
Minicomplexity

Some Motivation, Some History, and Some Structure
(Invited Talk Extended Abstract)

Christos A. Kapoutsis(B)

Carnegie Mellon University in Qatar, Doha, Qatar
cak@cmu.edu

Abstract. The termminicomplexity was first suggested in [2], as a name
for the field of theory of computation which studies the size complexity
of two-way finite automata, as outlined in [1]. In this talk, we discuss
the motivation behind this field and enumerate some of its prominent
results in their historical context. By reformulating these results, we then
attempt to reveal additional structure which often passes unnoticed. The
present report records the start of this attempt.

1 Machines vs. Machines

Central in [1] is the invitation to start viewing the results in this field similarly to
how results are being viewed in standard complexity theory: not as statements
about the relative power of various computational devices, but as statements
about the relative difficulty of various computational problems.

To describe the difference between the two viewpoints and stress the benefits
of such a shift, we go back to the seminal paper of Meyer and Fischer [5], which
initiated the field, and to the three very first propositions in it. The first one(1)

says that one-way nondeterministic finite automata (1nfas) are strictly more
powerful than deterministic ones (1dfas), as some binary witness language Rn

needs ≤n states on 1nfas but ≥2n states on 1dfas. In the proof, Rn is described
only through its deciding 1nfa. After it, one more witness R′

n is given:

c© Springer Nature Switzerland AG 2019
B. Catania et al. (Eds.): SOFSEM 2019, LNCS 11376, pp. 28–38, 2019.
https://doi.org/10.1007/978-3-030-10801-4_3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-10801-4_3&domain=pdf
https://doi.org/10.1007/978-3-030-10801-4_3

Minicomplexity 29

which is (suboptimal, but) simpler, together with its restriction R′′
n (our name) to

strings of length <2n, which shares the same properties.(2) The next proposition

establishes a similar relation for two-way deterministic finite automata (2dfas)
and 1dfas: now a witness language Fn needs O(n) states on 2dfas but ≥nn

states on 1dfas. Finally, the third proposition

proves that, augmented with a pebble, 2dfas are even more powerful: O(n) states
are now enough to decide a language Pn for which 1dfas need ≥22

n

states. In
short, and in the standard parlance of the field, Propositions 1–3 tell us that the
trade-off in the conversion from 1nfas, 2dfas, or single-pebble 2dfas to 1dfas
is respectively 2Ω(n), 2Ω(n lg n), and 22

Ω(n)
.

Overall, this is entirely a “machines vs. machines” discussion: computational
devices compete against each other, and we want to know which is more powerful.
In this competition, problems play only the secondary role of a witness task on
which a stronger machine beats a weaker one by solving it with less resources.

2 Problems vs. Problems

The alternate viewpoint is “problems vs. problems”: computational tasks com-
pete against each other, and we want to know which is more difficult. This time
it is machines that play the secondary role, of a witness device on which a harder
problem beats an easier one by requiring more resources.

This is the viewpoint of standard complexity theory, and it was proposed for
minicomplexity, as well, by Sakoda and Sipser in their own seminal paper [6].
By switching to this viewpoint, we bring problems at the center of attention: we
clearly describe them as computational tasks (as opposed to sets of strings); give
them distinctive names; and collect them in complexity classes relative to the

30 C. A. Kapoutsis

various machines and the polynomiality or not (as opposed to the asymptotics)
of the used resources. For practical reasons, we also use h as the important
parameter (instead of n, which is often needed as input length); and describe
the instances over a large alphabet and with an associated promise for the format
(if this simplifies the description without affecting the difficulty).

2.1 RETROCOUNT

For example, R′
h (Proposition 1) is the problem: “Given a bitstring, check that

its h-th from the last digit is 1.” Note that the reference “h-th from the last
digit” is void on strings of length <h. We could get into a discussion of whether
such strings should be accepted or not, but this would be a distraction from the
main point of the task. A better description of the essence of this computational
problem is one where the intended format of the input is taken for granted:

“Given a bitstring of length ≥h, check that its h-th last bit is 1.” (1)

so that a solving machine need not check that the length is ≥h; if it is not, then
the machine is free to decide arbitrarily. We call this problem retrocounth.
Similarly, the restriction R′′

h is the problem shortretrocounth:

“Given a bitstring of lengthh ≤ n < 2h, check that its h-th last bit is 1.” (2)

Again, it is not the job of a solving machine to check that the length of the input
is appropriate; this is promised. The job is only to check the h-th last bit.

Formally, a (promise) problem L over an alphabet Σ is a pair (L, L̃) of disjoint
subsets of Σ∗. A string w is an instance of L if w ∈ L ∪ L̃, and is positive, if
w ∈ L, or negative, if w ∈ L̃. To solve L is to accept all w ∈ L but no w ∈ L̃
(behaving arbitrarily on w �∈ L ∪ L̃). So, (1) and (2) are the promise problems

retrocounth :=
(

{0,1}∗1{0,1}h−1, {0,1}∗0{0,1}h−1
)

shortretrocounth :=
(

{0,1}<h1{0,1}h−1, {0,1}<h0{0,1}h−1
)
.

That both problems witness the exponential difference in number of states
between 1nfas and 1dfas is expressed by the fact that both belong to the class

1N :=
{

(Lh)h≥1

∣
∣
∣
∣
∣

there exist 1nfas (Nh)h≥1 and polynomial s
such that every Nh solves Lh with s(h) states

}
, (3)

of “problems solved by small 1nfas”, but not in the respective class 1D for 1dfas:

retrocount, shortretrocount ∈ 1N \ 1D, (4)

where retrocount = (retrocounth)h≥1 is the induced family, and similarly
for shortretrocount. Note that, since the latter problem is a restriction of
the former, all the information of (4) follows from the next two facts and lemma.

Fact 1. retrocount ∈ 1N.

Minicomplexity 31

Fact 2. shortretrocount �∈ 1D.

Lemma 1. If L ⊆ L′ and L �∈ C, then L′ �∈ C.

Here, L ⊆ L′ means that the family L= (Lh)h≥1 is a restriction of L′ = (L′
h)h≥1

(so that shortretrocount ⊆ retrocount); equivalently, we also say that
L′ is a generalization of L. Formally, for L= (L, L̃) and L′ = (L′, L̃′), we write
L ⊆ L′ if both L ⊆ L′ and L̃ ⊆ L̃′; then we write L ⊆ L′ if Lh ⊆ L′

h for all h.

2.2 PROJECTION

For another example, Fh (Proposition 2) is the problem: “Given a string, check
that it consists of a tuple of h numbers from 1 to h (in unary, by 0s; delimited
by 1s), an index k from 1 to h (in unary, by 2s), and the k-th number in the
tuple (in unary, by 0s).” Clearly, the essence of this task is to check that the
number after k equals the k-th number in the tuple. So, a better description is:

“Given a tuple of h numbers from 1 to h (in unary, by 0s; delimited by 1s),
an index k from 1 to h (in unary, by 2s), and a number i from 1 to h (5)
(in unary, by 0s), check that i equals the k-th number in the tuple.”

so that, as above, checking that the input is correctly formatted is not important.
Also unimportant is the fact that the numbers and index are in unary. The

problem preserves its essence, if we assume that the input cells are large enough
to host any number from [h] := {1, . . . , h}. So, an even better description of Fh is

“Given a tuple i1, i2, . . . , ih of numbers in [h], and two numbers k, i in [h],
check that i equals ik.” (6)

where the input alphabet is [h]. Now it is more clear what the problem is: to
check that the projection of the given tuple to its k-th component returns i. So,
we refer to (6) as projectionh;(3) and use unaryprojectionh for (5).

With these clarifications, Proposition 2 says that unaryprojection ∈ 2D \
1D, where the class 2D of “problems solved by small 2dfas” is defined similarly
to (3). Intuitively, the reasons for this fact are clear: When a solving 1dfa crosses
the boundary between the tuple and the index, it must be able to answer any
query of the form “does the k-th component equal i?”, so it must store the full
tuple, which needs ≥hh states. In contrast, a 2dfa can read 2k0i and store k and i;
rewind; then countdown to the k-th block of 0s to check that it contains exactly i
of them, all doable with O(h2) states. Similarly, projection ∈ 2D \ 1D.

Now that we see why these problems witness 2D\1D, we may further ask: Do
we really need the tuple numbers in separate cells? Or k and i in separate cells?
No. Over the alphabet [h]h ∪ [h]2, where cells are large enough to host an entire
h-tuple i or query u = (k, i), we may define the problem compactprojectionh:

“Given a tuple i ∈ [h]h and a query u ∈ [h]2, check that u2 = iu1 .” (7)

Intuitively, this is the best description of the essence of Fh, as it contains exactly
the structure that is sufficient and necessary to place it in 2D \ 1D.

32 C. A. Kapoutsis

Of course, problems (5), (6), and (7) are “essentially the same”. To describe
this intuition formally, we first define them as promise problems. E.g., (7) is:

compactprojectionh :=
(
{iu | u2 = iu1}, {iu | u2 �= iu1}

)
;

and similarly for (5) and (6), over alphabets {0, 1, 2} and [h]. We then introduce
reductions, as follows. For arbitrary problems L = (L, L̃) and L′ = (L′, L̃′) over
alphabets Σ and Σ′, we say that L 1D-reduces to L′ (L ≤1D L′) if there exists a
one-way deterministic finite transducer (1dft) T such that

w ∈ L =⇒ T (w) ∈ L′ and w ∈ L̃ =⇒ T (w) ∈ L̃′ (8)

where T (w) is the output of T on input w, if T accepts w, or undefined, otherwise.
An alternative and more concise way to write (8) is:

T (L) ⊆ L′ (9)

where T (L) = T (L, L̃) = (T (L), T (L̃)) =
(
{T (w) | w ∈ L}, {T (w) | w ∈ L̃}

)
is

the pair of the images under T of all positive and all negative instances of L
(which is itself a problem iff T (L) ∩ T (L̃) �= ∅). As further alternative,

1D(L) ⊆ L′ (10)

says the same, without identifying T (i.e., it is equivalent to L ≤1D L′).
In the special case where the inclusion (9) is an equality, L′ is a 1D-image

of L under T , and we also write (10) as equality. E.g., (5) is a 1D-image of (6):

1D(projectionh) = unaryprojectionh (11)

via the O(h)-state 1dft T which scans an instance i1i2 . . . ihki and, for each
symbol in [h], prints the appropriate unary representation and delimiters. Note
that T prints on its output tape only h + 2 = poly(h) times; and, in each of
these times, the printed string has length ≤h + 1 = poly(h).

In another special case, where T has only 1 state and always accepts, T defines
a homomorphism H : Σ ∪ {�,�} → (Σ′)∗ such that T (w) = H(�w�). We then
say that L homomorphically reduces to L′ (L ≤H L′ or H(L) ⊆ L′), if H(L) ⊆ L′;
or that L′ is a homomorphic image of L (H(L′) = L), if H(L) = L′. Hence,

H(compactprojectionh) = projectionh (12)

via the homomorphism H which maps every h-tuple i = (i1, i2, . . . , ih) to the
string i1i2 · · · ih, every query u = (k, i) to the string ki, and each of �,� to ε.
Note that H maps every symbol to a string of length ≤h = poly(h).

These definitions extend to problem families L = (Lh)h≥1 and L′ = (L′
h)h≥1,

if every Lh reduces to some L′
h′ via a 1dft Th or a homomorphism Hh. However,

to say that L ≤1D L′, 1D(L) = L′, L ≤H L′, or H(L) = L′, we also need h′ and
the size of Th to be small relative to h: namely, that h′ = poly(h) and Th has
poly(h) states. If, in addition, every Th prints only poly(h) times, then we write

Minicomplexity 33

L ≤lac
1D L′ and call the Th laconic; if every printed string has length only poly(h),

then we write L ≤t
1D L′ (or L ≤t

H L′) and call the Th (or Hh) tight. Hence,

1D(projection) = unaryprojection

H(compactprojection) = projection
(13)

by the tight laconic transducers of (11) and the tight homomorphisms of (12).
In conclusion, (13) expresses the intuition that problems (5), (6), and

(7) are “essentially the same”. Now, the fact that they all witness 2D \
1D follows from only two easy facts and standard lemmas [6, Sect. 3],
[4, Corollary 3]:

Fact 3. unaryprojection ∈ 2D.

Fact 4. compactprojection �∈ 1D.

Lemma 2. 2D is closed under ≤H and ≤lac
1D .

Lemma 3. 1D is closed under ≤1D (and thus also under ≤H and ≤lac
1D).

2.3 MEMBERSHIP

Let us now return to Proposition 1 and see how large alphabets can help us
better understand the essense of its problems, too.

In shortretrocounth, every instance w is of the form uv, where |u| = h
and 0 ≤ |v| < h. Note that the actual bits of v are unimportant; only l := |v|
matters: w is positive iff the (l + 1)-st bit of u is 1. Namely, if α ⊆ [h] is the set
of the indices of all 1’s in u, then w is asking whether l +1 ∈ α. So, the question
is really whether a set α contains an element i; it’s just that α is given in binary
(by its characteristic vector u) and i is given in unary (by the length i − 1 of v).

Let us also recall why shortretrocount ∈ 1N \ 1D. On crossing the u-v
boundary, a solving 1dfa must be able to handle any l, i.e., any query of the
form “does the i-th bit of u equal 1?”; so it must store the full u, which needs
≥2h states. In contrast, a 1nfa can scan u; guess the crucial 1; countdown from h
on the next bits (entering v at count i, for i the index of the guessed 1); and
accept iff the count is 1 on � (so |v| = i − 1), all doable with O(h) states.

Now that we better understand what the problem is asking and why it is a
witness, we may ask: Do we really need α in binary and i in unary? No. Over
the alphabet {α | α ⊆ [h]} ∪ [h], we define the problem: “Given a set α ⊆ [h]
and an element i ∈ [h], check that i ∈ α”, or formally:(4)

membershiph :=
(
{αi | i ∈ α}, {αi | i �∈ α}

)
; (14)

and claim that this best captures the essence of shortretrocounth. That the
two problems are “essentially the same” is formally expressed by the fact that the
former homomorphically reduces to the latter via the obvious homomorphism
which maps every α to its characteristic vector and every i to 0i−1:

H(membership) ⊆ shortretrocount. (15)

34 C. A. Kapoutsis

What about retrocounth? Its instances are derived by left-padding those
of shortretrocounth by arbitrary bitstrings. Formally, let LPAD be the opera-
tor which maps L = (L, L̃) to the pair LPAD(L) := ({0,1}∗L, {0,1}∗L̃). This pair
is not necessarily a promise problem: if there exist instances w ∈ L and w̃ ∈ L̃
and pad-strings x, x̃ ∈ {0,1}∗ such that xw = x̃w̃, then the two sets in the pair
are not disjoint. So, call L left-paddable, if this does not happen. Then a family
L = (Lh)h≥1 is left-paddable if every Lh is; and LPAD(L) := (LPAD(Lh))h≥1.

Easily, shortretrocounth is left-paddable, since the sign of each instance
is determined by its last h bits and these are unaffected by the padding; and

LPAD(shortretrocount) = retrocount. (16)

Overall, (15) and (16) formally relate (1), (2), and (14) to each other. Now,
the fact that all three witness 1N \ 1D follows from only two easy facts and from
suitable lemmas (Lemma 1, as L ⊆ LPAD(L); Lemma 3; and Lemmas 4–5):

Fact 5. shortretrocount ∈ 1N.

Fact 6. membership �∈ 1D.

Lemma 4. 1N is closed under ≤H.

Lemma 5. If L is left-paddable and L ∈ 1N, then LPAD(L) ∈ 1N.

Note how our earlier Facts 1 and 2 now become corollaries of Facts 5 and 6.

Retrocount vs. Projection. There is great similarity between our intu-
ition why the projection problems are not in 1D and why the same holds for
the retrocount problems. This suggests that the projection problems also have
membership at their core. Indeed:

H(membership) ⊆ compactprojection (17)

by the homomorphism which maps every set α ⊆ [h] to its “characteristic tuple”
i ∈ [h+1]h+1 where ij = 1 or h+1, based on whether j ∈ α or not, respectively;
and each i ∈ [h] to the query (i, 1).(5) So, our earlier Fact 4 is now a corollary of
Fact 6 (via (17) and Lemma 3). At the same time, membership is also a witness
of 2D \ 1D, because Fact 3 implies it is in 2D (via (13), (17), and Lemma 2).

2.4 LIST MEMBERSHIP

We now continue to problem Ph (Proposition 3): “Given a string, check that it
is a strictly increasing list of h-long binary numbers (delimited by 2s), followed
by a copy of one of them (separated by 22).” Clearly, the essence of this task is
to check that the number after 22 appears in the preceding list. The condition
that the list is strictly increasing is there to ensure that Ph is finite. Ignoring it
(also dropping the finiteness of Ph from Proposition 3), we arrive at this better
description:

“Given a list of h-long binary numbers (delimited by 2s) and an h-long
binary number i (separated by 22), check that i is in the list.” (18)

Minicomplexity 35

As previously, presenting the numbers in binary is unimportant; all that matters
is that each block of h bits can host 2h different strings. It is important, however,
to know when we have arrived at i. So, to zoom into the essence of Ph, we switch
to alphabet [2h] ∪ {ı̌ | i ∈ [2h]}, where each cell hosts a full number x (possibly
ticked, as x̌) in [2h] (as opposed to {0, . . . , 2h − 1}), and define the problem:

“Given a list of numbers from [2h] and a ticked number i ∈ [2h],
check that i is in the list.” (19)

In it, one easily sees a variant of membershiph, where elements are drawn (not
from [h], but) from [2h]; and the set is given (not in a single cell, but) as a list
over many cells, possibly with repetitions. To represent this problem, we first
introduce its variant over the smaller alphabet [h]:(6)

listmembershiph :=
(
{i1i2 · · · it ı̌ | t ≥ 0 & i1, i2, . . . , it, i ∈ [h] & (∃j)(ij = i)},

{i1i2 · · · it ı̌ | t ≥ 0 & i1, i2, . . . , it, i ∈ [h] & (∀j)(ij �= i)}
)
,

(20)

and refer to (19) itself, over [2h], as tall listmembershiph. Then, for (18) we
use the name binarytall listmembershiph.

So, Proposition 3 says that binarytall listmembership ∈ P1D\21D, where
P1D and 21D are the classes for small single-pebble 2dfas and large 1dfas, where
“large” means “with 2poly(h) states”. Once again, the intuitive reasons are clear:
on crossing 22, a solving 1dfa must have stored the set of numbers occurring in
the list, which needs ≥22

h

states. In contrast, a single-pebble 2dfa can compare i
against every ij bit-by-bit, using the pebble to mark the current ij , all doable
with O(h) states. By the same reasons, tall listmembership ∈ P1D\21D. (Note
that it is important for the pebble 2dfa to have the list spread across cells.)

Note that our intuition for the lower bound is the same as for membership,
except now there are exponentially more sets to remember. To represent this
formally, let us first note that

H(membership) ⊆ listmembership (21)

via the homomorphism which maps every set α ⊆ [h] to a string i1i2 · · · it of its
members; and every i ∈ [h] to its ticked variant ı̌. We then also note that (19)
can be obtained from listmembership by applying an operator TALL,

TALL(listmembership) = tall listmembership, (22)

which maps a family L = (Lh)h≥1 to its sub-family TALL(L) = (L2h)h≥1 at
indices which are powers of 2; and (18) can be obtained from (19) homomorphi-
cally

H(tall listmembership) = binarytall listmembership (23)

by mapping every i ∈ [2h] to the h-long binary representation of i − 1, preceded
or followed by 2, depending on whether i is ticked or not. Now, the lower bound
of Proposition 3 follows from (21), (22), and (23) and a strengthening of Fact 6.

36 C. A. Kapoutsis

To see how, we start with some definitions and facts. The class quasi-1D cor-
responds to 1dfas with quasi-polynomially many states (i.e., 2poly(log n) states).
We can easily show the next strengthening of Fact 6 (by the standard reasoning,
that membershiph needs ≥2h states on a 1dfa) and variation of Lemma3:

Fact 7. membership �∈ quasi-1D.

Lemma 6. quasi-1D and 21D are closed under ≤H.

A family L = (Lh)h≥1 is self-homomorphic if Lh ≤H Lh′ for all h ≤ h′; intuitively,
if the instances of every Lh can be seen as instances of every higher Lh′ . Easily,
listmembership is self-homomorphic, and we can prove that:

Lemma 7. If L is self-homomorphic and L �∈ quasi-1D, then TALL(L) �∈ 21D.

Now, we can apply the following reasoning:

membership �∈ quasi-1D (Fact 7)
=⇒ listmembership �∈ quasi-1D (Lemma 6 and (21))

=⇒ tall listmembership �∈ 21D (Lemma 7 and (22))

=⇒ binarytall listmembership �∈ 21D (Lemma 6 and (23))

Overall, we see that the lower bound of Proposition 3 follows from the hardness
of the core problem of Proposition 1 (Fact 7) and from properties of the classes.

For the upper bound of Proposition 3, we see that one of the two witnesses
satisfies it because the other one does: tall listmembership ∈ P1D follows from
the next fact and lemma, and since the homomorphisms of (23) are tight:

Fact 8. binarytall listmembership ∈ P1D.

Lemma 8. P1D is closed under ≤t
H.

3 Modular Witnesses

The three propositions of [5] offered witness languages for the differences 1N\1D,
2D\1D, and P1D\21D. By analyzing these languages, we arrived at eight promise
problems witnessing these differences. In the end, all bounds that we needed for
these problems followed from Facts 3, 5, 8 (for the upper bounds) and Fact 7
(for the lower bounds), via the established relations between these problems and
using a collection of lemmas of three distinct types:

– preservation of hardness: These are lemmas of the form

L �∈ C =⇒ L′ �∈ C

where L′ is derived from L. E.g., Lemma 1 is such a lemma, with L′ any
generalization of L. Similarly for every lemma for the closure of a class under
≤H or ≤1D, with L′ any generalization of H(L) or 1D(L).

Minicomplexity 37

– propagation of hardness: These are lemmas of the form

L �∈ C =⇒ L′ �∈ C′

where L′,C′ are derived from L,C [3]. E.g., Lemma 7 is such a lemma, where
L′ =TALL(L), and C′ = 21D is derived from C= quasi-1D by an application of
the general operator which raises the size bound f(h) of a class to f(2h).

– preservation of easiness: These are lemmas of the form

L ∈ C =⇒ L′ ∈ C

where L′ is derived from L. E.g., Lemma 5 is such, with L′ = LPAD(L) and
C = 1N. Same for any lemma for the closure of a class under an operation.

Hence, the propositions of [5] are connected via structural relations between their
witnesses, which are easy to miss if we do not adopt the right point of view.

We now further observe that the relations between witnesses allow us to
express each of them as a generalization of a problem that can be obtained from
membership by applying a sequence of operators. Specifically, in the following
list, every witness on the left generalizes the problem on the right:

shortretrocount: H15(membership)
retrocount: LPAD(H15(membership))

compactprojection: H17(membership)
projection: H13(H17(membership))

unaryprojection: T13(H13(H17(membership)))
tall listmembership: TALL(H21(membership))

binarytall listmembership: H23(TALL(H21(membership)))

where H15 is the family of the homomorphic reductions that justifies (15), and
similarly for all other Hi and Ti. Every lower bound for a witness on the left was
established by proving a lower bound for the corresponding problem on the right
and then using Lemma 1. Again by (the contrapositive of) Lemma 1, every upper
bound for a witness on the left is also an upper bound for the respective problem
on the right. Overall, the problems on the right witness the same differences as
the problems on the left.

Let a modular witness for a difference C′ \ C be any problem which belongs
to the difference and is derived from membership by applying a sequence of
operators. Our discussion above shows that every one of the differences in Propo-
sitions 1–3 of [5] admits a modular witness.

We conjecture that the same is true for all differences in minicomplexity.
Namely that, for every two minicomplexity classes C and C′:

If C′ \ C is not empty, then it contains a modular witness.

In the talk, we will examine as evidence supporting this conjecture several exam-
ples of known separations where the offered witnesses were indeed (generaliza-
tions of) modular ones or can be replaced by modular witnesses.

38 C. A. Kapoutsis

If this conjecture is true, then designing a witness for a separation reduces
to (i) deciding which sequence of operators to apply to membership, and then
(ii) proving the corresponding necessary lemmas of hardness propagation and
of hardness or easiness preservation. Gradually, this could lead to a library of
operators and corresponding lemmas, available for reuse in (i) and (ii). It would,
of course, also be interesting to see a proof of the conjecture, that explains why
membership is sufficient as the only “seed of hardness” in this domain.

If the conjecture is false, it would be interesting to see examples where it fails.
Understanding these examples, one could then suggest conditions under which
the conjecture remains valid, and work with this updated, restricted variant.

Notes

(1)Proposition 1 also includes a last sentence, that the reverse of Rn needs only
O(n) states on a 1dfa. We omitted that sentence, as it is redundant for our
purposes.
(2)We write “<2n”, although the definition of R′′

n also allows strings of length
exactly 2n. Excluding such strings does not change the desired properties of R′′

n

in the context of Proposition 1; and is convenient for our purposes.
(3)In [2], the name projection was used for the reverse of this problem.
(4)In [2], the name membership was used for the reverse of this problem.
(5)Note the redundant component ih+1, which is always set of h + 1. We need
h + 1 components, because we need h + 1 values; and we need h + 1 values,
because we need to ensure that the max and min values are distinct even when
h = 1.
(6)In [2], the reverse of this problem was called ∃equality.

References

1. Kapoutsis, C.A.: Size complexity of two-way finite automata. In: Diekert, V.,
Nowotka, D. (eds.) DLT 2009. LNCS, vol. 5583, pp. 47–66. Springer, Heidelberg
(2009). https://doi.org/10.1007/978-3-642-02737-6 4

2. Kapoutsis, C.A.: Minicomplexity. In: Kutrib, M., Moreira, N., Reis, R. (eds.) DCFS
2012. LNCS, vol. 7386, pp. 20–42. Springer, Heidelberg (2012). https://doi.org/10.
1007/978-3-642-31623-4 2

3. Kapoutsis, C., Královič, R., Mömke, T.: Size complexity of rotating and sweeping
automata. J. Comput. Syst. Sci. 78(2), 537–558 (2012)

4. Kapoutsis, C., Pighizzini, G.: Two-way automata characterizations of L/poly versus
NL. Theory Comput. Syst. 56, 662–685 (2015)

5. Meyer, A.R., Fischer, M.J.: Economy of description by automata, grammars, and
formal systems. In: Proceedings of FOCS, pp. 188–191 (1971)

6. Sakoda, W.J., Sipser, M.: Nondeterminism and the size of two-way finite automata.
In: Proceedings of STOC, pp. 275–286 (1978)

https://doi.org/10.1007/978-3-642-02737-6_4
https://doi.org/10.1007/978-3-642-31623-4_2
https://doi.org/10.1007/978-3-642-31623-4_2

	Minicomplexity
	1 Machines vs. Machines
	2 Problems vs. Problems
	2.1 RETROCOUNT
	2.2 PROJECTION
	2.3 MEMBERSHIP
	2.4 LIST MEMBERSHIP

	3 Modular Witnesses
	References

