (~150 bases), but has a low 
error rate and a high read depth) is the most com-
monly used. For more specialised applications 
where longer reads are required (e.g. novel tran-
scriptome assembly), the PacBio RS instrument 
is more appropriate.

17.6.4  Data Analysis Pipeline

Once raw reads from the RNA-Seq experiment 
have been generated, they are processed and ana-
lysed through a series of software analysis steps. 
A schematic of a typical data analysis pipeline is 
shown in Fig. 17.7 and described as follows:

 1. Preprocessing and quality control of raw 
reads: For samples that have been multiplexed 
(combined samples on one sequencing run), 
they must first be demultiplexed. Then adapter 
sequences are removed, generic quality 

J. Tree et al.



285

 control steps may be performed (e.g. FastQC 
software), and reads are trimmed and filtered 
by base quality score to remove low-quality or 
contaminating reads (using “trimmomatic” 
for Illumina reads [34]). Sequence reads (base 
identity along with a quality score) are pro-
vided in a format known as FASTQ.

 2. Transcriptome assembly: Assembly of the tran-
scriptome falls into two methods depending on 
whether a reference genome or transcriptome 
of the organism under study exists. If a refer-
ence genome does not exist, then the de novo 
approach is taken (a); if a reference genome 
exists, a mapping approach is taken (b).

 (a) De novo approach—This approach is 
more computer resource intensive than 
the mapping approach as each read has to 
be compared with every other read in 
order to generate a set of contigs, instead 
of just to one reference genome. Typically 
de novo transcriptome assembly software 
use a graph-based approach—examples 
are Velvet/Oases [35, 36], Trans-ABySS 
[37] and Trinity [38].

 (b) Mapping approach—Assuming that a ref-
erence genome, transcriptome or annota-
tion is available, many analyses and those 
leading to differential expression will use 
the mapping approach. As an example, 
typical programs from the “Tuxedo” pro-
tocol are used [39]: a representative pipe-
line could be:

• Alignment—Using TopHat software—
Aligns an RNA-Seq read to the refer-
ence using the Bowtie short read 
aligner and then analyses the mapping 
results to identify splice junctions 
between exons.

• Assembly/merge assemblies—Using 
Cufflinks (assembles transcripts, esti-
mates abundance and tests for differ-
ential expression and regulation in 
RNA-Seq samples) and Cuffmerge 
(merges together assemblies).

• Normalization and differential expres-
sion—The Cuffdiff software contains 
methods for normalization and calcula-
tion of statistically significantly 
changes in transcript expression. 
Numerous other methods exist, and 
those written for the free statistical soft-
ware environment “R” are commonly 
used (e.g. edgeR [40], DESeq [41]).

• Differentially expressed (DE) gene 
prediction, using Cuffdiff, searches for 
significant changes in transcript 
expression. These genes may then be 
entered into a pathway analysis soft-
ware package to identify key biologi-
cal pathways.

Select sequencing platform - sequence

Raw reads

1. Preprocessing/quality control

FASTQ reads

2. Transcriptome assembly

(a) De novo (b) Mapping

• Alignment

• Assembly/merge

• Normalization/differential expression

• Pathway analysis

Fig. 17.7 Schematic data analysis pipeline
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An example of an RNA-Seq experiment which 
has used the described workflow is included in 
Box 17.6.

17.7  The Future of RNA-Seq

Developing technologies are likely to help shape 
the future of RNA-Seq for transcriptome profiling. 
For instance, advances in long-read sequencing 
technologies will impact upon RNA-Seq analysis. 
Currently, most RNA-Seq experiments are under-
taken on platforms (e.g. Illumina) which yield 
relatively short-read lengths. Long-read sequenc-
ing technology (e.g. Pacific Biosciences (PacBio) 
single-molecule real-time (SMRT) sequencing 
approach) can produce reads matching longer 
transcripts. The advantage of longer reads is that a 
lot of mapping errors that occur after sequencing 
will be eliminated, and as a consequence the accu-
racy of sequencing will greatly improve.

Hand-held sequencing technologies are 
likely to impact on transcriptome profiling too. 

Box 17.6: Differential Transcriptome 
Analysis in an Animal Model of Bacterial 
Disease

The response a host makes to an infection 
is very complex. A full understanding of 
this response can lead to the development 
of new ideas for treatment [42]. RNA-Seq 
can be used to gain an understanding of this 
response by studying RNA isolated from 
an animal model over a time course of 
infection. BALB/c mice were exposed to 
an inhalational challenge of the Gram- 
negative pathogen Burkholderia pseudom-
allei, with a mean retained dose of 30 
colony-forming units per mouse [43]. 
Animals were culled at predetermined time 
points, and tissues were harvested and 
stored immediately in RNAlater. An iden-
tical number of control mice received a 
phosphate buffered saline exposure and 
handled in exactly the same manner as the 
infected groups. The mRNA was isolated 
from the lungs and sequenced using the 
workflow described above. The transcrip-
tome obtained from the control group acted 
as the baseline comparator for the infected 
group. Once the transcriptome had been 
generated, Ingenuity Pathways Analysis 
(IPA; Qiagen, http://www.ingenuity.com) 
was used to interpret the data and apply 
biological meaning (Essex-Lopresti et  al., 
personal communication).

When a host is exposed to a dose of 
bacteria, an important part of the response 
process is the body’s ability to recognise 
the presence of the bacteria. The primary 
way of doing this is by the activation of 
pattern recognition receptors through the 
innate immune system [44]. Figure  17.8 
shows the pattern recognition receptor 
pathway which has been overlaid with the 

transcriptome data from day 3, postexpo-
sure, of the B. pseudomallei aerosol infec-
tion. This transcriptome data shows that the 
mouse host has upregulated expression of 
several toll-like receptors (TLRs) which 
in turn leads ultimately to the release of 
cytokines via transcription factors such as 
NFκB.  The cytokines released as a result 
of this pathway then circulate around the 
host influencing other response pathways 
and cell populations. Detailed knowledge 
of this and other response pathways helps 
researchers, trying to design novel drugs, to 
identify places where medical interventions 
might assist the host in its fight against 
the pathogen. © Crown copyright (2016), 
Dstl. This material is licensed under the 
terms of the Open Government Licence 
except where otherwise stated. To view this 
licence, visit http://www.nationalarchives.
gov.uk/doc/open-government-licence/ver-
sion/3 or write to the Information Policy 
Team, The National Archives, Kew, London 
TW9 4DU, or email: psi@nationalarchives.
gsi.gov.uk.
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Currently MinIONs, palm-sized NGS sequenc-
ing devices from Oxford Nanopore (https://www.
nanoporetech.com/), offer read lengths of tens 
of kilobases, limited only by the length of DNA 
molecules presented to it [45]. These devices 
were used to undertake the genomic surveillance 
of Ebola virus, in the field, in 2015 in West Africa 
[46]. Results were generated in less than 24 h after 
receiving an Ebola-positive sample where the 
sequencing process took as little as 15–60  min. 

Pathogen genomes are usually not very large and 
thus are suitable for use with this “miniaturised” 
technology. In the future however, RNA-Seq anal-
ysis might well become portable, and this might be 
aided by the use of direct RNA sequencing (DRS). 
DRS is another new pioneering technology, with 
which it is possible to carry out direct single RNA 
sequencing without prior conversion of RNA to 
cDNA. The advantage of DRS over RNA-Seq is 
that it removes the technical artefacts introduced 
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© Crown copyright (2016), Dstl. This material is licensed 
under the terms of the Open Government Licence except 
where otherwise stated. To view this licence, visit http://
www.nationalarchives.gov.uk/doc/open-government-
licence/version/3 or write to the Information Policy Team, 
The National Archives, Kew, London TW9 4DU, or 
email: psi@nationalarchives.gsi.gov.uk
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by having to create a cDNA library or by having 
amplification steps [47, 48].

RNA-Seq technology is currently evolving; 
some researchers have moved the science for-
ward already and developed methods for analys-
ing the transcriptome of individual cells, 
otherwise known as single-cell RNA sequencing 
(scRNA-Seq) [49]. This allows the complex anal-
yses of heterogeneous samples and profiling of 
cell-to-cell variables on a genomic scale [50]. 
There are significant challenges with this tech-
nology (RNA losses, differences in strand- 
specificity and difficulty in distinguishing 
between noise and variability for low abundance 
transcripts), but it is hoped that advances in 
sequencing technology (such as nanopores, men-
tioned above) will overcome these barriers [51]. 
Given the high anticipated value of single-cell 
transcriptomics, explosive growth of scRNA-Seq 
data is expected in the next 5–10 years [49].

17.8  Overview

The ability to monitor changes in the mRNA 
expression of multiple genes by using microarray 
technology is firmly established. This technology 
is routinely used, reasonably cost-effective, reli-
able and highly reproducible. Many scientific 
advances in medical research and diagnosis have 
been made possible using this technique. RNA- 
Seq technology, however, is closely following in 
the footsteps of microarray technology, and once 
sequencing costs become lower, data analyses 
become more streamlined, and data storage issues 
are resolved, RNA-Seq is likely to significantly 
impact upon transcriptomic research in the future.
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