
Behavioral Strengths and Weaknesses of
Various Models of Limited Automata

Tomoyuki Yamakami(B)

Faculty of Engineering, University of Fukui, 3-9-1 Bunkyo, Fukui 910-8507, Japan
TomoyukiYamakami@gmail.com

Abstract. We examine the behaviors of various models of k-limited
automata, which naturally extend Hibbard’s [Inf. Control, vol. 11, pp.
196–238, 1967] scan limited automata, each of which is a linear-bounded
automaton satisfying the k-limitedness requirement that the content of
each tape cell should be modified only during the first k visits of a tape
head. One central model is k-limited probabilistic automaton (k-lpa),
which accepts an input exactly when its accepting states are reachable
from its initial state with probability more than 1/2. We further study
the behaviors of one-sided-error and bounded-error variants of such k-
lpa’s as well as deterministic and nondeterministic models. We discuss
fundamental properties of those machine models and obtain inclusions
and separations among language families induced by these machine mod-
els. In due course, we study special features—the blank skipping prop-
erty and the closure under reversal—which are keys to the robustness of
k-lpa’s.

Keywords: Limited automata · Pushdown automata
Probabilistic computation · Bounded-error probability
One-sided error · Blank skipping property · Reversal

1 Background and Main Contributions

1.1 Limited Automata and Probabilistic Computation

In 1967, Hibbard [3] studied a novel computational model of so-called scan lim-
ited automata to characterize context-free languages by conducting direct sim-
ulations between one-way nondeterministic pushdown automata (or 1npda’s)
and his model. Hibbard’s model seems to have been paid little attention until
Pighizzini and Pisoni [10] reformulated the model from a modern-machinery per-
spective and reproved a characterization theorem of Hibbard in a more sophis-
ticated manner. A k-limited automaton,1 for each fixed index k ≥ 0, is in gen-
eral a one-tape (or a single-tape) Turing machine whose tape head is allowed
1 Hibbard’s original formulation of “k-limited automaton” is equipped with a semi-

infinite tape that stretches only to the right with no endmarker but is filled with the
blank symbols outside of an input string. Our definition in this paper is different from
Hibbard’s but it is rather similar to Pighizzini and Pisoni’s [10].

c© Springer Nature Switzerland AG 2019
B. Catania et al. (Eds.): SOFSEM 2019, LNCS 11376, pp. 519–530, 2019.
https://doi.org/10.1007/978-3-030-10801-4_40

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-10801-4_40&domain=pdf
https://doi.org/10.1007/978-3-030-10801-4_40

520 T. Yamakami

to rewrite each tape cell between two endmarkers only during the first k scans
or visits (except that, whenever a tape head makes a “turn,” we count this
move as double visits). Although these automata can be viewed as a special
case of linear-bounded finite automata, the restriction on the number of times
that they rewrite tape symbols brings in quite distinctive effects on the com-
putational power of the underlying automata, different from other restrictions,
such as upper bounds on the numbers of nondeterministic choices or the num-
ber of tape-head turns. Hibbard actually proved that k-limited nondeterminis-
tic automata (or k-lna’s) for k ≥ 2 are exactly as powerful as 1npda’s, whereas
1-lna’s are equivalent in power to 2-way deterministic finite automata (or
2dfa’s) [12].

In a subsequent paper [11], Pighizzini and Pisoni discussed a close relation-
ship between k-limited deterministic automata (or k-lda’s) and one-way deter-
ministic pushdown automata (or 1dpda’s). In fact, they proved that 2-lda’s
embody exactly the power of 1dpda’s; in contrast, Hibbard observed that, when
k ≥ 3, k-lda’s do not, in general, coincide in computational power with 1dpda’s.
This observation gives a clear structural difference between determinism and
nondeterminism on the machine model of “limited automata” and this differ-
ence naturally raises a question of whether other variants of limited automata
matches their corresponding models of one-way pushdown automata.

Lately, a computation model of one-way probabilistic pushdown automata (or
1ppda’s) has been discussed extensively to demonstrate computational strengths
as well as weaknesses in [5,7,9,17]. Hromkovič and Schnitger [5] as well as
Yamakami [17], in particular, demonstrated clear differences in computational
power between two pushdown models, 1npda’s and 1ppda’s.

While nondeterministic computation is purely a theoretical notion, proba-
bilistic computation could be implemented in real life by installing a mechanism
of generating (or sampling) random bits (e.g., by flipping fair or biased coins).
A bounded-error probabilistic machine makes error probability bounded away
from 1/2, whereas an unbounded-error probabilistic machine allows error to take
arbitrarily close to probability 1/2. In most cases, a probabilistic approach helps
us solve a target mathematical problem algorithmically faster, and probabilistic
(or randomized) computation often exhibits its superiority over its determin-
istic counterpart. For example, 2-way probabilistic finite automata (or 2pfa’s)
running in expected exponential time can recognize non-regular languages with
bounded-error probability [2]. By contrast, when restricted to expected subex-
ponential runtime, bounded-error 2pfa’s recognize only regular languages [1,6].
As this example shows, the expected runtime bounds of probabilistic machines
largely affect the computational power of the machines, and thus its probabilistic
behaviors significantly differ from deterministic behaviors.

The usefulness of probabilistic algorithms motivates us to take a proba-
bilistic approach toward an extension of Hibbard’s original model of k-limited
automata. This paper in fact introduces k-limited probabilistic automata (or k-
lpa’s) and their variants, including one-sided-error and bounded-error variants,
and to explore their fundamental properties to obtain strengths and weaknesses
of families of languages recognized by those machine models.

Behavioral Strengths and Weaknesses of Various Models 521

1.2 Main Contributions

Our first goal is to provide in the field of probabilistic computation a complete
characterization of finite and pushdown automata in terms of limited automata.
All probabilistic machines are assumed to run in expected polynomial time.

For any error bound ε ∈ [0, 1/2), the notations 1PPDAε and 2PFAε refer
to the families of all languages recognized by ε-error 1ppda’s and ε-error 2pfa’s,
respectively. As a restriction of 2PFAε, 2RFAε denotes the family of all lan-
guages recognized by 2pfa’s with one-sided error probability at most ε. Simi-
larly, we define 1RPDAε as the one-sided-error variant of 1PPDAε. In addition,
we often use more familiar notation of PCFL, BPCFL, and RCFL respectively
for 1PPDAub,

⋃
0≤ε<1/2 1PPDAε, and

⋃
0≤ε<1 1PPDAε, while CFL denotes the

family of context-free languages. Since {anbncn | n ≥ 0} is in BPCFL [5],
BPCFL � CFL follows, further leading to PCFL �= CFL.

For limited automata, k-LPAε with an index k ≥ 1 refers to the fam-
ily of all languages recognized by k-lpa’s with error probability at most ε.
Using bounded-error k-lpa’s, we denote by k-LBPA the union

⋃
ε∈[0,1/2) k-LPAε.

In the unbounded-error case, we write k-LPA (or k-LPAub for clarity). Sim-
ilarly, k-LRAε is characterized by one-sided ε-error k-lpa’s. Let k-LRA =⋃

ε∈[0,1) k-LRA.
Using k-lda’s and k-lna’s, we define k-LDA and k-LNA, respectively.

Pighizzini and Pisoni [11] demonstrated that 2-LDA coincides with DCFL, which
is the deterministic variant of CFL. Hibbard [3] proved that k-LNA = CFL for
any k ≥ 2. It is also possible to show that PCFL ⊆ 2-LPA and BPCFL ⊆
2-LBPA; however, the opposite inclusions are not known to hold. Therefore, our
purpose of exact characterizations of PCFL and BPCFL requires a specific prop-
erty of k-lpa’s, called blank skipping, for which a k-lpa writes only a unique blank
symbol, say, B during the kth visit and it makes only the same deterministic
moves while reading B in such a way that it neither changes its inner state nor
changes the head direction (either to the right or to the left); in other words,
it behaves exactly in the same way while reading consecutive blank symbols.
This property plays an essential role in simulating various pushdown automata
by limited automata. To emphasize the use of the blank skipping property, we
append the prefix “bs-”, as in bs-2-LPAε. We then obtain the following charac-
terizations.

Theorem 1. Let ε ∈ [0, 1/2) be any error bound.

1. 2PFAε = 1-LPAε and 2PFAub = 1-LPAub.
2. 1PPDAε = bs-2-LPAε, 1RPDAε = bs-2-LRAε, and PCFL = bs-2-LPAub.

Theorem 1(2), in particular, follows from the fact shown in Sect. 3.2 that
1ppda’s can be converted into their “ideal shapes.”

In the case of k-lda’s, as shown in Proposition 2, we can transform limited
automata into their blank skipping form and this is, in fact, a main reason that
2-LDA equals DCFL (due to Theorem 1(2) with setting ε = 0).

Proposition 2. For each index k ≥ 2, k-LDA = bs-k-LDA.

522 T. Yamakami

For other limited automata, it is not yet clear that, for example, k-LPA =
bs-k-LPA.

The second goal of this paper is to argue on various separations of the
aforementioned language families. Earlier, Hibbard [3] devised an example lan-
guage that can separate (k + 1)-LDA from k-LDA for each index k ≥ 2.
In the case of k = 2, a much simpler example language was given in [11]:
L = {anbnc, anb2nd | n ≥ 0}, which is in 3-LDA but not in 2-LDA.

Proposition 3. For any k ≥ 2, k-LDA � k-LRA � k-LBPA ⊆ k-LPA.

Unfortunately, it is unknown whether k-LBPA �= (k+1)-LBPA for each index
k ≥ 2. Proposition 3 will be shown by exploring basic closure properties of target
language families. In Sect. 4.4, we will explore these properties in depth.

The language family 2-LRA turns out to be relatively large since it contains
languages not recognized by any k-lda for every fixed index k ≥ 2.

Theorem 4. For any index k ≥ 2, 2-LRA � k-LDA.

Let ω-LDA stand for
⋃

k≥1 k-LDA. Notice that Theorem 4 is not strong
enough to yield the separation of 2-LRA � ω-LDA. We also do not know whether
or not 3-LDA � 2-LRA and 3-LRA � 2-LBPA.

We seek a refinement of CFL using unambiguous computation (i.e., nonde-
terministic computation with at most one accepting path). Let us define UCFL,
from CFL, by restricting 1npda’s to have unambiguous computation (see [15]).

Theorem 5. ω-LDA ⊆ UCFL � CFL.

To show Theorem 5, we need to (1) introduce a new model of k-limited unam-
biguous automata (or k-lua’s, for short) and its corresponding language family
k-LUA, (2) show that k-LUA = bs-k-LUA by a similar argument used for k-LDA,
and (3) prove that k-LUA = (k + 1)-LUA for each index k ≥ 1 by employing
a similar argument for k-LNA. Item (3) then yields a conclusion that ω-LUA
(=

⋃
k≥1 k-LUA) equals 2-LUA. Since k-LDA ⊆ k-LUA, we immediately obtain

ω-LDA ⊆ 2-LUA = UCFL. This obviously implies Theorem5. Due to page limit,
we omit the details of the above proof.

Wang [13] showed that DCFL contains all languages recognized with
bounded-error probability by 2pfa’s having rational transition probabilities. Let
k-LBPA(rat) denote the subclass of k-LBPA defined by k-lpa’s using only ratio-
nal transition probabilities. Let k-LRA<1/2 =

⋃
ε∈[0,1/2) k-LRAε. Theorem 1(1)

thus implies the following.

Corollary 6. 1-LBPA(rat) ⊆ DCFL ⊆ 2-LRA<1/2.

2 Limited Automata

Let us formally introduce various computational models of limited automata, in
which we can rewrite the content of each tape cell only during the first k scans
or visits of the cell.

Behavioral Strengths and Weaknesses of Various Models 523

Let N be the set of all non-negative integers and set N+ = N − {0}. We
denote by [m,n]Z the set {m,m + 1,m + 2, . . . , n} for any two integers m and
n with m ≤ n. In addition, we abbreviate as [m] the integer interval [1,m]Z for
any integer m ≥ 1.

2.1 Definitions of k-lpa’s with the k-Limitedness Requirement

A k-limited probabilistic automaton (or a k-lpa, for short) M is formally defined
as a tuple (Q,Σ, {|c, $}, {Γi}i∈[k], δ, q0, Qacc, Qrej), which accesses only tape area
in between two endmarkers (those endmarkers can be accessible but not change-
able), where Q is a finite set of (inner) states, Qacc (⊆ Q) is a set of accepting
states, Qrej (⊆ Q) is a set of rejecting states, Σ is an input alphabet, {Γi}i∈[k] is
a collection of mutually disjoint finite sets of tape symbols, q0 is an initial state in
Q, and δ is a probabilistic transition function from (Q−Qhalt)×Γ ×Q×Γ ×D
to the real unit interval [0, 1] with D = {−1,+1}, Qhalt = Qacc ∪ Qrej , and
Γ =

⋃k
i=0 Γi for Γ0 = Σ and |c, $ ∈ Γk. We implicitly assume that Qacc∩Qrej = ∅.

The k-lpa has a rewritable tape, on which an input string is initially placed, sur-
rounded by two endmarkers |c (left endmarker) and $ (right endmarker). In our
formulation of k-lpa, the tape head always moves either to the right or to the
left without stopping still. Along each computation path, M probabilistically
chooses one of all possible transitions given by δ.

Purely for clarity reason, we express δ(q, σ, p, τ, d) as δ(q, σ | p, τ, d). Each
value δ(q, σ | p, τ, d) indicates the probability that, when M scans σ on the tape
in inner state q, M changes its inner state to p, overwrites τ onto σ, and moves
its tape head in direction d. We set δ[q, σ] =

∑
(p,τ,d)∈Q×Γ×D δ(q, σ | p, τ, d).

The function δ must satisfy δ[q, σ] = 1 for every pair (q, σ) ∈ Q × Γ .
The k-lpa M must satisfy the following k-limitedness requirement : during

the first k scans of each tape cell, at the ith scan with 0 ≤ i < k, if M reads the
content of the cell containing a symbol in Γi, then M rewrites it to another sym-
bol in Γi+1. After the the kth scan, the cell becomes unchangeable (or frozen);
that is, M still reads a symbol in the cell but M no longer alters the symbol.
For the above rule, there is one exception: whenever the tape head makes a turn
(either from the left to the right or from the right to the left) at any tape cell, we
count this move as “double scans” or “double visits.” To make the endmarkers
special, we assume that no symbol in

⋃k−1
i= Γi can be replaced by any endmarker.

This k-limitedness requirement is formally stated as follows: for any transition
δ(q, σ | p, τ, d) �= 0 with p, q ∈ Q, σ ∈ Γi, τ ∈ Γj , and d ∈ {+1,−1}, (1) if i = k,
then σ = τ and j = i, (2) if i < k and i is even, then j = i + 2(1−d)/2, and (3) if
i < k and i is odd, then j = i + 2(1+d)/2.

The probability of each computation path is determined by the multiplication
of all chosen transition probabilities along the path. The acceptance probability
of M on input x is the sum of all probabilities of accepting computation paths
of M starting with the input x. We express by pM,acc(x) the total acceptance
probability of M on x. Similarly, we define pM,rej(x) to be the rejection probabil-
ity of M on x. Given a k-lpa M , we say that M accepts x if pM,acc(x) > 1/2 and

524 T. Yamakami

rejects x if pM,rej(x) ≥ 1/2. The notation L(M) stands for the set of all strings
x accepted by M . Given a language L, we say that M recognizes L exactly when
L = L(M). We further say that M makes bounded error if there exists a con-
stant ε ∈ [0, 1/2) (called an error bound) such that, for every input x, either
pM,acc(x) ≥ 1 − ε or pM,rej(x) ≥ 1 − ε. With or without this condition, M is
said to make unbounded error. For a language L, the error probability of M on
x for L is the probability that M ’s outcome is different from L.

Generally, a k-lpa may produce an extremely long computation path or even
an infinite computation path. Following an early discussion in Sect. 1.1 on the
expected runtime of probabilistic machines, it is desirable to restrict our atten-
tion to k-lpa’s whose computation paths have a polynomial length on average;
that is, there is a polynomial p for which the expected length of all terminat-
ing computation paths on input x is bounded from above by p(|x|). In what
follows, we implicitly assume that all k-lpa’s should satisfy this expected poly-
nomial termination requirement. Given an input x, we say that M accepts (resp.,
rejects) x with probability p if the total probability of accepting (resp., rejecting)
computation paths is exactly p.

Let us recall the language families introduced in Sect. 1.2, associated with
limited automata. Among these language families, for each index k ≥ 2, it follows
from the above definitions and by [3] that k-LDA ⊆ k-LRAε ⊆ 2-LNA = CFL
and k-LBPAε′ ⊆ k-LPAε′ for any constants ε ∈ [0, 1) and ε′ ∈ [0, 1/2). Moreover,
by amplifying the success probability of k-lra’s, we easily obtain the inclusion:
k-LRA ⊆ k-LBPA for every index k ≥ 1.

3 One-Way Pushdown Automata

We will formally describe various one-way pushdown automata.

3.1 One-Way Probabilistic Pushdown Automata

One-way deterministic and nondeterministic pushdown automata (abbreviated
as 1dpda’s and 1npda’s, respectively) can be viewed as special cases of the fol-
lowing one-way probabilistic pushdown automata (or 1ppda’s, for short).

Formally, a 1ppda M is a tuple (Q,Σ, {|c, $}, Γ,ΘΓ , δ, q0, Z0, Qacc, Qrej), in
which Q is a finite set of (inner) states, Σ is an input alphabet, Γ is a stack
alphabet, ΘΓ is a finite subset of Γ ∗ with λ ∈ ΘΓ , δ is a probabilistic transition
function (with Σ̌ = Σ ∪ {λ, |c, $}) from (Q − Qhalt) × Σ̌ × Γ × Q × ΘΓ to [0, 1],
q0 (∈ Q) is an initial state, Z0 (∈ Γ) is a bottom marker, Qacc (⊆ Q) is a set
of accepting states, and Qrej (⊆ Q) is a set of rejecting states, where λ is the
empty string and Qhalt = Qacc ∪ Qrej .

For clarity reason, we express δ(q, σ, a, p, u) as δ(q, σ, a | p, u). Let δ[q, σ, a] =∑
(p,u)∈Q×ΘΓ

δ(q, σ, a | p, u) with σ ∈ Σ̌. When σ = λ, we call its transition a
λ-move (or a λ-transition) and the tape head must stay still. At any point, M can
probabilistically select either a λ-move or a non-λ-move. This is formally stated
as δ[q, σ, a]+δ[q, λ, a] = 1 for any given tuple (q, σ, a) ∈ (Q−Qhalt)×(Σ ∪ {|c, $})×

Behavioral Strengths and Weaknesses of Various Models 525

Γ . In a way similar to k-lpa’s, we can define the notions of unbounded-error,
bounded-error, acceptance/rejection probability, etc. We require every 1ppda
to run in expected polynomial time. Two 1ppda’s M1 and M2 are (recognition)
equivalent if L(M1) = L(M2). Let us recall the language families described in
Sect. 1.2. It is well-known that DCFL ⊆ BPCFL ⊆ PCFL.

For two language families F and G, the notation F ∨G (resp., F ∧G) denotes
the 2-disjunctive closure {A ∪ B | A ∈ F , B ∈ G} (resp., the 2-conjunctive
closure {A ∩ B | A ∈ F , B ∈ G}). For any index d ∈ N+, define F(1) = F and
F(d + 1) = F ∧ F(d). Notice that CFL(k) �= CFL(k + 1) for any k ∈ N+ [8].

3.2 An Ideal Shape of 1ppda’s

We want to show how to convert any 1ppda to a “pop-controlled form” (called
an ideal shape), in which the pop operations always take place by first reading
an input symbol σ and then making a series (one or more) of the pop operations
without reading any further input symbol. In other words, a 1ppda in an ideal
shape is restricted to take only the following transitions. Let Γ (−) = Γ − {Z0}.
(1) Scanning σ ∈ Σ, preserve the topmost stack symbol (called a stationary
operation). (2) Scanning σ ∈ Σ, push a new symbol u (∈ Γ (−)) without changing
any other symbol in the stack. (3) Scanning σ ∈ Σ, pop the topmost stack
symbol. (4) Without scanning an input symbol (i.e., λ-move), pop the topmost
stack symbol. (5) The stack operations (4) comes only after either (3) or (4).

Lemma 7 states that any 1ppda can be converted into its “equivalent” 1ppda
in an ideal shape. We say that two 1ppda’s are error-equivalent if they are
recognition equivalent and their error probabilities coincide on all inputs. The
push size of a 1ppda is the maximum length of any string pushed into a stack
by any single move.

Lemma 7 (Ideal Shape Lemma for 1ppda’s). Let n ∈ N+. Any n-state
1ppda M with stack alphabet size m and push size e can be converted into another
error-equivalent 1ppda N in an ideal shape with O(en2m2(2m)2enm) states and
stack alphabet size O(enm(2m)2enm). This is true for the model with no end-
marker.

The proof of this lemma is lengthy, consisting of a series of transformations
of automata, and is proven by utilizing, in part, ideas of Hopcroft and Ullman
[4, Chap. 10] and of Pighizzini and Pisoni [11, Sect. 5].

The ideal shape lemma is useful for simplifying certain proofs. In what fol-
lows, we give one such example. Given a language A, the notation AR denotes
the reverse language {xR | x ∈ A}. For a family F of languages, FR expresses
the collection of AR for any language A in F .

Lemma 8. PCFL is closed under reversal; that is, PCFLR = PCFL.

4 Behaviors of Limited Automata

In the subsequent subsections, we intend to verify our main results stated in
Sect. 1.2 by making structural analyses on the behaviors of k-lpa’s.

526 T. Yamakami

4.1 Blank Skipping Property, Theorem1, and Proposition 2

We will show the proofs of Theorem 1 and Proposition 2. For the former proof, we
want to restrict the behaviors of k-lpa’s so that we can control their computation.
Firstly, we give the formal description of the notion of blank skipping property.
A k-lpa is blank skipping if (1) Γk = {|c, $, B}, where B is a unique blank symbol,
and (2) there are two disjoint subsets Q+1, Q−1 of Q for which δ(q,B | q,B, d) =
1 for any direction d ∈ {±1} and any state q ∈ Qd. In other words, when a k-lpa
passes a cell for the kth time, it must make the cell blank (i.e., the cell has B)
and the cell becomes frozen afterward.

Let us begin with the proof of Theorem1.

Proof Sketch of Theorem 1. (1) It is rather easy to simulate a 2pfa by a 1-lpa
that behaves like the 2pfa but changes each input symbol σ to its corresponding
symbol σ′. On the contrary, we want to simulate a 1-lpa M by the following 2pfa
N . A key idea is that it is possible to maintain and update a list of state pairs,
each (p, q) of which indicates that, if M ’s tape head enters the tape area left of
the currently scanning cell from the right in state p, then M eventually leaves
the area to the right in state q with positive probability.

(2) This directly comes from Lemmas 9 and 10. �

In what follows, we describe Lemmas 9 and 10 and present their proofs.

Lemma 9. Let n ≥ 2 and l ≥ 1. Every n-state blank-skipping 2-lpa working on
an l-letter alphabet can be converted into a recognition-equivalent 1ppda with the
same error probability and of states at most 2n.

Proof Sketch. Given a blank-skipping 2-lpa M , we simulate it as follows. On
input x, when M reads a new input symbol σ by changing it to τ , we read σ
and push τ into a stack. In contrast, when M moves its tape head leftwards by
skipping B to the first non-blank symbol τ and changes it to B, we simply pop
a topmost stack symbol. This simulation can be done by a certain 1ppda. �

The ideal shape form of 1ppda’s is a key to the next lemma.

Lemma 10. Let n, l ∈ N+. Let L be a language over an alphabet Σ of size l
recognized by an n-state 1ppda M in an ideal shape with error probability at most
ε. There is a blank-skipping 2-lpa N that has O(nl) states and recognizes L with
the same error probability.

Proof Sketch. Let M be a 1ppda and assume that M is in an ideal shape. We
simulate M by an appropriate 2-lpa in the following way. Let x be any input
string. Assume that M reads a new input symbol σ. If M pushes τ into a stack,
then we read σ and change it into τ . If M pops a topmost stack symbol, then
we move a tape head leftwards to read the first non-blank symbol τ and then
replace it with B. On the contrary, assume that M makes a λ-move. Since M ’s
move must be a pop operation, we move the tape head leftwards and replace the
first non-blank symbol by B. �

Behavioral Strengths and Weaknesses of Various Models 527

It is possible to convert any k-lda into its equivalent blank-skipping k-lda.
The following is a key lemma, from which Proposition 2 follows immediately.
Our proof partly takes an idea from [11].

Lemma 11. Let k be any integer with k ≥ 2. Given any k-lda M , there exists
another k-lda N such that (1) N is blank-skipping and (2) N agrees with M on
all inputs.

4.2 Properties of ω-LPFA

As done in [14–16], we equip each 1nfa with a write-only output tape.2 Let
1NFAMV denote the class of all multi-valued partial functions from Σ∗

1 to
Σ∗

2 whose output values are produced on write-only tapes along only accept-
ing computation paths of 1nfa’s, where Σ1 and Σ2 are arbitrary alphabets. We
further write 1NFAMVt for the collection of all total functions in 1NFAMV.
Let k ≥ 2. For any f : Σ∗

1 → Σ∗
2 in 1NFAMVt witnessed by a 1nfa, say,

Mf with an output tape and for any k-lpa M over Σ2, let Lf,M = {x ∈ Σ∗
1 |∑

y∈Σ∗
2

|APf (x|y)|ProbM [M(y) = 1]/|APf (x)| > 1/2}, where APf (x|y) is the set
of all accepting computation paths of Mf producing y on input x and APf (x) =⋃

y∈Σ∗
2

APf (x|y). By abusing the notation, we write k-LPA◦1NFAMVt to denote
the set of all such Lf,M ’s.

We argue that k-LPA is “invariant” with an application of 1NFAMVt-
functions in the following sense.

Lemma 12. For any index k ≥ 2, k-LPA ◦ 1NFAMVt = k-LPA.

Proof Sketch. Let k ≥ 2. Since it is obvious that k-LPA ⊆ k-LPA◦1NFAMVt,
we want to show the opposite inclusion. Take a function f ∈ 1NFAMVt and a
k-lpa M , and consider Lf,M . There is a 1nfa Mf computing f . Consider the
following machine N . On input x, run Mf and, whenever Mf produces one
output symbol σ, run M to process σ. Along each computation path of Mf , if
Mf enters an accepting state, then N does the same, otherwise, N enters both
accepting and rejecting states with equiprobability. Clearly, N is also a k-lpa
and it recognizes L with unbounded-error probability. �

Consider any k-lpa M used in the definition of k-LPA◦1NFAMVt. If we feed
such an M with the reverses xR of inputs x, then we obtain k-LPAR◦1NFAMVt.
We show the following relationship between (k + 1)-LPA and k-LPAR.

Lemma 13. For any k ≥ 2, k-LPAR ◦ 1NFAMVt ⊆ (k + 1)-LPA.

Proof Sketch. Fix k ≥ 2.
We show the inclusion of k-LPAR ◦ 1NFAMVt ⊆ (k + 1)-LPA. Let M be a

k-lpa and let f be a function in 1NFAMVt witnessed by a certain 1nfa, say, Mf .
Define Lf,MR = {x ∈ Σ∗ | ∑

y |APf (x|y)|ProbM [M(yR) = 1]/|APf (x)| > 1/2}.

2 An output tape is write only if its cells are initially blank and its tape head moves
to the right whenever it writes a non-blank symbol.

528 T. Yamakami

Our goal is to verify that Lf,MR ∈ (k + 1)-LPA. Consider the following machine
N . On input x, run Mf on x, change x into y in f(x) along all computation paths
in ACf (x|y), and run M on |cy$ starting at $ and ending at |c. Since M is k-limited,
N must be (k + 1)-limited. We thus conclude that Lf,MR ∈ (k + 1)-LPA. �

4.3 Power of Probabilistic Computation and Theorem4

We will give the proof of Theorem 4. The proof requires, for each index k ≥ 2, a
certain language, which is in (k + 1)-LDA but outside of k-LDA. The example
languages shown below are slight modifications of the ones given by Hibbard [3].

(1) When k = 3, the language L3 is composed of all strings of the forms
an2bn2cp2#a and an2bm2cm2#b for all integers n2,m2, p2 ≥ 0.

(2) Let k ≥ 4 be any index and assume that Lk−1 is already defined.
For each index i ∈ [2, k − 1]Z, we succinctly write wi in place of anibmicpi

for certain numbers ni,mi, pi ∈ N. The desired language Lk is composed of
all strings w of the form w2#w4# · · · #wk−1# · · · #w5#w3#x with x ∈ {a, b}
satisfying Conditions (i)–(iv) given below. For each index i ∈ [3, k − 2]Z, we
define w̃

(k)
i = wi−1 if i is even, and wi+1 otherwise. Moreover, let w̃

(k)
k−1 =

wk−1 if k is even, and wk−2 otherwise. Finally, let w̃(−) express the string
w̃

(k)
4 #w̃

(k)
6 # · · · #w̃

(k)
k−1# · · · #w̃

(k)
5 #w̃

(k)
3 . (i) If x = a and n2 = m2, then

w̃(−)#a ∈ Lk−1. (ii) If x = a and n2 < m2, then w̃(−)#b ∈ Lk−1. (iii) If
x = b and m2 = p2, then w̃(−)#a ∈ Lk−1. (iv) If x = b and m2 < p2, then
w̃(−)#b ∈ Lk−1.

An argument similar to [3, Sect. 4] verifies that, for each index k ≥ 2, the
language Lk+1 is included in (k + 1)-LDA but excluded from k-LDA.

Fix k ≥ 2. For each symbol x ∈ {a, b}, let Lx = {w#x ∈ Lk+1 | w =
w2#w4# · · · #wk# · · · #w5#w3}. Note that Lk+1 = La ∪ Lb. Since La, Lb ∈
k-LDA, it follows that Lk+1 ∈ k-LDA∨k-LDA. Therefore, we obtain the follow-
ing corollary.

Corollary 14. For every k ≥ 2, k-LDA ∨ k-LDA � k-LDA.

Lemma 15. For any k ≥ 3, Lk ∈ 2-LRA(1−2−2k+5).

Proof. We first show that L3 ∈ 2-LRA1/2. Let L′
a = {anbncp#a | n, p ≥ 0} and

L′
b = {anbmcm#b | n,m ≥ 0}. Clearly, L3 = L′

a∪L′
b holds. Since L′

a, L′
b ∈ DCFL,

for each symbol x ∈ {a, b}, we take a 2-lda Mx that recognizes L′
x. Consider the

following 2-lra N . Let w be any input. Initially, choose an index x ∈ {a, b} with
equiprobability and then run Mx. If w ∈ L3, then N accepts w with probability
1/2; otherwise, N rejects w with probability 1.

By induction hypothesis, we assume that Lk ∈ 2-LRA(1−2−2k+5). Let us con-
sider Lk+1. Using the aforementioned notation, define La= = {w#a | n2 =
m2, w̃

(−)#a ∈ Lk} and La< = {w#a | n2 < m2, w̃
(−)#a ∈ Lk}, where w is

of the form w2#w4# · · · #wk# · · · #w5#w3#x for a certain symbol x ∈ {a, b}.
Similarly, we define Lb= and Lb<. Note that Lk+1 = La=∪La< ∪Lb=∪Lb<. It is
not difficult to show that La=, La<, Lb=, Lb< all belong to 2-LRA(1−2−2k+5) since

Behavioral Strengths and Weaknesses of Various Models 529

Lk ∈ 2-LRA(1−2−2k+5). Consider the following machine N . On the input of the
form w#x, choose one of the pairs {a =, a <, b =, b <} with equal probability.
Suppose that we have chosen a =. As an example, let Ma= be a 2-lra recognizing
the language La=. In this case, run Ma= on w#x. When w#a ∈ Lk+1, N accepts
the input with probability 1

4 ×2−2k+5, which equals 2−2(k+1)+5. The other cases
are similarly treated. �

Lemma 15 implies that Lk+1 ∈ 2-LRA. Since Lk+1 /∈ k-LDA, we instantly
conclude that 2-LRA � k-LDA. This completes the proof of Theorem 4.

4.4 Closure Properties of Probabilistic Classes and Proposition 3

We will explore basic closure properties of k-LRA, k-LBPA, and k-LDA. By
utilizing some of those properties, we will prove Proposition 3 in the end.

Lemma 16. For any k ≥ 2, k-LRA is closed under finite union but not under
finite intersection.

Lemma 17. For any k ≥ 2, k-LBPA is closed under complementation but
k-LRA is not.

Proof. It is not difficult to show that k-LBPA = co-k-LBPA for all indices
k ≥ 2. By Lemma 16, k-LRA is closed under finite union. If k-LRA = co-k-LRA,
then k-LRA must be closed under finite intersection. This contradicts the second
part of Lemma 16. �

Recall that 2-LDA = DCFL [11]. Although k-LDA �= DCFL for all k ≥ 3,
k-LDA still satisfies many non-closure properties as DCFL does.

Lemma 18. For any k ≥ 2, k-LDA is not closed under reversal, concatenation,
λ-free homomorphism, or Kleene star.

Next, we look at the closure properties of k-LBPA.

Lemma 19. For each operator � ∈ {∧,∨}, k-LDA � k-LDA ⊆ k-LBPA; thus,
k-LDA(2) ⊆ k-LBPA.

Proof. It suffices to consider the case of � = ∨ because k-LBPA is closed under
complementation. Let M1,M2 be two k-lpa’s working over the same alphabet
Σ. We design a new k-lpa N to work as follows. On input x, choose an index
i ∈ {1, 2} uniformly at random, run Mi on x. If Mi enters an accepting state,
accept x with probability 1; otherwise, accept x with probability 1/3 and reject
with probability 2/3. If x ∈ L(M1)∪L(M2), then the acceptance probability of N
is at least 2/3. In contrast, if x /∈ L(M1) ∪ L(M2), then the rejection probability
is at least 2/3. Therefore, L(M1) ∪ L(M2) is in k-LBPA. �

It is, however, unknown that k-LDA(d) ⊆ k-LBPA for every index d ≥ 3.

Proof of Proposition 3. All inclusions obviously hold. We want to show the
remaining two separations. Note that k-LDA = co-k-LDA for any k ≥ 1.
By Lemma 16, it follows that k-LDA �= k-LRA. Similarly, from k-LBPA =
co-k-LBPA, we obtain k-LRA �= k-LBPA. �

530 T. Yamakami

References

1. Dwork, C., Stockmeyer, L.: Finite verifiers I: the power of interaction. J. ACM 39,
800–828 (1992)

2. Freivalds, R.: Probabilistic two-way machines. In: Gruska, J., Chytil, M. (eds.)
MFCS 1981. LNCS, vol. 118, pp. 33–45. Springer, Heidelberg (1981). https://doi.
org/10.1007/3-540-10856-4 72

3. Hibbard, T.N.: A generalization of context-free determinism. Inf. Control 11, 196–
238 (1967)

4. Hopcroft, J.E., Ullman, J.D.: Introduction to Automata Theory, Languages, and
Computation. Addison-Wesley, Boston (1979)

5. Hromkovič, J., Schnitger, G.: On probabilistic pushdown automata. Inf. Comput.
208, 982–995 (2010)

6. Kaņeps, J., Freivalds, R.: Minimal nontrivial space complexity of probabilistic one-
way turing machines. In: Rovan, B. (ed.) MFCS 1990. LNCS, vol. 452, pp. 355–361.
Springer, Heidelberg (1990). https://doi.org/10.1007/BFb0029629

7. Kaņeps, J., Geidmanis, D., Freivalds, R.: Tally languages accepted by Monte Carlo
pushdown automata. In: Rolim, J. (ed.) RANDOM 1997. LNCS, vol. 1269, pp.
187–195. Springer, Heidelberg (1997). https://doi.org/10.1007/3-540-63248-4 16

8. Liu, L.Y., Weiner, P.: An infinite hierarchy of intersections of context-free lan-
guages. Math. Syst. Theory 7, 185–192 (1973)

9. Macarie, I.I., Ogihara, M.: Properties of probabilistic pushdown automata. Theor.
Comput. Sci. 207, 117–130 (1998)

10. Pighizzini, G., Pisoni, A.: Limited automata and regular languages. Int. J. Found.
Comput. Sci. 25, 897–916 (2014)

11. Pighizzini, G., Pisoni, A.: Limited automata and context-free languages. Fund.
Inform. 136, 157–176 (2015)

12. Wagner, K., Wechsung, G.: Computational Complexity. D. Reidel Publishing, Dor-
drecht (1986)

13. Wang, J.: A note on two-way probabilistic automata. Inf. Process. Lett. 43, 321–
326 (1992)

14. Yamakami, T.: Oracle pushdown automata, nondeterministic reducibilities, and
the hierarchy over the family of context-free languages. In: Geffert, V., Preneel,
B., Rovan, B., Štuller, J., Tjoa, A.M. (eds.) SOFSEM 2014. LNCS, vol. 8327, pp.
514–525. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-04298-5 45

15. Yamakami, T.: Structural complexity of multi-valued partial functions computed
by nondeterministic pushdown automata. In: Proceedings of ICTCS 2014, CEUR
Workshop Proceedings, vol. 1231, pp. 225–236 (2014)

16. Yamakami, T.: Not all multi-valued partial CFL functions are refined by single-
valued functions (extended abstract). In: Diaz, J., Lanese, I., Sangiorgi, D. (eds.)
TCS 2014. LNCS, vol. 8705, pp. 136–150. Springer, Heidelberg (2014). https://
doi.org/10.1007/978-3-662-44602-7 12

17. Yamakami, T.: One-way bounded-error probabilistic pushdown automata and kol-
mogorov complexity (preliminary report). In: Charlier, É., Leroy, J., Rigo, M.
(eds.) DLT 2017. LNCS, vol. 10396, pp. 353–364. Springer, Cham (2017). https://
doi.org/10.1007/978-3-319-62809-7 27

https://doi.org/10.1007/3-540-10856-4_72
https://doi.org/10.1007/3-540-10856-4_72
https://doi.org/10.1007/BFb0029629
https://doi.org/10.1007/3-540-63248-4_16
https://doi.org/10.1007/978-3-319-04298-5_45
https://doi.org/10.1007/978-3-662-44602-7_12
https://doi.org/10.1007/978-3-662-44602-7_12
https://doi.org/10.1007/978-3-319-62809-7_27
https://doi.org/10.1007/978-3-319-62809-7_27

	Behavioral Strengths and Weaknesses of Various Models of Limited Automata
	1 Background and Main Contributions
	1.1 Limited Automata and Probabilistic Computation
	1.2 Main Contributions

	2 Limited Automata
	2.1 Definitions of k-lpa's with the k-Limitedness Requirement

	3 One-Way Pushdown Automata
	3.1 One-Way Probabilistic Pushdown Automata
	3.2 An Ideal Shape of 1ppda's

	4 Behaviors of Limited Automata
	4.1 Blank Skipping Property, Theorem1, and Proposition2
	4.2 Properties of -LPFA
	4.3 Power of Probabilistic Computation and Theorem4
	4.4 Closure Properties of Probabilistic Classes and Proposition3

	References

