
 123

45th International Conference on Current Trends
in Theory and Practice of Computer Science
Nový Smokovec, Slovakia, January 27–30, 2019, Proceedings

SOFSEM 2019:
Theory and Practice
of Computer ScienceLN

CS
 1

13
76

AR
Co

SS
Barbara Catania · Rastislav Královič
Jerzy Nawrocki · Giovanni Pighizzini (Eds.)

Lecture Notes in Computer Science 11376

Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison, UK
Josef Kittler, UK
Friedemann Mattern, Switzerland
Moni Naor, Israel
Bernhard Steffen, Germany
Doug Tygar, USA

Takeo Kanade, USA
Jon M. Kleinberg, USA
John C. Mitchell, USA
C. Pandu Rangan, India
Demetri Terzopoulos, USA
Gerhard Weikum, Germany

Advanced Research in Computing and Software Science
Subline of Lecture Notes in Computer Science

Subline Series Editors

Giorgio Ausiello, University of Rome ‘La Sapienza’, Italy

Vladimiro Sassone, University of Southampton, UK

Subline Advisory Board

Susanne Albers, TU Munich, Germany
Benjamin C. Pierce, University of Pennsylvania, USA
Bernhard Steffen, University of Dortmund, Germany
Deng Xiaotie, Peking University, Beijing, China
Jeannette M. Wing, Microsoft Research, Redmond, WA, USA

More information about this series at http://www.springer.com/series/7407

http://www.springer.com/series/7407

Barbara Catania • Rastislav Královič
Jerzy Nawrocki • Giovanni Pighizzini (Eds.)

SOFSEM 2019:
Theory and Practice
of Computer Science
45th International Conference on Current Trends
in Theory and Practice of Computer Science
Nový Smokovec, Slovakia, January 27–30, 2019
Proceedings

123

Editors
Barbara Catania
University of Genoa
Genoa, Italy

Rastislav Královič
Comenius University
Bratislava, Slovakia

Jerzy Nawrocki
Poznań University of Technology
Poznań, Poland

Giovanni Pighizzini
Università degli Studi di Milano
Milan, Italy

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISBN 978-3-030-10800-7 ISBN 978-3-030-10801-4 (eBook)
https://doi.org/10.1007/978-3-030-10801-4

Library of Congress Control Number: 2018965781

LNCS Sublibrary: SL1 – Theoretical Computer Science and General Issues

© Springer Nature Switzerland AG 2019
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, express or implied, with respect to the material contained herein or for any errors or
omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

http://orcid.org/0000-0002-6443-169X
http://orcid.org/0000-0003-1121-1009
http://orcid.org/0000-0002-7509-7842
https://doi.org/10.1007/978-3-030-10801-4

Preface

This volume contains the invited and contributed papers selected for presentation at
SOFSEM 2019, the 45th International Conference on Current Trends in Theory and
Practice of Computer Science, which was held during January 27–30, 2019, in Nový
Smokovec, High Tatras, Slovakia.

SOFSEM (originally SOFtware SEMinar) is an annual international winter con-
ference devoted to the theory and practice of computer science. Its aim is to present the
latest developments in research for professionals from academia and industry working
in leading areas of computer science. While being a well-established and fully inter-
national conference, SOFSEM also maintains the best of its original Winter School
aspects, such as a high number of invited talks, in-depth coverage of selected research
areas, and ample opportunities to discuss and exchange new ideas. SOFSEM 2019 was
organized around the following three tracks:

– Foundations of Theoretical Computer Science (chair Giovanni Pighizzini)
– Foundations of Data Science and Engineering (chair Barbara Catania)
– Foundations of Software Engineering (chair Jerzy Nawrocki)

With these three tracks, SOFSEM 2019 covered the latest advances in both theo-
retical and applied research in leading areas of computer science.

An integral part of SOFSEM 2019 was the traditional Student Research Forum
(chair Roman Špánek) organized with the aim of giving students feedback on both the
originality of their scientific results and on their work in progress. The papers presented
at the Student Research Forum are published in separate local proceedings.

The SOFSEM 2019 Program Committee (PC) consisted of 70 international experts,
representing the track areas with outstanding expertise. The committee undertook the
task of assembling a scientific program for the SOFSEM audience by selecting from the
92 submissions entered in the EasyChair system in response to the call for papers. The
submissions were carefully reviewed with approximately three reviews per paper, and
thoroughly discussed. Following strict criteria of quality and originality, 35 papers
were accepted for presentation as regular research papers. Additionally, based on the
recommendation of the chair of the Student Research Forum, seven papers were
accepted for presentation in the Student Research Forum.

SOFSEM 2019 added a new page to the tradition of SOFSEM dating back to 1974,
which was possible thanks to the effort of many people. As editors of these proceed-
ings, we are grateful to everyone who contributed to the scientific program of the
conference. We would like to thank the invited speakers Uwe Assmann, Francesco
Bonchi, Flavio Chierichetti, Christos Kapoutsis, Miroslaw Staron, and Martin
Theobald for presenting their work to the audience of SOFSEM 2019. We thank all
authors who submitted their papers for consideration. Many thanks go to the PC, and to
all external referees, for their precise and detailed reviewing of the submissions. The
work of the PC was carried out using the EasyChair system, and we gratefully

acknowledge this contribution. Special thanks are due to Roman Špánek for his expert
preparation and handling of the Student Research Forum, and to the SOFSEM Steering
Committee headed by Július Štuller, for its support throughout the preparation of the
conference.

We are also indebted to the Organizing Committee led by Dana Pardubská.
Finally we want to thank the Slovak Society for Computer Science, and the Faculty

of Mathematics, Physics and Informatics of the Comenius University in Bratislava for
their invaluable support.

January 2019 Barbara Catania
Rastislav Královič

Jerzy Nawrocki
Giovanni Pighizzini

VI Preface

Organization

Steering Committee

Barbara Catania University of Genoa, Italy
Miroslaw Kutylowski Wroclaw University of Technology, Poland
Tiziana Margaria-Steffen University of Limerick, Ireland
Branislav Rovan Comenius University, Slovakia
Petr Šaloun Technical University of Ostrava, Czech Republic
Július Štuller (Chair) Academy of Sciences, Prague, Czech Republic
Jan van Leeuwen Utrecht University, The Netherlands

Program Committee

Program Chair

Rastislav Královič Comenius University, Slovakia

Track Chairs

Barbara Catania University of Genoa, Italy
Giovanni Pighizzini University of Milan, Italy
Jerzy Nawrocki Poznań University of Technology, Poland

Student Research Forum Chair

Roman Špánek Technical University of Liberec, Czech Republic

Program Committee

Fabio Anselmi Italian Institute of Technology, Italy
Ladjel Bellatreche ISAE-ENSMA, Poitiers, France
Mária Bieliková Slovak University of Technology in Bratislava,

Slovakia
Stefan Biffl Vienna University of Technology, Austria
Miklós Biró Software Competence Center Hagenberg, Austria
Joan Boyar University of Southern Denmark, Denmark
Stephane Bressan National University of Singapore, Singapore
Francesco Buccafurri University of Reggio Calabria, Italy
Davide Buscaldi LIPN, Université Paris 13, Sorbonne Paris Cité, France
Barbara Catania University of Genoa, Italy
Alfredo Cuzzocrea University of Trieste, Italy
Jurek Czyzowicz Université du Québec en Outaouais, Canada
Adam Dabrowski Poznań University of Technology, Poland
Johann Eder Alpen Adria Universität Klagenfurt, Austria

Michele Flammini Gran Sasso Science Institute and University
of L’Aquila, Italy

Paola Flocchini University of Ottawa, Canada
Pierre Fraigniaud CNRS and University of Paris Diderot, France
Johann Gamper Free University of Bozen-Bolzano, Italy
Leszek Gasieniec University of Liverpool, UK
Pawel Gawrychowski University of Wroclaw, Poland
Loukas Georgiadis University of Ioannina, Greece
Giovanna Guerrini University of Genoa, Italy
Inge Li Gørtz Technical University of Denmark, Denmark
Yo-Sub Han Yonsei University, South Korea
Theo Härder TU Kaiserslautern, Germany
Gabriel Istrate West University of Timisoara, Romania,

and the eAustria Research Institute, Austria
Mirjana Ivanovic University of Novi Sad, Serbia
Johan Jeuring Open Universiteit Nederland and Universiteit Utrecht,

The Netherlands
Jarkko Kari University of Turku, Finland
Ralf Klasing CNRS and University of Bordeaux, France
Dennis Komm ETH Zurich, Switzerland
Georgia Koutrika Athena Research Center, Greece
Rastislav Královič Comenius University, Bratislava, Slovakia
Orna Kupferman Hebrew University, Israel
Martin Kutrib Institut für Informatik, Universität Giessen, Germany
Martin Lange University of Kassel, Germany
Julia Lawall Inria/LIP6, France
Andrzej Lingas Lund University, Sweden
Lech Madeyski Wroclaw University of Science and Technology,

Poland
Yannis Manolopoulos Open University of Cyprus, Cyprus
Tomáš Masopust Palacký University, Olomouc, Czech Republic
Elvira Mayordomo Universidad de Zaragoza, Spain
Paolo Missier Newcastle University, UK
Nelma Moreira University of Porto, Portugal
Xavier Muñoz Universitat Politècnica de Catalunya, Spain
Jerzy Nawrocki Poznań University of Technology, Poland
Boris Novikov St.-Petersburg University, Russia
Mirosław Ochodek Poznań University of Technology, Poland
Dana Pardubská Comenius University, Slovakia
Andrea Pietracaprina University of Padua, Italy
Giovanni Pighizzini University of Milan, Italy
Andrei Popescu Middlesex University London, UK
Rajeev Raman University of Leicester, UK
Gunter Saake University of Magdeburg, Germany
Philippe Schnoebelen CNRS, France
Shinnosuke Seki The University of Electro-Communications, Japan

VIII Organization

Arseny Shur Ural Federal University, Russia
Daniel Stefankovic University of Rochester, USA
Krzysztof Stencel University of Warsaw, Poland
Ernest Teniente Universitat Politècnica de Catalunya, Spain
Martin Theobald University of Luxembourg, Luxembourg
Panos Vassiliadis University of Ioannina, Greece
Valentino Vranić Slovak University of Technology in Bratislava,

Slovakia
Dorothea Wagner Karlsruhe Institute of Technology, Germany
Bruce Watson Stellenbosch University, South Africa
Abuzer Yakaryilmaz University of Latvia, Latvia
Tomoyuki Yamakami University of Fukui, Japan
Christos Zaroliagis Computer Technology Institute and Department

of Computer Engineering & Informatics,
University of Patras, Greece

Norbert Zeh Dalhousie University, Canada
Wolf Zimmermann Martin Luther University Halle-Wittenberg, Germany

Organization Chair

Dana Pardubská Comenius University, Slovakia

Organizing Institutions

Slovak Society for Computer Science
Faculty of Mathematics, Physics, and Informatics, Comenius University in Bratislava,
Slovakia

Additional Reviewers

Aceto, Luca
Aloisio, Alessandro
Badouel, Eric
Balkenius, Christian
Bampas, Evangelos
Barth, Lukas
Berg, Christian
Bilò, Davide
Böckenhauer, Hans-Joachim
Cho, Da-Jung
Czyzewski, Andrzej
Das, Shantanu
Demri, Stéphane
Dimokas, Nikos

Fabrega, Josep
Fiol, Miquel Angel
Forišek, Michal
Fribourg, Laurent
Gainutdinova, Aida
Georgiou, Konstantinos
Giannis, Konstantinos
Gualandi, Stefano
Guillon, Bruno
Hundeshagen, Norbert
Jajcayova, Tatiana
Kapoutsis, Christos
Kawachi, Akinori
Killick, Ryan

Organization IX

Kim, Hwee
Ko, Sang-Ki
Komusiewicz, Christian
Kowaluk, Mirosław
Krüger, Jacob
Kľuka, Ján
Li, Yang
Loff, Bruno
Luettgen, Gerald
Malcher, Andreas
Mchedlidze, Tamara
Meister, Andreas
Mráz, František
Noceti, Nicoletta
Pająk, Dominik
Papadopoulos, Charis
Plachetka, Tomáš
Prigioniero, Luca
Prūsis, Krišjānis
Rafailidis, Dimitrios

Raghavendra Rao, B. V.
Rástočný, Karol
Rogalewicz, Adam
Rovetta, Stefano
Salehi, Özlem
Salo, Ville
San Felice, Mário César
Schmidt, Paweł
Toft, Bjarne
Tomás, Ana Paula
Tsichlas, Kostas
Tzouramanis, Theodoros
Ueckerdt, Torsten
van Ee, Martijn
Villagra, Marcos
Vinci, Cosimo
Wehnert, Sabine
Wendlandt, Matthias
Wong, Tom
Zetzsche, Georg

X Organization

Contents

Cross-Layer Adaptation in Multi-layer Autonomic Systems (Invited Talk) . . . 1
Uwe Aßmann, Dominik Grzelak, Johannes Mey, Dmytro Pukhkaiev,
René Schöne, Christopher Werner, and Georg Püschel

Distance-Based Community Search (Invited Talk Extended Abstract) 21
Francesco Bonchi

Minicomplexity: Some Motivation, Some History, and Some Structure
(Invited Talk Extended Abstract). 28

Christos A. Kapoutsis

Action Research in Software Engineering: Metrics’ Research
Perspective (Invited Talk). 39

Miroslaw Staron

From Big Data to Big Knowledge: Large-Scale Information Extraction
Based on Statistical Methods (Invited Talk) . 50

Martin Theobald

Sorting Networks on Restricted Topologies . 54
Indranil Banerjee, Dana Richards, and Igor Shinkar

Minimum Reload Cost Graph Factors . 67
Julien Baste, Didem Gözüpek, Mordechai Shalom,
and Dimitrios M. Thilikos

Stable Divisorial Gonality is in NP . 81
Hans L. Bodlaender, Marieke van der Wegen,
and Tom C. van der Zanden

Coalition Resilient Outcomes in Max k-Cut Games 94
Raffaello Carosi, Simone Fioravanti, Luciano Gualà,
and Gianpiero Monaco

Phase Transition in Matched Formulas and a Heuristic
for Biclique Satisfiability . 108

Miloš Chromý and Petr Kučera

On Infinite Prefix Normal Words . 122
Ferdinando Cicalese, Zsuzsanna Lipták, and Massimiliano Rossi

Priority Scheduling in the Bamboo Garden Trimming Problem 136
Mattia D’Emidio, Gabriele Di Stefano, and Alfredo Navarra

Patrolling on Dynamic Ring Networks. 150
Shantanu Das, Giuseppe A. Di Luna, and Leszek A. Gasieniec

Gathering of Robots in a Grid with Mobile Faults. 164
Shantanu Das, Nikos Giachoudis, Flaminia L. Luccio,
and Euripides Markou

Probabilistic Parameterized Polynomial Time . 179
Nils Donselaar

On Matrix Ins-Del Systems of Small Sum-Norm. 192
Henning Fernau, Lakshmanan Kuppusamy, and Indhumathi Raman

Separation Logic with Linearly Compositional Inductive Predicates
and Set Data Constraints . 206

Chong Gao, Taolue Chen, and Zhilin Wu

On the Complexity of Optimal Matching Reconfiguration 221
Manoj Gupta, Hitesh Kumar, and Neeldhara Misra

Forbidden Directed Minors, Directed Path-Width and Directed Tree-Width
of Tree-Like Digraphs . 234

Frank Gurski and Carolin Rehs

Existence Versus Exploitation: The Opacity of Backdoors and Backbones
Under a Weak Assumption. 247

Lane A. Hemaspaandra and David E. Narváez

On Point Set Embeddings for k-Planar Graphs with Few Bends per Edge . . . 260
Michael Kaufmann

Enumerating Connected Induced Subgraphs: Improved Delay
and Experimental Comparison . 272

Christian Komusiewicz and Frank Sommer

Multi-stranded String Assembling Systems . 285
Martin Kutrib and Matthias Wendlandt

Towards Automatic Comparison of Cloud Service Security Certifications. . . . 298
Martin Labaj, Karol Rástočný, and Daniela Chudá

On the Expressive Power of GF(2)-Grammars . 310
Vladislav Makarov and Alexander Okhotin

An Efficient Algorithm for Combining Verification
and Validation Methods . 324

Isela Mendoza, Uéverton Souza, Marcos Kalinowski, Ruben Interian,
and Leonado Gresta Paulino Murta

XII Contents

Robustness Radius for Chamberlin-Courant on Restricted Domains 341
Neeldhara Misra and Chinmay Sonar

On the Complexity of Color-Avoiding Site and Bond Percolation 354
Roland Molontay and Kitti Varga

Lackadaisical Quantum Walks with Multiple Marked Vertices 368
Nikolajs Nahimovs

A 116/13-Approximation Algorithm for L(2, 1)-Labeling
of Unit Disk Graphs . 379

Hirotaka Ono and Hisato Yamanaka

Minimizing the Cost of Team Exploration . 392
Dorota Osula

Two-Head Finite-State Acceptors with Translucent Letters 406
Benedek Nagy and Friedrich Otto

Do Null-Type Mutation Operators Help Prevent Null-Type Faults? 419
Ali Parsai and Serge Demeyer

Towards Combining Multitask and Multilingual Learning 435
Matus Pikuliak, Marian Simko, and Maria Bielikova

On the Size of Logical Automata . 447
Martin Raszyk

Bayesian Root Cause Analysis by Separable Likelihoods 461
Maciej Skorski

Algorithms and Complexity Results for the Capacitated Vertex
Cover Problem . 473

Sebastiaan B. van Rooij and Johan M. M. van Rooij

Comparative Expressiveness of Product Line Calculus of Communicating
Systems and 1-Selecting Modal Transition Systems 490

Mahsa Varshosaz and Mohammad Reza Mousavi

A Hierarchy of Polynomial Kernels . 504
Jouke Witteveen, Ralph Bottesch, and Leen Torenvliet

Behavioral Strengths and Weaknesses of Various Models
of Limited Automata . 519

Tomoyuki Yamakami

Locality Sensitive Hashing Schemes, Similarities, and Distortion
(Invited Talk) . 531

Flavio Chierichetti

Author Index . 533

Contents XIII

Cross-Layer Adaptation in Multi-layer
Autonomic Systems (Invited Talk)

Uwe Aßmann1(B), Dominik Grzelak1, Johannes Mey1, Dmytro Pukhkaiev1,
René Schöne1, Christopher Werner1, and Georg Püschel2

1 Institut für Software- und Multimediatechnik, Technische Universität Dresden,
Dresden, Germany

{uwe.assmann,dominik.grzelak,johannes.mey,dmytro.pukhkaiev,rene.schoene,
christopher.werner}@tu-dresden.de

2 Wandelbots, Dresden, Germany
georg.pueschel@wandelbots.de

Abstract. This work presents a new reference architecture for multi-
layer autonomic systems called context-controlled autonomic controllers
(ConAC). Usually, the principle of multiple system layers contradicts the
principle of a global adaptation strategy, because system layers are con-
sidered to be black boxes. The presented architecture relies on an explicit
context model, so a simple change of contexts can consistently vary the
adaptation strategies for all layers. This reveals that explicit context
modeling enables consistent meta-adaptation in multi-layer autonomic
systems. The paper presents two application areas for the ConAC archi-
tecture, robotic co-working and energy-adaptive servers, but many other
multi-layered system designs should benefit from it.

1 Introduction

Self-adaptive software systems (SAS) are used in many application areas, from
autonomous driving [15] over co-working robotics [2] to energy-proportional
servers and clouds [3]. It seems to be commonly understood that all SAS are
context-aware, i.e., feel their context and adapt to its changes [29]. For instance,
autonomous cars have to adapt to changing environments; their sensors have to
feel obstacles, and their control has to take alternate routes or stop the vehicle to
avoid accidents. Similarly, in robotic co-working, when robots are acting free of
cages and collaborate directly with human workers, they have to feel the move-
ments in their environment and self-adapt to changes of human positions, so

This project has received funding from the ECSEL Joint Undertaking under grant
agreement No. 692480 (IoSense). This Joint Undertaking receives support from the
EU Horizon 2020 research and innovation programme and Germany, Spain, Austria,
Belgium, Slovakia. Also supported by the German Research Foundation (DFG) in the
CRC 912 “Highly Adaptive Energy-Efficient Computing”, the project RISCOS, the
Research Training Group “Role-based Software Infrastructures for continuous-context-
sensitive Systems (RoSI)”, as well as the BMBF project OpenLicht.

c© Springer Nature Switzerland AG 2019
B. Catania et al. (Eds.): SOFSEM 2019, LNCS 11376, pp. 1–20, 2019.
https://doi.org/10.1007/978-3-030-10801-4_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-10801-4_1&domain=pdf
https://doi.org/10.1007/978-3-030-10801-4_1

2 U. Aßmann et al.

that dangerous encounters are avoided. Also energy-proportional servers should
be self-adaptive systems, because they must adapt their energy consumption to
changes in their load. Because their load usually varies a lot throughout the
work day, their energy consumption should follow the changes of the load in a
reasonable way. It seems that architectures for such context-aware, self-adaptive,
and self-optimizing software systems will play an important role in the software
of the future. However, SAS differ in the self-* properties they support [29]. For
instance, autonomous car systems and co-working robots solely guarantee func-
tional safety (self-governing system), while an energy-proportional server system
is a self-optimizing system, improving on the quality of the system’s results.

Since several years, reference architectures for SAS are under development in
the community. One of the most important reference architectures for SAS are
autonomic software systems, which use an autonomic controller implementing
a Mape-k loop1 to control the adaptation [17,23]. In particular, we focus on
autonomic software product lines (ASPL) [1] in which the autonomic controller
dynamically manages the variation of several code variants of a dynamic software
product line.

In this paper, we deal with self-adaptive or autonomic architectures for mul-
tiple system layers in Multi-Layer Autonomic Systems (MuLAS) [34], in which
a system layer is considered to be a loosely coupled, potentially independently
developed, black-box subsystem (or component) that talks to other layers only
via exchange of messages, data flow or web-service calls.2 In a MuLAS, every
layer is self-adaptive on its own, i.e., runs an autonomic controller following a
specific adaptation strategy. To avoid strategic conflicts between the layers, the
local, layer-specific adaptation strategies must somehow be coordinated by a
global meta-adaptation, typically the task of a global adaptation controller who
manages the autonomic controllers of each layer systematically. If the meta-
adaptation manages to coordinate all system layers consistently, we call this
cross-layer adaptation.

[34] calls a design structure of a Mape-k loop a Mape pattern. We follow
this approach and specify three Mape patterns for cross-layer adaptation of
MuLAS. The main Mape pattern of the paper, context-controlled autonomic
controllers (ConAC 3), serves for consistent cross-layer adaptation in hierarchic
and multi-layer autonomic systems (MuLAS); the other Mape patterns serve
for self-optimization. Our contribution is that we use explicit context modeling
[16,30] to specify self-adaptation behavior systematically, so that, during meta-
adaptation, the self-adaptation of all layers is consistently changed across all
levels of a MuLAS. Also, we show, how to integrate a KnowledgeBase into the

1 In the literature, autonomic controllers or autonomic managers run a Mape-k-loop
with Measure-Analyze-Plan-Execute functions communicating via a Knowl-
edgeBase to self-adapt a software system.

2 Usually, hierarchic autonomic systems can be considered as a subclass of multi-
layered systems, because the latter may share components on lower levels, i.e., their
use relationship is a directed acyclic graph instead of a tree.

3 ConAC is intended to be spelled [’kOnjak].

Cross-Layer Adaptation in Multi-layer Autonomic Systems 3

patterns, going beyond pure Mape functionality [34]. Thirdly, we show that role-
oriented programming [32] provides a quite natural abstraction concept for cross-
layer adaptation strategies. Fourthly, we hint at several implementation patterns
in classical object-oriented languages, if no context- or role-based programming
language is at hand.

Using Context Modeling to Model Multiple Layers and Cross-Cutting. In all
presented Mape patterns, the layers of a MuLAS as well as their cross-cutting
contexts are interpreted as entries in a context model for cross-layer adaptation:

(System) Layers are contexts grouping and hiding subsystems, components,
objects, and functions. Layers are independent and stacked on other layers.
The layer itself may contain sublayers, i.e., intra-layer contexts. Layers may
hide or share sublayers (hierarchically or partially ordered). Usually, in a
system, the number of layers will be fixed.

Cross-cutting contexts do not belong to one layer, but cross-cut several layers,
relating components, objects, and functions that are distributed over several
layers. They do not encapsulate, but only correlate functionality. The number
of cross-cutting contexts in a MuLAS system may be unknown. Contexts need
not be hierarchically organized nor partially ordered, but can crosscut each
other.

Therefore, every object in a ConAC application is always related to at least
two contexts: its layer and one or several cross-cutting contexts. This implies
that autonomic controllers of different layers can share the same cross-cutting
contexts. Because cross-layer contexts couple cross-layer behavior, the behavior
of autonomic controllers can be coupled and consistently varied. This coupling
is the key to consistent cross-layer adaptation.

Paper Roadmap. First, we discuss state of the art (Sect. 2.1) and present two
case studies in Sect. 2.2, robotic co-working and energy-adaptive servers. To pre-
pare the presentation of the ConAC Mape pattern, we repeat some important
definitions from the literature (Sect. 2.3). ConAC, is presented in Sect. 3. The
variant for self-optimizing systems, qConAC, is discussed in Sect. 4, as well as
the one for energy-proportional servers, eConAC, in Sect. 5.

2 State of the Art

2.1 Multi-layer Autonomic Systems

This section discusses the state of the art in describing and constructing auto-
nomic systems with one or more subsystems.

Autonomic Systems and the MAPE Patterns. A dynamic software product line
(dynamic SPL) consists of a set of products (variants) that are bound and var-
ied dynamically [6]. Its variability mechanism goes beyond dynamic binding and

4 U. Aßmann et al.

variation of system parameters, and forms the basis of an SAS. An autonomic
software product line (ASPL) [1] is a dynamic SPL which contains a Mape
control loop to change variants of a controlled subsystem. An ASPL can be
quality-adaptive or self-optimizing, i.e., the planning of the new variant (config-
uration) is controlled by an objective model describing the desired quality of the
applications that run on the system (self-optimizing SPL) [1]. Examples for such
objectives are utilities the system should deliver, such as maximized speed, the
resources (cost) the system should spent, such as minimized energy consumption,
or the cost-utility objective of the system, such as to maximize its speed-energy
efficiency.

ASPL may be designed with many different forms of Mape loops, for which
Mape patterns can be employed [34]. A Mape pattern is a static pattern on the
type level that can be instantiated to a pattern instance on the object level. [34]
presents several patterns that structure the Mape control loops of subsystems
in regions: (i) The regional planning pattern controls subsystems in regions with
a combined Plan function for each region. While the regions structure the sys-
tems, the interaction of different planners is possible but unstructured. (ii) In
contrast, the hierarchical control pattern structures the Mape control loops hier-
archically, i.e., a Mape loop controls either a subsystem or other loops. While
the Mape patterns of [34] are well-suited to model multi-layer systems, they
solely treat MAPE functionality, but abstract from the notions of knowledge,
state and context.

Multi-layer Autonomic Systems (MuLAS). In this paper, we rely on a simple
Mape pattern, the autonomic controller (autonomic manager) [7], a specific
object with functions for the different phases of the Mape-k loop of a controlled
system:

Definition 1. An autonomic controller (object) is an object that offers clearly
demarcated functions for all activities of an autonomic Mape-k (control) loop:
the activities Measure, Analyze, Plan, and Execute, as well as Knowl-
edge management based on a KnowledgeBase.

An autonomic quality controller is an autonomic controller equipped with a
model for a quality objective of the system. We call a MuLAS with a quality
objective a multi-layer self-optimizing system (MuLOS).

An autonomic meta-controller (object) is an autonomic controller that runs
a Mape-k loop over many autonomic controllers of different system layers or
components.

The first Mape patterns for MuLAS have appeared [5,13]. In these pat-
terns, the meta-controller coordinates the subordinated autonomic controllers of
a multi-layer system, i.e., it adapts their reconfiguration strategies. [24] presents
a three-layer controller structure with a provisioning controller, application con-
trollers, and component controllers, and discusses several variants for Mape con-
trol loops with different performance models, e.g., queue-based models, static and
dynamic models, and policy-based models. In particular, the approach supports
the definition of quality objectives in all layers.

Cross-Layer Adaptation in Multi-layer Autonomic Systems 5

Few approaches on cross-layer adaptation of ASPL exist. [11] defines the con-
cept of cross-layer autonomic manager (CLAM) for a meta-controller. Beyond
parameter adaptation, this approach also adapts workflows on each layer, chang-
ing the functional behavior of a multi-layer system considerably. [1] shows that
also ASPL can be organized hierarchically, however, restricts itself mostly to the
design-time porting of an ASPL to other application domains.

2.2 Examples of MuLAS

Self-adaptive Co-working Robots (Cobots). Cobots are robots that col-
laborate with humans, without being fenced by safety cages. Therefore, they
must take care of human movements and self-adapt their functionality to them,
for instance, by slowing down their speed or by taking alternate routes avoid-
ing an encounter. To this end, cobots are equipped with sensor networks that
recognize the movement of the humans (smart environment). [12] expounded
a safety architecture with a safety automaton for cobots. Whenever a human
approaches the cobot, the smart environment around the cobot detects the app-
roach and slows down or stops the cobot, transitioning between the safety states
autonomous mode, human-friendly mode, collaborative mode, and failure mode
(Fig. 1).

Autonomous Mode

Human-friendly Mode

Human-aware Mode

Failure Mode

Collaborative Mode

Fig. 1. Robotic co-working in Haddadin’s safety automaton.

Looking at the Haddadin’s safety architecture from the viewpoint of an auto-
nomic system, it turns out to be a automaton-based Mape-k loop for a single-
layer autonomic system, as in [4]: (i) The afferent Measure function is realized
by the sensors of the robot perceiving the environment. (ii) The input data
streams are processed to detect complex events (Analyze function), e.g., to
discover the presence of humans, and fed into the automaton’s central event
input stream. (iii) Based on previous and current status encoded in the states
(KnowledgeBase), the cobot tries to make appropriate transition decisions

6 U. Aßmann et al.

(Plan function). (iv) Within the Execute functions, called along the tran-
sitions, the actuators of the robot are triggered, for example, to decrease its
velocity.

Fig. 2. Robotic co-working in the Cinderella case study. Every box has an associated
autonomic controller watching safety of encounters of a human with robot. Box 1 is on
the left, box 4 on the right.

In the case study Cinderella [27], we produced a prototypical pick-and-place
system in which a cobot and a human collaborate (Fig. 2).4 The four boxes store
items for a pick-and-place task of the cobot, for example, to sort items according
to their size. The cobot has two workflows: It can pick an item from boxes 2 or
3 (in the middle) and sort it, if surpassing a threshold in size, into another box,
either on the left side (box 1) or the right side (box 4). The human wears a
sensor-equipped jacket, so that the position of the human hand can be tracked.
The cobot has to feel her and self-adapt its behavior according to her actions: (i)
As soon as the human enters the room, the robot will switch from autonomous
to human-friendly mode (driving slow). (ii) It will change from human-friendly
mode into collaborative mode or into failure mode, if the human puts a hand
into a box, e.g., to correct the cobot’s decisions or to remove broken items.
Collaborative mode means that if a human puts the hand into a box on the left
side (box 1 or 2), the cobot can work on the right side (boxes 3 and 4), and
vice versa. Thus, in the collaborative mode, the robot can switch its workflow to
a second variant. Thefailure mode (stopping) is activated, if the cobot and the
human’s hand meet in the same box. Because such an encounter can harm the

4 A video is found on https://www.youtube.com/watch?v=zk3ruVSTwCo.

https://www.youtube.com/watch?v=zk3ruVSTwCo

Cross-Layer Adaptation in Multi-layer Autonomic Systems 7

human, the cobot must gracefully stop. Thefailure mode is switched again to the
collaborative mode, when the human moves her arm outside of the current box.

In fact, cobots are multi-layer self-adaptive systems where the cobot’s overall
behavior can be modeled by a global Mape-k loop. However, the Cinderella
case study reveals that a single safety automaton is too simplistic for cobots.
To be able to analyze the sensor data correctly, cobots need a world model, a
model of the environment with further automata describing the states of the
elements of the world [2]. In Cinderella, the four boxes form spaces, in which
a human’s hand and a cobot can meet. To model these spaces of encounter,
the software architecture of Cinderella introduces a world model with a safety
automata for every box. Cinderella discovers an encounter, because its smart
environment continuously monitors the position of the human’s hand as well as
that of the cobot arm, and whether they meet in a box of the world model.
In other words, Cinderella introduces an safety automaton for each of the four
boxes, analyzing human movements and discovering the complex event of a near-
encounter. Therefore, the architecture of the Cinderella software needs at least
the following system layers:

Smart-Environment System. This layer comprises a world model with a
safety automaton for every space of an encounter.

Robot System. This layer comprises the robot’s operating system that drives
the motors of the cobot and several robot subsystems.

Robot Application Workflow. In this layer, the overall workflow of the cobot,
e.g., sorting items in boxes, is executed and adapted in order to avoid encoun-
ters between cobot and human.

All layers have to be adapted consistently: In case of an encounter of a human
and a cobot, all layers have to immediately and consistently self-adapt their
behavior. We will model more details of cobots in Sect. 3.

Energy-Proportional Servers as Cross-Layer Autonomic Systems. An
energy-proportional server system consumes energy proportionally to its load [3].
An energy-proportional server is a large-scale full-fledged energy-adaptive system
with multiple layers: Operating system, virtual machines (cloud level), database,
application layer shall collaborate to tune a system either for performance,
throughput, energy savings, or for a trade-off between all these qualities. Thus,
an energy-proportional server is an example of a multi-layer self-optimizing sys-
tem (MuLOS).

Energy-proportional servers can utilize several strategies for energy saving.
In the research center “Highly-Adaptive Energy-Efficient Computing (HAEC)”
in Dresden [8], several optimization techniques are investigated. The first tech-
nique is pack-and-switch-off, i.e., concentrate the load on a subset of the avail-
able hardware to switch off some of the computing components. To this end, the
HAEC project develops special hardware that can be switched off or on with
minimum delay. The second technique is to find an energy-optimal software con-
figuration w.r.t. energy-utility objectives. This relates to all software levels of

8 U. Aßmann et al.

Fig. 3. An example of a meta-controller of an energy-proportional server with six
quality objectives as states.

the server, operating system, database [20], compiler [9], and software applica-
tion [26], which attempt to optimize towards the system’s energy objectives,
implementing a layer-local energy control loop in an autonomic controller. How-
ever, the configurations picked by the local controllers are heavily influenced by
the global context of the server, its load, and the local adaptation strategies may
contradict each other, so that a consistent cross-layer optimization is difficult.
Also, whenever the energy objective of the server system changes, all layers of
the system should switch to the new energy objective.

Example 1. A simple state-machine with global objectives for energy propor-
tionality is shown in Fig. 3. The automaton has the states minimize energy con-
sumption, maximize speed, and maximize throughput (single objectives on cost
minimization or utility maximization), as well as three states for cost-utility
objectives: maximize speed-energy efficiency, maximize throughput-energy effi-
ciency, maximize throughput-speed-energy efficiency. Whenever a global objec-
tive of the system is changed, all autonomic controllers of its layers should be
adapted accordingly. For example, if the system is in the energy-saving state
and users start to require speed for their applications, the HAEC system should
automatically: (i) switch on hardware units again and (ii) change the goal of the
autonomic controllers at each layer to find an appropriate software configuration
that runs its applications as fast as possible (see Sect. 5).

Cross-Layer Adaptation in Multi-layer Autonomic Systems 9

2.3 Background in Programming Technology

This subsection reviews programming technologies important for the rest of this
paper.

Context-oriented Programming (COP). “Context-oriented Programming enables
the expression of behavioral variation dependent on context.” [16]. In a context-
based object-oriented program, the execution does not only depend on the name
of the method, its sender, and receiver, but also on the context (four-dimensional
dispatch). [30] connects COP with autonomic software systems. To adapt, the
self-adaptive system is built with application slices5 and contexts, and the Mape-
k loop activates or deactivates slices depending on the currently active contexts.
In Sect. 3, we generalize this approach to system layers.

Contexts, Roles and Teams. The notion of roles is an older research topic
than COP originally stemming from linguistics. [32] collected 15 features that
describe the relational and behavioral nature of roles. This publication is based
on [22] which adds 11 new features to the classification of Steimann encompass-
ing the context-dependent nature of roles. Roles are context-specific elements
that extend objects (players) with new states and behavior, but do not form
independent objects. They can always be traced back to their player and to
their context. Roles interact with other roles (creating collaboration slices) and
adapt the player’s behavior according to their context. Roles are switched on
or off depending on whether their context is active. Objects are able to take
on, play, or drop roles at runtime and, thus, can step into, work in, and leave
different contexts. These properties are useful for the implementation and mod-
eling of runtime and self-adaptive systems. A practical role-based programming
language is [14], which combines contexts and collaboration slices into teams
of roles. Teams are a natural mechanism to implement dynamic software prod-
uct lines and self-adaptive systems: Varying a team modifies the application by
changing all involved roles and adapts it to new contexts. We use them in Sect. 3
to glue layers together.

Implementation Patterns for Role-Based Collaborations. Role- and team-based
design simplifies the architecture of programs [33], however, the concepts are
not available in classic programming languages. An implementation pattern
for teams are mixin layers,6 a technique to implement collaborative role-based
designs based on the concept of mixin classes or mixin objects. On the type
level, a mixin class describes a superclass that cannot be instantiated. Groups
of mixin classes, static mixin layers, form static variants of a software product
line [33], while dynamic mixin layers [31] can express dynamic variability in a
dynamic SPL.
5 We call the “layers” of a COP program its application slices, because, in this paper,

layers are meant to be system layers.
6 Again, mixin layers are application slices, while, in this paper, layers are system

layers.

10 U. Aßmann et al.

Dynamic mixin layers are similar to delegation layers [25]. In this approach,
a complex object is composed of a set of collaborating sub-objects, and a mixin
layer represents a variant of the set’s implementation. The delegation-layer app-
roach supports a precise dynamic semantics enabling on-the-fly extensibility.
Decorator layers [28] are inspired by delegation layers, but can be introduced in
any object-oriented language, because the decorators can be realized with the
Decorator design pattern.

Fig. 4. Consistent multi-layer variation of autonomic controllers in a configuration
space of three layers, with three variant Mape-k role teams (or dynamic mixin layers)
and their corresponding contexts.

Dynamic Aspect-oriented Programming. In, aspect-oriented programming
(AOP) [19], functionality of crosscutting concerns is separated from the func-
tionality of a base program. This separation enables a clear design, while an
aspect weaver has to compose the aspects with the base program. Both AOP
and COP need special language constructs for the modularization of crosscutting
concerns. Compared to COP, which supports context-aware behavioral variation,
AOP supports a general mechanism for the modularization of orthogonal func-
tionalities. Furthermore, dynamic AOP deals with the activation of aspects at
runtime and modifies the behavior of the base program during execution. Auto-
nomic systems can be designed with dynamic AOP [10], because the autonomic
behavior can be added as a crosscutting concern, with the execution of runtime
aspects.

Cross-Layer Adaptation in Multi-layer Autonomic Systems 11

3 Consistent Multi-layer Variation of Autonomic
Controllers with Cross-Cutting Contexts

Basically, the most simple Mape pattern of our family, ConAC, follows the role-
based team approach for dynamic software product lines, but transfers it to
the autonomic controllers of a multi-layered system. This is summarized in the
example of Fig. 4, which sketches an autonomic system with three layers and
three autonomic controllers. It is assumed that the system runs in three global
contexts, which exclude each other, but can be varied. The active context in
Fig. 4 is Context B.

Definition 2. A MuLAS structured according to the ConAC Mape pattern has
n system layers with autonomic controllers running a Mape-k loop with Mape-
k functionality. All n Mape-k functions of these autonomic controllers form a
Mape-k team (collaboration slice), and are related to a cross-cutting context. At
most m variant contexts with m variant implementations of the Mape-k team
exist, of which only a subset is active at runtime of the MuLAS.

In a ConAC architecture, whenever a cross-cutting context changes, all auto-
nomic controllers are changed appropriately, by changing their Mape-k func-
tions of the context-related Mape-k team. For instance, if Context B changes
to Context C in Fig. 4, on each layer, the controllers Mape-k-1B up to Mape-
k-3B are exchanged to their variants Mape-k-1C to Mape-k-3C. Cross-cutting
contexts A-C are each related to a variant of the team of the Mape-k functions
of the layer-specific autonomic controllers. By changing a context, the Mape-k
behavior of all layers, the Mape-k team, can be changed consistently. This leads
to property 1 of the ConAC Mape pattern:

Property 1. In a MuLAS structured according to ConAC, strategy conflicts in
meta-adaptation can be avoided, because the adaptation strategies of the layers
can be consistently varied by changing the global context together with the
related Mape-k team of the layer-local autonomic controllers.

The matrix-like product-line design of the ConAC pattern assures that every
variant of the Mape-k functionality of a layer-local autonomic controller is only
related to one context, as in [14]. Under this assumption, the property follows
from the principle of consistent variation of role-based teams in dynamic software
product lines.

Example 2. As an example, consider the cobot scenario from Sect. 2.2. The cobot
system should incorporate a global meta-controller with a Mape-k loop imple-
menting Haddadin’s safety automaton [12], connected to autonomic controllers of
the other system layers of a cobot. Figure 5 shows an appropriate meta-controller
(upper layer), the Robot Application Workflow layer (middle layer), as well as
the Smart-Environment System (lower layer). The global meta-controller has 7
states, belonging to contexts of the human hand with respect to the boxes and
the cobot: (i) The human does not stay in the room; (ii) the human stays in the

12 U. Aßmann et al.

Fig. 5. Consistent self-adaptation of cobots by cross-cutting contexts.

room; (iii) the human stands near the cobot, but does not collaborate with it;
(iv) the human collaborates with the cobot and all boxes for the pick-and-place
task are free of the human’s hands; (v) the human’s hand is found in boxes 1
or 2; (vi) the human’s hand is found in boxes 3 or 4; (vii) and finally, a critical
state for safety: both human’s hand and cobot are located in the same box.

The world model of the Smart-Environment System contains several auto-
nomic controllers, each for a space of encounter (Fig. 5, lower layer right shows
the safety automata of boxes 1+2, as well as boxes 3+4). In the Cinderella
case study, the Smart-Environment System has mainly Measure and Analyze
tasks, because the automata of the boxes monitor and analyse sensor signals
from the 3D space of an afferent sensor network. Whenever such an analy-
sis automaton in the Smart-Environment System signals to the meta-controller
that a human’s hand is detected in a box, it switches the global context accord-
ingly. For instance, if the human grips into the box 1 or 2, the global context
B changes to the subcontext C2. For the workflow layer of the cobot (Fig. 5,
middle layer), this means that the global context changes the workflow so that
the cobot works only with boxes 3 or 4 (middle layer, Context C2). On the other
hand, if the human hand appears in the boxes 3 or 4, the global context changes
to the context C1, and the workflow for pick-and-sort 1+2 is chosen. Layers are
loosely coupled by signals: their Mape-k adaptation strategy can be modified or
extended independently. However, each modification of a layer has to be related
to a global context - to keep the cross-layer adaptation intact.

In this architecture, a meta-adaptation step in the meta-controller’s Mape-k
automaton changes the global context of all autonomic controllers of all layers of
the MuLAS, as well as the involved Mape-k team. The global context change can
consistently steer other layers, e.g., in the robot’s system or in other application
layers.

Cross-Layer Adaptation in Multi-layer Autonomic Systems 13

Fig. 6. Consistent quality-driven multi-layer variation of autonomic quality controllers
in a configuration space of three layers. The upper layer has three variants of Mape-k
roles while Layer 2 and 3 share the Mape-k loop. All layers have three variant objective
models with management functions.

As stated above, a team can be implemented by a delegation or dynamic
mixin layer. This leads us to the next property of ConAC:

Property 2. In a programming language without teams, collaborations, and
roles, dynamic mixin layers or delegation layers can be used to implement the
Mape-k teams.

4 Cross-Layer Self-optimization in Multi-layer Autonomic
Systems

As we have seen, the ConAC Mape-k pattern is able to vary the adap-
tation behavior of a complex multi-layer autonomic system by consistently
changing Measure, Analyze, Plan, and Execute functionality using cross-
cutting contexts. This section presents a variant of the ConAC pattern for self-
optimization, in which the Plan function optimizes the system w.r.t. an explicit
objective (goal), either represented by a symbolic objective or a numeric objective
function in an objective model (see Fig. 6).

Definition 3. Let the objective model of an autonomic quality controller be
managed via an interface O. We call a Mape-k loop with explicit quality objec-
tive model a Mape-k-o loop (Mape-k with objective model management inter-
face).

14 U. Aßmann et al.

In a Mape-k-o loop of an autonomic quality controller, the Plan function
depends on the objective model. In a MuLOS, an objective model of a layer
expresses its quality goals. When an layer-local objective model of an autonomic
quality controller is changed, its Plan function will plan the local reconfigura-
tions differently, according to the new objectives, ensuring that the controlled
system layer meets the new objectives. This leads us to the definition of a vari-
ant of the ConAC architecture, qConAC, for multi-layer quality adaptation with
cross-cutting contexts.

Definition 4. A MuLOS structured according to the qConAC Mape pattern
has n layers with autonomic controllers running a Mape-k-o loop with Mape-k
and O functionality, as well as m cross-cutting contexts related to two teams (col-
laboration slices) of the m autonomic controllers of each layer, one for Mape-
k (autonomic management) and one for O (objective management). We call
them the Mape-k team and the O team, respectively. In a modeling or program-
ming language without roles, the Mape-k and O teams form two delegation or
dynamic mixin layers of the autonomic controllers.

Fig. 7. Consistent multi-layer variation of autonomic controllers in a configuration
space of three layers, with a KnowledgeBase (K) on all layers.

qConAC can consistently optimize the qualities of a multi-layer system w.r.t.
a quality objective represented in an objective model:

Cross-Layer Adaptation in Multi-layer Autonomic Systems 15

Property 3. In a qConAC architecture, the behavior of the layers’ self-
optimization can be consistently varied by changing the O team, i.e., the objec-
tive models of all layer-local autonomic controllers, induced by the change of
their contexts.

With qConAC, layers cannot self-optimize in an uncontrolled way; their
objectives are correlated by a team of objective management functions and a
cross-cutting context, which can be consistently changed by the meta-controller.
To achieve this, qConAC realizes, via the cross-layer context, a mapping between
the global and layer-local quality objectives. qConAC tracks the evolution of this
mapping over time, by tracking context switches, leading to potentially com-
plex, but consistent quality adaptations. Thus, qConAC is a Mape pattern for
consistent variation of self-optimization strategies in MuLOS (cross-layer self-
optimization).

Property 4. Both teams layers of a qConAC system, Mape-k and O team, can
be varied independently.

The layers 2 and 3 depicted in Fig. 6 share the Mape-k functions for all
contexts, i.e., do not vary them during a context switch. On the other hand, in
a multi-layer self-optimizing system with Mape-k-o loops, the objective models
should be context-specific, because self-optimization means to adapt to chang-
ing objectives. Therefore, a software architect can design a MuLOS with vary-
ing objective management functions, or additionally, also with varying Mape-k
functions.

The qConAC pattern is similar to the meta-layer architecture of [21] in that it
relies on explicit objective models (goal models). However, instead of separating
the objective level from the Plan level, qConAC combines them in the concept
of an autonomic quality controller with Mape-k-o loop. This design is simpler,
because compared to [21], it saves a metalevel (only 1 instead of 2), which enables
qConAC to handle multi-layer systems.

5 Energy-Aware Self-optimization in
Energy-Proportional Servers

To employ the qConAC pattern for multi-layer energy adaptation (energy self-
optimization), we have to introduce one further modification: An energy-adaptive
system should have a shared KnowledgeBase so that all autonomic controllers
can be informed on the global status of the system, e.g., on its current load.
Thus, for an energy-adaptive MuLOS, we are interested in the case when the
knowledge management task is divided into objective management (for managing
the objectives of the controlled system) and in status data management (for
managing the status data in the “digital twin” of the controlled system, Fig. 7).
Of course, the objective function of a MuLOS has to express objectives on energy
consumption and delivery of utility (see Fig. 3).

16 U. Aßmann et al.

Fig. 8. Consistent multi-layer variation of autonomic energy controllers in a configura-
tion space of three layers, with objectives on all layers, with a KnowledgeBase (K)
shared between layers 2 and 3.

Definition 5. An autonomic energy controller is an autonomic quality con-
troller that offers an energy-utility objective function, as well as an explicitly
layer-shared status model S (Mape-k-o-s, Mape-k-o with layer-shared status
model).

A MuLOS structured according to the eConAC pattern uses a qConAC archi-
tecture with Mape-k-o-s loops in all autonomic energy controllers.

Extending a Mape-k-o loop with explicit status information (system status
model) has the advantage that this model can be shared within or between
different layers of a MuLOS. This is important for the communication of global
parameters such as load or resource pressure - on the one hand, for the local
planning of resource allocation; on the other hand, for consistent global pack-
and-switch-off decisions that do not only depend on energy objectives, but also
on the system’s status. Thus, for energy-adaptive MuLOS, not only a consistent
reconfiguration of energy objectives on all layers is required, but also the precise,
shared knowledge of resource pressure of all layers (Fig. 8).

Property 5. In a MuLOS structured by eConAC, layer-local Mape-k-o-s loops
as well as layer-local energy objectives can consistently be reconfigured by meta-
adaptation.

Cross-Layer Adaptation in Multi-layer Autonomic Systems 17

Example 3. The eConAC pattern can serve as a reference architecture for servers
that should support energy proportionality, i.e., to adapt energy consumption to
the server’s load, as well as other global energy objectives (Fig. 3). eConAC
supports a meta-controller controlling an appropriate set of layer-local Mape-
K functions (correlated in the Mape-K team), as well as a set of local energy
objectives (correlated in the O team), related to a set of contexts. Whenever the
global energy objective changes, the global context is changed, the related Mape-
k and O teams are changed, and all layer-local autonomic energy controllers are
consistently varied by exchanging their Mape-k behavior as well as their local
objectives (Fig. 3).

Energy proportionality means energy consumption proportional to load.
Therefore, in eConAC, the resource pressure generated by the overall load can
be communicated to the layers by a shared status model, which all Analyze
phases of the autonomic controllers take into account. To take consistent global
place-and-switch-off decisions, the server system’s meta-controller should evalu-
ate global load and resource pressure, and then adapt the layer objectives con-
sistently. Therefore, the eConAC architecture has the potential to consistently
coordinate all layers of an energy-proportional server.

6 Conclusion

In this paper, we have used contexts as glue for the consistent variation of
autonomic controllers. The Mape pattern ConAC and its variants support the
following design principles:

Loose Coupling of System Layers. In a ConAC architecture, layers are not
aware of each other, except that in eConAC, they may share Knowledge.
[18] shows how to deal with system layers that know of each other.

Model-based self-adaptation: All issues that may lead to a reconfiguration
are contained in explicit models, not hidden in the code, e.g., contexts, quality
objectives, system states.

Separation of concerns: The pattern family separates the concern of compu-
tation from the concern of self-adaptation, the concern of self-optimization,
as well as from the concern of meta-adaptation.

While ConAC seems to be relatively simply structured into n layers and m cross-
cutting contexts, its secret is that the contexts correlate the Mape-k teams of
the layer-specific autonomic controllers, enabling the consistent exchange of their
implementations. With appropriate extensions of the basic design, quality objec-
tives, as well as the access to shared knowledge bases, can be integrated. Thus,
the ConAC Mape pattern family enables consistent multi-layer reconfigurations
for large self-adaptive and autonomic systems.

18 U. Aßmann et al.

References

1. Abbas, N., Andersson, J.: Harnessing variability in product-lines of self-adaptive
software systems. In: Schmidt, D.C. (ed.) Proceedings of the 19th International
Conference on Software Product Line, SPLC 2015, 20–24 July 2015, Nashville,
TN, USA, pp. 191–200. ACM (2015)

2. Aßmann, U., Piechnick, C., Püschel, G., Piechnick, M., Falkenberg, J., Werner,
S.: Modelling the world of a smart room for robotic co-working. In: Pires, L.F.,
Hammoudi, S., Selic, B. (eds.) MODELSWARD 2017. CCIS, vol. 880, pp. 484–506.
Springer, Cham (2018). https://doi.org/10.1007/978-3-319-94764-8 20

3. Barroso, L.A., Hölzle, U.: The case for energy-proportional computing. IEEE Com-
put. 40(12), 33–37 (2007)

4. Bencomo, N., Grace, P., Flores-Cortés, C., Hughes, D., Blair, G.: Genie: supporting
the model driven development of reflective, component-based adaptive systems.
In: Schäfer, W., Dwyer, M.B., Gruhn, V. (eds.) 30th International Conference on
Software Engineering, ICSE 2008, 10–18 May 2008, Leipzig, Germany, pp. 811–814.
ACM (2008)

5. Cámara, J., et al.: Self-aware computing systems: related concepts and research
areas. In: Kounev, S., Kephart, J., Milenkoski, A., Zhu, X. (eds.) Self-Aware Com-
puting Systems, pp. 17–49. Springer, Cham (2017). https://doi.org/10.1007/978-
3-319-47474-8 2

6. Capilla, R., Bosch, J., Trinidad, P., Ruiz Cortés, A., Hinchey, M.: An overview
of dynamic software product line architectures and techniques: observations from
research and industry. J. Syst. Softw. 91, 3–23 (2014)

7. Ewing, J.M.: Autonomic performance optimization with application to self-
architecting software systems. Ph.D. thesis, George Mason University, Fairfax,
Virginia, USA (2015). http://hdl.handle.net/1920/9702

8. Fettweis, G., Nagel, W., Lehner, W.: Pathways to servers of the future: highly
adaptive energy efficient computing (HAEC). In: Proceedings of the Conference
on Design, Automation and Test in Europe, DATE 2012, San Jose, CA, USA, pp.
1161–1166. EDA Consortium (2012)

9. Goens, A., Khasanov, R., Castrillon, J., Hähnel, M., Smejkal, T., Härtig, H.: Tetris:
a multi-application run-time system for predictable execution of static mappings.
In: Proceedings of the 20th International Workshop on Software and Compilers for
Embedded Systems, SCOPES 2017, New York, NY, USA, pp. 11–20. ACM (2017)

10. Greenwood, P., Blair, L.: A framework for policy driven auto-adaptive systems
using dynamic framed aspects. In: Rashid, A., Aksit, M. (eds.) Transactions on
Aspect-Oriented Software Development II. LNCS, vol. 4242, pp. 30–65. Springer,
Heidelberg (2006). https://doi.org/10.1007/11922827 2

11. Guinea, S., Kecskemeti, G., Marconi, A., Wetzstein, B.: Multi-layered monitoring
and adaptation. In: Kappel, G., Maamar, Z., Motahari-Nezhad, H.R. (eds.) ICSOC
2011. LNCS, vol. 7084, pp. 359–373. Springer, Heidelberg (2011). https://doi.org/
10.1007/978-3-642-25535-9 24

12. Haddadin, S., Suppa, M., Fuchs, S., Bodenmüller, T., Albu-Schäffer, A., Hirzinger,
G.: Towards the robotic co-worker. In: Pradalier, C., Siegwart, R., Hirzinger, G.
(eds.) Robotics Research. STAR, vol. 70, pp. 261–282. Springer, Heidelberg (2011).
https://doi.org/10.1007/978-3-642-19457-3 16

https://doi.org/10.1007/978-3-319-94764-8_20
https://doi.org/10.1007/978-3-319-47474-8_2
https://doi.org/10.1007/978-3-319-47474-8_2
http://hdl.handle.net/1920/9702
https://doi.org/10.1007/11922827_2
https://doi.org/10.1007/978-3-642-25535-9_24
https://doi.org/10.1007/978-3-642-25535-9_24
https://doi.org/10.1007/978-3-642-19457-3_16

Cross-Layer Adaptation in Multi-layer Autonomic Systems 19

13. Heinis, T., Pautasso, C.: Automatic configuration of an autonomic controller: an
experimental study with zero-configuration policies. In: Strassner, J., Dobson, S.A.,
Fortes, J.A.B., Goswami, K.K. (eds.) 2008 International Conference on Autonomic
Computing, ICAC 2008, 2–6 June 2008, Chicago, Illinois, USA, pp. 67–76. IEEE
Computer Society (2008)

14. Herrmann, S.: A precise model for contextual roles: the programming language
ObjectTeams/Java. Appl. Ontol. 2(2), 181–207 (2007)

15. Hillemacher, S., et al.: Model-based development of self-adaptive autonomous vehi-
cles using the SMARDT methodology. In: Hammoudi, S., Pires, L.F., Selic, B.
(eds.) Proceedings of the 6th International Conference on Model-Driven Engineer-
ing and Software Development, MODELSWARD 2018, 22–24 January 2018, Fun-
chal, Madeira - Portugal, pp. 163–178. SciTePress (2018)

16. Hirschfeld, R., Costanza, P., Nierstrasz, O.M.: Context-oriented programming. J.
Object Technol. 7(3), 125–151 (2008)

17. Huebscher, M.C., McCann, J.A.: A survey of autonomic computing - degrees, mod-
els, and applications. ACM Comput. Surv. 40(3), 7:1–7:28 (2008)

18. Kephart, J.O., et al.: Self-adaptation in collective self-aware computing systems.
In: Kounev, S., Kephart, J., Milenkoski, A., Zhu, X. (eds.) Self-Aware Computing
Systems. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-47474-8 13

19. Kiczales, G., et al.: Aspect-oriented programming. In: Akşit, M., Matsuoka, S.
(eds.) ECOOP 1997. LNCS, vol. 1241, pp. 220–242. Springer, Heidelberg (1997).
https://doi.org/10.1007/BFb0053381

20. Kissinger, T., Hähnel, M., Smejkal, T., Habich, D., Härtig, H., Lehner, W.: Energy-
utility function-based resource control for in-memory database systems live. In:
Proceedings of the 2018 International Conference on Management of Data, SIG-
MOD 2018, New York, NY, USA, pp. 1717–1720. ACM (2018)

21. Kramer, J., Magee, J.: Towards robust self-managed systems. Prog. Inform. 5, 1–4
(2008)

22. Kühn, T., Leuthäuser, M., Götz, S., Seidl, C., Aßmann, U.: A metamodel family for
role-based modeling and programming languages. In: Combemale, B., Pearce, D.J.,
Barais, O., Vinju, J.J. (eds.) SLE 2014. LNCS, vol. 8706, pp. 141–160. Springer,
Cham (2014). https://doi.org/10.1007/978-3-319-11245-9 8

23. Philippe, L., McCann, J.A., Diaconescu, A.: Autonomic Computing - Principles,
Design and Implementation. Undergraduate Topics in Computer Science. Springer,
London (2013). https://doi.org/10.1007/978-1-4471-5007-7

24. Litoiu, M., Woodside, M., Zheng, T.: Hierarchical model-based autonomic control
of software systems. ACM SIGSOFT Softw. Eng. Notes 30(4), 1–7 (2005)

25. Ostermann, K.: Dynamically composable collaborations with delegation layers.
In: Magnusson, B. (ed.) ECOOP 2002. LNCS, vol. 2374, pp. 89–110. Springer,
Heidelberg (2002). https://doi.org/10.1007/3-540-47993-7 4

26. Pukhkaiev D., Götz, S.: BRISE: energy-efficient benchmark reduction. In: 2018
IEEE/ACM 6th International Workshop on Green and Sustainable Software
(GREENS), pp. 23–30, May 2018

27. Püschel, G.: Testing self-adaptive systems - a model-based approach to resilience.
Ph.D. thesis, Technische Universität Dresden, June 2018. http://nbn-resolving.de/
urn:nbn:de:bsz:14-qucosa-237791

28. Rosenmüller, M., Siegmund, N., Apel, S., Saake, G.: Flexible feature binding in
software product lines. Autom. Softw. Eng. 18(2), 163–197 (2011)

29. Salehie, M., Tahvildari, L.: Self-adaptive software: Landscape and research chal-
lenges. ACM Trans. Auton. Adapt. Syst. 4(2), 14:1–14:42 (2009)

https://doi.org/10.1007/978-3-319-47474-8_13
https://doi.org/10.1007/BFb0053381
https://doi.org/10.1007/978-3-319-11245-9_8
https://doi.org/10.1007/978-1-4471-5007-7
https://doi.org/10.1007/3-540-47993-7_4
http://nbn-resolving.de/urn:nbn:de:bsz:14-qucosa-237791
http://nbn-resolving.de/urn:nbn:de:bsz:14-qucosa-237791

20 U. Aßmann et al.

30. Salvaneschi, G., Ghezzi, C., Pradella, M.: Context-oriented programming: apro-
gramming paradigm for autonomic systems. The Computing Research Repository
(CoRR). abs/1105.0069 (2011)

31. Smaragdakis, Y., Batory, D.: Implementing layered designs with mixin layers. In:
Jul, E. (ed.) ECOOP 1998. LNCS, vol. 1445, pp. 550–570. Springer, Heidelberg
(1998). https://doi.org/10.1007/BFb0054107

32. Steimann, F.: On the representation of roles in object-oriented and conceptual
modelling. Data Knowl. Eng. 35(1), 83–106 (2000)

33. VanHilst, M., Notkin, D.: Using role components in implement collaboration-based
designs. SIGPLAN Notes 31(10), 359–369 (1996)

34. Weyns, D., et al.: On patterns for decentralized control in self-adaptive systems.
In: de Lemos, R., Giese, H., Müller, H.A., Shaw, M. (eds.) Software Engineering
for Self-Adaptive Systems II. LNCS, vol. 7475, pp. 76–107. Springer, Heidelberg
(2013). https://doi.org/10.1007/978-3-642-35813-5 4

https://doi.org/10.1007/BFb0054107
https://doi.org/10.1007/978-3-642-35813-5_4

Distance-Based Community Search
(Invited Talk Extended Abstract)

Francesco Bonchi1,2(B)

1 ISI Foundation, Turin, Italy
francesco.bonchi@isi.it
2 Eurecat, Barcelona, Spain

http://francescobonchi.com/

1 Community Search

Suppose we have identified a set of subjects in a terrorist network suspected
of organizing an attack. Which other subjects, likely to be involved, should
we keep under control? Similarly, given a set of patients infected with a viral
disease, which other people should we monitor? Given a set of companies trading
anomalously on the stock market: is there any connection among them that could
explain the anomaly? Given a set of proteins of interest, which other proteins
participate in pathways with them? Given a set of users in a social network that
clicked an ad, to which other users (by the principle of “homophily”) should the
same ad be shown?

Each of these questions can be modeled as a graph-query problem: given
a graph G = (V,E) where (V is a set of vertices representing entities and E
is a set of edges modeling the relations among the entities) and given a set of
query vertices Q ⊆ V , find a subgraph H of G which “explains” the connections
existing among the vertices in Q, that is to say that H must be connected and
contain all query vertices in Q.

Several problems of this type have been studied under different names, e.g.,
community search [3,6,17], seed set expansion [2,10], connectivity subgraphs [1,7,
15,18], just to mention a few. While optimizing for different objective functions,
the bulk of this literature aims at finding a “community” around the set of query
vertices Q: the (more or less) implicit assumption is that the vertices in Q belong
to the same community, and a good solution will contain other vertices belonging
to the same community of Q. As we showed in our work in [15], when such an
assumption is satisfied, these methods return reasonable subgraphs, but when the
query vertices belong to different modules of the input graph, these methods tend
to return too large a subgraph, often so large as to be meaningless and unusable
in real applications. Moreover, the assumption is not so realistic in practice. In
fact, we have a set of vertices that we believe are of interest for the application
at hand and we want to further investigate them: why should we assume they
belong to the same community? Moreover, if we have already knowledge of the
communities, then why do we need to “reconstruct” the community around Q?

c© Springer Nature Switzerland AG 2019
B. Catania et al. (Eds.): SOFSEM 2019, LNCS 11376, pp. 21–27, 2019.
https://doi.org/10.1007/978-3-030-10801-4_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-10801-4_2&domain=pdf
https://doi.org/10.1007/978-3-030-10801-4_2

22 F. Bonchi

2 The Minimum Wiener Connector

In our work in [15] we take a different approach: instead of trying to “reconstruct”
the community around Q we seek a small connector, i.e., a connected subgraph
of the input graph which contains Q and a small set of important additional
vertices. These additional vertices could explain the relation among the vertices
in Q, or could participate in some function by acting as important links among
the vertices in Q. We achieve this by defining a new, parameter-free problem
where, although the size of the solution connector is left unconstrained, the
objective function itself takes care of keeping it small.

Specifically, given a graph G = (V,E) and a set of query vertices Q ⊆ V , our
problem asks for the connector H∗ minimizing the sum of shortest-path distances
among all pairs of vertices (i.e., the Wiener index [19]) in the solution H∗:

H∗ = arg min
G[S]:Q⊆S⊆V

∑

{u,v}∈S

dG[S](u, v)

where G[S] denotes the subgraph induced by a set of nodes S, and dG[S](u, v)
denotes the shortest-path distance between nodes u and v in G[S]. We call H∗

the minimum Wiener connector for query Q.
This is a very natural problem to study: shortest paths define fundamental

structural properties of graphs, playing a role in all the basic mechanisms of
networks such as their evolution [11] and the formation of communities [8]. The
fraction of shortest paths that a vertex takes part in is called its betweenness
centrality [4], and is a well established measure of the importance of a vertex, i.e.,
the extent to which an actor has control over information flow. A consequence
of our definition of minimum Wiener connector is that our solutions tend to
include vertices which hold an important position in the network, i.e., vertices
with high betweenness centrality.

Consider social or biological networks with their modular structure [8] (i.e.,
the existence of communities of vertices densely connected inside, and sparsely
connected with the outside). When the query vertices Q belong to the same com-
munity, the additional nodes added to Q to form the minimum Wiener connector
will tend to belong to the same community. In particular, these will typically be
vertices with higher “centrality” than those in Q: these are likely to be influential
vertices playing leadership roles in the community. These might be good users
for spreading information, or to target for a viral marketing campaign [9].

Instead, when the query vertices in Q belong to different communities, the
additional vertices added to Q to form the minimum Wiener connector will con-
tain vertices adjacent to edges that “bridge” the different communities. These
also have strategic importance: information has to go over these bridges to prop-
agate from a community to others, thus the vertices incident to bridges enjoy
a strategically favorable position because they can block information, or access
it before other individuals in their community. These vertices are said to span
a “structural hole” [5]: they are the best candidates to target for blocking the
spread of rumors or viral diseases in a social network, or the spread of malware

Distance-Based Community Search (Invited Talk Extended Abstract) 23

in a network of computers. In a protein-protein interaction network these ver-
tices can represent proteins that play a key role in linking modules and whose
removal can have different phenotypic effects.

In [15] we show that, when the number of query vertices is small, the mini-
mum Wiener connector can be found in polynomial time. However, in the general
case our problem is NP-hard and it has no PTAS unless P = NP: note that,
while the inapproximability result says that the problem cannot be approxi-
mated within every constant, it leaves open the possibility of approximating it
within some constant. In fact, our central result is an efficient constant-factor
approximation algorithm, which runs in Õ(|Q||E|) time. We also devise integer-
programming formulations of our problem. We use them to compare our solu-
tions for small graphs with those found using state-of-the art solvers, and show
empirically that our solutions are indeed close to optimal. Our experiments con-
firm that our method produces solutions which are smaller in size, denser, and
which include more central nodes than the methods in the literature, regardless
of whether the query vertices belong to the same community or not.

3 The Minimum Inefficiency Subgraph

A common aspect of almost all the literature on community search is to require
the solution to be a connected subgraph. The requirement of connectedness is a
strongly restrictive one. Consider, for example, a biologist inspecting a set of pro-
teins that she suspects could be cooperating in some biomedical setting. It may
very well be the case that one of the proteins is not related to the others: in this
case, forcing the sought subgraph to connect them all might produce poor quality
solutions, while at the same time hiding an otherwise good solution. By relax-
ing the connectedness condition, the outlier protein can be kept disconnected,
thus returning a much better solution to the biologist. Another consequence of
the connectedness requirement is that by trying to connect possibly unrelated
vertices, the resulting solutions end up being very large.

In our work in [16], we study the selective connector problem: given a graph
G = (V,E) and a set of query vertices Q ⊆ V , find a superset S ⊇ Q of vertices
such that its induced subgraph, denoted G[S], has some good “cohesiveness”
properties, but is not necessarily connected. Abstractly, we would like our selec-
tive connector G[S] to have the following desirable properties:

• Parsimonious vertex addition. Vertices should be added to Q to form the
solution S, if and only if they help form more “cohesive” subgraphs by better
connecting the vertices in Q. Roughly speaking, this ensures that the only
vertices added are those which serve to better explain the connection between
the elements of Q (or a subset thereof).

• Outlier tolerance. If Q contains vertices which are “far” from the rest of
Q, those should remain disconnected in the solution S and be considered as
outliers. The necessity for this stems from the fact that real-world query-sets
are likely to contain some vertices that are erroneously suspected of being
related.

24 F. Bonchi

• Multi-community awareness. If the query vertices Q belong to two or
more communities, then the connector should be able to recognize this sit-
uation, detect the communities, and refrain from imposing connectedness
between them.

A natural way to define the cohesiveness of a subgraph G[S] is to consider
the shortest-path distance dG[S](u, v) between every pair of vertices u, v ∈ S, as
done in the previous section. One issue with shortest-path distance is that, when
the connectedness requirement is dropped, pairs of vertices can be disconnected,
thus yielding an infinite distance. A simple yet elegant workaround to this issue
is to use the reciprocal of the shortest-path distance [13]; this has the useful
property of handling ∞ neatly (assuming by convention that ∞−1 = 0). This
is the idea at the heart of network efficiency, a graph-theoretic notion that was
introduced by Latora and Marchiori [12] as a measure of how efficiently a network
G = (V,E) can exchange information:

E(G) =
1

|V |(|V | − 1)

∑

u,v∈V
u�=v

1
dG(u, v)

.

Unfortunately, defining the selective connector problem as finding the sub-
graph G[S] with S ⊇ Q that maximizes network efficiency would be meaningless.
In fact, the normalization factor |V |(|V | − 1) allows vertices totally unrelated to
Q to be added to improve the efficiency; clearly violating our driving principle
of parsimonious vertex addition. Based on the above arguments, we introduce
the measure of the inefficiency of a graph G = (V,E), defined as follows:

I(G) =
∑

u,v∈V
u�=v

1 − 1
dG(u, v)

.

Hence, we define the selective connector problem as the parameter-free prob-
lem which requires extracting the subgraph G[S], with S ⊇ Q, that minimizes
network inefficiency. With this definition, each pair of vertices in the subgraph
G[S] produces a cost between 0 and 1, which is minimum when the two vertices
are neighbors, grows with their distance, and is maximum when the two vertices
are not reachable from one another. Parsimony in adding vertices is handled by
the sum of costs over all pairs of vertices in the connector; adding one vertex v to
a partial solution S incurs |S| more terms in the summation. The inclusion of v
is worth the additional cost only if these costs are small and if v helps reduce the
distances between vertices in S. Moreover, note that by allowing disconnections
in the solution, the second and third design principles above (i.e., outliers and
multiple communities) naturally follow from the parsimonious vertex addition.

The Minimum Inefficiency Subgraph (mis) problem is NP-hard, and we prove
that it remains hard even if we constrain the input graph G to have a diameter
of at most 3. Therefore, we devise an algorithm that is based on first building a
complete connector for the query vertices and then relaxing the connectedness

Distance-Based Community Search (Invited Talk Extended Abstract) 25

cps ctp mwc ldm mdl mis

Fig. 1. Comparison between Minimum Inefficiency Subgraph (mis) and other notions in
the literature on a cortical connectivity network. Query vertices are colored w.r.t. their
known functionalities: memory and motor function (blue vertices), emotions (yellow
vertices), visual processing (red vertices). The green vertices are the ones added to
produce the solution. More details on the case study can be found in [16]. (Color figure
online)

requirement by greedily removing non-query vertices. Our experiments show that
in 99% of problem settings, our greedy relaxing algorithm produces solutions no
worse than those produced by an exhaustive search, while at the same time
being orders of magnitude more efficient. We empirically confirm that the mis is
a selective connector: i.e., tolerant to outliers and able to detect multiple com-
munities. Besides, the selective connectors produced by our method are smaller,
denser, and include vertices that have higher centrality than the ones produced
by the state-of-the-art methods. We also show interesting case studies in a vari-
ety of application domains (such as human brain, cancer, food networks, and
social networks), confirming the quality of our proposal (Fig. 1).

4 Adaptive Community Search in Dynamic Networks

Although community search has received a great deal of attention in the last
few years, most of the literature so far has focused on static networks. How-
ever, many of the networks of interest carry time information which can be very
important for understanding the dynamics of interactions between the vertices.
For instance, interactome, which is the set of molecular interactions in a cell,
can be modeled as a network, in which the vertices are proteins and through
their connections can perform biological functions. However, these connections
are not constantly active, and therefore a dynamic analysis is more appropriate
for understanding properly this complex network [14]. In communication net-
works, for example, the edges represent correspondence between two actors of
the network. If a user A communicates with a user B at some time t0 and later
in time, the user B communicates with a user C the flow of information can pass
from user A to user C, but not in the opposite direction.

In our ongoing work we are studying the problem of community search in
dynamic networks with adaptive query updates. Our objective is to find a tem-
poral connector that includes all the vertices of interest, connecting them with

26 F. Bonchi

“temporal paths” that should be seen as paths both in space (i.e., network struc-
ture) and in time (i.e., network evolution). Since the network changes constantly
in time, we expect that the connectors evolve as well. Therefore, it is natural that
the query set is enriched during the evolution, with new vertices, that formed
part of the solution of the previous time instances. As long as the added vertices
remain related to the initial query set, they are maintained to it. Otherwise,
they are removed from the query set. In this way, the connector keeps evolving
in time and keeps monitoring the evolution of the interactions among the vertices
of interest. We call this problem temporal adaptive community search.

Acknowledgements. I wish to thank all the co-authors of the various papers on
which this invited talk is built: Natali Ruchansky, Ioanna Tsalouchidou, David Garćıa-
Soriano, Francesco Gullo, Nicolas Kourtellis, Ricardo Baeza-Yates.

References

1. Akoglu, L., et al.: Mining connection pathways for marked nodes in large graphs.
In: SDM (2013)

2. Andersen, R., Lang, K.J.: Communities from seed sets. In: WWW (2006)
3. Barbieri, N., Bonchi, F., Galimberti, E., Gullo, F.: Efficient and effective commu-

nity search. DAMI 29(5), 1406–1433 (2015)
4. Bavelas, A.: A mathematical model of group structure. Hum. Organ. 7, 16–30

(1948)
5. Burt, R.: Structural Holes: The Social Structure of Competition. Harvard Univer-

sity Press (1992)
6. Cui, W., Xiao, Y., Wang, H., Wang, W.: Local search of communities in large

graphs. In: SIGMOD (2014)
7. Faloutsos, C., McCurley, K.S., Tomkins, A.: Fast discovery of connection sub-

graphs. In: KDD (2004)
8. Girvan, M., Newman, M.E.J.: Community structure in social and biological net-

works. PNAS 99(12), 7821–7826 (2002)
9. Kempe, D., Kleinberg, J.M., Tardos, É.: Maximizing the spread of influence

through a social network. In: KDD (2003)
10. Kloumann, I.M., Kleinberg, J.M.: Community membership identification from

small seed sets. In: KDD (2014)
11. Kossinets, G., Watts, D.J.: Empirical analysis of an evolving social network. Science

311(5757), 88–90 (2006)
12. Latora, V., Marchiori, M.: Efficient behavior of small-world networks. Phys. Rev.

Lett. 87(19), 198701 (2001)
13. Marchiori, M., Latora, V.: Harmony in the small-world. Phys. A: Stat. Mech. Appl.

285(3–4), 539–546 (2000)
14. Przytycka, T., Singh, M., Slonim, D.: Toward the dynamic interactome: it’s about

time. Brief. Bioinform. 11(1), 15–29 (2010). https://doi.org/10.1093/bib/bbp057
15. Ruchansky, N., Bonchi, F., Garćıa-Soriano, D., Gullo, F., Kourtellis, N.: The min-

imum wiener connector problem. In: SIGMOD (2015)
16. Ruchansky, N., Bonchi, F., Garćıa-Soriano, D., Gullo, F., Kourtellis, N.: To be

connected, or not to be connected: that is the minimum inefficiency subgraph
problem. In: CIKM (2017)

https://doi.org/10.1093/bib/bbp057

Distance-Based Community Search (Invited Talk Extended Abstract) 27

17. Sozio, M., Gionis, A.: The community-search problem and how to plan a successful
cocktail party. In: KDD (2010)

18. Tong, H., Faloutsos, C.: Center-piece subgraphs: problem definition and fast solu-
tions. In: KDD, pp. 404–413 (2006)

19. Wiener, H.: Structural determination of paraffin boiling points. J. Am. Chem. Soc.
69(1), 17–20 (1947)

Minicomplexity

Some Motivation, Some History, and Some Structure
(Invited Talk Extended Abstract)

Christos A. Kapoutsis(B)

Carnegie Mellon University in Qatar, Doha, Qatar
cak@cmu.edu

Abstract. The termminicomplexity was first suggested in [2], as a name
for the field of theory of computation which studies the size complexity
of two-way finite automata, as outlined in [1]. In this talk, we discuss
the motivation behind this field and enumerate some of its prominent
results in their historical context. By reformulating these results, we then
attempt to reveal additional structure which often passes unnoticed. The
present report records the start of this attempt.

1 Machines vs. Machines

Central in [1] is the invitation to start viewing the results in this field similarly to
how results are being viewed in standard complexity theory: not as statements
about the relative power of various computational devices, but as statements
about the relative difficulty of various computational problems.

To describe the difference between the two viewpoints and stress the benefits
of such a shift, we go back to the seminal paper of Meyer and Fischer [5], which
initiated the field, and to the three very first propositions in it. The first one(1)

says that one-way nondeterministic finite automata (1nfas) are strictly more
powerful than deterministic ones (1dfas), as some binary witness language Rn

needs ≤n states on 1nfas but ≥2n states on 1dfas. In the proof, Rn is described
only through its deciding 1nfa. After it, one more witness R′

n is given:

c© Springer Nature Switzerland AG 2019
B. Catania et al. (Eds.): SOFSEM 2019, LNCS 11376, pp. 28–38, 2019.
https://doi.org/10.1007/978-3-030-10801-4_3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-10801-4_3&domain=pdf
https://doi.org/10.1007/978-3-030-10801-4_3

Minicomplexity 29

which is (suboptimal, but) simpler, together with its restriction R′′
n (our name) to

strings of length <2n, which shares the same properties.(2) The next proposition

establishes a similar relation for two-way deterministic finite automata (2dfas)
and 1dfas: now a witness language Fn needs O(n) states on 2dfas but ≥nn

states on 1dfas. Finally, the third proposition

proves that, augmented with a pebble, 2dfas are even more powerful: O(n) states
are now enough to decide a language Pn for which 1dfas need ≥22

n

states. In
short, and in the standard parlance of the field, Propositions 1–3 tell us that the
trade-off in the conversion from 1nfas, 2dfas, or single-pebble 2dfas to 1dfas
is respectively 2Ω(n), 2Ω(n lg n), and 22

Ω(n)
.

Overall, this is entirely a “machines vs. machines” discussion: computational
devices compete against each other, and we want to know which is more powerful.
In this competition, problems play only the secondary role of a witness task on
which a stronger machine beats a weaker one by solving it with less resources.

2 Problems vs. Problems

The alternate viewpoint is “problems vs. problems”: computational tasks com-
pete against each other, and we want to know which is more difficult. This time
it is machines that play the secondary role, of a witness device on which a harder
problem beats an easier one by requiring more resources.

This is the viewpoint of standard complexity theory, and it was proposed for
minicomplexity, as well, by Sakoda and Sipser in their own seminal paper [6].
By switching to this viewpoint, we bring problems at the center of attention: we
clearly describe them as computational tasks (as opposed to sets of strings); give
them distinctive names; and collect them in complexity classes relative to the

30 C. A. Kapoutsis

various machines and the polynomiality or not (as opposed to the asymptotics)
of the used resources. For practical reasons, we also use h as the important
parameter (instead of n, which is often needed as input length); and describe
the instances over a large alphabet and with an associated promise for the format
(if this simplifies the description without affecting the difficulty).

2.1 RETROCOUNT

For example, R′
h (Proposition 1) is the problem: “Given a bitstring, check that

its h-th from the last digit is 1.” Note that the reference “h-th from the last
digit” is void on strings of length <h. We could get into a discussion of whether
such strings should be accepted or not, but this would be a distraction from the
main point of the task. A better description of the essence of this computational
problem is one where the intended format of the input is taken for granted:

“Given a bitstring of length ≥h, check that its h-th last bit is 1.” (1)

so that a solving machine need not check that the length is ≥h; if it is not, then
the machine is free to decide arbitrarily. We call this problem retrocounth.
Similarly, the restriction R′′

h is the problem shortretrocounth:

“Given a bitstring of lengthh ≤ n < 2h, check that its h-th last bit is 1.” (2)

Again, it is not the job of a solving machine to check that the length of the input
is appropriate; this is promised. The job is only to check the h-th last bit.

Formally, a (promise) problem L over an alphabet Σ is a pair (L, L̃) of disjoint
subsets of Σ∗. A string w is an instance of L if w ∈ L ∪ L̃, and is positive, if
w ∈ L, or negative, if w ∈ L̃. To solve L is to accept all w ∈ L but no w ∈ L̃
(behaving arbitrarily on w �∈ L ∪ L̃). So, (1) and (2) are the promise problems

retrocounth :=
(

{0,1}∗1{0,1}h−1, {0,1}∗0{0,1}h−1
)

shortretrocounth :=
(

{0,1}<h1{0,1}h−1, {0,1}<h0{0,1}h−1
)
.

That both problems witness the exponential difference in number of states
between 1nfas and 1dfas is expressed by the fact that both belong to the class

1N :=
{

(Lh)h≥1

∣
∣
∣
∣
∣

there exist 1nfas (Nh)h≥1 and polynomial s
such that every Nh solves Lh with s(h) states

}
, (3)

of “problems solved by small 1nfas”, but not in the respective class 1D for 1dfas:

retrocount, shortretrocount ∈ 1N \ 1D, (4)

where retrocount = (retrocounth)h≥1 is the induced family, and similarly
for shortretrocount. Note that, since the latter problem is a restriction of
the former, all the information of (4) follows from the next two facts and lemma.

Fact 1. retrocount ∈ 1N.

Minicomplexity 31

Fact 2. shortretrocount �∈ 1D.

Lemma 1. If L ⊆ L′ and L �∈ C, then L′ �∈ C.

Here, L ⊆ L′ means that the family L= (Lh)h≥1 is a restriction of L′ = (L′
h)h≥1

(so that shortretrocount ⊆ retrocount); equivalently, we also say that
L′ is a generalization of L. Formally, for L= (L, L̃) and L′ = (L′, L̃′), we write
L ⊆ L′ if both L ⊆ L′ and L̃ ⊆ L̃′; then we write L ⊆ L′ if Lh ⊆ L′

h for all h.

2.2 PROJECTION

For another example, Fh (Proposition 2) is the problem: “Given a string, check
that it consists of a tuple of h numbers from 1 to h (in unary, by 0s; delimited
by 1s), an index k from 1 to h (in unary, by 2s), and the k-th number in the
tuple (in unary, by 0s).” Clearly, the essence of this task is to check that the
number after k equals the k-th number in the tuple. So, a better description is:

“Given a tuple of h numbers from 1 to h (in unary, by 0s; delimited by 1s),
an index k from 1 to h (in unary, by 2s), and a number i from 1 to h (5)
(in unary, by 0s), check that i equals the k-th number in the tuple.”

so that, as above, checking that the input is correctly formatted is not important.
Also unimportant is the fact that the numbers and index are in unary. The

problem preserves its essence, if we assume that the input cells are large enough
to host any number from [h] := {1, . . . , h}. So, an even better description of Fh is

“Given a tuple i1, i2, . . . , ih of numbers in [h], and two numbers k, i in [h],
check that i equals ik.” (6)

where the input alphabet is [h]. Now it is more clear what the problem is: to
check that the projection of the given tuple to its k-th component returns i. So,
we refer to (6) as projectionh;(3) and use unaryprojectionh for (5).

With these clarifications, Proposition 2 says that unaryprojection ∈ 2D \
1D, where the class 2D of “problems solved by small 2dfas” is defined similarly
to (3). Intuitively, the reasons for this fact are clear: When a solving 1dfa crosses
the boundary between the tuple and the index, it must be able to answer any
query of the form “does the k-th component equal i?”, so it must store the full
tuple, which needs ≥hh states. In contrast, a 2dfa can read 2k0i and store k and i;
rewind; then countdown to the k-th block of 0s to check that it contains exactly i
of them, all doable with O(h2) states. Similarly, projection ∈ 2D \ 1D.

Now that we see why these problems witness 2D\1D, we may further ask: Do
we really need the tuple numbers in separate cells? Or k and i in separate cells?
No. Over the alphabet [h]h ∪ [h]2, where cells are large enough to host an entire
h-tuple i or query u = (k, i), we may define the problem compactprojectionh:

“Given a tuple i ∈ [h]h and a query u ∈ [h]2, check that u2 = iu1 .” (7)

Intuitively, this is the best description of the essence of Fh, as it contains exactly
the structure that is sufficient and necessary to place it in 2D \ 1D.

32 C. A. Kapoutsis

Of course, problems (5), (6), and (7) are “essentially the same”. To describe
this intuition formally, we first define them as promise problems. E.g., (7) is:

compactprojectionh :=
(
{iu | u2 = iu1}, {iu | u2 �= iu1}

)
;

and similarly for (5) and (6), over alphabets {0, 1, 2} and [h]. We then introduce
reductions, as follows. For arbitrary problems L = (L, L̃) and L′ = (L′, L̃′) over
alphabets Σ and Σ′, we say that L 1D-reduces to L′ (L ≤1D L′) if there exists a
one-way deterministic finite transducer (1dft) T such that

w ∈ L =⇒ T (w) ∈ L′ and w ∈ L̃ =⇒ T (w) ∈ L̃′ (8)

where T (w) is the output of T on input w, if T accepts w, or undefined, otherwise.
An alternative and more concise way to write (8) is:

T (L) ⊆ L′ (9)

where T (L) = T (L, L̃) = (T (L), T (L̃)) =
(
{T (w) | w ∈ L}, {T (w) | w ∈ L̃}

)
is

the pair of the images under T of all positive and all negative instances of L
(which is itself a problem iff T (L) ∩ T (L̃) �= ∅). As further alternative,

1D(L) ⊆ L′ (10)

says the same, without identifying T (i.e., it is equivalent to L ≤1D L′).
In the special case where the inclusion (9) is an equality, L′ is a 1D-image

of L under T , and we also write (10) as equality. E.g., (5) is a 1D-image of (6):

1D(projectionh) = unaryprojectionh (11)

via the O(h)-state 1dft T which scans an instance i1i2 . . . ihki and, for each
symbol in [h], prints the appropriate unary representation and delimiters. Note
that T prints on its output tape only h + 2 = poly(h) times; and, in each of
these times, the printed string has length ≤h + 1 = poly(h).

In another special case, where T has only 1 state and always accepts, T defines
a homomorphism H : Σ ∪ {�,�} → (Σ′)∗ such that T (w) = H(�w�). We then
say that L homomorphically reduces to L′ (L ≤H L′ or H(L) ⊆ L′), if H(L) ⊆ L′;
or that L′ is a homomorphic image of L (H(L′) = L), if H(L) = L′. Hence,

H(compactprojectionh) = projectionh (12)

via the homomorphism H which maps every h-tuple i = (i1, i2, . . . , ih) to the
string i1i2 · · · ih, every query u = (k, i) to the string ki, and each of �,� to ε.
Note that H maps every symbol to a string of length ≤h = poly(h).

These definitions extend to problem families L = (Lh)h≥1 and L′ = (L′
h)h≥1,

if every Lh reduces to some L′
h′ via a 1dft Th or a homomorphism Hh. However,

to say that L ≤1D L′, 1D(L) = L′, L ≤H L′, or H(L) = L′, we also need h′ and
the size of Th to be small relative to h: namely, that h′ = poly(h) and Th has
poly(h) states. If, in addition, every Th prints only poly(h) times, then we write

Minicomplexity 33

L ≤lac
1D L′ and call the Th laconic; if every printed string has length only poly(h),

then we write L ≤t
1D L′ (or L ≤t

H L′) and call the Th (or Hh) tight. Hence,

1D(projection) = unaryprojection

H(compactprojection) = projection
(13)

by the tight laconic transducers of (11) and the tight homomorphisms of (12).
In conclusion, (13) expresses the intuition that problems (5), (6), and

(7) are “essentially the same”. Now, the fact that they all witness 2D \
1D follows from only two easy facts and standard lemmas [6, Sect. 3],
[4, Corollary 3]:

Fact 3. unaryprojection ∈ 2D.

Fact 4. compactprojection �∈ 1D.

Lemma 2. 2D is closed under ≤H and ≤lac
1D .

Lemma 3. 1D is closed under ≤1D (and thus also under ≤H and ≤lac
1D).

2.3 MEMBERSHIP

Let us now return to Proposition 1 and see how large alphabets can help us
better understand the essense of its problems, too.

In shortretrocounth, every instance w is of the form uv, where |u| = h
and 0 ≤ |v| < h. Note that the actual bits of v are unimportant; only l := |v|
matters: w is positive iff the (l + 1)-st bit of u is 1. Namely, if α ⊆ [h] is the set
of the indices of all 1’s in u, then w is asking whether l +1 ∈ α. So, the question
is really whether a set α contains an element i; it’s just that α is given in binary
(by its characteristic vector u) and i is given in unary (by the length i − 1 of v).

Let us also recall why shortretrocount ∈ 1N \ 1D. On crossing the u-v
boundary, a solving 1dfa must be able to handle any l, i.e., any query of the
form “does the i-th bit of u equal 1?”; so it must store the full u, which needs
≥2h states. In contrast, a 1nfa can scan u; guess the crucial 1; countdown from h
on the next bits (entering v at count i, for i the index of the guessed 1); and
accept iff the count is 1 on � (so |v| = i − 1), all doable with O(h) states.

Now that we better understand what the problem is asking and why it is a
witness, we may ask: Do we really need α in binary and i in unary? No. Over
the alphabet {α | α ⊆ [h]} ∪ [h], we define the problem: “Given a set α ⊆ [h]
and an element i ∈ [h], check that i ∈ α”, or formally:(4)

membershiph :=
(
{αi | i ∈ α}, {αi | i �∈ α}

)
; (14)

and claim that this best captures the essence of shortretrocounth. That the
two problems are “essentially the same” is formally expressed by the fact that the
former homomorphically reduces to the latter via the obvious homomorphism
which maps every α to its characteristic vector and every i to 0i−1:

H(membership) ⊆ shortretrocount. (15)

34 C. A. Kapoutsis

What about retrocounth? Its instances are derived by left-padding those
of shortretrocounth by arbitrary bitstrings. Formally, let LPAD be the opera-
tor which maps L = (L, L̃) to the pair LPAD(L) := ({0,1}∗L, {0,1}∗L̃). This pair
is not necessarily a promise problem: if there exist instances w ∈ L and w̃ ∈ L̃
and pad-strings x, x̃ ∈ {0,1}∗ such that xw = x̃w̃, then the two sets in the pair
are not disjoint. So, call L left-paddable, if this does not happen. Then a family
L = (Lh)h≥1 is left-paddable if every Lh is; and LPAD(L) := (LPAD(Lh))h≥1.

Easily, shortretrocounth is left-paddable, since the sign of each instance
is determined by its last h bits and these are unaffected by the padding; and

LPAD(shortretrocount) = retrocount. (16)

Overall, (15) and (16) formally relate (1), (2), and (14) to each other. Now,
the fact that all three witness 1N \ 1D follows from only two easy facts and from
suitable lemmas (Lemma 1, as L ⊆ LPAD(L); Lemma 3; and Lemmas 4–5):

Fact 5. shortretrocount ∈ 1N.

Fact 6. membership �∈ 1D.

Lemma 4. 1N is closed under ≤H.

Lemma 5. If L is left-paddable and L ∈ 1N, then LPAD(L) ∈ 1N.

Note how our earlier Facts 1 and 2 now become corollaries of Facts 5 and 6.

Retrocount vs. Projection. There is great similarity between our intu-
ition why the projection problems are not in 1D and why the same holds for
the retrocount problems. This suggests that the projection problems also have
membership at their core. Indeed:

H(membership) ⊆ compactprojection (17)

by the homomorphism which maps every set α ⊆ [h] to its “characteristic tuple”
i ∈ [h+1]h+1 where ij = 1 or h+1, based on whether j ∈ α or not, respectively;
and each i ∈ [h] to the query (i, 1).(5) So, our earlier Fact 4 is now a corollary of
Fact 6 (via (17) and Lemma 3). At the same time, membership is also a witness
of 2D \ 1D, because Fact 3 implies it is in 2D (via (13), (17), and Lemma 2).

2.4 LIST MEMBERSHIP

We now continue to problem Ph (Proposition 3): “Given a string, check that it
is a strictly increasing list of h-long binary numbers (delimited by 2s), followed
by a copy of one of them (separated by 22).” Clearly, the essence of this task is
to check that the number after 22 appears in the preceding list. The condition
that the list is strictly increasing is there to ensure that Ph is finite. Ignoring it
(also dropping the finiteness of Ph from Proposition 3), we arrive at this better
description:

“Given a list of h-long binary numbers (delimited by 2s) and an h-long
binary number i (separated by 22), check that i is in the list.” (18)

Minicomplexity 35

As previously, presenting the numbers in binary is unimportant; all that matters
is that each block of h bits can host 2h different strings. It is important, however,
to know when we have arrived at i. So, to zoom into the essence of Ph, we switch
to alphabet [2h] ∪ {ı̌ | i ∈ [2h]}, where each cell hosts a full number x (possibly
ticked, as x̌) in [2h] (as opposed to {0, . . . , 2h − 1}), and define the problem:

“Given a list of numbers from [2h] and a ticked number i ∈ [2h],
check that i is in the list.” (19)

In it, one easily sees a variant of membershiph, where elements are drawn (not
from [h], but) from [2h]; and the set is given (not in a single cell, but) as a list
over many cells, possibly with repetitions. To represent this problem, we first
introduce its variant over the smaller alphabet [h]:(6)

listmembershiph :=
(
{i1i2 · · · it ı̌ | t ≥ 0 & i1, i2, . . . , it, i ∈ [h] & (∃j)(ij = i)},

{i1i2 · · · it ı̌ | t ≥ 0 & i1, i2, . . . , it, i ∈ [h] & (∀j)(ij �= i)}
)
,

(20)

and refer to (19) itself, over [2h], as tall listmembershiph. Then, for (18) we
use the name binarytall listmembershiph.

So, Proposition 3 says that binarytall listmembership ∈ P1D\21D, where
P1D and 21D are the classes for small single-pebble 2dfas and large 1dfas, where
“large” means “with 2poly(h) states”. Once again, the intuitive reasons are clear:
on crossing 22, a solving 1dfa must have stored the set of numbers occurring in
the list, which needs ≥22

h

states. In contrast, a single-pebble 2dfa can compare i
against every ij bit-by-bit, using the pebble to mark the current ij , all doable
with O(h) states. By the same reasons, tall listmembership ∈ P1D\21D. (Note
that it is important for the pebble 2dfa to have the list spread across cells.)

Note that our intuition for the lower bound is the same as for membership,
except now there are exponentially more sets to remember. To represent this
formally, let us first note that

H(membership) ⊆ listmembership (21)

via the homomorphism which maps every set α ⊆ [h] to a string i1i2 · · · it of its
members; and every i ∈ [h] to its ticked variant ı̌. We then also note that (19)
can be obtained from listmembership by applying an operator TALL,

TALL(listmembership) = tall listmembership, (22)

which maps a family L = (Lh)h≥1 to its sub-family TALL(L) = (L2h)h≥1 at
indices which are powers of 2; and (18) can be obtained from (19) homomorphi-
cally

H(tall listmembership) = binarytall listmembership (23)

by mapping every i ∈ [2h] to the h-long binary representation of i − 1, preceded
or followed by 2, depending on whether i is ticked or not. Now, the lower bound
of Proposition 3 follows from (21), (22), and (23) and a strengthening of Fact 6.

36 C. A. Kapoutsis

To see how, we start with some definitions and facts. The class quasi-1D cor-
responds to 1dfas with quasi-polynomially many states (i.e., 2poly(log n) states).
We can easily show the next strengthening of Fact 6 (by the standard reasoning,
that membershiph needs ≥2h states on a 1dfa) and variation of Lemma3:

Fact 7. membership �∈ quasi-1D.

Lemma 6. quasi-1D and 21D are closed under ≤H.

A family L = (Lh)h≥1 is self-homomorphic if Lh ≤H Lh′ for all h ≤ h′; intuitively,
if the instances of every Lh can be seen as instances of every higher Lh′ . Easily,
listmembership is self-homomorphic, and we can prove that:

Lemma 7. If L is self-homomorphic and L �∈ quasi-1D, then TALL(L) �∈ 21D.

Now, we can apply the following reasoning:

membership �∈ quasi-1D (Fact 7)
=⇒ listmembership �∈ quasi-1D (Lemma 6 and (21))

=⇒ tall listmembership �∈ 21D (Lemma 7 and (22))

=⇒ binarytall listmembership �∈ 21D (Lemma 6 and (23))

Overall, we see that the lower bound of Proposition 3 follows from the hardness
of the core problem of Proposition 1 (Fact 7) and from properties of the classes.

For the upper bound of Proposition 3, we see that one of the two witnesses
satisfies it because the other one does: tall listmembership ∈ P1D follows from
the next fact and lemma, and since the homomorphisms of (23) are tight:

Fact 8. binarytall listmembership ∈ P1D.

Lemma 8. P1D is closed under ≤t
H.

3 Modular Witnesses

The three propositions of [5] offered witness languages for the differences 1N\1D,
2D\1D, and P1D\21D. By analyzing these languages, we arrived at eight promise
problems witnessing these differences. In the end, all bounds that we needed for
these problems followed from Facts 3, 5, 8 (for the upper bounds) and Fact 7
(for the lower bounds), via the established relations between these problems and
using a collection of lemmas of three distinct types:

– preservation of hardness: These are lemmas of the form

L �∈ C =⇒ L′ �∈ C

where L′ is derived from L. E.g., Lemma 1 is such a lemma, with L′ any
generalization of L. Similarly for every lemma for the closure of a class under
≤H or ≤1D, with L′ any generalization of H(L) or 1D(L).

Minicomplexity 37

– propagation of hardness: These are lemmas of the form

L �∈ C =⇒ L′ �∈ C′

where L′,C′ are derived from L,C [3]. E.g., Lemma 7 is such a lemma, where
L′ =TALL(L), and C′ = 21D is derived from C= quasi-1D by an application of
the general operator which raises the size bound f(h) of a class to f(2h).

– preservation of easiness: These are lemmas of the form

L ∈ C =⇒ L′ ∈ C

where L′ is derived from L. E.g., Lemma 5 is such, with L′ = LPAD(L) and
C = 1N. Same for any lemma for the closure of a class under an operation.

Hence, the propositions of [5] are connected via structural relations between their
witnesses, which are easy to miss if we do not adopt the right point of view.

We now further observe that the relations between witnesses allow us to
express each of them as a generalization of a problem that can be obtained from
membership by applying a sequence of operators. Specifically, in the following
list, every witness on the left generalizes the problem on the right:

shortretrocount: H15(membership)
retrocount: LPAD(H15(membership))

compactprojection: H17(membership)
projection: H13(H17(membership))

unaryprojection: T13(H13(H17(membership)))
tall listmembership: TALL(H21(membership))

binarytall listmembership: H23(TALL(H21(membership)))

where H15 is the family of the homomorphic reductions that justifies (15), and
similarly for all other Hi and Ti. Every lower bound for a witness on the left was
established by proving a lower bound for the corresponding problem on the right
and then using Lemma 1. Again by (the contrapositive of) Lemma 1, every upper
bound for a witness on the left is also an upper bound for the respective problem
on the right. Overall, the problems on the right witness the same differences as
the problems on the left.

Let a modular witness for a difference C′ \ C be any problem which belongs
to the difference and is derived from membership by applying a sequence of
operators. Our discussion above shows that every one of the differences in Propo-
sitions 1–3 of [5] admits a modular witness.

We conjecture that the same is true for all differences in minicomplexity.
Namely that, for every two minicomplexity classes C and C′:

If C′ \ C is not empty, then it contains a modular witness.

In the talk, we will examine as evidence supporting this conjecture several exam-
ples of known separations where the offered witnesses were indeed (generaliza-
tions of) modular ones or can be replaced by modular witnesses.

38 C. A. Kapoutsis

If this conjecture is true, then designing a witness for a separation reduces
to (i) deciding which sequence of operators to apply to membership, and then
(ii) proving the corresponding necessary lemmas of hardness propagation and
of hardness or easiness preservation. Gradually, this could lead to a library of
operators and corresponding lemmas, available for reuse in (i) and (ii). It would,
of course, also be interesting to see a proof of the conjecture, that explains why
membership is sufficient as the only “seed of hardness” in this domain.

If the conjecture is false, it would be interesting to see examples where it fails.
Understanding these examples, one could then suggest conditions under which
the conjecture remains valid, and work with this updated, restricted variant.

Notes

(1)Proposition 1 also includes a last sentence, that the reverse of Rn needs only
O(n) states on a 1dfa. We omitted that sentence, as it is redundant for our
purposes.
(2)We write “<2n”, although the definition of R′′

n also allows strings of length
exactly 2n. Excluding such strings does not change the desired properties of R′′

n

in the context of Proposition 1; and is convenient for our purposes.
(3)In [2], the name projection was used for the reverse of this problem.
(4)In [2], the name membership was used for the reverse of this problem.
(5)Note the redundant component ih+1, which is always set of h + 1. We need
h + 1 components, because we need h + 1 values; and we need h + 1 values,
because we need to ensure that the max and min values are distinct even when
h = 1.
(6)In [2], the reverse of this problem was called ∃equality.

References

1. Kapoutsis, C.A.: Size complexity of two-way finite automata. In: Diekert, V.,
Nowotka, D. (eds.) DLT 2009. LNCS, vol. 5583, pp. 47–66. Springer, Heidelberg
(2009). https://doi.org/10.1007/978-3-642-02737-6 4

2. Kapoutsis, C.A.: Minicomplexity. In: Kutrib, M., Moreira, N., Reis, R. (eds.) DCFS
2012. LNCS, vol. 7386, pp. 20–42. Springer, Heidelberg (2012). https://doi.org/10.
1007/978-3-642-31623-4 2

3. Kapoutsis, C., Královič, R., Mömke, T.: Size complexity of rotating and sweeping
automata. J. Comput. Syst. Sci. 78(2), 537–558 (2012)

4. Kapoutsis, C., Pighizzini, G.: Two-way automata characterizations of L/poly versus
NL. Theory Comput. Syst. 56, 662–685 (2015)

5. Meyer, A.R., Fischer, M.J.: Economy of description by automata, grammars, and
formal systems. In: Proceedings of FOCS, pp. 188–191 (1971)

6. Sakoda, W.J., Sipser, M.: Nondeterminism and the size of two-way finite automata.
In: Proceedings of STOC, pp. 275–286 (1978)

https://doi.org/10.1007/978-3-642-02737-6_4
https://doi.org/10.1007/978-3-642-31623-4_2
https://doi.org/10.1007/978-3-642-31623-4_2

Action Research in Software Engineering:
Metrics’ Research Perspective

(Invited Talk)

Miroslaw Staron(B)

Chalmers | University of Gothenburg, Gothenburg, Sweden
miroslaw.staron@gu.se

Abstract. Software engineering is an applied discipline of science. Its
focus on software development processes, technologies and organizations
makes it broad and exciting to work with. However, it makes it also
challenging to find the right research method to get the results that
have impact on industrial practices and that help software organizations
to provide more value to their customers. In this paper, I argue that
the traditional empirical software engineering methods must be comple-
mented with action research. In the paper, I provide an overview of the
methodology of action research, briefly explain the phases and present
my experiences from over a decade long applications of action research
in industrial contexts. I focus on how action research helps to provide
the most value to the collaborating companies, how it helps to build
more robust software engineering theories and how it helps individual
researchers to develop their careers. I conclude with a short description
of how action research can evolve in the future.

1 Introduction – What Action Research Is

Empirical methods in software engineering have a long tradition. The advances in
the last two decades, started by the book of Wohlin et al. [15]. Experiments, case
studies and surveys became very popular as methods for collecting data about
software engineering practices. They were conducted in increasingly orderly fash-
ion and software engineering journals became increasingly vary about the quality
of the empirical research.

Action research is one of the research methodologies that gained popularity in
the second part of to 20th century [4]. The reason for its popularity is that action
research focuses on organizational learning as part of the process of research.
Today, action research is believed to swing the balance in software engineering
towards industrial practices [5], mainly because it focuses on improvement of the
practice, learning and focus on what practitioners do rather than what they say
they do [2]. Compared to other research methodologies, where the focus is either
on the observation and learning or evaluating.

Action research is defined by Sagor as is a disciplined process of inquiry
conducted by and for those taking the action. The primary reason for engaging
c© Springer Nature Switzerland AG 2019
B. Catania et al. (Eds.): SOFSEM 2019, LNCS 11376, pp. 39–49, 2019.
https://doi.org/10.1007/978-3-030-10801-4_4

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-10801-4_4&domain=pdf
https://doi.org/10.1007/978-3-030-10801-4_4

40 M. Staron

in action research is to assist the “actor” in improving and/or refining his or
her actions, [10]. As the definition indicates, it is focused on improving the work
of the actors taking the action.

Another definition is presented by Reason and Bradbury as a participatory,
democratic process concerned with developing practical knowing in the pursuit
of worthwhile human purposes, grounded in a participatory world view which we
believe is emerging at this historical moment. It seeks to bring together action
and reflection, theory and practice, in participation with others, in the pursuit
of practical solutions to issues of pressing concern to people, and more generally
the flourishing of individual persons and their communities [8]. In this definition,
Reason and Bradbury emphasize the aspect of participation and the aspect of
practical solutions – creating new practices and new products.

Baskerville describes action research as an important example of modern
research method in the area of information systems: “It is empirical, yet interpre-
tive. It is experimental, yet multivariate. It is observational, yet interventionist”.
These characteristics make it perfect for software engineering research.

2 The Phases of Action Research Projects

There are a number of different ways of describing action research, which often
differ in the number of phases of an action research project. The basic one
contains five phases and is often referred to as canonical action research, as
presented in Fig. 1 after [3] and [5].

Figure 2 shows the context of action research in terms of inputs, outputs, and
stakeholders. This model of action research has been developed by my research
team and we have worked according to it since 2006.

The important aspect of the figure is the input to the action research projects.
Practitioners often bring the needs to improve their organizations, products or
operations. The researchers often bring in the needs to evaluate or validate meth-
ods and tools in the new context of the collaborating organization. The different
colors of these two inputs indicate that the two parties – industry and academia
– often come from different directions and bring these inputs independently of
each other. The mixed colors of the phases of action research and the outputs
show that the rest of action research is done collaboratively and that it impacts
both industry and academia.

The research team, which I call the action team, often has one or two leading
researchers and one or two leading practitioners – stakeholders. Their goal is to
develop their respective organizations as well as their own competence.

2.1 Diagnosing

Every action research cycle starts with addressing the question of What is the
problem that we need to solve? Although the question is often partially answered
when initiating the project, it’s important to specify which part of the problem
should be addressed in each cycle.

Action Research in Software Engineering 41

Fig. 1. Canonical action research cycle.

The first phase of each action research cycle – diagnosing – is unique for
action research. Instead of starting a project with a detailed problem formulation,
action research recognizes the fact that one needs to be embedded in the context
in order to elicit the problem correctly. Therefore, every action research cycle
starts with a precise diagnose of which problem should be solved.

Action researchers should start by collecting opinions and symptoms which
they need to explore in order to decide which challenge to address during the
action research cycle. It’s important that the researchers focus on discussions
with the practitioners when exploring the context and deciding what to do. The
problem to be solved in each cycle should be limited in scope and its effects
should be measurable.

One could see the diagnosing phase as similar to requirements elicitation
phase in agile projects of the first part of the market analysis phase of the
Build-Measure-Learn cycle of continuous deployment projects [9].

42 M. Staron

Fig. 2. Action research in software engineering

2.2 Action Planning

Planning of actions in a single cycle is always done in a collaborative man-
ner. Academic researchers, industrial researchers and practitioners need to work
together to decide who does the actions and when.

The collaborative nature of the action planning phase provides a unique
opportunity for both practitioners and researchers to discuss. The discussions
are often aimed at finding ways to solve the problem diagnosed in the first phase
and identify resources, products and processes to be investigated and adjusted.

In the action planning activity, the research team discusses their plans with
the reference groups and needs to get approval for the required resources from
the management team. The plans need to be aligned with theoretical foundations
of the work, i.e. the research team needs to identify theoretical or empirical work
relevant for the diagnosed problem and plan the actions accordingly.

In this phase, the research team, together with the reference team, makes the
plans for which data should be collected, from which objects, using which tools.
The team also plans for which analysis methods should be employed to assess
whether their actions lead to solving the diagnosed problem.

Often, although far from always, the research team plans their actions using
standard project planning tools, like Gantt charts and work breakdown struc-
tures. However, these are often lightweight and documented only internally for
the research team to follow and use as a communication tool to management.

2.3 Action Taking

The action taking phase is dedicated to making changes in the context – inter-
ventions. The phase is executed according to the plans laid out in the previous

Action Research in Software Engineering 43

phase and is conducted by the action team. The reference group is involved
on regular basis to provide feedback and to help the action team to solve the
challenges that they encounter [1].

The action taking phase is specific for action research as it is one of the
research methodologies where making changes are allowed midst operations of
its context. For example, the research team is allowed to change the ways of
working for software development teams midst sprint and observe these changes.

It is important to note that the action taking phase is both about making
the change and observing its effect. As action research is a quantitative method-
ology, the data collection activities provide the possibility to reduce the bias
of subjective observations and provide quantitative evidence. This quantitative
evidence is used in the next phase – action evaluation – to assess the effects of
the actions and is used as the input to the next’s cycle diagnosing phase.

2.4 Evaluation

In the evaluation phase, the action team analyzes the data collected from the
previous phase. The team uses statistical methods to make the analyses and
presents the results to the reference team and the management.

In case when the data shows that the diagnosed problem is indeed solved
using the actions taken, the outcome is straightforward. If the data is inconclu-
sive, the action team needs to plan for either additional analyses, additional data
to be collected or needs to pivot – i.e. finalize the current cycle, specify learning
and find a new diagnose of the problem given the new data collected.

In the evaluation section, the team usually uses the same statistical methods
as experimentation, i.e. descriptive and inferential statistics.

The team also needs to assure that the analysis of their data is aligned with
the theories used in the cycle. This is important in order to make the contribution
to the theory-building in the next phase.

2.5 Learning

The final part of the action research cycle is the specification of learning. It is
done both as practical guidelines for the involved organizations and contexts,
and as theory-building for the research community.

The practical guidelines are often specified in terms of guidebooks, white
papers and instructions at the company’s web. For example software develop-
ment teams often use wiki-s to specify good practices and document good exam-
ples. That’s often when the results of action research cycles can be found.

The contribution to the theory-building are often specified as scientific
papers, with the scientific rigour and relevance. It is often the case that these
are documented as experience reports from industrial studies, e.g. [6].

44 M. Staron

3 Maximizing Impact – Who Should be a Part of the
Action Team

The main point of successful action research collaboration is the fact that indus-
try and academia work together and the knowledge, theories, methods and tools
impact both. It is important to note that there are no double cycles – one for
academia and one for industry – although one could interpret it like that.

In action research projects, there usually are a number of actors. There is
the action team, who is responsible for planning, executing and evaluating the
research. There is a reference group, who is responsible for the advice and feed-
back for the research team. Finally, there is a management team, who is respon-
sible for the management and governance of the project and providing important
decisions for the institutionalization of change.

The action team consists of both practitioners and researchers. The practi-
tioners are software engineers involved in planning and executing actions, e.g.
architects, testers, designers, project managers and quality managers. It is impor-
tant that they are involved as part of the research team, because they provide
the context of the actions and it is their work that is changed as part of the
research work.

So far we discussed the actors and practitioners in action research projects.
However, the role of management is equally important, so we should also discuss
the ways in which action research projects are managed.

Figure 3 shows an example organizational chart of an action research project.
The figure contains three parts: (i) the research team, (ii) the reference group,
and (iii) management.

The role of the action team is to plan and execute the research project. The
role of the reference group is to provide the possibility to get feedback on the
progress of the project. The reference group also helps the team to diagnose the
problems and therefore steer the project in the right direction.

Finally, the management of the company is important as they decide upon
the resources needed for the project. The resources, in turn, determine the scope
of the project. The product and process management are important as they help
to support the project in making the right impact of the results of their actions.

The researchers provide an external perspective on the organizational change
and their role is to bring in theories and state-of-the-art research results to
the collaboration. The researchers often ask critical questions and provide the
possibility to bring in expertise from other projects.

In several countries, the legislation is not suited for the companies to
directly engage in collaborations. Due to intellectual property rights manage-
ment, resource allocation or anti-competitor regulations, companies are often
discouraged by the amount of legal work required to formalize a collaboration.

Action Research in Software Engineering 45

Research
management
and financing

Ac on team

Researchers

Prac oners

Reference group

Internal
stakeholders

Reference team

Management

Line
management

Process
management

Product
management

Fig. 3. “Organizational chart” of action research projects.

2006 2008 20162010 2012 2014
1 company
1 university

4 companies
2 universi es

7 companies
2 universi es

1 manual
measurement
system

4 000 automated
measurement
systems

> 40 000 automated
measurement
systems

Automa on
&

Predic ons

Automated
Informa on

Quality

Code
stability

visualiza on

Self-healing of
measurement

systems
&

Release
readiness

Robust
measurement

programs

KPI Quality
&

1 000
metrics

in por olio

2017

So ware
Analy cs

2018
8 companies
2 universi es

Autonomous
AI-based

Measurement

1st AI-based
measurement
system

Fig. 4. Metrics action research timeline

46 M. Staron

However, researchers are often employed by public universities and it’s easier
to establish a collaboration with a public university, because of the established
legal framework. In many countries the country regulators specify who owns
research results and public financiers are well equipped with legal documents on
how to establish collaborations between academia in industry.

For that reason, the mix between researchers and practitioners can be the
most fruitful one for both parties; it can also be the easiest one.

Fig. 5. Metrics portfolio – a catalogue of over 2000 metrics definition and experience
of their use

Action Research in Software Engineering 47

4 Metrics Action Research

My research team has applied and developed action research methodology since
2006 in close collaboration with Ericsson and Volvo Cars. A timeline of the
collaboration is shown in Fig. 4. One of the reasons why we have managed to
sustain the collaboration is just action research. In particular, it is the fact that
we could build an understanding and the flexibility to adjust to each others’,
constantly changing, needs.

Our first projects, and thus action research cycles, started by solving well-
known, still unsolved, problems of predicting defects in software projects [11]. We
started with standard, statistic-based approaches, which evolved into dynamic
models based on bottleneck predictions and feature/defect flows [13]. We repli-
cated these studies at other companies, yet with a timeline that was order of
magnitude shorter (weeks instead of months) [7].

The project evolved from predictions, to infrastructure of measurement sys-
tems – understanding quality of information [12] and self-healing of measure-
ment systems [14]. It has also constantly changed, just as software engineering
changed, the company evolved and the action team matured.

Today, the action team has a portfolio of over 2000 metrics, documented from
the experience and literature, shown in Fig. 5.

The team has written two books and over 200 papers; it has grown from
one company and one university to eight companies and two universities. There
are over 40,000 measurement systems that are developed based on the team’s
research.

5 Conclusions: The Future of Action Research

In this talk I describe the methodology of action research in the context of
software engineering. The specifics of software development organizations, which
is the focus on the development of new technologies, new processes and new
ways-of-working, makes it unique and interesting for action researchers.

Action research consists of different phases, which are executed iteratively
and which contribute to the development of the host organizations as well as the
development of software engineering theories. The close collaboration in action
research projects closes the gap between the researchers and practitioners – they
all are part of the action team.

Almost all action teams, which I’ve observed, remove barriers between
academia and industry. They focus on the task-at-hand and after a while, they
often find themselves to build long-term collaborations build on team-feeling,
trust, transparency, and altruistic goals.

It’s the above close collaboration that will shape the future of action research
and software engineering. The number of theories that are developed in closed
university rooms will decrease. Instead, the action teams will increase, the collab-
oration will increase and so will the maturity of software engineering researchers.

48 M. Staron

We will see more software science done by action teams and the boundary
between academic research and industrial practice will blur. When it does, the
university professors will be more active in industry, they will help the students
to get into industrial contexts faster. The industry practitioners will ask for aca-
demic more often and therefore constantly develop their university relations. The
students will get more opportunities to work with companies who understand
the scientific requirements on rigour of studies and rigour of reporting.

References

1. Antinyan, V., Staron, M., Sandberg, A., Hansson, J.: Validating software mea-
sures using action research a method and industrial experiences. In: Proceedings
of the 20th International Conference on Evaluation and Assessment in Software
Engineering, p. 23. ACM (2016)

2. Avison, D.E., Lau, F., Myers, M.D., Nielsen, P.A.: Action research. Commun. ACM
42(1), 94–97 (1999). https://doi.org/10.1145/291469.291479

3. Baskerville, R.: Educing theory from practice. In: Kock, N. (ed.) Information Sys-
tems Action Research. Integrated Series in Information Systems, vol. 13, pp. 313–
326. Springer, Boston (2007). https://doi.org/10.1007/978-0-387-36060-7 13

4. Brydon-Miller, M., Greenwood, D., Maguire, P.: Why action research? (2003)
5. Dos Santos, P.S.M., Travassos, G.H.: Action research can swing the balance in

experimental software engineering. In: Advances in Computers, vol. 83, pp. 205–
276. Elsevier (2011)

6. Meding, W.: Effective monitoring of progress of agile software development teams
in modern software companies: an industrial case study. In: Proceedings of the
27th International Workshop on Software Measurement and 12th International
Conference on Software Process and Product Measurement, pp. 23–32. ACM (2017)

7. Rana, R., et al.: Evaluation of standard reliability growth models in the context of
automotive software systems. In: Heidrich, J., Oivo, M., Jedlitschka, A., Baldas-
sarre, M.T. (eds.) PROFES 2013. LNCS, vol. 7983, pp. 324–329. Springer, Heidel-
berg (2013). https://doi.org/10.1007/978-3-642-39259-7 26

8. Reason, P., Bradbury, H.: Handbook of Action Research: Participative Inquiry and
Practice. Sage, Thousand Oaks (2001)

9. Ries, E.: The Lean Startup: How Today’s Entrepreneurs Use Continuous Innova-
tion to Create Radically Successful Businesses. Crown Books, New York (2011)

10. Sagor, R.: Guiding School Improvement with Action Research. ASCD, Alexandria
(2000)

11. Staron, M., Meding, W.: Predicting weekly defect inflow in large software projects
based on project planning and test status. Inf. Softw. Technol. 50(7–8), 782–796
(2008)

12. Staron, M., Meding, W.: Ensuring reliability of information provided by measure-
ment systems. In: Abran, A., Braungarten, R., Dumke, R.R., Cuadrado-Gallego,
J.J., Brunekreef, J. (eds.) IWSM 2009. LNCS, vol. 5891, pp. 1–16. Springer, Hei-
delberg (2009). https://doi.org/10.1007/978-3-642-05415-0 1

13. Staron, M., Meding, W.: Monitoring bottlenecks in agile and lean software devel-
opment projects – a method and its industrial use. In: Caivano, D., Oivo, M.,
Baldassarre, M.T., Visaggio, G. (eds.) PROFES 2011. LNCS, vol. 6759, pp. 3–16.
Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-21843-9 3

https://doi.org/10.1145/291469.291479
https://doi.org/10.1007/978-0-387-36060-7_13
https://doi.org/10.1007/978-3-642-39259-7_26
https://doi.org/10.1007/978-3-642-05415-0_1
https://doi.org/10.1007/978-3-642-21843-9_3

Action Research in Software Engineering 49

14. Staron, M., Meding, W., Tichy, M., Bjurhede, J., Giese, H., Söder, O.: Indus-
trial experiences from evolving measurement systems into self-healing systems for
improved availability. Softw. Pract. Exp. 48(3), 719–739 (2018)

15. Wohlin, C., Runeson, P., Höst, M., Ohlsson, M.C., Regnell, B., Wesslén, A.: Exper-
imentation in Software Engineering. Springer, Heidelberg (2012). https://doi.org/
10.1007/978-3-642-29044-2

https://doi.org/10.1007/978-3-642-29044-2
https://doi.org/10.1007/978-3-642-29044-2

From Big Data to Big Knowledge

Large-Scale Information Extraction Based on Statistical
Methods (Invited Talk)

Martin Theobald(B)

University of Luxembourg, Esch-sur-Alzette, Luxembourg
martin.theobald@uni.lu

Abstract. Today’s knowledge bases (KBs) capture facts about the
world’s entities, their properties, and their semantic relationships in the
form of subject-predicate-object (SPO) triples. Domain-oriented KBs,
such as DBpedia, Yago, Wikidata or Freebase, capture billions of facts
that have been (semi-)automatically extracted from Wikipedia articles.
Their commercial counterparts at Google, Bing or Baidu provide back-
end support for search engines, online recommendations, and various
knowledge-centric services.

This invited talk provides an overview of our recent contributions—
and also highlights a number of open research challenges—in the context
of extracting, managing, and reasoning with large semantic KBs. Com-
pared to domain-oriented extraction techniques, we aim to acquire facts
for a much broader set of predicates. Compared to open-domain extrac-
tion methods, the SPO arguments of our facts are canonicalized, thus
referring to unique entities with semantically typed predicates. A core
part of our work focuses on developing scalable inference techniques for
querying an uncertain KB in the form of a probabilistic database. A fur-
ther, very recent research focus lies also in scaling out these techniques to
a distributed setting. Here, we aim to process declarative queries, posed
in either SQL or logical query languages such as Datalog, via a pro-
prietary, asynchronous communication protocol based on the Message
Passing Interface.

Keywords: Information extraction
Probabilistic databases · Distributed graph databases

1 Information Extraction

The World Wide Web is the most comprehensive—but likely also the most
complex—source of information that we have access to today. A vast majority of
all information in the Surface Web, i.e., the part of the Web that is publicly acces-
sible either as static pages or in the form of dynamically created contents, in fact
consists of unstructured text. This textual information just happens to occasion-
ally be interspersed with semi-structured components such as form fields, lists,
c© Springer Nature Switzerland AG 2019
B. Catania et al. (Eds.): SOFSEM 2019, LNCS 11376, pp. 50–53, 2019.
https://doi.org/10.1007/978-3-030-10801-4_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-10801-4_5&domain=pdf
https://doi.org/10.1007/978-3-030-10801-4_5

From Big Data to Big Knowledge 51

and tables—or so-called “infoboxes” in Wikipedia. These infoboxes, plus perhaps
some more metadata, however, still constitute the main source of information
for all of the currently available, Wikipedia-centric knowledge bases such as
DBpedia (Auer et al. 2007), YAGO (Suchanek et al. 2007), Freebase (Bollacker
et al. 2008), and Wikidata (Vrandeĉić and Krötzsch, 2014). This means that we
currently exploit only a very small fraction of the information that is published
on the Web for the purpose of information extraction (IE) and knowledge base
(KB) construction.

In a recent series of publications on systems like KORE (Hoffart et al.
2012), AIDA-light (Nguyen et al. 2014), J-NERD (Nguyen et al. 2016), J-REED
(Nguyen et al. 2017b) and QKBfly (Nguyen et al. 2017a), we stepwisely inves-
tigated the transition from basic, domain-oriented IE tasks like named-entity
recognition (NER) and disambiguation (NED) toward a more extensible, open-
domain IE setting, which combines NER and NED with a flexible form of pat-
tern matching of relational paraphrases (Nakashole et al. 2011; Nakashole et
al. 2012) into a comprehensive framework for relation extraction (RE). A focal
point of our efforts thereby lies in combining these IE steps via various forms
of joint-inference, rather than by following the more traditional, pipelined archi-
tectures for IE and NLP: J-NERD, for example, merges the tasks of NER and
NED by performing a form of joint-inference over an underlying probabilistic-
graphical model (in the form of a conditional random field), while J-REED and
QKBfly further integrate NER and NED with RE and other NLP tasks like pro-
noun and co-reference resolution (via a semantic graph representation and corre-
sponding graph-densification algorithm). Compared to domain-oriented extrac-
tion techniques, we thereby aim to acquire facts for a much broader set of predi-
cates. Compared to open-domain extraction methods, the SPO arguments of our
facts are canonicalized, thus referring to unique entities with semantically typed
predicates.

2 Probabilistic Databases

Probabilistic databases (PDBs) (Suciu et al. 2011) encompass a plethora of appli-
cations for managing uncertain data, ranging from scientific data management,
sensor networks, data integration, to information extraction and reasoning with
semantic knowledge bases. While classical database approaches benefit from a
mature and scalable infrastructure for the management of relational data, PDBs
aim to further combine these well-established data management strategies with
efficient algorithms for probabilistic inference by exploiting given independence
assumptions among database tuples whenever possible. Moreover, PDBs adopt
powerful query languages from relational databases, including Relational Alge-
bra, the Structured Query Language (SQL), and logical query languages such
as Datalog. The Trio PDB system (Mutsuzaki et al. 2007), which we developed
at Stanford University back in 2006, was the first such system that explicitly
addressed the integration of data management (using SQL as query language),
lineage (aka. “provenance”) management via Boolean formulas, and probabilis-
tic inference based on the lineage of query answers. The Trio data model, coined

52 M. Theobald

“Uncertainty and Lineage Databases” (ULDBs) (Benjelloun et al. 2008), provides
a closed and complete probabilistic extension to the relational data model under
all of the common relational (i.e., SQL-based) operations. Our recent research
contributions in the domain of PDBs comprise a lifted form of evaluating top-
k queries over non-materialized database views (Dylla et al. 2013b), learning
of tuple probabilities from user feedback (Dylla et al. 2014), as well as further
temporal-probabilistic database extensions (Dylla et al. 2013a; Dylla et al. 2011;
Papaioannou et al. 2018).

3 Distributed Graph Databases

The third part of the talk finally takes an in-depth look at the architecture of our
TriAD (for “Triple-Asynchronous-Distributed ”) (Gurajada et al. 2014a; Gura-
jada et al. 2014b) engine, which provides an end-to-end system for the distributed
indexing of large RDF collections and the processing of queries formulated in the
SPARQL 1.0 standard. TriAD combines a novel form of sharded, main-memory-
based index structures with an asynchronous communication protocol based on
the Message Passing Interface (MPI). It thus aims to bridge the gap between
shared-nothing MapReduce-based RDF engines, on the one hand, and shared-
everything native graph engines, on the other hand (see (Abdelaziz et al. 2017)
for a recent overview). TriAD is designed to achieve higher parallelism and less
synchronization overhead during query executions than MapReduce engines by
adding an additional layer of multi-threading for entire execution paths within a
query plan that can be executed in parallel. TriAD is the first RDF engine that
employs asynchronous join executions, which are coupled with a lightweight join-
ahead pruning technique based on graph summarization. Our current work also
considers the processing of multi-source, multi-target graph-reachability queries
(coined “Distributed Set Reachability” (DSR)) (Gurajada and Theobald, 2016b),
as they may occur, for example, in the recent “Property Paths” extension of
SPARQL 1.1 (Gurajada and Theobald, 2016a).

References

Abdelaziz, I., Harbi, R., Khayyat, Z., Kalnis, P.: A survey and experimental comparison
of distributed SPARQL engines for very large RDF data. PVLDB 10(13), 2049–2060
(2017)

Auer, S., Bizer, C., Kobilarov, G., Lehmann, J., Ives, Z.: DBpedia: a nucleus for a web
of open data. In: ISWC, pp. 11–15 (2007)

Benjelloun, O., Sarma, A.D., Halevy, A.Y., Theobald, M., Widom, J.: Databases with
uncertainty and lineage. VLDB J. 17(2), 243–264 (2008)

Bollacker, K., Evans, C., Paritosh, P., Sturge, T., Taylor, J.: Freebase: a collaboratively
created graph database for structuring human knowledge. In: SIGMOD, pp. 1247–
1250 (2008)

Dylla, M., Miliaraki, I., Theobald, M.: A temporal-probabilistic database model for
information extraction. PVLDB 6(14), 1810–1821 (2013a)

From Big Data to Big Knowledge 53

Dylla, M., Miliaraki, I., Theobald, M.: Top-k query processing in probabilistic databases
with non-materialized views. In: ICDE, pp. 122–133 (2013b)

Dylla, M., Sozio, M., Theobald, M.: Resolving temporal conflicts in inconsistent RDF
knowledge bases. In: BTW, pp. 474–493 (2011)

Dylla, M., Theobald, M., Miliaraki, I.: Querying and learning in probabilistic databases.
In: Reasoning Web, pp. 313–368 (2014)

Gurajada, S., Seufert, S., Miliaraki, I., Theobald, M.: TriAD: a distributed shared-
nothing RDF engine based on asynchronous message passing. In: SIGMOD, pp.
289–300 (2014a)

Gurajada, S., Seufert, S., Miliaraki, I., Theobald, M.: Using graph summarization for
join-ahead pruning in a distributed RDF engine. In: SWIM, pp. 41:1–41:4 (2014b)

Gurajada, S., Theobald, M.: Distributed processing of generalized graph-pattern
queries in SPARQL 1.1. CoRR, abs/1609.05293 (2016a)

Gurajada, S., Theobald, M.: Distributed set reachability. In: SIGMOD, pp. 1247–1261
(2016b)

Hoffart, J., Seufert, S., Nguyen, D.B., Theobald, M., Weikum, G.: KORE: keyphrase
overlap relatedness for entity disambiguation. In: CIKM, pp. 545–554 (2012)

Mutsuzaki, M., et al.: Trio-one: layering uncertainty and lineage on a conventional
DBMS. In: CIDR, pp. 269–274 (2007)

Nakashole, N., Theobald, M., Weikum, G.: Scalable knowledge harvesting with high
precision and high recall. In: WSDM, pp. 227–236 (2011)

Nakashole, N., Weikum, G., Suchanek, F.M.: PATTY: a taxonomy of relational patterns
with semantic types. In: EMNLP-CoNLL, pp. 1135–1145 (2012)

Nguyen, D.B., Abujabal, A., Tran, K., Theobald, M., Weikum, G.: Query-driven on-
the-fly knowledge base construction. PVLDB 11(1), 66–79 (2017a)

Nguyen, D.B., Hoffart, J., Theobald, M., Weikum, G.: AIDA-light: high-throughput
named-entity disambiguation. In: LDOW (2014)

Nguyen, D.B., Theobald, M., Weikum, G.: J-NERD: joint named entity recognition
and disambiguation with rich linguistic features. TACL 4, 215–229 (2016)

Nguyen, D.B., Theobald, M., Weikum, G.: J-REED: joint relation extraction and entity
disambiguation. In: CIKM, pp. 2227–2230 (2017b)

Papaioannou, K., Theobald, M., Böhlen, M.H.: Supporting set operations in temporal-
probabilistic databases. In: ICDE, pp. 1180–1191 (2018)

Suchanek, F.M., Kasneci, G., Weikum, G.: YAGO: a core of semantic knowledge. In:
WWW, pp. 697–706 (2007)

Suciu, D., Olteanu, D., Ré, C., Koch, C.: Probabilistic databases. Synth. Lect. Data
Manag. 3(2), 1–180 (2011)

Vrandečić, D., Krötzsch, M.: Wikidata: a free collaborative knowledgebase. Comm. of
the ACM 57(10), 78–85 (2014)

Sorting Networks on Restricted
Topologies

Indranil Banerjee1(B) , Dana Richards2 , and Igor Shinkar3

1 Louisiana State University, Baton Rouge, LA 70803, USA
ibanerjee@lsu.edu

2 George Mason University, Fairfax, VA 22030, USA
richards@gmu.edu

3 Simon Fraser University, Burnaby, BC V5A 1S6, Canada
ishinkar@cs.sfu.ca

Abstract. The sorting number of a graph with n vertices is the mini-
mum depth of a sorting network with n inputs and n outputs that uses
only the edges of the graph to perform comparisons. Many known results
on sorting networks can be stated in terms of sorting numbers of differ-
ent classes of graphs. In this paper we show the following general results
about the sorting number of graphs.
1. Any n-vertex graph that contains a simple path of length d has a

sorting network of depth O(n log(n/d)).
2. Any n-vertex graph with maximal degree Δ has a sorting network

of depth O(Δn).
We also provide several results relating the sorting number of a graph
with its routing number, size of its maximum matching, and other well
known graph properties. Additionally, we give some new bounds on the
sorting number for some typical graphs.

Keywords: Sorting networks · Matchings in graphs
Routing via matchings

1 Introduction

In this paper we study oblivious sorting algorithms. These are sorting algorithms
whose sequence of comparisons is made in advance, before seeing the input,
such that for any input of n numbers the value of the i’th output is smaller or
equal to the value of the j’th output for all i < j. That is, for any of the n!
possible permutations of the input, the output of the algorithm must be sorted.
A sorting network, which typically arises in the context of parallel algorithms, is
an oblivious algorithm, where the comparisons are grouped into stages, and in
each stage the compared pairs are disjoint. In this paper we explore the situation
where a given graph specifies which keys are allowed to be compared. We regard

The first author was partially supported by DTIC Contract FA8075-14-D-0002/0007.

c© Springer Nature Switzerland AG 2019
B. Catania et al. (Eds.): SOFSEM 2019, LNCS 11376, pp. 54–66, 2019.
https://doi.org/10.1007/978-3-030-10801-4_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-10801-4_6&domain=pdf
http://orcid.org/0000-0002-3059-0748
http://orcid.org/0000-0002-7260-4394
http://orcid.org/0000-0001-5013-6422
https://doi.org/10.1007/978-3-030-10801-4_6

Sorting Networks on Restricted Topologies 55

a sorting network as a sequence of stages, where each stage corresponds to a
matching in the graph and a comparator is assigned to each matched pair. There
are fixed locations, identified with the vertices, each containing a key, and a
comparator looks at the keys at the endpoints of the edges of the matching,
and swaps them if they are not in the order desired by the underlying oblivious
algorithm. Therefore, we say that the underlying algorithm induces a directed
matching. The locations are ordered, and the goal is to have the order of the keys
match the order of the locations after the execution of the algorithm. The depth
of a sorting network is the number of stages, and the size is the total number
of edges in all the matchings. Note that for an input of length n at most �n/2�
comparisons can be performed in each step, and hence the well-known lower
bound of Ω(n log(n)) comparisons in the sequential setting implies a Ω(log(n))
lower bound on the depth of the network, that is, the number of stages in the
network.

A large variety of sorting networks have been studied in the literature. In their
seminal paper, Ajtai, Komlós, and Szemerédi [1] presented a construction of a
sorting network of depth O(log n). We will refer to it as the AKS sorting network.
In this work we explore the question of constructing a sorting network where we
are given a graph specifying which locations are allowed to be compared. We
define the sorting number of a graph G, denoted by st(G), to be the minimal
depth of a sorting network that uses only the edges of G. The AKS sorting
network can be interpreted as a sorting network on the complete graph, i.e.,
st(Kn) = O(log(n)). More precisely, the AKS construction specifies some graph
GAKS whose maximal degree is O(log(n)) and st(GAKS) = O(log(n)).

The setting where the comparisons are restricted to the n-vertex path graph,
denoted by Pn, is perhaps the easiest case. It is well known that st(Pn) ≤ n,
which follows from the fact that the odd-even transposition sort takes n matching
steps (see, e.g., [7]). For the hypercube graph Qd on n = 2d vertices we can
use the Batcher’s bitonic sorting network, which has a depth of O((log n)2) [5].
This was later improved to 2O(

√
log log n) log n by Leighton and Plaxton [9]. We

also have a lower bound of Ω(log n log log n
log log log n) for a certain natural class of sorting

networks on the hypercube due to Plaxton and Suel [10]. For the square mesh
Pn × Pn it is known that st(Pn × Pn) = 3n + o(n), which is tight with respect
to the constant factor of the largest term. This follows from results of Schnorr
and Shamir [11], where they introduced the 3n-sorter for the square mesh. We
also have a tight result for the general d-dimensional mesh of Θ(dn) due to
Kunde [8]. These results are, in fact, more general, as they apply to meshes with
non-uniform aspect ratios.

2 Definitions

Formally, we study the following restricted variant of sorting networks. We begin
by taking an undirected graph G = (V,E), where the vertices correspond to the
locations of an oblivious sorting algorithm, V = {1, 2, . . . , |V |}. The keys will be
modeled by weighted pebbles, one per vertex. Let a sorted order of G be given by

56 I. Banerjee et al.

a permutation π that assigns the rank π(i) to the vertex i ∈ V . The edges of G
represent pairs of vertices where the pebbles can be compared and/or swapped.
Given a graph G the goal is to design a sorting network that uses only the edges
of G. We formally define such a sorting network (Table 1).

Table 1. Known bounds on the sorting numbers of various graphs

Graph Lower bound Upper bound Remark

Complete graph (Kn) log n O(log n) AKS Network [1]

Hypercube (Qn) 2O(
√

log log n) log n Plaxton et al. [9,10]

Path (Pn) n − 1 n Odd-Even Trans. [7]

Mesh (Pn × Pn) 3n − 2
√

n − 3 3n + O(n3/4) Schnorr and Shamir [11]

d-dimensional mesh Ω(dn) O(dn) Kunde [8]

Tree O(min(Δn, n log (n/d))) This paper

d-regular expander Ω(log n) O(d log3(n)) This paper

Complete p-partite Ω(log n) O(log n) This paper

Pyramid (d, N) O(dN1/d) This paper

Definition 1 (Sorting Network on a Graph). A sorting network is a triple
S(G,M, π) such that:

1. G = (V,E) is a connected graph with a bijection π : V → {1, . . . , |V |} spec-
ifying the sorted order on the vertices. Initially, each vertex of G contains a
pebble having some value.

2. M = (M1, . . . , Mt) is a sequence of matchings in G, for which some edges
in the matching are assigned a direction. Sorting occurs in stages. At stage
i we use the matching Mi to exchange the pebbles between matched vertices
according to their orientation. For an edge −→uv, when swapped the smaller
of the two pebbles goes to u. If an edge is undirected then the pebbles swap
regardless of their order.

3. After t stages the vertex labeled i contains the pebble whose rank is π(i) in the
sorted order. We stress that this must hold for all (n!) initial arrangement of
the pebbles. |M| is called the depth of the network.

Definition 2 (Sorting Number). Let G be a graph, and let π be an order
on the vertices of G. Define st(G, π) to be the minimum depth of a sorting
network S(G,M, π). The sorting number of G, denoted by st(G), is defined as
the minimum depth of any sorting network on G, i.e., st(G) = minπ st(G, π).

In order to prove some of the results in this paper we need to define the
model of routing via matchings, originally introduced by Alon et al. [2].

Definition 3 (Routing Number). Given a connected labeled graph G =
(V,E), where each vertex i ∈ V is initially occupied by a labeled pebble that
has a unique destination π(i), the routing time rt(G, π) is defined as the mini-
mum number of matchings required to move each pebble from i to its destination

Sorting Networks on Restricted Topologies 57

vertex labeled π(i), where pebbles are swapped along matched edges. The routing
number of G denoted by rt(G) is defined as the maximum of rt(G, π) over all
such permutations π : V → V .

Note that the main difference between routing and sorting is that in the case
of routing the destination of each vertex is specified by the permutation π. On
the other hand, in sorting networks π specifies the target location of the pebbles
according to their rank, which should hold for any initial arrangement of the
pebbles.

3 Our Results

The AKS sorting network can be trivially converted into a network of depth
O(n log(n)) by making a single comparison in each round. However, it is not clear
a priori whether for any graph there is a sorting network of depth O(n log(n)).
We show that this bound indeed holds for all graphs.

Theorem 1. Let G be an n-vertex graph, and suppose that G contains a simple
path of length d. Then st(G) = O(n log (n/d)). In particular, for every n-vertex
graph G it holds that st(G) = O(n log(n)).

If the maximal degree of G is small, it is possible to show a better upper
bound on st(G).

Theorem 2. Let G be an n-vertex graph with maximal degree Δ. Then st(G) =
O(Δn).

Next, we relate the sorting number of a graph to its routing number and the
size of its maximum matching.

Theorem 3. Let G be an n-vertex graph with routing number rt(G) and match-
ing of size ν(G). Then st(G) = O

(
n log(n) · rt(G)

ν(G)

)
.

In the following theorem we upper bound st(G) for graphs G that contain a
large subgraph H whose st(H) is small.

Theorem 4. Let G be an n-vertex graph, and let H be a vertex-induced subgraph
of G on p vertices. Then st(G) = O

(
n
p log(n

p) · (rt(G) + st(H))
)
.

Theorems 1, 3, and 4 above will be proven in Sect. 5. The proof of Theorem 2
appears in the Appendix. In Sect. 6 we prove bounds on some concrete families of
graphs, including the complete p-partite graph, expander graphs, vertex transi-
tive graphs, Cayley graphs, and the pyramid graph. We note here that there are
instances of graphs for which all the above results are asymptotically tight. For
example in the case of the star graph K1,n−1 at most 1 comparison can be made
per round (d = 2) and hence st(K1,n−1) = Θ(n log(n)). Theorem 2 is optimal for
balanced binary trees among other bounded degree graphs. Theorem3 is tight

58 I. Banerjee et al.

for any graph with rt(G)/ν(G) = O(1/n) such as cliques and complete bipartite
graphs etc. Same graphs also give tight lower bounds in Theorem4.

We pause to emphasize that the deep question is how does the topology of
the constraint graph G affect computation. This paper is a case study using the
problem of sorting. A related problem that has been studied in the past is the
problem of routing [2]; in the next section we revisit this problem and add some
new results we will need. Since the graph must be connected perhaps the only
required topological property is that the graph possesses a spanning tree. There-
fore we begin by concentrating on trees; these results are subtle but neverthe-
less reflect bottlenecks on parallelism. From the examples given in the previous
paragraph they are easily seen to be best possible bounds without making fur-
ther assumptions. By working with graphs with fewer bottlenecks we get better
bounds. In Sect. 6 we prove bounds on some concrete families of graphs, including
the complete p-partite graph, expander graphs, vertex transitive graphs, Cayley
graphs, and the pyramid graph. It is open question whether other graph prop-
erties (such as treewidth, connectedness, etc.) can lead to improved bounds on
the sorting number.

4 Routing via Matchings

The following lemma is useful for constructing a sorting network for a given
sorted order if a sorting network is already known for that graph for some arbi-
trary ordering. Additionally it implies that we incur at most a penalty of rt(G)
on the depth of the network with respect to an optimal ordering.

Lemma 1. For any graph G and any order π of the vertices of G it holds that

rt(G) ≤ st(G, π) ≤ st(G) + rt(G).

Proof. We show first that rt(G, σ) ≤ st(G, π) for any two permutations π, σ of
the vertices. Indeed, suppose that the keys of the pebbles are {1, . . . , |V |}. For
all i ∈ V place the pebble ranked i in the vertex σ−1(π−1(i)). Then, there exists
a sorting network of depth st(G, π) that sends the pebble ranked i to the vertex
π−1(i) for all i ∈ V . That is, the pebble from the vertex j = σ−1(π−1(i)) is sent
to the vertex π−1(i) = σ(j). Therefore, rt(G, σ) ≤ st(G, π) for all permutations
σ, and thus rt(G) ≤ st(G, π).

For the upper bound let S(G,M, τ) be a sorting network on G of depth
st(G) = st(G, τ). We use τ to create another sorting network S(G,M′, π) of
depth at most st(G) + rt(G). This is done in two stages. First we apply the
sorting network S(G,M, τ). After this stage we know that the pebble at vertex
i has a rank τ(i). Next, we apply a routing strategy with at most rt(G) steps
that routes to the permutation π−1 ◦ τ , i.e., sending a pebble in the vertex i to
π−1(τ(i)) for all i ∈ V . After this step the vertex i contains the pebble of rank
π(i). This proves that st(G, π) ≤ st(G) + rt(G). �	

Sorting Networks on Restricted Topologies 59

4.1 Routing on Subgraphs of G

Next we introduce the notion of routing a subset of the pebbles to a specific
subgraph. These results are later used to bound sorting number with typical
graph parameters. First we discuss partial routing, where only a small number
of pebbles are required to reach their destination.

Definition 4. Given a graph G = (V,E) let A,B ⊂ V be two subset of vertices
with |A| = |B|, not necessarily distinct. Let πAB be a bijection between A and
B. Routing of the pebbles from A to their respective destinations on B given by
πAB is a partial routing in G, where each pebble in a ∈ A is required to reach
πAB(a) ∈ B using the edges of G (and there are no requirements on the pebbles
outside of A). Further,

1. Let rt(G,A,B, πAB) be the minimum number of matchings needed to route
every pebble a ∈ A to πAB(a) ∈ B using the edges of G.

2. Let rt(G,A,B) = maxπAB
rt(G,A,B, πAB).

3. For U ⊆ V let rtU (G) = maxA⊆V rt(G,A,U).
4. For p ∈ [1 . . . |V |] let,

rtp(G) = max
A,B⊂V,|A|=|B|≤p

rt(G,A,B)

Clearly, for any connected n-vertex graph G we have rt(G) = rtn(G). Some of
the bounds for rt(G) also hold for rtp(G). For example, rtp(G) ≥ d, where d
is the diameter of G. Furthermore, rtp(G) = Θ(rt(G)) for any p if and only if
rt(G) = Θ(d). We illustrate rtp(G) by computing it explicitly for some typical
graphs. Recall from [2] that rt(Kn) = 2. It is easy to see that rtp(Kn) = 2
for all p ≥ 3, and rt2(Kn) = 1. For the complete bipartite graph we have
rtn/2(Kn/2,n/2) = 2 and is rtp(Kn/2,n/2) = 4 for p > n/2.

Theorem 5. For any tree T with diameter d, rtp(G) = O((d+p)min(d, log n
d)).

Proof. The proof is similar to the proof used in [2] for determining the routing
number of trees. Let r be the centroid whose removal disconnects the tree into
a forest of trees each of which is of size at most n/2. Let (T1, . . . , T�) be the set
of trees in the forest, with r ∈ T1. For a tree Ti let Si be the set of “improper”
pebbles that need to be moved out of Ti. All other pebbles in Ti are “proper”.
In the first round we move all the pebbles in Si as close to the root of Ti as
possible, for all i. Using the argument used in [2] it can be shown that for a
tree with diameter d this first phase can be accomplished in c1d steps for some
constant c1. First we label each node in Ti as odd or even based on their distance
from ri, the root of Ti. In each odd round we match nodes in odd layers with
proper pebbles to one of its children containing an improper pebble if one exists.
Similarly, in even rounds we match nodes in even layers with proper pebbles
to one of its children containing an improper pebble if one exists. Since T has
diameter d any path from ri to some leaf must be of length at most d − 1. Now
consider an improper pebble u initially at distance k from the root. During a
pair of odd-even matchings either the pebble moves one step closer to the root

60 I. Banerjee et al.

or one of the following must be true: (1) another pebble from one of its sibling
nodes jumps in front of it or (2) there is some improper pebble already in front
of it. It can then be argued (we omit the details here) that after c1d matchings
for some constant c1 if u ends up in position j from ri then all pebbles between u
and ri must be improper. Next we exchange a pair of pebbles between subtrees
using the root vertex r, since at most p/2 pairs needs to be exchanged, the
arguments used in [2] can be modified to show that this phase also takes c2p
steps for some constant c2. After each pebble is moved to their corresponding
destination subtrees we can route them in parallel. Noting that each tree Ti has
diameter at most d − 1. Hence we have the recurrence

T (n, d, p) ≤ T (n/2, d − 1, p) + c1d + c2p, (1)

where T (n, d, p) is the time it takes to route p pebbles in a tree of diameter d
with n vertices. Taking T (O(1), d, p) = O(d), and solving (1) gives the bound
stated in the theorem. �	

The following lemma will be useful when proving an upper bound for the
sorting number for trees. A more generic version of this result first appeared
in [3].

Lemma 2. Let T be a tree with diameter d, and let P be a path of length d in
T . We can route any set of d pebbles to P in 3d − 2 steps.

5 General Upper Bounds on st(G)

Next we prove Theorem 4. Specifically, we will prove that if H is a vertex-induced
subgraph of G on p vertices then st(G) = O

(
n
p log(n

p) · (rtH(G) + st(H))
)
,

where rtH(G) bounds the number of matchings required to route any set of
p vertices to H. (Here we slightly abuse the notation from Definition 4, by iden-
tifying the subscript in rtH(G) with the vertex-set of H.) Later we will use this
result to prove Theorem 1.

Proof (Theorem 4). Let us partition the vertex set V of G into q = n/�p/2��
parts V = A1 ∪ · · · ∪ Aq in a balanced manner (i.e., the size of each Ai is either
�n/q� or �n/q�+1), so that |Ai|+ |Aj | ≤ p for all i and j. Let Kq be a complete
graph whose vertices are identified with {A1, . . . , Aq}, and let S be an oblivious
sorting algorithm with O(q log q) comparisons on the complete graph Kq. (Here
the sequence of comparisons is performed sequentially, and not in parallel.) In
an ordinary sorting network in each step we perform a compare-exchange or a
swap between two matched vertices (i, j) so that if i < j, then the pebble in the
vertex i will be smaller than the pebble in j We will simulate S on G using a
sorting network on H by sorting in each stage the elements in Ai ∪ Aj . That is,
for i < j we are going to sort the elements in Ai ∪ Aj so that all the elements
of Ai are smaller than every element of Aj , and the elements within each subset

Sorting Networks on Restricted Topologies 61

are internally sorted. This is done using an optimal sorting network in H, which
we will denote by SH .

We can simulate any such compare-exchange in G between pairs of sets in
A in O(rt(G) + st(H)) steps. Indeed, suppose the kth round in S compares the
vertices i < j. In order to simulate this comparison we first route all the pebbles
in Ai ∪Aj to the subgraph H and relabel the vertices. This relabeling is done so
that we can keep track of the vertices when sorting H. Then, we use SH to sort
Ai ∪ Aj which takes st(H) steps. Once the sorting is done we split up the sets
again and appropriately relabel the vertices so that the first |Ai| vertices in the
sorted order on H will now belong to Ai and the next |Aj | vertices will belong
to Aj . If instead the kth comparison is actually a swap then we simply swap the
labels of the multisets (Ai is labeled Aj and vice versa). Hence performing the
above simulation takes O(rtH(G) + st(H)) steps per compare exchange or swap
operation, which gives the result of the theorem. �	

In the proof of Theorem4 above we only used an oblivious sorting algorithm
with O(q log q) comparisons on the complete graph Kq, and did not use the
fact that the comparisons can be done in parallel, e.g., using the AKS sorting
network. This is because Theorem 4 only assumes that there is one subgraph H
with small st(H). If instead we assumed that there are many such subgraphs,
then we could sort the Ai’s in different subgraphs in parallel. This is described
in the corollary below.

Corollary 1. Let G = (V,E) be an n-vertex graph. Let V = V1 ∪ · · · ∪ Vq be a
partition of the vertices, with |Vi| = n/q for all i ∈ {1, . . . , q}, such that Hi, the
subgraph induced by Vi, is connected for each i ∈ {1, . . . , q}. Then

st(G) = O

(
log(q) · (rt(G) + max

k∈{1,...,q}
{st(Hk)})

)
.

Proof (sketch). The proof uses the same idea that Theorem 4. We start by par-
titioning the vertex set V of G into 2q parts V = A1 ∪ · · · ∪ A2q of equal sizes.
Then, we simulate oblivious sorting algorithm on K2q with the sets Ai. The
only difference is that instead of an oblivious sorting algorithm with O(q log(q))
comparisons on the complete graph K2q we use the AKS sorting network on 2q
vertices of depth O(log(q)). In each round of the sorting network there are at
most q comparisons, and the corresponding sorting of Ai ∪Aj can be performed
in parallel, one in each Hk in time st(Hk). �	

Below we prove Theorem 1 stating that if G contains a simple path of length
d, then st(G) = O(n log (n/d)).

Proof (Theorem 1). It is easy to see that if G contains a simple path of length d,
then G has a spanning tree T with diameter at least d. The proof follows easily
from Theorem 4 and Lemma 2. Indeed, in the setting of Theorem 4, let H be
a path of length d in T . Then st(H) ≤ d. By Theorem 4 st(T) = O(n

d log(n
d) ·

(rtH(T) + st(H))). The pebbles can be routed to H along the edges of the
spanning tree T , and hence by Lemma 2 rtH(T) = O(d). Therefore, st(G) ≤
st(T) = O(n log(n/d)), as required. �	

62 I. Banerjee et al.

Recall that Theorem 2 bounds the sorting number of a tree based on its maxi-
mum degree. The proof is essentially from [3], who proved that the acquaintance
time of a G, defined in [6], is upper bounded by 20Δn. The basic idea is to
use an n round sorting network for Pn, and simulate this network in T with an
overhead that depends only on Δ. The proof is given in the appendix.

Next, we prove Theorem 3 that states st(G) = O(n log(n)· rt(G)
ν(G)), where rt(G)

is the routing number of G, and ν(G) is the size of the maximum matching in
G.

Proof (Theorem 3). We prove the theorem by using G to simulate the AKS
sorting network on the complete graph Kn of depth O(log(n)). Specifically, we
show that each stage (a matching) of the sorting network on Kn can be simulated
by at most O(n

ν(G)rt(G)) stages (matchings) in G. Let M be a matching at
some stage of the AKS sorting network on the complete graph. We simulate
the compare-exchanges and swaps in M by a sequence of matchings in G as
follows. First we partition the edges in M into t = n/ν(G)� disjoint subsets
M = M1 ∪ · · · ∪ Mt, where |Mi| = ν(G) for all except maybe the last set Mt,
which can be smaller. Let MG be a maximum matching in G. Corresponding
to each pair (u, v) ∈ Mi we pick a distinct pair (u′, v′) ∈ MG, this can always
be done since the sets Mi and MG are of the same size. Note that the pair
(u, v) may not be adjacent in G, and so, we route each pair (u, v) ∈ Mi to
its destination in (u′, v′) ∈ MG. This can be done in rt(G) steps, where each
step consists of only undirected matchings. Once the pairs have been placed into
their corresponding positions we relabel the vertices such that the pair labeled
(u′, v′) is now (u, v). Unmatched vertices keep their label. Since the pairs in Mi

are now adjacent in G we can perform the compare-exchange or swap operation
according to Mi. Therefore, the total number of matchings to execute the ith

set of compare-exchanges and swaps in Mi is rt(G) + 1 in G. We remark that
the routing maintains the oblivious nature of the network, and the swaps made
while routing, are data independent. We can then reverse the oblivious routing
that set up the exchanges for Mi. The set up for Mi+1 invokes routing a different
permutation. Note that the two phases of oblivious routing can be combined by
using the composition of the two permutation. This implies that we can simulate
M using at most (rt(G)+1)·t = O(n

ν(G) ·rt(G)) matchings in G. Therefore, since
the depth of the AKS sorting network on the complete graph Kn is O(log(n)),
we conclude that st(G) = O(n log(n) · rt(G)

ν(G)), as required. �	

6 Bounds on Concrete Graph Families

Below we state several results concerning the sorting time of some concrete
families of graphs.

Proposition 1 (Complete p-partite graph). Let G be the complete p-partite
graph Kn/p,...,n/p on n vertices. Then st(G) = Θ(log n).

Sorting Networks on Restricted Topologies 63

Proof. The lower bound is trivial. For the upper bound note that Kn/p,...,n/p

contains the bipartite graph K	 p
2
n

p ,� p
2 �n

p
. In particular, it contains a matching

of size ν(G) = �p
2� · n

p . Therefore, by Theorem 3 in [2] and the remark after

the proof, we have rt(G) ≤ rt(K	 p
2
n

p ,� p
2 �n

p
) ≤ 2 � p

2 �
	 p

2
� + 2 ≤ 6, and hence by
Theorem 3 it follows that st(G) ≤ O(log(n)).

Recall that a graph G is said to be a (n, d, λ)-expander if it is a d-regular
graph on n vertices and the absolute value of every eigenvalue of its adjacency
matrix other than the trivial one is at most λ.

Proposition 2 (Expander graphs). Let G be an (n, d, λ)-expander. Then
st(G) ≤ O(d3

(d−λ)2 log3(n)). In particular, if λ < (1 − 1
logc(n))d, then st(G) ≤

O(d · log2c+3(n)).

Proof. Recall from [2] that if G is an (n, d, λ)-expander, then rt(G) =
O

(
d2

(d−λ)2 log2(n)
)
. Therefore, since any d-regular graph contains a matching

of size n/2d it follows from Theorem 3 that st(G) ≤ O(d3

(d−λ)2 log3(n)).

Recall that a graph G = (V,E) is said to be vertex transitive if for any two
vertices u, v ∈ V , there is some automorphism1 f : V → V of the graph such
that f(u) = v.

Proposition 3 (Vertex transitive graphs). Let G be a vertex transitive
graph with n vertices of degree polylog(n). Then diam(G) = O(polylog(n)) if
and only if st(G) = O(polylog(n)).

Proof. It is trivial that diam(G) ≤ st(G). For the other direction, Babai and
Szegedy [4] showed that for vertex-transitive graphs if the diameter of G is
O(polylog(n)) then its vertex expansion is Ω(1/polylog(n)). Therefore, λ ≤ d(1−
1/polylog(n)), where d = O(polylog(n)) is the degree of the graph. Therefore,
by Proposition 2 we have st(G) = O(polylog(n)).

Since all Cayley graphs are also vertex transitive, the above bound is appli-
cable to them as well.

Next we bound the sorting number of cartesian product of two given graphs.
Recall that for two graphs G1(V1, E1) and G2(V2, E2) their Cartesian product
G1�G2 is the graph whose set of vertices is V1 × V2 and ((u1, u2), (v1, v2)) is an
edge in G1�G2 if either u1 = v1, (u2, v2) ∈ E2 or (u1, v1) ∈ E1, u2 = v2. Our
next result bounds the sorting number of a product graph in terms of sorting
numbers of its components (Fig. 1).

Proposition 4. Let G1 = (V1, E1), G2 = (V2, E2) be two graphs and let G =
G1�G2. Then

st(G) ≤ O(min(log |V1|(rt(G) + st(G2)), log |V2|(rt(G) + st(G1))).
1 A mapping f : V → V is an automorphism of G = (V, E) if for all v1, v2 ∈ V it holds

that (v1, v2) ∈ E ⇔ (f(v1), f(v2)) ∈ E.

64 I. Banerjee et al.

Fig. 1. The product graph G = G1�G2. The rows highlighted by blue regions repre-
sents copies of G2. (Color figure online)

Proof. Since G has |V1| vertex disjoint subgraphs that are copies of G2 we can
apply Corollary 1 with these q = |V1| subgraphs, and all Hi being isomorphic to
G2. Therefore, we get st(G) ≤ O(log(|V1|) ·(rt(G)+st(G2)). The bound st(G) ≤
O(log(|V2|) · (rt(G) + st(G1)) follows using the same argument by changing the
roles of G1 and G2.

As an example of an application of the above corollary consider the d-
dimensional mesh Mn,d with nd vertices. We know that rt(Mn,d) ≤ 2dn since
Mn,d = Mn,d−1×Pn. Therefore, st(Mn,d) ≤ O(log(nd−1)·(rt(Mn,d)+st(Pn))) =
O(dn log(n)). Although this bound is not optimal (it is known [8] that st(Mn,d) =
O(dn)), we still find this example interesting.

6.1 The Pyramid Graph

A 1-dimensional pyramid with m-levels is defined as the complete binary tree
of 2m − 1 nodes, where the nodes in each level are connected by a path (i.e., a
one-dimensional mesh). We treat the apex (root) to be at level 0, and subsequent
levels are numbered in ascending order. A 2-dimensional pyramid is shown in
Fig. 2. In this case each level l is a 2l ×2l square mesh. Similarly a d-dimensional
pyramid having m levels, denoted by �m,d, is the graph with vertices partitioned
into levels {0, . . . , m}, where the vertices in level l ∈ {0, . . . , m − 1} form a d-
dimensional regular mesh of length 2l in each dimension. Clearly, the size of layer
l is |Ml| = nl = 2ld and the number of vertices in the graph is N = |�m,d| =∑m−1

l=0 2ld = 2md−1
2d−1

. We treat a vertex x ∈ Ml as a vector in [1, 2l]d which denotes
its position on the mesh.

In this section we prove an upper bound on st(�m,d). In order to derive this
bound we make use of the following bound on the routing number of pyramid
whose proof is given in the appendix.

Lemma 3. Let �m,d be the d-dimensional pyramid graph with m-levels. Then
rt(�m,d) = O(dN1/d).

Sorting Networks on Restricted Topologies 65

Fig. 2. �3,2 - a 2-dimensional pyramid.

Using the above theorem we give an upper bound on the sorting number of
the pyramid.

Theorem 6 (pyramid). The sorting number for a pyramid �m,d is O(d N1/d).

We describe a sorting network on the pyramid with the above claimed depth.
The proof of correctness is omitted due to space constraint.

Let �i,d denote the sub-pyramid from level 0 to i and let Mi be the d-
dimensional mesh at level i. Let πi be some ordering of the mesh Mi. Note that
πi : [1, 2i]d → [ni] is a bijection and π0 is the identity permutation of order 1.
Next we define a sorted order π for the pyramid �m,d based on the πi’s. In π we
assume the layers are sorted among themselves in ascending order starting from
the apex. So the vertex labeled (with respect to Mi) i on layer j has a global rank
π(i) = πj(i) + |�j−1,d|. Recall that st(Mi) = O(dn

1/d
i) which is due to Kunde

[8] where he used the general snake-like ordering. From Lemma 1 we see that
this bound still holds if we replace the snake-like ordering with some arbitrary
permutation. Obviously in this case rt(Mi) = Θ(st(Mi)). Next we describe the
matchings M of sorting the network S(�m,d,M, π) in terms of an oblivious
sorting algorithm described below.
S(�m,d,M, π)

1. Route all pebbles of �m−1,d to Mm−1 and sort them using the mesh.
2. Route these pebbles back to �m−1,d such that they are in sorted order

(according to π).
3. Sort the mesh Mm−1 according to πm−1.
4. Route a pebble of rank i ≤ nm−2 at position xi ∈ Mm−1 to yi ∈ Mm−1 where

yi[j] = 2π−1
m−2(nm−2 + 1 − i)[j] − 1

Let Y = (y1, . . . , ynm−2).
5. Merge Y with Mm−2 using pair-wise compare-exchanges, where yi is com-

pared with z ∈ Mm−2 such that πm−2(z) = i.
6. Repeat 1–5 once.
7. Repeat 1–3 once.

66 I. Banerjee et al.

References

1. Ajtai, M., Komlós, J., Szemerédi, E.: An O(nlogn) sorting network. In: Proceedings
of the Fifteenth Annual ACM Symposium on Theory of Computing, pp. 1–9. ACM
(1983)

2. Alon, N., Chung, F.R., Graham, R.L.: Routing permutations on graphs via match-
ings. SIAM J. Discrete Math. 7(3), 513–530 (1994)

3. Angel, O., Shinkar, I.: A tight upper bound on acquaintance time of graphs. Graphs
Comb. 32(5), 1667–1673 (2016). arXiv:1307.6029

4. Babai, L., Szegedy, M.: Local expansion of symmetrical graphs. Comb. Probab.
Comput. 1(01), 1–11 (1992)

5. Batcher, K.E.: Sorting networks and their applications. In: Proceedings of the 30
April–2 May 1968, Spring Joint Computer Conference, pp. 307–314. ACM (1968)

6. Benjamini, I., Shinkar, I., Tsur, G.: Acquaintance time of a graph. SIAM J. Discrete
Math. 28(2), 767–785 (2014)

7. Knuth, D.E.: The Art of Computer Programming: Sorting and Searching, vol. 3.
Addison Wesley Longman Publishing Co., Inc., Redwood City (1998)

8. Kunde, M.: Optimal sorting on multi-dimensionally mesh-connected comput-
ers. In: Brandenburg, F.J., Vidal-Naquet, G., Wirsing, M. (eds.) STACS 1987.
LNCS, vol. 247, pp. 408–419. Springer, Heidelberg (1987). https://doi.org/10.1007/
BFb0039623

9. Leighton, T., Plaxton, C.G.: Hypercubic sorting networks. SIAM J. Comput. 27(1),
1–47 (1998)

10. Plaxton, C.G., Suel, T.: A super-logarithmic lower bound for hypercubic sorting
networks. In: Abiteboul, S., Shamir, E. (eds.) ICALP 1994. LNCS, vol. 820, pp.
618–629. Springer, Heidelberg (1994). https://doi.org/10.1007/3-540-58201-0 103

11. Schnorr, C.P., Shamir, A.: An optimal sorting algorithm for mesh connected com-
puters. In: Proceedings of the Eighteenth Annual ACM Symposium on Theory of
Computing, pp. 255–263. ACM (1986)

http://arxiv.org/abs/1307.6029
https://doi.org/10.1007/BFb0039623
https://doi.org/10.1007/BFb0039623
https://doi.org/10.1007/3-540-58201-0_103

Minimum Reload Cost Graph Factors

Julien Baste1 , Didem Gözüpek2 , Mordechai Shalom3(B) ,
and Dimitrios M. Thilikos4,5

1 Institut für Optimierung und Operations Research, Universität Ulm, Ulm, Germany
julien.baste@uni-ulm.de

2 Department of Computer Engineering, Gebze Technical University,
Gebze, Kocaeli, Turkey

didem.gozupek@gtu.edu.tr
3 TelHai College, 12210 Upper Galilee, Israel

cmshalom@telhai.ac.il
4 AlGCo project-team, LIRMM, CNRS, Université de Montpellier,

Montpellier, France
sedthilk@thilikos.info

5 Department of Mathematics, National and Kapodistrian University of Athens,

Athens, Greece

Abstract. The concept of Reload cost in a graph refers to the cost that
occurs while traversing a vertex via two of its incident edges. This cost is
uniquely determined by the colors of the two edges. This concept has var-
ious applications in transportation networks, communication networks,
and energy distribution networks. Various problems using this model are
defined and studied in the literature. The problem of finding a spanning
tree whose diameter with respect to the reload costs is the smallest pos-
sible, the problems of finding a path, trail or walk with minimum total
reload cost between two given vertices, problems about finding a proper
edge coloring of a graph such that the total reload cost is minimized, the
problem of finding a spanning tree such that the sum of the reload costs
of all paths between all pairs of vertices is minimized, and the problem of
finding a set of cycles of minimum reload cost, that cover all the vertices
of a graph, are examples of such problems. In this work we focus on the
last problem. Noting that a cycle cover of a graph is a 2-factor of it, we
generalize the problem to that of finding an r-factor of minimum reload
cost of an edge colored graph. We prove several NP-hardness results for
special cases of the problem. Namely, bounded degree graphs, planar
graphs, bounded total cost, and bounded number of distinct costs. For
the special case of r = 2, our results imply an improved NP-hardness
result. On the positive side, we present a polynomial-time solvable spe-
cial case which provides a tight boundary between the polynomial and
hard cases in terms of r and the maximum degree of the graph. We then
investigate the parameterized complexity of the problem, prove W[1]-
hardness results and present an FPT-algorithm.

Work supported by the bilateral research program CNRS/TUBITAK grant no.
114E731, TUBITAK 2221 programme. The last author was supported by projects
“DEMOGRAPH” (ANR-16-CE40-0028) and “ESIGMA” (ANR-17-CE23-0010).

c© Springer Nature Switzerland AG 2019
B. Catania et al. (Eds.): SOFSEM 2019, LNCS 11376, pp. 67–80, 2019.
https://doi.org/10.1007/978-3-030-10801-4_7

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-10801-4_7&domain=pdf
http://orcid.org/0000-0002-7869-0959
http://orcid.org/0000-0001-8450-1897
http://orcid.org/0000-0002-2688-5703
http://orcid.org/0000-0003-0470-1800
https://doi.org/10.1007/978-3-030-10801-4_7

68 J. Baste et al.

Keywords: Parameterized complexity · Graph factors · Reload costs

1 Introduction

Edge-colored graphs can be used to model optimization problems in diverse fields
such as bioinformatics, communication networks, and transportation networks.
Reload cost in an edge-colored graph refers to the cost that occurs while travers-
ing a vertex via two of its incident edges. This cost is uniquely determined by
the colors of the two edges.

The reload cost concept has various applications in transportation networks,
communication networks, and energy distribution networks. For instance, a
multi-modal cargo transportation network involves different means of trans-
portation, where the (un)loading of cargo at transfer points is costly [1]. In
energy distribution networks, transferring energy between different carriers cause
energy losses and reload cost concept can be used to model this situation [1].
In communication networks, routing often requires switching between different
technologies such as cable and fiber, where data conversion incurs high costs.
Switching between different service providers in a communication network also
causes switching costs [1]. Recently, dynamic spectrum access networks, a.k.a.
cognitive radio networks, received a lot of attention in the communication net-
works research community. Unlike other wireless networks, cognitive radio net-
works are envisioned to operate in a wide range of spectrum; therefore, frequency
switching has adverse effects in delay and energy consumption [2–4]. This fre-
quency switching cost depends on the frequency separation distance; hence, it
corresponds to reload costs.

The reload cost concept was first introduced by Wirth and Steffan [5] who
focused on the problem of finding a spanning tree whose diameter with respect
to the reload costs is the smallest possible. Other works also focused on numer-
ous optimization problems regarding reload costs: the problems of finding a
path, trail or walk with minimum total reload cost between two given vertices
[6], numerous path, tour, and flow problems [7], the minimum changeover cost
arborescence problem [8–11], problems about finding a proper edge coloring of
a graph such that the total reload cost is minimized [12], and the problem of
finding a spanning tree such that the sum of the reload costs of all paths between
all pairs of vertices is minimized [13].

An r-factor of a graph is an r-regular spanning subgraph. A 2-factor is also
called a cycle cover and has many applications in areas such as computer graph-
ics and computational geometry [14], for instance for fast rendering of 3D scenes.
In an edge-weighted graph, the problem of finding a cycle cover with minimum
cost can be solved in polynomial-time [15]. Its reload cost counterpart was stud-
ied by Galbiati et al. in [16]. In particular, they proved that the minimum reload
cost cycle cover problem is NP-hard even when the number of colors is 2, the
reload costs are symmetric and satisfy the triangle inequality. In this work, we
build on this work by studying the minimum reload cost r-factor problem, which
is a more generalized version of the minimum reload cost cycle cover problem.

Minimum Reload Cost Graph Factors 69

In particular, we prove several NP-hardness results for the special cases of this
problem. Namely, bounded degree graphs, planar graphs, bounded total cost,
and bounded number of distinct costs. For the special case of r = 2, we prove
an NP-hardness result stronger than the one in [16]. On the positive side, we
present a polynomial-time solvable special case. We then investigate the param-
eterized complexity of this problem, prove W[1]-hardness results and present a
fixed parameter tractable algorithm. Some of the proofs are omitted from this
Extended Abstract and shown in the full paper [17].

2 Preliminaries

Sets, Vectors: Given a non-negative integer n, we denote by N≥n the set of
all integers x such that x ≥ n. If n1, n2 ∈ N≥0, we denote by [n1, n2] the set
of integers x such that n1 ≤ x ≤ n2. We also use [n] instead of [1, n]. Given a
finite set X and an integer s ∈ N≥0, we denote by

(
X
s

)
the set of all subsets

of A with exactly s elements. For a set X and an element x we use X + x and
X − x as shorthands for X ∪ {x} and X \ {x}, respectively. For two vectors
u = (u1, . . . , ud) and v = (v1, . . . , vd) over the reals, we write u ≤ v if ui ≤ vi

for every i ∈ [d].

Graphs: All graphs we consider in this paper are undirected, finite, and without
self loops or multiple edges. Given a graph G, we denote by V (G) the set of
vertices of G and by E(G) the set of edges of G. We say that a vertex v ∈ V (G)
and an edge e ∈ E(G) are incident if v ∈ e, that is, v is an endpoint of e. Given
a vertex v ∈ V (G), we denote by EG(v) the set of edges of G that are incident
to v. The degree of v in G, denoted by degG(v) is |EG(v)|. We also define the
maximum degree of G as Δ(G) = max{degG(v) | v ∈ V (G)}, the minimum
degree of G as δ(G) = min{degG(v) | v ∈ V (G)}, and the average degree of G as
deg(G). For a subset X of V (G), we denote by G[X] the subgraph of G induced
by X. A graph is r-regular if all its vertices have degree r.

We say that a graph H is a factor of a graph G when V (H) = V (G) and
E(H) ⊆ E(G). An r-regular factor of G is termed an r-factor of G.

Parameterized Complexity: We refer the reader to [18,19] for basic back-
ground on parameterized complexity, and we recall here only some basic defi-
nitions. A parameterized problem is a language L ⊆ Σ∗ × N. For an instance
I = (x, k) ∈ Σ∗ × N, k is called the parameter.

A parameterized problem is fixed-parameter tractable (FPT) if there exists
an algorithm A, a computable function f , and a constant c such that given
an instance I = (x, k), A (called an FPT algorithm) correctly decides whether
I ∈ L in time bounded by f(k) · |I|c. We use the O∗ notation whenever we
ignore polynomial factors. A parameterized problem is in XP if there exists an
algorithm A and two computable functions f and g such that given an instance
I = (x, k), A (called an XP algorithm) correctly decides whether I ∈ L in time
bounded by f(k) · |I|g(k). A parameterized problem with instances of the form
I = (x, k) is para-NP-hard if it is NP-hard for some fixed constant value of the

70 J. Baste et al.

parameter k. Note that, unless P = NP, a para-NP-hard problem cannot be in
XP, hence it cannot be FPT either.

Within parameterized problems, the class W[1] may be seen as the param-
eterized equivalent to the class NP of classical optimization problems. Without
entering into details (see [18,19] for the formal definitions), a parameterized
problem being W[1]-hard can be seen as a strong evidence that this problem is
not FPT. The following problem is a W[1]-hard problem that we will use in our
reductions.

Multicolored Clique
Input: A graph G, an integer k, a coloring function χ : V (G) → [k].
Parameter: k.
Question: Does G contain a clique on k vertices with one vertex from each color
class?

Multicolored Clique is known to be W[1]-hard on general graphs, even
in the special case where all color classes have the same number of vertices [20].
Clearly, we can also assume that every color class is an independent set since
the problem is indifferent to edges within the same color class.

Tree Decompositions: A tree decomposition of a graph G = (V,E) is a pair
D = (T,X), where T is a tree and X = {Xt | t ∈ V (T)} is a collection of subsets
of V (G) such that:

–
⋃

t∈V (T) Xt = V ,
– for every edge uv ∈ E, there is a t ∈ V (T) such that {u, v} ⊆ Xt, and
– for every {x, y, z} ⊆ V (T) such that z lies on the unique path between x and

y in T , Xx ∩ Xy ⊆ Xz.

We call the vertices of T nodes of D and the sets in X bags of D. The width of
D is maxt∈V (T) |Xt| − 1. The treewidth of G, denoted by tw(G), is the smallest
integer w such that there exists a tree decomposition of G of width w. A tree
decomposition in which the tree T is restricted to be a path is called a path
decomposition. The pathwidth of G, denoted by pw(G), is the smallest integer w
such that there exists a path decomposition of G of width w.

A tree decomposition is rooted if we distinguish in T some specific vertex r,
and consider T as a rooted (on r) tree. We denote such a tree decomposition by
a triple D = (T,X , r).

Nice Tree Decompositions: Let D = (T,X , r) be a rooted tree decomposition
of G, and G = {Gt | t ∈ V (T)} be a collection of subgraphs of G. We say that
the ordered pair (D,G) is nice if the following conditions hold:

– Xr = ∅ and Gr = G,
– every node of D has at most two children in T ,
– for each leaf t ∈ V (T), Xt = ∅ and Gt = (∅, ∅). Such a node t is called a leaf

node,

Minimum Reload Cost Graph Factors 71

– if t ∈ V (T) has exactly two children t′ and t′′, then Xt = Xt′ = Xt′′ , Gt =
Gt′ ∪ Gt′′ , and E(Gt′) ∩ E(Gt′′) = ∅. The node t is called a join node.

– if t ∈ V (T) has exactly one child t′, then exactly one of the following holds.
• Xt = Xt′ + v for some v /∈ Xt′ and Gt = (V (Gt′) + v,E(Gt′)). The node

t is called vertex-introduce node and the vertex v is the introduced vertex
of Xt.

• Xt = Xt′ and Gt = (Gt′ , E(Gt′) + e) where e is an edge of G with
endpoints in Xt. The node t is called edge-introduce node and the edge e
is the introduced edge of Xt.

• Xt = Xt′ − v for some v ∈ Xt′ and Gt = Gt′ . The node t is called forget
node and v is the forget vertex of Xt.

The notion of a nice pair defined above is essentially the same as the one of
nice tree decomposition in [21] (which in turn is an enhancement of the original
one, introduced in [22]). As already argued in [21,22], given a tree decomposition,
it is possible to transform it in polynomial time to a tree decomposition D of
the same width and construct a collection G such that (D,G) is nice.

Reload Cost Model: For reload costs, we follow the notation and terminology
defined by [5]. We consider an edge-colored graph G where edge colors are taken
from a finite set X and the coloring function is χ : E(G) → X. The reload
costs are given by a function c : X2 → N≥0 where c(x1, x2) = c(x2, x1) for
each (x1, x2) ∈ X2. The cost of traversing two incident edges e1, e2 of G is
tc(e1, e2) = c(χ(e1), χ(e2)). Given a subgraph H of G and a vertex v ∈ V (H),
we define the reload cost of v in H as rcχ,c(H, v) =

∑
{e1,e2}∈(EH (v)

2) tc(e1, e2)

and the reload cost of H as rcχ,c(H) =
∑

v∈V (H) rcχ,c(H, v). When χ and c are
clear from the context, we write rc(v) and rc(H) instead.

Problem Statement: The problem we study in this paper can be formally
defined as follows for every r ∈ N≥2:

Minimum Reload Cost r-Factor (r-MRCF)
Input: A graph G, an edge-coloring χ, a reload cost function c, and a non-
negative integer k.
Output: Is there an r-factor H of G with reload cost at most k, i.e., rc(H) ≤ k?

Given an instance (G,χ, c, k) of r-MRCF we consider the following parameters:

– the maximum degree Δ(G) of G,
– the treewidth tw(G) of G,
– the pathwidth pw(G) of G,
– the number of colors q = |X|,
– the number of distinct costs: d = |{c(x1, x2) | (x1, x2) ∈ X2}|,
– the minimum traversal cost cmin = min{c(x1, x2) | (x1, x2) ∈ X2}, and
– the total cost k.

72 J. Baste et al.

Table 1. Summary of classical complexity results for the r-MRCF problem.

G Δ(G) d k q

≤r + 2 2 kmin min{r, 3} NP-hard (Theorem 1)

r + 1 Polynomial (Theorem 2)

Planar ≤r + 4 2 kmin 7 NP-hard (Theorem 3)

Table 2. Summary of parameterized complexity results for the r-MRCF problem.

Parameter d k Average degree

pw(G) 2 kmin <r +

{
4 if r = 2

4/3 otherwise.
W[1]-hard (Theorem 4)

tw(G) + min{q, Δ(G)} FPT(Theorem 5)

Clearly, we can assume that Δ(G) ≥ r + 1, and also δ(G) ≥ r since otherwise
the instance is trivial. Let kmin = cmin · |V (G)| · (

r
2

)
. Note that the reload cost

of every r-factor is at least kmin. Therefore, we can also assume that k ≥ kmin.
A summary of the results regarding the classical and parameterized complex-

ity of the r-MRCF problem is shown in Tables 1 and 2, respectively.

3 Classical Complexity of r-MRCF

The following construct will be used in our reductions. A diamond is a graph
on four vertices and five edges, that is obtained by adding one chord to a cycle
on four vertices. Clearly, a diamond contains two vertices of degree two and two
vertices of degree three. The degree two vertices are termed as the tips of the
diamond. A joker is a monochromatic diamond, that is, a diamond whose edges
have the same color. In our reductions, every joker J will have exactly one vertex
adjacent to other vertices of the graph. This vertex will always be a tip of J ,
and we will term it as the connecting tip of J . Given a joker J and a 2-factor F ,
it is easy to see that exactly one of the following happens:

– F ∩E(J) is the 4-cycle of J , and F \E(J) does not contain any edges incident
to J .

– F ∩ E(J) is a triangle of J , F \ E(J) contains exactly two edges incident to
J both of which are incident its connecting tip.

Furthermore, since our cost functions satisfy c(λ, λ) = 0 for every color λ, and
F ∩E(J) is always a cycle, the joker edges do not affect the cost of F . When we
describe a 2-factor F , these properties allow us to leave the edges of F ∩ E(J)
unspecified since they are implied by the edges of F \ E(J). Such a partial
description is valid if and only if the connecting tip have degree zero or two.
Finally, a 5-joker is a cycle on five vertices with an added chord. This graph
has one triangle with one degree 2 vertex that we will refer to as the tip of the
5-joker. Note that a 5-joker has all the properties of a joker.

Minimum Reload Cost Graph Factors 73

Another construct that we use in our reductions is a graph Q� that is obtained
from the clique on �+1 vertices by subdividing �− 2 arbitrary edges twice (into
three edges) and removing the middle edge of each one. Clearly, Q� contains �+1
vertices of degree � and 2(� − 2) vertices of degree one. In total, Q� has 3� − 3
vertices.

Galbiati et al. proved in [16] that 2-MRCF, a.k.a. the minimum reload cost
cycle cover problem, is NP-hard even when the number of colors is 2, the reload
costs are symmetric and satisfy the triangle inequality. The following theorem
whose proof appears in [17] states a hardness result for r-MRCF, which in par-
ticular implies a stronger hardness result for the special case of r = 2.

Theorem 1. r-MRCF is NP-hard for every r ≥ 2 even when Δ(G) ≤ r + 2,
d = 2, k = kmin = 0 and q = min{r, 3}.

The value of the parameter d in Theorem 1 is clearly tight. When d = 1,
that is, when there is only one traversal cost, all the r-factors have the same
reload cost. In this case the problem reduces to determining the existence of
an r-factor. This problem is known to be polynomial-time solvable [23]. The
following theorem states that the parameter Δ(G) of Theorem 1 is also tight.

Theorem 2. For every r ∈ N≥2, if Δ(G) = r + 1, then r-MRCF can be solved
in polynomial time.

Proof. Recall that we assume δ(G) ≥ r. Let R be the set of vertices of degree r
of G and R+ = V (G)\R the vertices of degree r+1. Let also H be an r-factor of
G. We observe that H is obtained by removing a perfect matching M of G[R+]
from G. Every edge e ∈ M reduces the reload cost by the sum of the traversal
costs with all its incident edges. Therefore, rc(H) = rc(G) − ∑

e∈M w(e) where

w(e)
def
=

∑

e′∈EG(u)−e

c(e, e′) +
∑

e′∈EG(v)−e

c(e, e′)

for every edge e = uv of G. Then, minimizing rc(H) boils down to the problem
of finding a maximum weight perfect matching M of G[R+] with the edge weight
function w, which can clearly be solved in polynomial time.

Both the result in [16] and Theorem 1 are for general graphs and hence leave
the complexity of the problem open for special graph classes. In the following (in
Theorem 3), we prove hardness of r-MRCF in planar graphs even under restricted
cases. We need the following Lemma that is proven in [17] for our reduction.

Lemma 1. Let G be a planar graph with an even number of vertices and δ(G) ≥
2. There is a partition M of V (G) into pairs such that the multigraph G′ obtained
by adding to G an edge between every pair of M is planar. Moreover, such a
partition can be found in polynomial time.

Theorem 3. For every r ∈ [2, 5], r-MRCF is NP-hard even when the input

graph G is planar, Δ(G) ≤ r + 4, d = 2, k = kmin, and q =
{

6 if r = 2
7 otherwise.

74 J. Baste et al.

Proof. We start by proving the theorem for r = 2 by reducing an instance
(G,χ, c, k) of 2-MRCF with Δ(G) ≤ 4, d = 2, k = kmin, q = 2 to an instance
(G′, χ′, c′, k′) of 2-MRCF, with Δ(G′) ≤ 6, d = 2, k = kmin, q = 6, and G′ is
planar.

We rename the colors of the original graph as 1 and 2, and we add four colors
XC = {red, blue, green, yellow}. Therefore, q = 6. As for the cost function we
use the following function c′ that is an extension of c and uses only costs from

{0, 1}, i.e. d = 2. c′(λ, λ′) =

⎧
⎪⎪⎨

⎪⎪⎩

0 if λ = λ′

0 if yellow ∈ {λ, λ′} and {1, 2} ∩ {λ, λ′}
= ∅
0 if 1 ∈ {λ, λ′} and 2 /∈ {λ, λ′}
1 otherwise.

We consider a planar embedding of G where all crossings are polynomial on
|V (G)| and no three edges cross the same point. G′ is obtained by replacing
every crossing point of two edges e, e′ of G by a copy of the gadget depicted in
Fig. 1, and 9 jokers such that one tip of each joker is identified with a distinct
vertex of the gadget. We observe that Δ(G′) ≤ 6, as required. For a gadget under
consideration, the set of vertices that contain the index L (resp. R) are its left
(resp. right) vertices, and the remaining vertices are its middle vertices. The left
part (resp. right part) of the gadget is the subgraph induced by the left (resp.
right) and middle vertices together. We refer to a four cycle mP aP,T tP aP,B for
P ∈ {L,R} as a green cycle, to the triangle tT tLtR as the middle triangle, to a
triangle that consists of an m-vertex, a t-vertex and an a-vertex as a blue or red
triangle, and to the 8-cycle induced by the four c-vertices together with the four
m-vertices as the yellow rectangle. Note that all these cycles have zero reload
cost, though (despite their names) they are not monochromatic.

The two parts of the edge e (resp. e′) inherit their color from e (resp. e′).
Clearly, V (G) ⊆ V (G′). Finally, k′ = 0.

In [17] we prove that G has a 2-factor with zero reload cost if and only if G′

has one.
Now for any r ∈ [3, 5], we have to reduce an instance (G,χ, c, k) of 2-MRCF

where Δ(G) ≤ 6, d = 2, k = kmin, q = 6, to an instance (G′, χ′, c′, k′) of
r-MRCF, where Δ(G′) ≤ r + 4, d = 2, k = kmin, q = 7 and G′ is planar. Note
that, since whenever G is planar, we have δ(G) ≤ 5, it does not make sense to
consider other values of r.

If G is odd, we subdivide an edge and add a 5-joker whose tip is identified
with the newly created vertex. We color all the edges with the color of the original
edge. This creates an equivalent instance having all the properties assumed for
G. By Lemma 1, there is a pairing M of the vertices of G such that edges can
be added between each pair of vertices while still preserving planarity. For every
pair {u, v} ∈ M we will add a gadget that will have the desired properties of Qr,
and in addition will preserve planarity. Namely, the gadget will have 2(r − 2)
vertices of degree one, all the remaining vertices of degree r, and will have a
planar embedding in which all the degree one vertices are in the outer face. Half
(i.e., (r−2)) of the degree one vertices of the gadget are identified with u and the
remaining half are identified with v. Now every new vertex has degree r and the
degree of every original vertex increased by r−2. The new edges are colored with

Minimum Reload Cost Graph Factors 75

cL,T cR,T

cL,B cR,B

mT

mB

mL mRtL

tT

tR

aL,T aR,T

aL,B aR,B

1

1

1

1

2

2

2

e

ee

e

Fig. 1. The planar gadget that replaces two crossing edges of G. The vertices marked
with a circle are identified with a tip of a joker. (Color figure online)

a new color λ′ such that for every color λ we have c′(λ′, λ) = 0. (G′, χ′, c′, k′)
has an r-factor F ′ such that rc(F ′) = 0 if and only if (G,χ, c, k) has a 2-factor
F with rc(F) = 0. We omit the proof of this fact since it is identical to the
non-planar case.

We now describe the gadget depending on the value of r. If r = 3 the gadget
is a Q3 which has the desired planarity properties. If r = 4 the gadget is a Q4.
However, in order to get the planarity properties, the subdivided edges of the
K5 should constitute a matching. Finally, if r = 5 we use the gadget depicted in
Fig. 2.

4 Parameterized Complexity of r-MRCF

Lemma 2. For every α > 1, 2-MRCF, parameterized by pw(G), is W[1]-hard
even when d = 2, k = kmin, and deg(G) < 6 · α.

Proof. The proof is by an FPT reduction from Multicolored Clique that bor-
rows ideas from Theorem 1 of [11]. We first note that Multicolored Clique is
W[1]-hard even when the number of colors k is restricted to be odd. Indeed, the
problem can be reduced to its special case as follows. Let (H, c, k) be an instance
of Multicolored Clique where k is even. Let (H ′, c′, k +1) be an instance of
Multicolored Clique, where (H ′, c′) is obtained by adding a universal vertex
v colored k + 1 to H. It is easy to see that H contains a clique on k vertices
with one vertex from each color class if and only if H ′ contains one. Also, by

76 J. Baste et al.

Fig. 2. The planar gadget used for the case r = 5.

adding dummy vertices, we can also assume that each chromatic class in the
input graph of Multicolored Clique has at least t vertices, where t = α

α−1 .
Given an instance (H, c, k) of Multicolored Clique with k odd, we con-

struct an instance (G,χ, c, k) of 2-MRCF. Let V (H) = V1 �V2 � · · · �Vk, where
Vi is the set of vertices of V (G) that are colored i, for i ∈ [k]. Notice that
|V (G)| ≥ t · k. Let W be an Eulerian circuit of the complete graph Kk, which
exists since k is odd. We assume that V (Kk) = [k]. We also assume, for ease of
exposition, that W starts with the sequence of vertices 1, 2, . . . , k, where every
vertex i of this sequence is considered as the first occurrence of i in W . We also
assume that the last vertex of W (i.e. the vertex before the first occurence of

1) is 3. Clearly, every i ∈ [k] appears in W exactly k′ def
= (k − 1)/2 times. The

vertex set of G is the disjoint union of three sets U, S, and T where

– U consists of k′ copies Ui,1, . . . , Ui,k′ of Vi for every i ∈ [k], for a total of
(
k
2

)

sets. For every i ∈ [k], we number the vertices of Vi from 1 to |Vi|, and we
number the vertices of every copy Ui,j accordingly, as ui,j,1, . . . ui,j,|Vi|.

– S consists of
(
k
2

)
vertices si,j , one for every arc ij of W ,

– T = T1 ∪ T2 ∪ · · · ∪ Tk, where every set Ti consists of |Vi| − 1 vertices
ti,1, ti,2, . . . , ti,|Vi|−1.

We proceed with the description of the edge set of G, which contains three
types of edges depending on their endpoints. Every edge has one endpoint in U
and the other endpoint is in one of U, S or T .

– S − U edges: Let e = ij be an arc of W such that e is incident to the i′-th
(resp. j′-th) occurence of i (resp. j) in W . Then si,j is adjacent to every
vertex of Ui,i′ and to every vertex of Uj,j′ .

– U − U edges: The U − U edges form |V (H)| vertex-disjoint paths, one path
on k′ vertices for every v ∈ V (H). The path corresponding to the �-th vertex
of Vi is ui,1,�ui,2,� . . . ui,k′,� (see Fig. 3).

– T − U edges: For every i ∈ [k] and every � ∈ [|Vi| − 1], the vertex ti,� is
adjacent to ui,1,�, ui,1,�+1, ui,k′,� and ui,k′,�+1 (see Fig. 3).

Minimum Reload Cost Graph Factors 77

In [17], we prove that deg(G) < 6α, and pw(G) ≤ (
k
2

)
+ 3.

We proceed with the description of the coloring function χ and the traversal
cost function c. The color set is V (H) ∪ {white}. In other words, the vertices
of H corresponds to colors in the constructed instance H ′; that is, there is a
color in H ′ corresponding to each vertex in H. All the U − U and T − U edges
are colored white, and the S − U edges are colored upon their endpoint in U
as follows. For every S − U edge e with endpoint ui,j,�, we define χ(e) = vi,�.
The traversal cost c(v, white) is 1 for every v ∈ V (H) and c(white, white) = 0.
For every v, v′ ∈ V (H) we set c(v, v′) to zero if v = v′ or vv′ is an edge of H
and to one otherwise. Finally, we set k = 0. This completes the construction of
(G,χ, c, k), which can be clearly performed in polynomial time.

We now prove that H has a k-clique with one vertex from every color class
if and only if G has a 2-factor F with rc(F) = 0. Assume that H has a clique K
with exactly one vertex from every color, and suppose without loss of generality
that K consists of the first vertices of each color class. Let F be the 2-factor of
G consisting of the following cycles.

– The clique cycle G[CK], where CK = S ∪ {ui,j,1 | i ∈ [k], j ∈ [k′]}.
– The vertex cycles, one per every vertex v ∈ V (H) \ K. For every i ∈ [k] and

every � ∈ [2, |Vi|], the vertex cycle corresponding to the vertex vi,� ∈ V (H)\K
is G[Ci,�], where Ci,� = {ti,�−1, ui,j,� | j ∈ [k′]}.

It is easy to see that every vertex is in exactly one of these cycles. Furthermore,
the edges of the vertex cycles are all white, incurring a reload cost of zero. It
remains to show that that the edges of the clique cycle also incur a zero cost.
Indeed, the two edges incident to a vertex ui,j,� ∈ U incur a cost c(vi,�, vi,�) = 0,
and the two edges incident to a vertex si,j incur a zero cost since the adjacent
vertices are ui,i′,1 and uj,j′,1 that correspond to the vertices vi,1 and vj,1 of K,
which are adjacent in H.

Conversely, suppose that H contains a 2-factor F with rc(F) = 0. Every
vertex si,j is adjacent to two distinct vertices of U that correspond to two distinct
vertices v, v′ of V (H). Furthermore, since the cost at vertex si,j is zero, we
conclude that v and v′ are adjacent in H. In particular, v and v′ are in different
color classes. Therefore, si,j is adjacent to one vertex from each of Ui,i′ and Uj,j′ .
The second edge incident to these vertices in F is not white, since otherwise it
incurs a positive traversal cost. Thus, the other edge is also a U − S edge. We
conclude that the

(
k
2

)
vertices S are all in one cycle CK that also contains

(
k
2

)

vertices from U , one from every set Ui,i′ . Furthermore, two consecutive vertices
of U in CK correspond to two adjacent vertices of H.

All the remaining cycles must be in G \ S, which consists of k connected
components Ti ∪ ∪k′

i′=1Ui,i′ , for every i ∈ [k]. The result is now apparent from
Fig. 3 that depicts this connected component. If a vertex ui,i′,� is in one of the
remaining cycles, then all the vertices ui,i′′,� for i′′ ∈ [k′] are in the same cycle
as ui,i′,�. Therefore, if a vertex ui,i′,� is in CK , then all the vertices ui,i′′,� for
i′′ ∈ [k′] are in CK . Recall that CK contains one vertex ui,i′,� from every set
Ui,i′ . We conclude that these vertices correspond to the same vertex vi,� of Vi.

78 J. Baste et al.

ti,1

ti,2

ti,|Vi|−1

ti,1

ti,2

ti,|Vi|−1

Ui,1 Ui,2 Ui,k −1 Ui,k

ui,1,1 ui,2,1 ui,k −1,1 ui,k ,1

ui,1,2 ui,2,2 ui,k −1,2
ui,k ,2

ui,1,3 ui,2,3 ui,k −1,3
ui,k ,3

ui,1,|Vi| ui,2,|Vi| ui,k −1,|Vi|
ui,k ,|Vi|

ui,1,|Vi|−1 ui,2,|Vi|−1 ui,k −1,|Vi|−1
ui,k ,|Vi|−1

Fig. 3. The U − U and T − U edges of G.

We recall that consecutive U -vertices of CK correspond to two adjacent vertices
of H. Therefore, the vertices U ∩CK correspond to the vertices of a clique of H.

Given a graph G on n-vertices where n is even, a pairing collection of G is a
collection M of pairs of vertices in G that forms a partition of V (G). We denote
G + M = (V (G), E(G) ∪ M). Notice that G + M can be a multi-graph as the
pairings in M might already be edges of G. In [17] we prove the following lemma
that will prove useful in our proof.

Lemma 3. Let G be a n-vertex graph where n is even and pw(G) ≤ k for some
k ≥ 1. Then G has a pairing collection M such that pw(G + M) ≤ k + 1.

Theorem 4. For every r ∈ N≥2, r-MRCF, parameterized by pw(G), is W[1]-

hard even when d = 2, k = kmin and deg(G) is less than r +
{

4 if r = 2
4/3 otherwise.

Proof. For r = 2 the Theorem is equivalent to Lemma 2. For r > 2 we present
an FPT reduction from the base case, i.e. r = 2. using the same technique as
in the proof of Theorem 1. Namely, given an instance (G,χ, c, k) of 2-MRCF
with d = 2 and k = kmin = 0 where deg(G) < 6, we construct an instance
(G′, χ′, c′, k′) of r-MRCF where d = 2 and the average degree of G′ is less than
r + 4/3 by adding to G a pair collection, and replacing every new edge by the
gadget Qr. By the last part of the proof of Theorem1, G′ has an r-factor of zero
cost if and only if G has a 2-factor of zero cost. In [17] we prove that the average
degree of G′ is at most r + 4/3, and pw(G′) ≤ (pw(G) + 1) · r+1

r−1 − 1. Finally, we
note that r is a constant of the problem. Therefore, the function the latter is a
function of pw(G) as required.

Minimum Reload Cost Graph Factors 79

In [17], we present a dynamic programming algorithm proving

Theorem 5. For every r ∈ N≥2, r-MRCF, parameterized by min{q,Δ(G)} and
tw(G) is in FPT.

References

1. Galbiati, G.: The complexity of a minimum reload cost diameter problem. Discrete
Appl. Math. 156(18), 3494–3497 (2008)

2. Arkoulis, S., Anifantis, E., Karyotis, V., Papavassiliou, S., Mitrou, N.: On the
optimal, fair and channel-aware cognitive radio network reconfiguration. Comput.
Netw. 57(8), 1739–1757 (2013)

3. Gözüpek, D., Buhari, S., Alagöz, F.: A spectrum switching delay-aware scheduling
algorithm for centralized cognitive radio networks. IEEE Trans. Mob. Comput.
12(7), 1270–1280 (2013)

4. Celik, A., Kamal, A.E.: Green cooperative spectrum sensing and scheduling in
heterogeneous cognitive radio networks. IEEE Trans. Cogn. Commun. Netw. 2(3),
238–248 (2016)

5. Wirth, H.C., Steffan, J.: Reload cost problems: minimum diameter spanning tree.
Discrete Appl. Math. 113(1), 73–85 (2001)

6. Gourvès, L., Lyra, A., Martinhon, C., Monnot, J.: The minimum reload s-t path,
trail and walk problems. Discrete Appl. Math. 158(13), 1404–1417 (2010)

7. Amaldi, E., Galbiati, G., Maffioli, F.: On minimum reload cost paths, tours, and
flows. Networks 57(3), 254–260 (2011)

8. Galbiati, G., Gualandi, S., Maffioli, F.: On minimum changeover cost arbores-
cences. In: Pardalos, P.M., Rebennack, S. (eds.) SEA 2011. LNCS, vol. 6630, pp.
112–123. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-20662-
7 10

9. Gözüpek, D., Shalom, M., Voloshin, A., Zaks, S.: On the complexity of constructing
minimum changeover cost arborescences. Theor. Comput. Sci. 540, 40–52 (2014)

10. Gözüpek, D., Shachnai, H., Shalom, M., Zaks, S.: Constructing minimum
changeover cost arborescenses in bounded treewidth graphs. Theor. Comput. Sci.
621, 22–36 (2016)

11. Gözüpek, D., Özkan, S., Paul, C., Sau, I., Shalom, M.: Parameterized complexity
of the mincca problem on graphs of bounded decomposability. Theor. Comput. Sci.
690, 91–103 (2017)

12. Gözüpek, D., Shalom, M.: Edge coloring with minimum reload/changeover costs.
arXiv preprint arXiv:1607.06751 (2016)

13. Gamvros, I., Gouveia, L., Raghavan, S.: Reload cost trees and network design.
Networks 59(4), 365–379 (2012)

14. Meijer, H., Núñez-Rodŕıguez, Y., Rappaport, D.: An algorithm for computing sim-
ple k-factors. Inf. Process. Lett. 109(12), 620–625 (2009)

15. Schrijver, A.: Combinatorial Optimization: Polyhedra and Efficiency, vol. 24.
Springer, Heidelberg (2003)

16. Galbiati, G., Gualandi, S., Maffioli, F.: On minimum reload cost cycle cover. Dis-
crete Appl. Math. 164, 112–120 (2014)

17. Baste, J., Gözüpek, D., Shalom, M., Thilikos, D.M.: Minimum reload cost graph
factors. CoRR abs/1810.11700 (2018). http://arxiv.org/abs/1810.11700

18. Cygan, M., et al.: Parameterized Algorithms. Springer, Cham (2015). https://doi.
org/10.1007/978-3-319-21275-3

https://doi.org/10.1007/978-3-642-20662-7_10
https://doi.org/10.1007/978-3-642-20662-7_10
http://arxiv.org/abs/1607.06751
http://arxiv.org/abs/1810.11700
https://doi.org/10.1007/978-3-319-21275-3
https://doi.org/10.1007/978-3-319-21275-3

80 J. Baste et al.

19. Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity. TCS.
Springer, London (2013). https://doi.org/10.1007/978-1-4471-5559-1

20. Pietrzak, K.: On the parameterized complexity of the fixed alphabet shortest com-
mon supersequence and longest common subsequence problems. J. Comput. Syst.
Sci. 67(4), 757–771 (2003)

21. Cygan, M., Nederlof, J., Pilipczuk, M., Pilipczuk, M., van Rooij, J.M.M., Woj-
taszczyk, J.O.: Solving connectivity problems parameterized by treewidth in single
exponential time. In: Proceedings of the 52nd Annual Symposium on Foundations
of Computer Science (FOCS), pp. 150–159. IEEE Computer Society (2011)

22. Kloks, T. (ed.): Treewidth. LNCS, vol. 842. Springer, Heidelberg (1994). https://
doi.org/10.1007/BFb0045375

23. Pulleyblank, W.R.: Faces of matching polyhedra. Ph.D. thesis, University of Water-
loo (1973)

https://doi.org/10.1007/978-1-4471-5559-1
https://doi.org/10.1007/BFb0045375
https://doi.org/10.1007/BFb0045375

Stable Divisorial Gonality is in NP

Hans L. Bodlaender1,2, Marieke van der Wegen1(B),
and Tom C. van der Zanden1

1 Department of Information and Computing Sciences, Universiteit Utrecht,
Princetonplein 5, 3584 CC Utrecht, The Netherlands

M.vanderWegen@uu.nl
2 Department of Mathematics and Computer Science,

Eindhoven University of Technology,

PO Box 513, 5600 MB Eindhoven, The Netherlands

Abstract. Divisorial gonality and stable divisorial gonality are graph
parameters, which have an origin in algebraic geometry. Divisorial gonal-
ity of a connected graph G can be defined with help of a chip firing game
on G. The stable divisorial gonality of G is the minimum divisorial gonal-
ity over all subdivisions of edges of G.

In this paper we prove that deciding whether a given connected graph
has stable divisorial gonality at most a given integer k belongs to the class
NP. Combined with the result that (stable) divisorial gonality is NP-hard
by Gijswijt, we obtain that stable divisorial gonality is NP-complete. The
proof consists of a partial certificate that can be verified by solving an
Integer Linear Programming instance. As a corollary, we have that the
number of subdivisions needed for minimum stable divisorial gonality of
a graph with n vertices is bounded by 2p(n) for a polynomial p.

1 Introduction

The notions of the divisorial gonality and stable divisorial gonality of a graph
find their origin in algebraic geometry and are related to the abelian sandpile
model (cf. [8]). The notion of divisorial gonality was introduced by Baker and
Norine [1,2], under the name gonality. As there are several different notions of
gonality in use (cf. [1,6,7]), we add the term divisorial, following [6]. See [7,
Appendix A] for an overview of the different notions.

Divisorial gonality and stable divisorial gonality have definitions in terms of
a chip firing game. In this chip firing game, played on a connected multigraph
G = (V,E), each vertex has a non-negative number of chips. When we fire a
set of vertices S ⊆ V , we move from each vertex v ∈ S one chip over each edge
with v as endpoint. Each vertex v in S has its number of chips decreased by the
number of edges from v to a neighbour not in S, and each vertex v not in S has

H. L. Bodlaender—This work was supported by the NETWORKS project, funded
by the Netherlands Organization for Scientific Research NWO under project no.
024.002.003.

c© Springer Nature Switzerland AG 2019
B. Catania et al. (Eds.): SOFSEM 2019, LNCS 11376, pp. 81–93, 2019.
https://doi.org/10.1007/978-3-030-10801-4_8

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-10801-4_8&domain=pdf
https://doi.org/10.1007/978-3-030-10801-4_8

82 H. L. Bodlaender et al.

its number of chips increased by the number of edges from v to a neighbour in
S. Such a firing move is only allowed when after the move, each vertex still has
a nonnegative number of chips. The divisorial gonality of a connected graph G
can be defined as the minimum number of chips in an initial assignment of chips
(called divisor) such that for each vertex v ∈ V , there is a sequence of allowed
firing moves resulting in at least one chip on v. Interestingly, this number equals
the number for a monotone variant, where we require that each set that is fired
has the previously fired set as a subset. See Sect. 2 for precise definitions.

A variant of divisorial gonality is stable divisorial gonality. The stable divi-
sorial gonality of a graph is the minimum of the divisorial gonality over all
subdivisions of a graph; we can subdivide the edges of the graph any nonneg-
ative number of times. (In the application in algebraic geometry, the notion of
refinement is used. Here, we can subdivide edges but also add new degree-one
vertices to the graph in a refinement, but as this never decreases the number
of chips needed, we can ignore the possibility of adding leaves. Thus, we use
subdivisions instead of refinements).

It is known that treewidth is a lower bound for stable divisorial gonality [10].
The stable divisorial gonality of a graph is at most the divisorial gonality, but
this inequality can be strict, see for example [4, Fig. 1].

In this paper, we study the complexity of computing the stable divisorial
gonality of graphs: i.e., we look at the complexity of the Stable Divisorial
Gonality problem: given an undirected graph G = (V,E) and an integer k,
decide whether the stable divisorial gonality of G is at most k. It was shown
by Gijswijt [11] that divisorial gonality is NP-complete. The same reduction
gives that stable divisorial gonality is NP-hard. However, membership of stable
divisorial gonality in NP is not trivial: it is unknown how many subdivisions are
needed to obtain a subdivision with minimum divisorial gonality. In particular,
it is open whether a polynomial number of edge subdivisions are sufficient.

In this paper, we show that stable divisorial gonality belongs to the class
NP. We use the following proof technique, which we think is interesting in its
own right: we give partial certificates that describe only some aspects of a firing
sequence. Checking if a partial certificate indeed corresponds to a solution is
non-trivial, but can be done by solving an integer linear program. Membership
in NP follows by adding to the partial certificate, that describes aspects of the
firing sequence, a certificate for the derived ILP instance. As a corollary, we have
that the number of subdivisions needed for minimum stable divisorial gonality
of a graph with n vertices is at most 2p(n) for a polynomial p.

We finish this introduction by giving an overview of the few previously known
results on the algorithmic complexity of (stable) divisorial gonality. Bodewes
et al. [4] showed that deciding whether a graph has stable divisorial gonality
at most 2, and whether it has divisorial gonality at most 2 can be done in
O(n log n + m) time. From [9] and [3], it follows that divisorial gonality belongs
to the class XP, i.e. there is an algorithm that decides in time O(nf(k)) whether
dgon(G) ≤ k. It is open whether stable divisorial gonality is in XP. NP-hardness
of the notions was shown by Gijswijt [11].

Stable Divisorial Gonality is in NP 83

2 Preliminaries

In this paper, we assume that each graph is a connected undirected multigraph,
i.e., we allow parallel edges. In the algebraic number theoretic application of
(stable) divisorial gonality, graphs can also have selfloops (edges with both end-
points at the same vertex), but as the (stable) divisorial gonality of graph does
not change when we remove selfloops, we assume that there are no selfloops.

A divisor D is a function D : V (G) → Z. We can think of a divisor as an
assignment of chips, each vertex v has D(v) chips. The degree of a divisor is the
total number of chips on the graph: deg(D) =

∑
v∈V D(v). We call a divisor

effective if D(v) ≥ 0 for all vertices v. Let D be an effective divisor and A a
set of vertices. We call A valid, if for all vertices v ∈ A it holds that D(v) is at
least the number of edges from v to a vertex outside A. When we fire a set A,
we obtain a new divisor: for every vertex v ∈ A, the value of D(v) is decreased
by the number of edges from v to vertices outside A and for every vertex v /∈ A,
the value D(v) is increased by the number of edges from v to A. We are only
allowed to fire valid sets, so that the divisor obtained is again effective.

Two divisors D and D′ are called equivalent, if there is an increasing sequence
of sets A1 ⊆ A2 ⊆ . . . ⊆ Ak ⊆ V such that for every i the set Ai is valid after
we fired A1, A2, . . . , Ai−1 starting from D, and firing A1, A2, . . . , Ak yields D′.
We write D ∼ D′ to denote that two divisors are equivalent. For two equivalent
divisors D and D′, the difference D′−D is called transformation and the sequence
A1, A2, . . . , Ak is called a level set decomposition of this transformation. A divisor
D reaches a vertex v if it is equivalent to a divisor D′ with D′(v) ≥ 1.

A subdivision of a graph G is a graph H obtained from G by applying a
nonnegative number of times the following operation: take an edge between two
vertices v and w and replace this edge by two edges to a new vertex x.

The stable divisorial gonality sdgon(G) of a graph G is the minimum number
k such that there exists a subdivision H of G and a divisor on H with degree k
that reaches all vertices of H.

There are several equivalent definitions, which we omit here. If we do not
require that the sequence of firing sets is increasing, i.e., we omit the requirements
Ai ⊆ Ai+1, then we still have the same graph parameter (see [9]). The notion
of a firing set can be replaced by an algebraic operation (see [2]); instead of
subdivisions, we can use refinements where we allow that we add subdivisions
and trees, i.e., we can repeatedly add new vertices of degree one. The definition
we use here is most intuitive and useful for our proofs.

3 A (Partial) Certificate

Assume that we are given a yes-instance (G, k) of the problem. Without loss of
generality, we assume that k ≤ n. There exists a subdivision H and a divisor D
on H with k chips that reaches all vertices. We do not know whether the number
of subdivisions in H is polynomial in the size of the graph, i.e. in the number
of vertices and edges of the graph, so we cannot include H in a polynomial

84 H. L. Bodlaender et al.

certificate for this instance. But the chips in D can be placed on added vertices
of H, so we cannot include D in our certificate either. We will prove that when
we subdivide every edge once, we can assume that there is a divisor D′ that
reaches all vertices and has all chips on vertices of this new graph, and hence we
can include D′ in a polynomial certificate.

Definition 1. Let G be a graph. Let G1 denote the graph obtained by subdividing
every edge of G once.

Lemma 2. Let G be a graph. The stable divisorial gonality of G is at most k if
and only if there is a subdivision H of G1 and a divisor D on H such that

– D has at most k chips, i.e. has degree at most k,
– D reaches all vertices of H,
– D has only chips on vertices of G1.

Proof. Suppose that there exists a subdivision H of G1 and a divisor with the
desired properties. Then it is clear that the stable divisorial gonality of G is at
most k, since H is a subdivision of G as well.

Suppose that G has stable divisorial gonality at most k. Then there is a
subdivision H of G and a divisor D on H with degree at most k that reaches all
vertices. If not every edge of G is subdivided in H, then subdivide every edge of
H to obtain H1. Consider the divisor D on H1. By [12, Corollary 3.4] D reaches
all vertices of H1.

Let e = uv be an edge of G, and let a1, a2, . . . , ar be the vertices that are
added to e in H1. Suppose that D assigns more than one chip to those added
vertices, say it assigns one chip to ai and one to aj with i ≤ j. Then we can
fire sets {ah | i ≤ h ≤ j}, {ah | i − 1 ≤ h ≤ j + 1}, . . . until at least one of the
chips lies on u or v. Hence, D is equivalent to a divisor which has one chip less
on added vertices. Repeat this procedure until there is for every edge of G at
most one chip assigned to the vertices added to that edge. The divisor obtained
in this way is equivalent to D, so it reaches all vertices of H1 and has at most k
chips. Thus we have obtained a divisor with the desired properties. �	

Now a certificate can contain the graph G1 and the divisor D as in Lemma 2.
From now on we assume D to have chips on vertices of G1 only. A divisor D as
in Lemma 2 reaches all vertices, so for every vertex w ∈ V (G1) there is a divisor
Dw ∼ D with a chip on w and a level set decomposition A1, A2, . . . , Ar of the
transformation Dw − D. Again we do not know whether r is polynomial in the
size of G, so we cannot include this level set decomposition in the certificate.
However, we can define some of the sets to be ‘relevant’, and include all relevant
sets in the certificate.

Definition 3. Let G be a graph and H a subdivision of G. Let D be a divisor
on H and A1, A2, . . . , Ar a level set decomposition of a transformation D′ − D.
Let D0,D1, . . . , Dr be the associated sequence of divisors. We call Ai relevant if
any of the following holds:

Stable Divisorial Gonality is in NP 85

– Ai moves a chip from a vertex of G, i.e. there is a vertex v of G such that
Di(v) − Di−1(v) < 0, or

– Ai moves a chip to a vertex of G, i.e. there is a vertex v of G such that
Di(v) − Di−1(v) > 0, or

– there is a vertex of G such that Ai is the first level set that contains this
element, i.e. (Ai\Ai−1) ∩ V (G) is not empty.

Lemma 4. Let G be a graph and H a subdivision of G. Let D be a divisor on
H with k chips and A1, A2, . . . , Ar a level set decomposition of a transformation
D′ − D. Let D0,D1, . . . , Dr be the associated sequence of divisors. Then there
are at most 2kn + n relevant level sets.

Proof. Each chip can reach each vertex at most once and can depart at most once
from each vertex. So, there are at most kn sets Ai that fulfil the first condition
of Definition 3 and at most kn sets that fulfil the second condition. Clearly, the
number of sets Ai that fulfil the third condition is upper bounded by the number
of vertices of G. �	

This lemma shows that the number of relevant sets in a level set decompo-
sition is polynomial, since k ≤ n. However, the number of elements of each of
these sets can still be exponential, so we cannot include those sets in a polyno-
mial certificate. Instead, for a relevant set Ai, we will include Ai ∩ V (G1) in our
certificate. Moreover, for each relevant set, we will describe which chips move
from/to a vertex of G1 by firing Ai. When chip j is moved from a vertex v along
edge e, we include a tuple (v, j,−1, e), and when a chip j is moved towards a
vertex v along edge e, we include a tuple (v, j,+1, e).

Now, a partial certificate C consists of

– a divisor D on G1 with k chips, where the chips are labelled 1, 2, . . . , k,
– for every vertex w ∈ V (G1), a series of pairs (Aw,1,Mw,1), (Aw,2,Mw,2), . . .,

(Aw,aw
,Mw,aw

) for some integer aw, such that
• Aw,1 ⊆ Aw,2 ⊆ . . . ⊆ Aw,aw

⊆ V (G1),
• Mw,i = {(v, j, σ, e) | v ∈ V (G1), 1 ≤ j ≤ k, σ ∈ {−1,+1}, e ∈ E(G1)}.

This partial certificate should satisfy a lot of conditions, which are implicit in
the intuitive explanation of this partial certificate. We list the intuition behind
these conditions below and give the formal definition between brackets.

Incidence requirement. The edge along which a chip is fired is incident to the
vertex from/to which it is fired. (For every Mw,i and every tuple (v, j, σ, e) ∈
Mw,i, it holds that e is incident to v.)

Departure requirement. If a chip leaves a vertex, then this vertex is fired and
its neighbour is not. (For every Mw,i and (v, j,−1, uv) ∈ Mw,i, it holds that
v ∈ Aw,i and u /∈ Aw,i.)

Arrival requirement. If a chip arrives at a vertex, then this vertex is not fired
and its neighbour is. (For every Mw,i and (v, j,+1, uv) ∈ Mw,i, it holds that
v /∈ Aw,i and u ∈ Aw,i.)

86 H. L. Bodlaender et al.

Unique departure per edge requirement. For every vertex at most one chip
leaves along each edge. (For every Mw,i and (v, j1,−1, e), (v, j2,−1, e) ∈ Mw,i,
it holds that j1 = j2.)

Unique arrival per edge requirement. For every vertex at most one chip
arrives along each edge. (For every Mw,i and (v, j1,+1, e), (v, j2,+1, e) ∈
Mw,i, it holds that j1 = j2.)

Unique departure per chip requirement. A chip can leave a vertex along
at most one edge. (For every Mw,i and (v1, j,−1, e1), (v2, j,−1, e2) ∈ Mw,i, it
holds that v1 = v2 and e1 = e2.)

Unique arrival per chip requirement. A chip can arrive at a vertex along
at most one edge. (For every Mw,i and (v1, j,+1, e1), (v2, j,+1, e2) ∈ Mw,i, it
holds that v1 = v2 and e1 = e2.)

Immediate arrival requirement. If a chip leaves a vertex v and arrives at
another vertex u at the same time, then the chip is fired along the edge
uv. (For every Mw,i and (v1, j,−1, e1), (v2, j,+1, e2) ∈ Mw,i, it holds that
e1 = e2 = v1v2.)

Departure location requirement. If a chip leaves a vertex, then this chip
was on this vertex, that is, either the last movement of this chip was to this
vertex, or it was assigned to this vertex by D and did not move. (For every
Mw,i and (v, j,−1, e) ∈ Mw,i, the following holds. Let i′ < i be the greatest
index such that there is a tuple (u, j, σ, e′) ∈ Mw,i′ , if it exists. Then there
is a tuple (v, j,+1, e′) ∈ Mw,i′ for some e′. If no such index i′ exists, then D
assigns j to v.)

Arrival location requirement. If a chip arrives at a vertex, then this chip
was moving along an edge to this vertex, that is, either this chip just left
the other end of the edge, or it left before and did not yet arrive. (For every
Mw,i and (v, j,+1, e) ∈ Mw,i, either (u, j,−1, e) ∈ Mw,i where u �= v, or the
following holds. Let i′ < i be the greatest index such that there is a tuple
(u, j, σ, e′) ∈ Mw,i′ . There is a tuple (u, j,−1, e) ∈ Mw,i′ with u �= v and
(v, j,+1, e) /∈ Mw,i′ .)

Outgoing edges requirement. A chip is fired along each outgoing edge, that
is, for each outgoing edge uv either a new chip leaves u or there is a chip that
left u already and did not yet arrive at v. (For every Aw,i and for every edge uv
such that u ∈ Aw,i, v /∈ Aw,i, the following holds. Either (u, j,−1, uv) ∈ Mw,i

for some j, or there is a 1 ≤ j ≤ k and an i′ < i such that (u, j,−1, uv) ∈ Mw,i′

and (v, j,+1, uv) /∈ Mw,i′′ for all i′ ≤ i′′ < i.)
Previous departure requirement. If a chip leaves a vertex v along some edge

e, and v was in the previous firing set as well, then a chip left v along e when
the previous set was fired. (For every Aw,i and Mw,i, the following holds.
If v ∈ Aw,i, v ∈ Aw,i+1 and (v, j,−1, e) ∈ Mw,i+1 for some j and e, then
(v, j′,−1, e) ∈ Mw,i for some j′ �= j.)

Next arrival requirement. If a chip arrives at a vertex v along some edge
e, and v is not in the next firing set as well, then a chip will arrive at v
along e when the next set is fired. (For every Aw,i and Mw,i, the following
holds. If v /∈ Aw,i, v /∈ Aw,i+1 and (v, j,+1, e) ∈ Mw,i for some j and e, then
(v, j′,+1, e) ∈ Mw,i+1 for some j′ �= j.)

Stable Divisorial Gonality is in NP 87

Reach all vertices requirement. For all vertices w, at the end of the sequence
Aw,1, . . . , Aw,aw

, there is a chip on w. (For every vertex w, either there
is a 1 ≤ j ≤ k and an i such that (w, j,+1, e) ∈ Mw,i for some e and
(w, j,−1, e′) /∈ Mw,i′ for all i′ ≥ i, or there is a 1 ≤ j ≤ k that D assigns to
w and (w, j,−1, e) /∈ Mw,i for all i.)

Now for a given graph G, and such a partial certificate C, we want to decide
whether there is a subdivision of G1 such that for every vertex w ∈ V (G1) there
is a divisor Dw ∼ D with a chip on w such that the sets Aw,1, . . . , Aw,aw

are
the relevant sets of the level set decomposition of the transformation Dw − D.
To decide this, we will construct an integer linear program IC , such that this
program has a solution if and only if there is such a subdivision of G1. Since
integer linear programming is in NP, we know that if there is a solution to
IC , then there is a polynomial certificate D for the ILP instance. In order to
obtain a certificate for the Stable Divisorial Gonality problem, we add
the certificate for the ILP instance to the partial certificate, as defined above.
Thus, a certificate for the Stable Divisorial Gonality problem is then of the
form (C,D).

For the integer linear program IC , we introduce some variables. For every
vertex w ∈ V (G1) and every 1 ≤ i < aw, we define a variable tw,i. This variable
represents the number of sets that is fired between Aw,i and Aw,i+1, including
Aw,i and excluding Aw,i+1. For every edge e of G1, we define a variable le, which
represents the length of e, i.e. the number of edges that e is subdivided into.
Now we construct IC :

– For every edge e ∈ E(G1), include the inequality le ≥ 1. (Every edge has
length at least one.)

– For every vertex w ∈ V (G1) and 1 ≤ i < aw, include the inequality tw,i ≥ 1.
(The set Aw,i is fired, so tw,i ≥ 1.)

– For every edge e = uv of G1 such that there is a set Mw,i with (v, j,−1, e),
(u, j,+1, e) ∈ Mw,i for some j, include le = 1 in IC . (If a chip arrives imme-
diately after it is fired, then the edge has length one.)

– For every vertex w ∈ V (G1) and 1 ≤ i < aw such that there are v, j1, j2, e
such that (v, j1,−1, e) ∈ Mw,i and (v, j2,−1, e) ∈ Mw,i+1, include tw,i = 1 in
IC . (If there is a set A that is fired between Aw,i and Aw,i+1, then Aw,i ⊆
A ⊆ Aw,i+1. It follows that A fires a chip from v along e as well. But then A
is a relevant set. We conclude that tw,i = 1.)

– For every vertex w ∈ V (G1) and 1 ≤ i ≤ aw such that there are v, j, e such
that (v, j,+1, e) ∈ Mw,i, include tw,i = 1 in IC . (Notice that the set fired after
Aw,i either contains v or causes a chip to arrive at v, so this set is relevant.)

– For every vertex w and edge e = uv of G1, let i0 be the smallest index
such that (v, j,−1, e) ∈ Mw,i0 for some j, i1 the greatest index such that
(v, j,−1, e) ∈ Mw,i1 for some j, i2 the smallest index such that (u, j,+1, e) ∈
Mw,i2 for some j, and i3 the greatest index such that (u, j,+1, e) ∈ Mw,i3 for
some j. Include the following inequalities in IC :

88 H. L. Bodlaender et al.

(i1 − i0 + 1)le − (i1 − i0) + (i3 − i2) ≥
i3∑

i=i0

tw,i (1)

(i3 − i2 + 1)le + (i1 − i0) − (i3 − i2) ≤
i3∑

i=i0

tw,i. (2)

(There are i1 − i0 +1 chips that left v along edge e, and i3 − i2 +1 chips that
arrived at u along e. There are

∑i3
i=i0

tw,i sets fired since the first chip left
until the last chip arrives, and every of these sets causes one chip to move one
step. The chips that arrived at u took le steps, the chips that did not arrive
took at least one and at most le − 1 steps. This yields the inequalities.)

Now a certificate for the stable divisorial gonality problem is a pair (C,D).
Here, the partial certificate C contains a divisor D on G1 with labelled chips
and for every vertex w ∈ V (G1) a series of pairs (Aw,1,Mw,1), (Aw,2,Mw,2), . . . ,
(Aw,aw

,Mw,aw
), and satisfies all requirements above. And D is a certificate of

the integer linear program IC .

4 Correctness

It remains to prove that there exists a certificate (C,D) if and only if
sdgon(G) ≤ k.

Lemma 5. Let G be a graph with sdgon(G) ≤ k. There exists a certificate
(C,D).

Proof. By Lemma 2 we know that there is a subdivision H of G1 and a divisor
D with k chips, all on vertices of G1, that reaches all vertices. Choose a labeling
of the chips and let D be the divisor in C.

For every vertex w ∈ V (G1), there is a divisor Dw ∼ D with a chip
on w and a level set decomposition Aw,1, . . . , Aw,aw

. Let Aw,i1 , . . . , Aw,ibw
be

the subsequence consisting of all relevant sets. Let Bw,1 = Aw,i1 ∩ V (G1), . . . ,
Bw,bw = Aw,ibw

∩ V (G1).
Fire the sets Aw,1, . . . , Aw,aw

in order. For every ij , set Mw,j = ∅. When
firing the set Aw,ij , check for every chip h whether it arrives at a vertex v of G1

or leaves a vertex v of G1. If so, add the tuple (v, h, σ, e) to Mw,j , where σ = +1
if h arrives at v and σ = −1 if h leaves v, and e is the edge of G1 along which h
moves.

The divisor D together with the sequences (Bw,i,Mw,i), for every vertex
w ∈ V (G1), is the partial certificate C. Notice that by definition C satisfies all
conditions: Incidence requirement, Departure requirement, Arrival requirement,
Unique departure per edge, Unique arrival per edge, Unique departure per chip,
Unique arrival per chip, Immediate arrival, Departure location, Arrival location,
Outgoing edges requirement, Previous departure, Next arrival and Reach all
vertices.

Stable Divisorial Gonality is in NP 89

For every edge e of G1, define le as the number of edges that e is subdivided
into in H. For every vertex w of G1 and 1 ≤ j ≤ bw−1, define tw,i as the number
of sets between Aw,i+1 and Aw,i, including Aw,i and excluding Aw,i+1. Notice
that this is a solution to the integer linear program IC . So this is a certificate for
this program, write D for this certificate. Now (C,D) is a certificate for (G, k).

�	
We illustrate our proof with an example.

u v

e1

e2

(a)

u

7

v

x2x1

y2 y3y1

(b)

Fig. 1. (a) A graph G (b) A subdivision of G and divisor

Example 6. Consider the graph in Fig. 1a. Consider the subdivision in Fig. 1b
and the divisor D with 7 chips on u. This divisor reaches v, for example by firing
the following sets:

{u}, {u}, {u}, {u, y1}, {u, x1, y1}, {u, x1, y1},

{u, x1, y1, y2}, {u, x1, y1, y2}, {u, x1, x2, y1, y2},

{u, x1, x2, y1, y2, y3}, {u, x1, x2, y1, y2, y3}, {u, x1, x2, y1, y2, y3}.

We describe the corresponding partial certificate (C,D). The divisor D will be
included in C. Notice that there are 8 relevant sets. We obtain the following
series of pairs, after labelling the chips 1, 2, . . . , 7:

Av,1 = {u}, Mv,1 = {(u, 1,−1, e1), (u, 2,−1, e2)}
Av,2 = {u}, Mv,2 = {(u, 3,−1, e1), (u, 4,−1, e2)}
Av,3 = {u}, Mv,3 = {(u, 5,−1, e1), (u, 6,−1, e2)}
Av,4 = {u}, Mv,4 = {(u, 7,−1, e1)}
Av,5 = {u}, Mv,5 = {(v, 1, 1, e1)}
Av,6 = {u}, Mv,6 = {(v, 3, 1, e1), (v, 2, 1, e2)}
Av,7 = {u}, Mv,7 = {(v, 5, 1, e1), (v, 4, 1, e2)}
Av,8 = {u}, Mv,8 = {(v, 7, 1, e1), (v, 6, 1, e2)}

90 H. L. Bodlaender et al.

This gives the partial certificate C. The partial certificate D consists of a solution
to the integer linear program IC . Here, the corresponding program is:

le1 ≥ 1
le2 ≥ 1
tv,i ≥ 1 for i ∈ {1, 2, . . . , 8}
tv,i = 1 for i ∈ {1, 2, 3}
tv,i = 1 for i ∈ {5, 6, 7, 8}

4le1 ≥
8∑

i=0

tv,i

4le1 ≤
8∑

i=0

tv,i

3le2 − 1 ≥
8∑

i=0

tv,i

3le2 + 1 ≤
8∑

i=0

tv,i

We can simplify this to:

le1 ≥ 1
le2 ≥ 1
tv,i = 1 for i ∈ {1, 2, 3, 5, 6, 7, 8}
tv,4 ≥ 1

4le1 ≥ tv,4 + 7
4le1 ≤ tv,4 + 7
3le2 ≥ tv,4 + 7
3le2 ≤ tv,4 + 7

We see that le1 = 3, le2 = 4, tv,4 = 5 and tv,i = 1 for i �= 4 is a solution to this
program, let this solution be the certificate D.

Lemma 7. Let G be a graph and k a natural number. If there exists a certificate
(C,D), then sdgon(G) ≤ k.

The idea of the proof of this lemma is as follows. Suppose we are given a
certificate. Subdivide every edge of G1 in le edges. Make tw,i copies of set Aw,i.
For every edge e = uv we distribute the added vertices over the copies of Aw,i

such that as many chips depart from u along e as described by the tuples and as
many chips arrive at v along e as described by the tuples. Using the conditions
that our certificate satisfies, we can prove that all chips are moved as described
by the tuples in the sets Mw,i. We illustrate this idea in the following example.
For all details see [5, Lemma 4.3].

Example 8. Again consider the graph in Fig. 1a and the certificate in Example 6.
Since le1 = 3, we subdivide e1 with two vertices x1 and x2 and since le2 = 4, we
subdivide e2 with three vertices y1, y2 and y3.

We make 5 copies of set Aw,4, since tw,4 = 5. The first set that fires a chip
along e1 is Av,1 and the last such set is Av,8, in total there are 12 sets that fire a
chip along e1. When we fire the first four sets, a chip departs from u along e1, so
we will not add x1 and x2 to the first four sets. When we fire the last four sets,
a chip arrives at v along e1, so we add x1 and x2 to the last four sets. We add
x1 to the middle four sets, so that the chips move from x1 to x2. This yields:

Av,1 = {u}, Av,2 = {u}, Av,3 = {u}, Av,4,1 = {u}, Av,4,2 = {u, x1},

Av,4,3 = {u, x1}, Av,4,4 = {u, x1}, Av,4,5 = {u, x1}, Av,5 = {u, x1, x2},

Av,6 = {u, x1, x2}, Av,7 = {u, x1, x2}, Av,8 = {u, x1, x2}.

Stable Divisorial Gonality is in NP 91

Analogously for e2, we add the vertices y1, y2 and y3:

{u}, {u}, {u}, {u, y1}, {u, x1, y1}, {u, x1, y1},

{u, x1, y1, y2}, {u, x1, y1, y2}, {u, x1, x2, y1, y2},

{u, x1, x2, y1, y2, y3}, {u, x1, x2, y1, y2, y3}, {u, x1, x2, y1, y2, y3}.

We see that we obtained the same subdivision and firing sets as we started with
in Example 6.

As ILP’s have certificates with polynomially many bits (see e.g., [13]), and the
partial certificate is of polynomial size (see also Lemma 4), we have that, using
Lemmas 5 and 7, the problem whether a given graph has divisorial gonality at
most a given integer k has a polynomial certificate, which gives our main result.

Theorem 9. Stable Divisorial Gonality belongs to the class NP.

Combined with the NP-hardness of Stable Divisorial Gonality by
Gijswijt [11], this yields the following result.

Theorem 10. Stable Divisorial Gonality is NP-complete.

5 A Bound on Subdivisions

In this section, we give as corollary of our main result a bound on the number
of subdivisions needed. We use the following result by Papadimitriou [13].

Theorem 11 (Papadimitriou [13]). Let A be an m × n matrix, and b be a
vector of length m, such that each value in A and b is an integer in the inter-
val [−a,+a]. If Ax = b has a solution with all values being positive integers,
then Ax = b has a solution with all values positive integers that are at most
n(ma)2m+1.

Corollary 12. Let G be a graph with stable divisorial gonality k. There is a
graph H, that is a subdivision of G, with the divisorial gonality of H equal to
the stable divisorial gonality of G, and each edge in H is obtained by subdividing
an edge from G at most mO(km2) times.

Proof. By Lemma 5, we know that there is a certificate whose corresponding ILP
has a solution. The values le in this solution give the number of subdivisions of
edges in G1. If we have an upper bound on the number of subdivisions per edge
needed to obtain H from G1, say α, then 2α+1 is an upper bound on the number
of subdivisions per edge to obtain H from G. Applying Theorem11 to the ILP
gives such a bound, as described below.

The ILP has at most n′ · (2kn′ + n′) variables of the form tw,i, by Lemma 4,
and m′ variables of the form le, with n′ the number of vertices in G1 and m′ the
number of edges in G1. We have n′ = n + m, and m′ = 2m, with n′ the number
of vertices of G and m the number of edges of G.

92 H. L. Bodlaender et al.

The number of equations and inequalities in the ILP is linear in the number of
variables. An inequality can be replaced by an equation by adding one variable.
This gives a total of O(kn′2 + m′) variables and O(kn′2 + m′) equations. Note
that O(kn′2 + m′) = O(km2); as G is connected, n ≤ m − 1. Also, note that
all values in matrix A and vector b are −1, 0, or 1, i.e., we can set a = 1 in
the application of Theorem11. So, by Theorem 11, we obtain that if there is a
solution to the ILP, then there is one where all variables are set to values at
most

O(kn′2 + m′) · O(kn′2 + m′)O(kn′2+m′) = O(km2) · O(km2)O(km2) = mO(km2).

Denoting by k the stable divisorial gonality of G, we know there is at least one
certificate with a solution, so we can bound the number of subdivisions in G1

by mO(km2), which gives our result. �	

6 Conclusion

In this paper, we showed that the problem to decide whether the stable divisorial
gonality of a given graph is at most a given number k belongs to the class
NP. Together with the NP-hardness result of Gijswijt [11], this shows that the
problem is NP-complete. We think our proof technique is interesting: we give a
certificate that describes some of the essential aspects of the firing sequences;
whether there is a subdivision of the graph for which this certificate describes
the firing sequences and thus gives the subdivision that reaches the optimal
divisorial gonality can be expressed in an integer linear program. Membership
in NP then follows by adding the certificate of the ILP to the certificate for the
essential aspects.

As a byproduct of our work, we obtained an upper bound on the number of
subdivisions needed to reach a subdivision of G whose divisorial gonality gives
the stable divisorial gonality of G. Our upper bound still is very high, namely
exponential in a polynomial of the size of the graph. An interesting open problem
is whether this bound on the number of needed subdivisions can be replaced by
a polynomial in the size of the graph. Such a result would give an alternative
(and probably easier) proof of membership in NP: first guess a subdivision, and
then guess the firing sequences.

There are several open problems related to the complexity of computing
the (stable) divisorial gonality of graphs. Are these problems fixed parameter
tractable, i.e., can they be solved in O(f(k)nc) time for constant c and some
function f that depends only on k? Or can they be proven to be W [1]-hard, or
even, is there a constant c, such that deciding if (stable) divisorial gonality of
a given graph G is at most c is already NP-complete? Also, how well can we
approximate the divisorial gonality or stable divisorial gonality of a graph?

Acknowledgements. We thank Gunther Cornelissen and Nils Donselaar for helpful
discussions.

Stable Divisorial Gonality is in NP 93

References

1. Baker, M.: Specialization of linear systems from curves to graphs. Algebra Number
Theory 2(6), 613–653 (2008). https://doi.org/10.2140/ant.2008.2.613

2. Baker, M., Norine, S.: Riemann-Roch and Abel-Jacobi theory on a finite graph.
Adv. Math. 215(2), 766–788 (2007). https://doi.org/10.1016/j.aim.2007.04.012

3. Baker, M., Shokrieh, F.: Chip-firing games, potential theory on graphs, and span-
ning trees. J. Comb. Theory Ser. A 120(1), 164–182 (2013). https://doi.org/10.
1016/j.jcta.2012.07.011

4. Bodewes, J.M., Bodlaender, H.L., Cornelissen, G., van der Wegen, M.: Recognizing
hyperelliptic graphs in polynomial time. In: Brandstädt, A., Köhler, E., Meer, K.
(eds.) Graph-Theoretic Concepts in Computer Science, pp. 52–64 (2018). (extended
abstract of http://arxiv.org/abs/1706.05670)

5. Bodlaender, H.L., van der Wegen, M., van der Zanden, T.C.: Stable divisorial
gonality is in NP (2018). http://arxiv.org/abs/1808.06921

6. Caporaso, L.: Gonality of algebraic curves and graphs. In: Frühbis-Krüger, A.,
Kloosterman, R., Schütt, M. (eds.) Algebraic and Complex Geometry, vol. 71, pp.
77–108. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-05404-9 4

7. Cornelissen, G., Kato, F., Kool, J.: A combinatorial Li-Yau inequality and rational
points on curves. Math. Ann. 361(1–2), 211–258 (2015). https://doi.org/10.1007/
s00208-014-1067-x

8. Corry, S., Perkinson, D.: Divisors and Sandpiles: An Introduction to Chip-Firing.
American Mathematical Society, Providence (2018)

9. van Dobben de Bruyn, J.: Reduced divisors and gonality in finite graphs. Bach-
elor thesis, Leiden University (2012). https://www.universiteitleiden.nl/binaries/
content/assets/science/mi/scripties/bachvandobbendebruyn.pdf

10. van Dobben de Bruyn, J., Gijswijt, D.: Treewidth is a lower bound on graph
gonality (2014). http://arxiv.org/abs/1407.7055v2

11. Gijswijt, D.: Computing divisorial gonality is hard (2015). http://arxiv.org/abs/
1504.06713

12. Hladký, J., Král’, D., Norine, S.: Rank of divisors on tropical curves. J. Comb.
Theory Ser. A 120(7), 1521–1538 (2013). https://doi.org/10.1016/j.jcta.2013.05.
002

13. Papadimitriou, C.H.: On the complexity of integer programming. J. ACM 28(4),
765–768 (1981). https://doi.org/10.1145/322276.322287

https://doi.org/10.2140/ant.2008.2.613
https://doi.org/10.1016/j.aim.2007.04.012
https://doi.org/10.1016/j.jcta.2012.07.011
https://doi.org/10.1016/j.jcta.2012.07.011
http://arxiv.org/abs/1706.05670
http://arxiv.org/abs/1808.06921
https://doi.org/10.1007/978-3-319-05404-9_4
https://doi.org/10.1007/s00208-014-1067-x
https://doi.org/10.1007/s00208-014-1067-x
https://www.universiteitleiden.nl/binaries/content/assets/science/mi/scripties/bachvandobbendebruyn.pdf
https://www.universiteitleiden.nl/binaries/content/assets/science/mi/scripties/bachvandobbendebruyn.pdf
http://arxiv.org/abs/1407.7055v2
http://arxiv.org/abs/1504.06713
http://arxiv.org/abs/1504.06713
https://doi.org/10.1016/j.jcta.2013.05.002
https://doi.org/10.1016/j.jcta.2013.05.002
https://doi.org/10.1145/322276.322287

Coalition Resilient Outcomes in Max
k-Cut Games

Raffaello Carosi1 , Simone Fioravanti2 , Luciano Gualà2 ,
and Gianpiero Monaco3(B)

1 Gran Sasso Science Institute, L’Aquila, Italy
raffaello.carosi@gssi.it

2 University of Rome “Tor Vergata”, Rome, Italy
simonefi92@gmail.com, guala@mat.uniroma2.it
3 DISIM, University of L’Aquila, L’Aquila, Italy

gianpiero.monaco@univaq.it

Abstract. We investigate strong Nash equilibria in the max k-cut game,
where we are given an undirected edge-weighted graph together with a
set {1, . . . , k} of k colors. Nodes represent players and edges capture their
mutual interests. The strategy set of each player v consists of the k colors.
When players select a color they induce a k-coloring or simply a coloring.
Given a coloring, the utility (or payoff) of a player u is the sum of the
weights of the edges {u, v} incident to u, such that the color chosen by u
is different from the one chosen by v. Such games form some of the basic
payoff structures in game theory, model lots of real-world scenarios with
selfish agents and extend or are related to several fundamental classes of
games.

Very little is known about the existence of strong equilibria in max
k-cut games. In this paper we make some steps forward in the com-
prehension of it. We first show that improving deviations performed by
minimal coalitions can cycle, and thus answering negatively the open
problem proposed in [13]. Next, we turn our attention to unweighted
graphs. We first show that any optimal coloring is a 5-SE in this case.
Then, we introduce x-local strong equilibria, namely colorings that are
resilient to deviations by coalitions such that the maximum distance
between every pair of nodes in the coalition is at most x. We prove that
1-local strong equilibria always exist. Finally, we show the existence of
strong Nash equilibria in several interesting specific scenarios.

1 Introduction

We consider the max k-cut game. This is played on an undirected edge-weighted
graph where the n nodes correspond to the players and the edges capture their
mutual interests. The strategy space of each player is a set {1, . . . , k} of k avail-
able colors (we assume that the colors are the same for each player). When
players select a color they induce a k-coloring or simply a coloring. Given a col-
oring, the utility (or payoff) of a player u is the sum of the weights of edges

c© Springer Nature Switzerland AG 2019
B. Catania et al. (Eds.): SOFSEM 2019, LNCS 11376, pp. 94–107, 2019.
https://doi.org/10.1007/978-3-030-10801-4_9

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-10801-4_9&domain=pdf
http://orcid.org/0000-0003-4189-6985
http://orcid.org/0000-0002-3850-0786
http://orcid.org/0000-0001-6976-5579
http://orcid.org/0000-0002-0998-5649
https://doi.org/10.1007/978-3-030-10801-4_9

Coalition Resilient Outcomes in Max k-Cut Games 95

{u, v} incident to u, such that the color chosen by u is different from the one
chosen by v. The objective of every player is to maximize its own utility.

This class of games forms some of the basic payoff structures in game theory,
and can model lots of real-life scenarios. Consider, for example, a set of companies
that have to decide which product to produce in order to maximize their revenue.
Each company has its own competitors (for example the ones that are in the same
region), and it is reasonable to assume that each company wants to minimize
the number of competitors that produce the same product. Another possible
scenario is in a radio setting; radio towers are players and their goal is selecting
a frequency such that neighboring radio-towers have a different one in order to
minimize the interference.

In such games on graphs it is beneficial for each player to anti-coordinate its
choices with the ones of its neighbors (i.e., selecting a different color). As a con-
sequence, the players may attempt to increase their utility by coordinating their
choices in groups (also called coalitions). Therefore, in our studies we focus on
equilibrium concepts that are resilient to deviations of groups. Along this direc-
tion, a very classic notion of equilibrium is the strong Nash equilibrium (SE) [2]
that is a coloring in which no coalition, taking the actions of its complements
as given, can cooperatively deviate in a way that benefits all of its members,
in the sense that every player of the coalition strictly improves its utility. The
notion of SE is a very strong equilibrium concept. A weaker one is the notion of
q-Strong Equilibrium (q-SE), for some q ≤ n, where only coalitions of at most
q players are allowed to cooperatively change their strategies. Notice that the
1-SE is equivalent to the Nash equilibrium (NE), while the n-SE is equivalent
to the SE.

When it exists, an SE is a very robust state of the game and it is also more
sustainable than an NE. However, while NE always exists in these games [9,
15,18], little is known about the existence of strong equilibria in Max k-cut
games. Indeed, to the best of our knowledge, there are basically two papers of
the literature dealing with such issue. In [12] the authors show that an optimal
strategy profile (or optimal coloring), i.e., a coloring that maximizes the sum of
the players’ utilities or equivalently, a coloring that maximizes the k-cut, is an SE
for the max 2-cut game, and it is a 3-SE, for the max k-cut game, for any k ≥ 2.
Moreover, they further show that an optimal strategy profile is not necessarily a
4-SE, for any k ≥ 3. In [13] they show that, if the number of colors is at least the
number of players minus two, then an optimal strategy profile is an SE. Finally,
they show that the dynamics, where at each step a coalition can deviate so that
all of its members strictly improve their utility by changing strategy, can cycle.
The main consequence of this latter fact is that no strong potential function1

can exist for the game, and hence the existence of an SE cannot be proved by
simply exhibiting it. It is worth noticing that strong potential functions are one
of the main tools used to prove the existence of an SE.

All the above results suggest that it is hard to understand whether SE always
exist for max k-cut games. In this paper, although we do not prove or disprove

1 See Sect. 2 for the definition of strong potential function.

96 R. Carosi et al.

that every instance of the max k-cut game possesses a strong equilibrium, we
make some step forward in the comprehension of it.

Our Results. As pointed out in [13], sometimes the existence of an SE is
proved by means of a potential function in which the set of deviating coalitions
is restricted to minimal coalitions only, where a coalition is minimal if none of its
proper subsets can perform an improvement themselves (see for example [14]).
Understanding whether this approach can be used in the max k-cut game is
mentioned as an open problem in [13]. We answer this question negatively (see
Proposition 2) by showing an instance in which there is a cycle of improving
deviations performed by minimal coalitions only.

We then focus on the unweighted case, where the utility of a player in a
coloring is simply the number of neighbors with different color from its own, and
we provide some non-trivial existential results for it. In particular, in Sect. 4 we
show that 5-SE always exist for the max k-cut game. This is an improvement
with respect to the existence of 3-SE [12].

Besides q-SE, we also consider another equilibrium concept that is weaker
than the notion of SE. Observe that in a q-SE two players can form a coalition
even if they are far from each other in the graph. This is unrealistic in many
practical scenarios. In oder to encompass this aspect, in Sect. 5, we introduce
the concept of x-Local SE (x-LSE). A coloring is an x-LSE if it is resilient to
deviations by coalitions such that the shortest path between every pair of nodes
in the coalition is long at most x. Therefore, the notion of x-LSE also takes
into account that certain players may not have the possibility of communicating
to each other and thus to form a coalition. This seems an important point to
consider when modeling a situation of strategic interaction between agents. Here
we suppose that the input graph also represents knowledge between players, that
is two nodes know each other if they are connected by an edge. In this paper we
focus on the case x = 1, that is each player in the coalition must have a social
connection (namely an edge) towards every deviating player. We show that, for
any k, a 1-LSE always exists. Interestingly enough, our analysis also provides a
characterization of the set of local strong equilibria which relates 1-LSE to q-SE.

Finally, in Sect. 6, we show that an SE always exists for some special classes
of unweighted graphs. More precisely, in Corollary 12, we prove that in graphs
with large girth, any optimal strategy profile is an SE, for any k ≥ 2. Moreover,
in Proposition 13, we prove that whenever the number of colors k is large enough
with respect to the maximum degree of the graph, then any optimal strategy
profile is an SE.

Due to space constraints some proofs have been omitted. All the details can
be found in the full version of the paper [7].

Further Related Work. The max k-cut game has been first investigated
in [15,18], where the authors show that, when the graph is unweighted and
undirected, it is possible to compute a Nash Equilibrium in polynomial time
by exploiting the potential function method. When the graph is weighted undi-
rected, even if the potential function ensures the existence of NE the problem
of computing an equilibrium is PLS-complete even for k = 2 [22]. In fact, for

Coalition Resilient Outcomes in Max k-Cut Games 97

such a value of k, it coincides with the classical max cut game. In [9] the authors
show the existence of NE in generalized max k-cut games where players also
have an extra profit depending on the chosen color. When the graph is directed,
the max k-cut game in general does not admit a potential function. Indeed, in
this case, even the problem of understanding whether they admit a Nash equi-
librium is NP-complete for any fixed k ≥ 2 [18]. In [8], the authors present a
randomized polynomial time algorithm that computes a constant approximate
Nash equilibrium for a large class of directed unweighted graphs.

Studies on the performance of Nash equilibria and strong Nash equilibria can
be found in [9,15,18] and in [11–13], respectively.

A related stream of research considers coordination games. The idea is that
agents are rewarded for choosing common strategies in order to capture the
influences. Apt et al. [1] propose a coordination game modeled as an undirected
graph where nodes are players and each player has a list of allowed colors. Given
a coloring, an agent has a payoff equal to the number of adjacent nodes with
its same color. The authors show that NE and 2-SE always exists, and give an
example in which no 3-SE exists. Moreover, they prove that strong equilibria
exist for various special cases.

Panagopoulou and Spirakis [21] study games where Nash equilibria are proper
node coloring in undirected unweighted graphs setting. In particular, they con-
sider the game where each agent v has to choose a color among k available ones
and its payoff is equal to the number of nodes in the graph that have chosen
its same color, unless some neighbor of v has chosen the same color, and in this
case the payoff of v is 0. They prove that this is a potential game and that a
Nash equilibrium can be found in polynomial time.

Max k-cut games are related to many other fundamental games considered in
the scientific literature. One example is given by the graphical games introduced
in [17]. In these games the payoff of each agent depends only on the strategies of
its neighbors in a given social knowledge graph defined over the set of the agents,
where an arc (i, j) means that j influences i’s payoff. Max k-cut games can also
be seen as a particular hedonic game (see [3] for a nice introduction to hedonic
games) with an upper bound (i.e., k) to the number of coalitions. Specifically,
given a k-coloring, the agents with the same color can be seen as members of
the same coalition of the hedonic game. In order to get the equivalence among
the two games, the hedonic utility of an agent v can be defined as the overall
number of its neighbors minus the number of agents of its neighborhood that are
in the same coalition. Nash equilibria issues in hedonic games have been largely
investigated under several different assumptions [5,6,20] (just to cite a few).

Concerning local coalitions, a notion of equilibrium close in spirit to our
LSE has been studied in the context of network design games in [19]. Moreover,
locality aspects have been also considered when restricting the strategy space in
single-player deviations (see for example [4,10]).

Finally, it is worth mentioning the classical optimization max cut problem,
a very famous problem in graph theory that was proven to be NP-Hard by
Karp [16].

98 R. Carosi et al.

2 Preliminaries

Let G = (V,E,w) be an undirected weighted graph, where |V | = n, |E| = m,
and w : E → R+. Let δv(G) =

∑
u∈V :{v,u}∈E w({v, u}) denote the degree of

v, that is the sum of the weights of all the edges incident to v. Let δM (G) =
maxv∈V δv(G) denotes the maximum degree in G. Given a set of nodes V ′ ⊆ V ,
let G(V ′) = (V ′, E′, w) be the subgraph induced by V ′, where E′ = {{v, u} ∈
E | v ∈ V ′ ∧ u ∈ V ′}. For any pair of nodes v, u ∈ V , the distance distG(v, u)
between v and u in G is equal to the length of the shortest path from v to u2.

Given G and a set of colors K = {1, . . . k}, the max k-cut problem is to
partition the vertices into k subsets V1, . . . , Vk such that the sum of the weights
of the edges having the endpoints in different sets is maximized. A strategic
version of the max k-cut problem is the max k-cut game, and it is defined as
follows. There are |V | players, and each node of G is controlled by exactly one
rational player. Players have the same strategy set, and it is equal to the set
of colors {1, . . . k}. A strategy profile, or coloring σ : V → K, is a labeling of
nodes of G in which each player v is colored σ(v). Given a coloring σ, let E(σ) =
{{u, v} : σ(u) �= σ(v)} be the edges that are proper with respect to σ, and let
δi
u(σ) =

∑
v∈V w({u, v})σ(v)=i be the sum of the weights of the edges incident to

u and towards nodes colored i in σ. The utility (or payoff) of player u is defined
as μu(σ) =

∑
v∈V :{u,v}∈E∧σ(u) �=σ(v) w({u, v}). The cut-value, or size of the cut,

of a coloring S(σ) is defined as follows: S(σ) =
∑

{u,v}∈E∧σ(u) �=σ(v) w({u, v}).
The social welfare of a coloring σ is defined as the sum of players’ utilities, that
is SW (σ) =

∑
v∈V μv(σ) = 2S(σ). Moreover, an optimal strategy profile (or

optimal coloring) is defined to be a strategy profile which maximizes the sum of
the players’ utilities and thus the cut-value.

Given a coalition C ⊆ V and a coloring σ, let CK(σ) = {i ∈ K | ∃ v ∈
C s.t. σ(v) = i} be the set of colors used by the coalition C in σ. Moreover, for
each color i, let Ci(σ) = {v ∈ C | σ(v) = i} be the set of players in C that are
colored i in σ.

Given a strategy profile σ, a player v and a coalition C, we denote by σ−v

and σ−C the strategy profile σ besides the strategy played by v and by C,
respectively. Moreover, we denote by σC the coloring σ restricted only to players
in C, and we use (σ−v, σ(v)) and (σ−C , σC) to denote σ.

A profile σ is a Nash Equilibrium (NE) if no player can improve its payoff by
deviating unilaterally from σ, that is, μv(σ−v, i) ≤ μv(σ) for each player v ∈ V
and for each color i ∈ K. For each 1 ≤ q ≤ n, σ is a q-Strong Equilibrium
(q-SE) if there exists no coalition C with |C| ≤ q that can cooperatively deviate
from σC to σ′

C in such a way that every player in C strictly improves its utility
in (σ−C , σ′

C). The 1-strong equilibrium is equivalent to the Nash equilibrium,
while for q = n an n-strong equilibrium is called strong equilibrium (SE). When
a coalition C deviates so that all of its members strictly improve their utility,
then we say it performs a strong improvement. A strong improvement is said

2 Even if the graph is weighted, we consider here the hop-distance, where the length
of a path is defined as the number of its edges.

Coalition Resilient Outcomes in Max k-Cut Games 99

to be minimal if no proper subsets of the deviating coalition can perform an
improvement themselves, and the coalition itself is said to be minimal. A strong
improving dynamics (shortly dynamics) is a sequence of strong improving moves.
A game is said to be convergent if, given any initial state, any sequence of
improving moves leads to a strong Nash equilibrium. Given a coloring σ, if a
coalition C induces a new coloring σ′ after deviating, then we say that the set
of edges E(σ′)\E(σ) enters the cut, and that the set of edges E(σ)\E(σ′) leaves
the cut.

A potential function Φ is a function mapping strategy profiles into real values
in such a way that, for each coloring σ and each player v, whenever v can
profitably deviate from σ yielding a new coloring σ′, it holds that Φ(σ′) > Φ(σ).
When this is true also for profitably deviations performed by coalitions, the
function is called strong potential function.

We conclude this section by stating some properties about minimal coalitions
that will be useful later.

Proposition 1. Let σ be a coloring, and let C be a minimal coalition that can
perform a strong improvement from σ. Let σ′ be the resulting coloring. Then,
the following properties hold: (i) CK(σ) = CK(σ′); and (ii) if G(C) is acyclic,
then changing from σ to σ′ strictly increases the size of the cut.

3 Non-existence of a Minimal Strong Potential Function

In this section we focus on weighted graphs and, as discussed in the introduction,
we close an open problem stated by Gourvès and Monnot in [13] by providing an
instance in which there is a cycle of improving deviations performed by minimal
coalitions only. More specifically, the loop is composed by the deviation of a
clique, followed by four improvements performed by single players.

Fig. 1. Instance for which the strong improvement dynamics cycles.

100 R. Carosi et al.

Proposition 2. No strong potential function exists for the max k-cut game,
even if only minimal coalitions are allowed to deviate.

Proof. Consider the graph G and the coloring σ depicted in Fig. 1, where, if a
node v is contained in the dashed ellipse labeled i, then v is colored i in σ, and
where M and ε denote a very large and small positive value, respectively.

Consider coalition C = {a, b, d, g} and consider the deviation σ′ where
σ′(a) = 2, σ′(b) = 3, σ′(d) = 1, σ′(g) = 1. It is easy to check that this deviation
is profitable for players in C. In fact, they all improve their utility by ε.

Player a has utility 3+M in σ, and since it has an edge of weight M towards
node i having color 3, a can only deviate to color 2. Hence, a strictly improves
its utility from 3 + M to 3 + M + ε only if node d changes color. Analogously,
in σ, d has one edge of weight M towards node h having color 3. Thus, d can
only switch to color 1 and this is convenient for it only if both a and b leave
color 1. If this happens, d’s utility increases by at least ε. Similarly to a, player
b deviates to color 3 only if player g switches to color 1, and this happens only if
both a and b deviates too. To sum up, both d and g deviate if and only if a and b
deviate too. Thus, C is minimal. Note that edge {d, g} becomes monochromatic,
but d and g’s new payoffs make the deviation worth it anyway, since they both
increase their utility by ε.

After the players in C jointly deviate from σ, player a, who is now colored 2,
can go back to color 1, improving its utility from 3+ε+M to 4+M . Because of
a’s deviation, d’s utility goes down to 1/2 + 4ε + M . Thus, it goes back to color
2, achieving 1 + ε + M . Also g, whose utility is now 1/2 + ε + M , deviates to its
old color in σ, that is color 3, and it gets 1/2 + 3ε + M . In this configuration b’
utility is 5/2 + 3ε + M . Thus going back to color 1 its utility improves to 3 + M
and we are now back to the initial configuration σ.
�

4 The Existence of a 5-SE in Unweighted Graphs

From now on we will focus on unweighted graphs. In [12] it is shown that in
the weighted case, any optimal strategy profile is always a 3-SE, and there are
weighted graphs in which every optimal coloring is not a 4-SE. In this section
we improve this result for unweighted graphs, by showing that a 5-SE always
exists. This also establishes a separation between the weighted and unweighted
case. In particular, we show that by performing minimal strong improvements
with coalitions of size at most five, the cut value increases. It implies that the
cut value is a potential function and thus the dynamics converges to 5-SE. We
start by showing a simple lemma that is used in the rest of the section.

Lemma 3. Let σ be an NE and let C be a minimal coalition which would profit
by deviating from σ to σ′. If there exists two players u, x ∈ C such that:

(i) σ(u) �= σ(x)
(ii) σ′(u) = σ(x)
(iii) {y ∈ C|{u, y} ∈ E, σ(y) = σ(x)} = {x}

Coalition Resilient Outcomes in Max k-Cut Games 101

then δ
σ(u)
u (σ) = δ

σ′(u)
u (σ). Moreover, if there exists a third player v ∈ C such

that σ(v) �= σ(x) and σ′(v) = σ(x), then {u, v} /∈ E.

Proof. Since σ is an NE we know that u cannot improve its utility by deviating
alone to σ′(u) which implies:

δσ(u)
u (σ) ≤ δσ′(u)

u (σ).

By (iii) we know that, moving from σ to σ′, the only neighbor of u which
leaves σ′(u) is x which means that its new neighbors colored σ′(u) are at least
δ

σ′(u)
u (σ) − 1, because, a priori, other players could move to the same strategy

in σ′, hence δ
σ′(u)
u (σ′) ≥ δ

σ′(u)
u (σ) − 1. Moreover, player u strictly improves its

utility, which means δ
σ′(u)
u (σ′) < δ

σ(u)
u (σ). Using both inequalities we obtain:

δσ(u)
u (σ) > δσ′(u)

u (σ) − 1.

As a consequence, we have δ
σ(u)
u (σ) ≥ δ

σ′(u)
u (σ), and hence δ

σ(u)
u (σ) = δ

σ′(u)
u (σ),

which in turn implies in particular that δ
σ′(u)
u (σ′) = δ

σ′(u)
u (σ) − 1, i.e. u’s utility

improves exactly by one. Thus, given a player v like in the hypothesis, if {u, v} ∈
E then u’s utility would not increase after the deviation.
�

Proposition 1 and Lemma 3 can be used to prove the following proposition,
which shows that when the size of a deviating coalition C is related in a cer-
tain way to the number of colors used by the players in C, then the improving
deviation always increases the size of the cut.

Proposition 4. Let σ be an NE and let C be a minimal coalition which would
profit by deviating from σ to σ′. If |CK(σ)| ∈ {2, |C|−1, |C|}, then the deviation
strictly improves the size of the cut.

Gourvès and Monnot [12] show that in weighted graphs an optimal solution
is always a 3-strong equilibrium, that is, it is resilient to any joint deviation by
at most three players. Proposition 4 already extends this result since it implies
that unweighted graphs admit a potential function when minimal coalitions of
at most four players are allowed to deviate, implying that 4-SE always exists.
We now prove that the cut value is a potential function even when the deviation
is extended to coalitions of size at most five. This implies that a 5-SE always
exists in unweighted graphs.

Theorem 5. Any optimal strategy profile is a 5-SE.

5 Local Strong Equilibria

In this section we introduce and discuss local strong equilibria. As our main
result, we show that, for any k, such an equilibrium always exists. Interestingly
enough, our analysis also provides a characterization of the set of local strong
equilibria which relates them to q-SE.

102 R. Carosi et al.

Let C ⊆ V be a set of players. We say that C is an x-local coalition if the
distance in G between any two players in C is at most x. Moreover, we define an
x-Local Strong Equilibrium (x-LSE) to be a coloring in which no x-local coalition
can profitably deviate. In this section, we will consider only the case x = 1, that
is, the coalition C induces a clique. We will use LSE in place of 1-LSE.

Let us introduce some additional notation. Given a node u and a strategy
profile σ, we denote by cu(σ) the cost of u in σ, namely the number of neighbors of
u that have the same color of u in σ, i.e. δ

σ(u)
u (σ). Notice that cu(σ) = δu−μu(σ).

Given a coalition C, we also define cu,C(σ) = |{(u, v) ∈ E|v ∈ C, σ(v) = σ(u)}|.
We now prove a technical lemma which gives some necessary conditions for

a clique to deviate profitably from an NE.

Lemma 6. Let σ be an NE. Suppose there exists a deviation σ′ such that all
the members of C can lower their cost changing from σ to σ′. The following
conditions must hold:

(i) |Ci(σ)| = |Ci(σ′)| for all i = 1, . . . , k;
(ii) cu(σ) − cu(σ′) = 1 for all u ∈ C;
(iii) cu(σ) = cu(σ−u, σ′(u)) for all u ∈ C.

The following lemma underlines a very interesting property of deviating
cliques, which allows us to study only cliques formed by at most k players.

Lemma 7. Let C be a clique which profits by deviating from an NE σ to σ′.
Then there exists j ≤ |CK(σ)| and a subcoalition C ′ = {ui, . . . , uj} ⊆ C whose
players can improve their payoffs by deviating alone to the strategy they use in
σ′. Moreover it holds:

(i) σ′(ui) = σ(ui+1) for all i = 1, . . . , j − 1;
(ii) σ′(uj) = σ(u1).

Proof. Consider a player v1 ∈ C and assume without loss of generality that
σ(v1) = 1 and σ′(v1) = 2. By Lemma 6, there is at least one player, say v2, in C
such that σ(v2) = 2. If σ′(v2) = 1, then C ′ = {v1, v2}. Otherwise, call without
loss of generality σ′(v2) = 3. Then, once again by Lemma 6 there is a node in C,
say v3, with σ(v2) = 2. We can iterate this argument until we get a node vh with
� := σ′(vh) ∈ {1, 2, . . . , h − 1}. We set C ′ = {v�, v�+1, . . . , vh} and set j = |C ′|.
Notice that C ′ already satisfies the properties 1 and 2 of the statement of the
lemma (observe also that it could be C ′ = C).

Let σ∗ be the strategy profile in which the players in C ′ play as in σ′ while
the others play as in σ. It remains to show that all players in C ′ is improving its
utility by changing from σ to σ∗. Let ν = σ∗(vi). By definition of σ∗, we claim
that cvi

(σ∗) = cvi
(σ−vi

, ν) − 1. This is true because there is exactly one player
in C ′ that leaves color ν and thus the number of vi’s neighbors with such a color
decreases by 1. Hence,

cvi
(σ∗) = cvi

(σ−vi
, ν) − 1

= cvi
(σ−vi

, σ′(vi)) − 1
= cvi

(σ) − 1,

Coalition Resilient Outcomes in Max k-Cut Games 103

where in the last equality we used property (iii) of Lemma 6 on σ′.
�
Lemma 7 allows us to prove the main result of this section, which is the

following:

Theorem 8. Any optimal strategy profile is an LSE.

Proof. Let σ be an optimal strategy profile and assume σ is not an LSE. Clearly,
σ is an NE. Then there exists a coalition C = {u1, . . . , uj} of j ≤ k players and
a strategy profile σ′ which satisfy the conditions of Lemma 7. We will show that
the size of the cut increases by exactly j from σ to σ′, which is a contradiction.

First of all, observe that all the edges between players of C are in the cut
both in σ and σ′. Moreover, from property (ii) of Lemma6, we have that the
utility of each ui ∈ C increases exactly by one. Let Ei = {{ui, v}|v /∈ C}. As a
consequence, we have that, for each ui ∈ C, the number of edges in Ei crossing
the cut increases by exactly one. Since Ei and Ej are disjoint for i �= j, the size
of the cut increases exactly by j from σ to σ′.
�

NE

2-SE LSE

k-SE

SE

Fig. 2. Equilibria in the unweighted max-k-cut game

We conclude this section by discussing some consequences of our analysis
about how LSE is related to q-SE: these results are depicted in Fig. 2. Some
inclusions are straightforward from the definition of q-SE. Here we show that an
LSE is always a 2-SE and a k-SE is always an LSE. Concerning the former fact,
note that a coalition of 2 players can profitably deviate from an NE σ if and only
if there exists an edge between them. In fact, otherwise, they could profitably
deviate alone from σ. This means that such a coalition is a clique of two players,
and hence a local coalition. As far as the latter relation is concerned, we prove
the following:

Proposition 9. A k-SE is always an LSE.

104 R. Carosi et al.

Proof. Let σ be a k-SE and, by contradiction, let C be a clique which would
profit deviating to σ′. By Lemma 7 there exists a minimal subcoalition C ′ of at
most k players which can profit deviating alone, which is a contradiction.
�

It is worth noticing that, as a consequence, when k = 2 the set of LSE
coincides exactly with the set of 2-SE. On the other hand, for k ≥ 3, it is possible
to show that all inclusions are proper (see the full version of the paper [7]).

6 Existence of SE for Special Cases

In this section we show that an SE always exists for some special classes of
unweighted graphs. More precisely, we prove that in graphs with large girth or
large degree, any optimal strategy profile is an SE. It is worth noticing that,
for general graphs, we have already proved that any optimal coloring is both a
5-SE and an LSE. We conjecture that it is indeed always an SE, even if this
seems to be challenging to prove in general. A natural approach could be that
of using the size of the cut as a strong potential function, that is ΦS(σ) = S(σ),
as it has already been done for proving that max k-cut games admit a Nash
equilibrium [15,18]. However, it can be argued that this approach cannot work
in general, since a profitable coalition deviation could sometimes result in a
cut-value decrease. This is stated in the following proposition.

Proposition 10. The size of the cut is not a strong potential function for the
max k-cut game on unweighted graphs.

Even though there exist strong improvements that can decrease ΦS , it does
not mean that such function cannot be used in some interesting special set-
ting. Indeed, there are cases in which ΦS ’s value always increases after a strong
improvement, that is, they admit a strong potential function. From now on we
assume that only minimal coalitions can deviate.

Bounded Girth. Given a graph G, let ρ(G) be its girth, that is the size of the
minimum cycle. We show that a graph with girth ρ(G) always admits a q-SE,
for q ≤ 2ρ(G) − 3. This implies that when ρ(G) ≥ (|V | + 3)/2 then there always
exists a strong equilibrium.

Proposition 11. Given an unweighted graph G with girth ρ(G) and any number
of colors k, an optimal coloring is a (2ρ(G) − 3)-SE.

Corollary 12. If ρ(G) ≥ (|V | + 3)/2, then an optimal coloring is always an
SE.

Bounded Degree. Here we show that whenever the number of colors k is large
enough with respect to the maximum degree of the graph, then any optimal
strategy profile is an SE. More precisely, we prove the following:

Coalition Resilient Outcomes in Max k-Cut Games 105

Proposition 13. Any optimal strategy profile is an SE when k ≥⌈(
δM + 1

)
/2

⌉
.

Proof. Let σ∗ be an optimal strategy profile and assume σ∗ is not an SE. Then
a coalition C and a strategy profile σ′ exist such that all players in C strictly
improves their utility by deviating to σ′. We will show that in this case the size
of the cut will strictly increase in σ′, which contradicts the optimality of σ∗.

As we already pointed out, σ∗ is NE. Moreover, consider any node u. Since
its degree δu is at most δM ≤ 2k − 1, we have that in any coloring, by the
pigeonhole principle, there must exist a color that appears at most once in u’s
neighborhood. As a consequence, since σ∗ is an NE, it holds that μu(σ∗) ≥ δu−1.
On the other hand, since all nodes in C must strictly improve their utility, we
have that, for every u ∈ C, μu(σ∗) = δu − 1 and μu(σ′) = δu. This implies
that the size of the cut must strictly increase. Indeed, consider the edge set
F = {{u, v}|u ∈ C or v ∈ C}. Clearly, only edges in F can enter or leave the
cut when the strategy profile changes from σ∗ to σ′. Moreover, all edges in F
belong to the cut E(σ′) while there is at least an edge that is not in E(σ∗).
�

7 Conclusions and Future Work

We investigated coalition resilient equilibria in the max k-cut game. We solved
an open problem proposed in [13] on weighted graphs by showing that improving
deviations performed by minimal coalitions can cycle. We then provided some
positive results on unweighted graphs. More precisely, we proved that any opti-
mal coloring is both a 5-SE and a 1-LSE. We also showed that SE exist for some
special cases, namely, when the graph has a large girth or the number of colors
is large enough with respect to the maximum degree.

Even though we made a progress on the topic, the problem of understanding
whether any instance of the max k-cut game admits strong equilibria is still
open on both weighted and unweighted graphs. We conjecture that an optimal
strategy profile is always an SE in the unweighted case. However, proving that
seems to be really challenging. Another possible way to prove the existence of
an SE would be that of providing a strong potential function. We proved in
Proposition 2 that such function cannot exist on weighted graphs even when
only minimal coalitions can deviate but it is still unknown whether a strong
potential function exists or not on unweighted graphs. Along this direction, an
interesting intermediate step could be that of proving the existence of q-SE for
possibly non-constant values of q > 5.

Regarding x-local coalitions, our results are only about the case x = 1 on
unweighted graphs. Some other research questions could be the study of the
existence of x-local strong equilibrium for x > 1, and how to extend our results
to weighted graphs. For instance, it would be interesting to investigate whether
any instance of the max k-cut game on weighted graphs admits local strong
equilibria.

106 R. Carosi et al.

References

1. Apt, K.R., de Keijzer, B., Rahn, M., Schäfer, G., Simon, S.: Coordination games
on graphs. Int. J. Game Theory 46(3), 851–877 (2017). https://doi.org/10.1007/
s00182-016-0560-8

2. Aumann, R.J.: Acceptable points in games of perfect information. Pac. J. Math.
10, 381–417 (1960)

3. Aziz, H., Savani, R.: Hedonic games. In: Handbook of Computational Social Choice,
chapter 15. Cambridge University Press (2016)

4. Bilò, D., Gualà, L., Leucci, S., Proietti, G.: Locality-based network creation games.
In: 26th ACM Symposium on Parallelism in Algorithms and Architectures, SPAA,
pp. 277–286 (2014)

5. Bilò, V., Fanelli, A., Flammini, M., Monaco, G., Moscardelli, L.: Nash stable out-
comes in fractional hedonic games: existence, efficiency and computation. J. Artif.
Intell. 62, 315–371 (2018)

6. Bogomolnaia, A., Jackson, M.O.: The stability of hedonic coalition structures.
Games Econ. Behav. 38, 201–230 (2002). https://doi.org/10.1006/game.2001.0877

7. Carosi, R., Fioravanti, S., Gualà, L., Monaco, G.: Coalition resilient outcomes in
max k-cut games. CoRR, abs/1810.09278 (2019)

8. Carosi, R., Flammini, M., Monaco, G.: Computing approximate pure nash equi-
libria in digraph k-coloring games. In: Proceedings of the 16th Conference on
Autonomous Agents and MultiAgent Systems, AAMAS, pp. 911–919 (2017)

9. Carosi, R., Monaco, G.: Generalized graph k-coloring games. In: Proceedings of
the 24th International Conference on Computing and Combinatorics, COCOON,
pp. 268–279 (2018). https://doi.org/10.1007/978-3-319-94776-1 23

10. Cord-Landwehr, A., Lenzner, P.: Network creation games: think global – act local.
In: Italiano, G.F., Pighizzini, G., Sannella, D.T. (eds.) MFCS 2015. LNCS, vol.
9235, pp. 248–260. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-
662-48054-0 21

11. Feldman, M., Friedler, O.: A unified framework for strong price of anarchy in
clustering games. In: Halldórsson, M.M., Iwama, K., Kobayashi, N., Speckmann,
B. (eds.) ICALP 2015. LNCS, vol. 9135, pp. 601–613. Springer, Heidelberg (2015).
https://doi.org/10.1007/978-3-662-47666-6 48

12. Gourvès, L., Monnot, J.: On strong equilibria in the max cut game. In: Leonardi,
S. (ed.) WINE 2009. LNCS, vol. 5929, pp. 608–615. Springer, Heidelberg (2009).
https://doi.org/10.1007/978-3-642-10841-9 62

13. Gourvès, L., Monnot, J.: The max k -cut game and its strong equilibria. In: Kra-
tochv́ıl, J., Li, A., Fiala, J., Kolman, P. (eds.) TAMC 2010. LNCS, vol. 6108, pp.
234–246. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-13562-
0 22

14. Harks, T., Klimm, M., Möhring, R.H.: Strong nash equilibria in games with the
lexicographical improvement property. Int. J. Game Theory 42(2), 461–482 (2013).
https://doi.org/10.1007/s00182-012-0322-1

15. Hoefer, M.: Cost sharing and clustering under distributed competition. Ph.D. the-
sis, University of Konstanz (2007)

16. Karp, R.M.: Reducibility among combinatorial problems. In: Miller, R.E.,
Thatcher, J.W., Bohlinger, J.D. (eds.) Complexity of Computer Computations.
IRSS, pp. 85–103. Springer, Boston (1972). https://doi.org/10.1007/978-1-4684-
2001-2 9

https://doi.org/10.1007/s00182-016-0560-8
https://doi.org/10.1007/s00182-016-0560-8
https://doi.org/10.1006/game.2001.0877
https://doi.org/10.1007/978-3-319-94776-1_23
https://doi.org/10.1007/978-3-662-48054-0_21
https://doi.org/10.1007/978-3-662-48054-0_21
https://doi.org/10.1007/978-3-662-47666-6_48
https://doi.org/10.1007/978-3-642-10841-9_62
https://doi.org/10.1007/978-3-642-13562-0_22
https://doi.org/10.1007/978-3-642-13562-0_22
https://doi.org/10.1007/s00182-012-0322-1
https://doi.org/10.1007/978-1-4684-2001-2_9
https://doi.org/10.1007/978-1-4684-2001-2_9

Coalition Resilient Outcomes in Max k-Cut Games 107

17. Kearns, M.J., Littman, M.L., Singh, S.P.: Graphical models for game theory. In:
Proceedings of the 17th Conference in Uncertainty in Artificial Intelligence, UAI,
pp. 253–260 (2001)

18. Kun, J., Powers, B., Reyzin, L.: Anti-coordination games and stable graph color-
ings. In: Vöcking, B. (ed.) SAGT 2013. LNCS, vol. 8146, pp. 122–133. Springer,
Heidelberg (2013). https://doi.org/10.1007/978-3-642-41392-6 11

19. Leonardi, S., Sankowski, P.: Network formation games with local coalitions. In:
Proceedings of the Twenty-Sixth Annual ACM Symposium on Principles of Dis-
tributed Computing, PODC, pp. 299–305 (2007)

20. Monaco, G., Moscardelli, L., Velaj, Y.: Stable outcomes in modified fractional hedo-
nic games. In: Proceedings of the 17th International Conference on Autonomous
Agents and MultiAgent Systems, AAMAS, pp. 937–945 (2018)

21. Panagopoulou, P.N., Spirakis, P.G.: A game theoretic approach for efficient graph
coloring. In: Hong, S.-H., Nagamochi, H., Fukunaga, T. (eds.) ISAAC 2008. LNCS,
vol. 5369, pp. 183–195. Springer, Heidelberg (2008). https://doi.org/10.1007/978-
3-540-92182-0 19

22. Schäffer, A.A., Yannakakis, M.: Simple local search problems that are hard to solve.
SIAM J. Comput. 20(1), 56–87 (1991). https://doi.org/10.1137/0220004

https://doi.org/10.1007/978-3-642-41392-6_11
https://doi.org/10.1007/978-3-540-92182-0_19
https://doi.org/10.1007/978-3-540-92182-0_19
https://doi.org/10.1137/0220004

Phase Transition in Matched Formulas
and a Heuristic for Biclique Satisfiability

Miloš Chromý and Petr Kučera(B)

Faculty of Mathematics and Physics, Department of Theoretical Computer Science
and Mathematical Logic, Charles University,

Malostranské nám. 25, 118 00 Praha 1, Czech Republic
{chromy,kucerap}@ktiml.mff.cuni.cz

Abstract. A matched formula is a CNF formula whose incidence graph
admits a matching which matches a distinct variable to every clause. We
study phase transition in a context of matched formulas and their gener-
alization of biclique satisfiable formulas. We have performed experiments
to find a phase transition of property “being matched” with respect to
the ratio m/n where m is the number of clauses and n is the number
of variables of the input formula ϕ. We compare the results of experi-
ments to a theoretical lower bound which was shown by Franco and Van
Gelder [11]. Any matched formula is satisfiable, and it remains satisfiable
even if we change polarities of any literal occurrences. Szeider [17] gener-
alized matched formulas into two classes having the same property—var-
satisfiable and biclique satisfiable formulas. A formula is biclique satisfi-
able if its incidence graph admits covering by pairwise disjoint bounded
bicliques. Recognizing if a formula is biclique satisfiable is NP-complete.
In this paper we describe a heuristic algorithm for recognizing whether
a formula is biclique satisfiable and we evaluate it by experiments on
random formulas. We also describe an encoding of the problem of check-
ing whether a formula is biclique satisfiable into SAT and we use it to
evaluate the performance of our heuristic.

Keywords: SAT · Matched formulas · Biclique SAT · var-SAT
Phase transition · Biclique cover

1 Introduction

In this paper we are interested in the problem of satisfiability (SAT) which is
central to many areas of theoretical computer science. In this problem we are
given a formula ϕ in propositional logic and we ask if this formula is satisfiable,

This research was supported by Charles University project UNCE/SCI/004 and SVV
project number 260 453. Access to computing and storage facilities owned by parties
and projects contributing to the National Grid Infrastructure MetaCentrum provided
under the programme “Projects of Large Research, Development, and Innovations
Infrastructures” (CESNET LM2015042), is greatly appreciated.

c© Springer Nature Switzerland AG 2019
B. Catania et al. (Eds.): SOFSEM 2019, LNCS 11376, pp. 108–121, 2019.
https://doi.org/10.1007/978-3-030-10801-4_10

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-10801-4_10&domain=pdf
http://orcid.org/0000-0002-5357-1304
http://orcid.org/0000-0002-7512-6260
https://doi.org/10.1007/978-3-030-10801-4_10

Biclique Satisfiability 109

i.e. if there is an assignment of values to variables which satisfies ϕ. This is one of
the best known NP-complete problems [8]. In this paper we study special classes
of formulas whose definition is based on the notion of incidence graph.

Given a formula ϕ in conjunctive normal form (CNF) we consider its inci-
dence graph I(ϕ) defined as follows. I(ϕ) is a bipartite graph with one part
consisting of the variables of ϕ and the other part consisting of the clauses of ϕ.
An edge {x,C} for a variable x and a clause C is in I(ϕ) if x or x appears in C.
It was observed by the authors of [2] and [18] that if I(ϕ) admits a matching of
size m (where m is the number of clauses in ϕ), then ϕ is satisfiable. Later the
formulas satisfying this condition were called matched formulas in [11]. Since a
matching of maximum size in a bipartite graph can be found in polynomial time
(see e.g. [14,15]), one can check efficiently whether a given formula is matched.

It is clear that if ϕ is a formula on n variables and m clauses then ϕ can be
matched only if m ≤ n. The authors of [11] asked an interesting question: What
is the probability that a formula ϕ is matched depending on the ratio m

n ? We
can also ask if the property “being matched” exhibits a phase transition.

A phase transition was studied in context of satisfiability [5,7,9,12,16]. The
so-called satisfiability threshold for a given k is a value rk satisfying the following
property: A random formula ϕ in k-CNF (each clause has exactly k literals)
on n variables and m clauses is almost surely satisfiable if m

n < rk and it is
almost surely unsatisfiable if m

n > rk. For instance the value r3 is approximately
4.3 [7,9].

In the same sense we can study threshold for property “being matched”. It
was shown in [11] that a 3-CNF ϕ on n variables and m clauses is almost surely
matched if m

n < 0.64. This is merely a theoretical lower bound, and in this paper
we perform experimental check of this value. It turns out that the experimentally
observed threshold is much higher than the theoretical lower bound. Moreover,
we observe that the property “being matched” has a sharp threshold or phase
transition as a function of ratio m

n .
Matched formulas have an interesting property: If a formula ϕ is matched

then we pick any occurrence of any literal and switch its polarity (i.e. change a
positive literal x into a negative literal x or vice versa). The formula produced
by this operation will be matched and thus satisfiable as well. This is because
the definition of incidence graph completely ignores the polarities of variables.
The formulas with this property were called var-satisfiable in [17] and they form
a much bigger class than matched formulas. Unfortunately, it was shown in [17]
that the problem of checking whether a given formula ϕ is var-satisfiable is
complete for the second level of polynomial hierarchy (ΠP

2 -complete).
Szeider in [17] defined a subclass of var-satisfiable formulas called biclique

satisfiable formulas which extends matched formulas. It was shown in [17] that
checking if ϕ is biclique satisfiable is an NP-complete problem. In this paper we
describe a heuristic algorithm to test whether a formula is biclique satisfiable.
Our heuristic algorithm is based on an heuristic for covering a bipartite graph
with bicliques described in [13]. We test our heuristic algorithm experimentally
on random formulas. Our heuristic algorithm is incomplete, in the sense that,

110 M. Chromý and P. Kučera

whenever it finds that a formula is biclique satisfiable, then it is so, but it may
happen that a formula is biclique satisfiable even though our algorithm is unable
to detect it. In order to check the quality of our heuristic, we propose a SAT
based approach to checking biclique satisfiability of a formula. We compare both
approaches on random formulas.

In Sect. 2 we recall some basic definitions and related results used in the rest
of the paper. In Sect. 3 we give the results of experiments on matched formulas.
In Sect. 4 we describe our heuristic algorithm for determining if a formula is
biclique satisfiable and we give the results of its experimental evaluation. In
Sect. 5 we describe a SAT based approach to checking biclique satisfiability and
compare it experimentally with the heuristic approach. We close the paper with
concluding remarks in Sect. 6.

2 Definitions and Related Results

In this section we shall introduce necessary notions and results used in the paper.

2.1 Graph Theory

We use the standard graph terminology (see e.g. [4]). A bipartite graph G =
(Vv, Vc, E) is a triple with vertices split into two parts Vv and Vc and the set of
edges E satisfying that E ⊆ Vv × Vc. Given a bipartite graph G we shall also
use the notation Vv(G) and Vc(G) to denote the vertices in the first and in the
second part respectively. For two natural numbers n,m we denote by Kn,m the
complete bipartite graph (or a biclique) that is the graph Kn,m = (Vv, Vc, E) with
|Vv| = n, |Vc| = m and E = Vv × Vc.

Given a bipartite graph G = (Vv, Vc, E) the degree of a vertex v ∈ Vv ∪ Vc

is the number of incident edges. A pairwise disjoint subset of edges M ⊆ E is
called a matching of G. A vertex v is matched by matching M if v is incident
to some edge from M . M is a maximum matching if for every other matching
M ′ of G we have that |M | ≥ |M ′|. A maximum matching of a bipartite graph
G = (Vv, Vc, E) can be found in time O(|E|√|Vv| + |Vc|) [14,15].

2.2 Boolean Formulas

A literal is a variable x or its negation x. A clause is a finite disjunction of
distinct literals C = (l1 ∨ l2 ∨ . . . ∨ lk), where k is the width of clause C. A
formula in conjunctive normal form (CNF) is a finite conjunction of clauses
ϕ = C1 ∧ C2 ∧ . . . ∧ Cn. Formula ϕ is in k-CNF if all clauses in ϕ have width at
most k. We shall also often write (k-)CNF ϕ instead of ϕ being in (k-)CNF.

Let us now recall the definition of probability space Mk
m,n from [11].

Definition 1 (Franco and Van Gelder [11]). Let Vn = {v1, . . . , vn} be a set
of Boolean variables and let Ln = {v1, v1, . . . , vn, vn} be the set of literals over
variables in Vn. Let Ck

n be the set of all clauses with exactly k variable-distinct
literals from Ln. A random formula in probability space Mk

m,n is a sequence of
m clauses from Ck

n selected uniformly, independently, and with replacement.

Biclique Satisfiability 111

2.3 Matched Formulas

A CNF formula ϕ with m clauses is matched if its incidence graph I(ϕ) has
a matching of size m, i.e. each clause is matched with a unique variable. The
following result on density of matched formulas in the probability space Mk

m,n

was shown in [11].

Theorem 1 (Franco and Van Gelder [11]). Under Mk
m,n, k ≥ 3, the prob-

ability that a random formula ϕ is matched tends to 1 if m
n < 0.64 as n → ∞.

One of the goals of this paper is to check experimentally how good estimate
of the real threshold the theoretical value 0.64 is.

2.4 Biclique Satisfiable Formulas

One of the biggest limitations of matched formulas is that if ϕ is a matched
formula on n variables and m clauses, then m ≤ n. To overcome this limita-
tion while keeping many nice properties of matched formulas, Stefan Szeider
introduced biclique satisfiable formulas in [17].

A biclique Kn,m is bounded if m < 2n. Let ϕ be a CNF on n variables
and m clauses and let us assume that I(ϕ) = Kn,m where m < 2n. Then ϕ is
satisfiable [17]. This is because we have m < 2n clauses each of which contains all
n variables. Each of these clauses determines exactly one unsatisfying assignment
of ϕ, but there is 2n assignments in total. Thus one of them must be satisfying.

A bipartite graph G = (Vv, Vc, E) has a bounded biclique cover if there is a
set of bounded bicliques B = {B1, . . . , Bk} satisfying the following conditions.

– every Bi, i = 1, . . . , k is a subgraph of G,
– for any pair of indices 1 ≤ i < j ≤ k we have that Vv(Bi) ∩ Vv(Bj) = ∅, and
– for every v ∈ Vc(G) there is a biclique Bi, i = 1, . . . , k such that v ∈ Vc(Bi).

If every biclique Bi ∈ B in the cover satisfies that |Vv(Bi)| ≤ k, then we say the
graph G has a bounded k-biclique cover. A formula ϕ is (k-)biclique satisfiable
if its incidence graph I(ϕ) has a bounded (k-)biclique cover.

Any biclique satisfiable formula is satisfiable, however, it is an NP-complete
problem to decide if a formula is biclique satisfiable even if we only restrict to 2-
biclique satisfiable formulas (see [17]). We can observe that 1-satisfiable formulas
are matched formulas, because a single edge is a bounded biclique.

2.5 Generating Experimental Data

Whether a formula ϕ in CNF is matched or not depends only on its incidence
graph I(ϕ). Instead of random formulas from probabilistic space Mk

m,n we
thus consider random bipartite graphs G = (Vv, Vc, E) from the probabilistic
space Gk

m,n.

Definition 2. Probability space Gk
m,n is defined as follows. A random bipartite

graph G ∈ Gk
m,n is a bipartite graph with parts Vv, Vc where |Vv| = n, |Vc| = m.

Each vertex v ∈ Vc has k randomly uniformly selected neighbours from Vv.

112 M. Chromý and P. Kučera

In our experiments we generated bipartite graphs G ∈ Gk
m,n. Since we con-

sider choosing clauses in formula ϕ ∈ Mk
m,n with replacement, we can have

several copies of the same clause in ϕ. It follows that given a bipartite graph
G ∈ Gk

m,n, we have exactly 2km formulas ϕ ∈ Mk
m,n which have I(ϕ) = G—each

vertex c ∈ Vc can be replaced with 2k different clauses by setting polarities to
variables x ∈ Vv adjacent to v in G. In particular, the probability that a random
formula ϕ ∈ Mk

m,n is matched is the same as the probability that a random
bipartite graph G ∈ Gk

m,n admits a matching of size m. The same holds for the
biclique satisfiability.

3 Phase Transition on Matched Formulas

In this section we shall describe the results of experiments we have performed on
matched formulas. In particular we were interested in phase transition of k-CNF
formulas with respect to the property “being matched” depending on the ratio
of the number of clauses to the number of variables. We will also compare the
results with the theoretical bound proved in [11] (see Theorem 1).

 0

 20

 40

 60

 80

 100

 0.9 0.92 0.94 0.96 0.98 1

%
 m

at
ch

ed
 fo

rm
ul

as

m/n

3
4
5
6
7
8
9

Fig. 1. Results of experiments on random graph Gk
m,n with n = 4000 and k = 3, . . . , 9.

In our experiments we considered values of number of variables n =
100, 200, 500, 1000, 2000, 4000 and k = 3, 4, . . . , 10. For each such pair n, k we
have generated 1000 random graphs G ∈ Gk

m,n for ratios m
n = 0.64, 0.65, . . . , 1.

Figure 1 shows the graph with the results of experiments for value n = 4000. The
graph contains a different line for each value of k = 3, . . . , 9 which shows the per-
centage of graphs which admit matching of size m among the generated random
graphs depending on the ratio m

n = 0.64, 0.65, . . . , 1. The complete results of the
experiments are shown in Table 1. For each value of k we distinguish two values
high and low where only 1% of the graphs generated in Gk

m,n with m
n ≥ high

admit matching of size m, and on the other hand 99% of the graphs generated
in Gk

m,n with m
n < low admit matching of size m.

Biclique Satisfiability 113

Table 1. Phase transition intervals as two values high and low. We provide only low
value for k ≥ 7, because the high value was 1 for all such configurations.

k 3 4 5 6 7 8 9 10

n Low High Low High Low High Low High Low Low Low Low

100 0.85 0.98 0.95 1 0.97 1 0.98 1 1 1 1 1

200 0.88 0.96 0.96 0.99 0.98 1 0.99 1 1 1 1 1

500 0.89 0.95 0.96 0.99 0.99 1 1 1 1 1 1 1

1000 0.895 0.939 0.97 0.989 0.986 0.999 0.99 0.995 0.997 0.998 0.999 0.999

2000 0.903 0.9325 0.97 0.985 0.988 0.9965 0.995 0.9995 0.998 0.9985 0.9995 0.9995

4000 0.909 0.929 0.9715 0.982 0.99 0.995 0.995 0.992 0.998 0.999 0.9995 0.9995

We can see that for higher values of n the interval [low, high] gets narrower
and we can thus claim that the property “being matched” indeed exhibits a
phase transition phenomenon. Moreover, we can say that the average of values
low and high limits to the threshold of this phase transition. We can see that the
threshold ratio for k = 3 is around 0.92 which is much higher than the theoretical
bound 0.64 from [11] (see Theorem 1). In all configurations with k ≥ 7 the high
value was 1 while the low value was close to 1 as well. Thus in the experiments
we made with k ≥ 7 even in the case m = n almost all of the randomly generated
graphs admitted matching of size m.

4 Bounded Biclique Cover Heuristic

The class of biclique satisfiable formulas forms a natural extension to the class of
matched formulas. In this section we shall describe a polytime heuristic algorithm
for finding a bounded biclique cover of a graph.

4.1 Description of Heuristic Algorithm

Our heuristic approach is described in Algorithm1. It is based on a heuristic
algorithm for finding a smallest biclique cover of a bipartite graph described
in [13]. The algorithm expects three parameters. The first two parameters are
a bipartite graph G and an integer t which restricts the size of the first part of
bounded bicliques used in the cover, in other words only bicliques S satisfying
that |Vv(S)| ≤ t are included in the cover which is output by the algorithm. The
last parameter used in the algorithm is the strategy for selecting a seed.

Let G be a bipartite graph G = (Vv, Vc, E). A seed in G is a biclique S which
is a nonempty subgraph of G with |Vv(S)| = 2 and Vc(S) = ∅. We say that S is a
maximal seed if there is no seed S′ so that Vv(S) = Vv(S′) and Vc(S) � Vc(S′).

After initializing an empty cover C, the algorithm starts with a pruning step
(unitGPropagation) which is used also in the main loop. In this step a simple
reduction rule is repeatedly applied to the graph G: If a vertex C ∈ Vc is present
in a single edge {v, C}, then this edge is added into cover C as a biclique in order

114 M. Chromý and P. Kučera

to cover C. In this case vertices v and C with all edges incident to v are removed
from the graph G. If a vertex C ∈ Vc with no incident edges is encountered
during this process, the heuristic algorithm fails and returns an empty cover.

The algorithm continues with generating a list S of all maximal seeds induced
by all pairs {vi, vj} ⊆ Vv, i < j. The input graph is modified during the algorithm
by removing edges and vertices. In the following description G = (Vv, Vc, E)
always denotes the current version of the graph.

The main loop of the algorithm repeats while there are some seeds available
and G does not admit a matching of size |Vc|. This is checked by calling function
testMatched which also adds the matching to C if it is found.

The body of the main loop starts with selecting one seed S by function
chooseSeed. This choice is based on a given strategy. We consider three strate-
gies for selecting a seed: Strategy Smin chooses a seed with the smallest second
part. Strategy Smax chooses a seed with the largest second part. And strategy
Srand chooses a random seed. Seed S is then expanded by repeatedly calling
function expandSeed. This function selects a vertex v ∈ Vv\Vv(S) which max-
imizes the size of the second part of the biclique induced in G with left part
being Vv(S) ∪ {v} (the second part is induced to be all the vertices incident to
all vertices in Vv(S)∪{v}). The expansion process continues while the size of the
first part Vv(S) satisfies the restriction imposed by the parameter t and while S
is not a bounded biclique (that is while 2|Vv(S)| ≤ |Vc(S)|).

If the expansion process ends due to the restriction on the size |Vv(S)| given
by t, S is not necessarily a bounded biclique. Function restrictSeed is then used
to remove randomly chosen vertices from Vc(S) to make S a bounded biclique.

Once a bounded biclique S is found, it is removed from the graph and
it is added to the cover C. This is realized by a function removeBiclique
which simply sets Vv ← Vv\Vv(S), Vc ← Vc\Vc(S), and E ← E ∩ (Vv × Vc).
Then we call unitGPropagation to prune the graph. After that the function
removeInvalidSeeds removes from S all seeds S′ with Vv(S′) ∩ Vv(S) = ∅. For
remaining seeds S′ ∈ S the function sets Vc(S′) ← Vc(S′) ∩ Vc.

After the loop finishes, the current cover C is returned.
The complexity of each step is noted in comments. Altogether the complexity

of Algorithm 1 is O(n2�). If a nonempty set of bicliques C is returned by the
algorithm, then it is a bounded biclique cover of G. It should be noted that the
opposite implication does not necessarily hold; if the seeds are chosen badly then
the algorithm may fail even if there is some bounded biclique cover in G. In the
next section we aim at evaluating our heuristic algorithm experimentally.

4.2 Experimental Evaluation of Heuristic Algorithm

In this section we shall describe the experiments performed with our heuristic
Algorithm 1 described in Sect. 4.1 for bounded 2-biclique cover. In the extended
version [6] we describe the results of experiments with general bounded biclique
cover as well.

Algorithm 1 works with bipartite graphs. We have tested proposed heuristic
on random bipartite graphs G ∈ Gk

m,n with n = 100, 200 and with the degrees of

Biclique Satisfiability 115

vertices in the second part being k = 3, . . . , 100. This corresponds to formulas
in k-CNF for these values. We have considered different sizes of the second part
given by ratios m

n = 1, 1.01, . . . , 1.5. Note that there is no bounded 2-biclique
cover for graphs with m

n > 1.5. We have tried the three strategies Smin, Srand

and Smax for selecting a seed. Due to time complexity of Algorithm 1 we have
only generated a hundred random graphs in Gk

m,n for each configuration (given
by a strategy and ratio m

n).

Data: Bipartite graph G(Vv, Vc, E), t ∈ {2, . . . , |Vv|} — maximal size of |Vv(S)|
for a biclique S which we put into the cover and a seeds selection
strategy st∈ {Smin, Srand, Smax}.

Result: biclique cover C of graph G if a heuristic found one, ∅ otherwise
C ← ∅
if unitGPropagation(G, C) fails then return ∅ // O(nm)
S ← generateSeeds(G) // O(n�)
while |S| > 0 and not testMatched(G, C) do // O(�

√
n)

S ← chooseSeed(S, st) // O(n2)

while |Vv(S)| < t ∧ 2|Vv(S)| ≤ |Vc(S)| do
S ← expandSeed(S) // O(� + m)

end

if 2|Vv(S)| ≤ |Vc(S)| then S ← restrictSeed(S) // O(|Vc(S)|)
G ← removeBiclique(G, S) // O(�)
C ← C ∪ {S}
if unitGPropagation(G, C) fails then return ∅ // O(nm)
S ← removeInvalidSeeds(S) // O(n�)

end
return C

Algorithm 1. An heuristic for checking if there is a bounded biclique cover
of a bipartite graph G = (Vv, Vc, E). The complexity of each step is noted in
comments where we consider n = |Vv|, m = |Vc|, and � = |E|.

Table 2. Results of experiments with our heuristic algorithm on graphs with size of
second part |Vv| = 100. A more detailed explanation can be found in the main text.

1 1.1 1.2 1.3 1.4 1.5

Low High Low High Low High Low High Low High Low High

Smin 4 5 5 6 7 8 9 15 13 24 33 47

Srand 4 5 5 6 7 8 9 15 13 24 33 47

Smax 4 5 5 6 7 8 9 15 14 24 41 87

Table 2 summarizes the results of our experiments. Each row corresponds to
different strategy in bounded 2-biclique cover. Each column corresponds to a
ratio m

n , we have included only ratios 1, 1.1, 1.2, 1.3, 1.4, and 1.5 in the table.

116 M. Chromý and P. Kučera

For each configuration we have two bounds low and high on degree k of vertices
in the second part Vc of graph G. Our heuristic algorithm succeeded only on 1%
of graphs with degree k ≤ low and on the other hand it succeeded on 99% of
graphs with degree k ≥ high.

For bounded 2-biclique cover, the strategies Smin and Srand are never worse
than Smax and they even get better for higher ratios. This makes Srand the best
strategy for bounded 2-biclique covers—it is easiest to implement and random-
ness means that repeated calls of our heuristic algorithm may eventually lead
to finding a biclique cover. As we can expect, heuristic performs quite well on
lower values of ratio m

n and it gets worse on higher values of this ratio.

"biclique100x100.csv" using 1:2:4

 1 1.1 1.2 1.3 1.4 1.5

m/n
 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

k

 0

 20

 40

 60

 80

 100

%
 b

ic
liq

ue
 c

ov
er

ed

Fig. 2. Results of experiments with our heuristic algorithm with strategy Srand and
n = 100. The more white pixel is, the more random graphs were covered by a bounded
biclique cover found by Algorithm1.

We can observe a phase transition behaviour in the results of experiments.
As we can see on Fig. 2 there is a phase transition rm

n
for a fixed ratio m

n . Most
of random graphs G ∈ Gk

m,n with k ≥ rm
n

have a biclique cover and our heuristic
algorithm will find it. However, since our heuristic is incomplete, it is not clear
how many random graphs G ∈ Gk

m,n with k ≤ rm
n

have biclique cover. We will
take a closer look on this completeness gap in Sect. 5.

The most interesting case is when m
n ≤ 1.4. As the ratio m

n gets close to 1.5
we can expect smaller percentage of graphs G ∈ Gk

m,n having a 2-biclique cover,
hence our heuristic algorithm fails to find one in most cases.

5 Bounded Biclique SAT Encoding

We shall first describe the encoding of the problem of checking if a bipartite
graph has a bounded biclique cover into SAT, then we will describe and evaluate
the experiments we have performed to compare this approach with Algorithm 1.
We will also describe the environment we have used to run the experiments.

5.1 Description of SAT Encoding

We shall describe the encoding for the case of bounded 2-biclique cover, since
this is the version we used in experiments for comparison with Algorithm 1.

Biclique Satisfiability 117

The encoding can be easily generalized to bounded k-biclique cover or for using
all kinds of bicliques, this is described in the extended version of the paper [6].

Let us consider a bipartite graph G = (Vv, Vc, E), let us define B2 = {B |
B is a subgraph of G which is either K1,1 or K2,3}. We shall associate the follow-
ing formula ψ with graph G. With each biclique B ∈ B2 we associate a new
variable xB. Every assignment of boolean values to variables xB , B ∈ B2 then
specifies a set of bicliques. We will encode the fact that the satisfying assign-
ments of ψ exactly correspond to bounded 2-biclique covers of G. To this end
we use the following constraints.

For each vertex v ∈ Vv we add to ψ an at-most-one constraint on variables
xB, v ∈ Vv(B). This encodes the fact that the first parts of bicliques in the
cover have to be pairwise disjoint. We use a representation of the at-most-one
constraint with a quadratic number of negative clauses of size 2.

For each clause C ∈ Vc we add to ψ a clause representing an at-least-one
constraint on variables xb, C ∈ Vc(B). This encodes the fact that each vertex of
the second part belongs to a biclique in the cover.

5.2 Experimental Evaluation of Heuristic Algorithm

We used the encoding described in Sect. 5.1 to check the success rate of Algo-
rithm1 on random bipartite graphs and to check the phase transition for an
existence of bounded 2-biclique cover. We ran the experiments on 100 random
bipartite graphs G ∈ Gk

m,n with n = 40 for combinations of k = 1, . . . , 8 and
the size of the second part m = rn for r = 1.00, . . . , 1.25 with step 0.05. For
each k we tested random graphs only for the ratios around the expected phase
transition as observed in the Table 2.

The results of experiments are contained in Tables 3 and 4. Both tables have a
similar structure. Each cell represents a single configuration (row corresponding
to a value of k and column corresponding to the ratio m

n where m denotes the
number of clauses and n = 40 denotes the number of variables). In Table 3 each
cell contains three numbers separated with slashes. The first is the number of
instances (out of 100) on which Algorithm1 successfully found a bounded 2-
biclique cover. The second is the number of instances on which the SAT solver
successfully solved the encoding and answered positively. The third is the number
of instances on which the SAT solver finished within time limit which was set to
4 h for each instance. In some cells the values are missing, for these configurations
we did not run any experiments, because they are far from the observed phase
transition (see Table 2). We expect that the results would be 100/100/100 in
case of black colored cells and 0/0/100 in case of white colored cells. The gray
colored cells mark the borders of observed phase transition intervals of existence
of bounded biclique cover, light gray corresponds to the results given by the
SAT solver, dark gray to the results given by Algorithm1 which form an upper
bound on the correct values. We can see that in most cases the number of positive
answers given by Algorithm 1 is close to the number of positive answers given by
the SAT solver. However, there are some cases where the SAT based approach

118 M. Chromý and P. Kučera

was more successful. Namely in cases of k = 5, m
n = 1.15 and k = 5, m

n = 1.2.
However, in the latter case the SAT solver ran over time limit (4 h) in 2

3 cases.
We compared the running time of our Algorithm1 and the SAT solver. As

we can see in the Table 4 our heuristic algorithm is much faster in average case.
Standard deviation of runtime of our heuristic algorithm is around 10−2 and the
standard deviation of running times of the SAT solver is up to 104 (where we
have evaluated the average value and the standard deviation only on instances
in which the SAT solver finished within the time limit). These values are quite
high compared to the running times. One of the reasons is perhaps the fact that
the experiments were not run on a single computer, but on several comparable
computers (see Sect. 5.3 for more details). Although in all cases on a single
instance, the SAT solver and Algorithm 1 were run on a single computer and it
makes thus sense to look at the ratio between the running times of these two.
We also computed these ratios and they are close to ratios implied by Table 4.
We refer readers to extended version of the paper [6] for details.

Table 3. Number of bipartite graphs with bounded biclique cover (found by
Algorithm1/SAT finished with true/SAT finished within time limit). See the descrip-
tion within the text for more details.

1 1.05 1.1 1.15 1.2 1.25

3 18/ 18/100 0/ 0/100
4 95/ 95/100 50/ 56/100 7/ 10/100 0/ 1/100 0/ 0/100
5 100/100/100 100/100/100 90/ 98/ 98 52/ 87/ 87 10/ 34/ 34 1/ 1/ 1
6 100/100/100 100/100/100 100/100/100 85/ 99/ 99 42/ 53/ 53
7 100/100/100 99/100/100 89/ 90/ 90
8 99/100/100

Table 4. Average runtime of Algorithm1/average runtime of SAT on encoding in
seconds.

1 1.05 1.1 1.15 1.2 1.25

3 0.005/0.014 0.005/0.01

4 0.005/1.7 0.006/25 0.006/21 0.005/13 0.006/7

5 0.005/0.2 0.005/0.98 0.006/11 0.006/216 0.006/993 0.005/4589

6 0.006/0.4 0.006/2.4 0.006/50 0.006/838 0.006/3646

7 0.006/73 0.006/166 0.007/1666

8 0.006/272

We can see from the results that on random graphs Algorithm 1 has a success
rate close to the one of the SAT based approach and it is much faster.

Biclique Satisfiability 119

5.3 Experimental Environment

Let us say more on the environment in which the experiments were run. We
used Glucose parallel SAT solver [3,10]. Our experiments were executed on grid
computing service MetaCentrum NGI [1]. All experiments were run on a single
processor machine (Intel Xenon, AMD Opteron) with 4 cores and frequency
2.20 GHz–3.30 GHz. On each random bipartite graph G ∈ Gk

m,n, Algorithm 1 and
the SAT solver were always run on the same computer. However, for the same
configuration and different formulas, the experiments may have run on different
computers. As we have noted in Sect. 5.2, this could be a reason of significantly
high values of standard deviation of runtimes. The fact that the computer speed
varied while the time limit for the SAT solver was still the same (4 h) could
have led to situations where the SAT solver would not finished, because it was
run on a slower computer, and could potentially finish had it been run on a
faster computer. However, 1912 out of the total 2200 instances finished within
an hour, then only 26 finished between an hour and 2 h, only 15 finished between
2 h and 3 h and only 9 finished between 3 h and 4 h. We can thus expect that the
number of the border cases is similarly small. We can conclude that the variance
in computer speeds had only minor influence on the number of SAT calls which
finished within the time limit.

6 Conclusion

The first result of our paper is that the experimental threshold of phase transition
of property “being matched” of 3-CNFs is around 0.92, which is much higher
than the theoretical lower bound 0.64 proved for 3-CNF in [11]. This can be
seen in Fig. 1. Our experiments also suggest that for k ≥ 6 almost all formulas
in k-CNF are matched (if they have at most as many clauses as variables).

We have also proposed a heuristic algorithm for finding a bounded biclique
cover of an incidence graph I(ϕ) of a given formula ϕ. In other words the algo-
rithm tries to decide if ϕ is biclique satisfiable. We suggested three different
strategies for selecting a seed in our heuristic and compared them. We can deduce
from Fig. 2 that the success rate of our heuristic algorithm exhibits a phase tran-
sition phenomenon similar to the case of matched formulas. The exact values are
shown in Table 2. Our results suggest it is better to use a strategy Srand to find
a 2-biclique cover using our heuristic algorithm.

The success rate of Algorithm 1 exhibits a very similar phase transition to
matched formulas. In case of 3-CNFs, the phase transition is almost the same
with low bound 0.9 and high bound 0.93. In case of 5-CNFs the situation is
different. The observed low bound of the phase transition interval for property
“being matches” is 0.985 and in case of our algorithm the low bound of the phase
transition interval is 1.02. A formula can be matched only if the ratio m

n of the
number of clauses m to a number of variables n is at most 1. According to the
results of our experiments a random k-CNF with k > 5 is matched with high
probability even in case the ratio m

n is 1. However, for 7-CNFs the low value
of phase transition of our algorithm equals 1.14 and for k ≥ 10 it is even more

120 M. Chromý and P. Kučera

than 1.3, which means that if ϕ is a formula in 10-CNF with n variables and at
most 1.3n clauses, Algorithm 1 will most likely find a bounded biclique cover of
the incidence graph of ϕ. These results are summarized in Table 2.

Our heuristic algorithm is not complete; in particular, it can happen that a
formula is biclique satisfiable, but Algorithm1 is unable to detect it. It means
that we can only trust a positive answer of the algorithm. We have compared our
heuristic with a SAT based approach which can also check that a formula is not
biclique satisfiable. We can see in Table 3 that formulas on which Algorithm1
fails to answer correctly, are concentrated around the observed phase transition,
and that the algorithm answers correctly in most cases for other configurations.
We can say that the success rate of Algorithm 1 is not far from the complete SAT
based method. Moreover, as we can see in Table 4, our heuristic is significantly
faster than a SAT solver on the encoding we have described.

References

1. Metacentrum grid computing, June 2017. https://metavo.metacentrum.cz/en/
2. Aharoni, R., Linial, N.: Minimal non-two-colorable hypergraphs

and minimal unsatisfiable formulas. J. Comb. Theory Ser. A
43(2), 196–204 (1986). https://doi.org/10.1016/0097-3165(86)90060-9.
http://www.sciencedirect.com/science/article/pii/0097316586900609

3. Audemard, G., Simon, L.: The glucose sat solver, June 2017. http://www.labri.fr/
perso/lsimon/glucose/

4. Bollobás, B.: Modern Graph Theory. GTM, vol. 184. Springer, New York (1998).
https://doi.org/10.1007/978-1-4612-0619-4

5. Cheeseman, P., Kanefsky, B., Taylor, W.M.: Where the really hard problems are.
In: Proceedings of the 12th International Joint Conference on Artificial Intelligence,
IJCAI 1991, vol. 1, pp. 331–337. Morgan Kaufmann Publishers Inc., San Francisco
(1991). http://dl.acm.org/citation.cfm?id=1631171.1631221

6. Chromý, M., Kučera, P.: Phase transition in matched formulas and a heuristic for
biclique satisfiability. ArXiv e-prints, August 2018. https://arxiv.org/abs/1808.
01774

7. Connamacher, H.S., Molloy, M.: The satisfiability threshold for a seemingly
intractable random constraint satisfaction problem. CoRR abs/1202.0042 (2012).
http://arxiv.org/abs/1202.0042

8. Cook, S.A.: The complexity of theorem-proving procedures. In: Proceedings of the
Third Annual ACM Symposium on Theory of Computing, STOC 1971, pp. 151–
158. ACM, New York (1971). https://doi.org/10.1145/800157.805047

9. Dubois, O., Boufkhad, Y., Mandler, J.: Typical random 3-SAT formulae and the
satisfiability threshold. In: Proceedings of the Eleventh Annual ACM-SIAM Sym-
posium on Discrete Algorithms, SODA 2000, pp. 126–127. Society for Industrial
and Applied Mathematics, Philadelphia (2000). http://dl.acm.org/citation.cfm?
id=338219.338243

10. Eén, N., Sörensson, N.: The minisat, June 2017. http://minisat.se/
11. Franco, J., Van Gelder, A.: A perspective on certain polynomial-

time solvable classes of satisfiability. Discrete Appl. Math. 125(2–
3), 177–214 (2003). https://doi.org/10.1016/S0166-218X(01)00358-4.
http://www.sciencedirect.com/science/article/pii/S0166218X01003584

https://metavo.metacentrum.cz/en/
https://doi.org/10.1016/0097-3165(86)90060-9
http://www.sciencedirect.com/science/article/pii/0097316586900609
http://www.labri.fr/perso/lsimon/glucose/
http://www.labri.fr/perso/lsimon/glucose/
https://doi.org/10.1007/978-1-4612-0619-4
http://dl.acm.org/citation.cfm?id=1631171.1631221
https://arxiv.org/abs/1808.01774
https://arxiv.org/abs/1808.01774
http://arxiv.org/abs/1202.0042
https://doi.org/10.1145/800157.805047
http://dl.acm.org/citation.cfm?id=338219.338243
http://dl.acm.org/citation.cfm?id=338219.338243
http://minisat.se/
https://doi.org/10.1016/S0166-218X(01)00358-4
http://www.sciencedirect.com/science/article/pii/S0166218X01003584

Biclique Satisfiability 121

12. Gent, I.P., Walsh, T.: The SAT phase transition. In: Proceedings of the 11th Euro-
pean Conference on Artificial Intelligence, pp. 105–109. Wiley (1994)

13. Heydari, M.H., Morales, L., Shields Jr., C.O., Sudborough, I.H.: Computing cross
associations for attack graphs and other applications. In: 2007 40th Annual Hawaii
International Conference on System Sciences, HICSS 2007, p. 270b, January 2007.
https://doi.org/10.1109/HICSS.2007.141

14. Hopcroft, J.E., Karp, R.M.: An n5/2 algorithm for maximum matchings in bipartite
graphs. SIAM J. Comput. 2(4), 225–231 (1973)

15. Lovász, L., Plummer, M.D.: Matching Theory. North-Holland, Amsterdam (1986)
16. Mitchell, D., Selman, B., Levesque, H.: Hard and easy distributions of SAT prob-

lems. In: Proceedings of the 10th National Conference on Artificial Intelligence
(AAAI 1992), San Jose, CA, USA, pp. 459–465 (1992)

17. Szeider, S.: Generalizations of matched CNF formulas. Ann. Math. Artif. Intell.
43(1), 223–238 (2005). https://doi.org/10.1007/s10472-005-0432-6

18. Tovey, C.A.: A simplified NP-complete satisfiability problem. Discrete
Appl. Math. 8(1), 85–89 (1984). https://doi.org/10.1016/0166-218X(84)90081-7.
http://www.sciencedirect.com/science/article/pii/0166218X84900817

https://doi.org/10.1109/HICSS.2007.141
https://doi.org/10.1007/s10472-005-0432-6
https://doi.org/10.1016/0166-218X(84)90081-7
http://www.sciencedirect.com/science/article/pii/0166218X84900817

On Infinite Prefix Normal Words

Ferdinando Cicalese, Zsuzsanna Lipták, and Massimiliano Rossi(B)

Dipartimento di Informatica, University of Verona,
Strada le Grazie, 15, 37134 Verona, Italy

{ferdinando.cicalese,zsuzsanna.liptak,massimiliano.rossi 01}@univr.it

Abstract. Prefix normal words are binary words that have no factor
with more 1s than the prefix of the same length. Finite prefix normal
words were introduced in [Fici and Lipták, DLT 2011]. In this paper, we
study infinite prefix normal words and explore their relationship to some
known classes of infinite binary words. In particular, we establish a con-
nection between prefix normal words and Sturmian words, between prefix
normal words and abelian complexity, and between prefix normality and
lexicographic order.

Keywords: Combinatorics on words · Prefix normal words
Infinite words · Sturmian words · Abelian complexity
Paperfolding word · Thue-Morse sequence · Lexicographic order

1 Introduction

Prefix normal words are binary words where no factor has more 1s than the prefix
of the same length. As an example, the word 11100110101 is prefix normal, while
11100110110 is not, since it has a factor of length 5 with 4 1s, while the prefix
of length 5 has only 3 1s. Finite prefix normal words were introduced in [12] and
further studied in [5,6,9,22].

The original motivation for studying prefix normal words comes from the
problem of Indexed Binary Jumbled Pattern Matching [1,4,8,10,13]. Given a
finite word s of length n, construct an index in such a way that the following
type of queries can be answered efficiently: For two integers x, y ≥ 0, does s have
a factor with x 1s and y 0s? As shown in [12], prefix normal words can be used
for constructing such an index, via so-called prefix normal forms.

Prefix normal words have been shown to form bubble languages [5,20,21], a
family of binary languages with efficiently generable combinatorial Gray codes;
they have connections to the Binary Reflected Gray Code [22]; and they have
recently found application to a certain class of graphs [3]. Indeed, three sequences
related to prefix normal words are present in the On-Line Encyclopedia of Integer
Sequences (OEIS [23]): A194850 (the number of prefix normal words of length
n), A238109 (a list of prefix normal words over the alphabet {1, 2}), and A238110
(equivalence class sizes of words with the same prefix normal form).

In [9], we introduced infinite prefix normal words and analyzed a particular
procedure that, given a finite prefix normal word, extends it while preserving
c© Springer Nature Switzerland AG 2019
B. Catania et al. (Eds.): SOFSEM 2019, LNCS 11376, pp. 122–135, 2019.
https://doi.org/10.1007/978-3-030-10801-4_11

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-10801-4_11&domain=pdf
https://doi.org/10.1007/978-3-030-10801-4_11

On Infinite Prefix Normal Words 123

the prefix normality property. We showed that the resulting infinite word is
ultimately periodic. In this paper, we present a more comprehensive study of
infinite prefix normal words, covering several classes of known and well studied
infinite words. We now give a quick tour of the paper.

There exist periodic, ultimately periodic, and aperiodic infinite prefix normal
words (for precise definitions, see Sect. 2): for example, the periodic words 0ω, 1ω,
and (10)ω are prefix normal; the ultimately periodic word 1(10)ω is prefix normal;
and so is the aperiodic word 10100100010000 · · · = limn→∞ 10102 · · · 10n. In
Sect. 3, we fully characterize periodic and ultimately periodic words in terms of
their minimum density, a parameter introduced in [9].

Regarding aperiodic words, we show that a Sturmian word w is prefix normal
if and only if w = 1cα for some α, where cα is the characteristic word of slope α
(Theorem 2). The Fibonacci word f = 0100101001001010010100100101001001 · · ·
is thus not prefix normal, but we can turn it into a prefix normal word by
prepending a 1, i.e. the word 1f is prefix normal. We show in fact that every
Sturmian word w can be turned into a prefix normal word by prepending a fixed
number of 1s, which only depends on the slope of w. This follows from a more
general result regarding c-balanced words (Lemma 7).

The Thue-Morse word tm = 01101001100101101001011001101001 · · · is not
prefix normal, but 11tm is. However, the binary Champernowne word, which is
constructed by concatenating the binary expansions of the integers in ascending
order, namely c = 0110111001011101111000100110101011 · · · is not prefix normal
and cannot be turned into a prefix normal word by prepending a finite number
of 1s, because c has arbitrarily long runs of 1s.

One might be tempted to conclude that every word with bounded abelian
complexity can be turned into a prefix normal word by prepending a fixed num-
ber of 1s, as is the case for the words above: f has abelian complexity constant
2, tm has abelian complexity bounded by 3, and c has unbounded abelian com-
plexity. This is not the case, as we will see in Sect. 5.

We further show in Sect. 5 that the notion of prefix normal forms from [12] can
be extended to infinite words. As in the finite case, these can be used to encode
the abelian complexity of the original word. The study of abelian complexity
of infinite words was initiated in [18], and continued e.g. in [2,7,14,16,25]. We
establish a close relationship between the abelian complexity and the prefix
normal forms of w. We demonstrate how this close connection can be used to
derive results about the prefix normal forms of a word w. In some cases, such as
for Sturmian words and words which are morphic images under the Thue-Morse
morphism, we are able to explicitly give the prefix normal forms of the word.
Conversely, knowing its prefix normal forms allows us to compute the abelian
complexity function of a word.

Another class of well-known binary words are Lyndon words. Notice that
the prefix normal condition is different from the Lyndon condition1: For finite
words, there are words which are both Lyndon and prefix normal (e.g. 110010),

1 For ease of presentation, we use Lyndon to mean lexicographically greatest among
its conjugates; this is equivalent to the usual definition up to renaming characters.

124 F. Cicalese et al.

words which are Lyndon but not prefix normal (11100110110), words which are
prefix normal but not Lyndon (110101), and words which are neither (101100).
In the final part of the paper, we will put infinite prefix normal words and their
prefix normal forms in the context of lexicographic orderings, and compare them
to infinite Lyndon words [24] and the max- and min-words of [17].

The paper is organized as follows. In Sect. 2, we introduce our terminology
and give some simple facts about prefix normal words. In Sect. 3, we introduce
the notion of minimum density and show its utility in dealing with certain prefix
normal words. In Sect. 4, we study the relationship of Sturmian and prefix normal
words. Section 5 treats prefix normal forms and their close connection to abelian
complexity, and in Sect. 6 we study the relationship with lexicographic order.
Due to space restrictions, all proofs were omitted, and will be included in the
full version of the paper.

2 Basics

In our definitions and notations, we follow mostly [15], wherever possible. A finite
(resp. infinite) binary word w is a finite (resp. infinite) sequence of elements from
{0, 1}. Thus an infinite word is a mapping w : N → {0, 1}, where N denotes the
set of positive integers. We denote the i’th character of w by wi. Note that
we index words starting from 1. If w is finite, then its length is denoted by
|w|. The empty word, denoted ε, is the unique word of length 0. The set of
binary words of length n is denoted by {0, 1}n, the set of all finite words by
{0, 1}∗ = ∪n≥0{0, 1}n, and the set of infinite binary words by {0, 1}ω. For a
finite word u = u1 · · · un, we write urev = un · · · u1 for the reverse of u, and
u = u1 · · · un for the complement of u, where a = 1 − a.

For two words u, v, where u is finite and v is finite or infinite, we write uv
for their concatenation. If w = uxv, then u is called a prefix, x a factor (or
substring), and v a suffix of w. We denote the set of factors of w by Fct(w) and
its prefix of length i by prefw(i), where prefw(0) = ε. For a finite word u, we
write |u|1 for the number of 1s, and |u|0 for the number of 0s in u, and refer to
|u|1 as the weight of u. The Parikh vector of u is pv(u) = (|u|0, |u|1). A word w
is called balanced if for all u, v ∈ Fct(w), |u| = |v| implies ||u|1 − |v|1| ≤ 1, and
c-balanced if |u| = |v| implies ||u|1 − |v|1| ≤ c.

For an integer k ≥ 1 and u ∈ {0, 1}n, uk denotes the kn-length word uuu · · · u
(k-fold concatenation of u) and uω the infinite word uuu · · · . An infinite word w
is called periodic if w = uω for some non-empty word u, and ultimately periodic
if it can be written as w = vuω for some v and non-empty u. A word that is
neither periodic nor ultimately periodic is called aperiodic. We set 0 < 1 and
denote by ≤lex the lexicographic order between words, i.e. u ≤lex v if u is a prefix
of v or there is an index i ≥ 1 s.t. ui < vi and prefu(i − 1) = prefv(i − 1).

For an operation op : {0, 1}∗ → {0, 1}∗, we denote by op(i) the ith iteration
of op; op∗(w) = {op(i)(w) | i ≥ 1}; and opω(w) = limi→∞ op(i)(w), if it exists.

On Infinite Prefix Normal Words 125

Definition 1 (Prefix weight, prefix density, maximum and minimum
1s and 0s functions). Let w be a (finite or infinite) binary word. We define
the following functions:

– Pw(i) = |prefw(i)|1, the weight of the prefix of length i,
– Dw(i) = Pw(i)/i, the density of the prefix of length i,
– F 1

w(i) = max{|u|1 : u ∈ Fct(w), |u| = i} and f1
w(i) = min{|u|1 : u ∈

Fct(w), |u| = i}, the maximum resp. minimum number of 1s in a factor of
length i,

– F 0
w(i) = max{|u|0 : u ∈ Fct(w), |u| = i} and f0

w(i) = min{|u|0 : u ∈
Fct(w), |u| = i}, the maximum resp. minimum number of 0s in a factor of
length i.

Note that in the context of succinct indexing, the function Pw(i) is often
called rank1(w, i). We are now ready to define prefix normal words.

Definition 2 (Prefix normal words). A (finite or infinite) binary word w is
called 1-prefix normal, if Pw(i) = F 1

w(i) for all i ≥ 1 (for all 1 ≤ i ≤ |w| if w
is finite). It is called 0-prefix normal if i − Pw(i) = F 0

w(i) for all i ≥ 1 (for all
1 ≤ i ≤ |w| if w is finite). We denote the set of all finite 1-prefix normal words
by Lfin, the set of all infinite 1-prefix normal words by Linf , and L = Lfin ∪ Linf .

In other words, a word is prefix normal (i.e. 1-prefix normal) if no factor has
more 1s than the prefix of the same length. Note that unless further specified,
by prefix normal we mean 1-prefix normal. Given a binary word w, we say that
a factor u of w satisfies the prefix normal condition if |u|1 ≤ Pw(|u|).
Example 1. The word 110100110110 is not prefix normal since the factor 11011
has four 1s, which is more than in the prefix 11010 of length 5. The word
110100110010, on the other hand, is prefix normal. The infinite word (11001)ω

is not prefix normal, because of the factor 111, but the word (11010)ω is.

The following facts about infinite prefix normal words are immediate.

Lemma 1

1. For all u ∈ Lfin, the word w = u0ω ∈ Linf .
2. Let w ∈ {0, 1}ω. Then w ∈ L if and only if for all i ≥ 1, prefw(i) ∈ L.
Definition 3 (Minimum density, minimum-density prefix, slope).
Let w ∈ {0, 1}∗ ∪ {0, 1}ω. Define the minimum density of w as δ(w) = inf{Dw(i)
| 1 ≤ i}. If this infimum is attained somewhere, then we also define ι(w) =
min{j ≥ 1 | ∀i : Dw(j) ≤ Dw(i)} and κ(w) = Pw(ι(w)). We refer to prefw(ι(w))
as the minimum-density prefix, the shortest prefix with density δ(w). For an infi-
nite word w, we define the slope of w as limi→∞ Dw(i), if this limit exists.

Remark 1. Note that ι(w) is always defined for finite words, while for infinite
words, a prefix which attains the infimum may or may not exist. We note fur-
ther that density and slope are different properties of (infinite) binary words.

126 F. Cicalese et al.

In particular, while δ(w) exists for every w, the limit limi→∞ Dw(i) may not
exist, i.e., w may or may not have a slope. As an example, consider w =
v0v1v2 · · · , where for each i, vi = 12

i

02
i

; then δ(w) = 1/2 and limi→∞ Dw(i)
does not exist, since Dw(i) has an infinite subsequence constant 1/2, and another
which tends to 2/3. But even for words w whose slope is defined, it can be differ-
ent from δ(w). If w has slope α, then α = δ(w) if and only if for all i, Dw(i) ≥ α.
For instance, the infinite word 01ω has slope 1 but its minimum density is 0. On
the other hand, the infinite word 1(10)ω has both slope and minimum density
1/2.

3 A Characterization of Periodic and Aperiodic Prefix
Normal Words with Respect to Minimum Density

In [9], we introduced an operation which takes a finite prefix normal word w
containing at least one 1 and extends it by a run of 0s followed by a new 1, in such
a way that this 1 is placed in the first possible position without violating prefix
normality. This operation, called flipext, leaves the minimum density invariant.

Definition 4 ([9] Operation flipext). Let w ∈ Lfin \ {0}∗. Define flipext(w)
as the finite word w0k1, where k = min{j | w0j1 ∈ L}. We further define the
infinite word v = flipextω(w) = limi→∞ flipext(i)(w).

Proposition 1 ([9]). Let w ∈ Lfin \ {0}∗ and v ∈ flipext∗(w) ∪ {flipextω(w)}.
Then it holds that δ(v) = δ(w), and as a consequence, ι(v) = ι(w) and κ(v) =
κ(w). Moreover, Dv(k · ι(w)) = δ(w) for each k ≥ 1.

The following result shows that every ultimately periodic infinite prefix nor-
mal word has rational minimum density.

Lemma 2. Let v be an infinite ultimately periodic binary word with minimum
density δ(v) = α. Then α ∈ Q.

Next we show that conversely, for every α ∈ (0, 1), both rational and irra-
tional, there is an aperiodic prefix normal word with minimum density α.
Lemma 3. Fix α ∈ (0, 1), and let (an)n∈N be a strictly decreasing infinite
sequence of rational numbers from (0, 1) converging to α. For each i = 1, 2, . . . ,
let the binary word v(i) be defined by

v(i) =

{
1�10a1�010−�10a1� i = 1

prefflipextω(v(i−1))(ki|v(i−1)|)0�i i > 1
�i =

⎧⎨
⎩
10 − �10a1� i = 1⌊
ki

(
|v(i−1)|1−ai|v(i−1)|

ai

)⌋
i > 1,

and ki is the smallest integer greater than one such that �i > �i−1. Then v =
limi→∞ v(i) is an aperiodic infinite prefix normal word such that δ(v) = α.

Summarizing, we have shown the following result.

Theorem 1. For every α ∈ (0, 1) (rational or irrational) there is an infinite
aperiodic prefix normal word of minimum density α. On the other hand, for
every ultimately periodic infinite prefix normal word w the minimum density
δ(w) is a rational number.

On Infinite Prefix Normal Words 127

4 Sturmian Words and Prefix Normal Words

The results of the previous section show that there is a relationship between the
rationality or irrationality of the minimum density of an infinite prefix normal
word and its aperiodic or periodic behaviour. This is reminiscent of the char-
acterization of Sturmian words in terms of the slope. Led by this analogy, in
this section we provide a complete characterization of Sturmian words which are
prefix normal. We refer the interested reader to [15], Chap. 2, for a comprehen-
sive treatment of Sturmian words. Here we briefly recall some facts we will need,
starting with two equivalent definitions of Sturmian words.

Definition 5 (Sturmian words). Let w ∈ {0, 1}ω. Then w is called Sturmian
if it is balanced and aperiodic.

Definition 6 (Mechanical words). Given two real numbers 0 ≤ α ≤ 1 and
0 ≤ τ < 1, the lower mechanical word sα,τ = sα,τ (1) sα,τ (2) · · · and the upper
mechanical word s′

α,τ = s′
α,τ (1) s′

α,τ (2) · · · are given by

sα,τ (n) = �αn + τ	 − �α(n − 1) + τ	
s′

α,τ (n) =
αn + τ� −
α(n − 1) + τ� (n ≥ 1).

Then α is called the slope and τ the intercept of sα,τ , s′
α,τ . A word w is

called mechanical if w = sα,τ or w = s′
α,τ for some α, τ . It is called rational

mechanical (resp. irrational mechanical) if α is rational (resp. irrational).

Fact 1 (Some facts about Sturmian words [15])

1. An infinite binary word is Sturmian if and only if it is irrational mechanical.
2. For τ = 0, and α irrational, there exists a word cα, called the characteristic

word with slope α, s.t. sα,0 = 0cα and s′
α,0 = 1cα. This word cα is a Sturmian

word itself, with both slope and intercept α.
3. For two Sturmian words w, v with the same slope, we have Fct(w) = Fct(v).

4.1 From Flipext to Lazy-α-Flipext

Recall the operation flipext(w) defined above (Definition 4). We now define a
different operation that, given a prefix normal word w, extends it by adding 0s
as long as the minimum density of the resulting word is not smaller than δ(w),
and only then adding a 1. We show that this operation preserves the prefix
normality of the word. The operation lazy-α-flipext is then applied to show
that, by extending a prefix normal word w of minimum density at least α, in
the same way as we compute the upper mechanical word of slope α, we obtain
an infinite prefix normal word with prefix w.

Definition 7. Let α ∈ (0, 1] and w ∈ Lfin with δ(w) ≥ α. Define
lazy-α-flipext(w) as the finite word w0k1 where k = max{j | δ(w0j) ≥
α}. We further define the infinite word v = lazy-α-flipextω(w) =
limi→∞ lazy-α-flipext(i)(w).

128 F. Cicalese et al.

Example 2. Let w = 111 and let α =
√

2 − 1, then lazy-α-flipext(w) =
11100001, since δ(1110000) = 3/7 ≥ α and δ(11100000) = 3/8 < α;
and lazy-α-flipext(2)(w) = 1110000101, since δ(111000010) = 4/9 ≥ α and
δ(1110000100) = 2/5 < α.

Lemma 4. Let α ∈ (0, 1]. For every w ∈ Lfin with δ(w) ≥ α, the word v =
lazy-α-flipext(w) is also prefix normal, with δ(v) ≥ α.

Corollary 1. Let α ∈ (0, 1], w ∈ Lfin with δ(w) ≥ α. Then v =
lazy-α-flipextω(w) is an infinite prefix normal word and δ(v) = α.

We now show that the word lazy-α-flipextω(1) coincides with the upper
mechanical word s′

α,0, which also implies that s′
α,0 is prefix normal.

Lemma 5. Fix α ∈ (0, 1] and let v = lazy-α-flipextω(1). Let s = s′
α,0 be the

upper mechanical word of slope α and intercept 0. Then v = s.

Corollary 2. For α ∈ (0, 1], the word s′
α,0 is prefix normal and δ(s′

α,0) = α.

The following theorem fully characterizes prefix normal Sturmian words.

Theorem 2. A Sturmian word s of slope α is prefix normal if and only if s =
1cα, where cα is the characteristic Sturmian word with slope α.

5 Prefix Normal Words, Prefix Normal Forms, and
Abelian Complexity

Given an infinite word w, the abelian complexity function of w, denoted ψw, is
given by ψw(n) = |{pv(u) | u ∈ Fct(w), |u| = n}|, the number of Parikh vectors
of n-length factors of w. A word w is said to have bounded abelian complexity
if there exists a c s.t. for all n, ψw(n) ≤ c. Note that a binary word is c-balanced
if and only if its abelian complexity is bounded by c + 1. We denote the set of
Parikh vectors of factors of a word w by Π(w) = {pv(u) | u ∈ Fct(w)}. Thus,
ψw(n) = Π(w) ∩ {(x, y) | x + y = n}. In this section, we study the connection
between prefix normal words and abelian complexity.

5.1 Balanced and c-Balanced Words

Based on the examples in the introduction, one could conclude that any word
with bounded abelian complexity can be turned into a prefix normal word by
prepending a fixed number of 1s. However, consider the word w = 01ω, which is
balanced, i.e. its abelian complexity function is bounded by 2. It is easy to see
that 1kw �∈ L for every k ∈ N.

Sturmian words are precisely the words which are aperiodic and whose
abelian complexity is constant 2 [18]. For Sturmian words, it is always possi-
ble to prepend a finite number of 1s to get a prefix normal word, as we will see
next. Recall that for a Sturmian word w, at least one of 0w and 1w is Sturmian,
with both being Sturmian if and only if w is characteristic [15].

On Infinite Prefix Normal Words 129

Lemma 6. Let w be a Sturmian word. Then
1. 1w ∈ L if and only if 0w is Sturmian,
2. if 0w is not Sturmian, then 1nw ∈ L for n =
1/(1 − α)�.

Lemma 7. Let w be a c-balanced word. If there exists a positive integer n s.t.
1n �∈ Fct(w), then the word z = 1ncw is prefix normal.

In particular, Lemma7 implies that any c-balanced word with infinitely many
0s can be turned into a prefix normal word by prepending a finite number of 1s,
since such a word cannot have arbitrarily long runs of 1s. Note, however, that
the number of 1s to prepend from Lemma 7 is not tight, as can be seen e.g. from
the Thue-Morse word tm: the longest run of 1s in tm is 2 and tm is 2-balanced,
but 11tm is prefix normal, as will be shown in the next section (Lemma 10).

5.2 Prefix Normal Forms and Abelian Complexity

Recall that for a word w, F a
w(i) is the maximum number of a’s in a factor of w

of length i, for a ∈ {0, 1}.

Definition 8 (Prefix normal forms). Let w ∈ {0, 1}ω. Define the words
w′ and w′′ by setting, for n ≥ 1, w′

n = F 1
w(n) − F 1

w(n − 1) and w′′
n =

F 0
w(n) − F 0

w(n − 1). We refer to w′ as the prefix normal form of w w.r.t. 1 and
to w′′ as the prefix normal form of w w.r.t. 0, denoted PNF1(w) resp. PNF0(w).

In other words, PNF1(w) is the sequence of first differences of the maximum-
1s function F 1

w of w. Similarly, PNF0(w) can be obtained by complementing the
sequence of first differences of the maximum-0s function F 0

w of w. Note that for
all n and a ∈ {0, 1}, either F a

w(n + 1) = F a
w(n) or F a

w(n + 1) = F a
w(n) + 1,

and therefore w′ and w′′ are words over the alphabet {0, 1}. In particular, by
construction, the two prefix normal words allow us to recover the maximum-1s
and minimum-1s functions of w:

Observation 1. Let w be an infinite binary word and w′ = PNF1(w), w′′ =
PNF0(w). Then Pw′(n) = F 1

w(n) and Pw′′(n) = n − F 0
w(n) = f1

w(n).

Lemma 8. Let w ∈ {0, 1}ω. Then PNF1(w) is the unique 1-prefix normal word
w′ s.t. F 1

w′ = F 1
w. Similarly, PNF0(w) is the unique 0-prefix normal word w′′ s.t.

F 0
w′′ = F 0

w.

Example 3. For the two prefix normal forms and the maximum-1s and
maximum-0s functions of the Fibonacci word f = 01001010010010100101 · · · ,
see Table 1.

Now we can connect the prefix normal forms of w to the abelian complexity
of w in the following way. Given w′ = PNF1(w) and w′′ = PNF0(w), the number
of Parikh vectors of k-length factors is precisely the difference in 1s in the prefix
of length k of w′ and of w′′ plus 1. For example, Fig. 1 shows the prefix normal
forms of the Fibonacci word. The vertical line at 5 cuts through points (5,−1)

130 F. Cicalese et al.

Table 1. The maximum number of 0s and 1s (F 0

f (n) and F 1

f (n) resp.) for all n =

1, . . . , 20 of the Fibonacci word f, and the prefix normal forms of f.

n 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

F 0

f (n) 1 2 2 3 4 4 5 5 6 7 7 8 9 9 10 10 11 12 12 13

F 1

f (n) 1 1 2 2 2 3 3 4 4 4 5 5 5 6 6 7 7 7 8 8

PNF0(f) 0 0 1 0 0 1 0 1 0 0 1 0 0 1 0 1 0 0 1 0

PNF1(f) 1 0 1 0 0 1 0 1 0 0 1 0 0 1 0 1 0 0 1 0

Fig. 1. The Fibonacci word (dashed) and its prefix normal forms (solid). A 1 corre-
sponds to a diagonal segment in direction NE, a 0 in direction SE. On the x-axis the
length of the prefix, on the y-axis, number of 1s minus number of 0s in the prefix.

and (5,−3), meaning that there are two Parikh vectors of factors of length
5, namely (2, 3) and (1, 4). The Fibonacci word, being a Sturmian word, has
constant abelian complexity 2. An example with unbounded abelian complexity
is the Champernowne word, whose prefix normal forms are 1ω resp. 0ω.

Theorem 3. Let w, v ∈ {0, 1}ω.

1. ψw(n) = Pw′(n) − Pw′′(n) + 1, where w′ = PNF1(w) and w′′ = PNF0(w).
2. Π(w) = Π(v) if and only if PNF0(w) = PNF0(v) and PNF1(w) = PNF1(v).

Theorem 3 means that if we know the prefix normal forms of a word, then
we can compute its abelian complexity. Conversely, the abelian complexity is
the width of the area enclosed by the two words PNF1(w) and PNF0(w). In
general, this fact alone does not give us the PNFs; but if we know more about
the word itself, then we may be able to compute the prefix normal forms, as we
will see in the case of the paperfolding word. We will now give two examples of
the close connection between abelian complexity and prefix normal forms, using
some recent results about the abelian complexity of infinite words.

1. The paperfolding word. The first few characters of the ordinary paperfolding
word are given by

p = 0010011000110110001001110011011 · · ·

On Infinite Prefix Normal Words 131

The paperfolding word was originally introduced in [11]. One definition is
given by: pn = 0 if n′ ≡ 1 mod 4 and pn = 1 if n′ ≡ 3 mod 4, where n′ is the
unique odd integer such that n = n′2k for some k [16]. The abelian complexity
function of the paperfolding word was fully determined in [16], giving the follow-
ing initial values of ψp(n), for n ≥ 1: 2, 3, 4, 3, 4, 5, 4, 3, 4, 5, 6, 5, 4, 5, 4, 3, 4, 5, 6, 5,
and a recursive formula for all values. The authors note that for the paperfolding
word, it holds that if u ∈ Fct(p), then also urev ∈ Fct(p). This implies

F 1
p(n) = F 0

p(n) for all n, and thus PNF0(p) = PNF1(p).

Moreover, from Theorem 3 we get that F 1
p(n) = PPNF1(p)(n) = (ψp(n) +

n − 1)/2, and thus we can determine the prefix normal forms of p as shown in
Fig. 2. This same argument holds for all words with a symmetric property similar
to the paperfolding word:

Lemma 9. Let w ∈ {0, 1}ω. If for all u ∈ Fct(w), it holds that u ∈ Fct(w)
or urev ∈ Fct(w), then F 1

w(n) = F 0
w(n) for all n,PNF0(w) = PNF1(w), and

F 1
w(n) = (ψw(n) + n − 1)/2.

Fig. 2. The paperfolding word (dashed) and its prefix normal forms (solid).

2. Morphic images under the Thue-Morse morphism. The Thue-Morse word
beginning with 0, which we denote by tm, is one of the two fixpoints of the
Thue-Morse morphism μTM, where μTM(0) = 01 and μTM(1) = 10:

tm = μ
(ω)
TM(0) = 01101001100101101001011001101001 · · ·

The word tm has abelian complexity function ψtm(n) = 2 for n odd and
ψtm(n) = 3 for n > 1 even [18]. Since tm fulfils the condition that u ∈ Fct(tm)
implies u ∈ Fct(tm), we can apply Lemma 9, and compute the prefix normal
forms of tm as PNF1(tm) = 1(10)ω and PNF0(tm) = 0(01)ω, see Fig. 3.

For the proof of the abelian complexity of tm in [18], the Parikh vectors were
computed for each length, so we could have got the prefix normal forms directly
(without Lemma 9). Moreover, a much more general result was given in [18]:

132 F. Cicalese et al.

Fig. 3. The Thue-Morse word (dashed) and its prefix normal forms (solid).

Theorem 4 ([18]). For an aperiodic infinite binary word w, ψw = ψtm if and
only if w = μTM(w′) or w = 0μTM(w′) or w = 1μTM(w′) for some word w′.

The abelian complexity function does not in general determine the prefix
normal forms, as can be seen on the example of Sturmian words, which all have
the same abelian complexity function but different prefix normal forms. However,
ψtm does, due to its values ψtm(n) = 2 for n odd and = 3 for n even, and to
the fact that both F 1

tm and F 0
tm have difference function with values from {0, 1}:

notice that the only pair of such functions with width 2 resp. 3 are the PNFs of
tm. Therefore, we can deduce the following from Theorem 4:

Corollary 3. For an aperiodic infinite binary word w, PNF1(w) = 1(10)ω and
PNF0 = 0(01)ω if and only if w = μTM(w′) or w = 0μTM(w′) or w = 1μTM(w′)
for some word w′.

To conclude this section, we return to the question of how many 1s need to
be prepended to make the Thue-Morse word prefix normal.

Lemma 10. We have 11tm ∈ L. This is minimal since 1tm is not prefix normal.

5.3 Prefix Normal Forms of Sturmian Words

Let w be a Sturmian word. As we saw in Sect. 4, the only 1-prefix normal word
in the class of Sturmian words with the same slope α is the upper mechanical
word s′

α,0 = 1cα.

Theorem 5. Let w be an irrational mechanical word with slope α, i.e. a Stur-
mian word. Then PNF1(w) = 1cα and PNF0(w) = 0cα, where cα is the charac-
teristic word of slope α.

6 Prefix Normal Words and Lexicographic Order

In this section, we study the relationship between lexicographic order and prefix
normality. Note that for coherence with the rest of the paper, in the definition
of Lyndon words, necklaces, and prenecklaces, we use lexicographically greater

On Infinite Prefix Normal Words 133

rather than smaller. Clearly, this is equivalent to the usual definitions up to
renaming characters.

Thus a finite Lyndon word is one which is lexicographically strictly greater
than all of its conjugates: w is Lyndon if and only if for all non-empty u, v s.t.
w = uv, we have w >lex vu. A necklace is a word which is greater than or
equal to all its conjugates, and a prenecklace is one which can be extended to
become a necklace, i.e. which is the prefix of some necklace [15,19]. As we saw
in the introduction, in the finite case, prefix normality and Lyndon property are
orthogonal concepts. However, the set of finite prefix normal words is included
in the set of prenecklaces [6].

An infinite word is Lyndon if an infinite number of its prefixes is Lyndon [24].
In the infinite case, we have a similar situation as in the finite case. There
are words which are both Lyndon and prefix normal: 10ω, 110(10)ω; Lyndon
but not prefix normal: 11100(110)ω; prefix normal but not Lyndon: (10)ω; and
neither of the two: (01)ω. Next we show that a prefix normal word cannot be
lexicographically smaller than any of its suffixes. Let shift i(w) = wiwi+1wi+2 · · ·
denote the infinite word v s.t. w = w1 · · · wi−1v, i.e. v is w starting at position i.

Lemma 11. Let w ∈ Linf . Then w ≥lex shift i(w) for all i ≥ 1.

In the finite case, it is easy to see that a word w is a prenecklace if and
only if w ≥lex v for every suffix v of w. This motivates our definition of infinite
prenecklaces. The situation is the same as in the finite case: prefix normal words
form a proper subset of prenecklaces.

Definition 9. Let w ∈ {0, 1}ω. Then w is an infinite prenecklace if for all i ≥ 1,
w ≥lex shift i(w). We denote by Pinf the set of infinite prenecklaces.

Proposition 2. We have Linf � Pinf .

Another interesting relationship is that between lexicographic order and the
prefix normal forms of an infinite word. In [17], two words were associated to an
infinite binary word w, called max(w) resp. min(w), defined as the word whose
prefix of length n is the lexicographically greatest (resp. smallest) n-length factor
of w. It is easy to see that these words always exists. It was shown in [17]:2

Theorem 6 ([17]). Let w be an infinite binary word. Then

1. w is (rational or irrational) mechanical with its intercept equal to its slope if
and only if 0w ≤lex min(w) ≤lex max(w) ≤lex 1w, and

2. w is characteristic Sturmian if and only if min(w) = 0w and max(w) = 1w.

Lemma 12. For w ∈ {0, 1}ω, PNF1(w) ≥lex max(w) and PNF0(w)
≤lex min(w).

From Theorems 5 and 6 we get the following corollary:
2 Note the different terminology in [17]: characteristic word → proper standard Stur-

mian, Sturmian → proper Sturmian, rational mechanical word → periodic Sturmian.

134 F. Cicalese et al.

Corollary 4. Let w be an infinite binary word. Then w is characteristic Stur-
mian if and only if 0w = PNF0(w) = min(w) and 1w = PNF1(w) = max(w).

Acknowledgements. We wish to thank the participants of the Workshop on Words
and Complexity (Lyon, February 2018), for interesting discussions and pointers, and
to Péter Burcsi, who first got us interested in Sturmian words.

References

1. Amir, A., Chan, T.M., Lewenstein, M., Lewenstein, N.: On hardness of jumbled
indexing. In: Esparza, J., Fraigniaud, P., Husfeldt, T., Koutsoupias, E. (eds.)
ICALP 2014. LNCS, vol. 8572, pp. 114–125. Springer, Heidelberg (2014). https://
doi.org/10.1007/978-3-662-43948-7 10

2. Blanchet-Sadri, F., Fox, N., Rampersad, N.: On the asymptotic abelian complexity
of morphic words. Adv. Appl. Math. 61, 46–84 (2014)

3. Blondin Massé, A., de Carufel, J., Goupil, A., Lapointe, M., Nadeau, É., Van-
domme, É.: Leaf realization problem, caterpillar graphs and prefix normal words.
Theoret. Comput. Sci. 732, 1–13 (2018)

4. Burcsi, P., Cicalese, F., Fici, G., Lipták, Zs.: Algorithms for jumbled pattern match-
ing in strings. Int. J. Found. Comput. Sci. 23, 357–374 (2012)

5. Burcsi, P., Fici, G., Lipták, Zs., Ruskey, F., Sawada, J.: On combinatorial genera-
tion of prefix normal words. In: Kulikov, A.S., Kuznetsov, S.O., Pevzner, P. (eds.)
CPM 2014. LNCS, vol. 8486, pp. 60–69. Springer, Cham (2014). https://doi.org/
10.1007/978-3-319-07566-2 7

6. Burcsi, P., Fici, G., Lipták, Zs., Ruskey, F., Sawada, J.: On prefix normal words
and prefix normal forms. Theoret. Comput. Sci. 659, 1–13 (2017)

7. Cassaigne, J., Kaboré, I.: Abelian complexity and frequencies of letters in infinite
words. Int. J. Found. Comput. Sci. 27(05), 631–649 (2016)

8. Chan, T.M., Lewenstein, M.: Clustered integer 3SUM via additive combinatorics.
In: Proceedings of the 47th Annual ACM Symposium on Theory of Computing
(STOC 2015), pp. 31–40 (2015)

9. Cicalese, F., Lipták, Zs., Rossi, M.: Bubble-Flip - a new generation algorithm for
prefix normal words. Theoret. Comput. Sci. 743, 38–52 (2018)

10. Cunha, L.F.I., Dantas, S., Gagie, T., Wittler, R., Kowada, L.A.B., Stoye, J.: Fast
and simple jumbled indexing for binary run-length encoded strings. In: 28th Annual
Symposium on Combinatorial Pattern Matching (CPM 2017). LIPIcs, vol. 78, pp.
19:1–19:9 (2017)

11. Davis, C., Knuth, D.: Number representations and dragon curves, I, II. J. Recreat.
Math. 3, 133–149 and 161–181 (1970)

12. Fici, G., Lipták, Zs.: On prefix normal words. In: Mauri, G., Leporati, A. (eds.)
DLT 2011. LNCS, vol. 6795, pp. 228–238. Springer, Heidelberg (2011). https://
doi.org/10.1007/978-3-642-22321-1 20

13. Gagie, T., Hermelin, D., Landau, G.M., Weimann, O.: Binary jumbled pattern
matching on trees and tree-like structures. Algorithmica 73(3), 571–588 (2015)

14. Kaboré, I., Kientéga, B.: Abelian complexity of Thue-Morse word over a ternary
alphabet. In: Brlek, S., Dolce, F., Reutenauer, C., Vandomme, É. (eds.) WORDS
2017. LNCS, vol. 10432, pp. 132–143. Springer, Cham (2017). https://doi.org/10.
1007/978-3-319-66396-8 13

https://doi.org/10.1007/978-3-662-43948-7_10
https://doi.org/10.1007/978-3-662-43948-7_10
https://doi.org/10.1007/978-3-319-07566-2_7
https://doi.org/10.1007/978-3-319-07566-2_7
https://doi.org/10.1007/978-3-642-22321-1_20
https://doi.org/10.1007/978-3-642-22321-1_20
https://doi.org/10.1007/978-3-319-66396-8_13
https://doi.org/10.1007/978-3-319-66396-8_13

On Infinite Prefix Normal Words 135

15. Lothaire, M.: Algebraic Combinatorics on Words. Cambridge University Press,
Cambridge (2002)

16. Madill, B., Rampersad, N.: The abelian complexity of the paperfolding word. Dis-
crete Math. 313(7), 831–838 (2013)

17. Pirillo, G.: Inequalities characterizing standard Sturmian and episturmian words.
Theoret. Comput. Sci. 341(1–3), 276–292 (2005)

18. Richomme, G., Saari, K., Zamboni, L.Q.: Abelian complexity of minimal subshifts.
J. London Math. Soc. 83(1), 79–95 (2011)

19. Ruskey, F., Savage, C., Wang, T.: Generating necklaces. J. Algorithms 13(3), 414–
430 (1992)

20. Ruskey, F., Sawada, J., Williams, A.: Binary bubble languages and cool-lex order.
J. Comb. Theory Ser. A 119(1), 155–169 (2012)

21. Sawada, J., Williams, A.: Efficient oracles for generating binary bubble languages.
Electron. J. Comb. 19(1), P42 (2012)

22. Sawada, J., Williams, A., Wong, D.: Inside the Binary Reflected Gray Code: Flip-
Swap languages in 2-Gray code order (2017, unpublished manuscript)

23. Sloane, N.J.A.: The On-Line Encyclopedia of Integer Sequences. http://oeis.org
24. Siromoney, R., Mathew, L., Dare, V., Subramanian, K.: Infinite Lyndon words.

Inf. Process. Lett. 50, 101–104 (1994)
25. Turek, O.: Abelian complexity function of the Tribonacci word. J. Integer Seq. 18

(2015). Article 15.3.4

http://oeis.org

Priority Scheduling in the Bamboo
Garden Trimming Problem

Mattia D’Emidio1(B), Gabriele Di Stefano1, and Alfredo Navarra2

1 Department of Information Engineering, Computer Science and Mathematics,
University of L’Aquila, Via Vetoio, 67100 L’Aquila, Italy
{mattia.demidio,gabriele.distefano}@univaq.it

2 Department of Mathematics and Computer Science, University of Perugia,
Via Vanvitelli 1, 06123 Perugia, Italy

alfredo.navarra@unipg.it

Abstract. We consider the Bamboo Garden Trimming (BGT) problem
introduced in [G ↪asieniec et al., SOFSEM’17]. The problem is NP-hard
due to its close relationship to Pinwheel scheduling. The garden with
n bamboos is an analogue of a system of n machines which have to
be attended (e.g., serviced) with different frequencies. During each day,
bamboo bi grows an extra height hi, for i = 1, . . . , n and, on the con-
clusion of the day, at most one bamboo is cut all its current height. The
goal is to design a perpetual schedule of cuts to keep the height of the
tallest ever bamboo as low as possible.

Our contribution is twofold, and is both theoretical and experimental.
In particular, we focus on understanding what we call priority schedul-
ings, i.e. cutting strategies where priority is given to bamboos whose cur-
rent height is above a threshold greater than or equal to H =

∑n
i=1 hi.

Value H represents the total daily growth of the system and it is known
that one cannot keep bamboos in the garden below this threshold indef-
initely.

We prove that for any distribution of integer growth rates h1, . . . , hn

and any priority scheduling, the system stabilises in a fixed cycle of
cuts. Then, we focus on the so-called ReduceMax strategy, a greedy
priority scheduling which each day cuts the tallest bamboo, regard-
less of the growth rates distribution. ReduceMax is known to provide
a O(log n)-approximation, w.r.t. the lower bound H. We prove that,
if ReduceMax stabilises in a round-robin type cycle, then it guarantees
2-approximation. We conjecture that ReduceMax is 2-approximating for
the BGT problem, hence we conduct an extended experimental evalu-
ation, on all bounded in size integer instances of BGT, to support our
conjecture and to compare ReduceMax with other relevant scheduling
algorithms. Our results show that ReduceMax provides 2-approximation

The work has been supported in part by the European project “Geospatial based
Environment for Optimisation Systems Addressing Fire Emergencies” (GEO-SAFE),
contract no. H2020-691161 and by the Italian National Group for Scientific Computa-
tion GNCS-INdAM.

c© Springer Nature Switzerland AG 2019
B. Catania et al. (Eds.): SOFSEM 2019, LNCS 11376, pp. 136–149, 2019.
https://doi.org/10.1007/978-3-030-10801-4_12

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-10801-4_12&domain=pdf
https://doi.org/10.1007/978-3-030-10801-4_12

Priority Scheduling in the Bamboo Garden Trimming Problem 137

in such instances, and it always outperforms other considered strategies,
even those for which better worst case approximation guarantees have
been proven.

1 Introduction

We consider a perpetual scheduling problem in which n machines, denoted later
as bamboos, need to be attended with possibly known and likely different fre-
quencies. In other words some machines may have to be attended more often
than others. This problem was proposed and studied in [13] under the name of
Bamboo Garden Trimming (BGT) problem. We are given a collection (garden)
G of n bamboos b1, b2, . . . , bn along with respective daily growth rates h1, h2,
. . . , hn greater than 0. The authors in [13] assume that initially the height of
each bamboo is set to zero, whereas in this paper we allow bamboos to start
with arbitrary heights.

The robotic gardener maintaining the garden trims one bamboo per day to
height zero according to some predefined schedule. The main goal in BGT is
to design perpetual schedules of cuts which keep the height of the tallest ever
bamboo as low as possible. The gardener is allowed to cut exactly one (of their
choice) bamboo at the end of each day which corresponds to one round in the
schedule. The problem, while of independent combinatorial interest, originates
from perpetual testing of virtual machines in cloud systems [1]. In such systems,
the frequency in which virtual machines are tested for undesirable symptoms
varies depending on the importance of dedicated cloud operational mechanisms.

The problem considered here is also a close relative of several classical algo-
rithmic problems which focus on monitoring including Perpetual Graph Explo-
ration [14,18], Art Gallery Problem [21] and its dynamic extension k-Watchmen
Problem [24]. In the work on Patrolling [11,12], the studies focus on monitor-
ing a set of points with the same frequency of attendance, whereas in [10] the
frequency may vary.

Our paper, similarly to [13], focuses on the case where each bamboo has its
own attendance factor, which makes it related to periodic scheduling [23], several
variants of Pinwheel related problems [7,8,15,17] including periodic Pinwheel
problem [16,19] and Pinwheel scheduling [22], as well as the concept of P-fairness
in sharing multiple copies of some resource among various tasks [2,3]. We point
out here that the NP-hardness of BGT results from the intractability of Pinwheel
scheduling proved in [4,20].

In related research on minimising the maximum occupancy of a buffer in
a system of n buffers, the usual setting is a game between the player and the
adversary [5,6,9]. The adversary decides how a fixed total increase of data in
each round is distributed among the buffers and tries to maximise the maximum
occupancy of a buffer. The player decides which buffer (or buffers) should be
emptied next and tries to minimise the maximum buffer size. The upper bounds
developed in this more general context can be translated into upper bounds for
our BGT problem. However, our aim is to derive tighter bounds for the case

138 M. D’Emidio et al.

where the knowledge of growth rates is not exploited, hence adopting strategies
able to deal with input data being either partially or entirely unknown.

Probably the most natural algorithm to keep the elevation of the bamboo
garden low is the greedy approach of always cutting the currently tallest bam-
boo. This method, that is agnostic w.r.t. growth rates, was first coined in [1]
under the name of ReduceMax and further studied in [13]. This strategy was
also considered independently (and under a different name) in the adversarial
setting of buffer minimisation problems [6]. Another method studied in [13] is
the ReduceFastest2 approach, in which the fastest growing bamboo is cut but
only among those having height above the threshold 2H, where H =

∑n
i=1 hi.

Value H represents the total daily growth of the system of bamboos and it is
known [13] that one cannot keep bamboos below this threshold level. From [13]
we have that ReduceFastest2 provides a constant approximation to BGT, i.e.,
none of the bamboos grows above height 4H. However, its applicability depends
on the knowledge of value H and at least an ordering of the bamboos w.r.t. their
growth rates. More interestingly, ReduceMax does not require such a knowledge
but surprisingly it is not so well understood. While there are insights that it
should perform better than ReduceFastest2, the only upper bound known for
the maximum height of bamboos is O(H · log n) [13].

In this paper, the main contribution is twofold, and it refers to both theoret-
ical and experimental studies on the BGT problem. In particular, we focus on
better understanding of what we call priority schedulings that operate on any
‘reasonable’ (involving all bamboos) strategy of cuts in which priority is given to
bamboos with the current height above a threshold greater than or equal to H.
Both ReduceMax and ReduceFastest2 fall into the priority category. Moreover,
we require our scheduling strategies to be fully deterministic. Hence, in case of
ties, i.e., when two or more bamboos are eligible to be cut w.r.t. the considered
strategy, we select the bamboo with the biggest index.

We first prove that for any distribution of integer growth rates h1, . . . , hn and
any priority scheduling, the system stabilises in a fixed cycle of cuts, eventually.
However, the time needed to converge depends on the initial heights of bamboos.
Then, we show that, whenever ReduceMax stabilises in a round-robin type cycle,
it guarantees 2-approximation for BGT. Finally, we conduct extended experi-
ments to compare ReduceMax with other strategies, including ReduceFastest2.
Note that [1] contains some experiments on ReduceMax, focusing only on selected
distributions of bamboo growth rates. In contrast, here the focus is on all pos-
sible distributions of bounded size. Our experiments show ReduceMax being 2
approximating in all considered instances, and provide evidence that ReduceMax
outperforms all other tested strategies. We conclude by conjecturing the
following.

Conjecture 1. Algorithm ReduceMax is 2-approximating for the BGT problem.

2 Notation

We are given a collection {b1, b2, . . . , bn} of n bamboos (a.k.a. a garden) along
with respective daily growth rates h1, h2, · · · , hn. We assume that each hi is

Priority Scheduling in the Bamboo Garden Trimming Problem 139

a positive integer, for any 1 ≤ i ≤ n, and call a configuration Ct the sequence
(�t

1, �
t
2, . . . , �

t
n) of the bamboos’ heights at a given day t. Any configuration Ct =

(�t
1, �

t
2, . . . , �

t
n) is determined by a growth mechanism applied on its predecessor

Ct−1 = (�t−1
1 , �t−1

2 , . . . , �t−1
n), i.e., for any 1 ≤ i ≤ n, we have �t

i = �t−1
i + hi.

The only exception to this behavior is what we call a trimming operation. In
particular, we say a bamboo bi is trimmed (equivalently cut) at a given day t
if the height �t

i is reduced to zero and hence, trivially, �t+1
i = hi. For the sake

of simplicity, in what follows we omit t from all notations when the number of
the day is clear from the context. Finally, given a configuration C, we denote by
V (C) the volume of configuration C which is the sum of all bamboos’ heights in
C, i.e., V (C) =

∑n
i=1 �i.

An input instance I to the BGT problem is a set of growth rates {hi}1≤i≤n,
complemented by the initial configuration C0. We are interested in designing
perpetual schedules of cuts which allow to keep the tallest bamboo in the garden
as low as possible. In particular, we assume that at most one trimming operation
can take place every day. Therefore, we aim at designing an algorithm A that, for
a given input instance I, computes a perpetual schedule A(I) = (i1, i2, . . .), i.e.
a sequence of indices ij ∈ {0, 1, 2, . . . , n} that determines, for any day t > 0, the
bamboo to be trimmed, unless ij = 0 when no bamboo is cut. In other words, a
schedule of this kind defines an ordered sequence of trimming operations on the
bamboos. In what follows, we call an algorithm determining perpetual schedules
a perpetual scheduling, or simply scheduling algorithm.

Given an input instance I and a perpetual scheduling S, an execution E(I,S)
is the sequence (C0, C1, . . .) obtained by applying the schedule computed by S
on C0. Moreover, given an execution E and a configuration C, we denote by
M(E) (M(C), resp.) the maximum height reached by a bamboo in E (C, resp.).
Finally, we denote by H =

∑n
i=1 hi the sum of the growth rates. It is known that

no algorithm can compute a schedule that keeps the heights of all the bamboos
below H indefinitely (i.e. such that M(E) < H) [13].

3 Theoretical Results

In this section we first introduce a formal definition of priority schedulings
and analyse their performance (see Sect. 3.1). Then, we focus on the strat-
egy ReduceMax and show it provides 2-approximation for BGT under specific
assumptions (see Sect. 3.2).

3.1 Priority Schedulings

Let C be the set of any configuration of n bamboos.

Definition 1. An oblivious scheduling σ : C → {0, 1, . . . , n} is a function which
for any configuration of heights in C returns an index i of the bamboo to be cut,
and i = 0 means that none of the bamboos is scheduled to be cut.

140 M. D’Emidio et al.

In other words, in oblivious schedulings the next cut is solely based on the
current configuration, without exploiting any knowledge about past cuts.

Definition 2. A configuration C = (�1, �2, . . . , �n) is said to be ordered when-
ever i < j implies hi ≥ hj.

The above implies the order of the sequence in C reflects a non-increasing
ordering of the growth rates, i.e. �1 is the height of the bamboo with the biggest
growth rate.

Definition 3. An ordered oblivious scheduling σ : O → {0, 1, . . . , n} is an
oblivious scheduling where O ⊂ C is the set of ordered configurations in C.
Definition 4. Given a threshold τ ≥ H and any (ordered) configuration C ∈ C,
let L be the set of indices of all bamboos whose height is strictly greater than
τ . An oblivious scheduling στ is a (ordered) τ -priority scheduling if and only if
L �= ∅ implies στ (C) ∈ L.

In the remainder of the paper, a (ordered) τ -priority scheduling will be simply
referred to as a priority scheduling when the ordering and the value of τ are either
clear from the context or irrelevant. Clearly, ReduceFastest2 is an ordered 2H-
priority scheduling as it cuts only bamboos above threshold 2H on the basis of
the ordering of the growth rates. For ReduceMax, instead, we can prove it is a
priority scheduling regardless the ordering of the bamboos’ growth rates. This
means it can be applied to a wider range of input configurations, not only to
ordered ones as required by ReduceFastest2.

Fact 1. ReduceMax is a priority scheduling.

Proof. Given any threshold τ ≥ H (as required by Definition 4) each day
ReduceMax cuts the tallest bamboo. This includes also the case when there are
bamboos taller than τ . This in turn means that ReduceMax gives priority to
bamboos higher than τ , if any. �

The next lemma gives an upper bound on the volume the garden may reach
in a priority scheduling.

Lemma 1 (Upper Bound on Volume). Given a τ -priority scheduling στ

and an input I. There exists a time t, s.t., for any t′ > t we have V (Ct′
) ≤ nτ,

where Ct′ ∈ E(I, στ).

Proof. First assume that M(E(I, στ)) > τ , as otherwise V (C) ≤ nτ, for each
C ∈ E(I, στ), and the lemma holds. If we also assume M(C0) > τ we are able
to prove that, within finite time, a configuration C with M(C) ≤ τ is reached
by applying στ . In particular, note that for as long as there are bamboos having
height greater than τ , the total volume decreases each day, being τ ≥ H, of at
least 1. Thus there must exist a time t when eventually M(Ct) ≤ τ , since the
volume cannot decrease indefinitely. At this time, we have V (Ct) ≤ nτ .

Therefore, let t′ > t be the first day after time t such that Ct′
has a bamboo

having height greater than τ . Clearly, we have V (Ct′
) < V (Ct′−1) − τ + H, as

Priority Scheduling in the Bamboo Garden Trimming Problem 141

στ cuts a bamboo with height greater than τ and, at the end of the day, all
bamboos grow by H in total. Moreover, by hypothesis V (Ct′−1) ≤ nτ , since
�i ≤ τ , for each �i ∈ Ct′−1. Hence, V (Ct′

) < (n−1)τ +H ≤ nτ , as H ≤ τ . Now,
let us focus on V (Ct′+1). Since in Ct′

the scheduling algorithm cuts a bamboo
having height bigger than τ , and since the sum of daily growths is exactly H, it
follows that V (Ct′+1) < V (Ct′

), and this is true for any following configuration
until day t′′ where �i ≤ τ for any �i ∈ Ct′′

. Notice that in t′′ we fall in the
same set of hypotheses as of day t, then by repeating the reasoning, the claim
follows. �

By Lemma 1 we derive the next corollary, which guarantees that any priority
scheduling stabilises into a cycle of finite length, i.e., that the sequence of cuts
becomes periodic.

Corollary 1 (Existence of a Cycle). Given a τ -priority scheduling στ and
an input I. There exist two days t and t′, where t < t′, Ct = Ct′

, and Ct, Ct′ ∈
E(I, στ).

Proof. The claim follows from Lemma 1, since the number of configurations hav-
ing volume at most nτ is finite. �

By the above corollary, we know that any priority scheduling stabilises in
a cycle, eventually. In fact, by Definition 1, a priority scheduling (which is an
oblivious scheduling) computes the same trimming operation if the same config-
uration shows up again. We remind that, in case of ties, the bamboo having the
biggest index is cut. In this paper, we study the properties of such cycles, as they
represent the perpetual trimming process that have to be executed indefinitely.
Hence, we tend to disregard configurations preceding LE where, given an exe-
cution E, then LE denotes its periodic part (i.e., the sequence of configurations
in the cycle). In particular, to better characterise such cycles, we introduce the
following notation:

– LE = (C1 = Ct′
, C2 = Ct′+1, C3, . . . , CλE

), where Ct′
is the first configura-

tion belonging to LE , reached from C0, and λE = |LE | is the length of the
cycle, i.e., the number of configurations in LE ;

– lt is the height of the bamboo cut in Ct ∈ LE . We assume lt = 0 if no bamboo
is cut;

– ci is the number of times bamboo bi is cut in LE , for each i = 1, . . . , n, which
is equal to the number of relative maximum heights reached by bi in the cycle;

– mj
i is the relative maximum height reached by bi in the cycle just before the

j-th cut, for i = 1, . . . , n and j = 1, . . . , ci. Note that by definition, during
day t, lt = mj

i for some values of i and j;

– Mi =
cj∑

j=1

mj
i is the sum of the relative maximum heights reached by bi.

The next lemma provides a very useful property of the cuts that are per-
formed within a cycle of a priority scheduling. In particular, we can show that
the average value of heights reached by bamboos in LE , just before a cut, is
always H.

142 M. D’Emidio et al.

Lemma 2 (On Average Height of Cuts within a Cycle). Given an exe-

cution E of a priority scheduling, then 1
λE

λE∑

t=1
lt = H.

Proof. Let Δt
V = V (Ct)−V (Ct−1) be the change of the volume from Ct−1 to Ct,

for any t = 1, . . . λE . C0 ≡ CλE
, since cycle LE exists by Corollary 1. Thus we

have Δt
V = H−lt, because at day t the bamboo of height lt is cut and all bamboos

grow by H in total. Now, since
λE∑

t=1
Δt

V must be equal to zero, as configurations

in LE come periodically, we get:
λE∑

t=1
Δt

V =
λE∑

t=1
(H − lt) = λE · H −

λE∑

t=1
lt = 0.

Therefore, we have
λE∑

t=1
lt = λE · H, and the claim holds. �

In what follows, we characterise the length of LE in terms of the maximum
height reached by any bamboo having growth rate equal to hi.

Lemma 3 (Characterisation of λE). Given an execution E of a priority
scheduling and an index i ∈ {1, 2, . . . , n}, then λE = Mi

hi
.

Proof. Let pj
i = mj

i/hi. The value of pj
i is an integer representing the number

of days between the j-th cut of bi and the previous one. Then Mi =
cj∑

j=1

mj
i =

cj∑

j=1

hi · pj
i = hi ·

cj∑

j=1

pj
i = hi · λE . �

An immediate consequence is the following corollary.

Corollary 2 (Properties of Rates and Maximum Heights). Given an
execution E of a priority scheduling, and two indices i, j ∈ {1, 2, . . . , n} then
Mi

Mj
= hi

hj
.

3.2 ReduceMax Scheduling

In this section we focus on ReduceMax. By Fact 1, we have already shown that
ReduceMax is a priority scheduling, regardless of the chosen threshold τ ≥ H
required by Definition 4. It follows that ReduceMax inherits all results obtained
in the previous section for priority schedulings. In particular, given an execution
E obtained by applying ReduceMax, let lt be the height of the bamboo cut in

Ct ∈ LE , i.e., lt = M(Ct), and let ME = 1
λE

λE∑

t=1
lt denote the average of the

maximum heights reached by bamboos in LE . Then, for ReduceMax, Lemma 2
can be reformulated as follows.

Corollary 3 (On Average Height of Cuts of ReduceMax). Let E be an
execution of ReduceMax. Then ME = H.

A natural intuitive property is provided in the next lemma.

Priority Scheduling in the Bamboo Garden Trimming Problem 143

Lemma 4 (On the Amounts of Cuts within a Cycle). Let E be an exe-
cution of ReduceMax. For any two indices i, j ∈ {1, 2, . . . , n} such that hi ≥ hj

we have ci ≥ cj.

Proof. By contradiction, assume that ci < cj . Then, in cycle LE there must be
at least two cuts of bj between two consecutive cuts of bi. However, since hi ≥ hj ,
then bj after the first cut will grow less than bi and it will never reach bi before
its second cut, which is a contradiction. �

A direct consequence of Lemma 4 is that, if two bamboos exhibit the same
growth rate they also have the same number of cuts in the cycle.

Corollary 4 (Sufficient Condition for Same Number of Cuts). If E is
an execution of ReduceMax, hi = hj implies ci = cj.

Let mi = max{mj
i : j = 1, 2, . . . , ci} be the maximum height reached by

bamboo bi in a cycle LE of ReduceMax. We show that ci = 1 suffices to guarantee
mi < 2H. Basically, the next lemma guarantees that the approximation factor
of ReduceMax reduces from O(log n) [13] to 2 if all bamboos are cut only once
within the cycle, i.e., when the cycle of ReduceMax is equivalent to the round-
robin strategy.

Lemma 5 (Sufficient Condition for Bounded Maximum). Let E be an
execution of ReduceMax. Then, ci = 1 for some i ∈ {1, 2, . . . , n} implies mi <
2H.

Proof. First of all, notice that ci = 1 suffices to immediately obtain mi = λE ·hi.

Moreover, by Corollary 3 we have ME = H, i.e., that λE · H −
λE∑

t=1
lt = 0.

Now, we know that bi is cut only once and, as LE is periodic, and C1 is
equal to the configuration where the height of bamboo bi is hi. Thus each term
lt is trivially lower bounded by the height of bamboo bi at day t, i.e., lt ≥ t · hi.

Hence, λE ·H −
λE∑

t=1
t ·hi ≥ 0. Therefore λE ·H ≥

λE∑

t=1
t ·hi ≥ λE ·(λE+1)

2 ·hi which

implies λ2
E

2 · hi + λE

2 · hi − λE · H ≤ 0, i.e. λE · hi + hi − 2 · H ≤ 0. This in turn
implies λE · hi < 2H and hence mi < 2H. �

If ci = 1, for some i = 1, 2, . . . n, then similarly to the proof of Lemma5, we
have a limit on the value of λE , summarised by the following corollary.

Corollary 5 (Sufficient Condition for Bounded Length of Cycles). Let
E be an execution of ReduceMax. Then ci = 1 for some i ∈ {1, 2, . . . , n} implies
λE ≤ 2·H

hi
− 1.

Reminding that, when dealing with ReduceMax, it is not required to have
bamboos ordered according to their growth rates, let bx be the bamboo having
the biggest growth rate. In what follows, we refer to the executions having cx = 1
as minimum-cycle executions, since cx = 1 implies that ci = 1 for each bamboo
bi, and then the execution exhibits a minimum-length cycle, that is λE = n.
Note that λE cannot be smaller than n, as each bamboo must be cut at least
once. These observations are summarised in the next corollary.

144 M. D’Emidio et al.

Corollary 6 (Characterisation of Minimum-cycle Executions). Let E be
an execution of ReduceMax. Then cx = 1 ⇐⇒ λE = n.

Finally, we can characterise the minimum-cycle executions of ReduceMax.

Corollary 7 (On the Maximum Height in Minimum-cycle Execu-
tions). If E is a minimum-cycle execution of ReduceMax then M(LE) < 2H.

Proof. In a minimum-cycle execution the maximum height reached by a bamboo
bi is exactly mi = nhi. Hence, the maximum height reached during an execution
by any bamboo is due to hx and, in particular, is given by M(LE) = mx = n ·hx.
Hence the thesis is an immediate consequence of Lemma 5, as cx = 1. �

Corollary 7 is of particular interest, since by Conjecture 1 we basically state that
M(E) < 2H for all the executions E obtained via ReduceMax. Hence, Corollary 7
represents a partial proof to our conjecture, holding for the case of minimum-
cycle executions. In the next section, we experimentally show the validity of our
conjecture on a large set of inputs.

4 Experimental Results

In what follows, we provide an extensive experimental evaluation of four pri-
ority scheduling strategies. As already pointed out, we require our scheduling
strategies to be fully deterministic. Hence, in case of ties, i.e., when two or more
bamboos are eligible to be cut w.r.t. the considered strategy, we select the bam-
boo having the biggest index. The considered strategies are:

– ReduceMax (RMax, for short): This is the heuristic which performance is the
most relevant to our studies. In particular, in [13], based on [6], a O(log n)-
approximation guarantee has been established. However, we are interested
in determining whether such a bound is tight in practice, i.e., whether the
logarithmic factor is an accurate estimation. The strategy works in a greedy
fashion by cutting each day the tallest bamboo.

– ReduceFastest2 (RFast2, for short): This is another greedy strategy intro-
duced in [13]. It guarantees 4-approximation. However, this method requires
to order the input configurations according to the non-increasing order of the
bamboos’ growth rates. In fact, each day it cuts the fastest growing bamboo
(the one having the biggest hi) among those whose height exceeds threshold
2H. If none of the bamboos is taller than 2H, no cuts are performed.

– ReduceFastest1 (RFast1, for short): This is a variant of RFast2, introduced
here for the first time, obtained by decreasing the threshold from 2H to
H, and by allowing the cut of the fastest growing bamboo also below the
threshold. Basically, if none of the bamboos has reached height H, the fastest
growing bamboo is cut. This is a natural extension of RFast2, and the aim of
defining it is to check whether there are chances to obtain better performance
w.r.t. RFast2 and RMax. Note that RFast1 is an ordered H-priority scheduling.

Priority Scheduling in the Bamboo Garden Trimming Problem 145

– ReduceMin (RMin, for short): This priority algorithm cuts each day the short-
est bamboo, giving priorities to those above H. The aim of defining this
strategy is to evaluate performance of counter-intuitive methods, i.e. to see
whether even in an adversarial approach one may obtain acceptable perfor-
mances. RMin is a H-priority scheduling.

To evaluate the behaviour of the scheduling strategies w.r.t. different metrics,
we implemented them within SageMath (v.7.5) under GNU/Linux and per-
formed different types of experiments. For a fair comparison w.r.t. [13], in the
experiments we assume the heights of all bamboos are initially null, that is
C0 = (0, 0, . . . , 0). Moreover, as our experiments involve ordered priority schedul-
ings (that is RFast1 and RFast2), we consider ordered configurations. In what
follows, we fix parameter H and consider all possible instances of n bamboos
whose growth rates sum up to H. Such instances are generated by considering,
for a given H ∈ N, all integer partitions of H. Hence, clearly n ∈ {1, 2, . . . ,H},
where for n = 1 there is only one bamboo having growth rate equal to H while for
n = H all bamboos have unitary growth rate (e.g., for H = 3 we have instances
[3], [2, 1] and [1, 1, 1]). Note that, we selected values of H ranging from 5 to 25.
This choice was dictated by the fact that the number of integer partitions, and
therefore instances to consider, grows very fast as H increases and hence too
large values of H induce a computationally prohibitive number of simulations.
It is known that the number of integer partitions p(k) of a natural number k

grows asymptotically as p(k) ≈ 1
4k

√
3
eπ

√
2k
3 as k approaches infinity [25].

The results of the application of all the considered scheduling algorithms
on instances induced by the integer partitions H = 25 are shown in Fig. 1,
resp. where panels on the left show how the maximum M(E), obtained for all
configurations and strategies, varies as a function of n. Reference lines 2H and
4H are plotted to emphasise performance of the strategies. On the right, instead,
we show how the achieved maximum λE changes as a function of n, given that
all strategies are guaranteed to stabilise into cycles. Note that we report the
maximum measured value as we can have many instances having the same n.
Notice also that the results for H ∈ [5, 10, 15, 20] lead to similar considerations
w.r.t. those provided below, hence we omit them.

An alternative view of the results of the experiments for H = 25 is given in
Fig. 2. It shows how the obtained values of M(E) and λE are distributed over
the considered instances. In detail, each value on the x-axis simply represents
one instance, to which we associate the corresponding values of M(E) and λE on
the y-axis. Instances are sorted on the x-axis in non-decreasing order according
to their values on the y-axis to highlight the amount of inputs providing a same
value of M(E) and λE .

On the Maximum Height. The main and the most interesting outcome of this
experiment is that, notwithstanding the O(log n) approximation factor, RMax
exhibits properties of a 2-approximation, i.e. M(E) ≤ 2H. Another surprising
evidence is that also RFast1 is always below 2H in terms of M(E). However,
RFast1 seems to follow an asymptotic trend toward 2H as n increases. This

146 M. D’Emidio et al.

(a) (b)

(c) (d)

Fig. 1. Experiments conducted on all possible ordered instances obtained by setting
H = 25 and hence considering n varying in {1, 2, . . . , 25}. Panels (a) and (c) refer to
maximum M(E), whereas panels (b) and (d) refer to maximum λE . Panels (c) and (d)
show strategies that, experimentally, exhibit 2-approximation.

suggests that, for these strategies, there could be a way to prove the worst case
2-approximation. Concerning RFast2, from the literature, we know that M(E)
is guaranteed to be below 4H and this is confirmed by our tests. However, we
observe also that M(E) is always above 2H, since no actions are performed by
RFast2 when there are no bamboos having height above 2H. Still, the strategy
exhibits a rather uniform behaviour, never overpassing 3H. This suggests that
perhaps also the bound of 4H guaranteed for RFast2 is an overestimation of
the true bound. Finally, regarding RMin, for low/high values of n (see Fig. 1), it
behaves better than RFast2, whereas for higher values of H its performance gets
worse. Still, it seems to exhibit a constant approximation as well, with M(E) ≤
7H. As a final remark, in Fig. 2a we observe that, for all strategies, values of
maximum M(E) tend to have small variance among all instances having a same
H, with curves assuming rather similar (flat) trends, and values always being
very close to the average. The only exception is algorithm RMin, whose values
of M(E) are quite different across instances having a same H. Moreover, RMax
achieves values of M(E) that are far better than all other strategies, including
RFast1, being below 2H and, in some cases, below 3

2H. This is even more evident
in Fig. 1c where we focus on RMax and RFast1 where M(E) is experimentally
always below 2H.

Priority Scheduling in the Bamboo Garden Trimming Problem 147

(a) (b)

Fig. 2. Distribution of values of M(E) (a) and λE (b) exhibited by all algorithms on
instances induced by all partitions of H = 25. Instances are sorted by non-decreasing
values of M(E) in (a) and λE in (b). To magnify the differences, the y-axis in panel (b)
is log-scaled.

On the Length of the Cycle. In Fig. 1b we show the maximum λE obtained
by all strategies. Such values can be considered as proxy of the complexity of
their cycle, as higher values of λE correspond to larger spaces of configurations
that are explored by the strategies. This translates to higher variance in terms of
height and volume, which can be seen as an undesired behaviour. Moreover, there
might be also a relationship between such length and the quality of the provided
factor of approximation, and it would be worth to study such relationship to
define new bounds on this factor. Our data shows a very big gap between the
results obtained for RMax, RFast1, and those measured for RFast2, RMin. In
particular, as shown in Fig. 1b, when n = 12, RMin takes 40000 steps whereas
the worst case for RFast2 is obtained for n = 14, with around 20000 steps. It is
worth mentioning that RMax and RFast1 behave rather differently w.r.t. other
strategies, exhibiting very low values of λE . This may lead to more accurate
arguments about changes in the volume of the garden, to be exploited in proofs
of constant approximation. Different considerations can be done by observing
Fig. 2b. In particular, the largest values of λE are achieved in the great majority
of the cases by RFast2 while RMax results to be the best strategy also in this
sense.

5 Conclusion

We have investigated the BGT problem to establish whether constant approxi-
mation deterministic algorithms can be designed. We have defined a new class of
scheduling strategies called priority schedulings and provided theoretical results
on such methods. In particular, we have proved that any priority scheduling
eventually brings the system to perpetually repeated sequences of configurations.
We have also analysed ReduceMax, a priority scheduling for which we conjecture
2-approximation. We have conducted extensive experimentation confirming our
intuitions and showing that ReduceMax outperforms any other known strategy,
including the 4-approximation ReduceFastest2, which unlike ReduceMax relies
on the knowledge of an ordering on the rates. In terms of knowledge required by

148 M. D’Emidio et al.

the cutting strategies, a research direction that surely deserves further investiga-
tion is that of considering the more realistic scenario where the input data is not
entirely known, i.e. to tackle the problem from an online algorithms perspective.

Acknowledgments. Authors deeply thank Leszek G ↪asieniec for introducing them to
the problem and for very useful discussions.

References

1. Alshamrani, S., Kowalski, D.R., G ↪asieniec, L.: How reduce max algorithm behaves
with symptoms appearance on virtual machines in clouds. In: Proceedings of the
IEEE International Conference CIT/IUCC/DASC/PICOM, pp. 1703–1710 (2015)

2. Baruah, S.K., Cohen, N.K., Plaxton, C.G., Varvel, D.A.: Proportionate progress:
a notion of fairness in resource allocation. Algorithmica 15(6), 600–625 (1996)

3. Baruah, S.K., Lin, S.-S.: Pfair scheduling of generalized pinwheel task systems.
IEEE Trans. Comput. 47(7), 812–816 (1998)

4. Baruah, S., Rosier, L., Tulchinsky, I., Varvel, D.: The complexity of periodic main-
tenance. In: Proceedings of the 1990 International Computer Symposium, pp. 315–
320 (1990)

5. Bender, M.A., et al.: The minimum backlog problem. Theoret. Comput. Sci. 605,
51–61 (2015)

6. Bodlaender, M.H.L., Hurkens, C.A.J., Kusters, V.J.J., Staals, F., Woeginger, G.J.,
Zantema, H.: Cinderella versus the wicked Stepmother. In: Baeten, J.C.M., Ball,
T., de Boer, F.S. (eds.) TCS 2012. LNCS, vol. 7604, pp. 57–71. Springer, Heidelberg
(2012). https://doi.org/10.1007/978-3-642-33475-7 5

7. Chan, M.Y., Chin, F.Y.L.: General schedulers for the pinwheel problem based on
double-integer reduction. IEEE Trans. Comput. 41(6), 755–768 (1992)

8. Chan, M.Y., Chin, F.: Schedulers for larger classes of pinwheel instances. Algorith-
mica 9(5), 425–462 (1993)

9. Chrobak, M., Csirik, J., Imreh, C., Noga, J., Sgall, J., Woeginger, G.J.: The buffer
minimization problem for multiprocessor scheduling with conflicts. In: Orejas, F.,
Spirakis, P.G., van Leeuwen, J. (eds.) ICALP 2001. LNCS, vol. 2076, pp. 862–874.
Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-48224-5 70

10. Chuangpishit, H., Czyzowicz, J., G ↪asieniec, L., Georgiou, K., Jurdziński, T.,
Kranakis, E.: Patrolling a path connecting a set of points with unbalanced fre-
quencies of visits. In: Tjoa, A.M., Bellatreche, L., Biffl, S., van Leeuwen, J., Wie-
dermann, J. (eds.) SOFSEM 2018. LNCS, vol. 10706, pp. 367–380. Springer, Cham
(2018). https://doi.org/10.1007/978-3-319-73117-9 26

11. Collins, A., et al.: Optimal patrolling of fragmented boundaries. In: Proceedings
of the Twenty-Fifth Annual ACM Symposium on Parallelism in Algorithms and
Architectures, SPAA, New York, USA, pp. 241–250 (2013)

12. Czyzowicz, J., G ↪asieniec, L., Kosowski, A., Kranakis, E.: Boundary patrolling
by mobile agents with distinct maximal speeds. In: Demetrescu, C., Halldórsson,
M.M. (eds.) ESA 2011. LNCS, vol. 6942, pp. 701–712. Springer, Heidelberg (2011).
https://doi.org/10.1007/978-3-642-23719-5 59

13. G ↪asieniec, L., Klasing, R., Levcopoulos, C., Lingas, A., Min, J., Radzik, T.: Bam-
boo garden trimming problem (perpetual maintenance of machines with different
attendance urgency factors). In: Steffen, B., Baier, C., van den Brand, M., Eder, J.,
Hinchey, M., Margaria, T. (eds.) SOFSEM 2017. LNCS, vol. 10139, pp. 229–240.
Springer, Cham (2017). https://doi.org/10.1007/978-3-319-51963-0 18

https://doi.org/10.1007/978-3-642-33475-7_5
https://doi.org/10.1007/3-540-48224-5_70
https://doi.org/10.1007/978-3-319-73117-9_26
https://doi.org/10.1007/978-3-642-23719-5_59
https://doi.org/10.1007/978-3-319-51963-0_18

Priority Scheduling in the Bamboo Garden Trimming Problem 149

14. G ↪asieniec, L., Klasing, R., Martin, R., Navarra, A., Zhang, X.: Fast periodic graph
exploration with constant memory. J. Comput. Syst. Sci. 74(5), 802–822 (2008)

15. Holte, R., Mok, A., Rosier, L., Tulchinsky, I., Varvel, D.: The pinwheel: a real-
time scheduling problem. In: II: Software Track, Proceedings of the Twenty-Second
Annual Hawaii International Conference on System Sciences, vol. 2, pp. 693–702,
January 1989

16. Holte, R., Rosier, L., Tulchinsky, I., Varvel, D.: Pinwheel scheduling with two
distinct numbers. Theoret. Comput. Sci. 100(1), 105–135 (1992)

17. Hsueh, C., Lin, K.: An optimal pinwheel scheduler using the single-number reduc-
tion technique. In: Proceedings of the 17th IEEE Real-Time Systems Symposium,
RTSS 1996, pp. 196–205 (1996)

18. Kosowski, A., Navarra, A.: Graph decomposition for memoryless periodic explo-
ration. Algorithmica 63(1–2), 26–38 (2012)

19. Lin, S.-S., Lin, K.-J.: A pinwheel scheduler for three distinct numbers with a tight
schedulability bound. Algorithmica 19(4), 411–426 (1997)

20. Mok, A., Rosier, L., Tulchinski, I., Varvel, D.: Algorithms and complexity of the
periodic maintenance problem. In: Proceedings of the 15th Symposium on Micro-
processing and Microprogramming (EUROMICRO), pp. 657–664 (1989)

21. Ntafos, S.: On gallery watchmen in grids. Inf. Process. Lett. 23(2), 99–102 (1986)
22. Romer, T.H., Rosier, L.E.: An algorithm reminiscent of euclidean-gcd for comput-

ing a function related to pinwheel scheduling. Algorithmica 17(1), 1–10 (1997)
23. Serafini, P., Ukovich, W.: A mathematical model for periodic scheduling problems.

SIAM J. Discret. Math. 2(4), 550–581 (1989)
24. Urrutia, J.: Art gallery and illumination problems. In: Handbook of Computational

Geometry, vol. 1, no. 1, pp. 973–1027 (2000)
25. Hardy, G.H., Ramanujan, S.: Asymptotic formulas in combinatorial analysis. Proc.

Lond. Math. Soc. 17, 75–115 (1918)

Patrolling on Dynamic Ring Networks

Shantanu Das1(B), Giuseppe A. Di Luna1, and Leszek A. Gasieniec2

1 Aix-Marseille University, CNRS, LIS, Marseille, France
shantanu.das@lis-lab.fr, g.a.diluna@gmail.com

2 University of Liverpool, Liverpool, UK
L.A.Gasieniec@liverpool.ac.uk

Abstract. We study the problem of patrolling the nodes of a network
collaboratively by a team of mobile agents, such that each node of the
network is visited by at least one agent once in every I(n) time units,
with the objective of minimizing the idle time I(n). While patrolling has
been studied previously for static networks, we investigate the problem
on dynamic networks with a fixed set of nodes, but dynamic edges. In
particular, we consider 1-interval-connected ring networks and provide
various patrolling algorithms for such networks, for k = 2 or k > 2 agents.
We also show almost matching lower bounds that hold even for the best
starting configurations. Thus, our algorithms achieve close to optimal
idle time. Further, we show a clear separation in terms of idle time, for
agents that have prior knowledge of the dynamic networks compared to
agents that do not have such knowledge. This paper provides the first
known results for collaborative patrolling on dynamic graphs.

1 Introduction

In recent years patrolling is gaining on popularity in the area of algorithms and
in particular algorithmics of mobile agents and applications. Patrolling natu-
rally occurs in daily routines requiring regular visits to specific (possibly mobile)
objects and areas. It can also refer to monitoring of complex network processes
or systems behaviour. Typical applications of patrolling include safety or secu-
rity related surveillance, regular updates, data gathering, and other perpetual
tasks.

We consider the patrolling problem in networks (graphs) with the objec-
tive of visiting all nodes of the graph perpetually, optimizing the idle time -
the maximum time period during which any node is left unvisited. Unlike all
previous results on the patrolling problem, we study the problem on dynamic
graphs where some links of the graph may be missing for certain duration of
time. This complicates the problem and requires a strong coordination between
the agents, in order to reduce the idle time, even in simple networks. We restrict
our attention to dynamic ring networks, in this paper. In the case of a static
ring network, the simple strategy of periodically cycling the nodes of the ring, is
known to provide the optimal idle time. However, for patrolling dynamic rings,
more involved strategies are required depending on the number of the agents,
c© Springer Nature Switzerland AG 2019
B. Catania et al. (Eds.): SOFSEM 2019, LNCS 11376, pp. 150–163, 2019.
https://doi.org/10.1007/978-3-030-10801-4_13

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-10801-4_13&domain=pdf
https://doi.org/10.1007/978-3-030-10801-4_13

Patrolling on Dynamic Ring Networks 151

the capabilities of the agents and whether or not the dynamic structure of the
network is known to the agents. Among various known dynamic graph models,
we consider interval connected dynamic networks which ensures that the net-
work is connected at any time interval. We distinguish between the KNOWN
setting, where the agents know in advance about the changes in the graph struc-
ture, from the UNKNOWN setting, where such information is not available to
the agents. We show a clear separation between the two cases, in terms of the
minimum idle time for patrolling. For both cases, we provide lower bounds and
almost matching upper bounds on the idle time for patrolling, supported by
deterministic algorithms for collaborative patrolling.

Related Work

Patrolling. The problem of patrolling is a close relative to several classical algo-
rithmic challenges which focus on monitoring and mobility. These challenges
include the Art Gallery Problem [32], where one is interested in determining the
smallest number of inert guards and their location to constantly monitor all arte-
facts, and its dynamic alternative referred to as the k-Watchmen Problem [7,10].
In further work on fence patrolling [12,13,25] the authors focus on monitoring
vital (possibly disconnected) parts of a linear environment where each point is
expected to be visited with the same frequency. A similar approach is adopted in
[14] where we find studies on monitoring of a linear environment by agents prone
to faults. The problem of patrolling objects which require different frequencies
of visits was first considered in [20], where the authors assume availability of a
single mobile agent. They also showed a close relationship between these type of
patrolling and the Pinwheel scheduling problem [9]. In a more recent work [20]
the authors consider monitoring by two agents of n nodes located on a line and
requiring different frequencies of visits. The authors provide several approxima-
tion algorithms concluding with the best currently known

√
3-approximation.

Patrolling of segments and circles (equivalent to static ring) by many agents
have been studied in [12].

Dynamic Networks and Mobile Agents. The field of dynamic networks is an
hot and active research topic [8,21,29,30]. In the message passing model a lot
of attention has been devoted to classic problems such as agreement [3,5,28],
information dissemination [4,11,27,33], and counting [15,26]. Surprisingly, the
investigation of mobile agents on dynamic networks started only recently. In the
centralised setting (when agents know the dynamic of the graph apriori) the
problem of exploring a graph in the fastest possible way has been studied in
several papers [1,18,31]. The task is NP-hard on general graphs and it becomes
polynomial on special topologies [2,22]. Notably, in the case of interval connected
ring the exploration can be done in O(n) rounds [24].

The distributed setting (when agents do not know the dynamic of the graph)
has been mostly overlooked, or limited to restrictive dynamic assumptions, such
as periodic [19,23] or recurrent [24] graphs. The exploration with termination of

152 S. Das et al.

Table 1. Results for the idle time in dynamic rings of n nodes, with k uniformly placed
agents having global visibility.

Adversary Number of agents

k = 2 k > 2

KNOWN Upper bound 3�n
2
� 3�n

k
�

Lower bound n 2n
k

UNKNOWN Upper bound 2n − 2 4�n
k
�

Lower bound 2n − 6 2n
k

interval connected rings has been studied in [16]. For rings that are connected
over time, a perpetual self-stabilizing exploration algorithm has been proposed in
[6]. Finally, the gathering problem on interval connected rings has been studied
in [17]. To the best of our knowledge there is no previous work studying the
patrolling of a dynamic network.

Our Contributions

We show, first of all, in Sect. 4, that when the agents have local visibility, limited
to the current node, then patrolling has an idle time of n − α · k rounds, where
α = 1 when the agents may be arbitrarily placed by an adversary (and α = 2b

for uniform initial placement when the agents have b-bits of persistent memory).
This means that using multiple agents reduces the idle time by only an additive
factor. In contrast, for a static ring, the idle time for patrolling with k agents is
n
k , achieving a multiplicative factor efficiency over single agent patrolling.

Thus, for the rest of paper, we consider agents having global visibility, allow-
ing them to see the current configuration of the ring with the set of available
links. We start with team size of k = 2 agents in Sect. 5 and then generalize
these results to k > 2 agents in Sect. 6. The results of these two sections are
summarized in Table 1. The bounds denoted here are for the stable idle time,
after a stabilization time that is at most O(n). These results show a clear dis-
tinction between the case of KNOWN adversary (where the dynamic structure of
the network is known apriori) and the case of UNKNOWN adversary when the
agents do not have prior knowledge of the dynamic network.

2 Model

A set of agents, A : {a0, . . . , ak−1}, operates on a dynamic graph G. Each agent
follows the same algorithm (all agents are identical) executing a sequence of
Look, Compute, Move cycles. In the Look phase of each cycle, the agent acquires
a snapshot of the environment. In the Compute phase the agent uses the infor-
mation from the snapshot and the contents of its local persistent memory to
compute the next destination, which may be the current node or one of its

Patrolling on Dynamic Ring Networks 153

neighbors. During the Move phase an agent traverses an edge to reach the des-
tination node. The information contained in the persistent memory is the only
thing that is preserved among cycles.

Synchronous System. The system is synchronous, that is the time is divided
in discrete units called rounds. Rounds are univocally mapped to numbers in
N, starting from round 0. In each round, each agent in A executes exactly one
entire Look, Compute, Move cycle.

Interval Connected Ring. A dynamic graph G is a function mapping a round
r ∈ N to a graph Gr : (V,E(r)) where V : {v0, . . . , vn−1} is a set of nodes and
E : N → V × V is a function mapping a round r to a set of undirected edges.
We restrict ourselves to 1-interval-connected rings. A dynamic graph G is a
1-interval-connected ring when the union of the graph instances G∞ =
(V,E∞) = (V,∪+∞

r=0E(r)) is a ring graph, and at each round r, the graph Gr

is connected (in other words, at each round at most one edge is missing). The
graph G is anonymous, i.e. all nodes are identical to the agents. The endpoints
of each edge are labelled as either clockwise or counter-clockwise, in a consistent
manner (i.e. the ring is oriented).

Local Versus Global Snapshot

– Local Snapshot: the snapshot obtained by an agent at a node v in round r
contains only information about the node v, i.e. the number of agents in v
and the set of available edges incident to node v at round r.

– Global Snapshot: the snapshot obtained by an agent contains the graph Gr

(where the current location of the agent is marked), and for each node in V
the number of agents present in that node at round r.

Knowledge of G. We examine two different settings: the one with known G
(KNOWN) and the one without such knowledge (UNKNOWN). In the KNOWN
setting during the Compute phase agents have access to the dynamic graph G.
In this case, the decision taken by the agent depends on the snapshot, on the
content of its local memory, and on the knowledge of the past history and future
structure of dynamic graph G. On the contrary in the UNKNOWN setting, during
the Compute phase, an agent uses only the snapshot and its local memory (no
other information is available). Another way to see the UNKNOWN setting is
to imagine that G is adaptive to the strategy of algorithm A: there exists an
adversarial entity, namely the scheduler, that decides the graph G according to
the strategy of algorithm A.

Configurations and Initial Placement of Agents. Given a graph Gr and
the set of agents A, a configuration at round r is a function Cr : A → V that
maps agents in A to nodes of V where agents are located. We say that there

154 S. Das et al.

is a uniform initial placement, if C0 is such that the segments of consecutive
rings nodes not occupied by agents have size �n

k � or �n
k 	. We say that there is

an arbitrary initial placement if the configuration C0 is injective (no two agents
may start on the same node).

Idle Time. An algorithm A running on a graph G, generates an execution
E , which is an infinite sequence of configurations {C0, C1, C2 . . .}, one for each
round r. Given a node v and an execution E , the set SE,v : {r1, r2, r3, . . .} of
visits of v, is a set containing all rounds in which v has been visited by some
agent in execution E ; more formally, rj ∈ SE,v if and only if Crj (a) = v for some
a ∈ A. The idle set IE,v of node v is a set containing all the intervals of time
between two consecutive visits of node v in execution E ; more formally, x ∈ IE,v
if and only if there exists ri, ri−1 in SE,v and x = ri −ri−1. We assume that each
node has been visited at round −1.

We say that an algorithm solves patrolling on a graph G, if each node of the
graph is visited infinitely often. Given an algorithm A and an integer n ≥ 5,
we define as Tn the set of all executions of algorithm A over any (1-interval-
connected) dynamic ring G with n nodes. The idle time of algorithm A is the
function I(n) = max

∀E∈Tn

(∪∀v∈V IE,v).

Stable Idle Time. Given an execution E we define as E [r,∞] the execution
obtained by removing the first r configurations from E . An algorithm A is said
to have a stable idle time Irs(n) with stabilisation time rs, if for some round
rs, Irs(n) = max

∀E∈Tn

(∪∀v∈V IE[rs,∞],v).

3 Preliminaries

We devote this section to some simple observations based on previous results
on dynamic rings. Note that for a single agent moving in a dynamic ring, an
adaptive adversary can keep the agent confined to the starting node and one of
its neighbors.

Observation 1 ([27,33]). In a dynamic ring G under the UNKNOWN model
with global snapshot, a single agent can visit at most 2 nodes.

Observation 2 ([27,33]). In a dynamic ring G under the KNOWN model, a
single agent can reach any given node v in at most n − 1 rounds.

Due to the above observations, the only interesting cases for patrolling is for
k ≥ 2 which we investigate in this paper. For any k agents, we have the following
observation derived from the proof of Proposition 1 in [24].

Observation 3 ([24]). In a dynamic ring G under the KNOWN model, for any
round r and any 1 ≤ h ≤ n− 1, there are n−h distinct nodes, such that if n−h
agents are placed in these nodes and they all move in the same direction from
round r until round r + h − 1, then they visit exactly h + 1 nodes.

Patrolling on Dynamic Ring Networks 155

It is also possible to show an easy lower bound on the idle time of any
algorithm under the strongest model considered in this paper (i.e. under global
visibility and knowledge of G).

Theorem 4. Consider the KNOWN model with Global Snapshot. Let A be any
patrolling algorithm for k agents with uniform initial placement. We have that
Irs(n) ≥ 2n

k for any stabilization time rs.

Proof. The scheduler removes the same edge forever. At this point the k agents
have to patrol a line and the lower bound for idle time on a line with k agents
is 2n

k (See [12] for a proof).

4 Patrolling with Local Visibility

In this section we analyse the Local Snapshot model, we first examine the case
in which the placement of the agents is arbitrary and then we examine the case
in which the placement is uniform.

Theorem 5. Consider a dynamic ring under the KNOWN model with Local
Snapshot and arbitrary initial placement. Then any patrolling algorithm A for k
agents has stable idle time Irs(n) ≥ n − k, for any stabilisation time rs.

Proof. Let us consider a static ring of n nodes G = (V = {v0, . . . , vn−1}, E =
{(v0, v1), (v1, v2), . . .}) and a set of agents {a0, . . . , ak−1}. Configuration C0

is such that C(aj) = vj , that is agents are placed one for each node in
{v0, . . . , vk−1}. If the ring is oriented and the nodes are anonymous, each agent
would have the same local view and they take the same action at each step. Thus,
at any round r, the configuration Cr is a rotation of either one step counter-
clockwise or one step clockwise of configuration Cr−1. This implies that the best
idle time is obtained by having agents to perpetually move in the same direc-
tion. The idle time of this strategy is Irs(n) = n−k for any possible stabilization
time rs. �

The above result assumes the agents to be placed on consecutive nodes, and
its proof does not hold when there is an uniform initial placement of agents.
However, even in the case of uniform placement, we show the following result
for agents having constant amount of persistent memory (b bits), under the
UNKNOWN model.

Theorem 6. Consider a dynamic ring under the UNKNOWN model with local
snapshots and uniform initial placement. Given any patrolling algorithm A for
k agents, with c = O(1) bits of memory, the idle time for patrolling is I(n) ≥
n − 7 · 2ck.

5 Two Agents with Global Visibility

In this section we assume that the agents have access to a global snapshot of
the configuration at each round during Look phase. We first consider the simpler
case of k = 2 agents and show upper and lower bounds on patrolling for both
the UNKNOWN and the KNOWN setting.

156 S. Das et al.

S0

C CC

d
is
ta
n
ce

>
1
:1

d
is
ta
n
ce

>
1
:−

1

distance ≤ 1 : −1

distance ≤ 1 : 1

BC = ∅ : 1

oth
er

∈ BC
: 1

m
yself ∈

BC
: −1

Fig. 1. Algorithm Tick-Tock state diagram. The starting state is S0. Transition are
of the form Predicate : Movement where values of 1,−1, 0 denotes clockwise, counter-
clockwise or no move, respectively.

5.1 UNKNOWN Setting

Given the graph Gr at round r, we define as BCr (resp. BCCr) the set of all
agents that are attempting to move clockwise (resp. counter-clockwise) from a
node v that has the clockwise (resp. counter-clockwise) edge missing at the round
r. We will remove the subscript r when it is clear that we are referring to the
current round.

We now describe a patrolling algorithm called Tick-Tock for k = 2 agents in
the UNKNOWN setting. Initially, both agents move in the clockwise direction in
each round, until they reach a round r in which BCr is not empty. At this point
the symmetry between agents is broken, and we assign to the agent in BCr the
counter-clockwise direction while the other agent keeps the clockwise direction.
Starting from round r, the agents continue to move according to the following
rule: Move in the assigned direction until the minimum distance between the
agents is less or equal to 1; When this happen, both agents reverse their direction
(i.e, the agents bounce off each other). The state diagram of the algorithm is
presented in Fig. 1.

Theorem 7. For any dynamic ring in the UNKNOWN model with Global Snap-
shot and arbitrary initial placement, Algorithm Tick-Tock allows two agents
to patrol the ring with an idle time I(n) ≤ 2(n − 1).

Proof. The algorithm has two distinct phases. In the first phase, both agents
move in the same direction, while in the second phase the agents always move in
opposite directions. We need to show that for any node v, given two consecutive
visits of v at round r0 and r1 it holds that r1 − r0 ≤ 2(n − 1). First, let r0 and

Patrolling on Dynamic Ring Networks 157

r1 be both in the first phase of the algorithm. Observe that in this phase each
agent loops around the ring visiting each node once in every n rounds. Since the
agents on distinct nodes we have at most n − 1 rounds between two visits of
node v; thus r1 − r0 ≤ n − 1.

Now we examine the case when r0 and r1 are both in the second phase. It
takes at most n − 1 rounds for the distance between the two agents to be 1 or
less–the agents are moving on opposing direction and at most one of them can
be blocked at any round. This means that during a period that is upper bounded
by n − 1 all nodes are visited. Thus, there are at most 2(n − 1) rounds between
consecutive visits of a node v.

Finally, we have to show that the bound still holds if r0 is in the first phase
and r1 in the second. Let r be the round in which the algorithm switches phase.
We necessarily have r − r0 = x ≤ n − 1, by the previous discussion regarding
the first phase. At round r, one agent is at distance x from node v and thus,
the distance between the agents on the segment not containing v, is at most
(n − x − 1). Now, if both agents are move towards v, then v would be visited
in the next (n − 1) rounds. Otherwise, the agents move away from v, therefore
in at most (n − x − 2) rounds, the two agents would be at distance one or less.
In the subsequent n − 1 rounds all nodes would be visited (recall our previous
discussion for the second phase). This implies that r1 − r0 ≤ 2(n − 1) in both
cases. �

Surprisingly, the algorithm Tick-Tock is almost optimal.

Theorem 8. Under the UNKNOWN model with global snapshot and uniform
initial placement, any patrolling algorithm A for two agents has idle time I(n) ≥
2n − 6.

We prove the above result by showing that the adversarial scheduler can
(1) entrap one of the agents on two neighboring nodes of the ring, say, nodes
vn−1, vn−2, and at the same (2) prevent the other agent from performing a full
tour of the ring. Under the above two conditions, patrolling the ring by two
agents reduces to patrolling a line of l = n−2 nodes by a single agent, for which
we have an idle time of 2(l − 1) = 2n − 6.

5.2 KNOWN Setting

In this subsection we examine the KNOWN setting. We first present a solution
algorithm, namely Place-&-Swipe, that solves the problem with an idle time
of 3�n

2 	 rounds, when there is an uniform initial placement of the agents. We
then discuss how the algorithm can be adapted to work under arbitrary initial
placement by having a stabilisation time of �n

2 � and a stable idle time of 3�n
2 	

rounds.

158 S. Das et al.

Patrolling Algorithm. The algorithm Place-&-Swipe perpetually alternates
between two phases of fixed length (each phase lasts �n

2 	 rounds). During the
first phase, called Placement Phase, the agents position themselves on a specially
choosen pair of antipodal1 nodes – the swiping nodes. In the second phase, called
the Swipe Phase, the agents together visit all nodes of the ring by both moving
clockwise for �n

2 � rounds without stop. A Placement Phase followed by Swipe
Phase is an epoch of the algorithm, we use i ≥ 0 to indicate the epoch number.
Since every node is visited once in every Swipe phase, in the worst case, a node
may be visited at the beginning of a Swipe phase and subsequently at the end
of the next Swipe Phase, giving an idle time of at most 3�n

2 	 rounds.
We now show that for each epoch i, there exists a special pair Pi of antipodal

nodes which allow the Swipe Phase to cover all nodes in �n
2 � rounds. Let starti =

i · n, and endi = �(12 + i)n	 − 1 be the starting and ending round of the i-th
Placement Phase.

Lemma 1. Given any dynamic ring G and any round r = endi +1, there exists
a pair of antipodal nodes Pi, such that two agents placed on Pi and moving
clockwise from round endi + 1 to the end round starti+1 − 1, explore all nodes
of the ring.

Proof. The key idea to prove the existence of Pi is Observation 3. By plugging
t = �n

2 	 − 1 in the statement of the observation. We have that there are �n
2 � + 1

nodes, let Ei be this set, such that an agent being on one of these nodes at
round endi + 1 moving clockwise visits exactly �n

2 	 nodes by the end of round
starti+1 − 1. Now we have to prove that Ei contains a pair of antipodal nodes.
But this is obvious since the ring contains at least �n

2 � antipodal pairs and the
cardinality of Ei is �n

2 �+1. Being the pair Pi antipodals, when each agent visits
�n
2 	 nodes the ring has been explored. �

To prove correctness of the algorithm, we need to show that agents starting
from any uniform configuration, the two agents can reach the chosen nodes Pi

in �n
2 	 rounds. Note that, for computing Pi in each epoch, the algorithm needs

only the knowledge of the future n rounds of G.

Theorem 9. Consider the KNOWN model with Global snapshot and uniform
initial placement. The algorithm Place-&-Swipe allows two agents to patrol a
ring with an idle time I(n) ≤ 3�n

2 	.

Arbitrary Initial Placement. Theorem 9 assumes that agents are starting at uni-
form distance. However, it is possible to easily adapt the algorithm to work under
any initial placement sacrificing the stabilization time. Essentially, we need an
initialization phase in which agents place themselves in antipodal positions. This
can be done in �n

2 � rounds: in each round, agents move apart from each other
increasing the distance by at least one unit per round. Thus, we obtain an algo-
rithm with stabilization time rs = �n

2 � and Irs(n) ≤ 3�n
2 	.

1 A pair of nodes is antipodal if the distance between them in the ring is �n
2
�.

Patrolling on Dynamic Ring Networks 159

Lower Bounds. A lower bound of n for the KNOWN setting is immediate from
Theorem 4. However, when the initial placement of the agents is arbitrary we
can show a slightly better bound.

Theorem 10. Let A be a patrolling algorithm for two agents with arbitrary
initial placement under the KNOWN model with Global snapshot. For any even
n ≥ 10, there exists a 1-interval connected ring where A has an idle time I(n) ≥
�(1 + 1

5)(n − 1)�.

6 Patrolling with k > 2 Agents Having Global Visibility

In this section we examine the case of k > 2 agents, showing how to generalize
the algorithms of Sect. 5 for this case.

6.1 UNKNOWN Setting: Generalising TICK-TOCK for k Agents

We generalize Tick-Tock for k agents assuming that: k divides n, k is even,
and that there is uniform initial placement. At the end of the section we discuss
how to remove such assumptions. The new algorithm, called K-Tick-Tock
is divided in two phases, Single-Group-Swiping and Two-Groups-Swiping, as
described below.

The Single-Group-Swiping Phase starts at round r = 0 and all agents move
clockwise in this phase, keeping uniform distribution. The phase ends at the first
round r′ when an agent is blocked. Starting from round r′, the Two-Groups-
Swiping phase starts. Recall that BCr′ is the set of agents trying to move clock-
wise in round r′ that encounter a missing edge. Since the agents are in distinct
nodes, only one agent, say agent aj ∈ BCr′ . This breaks the symmetry among
the agents and they can partition themselves in two groups: group clockwise GC

and group counter-clockwise GCC . The group GC contains agent a(j+2t) mod k

with t ∈ N, and group GCC contains all other agents. The partition into groups
happens during the computation phase of round r′. From round r′, the agents
move according to the following rules: (See Fig. 2)

– Rule 1 (Group Movement): For X ∈ C,CC, an agent in GX moves in direction
X if no agent in GX is blocked, i.e. �a ∈ BXr

⋂
GX .

– Rule 2 (Membership Swapping): If at some round r′′ agents in both groups
are blocked, then the agents in BCr′′ and BCCr′′ swap their role, i.e. they
exchange their states and thus their group membership in this round. Any
other agent in GX moves in direction X during this round.

Intuitively, for Rule 1 a group GX moves when all the agents in the group
would be able to move without trying to cross a missing edge. Rule 2 is applied
only when two agents, one from group GC and one from group GCC are on two
nodes that share the same missing edge, and this allows the groups to perform
a “virtual movement”, i.e. the two blocked agents swap roles to simulate a move
across the missing edge.

160 S. Das et al.

(a) Starting round of
Two-Groups-Swiping.
Agents belonging to GC

(resp. GCC) are marked
with squares (dots)

(b) Rule 1: Group GC

is blocked. GCC reaches
the other endpoint of the
missing edge.

(c) Rule 2: The two
blocked agents swap roles.
Others move normally.

Fig. 2. Algorithm K-Tick-Tock, depiction of salient cases.

Theorem 11. The K-Tick-Tock algorithm has an idle time of 4n
k .

The above result is based on the facts that: (1) in each round at least one
group moves, and (2) After each visit of a node v, the distances between node v
and the closest agents in GC (or GCC) that are moving towards v are at most
2n
k − 1. So, in the successive 4n

k rounds, at least one group would reach v.

When k Is Not a Divisor of n. In the case k does not divide n, we have that in
the initial placement the minimum distance between two agents is �n

k � and the
maximum distance is �n

k �+1. We can use the same analysis of Theorem 11, taking
into account the difference in the distance, which gives a bound of � 4n

k � + 2.

When Agents Are Not Uniformly Placed. If agents are not uniformly placed
initially, they can arrive at a uniform configuration in O(n) steps.

Observation 12. Consider a set of k ≥ 2 agents arbitrarily placed in a dynamic
ring under the UNKNOWN model with global snapshot, then the agents need at
most 2n rounds to reach an uniform placement in the ring.

When k is Odd. The problem for odd k is that once the algorithm switches to
the Two-Group-Swiping phase, the groups GC , GCC do not have equal sizes.
One group has size k−1

2 and the other k+1
2 . Moreover, within each group the

members are not uniformly placed. The last problem is easy fixable at the price
of stabilization time using Observation 12. Once the groups are uniformly placed,
we can bound the idle time to 4nk

k2−1 + 4, as shown in the following lemma:

Lemma 2. When one group has size k−1
2 and the other k+1

2 , the Two-Groups-
Swiping phase of K-Tick-Tock has an idle time of at most 4nk

k2−1 + 4 rounds.

Patrolling on Dynamic Ring Networks 161

Proof. W.l.o.g. let GC be the group of size k−1
2 and GCC be the other group.

Let r0, r1 be the times between two successive visits of some node v. In the
worst case at round r0 + 1, node v could be at distance at most 2n

k−1 + 1 from
an agent in group GC , and distance at most 2n

k+1 + 1 from an agent in GCC .
The sum of these distances is 4nk

k2−1 +2, and since only one group can be blocked
at each round, this distance decreases by one at each round. This implies that
r1 − r0 ≤ 4nk

k2−1 + 2, thus proving the bound. �

From the previous Lemma and using the same proof strategy of Theorem 11
we have that 4nk

k2−1 + 4 is the idle time of the algorithm. Unfortunately, it is
not possible to bound the stabilization time of the algorithm. The adversary
decides when, and if, the algorithm goes to the Two-Groups-Swiping phase, and
when this happen a certain number of rounds has to be payed to position in an
uniform way the members of each group. However, in any infinite execution of
the algorithm, there are only finitely many times in which two consecutive visits
of a node are spaced by more than 4nk

k2−1 + 4 rounds.

6.2 KNOWN Setting: PLACE-&-SWIPE for k Agents

Generalising the algorithm Sect. 5.2, for k agents is immediate. The algorithm is
essentially the same, the only variations are: each phase now lasts �n

k � rounds and
Pi is not a pair of nodes but k nodes uniformly placed. Also in this case we assume
that agents start uniformly placed, such assumption can be dropped sacrificing
the stabilization time (see Observation 12). Lemma 3 below is an equivalent of
Lemma 1 for k ≥ 2 agents. Further, we can show that starting from any uniform
configuration, the agents can reach, using the knowledge of G, any given target
uniform configuration in at most �n

k 	 steps.

Lemma 3. Given any 1-interval connected dynamic ring G, for any round ri,
there exists a set Pi of k uniformly spaced nodes, such that k agents placed on
Pi and moving clockwise from round ri to round ri + �n

k �, together explore all
nodes of the ring.

Theorem 13. Consider the KNOWN model with global snapshots. The algo-
rithm Place-&-Swipe allows k agents with uniform initial placement to patrol
a ring with an idle time I(n) ≤ 3�n

k 	.

7 Conclusion

We provided the first results on the patrolling problem in dynamic graphs. As
patrolling is usually performed on boundaries of territories, it is natural to study
the problem for ring networks. The results may be extended to other topologies
e.g. by moving on any cycle containing all the nodes of a graph. Our results on
the dynamic ring networks are almost complete, but there exists a small gap
between the lower and upper bounds, specially for the case of k > 2 agents
which can be reduced by future work. In particular, we believe the lower bound
for k > 2 agents in the UNKNOWN setting can be improved.

162 S. Das et al.

References

1. Aaron, E., Krizanc, D., Meyerson, E.: DMVP: foremost waypoint coverage of time-
varying graphs. In: Kratsch, D., Todinca, I. (eds.) WG 2014. LNCS, vol. 8747, pp.
29–41. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-12340-0 3

2. Aaron, E., Krizanc, D., Meyerson, E.: Multi-robot foremost coverage of time-
varying graphs. In: Gao, J., Efrat, A., Fekete, S.P., Zhang, Y. (eds.) ALGOSEN-
SORS 2014. LNCS, vol. 8847, pp. 22–38. Springer, Heidelberg (2015). https://doi.
org/10.1007/978-3-662-46018-4 2

3. Augustine, J., Pandurangan, G., Robinson, P.: Fast byzantine agreement in
dynamic networks. In: Proceedings of the 32nd Symposium on Principles of Dis-
tributed Computing, PODC, pp. 74–83 (2013)

4. Awerbuch, B., Even, S.: Efficient and reliable broadcast is achievable in an even-
tually connected network. In: Proceedings of the 3rd Symposium on Principles of
Distributed Computing, PODC, pp. 278–281 (1984)

5. Biely, M., Robinson, P., Schmid, U.: Agreement in directed dynamic networks. In:
Even, G., Halldórsson, M.M. (eds.) SIROCCO 2012. LNCS, vol. 7355, pp. 73–84.
Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-31104-8 7

6. Bournat, M., Datta, A.K., Dubois, S.: Self-stabilizing robots in highly dynamic
environments. In: Bonakdarpour, B., Petit, F. (eds.) SSS 2016. LNCS, vol. 10083,
pp. 54–69. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-49259-9 5

7. Carlsson, S., Jonsson, H., Nilsson, B.J.: Finding the shortest watchman route in a
simple polygon. Discrete Comput. Geom. 22(3), 377–402 (1999)

8. Casteigts, A., Flocchini, P., Quattrociocchi, W., Santoro, N.: Time-varying graphs
and dynamic networks. Int. J. Parallel Emergent Distrib. Syst. 27(5), 387–408
(2012)

9. Chan, M.Y., Chin, F.Y.L.: Schedulers for larger classes of pinwheel instances. Algo-
rithmica 9(5), 425–462 (1993)

10. Chin, W., Ntafos, S.C.: Optimum watchman routes. Inf. Process. Lett. 28(1), 39–
44 (1988)

11. Clementi, A., Monti, A., Pasquale, F., Silvestri, R.: Information spreading in sta-
tionary markovian evolving graphs. IEEE Trans. Parallel Distrib. Syst. 22(9),
1425–1432 (2011)

12. Collins, A., et al.: Optimal patrolling of fragmented boundaries. In: 25th ACM
Symposium on Parallelism in Algorithms and Architectures, SPAA 2013, Montreal,
pp. 241–250 (2013)

13. Czyzowicz, J., G ↪asieniec, L., Kosowski, A., Kranakis, E.: Boundary patrolling
by mobile agents with distinct maximal speeds. In: Demetrescu, C., Halldórsson,
M.M. (eds.) ESA 2011. LNCS, vol. 6942, pp. 701–712. Springer, Heidelberg (2011).
https://doi.org/10.1007/978-3-642-23719-5 59

14. Czyzowicz, J., Gasieniec, L., Kosowski, A., Kranakis, E., Krizanc, D., Taleb, N.:
When patrolmen become corrupted: monitoring a graph using faulty mobile robots.
Algorithmica 79(3), 925–940 (2017)

15. Di Luna, G.A., Baldoni, R.: Brief announcement: investigating the cost of
anonymity on dynamic networks. In: Proceedings of the 34th Symposium on Prin-
ciples of Distributed Computing, PODC, pp. 339–341 (2015)

16. Di Luna, G.A., Dobrev, S., Flocchini, P., Santoro, N.: Live exploration of dynamic
rings. In: Proceedings of the 36th IEEE International Conference on Distributed
Computing Systems, ICDCS, pp. 570–579 (2016)

https://doi.org/10.1007/978-3-319-12340-0_3
https://doi.org/10.1007/978-3-662-46018-4_2
https://doi.org/10.1007/978-3-662-46018-4_2
https://doi.org/10.1007/978-3-642-31104-8_7
https://doi.org/10.1007/978-3-319-49259-9_5
https://doi.org/10.1007/978-3-642-23719-5_59

Patrolling on Dynamic Ring Networks 163

17. Di Luna, G.A., Flocchini, P., Pagli, L., Prencipe, G., Santoro, N., Viglietta, G.:
Gathering in dynamic rings. In: Das, S., Tixeuil, S. (eds.) SIROCCO 2017. LNCS,
vol. 10641, pp. 339–355. Springer, Cham (2017). https://doi.org/10.1007/978-3-
319-72050-0 20

18. Erlebach, T., Hoffmann, M., Kammer, F.: On temporal graph exploration. In:
Halldórsson, M.M., Iwama, K., Kobayashi, N., Speckmann, B. (eds.) ICALP 2015.
LNCS, vol. 9134, pp. 444–455. Springer, Heidelberg (2015). https://doi.org/10.
1007/978-3-662-47672-7 36

19. Flocchini, P., Mans, B., Santoro, N.: On the exploration of time-varying networks.
Theoret. Comput. Sci. 469, 53–68 (2013)

20. G ↪asieniec, L., Klasing, R., Levcopoulos, C., Lingas, A., Min, J., Radzik, T.: Bam-
boo garden trimming problem (perpetual maintenance of machines with different
attendance urgency factors). In: Steffen, B., Baier, C., van den Brand, M., Eder, J.,
Hinchey, M., Margaria, T. (eds.) SOFSEM 2017. LNCS, vol. 10139, pp. 229–240.
Springer, Cham (2017). https://doi.org/10.1007/978-3-319-51963-0 18

21. Harary, F., Gupta, G.: Dynamic graph models. Math. Comput. Model. 25(7), 79–
88 (1997)

22. Ilcinkas, D., Klasing, R., Wade, A.M.: Exploration of constantly connected dynamic
graphs based on cactuses. In: Halldórsson, M.M. (ed.) SIROCCO 2014. LNCS,
vol. 8576, pp. 250–262. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-
09620-9 20

23. Ilcinkas, D., Wade, A.M.: On the power of waiting when exploring public trans-
portation systems. In: Fernàndez Anta, A., Lipari, G., Roy, M. (eds.) OPODIS
2011. LNCS, vol. 7109, pp. 451–464. Springer, Heidelberg (2011). https://doi.org/
10.1007/978-3-642-25873-2 31

24. Ilcinkas, D., Wade, A.M.: Exploration of the T-interval-connected dynamic graphs:
the case of the ring. Theory Comput. Syst. 62(5), 1144–1160 (2018)

25. Kawamura, A., Kobayashi, Y.: Fence patrolling by mobile agents with distinct
speeds. Distrib. Comput. 28(2), 147–154 (2015)

26. Kowalski, D., Miguel, A.M.: Polynomial counting in anonymous dynamic networks
with applications to anonymous dynamic algebraic computations. In: Proceedings
of the 45th International Colloquium on Automata, Languages, and Programming,
ICALP (2018, to appear)

27. Kuhn, F., Lynch, N., Oshman, R.: Distributed computation in dynamic networks.
In: Proceedings of the 42nd Symposium on Theory of Computing, STOC, pp.
513–522 (2010)

28. Kuhn, F., Moses, Y., Oshman, R.: Coordinated consensus in dynamic networks.
In: Proceedings of the 30th Symposium on Principles of Distributed Computing,
PODC, pp. 1–10 (2011)

29. Kuhn, F., Oshman, R.: Dynamic networks: models and algorithms. SIGACT News
42(1), 82–96 (2011)

30. Michail, O.: An introduction to temporal graphs: an algorithmic perspective. Inter-
net Math. 12(4), 239–280 (2016)

31. Michail, O., Spirakis, P.G.: Traveling salesman problems in temporal graphs. The-
oret. Comput. Sci. 634, 1–23 (2016)

32. Ntafos, S.C.: On gallery watchmen in grids. Inf. Process. Lett. 23(2), 99–102 (1986)
33. O’Dell, R., Wattenhofer, R.: Information dissemination in highly dynamic graphs.

In: Proceedings of the Joint Workshop on Foundations of Mobile Computing,
DIALM-POMC, pp. 104–110 (2005)

https://doi.org/10.1007/978-3-319-72050-0_20
https://doi.org/10.1007/978-3-319-72050-0_20
https://doi.org/10.1007/978-3-662-47672-7_36
https://doi.org/10.1007/978-3-662-47672-7_36
https://doi.org/10.1007/978-3-319-51963-0_18
https://doi.org/10.1007/978-3-319-09620-9_20
https://doi.org/10.1007/978-3-319-09620-9_20
https://doi.org/10.1007/978-3-642-25873-2_31
https://doi.org/10.1007/978-3-642-25873-2_31

Gathering of Robots in a Grid with
Mobile Faults

Shantanu Das1, Nikos Giachoudis2, Flaminia L. Luccio3,
and Euripides Markou2(B)

1 Aix-Marseille University, CNRS, LIS, Marseille, France
2 DCSBI, University of Thessaly, Lamia, Greece

emarkou@dib.uth.gr
3 DAIS, Università Ca’ Foscari Venezia, Venezia, Italy

Abstract. The gathering of two or more agents in a graph is an
important problem in the area of distributed computing and has been
extensively studied especially for the fault free scenario. In this paper
we consider the mobile agents gathering problem in the presence of an
adversarial malicious agent which by occupying an empty node might
prevent honest agents from entering this node. The honest agents move
in synchronous rounds and at each round an agent can move to an adja-
cent node only if this node is not occupied by the malicious agent. We
model the honest agents as identical finite state automata moving in an
anonymous oriented grid topology and having no information about the
size of the graph, while the malicious agent is assumed to be arbitrarily
fast and to have full knowledge of the locations and the strategy of the
honest agents at all times. The agents cannot leave messages at nodes
or communicate with each-other unless they meet at a node. Previous
studies consider the problem for ring networks and for asynchronous
grids, where rendezvous was solved only for the special case of agents
starting already in connected configurations. In this paper, we study the
problem for synchronous agents in anonymous oriented grid networks for
any number of agents starting in distinct locations. We first show that
rendezvous is impossible for 2 agents even when the agents can see the
locations of each-other at all times, while 3 agents can gather if they have
global visibility. We then present a universal deterministic algorithm that
solves the problem for 4 or more agents having only local visibility and
constant memory, in any oriented grid with a malicious mobile adversary.

1 Introduction

Consider a set of mobile entities that are able to move in an environment and
whose task is to meet at the same location. This is a fundamental problem
in the area of distributed computing with mobile agents (or robots), e.g. they
may need to meet to share information and to coordinate. The problem, called
rendezvous, when there are two mobile agents, and gathering otherwise [16], has
been widely studied when the environment is a graph and the agents can move
along the edges of the graph. However, most of the studies are restricted to
c© Springer Nature Switzerland AG 2019
B. Catania et al. (Eds.): SOFSEM 2019, LNCS 11376, pp. 164–178, 2019.
https://doi.org/10.1007/978-3-030-10801-4_14

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-10801-4_14&domain=pdf
https://doi.org/10.1007/978-3-030-10801-4_14

Gathering of Robots in a Grid with Mobile Faults 165

fault-free environments and little is known about gathering in faulty or hostile
environments. Possible faults can be a permanent failure of a node, like for
example the so called black hole that destroys agents arriving at a node [12], or,
transient faults that can appear anywhere in the graph and are controlled by a
mobile hostile entity (an intruder) that behaves maliciously [2].

Most of the research that has been done in hostile environments is on the
direction of how to locate a malicious node in a graph (see, e.g., [13,15]). Pro-
tecting the network against a malicious entity able to move along the edges
of the graph, is generally a more difficult problem. Problems in this direction
include the so-called network decontamination or intruder capture problem (see,
e.g., [14,17]). Other types of faults or malicious behavior that have been con-
sidered in the context of the gathering problem are Byzantine agents [5,6,11],
and delay-faults [4], and edge evolving graphs [18]. A Byzantine agent is indistin-
guishable from the legitimate or honest agents, but it may behave in an arbitrary
manner and may provide false information to the good agents in order to induce
them to make mistakes, thus preventing the rendezvous of the good agents. How-
ever, the Byzantine agents cannot actively harm the good agents or physically
prevent the agents from moving. Delay-faults [4] can prevent an agent from mov-
ing for an arbitrary but finite time (i.e., they must eventually allow the agent to
move), whereas probabilistic edge evolving graphs are dynamic networks where
the set of communication links continuously changes thus preventing the use of
standard gathering algorithms that work for static networks [18]. Gathering in
dynamic ring networks has been studied in [10], under the 1-interval-connectivity
model where the edges of the ring can disappear and reappear. Finally, the gath-
ering problem has been also studied for robots moving on an unbounded plane
under crash failures [1,3].

In this paper we consider a relatively new type of malicious agent that was
first introduced in [9] and successively investigated in [7,8]. This malicious agent
can move arbitrarily fast along the edges of a graph, it has full information
about the graph and the location of all other honest agents, and it even has full
knowledge of the actions that will be taken by the agents. The objective of the
malicious agent is to prevent the good agents from gathering by blocking their
path. More precisely, when the malicious agent occupies a node u of the graph,
it can prevent (or block) the movement of any honest agent to node u, and at the
same time is detected by those agents. In [7–9] it was shown how this malicious
agent is a stronger adversary than the Byzantine agent or the Intruder agent, or
the delay faults, as even one malicious agent can prevent rendezvous of honest
agents in many cases.

This paper investigates the gathering of multiple honest agents scattered in a
graph in the presence of such a malicious adversary. We assume that the honest
agents are much weaker than the malicious agent; they are autonomous and
identical anonymous processes with some constant internal memory, and two
agents can communicate with each other only when they meet at a node. One
or more honest agents present at a node v can prevent the malicious agent from

166 S. Das et al.

entering node v. Thus, at any step the malicious agent can move along a path
in the graph if it does not contain any honest agent.

The gathering problem has been investigated in [8,9] for asynchronous mobile
agents moving in a ring or in a grid with one malicious agent. The asynchrony
among the good agents combined with the ability of the malicious agent to move
arbitrarily fast, gave the power to the malicious agent to prevent the next move of
several agents at any stage of the algorithm. Thus, gathering of the good agents
was shown to be impossible [9], in all cases except when the agents started from
an initial configuration where the subgraph induced by all the occupied nodes
was connected, and additionally, in the case of the grid graph, when the honest
agents were able to “see” nodes at distance two in order to check if they were
occupied or not.

To allow the possibility of gathering the good agents in more scenarios, we
relax the constraint of asynchrony and assume that the honest agents move in
synchronous steps. Note that, if two synchronous honest agents try to move
to two distinct nodes at the same time, then the malicious agent can block the
move of at most one agent, even though the malicious agent can execute moves of
arbitrary distances between two consecutive steps of the good agents. This model
with synchronous agents was studied in [7,8] only for the case of a ring, where
it was already possible to solve gathering in more cases than with asynchronous
agents. This paper explores the feasibility of gathering synchronous agents in
anonymous oriented (2-dimensional) grid graphs of arbitrary size. Note that,
such graphs can still be explored by agents having constant memory.

Contributions. We consider the gathering of a set of anonymous and syn-
chronous honest mobile agents located at distinct nodes of an anonymous ori-
ented grid graph in the presence of an arbitrarily fast malicious agent that can
prevent any honest agent from visiting the node that it occupies. We assume
that the agents have constant memory and our goal is to find the minimum
number k of synchronous mobile agents that are able to gather in a grid despite
the presence of the malicious agent and to design an algorithm for gathering of k
or more honest agents in any grid network. First, in Sect. 3, we show an impos-
sibility result for k = 2 agents, which holds even if the agents have unbounded
memory and global visibility. We then present an algorithm that works for k = 3
agents with global visibility and finite memory. In Sect. 4 we show a general algo-
rithm for any k ≥ 4 when the agents have only local visibility. We conclude the
paper in Sect. 5 and discuss open problems. Due to the space constraint, proofs
and formal description of some results have been omitted.

2 Our Model

The Network: We consider an oriented grid graph G = (V,E) consisting of
n rows and m columns. We consider the non trivial case where n,m > 1. The
nodes of G are anonymous, whereas the edges incident to a node are distinctly
and consistently labeled with North, South,East,West labels. The edges of the

Gathering of Robots in a Grid with Mobile Faults 167

network are FIFO links, i.e., all agents, including the malicious one, that move
in the same link respect a FIFO ordering. Thus, an agent will pass another agent
only if the latter stops at a node. When one or more honest agents are at a node
v, we say that v is occupied. Otherwise we say that v is free or unoccupied.

Honest Agents: The agents are independent and identical, anonymous syn-
chronous processes that move along the edges of the graph. They are initially
scattered in the grid graph (i.e., there is at most one agent at a node), they have
the same initial state and they start executing the same deterministic algorithm
at the same time. An agent located at a node u can decide whether there are
1, 2, or at least 3 agents at u and can communicate with a co-located agent by
reading its state. The agents cannot mark the nodes or edges of the graph. An
agent arriving at a node v, learns the label of the incoming port and the labels
of the outgoing ports of v. Two agents traveling on the same edge in different
directions do not notice each other, and cannot meet on the edge. Their goal is
to gather at a node. The agents do not know their number k and the size n×m of
the grid network. We consider two visibility models. In the local visibility model
at any time, an agent cannot see the state of any other node (i.e., whether it is
occupied or not) apart from the node it occupies. In the global visibility model
each agent, at any time, can see the locations of all the other agents in the grid.
In both models an agent can communicate only with another agent at the same
node, i.e., communication is face to face.

The agents have a constant number of states (independent of k, n,m), i.e. it
has O(1) bits of persistent memory. Since agents are synchronous, time is dis-
cretized into atomic time units. During each time unit, a (honest) agent arriving
at a node u through a port q takes the following three actions: (1) It reads its
own state, the outgoing port labels of u, decides whether there are 1, 2, or at
least 3 agents at u, and reads the state of each agent at u1. (2) Based on the
above information it performs some computation to decide its next destination
and state. (3) The agent changes its state and either moves using the computed
port label or waits at u. If the agent has decided to move on edge (u, v), and
the node v is not occupied by the malicious agent, then the agent is located at
node v in the next time unit. Otherwise, the agent is still located at node u in
the next time unit, with a flag set in its memory notifying the agent that the
move was unsuccessful.

Malicious Agent: The malicious agent M is a very powerful entity compared
to honest agents: At any time, it has full knowledge of the graph and the posi-
tions and states of the honest agents; it has unlimited memory and knows the
algorithm the honest agents follow. If M occupies a (free) node y at time t then
M can either stay at y or appear at time t + 1 (i.e., move arbitrarily fast along
the edges of the graph) at any other node w, as long as there is a path from y
to w, such that no node on this path, including w, is occupied by any honest
agent at time t. When M resides at a node u it prevents any honest agent A

1 We notice that since an agent has only constant memory, it cannot simultaneously
store in its memory the states of more than a constant number of agents.

168 S. Das et al.

from visiting u, i.e., it “blocks” A: If an agent A attempts to visit u, the agent
receives a signal that M is in u.

3 Agents with Global Visibility

In this section we assume that the agents have global visibility, so they can see
the entire grid and the locations of other agents in it, at all times during the
algorithm. We will start by showing some basic properties for agents navigating
in a grid.

When there is no malicious agent, any number of agents can easily gather in
an oriented grid of size n×m within at most n+m−2 steps. Each agent simply
moves to the North-East corner of the grid. We show below that when there is a
malicious mobile agent in the grid, a similar strategy can gather at least (k − 1)
out of the k agents: the malicious agent can block at most one agent at each
step while the others make progress towards the North-East corner of the grid;
if two or more agents are blocked at the same time, they could choose different
paths.

Lemma 1. In an oriented grid of size n × m, with n,m ≥ 3, k honest agents
and one malicious agent, at least (k − 1) honest agents can gather within k(n+
m)/(k − 1) steps under the global visibility model.

Let us now recall the following property of a grid graph:

Property 1. An n × m grid graph G = (V,E), with n,m ≥ 3 has a minimum
vertex cut of size 2, and every minimum vertex cut consists of a pair of nodes
which are neighbours of a corner of the grid. This is depicted by the marked
nodes in configuration C2 of Fig. 1 (or any symmetric configuration).

3.1 Impossibility Result for Two Honest Agents

Lemma 2. In an oriented grid of size n × m, where n,m > 3, two agents
cannot gather in the presence of one malicious agent, even if they have unlimited
memory and global visibility.

M

A

BA B

M

Fig. 1. Two agents gathering configurations C1 and C2.

Gathering of Robots in a Grid with Mobile Faults 169

Proof. Let G = (V,E) be an oriented grid. Suppose that there is an algorithm
A that gathers the two agents at a node of the grid at time t. Consider the last
configuration of the agents before they meet (i.e., the configuration at time t−1).
We first prove that the last configuration should either be the one in which: (1)
the two agents are adjacent somewhere in the grid (let us call this configuration
C1) or, (2) they are both at distance one from the same corner of the grid (let
us call this configuration C2). Examples of those two configurations are shown
in Fig. 1. Suppose for the sake of contradiction, that the last configuration C
is not C1 or C2. In that case the agents in C have to be at distance two (but
not as in C2) at time t − 1, otherwise they cannot meet at time t. This means
that both agents have to move to the same (free) node u in order to meet. From
Property 1, if n,m ≥ 3, we have that the only vertex cut of size less than 3 is a
vertex cut of size 2 which is the one of configuration C2, or the symmetric ones.
Thus, in all other configurations, the subgraph induced by all free nodes (i.e.,
nodes which are not occupied by honest agents) is connected. Hence, in that case
the malicious agent M can always reach the free node u before the agents, and
thus prevents them from meeting each-other, even if the agents are in different
states, have unlimited memory or they can see each-other locations. Thus, the
last configuration before the gathering should be C1 or C2.

Let us now define configuration C3 in which one of the agents occupies a
corner node u of the grid and the other agent occupies the node v which is at
distance 2 from u and not in the same row or column with u. We will show that
unless the agents initially start in configuration C1, C2, or C3, it is impossible to
form any of those configurations, and hence it is impossible to gather. Suppose
for the sake of contradiction that the agents are able to form a configuration
of type C ∈ {C1, C2, C3} starting from a different configuration and let C ′ /∈
{C1, C2, C3} be the last configuration before C is formed.

First observe that since C ′ is different than configuration C2 and its sym-
metric ones, according to Property 1 configuration C ′ cannot have a vertex cut
smaller than 3. Hence, if both agents at configuration C ′ try to move to the same
node z, or only one agent tries to move to a node z in order to form configura-
tion C, then M can reach node z before the agent(s) (since, in any configuration
apart from C2, M is able to reach any node which is not occupied). Therefore
configuration C cannot be formed if at C ′ only one agent tries to move, or if
both agents try to move at the same node. Let us study now the remaining case
in which both agents at C ′ try to move to two distinct nodes.

Consider a configuration C ′ /∈ {C1, C2, C3} composed of a node x containing
agent A and a node y containing agent B. Suppose that the two agents A, B
located at nodes x, y in configuration C ′ are trying to move to two distinct nodes
z and w respectively in order to form configuration C. If z, w are not the occupied
nodes of a configuration C ∈ {C1, C2, C3}, then the malicious agent M does not
block anyone and therefore C cannot be formed. If z, w are indeed the occupied
nodes of a configuration C ∈ {C1, C2, C3} but either the pair (x,w) or the pair
(z, y) are not the occupied nodes of a configuration C ∈ {C1, C2, C3}, then the
malicious agent M could block either node z (so that the new occupied nodes

170 S. Das et al.

are (x,w)) or node w (so that the new occupied nodes are (z, y)) respectively.
Hence, again the malicious agent M has a strategy to prevent the agents from
forming configuration C.

The only remaining hypothetical scenario in which the malicious agent M
would not be able to prevent the formation of configuration C from C ′ is when all
pairs of nodes (x,w), (z, y), and (z, w) are the occupied nodes of configurations
in {C1, C2, C3}. We show below that this is impossible.

z w

x

y

(a)

z

w z

w

(b) (c)

Fig. 2. Two agents in a n × m grid trying to move to two distinct nodes (z, w) from
two distinct nodes (x, y) not in a configuration of type {C1, C2, C3} respectively. Nodes
(z, w) are the occupied nodes of a configuration of type: (a) C1 and n,m > 3, (b) C2,
(c) C3.

– Suppose that the nodes (z, w) (in configuration C) are the occupied nodes
of configuration type C1. In other words, if both agents A,B move then the
resulting configuration is connected (see an example in Fig. 2(a)). Node x
could not be at w, since then configuration C ′ would be of type C1. Node
x can only be either North or South of w in Fig. 2(a), since otherwise (x,w)
cannot be the occupied nodes of any configuration in {C1, C2, C3}. Suppose
without loss of generality that x is as shown in Fig. 2(a). Then y cannot be
adjacent to x (otherwise configuration C ′ would be of type C1) and can only
be as shown in Fig. 2(a), since otherwise (z, y) cannot be the occupied nodes
of any configuration in {C1, C2, C3}. However, even in that case, the pairs of
nodes (x,w) and (z, y) cannot be the occupied nodes of configuration types
C2 or C3 if n,m > 3.

– Suppose that the nodes (z, w) (in configuration C) are the occupied nodes of
configuration C2 (see an example in Fig. 2(b)). Then nodes x, y have to be
the other two nodes of the corner 2 × 2 subgrid in Fig. 2(b), otherwise (x,w)
or (z, y) cannot be the occupied nodes of any configuration in {C1, C2, C3}.
However, this means that configuration C ′ was of type C3, which is a contra-
diction.

– Suppose that the nodes (z, w) (in configuration C) are the occupied nodes of
configuration C3 (see an example in Fig. 2(c)). Then nodes x, y have to be the
two nodes of the corner 2 × 2 subgrid in Fig. 2(c), otherwise (x,w) or (z, y)

Gathering of Robots in a Grid with Mobile Faults 171

cannot be the occupied nodes of any configuration in {C1, C2, C3}. However,
this means that configuration C ′ was of type C2, which is a contradiction.

Hence, if the two agents initially start at a configuration of type different than
C1, C2, or C3, then they cannot form a configuration of type C1, C2, or C3, and
therefore they cannot gather. Notice that, this impossibility result holds even
when the agents have unlimited memory and can see each-other’s location at
any time on the grid. ��

3.2 Gathering of Three Honest Agents

In this section, we show that under the global visibility model, even three honest
agents (with constant memory) can gather in an oriented grid in presence of a
malicious agent.

Some notations:

– Let C3
0 be the set of all connected configurations with 3 agents (i.e., the nodes

occupied by the agents form a connected subgraph of the grid).
– Let C3

1 be the set of all configurations with 3 agents, where two agents are
colocated and the third agent is at distance two from them on a straight line
(i.e., either on the same row or on the same column, see an example in Fig. 3).

– Let C3
2 be the set of all configurations with 3 agents, where two agents are

colocated and the third agent is at distance two from them not on a straight
line (i.e., the agents are not all on the same row or on the same column, see
an example in Fig. 3).

2
1

C3
1

C3
0

C3
2

2

1

C3
0

C3
2

C3
2 C3

0

2

1

Fig. 3. Three agents in a grid: a tower of 2 and a single agent at distance two.

Theorem 1. Three honest agents with global visibility can gather in an oriented
grid in spite of one malicious agent.

Proof. It is sufficient to show that the agents can form a connected configuration
(it is straightforward to gather from a connected configuration if the agents can

172 S. Das et al.

see each other). Due to Lemma 1, we know that 2 of the 3 agents can always
gather at a node, if they have global visibility. So, let us assume that we start
from a configuration where 2 agents are colocated (form a tower) and the third
agent is in some distinct node of the grid. Due to the global visibility capability,
the agents can approach each other, i.e., they can try to move to reduce the
(vertical and then horizontal) distance between them. The two agents in the
tower will move together during this process. Note that, if the distance between
them is more than two then M can block either the tower or the third agent but
not both at the same time. Thus, at each time step, the distance will be reduced
until the distance is no more than two. If the distance is less than two then the
agents already form a connected configuration and they can immediately gather.
So, suppose that the agents reach a configuration where the distance between
the tower and the third agent is exactly two.

Thus, this configuration can be either of type C3
1 or of type C3

2 . We show
that: (i) From a configuration of type C3

1 we can reach a configuration of type
C3

2 or a connected configuration, and (ii) from a configuration of type C3
2 we can

always reach a connected configuration.
To prove (i), let us consider, w.l.o.g., the particular configuration C ∈ C3

1

where the third agent is two steps to the EAST of the tower of two agents (see
Fig. 3). Note that, for the other configurations in C3

1 , similar arguments hold,
with rotation of directions etc. In configuration C, the algorithm will instruct
the tower to perform go(North) and the solitary agent to perform go(West).
If both moves succeed, then the resulting configuration is in C3

2 and we are done.
If only the move of the tower is blocked then we have a connected configuration.
So, we need to consider the only other case where the move of the solitary agent
is blocked by M . The resulting configuration has the tower one step North and
two steps West of the solitary agent (as shown in Fig. 3). From this configuration,
in the next step, the algorithm will instruct the tower to perform go(East) and
the solitary agent to perform go(West). If both moves succeed then we have
a connected configuration and if either one of the moves is blocked then the
resulting configuration is in C3

2 . Thus, we have proved (i).
To prove (ii), note that in any configuration of type C3

2 , there are two unoc-
cupied nodes of the grid that are both at distance one from the tower and from
the solitary agent. The algorithm will instruct the agents in the tower to split
and move towards those two nodes respectively2. The malicious agent M can-
not block the moves of both and if at least one of the moves succeeds then
the resulting configuration is a connected configuration. Thus we have proved
(ii). So, three agents with global visibility can always gather starting from any
configuration. ��

Notice that, the above result can be extended to any number of k agents, by
first forming a tower of (k−1) agents (cf., Lemma 1) and repeating the technique
of Theorem 1 with the k−2 agents of the tower acting as a single agent. However,
2 We remind the reader, that as we have noticed in the beginning of the section, the
agents can assign to themselves distinct identities and therefore they can perform
distinct moves.

Gathering of Robots in a Grid with Mobile Faults 173

we will show in the next section that for k > 3 agents, gathering is still possible
in the more challenging model with local visibility.

4 Agents with Local Visibility

In this section, we consider mobile agents that have local visibility and local
communication capabilities. Thus, an agent has no knowledge of the location
of any other agent unless it actually meets with an agent at a node. Although
gathering is more difficult in this setting, we show that 4 or more agents can
always gather starting from any starting configuration of scattered agents. We
present a universal algorithm for gathering k ≥ 4 agents, even without the prior
knowledge of k. The high level description of the algorithm is the following: The
algorithm first performs a partial gathering of at least 3 agents at a node. Such
a group of colocated agents is called a Tower. As a next stage, the tower moves
to the South-West corner of the grid, and starting from that corner, the tower
moves towards the North-East corner, sweeping through all nodes and on the
way collecting all the agents not belonging to any tower (note that multiple
towers may be formed). Finally, all agents meet at the North-East corner of the
grid (or at its adjacent node to the West).

The main algorithm, called GridWalk, is formally described in Algorithm1.
The algorithm uses a number of procedures. The first one is called Procedure
FormTower and creates at least one tower of at least 3 colocated agents. We will
show that a tower of 3 or more agents can always sweep through the grid, even
if the malicious agent tries to block it. This is accomplished by two procedures.
Procedure TowerWalk moves a tower to the next node in the intended direction,
in spite of the malicious agent. Finally, Procedure ExploreLine is used to move
a tower in a straight line in the chosen direction. We now describe each procedure
in more detail.

Procedure FormTower: Each agent initially navigates towards the North-East
corner of the grid, by first moving North up to the North border and then moving
East up to the East border. During this navigation, if an agent is blocked by
the malicious agent while moving North and it is alone, in the next move it
will try to move East for one step (or West if it is located on the East border
column). If at some point the agent (which still moves towards North) meets
with exactly one more agent and both of them were blocked while trying to
move North, then one of them moves East for one step (or West if it is located
on the East border), while the other one moves North. If two agents which have
already reached the North border are blocked on the North border while they
try to move East, then one of the agents moves South for one step. The agents
that reach the North-East corner wait until at least 3 agents are there.

Lemma 3. If k ≥ 4 agents execute Procedure FormTower in a n × m oriented
grid, n,m > 1, with one malicious agent, then at least 3 agents will gather at a
node within O(n + m) time units.

174 S. Das et al.

Algorithm 1. GridWalk (Gathering of k > 3 agents)

Perform FormTower;
if there is an edge towards South then

Perform ExploreLine(South);

if there is an edge towards West then
Perform ExploreLine(West);

/* The tower has reached the West border */

while there is an edge towards East do
Perform ExploreLine(North);
if ExploreLine returns 1 then

Perform TowerWalk(West, South);

Perform ExploreLine(South);
if ExploreLine returns 0 then

Perform TowerWalk(East, North);

if ExploreLine returns 1 and the ExploreLine was not performed at the West
border then

Let u be the current node;
Perform TowerWalk(East, North);
if tower ended up at distance 2 North-East of u then

Let v be the current node;
Perform TowerWalk(South, East);
if tower ended up South of v then

Perform TowerWalk(East, North);

else
Perform TowerWalk(East, North);

/* The tower has reached the East border */

Perform ExploreLine(North);
if ExploreLine returns 1 then

while there is an edge towards East do
move East;

Consider k ≥ 3 agents which gather at a node to form a tower. Even though
the agents are all identical, since they initially start from distinct nodes, it is
always possible to order the agents after they gather at a node (e.g., by comparing
incoming directions, arrival times, etc.) Thus, we assume there exists a unique
order on the agents constituting a tower, and we will denote the first three agents
by A1, A2 and A3 in this order, while the fourth and subsequent agents (if any)
would simply follow the actions of agent A3. We can thus explain the algorithm
assuming that each tower contains only three agents A1, A2 and A3.

Procedure TowerWalk: This procedure moves all agents associated with the
tower either to an adjacent node towards a given direction or to a node at dis-
tance 2 from the tower’s current position. More precisely, given direction X

Gathering of Robots in a Grid with Mobile Faults 175

and Y (which is 90◦ clockwise or counterclockwise from X), the tower moves
from position (x, y) to the node (x + 1, y) which is adjacent to node (x, y)
towards direction X; In case this node was blocked by the malicious agent,
then TowerWalk(X,Y) moves the tower to node (x + 1, y + 1) (the node adja-
cent to (x + 1, y) in the direction Y). For example, an execution of Procedure
TowerWalk(North, East) will move all agents associated with the tower either
to node v adjacent to u in the North direction (if v is not blocked) or to node w
at distance 2 from u in direction North-East (if v was blocked). The algorithm
achieves this by splitting two agents of the tower in the direction X and Y , with
the third agent staying in the initial location. At least one of the moves must be
successful. If the intended node (x + 1, y) is not reached, the agents are on two
adjacent nodes (x, y) and (x, y+1), and one agent from each node tries to move
in direction X. Thus, at least one agent reaches node (x+ 1, y) or (x+ 1, y + 1)
as intended. The other agents now join this agent to reconstruct the tower.

Lemma 4. Consider k ≥ 4 agents in a n×m oriented grid, n,m > 1, with one
malicious agent. If a tower of at least l ≥ 3 agents located at node u = (x, y) at
time t, execute Procedure TowerWalk(X,Y), then after at most 6 time units, all
agents in the tower reach either (1) node v = (x + 1, y) which is adjacent to u
towards direction X, only if v was not blocked at time t+1 or t+3, or, (2) node
w = (x+1, y+1) which is at a distance 2 from u towards direction X −Y , only
if v was blocked at time t + 1 and t + 3.

Procedure ExploreLine(Dir): This procedure moves a tower consisting of at
least 3 agents from a node u, on a straight line direction Dir, reaching either a
node v at the border of the grid on the same line, or a node v′ adjacent to v on
the border (in case v was blocked by the malicious agent). The procedure uses
calls to Procedure TowerWalk(X,Y), where X = Dir and Y is a direction 90◦

clockwise or counterclockwise from Dir. In simple words, the procedure moves
the tower on a straight line sweeping a complete column (or a row) until it reaches
the border. Suppose the tower was sweeping a column towards North: whenever
the node on the North is blocked, the tower moves to the next column to the
East; At each subsequent step, it tries to move back to the original column and
otherwise continues towards North. The procedure ends when the tower reaches
the border either on the original column or the adjacent column.

Lemma 5. Consider a tower of l ≥ 3 colocated agents located at a node u in a
n×m oriented grid, n,m > 1, with one malicious agent. Let v be the node on the
border of the grid towards direction Dir from u and let p be the distance (i.e., the
length of the shortest path) between nodes u and v. If the tower-agents execute
Procedure ExploreLine(Dir), then after O(p) time units the agents will end up
either at node v (in this case the procedure returns Parity = 0) or at a node on
the border adjacent to v (in that case the procedure returns Parity = 1). During
the execution of the procedure, the tower agents visit all nodes on the segment
from u to v, except those that are blocked by the malicious agent.

176 S. Das et al.

Any group of at least 3 agents (tower) tries to explore the whole grid from
the South-West corner to the North-East corner by traversing each column back
and forth and changing columns only through the South border. Any agent H
which has not yet been associated with a tower is still executing Procedure
FormTower. Let u be the first node in which the tower agents are blocked while
they try to visit it at time t. Clearly, agent H could not be in u at time t. If node
u is not on the North or East border nor adjacent to the North or East border
then, according to Procedure FormTower agent H could only approach node u
by moving either North or East (i.e., coming from nodes already ‘cleared’ by
the tower agents). Hence agent H could not be in u at time t or later. For the
remaining cases we show that if agent H moves again to node u at a later time
then the tower agents are still there and meet agent H.

Theorem 2. Consider k ≥ 4 agents in a n × m oriented grid with a malicious
agent, where n,m > 1. If the (honest) agents execute Algorithm GridWalk then
they gather within at most O(nm) time units.

5 Conclusions

We studied the problem of gathering synchronous agents in oriented grids when
there is a malicious mobile adversary. We showed that k > 3 synchronous agents
with only local visibility capability can gather starting from any configuration
without multiplicities, while for asynchronous agents it has been previously
proved that the agents can gather only if they start from a connected configu-
ration and have visibility at distance two. On the negative side we proved that
two synchronous agents cannot gather even in the most powerful model with full
visibility and unbounded memory.

Our studies on the oriented grids give an almost complete characterization
of the solvable cases in these networks, leaving only one open question: Whether
k = 3 agents can still gather in a grid starting from any configuration when they
have only local visibility. As we proved in Lemma1, k − 1 out of k ≥ 3 agents
with global visibility can easily gather. In fact, the proof of this lemma is only
based on a two-distance visibility capability. However, the proof of Theorem1 for
3 agents is heavily based on the global visibility property. In order for 3 agents to
gather without the property of the global visibility, a different technique should
be probably used.

A natural extension to this research would be the study of this problem in
other topologies such as oriented multidimensional grids, and other well struc-
tured graphs that are easy to explore by constant memory agents. Another sce-
nario is one with a less powerful malicious agent which has limited speed capa-
bilities, or with multiple such mobile adversaries. For instance since the problem
cannot be solved in a k-connected graph with k mobile adversaries an interesting
question is to determine the maximum number of mobile adversaries for which
the problem is solvable in a k-connected graph.

Gathering of Robots in a Grid with Mobile Faults 177

References

1. Agmon, N., Peleg, D.: Fault-tolerant gathering algorithms for autonomous mobile
robots. SIAM J. Comput. 36(1), 56–82 (2006)

2. Bampas, E., Leonardos, N., Markou, E., Pagourtzis, A., Petrolia, M.: Improved
periodic data retrieval in asynchronous rings with a faulty host. Theoret. Comput.
Sci. 608, 231–254 (2015)

3. Bouzid, Z., Das, S., Tixeuil, S.: Gathering of mobile robots tolerating multiple
crash faults. In: ICDCS 2013, pp. 337–346 (2013)

4. Chalopin, J., Dieudonne, Y., Labourel, A., Pelc, A.: Rendezvous in networks in
spite of delay faults. Distrib. Comput. 29, 187–205 (2016)

5. Chuangpishit, H., Czyzowicz, J., Kranakis, E., Krizanc, D.: Rendezvous on a line
by location-aware robots despite the presence of byzantine faults. In: Fernández
Anta, A., Jurdzinski, T., Mosteiro, M.A., Zhang, Y. (eds.) ALGOSENSORS 2017.
LNCS, vol. 10718, pp. 70–83. Springer, Cham (2017). https://doi.org/10.1007/978-
3-319-72751-6 6

6. Czyzowicz, J., Killick, R., Kranakis, E., Krizanc, D., Morale-Ponce, O.: Gathering
in the plane of location-aware robots in the presence of spies. In: Lotker, Z., Patt-
Shamir, B. (eds.) SIROCCO 2018, pp. 361–376. Springer, Cham (2018). https://
doi.org/10.1007/978-3-030-01325-7 30

7. Das, S., Focardi, R., Luccio, F.L., Markou, E., Moro, D., Squarcina, M.: Gathering
of robots in a ring with mobile faults. In: 17th Italian Conference on Theoretical
Computer Science (ICTCS 2016), Lecce, Italy. CEUR, vol. 1720, pp. 122–135, 7–9
September 2016

8. Das, S., Focardi, R., Luccio, F.L., Markou, E., Squarcina, M.: Gathering of robots
in a ring with mobile faults. Theor. Comput. Sci. (in press). https://doi.org/10.
1016/j.tcs.2018.05.002

9. Das, S., Luccio, F.L., Markou, E.: Mobile agents rendezvous in spite of a malicious
agent. In: Bose, P., G ↪asieniec, L.A., Römer, K., Wattenhofer, R. (eds.) ALGO-
SENSORS 2015. LNCS, vol. 9536, pp. 211–224. Springer, Cham (2015). https://
doi.org/10.1007/978-3-319-28472-9 16

10. Di Luna, G.A., Flocchini, P., Pagli, L., Prencipe, G., Santoro, N., Viglietta,
G.: Gathering in dynamic rings. Theor. Comput. Sci. (in press). http://www.
sciencedirect.com/science/article/pii/S030439751830639X

11. Dieudonne, Y., Pelc, A., Peleg, D.: Gathering despite mischief. ACM Trans. Algo-
rithms 11(1), 1 (2014)

12. Dobrev, S., Flocchini, P., Prencipe, G., Santoro, N.: Multiple agents RendezVous
in a ring in spite of a black hole. In: Papatriantafilou, M., Hunel, P. (eds.) OPODIS
2003. LNCS, vol. 3144, pp. 34–46. Springer, Heidelberg (2004). https://doi.org/10.
1007/978-3-540-27860-3 6

13. Dobrev, S., Flocchini, P., Prencipe, G., Santoro, N.: Mobile search for a black hole
in an anonymous ring. Algorithmica 48(1), 67–90 (2007)

14. Flocchini, P., Santoro, N.: Distributed security algorithms for mobile agents. In:
Cao, J., Das, S.K. (eds.) Mobile Agents in Networking and Distributed Computing,
pp. 41–70. Wiley, Hoboken (2012). Chap. 3

15. Klasing, R., Markou, E., Radzik, T., Sarracco, F.: Hardness and approximation
results for black hole search in arbitrary graphs. TCS 384(2–3), 201–221 (2007)

16. Lin, J., Morse, A.S., Anderson, B.D.O.: The multi-agent rendezvous problem. An
extended summary. In: Kumar, V., Leonard, N., Morse, A.S. (eds.) Cooperative
Control, vol. 309, pp. 257–289. Springer, Heidelberg (2004). https://doi.org/10.
1007/978-3-540-31595-7 15

https://doi.org/10.1007/978-3-319-72751-6_6
https://doi.org/10.1007/978-3-319-72751-6_6
https://doi.org/10.1007/978-3-030-01325-7_30
https://doi.org/10.1007/978-3-030-01325-7_30
https://doi.org/10.1016/j.tcs.2018.05.002
https://doi.org/10.1016/j.tcs.2018.05.002
https://doi.org/10.1007/978-3-319-28472-9_16
https://doi.org/10.1007/978-3-319-28472-9_16
http://www.sciencedirect.com/science/article/pii/S030439751830639X
http://www.sciencedirect.com/science/article/pii/S030439751830639X
https://doi.org/10.1007/978-3-540-27860-3_6
https://doi.org/10.1007/978-3-540-27860-3_6
https://doi.org/10.1007/978-3-540-31595-7_15
https://doi.org/10.1007/978-3-540-31595-7_15

178 S. Das et al.

17. Luccio, F.L.: Contiguous search problem in Sierpinski graphs. Theory Comput.
Syst. 44, 186–204 (2009)

18. Yamauchi, Y., Izumi, T., Kamei, S.: Mobile agent rendezvous on a probabilistic
edge evolving ring. In: ICNC, pp. 103–112 (2012)

Probabilistic Parameterized Polynomial Time

Nils Donselaar(B)

Donders Institute for Brain, Cognition and Behaviour, Radboud University,
Montessorilaan 3, 6525 HR Nijmegen, The Netherlands

n.donselaar@donders.ru.nl

Abstract. We examine a parameterized complexity class for random-
ized computation where only the error bound and not the full runtime is
allowed to depend more than polynomially on the parameter, based on a
proposal by Kwisthout in [15,16]. We prove that this class, for which we
propose the shorthand name PPPT, has a robust definition and is in fact
equal to the intersection of the classes paraBPP and PP. This result is
accompanied by a Cook-style proof of completeness for the corresponding
promise class (under a suitable notion of reduction) for parameterized
approximation versions of the inference problem in Bayesian networks,
which is known to be PP-complete. With these definitions and results in
place, we proceed by showing how it follows from this that derandom-
ization is equivalent to efficient deterministic approximation methods
for the inference problem. Furthermore, we observe as a straightforward
application of a result due to Drucker in [8] that these problems cannot
have polynomial size randomized kernels unless the polynomial hierarchy
collapses to the third level. We conclude by indicating potential avenues
for further exploration and application of this framework.

Keywords: Parameterized complexity theory
Randomized computation · Bayesian networks

1 Preliminaries

The simple yet powerful idea which lies at the heart of the theory of parameter-
ized complexity is that the hardness of computational problems may be better
studied by analyzing the effects of particular aspects of its instances, treating
these as a distinguished problem parameter and allowing the time (or other
measures such as space) required to find a solution to depend on this parameter
by an unbounded factor. This leads to an account of fixed-parameter tractabil-
ity (FPT) and a hardness theory based on classes from the W-hierarchy which
together mirror the parts played by P and NP in classical complexity theory.

In the two decades since the appearance of [6], the book by Downey and Fel-
lows which largely formed the foundations of the field, research in parameterized
complexity theory has gone far beyond this initial outlook and revealed a rich

Research for this paper has been funded through NWO EW TOP grant 612.001.601.

c© Springer Nature Switzerland AG 2019
B. Catania et al. (Eds.): SOFSEM 2019, LNCS 11376, pp. 179–191, 2019.
https://doi.org/10.1007/978-3-030-10801-4_15

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-10801-4_15&domain=pdf
https://doi.org/10.1007/978-3-030-10801-4_15

180 N. Donselaar

structure and many interesting questions to pursue, a lot of which covered in the
updated [7]. Yet with a few notable exceptions, little attention has been paid to
probabilistic computation in the parameterized setting. The most encompass-
ing effort thus far has been made by Montaya and Müller in [18], where they
show amongst other things that the natural analogue BPFPT relates to other
complexity classes in much the same way as does BPP in the classical setting.1

Our aim with the present paper is to improve on this situation by demonstrat-
ing that studying parameterized probabilistic computation amounts to more than
simply reconstructing results from the classical setting (which can already be a
non-trivial task, as evidenced by the work done in [18]), and that results obtained
in this way can have broader theoretical and practical significance. In particular
we study a complexity class intended to capture probabilistic parameterized poly-
nomial time computability, which we shall thus refer to as PPPT for this reason.2

This class PPPT is informally defined by considering probabilistic algorithms
for parameterized problems, except allowing not the runtime but instead only
the error bound to depend on the parameter by more than a polynomial factor.
As such, PPPT can be thought of as containing those problems in PP which are
nevertheless close to being in BPP and hence randomized tractable in a certain
sense. This perspective, which we will explore more rigorously later on, formed
much of the motivation of the class’s original proposal in [15].

In what follows, we assume the reader to be familiar with the basics of clas-
sical and parameterized complexity theory. However, we repeat the definitions
of the complexity classes used here, mostly to facilitate the comparison with
the class PPPT which we formally define in the next section. First recall the
probabilistic complexity classes BPP and PP:

Definition 1. BPP is the class of decision problems computable in time |x|c for
some constant c by a probabilistic Turing machine which gives the correct answer
with probability more than 1

2 + |x|−d for some constant d.

Definition 2. PP is the class of decision problems computable in time |x|c for
some constant c by a probabilistic Turing machine which gives the correct answer
with probability more than 1

2 .

We mostly follow the original definition presented in [10] in that we consider a
probabilistic Turing machine M to be a Turing machine with access to random
bits which it may query at every step of its execution, and whose transition
function may depend on the values read off in this way. However, we include the
generalization that a probabilistic Turing machine M may query not one but
rM many random bits at each step, where as usual we drop the subscript when it
can be inferred from the context. Before continuing we note that rM ≤ log |M|.

1 We also mention [3] which studies PFPT, the parameterized counterpart to PP.
2 In [15,16] this class was proposed under the name FERT for fixed-error randomized
tractability, intended to be reminiscent of FPT. We believe that the name PPPT is
more appropriate as it calls into mind the class PP as well as ppt-reductions.

Probabilistic Parameterized Polynomial Time 181

Definition 3. FPT is the class of parameterized decision problems computable
in time f(k)|x|c, where f is a computable function in k and c is a constant.

Definition 4. paraBPP is the class of parameterized decision problems com-
putable in time f(k)|x|c by a probabilistic Turing machine which gives the correct
answer with probability more than 1

2 + |x|−d, where f is a computable function
in k and c and d are constants.

The method of converting classical complexity classes C to parameterized
classes paraC illustrated above originates from [9], and indeed FPT = paraP.
One should keep in mind though that this construction does not yield the usual
parameterized classes including BPFPT, as these are furthermore characterized
by using at most f(k) log |x| random bits. (cf. [4]). In fact, as observed in [18],
BPFPT = paraBPP if and only if P = BPP. As we shall see in the next section,
a similar statement remains true when we replace paraBPP by the class PPPT.

2 Error Parameterization

We now provide a formal definition of the class PPPT:

Definition 5. We say that a parameterized decision problem A is in PPPT
if there exist a computable function f : N → (0, 1

2], a constant c ∈ N and a
probabilistic Turing machine M which on input (x, k) halts in time (|x| + k)c

with probability at least 1
2 + f(k) of giving the correct answer.

Based on the convention that the parameter value k is given as a unary string
along with the rest of the input x, from this definition it is immediate that PPPT
is a subclass of PP. Moreover, it can be shown that this definition is robust in
two ways, which makes it easy to see that PPPT is also a subclass of paraBPP.

Proposition 1. The class PPPT in Definition 5 remains the same if

(i) the error bound on a correct decision is f(k)|x|−d or min(f(k), |x|−d) instead;
(ii) the probability of a false positive is not bounded away from 1

2 .

Proof. For (i), note that min(f(k)2, |x|−2d) ≤ f(k)|x|−d ≤ min(f(k), |x|−d),
which shows that such error bounds may be used interchangeably. For inde-
pendent identically distributed Bernoulli variables with p = 1

2 + ε, Hoeffding’s
inequality states that the probability of the average over n trials being no greater
than 1

2 is at most e−2nε2 . Thus for ε = min(f(k)2, |x|−2d) we may take the major-
ity vote over n = |x|4d runs to obtain a probability of at least 1

2 +f(k)2 of giving
the right answer. To see this, observe that the claim is trivially true whenever
min(f(k)2, |x|−2d) = f(k)2, while if min(f(k)2, |x|−2d) = |x|−2d then we should
have 1

2 − f(k)2 ≥ e−2, which is always the case since f(k)2 ≤ 1
4 by definition.

As this is only a polynomial number of repetitions, any error bound of either of
these two alternative forms can be amplified to conform to the one required by
Definition 5 without exceeding the time restrictions.

182 N. Donselaar

For (ii), we provide essentially the same argument as can be used to show that
the class PP remains the same under this less strict requirement. Suppose that M
is a probabilistic Turing machine which decides the problem A in time (|x|+k)c

for some c, with suitable f and d given such that Yes-instances are accepted with
probability at least 1

2 + f(k)|x|−d and No-instances with probability at most 1
2 .

Then we may consider a probabilistic Turing machine M′ which on input (x, k)
operates the same up to where M would halt, at which point the outcome of M is
processed as follows. In case of a rejection, the outcome is simply preserved, while
an acceptance is rejected with probability 1

2f(k)|x|−d (which is possible within
the original polynomial time bound). Now a Yes-instance (x, k) of M is accepted
by M′ with probability at least (12+f(k)|x|−d)(1− 1

2f(k)|x|−d) ≥ 1
2+ 1

4f(k)|x|−d,
while No-instances are accepted with probability at most 1

2 − 1
4f(k)|x|−d. Thus

M′ halts in time polynomial in |x| + k and bounds the probability of a false
positive away from 1

2 by some f(k)|x|−d as required, which concludes the proof.

One can extend the probabilistic amplification used in the proof of Proposi-
tion 1(i) to (instead) remove the term f(k) from the error bound, at the cost of
introducing this factor into the runtime. This is generally not allowed for PPPT,
but permissible for paraBPP, hence PPPT is a subclass of paraBPP. In fact, this
inclusion is easily shown to be strict.

Proposition 2. PPPT � paraBPP, i.e. PPPT is a strict subclass of paraBPP.

Proof. Let A be any decidable problem not in PP, and parameterize this problem
by the input size, so that we obtain the problem |x|-A. It is immediate that |x|-A
cannot be in PPPT since A is not in PP. On the other hand, |x|-A is in paraBPP
as the parameterization permits an arbitrary runtime for the decision procedure
for A, hence the inclusion PPPT ⊆ paraBPP is strict.

Note that what the proof above actually shows is that there are problems in
FPT which are not in PPPT. This tells us that the inclusion in the statement
remains strict even if BPP = P, in which case we have that paraBPP = FPT: see
Proposition 5.1 of [18]. Similar arguments can be used to show that PPPT ⊆ FPT
implies BPP = P. Most importantly however, we can extend these results by pro-
viding an exact characterization of PPPT, the proof of which relies on essentially
the same strategy used to show that every problem in FPT is kernelizable.

Theorem 1. PPPT = paraBPP ∩ PP. In particular, if a problem k-A is in
paraBPP and also in PP as an unparameterized problem, then k-A is in PPPT.

Proof. Suppose k-A is as in the statement of the theorem. Then there is a proba-
bilistic Turing machine M which on input (x, k) halts in time f(k)|x|c and makes
the correct decision with probability at least 1

2 + |x|−d. Furthermore, there is a
probabilistic Turing machine M′ which on input x halts in time |x|c′

and makes
the correct decision with probability at least 1

2 + 2−r|x|c′
. Then on any given

(x, k), we can first run M for |x|c+1 steps, adopting its decision if it halts within
that time. If it does, then we have given the correct answer with probability at
least 1

2 + |x|−d. If it does not, then we may conclude that f(k) > |x|, in which

Probabilistic Parameterized Polynomial Time 183

case we proceed by running M′ which will halt in time |x|c′
with a probabil-

ity of at least 1
2 + 2−r·f(k)c′

= 1
2 + g(k) of giving the correct answer. Thus in

time O(|x|c+c′+1) we can decide with probability at least 1
2 + min(g(k), |x|−d)

whether (x, k) is in k-A, which means k-A is in PPPT by Proposition 1. As we
already observed that PPPT is a subclass of both paraBPP and PP, this yields
the conclusion that PPPT = paraBPP ∩ PP as stated.

For context it may be valuable to note that the idea of a complexity class
being the intersection of a parameterized and a classical one has been considered
before: while [2] looked into W[P] ∩ NP, [18] briefly discussed BPFPT ∩ BPP.
However, we believe it is important to note first of all that the class PPPT
arose from a reasonably natural definition intended to capture a slightly weaker
kind of parameterization, instead of its definition being explicitly constructed to
ensure a correspondence to the intersection of paraBPP and PP. Furthermore,
and perhaps most importantly, we can actually exhibit natural problems which
are complete for (the promise version of) the class PPPT, something which has
not yet been done for BPP. In the remainder of this section we shall describe these
problems, which originate from the domain of approximate Bayesian inference.
We subsequently prove completeness for these problems in Sect. 3, which sets us
up to explore the main implications of our results in Sect. 4.

Below we provide a definition of a Bayesian network, so that we may intro-
duce the problem of inference within such networks; for the reader interested in
a more detailed treatment, we refer to a standard textbook such as [14].

Definition 6. A Bayesian network is a pair B = (G,Pr), where G = (V,A)
is a directed acyclic graph whose nodes represent statistical variables, and Pr
is a set of families of probability distributions containing for each node V , and
each possible configuration cρ(V) of the variables represented by its parents, a
distribution Pr(cV | cρ(V)) over the possible outcomes of its represented variable.

As reflected by the notation, one typically blurs the distinction between the
node V and the statistical variable which it represents, so that one may use
Ω(V) to refer directly to the set of possible outcomes of this variable.

One of the main computational problems associated with Bayesian networks
is that of inference, which is to determine what the likelihood is of some given
combination of outcomes, possibly conditioned on certain specified outcomes for
another set of variables. Below we describe the corresponding decision problem.

Bayesian Inference
Input: A Bayesian network B = (G,Pr), two sets of variables H,E ⊆ V (G), joint
value assignments h ∈ Ω(H) and e ∈ Ω(E), a rational threshold value 0 ≤ q ≤ 1.
Question: Is Pr(h | e) > q?

Based on whether E = ∅, we shall refer to this problem as Inference or Condi-
tional Inference respectively, both of which are PP-complete (see also [19]).
Despite their equivalence from a classical perspective, in terms of parameterized
approximability the latter is more difficult: [16] has an overview of the main
results known thus far. We consider the following specific parameterizations:

184 N. Donselaar

ε-Inference
Input: A Bayesian network B = (G,Pr), a set of variables H ⊆ V (G), a joint
value assignment h ∈ Ω(H), and rational values 0 ≤ q ≤ 1 and 0 < ε ≤ 1

2 .
Parameter: 	− log ε
.
Promise: Pr(h) �∈ (q − ε, q + ε).
Question: Is Pr(h) > q?

{ε,Pr(h),Pr(e)}-Conditional Inference
Input: A Bayesian network B = (G,Pr), two sets of variables H,E ⊆ V (G), joint
value assignments h ∈ Ω(H), e ∈ Ω(E), rational values 0 ≤ q ≤ 1, ε > 0.
Parameters: ε, Pr(h), and Pr(e).
Promise: Pr(h) �∈ (q(1 + ε)−1, q(1 + ε)).
Question: Is Pr(h | e) > q?

In what follows we use Pr(h) ± ε ≥ q as a shorthand for Pr(h) > q with the
promise that Pr(h) �∈ (q − ε, q + ε), and similarly for the relative approximation;
for more on this approach, see [17]. For completeness’ sake, we remind the reader
of the definition of a promise problem, based on [11].

Definition 7. A promise problem A consists of disjoint sets AYes and ANo of
Yes and No-instances respectively, where AYes ∪ ANo may be a strict subset of
the set of all inputs; AYes ∪ ANo is called the promise of the problem A.

We can separate promise problems into complexity classes just as we do for
decision problems by converting the familiar definitions in the following way.

Definition 8. Let C be any complexity class of decision problems. The class
pC of promise problems is defined by applying C’s criteria of membership to
promise problems instead, e.g. pP is the class of promise problems A for which
there exists a polynomial-time algorithm which answers correctly on its promise.

We now show for both of the approximate inference problems given above
that they are in the promise version of PPPT, the former by an explicit argument,
the latter by an appeal to Theorem 1.

Proposition 3. ε-Inference is in pPPPT.

Proof. By forward sampling the network (i.e. generating outcomes according
to the distributions of each variable, following some topological ordering of the
graph) and accepting with probability 1 − q

2 if the sample agrees with h, and
with probability 1

2 − q
2 if it does not, we arrive at a probability of acceptance of

1
2 + 1

2 (Pr(h)−q). Under the promise that Pr(h) �∈ (q−ε, q+ε), the probability of
giving the correct answer is now at least 1

2 + ε
2 , hence the problem is in pPPPT.

Proposition 4. {ε,Pr(h),Pr(e)}-Conditional Inference is in pPPPT.

Proof. In [12] it is shown that rejection sampling (which is forward sampling
and dismissing the outcome if it does not agree with e) provides an algorithm

Probabilistic Parameterized Polynomial Time 185

which places {ε,Pr(h),Pr(e)}-Conditional Inference in paraBPP.3 Because
Conditional Inference is itself in PP, by Theorem 1 we conclude that the
parameterized problem is in pPPPT.

3 Reductions and Completeness

At this point we wish to show that the two parameterized problems consid-
ered in the previous section are actually complete for the class pPPPT. In order
to do this, we first determine which notion of reduction is the most suitable
with respect to the class PPPT, after which we identify the machine accep-
tance problem for pPPPT and demonstrate its completeness for the class under
these reductions. We then construct an explicit reduction from this problem to
ε-Inference, and in turn reduce the latter to {ε,Pr(h),Pr(e)}-Conditional
Inference, thereby establishing completeness for both of these problems.

First of all, it is evident that while some form of parameterized reduction is
required, the usual fpt-reductions are unsuitable because they allow the runtime
to contain a factor superpolynomial in the parameter value and so PPPT is not
closed under these. Furthermore, the reductions cannot be probabilistic either:
while this is possible for BPP since the error can be reduced to constant using
probabilistic amplification, mitigating the parameterized error bound is generally
impossible without parameterized runtime (unless P = PP). Thus in this context
it makes sense to consider the notion of a ppt-reduction,4 which was formally
introduced in [1]:

Definition 9. A ppt-reduction from A to B is a polynomial-time computable
function h : (x, k) → (x′, k′) such that there exists a polynomial g with the
property that k′ ≤ g(k), and furthermore (x, k) ∈ A if and only if (x′, k′) ∈ B.

However, we can remove the constraint that k′ is bounded by a polynomial in
k, and instead simply demand that its value depends only on k.5 The resulting
class of reductions is a slightly broader one for which we introduce the name pppt-
reduction, for which it is easy to see that PPPT is closed under pppt-reductions.
Thus we would like to exhibit a parameterized problem which is complete for
PPPT under pppt-reductions; yet here we run into the same issue as with the
class BPP, namely that it may be impossible to effectively decide whether a
given probabilistic Turing machine has a suitably lower-bounded probability to
be correct on all possible inputs. Hence we have to add this explicit requirement
in the form of a promise, and so we arrive at the machine acceptance problem
stated below and instead study completeness for the promise class pPPPT.

3 Note that the parameter Pr(h) is only necessary here because we ask for a relative
approximation: the same holds when considering Inference instead.

4 As [7] observes, the acronym ‘ppt’ can be read equally well as either “polynomial
parameter transformation” or “parameterized polynomial transformation”.

5 I hereby express my gratitude to the anonymous reviewer who raised this point.

186 N. Donselaar

Error PTM Acceptance
Input: Two strings x and 1n and a probabilistic Turing machine M.
Parameter: A positive integer k.
Promise: For any valid input to M and after any number of steps, the probability
of acceptance does not lie between 1

2 − 2−k and 1
2 + 2−k.

Question: After n steps, does M accept x more often than it rejects?

Proposition 5. Error PTM Acceptance is complete for pPPPT.

Proof. The problem Error PTM Acceptance is straightforwardly seen to
lie in pPPPT, as it can be decided by running M for n steps on input x and
accepting only if it halts in an accepting state. Based on the promise this has a
probability of at least 1

2 + 2−k of making the correct decision, while taking time
polynomial in the input size, which satisfies the requirements for being in PPPT.

In turn, presenting a reduction from a problem A ∈ pPPPT to Error PTM
Acceptance may be done in the following way. Suppose that f , c and M
witness that A ∈ pPPPT, i.e. on input (x, k) the machine M will run in time at
most (|x|+k)c and accept or reject based on whether (x, k) ∈ A with probability
at least 1

2 + f(k). Then we can construct M′ in polynomial time which on input
(x, k) simulates the machine M for exactly (|x|+k)c steps, deferring the decision
until then: this will itself take time at most (|x| + k)a for some constant a ≥ c.

Using the above, we find that (x, k) ∈ A precisely when after |(x, k)|a steps
M′ accepts (x, k) more often than it rejects, hence (x, k) ∈ A if and only
if ((x, k), 1(|x|+k)a ,M′, 	− log f(k)
) ∈ Error PTM Acceptance. Since the
remaining data (i.e. other than the machine M′) can also be given in polyno-
mial time, this describes a pppt-reduction as required to show that Error PTM
Acceptance is complete for pPPPT under pppt-reductions.

We can now show the problem ε-Inference to be complete for pPPPT as
well, by providing what is essentially a Cook-style construction of a Bayesian net-
work from the probabilistic Turing machine specification and number of steps
and the input which together make up an instance of Error PTM Accep-
tance. In contrast to the previous result, the reduction resulting from this
construction is a ppt-reduction rather than a pppt-reduction.

Theorem 2. ε-Inference is complete for pPPPT.

Proof. Given an instance (x, 1n,M, k) of Error PTM Acceptance we
describe a ppt-reduction to ε-Inference as follows. First, we construct the
underlying graph of the Bayesian network B by stacking n + 1 layers of nodes
and connecting these using an intermediate gadget. Any such layer i consists
of n + 1 nodes Xi,0, . . . , Xi,n representing the potentially reachable cells of
the machine tape, a pair of nodes THi and MSi which track the current
tape head position and machine state respectively, and a series of r nodes
Bi,1, . . . , Bi,r which act as the random bits which the machine uses to determine
its next step. This means that Ω(Xi,j) consists of the tape alphabet (including

Probabilistic Parameterized Polynomial Time 187

blanks), Ω(THi) = {0, . . . , n}, Ω(MSi) is the set of machine states, and finally
Ω(Bi,j) = {0, 1}.
Such a layer of nodes i is connected to its successor through a gadget consisting
again of n+1 nodes Yi,0, . . . , Yi,n, with the parents ρ(Yi,0) of Yi,0 being THi and
Xi,0 and ρ(Yi,j+1) = {Yi,j ,Xi,j+1}. These nodes Yi,j can be interpreted as storing
the position of the tape head at step i and reading off the tape until the correct
cell Xi,j is encountered, after which its symbol is copied and carried over all the
way to Yi,n. To achieve this, we require Ω(Yi,j) to be the disjoint union of Ω(THi)
and Ω(Xi,j). Now the layer i combined with its gadget is connected to the next
one by setting ρ(Xi+1,j) = {Xi,j ,MSi, THi, Yi,n, Bi,1, . . . , Bi,n}, ρ(THi+1) =
{MSi, THi, Yi,n, Bi,1, . . . , Bi,n} and ρ(MSi+1) = {MSi, Yi,n, Bi,1, . . . , Bi,n}.

We now have to assign probability distributions to each of these nodes such
that they fulfill their intended purposes. First of all, the nodes Bi,j are all uni-
formly distributed so that they may be correctly regarded as random bits. As
for the first row, the remaining nodes are fixed to the first n + 1 cells of the
tape input, the tape head starting location and the initial state of the machine.
All other nodes in the network have similar distributions which are determin-
istic given the values of their parents. In particular, Yi,j = Xi,j if Yi,j−1 = j
and Yi,j = Yi,j−1 otherwise (here THi should be read for Yi,−1), Xi+1,j = Xi,j

unless THi = j in which case MSi, Yi,n and Bi,1, . . . , Bi,n together determine
the symbol overwriting the previous one according to the transition function
of M, and in general the values of THi+1 and MSi+1 follow from those of its
parents based on this transition function as well.

The reduction can now be straightforwardly expressed as follows: an instance
(x, 1n,M, k) is mapped to an instance (B,MSn, saccept,

1
2 , k) of ε-Inference,

where B is constructed as above and saccept is the accepting state of M. Then
as required we have that after n steps M accepts x more often than it rejects
if and only if Pr(MSn = saccept) ± 2−k ≥ 1

2 . Since B is of size polynomial in n
and |M| (in particular because the conditional probability distribution at every
node is of polynomial size) and the parameter remains unchanged, this indeed
describes a ppt-reduction, which completes the proof.

In turn, we can reduce ε-Inference to {ε,Pr(h),Pr(e)}-Conditional
Inference, thereby extending the hardness and hence completeness to the
latter.

Corollary 1. {ε,Pr(h),Pr(e)}-Conditional Inference is pPPPT-complete.

Proof. Given an instance (B,H, h, q, ε) of ε-Inference, we can adjust B by
building an inverse binary tree below the nodes in H, with terminal node TH

being h when H = h and ¬h otherwise. We then furthermore add an initial,
uniformly distributed binary node R and another binary node S with parents R
and TH , distributed as follows:

Pr(s | R, TH) =

⎧
⎪⎪⎨

⎪⎪⎩

1 for R = r, TH = h

0 for R = ¬r, TH = h

1
2

otherwise

188 N. Donselaar

Now Pr(r) = Pr(s) = 1
2 , and moreover Pr(r | s) = 1

2 + 1
2Pr(h), hence we

find that Pr(r | s) ± 1
2ε ≥ 1

2 + 1
2q if and only if Pr(h) ± ε ≥ q. This therefore

describes a pppt-reduction from ε-Inference to {ε,Pr(h),Pr(e)}-Conditional
Inference, albeit not a ppt-reduction as an artefact of the particular choice of
parameter value corresponding to ε. The result then follows from Theorem 2.

To conclude this section, we discuss a question which may have occurred to
the reader, namely whether one could simplify this approach by avoiding the
inference problems altogether and working instead with the following variant of
MajSat, which is the satisfiability problem complete for PP.

Gap-MajSat
Input: A propositional formula ϕ.
Parameter: A positive integer k.
Promise: The ratio of satisfying truth assignments of ϕ does not lie between
1
2 − 2−k and 1

2 + 2−k.
Question: Is ϕ satisfied by more than half of its possible truth assignments?

The issue here is that the canonical reduction from Error PTM Acceptance
to Gap-MajSat requires a number of variables proportional to both n and the
size of the machine M, hence the original margin of ±2−k will shrink by a factor
in the input size. The resulting parameter for the Gap-MajSat instance will
thus depend on the input size, which means this reduction is not even an fpt-
reduction. This points to a phenomenon also observed in the W-hierarchy, where
W[SAT] (which is defined in terms of a parameterized satisfiability problem) is
believed to a proper subclass of W[P] (which is defined in terms of a parame-
terized circuit satisfiability or machine acceptance problem). That the reduction
does work for the inference problems suggests that Bayesian networks do have
the direct expressive power of Turing machines lacked by propositional formulas.

4 Application of Results

Ultimately, one of the main open questions in the area of probabilistic computa-
tion is whether P = BPP. In contrast to the more famous open question whether
P = NP, the generally accepted view is that BPP is likely to equal P, based
on works such as [13]. However, due to the lack of natural problems which are
known to be BPP-complete, it has not been possible to focus efforts on proving
a particular problem to lie in P in order to demonstrate the collapse of BPP.
We believe that our work makes an important contribution in that it indirectly
provides a problem which can play this part, namely ε-Inference. This relies in
part on the following proposition adapted from [18] which we hinted at earlier.

Proposition 6. PPPT ⊆ FPT if and only if P = BPP.

Proof. Suppose PPPT ⊆ FPT, and let A be an arbitrary problem in BPP. Then
certainly A ∈ PP, and also A ∈ paraBPP for any constant parameterization,
hence A ∈ PPPT by Theorem 1. By assumption it follows that A ∈ FPT, hence

Probabilistic Parameterized Polynomial Time 189

there is a deterministic algorithm for A which runs in time f(k)|x|c. But now the
factor f(k) is a constant term, which means A is actually in P by this algorithm.

Conversely, suppose P = BPP, and let A be an arbitrary problem in PPPT
with corresponding error bound function f(k). Given an instance (x, k) of A we
can determine whether |x| ≤ f(k)−1: for the instances where this is true, the
problem is in FPT, while it is in BPP for those where it is false. By assumption
the latter problem is now in P, which means the entire problem A is in FPT.

Combined with Theorem 2, we arrive at the following result:

Theorem 3. P = BPP if and only if there exists an efficient deterministic abso-
lute approximation algorithm for Inference, i.e. a deterministic approximation
which runs in time f(ε−1)|x|c for some constant c and computable function f .

Proof. Since ε-Inference ∈ paraBPP and paraBPP = FPT whenever P = BPP,
this part of the equivalence is already established. By Theorem 2 we know that
ε-Inference is pPPPT-complete, hence PPPT ⊆ FPT if the problem has an
fpt-algorithm, by which it follows from Proposition 6 that P = BPP.

At the same time, we can provide some indication as to the hardness of
ε-Inference by means of the framework of kernelization lower bounds, which is
where the notion of a ppt-reduction originated. Here we consider the following
reformulation, inspired by [5], of a theorem by Drucker found in [8].

Theorem 4. If A is an NP-hard or coNP-hard problem and B is a parameterized
problem such that there exists a polynomial-time algorithm which maps any tuple
(x1, . . . , xt) of n-sized instances of A to an instance y of B such that

1. if all xi are No-instances of A, then y is a No-instance of B;
2. if exactly one xi is a Yes-instance of A, then y is a Yes-instance of B;
3. the parameter k of y is bounded by to(1)nc for some constant c;

then B has no randomized (two-sided constant error) polynomial-sized kernels
unless coNP ⊆ NP/poly, collapsing the polynomial hierarchy to the third level.

We can use this Theorem to prove that ε-Inference has no randomized
polynomial-sized kernels unless the polynomial hierarchy collapses.

Proposition 7. ε-Inference has no randomized polynomial-sized kernel unless
coNP ⊆ NP/poly.

Proof. Consider the NP-hard problem SAT, and let ϕ1, . . . , ϕt be propositional
formulas in n variables. We can rename the variables so that every formula
uses the same x1, . . . , xn if necessary, introduce a new variable x0, and take the
disjunction ψ =

∨t
i=1 ϕi ∨ x0. Then ψ is a formula with n + 1 variables with a

majority of its truth assignments being satisfying if and only if at least one of the
ϕi is satisfiable, hence (ψ, n+1) ∈ Gap-MajSat if and only if ϕi ∈ SAT for some
i. Thus by Theorem 4 Gap-MajSat does not have randomized polynomial-sized
kernels unless coNP ⊆ NP/poly. Furthermore, by [1] this property is closed under

190 N. Donselaar

ppt-reductions, and the usual reduction from Gap-MajSat to ε-Inference
(which amounts to constructing a Boolean circuit out of the given formula)
is in fact a ppt-reduction, hence neither does ε-Inference have randomized
polynomial-sized kernels under the assumption that coNP �⊆ NP/poly.

While perhaps unsurprising, this result serves in particular as a reminder that
hard problems in PPPT such as ε-Inference are not solvable by polynomial
kernelization followed by a probabilistic (PP) algorithm.

5 Closing Remarks

In this paper we have explored the proposal made in [15,16] of an alternative
parameterized randomized complexity class, which we have called PPPT and of
which we have shown that it is identical to the intersection of PP and paraBPP.
In the preceding sections we showed that the problem ε-Inference is a natural
fit for this class, as it is not only a member of the class in a straightforward
way (Proposition 3), it is moreover complete for the corresponding problem
class (Theorem 2). Because of the close relation between classical and parame-
terized probabilistic computation (Proposition 6), the class PPPT turns out to
have unexpected broader relevance, as finding an efficient deterministic abso-
lute approximation algorithm for Inference is necessary and sufficient for the
derandomization of BPP to P (Theorem 3).

In other words, we are in the fortunate circumstances where efforts to address
a long-standing open question originating in theory can actually coincide with
the search for a novel algorithm capable of solving a practical problem, and most
importantly the existence of such an algorithm actually follows from a conjecture
supported by other considerations. With this paper we wish to call attention
to this opportunity for researchers with theoretical and practical motivations
alike to engage with a challenge which is broadly relevant to multiple research
communities at once. It is our hope that such focused efforts on the ε-Inference
problem may lead to a valuable breakthrough in both the fields of structural
complexity theory and of probabilistic graphical models.

Acknowledgement. The author thanks Johan Kwisthout and Hans Bodlaender for
sharing insightful remarks in his discussions with them, and also Ralph Bottesch for
providing useful comments on an early draft of this paper.

References

1. Bodlaender, H.L., Thomassé, S., Yeo, A.: Kernel bounds for disjoint cycles and
disjoint paths. Theor. Comput. Sci. 412, 4570–4578 (2011)

2. Cai, L., Chen, J., Downey, R.G., Fellows, M.R.: On the structure of parameterized
problem in NP. In: Enjalbert, P., Mayr, E.W., Wagner, K.W. (eds.) Proceedings
of STACS 1994, pp. 507–520 (1994)

3. Chauhan, A., Rao, B.V.R.: Parameterized analogues of probabilistic computation.
In: Ganguly, S., Krishnamurti, R. (eds.) Algorithms and Discrete Applied Mathe-
matics, pp. 181–192 (2015)

Probabilistic Parameterized Polynomial Time 191

4. Chen, Y., Flum, J., Grohe, M.: Machine-based methods in parameterized complex-
ity theory. Theor. Comput. Sci. 339, 167–199 (2005)

5. Dell, H.: AND-compression of NP-complete problems: streamlined proof and minor
observations. Algorithmica 75, 403–423 (2016)

6. Downey, R.G., Fellows, M.R.: Parameterized Complexity. Springer, Heidelberg
(1999). https://doi.org/10.1007/978-1-4612-0515-9

7. Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity.
Springer, Heidelberg (2013). https://doi.org/10.1007/978-1-4471-5559-1

8. Drucker, A.: New limits to classical and quantum instance compression. Technical
report TR12-112, Electronic Colloquium on Computational Complexity (ECCC)
(2014). http://eccc.hpi-web.de/report/2012/112/

9. Flum, J., Grohe, M.: Describing parameterized complexity classes. Inf. Comput.
187, 291–319 (2003)

10. Gill, J.: Computational complexity of probabilistic turing machines. SIAM J. Com-
put. 6(4), 675–695 (1977)

11. Goldreich, O.: On promise problems: a survey. In: Goldreich, O., Rosenberg, A.L.,
Selman, A.L. (eds.) Theoretical Computer Science. LNCS, vol. 3895, pp. 254–290.
Springer, Heidelberg (2006). https://doi.org/10.1007/11685654 12

12. Henrion, M.: Propagating uncertainty in Bayesian networks by probabilistic logic
sampling. In: Lemmer, J.F., Kanal, L.N. (eds.) Uncertainty in Artificial Intelli-
gence, Machine Intelligence and Pattern Recognition, vol. 5, pp. 149–163 (1988)

13. Impagliazzo, R., Wigderson, A.: P = BPP if E requires exponential circuits: deran-
domizing the XOR lemma. In: Proceedings of STOC 1997, pp. 220–229 (1997)

14. Koller, D., Friedman, N.: Probabilistic Graphical Models: Principles and Tech-
niques. MIT Press, Cambridge (2009)

15. Kwisthout, J.: Tree-width and the computational complexity of MAP approxima-
tions in Bayesian networks. J. Artif. Intell. Res. 53, 699–720 (2015)

16. Kwisthout, J.: Approximate inference in Bayesian networks: parameterized com-
plexity results. Int. J. Approx. Reason. 93, 119–131 (2018)

17. Marx, D.: Parameterized complexity and approximation algorithms. Comput. J.
51, 60–78 (2008)

18. Montoya, J.A., Müller, M.: Parameterized random complexity. Theory Comput.
Syst. 52, 221–270 (2013)

19. Park, J.D., Darwiche, A.: Complexity results and approximation strategies for
MAP explanations. J. Artif. Intell. Res. 21, 101–133 (2004)

https://doi.org/10.1007/978-1-4612-0515-9
https://doi.org/10.1007/978-1-4471-5559-1
http://eccc.hpi-web.de/report/2012/112/
https://doi.org/10.1007/11685654_12

On Matrix Ins-Del Systems of Small
Sum-Norm

Henning Fernau1(B), Lakshmanan Kuppusamy2, and Indhumathi Raman3

1 Fachbereich 4 - Abteilung Informatikwissenschaften, CIRT,
Universität Trier, 54286 Trier, Germany

fernau@uni-trier.de
2 School of Computer Science and Engineering, VIT, Vellore 632 014, India

klakshma@vit.ac.in
3 Department of Applied Mathematics and Computational Sciences,

PSG College of Technology, Coimbatore 641 004, India
ind.amcs@psgtech.ac.in

Abstract. A matrix ins-del system is described by a set of insertion-
deletion rules presented in matrix form, which demands all rules of a
matrix to be applied in the given order. These systems were introduced
to model very simplistic fragments of sequential programs based on inser-
tion and deletion as elementary operations as can be found in biocomput-
ing. We are investigating such systems with limited resources as formal-
ized in descriptional complexity. A traditional descriptional complexity
measure of such a system is its ins-del size. Summing up the accord-
ing numbers, we arrive at the sum-norm. We show that matrix ins-del
systems with sum-norm 4 and (i) maximum length 3 with only one of
insertion or deletion being performed under a one-sided context, or (ii)
maximum length 2 with both insertion and deletion being performed
under a one-sided context, can describe all recursively enumerable lan-
guages. We also show that if a matrix ins-del system of size s can describe
the class of linear languages LIN, then without any additional resources,
matrix ins-del systems of size s also describe the regular closure of LIN.

Keywords: Matrix ins-del systems · Computational completeness
Regular closure of linear languages

1 Introduction

Inserting or deleting words in between parts of sentences often take place when
processing natural languages. Insertion and deletion together were first studied
in [11]. The corresponding grammatical mechanism is called an insertion-deletion
system (abbreviated as ins-del system). Informally, if a string η is inserted
between two parts w1 and w2 of a string w1w2 to get w1ηw2, we call the oper-
ation insertion, whereas if a substring δ is deleted from a string w1δw2 to get
w1w2, we call the operation deletion. Suffixes of w1 and prefixes of w2 are called
contexts.
c© Springer Nature Switzerland AG 2019
B. Catania et al. (Eds.): SOFSEM 2019, LNCS 11376, pp. 192–205, 2019.
https://doi.org/10.1007/978-3-030-10801-4_16

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-10801-4_16&domain=pdf
https://doi.org/10.1007/978-3-030-10801-4_16

Power of Matrix Ins-Del Systems of Small Sum-Norm 193

Several variants of ins-del systems have been considered in the literature,
imposing regulation mechanisms on top, motivated by classical formal language
theory [1]. We refer to the survey paper [17]. In this paper, we focus on matrix ins-
del systems [13,15]. Viewing insertions and deletions as elementary operations
for biocomputing [14], matrices can be seen as a very simple control mechanism.

In a matrix ins-del system, the insertion-deletion rules are given in matrix
form. If a matrix is chosen for derivation, then all the rules in that matrix
are applied in order and no rule of the matrix is exempted. In the size
(k;n, i′, i′′;m, j′, j′′) of a matrix ins-del system, the parameters (from left to
right) denote the maximum number of rules (length) in any matrix, the max-
imal length of the inserted string, the maximal length of the left context for
insertion, and the maximal length of the right context for insertion; a similar list
of three parameters concerning deletion follows. We denote the language classes
generated by matrix ins-del systems of size s by MAT(s). The tuple formed by
the last six parameters, namely (n, i′, i′′;m, j′, j′′), is called the ins-del size. We
call the sum of its parameters the sum-norm of the (matrix) ins-del system.

It is known that ins-del systems are computationally complete, i.e., they
characterize the family RE of recursively enumerable languages, which read-
ily transfers to the mentioned variants. Descriptional complexity then aims at
investigating which of the resources are really needed to obtain computational
completeness. For instance, is it really necessary to permit insertion operations
that check out contexts of arbitrary length? For resource restrictions that do
not (or are not known to) suffice to achieve computational completeness, one is
interested in seeing which known families of languages can be still generated. As
in our case, for several families of matrix ins-del systems, it is even unknown if all
of CF (the context-free languages) can be generated, we then look at the rather
large sub-family Lreg(LIN), the regular closure of LIN. In Table 1, we report on
what resources are needed for a matrix ins-del system of sum-norm 3 or 4 to gen-
erate the class specified there, also giving a short literature survey. Further races
for smaller sizes are described when we discuss the particularities of our results
below. Let us highlight that Theorem 4 solves an open problem stated in [12].
This underlines the interest in this type of research. Also, the open questions that
we list are sometimes connected, sometimes not. For instance, by the closure of
RE under reversal, MAT(∗; 1, 0, 0; 1, 1, 0) = RE iff MAT(∗; 1, 0, 0; 1, 0, 1) = RE,
but the questions if MAT(∗; 1, 0, 0; 2, 0, 0) = RE or if MAT(∗; 2, 0, 0; 1, 0, 0) = RE
seem to be independent of each other.

Matrix ins-del systems of sizes (3; 1, 1, 0; 1, 0, 0), (3; 1, 0, 1; 1, 0, 0), (2; 2, 1, 0; 1,
0, 0), (2; 2, 0, 1; 1, 0, 0) are not known to describe RE, not even CF. However, these
systems have been shown to describe the class MLIN of metalinear languages [6].
It is known that MAT(1; 1, 1, 0; 1, 0, 0)∪MAT(3; 1, 0, 0; 1, 0, 0) �= RE [2]. We show
that if LIN ⊆ MAT(s), then Lreg(LIN) ⊆ MAT(s). As a consequence, it follows
that matrix ins-del systems of the sizes mentioned above contain Lreg(LIN).

A further technical contribution consists in formulating a new normal form,
called time separating special Geffert normal form (tsSGNF), that allows to

194 H. Fernau et al.

Table 1. Generative power of MAT(k; n, i′, i′′; m, j′, j′′) with sum-norm 3 or 4

Sum-norm ID size (n, i′, i′′; m, j′, j′′),
where n, m ∈ {1, 2} and
i′, i′′, j′, j′′ ∈ {0, 1, 2}

length k Language
family
relation

Remarks

3 (1, 0, 0; 2, 0, 0),
(2, 0, 0; 1, 0, 0)

≥1 ? OPEN

3 (1, 0, 0; 1, 1, 0),
(1, 0, 0; 1, 0, 1)

≥1 ? OPEN

3 (1, 1, 0; 1, 0, 0),
(1, 0, 1; 1, 0, 0)

3 ⊃ MLIN [6]

3 ⊃ Lreg(LIN) Corollary 1

4 (1, 0, 0; 1, 1, 1),
(1, 1, 1; 1, 0, 0)

3 RE [6]

4 (1, 0, 0; 2, 1, 0),
(1, 0, 0; 2, 0, 1)

≥1 ? OPEN

4 (1, 0, 0; 1, 2, 0),
(1, 0, 0; 1, 0, 2)

3 RE Theorem 2

4 (1, 2, 0; 1, 0, 0),
(1, 0, 2; 1, 0, 0)

3 RE Theorem 3

4 (1, 1, 0; 1, 1, 0),
(1, 0, 1; 1, 0, 1)

3 RE [6,15]

2 RE Theorem 4

4 (1, 1, 0; 1, 0, 1),
(1, 0, 1; 1, 1, 0)

3 RE [6,15]

4 (1, 1, 0; 2, 0, 0),
(1, 0, 1; 2, 0, 0)

2 RE [6,15]

4 (2, 0, 0; 2, 0, 0) ≥ 1 ? OPEN

4 (2, 0, 0; 1, 1, 0),
(2, 0, 0; 1, 0, 1)

2 RE [6,15]

4 (2, 1, 0; 1, 0, 0),
(2, 0, 1; 1, 0, 0)

2 ⊃ MLIN [6]

2 ⊃ Lreg(LIN) Corollary 1

simplify some arguments, because in particular there is no way to have mixtures
of terminals and nonterminals at the right end of a derivable sentential form.
Hence, such mixed cases need not be considered when proving correctness of
simulation results based on tsSGNF. This is important, as the non-existence
of such mixed forms is often tacitly assumed in several proofs that use SGNF;
replacing SGNF by tsSGNF should help to easily fix these results.

Power of Matrix Ins-Del Systems of Small Sum-Norm 195

2 Preliminaries

We assume that the readers are familiar with the standard notations in formal
language theory. We recall a few notations here to keep the paper self-contained.

Let Σ∗ denote the free monoid generated by the alphabet (finite set) Σ.
The elements of Σ∗ are called strings or words; λ denotes the empty string, LR

and LR denote the reversal of language L and language family L, respectively.
RE and LIN denote the families of recursively enumerable languages and linear
languages, respectively. Occasionally, we use the shuffle operator, written as �.

For the computational completeness results, we use the fact that type-0 gram-
mars in Special Geffert Normal Form (SGNF) [9] characterize RE and is exten-
sively used in [3–5,15]. In fact, we slightly extend this notion in order to sim-
plify certain arguments below. These simplifications were often tacitly assumed
in previous works, but the following new definition gives good ground for it.

Definition 1. A type-0 grammar G = (N,T, S, P) is said to be in time sepa-
rating special Geffert normal form, tsSGNF for short, if N is the nonterminal
alphabet, T is the terminal alphabet, S ∈ N is the start symbol and P is the set
of production rules satisfying the following conditions.

– N decomposes as N = N (0) ∪ N ′ ∪ N ′′, where N ′′ = {A,B,C,D} and S ∈
N (0), S′ ∈ N ′,

– the only non-context-free rules in P are AB → λ and CD → λ,
– the context-free rules are of one of the following forms:

(a) X → Y b or X → b′Y where X ∈ N (0), Y ∈ N (0) ∪ N ′, X �= Y , b ∈ T ,
(b) X → Y b′′ or X → b′Y where X,Y ∈ N ′, X �= Y , or S′ → λ,
where b′ ∈ {A,C} and b′′ ∈ {B,D} in (a) and (b);
(c) possibly, there is also the rule S → λ.

Remark 1. Notice that there can be at most one nonterminal from N (0) ∪ N ′

present in the derivation of G. We exploit this observation in our proofs. Accord-
ing to the construction of this normal form described in [9,10], the derivation of
a string is performed in two phases. In Phase I, the context-free rules are applied
repeatedly. More precisely, this phase splits into two stages: in stage one, rules
from (a) have left-hand sides from N (0); this stage produces a string of terminal
symbols to the right side of the only nonterminal from N (0) in the sentential form
and codings thereof are put on the left side of the only nonterminal occurrence
from N (0); the transition to stage two is performed by using rules with left-hand
sides from N (0) and one symbol from N ′ occurring on the right-hand sides; in
stage two, rules from (b) with left-hand sides from N ′ are applied; importantly,
here (and later) no further terminal symbols are produced. The two erasing rules
AB → λ and CD → λ are not applicable during the first phase as long as there
is a S (or S′) in the middle. All the symbols A and C are generated on the
left side of these middle symbols and the corresponding symbols B and D are
generated on the right side. Phase I is completed by applying the rule S′ → λ.
In Phase II, only the non-context-free erasing rules are applied repeatedly and
the derivation ends. By induction, it is clear that sentential forms derivable by
tsSGNF grammars belong to {A,C}∗N (0)T ∗ ∪ {A,C}∗(N ′ ∪ {λ}){B,D}∗T ∗.

196 H. Fernau et al.

Our reasoning shows in particular the following first result:

Theorem 1. For any L ∈ RE, there is a grammar G in tsSGNF with L = L(G).

2.1 Matrix Insertion-Deletion Systems

In this subsection, we describe matrix insertion-deletion systems as in [13,15].

Definition 2. A matrix insertion-deletion system is a construct Γ =
(V, T,A,R) where V is an alphabet, T ⊆ V , A is a finite language over V ,
R is a finite set of matrices {r1, r2, . . . rl}, where each ri, 1 ≤ i ≤ l, is a matrix
of the form ri = [(u1, α1, v1)t1 , (u2, α2, v2)t2 , . . . , (uk, αk, vk)tk]. For 1 ≤ j ≤ k,
uj , vj ∈ V ∗, αj ∈ V + and tj ∈ {ins, del}.
The triplet (uj , αj , vj)tj is called an ins-del rule and the pair (uj , vj) is termed
the context with ui as the left and vi as the right context for αj in tj ; αj is
called insertion string if tj = ins and deletion string if tj = del. The elements
of A are called axioms. For all contexts of t where t ∈ {ins, del}, if u = λ or
v = λ, then we call the context to be one-sided. If u = v = λ for a rule, then
the corresponding insertion/deletion can be done freely anywhere in the string
and is called context-free insertion/deletion. An insertion rule is of the form
(u, η, v)ins, which means that η is inserted between u and v. A deletion rule is of
the form (u, δ, v)del, which means that δ is deleted between u and v. (u, η, v)ins
corresponds to the rewrite rule uv → uηv, and (u, δ, v)del to uδv → uv.

At this point, we make a note that in a derivation, the rules of a matrix
are applied sequentially one after another in the given order. For x, y ∈ V ∗

we write x ⇒ri y, if y can be obtained from x by applying all the rules of a
matrix ri, 1 ≤ i ≤ l, in order. The language L(Γ) generated by Γ is defined as
L(Γ) = {w ∈ T ∗ | x ⇒∗ w, for some x ∈ A}, where ⇒∗ (as usual with matrix
ins-del systems) denotes the reflexive and transitive closure of ⇒:=

⋃
r∈R ⇒r.

If a matrix ins-del system has at most k rules in a matrix and the size of the
underlying ins-del system is (n, i′, i′′;m, j′, j′′), then we denote the corresponding
class of language by MAT(k;n, i′, i′′;m, j′, j′′).

Example 1. The language L1 = {anbmcndm | m,n ≥ 1} of cross-serial depen-
dencies can be generated by a binary matrix insertion-deletion system as fol-
lows: Γ1 = ({a, b, c, d}, {a, b, c, d}, {abcd}, R), where R = {m1,m2} with: m1 =
[(a, a, λ)ins, (c, c, λ)ins], m2 = [(b, b, λ)ins, (d, d, λ)ins]. We note that the matrices
m1′ = [(λ, a, a)ins, (λ, c, c)ins], m2′ = [(λ, b, b)ins, (λ, d, d)ins] also generate L1.
Hence, L1 ∈ MAT(2; 1, 1, 0; 0, 0, 0) ∩ MAT(2; 1, 0, 1; 0, 0, 0). See [16] for further
variants and a discussion of the linguistic relevance of this example.

2.2 Regular Closure of Linear Languages

Recall that a linear grammar is a context-free grammar G = (N,T, S, P) whose
productions are of the form A → x, where A is a nonterminal symbol, and x
is a word over N ∪ T with at most one occurrence of a nonterminal symbol.

Power of Matrix Ins-Del Systems of Small Sum-Norm 197

The language class LIN collects all languages that can be described by linear
grammars. LIN can be characterized by linear grammars in normal form, which
means that any rule A → x either obeys x ∈ T ∪ {λ} or x ∈ TN or x ∈ NT .
It is well known that LIN is not closed under concatenation and Kleene star.
This motivates to consider the class Lreg(LIN) as the smallest class containing
LIN that is closed under union, concatenation or Kleene star. Similarly, we can
assume that any right-linear grammar that we consider is in normal form, i.e.,
it has only rules A → aB or A → λ, with A ∈ N , B ∈ N \ {A} and a ∈ T . The
following grammatical characterization for Lreg(LIN) was shown in [8].

Proposition 1 [8]. Let L ⊆ T ∗ be some language. Then, L ∈ Lreg(LIN) if and
only if there is a context-free grammar G = (N,T, S, P) with L(G) = L that
satisfies the following properties.

– N can be partitioned into N0 and N ′.
– There is a right-linear grammar GR = (N0, N

′, S, P0).
– N ′ can be further partitioned into N1, . . . , Nk for some k, such that the restric-

tion Pi of P involving symbols from Ni ∪ T are only linear rules, with T
serving as the terminal alphabet.

– P can be partitioned into P0, P1, . . . , Pk.

Clearly, the linear rules mentioned in the previous proposition can be assumed
to be in normal form. In order to simplify the proofs of some of our main results,
the following observations from [6] and [7] are helpful.

Proposition 2 [6]. Let L be a language class that is closed under reversal.
Then, for all non-negative integers k, n, i′, i′′,m, j, j′′, we have that

– MAT(k;n, i′, i′′;m, j′, j′′) = [MAT(k;n, i′′, i′;m, j′′, j′)]R ;
– L = MAT(k;n, i′, i′′;m, j′, j′′) if and only if L = MAT(k;n, i′′, i′;m, j′′, j′);
– L ⊆ MAT(k;n, i′, i′′;m, j′, j′′) if and only if L ⊆ MAT(k;n, i′′, i′;m, j′′, j′).

Proposition 3 [7]. Lreg(LIN) is closed under reversal.

3 Computational Completeness Results

In this section, we show the computational completeness of matrix ins-
del systems of sizes (3; 1, 0, 0; 1, 2, 0), (3; 1, 0, 0; 1, 0, 2), (3; 1, 2, 0; 1, 0, 0),
(3; 1, 0, 2; 1, 0, 0), (2; 1, 1, 0; 1, 1, 0), (2; 1, 0, 1; 1, 0, 2), by providing matrix ins-del
systems of the above said sizes that simulate type-0 grammars in tsSGNF. We
often use labels from [1 . . . |P |] to uniquely address the rules of a grammar in
tsSGNF. Then, such labels (and possibly also primed version thereof) will be
used as rule markers that are therefore part of the nonterminal alphabet of the
simulating matrix ins-del system. For the ease of reference, we collect in Pll the
labels of the context-free rules of the form X → Y b (which resemble left-linear
rules) and in Prl the labels of the context-free rules of the form X → bY (which
resemble right-linear rules).1

Some of the key features in our construction of matrix ins-del systems are:
1 The symbol (*) marks situations where (parts of) a proof were omitted.

198 H. Fernau et al.

– There is at least one deletion rule in every simulating matrix.
– In the majority of cases, at least one of the deletion rules of every matrix has

a rule marker in the left context or the marker itself is deleted. A matrix of
this type is said to be guarded. The importance of a matrix being guarded is
that it can be applied only in the presence of the corresponding rule marker.
This will avoid interference of any other matrix application.

– After successful application of every matrix, either a rule marker remains or
the intended simulation is completed.

– As discussed in Remark 1, during Phase I, the symbols A and C are on the
left of the middle nonterminal S or S′ and the corresponding symbols B and
D are on the right of S or S′. When S′ is deleted from the center, the symbols
from {A,C} and {B,D} may combine to be erased in Phase II.

– In the transition to Phase II, a special symbol Z is introduced that is assumed
to stay to the left of AB or CD, whatever substring is to be deleted. Special
matrices allow Z to move in the sentential form or to be (finally) deleted.
This is our novel idea not used in earlier papers.

– There is a subtlety if λ ∈ L. Then, we can assume that S → λ is in the
simulated grammar, which would add an erasing matrix, similar to Fig. 2.

p1 = [(λ, p, λ)ins, (λ, p′, λ)ins, (p′p, X, λ)del]

p2 = [(λ, p′′, λ)ins, (λ, p′′′, λ)ins, (p′′′p′′, p′, λ)del]

p3 = [(λ, b, λ)ins, (p′′′b, p′′, λ)del]

p4 = [(λ, Y, λ)ins, (bY, p, λ)del, (λ, p′′′, λ)del]

q1 = [(λ, q, λ)ins, (λ, q′, λ)ins, (q′q, X, λ)del]

q2 = [(λ, q′′, λ)ins, (λ, b, λ)ins, (q′′b, q, λ)del]

q3 = [(λ, Y, λ)ins, (q′Y, q′′, λ)del, (λ, q′, λ)del]

Fig. 1. Matrices of size (3; 1, 0, 0; 1, 2, 0) for simulating the context-free rules of tsSGNF.

h1 = [(λ, S′, λ)del, (λ, Z, λ)ins] move-Z = [(λ, Z, λ)del, (λ, Z, λ)ins]
f1 = [(Z, A, λ)del, (Z, B, λ)del] del-Z = [(λ, Z, λ)del]
g1 = [(Z, C, λ)del, (Z, D, λ)del]

Fig. 2. Matrices of size (2; 1, 0, 0; 1, 1, 0) for simulating the erasing rules of tsSGNF.

In [15], matrices of maximum length 8 and size (1, 0, 0; 1, 1, 1) were used to
describe the class of recursively enumerable languages. This length was reduced
already to 3 in [6]. In the following, we give a trade-off result compared with the
result of [6], namely MAT(3; 1, 0, 0; 1, 1, 1) = RE.

Theorem 2. MAT(3; 1, 0, 0; 1, 2, 0) = MAT(3; 1, 0, 0; 1, 0, 2) = RE.

Proof. Formally, consider a type-0 grammar G = (N,T, P, S) in tsSGNF. The
rules from P are labelled, with label sets Pll and Prl as defined above. The
nonterminal alphabet decomposes as N = N (0) ∪ N ′ ∪ N ′′, N ′′ = {A,B,C,D},
S ∈ N (0), S′ ∈ N ′, according to tsSGNF. We construct a matrix ins-del system
Γ = (V, T, {S},M) with

V = N ∪ T ∪ {p, p′, p′′, p′′′ | p ∈ Prl} ∪ {q, q′, q′′ | q ∈ Pll} ∪ {Z} .

Power of Matrix Ins-Del Systems of Small Sum-Norm 199

The set of matrices M of Γ consists of the matrices described in the following.
We simulate a rule p: X → bY , X,Y ∈ N (0) ∪ N ′, b ∈ N ′′, i.e., p ∈ Prl, by the
four matrices displayed on the left-hand side of Fig. 1. Similarly, we simulate the
rule q: X → Y b, X,Y ∈ N (0)∪N ′, b ∈ N ′′∪T , i.e., q ∈ Pll, by the three matrices
shown on the right-hand side of Fig. 1. Recall that applying the rule h : S′ → λ
starts Phase II within the working of G. In the simulation, the presence of a new
symbol, Z, indicates that we are in Phase II. This motivates the introduction of
the five matrices listed in Fig. 2.

We now proceed to prove that L(Γ) = L(G). We initially prove that L(G) ⊆
L(Γ) by showing that Γ correctly simulates the application of the rules of the
types p, q, f, g, h, as discussed above. We explain the working of the simulation
matrices for the cases p and f mainly, as the working of q and g simulation
matrices are similar, and as the working of the simulation of the h rule is clear.
Notice that the transition from Phase I to Phase II (as accomplished by applying
h in G) is now carried out by applying h1 and hence introducing Z which will
be always present when simulating Phase II with the system Γ .

Simulation of p : X → bY : Consider the string αXβ derivable from S in G, with
X ∈ N (0) ∪ N ′ and α ∈ {A,C}∗, β ∈ {B,D}∗T ∗ according to Remark 1. We
now show that on applying the matrices introduced for simulating rules from
Prl, we can derive αbY β within Γ , starting from αXβ. First, we apply the
rules of matrix p1. The markers p and p′ are randomly inserted by the first two
rules, leading to a string from p� p′

� αXβ. However, the third rule of p1 is
applicable only when p′p is inserted before the nonterminal X. This shows that
αXβ ⇒p1 γ1 is possible if and only if γ1 = αp′pβ. Now, on applying matrix p2,
p′′ and p′′′ are inserted anywhere, so intermediately we arrive at a string from
p′′
� p′′′

� αp′pβ. Then, p′ is deleted in the left context of p′′′p′′. So, we now
arrive at the string αp′′′p′′pβ. This shows that γ1 = αp′pβ ⇒p2 γ2 is possible if
and only if γ2 = αp′′′p′′pβ. We now apply matrix p3. Hence, b is first inserted
randomly, leading to a string from b� αp′′′p′′pβ. The left context in the second
rule of p3, enforces that, inevitably, we arrive at γ3 = αp′′′bpβ. Finally, we apply
matrix p4. Here, Y is inserted anywhere by the first rule, but the second one
enforces that we now look at αp′′′bY β, which yields γ4 = αbY β by the last rule.
This shows that γ3 = αp′′′bpβ ⇒p4 γ4 is possible if and only if γ4 = αbY β. This
completes the simulation of rule p.

Simulation of f : AB → λ or g : CD → λ: Consider the sentential form αABβ
derivable in G. This means that we are in Phase II. As said above, the symbol Z
will be present in the corresponding sentential form derivable in Γ . Any string
from Z�αABβ can be transformed into αZABβ by using matrix move-Z. Now,
αZABβ ⇒f1 αZβ correctly simulates one application of f .

Now, we prove L(Γ) ⊆ L(G). Formally, this is an inductive argument that
proves the following properties of a string w ∈ V ∗ such that S ⇒∗ w in Γ :

1. At most one symbol from N (0) ∪ N ′ is occurring in w.
2. If one symbol X from N (0) occurs in w, then w = αXu, where α ∈ {A,C}∗

and u ∈ T ∗: w is derivable in G;

200 H. Fernau et al.

3. If one symbol X from N ′ occurs in w, then w = αXβu, where α ∈ {A,C}∗,
β ∈ {B,D}∗ and u ∈ T ∗: w is derivable in G;

4. If no symbol from N (0) ∪ N ′ occurs in w, then Z occurs at most once in w.
5. If no symbol from N (0) ∪ N ′ ∪ {Z} occurs in w, then

(a) either w = αr′rβu, where α ∈ {A,C}∗, r is some context-free rule from G
with left-hand side X, β ∈ {B,D}∗ and u ∈ T ∗: αXβu is derivable in G;

(b) or w = αp′′′p′′pβu, where α ∈ {A,C}∗, p ∈ Prl with p : X → bY ,
β ∈ {B,D}∗ and u ∈ T ∗: αXβu is derivable in G;

(c) or w = αp′′′bpβu, where α ∈ {A,C}∗, p ∈ Prl with p : X → bY , β ∈
{B,D}∗ and u ∈ T ∗: αXβu is derivable in G;

(d) or w = αq′q′′bβu, where α ∈ {A,C}∗, q ∈ Pll with q : X → Y b, β ∈
{B,D}∗ and u ∈ T ∗: αXβu is derivable in G.

(e) or w ∈ ({A,B,C,D} ∪ T)∗: w is derivable in G.
6. If Z occurs in w, then w ∈ Z � αβu, where α ∈ {A,C}∗, β ∈ {B,D}∗ and

u ∈ T ∗: αβu is derivable in G.

Details of the inductive argument are left to the reader. (*)
These considerations complete the proof due to Condition 5(e) that applies

to w ∈ T ∗. The second equality follows by Proposition 2. �
In [15], matrices of maximum length 8 and size (1, 1, 1; 1, 0, 0) were used to

describe the class of recursively enumerable languages. This length was reduced
to 3 in [6]. In the following, we give a trade-off result compared to the result
of [6], by considering here only a one-sided context for insertion but increasing
its length to 2, yet maintaining the maximum matrix length as 3.

Theorem 3. MAT(3; 1, 2, 0; 1, 0, 0) = MAT(3; 1, 0, 2; 1, 0, 0) = RE.

Before we sketch our proof, we highlight the key feature of the markers first. In
order to simulate, say, AB → λ, we have to use deletion rules (λ,A, λ)del and
(λ,B, λ)del, as deletions cannot be performed under contexts. However, there is
the danger that we are deleting unintended occurrences. So we have to carefully
place markers before, after and between the chosen nonterminals A and B in
order to check that they are neighbored. Also, the auxiliary nonterminal $, which
is present in the axiom itself, serves as a semaphore flag, preventing simulation
cycles from being interrupted.

Proof (*). Consider a type-0 grammar G = (N,T, P, S) in tsSGNF, with the
rules uniquely labelled with Pll ∪Prl. Recall the decomposition N = N (0) ∪N ′ ∪
N ′′ by tsSGNF. We can construct a matrix ins-del system Γ = (V, T, {$S},M)
with alphabet V = N ∪ T ∪ Prl ∪ Pll ∪ {f, f ′, f ′′, f ′′′, f ′′′′, g, g′, g′′, g′′′, g′′′′, $}.
The set of matrices M is defined as follows. Rules p : X → bY ∈ Prl and
q : X → Y b ∈ Pll are simulated by the matrices p1, p2, q1, q2 shown in Fig. 4(a).
The simulation matrices of p, q are in fact borrowed from [6]. We simulate rule
f : AB → λ by the following matrices. Rule g : CD → λ is simulated alike.

Power of Matrix Ins-Del Systems of Small Sum-Norm 201

f1 = [(λ, $, λ)del, (λ, f, λ)ins, (fA, f ′, λ)ins]
f2 = [(λ,A, λ)del, (ff ′, f ′′, λ)ins, (λ, f ′, λ)del]
f3 = [(f ′′B, f ′′′, λ)ins, (λ,B, λ)del, (f ′′f ′′′, f ′′′′, λ)ins]
f4 = [(λ, f ′′′, λ)del, (λ, f ′′, λ)del]
f5 = [(ff ′′′′, $, λ)ins, (λ, f, λ)del, (λ, f ′′′′, λ)del]

Recall that our axiom is $S. We also have matrices τ = [(λ, $, λ)del] for termi-
nation and h1 = [(λ, $, λ)del, (λ, S′, λ)del, (λ, $, λ)ins] for h : S′ → λ.

We now proceed to prove that L(Γ) = L(G), starting with the inclusion
L(G) ⊆ L(Γ). This means that a derivation S ⇒∗ w of G in Phase I can
be simulated by applying matrices from Γ , where each rule r is simulated by
r1, followed by r2. Hence, $S ⇒∗ $w is true in Γ . The phase transition rule
h : S′ → λ is simulated by applying h1, so that we can now speak about Phase
II of G. By similarity, we discuss only rule f below. To actually produce a
terminal word, Γ has to apply τ at the end.

We now discuss Phase II in detail, focussing on f : AB → λ. Let w = αABβ
be a sentential form derivable in G, with A,B ∈ N ′′ and α ∈ {A,C}∗, β ∈
{B,D}∗T ∗, ensured by tsSGNF. This means that w′ ∈ $�w is derivable in Γ (by
induction). We can now see that $� αABβ ⇒f1 αfAf ′Bβ ⇒f2 αff ′′Bβ ⇒f3

αff ′′f ′′′f ′′′′β ⇒f4 αff ′′′′β ⇒f5 α$β . The purpose of introducing a $ in f5 is to
enable another simulation of AB → λ or of CD → λ. When all occurrence of AB
and CD are deleted by repeated applications of the f and g rules, there is still
a $ at the end of every simulation. This $ is deleted by applying rule τ , thereby
terminating Phase II of tsSGNF. Inductively, this shows that L(G) ⊆ L(Γ).

The second claimed completeness result follows by Proposition 2. �
In the previous two theorems, the maximum length of the insertion/deletion

context was two and the other operation, namely deletion/insertion is done in
a context-free manner. If we restrict the parameters in the size to be binary (0
or 1), then we achieve computational completeness using matrices of maximum
length two; however, both operations are performed under a context. In [15],
matrices of maximum length 3 and size (1, 1, 0; 1, 1, 0) were used to describe
RE. In the following, we improve this result by decreasing the matrix length
from 3 to 2, yet maintaining the ins-del size. By [12], ins-del systems of size
(1, 1, 0; 1, 1, 0) do not achieve computational completeness. This corresponds to
matrix length one. So, our result is optimal with respect to the length of matrices
for this ins-del size. The following result also solves a conjecture (stated in [12])
in the affirmative.

Theorem 4. MAT(2; 1, 1, 0; 1, 1, 0) = MAT(2; 1, 0, 1; 1, 0, 1) = RE.

The key feature of the simulation is a combination of the non-context-free
rule simulation from Fig. 2 with new matrices for the context-free rules, given
in Fig. 3. Here, it is most important to observe that the rule markers, in par-
ticular r′′, guarantee that no more than one occurrence of N (0) ∪ N ′ is ever
introduced. Therefore, the fact that r1 can be used to introduce more than one
occurrence of r and r′ cannot lead to unintended terminal derivations.

202 H. Fernau et al.

p1= [(X, p, λ)ins, (λ, p′, λ)ins]
p2= [(p′, X, λ)del, (p′, p′′, λ)ins]
p3= [(p′′, p, λ)del, (p′′, Y, λ)ins]
p4= [(p′, b, λ)ins, (b, p′′, λ)del]
p5= [(λ, p′, λ)del]
(a) How to simulate p : X → bY

q1= [(X, q, λ)ins, (λ, q′, λ)ins]
q2= [(q′, X, λ)del, (q′, q′′, λ)ins]
q3= [(q′′, q, λ)del, (q′′, b, λ)ins]
q4= [(q′, Y, λ)ins, (Y, q′′, λ)del]
q5= [(λ, q′, λ)del]
(b) How to simulate q : X → Y b

Fig. 3. Matrices of size (2; 1, 1, 0; 1, 1, 0) for simulating context-free rules of tsSGNF

Proof (*). Consider a type-0 grammar G = (N,T, P, S) in tsSGNF, with the
rules uniquely labelled with Pll ∪ Prl. We can construct a matrix ins-del system
Γ = (V, T, S,M) with alphabet V = N ∪T ∪{r, r′, r′′ | r ∈ Pll ∪Prl}∪{Z} . The
set of matrices M is defined as follows. Context-free rules of types p : X → bY
and q : X → Y b are simulated by the matrices as shown in Figs. 3(a) and (b).
We simulate the erasing rules f : AB → λ, g : CD → λ and h : S′ → λ by
matrices shown in Fig. 2; this also explains the role of the special symbol Z. We
refer to our previous explanations of how these erasing rules are simulated in
order to provide a simulation of Phase II of grammar G.

Since the working of the simulation of q-rules is similar to the simulation of
p-rules, we discuss the working of the p-rule simulation only. Hence, consider a
sentential form w = αXβ derivable in Phase I of the grammar G. Assume we are
about to apply a concrete rule X → bY ∈ Prl, with X,Y ∈ N (0) ∪ N ′, yielding
w′ = αbY β. Hence, the matrices listed in Fig. 3(a) should apply, one after the
other, giving: w ⇒p1 αp′Xpβ ⇒p2 αp′p′′pβ ⇒p3 αp′p′′Y β ⇒p4 αp′bY β ⇒p5 w′ .

The reasoning we provided so far shows that L(G) ⊆ L(Γ).
The second completeness result follows by Proposition 2. �

4 Describing the Regular Closure of Linear Languages

It is shown in [6] that matrix ins-del systems of size (3; 1, 1, 1; 1, 0, 0) can describe
RE and if we have a one-sided context for insertion, then matrix ins-del sys-
tems of size (3; 1, 1, 0; 1, 0, 0) or (3; 1, 0, 1; 1, 0, 0) and also (2; 2, 1, 0; 1, 0, 0) or
(2; 2, 0, 1; 1, 0, 0) can simulate (meta-)linear grammars. However, whether or not
one can simulate general context-free grammars with matrix ins-del systems of
the above-mentioned sizes is still open. Example 1 shows that there are non-
meta-linear languages that can be described by these matrix ins-del systems.
For quick reference, we present the matrix ins-del rules of MAT(3; 1, 1, 0; 1, 0, 0)
that simulates the linear rules p : X → aY , q : X → Y a, f : X → λ in Fig. 4(a)
and the matrix ins-del rules of MAT(2; 2, 1, 0; 1, 0, 0) in Fig. 4(b).

Theorem 5. For all integers n,m ≥ 1, t ≥ 2 and i′, i′′, j′, j′′ ≥ 0 with t+n ≥ 4
and i′ + i′′ ≥ 1, if every L ∈ LIN can be generated by a MAT(t;n, i′, i′′;m, j′, j′′)

Power of Matrix Ins-Del Systems of Small Sum-Norm 203

p1 = [(X, p, λ)ins, (λ, X, λ)del]
p2 = [(p, Y, λ)ins, (p, a, λ)ins, (λ, p, λ)del]
q1 = [(X, q, λ)ins, (λ, X, λ)del]
q2 = [(q, a, λ)ins, (q, Y, λ)ins, (λ, q, λ)del]
f = [(λ, X, λ)del]

(a) MAT(3; 1, 1, 0; 1, 0, 0)

p1 = [(X, p, λ)ins, (λ, X, λ)del]
p2 = [(p, aY, λ)ins, (λ, p, λ)del]
q1 = [(X, q, λ)ins, (λ, X, λ)del]
q2 = [(q, Y a, λ)ins, (λ, q, λ)del]
f = [(λ, X, λ)del]
(b) MAT(2; 2, 1, 0; 1, 0, 0)

Fig. 4. Matrix ins-del system describing LIN [6]

system with a single axiom that is identical to the start symbol S of a linear
grammar describing L, then Lreg(LIN) ⊆ MAT(t;n, i′, i′′;m, j′, j′′), as well.2

Proof (*). Let L ∈ Lreg(LIN) for some L ⊆ T ∗. By Proposition 1, we can assume
that L is described by a context-free grammar G = (N,T, S, P) that basically
consists of a right-linear grammar GR = (N0, N

′′, S, P0) and linear grammars
Gi = (Ni, T, Si, Pi) for 1 ≤ i ≤ k. For technical reasons that should become clear
soon, we rather consider G′

i = (N ′
i , T, Si, P

′
i), where N ′

i = Ni ∪ {〈Si, A〉 | A ∈
N0} and P ′

i contains, besides all rules from Pi, rules of the form 〈Si, A〉 → w
whenever Si → w ∈ Pi for some w ∈ (Ni ∪T)∗. This means, apart from L(G′

i) =
L(Gi) (as the new nonterminals will never be used in terminating derivations),
that also L((N ′

i , T, 〈Si, A〉, P ′
i)) = L(Gi) for any A ∈ N0.

Since LIN ⊆ MAT(t;n, i′, i′′;m, j′, j′′), each G′
i can be simulated by

a matrix ins-del system Γi = (Vi, T, {Si}, Ri) for 1 ≤ i ≤ k, each
of size (t;n, i′, i′′;m, j′, j′′). We assume, without loss of generality, that
Vi ∩ Vj = T if 1 ≤ i < j ≤ k. Let us first consider the case
i′ ≥ 1 and i′′ = 0. We construct a matrix ins-del system Γ for
G as follows:3 Γ = (V, T, {〈Si, A〉A′ | S → SiA ∈ P}, R ∪ R′) , where V =(

k⋃

i=1

(Vi ∪ {〈Si, A〉 | A ∈ N0})

)

∪ N0 ∪ {A′ | A ∈ N0}; R =
k⋃

i=1

Ri; and for

t ≥ 3, R′ is the set {mp | p ∈ P0}, where:

– mp = [(A′, 〈Si, B〉, λ)ins, (〈Si, B〉, B′, λ)ins, (λ,A′, λ)del)] if p = A → SiB ∈
P0,

– mp = [(λ,A′, λ)del)] if p = A → λ ∈ P0 (terminating matrix).

For t = 2 and n ≥ 2, we add the following matrix mp instead of the above-defined
matrix mp into R′: mp = [(A′, 〈Si, B〉B′, λ)ins, (λ,A′, λ)del)] for p = A → SiB ∈
P0. Notice that A �= B, which is important both for variants of mp.

The case when i′ = 0 and i′′ ≥ 1 follows from Propositions 2 and 3. �
Combining Theorem 5 with results from [6], we have the following corollary.

2 The technical condition on MAT ins-del systems is not that severe, as we can always
take a new start symbol and first generate any finite set with the resources at hand.

3 There is one subtlety with the case when λ ∈ L(G): in that case, λ should be added
as an axiom of Γ .

204 H. Fernau et al.

Corollary 1. The following assertions are true.

– Lreg(LIN) � MAT(3; 1, 1, 0; 1, 0, 0) ∩ MAT(3; 1, 0, 1; 1, 0, 0)
– Lreg(LIN) � MAT(2; 2, 1, 0; 1, 0, 0) ∩ MAT(2; 2, 0, 1; 1, 0, 0). �

5 Conclusion

In this paper, using matrix ins-del systems, we have obtained some (improved)
computational completeness results and described the regular closure of linear
languages with small resource needs. It is interesting to note that if one could
describe linear languages by a matrix insertion-deletion system of size s, then
with the same size s, we could describe the regular closure of linear languages,
as well. We have also given a complete picture of the state of the art of the
generative power of the matrix ins-del systems with sum-norm 3 or 4 in Table 1.
Finally, we believe that tsSGNF offers some features that could be used in other
computational completeness proofs. In particular, no substrings with nontermi-
nals to the right of terminals are derivable in this normal form. We now present
some further concrete research questions. It would be interesting to explore clo-
sure properties for matrix ins-del systems of small sizes. For instance, is the
family MAT(2; 2, 1, 0; 1, 0, 0) closed under reversal? If this would be true, then
MAT(2; 2, 1, 0; 1, 0, 0) = MAT(2; 2, 0, 1; 1, 0, 0), which would also mean that the
statement of Corollary 1 could be simplified. We are working on the question
if matrix ins-del systems of length 2 are computationally complete with ins-del
sizes (1, 1, 0; 1, 0, 1) or (1, 0, 1; 1, 1, 0). We conjecture that this is indeed the case.

References

1. Dassow, J., Păun, G.: Regulated Rewriting in Formal Language Theory. EATCS
Monographs in Theoretical Computer Science, vol. 18. Springer, Heidelberg (1989)

2. Fernau, H., Kuppusamy, L.: Parikh images of matrix ins-del systems. In: Gopal,
T.V., Jäger, G., Steila, S. (eds.) TAMC 2017. LNCS, vol. 10185, pp. 201–215.
Springer, Cham (2017). https://doi.org/10.1007/978-3-319-55911-7 15

3. Fernau, H., Kuppusamy, L., Raman, I.: Computational completeness of path-
structured graph-controlled insertion-deletion systems. In: Carayol, A., Nicaud, C.
(eds.) CIAA 2017. LNCS, vol. 10329, pp. 89–100. Springer, Cham (2017). https://
doi.org/10.1007/978-3-319-60134-2 8

4. Fernau, H., Kuppusamy, L., Raman, I.: On the computational completeness of
graph-controlled insertion-deletion systems with binary sizes. Theor. Comput. Sci.
682, 100–121 (2017). Special Issue on Languages and Combinatorics in Theory
and Nature

5. Fernau, H., Kuppusamy, L., Raman, I.: Computational completeness of simple
semi-conditional insertion-deletion systems. In: Stepney, S., Verlan, S. (eds.) UCNC
2018. LNCS, vol. 10867, pp. 86–100. Springer, Cham (2018). https://doi.org/10.
1007/978-3-319-92435-9 7

6. Fernau, H., Kuppusamy, L., Raman, I.: Investigations on the power of matrix
insertion-deletion systems with small sizes. Nat. Comput. 17(2), 249–269 (2018)

https://doi.org/10.1007/978-3-319-55911-7_15
https://doi.org/10.1007/978-3-319-60134-2_8
https://doi.org/10.1007/978-3-319-60134-2_8
https://doi.org/10.1007/978-3-319-92435-9_7
https://doi.org/10.1007/978-3-319-92435-9_7

Power of Matrix Ins-Del Systems of Small Sum-Norm 205

7. Fernau, H., Kuppusamy, L., Raman, I.: On describing the regular closure of the lin-
ear languages with graph-controlled insertion-deletion systems. RAIRO Inf. théor.
et Appl./Theor. Inf. Appl. 52(1), 1–21 (2018)

8. Fernau, H., Kuppusamy, L., Raman, I.: Properties of language classes between
linear and context-free. J. Autom. Lang. Combin. 23(4), 329–360 (2018)

9. Freund, R., Kogler, M., Rogozhin, Y., Verlan, S.: Graph-controlled insertion-
deletion systems. In: McQuillan, I., Pighizzini, G. (eds.) Proceedings Twelfth
Annual Workshop on Descriptional Complexity of Formal Systems, DCFS, vol.
31 of EPTCS, pp. 88–98 (2010)

10. Geffert, V.: How to generate languages using only two pairs of parentheses. J. Inf.
Process. Cybern. EIK 27(5/6), 303–315 (1991)

11. Kari, L., Thierrin, G.: Contextual insertions/deletions and computability. Inf.
Comput. 131(1), 47–61 (1996)

12. Krassovitskiy, A., Rogozhin, Y., Verlan, S.: Computational power of insertion-
deletion (P) systems with rules of size two. Nat. Comput. 10, 835–852 (2011)

13. Kuppusamy, L., Mahendran, A.: Modelling DNA and RNA secondary structures
using matrix insertion-deletion systems. Int. J. Appl. Math. Comput. Sci. 26(1),
245–258 (2016)

14. Păun, G., Rozenberg, G., Salomaa, A.: DNA Computing: New Comput-
ing Paradigms. Springer, Heidelberg (1998). https://doi.org/10.1007/978-3-662-
03563-4

15. Petre, I., Verlan, S.: Matrix insertion-deletion systems. Theor. Comput. Sci. 456,
80–88 (2012)

16. Stabler, E.: Varieties of crossing dependencies: structure dependence and mild con-
text sensitivity. Cogn. Sci. 28, 699–720 (2004)

17. Verlan, S.: Recent developments on insertion-deletion systems. Comput. Sci. J.
Moldova 18(2), 210–245 (2010)

https://doi.org/10.1007/978-3-662-03563-4
https://doi.org/10.1007/978-3-662-03563-4

Separation Logic with Linearly
Compositional Inductive Predicates

and Set Data Constraints

Chong Gao1,2, Taolue Chen3, and Zhilin Wu1(B)

1 State Key Laboratory of Computer Science, Institute of Software,
Chinese Academy of Sciences, Beijing, China

wuzl@ios.ac.cn
2 University of Chinese Academy of Sciences, Beijing, China
3 Department of Computer Science and Information Systems,

Birkbeck, University of London, London, UK

Abstract. We identify difference-bound set constraints (DBS), an anal-
ogy of difference-bound arithmetic constraints for sets. DBS can express
not only set constraints but also arithmetic constraints over set ele-
ments. We integrate DBS into separation logic with linearly composi-
tional inductive predicates, obtaining a logic thereof where set data con-
straints of linear data structures can be specified. We show that the
satisfiability of this logic is decidable. A crucial step of the decision pro-
cedure is to compute the transitive closure of DBS-definable set relations,
to capture which we propose an extension of quantified set constraints
with Presburger Arithmetic (RQSPA). The satisfiability of RQSPA is
then shown to be decidable by harnessing advanced automata-theoretic
techniques.

1 Introduction

Separation Logic (SL) is a well-established approach for deductive verification
of programs that manipulate dynamic data structures [25,28]. Typically, SL is
used in combination with inductive definitions (SLID), which provides a natural
and convenient means to specify dynamic data structures. To reason about the
property (e.g. sortedness) of data values stored in data structures, it is also
necessary to incorporate data constraints into the inductive definitions.

One of the most fundamental questions for a logical theory is whether its sat-
isfiability is decidable. SLID with data constraints is no exception. This problem
becomes more challenging than one would probably expect, partially due to the
inherent intricacy brought up by inductive definitions and data constraints. It
is somewhat surprising that only disproportional research has addressed this
question (cf. Related work). In practice, most available tools based on SLID only
support heuristics without giving completeness guarantees, especially when data

Partially supported by the NSFC grants (No. 61472474, 61572478, 61872340), UK
EPSRC grant (EP/P00430X/1), and the INRIA-CAS joint research project VIP.

c© Springer Nature Switzerland AG 2019
B. Catania et al. (Eds.): SOFSEM 2019, LNCS 11376, pp. 206–220, 2019.
https://doi.org/10.1007/978-3-030-10801-4_17

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-10801-4_17&domain=pdf
https://doi.org/10.1007/978-3-030-10801-4_17

Separation Logic with Linearly Compositional Inductive Predicates 207

constraints are involved. Complete decision procedures for satisfiability, however,
have been found important in software engineering tasks such as symbolic exe-
cution, specification debugging, counterexample generation, etc., let along the
theoretical insights they usually shed on the logic system.

The dearth of complete decision procedures for SLID with data constraints
has prompted us to launch a research program as of 2015, aiming to iden-
tify decidable and sufficiently expressive instances. We have made encouraging
progress insofar. In [15], we set up a general framework, but could only tackle
linear data structures with data constraints in difference-bound arithmetic. In
[34], we were able to tackle tree data structures by exploiting machineries such
as order graphs and counter machines, though the data constraints therein
remained to be in difference-bound arithmetic.

An important class of data constraints that is currently elusive in our inves-
tigations is set constraints. They are mandatory for reasoning about, e.g., invari-
ants of data collections stored in data structures. For instance, when specifying
the correctness of a sorting algorithm on input lists, whilst the sortedness of the
list can be described by difference-bound arithmetic constraints, the property
that the sorting algorithm does not change the set of data values on the list
requires inductive definitions with set data constraints. Indeed, reviewers of the
papers [15,34] constantly raised the challenge of set constraints, which compelled
us to write the current paper.

Main Contributions. Our first contribution is to carefully design the difference-
bound set constraints (DBS), and to integrate them into the linearly composi-
tional inductive predicates introduced in [15], yielding SLIDS

LC: SL with linearly
compositional inductive predicates and set data constraints. The rationale of DBS
is two-fold: (1) it must be sufficiently expressive to represent common set data
constraints as well as arithmetic constraints over set elements one usually needs
when specifying linear data structures, (2) because of the inductive predicates, it
must be sufficiently “simple” to be able to capture the transitive closure of DBS-
definable set relations1 in an effective means, in order to render the satisfiability
of SLIDS

LC decidable. As the second contribution, we show that the transitive
closure of DBS can indeed be captured in the restricted extension of quantified
set constraints with Presburger arithmetic (RQSPA) introduced in this paper.
Finally, our third contribution is to show that the satisfiability of RQSPA is
decidable by establishing a connection of RQSPA with Presburger automata
[29]. This extends the well-known connection of Monadic Second-Order logic on
words (MSOW) and finite-state automata a la Büchi and Elgot [5,11]. These
contributions, together with a procedure which constructs an abstraction (as an
RQSPA formula) from a given SLIDS

LC formula and which we adapt from our
previous work [15], show the satisfiability of SLIDS

LC is decidable.
We remark that sets are conceptually related to second—rather than first—

order logics. While the transitive closure of logic formulae with first-order
variables is somehow well-studied (especially for simple arithmetic; cf. Related
Work), the transitive closure of logic formulae with second-order variables is
1 This shall be usually referred to as “transitive closure of DBS” to avoid clumsiness.

208 C. Gao et al.

rarely addressed in literature. (They easily lead to undecidability.) To our best
knowledge, the computation of transitive closures of DBS here represents one
of the first practically relevant examples of the computation of this type for a
class of logic formulae with second-order variables, which may be of independent
interests.

Related Work. We first review the work on SLID with data constraints. (Due
to space limit, the work on SLID without data constraints will be skipped.)
In [7,8,23], SLID with set/multiset/size data constraints were considered, but
only (incomplete) heuristics were provided. To reason about invariants of data
values stored in lists, SL with list segment predicates and data constraints in
universally quantified Presburger arithmetic was considered [1]. The work [26,27]
provided decision procedures for SLID with data constraints by translating into
many-sorted first-order logic with reachability predicates. In particular, in [27,
Section 6], extensions of basic logic GRIT are given to cover set data constraints
as well as order constraints over set elements. However, it seems that this app-
roach does not address arithmetic constraints over set elements (cf. the “Limi-
tations” paragraph in the end of Sect. 6 in [27]). For instance, a list where the
data values in adjacent positions are consecutive can be captured in SLIDS

LC

(see the predicate plseg in Sect. 3), but appears to go beyond the work [26,27].
Moreover, there is no precise characterisation of the limit of extensions under
which the decidability retains. The work [13] introduced the concept of composi-
tional inductive predicates, which may alleviate the difficulties of the entailment
problem for SLID. Nevertheless, [13] only provided sound heuristics rather than
decision procedures. More recently, the work [21,31] investigated SLID with
Presburger arithmetic data constraints.

Furthermore, several logics other than separation logic have been consid-
ered to reason about both shape properties and data constraints of data struc-
tures. The work [30] proposed a generic decision procedure for recursive algebraic
data types with abstraction functions encompassing lengths (sizes) of data struc-
tures, sets or multisets of data values as special cases. Nevertheless, the work
[30] focused on functional programs while this work aims to verify imperative
programs, which requires to reason about partial data structures such as list seg-
ments (rather than complete data structures such as lists). It is unclear how the
decision procedure in [30] can be generalised to partial data structures. The work
[22] introduced STRAND, a fragment of monadic second-order logic, to reason
about tree structures. Being undecidable in general, several decidable fragments
were identified. STRAND does not provide an explicit means to describe sets of
data values, although it allows using set variables to represent sets of locations.

Our work is also related to classical logics with set constraints, for which
we can only give a brief (but by no means comprehensive) summary. Presburger
arithmetic extended with sets was studied dating back to 80’s, with highly unde-
cidability results [6,16]. However, decidable fragments do exist: [33] studied the
non-disjoint combination of theories that share set variables and set operations.
[20] considered QFBAPA<

∞, a quantifier-free logic of sets of real numbers sup-
porting integer sets and variables, linear arithmetic, the cardinality operator,

Separation Logic with Linearly Compositional Inductive Predicates 209

infimum and supremum. [17,32] investigated two extensions of the Bernays-
Schönfinkel-Ramsey fragment of first-order predicate logic (BSR) with simple
linear arithmetic over integers and difference-bound constraints over reals (but
crucially, the ranges of the universally quantified variables must be bounded).
Since the unary predicate symbols in BSR are uninterpreted and represent sets
over integers or reals, the two extensions of BSR can also be used to specify
the set constraints on integers or reals. [10] presented a decision procedure for
quantifier-free constraints on restricted intensional sets (i.e., sets given by a prop-
erty rather than by enumerating their elements). None of these logics are able
to capture the transitive closure of DBS as RQSPA does. MSOW extended
with linear cardinality constraints was investigated in [18]. Roughly speaking,
RQSPA can be considered as an extension of MSOW with linear arithmetic
expressions on the maximum or minimum value of free set variables. Therefore,
the two extensions in [18] and this paper are largely incomparable.

In contrast to set constraints, the computation of transitive closures of rela-
tions definable in first-order logic (in particular, difference-bound and octagonal
arithmetic constraints) has been considered in for instance, [2–4,9,19].

2 Logics for Sets

We write Z, N for the set of integers and natural numbers; SZ and SN for finite
subsets of Z and N. For n ∈ N, [n] stands for {1, · · · , n}. We shall work exclusively
on finite subsets of Z or N unless otherwise stated. For any finite A �= H, we
write min(A) and max(A) for the minimum and maximum element of A. These
functions, however, are not defined over empty sets.

In the sequel, we introduce a handful of logics for sets which will be used
later in this paper. We mainly consider two data types, i.e., integer type Z and
(finite) set type SZ. Typically, c, c′, · · · ∈ Z and A,A′, · · · ∈ SZ. Accordingly,
two types of variables occur: integer variables (ranged over by x, y, · · ·) and set
variables (ranged over by S, S′, · · ·). Furthermore, we reserve �� ∈ {=,≤,≥} for
comparison operators between integers,2 and � ∈ {=,⊆,⊇,⊂,⊃} for comparison
operators between sets. We start with difference-bound set constraints (DBS).

Definition 1 (Difference-bound set constraints). Formulae of DBS are
defined by the rules:

ϕ ::= S = S′ ∪ Ts | Ti �� Ti + c | ϕ ∧ ϕ
Ts ::= H | {min(S)} | {max(S)} | Ts ∪ Ts (set terms)
Ti ::= min(S) | max(S) (integer terms)

Remark. DBS is a rather limited logic, but it has been carefully devised to serve
the data formulae in inductive predicates of SLIDS

LC[P] (cf. Sect. 3). In particular,
we remark that only conjunction, but not disjunction, of atomic constraints is
2 The operators < and > can be seen as abbreviations, for instance, x < y is equivalent

to x ≤ y − 1, which will be used later on as well.

210 C. Gao et al.

allowed. The main reason is, once the disjunction is introduced, the computation
of transitive closures becomes infeasible simply because one would be able to
encode the computation of Minsky’s two-counter machines. �

To capture the transitive closure of DBS, we introduce Restricted extension of
Quantified Set constraints with Presburger Arithmetic3 (RQSPA). Intuitively,
an RQSPA formula is a quantified set constraint extended with Presburger
Arithmetic satisfying the following restriction: each atomic formula containing
quantified variables must be a difference-bound arithmetic constraint.

Definition 2 (Restricted extension of Quantified Set constraints with
Presburger Arithmetic). Formulae of RQSPA are defined by the rules:

Φ ::= Ts � Ts | Ti �� Ti + c | Tm �� 0 | Φ ∧ Φ | ¬Φ | ∀x. Φ | ∀S. Φ,

Ts ::= H | S | {Ti} | Ts ∪ Ts | Ts ∩ Ts | Ts \ Ts,

Ti ::= c | x | min(Ts) | max(Ts),
Tm ::= c | x | max(Ts) | min(Ts) | Tm + Tm | Tm − Tm.

Here, Ts (resp. Ti) represents set (resp. integer) terms which are more general
than those in DBS, and Tm terms are Presburger arithmetic expressions. Let
Vars(Φ) (resp. free(Φ)) denote the set of variables (resp. free variables) occurring
in Φ. We require that all set variables in atomic formulae Tm �� 0 are
free. To make the free variables explicit, we usually write Φ(x ,S) for a RQSPA
formula Φ. Free variable names are assumed not to clash with the quantified ones.

Example 1. max(S1 ∪ S2) − min(S1) − max(S2) < 0 and ∀S1∀S2.(S2 �= H →
max(S2) ≤ max(S1 ∪ S2)) are RQSPA formulae, while ∀S2. max(S1 ∪ S2) −
min(S1) − max(S2) < 0 is not. �

The work [6], among others, studied Presburger arithmetic extended with Sets
(PS), which is quantifier-free RQSPA formulae. In this paper, PS will serve
the data formula part of SLIDS

LC[P], and we reserve Δ,Δ′, . . . to denote formulae
from PS (see Sect. 3).

Semantics. All of these logics (DBS, RQSPA, PS) can be considered as
instances of weak monadic second-order logic, and thus their semantics are
largely self-explanatory. In particular, set variables are interpreted as finite sub-
sets of Z and integer variables are interpreted as integers. We emphasize that,
if a set term Ts is interpreted as H, min(Ts) and max(Ts) are undefined. As
a result, we stipulate that any atomic formula containing an undefined
term is interpreted as false.

For an RQSPA formula Φ(x ,S) with x =(x1, · · · , xk) and S =(S1, · · · , Sl),
L(Φ(x ,S)) denotes

{(n1, · · · , nk, A1, · · · , Al) ∈ Z
k × S

l
Z
| Φ(n1, · · · , nk, A1, · · · , Al)}.

3 An unrestricted extension of quantified set constraints with Presburger Arithmetic
is undecidable, as shown in [6].

Separation Logic with Linearly Compositional Inductive Predicates 211

As expected, typically we use DBS formulae to define relations between (tuples
of) sets from S

k
Z
. We say a relation R ⊆ S

k
Z
× S

k
Z

a difference-bound set relation
if there is a DBS formula ϕ(S ,S ′) over set variables S and S ′ such that R =
{(A,A′) ∈ S

k
Z
× S

k
Z

| ϕ(A,A′)}. The transitive closure of R is defined in a
standard way, viz.,

⋃

i≥0

Ri, where R0 = {(A,A) | A ∈ S
k
Z
} and Ri+1 = Ri · R.

3 Linearly Compositional SLID with Set Data
Constraints

In this section, we introduce separation logic with linearly compositional induc-
tive predicates and set data constraints, denoted by SLIDS

LC[P], where P is an
inductive predicate. In addition to the integer and set data types introduced in
Sect. 2, we also consider the location data type L. As a convention, l, l′, · · · ∈ L

denote locations and E,F,X, Y, · · · range over location variables. We consider
location fields associated with L and data fields associated with Z.

SLIDS
LC[P] formulae may contain inductive predicates, each of which is of

the form P (α;β; ξ) and has an associated inductive definition. The parameters
are classified into three groups: source parameters α, destination parameters
β, and static parameters ξ. We require that the source parameters α and the
destination parameters β are matched in type, namely, the two tuples have the
same length � > 0 and for each i ∈ [�], αi and βi have the same data type.
Static parameters are typically used to store some static (global) information of
dynamic data structures, e.g., the target location of tail pointers. Moreover, we
assume that for each i ∈ [�], αi is of either the location type, or the set type.
(There are no parameters of the integer type.) Without loss of generality, it is
assumed that the first components of α and β are location variables; we usually
explicitly write E,α and F,β.

SLIDS
LC[P] formulae comprise three types of formulae: pure formulae Π, data

formulae Δ, and spatial formulae Σ. The data formulae are simply PS intro-
duced in Sect. 2, while Π and Σ are defined by the following rules,

Π ::= E = F | E �= F | Π ∧ Π (pure formulae)
Σ ::= emp | E �→ (ρ) | P (E,α;F,β; ξ) | Σ ∗ Σ (spatial formulae)
ρ ::= (f,X) | (d, Ti) | ρ, ρ (fields)

where Ti is an integer term as in Definition 2, and f (resp. d) is a location
(resp. data) field. For spatial formulae Σ, formulae of the form emp, E �→ (ρ), or
P (E,α;F,β; ξ) are called spatial atoms. In particular, formulae of the form E �→
(ρ) and P (E,α;F,β; ξ) are called points-to and predicate atoms respectively.
Moreover, E is the root of these points-to or predicate atoms.

Linearly Compositional Inductive Predicates. An inductive predicate P is lin-
early compositional if the inductive definition of P is given by the following two
rules,

212 C. Gao et al.

– base rule R0 : P (E,α;F,β; ξ) ::= E = F ∧ α = β ∧ emp,
– inductive rule R1 : P (E,α;F,β; ξ) ::= ∃X∃S . ϕ∧E �→ (ρ)∗P (Y,γ;F,β; ξ).

The left-hand (resp. right-hand) side of a rule is called the head (resp. body) of
the rule.

In the sequel, we specify some constraints on the inductive rule R1 which are
vital to obtain complete decision procedures for the satisfiability problem.

C1 None of the variables from F,β occur elsewhere in the right-hand side of
R1, that is, in ϕ, E �→ (ρ).

C2 The data constraint ϕ in the body of R1 is a DBS formula.
C3 For each atomic formula in ϕ, there is i such that all the variables in the

atomic formula are from {αi, γi}.
C4 Each variable occurs in each of P (Y,γ;F,β; ξ) and ρ at most once.
C5 ξ contains only location variables and all location variables from α∪ ξ ∪X

occur in ρ.
C6 Y ∈ X and γ ⊆ {E} ∪X ∪ S .

Note that, by C6, none of the variables from α∪ξ occur in γ. Moreover, from C5
and C6, Y occurs in ρ, which guarantees that in each model of P (E,α;F,β; ξ),
the sub-heap represented by P (E,α;F,β; ξ), seen as a directed graph, is con-
nected. We also note that the body of R1 does not contain pure formulae. We
remark that these constraints are undeniably technical. However, in practice the
inductive predicates satisfying these constraints are usually sufficient to define
linear data structures with set data constraints, cf. Example 2.

For an inductive predicate P , let Flds(P) denote the set of all fields occurring
in the inductive rules of P . For a spatial atom a, let Flds(a) denote the set of
fields that a refers to: if a = E �→ (ρ), then Flds(a) is the set of fields occurring
in ρ; if a = P (−), then Flds(a) = Flds(P).

We write SLIDS
LC[P] for the collection of separation logic formulae φ = Π ∧

Δ ∧ Σ satisfying the following constraints: (1) P is a linearly compositional
inductive predicate, and (2) each predicate atom of Σ is of the form P (−), and
for each points-to atom occurring in Σ, the set of fields of this atom is Flds(P).

For an SLIDS
LC[P] formula φ, let Vars(φ) (resp. LVars(φ), resp. DVars(φ), resp.

SVars(φ)) denote the set of (resp. location, resp. integer, resp. set) variables
occurring in φ. Moreover, we use φ[μ/α] to denote the simultaneous replacement
of the variables αj by μj in φ. We adopt the standard classic, precise semantics
of SLIDS

LC[P] in terms of states. In particular, a state is a pair (s, h), where s is
an assignment and h is a heap. The details can be found in [14].

Example 2. We collect a few examples of linear data structures with set data
constraints definable in SLIDS

LC[P]:

Separation Logic with Linearly Compositional Inductive Predicates 213

sdllseg for sorted doubly linked list segments,
sdllseg(E, P, S;F, L, S′) ::= E = F ∧ P = L ∧ S = S′ ∧ emp,
sdllseg(E, P, S;F, L, S′) ::= ∃X, S′′. S = S′′ ∪ {min(S)} ∧

E �→ ((next, X), (prev, P), (data,min(S))) ∗ sdllseg(X, E, S′′;F, L, S′).
plseg for list segments where the data values are consecutive,

plseg(E, S; F, S′) ::= E = F ∧ S = S′ ∧ emp,
plseg(E, S; F, S′) ::= ∃X, S′′. S = S′′ ∪ {min(S)} ∧ min(S′′) = min(S) + 1 ∧

E �→ ((next, X), (data, min(S))) ∗ plseg(X, S′′; F, S′).
ldllseg for doubly list segments, to mimic lengths with sets,

ldllseg(E, P, S; F, L, S′) ::= E = F ∧ P = L ∧ S = S′ ∧ emp,
ldllseg(E, P, S; F, L, S′) ::= ∃X, S′′. S = S′′ ∪ {max(S)} ∧ max(S′′) = max(S) − 1∧

E �→ ((next, X), (prev, P)) ∗ ldllseg(X, E, S′′; F, L, S′).

4 Satisfiability of SLIDS
LC[P]

The satisfiability problem is to decide whether there is a state (an assignment-
heap pair) satisfying φ for a given SLIDS

LC[P] formula φ. We shall follow the
approach adopted in [12,15], i.e., to construct Abs(φ), an abstraction of φ that
is equisatisfiable to φ. The key ingredient of the construction is to compute the
transitive closure of the data constraints extracted from the inductive rule of P .

Let φ = Π ∧ Δ ∧ Σ be an SLIDS
LC[P] formula. Suppose Σ = a1 ∗ · · · ∗ an,

where each ai is either a points-to atom or a predicate atom. For predicate atom
ai = P (Z1,μ;Z2,ν;χ) we assume that the inductive rule for P is

R1 : P (E,α;F,β; ξ) ::=∃X∃S . ϕ ∧ E �→ (ρ) ∗ P (Y,γ;F,β; ξ). (1)

We extract the data constraint ϕP (dt(α), dt(β)) out of R1. Formally, we
define ϕP (dt(α), dt(β)) as ϕ[dt(β)/dt(γ)], where dt(α) (resp. dt(γ), dt(β)) is
the projection of α (resp. γ, β) to data variables. For instance, ϕldllseg(S, S′) :=
(S = S′′ ∪ {max(S)} ∧ max(S′′) = max(S) − 1) [S′/S′′] = S = S′ ∪ {max(S)} ∧
max(S′) = max(S) − 1.

We can construct Abs(φ) with necessary adaptations from [15]. For each spa-
tial atom ai, Abs(φ) introduces a Boolean variable to denote whether ai corre-
sponds to a nonempty heap or not. With these Boolean variables, the semantics
of separating conjunction are encoded in Abs(φ). Moreover, for each predicate
atom ai, Abs(φ) contains an abstraction of ai, where the formulae Ufld1(ai) and
Ufld≥2(ai) are used. Intuitively, Ufld1(ai) and Ufld≥2(ai) correspond to the sep-
aration logic formulae obtained by unfolding the rule R1 once and at least twice
respectively. We include the construction here so one can see the role of the
transitive closure in Abs(φ). The details of Abs(φ) can be found in [14].

Let ai = P (Z1,μ;Z2,ν;χ) and R1 be the inductive rule in Eq. (1). If E
occurs in γ in the body of R1, we use idx(P,γ,E) to denote the unique index j
such that γj = E. (The uniqueness follows from C4.)

Definition 3 (Ufld1(ai) and Ufld≥2(ai)). Ufld1(ai) and Ufld≥2(ai) are defined
by distinguishing the following two cases:

214 C. Gao et al.

– If E occurs in γ in the body of R1, then Ufld1(ai) := (E = βidx(P,γ,E) ∧
ϕP (dt(α), dt(β)))[Z1/E,μ/α, Z2/F,ν/β,χ/ξ] and Ufld≥2(ai) :=
⎛
⎝

E �= βidx(P,γ,E)
∧ E �= γ2,idx(P,γ,E)

∧
ϕP [dt(γ1)/dt(β)] ∧ ϕP [dt(γ1)/dt(α), dt(γ2)/dt(β)] ∧
(TC[ϕP])[dt(γ2)/dt(α)]

⎞
⎠ [Z1/E, μ/α, Z2/F, ν/β, χ/ξ],

where γ1 and γ2 are fresh variables.
– Otherwise, let Ufld1(ai) := ϕP [Z1/E,μ/α, Z2/F,ν/β,χ/ξ] and

Ufld≥2(ai) :=

⎛
⎝

ϕP [dt(γ1)/dt(β)] ∧
ϕP [dt(γ1)/dt(α), dt(γ2)/dt(β)] ∧
(TC[ϕP])[dt(γ2)/dt(α)]

⎞
⎠ [Z1/E, μ/α, Z2/F, ν/β, χ/ξ],

where γ1 and γ2 are fresh variables.

Here, TC[ϕP](dt(α), dt(β)) denotes the transitive closure of ϕP . In Sect. 5, it will
be shown that TC[ϕP](dt(α), dt(β)) can be written as an RQSPA formula. As a
result, since we are only concerned with satisfiability and can treat the location
data type L simply as integers Z, Abs(φ) can also be read as an RQSPA formula.
In Sect. 6, we shall show that the satisfiability of RQSPA is decidable. Following
this chain of reasoning, we conclude that the satisfiability of SLIDS

LC[P] formulae
is decidable.

5 Transitive Closure of Difference-Bound Set Relations

In this section, we show how to compute the transitive closure of the difference-
bound set relation R given by a DBS formula ϕR(S ,S ′). Our approach is, in a
nutshell, to encode TC[ϕR](S ,S ′) into RQSPA. We shall only sketch part of a
simple case, i.e., in ϕR(S, S′) only one source and destination set parameter are
present. The details are however given in [14].

Recall that, owing to the simplicity of DBS, the integer terms Ti in ϕR(S, S′)
can only be min(S), max(S), min(S′) or max(S′), whereas the set terms Ts are
H, {min(S)}, {min(S′)}, {max(S)}, {max(S′)}, or their union. For reference,
we write ϕR(S, S′) = ϕR,1 ∧ ϕR,2, where ϕR,1 is an equality of set terms (i.e.,
they are of the form S = S′ ∪ Ts or S′ = S ∪ Ts), and ϕR,2 is a conjunction
of constraints over integer terms (i.e., a conjunction of formulae Ti ≤ Ti + c).
ϕR,1 and ϕR,2 will be referred to as the set and integer subformula of ϕR(S, S′)
respectively. We shall focus on the case ϕR,1 := S = S′ ∪ Ts. The symmetrical
case ϕR,1 := S′ = S ∪ Ts can be adapted easily.

The integer subformula ϕR,2 can be represented by an edge-weighted directed
graph G(ϕR,2), where the vertices are all integer terms appearing in ϕR,2, and
there is an edge from T1 to T2 with weight c iff T1 = T2 + c (equivalent to
T2 = T1 − c), or T1 ≤ T2 + c, or T2 + c ≥ T1 appears in ϕR,2. The weight
of a path in G(ϕR,2) is the sum of the weights of the edges along the path.
A negative cycle in G(ϕR,2) is a cycle with negative weight. It is known that
ϕR,2 is satisfiable iff G(ϕR,2) contains no negative cycles [24]. Suppose ϕR,2 is
satisfiable. We define the normal form of ϕR,2, denoted by Norm(ϕR,2), as the

Separation Logic with Linearly Compositional Inductive Predicates 215

conjunction of the formulae T1 ≤ T2 + c such that T1 �= T2, T2 is reachable from
T1 in G(ϕR,2), and c is path from T1 to T2 with the minimal weight in G(ϕR,2).

S (resp. S′) is said to be surely nonempty in ϕR if min(S) or max(S)
(resp. min(S′) or max(S′)) occurs in ϕR; otherwise, S (resp. S′) is
possibly empty in ϕR. Recall that, according to the semantics, an occurrence
of min(S) or max(S) (resp. min(S′) or max(S′)) in ϕR implies that S (resp. S′)
is interpreted as a nonempty set in every satisfiable assignment. Provided that
S′ is nonempty, we know that min(S′) and max(S′) belong to S′. Therefore, for
simplicity, here we assume that in S = S′ ∪ Ts, Ts contains neither min(S′) nor
max(S′). The situation that Ts contains min(S′) and max(S′) can be dealt with
in a similar way.

Saturation. For technical convenience, we introduce a concept of saturation. The
main purpose of saturation is to regularise Ts and ϕR,2, which would make the
transitive closure construction more “syntactic”.

Definition 4. Let ϕR(S, S′) := S = S′ ∪ Ts ∧ ϕR,2 be a DBS formula. Then
ϕR(S, S′) is saturated if ϕR(S, S′) satisfies the following conditions

– ϕR,2 is satisfiable and in normal forms,
– Ts ⊆ {max(S),min(S)},
– if S (resp. S′) is surely nonempty in ϕR, then ϕR,2 contains a conjunct

min(S) ≤ max(S) − c for some c ≥ 0 (resp. min(S′) ≤ max(S′) − c′ for
some c′ ≥ 0),

– if both S and S′ are surely nonempty in ϕR, then
• ϕR,2 contains two conjuncts min(S) ≤ min(S′) − c and max(S′) ≤

max(S) − c′ for some c, c′ ≥ 0,
• min(S) �∈ Ts iff ϕR,2 contains the conjuncts min(S) ≤ min(S′) and

min(S′) ≤ min(S),
• max(S) �∈ Ts iff ϕR,2 contains the conjuncts max(S′) ≤ max(S) and

max(S) ≤ max(S′),
– if ϕR,2 contains the conjuncts min(S) ≤ max(S) and max(S) ≤ min(S), then

max(S) �∈ Ts (possibly min(S) ∈ Ts).

For a formula ϕR(S, S′) := S = S′ ∪ Ts ∧ ϕR,2, one can easily saturate ϕR,
yielding a saturated formula Strt(ϕR(S, S′)). (It is possible, however, to arrive
at an unsatisfiable formula, then we are done.)

Proposition 1. Let ϕR(S, S′) := ϕR,1 ∧ ϕR,2 be a DBS formula such that
ϕR,1 := S = S′ ∪ Ts and ϕR,2 is satisfiable. Then ϕR can be transformed, in
polynomial time, to an equisatisfiable formula Strt(ϕR(S, S′)), and if the integer
subformula of Strt(ϕR(S, S′)) is satisfiable, then Strt(ϕR(S, S′)) is saturated.

In the sequel, we assume that ϕR(S, S′) := ϕR,1 ∧ϕR,2 is satisfiable and sat-
urated. For notational convenience, for A ⊆ {min(S),max(S),min(S′),max(S′)}
with |A| = 2, let �ϕR,2�A denote the conjunction of atomic formulae in ϕR,2

where all the elements of A occur.

216 C. Gao et al.

Evidently, �ϕR,2�A gives a partition of atomic formulae of ϕR,2. Namely,

ϕR,2 =
∧

A⊆{min(S),max(S),min(S′),max(S′)},|A|=2
�ϕR,2�A.

We proceed by a case-by-case analysis of ϕR,1. There are four cases: (I) ϕR,1 :=
S = S′, (II) ϕR,1 := S = S′ ∪ {min(S)}, (III) ϕR,1 = S = S′ ∪ {max(S)} and
(IV) ϕR,1 = S = S′ ∪ {min(S),max(S)}. Case (I) is trivial, and Case (III) is
symmetrical to (II). However, both (II) and (IV) are technically involved. We
shall only give a “sample” treatment of these cases, i.e., part of arguments for
Case (II); the full account of Case (II) and (IV) are given in [14].

To start with, Case (II) can be illustrated schematically

as | −
S′

︷ ︸︸ ︷
| − − −−−−|

︸ ︷︷ ︸
S

. We observe that S is surely nonempty in ϕR. We then

distinguish two subcases depending on whether S′ is possibly empty or surely
nonempty in ϕR. Here we give the details of the latter subcase because it is more
interesting. In this case, both S and S′ are surely nonempty in ϕR. By Defini-
tion 4 (4–5), ϕR,2 contains a conjunct min(S) ≤ min(S′) − c for some c ≥ 0, as
well as max(S′) ≤ max(S) and max(S) ≤ max(S′) (i.e., max(S′) = max(S)).
Therefore, we can assume

ϕR,2 = max(S′) ≤ max(S) ∧ max(S) ≤ max(S′) ∧ �ϕR,2�min(S),min(S′) ∧
�ϕR,2�min(S),max(S) ∧ �ϕR,2�min(S′),max(S′).

Note that in ϕR,2 above, the redundant subformulae �ϕR,2�min(S),max(S′) and
�ϕR,2�min(S′),max(S) have been omitted.

The formula �ϕR,2�min(S),min(S′) is said to be strict if it contains a conjunct
min(S) ≤ min(S′) − c for some c > 0. Otherwise, it is said to be non-strict.
Intuitively, if �ϕR,2�min(S),min(S′) is strict, then for n, n′ ∈ Z, the validity of
(�ϕR,2�min(S),min(S′))[n/min(S), n′/min(S′)] implies that n < n′. For the sketch
we only present the case that �ϕR,2�min(S),min(S′) is strict ; the other cases are
similar and can be found in [14].

Evidently, TC[ϕR](S, S′) can be written as (S = S′) ∨ ∨

n≥1

ϕ
(n)
R , where ϕ

(n)
R

is obtained by unfolding ϕR for n times, that is,

ϕ
(n)
R = ∃S1, · · · , Sn+1.

(
S1 = S ∧ Sn+1 = S′ ∧∧
i∈[n]

(Si = Si+1 ∪ {min(Si)} ∧ ϕR,2[Si/S, Si+1/S′])

)
,

where ϕR,2[Si/S, Si+1/S′] is obtained from ϕR,2 by replacing S (resp. S′) with
Si (resp. Si+1).

Clearly, ϕ
(1)
R = ϕR, and

ϕ
(2)
R = ∃S2. (S = S2 ∪ {min(S)} ∧ S2 = S′ ∪ {min(S2)} ∧ ϕR,2[S2/S′] ∧

ϕR,2[S2/S]).

Separation Logic with Linearly Compositional Inductive Predicates 217

For ϕ
(n)
R where n ≥ 3, we first simplify ϕ

(n)
R to construct a finite formula for

TC[ϕR](S, S′). The subformula
∧

i∈[n]

(Si = Si+1∪{min(Si)}∧ϕR,2[Si/S, Si+1/S′])

can be rewritten as

∧
i∈[n]

⎛
⎝Si = Si+1 ∪ {min(Si)} ∧ max(Si) = max(Si+1) ∧

(ϕR,2
min(S),min(S′)[Si/S, Si+1/S′]) ∧ (ϕR,2
min(S),max(S)[Si/S]) ∧
(ϕR,2
min(S′),max(S′)[Si+1/S′])

⎞
⎠ .

Because Si = Si+1 ∪ {min(Si)} for each i ∈ [n], we have max(S1) = · · · =
max(Sn) and min(S1) ≤ · · · ≤ min(Sn). Since �ϕR,2�min(S),max(S) is a con-
junction of difference-bound constraints involving min(S) and max(S) only, we
have

∧

i∈[n]

�ϕR,2�min(S),max(S)[Si/S] is equivalent to �ϕR,2�min(S),max(S)[S1/S] ∧
�ϕR,2�min(S),max(S)[Sn/S]. To see this, assume, for instance,

�ϕR,2�min(S),max(S) ≡ c ≤ max(S) − min(S) ≤ c′

for some constants c, c′ ≥ 0 with c ≤ c′. Then max(S1) − min(S1) ≤ c′

implies max(Si) − min(Si) ≤ c′ for each i ∈ [n], and c ≤ max(Sn) − min(Sn)
implies c ≤ max(Si) − min(Si) for each i ∈ [n]. Therefore, �ϕR,2�min(S),max(S)

[S1/S] ∧ �ϕR,2�min(S),max(S)[Sn/S] ≡ c ≤ max(S1) − min(S1) ≤ c′ ∧
c ≤ max(Sn) − min(Sn) ≤ c′ implies that

∧

i∈[n]

�ϕR,2�min(S),max(S)[Si/S],

thus they are equivalent. (The other direction is trivial.) Likewise,
one has �ϕR,2�min(S′),max(S′)[S2/S′] ∧ �ϕR,2�min(S′),max(S′)[Sn+1/S′] implies
∧

i∈[n]

�ϕR,2�min(S′),max(S′)[Si+1/S′], thus they are equivalent. Therefore, ϕ
(n)
R can

be transformed into

∃S2, Sn.

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

	ϕR,2
min(S),max(S) ∧ (ϕR,2
min(S),max(S)[Sn/S]) ∧
(ϕR,2
min(S′),max(S′)[S2/S′]) ∧ 	ϕR,2
min(S′),max(S′) ∧ S = S2 ∪ {min(S)} ∧
Sn = S′ ∪ {min(Sn)} ∧max(S) = max(S2) ∧max(Sn) = max(S′) ∧
(ϕR,2
min(S),min(S′)[S2/S′]) ∧ (ϕR,2
min(S),min(S′)[Sn/S])∧
∃S3, · · · , Sn−1.

∧
2≤i≤n−1

(
Si = Si+1 ∪ {min(Si)} ∧max(Si) = max(Si+1) ∧
(ϕR,2
min(S),min(S′)[Si/S, Si+1/S′])

)

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

.

Claim. Suppose n ≥ 3 and �ϕR,2�min(S),min(S′) is strict. Then

∃S3, · · · , Sn−1.
∧

2≤i≤n−1

(
Si = Si+1 ∪ {min(Si)} ∧ max(Si) = max(Si+1) ∧
(�ϕR,2�min(S),min(S′)[Si/S, Si+1/S′])

)

is equivalent to
Sn �= H ∧ S2 \ Sn �= H ∧ Sn ⊆ S2 ∧ |S2 \ Sn| = n − 2 ∧max(S2 \ Sn) < min(Sn) ∧
∀y, z. succ((S2 \ Sn) ∪ {min(Sn)}, y, z) → (ϕR,2
min(S),min(S′)[y/min(S), z/min(S′)]),

where succ(S, x, y) specifies intuitively that y is the successor of x in S, that is,

succ(S, x, y) = x ∈ S ∧ y ∈ S ∧ x < y ∧ ∀z ∈ S. (z ≤ x ∨ y ≤ z).

Note that | · | denotes the set cardinality which can be easily encoded into
RQSPA. ([14] gives the proof of the claim.) It follows that TC[ϕR](S, S′) =

218 C. Gao et al.

(S = S′) ∨ ϕR(S, S′) ∨ ϕ
(2)
R (S, S′) ∨

∃S1, S2.

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

S = S1 ∪ {min(S)} ∧ S2 = S′ ∪ {min(S2)} ∧
max(S) = max(S1) ∧max(S2) = max(S′) ∧
S2 �= H ∧ S1 \ S2 �= H ∧ S2 ⊆ S1 ∧max(S1 \ S2) < min(S2) ∧
	ϕR,2
min(S),max(S) ∧ (ϕR,2
min(S),max(S)[S2/S]) ∧
(ϕR,2
min(S′),max(S′)[S1/S′]) ∧ 	ϕR,2
min(S′),max(S′) ∧
(ϕR,2
min(S),min(S′)[S1/S′]) ∧ (ϕR,2
min(S),min(S′)[S2/S]) ∧
∀y, z.

(
succ((S1 \ S2) ∪ {min(S2)}, y, z) →

(ϕR,2
min(S),min(S′)[y/min(S), z/min(S′)])

)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

6 Satisfiability of RQSPA
In this section, we focus on the second ingredient of the procedure for deciding
satisfiability of SLIDS

LC[P], i.e., the satisfiability of RQSPA. We first note that
RQSPA is defined over Z. To show the decidability, it turns to be much easier
to work on N. We shall write RQSPAZ and RQSPAN to differentiate them
when necessary. Moreover, for technical reasons, we also introduce RQSPA−,
the fragment of RQSPA excluding formulae of the form Tm �� 0.

The decision procedure for the satisfiability of RQSPA proceeds with the
following three steps:

Step I. Translate RQSPAZ to RQSPAN,
Step II. Normalize an RQSPAN formula Φ(x ,S) into

∨

i

(Φ(i)
core ∧Φ

(i)
count), where

Φ
(i)
core is an RQSPA−

N
formula, and Φ

(i)
count is a conjunction of formulae of the

form Tm �� 0 which contain only variables from x ∪ S ,
Step III. For each disjunct Φ

(i)
core ∧ Φ

(i)
count, construct a Presburger automaton

(PA) A(i)
Φ which captures the models of Φ

(i)
core ∧ Φ

(i)
count. Satisfiability is thus

reducible to the nonemptiness of PA, which is decidable [29].

These steps are technically involved. In particular, the third step requires exploit-
ing Presburger automata [29]. The details can be found in [14].

7 Conclusion

In this paper, we have defined SLIDS
LC, SL with linearly compositional inductive

predicates and set data constraints. The main feature is to identify DBS as a
special class of set data constraints in the inductive definitions. We encoded the
transitive closure of DBS into RQSPA, which was shown to be decidable. These
together yield a complete decision procedure for the satisfiability of SLIDS

LC.
The precise complexity of the decision procedure—Nonelementary is the

best upper-bound we have now—is left open for further studies. Furthermore,
the entailment problem of SLIDS

LC is an immediate future work.

Separation Logic with Linearly Compositional Inductive Predicates 219

References

1. Bouajjani, A., Drăgoi, C., Enea, C., Sighireanu, M.: Accurate invariant checking
for programs manipulating lists and arrays with infinite data. In: Chakraborty, S.,
Mukund, M. (eds.) ATVA 2012. LNCS, vol. 7561, pp. 167–182. Springer, Heidelberg
(2012). https://doi.org/10.1007/978-3-642-33386-6 14

2. Bozga, M., Gı̂rlea, C., Iosif, R.: Iterating octagons. In: TACAS, pp. 337–351 (2009)
3. Bozga, M., Iosif, R., Konecný, F.: Fast acceleration of ultimately periodic relations.

In: CAV, pp. 227–242 (2010)
4. Bozga, M., Iosif, R., Lakhnech, Y.: Flat parametric counter automata. Fundam.

Inf. 91(2), 275–303 (2009)
5. Büchi, R.J.: Weak Second-Order arithmetic and finite automata. Zeitschrift für

Mathematische Logik und Grundlagen der Mathematik 6(1–6), 66–92 (1960)
6. Cantone, D., Cutello, V., Schwartz, J.T.: Decision problems for tarski and pres-

burger arithmetics extended with sets. In: Börger, E., Kleine Büning, H., Richter,
M.M., Schönfeld, W. (eds.) CSL 1990. LNCS, vol. 533, pp. 95–109. Springer, Hei-
delberg (1991). https://doi.org/10.1007/3-540-54487-9 54

7. Chin, W.-N., David, C., Nguyen, H.H., Qin, S.: Automated verification of shape,
size and bag properties via user-defined predicates in separation logic. Sci. Comput.
Program. 77(9), 1006–1036 (2012)

8. Chu, D.-H., Jaffar, J., Trinh, M.-T.: Automatic induction proofs of data-structures
in imperative programs. In: PLDI, pp. 457–466 (2015)

9. Comon, H., Jurski, Y.: Multiple counters automata, safety analysis and presburger
arithmetic. In: Hu, A.J., Vardi, M.Y. (eds.) CAV 1998. LNCS, vol. 1427, pp. 268–
279. Springer, Heidelberg (1998). https://doi.org/10.1007/BFb0028751

10. Cristiá, M., Rossi, G.: A decision procedure for restricted intensional sets. In: de
Moura, L. (ed.) CADE 2017. LNCS (LNAI), vol. 10395, pp. 185–201. Springer,
Cham (2017). https://doi.org/10.1007/978-3-319-63046-5 12

11. Elgot, C.C.: Decision problems of finite automata design and related arithmetics.
Trans. Am. Math. Soc. 98(1), 21–51 (1961)

12. Enea, C., Lengál, O., Sighireanu, M., Vojnar, T.: Compositional entailment check-
ing for a fragment of separation logic. In: APLAS, pp. 314–333 (2014)

13. Enea, C., Sighireanu, M., Wu, Z.: On automated lemma generation for separation
logic with inductive definitions. In: Finkbeiner, B., Pu, G., Zhang, L. (eds.) ATVA
2015. LNCS, vol. 9364, pp. 80–96. Springer, Cham (2015). https://doi.org/10.1007/
978-3-319-24953-7 7

14. Gao, C., Chen, T., Wu, Z.: Separation logic with linearly compositional inductive
predicates and set data constraints (full version). http://arxiv.org/abs/1811.00699

15. Gu, X., Chen, T., Wu, Z.: A complete decision procedure for linearly compositional
separation logic with data constraints. In: Olivetti, N., Tiwari, A. (eds.) IJCAR
2016. LNCS (LNAI), vol. 9706, pp. 532–549. Springer, Cham (2016). https://doi.
org/10.1007/978-3-319-40229-1 36

16. Halpern, J.Y.: Presburger arithmetic with unary predicates is Π1
1 -complete. J.

Symb. Logic 56(2), 637–642 (1991)
17. Horbach, M., Voigt, M., Weidenbach, C.: On the combination of the Bernays–

Schönfinkel–Ramsey fragment with simple linear integer arithmetic. In: de Moura,
L. (ed.) CADE 2017. LNCS (LNAI), vol. 10395, pp. 77–94. Springer, Cham (2017).
https://doi.org/10.1007/978-3-319-63046-5 6

18. Klaedtke, F., Rueß, H.: Monadic second-order logics with cardinalities. In: Baeten,
J.C.M., Lenstra, J.K., Parrow, J., Woeginger, G.J. (eds.) ICALP 2003. LNCS,
vol. 2719, pp. 681–696. Springer, Heidelberg (2003). https://doi.org/10.1007/3-
540-45061-0 54

https://doi.org/10.1007/978-3-642-33386-6_14
https://doi.org/10.1007/3-540-54487-9_54
https://doi.org/10.1007/BFb0028751
https://doi.org/10.1007/978-3-319-63046-5_12
https://doi.org/10.1007/978-3-319-24953-7_7
https://doi.org/10.1007/978-3-319-24953-7_7
http://arxiv.org/abs/1811.00699
https://doi.org/10.1007/978-3-319-40229-1_36
https://doi.org/10.1007/978-3-319-40229-1_36
https://doi.org/10.1007/978-3-319-63046-5_6
https://doi.org/10.1007/3-540-45061-0_54
https://doi.org/10.1007/3-540-45061-0_54

220 C. Gao et al.

19. Konečný, F.: PTIME computation of transitive closures of octagonal relations. In:
Chechik, M., Raskin, J.-F. (eds.) TACAS 2016. LNCS, vol. 9636, pp. 645–661.
Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-49674-9 42

20. Kuncak, V., Piskac, R., Suter, P.: Ordered sets in the calculus of data structures.
In: Dawar, A., Veith, H. (eds.) CSL 2010. LNCS, vol. 6247, pp. 34–48. Springer,
Heidelberg (2010). https://doi.org/10.1007/978-3-642-15205-4 5

21. Le, Q.L., Sun, J., Chin, W.-N.: Satisfiability modulo heap-based programs. In:
Chaudhuri, S., Farzan, A. (eds.) CAV 2016. LNCS, vol. 9779, pp. 382–404. Springer,
Cham (2016). https://doi.org/10.1007/978-3-319-41528-4 21

22. Madhusudan, P., Parlato, G., Qiu, X.: Decidable logics combining heap structures
and data. In: POPL 2011, pp. 611–622. ACM (2011)

23. Madhusudan, P., Qiu, X., Stefanescu, A.: Recursive proofs for inductive tree data-
structures. In: POPL, pp. 123–136 (2012)

24. Miné, A.: A new numerical abstract domain based on difference-bound matrices. In:
Danvy, O., Filinski, A. (eds.) PADO 2001. LNCS, vol. 2053, pp. 155–172. Springer,
Heidelberg (2001). https://doi.org/10.1007/3-540-44978-7 10

25. O’Hearn, P., Reynolds, J., Yang, H.: Local reasoning about programs that alter
data structures. In: Fribourg, L. (ed.) CSL 2001. LNCS, vol. 2142, pp. 1–19.
Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-44802-0 1

26. Piskac, R., Wies, T., Zufferey, D.: Automating separation logic using SMT. In:
Sharygina, N., Veith, H. (eds.) CAV 2013. LNCS, vol. 8044, pp. 773–789. Springer,
Heidelberg (2013). https://doi.org/10.1007/978-3-642-39799-8 54

27. Piskac, R., Wies, T., Zufferey, D.: Automating separation logic with trees and data.
In: Biere, A., Bloem, R. (eds.) CAV 2014. LNCS, vol. 8559, pp. 711–728. Springer,
Cham (2014). https://doi.org/10.1007/978-3-319-08867-9 47

28. Reynolds, J.C.: Separation logic: a logic for shared mutable data structures. In:
LICS, pp. 55–74 (2002)

29. Seidl, H., Schwentick, T., Muscholl, A., Habermehl, P.: Counting in trees for free.
In: Dı́az, J., Karhumäki, J., Lepistö, A., Sannella, D. (eds.) ICALP 2004. LNCS,
vol. 3142, pp. 1136–1149. Springer, Heidelberg (2004). https://doi.org/10.1007/
978-3-540-27836-8 94

30. Suter, P., Dotta, M., Kuncak, V.: Decision procedures for algebraic data types with
abstractions. In: POPL 2010, pp. 199–210. ACM (2010)

31. Tatsuta, M., Le, Q.L., Chin, W.-N.: Decision procedure for separation logic with
inductive definitions and presburger arithmetic. In: Igarashi, A. (ed.) APLAS 2016.
LNCS, vol. 10017, pp. 423–443. Springer, Cham (2016). https://doi.org/10.1007/
978-3-319-47958-3 22

32. Voigt, M.: The Bernays–Schönfinkel–Ramsey fragment with bounded difference
constraints over the reals is decidable. In: Dixon, C., Finger, M. (eds.) FroCoS
2017. LNCS (LNAI), vol. 10483, pp. 244–261. Springer, Cham (2017). https://doi.
org/10.1007/978-3-319-66167-4 14

33. Wies, T., Piskac, R., Kuncak, V.: Combining theories with shared set operations.
In: Ghilardi, S., Sebastiani, R. (eds.) FroCoS 2009. LNCS (LNAI), vol. 5749, pp.
366–382. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-04222-
5 23

34. Xu, Z., Chen, T., Wu, Z.: Satisfiability of compositional separation logic with
tree predicates and data constraints. In: de Moura, L. (ed.) CADE 2017. LNCS
(LNAI), vol. 10395, pp. 509–527. Springer, Cham (2017). https://doi.org/10.1007/
978-3-319-63046-5 31

https://doi.org/10.1007/978-3-662-49674-9_42
https://doi.org/10.1007/978-3-642-15205-4_5
https://doi.org/10.1007/978-3-319-41528-4_21
https://doi.org/10.1007/3-540-44978-7_10
https://doi.org/10.1007/3-540-44802-0_1
https://doi.org/10.1007/978-3-642-39799-8_54
https://doi.org/10.1007/978-3-319-08867-9_47
https://doi.org/10.1007/978-3-540-27836-8_94
https://doi.org/10.1007/978-3-540-27836-8_94
https://doi.org/10.1007/978-3-319-47958-3_22
https://doi.org/10.1007/978-3-319-47958-3_22
https://doi.org/10.1007/978-3-319-66167-4_14
https://doi.org/10.1007/978-3-319-66167-4_14
https://doi.org/10.1007/978-3-642-04222-5_23
https://doi.org/10.1007/978-3-642-04222-5_23
https://doi.org/10.1007/978-3-319-63046-5_31
https://doi.org/10.1007/978-3-319-63046-5_31

On the Complexity of Optimal Matching
Reconfiguration

Manoj Gupta1, Hitesh Kumar2, and Neeldhara Misra1(B)

1 Indian Institute of Technology, Gandhinagar, Gandhinagar, India
{gmanoj,neeldhara.m}@iitgn.ac.in

2 NISER Bhubaneswar, Bhubaneswar, India
hitesh.kumar@niser.ac.in

Abstract. We consider the problem of matching reconfiguration, where
we are given two matchings Ms and Mt in a graph G and the goal is
to determine if there exists a sequence of matchings M0, M1, . . . , M�,
such that M0 = Ms, all consecutive matchings differ by exactly two
edges (specifically, any matching is obtained from the previous one by
the addition and deletion of one edge), and M� = Mt. It is known that the
existence of such a sequence can be determined in polynomial time [5].

We extend the study of reconfiguring matchings to account for the
length of the reconfiguration sequence. We show that checking if we can
reconfigure Ms to Mt in at most � steps is NP-hard, even when the
graph is unweighted, bipartite, and the maximum degree is four, and
the matchings Ms and Mt are maximum matchings. We propose two
simple algorithmic approaches, one of which improves on the brute-force
running time while the other is a SAT formulation that we expect will
be useful in practice.

Keywords: Graph theory · Reconfiguration · Matchings
NP-hardness

1 Introduction

A reconfiguration problem typically is a reachability question setup in the solu-
tion space of some problem, with some appropriate notion of adjacency between
solutions. More precisely, given a set of solutions to some fixed problem, and
a notion of when two solutions are one step apart, a reconfiguration problem
usually asks if there is a path from one solution to another, and often one might
be interested in the shortest possible path. As a concrete example, consider the
satisfiability problem, and let us say that we are dealing with an arbitrary but
fixed instance of SAT over n variables. Every solution can be thought of as a
binary vector with n coordinates. One might say that two assignments are adja-
cent if the Hamming distance between their corresponding vectors is one. Now,
given two satisfying assignments τ1 and τ2, the reconfiguration problem for SAT
would ask if there is a path from τ1 to τ2 in the solution graph. In other words, is
c© Springer Nature Switzerland AG 2019
B. Catania et al. (Eds.): SOFSEM 2019, LNCS 11376, pp. 221–233, 2019.
https://doi.org/10.1007/978-3-030-10801-4_18

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-10801-4_18&domain=pdf
https://doi.org/10.1007/978-3-030-10801-4_18

222 M. Gupta et al.

it possible morph τ1 into τ2 by flipping the state of one variable at a time while
ensuring that each interim assignment is also satisfying? We note that reconfig-
uration is a broad theme and there are other aspects of the solution space that
one may also be interested in, such as structural issues about the graph of solu-
tions. In this work, however, we are focused on the complexity of the reachability
question. Notably, the tractability of the “base problem” does not seem to have
any predictable influence on the complexity of the corresponding reconfiguration
problem: in particular, there are examples of hard problems for which the recon-
figuration question is tractable, and vice-versa. For a comprehensive and recent
introduction to the general themes in the study of reconfiguration problems, we
refer the reader to the survey [8].

In an early study of reconfiguration problems [4,5], a number of tractable
cases were identified, most notably, these included the Matching Reconfigu-
ration problem, and the reconfiguration problem for tractable classes of SAT.
In an instance of Matching Reconfiguration, we are given two matchings
Ms and Mt in a graph G and the goal is to determine if there exists a sequence of
matchings M0,M1, . . . ,M�, such that M0 = Ms, all consecutive matchings differ
by exactly two edges, and M� = Mt. It turns out that the exact circumstances
in which such a sequence exists admits a neat characterization [5] even for more
general notions of reconfiguration. Our work focuses on the natural optimization
version of this question, where we are interested not only in the existence of such
a sequence, but also one whose length is at most a specified budget.

Our Contributions. We discover that the complexity of the problem is quite
different—compared to the issue of feasibility—once we impose a goal on the
length of the reconfiguration sequence. In particular, we show that checking if
we can reconfigure Ms to Mt in at most � steps is NP-hard, even when the graph
is unweighted, bipartite, and the maximum degree is four, and the matchings
Ms and Mt are maximum matchings.

We also propose two simple algorithmic approaches. The first is based on
a simple dynamic programming formulation that improves on the brute-force
running time while the other is by a reduction to a SAT instance where all
the clauses have at most four literals. While the running time of the dynamic
programming approach is only a mild improvement on the natural brute-force
algorithm, the approach is quite generic and works for many other variants of the
problem. Similarly, we hope that the SAT formulation will be useful in practice.

Related Work. The Matching Reconfiguration problem is studied in [5]
with the setting of TAR rules of reconfiguration: every step involves the addition
or deletion of an edge, and every intermediate matching has size at least k,
where k is a fixed threshold. More recently, [6] initiates a study of reconfiguring
b-matchings under a more restricted specification of permitted reconfiguration
steps, namely that every “step” involves the deletion of an edge and the addition
of an edge. We recall that b-matchings are a more general notion of matchings,
where every vertex has a capacity, and a b-matching M is a subset of edges which
are such that the number of edges in M that are incident on a vertex v is at most

On the Complexity of Optimal Matching Reconfiguration 223

the capacity of v. The results in [6] establish that the feasibility of reconfiguring
b-matchings in this setting can be determined in polynomial time, even when we
have an edge-weighted graph, for certain classes of graphs (that include bipartite
graphs). However, these results also do not attempt to optimize the total length
of the reconfiguration sequence. On the other hand, studies of reconfiguration
in the context of other problems have often focused on the shortest path in the
reachability graph. As an illustration, we refer the reader to this comprehensive
account of vertex cover reconfiguration [7] and also the survey [8].

2 Preliminaries

We employ standard graph-theoretic notation, see, for example, Diestel [3]. We
recall some key definitions that will be useful in the subsequent sections. A
matching is a subset M of edges of G such that no two edges in M share an
endpoint. A vertex v in G is said to be M -covered or saturated by M if v is
incident to an edge in M and M-exposed or unsaturated otherwise. A vertex
cover of a graph G = (V,E) is a subset S ⊆ V such that there are no edges in
the graph G \S. A graph is bipartite if its vertex set can be partitioned into two
parts (A,B) such that all edges have one of their endpoints in A and the other
in B. We recall the following fundamental connection between the size of the
smallest vertex cover and the size of a maximum matching in bipartite graphs.

Lemma 1 (König’s Lemma [2,3]). The size of a maximum matching in a
bipartite graph G is equal to the size of a minimum vertex cover in G.

We consider the Optimal Matching Reconfiguration problem: here, we
are given two matchings Ms and Mt of the same size in an unweighted graph G
and a budget �. The goal is to determine if there exists a sequence of matchings
M0,M1, . . . ,M�, such that M0 = Ms, all consecutive matchings differ by exactly
two edges, that is:

|Mi−1 \ Mi| = |Mi \ Mi−1| = 1 for all i ∈ [�],

and M� = Mt. In other words, every step involves the deletion and addition
of one edge. We refer to such a sequence as a valid X � Y reconfiguration
sequence. We summarize this problem below.

Optimal Matching Reconfiguration
Input: A graph G, two matchings Ms and Mt where |Ms| = |Mt| = k, and
a positive integer �.
Question: Is there a valid reconfiguration sequence of length at most � that
starts at Ms and ends at Mt?

We recall that the Matching Reconfiguration problem as defined in [5]
is the following related problem: here we are given an unweighted graph G, a
threshold k, two matchings Ms and Mt of size at least k, and the question is if
there is a sequence of matchings in G that starts at Ms and ends at Mt, each

224 M. Gupta et al.

matching in the sequence is of size at least k and is obtained from the previous
one by either the addition or deletion of an edge (we refer to this as the TAR
reconfiguration model). Note that in our setting, the emphasis is on the total
length of the reconfiguration sequence. Also, for simplicity, our reconfiguration
rules are simpler than the TAR model, because we insist on adding one edge and
deleting one edge in every step. However, we note that this is without loss of
generality, since the two models are essentially the same if the given matchings
are of maximum size (as will be the case for our hardness result), while our
algorithmic result can be easily amended to account for the TAR rules as well.

We note that any Yes-instance of Optimal Matching Reconfiguration
in fact admits a reconfiguration sequence of length O(n2), and this can be derived
by a careful analysis of the characterization given by [5]. Roughly speaking, the
greedy reconfiguration algorithm proposed by [5] considers the components of
the graph MsΔMt—the main challenge is the components C that form cycles in
this graph. It turns out that the Ms edges on C can be reconfigured into the Mt

edges precisely when there is a Ms-alternating path starting at an unsaturated
vertex of Ms and ending at a vertex of C. So if we were to simply reconfigure
every cycle in the natural way, we will have a reconfiguration sequence whose
length is at most O(n2). This also establishes that the problem is in NP: indeed,
if � > n2, then this problem is equivalent to determining the feasibility of the
reconfiguration, and the problem can be resolved in polynomial time. Otherwise,
the reconfiguration sequence has bounded length and is the desired certificate.

Proposition 1. If (G,Ms,Mt, �) is a Yes-instance of Optimal Matching
Reconfiguration, then there exists a valid reconfiguration sequence of length
at most O(n2). In particular, therefore, Optimal Matching Reconfigura-
tion is in NP.

We also frequently invoke the following fact about reconfigurable pairs of
matchings, which is a part of the characterization by [5]. For two matchings
Ms and Mt, cycles C in the graph induced by the edges of MsΔMt are called
(Ms,Mt)-alternating cycles.

Proposition 2 (Lemma 1, [5]). Suppose that both Ms and Mt are maximum
matchings of G, and let k = |Ms| = |Mt|. Then, there exists a sequence of
matchings which transforms Ms into Mt so that all intermediate matchings have
size at least (k − 1) if and only if, for every (Ms,Mt)-alternating cycle C, there
exists an Ms-alternating path in G starting with an Ms-exposed vertex and ending
at a vertex in C.

Note that although the characterization above is stated in the context of the
TAR reconfiguration rules, it applies in its stated form to our reconfiguration
setup, since—as we have mentioned previously—the two models are equivalent
in the context of matchings of maximum size.

On the Complexity of Optimal Matching Reconfiguration 225

3 NP-Hardness of Optimal Reconfiguration

We show that Optimal Matching Reconfiguration is NP-hard by a reduc-
tion from 3-SAT. Recall that an instance of 3-SAT consists of variables and
clauses in conjunctive normal form. We note that 3-SAT is hard even when
every literal occurs in exactly two clauses, and every clause has exactly three
literals [1]. This is the version of 3-SAT that we will reduce from. We refer to
this version of the problem as (3, B2)-SAT. We need the restricted version to
deduce that the maximum degree of the reduced instance is at most four. In
particular, the result that we establish in this section is the following.

Theorem 1. The Optimal Matching Reconfiguration problem is NP-
hard, even on bipartite graphs of maximum degree four.

Before giving the formal proof of Theorem1, we give some intuition for why
one might expect this problem to be NP-hard. In the setting of determining
feasibility, the cycles in MsΔMt needed “outside help” to be reconfigured: which
is to say that we needed to free up a vertex on the cycle by pushing one of them
out along an alternating Ms-path to an Ms-exposed vertex. Typically such a
reconfiguration sequence would be like the one shown in Fig. 1.

Fig. 1. A typical reconfiguration sequence that handles a cycle in MsΔMt. The edges
in red depict the current matching at every stage of the reconfiguration. The matching
Ms, therefore, is the collection of red edges in the first step. The target matching Mt

comprises of the blue edges in the first step along with the red edge that is not on the
cycle in the first step. (Color figure online)

When we are constrained on the length of the reconfiguration sequence, then
the choice of which Ms-alternating path we use is crucial. As an illustration,
consider the example in Fig. 2. Here, we have at least two distinct ways of recon-
figuring the two cycles shown and one of them is shorter than the other. It turns

226 M. Gupta et al.

out that the difficulty of making these choices can in fact be used to encode an
instance of SAT. In particular, we will setup our initial and target matchings Ms

and M0 in such a way that the graph MsΔM0 will have a cycle corresponding
to every clause of the SAT formula and the only way to reconfigure this cycle
will be via an alternating path ending at Ms-exposed vertices corresponding to
variables that appear in the clause. Looking at this from the perspective of the
variables, on the other hand: the setup ensures that every variable can “provide”
for an alternating path that “fixes” cycles corresponding to all the clauses that
the variable can satisfy: however, the budget on the total length of the reconfigu-
ration sequence demanded is designed to ensure that only one set of alternating
paths can be “triggered” for any variable—either the ones leading up to the
clauses where the variable appears positively, or to the ones where it appears
negatively. We now turn to a detailed description of our reduction.

Fig. 2. A situation where we have two possibilities for reconfiguring the two cycles
depicted in the picture. As before, the edges in red depict the current matching, and
the blue edges are from Mt. Also, any red edge that is not on the cycle is also a part
of Mt. Note that we could either reconfigure the two cycles separately via the paths
leading up to the exposed yellow vertices, or we could use the green vertex to shift
the edge incident on the star vertex on the left, and then reconfigure both cycles using
paths starting from the star vertex. (Color figure online)

Let φ be an instance of (3, B2)-SAT over variables V = {x1, . . . , xn}
and clauses C = {C1, . . . , Cm}. We use (Gφ,Ms,Mt, �) to denote the Opti-
mal Matching Reconfiguration instance that we will construct based on
φ. We begin with a description of the graph Gφ, after which we will define the
matchings Ms and Mt, and finally, we will specify �. Note that throughout this
discussion, we will continue to use n and m to denote, respectively, the number
of variables and clauses in φ, rather than the number of vertices and edges in
the reduced graph.

We begin by introducing variable and clause gadgets as depicted in Fig. 3.
Note that the graph constructed so far (by introducing the variable and clause

On the Complexity of Optimal Matching Reconfiguration 227

gadgets for each variable and clause in V and C respectively) has 9n+6m vertices
and 10n + 6m edges. The graph is also bipartite with the following1 bipartition:

A = {ti, xi, fi, x
1
i , x

3
i | i ∈ [n]} ∪ {Dp

j ,Dq
j ,D

r
j | j ∈ [m]},

and:
B = {ai, bi, x

2
i , x

4
i | i ∈ [n]} ∪ {Cp

j , Cq
j , Cr

j | j ∈ [m]}.

Fig. 3. Left: a variable gadget corresponding to the variable x1. Right: a clause gadget
corresponding to the clause C1 := (xp, xq, xr). For simplicity of notation, we do not
distinguish the polarity (positive or negative occurrence) of the literals in the labels of
the vertices of the clause gadget, although we will make this explicit when we describe
the connection between the clause and the literal gadgets. (Color figure online)

We will now add edges between the clause and the variable gadgets while
maintaining this bipartition. In particular, let pi and qi be the indices of the
clauses where xi appears positively. Then we add an edge from ti to the vertices
Ci

j for j ∈ {pi, qi}. Analogously, let ri and si be the indices of the clauses
where xi appears negatively. Then we add an edge from fi to the vertices Ci

j for
j ∈ {ri, si}. It is easy to see that the resulting graph is bipartite.

We now describe the initial and final matchings of our reconfiguration
instance. The matching Ms is given by all the red edges shown in the vari-
able and clauses gadgets, and the matching Mt is given by all the blue edges
from the four-cycles (x1

i , x
2
i , x

3
i , x

4
i) in the variable gadget, the blue edges in the

cycles of the clause gadgets, and all the remaining red edges that do not involve
the vertices (x1

i , x
2
i , x

3
i , x

4
i). We fix � := 5n+4m, and this completes the descrip-

tion of the reduced instance. Note that the sizes of the matchings Ms and Mt

are 4n + 3m. Also note that the vertices:

S := {ai, bi, x
2
i , x

4
i | i ∈ [n]} ∪ {Cp

j , Cq
j , Cr

j | j ∈ [m]}
1 There is a slight abuse of notation here: for every j ∈ [m], we are using the super-

scripts p, q, and r to denote the indices of the variables whose literals appear in the
clause Cj . These superscripts also be indexed by j, but these are omitted for clarity.

228 M. Gupta et al.

form a vertex cover of size (4n + 3m). This establishes, by König’s Lemma (c.f.
Lemma 1), that both the matchings are, in fact, maximum-sized matchings of
the graph Gφ. It is also easy to see that the maximum degree of any vertex in
this graph is at most four, given that every literal appears in exactly two clauses.
We now argue the equivalences of these two instances.

The Forward Direction. Let τ be a satisfying assignment for φ. We propose
a reconfiguration sequence Sτ based on τ . Recall that pi and qi are the indices
of the clauses where xi appears positively, while ri and si are the indices of the
clauses where xi appears negatively. For each variable xi, perform the following
steps.

1. If τ(xi) = 1, then remove the edge (ai, ti) and add the edge eT
i .

2. If the clause gadget corresponding to Ci
j for j = pi is already reconfigured,

skip this step. Otherwise, remove the edge incident to Cj
i in the clause gadget

from the matching Ms and add the edge (ti, Ci
j), for j = pi. Reconfigure the

cycle in the natural way, ending with the removal of the edge (ti, Ci
j) and the

addition of the edge incident to Ci
j from Mt.

3. Similarly, if the clause gadget corresponding to Ci
j for j = qi is already

reconfigured, skip this step. Otherwise, proceed along the lines of the previous
step, this time for the clause gadget Ci

j for j = qi.
4. Reconfigure the cycle (x1

i , x
2
i , x

3
i , x

4
i) by removing the edge (x1

i , x
2
i) and adding

the edge (ti, x2
i); removing the edge (x4

i , x
1
i) and adding the edge (x4

i , x
1
i); and

finally, removing the edge (ti, x2
i) and adding the edge (x2

i , x
3
i).

5. Remove eT
i and add (ai, ti), restoring the state of the edge eT

i .

The steps above are specified similarly for the case when, in the first step,
τ(xi) = 0 rather than τ(xi) = 1. The only changes are that j = ri and j = si in
steps 2 and 3, and the order of addition and removal of edges will be different in
the last step. Observe that these steps, once executed, do form a valid Ms � Mt

reconfiguration sequence: the states of all edges common to Ms and Mt are seen
to be restored, the edges on the cycles (x1

i , x
2
i , x

3
i , x

4
i) are explicitly reconfigured

for all i ∈ [n]. The only edges left to consider are those from the clause gadgets:
but since we started from a satisfying assignment, every clause gadget must have
been explicitly handled by the process above. It is straightforward to verify that
the sequence described above has at most 5n + 4m steps. This completes the
argument in the forward direction.

The Reverse Direction. In the reverse direction, let S be a valid Ms � Mt

reconfiguration sequence of length at most �. Our argument is based on how the
budget � restricts the reconfiguration sequence in manner that leads us to a well-
defined assignment of the variables, which will also turn out to be satisfying if
the reconfiguration sequence was valid. We begin by making the following claim:

Claim. In any valid Ms � Mt reconfiguration sequence of length at most �,
for any i ∈ [n], either eT

i or eF
i are present in some matching of the sequence.

Consequently, in such matchings, the edge (ai, ti) (respectively, (bi, fi)) are not
present.

On the Complexity of Optimal Matching Reconfiguration 229

This claim follows from the fact that the only Ms-alternating paths starting
at an Ms-exposed vertex and ending at the cycle (x1

i , x
2
i , x

3
i , x

4
i) are:

(xi, ai) − (ai, ti) − (ti, x2
i) and (xi, bi) − (bi, fi) − (fi, x

4
i).

Note that (x1
i , x

2
i , x

3
i , x

4
i) is, in particular, a cycle in the graph induced by the

edges of MsΔMt, and therefore the only way to reconfigure it is along one of the
two paths above. Therefore, if neither eT

i or eF
i are present in any matching of a

valid Ms � Mt reconfiguration sequence, then we have a contradiction because
adding these edges are the only way to remove the edges (x1

i , x
2
i) and (x3

i , x
4
i),

which are not in Mt. Our second claim is the following:

Claim. In any valid Ms � Mt reconfiguration sequence of length at most �, for
any i ∈ [n], if eT

i appears in some matching of the sequence, then eF
i does not

appear in any matching of the sequence, and vice-versa.

This follows from the following counting argument. Note that we spend at
least two steps per vertex gadget (one in adding of the edges eT

i or eF
i and another

to delete whichever edge was added—recall that these edges do not belong to Mt

and have to be removed). Further, we spend three additional steps per vertex
gadget in reconfiguring the cycle (x1

i , x
2
i , x

3
i , x

4
i), and similarly, we need at least

four steps to reconfigure the cycles corresponding to the clause gadgets. It is easy
to check that all of these requirements are disjoint. Therefore, we have already
used up 5n + 4m steps assuming that exactly one of the edges eT

i or eF
i were

added throughout the course of the reconfiguration sequence. In other words,
there is “no room”, because of the budget �, to add both eT

i or eF
i during the

course of our reconfiguration.
We are now ready to propose an assignment τS to the variables. We set

xi to 1 if eT
i was added in some matching of S, and 0 otherwise. We claim

that this is a satisfying assignment. Suppose not, and in particular, let C =
(�p, �q, �r) be a clause that is not satisfied by τ , where �j is a positive or negative
occurrence of the variable xj , for j ∈ {p, q, r}. To make this discussion concrete,
let C = (xp, xq, xr) (all the other cases have analogous arguments). Since this
clause is not satisfied, we have that the edges eT

p , eF
q and eT

r were not added
to any matching in the sequence S. However, note that the only Ms-alternating
paths starting at Ms-exposed vertices that end at the cycle of the clause gadget
corresponding to C are those that start at these edges. Therefore, without adding
these edges, it is not possible to reconfigure C, which contradicts the fact that
we started with a valid Ms � Mt reconfiguration sequence. Therefore, τS is
in fact a satisfying assignment and this concludes the argument in the reverse
direction and of the NP-hardness of Optimal Matching Reconfiguration.

4 An Exact Algorithm for Optimal Reconfiguration

In this section, we describe an exact algorithm for the Optimal Match-
ing Reconfiguration problem. Throughout this section, for an instance

230 M. Gupta et al.

(G,Ms,Mt, �) of Optimal Matching Reconfiguration, we use n and m
to denote, respectively, the number of vertices and edges in G. Observe that
the natural brute-force approach would be to guess all possible reconfiguration
sequences and check if any of them is a valid reconfiguration sequence. This
amounts to guessing � pairs of edges {(ei, fi)}�

i=1 such that ei is an edge in the
matching Mi, while fi is the edge that is added. Note that if the reconfiguration
is between matchings of maximum size, then fi must be incident on one of the
endpoints of ei. Recalling that k denotes the size of the matchings Ms and Mt,
note that the running time of the brute-force algorithm is (km)�, which is nO(�).
Using the bound on � that we have by Proposition 2, we note that this running
time is bounded by nO(n2).

We propose two approaches that improve on the brute-force search. One is
by a straightforward dynamic programming formulation, and the other is by a
reduction to a SAT instance with O(m�) variables. While the dynamic program-
ming approach has the better running time, we describe the SAT formulation
of the problem as an alternative that may be useful in practice given the avail-
ability of SAT solvers. We also note that both approaches are fairly generic and
may prove to be relevant for other reconfiguration problems as well.

Dynamic Programming

Let (G,Ms,Mt, �) be an instance of Optimal Matching Reconfiguration,
where |Ms| = |Mt| = k. Consider a dynamic programming table with binary
entries defined as follows:

T(X,Y, d) = 1 iff there exists a valid X � Y reconfiguration sequence of length at most d,

where X and Y are matchings of size k and 1 ≤ d ≤ � is a positive integer.
Note that the size of the DP table is O(m2k · �), where m denotes the number of
edges in G. By the semantics of the table, we have a Yes-instance of Optimal
Matching Reconfiguration if and only if T(Ms,Mt, �) = 1. Observe that
the entries of the table are easy to populate when d = 1: indeed, if |XΔY | is
more than one, the corresponding entry is zero, and it is one otherwise (it is
clearly one when |XΔY | = 0 and if |XΔY | = 1, then note that removing the
edge in X \ Y and adding the edge in Y \ X is always a valid reconfiguration
step).

Now we turn to the recurrence for the computation of T(X,Y, d). Let M(Y, 1)
denote the set of all matchings Z of size k such that Y can be obtained from Z
in one valid reconfiguration step. Then, we have:

T(X,Y, d) = ∨Z∈M(Y,1)T(X,Z, d − 1) (1)

Observe that we are, in effect, “guessing” the edge that was added and
removed in the last step of the reconfiguration sequence. The dependence graph
of this recurrence is clearly a DAG, since we compute the entries in order of
increasing values of d. We briefly argue the correctness of the recurrence by

On the Complexity of Optimal Matching Reconfiguration 231

induction on d. To this end, we assume that the entries of T(X,Y, d′) for all
d′ ≤ d are computed accurately by the recurrence (1). On the one hand, suppose
there exists a valid X � Y reconfiguration sequence of length at most d:

SX,Y : M0 := X,M1, . . . ,Md−1,Md := Y,

Now, note that SX,Y truncated at the first d− 1 steps is a valid X � Md−1

reconfiguration sequence of length at most d − 1 and that Md−1 ∈ M(Y, 1). On
the other hand, if the R.H.S. of (1) is 1, then, by the induction hypothesis, there
is a valid X � Z reconfiguration sequence of length at most d − 1 for some
Z ∈ M(Y, 1). By the definition of M(Y, 1), this sequence can be extended to
a valid X � Y reconfiguration sequence in one step, so that the length of the
overall sequence is at most d.

We claim that overall running time of this algorithm is nO(n). The bound on
the running time follows from the fact that the number of edges is at most n2 and
k ≤ n. To compute any entry of the DP table (including the ones corresponding
to the base cases), we need polynomial time overall: first we need to compute
the matchings in M(Y, 1), and it is easy to see that there are at most n2 such
matchings, and then we need polynomial time to perform the corresponding
lookups.2 This concludes the argument and gives us the following.

Lemma 2. The Optimal Matching Reconfiguration problem can be
decided by an algorithm whose running time is bounded by nO(n).

We remark that this approach can be adapted to work with the TAR model
of reconfiguration, and also to weighted graphs. We now turn to our second
approach, which encodes this problem as a SAT instance.

Reduction to SAT

To create a SAT instance that captures an instance (G,Ms,Mt, �) of Optimal
Matching Reconfiguration, we introduce the following m� variables:

VG := {xe,i | e ∈ E(G), i ∈ [�] ∪ {0}}
Intuitively, setting the variable xe,i to one represents the fact that the edge e is

present in Mi, the ith matching in a hypothetical valid Ms � Mt reconfiguration
sequence. To ensure that an assignment to the variables VG corresponds to a valid
reconfiguration sequence (and vice-versa), we introduce the following clauses.

1. The chosen edges at every step form a matching. For all i ∈ [�] ∪ {0},
and for each vertex v ∈ G, introduce the following clause:

∧

e,f inc to v,e �=f

(xe,i ∨ xf,i)

2 We are not explicitly emphasizing the polynomial factors here because the exponen-
tial term, as stated, is already dominant over them.

232 M. Gupta et al.

2. Encoding the reconfiguration rule. For every pair of edges e and f and
for every i ∈ [� − 1] ∪ {0}, introduce the clauses:

(xe,i ∨ xf,i ∨ xe,i+1 ∨ xf,i+1)

and also the clauses:

(xe,i ∨ xf,i ∨ xe,i+1 ∨ xf,i+1)

If the clauses above are satisfied, then in the natural interpretation of the
assignment of the variables as a sequence of matchings, note that we have
neither removed more than one edge in moving from one step to the next nor
do we add more than one edge to the matching.

3. The start and end conditions. We encode the fact that the initial match-
ing is Ms and the final matching is Mt by introducing singleton clauses cor-
responding to the edges in these matchings:

(
∧

e∈Ms

(xe,0)

)
∧

(
∧

e∈Mt

(xe,�)

)
.

This concludes the description of the clauses. It is easily checked that sat-
isfying assignments of this formula are in one-to-one correspondence with valid
reconfiguration Ms � Mt sequences of length �.

5 Concluding Remarks

There are several questions of interest that remain open. Most notably, it would
be interesting to improve the exact exponential complexity of Optimal Match-
ing Reconfiguration. Also, it would be interesting to investigate the param-
eterized complexity of the problem with respect to two natural parameters: the
common size of the matchings (k), and the length of the reconfiguration sequence
(�). In the setting of weighted graphs, even the question of the feasibility of the
reconfiguration remains open. Some recent work [6] demonstrates polynomial
time algorithms for special classes of graphs (which include the class of bipartite
graphs) in this setting. Generalizing the characterization obtained by [5] to the
case of weighted graphs is an interesting issue to pursue.

References

1. Berman, P., Karpinski, M., Scott, A.D.: Approximation hardness of short symmetric
instances of MAX-3SAT. In: Electronic Colloquium on Computational Complexity
(ECCC), no. 049 (2003)

2. Dénes, K.: Graphok és mátrixok. Matematikai és Fizikai Lapok, 38 (1931)
3. Diestel, R.: Graph Theory. GTM, vol. 173, 5th edn. Springer, Heidelberg (2017).

https://doi.org/10.1007/978-3-662-53622-3

https://doi.org/10.1007/978-3-662-53622-3

On the Complexity of Optimal Matching Reconfiguration 233

4. Gopalan, P., Kolaitis, P.G., Maneva, E.N., Papadimitriou, C.H.: The connectivity of
boolean satisfiability: computational and structural dichotomies. SIAM J. Comput.
38(6), 2330–2355 (2009)

5. Ito, T., et al.: On the complexity of reconfiguration problems. Theoret. Comput.
Sci. 412, 1054–1065 (2011)

6. Ito, T., Kakimura, N., Kamiyama, N., Kobayashi, Y., Okamoto, Y.: Reconfiguration
of maximum-weight b-matchings in a graph. J. Comb. Optim. (2018)

7. Mouawad, A.E., Nishimura, N., Raman, V., Siebertz, S.: Vertex cover reconfigura-
tion and beyond. Algorithms 11(2), 20 (2018)

8. Nishimura, N.: Introduction to reconfiguration. Algorithms 11(4), 52 (2018)

Forbidden Directed Minors, Directed
Path-Width and Directed Tree-Width

of Tree-Like Digraphs

Frank Gurski and Carolin Rehs(B)

Institute of Computer Science, Algorithmics for Hard Problems Group,
Heinrich-Heine-University Düsseldorf, 40225 Düsseldorf, Germany

carolin.rehs@hhu.de

Abstract. There have been many attempts to find directed graph
classes with bounded directed path-width and bounded directed tree-
width. Right now, the only known directed tree-width-/path-width-
bounded graphs are cycle-free graphs with directed path-width and
directed tree-width 0. In this paper, we introduce directed versions of
cactus trees and pseudotrees and -forests and characterize them by at
most three forbidden directed graph minors. Furthermore, we show that
directed cactus trees and forests have a directed tree-width of at most
1 and directed pseudotrees and -forests even have a directed path-width
of at most 1.

Keywords: Directed cactus trees · Directed pseudoforests
Directed graph minors · Directed path-width · Directed tree-width

1 Introduction

Cactus trees and pseudotrees are well-known undirected graph classes, which are
an attempt to define tree-like graphs that are not exactly trees. There are many
problems which are NP-hard on graphs but can be solved in polynomial time
for cactus trees. The best known use is for genome comparisons, as for example
in [11] and [12]. Cactus trees have bounded undirected tree-width 2.

Pseudotrees are a superclass of the often considered sunlet graphs. They are
graphs which contain at most one cycle, so a small extension of trees. Pseudo-
forests are graphs with only few cycles, technically with at most one cycle per
connected component. Many problems, which are NP-hard on graphs, but solv-
able in polynomial time on trees, are still polynomial on pseudotrees and -forests.
Pseudoforests have bounded undirected path-width 2.

As both undirected graph classes have many applications and bounded tree-
width or even bouned path-width, it is interesting to define directed versions of
these classes and consider their directed tree-width and directed path-width.

The work of the second author was supported by the German Research Association
(DFG) grant GU 970/7-1.

c© Springer Nature Switzerland AG 2019
B. Catania et al. (Eds.): SOFSEM 2019, LNCS 11376, pp. 234–246, 2019.
https://doi.org/10.1007/978-3-030-10801-4_19

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-10801-4_19&domain=pdf
https://doi.org/10.1007/978-3-030-10801-4_19

Forbidden Directed Minors, Directed Path-Width and Directed Tree-Width 235

During the last years, width parameters for directed graphs have received a
lot of attention [4]. Although among these directed tree-width and directed path-
width were much considered, no graph class with bounded directed tree-width
or path-width was found except directed acyclic graphs (DAGs) and complete
biorientations of graphs of bounded undirected tree-width or path-width. In this
paper, we define for the first time directed graph classes, which are bounded
in those parameters and further related to some well-known undirected graph
classes.

As finding forbidden graph minors for some digraph class of bounded directed
path-width seems to be really difficult [9], it is already a step in the right direction
to find special class of bounded directed path-width or bounded directed tree-
width, which is characterizable by forbidden minors.

2 Preliminaries

Cactus trees are well-known in graph theory. The name “cactus” has been intro-
duced by Harary and Uhlenbeck in 1953 [7]. The definition has slightly changed
since then, whereas in the original definition cacti where requested to consist
only of triangles, today’s more common definition is as follows:

Definition 1 (Cactus tree). A cactus tree is a connected graph G = (V,E),
where for any two cycles C1 and C2 it holds that they have at most one joint
vertex.

The set of cactus graphs is a superset of the pseudotrees, which are again a
superset of the well-known sunlet graphs.

Definition 2 (Pseudotree). A pseudotree is a connected graph which contains
at most one cycle.

It is possible to extend these definitions to forests, which means that they are
not necessarily connected. A cactus forest is a graph where any two cycles have
at most one joint vertex, and a pseudoforest is a graph where every connected
component contains at most one cycle.

Definition 3 (Edge contraction). Let G = (V,E) be a graph with e =
{u, v} ∈ E, u �= v. The contraction of e leads to a new graph G′ = (V ′, E′)
with V ′ = V \{u, v} ∪ {w} with w /∈ V and E′ = {{a, b} | a, b ∈ V ∩ V ′, {a, b} ∈
E or a = w, {u, b} or {v, b} ∈ E or b = w, {a, u} or {a, v} ∈ E}.1

A graph minor of a graph G = (V,E) is a graph G′ = (V ′, E′), if G′ can be
obtained by forming subgraphs and edge contraction of G. Formally, we write
G′ � G.

1 This means, in graph G′ the edge e and its two incident vertices u and v are replaced
by the vertex w and all other edges in G incident with u or v are adjacent with w
in G′.

236 F. Gurski and C. Rehs

Whereas the set of cactus trees and the set of pseudotrees are not closed
under the graph minor operation, as subgraphs could create unconnected graphs,
cactus forests can be characterized by one forbidden graph minor, the diamond
graph D4 with four vertices, which is the K4 with one edge less [3]. This means,
that every graph, which does not have D4 as a graph minor, is a cactus forest.
As pseudoforests are a subset of cactus forests, D4 is also a forbidden minor for
them, as well as the butterfly graph B5. Every graph, which has neither D4 nor
B5 as a graph minor, is a pseudoforest.

Cactus forests are of bounded tree-width and pseudoforests are even of
bounded path-width.

3 Directed Cactus Forests and Pseudoforests

Now we want to apply the definitions of cactus trees and forests as well as pseu-
dotrees and -forests to directed graphs. For directed cactus trees, it is possible
to use nearly the same definition as for undirected cactus trees:

Definition 4 (Directed cactus tree). A directed cactus tree is a strongly
connected digraph G = (V,E), where for any two directed cycles C1 and C2 it
holds that they have at most one joint vertex.

This definition remains equal if C1 and C2 must have exactly one joint vertex,
and it is equal to the definition given in [1]:

Definition 5 (Directed cactus tree). A directed cactus tree is a strongly
connected digraph in which each arc is contained in exactly one directed cycle.
The class of all directed cactus trees is named DCT.

It would also be possible to define cactus tree as weakly connected subgraphs,
where two directed cycles have at most one joint vertex. This would lead to a
superset of Definition 4 and a subset of directed cactus forests, which can be
defined as follows:

Definition 6 (Directed cactus forest). A directed cactus forest is a digraph
G = (V,E), where for any two directed cycles C1 and C2 it holds that they have
at most one joint vertex. The class of all directed cactus forests is named DCF.

Note that if G does not need to be strongly connected, it is not equal if C1

and C2 have exactly one directed cycle. It though holds that a graph is a directed
pseudoforest, if and only if each arc is contained in at most one cycle. It further
holds that if G is a directed cactus tree, then its underlying (undirected) graph
u(G) is a cactus tree. But if G is a directed cactus forest, the underlying graph
does not need to be neither a cactus tree nor a graph of which every connected
component is a cactus tree. The other way around is only true if we use an
orientation where no bioriented arcs are allowed. Then if G is an undirected
cactus tree or a graph of which every connected component is a cactus tree,
then every orientation of G is a directed cactus forest.

Forbidden Directed Minors, Directed Path-Width and Directed Tree-Width 237

For pseudotrees, there are also different ideas of defining a directed version,
depending on whether strong or weak connectivity is used. Here it is more sensi-
ble to use weak connectivity, because a strongly connected graph containing at
most one cycle is exactly a cycle.

Definition 7 (Directed pseudotree). A directed pseudotree is a weakly con-
nected digraph which contains at most one directed cycle. The class of all directed
pseudotrees is named DPT.

In contrast to directed cactus forests, it does matter for directed pseudoforests
if we consider strong or weak connectivity:

Definition 8 (Directed weak pseudoforest). A directed weak pseudoforest
is a digraph, in which every weakly connected component contains at most one
directed cycle. The class of all directed weak pseudoforests is named DWPF.

Definition 9 (Directed strong pseudoforest). A directed strong pseudofor-
est is a digraph, in which every strongly connected component contains at most
one directed cycle, i.e. every nontrivial component contains exactly one directed
cycle. The class of all directed strong pseudoforests is named DSPF.

Then directed strong pseudoforests are a superclass of directed weak pseud-
oforest, as every strongly connected component is also a weakly connected com-
ponent. It further holds, that directed strong pseudoforests are exactly those
graphs, where any two directed cycles have no joint vertex, or where every ver-
tex is in at most one cycle.

Note that here as well it holds that if G is a directed pseudotree, the under-
lying graph u(G) is an undirected pseudotree. For directed weak pseudoforests
the underlying undirected graphs are undirected pseudoforests, but for directed
strong pseudoforests this is not generally true. But it holds that every orientation
of an undirected pseudoforest, is a directed strong pseudoforest.

Proposition 1. We have the following inclusions for tree-like digraphs.

DPT ⊂ DCT ⊂ DCF (1)
DPT ⊂ DWPF ⊂ DSPF ⊂ DCF (2)

4 Directed Graph Minors of Tree-Like Digraphs

As cactus forests and pseudoforests are characterizable by forbidden graph
minors, we want to characterize their directed versions by forbidden directed
graph minors. Therefore, we first need to define directed graph minors.

Definition 10 (Directed edge contraction). Let G = (V,E) be a digraph
with e = (u, v) ∈ E. The contraction of e leads to a new digraph G′ = (V ′, E′)
with V ′ = V \ {u, v} ∪ {w} with w /∈ V and E′ = {(a, b) | a, b ∈ V ∩ V ′, (a, b) ∈
E or a = w, (u, b) or (v, b) ∈ E or b = w, (a, u) or (a, v) ∈ E}.2
2 This means, in digraph G′ the edge e and its two incident vertices u and v are

replaced by the vertex w and all other edges in G incident with u or v are incident
with w in G′.

238 F. Gurski and C. Rehs

There are different ways of defining graph minors using directed edge contrac-
tion. As directed path-width and directed tree-width are not monotone under
the directed edge contraction on every edge, it is sensible to restrict the edges,
on which directed edge contraction can be used. We introduce an equivalent
definition to the one introduced by Kintali and Zhang in [10]. Therefore we need
to define cycle contraction:

Definition 11 (Directed cycle contraction). Let G = (V,E) be a digraph
with C = {v1, . . . , v�} a cycle. The contraction of C leads to a new digraph
G′ = (V ′, E′) with V ′ = V \ C ∪ {w} with w /∈ V and E′ = {(a, b) | a, b ∈
V ∩ V ′, (a, b) ∈ E or a = w, (vi, b) ∈ E for 1 ≤ i ≤ � or b = w, (a, vi) ∈
E for 1 ≤ i ≤ �}.3

Butterfly contractions are defined by Johnson et al. in [8] as directed edge
contractions of an edge e = (u, v), where either e is the only outgoing edge of u or
e is the only incoming edge of v. The definition of out-contraction of [10] is equal
to deleting all outgoing edges of u but e and then doing a butterfly contraction,
the definition of in-contraction is equal to deleting all incoming edges of v but
e and doing a butterfly contraction of e. Therefore, the following definition of
directed graph minors is equal to the one given in [10]:

Definition 12 (Directed graph minor). Let G = (V,E) be a digraph. A
digraph G′ = (V ′, E′) is a directed minor of G, i.e. G′ � G, if G′ can be
obtained by creating subgraphs, performing cycle contractions and performing
butterfly contractions on G.

Furthermore, the directed graph minor relation is transitive, reflexive and
antisymmetric, but not symmetric.

Directed pseudotrees and directed cactus trees can not be closed under
directed minor operations, as they are not even closed under the subgraph oper-
ation. Directed cactus forests and directed strong/weak pseudoforests are closed
under directed graph minor operations by the following results.

Lemma 1. Directed cactus forests are closed under directed graph minor oper-
ations.

Proof. Let G = (V,E) be a directed cactus forest. Then it holds for every two
cycles C1, C2 that they have at most one joint vertex. That is, for all e ∈ E
holds that e is part of at most one cycle.

Subgraphs. By deleting vertices or arcs, no edge can become part of another
cycle.

Butterfly contraction. Let e = (u, v) be an arc in G such that e is the only
outgoing edge of u or e is the only incoming edge of v. Then there is no
path from u to v in G − (u, v). Then no additional cycle can be created

3 This means, in digraph G′ the cycle C is replaced by the vertex w and all other
edges in G incident with a vertex in C are incident with w in G′.

Forbidden Directed Minors, Directed Path-Width and Directed Tree-Width 239

by contraction of e, as no additional arc is created and therefore the only
additional possibility to create a new cycle would be containing the new
vertex w and a path from w to w, in G, which has not been a path from v
to u in G. This is a contradiction to that there is no path from u to v in G.
It follows that every arc is still only in at most one cycle in G′.

Cycle contraction. Let C be a cycle in G. By contracting C, no new cycle can
be created, as no additional arc is created and there has already been a path
from u to v and from v to u for all u, v ∈ C. Therefore, assigning C to only
one vertex w does not create new path from w to w. Thus, every arc is still
only in at most one cycle in G′. 	

Lemma 2. Directed strong/weak pseudoforests are closed under directed graph
minor operations.

Proof. We use the same argument as in Lemma 1. For subgraphs, by deleting
vertices or arcs, no edge can become part of another cycle. By butterfly and cycle
contraction, no additional cycles can be created. From this also follows that these
contractions can not create additional strongly connected components. It is easy
to see that both contractions can not create weakly connected components, as
only arcs are considered, and there are no arcs between two weakly connected
components. As directed strong/weak pseudoforests are defined as graphs, where
each strong/weakly connected component contains at most one cycle, this means
that directed strong/weak pseudoforests are closed under directed graph minor
operations. 	

So directed cactus forests and directed strong and weak pseudoforests are
closed under graph minor operation. But even more, it is possible to characterize
those classes by a finite number of forbidden directed graph minors (Fig. 1):

a

b c

−−→
C3,1

a b c

←→
P3

a b c d

−−→
P4,2

Fig. 1. The forbidden directed minors
−−→
C3,1,

←→
P3 and

−−→
P4,2.

Theorem 1. Digraph G is a directed cactus forest if and only if it does not
contain the digraph

−−→
C3,1, the directed cycle

−→
C3 with one additional arc, as a

directed graph minor.

Proof. ⊆ Let G be a directed cactus forest. Assume that
−−→
C3,1 is a minor of G.

As there are two cycles in
−−→
C3,1, C1 = {a, b, c} and C2 = {b, c} containing the

vertex b as well as the vertex c,
−−→
C3,1 is not a directed cactus forest. Then

Lemma 1, leads to a contradiction.

240 F. Gurski and C. Rehs

⊇ Let G be a digraph with no
−−→
C3,1 as a directed minor. Assume, that G is not

a cactus graph. Then there is an arc e = (u, v) in G, such that there are
two cycles C1, C2 with u, v ∈ C1 and u, v ∈ C2. By subgraph operations we
obtain G′ which contains only of C1 and C2 as a graph minor of G. Using
then butterfly minor operations on all arcs of C2 but e and on all arcs of C1

but e and two other arcs, we obtain
−−→
C3,1 as a directed minor of G′. Then

−−→
C3,1

is a directed minor of G, which leads to a contradiction. 	

Further, it holds that

−−→
C3,1 is the minimal forbidden minor for directed cactus

forests, as every further minor operation would lead to a graph with only one
cycle, so every graph minor of

−−→
C3,1 is a directed cactus forest.

Theorem 2. Digraph G is a directed strong pseudoforest if and only if it does
not contain the digraph

−−→
C3,1 or the digraph

←→
P3 as a directed graph minor.

Proof. ⊆ Let G be a directed strong pseudoforest. Assume that
−−→
C3,1 or

←→
P3

is a minor of G. Both
−−→
C3,1 and

←→
P3 consist of only one strongly connected

component, but include two cycles {a, b, c} and {b, c} for
−−→
C3,1 and {a, b} and

{b, c} for
←→
P3 , both graphs are no directed strong pseudoforest. Thus Lemma2,

leads to a contradiction.
⊇ Let G be a digraph with no

−−→
C3,1 or

←→
P3 as directed minor. Assume that G

is not a directed strong pseudoforest. Then G includes a strongly connected
component, which has at least two cycles. Let G′ be the subgraph of G which
only consists of this strongly connected component.

Case 1. Assume that the two cycles in G′ have a joint arc. Then, as in the proof
of Theorem 1, G′ and therefore G has

−−→
C3,1 as a directed minor. This is a

contradiction.
Case 2. Assume that the two cycles in G′ do not join an arc. As G′ is strongly

connected, there are two cycles C1 and C2 in G′ which have a joint ver-
tex. By subgraph operations, delete all arcs and vertices except these two
cycles. Then use butterfly contractions to transform these cycles to cycles
of size 2. By this,

←→
P3 results as a directed minor of G. This leads to a

contradiction. 	

Theorem 3. Digraph G is a directed weak pseudoforest if and only if it does
not contain the digraph

−−→
C3,1, the digraph

←→
P3 or the digraph

−−→
P4,2 as a directed

graph minor.

Proof. ⊆ Let G be a directed weak pseudoforest. Assume that
−−→
C3,1, the graph←→

P3 or the digraph
−−→
P4,2 is a minor of G. As all three graphs contain only

one weakly connected component, but two cycles, they are no directed strong
pseudoforests. Then Lemma 2 leads to a contradiction.

⊇ Let G be a digraph with no
−−→
C3,1,

←→
P3 or

−−→
P4,2 as directed minor. Assume that

G is not a directed weak pseudoforest. Then G includes a weakly connected
component, which has at least two cycles. Let G′ be the subgraph of G which
only consists of this weakly connected component.

Forbidden Directed Minors, Directed Path-Width and Directed Tree-Width 241

Case 1. Assume that any two cycles in G′ have a joint arc. Then, as in the proof
of Theorem 1, G′ and therefore G has

−−→
C3,1 as a directed minor. This is a

contradiction.
Case 2. Assume that all two cycles in G′ do not join an arc, but there are two

cycles which have a joint vertex. Then, as in the proof of Theorem 2, G′ and
therefore G has

←→
P3 as a directed minor. This is a contradiction.

Case 3. Assume that any two cycles in G′ do not have a joint vertex. Let C1,
C2 be two cycles in G′. By subgraph operations, delete all arcs and vertices
except C1 and C2 and a directed path connecting C1 and C2. Then use
butterfly contractions to transform C1 and C2 to cycles of size 2 and the
path connecting them to a path of length 1. By this,

−−→
P4,2 results as a directed

minor of G. This is a contradiction. 	

5 Directed Path-Width of Tree-Like Digraphs

According to Barát [2], the notation of directed path-width was introduced by
Reed, Seymour, and Thomas around 1995 and relates to directed tree-width
introduced by Johnson, Robertson, Seymour, and Thomas in [8].

Definition 13 (Directed path-width). A directed path-decomposition of a
digraph G = (V,E) is a sequence (X1, . . . , Xr) of subsets of V , called bags, such
that the following three conditions hold true.

(dpw-1) X1 ∪ . . . ∪ Xr = V .
(dpw-2) For each (u, v) ∈ E there is a pair i ≤ j such that u ∈ Xi and v ∈ Xj.
(dpw-3) If u ∈ Xi and u ∈ Xj for some u ∈ V and two indices i, j with i ≤ j,

then u ∈ X� for all indices � with i ≤ � ≤ j.

The width of a directed path-decomposition X = (X1, . . . , Xr) is

max
1≤i≤r

|Xi| − 1.

The directed path-width of G, d-pw(G) for short, is the smallest integer w such
that there is a directed path-decomposition for G of width w.

Lemma 3 ([2]). Let G be some complete bioriented digraph, then it holds
d-pw(G) = pw(u(G)).

In order to process the strong components of a digraph we recall the following
definition. The acyclic condensation of a digraph G, AC(G) for short, is the
digraph whose vertices are the strongly connected components V1, . . . , Vc of G
and there is an edge from Vi to Vj if there is an edge (vi, vj) in G such that
vi ∈ Vi and vj ∈ Vj . Obviously for every digraph G the digraph AC(G) is always
acyclic.

Let G1 = (V1, E1), . . . , Gk = (Vk, Ek) be k vertex-disjoint digraphs. The
directed union of G1, . . . , Gk, denoted by G1 � . . . � Gk, is defined by their
disjoint union plus possible arcs from vertices of Gi to vertices of Gj for all
1 ≤ i < j ≤ k.

242 F. Gurski and C. Rehs

Lemma 4. Let G be a digraph, then the directed path-width of G is the maximum
directed path-width of its strong components.

Proof. Let G be a digraph, AC(G) be the acyclic condensation of G, and
v1, . . . , vc be a topological ordering of AC(G), i.e. for every edge (vi, vj) in
AC(G) it holds i < j. Further let V1, . . . , Vc be the vertex sets of its strong
components ordered by the topological ordering. Then G can be obtained by
G = G[V1] � . . . � G[Vc]. Since we have shown in [5] that d-pw(G1 � G2) =
max{d-pw(G1),d-pw(G2)}, the statement of the lemma follows. 	

Theorem 4. Directed cactus trees have unbounded directed path-width.

Proof. Let G be the complete biorientation of the undirected, binary tree of
height h. We know that the path-width of perfect binary trees of hight h is �h/2�
(cf. [14]). Then, by Lemma 3 it follows that d-pw(G) = pw(u(G)) = �h/2�. As
all complete biorientations of binary trees are directed cactus trees, it follows
that directed path-width is not bounded for directed cactus trees. 	

As all directed cactus trees are directed cactus forests, it follows directly:

Corollary 1. Directed cactus forests have unbounded directed path-width.

This is not true for directed strong or weak pseudoforests. As complete bior-
ientations of binary trees are no directed pseudoforests, neither strong or weak,
as they consist of only one strongly connected component, but contain lots of
cycles, the counterexample from the proof of Theorem4 does not work here.
Further, it holds that this graph class has bounded directed path-width:

Theorem 5. Directed strong pseudoforests have directed path-width at most 1.

Proof. Let G = (V,E) be a directed strong pseudoforest. Every strong compo-
nent has at least size one, so the smallest strong components could be single
vertices. Let C be a strongly connected component of G. As G is a pseudoforest,
C is exactly a directed cycle. For every directed cycle C = {c1, . . . , cr} with arcs
(ci, ci+1) for 1 ≤ i ≤ r − 1 and (cr, c1) we give a directed path-decomposition
as follows: For the cycle with r = 1 vertex a path-decomposition consists of
only one bag, which only contains this single vertex. This is obviously a directed
path-decomposition of width 0. For cycles with r > 1 vertices, we construct
X1, . . . , Xr−1 with X1 = {c1, c2}, X2 = {c1, c3}, . . . , Xr−1 = {c1, cr}. Then
X = (X1, . . . , Xr−1) is a directed path-decomposition of C of width 1. As each
strong component of G has directed path-width at most 1, by Lemma 4 the
digraph G also has directed path-width at most 1. 	

Since the proof of Lemma 4 using the results of [5] is constructive, we even can
give a directed path-decomposition of width 1 for every (not strongly connected)
directed pseudoforest. As directed strong pseudoforests are a superclass of weak
pseudoforests and directed weak pseudoforests are a superclass of directed pseu-
dotrees, it follows directly:

Corollary 2. Directed weak pseudoforests and directed pseudotrees have directed
path-width at most 1.

Forbidden Directed Minors, Directed Path-Width and Directed Tree-Width 243

6 Directed Tree-Width of Tree-Like Digraphs

An acyclic digraph (DAG for short) is a digraph without any cycles as subdi-
graph. An out-tree is a digraph with a distinguished root such that all arcs are
directed away from the root. For two vertices u, v of an out-tree T the notation
u ≤ v means that there is a directed path on ≥ 0 arcs from u to v and u < v
means that there is a directed path on ≥ 1 arcs from u to v.

Let G = (V,E) be some digraph and Z ⊆ V . A vertex set S ⊆ V is Z-normal,
if there is no directed walk in G − Z with first and last vertices in S that uses
a vertex of G − (Z ∪ S). That is, a set S ⊆ V is Z-normal, if every directed
walk which leaves and again enters S in G − Z must contain only vertices from
Z ∪ S. Or, a set S ⊆ V is Z-normal, if every directed walk which leaves and
again enters S must contain a vertex from Z.

Definition 14 (Directed tree-width, [8]). A (arboreal) tree-decomposition
of a digraph G = (VG, EG) is a triple (T,X ,W). Here, T = (VT , ET) is an out-
tree, X = {Xe | e ∈ ET } and W = {Wr | r ∈ VT } are sets of subsets of VG,
such that the following two conditions hold true.

(dtw-1) W = {Wr | r ∈ VT } is a partition of VG into nonempty subsets.4

(dtw-2) For every (u, v) ∈ ET the set
⋃{Wr | r ∈ VT , v ≤ r} is X(u,v)-normal.

The width of a (arboreal) tree-decomposition (T,X ,W) is

max
r∈VT

|Wr ∪
⋃

e∼r

Xe| − 1.

Here e ∼ r means that r is one of the two vertices of arc e. The directed tree-
width of G, d-tw(G) for short, is the smallest integer k such that there is a
(arboreal) tree-decomposition (T,X ,W) of G of width k.

Lemma 5. Let G be a digraph, then the directed tree-width of G is the maximum
directed tree-width of its strong components.

Proof. The proof can be done similar to the proof of Lemma4 using the result
in [5] for directed tree-width d-tw(G1 � G2) = max{d-tw(G1),d-tw(G2)}, the
statement of the lemma follows. 	

Remark 1. Every strong component of a directed cactus forest G consists of r
cycles C1, . . . , Cr such that for every Ci, 1 ≤ i ≤ r, there is a Cj with i �= j,
1 ≤ j ≤ r such that Ci and Cj have exactly one joint vertex. Further, there is a
Ci, 1 ≤ i ≤ r such that there is exactly one other cycle Cj with i �= j, 1 ≤ j ≤ r
such that Ci and Cj have exactly one joint vertex.

Theorem 6. Directed cactus forest have directed tree-width at most 1.

4 A remarkable difference to the undirected tree-width [13] is that the sets Wr have
to be disjoint and non-empty.

244 F. Gurski and C. Rehs

Proof. Let G be a directed cactus forest. By Lemma 5, the directed tree-width
of G is the maximum directed tree-width of the strong components of G. So we
only need to consider the strong components of G. Let G′ be a strong component
of G. By Remark 1, G′ consists of r cycles C1, . . . , Cr and there is a Ci, 1 ≤ i ≤ r
such that there is exactly one other cycle Cj with i �= j, 1 ≤ j ≤ r such that
Ci and Cj have exactly one joint vertex. To give a directed tree-decomposition
(T,X ,W) for the strong component of G, we start with a vertex of this Ci. A
directed tree decomposition of a cycle Ci = {ci,1, . . . , ci,�} is always given by a
path T and bags Wi,t = {ci,t} for all 1 ≤ t ≤ � and edge sets X(ci,t,ci,t+1) = {ci,t}.
Since the order of the vertices in Ci is not unique, our construction leads to a
directed tree-decomposition for any order of the vertices in Ci. So we can start
with any vertex in Ci and create a directed tree-decomposition for this cycle.

By Remark 1, there is at least one cycle Cj , i �= j, 1 ≤ j ≤ r which has a
joint vertex with Ci. So for Cj = {cj,1, . . . , cj,k} there is some ci,q, 1 ≤ q ≤ �
such that cj,1 = ci,q. (Without loss of generality order Cj in a way such that
cj,1 is the joint vertex with Ci.) Then append the vertices of Cj to the directed
tree-decomposition by creating new bags Wj,t = {cj,t} for all 1 < t ≤ k and
edges X(cj,t,cj,r) = {ci,t} for 2 ≤ i < k, 2 < r ≤ k and X(cj,1,cj,2) = X(ci,q,cj,2) =
{ci,q} = {cj,1}.

By Remark 1 and as of course the strong components of G are strongly con-
nected, there is always a next cycle to insert in the same way somewhere in the
tree structure T of our tree-decomposition, till all vertices of the strong com-
ponent are in a bag of the directed tree-decomposition (T,X ,W). It remains
to show that (T,X ,W) really is a directed tree decomposition of width 1 for a
strong component of G:

(dtw-1) W = {Wr | r ∈ VT } is a partition of VG into nonempty subsets. As
already said, all vertices of G are inserted one by one in bags W by
the fact that they are all strongly connected and share a vertex with
another cycle. Further, no vertex occurs twice, as in a cactus forest all
cycles share at most one joint vertex, and this joint vertex is not added
a second time in a W -set.

(dtw-2) For every (u, v) ∈ ET the set
⋃{Wr | r ∈ VT , v ≤ r} is X(u,v)-normal.

Let (u, v) ∈ ET . Then it holds, by the definition of T that there is a cycle
Cj in G such that (u, v) = (cj,t, cj,t+1) for cj,t, cj,t+1 are elements of the
cycle Cj = (Cj,1, . . . , Cj,k). Further, it holds that X(u,v) = {cj,t}. By the
definition of (T,X ,W) the set

⋃{Wr | r ∈ VT , v ≤ r} consists of a num-
ber of cycles, lets say Cj+1, . . . , Cr and the vertices {cj,t+1, . . . , cj,k}.
As any to cycles in G have at most one vertex in common, it is not pos-
sible that there is an arc from one of those cycles to one of the cycles in
C1, . . . , Cj−1, as this would create a big cycle including lots of vertices
and edges from the cycles this arc would connect. So the only way to
get a path from

⋃{Wr | r ∈ VT , v ≤ r} out and back in this set is by
using the cycle Cj . It follows that in G′ − X(u,v) = G′ − {cj,t} there is
no path out and back in the set

⋃{Wr | r ∈ VT , v ≤ r}, which means
that this set is X(u,v)-normal.

Forbidden Directed Minors, Directed Path-Width and Directed Tree-Width 245

It further holds that Wr ∪ ⋃
e∼r Xe = {cj,t} ∪ {cj,t} ∪ {cj,t−1} = {cj,t, cj,t+1}

for all Wr for some Cj cycle of G′ and t > 1. It then follows that maxr∈VT

|Wr ∪ ⋃
e∼r Xe| − 1 = 2 − 1 = 1, so the directed tree-decomposition (T,X ,W)

of G′ has width 1. It therefore follows that each strong component of G has
directed tree-width at most 1, so G has directed tree-width at most 1. 	

Since the proof of Lemma 5 using the results of [5] is constructive, we even can
give a directed tree-decomposition of width 1 for every (not strongly connected)
directed cactus forest.

As directed pseudoforests and directed cactus trees are both subclasses of
directed cactus forests, we can conclude the following corollaries. The first state-
ment also follows by Theorem 5, as the directed tree-width of a graph is always
smaller or equal to the directed path-width of this graph [6].

Corollary 3. Directed strong/weak pseudoforests have directed tree-width at
most 1.

Corollary 4. Directed cactus trees have directed path-width at most 1.

The other direction of Theorem 6 does not hold true. There are graphs of
directed tree-width 1 which are not directed cactus forests, as for example their
forbidden directed graph minor

−−→
C3,1. This graph has directed path-width 1 by the

directed path-decomposition X = (X1,X2) with X1 = {a, c} and X2 = {b, c}. It
then follows that it also has directed tree-width at most 1 and as it includes a
cycle, it has directed tree-width exactly 1.

7 Conclusion and Outlook

In this paper we introduced directed cactus trees (DCT) and forests (DCF),
directed pseudotrees (DPT) and directed strong (DSPF) and weak pseudoforests
(DWPF). We could prove that DCF, DSPF, and DWPF can be characterized
by at most three forbidden digraph minors, using a graph minor operation for
which directed path-width is monotone. Furthermore, we showed that DCF and
its subclasses have directed tree-width at most 1 and DSPF, DCT and their
subclasses even have directed path-width at most 1.

We also considered an oriented version of Halin graphs by connecting the
leaves within a planar embedding of an out-tree in their clockwise ordering.
This leads to a subclass of DWPF as well as DAGs. But these graphs can not be
closed under directed minor operations, as they are not even closed under the
subgraph operation.

Our results should be a first step on the way to find forbidden directed graph
minors for the classes of directed tree-width at most 1 and classes of directed
path-width at most 1. The latter have already been proven to have a countable
number of forbidden directed graph minors [9], but these minors could not be
found yet. Finding them could be an issue of future work, as well as checking if
there is a countable number of forbidden digraph minors for the set of digraphs
of directed tree-width at most 1 and to find them.

246 F. Gurski and C. Rehs

References

1. Bang-Jensen, J., Gutin, G. (eds.): Classes of Directed Graphs. SMM. Springer,
Cham (2018). https://doi.org/10.1007/978-3-319-71840-8

2. Barát, J.: Directed pathwidth and monotonicity in digraph searching. Graphs
Comb. 22, 161–172 (2006)

3. El-Mallah, E., Colbourn, C.J.: The complexity of some edge deletion problems.
IEEE Trans. Circuits Syst. 35(3), 354–362 (1988)

4. Ganian, R., et al.: Are there any good digraph width measures? J. Comb. Theory
Ser. B 116, 250–286 (2016)

5. Gurski, F., Rehs, C.: Computing directed path-width and directed tree-
width of recursively defined digraphs. ACM Computing Research Repository,
abs/1806.04457, p. 16 (2018)

6. Gurski, F., Rehs, C.: Directed path-width and directed tree-width of directed co-
graphs. In: Wang, L., Zhu, D. (eds.) COCOON 2018. LNCS, vol. 10976, pp. 255–
267. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-94776-1 22

7. Harary, F., Uhlenbeck, G.E.: On the number of husimi trees: I. Proc. Nat. Acad.
Sci. 39(4), 315–322 (1953)

8. Johnson, T., Robertson, N., Seymour, P.D., Thomas, R.: Directed tree-width. J.
Comb. Theory Ser. B 82, 138–155 (2001)

9. Kintali, S., Zhang, Q.: Forbidden directed minors and directed pathwidth. Reseach
report (2015)

10. Kintali, S., Zhang, Q.: Forbidden directed minors and Kelly-width. Theor. Comput.
Sci. 662, 40–47 (2017)

11. Paten, B., et al.: Cactus graphs for genome comparisons. J. Comput. Biol. 18(3),
469–481 (2011)

12. Paten, B., Earl, D., Nguyen, N., Diekhans, M., Zerbino, D., Haussler, D.: Cactus:
algorithms for genome multiple sequence alignment. Genome Res. 21(9), 1512–
11528 (2011)

13. Robertson, N., Seymour, P.D.: Graph minors II. Algorithmic aspects of tree width.
J. Algorithms 7, 309–322 (1986)

14. Scheffler, P.: Die baumweite von graphen als mass für die kompliziertheit algorith-
mischer probleme. Ph.D. thesis, Akademie der Wissenschaften in der DDR, Berlin
(1989)

https://doi.org/10.1007/978-3-319-71840-8
https://doi.org/10.1007/978-3-319-94776-1_22

Existence Versus Exploitation:
The Opacity of Backdoors and Backbones

Under a Weak Assumption

Lane A. Hemaspaandra1 and David E. Narváez2(B)

1 Department of Computer Science, University of Rochester,
Rochester, NY 14627, USA

lane.hemaspaandra@icloud.com
2 College of Computing and Information Sciences, RIT,

Rochester, NY 14623, USA
den9562@rit.edu

Abstract. Backdoors and backbones of Boolean formulas are hidden
structural properties. A natural goal, already in part realized, is that
solver algorithms seek to obtain substantially better performance by
exploiting these structures.

However, the present paper is not intended to improve the perfor-
mance of SAT solvers, but rather is a cautionary paper. In particular,
the theme of this paper is that there is a potential chasm between the
existence of such structures in the Boolean formula and being able to
effectively exploit them. This does not mean that these structures are
not useful to solvers. It does mean that one must be very careful not
to assume that it is computationally easy to go from the existence of
a structure to being able to get one’s hands on it and/or being able to
exploit the structure.

For example, in this paper we show that, under the assumption that
P �= NP, there are easily recognizable families of Boolean formulas with
strong backdoors that are easy to find, yet for which it is hard (in fact,
NP-complete) to determine whether the formulas are satisfiable. We also
show that, also under the assumption P �= NP, there are easily recogniz-
able sets of Boolean formulas for which it is hard (in fact, NP-complete)
to determine whether they have a large backbone.

1 Introduction

Many algorithms for the Boolean satisfiability problem exploit hidden structural
properties of formulas in order to find a satisfying assignment or prove that no
such assignment exists. These structural properties are called hidden because
they are not explicit in the input formula. A natural question that arises then
is what is the computational complexity associated with these hidden struc-
tures. In this paper we focus on two hidden structures: backbones and strong
backdoors [11].

c© Springer Nature Switzerland AG 2019
B. Catania et al. (Eds.): SOFSEM 2019, LNCS 11376, pp. 247–259, 2019.
https://doi.org/10.1007/978-3-030-10801-4_20

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-10801-4_20&domain=pdf
http://orcid.org/0000-0003-0659-5204
http://orcid.org/0000-0003-3704-1060
https://doi.org/10.1007/978-3-030-10801-4_20

248 L. A. Hemaspaandra and D. E. Narváez

The complexity of decision problems associated with backdoors and back-
bones has been studied by Nishimura, Ragde, and Szeider [9], Kilby, Slaney,
Thiébaux, and Walsh [8], and Dilkina, Gomes, and Sabharwal [3], among others.

In the present paper, we show that, under the assumption that P �= NP, there
are easily recognizable families of formulas with strong backdoors that are easy
to find, yet the problem of determining whether these formulas are satisfiable
remains hard (in fact, NP-complete).

Hemaspaandra and Narváez [6] showed, under the (rather strong) assumption
that P �= NP ∩ coNP, a separation between the complexity of finding backbones
and that of finding the values to which the backbone variables must be set. In
the present paper, we also add to that line of research by showing that, under the
(less demanding) assumption that P �= NP, there are families of formulas that are
easy to recognize (i.e., they can be recognized by polynomial-time algorithms)
yet no polynomial-time algorithm can, given a formula from the family, decide
whether the formula has a large backbone (doing so is NP-complete).

Far from being a paper that is intended to speed up SAT solvers, this is a
paper trying to get a better sense of the (potential lack of) connection between
properties existing and being able to get one’s hands on the variables or variable
settings that are the ones expressing the property’s existence. That is, the paper’s
point is that there is a potential gap between on one hand the existence of
small backdoors and large backbones, and on the other hand using those to find
satisfying assignments. Indeed, the paper establishes not just that (if P �= NP)
such gaps exist, but even rigorously proves that if any NP set exists that is
frequently hard (with respect to polynomial-time heuristics), then sets of our
sort exist that are essentially just as frequently hard; we in effect prove an
inheritance of frequency-of-hardness result, under which our sets are guaranteed
to be essentially as frequently hard as any set in NP is.

Our results admittedly are theoretical results, but they speak both to the
importance of not viewing backdoors or backbones as magically transparent—
we prove that they are in some cases rather opaque—and to the fact that the
behavior we mention likely happens on quite dense sets; and, further, since we
tie this to whether any set is densely hard, these SAT-solver issues due to this
paper have now become inextricably linked to the extremely important, long-
open question of how resistant to polynomial-time heuristics the hardest sets in
NP can be.1 We are claiming that these important hidden properties—backdoors
and backbones—have some rather challenging behaviors that one must at least
be aware of. Indeed, what is most interesting about this paper is likely not
the theoretical constructions themselves, but rather the behaviors that those
1 We mention in passing that there are relativized worlds (aka black-box models)

in which NP sets exist for which all polynomial-time heuristics are asymptotically
wrong half the time [7]; heuristics basically do no better than one would do by
flipping a coin to give one’s answer. Indeed, that is known to hold with probability
one relative to a random oracle, i.e., it holds in all but a measure zero set of possible
worlds [7]. Although many suspect that the same holds in the real world, proving
that would separate NP from P in an extraordinarily strong way, and currently even
proving that P and NP differ is viewed as likely being decades (or worse) away [4].

Existence Versus Exploitation: The Opacity of Backdoors and Backbones 249

constructions prove must exist unless P = NP. We feel that knowing that those
behaviors cannot be avoided unless P = NP is of potential interest to both AI
and theory. Additionally, the behavior in one of our results is closely connected
to the deterministic time complexity of SAT; in our result (Theorem1) about
easy-to-find hard-to-assign-values-to backdoors, we show that the backdoor size
bound in our theorem cannot be improved even slightly unless NP is contained
in subexponential time.

The rest of this paper is organized as follows. Section 2 defines the notation
we will use throughout this paper. Sections 3 and 4 contain our results related
to backdoors and backbones, respectively. Finally, Sect. 5 adds some concluding
remarks.

2 Definitions and Notations

For Boolean formula F , we denote by V (F) the set of variables appearing in F .
Adopting the notations of Williams, Gomes, and Selman [11], we use the

following. A partial assignment of F is a function aS : S → {True,False}
that assigns Boolean values to the variables in a set S ⊆ V (F). For a Boolean
value v ∈ {True,False} and a variable x ∈ V (F), the notation F [x/v] denotes
the formula F after replacing every occurrence of x by v and simplifying. This
extends to partial assignments, e.g., to F [aS], in the natural way.

For a finite set A, ‖A‖ denotes A’s cardinality. For any string x, |x| denotes
the length of (number of characters of) x.

For each set T and each natural number n, T≤n denotes the set of all strings
in T whose length is less than or equal to n. In particular, (Σ∗)≤n denotes the
strings of length at most n, over the alphabet Σ.

3 Results on Backdoors to CNF Formulas

In this section we focus on Boolean formulas in conjunctive normal form, or
CNF. A CNF formula is a conjunction of disjunctions, and the disjunctions are
called the clauses of the formula. Following Dilkina, Gomes, and Sabharwal [3],
we define satisfiability of CNF formulas using the language of set theory. This
is done by formalizing the intuition that, in order for an assignment to satisfy a
CNF formula, it must set at least one literal in every clause to True. One can
then define a CNF formula F to be a collection of clauses, each clause being a set
of literals. F ∈ SAT if and only if there exists an assignment aV (F) such that for
all clauses C ∈ F there exists a literal l ∈ C such that aV (F) assigns l to True.
Under this formalization, to be in harmony with the standard conventions that
the truth value of the empty conjunctive (resp., disjunctive) formula is True
(resp., False), F must be taken to be in SAT if F is empty (since the empty
CNF formula must be taken to be True as a consequence of the fact that the
empty conjunctive formula is taken to be True) and F must be taken to be in
SAT if ∅ ∈ F (since that empty clause is an empty disjunctive formula and so
by convention is False, and thus F evaluates to False); these two cases are

250 L. A. Hemaspaandra and D. E. Narváez

called, respectively, F being trivially True and F being trivially False (as the
conventions as just mentioned put these cases not just in SAT and SAT but
fix the truth values of the represented formulas to be True and False). We
can also formalize simplification using this notation: after assigning a variable x
to True (resp., False), the formula is simplified by removing all clauses that
contain the literal x (resp., x) and removing the literal x (resp., x) from the
remaining clauses. This formalization extends to simplification of a formula over
a partial assignment in the natural way.

Example 1. Consider the CNF formula F = (x1 ∨ x2 ∨ x3 ∨ x5) ∧ (x1 ∨ x2 ∨ x4 ∨
x5)∧ (x3 ∨x4)∧ (x1 ∨x2 ∨x3 ∨x5). We can express this formula in our set theory
notation as F = {{x1, x2, x3, x5}, {x1, x2, x4, x5}, {x3, x4}, {x1, x2, x3, x5}}. Sup-
pose we assign x3 to False and x4 to True, we have F [x3/False, x4/True] =
{∅, {x1, x2, x5}}, which is unsatisfiable because it contains the empty set.

Since CNF-SAT (the satisfiability problem restricted to CNF formulas) is
well-known to be NP-complete, a polynomial-time algorithm to determine the
satisfiability of CNF formulas is unlikely to exist. Nevertheless, there are several
restrictions of CNF formulas for which satisfiability can be decided in polyno-
mial time. When a formula does not belong to any of these restrictions, it may
have a set of variables that, once the formula is simplified over a partial assign-
ment of these variables, the resulting formula belongs to one of these tractable
restrictions. A formalization of this idea is the concept of backdoors.

Definition 1 (Subsolver [11]). A polynomial-time algorithm A is a subsolver
if, for each input formula F , A satisfies the following conditions.

1. A either rejects the input F (this indicates that it declines to make a statement
as to whether F is satisfiable) or determines F (i.e., A returns a satisfying
assignment if F is satisfiable and A proclaims F ’s unsatisfiability if F is
unsatisfiable).

2. If F is trivially True A determines F , and if F is trivially False A deter-
mines F .

3. If A determines F , then for each variable x and each value v, A determines
F [x/v].

Definition 2 (Strong Backdoor [11]). For a Boolean formula F , a nonempty
subset S of its variables is a strong backdoor for a subsolver A if, for all partial
assignments aS, A determines F [aS] (i.e., if F [aS] is satisfiable A returns a sat-
isfying assignment and if F [aS] is unsatisfiable A proclaims its unsatisfiability).

Many examples of subsolvers can be found in the literature (for instance,
in Table 1 of [3]). The subsolver that is of particular relevance to this paper is
the unit propagation subsolver, which focuses on unit clauses. Unit clauses are
clauses with just one literal. They play an important role in the process of finding
models (i.e., satisfying assignments) because the literal in that clause must be
set to True in order to find a satisfying assignment. The process of finding a
model by searching for a unit clause (for specificity and to ensure that it runs in

Existence Versus Exploitation: The Opacity of Backdoors and Backbones 251

polynomial time, let us say that our unit propagation subsolver always focuses
on the unit clause in the current formula whose encoding is the lexicographically
least among the encodings of all unit clauses in the current formula), fixing
the value of the variable in the unit clause, and simplifying the formula resulting
from that assignment is known in the satisfiability literature as unit propagation.
Unit propagation is an important building block in the seminal DPLL algorithm
for SAT [1,2]. Notice that the CNF formulas whose satisfiability can be decided
by just applying unit propagation iteratively constitute a tractable restriction
of SAT. The unit propagation subsolver attempts to decide the satisfiability of
an input formula by using only unit propagation and empty clause detection. If
satisfiability cannot be decided this way, the subsolver rejects the input formula.
Szeider [10] has classified the parameterized complexity of finding backdoors
with respect to the unit propagation subsolver.

Example 2. Consider the formula F from Example 1. We will show that
{x1, x3, x5} is a strong backdoor of F with respect to the unit propagation
subsolver by analyzing the possible assignments of these variables. Suppose x1

is assigned to True and notice F [x1/True] = {{x3, x4}, {x2, x3, x5}}. From
there it is easy to see that if x3 is set to True, the resulting formula after sim-
plification is trivially satisfiable. If x3 is set to False, assigning x5 to True
yields the formula {{x4}} after simplification and the satisfiability of this for-
mula can be determined by the unit propagation subsolver. Assigning x5 to
False yields a formula with two unit clauses, {{x4}, {x2}}. The unit propa-
gation subsolver will (here we assume that a clause {x} precedes a clause {y}
in lexicographical order if x precedes y in lexicographical order.) pick the unit
clause {x2}, assign the truth value of x2 and simplify, and will then pick the
(sole) remaining unit clause, {x4}, and assign the truth value of x4 and sim-
plify to obtain a trivially satisfiable formula. Now suppose x1 is assigned to
False and notice F [x1/False] = {{x2, x3, x5}, {x2, x4, x5}, {x3, x4}}. If we now
assign x3 to True, notice F [x1/False, x3/True] = {{x2, x5}, {x2, x4, x5}}. If
we assign x5 to True F simplifies to a trivially satisfiable formula. If we assign
x5 to False, the formula simplifies to {{x2}, {x2, x4}}. The unit propagation
subsolver will pick the unit clause {x2}, assign the truth value of x2, and the
resulting formula after simplification will be {{x4}} whose satisfiability can be
determined by the unit propagation subsolver. If we assign x3 to False, notice
F [x1/False, x3/False] = {{x2, x4, x5}, {x4}}. If we now assign x5 to True and
simplify, the resulting formula would be {{x4}} whose satisfiability can be deter-
mined by the unit propagation subsolver. If we assign x5 to False and simplify,
the resulting formula would contain the unit clause {x4}. The unit propagation
subsolver would then set the value of x4 to False and simplify, yielding the for-
mula {{x2}}, whose satisfiability can also be determined by the unit propagation
subsolver. It should be clear from the case analysis above that just setting the
values of x1 and x3 is not enough for the unit propagation subsolver to always
be able to determine the satisfiability of the resulting formula. In fact, a similar
analysis done on every 2-element subset and every 3-element subset of V (F)—
which we do not write out here—shows that {x1, x3, x5} is actually the smallest
strong backdoor of F with respect to the unit propagation subsolver.

252 L. A. Hemaspaandra and D. E. Narváez

We’re ready to prove our main result about backdoors: Under the assumption
that P �= NP, there are families of Boolean formulas that are easy to recognize
and have strong unit propagation backdoors that are easy to find, yet deciding
whether the formulas in these families are satisfiable remains NP-complete.

Theorem 1. If P �= NP, for each k ∈ {1, 2, 3, . . .} there is a set A of Boolean
formulas such that all the following hold.

1. A ∈ P and A ∩ SAT is NP-complete.
2. Each formula G in A has a strong backdoor S with respect to the unit propa-

gation subsolver, with ‖S‖ ≤ ‖V (G)‖ 1
k .

3. There is a polynomial-time algorithm that, given G ∈ A, finds a strong back-
door having the property stated in item 2 of this theorem.

Proof. For k = 1 the theorem is trivial, so we henceforward consider just the case
where k ∈ {2, 3, . . .}. Consider (since in the following set definition F is specified
as being in CNF, we can safely start the following with “F∧” rather than for
example “(F)∧”) A ∈ P defined by A = {F ∧ (new1 ∧ · · · ∧ new‖V (F)‖k−‖V (F)‖) |
F is a CNF formula}, where newi is the ith (in lexicographical order) legal
variable name that does not appear in F . For instance, if F contains liter-
als x1, x2, x3, and x3, and if our legal variable universe is x1, x2, x3, x4, . . .,
then new1 would be x4. The backdoor is the set of variables of F , which can
be found in polynomial time by parsing. It is clear that the formula resulting
from simplification after assigning values to all the variables of F only has unit
clauses and potentially an empty clause, so satisfiability for this formula can
be decided by the unit propagation subsolver. Finally, it is easy to see that
F ∧ (new1 ∧ · · · ∧ new‖V (F)‖k−‖V (F)‖) ∈ SAT ⇔ F ∈ SAT so, since the formula-
part that is being postpended to F can easily be polynomial-time constructed
given F , under the assumption that P �= NP deciding satisfiability for the for-
mulas in A is hard. (Note: One can add “CNF” after “Boolean” in the theorem
statement with just a minor proof adjustment.) �

Let us address two natural worries the reader might have regarding Theo-
rem 1. First, the reader might worry that the hardness spoken of in the theo-
rem occurs very infrequently (e.g., perhaps except for just one string at every
double-exponentially spaced length everything is easy). That is, are we giving a
worst-case result that deceptively hides a low typical-case complexity? We are
not (unless all of NP has easy typical-case complexity): we show that if any set
in NP is frequently hard with respect to polynomial-time heuristics, then a set of
our sort is almost as frequently hard with respect to polynomial-time heuristics.
We will show this as Theorem 3.

But first let us address a different worry. Perhaps some readers will feel that
the fact that Theorem 1 speaks of backdoors of size bounded by a fixed kth
root in size is a weakness, and that it is disappointing that the theorem does not
establish its same result for a stronger bound such as “constant-sized backdoors”,
or if not that then polylogarithmic-sized, or if not that then at least ensuring
that not just each fixed root is handled in a separate construction/set but that

Existence Versus Exploitation: The Opacity of Backdoors and Backbones 253

a single construction/set should assert/achieve the case of a growth rate that
is asymptotically less than every root. Those are all fair and natural to wonder
about. However, we claim that not one of those improvements of Theorem 1 can
be proven without revolutionizing the deterministic speed of SAT. In particular,
the following result holds, showing that those three cases would respectively put
NP into P, quasipolynomial time, and subexponential time.

Theorem 2. 1. [Constant case] Suppose there is a k ∈ {1, 2, 3, . . .} and a set A
of Boolean formulas such that all the following hold: (a) A ∈ P and A ∩ SAT
is NP-complete; (b) each formula G in A has a strong backdoor S with respect
to the unit propagation subsolver, with ‖S‖ ≤ k; and (c) there is a polynomial-
time algorithm that, given G ∈ A, finds a strong backdoor having the property
stated in item (b). Then P = NP.

2. [Polylogarithmic case] Suppose there is a function s(n), with s(n) =
(log n)O(1), and a set A of Boolean formulas such that all the following
hold: (a) A ∈ P and A ∩ SAT is NP-complete; (b) each formula G in A
has a strong backdoor S with respect to the unit propagation subsolver, with
‖S‖ ≤ s(‖V (G)‖); and (c) there is a polynomial-time algorithm that, given
G ∈ A, finds a strong backdoor having the property stated in item (b). Then
NP is in quasipolynomial time, i.e., NP ⊆ ⋃

c>0 DTIME[2(log n)c

].
3. [Subpolynomial case] Suppose there is a polynomial-time computable function

r and a set A of Boolean formulas such that all the following hold: (a) for
each k ∈ {1, 2, 3, . . .}, r(0n) = O(n

1
k); (b) A ∈ P and A ∩ SAT is NP-

complete; (c) each formula G in A has a strong backdoor S with respect to
the unit propagation subsolver, with ‖S‖ ≤ r(0‖V (G)‖); and (d) there is a
polynomial-time algorithm that, given G ∈ A, finds a strong backdoor having
the property stated in item (c). Then NP is in subexponential time, i.e., NP ⊆⋂

ε>0 DTIME[2nε

].

We can see this as follows. Consider the “Constant case”—the first part—of
the above theorem. Let k be the constant of that part. Then there are at most(
N
k

)
ways of choosing k of the variables of a given Boolean formula of N bits

(and thus of at most N variables). And for each of those ways, we can try all
2k possible ways of setting those variables. This is O(Nk) items to test—a poly-
nomial number of items. If the formula is satisfiable, then via unit propagation
one of these must yield a satisfying assignment (in polynomial time). Yet the set
A∩SAT was NP-complete by the first condition of the theorem. So we have that
P = NP, since we just gave a polynomial-time algorithm for A∩SAT. The other
three cases are analogous (except in the final case, we in the theorem needed
to put in the indicated polynomial-time constraint on the bounding function r
since otherwise it could be badly behaved; that issue doesn’t affect the second
part of the theorem since even a badly behaved function s of the second part is
bounded above by a simple-to-compute function s′ satisfying s′(n) = (log n)O(1)

and we can use s′ in place of s in the proof).
Even the final part of the above theorem, which is the part that has the weak-

est hypothesis, implies that NP is in subexponential time. However, it is widely

254 L. A. Hemaspaandra and D. E. Narváez

suspected that the NP-complete sets lack subexponential-time algorithms. And
so we have established that the n1/k growth, which we do prove in Theorem1, is
the smallest bound in part 2 of that result that one can hope to prove Theorem1
for without having to as a side effect put NP into a deterministic time class so
small that we would have a revolutionarily fast deterministic algorithm for SAT.

Moving on, we now, as promised above, address the frequency of hardness
of the sets we define in Theorem 1, and show that if any set in NP is frequently
hard then a set of our type is almost-as-frequently hard. (Recall that, when n’s
universe is the naturals as it is in the following theorem, “for almost every n”
means “for all but at most a finite number of natural numbers n”.) We will say
that a (decision) algorithm errs with respect to B on an input x if the algorithm
disagrees with B on x, i.e., if the algorithm accepts x yet x �∈ B or the algorithm
rejects x yet x ∈ B.

Theorem 3. If h is any nondecreasing function and for some set B ∈ NP it
holds that each polynomial-time algorithm errs with respect to B, at infinitely
many lengths n (resp., for almost every length n), on at least h(n) of the inputs
up to that length, then there will exist an ε > 0 and a set A ∈ P of Boolean formu-
las satisfying the conditions of Theorem1, yet being such that each polynomial-
time algorithm g, at infinitely many lengths n (resp., for almost every length n),
will fail to determine membership in A ∩ SAT for at least h(nε) inputs of length
at most n.

Before getting to the proof of this theorem, let us give concrete examples
that give a sense about what the theorem is saying about density transfer-
ence. It follows from Theorem 3 that if there exists even one NP set such that
each polynomial-time heuristic algorithm asymptotically errs exponentially often
up to each length (i.e., has 2nΩ(1)

errors), then there are sets of our form that
in the same sense fool each polynomial-time heuristic algorithm exponentially
often. As a second example, it follows from Theorem 3 that if there exists even
one NP set such that each polynomial-time heuristic algorithm asymptotically
errs quasipolynomially often up to each length (i.e., has n(log n)Ω(1)

errors), then
there are sets of our form that in the same sense fool each polynomial-time heuris-
tic algorithm quasipolynomially often. Since almost everyone suspects that some
NP sets are quasipolynomially and indeed even exponentially densely hard, one
must with equal strength of belief suspect that there are sets of our form that
are exponentially densely hard.

Proof of Theorem 3. For conciseness and to avoid repetition, we build this proof
on top of a proof (namely, of Theorem6) that we will give later in the paper. That
later proof does not rely directly or indirectly on the present theorem/proof, so
there is no circularity at issue here. However, readers wishing to read the present
proof should probably delay doing that until after they have first read that later
proof.

We define rB as in the proof of Theorem6 (the rB given there draws on
a construction from Appendix A of [5], and due to that construction’s proper-
ties outputs only conjunctive normal form formulas). For a given k, we define

Existence Versus Exploitation: The Opacity of Backdoors and Backbones 255

A = {rB(x) ∧ (new1 ∧ · · · ∧ new‖V (rB(x))‖k−‖V (rB(x))‖) | x ∈ Σ∗}, and since
rB(x) ∧ (new1 ∧ · · · ∧ new‖V (rB(x))‖k−‖V (rB(x))‖) ∈ SAT ⇔ rB(x) ∈ SAT and
rB(x) ∈ SAT ⇔ x ∈ B, we can now proceed as in the proof of Theorem6, since
here too the tail’s length is polynomially bounded. �

4 Results on Backbones

For completeness, we start this section by restating the definition of backbones
as presented by Williams, Gomes, and Selman [11]. We restrict ourselves to the
Boolean domain, since we only deal with Boolean formulas in this paper.

Definition 3 (Backbone [11]). For a Boolean formula F , a subset S of its
variables is a backbone if there is a unique partial assignment aS such that
F [aS] is satisfiable.

The size of a backbone S is the number of variables in S. One can readily see
from Definition 3 that all satisfiable formulas have at least one backbone, namely,
the empty set. This backbone is called the trivial backbone, while backbones of
size at least one are called nontrivial backbones. It follows from Definition 3 that
unsatisfiable formulas do not have backbones. Note also that some satisfiable
formulas have no nontrivial backbones, e.g., x1 ∨ x2 ∨ x3 is satisfiable but has
no nontrivial backbone.

Example 3. Consider F = x1 ∧ (x1 ↔ x2) ∧ (x2 ↔ x3) ∧ (x2 ∨ x4 ∨ x5). Any
satisfying assignment of F must have x1 set to True, which in turn constrains x2

and x3. Then {x1, x2, x3} is a backbone of F , as is any subset of this backbone.
It is also easy to see that {x1, x2, x3} is the largest backbone of this formula
since the truth values of x4 and x5 are not entirely constrained in F (since F in
effect is—once one applies the just-mentioned forced assignments—x4 ∨ x5).

Our first result states that if P �= NP then there are families of Boolean
formulas that are easy to recognize, with the property that deciding whether a
formula in these families has a large backbone is NP-complete (and so is hard).
As a corollary to its proof, we have that if P �= NP then there are families of
Boolean formulas that are easy to recognize, with the property that deciding
whether a formula in these families has a nontrivial backbone is NP-complete
(and so is hard).2

2 We have not been able to find Corollary (to the Proof) 5 in the literature. Certainly,
two things that on their surface might seem to be the claim we are making in
Corollary (to the Proof) 5 are either trivially true or are in the literature. However,
upon closer inspection they turn out to be quite different from our claim.

In particular, if one removes the word “nontrivial” from Corollary (to the
Proof) 5’s statement, and one is in the model in which every satisfiable formula is
considered to have the empty collection of variables as a backbone and every unsat-
isfiable formula is considered to have no backbones, then the thus-altered version of
Corollary (to the Proof) 5 is clearly true, since if one with those changes takes A to

256 L. A. Hemaspaandra and D. E. Narváez

Theorem 4. For any real number 0 < β < 1, there is a set A ∈ P of Boolean
formulas such that the language LA = {F | F ∈ A and F has a backbone S with
‖S‖ ≥ β‖V (F)‖} is NP-complete (and so if P �= NP then LA is not in P).

Corollary (to the Proof) 5. There is a set A ∈ P of Boolean formulas such
that LA = {F | F ∈ A and F has a nontrivial backbone S} is NP-complete (and
so if P �= NP then LA is not in P).

Proof of Theorem 4 and Corollary 5. We will first prove Theorem 4, and then will
note that Corollary 5 follows easily as a corollary to the proof/construction.

So fix a β from Theorem 4’s statement. For each Boolean formula G, let
q(G) =

⌈
β‖V (G)‖

1−β

⌉
. Define A = {(G) ∧ (new1 ∧ new2 ∧ · · · ∧ newq(G)) | G is a

Boolean formula having at least one variable}, where, as in the proof of The-
orem 1, we define newi as the ith variable that does not appear in G. Note
that new1 ∧ new2 ∧ · · · ∧ newq(G) is a backbone if and only if G ∈ SAT, thus
under the assumption that P �= NP and keeping in mind that for zero-variable
formulas satisfiability is easy to decide, it follows that no polynomial-time algo-
rithm can decide LA, since the size of this backbone is q(G) > 0, which by
our definition of q will satisfy the condition ‖S‖ ≥ β‖V (F)‖. Why does it sat-
isfy that condition? ‖S‖ here is q(G). And ‖V (F)‖ here, since F is the formula
(G) ∧ (new1 ∧ new2 ∧ · · · ∧ newq(G)), equals ‖V (G)‖ + q(G). So the condition
is claiming that q(G) ≥ β(‖V (G)‖ + q(G)), i.e., that q(G) ≥ β

(1−β)‖V (G)‖,
which indeed holds in light of the definition of q. And why do we claim that
no polynomial-time algorithm can decide LA? Well, note that SAT many-one
polynomial-time reduces to LA via the reduction g(H) that equals some fixed
string in LA if H is in SAT and H has zero variables and that equals some fixed
string in LA if H is not in SAT and H has zero variables (these two cases are
included merely to handle degenerate things such as True ∨ False that can
occur if we allow True and False as atoms in our propositional formulas), and
that equals (H) ∧ (new1 ∧ new2 ∧ · · · ∧ newq(H)) otherwise (the above formula is
H conjoined with a large number of new variables). Since LA is in NP, we have
that it is NP-complete, and since P �= NP was part of the theorem’s hypothesis,
LA cannot be in P.

be the set of all Boolean formulas, then the theorem degenerates to the statement
that if P �= NP, then SAT is (NP-complete, and) not in P.

Also, it is stated in Kilby et al. [8] that finding a backbone of CNF formulas
is NP-hard. However, though this might seem to be our result, their claim and
model differ from ours in many ways, making this a quite different issue. First, their
hardness refers to Turing reductions (and in contrast our paper is about many-one
reductions and many-one completeness). Second, they are not even speaking of NP-
Turing-hardness—much less NP-Turing-completeness—in the standard sense since
their model is assuming a function reply from the oracle rather than having a set as
the oracle. Third, even their notion of backbones is quite different as it (unlike the
influential Williams, Gomes, and Selman 2003 paper [11] and our paper) in effect
requires that the function-oracle gives back both a variable and its setting. Fourth,
our claim is about nontrivial backbones.

Existence Versus Exploitation: The Opacity of Backdoors and Backbones 257

The above proof establishes Theorem 4. Corollary 5 follows immediately
from the proof/construction of Theorem4. Why? The set A from the proof
of Theorem 4 is constructed in such a way that each of its potential members
(G)∧ (new1 ∧new2 ∧· · ·∧newq(G)) (where G is a Boolean formula having at least
one variable) either has no nontrivial backbone (indeed, no backbone) or has a
backbone of size at least β(‖V (G)‖). Thus the issue of backbones that are non-
trivial but smaller than β(‖V (F)‖), where F is (G)∧(new1∧new2∧· · ·∧newq(G)),
does not cause a problem under the construction. That is, our A (which itself is
dependent on the value of β one is interested in) is such that we have ensured
that {F | F ∈ A and F has a nontrivial backbone S} = {F | F ∈ A and F has
a backbone S with ‖S‖ ≥ β‖V (F)‖}. �

We now address the potential concern that the hard instances for the deci-
sion problems we just introduced may be so infrequent that the relevance of
Theorem 4 and Corollary 5 is undercut. The following theorem argues against
that possibility by proving that, unless not a single NP set is frequently hard (in
the sense made rigorous in the theorem’s statement), there exist sets of our form
that are frequently hard. (This result is making for backbones a point analogous
to the one our Theorem 3 makes for backdoors. Hemaspaandra and Narváez [6]
looks at frequency of hardness result for backbones, but with results focused on
NP ∩ coNP rather than NP.)

Theorem 6. If h is any nondecreasing function and for some set B ∈ NP it
holds that each polynomial-time algorithm errs with respect to B, at infinitely
many lengths n (resp., for almost every length n), on at least h(n) of the inputs
up to that length, then there will exist an ε > 0 and a set A ∈ P of Boolean formu-
las satisfying the conditions of Theorem4, yet being such that each polynomial-
time algorithm g, at infinitely many lengths n (resp., for almost every length n),
will fail to correctly determine membership in LA for at least h(nε) inputs of
length at most n. The same claim also holds for Corollary 5.

Proof. We will prove the theorem’s statement regarding Theorem4. It is not
hard to also then see that the analogous claim holds regarding Corollary 5.

B ∈ NP and SAT is NP-complete. So let rB be a polynomial-time function,
transforming strings into Boolean formulas, such that (a) rB(x) ∈ SAT ⇔ x ∈
B, and (b) rB is one-to-one. (A construction of such a function is given in
Appendix A of [5], and let us assume that construction is used.) As in the proof
of Theorem 4, if F is a Boolean formula we define q(F) =

⌈
β‖V (F)‖

1−β

⌉
.

Without loss of generality, we assume that rB outputs only formulas having
at least one variable. Note that throughout this proof, q is applied only to outputs
of rB . Thus we have ensured that none of the logarithms in this proof have a
zero as their argument.

Set A = {(rB(x)) ∧ (new1 ∧ new2 ∧ · · · ∧ newq(rB(x))) | x ∈ Σ∗}. Because rB

is computable in polynomial time, there is a polynomial b such that for every
input x of length at most n, the length of rB(x) is at most b(n). Fix some
such polynomial b, and let k denote its degree. In order to find a bound for
the length of the added “tail” new1 ∧ new2 ∧ · · · ∧ newq(rB(x)) in terms of b(n),

258 L. A. Hemaspaandra and D. E. Narváez

notice that the length of the tail is less than some constant (that holds over
all x and n, |x| ≤ n) times q(rB(x)) log q(rB(x)). Since q(rB(x)) =

⌈
β‖V (F)‖

1−β

⌉

and the length of rB(x) is at least a constant times the number of its variables,
our assumption that |rB(x)| ≤ b(n) implies the existence of a constant c such
that, for all x and n, |x| ≤ n, we have q(rB(x)) ≤ c · b(n). Taken together,
the two previous sentences imply the existence of a constant d such that, for
all x and n, |x| ≤ n, we have that the length of new1 ∧ new2 ∧ · · · ∧ newq(rB(x))

is at most d · b(n) log(b(n)), and so certainly is less than d · b2(n). Let N be
a natural number such that, for all n ≥ N and all x, |x| ≤ n implies that
|(rB(x)) ∧ (new1 ∧ new2 ∧ · · · ∧ newq(rB(x)))| ≤ n2k+1; by the previous sentence
and the fact that b is of degree k, such an N will exist. Let g be a polynomial-
time heuristic for LA. Notice that g ◦ rB—i.e., g(rB(·))—is a polynomial-time
heuristic for B, since (rB(x))∧ (new1 ∧new2 ∧ · · · ∧newq(rB(x))) ∈ LA ⇔ rB(x) ∈
SAT and rB(x) ∈ SAT ⇔ x ∈ B. Let nB ≥ N be such that there is a set of strings
SnB

⊆ (Σ∗)≤nB , ‖SnB
‖ ≥ h(nB), having the property that for all x ∈ SnB

,
g ◦ rB fails to correctly determine the membership of x in B. Consequently,
there is a set of strings TnB

⊆ (Σ∗)≤(nB)2k+1
, ‖TnB

‖ ≥ h(nB), such that for all
x ∈ TnB

, g fails to correctly determine the membership of x in LA; in particular
the set TnB

= {(rB(x)) ∧ (new1 ∧ new2 ∧ · · · ∧ newq(rB(x))) |x ∈ SnB
} has this

property.
Using the variable renaming nA = (nB)2k+1, it is now easy to see that we

have proven that every length nB ≥ N at which g ◦ rB (viewed as a heuristic for
B) errs on at least h(nB) inputs of length up to nB has a corresponding length
nA at which g (viewed as a heuristic for LA) errs on at least h((nA)

1
2k+1) inputs

of length up to nA. Our hypothesis guarantees the existence of infinitely many
such nB ≥ N (resp., almost all n ≥ N can take the role of nB), each with a
corresponding nA. Setting ε = 1

2k+1 , our theorem is now proven. �

5 Conclusions

We constructed easily recognizable families of Boolean formulas that provide
hard instances for decision problems related to backdoors and backbones under
the assumption that P �= NP. In particular, we have shown that, under the
assumption P �= NP, there exist easily recognizable families of Boolean formulas
with easy-to-find strong backdoors yet for which it is hard to determine whether
the formulas are satisfiable. Under the same P �= NP assumption, we have shown
that there exist easily recognizable collections of Boolean formulas for which it
is hard (in fact, NP-complete) to determine whether they have a backbone, and
that there exist easily recognizable collections of Boolean formulas for which it
is hard (in fact, NP-complete) to determine whether they have a large backbone.
(These results can be taken as indicating that, under the very plausible assump-
tion that P �= NP, search and decision shear apart in complexity for backdoors
and backbones. That makes it particularly unfortunate that their definitions in
the literature are framed in terms of decision rather than search, especially since

Existence Versus Exploitation: The Opacity of Backdoors and Backbones 259

when one tries to put these to work in SAT solvers, it is the search case that one
typically tries to use and leverage.)

For both our backdoor and backbone results, we have shown that if any
problem B in NP is frequently hard, then there exist families of Boolean formulas
of the sort we describe that are hard almost as frequently as B.

Acknowledgments. We thank the SOFSEM referees for helpful comments. Work
done in part while L. Hemaspaandra was visiting ETH-Zürich and U-Düsseldorf.

References

1. Davis, M., Logemann, G., Loveland, D.: A machine program for theorem-proving.
Commun. ACM 5, 394–397 (1962)

2. Davis, M., Putnam, H.: A computing procedure for quantification theory. J. ACM
7(3), 201–215 (1960)

3. Dilkina, B., Gomes, C., Sabharwal, A.: Tradeoffs in the complexity of backdoors to
satisfiability: dynamic sub-solvers and learning during search. Ann. Math. Artif.
Intell. 70(4), 399–431 (2014)

4. Gasarch, W.: The second P =? NP poll. SIGACT News 43(2), 53–77 (2012)
5. Hemaspaandra, L., Narváez, D.: The opacity of backbones. Technical report, June

2016. arXiv:1606.03634 [cs.AI], Computing Research Repository, arXiv.org/corr/.
Accessed June 2017 to December 2018. Revised January 2017

6. Hemaspaandra, L., Narváez, D.: The opacity of backbones. In: Proceedings of
the 31st AAAI Conference on Artificial Intelligence, pp. 3900–3906. AAAI Press,
February 2017

7. Hemaspaandra, L., Zimand, M.: Strong self-reducibility precludes strong immunity.
Math. Syst. Theory 29(5), 535–548 (1996)

8. Kilby, P., Slaney, J., Thiébaux, S., Walsh, T.: Backbones and backdoors in satisfi-
ability. In: Proceedings of the 20th National Conference on Artificial Intelligence,
pp. 1368–1373. AAAI Press (2005)

9. Nishimura, N., Ragde, P., Szeider, S.: Detecting backdoor sets with respect to Horn
and binary clauses. In: Informal Proceedings of the 7th International Conference
on Theory and Applications of Satisfiability Testing, pp. 96–103, May 2004

10. Szeider, S.: Backdoor sets for DLL subsolvers. J. Autom. Reasoning 35(1–3), 73–88
(2005)

11. Willams, R., Gomes, C., Selman, B.: Backdoors to typical case complexity. In:
Proceedings of the 18th International Joint Conference on Artificial Intelligence,
pp. 1173–1178. Morgan Kaufmann, August 2003

http://arxiv.org/abs/1606.03634
http://arxiv.org/abs/org/corr/

On Point Set Embeddings for k-Planar
Graphs with Few Bends per Edge

Michael Kaufmann(B)

Wilhelm-Schickhard-Institut für Informatik, Universität Tübingen,
Tübingen, Germany

mk@informatik.uni-tuebingen.de

Abstract. We consider the point set embedding problem (PSE) for 1-,
2- and k-planar graphs where at most 1, 2, or k crossings resp. are allowed
for each edge which greatly extends the well-researched class of planar
graphs. For any set of n points and any given embedded graph that
belongs to one of the above graph classes, we compute a 1-to-1 mapping
of the vertices to the points such that the edges can be routed using only
a limited number of bends according to the given embedding and the
sequences of crossings. Surprisingly, for the class of 1-planar graphs the
same results can be achieved as the best known results for planar graphs.
Additionally for k-planar graphs, the bounds are also much better than
expected from the first sight.

1 Introduction

Graph embeddings have been popular since quite some time in the area of com-
binatorics, graph algorithms and graph drawing. Variants include the bandwidth
minimization problem [15] where the vertices should be ordered in unit distance
on a line such that the total sum of the distances is minimized, but also graph
embeddings, where a guest graph has to be embedded to a host graph under
certain parameters like dilation, congestion, expansion, etc. [24].

In the geometric variant of the point set embedding (PSE) problem, a set
S of points is assumed to be given, together with an input graph with certain
properties. In the most simple version, S has exactly n points and the problem is
to find a 1-to-1 mapping of the vertices to the points such that the corresponding
straight-line edges are crossing-free. Techniques have been developed for the
cases that the input graph is a tree [8,20], an outerplanar graph [7,29]. For the
case of general planar graphs, the problem has been shown to be NP-hard. [9].
Another research direction concentrates on restricting the number of additional
points that is needed to guarantee a planar straight-line embedding for any given
planar graph. This has been called a ‘universal point set’. Unfortunately, the best
upper bound for the general case is O(n2) points as the universal point set [17],
very far away from the lower bound of 1.098n [12]. Recently, smaller universal
point sets of subquadratic size have been found for planar 3-trees [18], graphs of
bounded pathwidth [4] and for the quite general class of so-called k-outerplanar
graphs [3].
c© Springer Nature Switzerland AG 2019
B. Catania et al. (Eds.): SOFSEM 2019, LNCS 11376, pp. 260–271, 2019.
https://doi.org/10.1007/978-3-030-10801-4_21

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-10801-4_21&domain=pdf
https://doi.org/10.1007/978-3-030-10801-4_21

On Point Set Embeddings for k-Planar Graphs with Few Bends per Edge 261

Another variant of the point set embedding problem with several applications
assumes a given mapping of the vertices to the points. A linear number of bends
per edge is sufficient and sometimes almost necessary [28] .

A well-recognized approach without a prescribed mapping but allowing bends
on the edges has been developed by Kaufmann and Wiese [23], who developed
an efficient PSE algorithm for any pointset of size n with only one bend per edge
if the given plane graph is hamiltonian, and with only two bends per edge for
general plane graphs. We will recall their algorithm in Sect. 2. We extend their
technique and apply it to graph classes from a research direction which is called
‘beyond planarity’.

‘Beyond planarity’ is an informal term for a recent research direction in
Graph Drawing, which is currently receiving a great deal of attention [19,21,25].
It mainly focuses on combinatorial and algorithmic aspects for classes of graphs
that can be drawn on the plane while avoiding specific kinds of edge crossings;
see, e.g., [14] for a survey.

Even quite long time ago, 1-planar graphs [30] have been considered as the
family of graphs that admit drawings with at most one crossing per edge. Later
generalizations include 2-planar graphs [27], 3-planar graphs [5,26], k-planar
graphs, where k crossings per edge are allowed. Others have more complicated
restrictions like fan-planar graphs [22], where an edge is only allowed to be
crossed by a set of adjacent edges from the same side (a fan), or fan-crossing-free
graphs [10], where exactly this configuration was forbidden and only crossings by
pairwise independent edges are allowed. Quasiplanar and k-quasiplanar graphs
where no three resp. no k mutually crossing edges are allowed, received special
considerations in the past due to their combinatorial structure [1,2,16] We finally
mention the RAC graphs [13], i.e. the family of graphs that admit polyline
drawings, with few bends per edge, in which the angles formed at the edge
crossings are 90◦.

Our Contribution: In this paper, we consider the PSE problem for 1-, 2- and
k-plane graphs in the model, where the vertices-to-points mapping is not given
and bends on the edges are allowed and should be minimized. In particular,
after reviewing some theorems from the literature and the basic algorithm by
Kaufmann and Wiese in Sect. 2, we show that an n-vertex 1-plane graph can
be embedded on any given point set of size n with only 2 bends per edge in
Sect. 3, matching the previously known best bound for plane graphs. In Sect. 4
we extend these techniques to 2-plane graphs where 2 crossings are allowed on
each edge. Finally we demonstrate in Sect. 5 that even for general k-plane graphs
very good results on the number of bends per edge can be achieved when the
input graph is mapped on the given set of n points. We discuss open problems
in Sect. 6.

262 M. Kaufmann

2 Preliminaries

In this section, we introduce again the problem for our model. Then we recall
some theorems and techniques from the literature, that we will use to obtain our
results.

Let S be a set of n given disjoint points p1 = (x1, y1), p2 = (x2, y2), ..., pn =
(xn, yn) in the plane, and let G = (V,E) be an n vertex graph. The graph G
is assumed to be simple and given as a topological drawing, i.e. a drawing of
disjoint points as vertices and simple curves, representing the edges, such that
there are no self-intersections, self-loops nor intersections of adjacent edges. We
have to find a mapping of the vertices to the points and realizations of the edges
as polygonal lines such that the topological drawing of the graph is preserved
and the maximal number of bends on each edge is as small as possible.

For our approach, we will use the following three theorems, in particular
Theorem 3.

Theorem 1 (Biedl, Kant, Kaufmann [6]). Any 2-connected planar graph with-
out separating triangles can be triangulated efficiently without introducing new
separating triangles. The new graph will be 4-connected.

Theorem 2 (Chiba, Nishizeki [11]). Any 4-connected planar graph has a hamil-
tonian cycle, which can be constructed in linear time.

Theorem 3 (Kaufmann, Wiese [23]). Any 4-connected plane graph can be
embedded on any point set of the same size with only one bend per edge. For
3-connected plane graphs a corresponding result holds but the edges might have
at most two bends.

We recall the algorithm of Kaufmann and Wiese [23]:
Let S be the given set of n points in the plane rotated such that the

x-coordinates are disjoint and at least a certain constant space in x-direction
exists between subsequent points. Let G a plane graph which can be assumed to
be triangulated. If G is four-connected, we know that there exists a hamiltonian
cycle C = v1, ..., vn, v1, which can be efficiently computed [11]. We subsequently
map the vertices vi along the cycle to the points of S ordered from left to right.
Consequently, the edges of the cycle C from v1 to vn form an x-monotone polygo-
nal line P . The closing edge (vn, v1) is drawn with one bend above the polygonal
line, such that the slopes of the ascending and the decreasing segment of the
edge are drawn with the same slopes but with opposite sign. All the other edges
can now be drawn easily either above the polygonal line inside of the cycle in a
similar way as (vn, v1) with one bend each, or below the line such that the bend
is the lowest point of the edge which is drawn symmetrically as well.

More concretely, the slope is computed as follows: Define the parameter
ρ = maxi{ |yi+1−yi|

xi+1−xi
} which denotes the steepest slope of a polygonal segment

along the polygonal line P . To draw the edges not on the path with one bend
symmetrically, we use slopes that are just slightly larger than ρ for ascending

On Point Set Embeddings for k-Planar Graphs with Few Bends per Edge 263

segments resp. slightly smaller than −ρ for descending segments. Simple adjust-
ment of the slopes ensures the absence of crossings. Details can be found in [23].
This algorithm completes the first part.

The second part is more tricky. We assume that the graph is triangulated
but not 4-connected, which implies that it has some separating triangles. Let
T = {u, v, w} be one of the separating triangles with corresponding edges
(u, v), (v, w), (w, u). We break T by taking one of the edges, say (u, v) and subdi-
vide it by a dummy vertex d, a so-called b-dummy. Additionally, we triangulate
the two quadrangular faces adjacent to d by two new so-called breaking edges
incident to b. We apply this step to all the separating triangles and get a trian-
gulated graph with some dummy vertices which has no separating triangles, i.e.
which is 4-connected and hence has a hamiltonian cycle C. Clearly C also passes
through the dummy vertex d. If it does not use both corresponding breaking
edges, the dummy vertex is useless and can be removed without changing the
remaining hamiltonian cycle C. Only if C passes through both breaking edges
the dummy vertex is useful as the edge (u, v) now consists of two subedges (u, d)
and (d, v) which lie on different sides of the polygonal line P . If we apply now
the basic algorithm of the four-connected case to the plane graph extended by
the dummy vertices, we get at most 3 bends per edge, one for each part, and one
at the dummy vertex. By changing the shape of the edges such that the edge
segment incident to a dummy vertex consist of two vertical segments, the bend
at the dummy vertex can be saved, such that each edge finally has at most 2
bends. Figure 1 shows the effect of the bend-saving technique. As it is explained
in [23], the area consumption might be exponential in the size of the bounding
rectangle of the point set S, see also Sect. 6.

v

w

b-dummy

path P
v

w

b-dummy

path P

Fig. 1. The left figure shows the 3-bend version with symmetrical slopes. The bend at
the dummy vertex can be saved by aligning the two middle segments vertically (right
figure). Note that w might be to the left of the b-dummy, such that three bends seems
unavoidable for the case of symmetrical slopes without the bend-saving technique.

In summary, edges that are incident to two original vertices have only one
bend, and the edges that consist of two parts both incident to a dummy vertex
have 3 bends, which can be reduced to two bends. In the following, we will
heavily use this basic scheme, which will be extended appropriately.

264 M. Kaufmann

We will planarize our non-planar input graph which will be given as a topo-
logical graph drawn in the plane by replacing the crossings by so-called c-dummy
vertices. The corresponding edges will now consist of subedges between ‘real’ ver-
tices and c-dummies. Those subedges will be called c-c edges if they are incident
to two c-dummies. In case, the subedge is between a real vertex and a c-dummy,
it is an r-c edge. Edges between a real and a b-dummy, are called r-b edges. If
an edge is incident to two ‘real’ vertices, we call it an r-r edge.

3 1-Plane Graphs

In this section, we consider 1-plane graphs, i.e. graphs with at most one crossing
per edge embedded in the plane. Let G = (V,E) be a 1-plane graph and S be a
set of n points in the plane which is rotated such that the x-coordinates of the
points are disjoint. As a first step, we replace the crossings of G by c-dummies
and achieve a plane graph G′. Now, we want to apply the algorithm of Kaufmann
and Wiese to G′. Because of 1-planarity, the edges in G might correspond to two
r-c edges each in G′. So, a first estimate indicates that the edges in G might
have at most 5 bends, namely 2 bends for each subedge plus a bend at the
corresponding c-dummy vertex. Unfortunately, the trick to reduce the bend at
the dummy vertex cannot be applied directly.

Nevertheless we will prove the following theorem achieving a much better
bound:

Theorem 4. Any 2-connected 1-plane graph can be embedded on any point set
of the same size with at most two bends per edge.

Proof. After the replacement step of the crossings, we obtain the plane graph G′.
At each c-dummy, we have 4 incident r-c subedges. We triangulate G′, e.g. by the
algorithm of Biedl et al. [6] which has the property that new separating triangles
are produced only if it is necessary. Next, we want to break the separating
triangles. For each such triangle T , we select one of the edges to add a b-dummy
vertex, which breaks the triangle T . Note that by 1-planarity, there is no edge
between two c-dummies. So, if one of the edges is a r-c edge, then there are
exactly two r-c edges in T . Clearly, the third edge is an r-r edge and we choose
that edge to place the b-dummy vertex and which then is split into two r-b edges.
Hence we never place an b-dummy on an r-c edges.

After the triangulation and breaking all the separation triangles by the
b-dummies, we obtain G′′. G′′ finally is 4-connected such that a hamiltonian
cycle C exists and we can apply approach of Kaufmann and Wiese. The hamil-
tonian cycle forms a monotone polygonal line P of straight-line segments between
the points. Auxiliary points at appropriate positions, e.g. equidistantly spaced
on the corresponding straight-line segment of the polygonal line P host the
intermediate dummy vertices. Since only the edges of G′ between two real ver-
tices are split into at most two parts, we have on each original edge at most
one dummy vertex, either a c-dummy or a b-dummy. Hence we have achieved
already a bound of 3 for the number of bends per edge.

On Point Set Embeddings for k-Planar Graphs with Few Bends per Edge 265

Next, we show how to save one of the three bends. If the dummy is a
b-dummy, then the original technique of Kaufmann and Wiese can be applied
and the middle bend can be saved. Note that this is quite straightforward also
because b-dummies have degree 2. For the c-dummies, the four incident r-c edges
make it more involved. In principle, we route the r-c edges such that the second
segments (those that incident to the c-dummy) are nearly vertical, deviating
from the vertical by a very small (ε < 0) angle to avoid unnecessary overlaps.
Note that by chosing the bend points appropriately, this can be done without
violating planarity. The preliminary crossing point is placed at the position of
the c-dummy.

We distinguish 3 configurations, depending on how many of those four r-c
edges are on the same sides of the polygonal line P defined by the hamiltonian
path (v1, ..., vn). We have either 2, 3 or 4 of the r-c edges on different sides. The
next figure shows some different configurations and our corresponding solutions.

(a) Two of the r-c edges are on each side of P .

For this case, we see that the bend-saving technique of Kaufmann and Wiese
can be applied directly. We leave the crossing at the c-dummy, and ensure that
there are no bends there. Hence the claim to achieve 2 bends holds for this case.

(b) Three of the r-c edges are on the same side of P .

This means that one of the two edges, call it e, consisting of two of the r-c edges
does not cross P . Let b1, b2 and b3 be the bends along e, where b2 is the c-dummy.
Clearly, the triangle b1, b2, b3 is empty and is only crossed by one of the other two
r-c edges incident to b2. Now, we omit b2 from e and add a straight-line segment
from b1 to b3. Hence we save the middle bend. The crossing point is now at
another position, but since its position is not prescribed, this is not problematic.
The other edge which crosses P at the c-dummy, can be routed with only 2
bends as in Case (a). Note that the topology of the crossing is preserved.

(c) All four r-c edges are on the same side of the polygonal line.

We apply the same bend-saving trick as in the case (b) but now for both edges.
The properties that the corresponding triangles described by the 3 bends are
empty hold as well. Hence we can save the two middle bends achieving the two-
bends bound. See also the right-hand side of Fig. 2. Clearly, the crossing still
exists since we do not change the beginning and end of the two edges. ��

In the next section, we examine how much of the techniques can be transfered
to the 2-planarity case, where there might be two crossings on each edge.

4 2-Plane Graphs

Let G = (V,E) be a 2-connected 2-plane graph and S be a set of n points in the
plane which is rotated to provide disjoint x-coordinates of the points. As before,

266 M. Kaufmann

Fig. 2. Two different configurations (a) and (c) for a crossing c with the corresponding
incident edge segments. On the right-hand side, bend-saving is applied, and the dashed
segments denote the new middle segments

we replace the crossings of G by so-called c-dummies and achieve a plane graph
G′. Before executing the triangulation step, we analyse the existing separating
triangles and restrict the set of edges that will be split by b-dummy vertices.

Lemma 1. In a separating triangle in G′, there is an r-r edge.

Proof. We first assume that there is a separating triangle T = {u, v, w} in G′

such that it contains only c-c edges, hence u, v and w are c-dummies. Hence
the component inside of the separating triangle has either no or only one edge
connecting it to the three crossings, which is a contradiction to the 2-planarity
assumption, as the edge might have 3 crossings, or there are two edges from the
inside of T to the crossings, then T forms a selfloop of an edge consisting of at
least three parts.

Second, we assume that there is a separating triangle T , that has an r-c edge,
but no r-r edge. Note that then it has exactly two incident r-c edges, and one
c-c edge. Let v be the real vertex in T . By 2-connectivity, the component has at
least two different connections to T . If both c-dummies are adjacent to the inside
component, then T is a selfloop edge consisting of three subedges and incident to
vertex v. If only one c-dummy, say w, is adjacent to the inside component, then
the subedges (v, w) and (w, u) belong to the same edge, and this edge crosses the
other edge that starts at the real vertex with the subedge (v, u), which is then
a contradiction to the simplicity of the drawing, as two incident edges intersect.
Figure 3 gives an overview of the different cases. ��

Now we extend G′ by new triangulation edges as planned before [6]. There
might occur some separating triangles that existed already in G′, or some new
separating triangles that include some new (fictitious) triangulation edges. To
break the later separating triangles, we use the fictitious edges to place the
b-dummies onto, since those edges will not be drawn anyway and hence we do
not care about the number of bends they will have.

On Point Set Embeddings for k-Planar Graphs with Few Bends per Edge 267

v

u
w

v

w

u

v

w

u

Fig. 3. Different configurations for a separating triangle with real vertex v and
c-dummies u and w. The circle inside the triangle denotes an inside component.

We only focus on the ‘original’ separating triangles in G′ and we apply
Lemma 1. Hence we split these separating triangles only by b-dummy vertices
on r-r edges. We again have a 4-connected graph G′′ with a hamiltonian cycle C
which then implies the order of the real vertices in which those vertices will be
mapped along the polygonal monotone path P . The dummy vertices are placed
in between respectively. Since b-dummies are only placed at r-r edges and ficti-
tious edges, the bend-saving technique of Kaufmann and Wiese can be applied
to make sure that the number of bends on the real edges is at most two. The
most critical edges are those edges with two crossings, as they are subdivided by
two c-dummies. They consist of three subedges with two segments respectively
with slopes slightly larger than parameter ρ for ascending segments, and slightly
smaller than −ρ for descending segments. Without the bend-saving technique,
the intermediate c-dummies would imply two more bends, and hence 5 bends
in total.

Applying the bend-saving technique realizes each subedge by a nearly-vertical
segment and the second segment with a large (positive or negative) slope. Unfor-
tunately, not both of the bends at the c-dummies can be saved by the technique
if the middle subedge lies on the other side of the polygonal path P , i.e. if we
have to cross P twice at the c-dummies. Corresponding bends can only be saved
if we have (almost)-vertical segments at the c-dummies. This can only be realized
at one of them. Hence the number of bends on each edge can be upperbounded
by 4.

Theorem 5. Any 2-connected 2-plane graph can be embedded on any point set
of the same size with at most four bends per edge.

In Fig. 4 we give an example of an edge with two crossings c1 and c2, where
the hamiltonian cycle is crossed twice and the applicability of the bend-saving
technique is limited. This effect generalizes also to the case of higher number of
crossings per edge (see Sect. 5) if the edge crosses the hamiltonian cycle upto k
times. In the next section, we will transfer the insights about the problems in
2-planar graphs to general k-planar graphs for k ≥ 2.

5 k-Plane Graphs

Let G be a k-plane graph for k ≥ 2 given as a topological drawing with at most
k crossings on each edge and let S be a set of n points in the plane which is

268 M. Kaufmann

vw c1 c2
line P

Fig. 4. A sketch of the routing of an edge (v, w) which is crossed twice, and the vertices
and c-dummies come in a certain order along the hamiltonian cycle. The bend at c1 can
be saved, but the one at c2 cannot. This indicates that saving the bends can eventually
be applied only at every other c-dummy.

rotated to provide disjoint x-coordinates of the points. Again, the crossings of G
are replaced by the c-dummies such that a plane graph G′ has been constructed.
Note that each edge which has l crossings is subdivided into two r-c edges and
l − 1 c-c edges. Before executing the triangulation step, we will try to make
similar observations as in the 2-planarity case such that we restrict the set of
edges that will be split by b-dummy vertices to remove the separating triangles.

Lemma 2. In a separating triangle in G′, there is an r-r edge.

Proof. We assume that there is a separating triangle T = {u, v, w} in G′ without
any r-r edge.

By 2-connectivity, at least two of the (dummy) vertices have one or more
connections to the inside of T . As there are no r-r edges in T , there are at
least two c-dummies in T . Only one of three cases might occur: Either the three
subedges of T form a loop in G, or there are two edges in G that cross each
other twice in G, or one of the vertices of T is a real vertex v, and there are two
edges incident to v that cross each other. All three cases lead to a contradiction
to simplicity assumptions for the topological embedding of G. Some of the cases
can be checked in Fig. 3. ��

Next we apply the triangulation procedure adding some (fictitious) edges.
Then we extend the graph by breaking separating triangles either placing
b-dummy vertices on fictitious edges (if they exist), or we can use the r-r edges
within the ‘original’ separating triangles to destroy those separating triangles
by placing b-dummies. Then we proceed with the algorithm of Kaufmann and
Wiese for 4-connected plane graphs, guided by the hamiltonian cycle C which we
determine by the algorithm of Chiba/Nishizeki [11], and parameter ρ. Without
the bend-saving tricks, we achieve for an edge with k crossings, hence with k
c-dummies and k + 1 subedges at most 2k + 1 bends.

On Point Set Embeddings for k-Planar Graphs with Few Bends per Edge 269

Theorem 6. Any 2-connected k-plane graph can be embedded on any point set
of the same size with at most 2k + 1 bends per edge.

Further improvements can be achieved applying the bend-saving techniques
that we developed before. Unfortunately, we were not able to save all the bends at
the c-vertices. It can successfully be done when two of the subedges consequently
are on the same side of the polygonal line formed by the monotone path P along
the hamiltonian cycle. The worst case appears if subsequent subedges alternate
between the sides of P . In that case, we can save only every second bend at a
c-vertex, as we have to use two nearly-vertical segments at this vertex. When
we have fulfilled this condition for a c-vertex, we cannot fulfill it for the next
c-vertex, or we have to use an additional bend, cf. Fig. 4 where the case for 2
crossings is sketched. Hence we can conclude

Theorem 7. Any 2-connected k-plane graph can be embedded on any point set
of the same size with at most k + 1 + �k/2� ≤ 3

2k + 1 bends per edge.

6 Discussions and Conclusions

We have shown how to effectively apply the algorithm of Kaufmann and Wiese
[23] to 1-planar, 2-planar and finally k-planar embedded graphs for k ≥ 2. Note
that the area consumption is exponential even in the basic algorithm for plane
graphs if the bend-saving techniques are applied and the bound of only two
bends should be maintained. For the case of three bends where the parameter ρ
is used to control the size of the slopes, and using the assumption of an integer
grid, the authors mention an upper bound of O(W 3) for the area, where W
denotes the width of the bounding box of the points. We give the corresponding
bounds for the graph classes here:

Theorem 8. Any 2-connected k-plane graph can be embedded on any point set
of the same size with at most 2k + 1 bends per edge using only a drawing area
of polynomial size. In particular, for k = 1, we have 3 bends per edge, and for
k = 2, we have 5 bends per edge.

We conclude with some open problems:

1. Improve the bounds for the number of bends per edge for 2-plane graphs
from four to three. This then might imply an improvement of the bounds for
general k-plane graphs as well.

2. The area issue should be discussed in more detail, even for the crossing-free
case. Is it possible to keep the area of polynomial size and still have only two
bends per edge. Develop lower bounds.

3. Consider the special case of outer-1-plane graphs. Note that there are efficient
algorithms for straight-line embeddings of outerplanar graphs on pointsets in
general positions. Can this result be transfered to outer-1-plane graphs? What
are the corresponding bounds for outer-2-plane and outer-k-planar graphs?

Acknowledgement. The author wishes to thanks the participants of the GNV work-
shop in Heiligkreuztal 2018 for inspiring discussions.

270 M. Kaufmann

References

1. Ackerman, E., Tardos, G.: On the maximum number of edges in quasi-planar
graphs. J. Comb. Theor. Ser. A 114(3), 563–571 (2007)

2. Agarwal, P.K., Aronov, B., Pach, J., Pollack, R., Sharir, M.: Quasi-planar graphs
have a linear number of edges. Combinatorica 17(1), 1–9 (1997)

3. Angelini, P., et al.: Small universal point sets for k-outerplanar graphs. Discret. Com-
put. Geom. 60(2), 430–470 (2018). https://doi.org/10.1007/s00454-018-0009-x

4. Bannister, M.J., Cheng, Z., Devanny, W.E., Eppstein, D.: Superpatterns and uni-
versal point sets. J. Graph Algorithms Appl. 18(2), 177–209 (2014). https://doi.
org/10.7155/jgaa.00318

5. Bekos, M.A., Kaufmann, M., Raftopoulou, C.N.: On optimal 2- and 3-planar
graphs. In: Aronov, B., Katz, M.J. (eds.) Symposium on Computational Geometry.
LIPIcs, vol. 77, pp. 16:1–16:16. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik
(2017)

6. Biedl, T.C., Kant, G., Kaufmann, M.: On triangulating planar graphs under the
four-connectivity constraint. Algorithmica 19(4), 427–446 (1997). https://doi.org/
10.1007/PL00009182

7. Bose, P.: On embedding an outer-planar graph in a point set. In: Proceedings of
Graph Drawing, 5th International Symposium, GD 1997, 18–20 September 1997,
Rome, Italy, pp. 25–36 (1997). https://doi.org/10.1007/3-540-63938-1 47

8. Bose, P., McAllister, M., Snoeyink, J.: Optimal algorithms to embed trees in a
point set. In: Proceedings of Graph Drawing, Symposium on Graph Drawing, GD
1995, 20–22 September 1995, Passau, Germany, pp. 64–75 (1995). https://doi.org/
10.1007/BFb0021791

9. Cabello, S.: Planar embeddability of the vertices of a graph using a fixed point set
is NP-hard. J. Graph Algorithms Appl. 10(2), 353–363 (2006). http://jgaa.info/
accepted/2006/Cabello2006.10.2.pdf

10. Cheong, O., Har-Peled, S., Kim, H., Kim, H.: On the number of edges of fan-
crossing free graphs. Algorithmica 73(4), 673–695 (2015)

11. Chiba, N., Nishizeki, T.: The hamiltonian cycle problem is linear-time solvable for
4-connected planar graphs. J. Algorithms 10(2), 187–211 (1989). https://doi.org/
10.1016/0196-6774(89)90012-6

12. Chrobak, M., Karloff, H.J.: A lower bound on the size of universal sets for planar
graphs. SIGACT News 20(4), 83–86 (1989). https://doi.org/10.1145/74074.74088

13. Didimo, W., Eades, P., Liotta, G.: Drawing graphs with right angle crossings.
Theor. Comput. Sci. 412(39), 5156–5166 (2011)

14. Didimo, W., Liotta, G., Montecchiani, F.: A survey on graph drawing beyond
planarity. CoRR abs/1804.07257 (2018)

15. Feige, U.: Approximating the bandwidth via volume respecting embeddings
(extended abstract). In: Proceedings of the Thirtieth Annual ACM Symposium
on the Theory of Computing, 23–26 May 1998, Dallas, Texas, USA, pp. 90–99
(1998). https://doi.org/10.1145/276698.276716

16. Fox, J., Pach, J., Suk, A.: The number of edges in k-quasi-planar graphs. SIAM J.
Discret. Math. 27(1), 550–561 (2013)

17. de Fraysseix, H., Pach, J., Pollack, R.: How to draw a planar graph on a grid.
Combinatorica 10(1), 41–51 (1990). https://doi.org/10.1007/BF02122694

18. Fulek, R., Tóth, C.D.: Universal point sets for planar three-trees. J. Discret. Algo-
rithms 30, 101–112 (2015). https://doi.org/10.1016/j.jda.2014.12.005

https://doi.org/10.1007/s00454-018-0009-x
https://doi.org/10.7155/jgaa.00318
https://doi.org/10.7155/jgaa.00318
https://doi.org/10.1007/PL00009182
https://doi.org/10.1007/PL00009182
https://doi.org/10.1007/3-540-63938-1_47
https://doi.org/10.1007/BFb0021791
https://doi.org/10.1007/BFb0021791
http://jgaa.info/accepted/2006/Cabello2006.10.2.pdf
http://jgaa.info/accepted/2006/Cabello2006.10.2.pdf
https://doi.org/10.1016/0196-6774(89)90012-6
https://doi.org/10.1016/0196-6774(89)90012-6
https://doi.org/10.1145/74074.74088
https://doi.org/10.1145/276698.276716
https://doi.org/10.1007/BF02122694
https://doi.org/10.1016/j.jda.2014.12.005

On Point Set Embeddings for k-Planar Graphs with Few Bends per Edge 271

19. Hong, S., Tokuyama, T.: Algorithmics for beyond planar graphs. NII Shonan Meet-
ing Seminar 089, 27 November–1 December 2016

20. Ikebe, Y., Perles, M.A., Tamura, A., Tokunaga, S.: The rooted tree embedding
problem into points in the plane. Discret. Comput. Geom. 11, 51–63 (1994).
https://doi.org/10.1007/BF02573994

21. Kaufmann, M., Kobourov, S., Pach, J., Hong, S.: Beyond planar graphs: algorith-
mics and combinatorics. Dagstuhl Seminar 16452, 6–11 November 2016

22. Kaufmann, M., Ueckerdt, T.: The density of fan-planar graphs. CoRR
abs/1403.6184 (2014)

23. Kaufmann, M., Wiese, R.: Embedding vertices at points: few bends suffice for
planar graphs. J. Graph Algorithms Appl. 6(1), 115–129 (2002). http://www.cs.
brown.edu/publications/jgaa/accepted/2002/KaufmannWiese2002.6.1.pdf

24. Leighton, F.T.: Introduction to Parallel Algorithms and Architectures: Array,
Trees, Hypercubes. Morgan Kaufmann Publishers Inc., San Francisco (1992)

25. Liotta, G.: Graph drawing beyond planarity: some results and open problems.
SoCG Week, Invited talk, 4 July 2017

26. Pach, J., Radoičić, R., Tardos, G., Tóth, G.: Improving the crossing lemma by
finding more crossings in sparse graphs. Discret. Comput. Geom. 36(4), 527–552
(2006)

27. Pach, J., Tóth, G.: Graphs drawn with few crossings per edge. Combinatorica
17(3), 427–439 (1997)

28. Pach, J., Wenger, R.: Embedding planar graphs at fixed vertex locations. In: Pro-
ceedings of Graph Drawing, 6th International Symposium, GD 1998, August 1998,
Montréal, Canada, pp. 263–274 (1998). https://doi.org/10.1007/3-540-37623-2 20

29. Pach, J., Gritzmann, P., Mohar, B., Pollack, R.: Embedding a planar triangulation
with vertices at specified points. Am. Math. Mon. 98, 165–166 (1991). Professor
Pach’s number: [065]

30. Ringel, G.: Ein Sechsfarbenproblem auf der Kugel. Abh. Math. Sem. Univ. Hamb.
29, 107–117 (1965)

https://doi.org/10.1007/BF02573994
http://www.cs.brown.edu/publications/jgaa/accepted/2002/KaufmannWiese2002.6.1.pdf
http://www.cs.brown.edu/publications/jgaa/accepted/2002/KaufmannWiese2002.6.1.pdf
https://doi.org/10.1007/3-540-37623-2_20

Enumerating Connected Induced
Subgraphs: Improved Delay and

Experimental Comparison

Christian Komusiewicz and Frank Sommer(B)

Fachbereich Mathematik und Informatik, Philipps-Universität Marburg,
Marburg, Germany

{komusiewicz,fsommer}@informatik.uni-marburg.de

Abstract. We consider the problem of enumerating all connected
induced subgraphs of order k in an undirected graph G = (V, E). Our
main results are two enumeration algorithms with a delay of O(k2Δ)
where Δ is the maximum degree in the input graph. This improves upon
a previous delay bound [Elbassioni, JGAA 2015] for this problem. In
addition, we give improved worst-case running time bounds and delay
bounds for several known algorithms and perform an experimental com-
parison of these algorithms for k ≤ 10 and k ≥ |V | − 3.

1 Introduction

We study algorithms for the following fundamental graph problem.

Connected Induced Subgraph Enumeration (CISE)
Input: An undirected graph G = (V,E) and an integer k.
Task: Enumerate all connected induced subgraphs of order k.

We call a connected subgraph of order k a solution in the following. The enu-
meration of connected subgraphs is important in many applications, such as the
identification of network motifs (statistically overrepresented induced subgraphs
of small size). A straightforward algorithm to find such motifs is to enumer-
ate all connected induced subgraphs and to count how often each subgraph of
order k occurs [6,14]. A further application arises when semantic web data is
searched using only keywords instead of structured queries [5]. Finally, many
fixed-cardinality optimization problems can be solved by an algorithm whose
first step is to enumerate connected induced subgraphs of order k [8]. This algo-
rithm can solve for example Connected Densest-k-Subgraph, the problem
of finding a connected subgraph of order k with a maximum number of edges.
Experiments showed that enumeration-based algorithms can be competitive with
other algorithmic approaches [9].

At first sight, providing any nontrivial upper bounds on the running time
of CISE seems hopeless: As evidenced by a clique on n vertices, graphs may
have up to

(
n
k

)
CISE solutions. Even very sparse graphs may have

(
n−1
k−1

)
CISE

c© Springer Nature Switzerland AG 2019
B. Catania et al. (Eds.): SOFSEM 2019, LNCS 11376, pp. 272–284, 2019.
https://doi.org/10.1007/978-3-030-10801-4_22

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-10801-4_22&domain=pdf
http://orcid.org/0000-0003-0829-7032
http://orcid.org/0000-0003-4034-525X
https://doi.org/10.1007/978-3-030-10801-4_22

Enumerating Connected Induced Subgraphs 273

solutions as evidenced by a star graph with n−1 leaves. It is maybe due to these
lower bounds that, despite its importance, CISE has not received too much
attention from the viewpoint of worst-case running time analysis.

One way to achieve relevant running time bounds is to consider degree-
bounded graphs where the number of solutions is much smaller than in general.

Lemma 1 ([3, Eq. 7]). Let G be a graph with maximum degree Δ. Then the
number of connected induced subgraphs of order k that contain some vertex v is at
most (e(Δ − 1))(k−1). Hence, the overall number of connected induced subgraphs
of order k in G is O((e(Δ − 1))(k−1) · (n/k)).

This observation can be exploited to obtain an algorithm for CISE that runs in
O((e(Δ − 1))(k−1) · (Δ + k) · (n/k)) time [8].

A second approach to provide nontrivial running time bounds is to prove
upper bounds on the delay of the enumeration. The delay is the maximal time
that the algorithm spends between the output of consecutive solutions. The
reverse search framework is a general paradigm for enumeration algorithms with
bounded delay. The basic idea is to construct a tree where each node repre-
sents a unique element of the enumeration process. By traversing this tree from
the root, each element is enumerated exactly once. By using reverse search,
one can enumerate all induced subgraphs of order at most k with polynomial
delay [1]. When we are interested only in solutions of order exactly k [4], this
algorithm is not output polynomial, that is, the running time is not bounded by
a polynomial in the input and output size. Hence, it does not achieve poly-
nomial delay either. A different reverse search algorithm, however, achieves
delay O(k min(n − k, kΔ)(k(Δ + log k) + log n)) [4].

Thus, k and Δ appear to be central parameters governing the complexity
of CISE. Motivated by this observation, we aim to make further progress at
exploiting small values of Δ and k.

Related Work. Most known CISE algorithms follow the same strategy: start-
ing from an initial vertex set S := {v} for some vertex v, build successively
larger connected induced subgraphs G[S] until an order-k subgraph is found.
Wernicke [13] describes a procedure following this paradigm, which we refer to
as Simple. The idea is to branch into the different possibilities to add one ver-
tex u from N(S). Another popular enumeration algorithm is Kavosh [6] which
also considers adding vertices of N(S) but creates one branch for each subset
of N(S) that has size at most k − |S|.

A slightly different strategy is to first pick a vertex p of the current set S
whose neighbors are added in the next step and then branch on the up to (Δ−1)
possibilities for adding a neighbor of this vertex. The vertex p is called the active
vertex of the enumeration. The corresponding algorithm, which we call Pivot,
has a worst-case running time of O((4(Δ−1))k ·(Δ+k) ·n) [7]. A further variant
of Pivot achieves the running time of O(e((Δ−1))(k−1) ·(Δ+k) ·n/k) mentioned
above [8]. This variant, which we call Exgen, generates exhaustively all subsets S′

of N(p) \ S of size at most k − |S| and creates for each such set S′ one branch

274 C. Komusiewicz and F. Sommer

in which S′ is added to S. The final variant that we consider is BDDE [11].
For a fixed vertex v, BDDE enumerates the connected subgraphs containing v
for increasing subgraph orders. The main idea is to use two functions, one to
discover new graph edges and one to copy siblings in the enumeration tree.

The above-mentioned algorithms with polynomial delay [4] work differently.
They use reverse search and, more generally, the supergraph method [1]. There,
for a given graph G and parameter k, the supergraph G contains a node for each
CISE solution in G. Furthermore, two nodes in G are connected if and only if the
corresponding connected subgraphs differ in exactly one vertex. Let |G| denote
the number of vertices in G, that is, the number of CISE solutions. The basic idea
is to explore the supergraph G efficiently. The first variant, which we refer to as
RwD (Reverse Search with Dictionary) has a delay of O(k min (n − k, kΔ)(k(Δ+
log k)+log n)) and requires O(n+m+k|G|) space where m is the number of edges
in the input graph G. The second variant, which we refer to as RwP (Reverse
Search with Predecessor), has a delay of O((k min (n − k, kΔ))2(Δ + log k)) and
requires O(n + m) space [4]. Hence, algorithm RwD admits a better delay but
requires exponential space, since G may grow exponentially with the size of G.

Our Results. We show how to adapt Simple and Pivot in such a way that the
worst-case delay between the output of two solutions is O(k2Δ) and the algo-
rithms requires O(n + m) space. This improves over the previous best delay
bound of RwD [4] while requiring only linear space. As a side result, we show
that these variants of Simple and Pivot achieve an overall running time of
O(e((Δ − 1))(k−1) · (Δ + k) · n/k) and O((e(Δ − 1))k−1 · Δ · n), respectively.
For Simple this is the first running time bound, for Pivot, this is a substantial
improvement over the previous running time bound.

Finally, we compare these algorithms experimentally with implementations
of Kavosh [6], Exgen [8], and BDDE [11]. For k ≤ 10, we observe that RwD
and RwP are significantly slower than the other algorithms. The Simple algo-
rithm is faster than RwD and RwP but substantially slower than the other
algorithms. Kavosh [6] is the fastest with Pivot being surprisingly competitive.
For k close to the order of the largest connected component, we observe that
our adaptions are necessary to solve these instances. Again, RwD and RwP are
slower than the other algorithms and again, Kavosh is the fastest algorithm with
Simple being second-best but not competitive with Kavosh.

Due to lack of space, several proofs are deferred to a long version of the article.

2 Preliminaries and Main Algorithm

Graph Notation. We consider undirected simple graphs G = (V,E). The
order n := |V | denotes the number of vertices in G and m := |E| denotes
the number of edges in G. For a vertex v, N(v) := {u | {u, v} ∈ E} denotes the
open neighborhood of v, and N [v] := N(v)∪{v} denotes the closed neighborhood
of v. For a vertex set W ⊆ V , N(W) :=

⋃
v∈W N(v)\W denotes the open neigh-

borhood of W and N [W] := N(W) ∪ W denotes the closed neighborhood of W .

Enumerating Connected Induced Subgraphs 275

Algorithm 1. The main loop for calling the enumeration algorithms; Enum-
Algo can be any of Simple, Pivot, Exgen, Kavosh, and BDDE.
1: procedure Enumerate(G = (V, E))
2: while |V (G)| ≥ k do
3: choose vertex v from V (G)
4: enumerate all CISE solutions containing v with Enum-Algo
5: remove v from G

The graph G[W] := (W, {{u, v} ∈ E | u, v ∈ W}) is the subgraph induced by W .
For a set W the graph G − W := G[V \ W] is the subgraph of G obtained by
deleting the vertices of W . A connected component of G is a maximal subgraph
where any two vertices are connected to each other by paths.

Enumeration Trees and the Main Algorithm Loop. With the exception of RwD
and RwP, the enumeration algorithms use a search tree method which is called
from a main loop whose pseudo code is given in Algorithm1. Different algo-
rithms, for example Simple or Pivot, can be used as Enum-Algo in Line 4 in
Algorithm 1. For each vertex in the graph, Algorithm1 creates a unique enu-
meration tree. In other words, Algorithm 1 produces a forest consisting of |V |
enumeration trees. To avoid confusion, we refer to the vertices of the enumera-
tion trees as nodes. Each node represents a connected subgraph G[S] of order at
most k. Roughly speaking, a node N is a child of another node M if the sub-
graph corresponding to M is a subgraph of the subgraph corresponding to N .
The exact definition of child depends on the choice of Enum-Algo. A leaf is a
node without any children. Further, a leaf is interesting if S has size k; otherwise
it is boring. A node leads to an interesting leaf, if at least one of its descendants
is an interesting leaf.

In the main algorithm loop, we enumerate for each vertex of the input graph
all CISE solutions containing the vertex v by calling the respective enumeration
procedures; the first call of the enumeration procedure is the root of the enumer-
ation tree and it represents the connected subgraph G[{v}]. After enumerating
all solutions containing v, the vertex v is removed from the graph.

Cleaning the Graph. The removal of v may create connected components of order
less than k. If Enumerate chooses all vertices from such connected components,
then we will not achieve the claimed delays. Hence, we show how to remove these
connected components quickly.

Lemma 2. Let G be a graph such that each connected component has order at
least k and let v be an arbitrary vertex of G. In O(k2Δ) time we can delete every
vertex of G − {v} that is in a connected component of order less than k.

3 Polynomial Delay with Simple

We now adapt Simple to obtain a polynomial delay algorithm; the pseudo code
is shown in Algorithm 2. In Simple, we start with a single vertex v and find

276 C. Komusiewicz and F. Sommer

successively larger connected subgraphs containing v. The vertex set of a sub-
graph set is denoted by P . Further, the set X, called extension set, contains
those neighbors of P which can be added to P to enlarge this subgraph. When
putting u in the set P , we remove u from X and add to X each neighbor of u
which is not in N [P]. Lines 10 and 11 of Algorithm2 are not part of the plain
version of Simple [13]. Without these two lines Simple is not a polynomial delay
algorithm for CISE.

We now present a pruning rule (Lines 10 and 11 of Algorithm2) that will
establish polynomial delay. Consider a path T1, . . . , Ti from the root T1 to a
node Ti of an enumeration tree. We denote the subgraph set of a node Ti by Pi

and its extension set by Xi. To avoid some unnecessary recursions, we check after
each recursive call of Simple in node Ti whether this call reported a new solution.
If not, we return in Ti to its parent Ti−1. First, we prove that this pruning rule is
correct. Recall that a leaf Tj is called interesting if the corresponding subgraph
set Pj is a solution for CISE and that Tj is called boring otherwise.

Algorithm 2. The Simple algorithm; the initial call is Simple({v}, N(v)).
1: procedure Simple(P, X)
2: if |P | = k then
3: output P
4: return
5: while X �= ∅ do
6: u := choose arbitrary vertex from X
7: delete u from X � The current set P will be extended
8: X ′ := X ∪ (N(u) \ N [P])
9: Simple(P ∪ {u}, X ′)

10: if output of Simple(P ∪ {u}, X ′) was empty then
11: return � Stop recursion if no new solution found

12: return

Lemma 3. If the output of a recursive call of Simple in node Ti is empty, then
no subsequent recursive call of Simple in node Ti leads to an interesting leaf.

Now we prove that Simple achieves a polynomial delay. To this end, we
present a new data structure to store the extension set during the algorithm. In
the following, we denote by pi the vertex which was added to the subgraph set Pi

when Ti is created. In other words, if Ti−1 is the parent of Ti, then pi ∈ Pi \Pi−1.
First, we prove that for a node Ti in the enumeration tree we need O(Δ) time
to either compute its next child Ti+1 or to restore its parent Ti−1.

Lemma 4. Simple can be implemented in such a way that for every node Ti of
the enumeration tree, we need O(Δ) time to either compute the next child Ti+1

or to restore the parent Ti−1 and that the overall space needed is O(n + m).

Proof. We describe the data structures that we use to fulfill the running time
and space bounds of the lemma. To check whether a vertex is in some extension

Enumerating Connected Induced Subgraphs 277

Fig. 1. An example for the pointer movement: Pointer π(A, 6) points to u9, an exclusive
neighbor of p6. Before adding u9 to the subgraph set P6, we move pointer π(A, 6) to
the left to p8, an exclusive neighbor of vertex π(A, 3). Hence, we move π(A, 6) to the
position of pointer π(A, 5), since T5 is the parent of T6. Next, we create a child of T6 by
adding u9 to the subgraph set P6. The next time we are in node T6, we move π(A, 6) one
to the left to vertex u2 create a child of T6 by adding u3 to P6. After returning from this
child, we move π(A, 6) to vertex u1 which is an exclusive neighbor of vertex p1. Hence,
we move π(A, 6) to the position of π(A, 2), since T2 is the parent of T3. Afterwards, we
create a child by adding u2 to P6. The next time we come back to node T6, we delete
pointer π(A, 6), since π(A, 6) points to null, and return to the parent T5 of node T6.

set, we color some vertices of with k+1 colors c0, . . . , ck as follows. For a node Ti,
we call the exclusive neighbors of pi the vertices which are in N [Pi] \ N [Pi−1]
where Ti−1 is the parent of Ti. These are exactly the vertices that are added
to Xi−1 in Line 7 of Algorithm 2 to construct the set Xi for the node Ti. Through-
out the algorithm we maintain the following invariant: The vertex p1 has color c0.
A vertex has color ci, i ≥ 1, if and only if it is an exclusive neighbor of pi. In a
nutshell, the colors c0, . . . , cj represent the vertices in N [Pj]. It is necessary to
use k + 1 different colors to determine in which node a vertex was added to the
extension set. Note that every vertex may have at most one color.

The extension sets of all nodes on the path from the root T1 to an enumeration
tree node Ti are represented by an array A of length kΔ with up to k pointers
pointing to positions of A. There is one pointer π(A, i) corresponding to Ti and
one pointer π(A, j) for each ancestor Tj of Ti. An entry of A is either empty
or contains a pointer to a vertex of the extension set Xi. New vertices for the
extension set replace empty entries in the back. Pointer π(A, i) points to the
vertex x in the extension set Xi which will be added to PT in the next recursive
call of Simple in node Ti. If at node Ti already all children of Ti have been
created, then π(A, i) points to null. Hence, we may check in constant time
whether Ti has further children and return to the parent of Ti if this is not the
case.

In addition to A, we use two further simple data structures: The subgraph
set Pi at a node Ti is implemented as stack Q that is modified in the course of
the algorithm with the top element of the stack being pi. Also, for each node Ti,
we create a list Li of its exclusive neighbors. This list is necessary to undo some
later operations. We now describe how these data structures are maintained
throughout the traversal of the enumeration tree.

278 C. Komusiewicz and F. Sommer

Initialization. At the root T1 of the enumeration tree, we initialize A as follows:
add all neighbors of the start vertex p1 := v to A, set pointer π(A, 1) to the
last non-empty position in A. Hence, the initial extension set is represented by
all vertices from the first vertex in A to the initial position of pointer π(A, 1).
These are precisely the vertices of the exclusive neighborhood of v. The stack Q
consists of the vertex v and L1 contains all neighbors of v.

Creation of New Children. As discussed above, a node Ti has a further child Ti+1

if it points to an index containing some vertex x. We create child Ti+1 as follows:

1. move the pointer π(A, i) to the left,
2. check whether x is an exclusive neighbor of pi, and remove x from A if this

is the case, and
3. create the child Ti+1 with pi+1 = x and enter the recursive call for Ti+1.

We now specify how to move the pointer π(A, i) to the left when it currently
points to vertex x of color c�. For an example of the pointer movement, see Fig. 1.
Note that if x is an exclusive neighbor of pi, we have i = �. If x is contained in the
first entry of A, then redirect π(A, i) to null. Otherwise, decrease the position
of π(A, i) by one. If π(A, i) now points to a position containing a vertex y of
color cj such that π(A, j) also points to y, then move π(A, i) to the position
that π(A, � − 1) points to. Observe that if j = � − 1 this means that the pointer
does not move in the second step.

We now describe how the algorithm creates a child Ti+1 of Ti after fix-
ing pi+1 := x as described above. If node Ti+1 is an interesting leaf, that is,
if i = k −1, we output Pi+1 ∪{x} and return to node Ti. Otherwise, we add ver-
tex x to the stack Q representing the subgraph set and create an initially empty
list Li+1. Then we update A so that it represents Xi+1. For each neighbor u of x,
check if u has some color cj . If this is not the case, then color u with color ci+1

and add u to Li+1. Now store the vertices of Li+1 in the left-most non-empty
entries of A. Finally, create the pointer π(A, i + 1) and let it point to the last
non-empty position in A. Observe that this procedure runs in O(Δ) time.

Restoring the Parent. Finally, we describe how the algorithm returns to the par-
ent Ti−1 of a node Ti. Note that the case that Ti is an interesting leaf was already
handled above, hence, assume that Ti is not an interesting leaf. When returning
to Ti−1, first delete the last element of stack Q. Then, for each vertex in Li, we
remove its color ci. Finally, remove pointer π(A, i) from array A. Observe that
this can be done in O(Δ) time as well. Hence, the overall running time is O(Δ)
as claimed. Moreover, the size of stack Q is bounded by k, array A has a length
of min(kΔ, n), and the sum of the sizes of all lists Li is at most min(kΔ, n).
Hence, Simple needs O(n + m) space. The proof of the correctness of the algo-
rithm is deferred to a long version of the article. ��

With this running time bound we may now prove the claimed delay.

Theorem 1. Enumerate with Simple solves CISE for any graph G where each
connected component has order at least k and the maximum degree is Δ with
delay O(k2Δ) and space O(n + m).

Enumerating Connected Induced Subgraphs 279

Proof. Enumerate chooses an arbitrary start vertex v. According to Lemma 2,
after the deletion of vertex v, we can delete every vertex of each connected
component with less than k vertices in O(k2Δ) time. Thus it is sufficient to
bound the time which is needed to output the next solution within Simple.

Consider a node Ti in the enumeration tree of one call of Enumerate with
Simple and its associated sets Pi (the subgraph set of node Ti) and Xi (the
extension set of node Ti). Every time we call Simple recursively, we add exactly
one vertex to the subgraph set. Hence, we need at most k iterations to reach a
leaf Tj . If Tj is interesting, that is, if we find a solution for CISE, then we have
a delay of O(kΔ). If Tj is boring, then according to Lemma 3 the pruning rule
applies to each node T� on the path from Tj to Ti since no other subsequent
child of node T� yields a path to an interesting leaf. Hence, we will return in
altogether O(kΔ) time to the parent Ti−1 of node Ti. Now, we are in the same
situation as above. Either the first path from node Ti−1 to a leaf leads to a
solution for CISE or the pruning rule applies and we return to the parent of Ti−1.
The crucial difference is that the depth of node Ti−1 in the enumeration tree is
one less than the depth of node Ti. Since the depth of the enumeration tree
is bounded by k, we can go up at most k times until we return from the root
(which finishes this call to Simple). Each time, we either report a new solution
in O(kΔ) time or go up once more. Hence, the overall delay is O(k2Δ). The
space complexity follows from Lemma 3. ��

We can use Lemma 4 also to bound the overall running time of the algorithm.

Proposition 1. Enumerate with Simple has running time O((e(Δ − 1))k−1 ·
(Δ + k) · n/k).

4 Polynomial Delay with Pivot

We now adapt Pivot of Komusiewicz and Sorge [7] to obtain polynomial delay
and a better running time bound. In Pivot, in each enumeration tree node,
the vertex set of the subgraph set is partitioned into two sets P and S. The
set P contains those vertices whose neighbors may still be added to extend the
subgraph set and set S contains the other vertices of this subgraph, that is,
no neighbor of S may be added to the subgraph. Moreover, we have a set F
containing further vertices that may not be added to the connected subgraph.
In the original algorithm [7] each node in the enumeration tree has an active
vertex of the set P whose neighbors will be added to the subgraph. After adding
each possible neighbor, the vertex becomes inactive and is added to set S. This
version of the algorithm has a running time of O(4k(Δ − 1)kn(n + m)) [7] and
no polynomial delay.

We improve this algorithm such that the number of enumeration tree nodes
will be worst-case optimal and the algorithm has polynomial delay. The pseudo
code of Pivot with improved running time and with pruning rule can be found
in Algorithm 3. Consider a path T1, . . . , Ti from the root T1 to a node Ti of
the enumeration tree. We will not associate enumeration tree nodes with active

280 C. Komusiewicz and F. Sommer

vertices. Instead, with each node Ti we associate Pi which is the subset of the
subgraph set which can have further neighbors, Si which is the remaining sub-
graph set, and Fi which is the set of forbidden vertices. Hence, we are using a
Line 5 instead of creating a new child for each new active vertex. Now we do the
following until Pi is empty: Pick an arbitrary p ∈ Pi. Next, for each neighbor v
of p that is not in Pi ∪Si ∪Fi, create a child node Ti+1 in which v is added to Pi.
After recursively solving the subproblem of Ti+1, move v to Fi. Consequently,
v is contained in Fi in all subsequent children of Ti. Finally, after creating a child
for each neighbor of p, remove p from Pi and put it into Si. With this simple
improvement, the number of enumeration tree nodes is now exactly the number
of connected subgraphs of order at most k.

Algorithm 3. The Pivot algorithm; the initial call is Pivot({v}, ∅, ∅).
1: procedure Pivot(P, S, F)
2: if |P ∪ S| = k then
3: output P ∪ S
4: return
5: while P �= ∅ do
6: p := choose element of P
7: for each z ∈ N(p) \ (P ∪ S ∪ F) do
8: Pivot(P ∪ {z}, S, F)
9: F := F ∪ {z}

10: if output of Pivot(P ∪ {z}, S, F) was empty then
11: return � Stop recursion if no solution was found

12: P := P \ {p}
13: S := S ∪ {p}
14: return

Lemma 5. For each connected induced subgraph G[U] of order at most k con-
taining v, there is exactly one node T of the enumeration tree created by
Pivot({v}, ∅, ∅) such that PT ∪ ST = U .

To obtain polynomial delay we add in Lines 10 and 11 a similar pruning rule
to Pivot as for Simple: After each recursive call of Pivot in node Ti we check
whether the call of node Ti+1 outputs at least one solution for CISE. If not, we
return in node Ti to its parent Ti−1 of the enumeration tree. These two lines
were not part of the original algorithm.

Lemma 6. Let Ti be a node in the enumeration tree in a call of Pivot. If the out-
put of a recursive call of Pivot in node Ti is empty, then no subsequent recursive
call of Pivot in node Ti yields a path to an interesting leaf.

Next, we prove that with suitable data structures for maintaining the
sets P , S, and F during the enumeration, we can quickly traverse the enu-
meration tree.

Enumerating Connected Induced Subgraphs 281

Lemma 7. Pivot can be implemented in such a way that for every node Ti of
the enumeration tree, we need O(kΔ) time to either compute the next child Ti+1

or to restore the parent Ti−1 and that the overall space needed is O(n + m).

Proof. To check in constant time whether a vertex belongs to Pi, Si, or Fi at an
enumeration tree node Ti, we color some vertices of the graph with colors cF , cP ,
and cS . For a node Ti the set of cF -colored vertices represents the forbidden
vertices Fi, the set of cP -colored vertices represents the set of vertices Pi which
can have new neighbors, and the set of cS-colored vertices represents the set of
vertices Si which have no new neighbors. At the root of the enumeration tree,
no vertex has color cF or cS . Only the single vertex v in P has color cP . Testing
if a vertex has color cP , cS , or cF can be done in constant time.

To represent the partition of the subgraph set of node Ti into Pi and Si we
use an array A of length k. The array A contains i = |Pi∪Si| nonempty elements.
In A, we first save all vertices of Si. Then the vertices of Pi follow. Further, a
pointer π(A, i) points to the vertex p of Pi with minimal index in A. Vertex p is
the vertex which was chosen in Line 6 of Pivot and the vertex one position to
the right of p will be chosen next. Hence, in node Ti altogether |Pi ∪ Si| many
pointers (one for node Ti and one for each of its ancestors) point to positions
of A. To represent the set of forbidden vertices, we use a list Li for each node Ti.
The union of all vertices in lists L1, . . . , Li represents the set Fi of forbidden
vertices in node Ti. List Li contains all vertices in Fi \ Fi−1. List Li is used to
restore Fi−1 when we return from node Ti to its parent Ti−1.

Initialization. If we call Pivot with the chosen start vertex v we create the root T1

of the enumeration tree. The first and only non-empty entry of A contains v,
pointer π(A, 1) points to v, and list L1 is empty. Now, we describe how to update
these data structures in order to the next child Ti+1, or restore the parent Ti−1

of any node Ti in O(kΔ) time.

Determining the Next Child of Ti. Do the following while π(A, i) points to a
vertex p. Check in O(Δ) time whether p has a neighbor u which has none of the
colors cP , cS , or cF . If yes, we have determined that by adding u to Pi we can
create a new child Ti+1 of node Ti. Otherwise, all neighbors of p have some color,
and we remove color cP from p, recolor p with cS , and move pointer π(A, i) one
position to the right. If pointer π(A, i) points to an empty entry of A, then Pi

is empty and Ti contains no more children. Overall, we need O(kΔ) time to
determine the vertex to add for the next child Ti+1 of Ti.

Creating a New Child. To create Ti+1, we update the data structure to represent
the sets Pi+1, Si+1, and Fi+1: We replace the empty entry with minimal index
in A by vertex u, we color u with cP , and create pointer π(A, i+1) which points
to the same vertex as π(A, i). Further, we create the list Li+1. This list is empty
since Fi+1 = Fi. Thus, the child can be created in constant time.

Restoring a Parent. Now, we prove that we can restore the parent Ti−1 in O(kΔ)
time when we have determined that Ti has no further children: We need to
restore the sets Pi−1, Si−1, and Fi−1 of the parent Ti−1 of node Ti. All vertices

282 C. Komusiewicz and F. Sommer

in list Li are forbidden vertices which were added in node Ti. In other words: Li =
Fi \ Fi−1. Removing color cF from these vertices and deleting list Li afterwards
needs O(kΔ) time, since the set Pi can have at most kΔ neighbors and hence,
node Ti can have at most kΔ children. Next, we remove pointer π(A, i) from A
in constant time. Afterwards, we remove the last non-empty vertex x from A,
add x to list Li−1, and change the color of x to color cF . To restore the coloring
of Pi−1 and Si−1 we use the position of pointer π(A, i − 1). More precisely, all
vertices from π(A, i − 1) to the last non-empty entry of A get color cP , and all
other vertices of A get color cS . Overall, we need O(kΔ) time for this step.

As shown above, the algorithm has the claimed running time. Moreover,
array A has length k and the sum of the list sizes is min(kΔ, n). Hence, the
algorithm needs O(n + m) space. ��
Together with the pruning rule, the above gives a delay of O(k3Δ).

Proposition 2. Pivot can be implemented in such a way that Enumerate with
Pivot solves CISE for any graph G where each connected component has order
at least k and the maximum degree is Δ with delay O(k3Δ) and space O(n+m).

Next, we will improve the delay to O(k2Δ). The bottleneck in the delay
provided by Proposition 2 is that when we have a node Ti that does not lead to
an interesting leaf, we may have to go up Θ(k) levels before reaching a node that
leads to an interesting leaf, each time needing Θ(k2Δ) time to check if the current
node Ti leads to an interesting leaf. We will do the following: Before generating
child Ti+1 of node Ti, we invest O(kΔ) time to check if the next child T ′

i+1 of Ti

yields a path to an interesting leaf. This will be done by coloring at most k − i
vertices with a new color ct. If and only if k − i vertices received color ct the
next child T ′

i+1 yields a path to an interesting leaf. Afterwards, color ct will be
removed from each vertex to use color ct for the next node in the enumeration
tree. With this we can prove the following delay bound.

Theorem 2. Pivot can be implemented in such a way that Enumerate with Pivot
solves CISE for any graph G where each connected component has order at
least k and the maximum degree is Δ with delay O(k2Δ) and space O(n + m).

Finally, we can prove a better running time bound for Pivot.

Proposition 3. Enumerate with Pivot has running time O((e(Δ−1))k−1 ·Δ·n).

5 An Experimental Comparison

We implemented Simple, Pivot, Exgen, and Kavosh with and without the prun-
ing rules. Note that adding the pruning rule to Exgen and Kavosh does not make
them polynomial delay algorithms. We also implemented BDDE [11], the Reverse
Search with dictionary (RwD Old), and the Reverse Search with predecessor
(RwP Old) algorithm [4]. For reverse search-based algorithms we also imple-
mented another method to determine neighbors in the supergraph (RwD New
and RwP New).

Enumerating Connected Induced Subgraphs 283

0 100 200 300 400 500 600

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

time in seconds

pe
rc

en
ta

ge
 o

f s
ol

ve
d

in
te

re
st

in
g

in
st

an
ce

s

BDDE
RwD New
RwD Old
RwP New
RwP Old
Exgen
Kavosh
Pivot
Simple

0 100 200 300 400 500 600

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

time in seconds

pe
rc

en
ta

ge
 o

f s
ol

ve
d

in
te

re
st

in
g

in
st

an
ce

s

BDDE
RwD New
RwD Old
RwP New
RwP Old
Exgen
Kavosh
Pivot
Simple

Fig. 2. Comparison for k ∈ {3, . . . , 10} (left) and k ∈ {nc − 1, nc − 2, nc − 3} (right)
on interesting instances.

Each experiment was performed on a single thread of an Intel(R) Xeon(R) Sil-
ver 4116 CPU with 2.1 GHz, 24 CPUs and 128 GB RAM running Python 2.7.14
with igraph (http://igraph.org/python/) as the general graph data structure and
NetworkX (https://networkx.github.io/) as the data structure for maintaining
the enumeration tree in BDDE. 1 As benchmark data set we used 30 sparse social,
biological, and technical networks obtained from the Network Repository [12],
KONECT [10], and the 10th DIMACS challenge [2] and 20 random graphs gen-
erated in the Gn,p model with n ∈ {100, 200, . . . , 1000} and p ∈ {0.1, 0.2}. The
real-world networks range from very small (up to 500 vertices) to very large
networks (up to 500 000 vertices).

Each algorithm was run on each instance with a time limit of 600 s. An
instance is interesting if at least one of the 14 algorithms solved it within the
time limit. For Simple, Pivot, Exgen, and Kavosh only the variant with the
pruning rule is plotted in Fig. 2 since these variants were the fastest. Figure 2
shows the result for k ∈ {3, . . . , 10}. Both versions of RwD and RwP only solve
half as many instances as the other algorithms. All instances solved by RwD
were solved by the remaining algorithms in 20 s. Simple is a factor 2 slower than
Pivot, BDDE, Exgen, and Kavosh; Kavosh is slightly faster than Pivot, BDDE,
and Exgen. Hence, for small k, one should use Kavosh.

Figure 2 shows the result for k ∈ {nc − 1, nc − 2, nc − 3} where nc is the
order of the largest connected component in the graph. Since BDDE stores the
enumeration tree, it produced many memory errors and solved only the smallest
instances. All instances solved by RwD or RwP were solved by Pivot, Simple,
Exgen, and Kavosh with pruning rules in less than 100 s. The versions of the
algorithms without the pruning rule only solved the same number of instances
as BDDE. Hence, adding these pruning rules was necessary to solve CISE for

1 The source code of our program Enucon is available at www.uni-marburg.de/fb12/
arbeitsgruppen/algorithmik/software/.

http://igraph.org/python/
https://networkx.github.io/
www.uni-marburg.de/fb12/arbeitsgruppen/algorithmik/software/
www.uni-marburg.de/fb12/arbeitsgruppen/algorithmik/software/

284 C. Komusiewicz and F. Sommer

large k. Again, Kavosh is the fastest algorithm, despite the fact that adding the
pruning rule to Kavosh does not yield polynomial delay. Hence, for large k, also
Kavosh should be used. It seems that Pivot is slower for large k because it may
spend Θ(kΔ) time before creating the next child.

References

1. Avis, D., Fukuda, K.: Reverse search for enumeration. Discret. Appl. Math.
65(1–3), 21–46 (1996)

2. Bader, D.A., Meyerhenke, H., Sanders, P., Schulz, C., Kappes, A., Wagner, D.:
Benchmarking for graph clustering and partitioning. In: Alhajj, R., Rokne, J. (eds.)
Encyclopedia of Social Network Analysis and Mining, pp. 73–82. Springer, New
York (2014). https://doi.org/10.1007/978-1-4614-6170-8 23

3. Bollobás, B.: The Art of Mathematics - Coffee Time in Memphis. Cambridge Uni-
versity Press, Cambridge (2006)

4. Elbassioni, K.M.: A polynomial delay algorithm for generating connected induced
subgraphs of a given cardinality. J. Graph Algorithms Appl. 19(1), 273–280 (2015)

5. Elbassuoni, S., Blanco, R.: Keyword search over RDF graphs. In: Proceedings of
the 20th ACM Conference on Information and Knowledge Management, (CIKM
2011), pp. 237–242. ACM (2011)

6. Kashani, Z.R.M., et al.: Kavosh: a new algorithm for finding network motifs. BMC
Bioinform. 10, 318 (2009)

7. Komusiewicz, C., Sorge, M.: Finding dense subgraphs of sparse graphs. In: Thilikos,
D.M., Woeginger, G.J. (eds.) IPEC 2012. LNCS, vol. 7535, pp. 242–251. Springer,
Heidelberg (2012). https://doi.org/10.1007/978-3-642-33293-7 23

8. Komusiewicz, C., Sorge, M.: An algorithmic framework for fixed-cardinality opti-
mization in sparse graphs applied to dense subgraph problems. Discret. Appl.
Math. 193, 145–161 (2015)

9. Komusiewicz, C., Sorge, M., Stahl, K.: Finding connected subgraphs of fixed min-
imum density: implementation and experiments. In: Bampis, E. (ed.) SEA 2015.
LNCS, vol. 9125, pp. 82–93. Springer, Cham (2015). https://doi.org/10.1007/978-
3-319-20086-6 7

10. Kunegis, J.: KONECT: the Koblenz network collection. In: Proceedings of the
22nd International World Wide Web Conference (WWW 2013), pp. 1343–1350.
International World Wide Web Conferences Steering Committee/ACM (2013)

11. Maxwell, S., Chance, M.R., Koyutürk, M.: Efficiently enumerating all connected
induced subgraphs of a large molecular network. In: Dediu, A.-H., Mart́ın-Vide,
C., Truthe, B. (eds.) AlCoB 2014. LNCS, vol. 8542, pp. 171–182. Springer, Cham
(2014). https://doi.org/10.1007/978-3-319-07953-0 14

12. Rossi, R.A., Ahmed, N.K.: The network data repository with interactive graph
analytics and visualization. In: Proceedings of the 29th AAAI Conference on
Artificial Intelligence (AAAI 2015), pp. 4292–4293. AAAI Press (2015). http://
networkrepository.com

13. Wernicke, S.: A faster algorithm for detecting network motifs. In: Casadio, R.,
Myers, G. (eds.) WABI 2005. LNCS, vol. 3692, pp. 165–177. Springer, Heidelberg
(2005). https://doi.org/10.1007/11557067 14

14. Wernicke, S.: Combinatorial algorithms to cope with the complexity of biological
networks. Ph.D. thesis, Friedrich Schiller University of Jena (2006). http://d-nb.
info/982598882

https://doi.org/10.1007/978-1-4614-6170-8_23
https://doi.org/10.1007/978-3-642-33293-7_23
https://doi.org/10.1007/978-3-319-20086-6_7
https://doi.org/10.1007/978-3-319-20086-6_7
https://doi.org/10.1007/978-3-319-07953-0_14
http://networkrepository.com
http://networkrepository.com
https://doi.org/10.1007/11557067_14
http://d-nb.info/982598882
http://d-nb.info/982598882

Multi-stranded String Assembling
Systems

Martin Kutrib(B) and Matthias Wendlandt

Institut für Informatik, Universität Giessen, Arndtstr. 2, 35392 Giessen, Germany
{kutrib,matthias.wendlandt}@informatik.uni-giessen.de

Abstract. Classical string assembling systems form computational mo-
dels that generate strings from copies out of a finite set of assembly units.
The underlying mechanism is based on piecewise assembly of a double-
stranded sequence of symbols, where the upper and lower strand have to
match. The generative power of such systems is driven by the power of the
matching of the two strands. Here we generalize this approach to multi-
stranded systems. The generative capacities and the relative power are
our main interest. In particular, we consider briefly one-stranded systems
and obtain that they describe a subregular language family. Then we
explore the relations with one-way multi-head finite automata and show
an infinite, dense, and strict strand hierarchy. Moreover, we consider the
relations with the linguistic language families of the Chomsky Hierarchy
and consider the unary variants of k-stranded string assembling systems.

1 Introduction

The Post Correspondence Problem is one of the oldest problems for which unde-
cidability has been shown. The comprehensible structure and the multifarious
appliance makes it a very useful tool for showing undecidability. The common
view on the PCP is that it works somehow like the intersection of two generat-
ing mechanisms. A different view would be, to see the pairs as two strands or
dominoes (

ll
el

)
1

,

(
He
H

)
2

,

(
o
lo

)
3

that can be connected to resulting double-strands

⇒2,1,3

(
Hello
Hello

)

and describe a language in this way.
Nowadays a bunch of publications examine the usability of DNA for compu-

tations. DNA consists of double-strands as well. Maybe the basic idea of using
DNA sequences for computations goes back to Bennet and Landauer in the
1980’s [2] where they describe how DNA could be used to realize a variant of
Turing machines, called Brownian Turing machines. But the initial spark for the

c© Springer Nature Switzerland AG 2019
B. Catania et al. (Eds.): SOFSEM 2019, LNCS 11376, pp. 285–297, 2019.
https://doi.org/10.1007/978-3-030-10801-4_23

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-10801-4_23&domain=pdf
https://doi.org/10.1007/978-3-030-10801-4_23

286 M. Kutrib and M. Wendlandt

intensive and wide-spreaded investigation of DNA computing was the experi-
ment by Adleman [1] in 1994 where he solves a (small) instance of the Hamilton
path problem in the laboratory by using DNA sequences. Although Hartma-
nis [6] argues that one needs more DNA than the weight of the Earth to solve
an instance with a graph of 200 nodes by this technique, the euphoria of inves-
tigating DNA based computing is unbroken.

A basic approach to model computations with DNA strands is the generative
system of sticker systems. They were introduced in [7] in their basic one-way
variant. A sticker system basically consists of dominoes that can be seen as
double-stranded molecules, where both strands have to overlap each other. These
dominoes are concatenated to form double-strands of arbitrary length. However,
due to the overlap the length difference of both strands is bounded by a constant
that depends on the set of the dominoes. Sticker systems with such bounded
delay are at most as powerful as one-turn pushdown automata which are known
to accept linear context-free languages. Different variants of sticker systems have
been investigated in [4,7,14,15].

An inspiring generalization is suggested by the Post Correspondence Prob-
lem, where the two strings provided need not to overlap. This generalization
harbors an enormous increase of generative capacity. So, assembly units are seen
as pairs of (not necessarily overlapping) substrings that can be connected to the
upper and lower string generated so far synchronously. String assembling systems
have two further control mechanisms. First, it is required that the first symbol
of a substring that should be connected has to be the same as the last symbol
of the strand to which it is connected. One can imagine that both symbols are
glued together one at the top of the other and, thus, just one appears in the final
string. Second, as for the notion of strictly locally testable languages [12,18] we
distinguish between assembly units that may appear at the beginning, during,
and at the end of the assembling process.

String assembling systems have been introduced in [9], where connections to
one-way two-head finite automata are shown. In particular they are less powerful
than the non-restricted variant of one-way two-head finite automata and they
are more powerful than stateless one-way two-head finite automata. On the
other hand, it has been shown in [3] that adding nonterminals to the generation
increases the capacity to that of one-way two-head finite automata. Moreover, the
generative capacity of bidirectional string assembling systems is incomparable
with the power of such automata [10]. The impact of the model-inherent control
mechanisms is studied in [11].

The computational power of one-way k-head automata increases with each
head added to the system [17]. This suggests naturally to examine multi-stranded
string assembling systems and to investigate whether a similar hierarchy can be
achieved. Here we investigate these generalizations. The generative capacities
and the relative power are our main interest. In particular, we consider briefly
one-stranded systems and obtain that they describe a subregular language family.
Then we explore the relations with one-way multi-head finite automata and show
an infinite, dense, and strict strand hierarchy. Moreover, we consider the relations

Multi-stranded String Assembling Systems 287

with the linguistic language families of the Chomsky Hierarchy and consider the
unary variants of k-stranded string assembling systems.

2 Preliminaries and Definitions

We write Σ∗ for the set of all words (strings) over the finite alphabet Σ. The
empty word is denoted by λ, and Σ+ = Σ∗ \ {λ}. The reversal of a word w
is denoted by wR and for the length of w we write |w|. For the number of
occurrences of a symbol a in w we use the notation |w|a. Generally, for a singleton
set {a} we also simply write a. We use ⊆ for inclusions and ⊂ for strict inclusions.
In order to avoid technical overloading in writing, two languages L and L′ are
considered to be equal, if they differ at most by the empty word, that is, L\{λ} =
L′ \ {λ}.

We are especially interested in how string assembling systems can be used
to describe languages. To this end, we consider arbitrary alphabets and do not
restrict on the natural alphabet {A,G,C, T}. Clearly, there are ways to encode
an arbitrary alphabet in the natural alphabet.

Before we continue with the definition of the systems to be studied, we clarify
our notation of k-stranded words. Given some alphabet Σ, a k-stranded word
over Σ is a k-tuple (w1, w2, . . . , wk), where wi ∈ Σ+, 1 ≤ i ≤ k, and wi is a
prefix of wj or vice versa for all 1 ≤ i < j ≤ k. A k-stranded word is said to
be complete if w1 = w2 = · · · = wk. The set of all k-stranded words over Σ is
denoted by Dk

Σ . Note that all strands of multi-stranded words are nonempty.
A k-stranded string assembling system generates k-stranded words by assem-

bling units. Each unit consists of k substrings that are connected to the k strings
generated so far. The corresponding symbols of all strands have to be equal.
Moreover, a unit can only be assembled when the first symbols of its substrings
match the last symbols of the current strands. In this case the matching sym-
bols are glued together one at the top of the other. The generation has to begin
with a unit from the set of initial units. Then it may continue with units from a
different set. When a unit from a third set of ending units is applied the process
necessarily stops. The generation is said to be valid if and only if all strands are
identical when the process stops. More precisely:

Let k ≥ 1. A k-stranded string assembling system (SAS(k)) is a quadruple
S = 〈Σ,A, T,E〉, where Σ is the finite, nonempty set of symbols or letters,
A ⊂ Dk

Σ is the finite set of axioms, T ⊂ (Σ+)k is the finite set of assembly units,
and E ⊂ (Σ+)k is the finite set of ending units.

The derivation relation ⇒ is defined on Dk
Σ × Dk

Σ by

(u1x1, u2x2, . . . , ukxk) ⇒ (u1x1v1, u2x2v2, . . . , ukxkvk)

if (x1v1, x2v2, . . . , xkvk) ∈ T ∪ E, for ui, vi ∈ Σ∗, xi ∈ Σ, 1 ≤ i ≤ k.
A derivation is said to be successful if it initially starts with an axiom from A,

continues with assembling units from T , and ends with assembling an ending unit
from E. The process necessarily stops when an ending assembly unit is added.
The sets A, T , and E are not necessarily disjoint.

288 M. Kutrib and M. Wendlandt

The language L(S) generated by S is defined to be the set

L(S) = {w ∈ Σ+ | (u1, u2, . . . , uk) ⇒∗ (w,w, . . . , w) is a successful derivation },

where ⇒∗ refers to the reflexive, transitive closure of the derivation relation ⇒.
It is known that the concatenation of the languages L = { anbn | n ≥ 1 } and

L′ = { am | m ≥ 1 } cannot be generated by any double-stranded SAS [9]. The
following example shows that the concatenation LL′ is generated by a 3-stranded
SAS.

Example 1. The language L = { anbnam | m,n ≥ 1 } is generated by the
SAS(3)S = 〈Σ,A, T,E〉 with the single axiom A = {(a, a, a)}, the ending units

E = {(aa, aa, a), (aaa, aaa, aa), (a, ba, ba), (a, baa, baa), (ba, aba, ba)}

and the assembling units in T being

1. (aa, a, aa)
2. (ab, a, ab)
3. (bb, aa, b)
4. (b, ab, b)

5. (b, bb, b)
6. (ba, b, b)
7. (a, b, bb)
8. (a, ba, b)

9. (aaa, aaa, b)
10. (a, a, baa)
11. (a, a, aaa).

The derivation starts with the sole axiom. Then the first a-block is generated in
the first and the third strand by applying repeatedly unit 1 and unit 2 once. In a
valid derivation it is not possible to apply unit 11 in this phase, since otherwise
the number of a’s in the first and the third strand will never match again. After
applying unit 2, the current 3-stranded word is of the form (anb, a, anb). Now
units 3 and 4 become applicable. The repeated application of unit 3 followed by
one application of unit 4 yields a 3-stranded word of the form (anbn, anb, anb). So,
there are as many a’s in the first block as b’s in the second block of the first strand.
After applying unit 4, units 5 and 6 from T become applicable. A repeated
application of unit 5 completes the b-block of the second strand. After subse-
quently applying unit 6 once, a 3-stranded word of the form (anbna, anbn, anb) is
derived. Note, if unit 5 is applied too many times, unit 6 and, thus, a successful
derivation becomes impossible. Now units 7 and 8 are applicable. The repeated
application of unit 7 followed by one application of unit 8 yields a 3-stranded
word of the form (anbna, anbna, anbn). Next, the third a-block is generated. In
order to avoid that it is followed by another b-block, its parity is utilized. So,
applying unit 9 repeatedly and unit 10 once gives a 3-stranded word of the form
(anbnai, anbnai, anbnaa), where i is an odd number. Subsequent applications of
unit 11 fill the a-block of the third strand but let its length be even. In this way
further applications of units 1 or 2 fail. Finally, the derivation is made successful
by selecting ending unit (aa, aa, a) or (aaa, aaa, aa). The further ending units
are used to derive short blocks. �

Multi-stranded String Assembling Systems 289

3 Single-Stranded SAS

As discussed before, the strong connection with the Post Correspondence Prob-
lem reflects the power of double-stranded modeling systems, since it goes along
with the undecidability of emptiness. Here we first drop the power of the double
strands and investigate 1-stranded SAS.

The next theorem shows that the restriction to one strand reduces the power
significantly.

Theorem 2. The family of languages generated by 1-stranded SAS is strictly
included in the family of regular languages.

Proof. Given a single-stranded SAS S = 〈Σ,A, T,E〉 we construct a nondeter-
ministic finite automaton M = 〈Q,Σ, δ, q0, F 〉 such that L(S) = L(M) (see
Example 3).

Since S is single stranded, the units are basically words from Σ+. Since units
in T of length one do not have any effect on SAS(1), they can safely be omitted.
So, we assume that each unit in T is at least of length two.

For each axiom u = x1x2 · · · x� ∈ A we define the states {u0, u1, . . . , u�}
and the transitions δ(uj−1, xj) = uj , for 1 ≤ j ≤ �. Similarly, for each unit
u = x1x2 · · · x� ∈ T ∪ E we define the states {u1, u2, . . . , u�} and the transitions
δ(uj−1, xj) = uj , for 2 ≤ j ≤ �.

So far, we have a different chain of connected states for each unit of S. The
chains are interconnected as follows. Let q0 be a new state that is set to be
the initial state. By the λ-transitions δ(q0, λ) = u0, for all u ∈ A, the NFA
guesses an axiom of S. The last state of each chain associated with units u =
x1x2 · · · x� from A or T is connected to a next unit v = y1y2 · · · ym from T or E by
λ-transitions δ(u�, λ) = v1 if the last symbol of the first chain matches the first
symbol of the second chain, that is, if x� = y1. In this way the assembling of units
is simulated. Finally, the last state of each chain associated with an ending unit
is made accepting, that is, F = { q | q = vm for some v = y1y2 · · · ym ∈ E }. So,
there are no transitions from states at the end of chains associated with ending
units.

The NFA constructed simulates derivations of S and vice versa, that is, for
each derivation of a word w ∈ L(S) that applies the units u0, u1, . . . , un, there
is an accepting path in M that runs through q0 and the chains associated with
u0, u1, . . . , un, and vice versa. This shows that every language generated by some
SAS(1) is regular.

The strictness of the inclusion claimed follows since the regular language
L = {a} ∪ { a2n | n ≥ 2 } is not generated by any even double-stranded SAS [9].

��
Example 3. Given the single-stranded SAS S = 〈Σ,A, T,E〉 with u(1) = a,
u(2) = aa, u(3) = aab, u(4) = bb, u(5) = bb, and A = {u(1)}, T = {u(2), u(3), u(4)},
and E = {u(5)}, the construction in the proof of Theorem2 gives the NFA shown
in Fig. 1. �

290 M. Kutrib and M. Wendlandt

q0 u
(2)
1 u

(2)
2

u
(1)
0 u

(1)
1 u

(3)
1 u

(3)
2 u

(3)
3 u

(5)
1 u

(5)
2

u
(4)
1 u

(4)
2

start

λ

a

λ

λ

a

a b

b

λ

λ

λ

λ

λ

b

λ

Fig. 1. Example of an NFA constructed from a single-stranded SAS generating the
language aaa∗bbb∗.

Next we turn to two observations that are in the spirit of pumping lemmas.
They are useful to show that languages are not generated by single-stranded
SAS.

Lemma 4. 1. Let L ⊆ Σ∗ be a language whose words have infinitely many
unary factors, that is, for some a ∈ Σ, the set

{ an | n ≥ 1 and there are u, v ∈ Σ∗ such that uanv ∈ L }

is infinite. If L is generated by a single-stranded SAS then there is a unit
(ai) ∈ T , for some i ≥ 2.

2. Let L ⊆ Σ∗ be a language such that for some a, b ∈ Σ and all n ≥ 1 the set

{ aibj | i, j ≥ n and there are u, v ∈ Σ∗ such that uaibjv ∈ L }

is infinite. If L is generated by a single-stranded SAS then there is a unit
(aibj) ∈ T , for some i, j ≥ 1.

Example 5. The language L = { a�bman | �,m, n ≥ 1 } is not generated by any
single-stranded SAS. Contrarily assume that L is generated by a single-stranded
SAS S = 〈Σ,A, T,E〉. Then Lemma 4 says that there are assembling units (an),
n ≥ 2, (bn′

), n′ ≥ 2, (aibj), i, j ≥ 1, and (bi′
aj′

), i′, j′ ≥ 1, in T . Moreover,
there must be an axiom (ar), r ≥ 1, in A and an ending unit (ar′

), r′ ≥ 1, in E.
Therefore, the word ar+i−1bjbi′−1aj′

ai−1bjbi′−1aj′+r′−1 can be derived as well,
a contradiction. �

It has been shown that the copy language { $1w$2w$3 | w ∈ {a, b}+ }, which
is not even context free, is generated by some double-stranded SAS [9]. This
result together with Theorem 2 implies that the generative capacity of SAS(k),
k ≥ 2, is strictly larger than that of SAS(1).

Multi-stranded String Assembling Systems 291

4 String Assembling Systems with Multiple Strands

Now we turn to investigate the general case of k-stranded SAS. First we derive
an upper bound for the generative capacity. The upper bound is given by the
recognition power of nondeterministic one-way k-head finite automata. Their
two-way variants characterize the complexity class NL = NSPACE(log n) [5]. So,
together with the next theorem, we obtain that the family of languages generated
by SAS(k), k ≥ 1, is properly included in NL.

Theorem 6. Let k ≥ 1 and S be a k-stranded SAS. Then there exists a nonde-
terministic one-way k-head finite automaton M that accepts L(S).

Proof. The main idea of the construction of M is that each of the k heads is
used to check one strand. Initially, M guesses one of the axioms. The guess is
verified by reading the k strands of the unit with the k input heads. In this
way, it is checked whether the input given fits to the unit guessed. The last
symbols are the new overlappings and the heads stay on it for the new guess.
Next, M guesses dependent on the currently scanned input symbols (the current
overlappings) which assembly unit comes next. Then the guess is verified. After
each verification, M determines whether the assembling process is completed
and guesses another unit to be assembled otherwise. If an ending unit is guessed
then after its verification M moves all heads synchronously one step to the right.
If all heads see the right endmarker, M accepts. ��

Theorem 6 allows an immediate generalization of results for double-stranded
SAS from [9] to k-stranded SAS. It is known that nondeterministic one-way
k-head finite automata cannot accept the deterministic and linear context-free
language {wcwR | w ∈ {a, b}∗ } [8]. Moreover, as mentioned above, the non-
context-free language { $1w$2w$3 | w ∈ {a, b}+ } is generated by some SAS(2).
Since NL is strictly included in NSPACE(n) (see, for example, [13]), which in
turn is equal to the family of context-sensitive languages, we have the following
relations.

Corollary 7. For k ≥ 1, the family of languages generated by SAS(k) is strictly
included in NL and, thus, in the family of context-sensitive languages.

For k ≥ 2, the family of languages generated by SAS(k) is incomparable with
the family of (deterministic) (linear) context-free languages.

Next, we turn to an infinite, dense, and strict strand hierarchy. The question
whether there is a proper head hierarchy for one-way multi-head finite automata
has been raised in [16]. It has been answered in the affirmative in [17]. The basic
witness languages are

{w1 ∗ w2 ∗ · · · ∗ w2n | wi ∈ {a, b}∗, wi = w2n+1−i, 1 ≤ i ≤ 2n }

which can be accepted by a (nondeterministic) one-way k-head finite automaton
if and only if n ≤ (

k
2

)
. Here we use a slight modification of these languages. Let

292 M. Kutrib and M. Wendlandt

h : { ai, bi | 1 ≤ i ≤ 2n }∗ → {a, b}∗ be a homomorphism with h(ai) = a and
h(bi) = b, for 1 ≤ i ≤ 2n. Then we define

Ln = { $0w1$1w2$2 · · · $2n−1w2n$2n |
wi ∈ {ai, bi}+, h(wi) = h(w2n+1−i), 1 ≤ i ≤ 2n }.

Clearly the head hierarchy for one-way multi-head finite automata is witnessed
by the languages Ln as well, since the transduction from the former to Ln can
be done by a sequential transducer, that can be simulated by a multi-head finite
automaton in parallel. So, a strand hierarchy for SAS would follow if there were
a k-stranded SAS generating the language Ln, n =

(
k
2

)
. The construction is

shown in the proof below. Afterwards the construction is applied to an example
to illustrate the details.

Theorem 8. Let k ≥ 2 be an integer. The family of languages generated by
SAS(k) is strictly included in the family of languages generated by SAS(k + 1).

Proof. It can be concluded from Theorem 2 that the family of languages gener-
ated by 1-stranded SAS is a proper subfamily of the family of languages gener-
ated by 2-stranded SAS. As mentioned before, for k ≥ 2 it is sufficient to show
that language Ln with n =

(
k
2

)
is generated by some SAS(k). To this end, we

now construct the SAS(k) S = 〈Σ,A, T,E〉, where A = {($0, $0, . . . , $0)} and
E = {($2n, $2n, . . . , $2n)}. Example 9 illustrates the construction.

Example 1 shows how words between delimiters can be copied to another
position of another strand. This is the underlying technique of the construction.
However, whenever this technique is used to copy a subword of Ln from one
strand to another or to compare two subwords on different strands, clearly,
due to the positions of matching subwords these two strands cannot be used
for any further pair of matching subwords. The idea of the construction is as
follows. Each pair of different strands is used to copy one subword to its matching
position. In this way,

(
k
2

)
, that is, the required n matching subwords can be

generated. The initial phase of the generation is slightly different.
Initially, the first strand is constructed up to block 2n − (k − 1). In this

process the content of the blocks is nondeterministically guessed. For the rest of
the proof let x, y ∈ {a, b}. For 1 ≤ i ≤ 2n − (k − 1) we define the units

1. ($i−1xi, $0, . . . , $0)
2. (xiyi, $0, . . . , $0)
3. (xi$i, $0, . . . , $0).

In particular, these units ensure that the format of the word generated is correct
up to block 2n − (k − 1).

Next, the remaining k − 1 blocks are copied from their matching positions.
More precisely, block i−1 of strand i is copied to position 2n+2− i of strand 1.
Here we define the corresponding units. However, in order to apply these units,
first the leftmost blocks of strand i have to be generated. Whenever an block
of strand i is not copied but has to be completed, units defined below are used.

Multi-stranded String Assembling Systems 293

In order to distinguish between blocks that are copied or just completed, for
any strand i, a set ωi is maintained that, in the end, contains all indices of
words that are copied from or to the strand. For 2 ≤ i ≤ k and zj ∈ Σ,
j ∈ {1, 2, . . . , k} \ {1, i}, we define the units

4. (z1, z2, . . . , zk) with z1 = $2n+1−ix2n+2−i and zi = $i−2xi−1,
5. (z1, z2, . . . , zk) with z1 = x2n+2−iy2n+2−i and zi = xi−1yi−1,
6. (z1, z2, . . . , zk) with z1 = x2n+2−i$2n+2−i and zi = xi−1$i−1,

and define i − 1 ∈ ωi and 2n + 2 − i ∈ ω1.
Now the first strand is complete, its format is correct, and the first k − 1

subwords match their mates at the end of the strand. This completes the initial
phase.

In the second phase the remaining pairs of subwords have to be compared.
The overall generation may only end successfully if the matching is verified.
The comparisons are done by trying to copy one subword to the position of its
matching subword. Clearly, the copying can only be successful if the subwords
(which are already fixed in the first strand) are equal. To this end, pairs of
strands are used. The first strand has already been used together with each other
strand to ensure that k − 1 subwords match their mates. Next strand 2 is used
together with strands 3 to k to compare the subwords k up to k − 1+k − 2 with
their matching mates. Subsequently, strand 3 is used together with strands 4
to k to compare the subwords k − 1 + k − 2 + 1 up to k − 1 + k − 2 + k − 3
with their matching mates, and so on. Formally, for 2 ≤ i < j ≤ k, strand
i is is used together with strand j to compare the subword at position α =
2n + (i + 1) − j − (k − 1 + k − 2 + · · · + k − (i − 1)) with the subword at position
β = j − i + (k − 1 + k − 2 + · · · + k − (i − 1)). For 2 ≤ i < j ≤ k and z� ∈ Σ,
� ∈ {1, 2, . . . , k} \ {i, j}, we define the units

7. (z1, z2, . . . , zk) with zi = $α−1xα and zj = $β−1xβ ,
8. (z1, z2, . . . , zk) with zi = xαyα and zj = xβyβ ,
9. (z1, z2, . . . , zk) with zi = xα$α and zj = xβ$β ,

and define α ∈ ωi and β ∈ ωj .
As mentioned before, in order to apply these units, first the leftmost blocks of

strands i and j have to be generated. To this end, the blocks are completed with
arbitrary symbols unless they are used for comparisons in which case the block
number appears in the associated set ω. Actually, completing with arbitrary
symbols means to copy the block from the first strand since there is no other
possibility to generate a word successfully. Since the first strand is already com-
plete, no further units have to be provided for its blocks. So, for all 2 ≤ j ≤ k,
i ∈ ({1, 2, . . . , 2n} \ ωj), and z� ∈ Σ, � �= j we define the units

10. (z1, z2, . . . , zk) with zj = $i−1xi,
11. (z1, z2, . . . , zk) with zj = xiyi,
12. (z1, z2, . . . , zk) with zj = xi$i.

This completes the construction of the SAS(k). ��

294 M. Kutrib and M. Wendlandt

In order to clarify the details of the proof we present an example for lan-
guage L3 which is generated by a 3-stranded string assembling system.

Example 9. The language

L3 = { $0w1$1w2$2w3$3w4$4w5$5w6$6 |
wi ∈ {ai, bi}∗, h(wi) = h(w7−i), 1 ≤ i ≤ 6 }

is generated by the 3-stranded string assembling system S = 〈Σ,A, T,E〉 with
A = {($0, $0, $0)} and E = {($6, $6, $6)}. Let x, y ∈ {a, b}. The first assembling
units generate the first strand up to $4:

1. ($0x1, $0, $0)
2. (x1y1, $0, $0)
3. (x1$1, $0, $0)
4. ($1x2, $0, $0)

5. (x2y2, $0, $0)
6. (x2$2, $0, $0)
7. ($2x3, $0, $0)
8. (x3y3, $0, $0)

9. (x3$3, $0, $0)
10. ($3x4, $0, $0)
11. (x4y4, $0, $0)
12. (x4$4, $0, $0).

The units 1–12 are used to derive a multi-strand of the form

($0w1$1w2$2w3$3w4$4, $0, $0).

The following units are used to generate the subwords w5 and w6 of the first
strand in parallel to the subwords w2 and w1 (after completing the first block of
the third strand with the units 25–27).

13. ($4x5, $0, $1x2)
14. (x5y5, $0, x2y2)

15. (x5$5, $0, x2$2)
16. ($5x6, $0x1, $2)

17. (x6y6, x1y1, $2)
18. (x6$6, x1$1, $2).

Units 13–15 are used to complete and copy w2 on the third strand to w5

on the first strand. Similarly, units 16–18 are used to complete and copy w1 on
the second strand to w6 on the first strand. After completing the first block of
the third strand with the units 25–27 and applying units 13–18, a multi-strand
of the form ($0w1$1w2$2w3$3w4$4w5$5w6$6, $0w1$1, $0w1$1w2$2) is obtained.
After this phase, the sets ω are ω1 = {5, 6}, ω2 = {1} and ω3 = {2}.

With the next units subword w4 on the second strand is completed and
copied on the third strand to w3 (after completing the missing blocks of the
second strand with the units 22–24).

19. ($6, $3x4, $2x3) 20. ($6, x4y4, x3y3) 21. ($6, x4$4, x3$3).

Afterwards the sets ω are ω1 = {5, 6}, ω2 = {1, 4} and ω3 = {2, 3}.
The units that complete the strands remain to be defined. As described in

the construction above no blocks of the first strand has to be completed. We
define

Multi-stranded String Assembling Systems 295

22. (z, $i−1xi, z
′) 23. (z, xiyi, z

′) 24. (z, xi$i, z
′)

for i ∈ {2, 3, 5, 6} and z, z′ ∈ Σ, since ω2 = {1, 4}. Furthermore, define

25. (z, z′, $i−1xi) 26. (z, z′, xiyi) 27. (z, z′, xi$i)

for i ∈ {1, 4, 5, 6} and z, z′ ∈ Σ, since ω3 = {2, 3}. �

The last theorem established an infinite, dense, and tight strand hierarchy
of SAS. The hierarchy is based partially on the simulations by one-way k-head
finite automata. Further relations with language families have been given in
Corollary 7. Still open are the relations of the families of languages generated
by SAS(k) with the families of languages accepted by one-way k-head finite
automata (is the inclusion proper?) and with the regular languages. The next
results show that there is in fact a very simple, that is, unary regular language
that cannot be generated by any SAS(k). For the proof we utilize the observation
that the ordering of applied units in the generation of unary words does not
matter. Any permutations of the units in T yield the same word. This observation
is formalized in the next lemma.

Lemma 10. Let k ≥ 1 be an integer and S = 〈Σ,A, T,E〉 be an SAS(k). If
some unary word xn, for x ∈ Σ, is generated by S by using an axiom ua ∈
A and applying successively units u1, u2, . . . , um and an ending unit ue ∈ E,
then the same word xn is generated by S by using ua and applying successively
units ui1 , ui2 , . . . , uim and ending unit ue, where i1, i2, . . . , im is an arbitrary
permutation of 1, 2, . . . ,m.

Theorem 11. For any k ≥ 1, the regular language L = {a} ∪ { a2n | n ≥ 2 } is
not generated by any SAS(k).

Proof. In contrast to the assertion assume that L is generated by some SAS(k)
S = 〈Σ,A, T,E〉. Let T = {u1, u2, . . . , un}.

Lemma 10 reveals that any successful generation of S can be represented by
its axiom ua, its ending unit ue and the multiplicities of applications of units
from T , that is, by the n numbers i1, i2, . . . , in, where ij ≥ 0 gives the number
of applications of unit uj , 1 ≤ j ≤ n.

Since L is infinite, there is at least one pair of axiom ua and ending unit ue

such that there are infinitely many different words generated by S by using ua

and ue. Let Lua,ue
⊆ L(S) be the language of these words.

Since Lua,ue
is infinite, there exist two different multiplicities of applications

of units i1, i2, . . . , in and j1, j2, . . . , jn that represent successful generations of
two different words v, w ∈ Lua,ue

, where 4 ≤ |v| < |w|, i� ≤ j�, for all 1 ≤ � ≤ n.
We conclude that the multiplicities j1 − i1, j2 − i2, . . . , jn − in represent the
successful generation of a|w|−|v| ∈ Lua,ue

. Moreover, applying the units from T
as often as given by j1 − i1, j2 − i2, . . . , jn − in extends any of the k strands by
the same number of symbols. Since |v| and |w| have to be even, |w| − |v| is even.

296 M. Kutrib and M. Wendlandt

For the extension by an even number of symbols, an odd number of symbols is
needed since one symbol is lost by gluing the strands together.

Since a ∈ L there is an axiom as well as an ending unit of the form (a, a, . . . , a)
in S. Now we consider the word w′ whose generation is described by this axiom
and ending unit and the multiplicities j1 − i1, j2 − i2, . . . , jn − in. The generation
is successful and |w′| > 2 is odd, a contradiction. ��

It has been shown that k-stranded SAS are able to generate non-context-free
languages. On the other hand the unary regular language L cannot be generated
by any k-stranded SAS.

Thus it can be concluded that the family of languages generated by k-
stranded SAS is incomparable with the context-free languages as well as the
regular languages.

Corollary 12. Let k ≥ 1 be an integer. (i) The family of languages generated
by SAS(k) is incomparable with the families of languages accepted by one-way
k′-head finite automata if k′ < k. (ii) The family of languages generated by
SAS(k) is strictly included in the families of languages accepted by one-way k′-
head finite automata if k′ ≥ k. (iii) The family of languages generated by SAS(k)
is incomparable with the (unary) regular languages if k ≥ 2.

The results concerning the generative power of SAS(k) are summarized in
Fig. 2.

NL

SAS(k) CFL

SAS(2) REG

SAS(1)

Fig. 2. Hierarchy of language families. A single arrow indicates strict inclusion, a double
arrow incomparability, and a dotted line infinitely many hierarchy levels.

Multi-stranded String Assembling Systems 297

References

1. Adleman, L.M.: Molecular computation of solutions to combinatorial problems.
Science 266, 1021–1024 (1994)

2. Bennett, C.H., Landauer, R.: The fundamental physical limits of computation. Sci.
Am. 253, 48–56 (1985)

3. Bordihn, H., Kutrib, M., Wendlandt, M.: Nonterminal controlled string assembling
systems. J. Autom. Lang. Comb. 19, 33–44 (2014)

4. Freund, R., Păun, G., Rozenberg, G., Salomaa, A.: Bidirectional sticker systems.
In: Pacific Symposium on Biocomputing (PSB 1998), pp. 535–546. World Scientific,
Singapore (1998)

5. Hartmanis, J.: On non-determinancy in simple computing devices. Acta Inform.
1, 336–344 (1972)

6. Hartmanis, J.: On the weight of computations. Bull. EATCS 55, 136–138 (1995)
7. Kari, L., Păun, G., Rozenberg, G., Salomaa, A., Yu, S.: DNA computing, sticker

systems, and universality. Acta Inform. 35, 401–420 (1998)
8. Kutrib, M., Malcher, A., Wendlandt, M.: Set automata. Int. J. Found. Comput.

Sci. 27, 187–214 (2016)
9. Kutrib, M., Wendlandt, M.: String assembling systems. RAIRO Inform. Théor.

46, 593–613 (2012)
10. Kutrib, M., Wendlandt, M.: Bidirectional string assembling systems. RAIRO

Inform. Théor. 48, 39–59 (2014)
11. Kutrib, M., Wendlandt, M.: Parametrizing string assembling systems. In:

Câmpeanu, C. (ed.) CIAA 2018. LNCS, vol. 10977, pp. 236–247. Springer, Cham
(2018). https://doi.org/10.1007/978-3-319-94812-6 20

12. McNaughton, R.: Algebraic decision procedures for local testability. Math. Syst.
Theory 8, 60–76 (1974)

13. Papadimitriou, C.H.: Computational Complexity. Addison-Wesley, Boston (1994)
14. Păun, G., Rozenberg, G.: Sticker systems. Theor. Comput. Sci. 204, 183–203

(1998)
15. Păun, G., Rozenberg, G., Salomaa, A.: DNA Computing: New Computing

Paradigms. Texts in Theoretical Computer Science. Springer, Heidelberg (1998)
16. Rosenberg, A.L.: On multi-head finite automata. IBM J. Res. Dev. 10, 388–394

(1966)
17. Yao, A.C., Rivest, R.L.: k+1 heads are better than k. J. ACM 25, 337–340 (1978)
18. Zalcstein, Y.: Locally testable languages. J. Comput. System Sci. 6, 151–167 (1972)

https://doi.org/10.1007/978-3-319-94812-6_20

Towards Automatic Comparison of Cloud
Service Security Certifications

Martin Labaj(&) , Karol Rástočný , and Daniela Chudá

Institute of Informatics, Information Systems and Software Engineering,
Faculty of Informatics and Information Technologies,

Slovak University of Technology in Bratislava,
Ilkovičova 2, 842 16 Bratislava 4, Slovak Republic

{martin.labaj,karol.rastocny,daniela.chuda}@stuba.sk

Abstract. Cloud service providers who offer services to their users traditionally
signal security of their offerings through certifications based on various certi-
fication schemes. Currently, a vast number of schemes and standards exists on
one side (cloud service certifications), while another large set of security
requirements stemming from internal needs or laws and regulations stand on the
other side (users of cloud services). Determining whether a service with an
arbitrary certificate in one country fulfills requirements imposed by the user in
another country is a difficult task and therefore a project (EU-SEC) was started
focusing on allowing cross-border usage of cloud services. In this paper, we
propose automated comparison of cloud service security certification schemes
and, subsequently, security of cloud services certified using these schemes. In
the presented method, we map requirements in schemes, standards, laws, and
regulations into a proposed cloud service security ontology. Due to the free-form
text nature of these items, we also describe a supporting method for semi-
automated conversion of free text into this ontology using natural language
processing. The requirements described in ontology format are then easily
compared against each other. We also describe an implementation of a prototype
system supporting the conversion and comparison with preliminary results on
describing and comparing two well-known schemes.

Keywords: Cloud service certification � Natural language processing
Certification scheme ontology

1 The Problem Domain

Security in information technology is one the most important topics today and as
applications, platforms, and infrastructures were moved to the cloud, the security of
cloud services becomes as important. Cloud Service Providers (CSP) offer their ser-
vices to customers and in just the same way as in any other line of business when
selling a product, they need to describe their product appropriately. With quantitative
technical properties, this is straightforward, one would advertise/describe that a com-
puting service is offered with 10 processor cores equivalent to a given processor model
or that a messaging service allows processing 100.000 events a month. Also, the
customer can verify such physical attributes easily.

© Springer Nature Switzerland AG 2019
B. Catania et al. (Eds.): SOFSEM 2019, LNCS 11376, pp. 298–309, 2019.
https://doi.org/10.1007/978-3-030-10801-4_24

http://orcid.org/0000-0002-2874-6715
http://orcid.org/0000-0002-4904-2485
http://orcid.org/0000-0002-3873-9308
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-10801-4_24&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-10801-4_24&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-10801-4_24&domain=pdf
https://doi.org/10.1007/978-3-030-10801-4_24

The situation is far more difficult in the case of security properties of the service.
How does the provider describe that the service is secure? One might vaguely state that
some steps are taken, e.g., to not use customer production data in development envi-
ronments for testing. Then, how does the customer verify this? Traditionally, providers
signal such attributes of their services by certifying themselves and their services under
a certification scheme or standard through auditors and certifications bodies. However,
there are various schemes, frameworks and standards: ISO/IEC 27000-series,
CSA CCM, BSI C5 and others, used in different industries, different countries or for
different customers. This creates a barrier for offering a procuring cloud services across
borders (both state borders and market niches).

The cloud service provider would need to undergo multiple certifications with often
repeated controls to capture a foreign market. At the same time, due diligence processes
of cloud service users when obtaining a service are increasingly more complicated.
When the prospective provider does not hold the “right” certificate, it may prevent
using the service at all. This is not limited to certification schemes and certificates.
Users of cloud services may have other requirements arising from internal needs or
being imposed on them, e.g., by national laws and regulations, and those may not be
mapped to known certification schemes used abroad and the task of determining a
suitable provider matching those requirements becomes a mundane task of comparing
certificates against each other and against laws manually. And when a scheme or law
gets updated, this needs to be done again.

1.1 Proposed Automatic Comparison

In order to alleviate the aforementioned problems, we propose a method for automatic
comparison of cloud service security requirements defined in certification schemes,
user needs, and regulations by describing them in a proposed cloud service security
ontology. The machine-understandable description using ontology then allows for
quick comparison of schemes against each other, schemes against regulations, etc. This
benefits all the personas involved in the process:

• Provider – The cloud service provider can see a differential comparison of their
currently held certifications against other possible certifications and see what
amount of work it would take to certify against another certification when entering a
new market. Moreover, the following advantages for cloud service users create
more demand and bring more customers for the provider.

• User – The cloud service user can see whether a given service is suitable for their
requirements, regardless whether the service is offered across the border and holds
only a set of certificates not exactly matching user’s expected certificates. This
means larger supply for their demand.

• Auditor/certification body – The entity issuing the certificate upon performing an
audit can benefit from scheme comparison too, by possibly performing only a
differential audit without going over the previously verified and possibly stored
audit evidence. Only the different controls of a new/updated scheme need to be
audited primarily. This also benefits the providers by offering less exhausting and
less expensive certifications.

Towards Automatic Comparison of Cloud Service Security Certifications 299

When converting the often complex free-form text1 into the ontology, the hard task of
having to understand these requirements does not disappear, it still needs to be done for
the first time when the requirement is transcribed into ontology notation. The benefit is
that this needs to be done only once while transcribing each separate scheme (with
N schemes, we need to do N transcriptions – comprehensions) instead of comparing
each scheme with each other (N2 comparisons – comprehensions). In the case of
updates to a single scheme, only description of this scheme needs to be updated
(1 transcription) and the resulting comparison using above method is fully automatic,
instead of comparing it to all other existing schemes, regulations, user requirements
(N comparisons).

Still, this task can be supported using methods of natural language processing
(NLP) to preprocess the free-text requirements and even propose its ontological
description, which is then to be edited and confirmed by the domain expert. Overview
of the proposed approach is show on Fig. 1.

1.2 Organization of This Paper

The rest of this paper is organized as follows. In Sect. 2, we describe the proposed
ontology for cloud security requirements and the process of automatic requirement
comparison. In Sect. 3, a supporting method for requirement conversion to ontology
using NLP is described. We describe a prototype implementation of the proposed
methods in a web-based system and the results of describing and comparing two widely
used schemes in Sect. 4. Other possible application domains for both requirement and
non-requirement comparisons are explored at the end of this paper.

2 Formalizing Certification Schemes Using Ontology

Several cloud security ontologies have been proposed already [1, 2]. Each of these
ontologies are focused on different levels of cloud services (e.g. IaaS in the CoCoOn
ontology [3]) and on different aspects of cloud security [2], while having various
complexity (see Table 1). Therefore, in order to devise a cloud security ontology we
considered the following possibilities:

1. Uniforming ontology built by mapping of the selected cloud security ontologies.
This approach grants reusability of existing ontological descriptions of cloud ser-
vices, but it must deal with problems of ontology mapping techniques [4, 5].

2. Extended ontology based on one selected ontology which should be selected with
respect to its complexity, recency and usability. The Linked USDL ontology [6] and
the taxonomy defined in [7] seem to be promising.

3. Ontology built from scratch, which should be defined in parallel with description of
cloud security schemes and standards by cloud security experts.

1 Example: “Prior to granting customers access to data, assets, and information systems, identified
security, contractual, and regulatory requirements for customer access shall be addressed.” (AIS-
02, CSA CCM v3.0.1).

300 M. Labaj et al.

Our proposed approach uses ontology of cloud service security requirements based on
Linked USDL format which models service level contract [6]. This approach, the
second option, does not require intense work of cloud security experts and allows
reusing the state-of-the-art in the cloud security formalization domain. The
Linked USDL ontology was chosen for availability of formal descriptions. It is also
used in current research projects [8, 9] and is based on Unified Service Description
Language2 which was developed as W3C incubator activity3. These facts give good
presumption of overall acceptance of this ontology.

We also considered Takahashi et al.’s ontology [10]. Properties of this ontology
look promising, but the ontology is only described in research papers and its formal
description is not publicly available. Using this ontology would require reconstructing
it from research papers, heightening the barriers to entry.

New/updated certi-
fication scheme A

Ontological descrip-
tion of scheme A

Ontological descrip-
tion of scheme B

Ontological descrip-
tion of scheme C

Ontological descrip-
tion of scheme D

Semiautomated
transcription

Automated
evaluation

New/updated certi-
fication scheme A

Certification
scheme B

Certification
scheme C

Certification
scheme D

Manual evaluation against
all known schemes must be

performed

Current (naïve) approach

Proposed method

Fig. 1. Overview of the proposed method for security requirements comparison showing fully
automated and semi-automated parts, compared to naïve (manual) approach.

2 https://www.w3.org/2005/Incubator/usdl/XGR-usdl-20111027/.
3 https://www.w3.org/2005/Incubator/usdl/.

Towards Automatic Comparison of Cloud Service Security Certifications 301

https://www.w3.org/2005/Incubator/usdl/XGR-usdl-20111027/
https://www.w3.org/2005/Incubator/usdl/

Linked USDL already defines necessary building blocks in its namespace usdl-
agreement:

• Metric – A metric used to measure a service property. This class is used for
definition of cloud security metrics.

• ServiceProperty – A convenience class which represents the class of qualitative or
quantitative properties that a service may specify. This class is defined over a
specialization of GoodRelations4 qualitative and quantitative service properties.
ServiceProperty is specialized by security attributes of cloud services.

• AgreementCondition – Service property constraint which can be checked within the
terms of a service level agreement. This class is used for defining control objectives
addressed by controls of cloud service security standards and schemes and for
defining service level objectives and service quality objectives.

To extend the Linked USDL ontology in respect to the domain of cloud service
security, we propose seven extending classes (Fig. 2):

• Audit – Class for definition of audit schemes. Hierarchy between audits is specified
by the relation fulfils. A stricter audit refers to a less strict one. If a certification is
audited by the stricter audit, it transitively fulfils the requirements of other audits in
the hierarchy.

Table 1. Cloud security attributes addressed by cloud ontologies based on [2] extended with
Linked USDL.

Attributes Cloud
ontology

Takahashi
et al.’s
ontology

CoCoOn Keerthana
et al.’s
ontology

Gonzalez
et al.’s
taxonomy

Linked
USDL
[6]

Well-defined ontology
with appropriate design
and methodology

Y Y Y Y Y Y

Ontological specification
of security requirements

Y Y N N Y Y

Incorporation of security
attributes as a whole

N N N N N N

Analysis of threats and
vulnerabilities

N Y N N Y N

Security countermeasures
and controls

N Y N N N N

Validation and evaluation N Y N N Y Y
Availability of formal
description

N N OWLa N N TTLb

ahttps://sites.google.com/site/molkarekiklaadhar/home/cso-owl
bhttps://github.com/linked-usdl

4 http://www.heppnetz.de/ontologies/goodrelations/v1.

302 M. Labaj et al.

https://sites.google.com/site/molkarekiklaadhar/home/cso-owl
https://github.com/linked-usdl
http://www.heppnetz.de/ontologies/goodrelations/v1

• Certificate – Class for certificates awarded to cloud services. Each certificate has
attributes describing auditor (issuedBy), number (hasNumber), scope (hasScope),
effective date (hasEffectiveDate), and expire date (hasExpireDate). Certificates are
also related to certifications, based on which are certificates issued.

• Certification – Class for definition of cloud security certifications. Each certification
is audited by a related audit (relation auditedBy) according to a certification scheme
(relation accordingTo).

• CertificationScheme – Class for definition of cloud security certification schemes
and standards. Certification schemes are decomposed into their controls (relation
hasControl).

• Control – Class for certification scheme’s controls. Each control has defined control
objectives via relations to agreement conditions.

• SecurityAttribute – Class for definition of cloud service security attributes. The class
SecurityAttribute is specialization of the class ServiceProperty. Each security
attribute is categorized to a control domain (relation hasDomain).

• ControlDomain – Class for definition of control domains.

To illustrate the usage of the extended ontology on an example, we define:

• One instance of the class ControlDomain:
– Application & Interface Security

• Two instances of the class Metric:
– IsPresent – measures whether a property is present in a cloud service

hasExpression: Is property present
hasMeasuringInterval: 1 year

– UsedTool – measures a number of used tools
hasExpression: A number of used tools
hasMeasuringInterval: 1 week

• Three instances of the class SecurityAttribute:
– TechnicalVulnerabilitiesObtained – Technical vulnerabilities of information

systems are obtained
hasMetric: IsPresent
rdfs:range: gr:QualitativeValue
hasDomain: Application & Interface Security

– TechnicalVulnerabilitiesEvaluated – Exposure to technical vulnerabilities is
evaluated

hasMetric: IsPresent
rdfs:range: gr:QualitativeValue
hasDomain: Application & Interface Security

– SourceCodeAnalysisTool – Automated source code analysis tool is used
hasMetric: UsedTool
rdfs:range: gr:QuantitativeValue
hasDomain: Application & Interface Security

Towards Automatic Comparison of Cloud Service Security Certifications 303

Now, we can describe control A.12.6.1 from ISO/IEC 27001:2013 by creating:

• Control objective: A.12.6.1 Obtaining
– rdf:type: GuaranteedValue
– hasValue: true
– refersTo: TechnicalVulnerabilitiesObtained

• Control objective: A.12.6.1 Evaluation
– rdf:type: GuaranteedValue
– hasValue: true
– refersTo: TechnicalVulnerabilitiesEvaluated

The control AIS-01 from CSA CCM v3.0.1 could be described as follows:

• Control objective: AIS-01.2
– rdf:type: MinGuaranteedValue
– hasValue: 1
– refersTo: SourceCodeAnalysisTool

• Control objective: AIS-01.5
– rdf:type: GuaranteedValue
– hasValue: true
– refersTo: TechnicalVulnerabilitiesEvaluated

In this manner, we can describe cloud service security schemes and standards inde-
pendently and detailed comparison can be created automatically using straightforward
approach of standard ontological descriptions comparison. In the example above,
controls A.12.6.1 and AIS-01 are considered “partially mapped”. Both of them require

Fig. 2. The extended ontology. White colored classes are requisitioned from Linked USDL
ontology. Blue colored classes are extending classes necessary for the framework. (Color figure
online)

304 M. Labaj et al.

technical vulnerabilities to be evaluated, as both the A.12.6.1 Evaluation and AIS-01.5
refer to the same security attribute, and with the same value. However, a “gap” exists in
control objectives A.12.6.1 Obtaining (no respective control objective with given
security attribute exists in AIS-01) and AIS-01.2 (no respective control objective in
A.12.6.1). Apart from a full mapping (same security attribute, same values) and a full
gap (security attribute missing), a partial gap can also exist, where both control
objectives refer to the same security attribute, but one requires stricter values, for
example, one scheme requires 1 inspection, whereas another scheme requires 3
inspections.

3 Employing Natural Language Processing

Performing the above method by the human on requirements expressed in a free text
sentences5 requires multiple steps to be performed on each requirement:

1. Normalizing the requirement. A requirement may be already expressed as a stan-
dalone statement, or it could be expressed as a question to check for compliance, or
it can refer to previous statements. Each sentence is converted to a standalone
statement by rephrasing the question and/or replacing the references.

2. Splitting the sentence into atomic requirements. When the sentence expresses
multiple requirements (e.g., by listing multiple grammar subjects as in “risks and
threats must be assessed” or multiple verbs, or being a compound sentence), it is
split into separate requirements (i.e. “risks must be assessed” and “threats must be
assessed”).

3. Mapping the atomic requirements to ontology classes. New instances of Con-
trolObjective and other classes are created as described in Sect. 2 with Secu-
rityAttribute andMetric reused where possible as they are the basis for mapping/gap
analysis.

To assist this process and further (semi-)automatize the scheme comparison as a whole,
natural language processing methods can be used, if not to perform all these steps
automatically, at least to: (a) convert questions to statements in Step 1, (b) propose
candidates for split atomic requirements in Step 2, and (c) on each of these candidates,
propose candidates for existing and new ontology instances in Step 3.

Normalization. The sentence is parsed into a syntax tree. The tree for requirement
expressed as question “Do you provide tenants with guidance on how to create pro-
duction environments and tests?” is shown on Fig. 3 with respective Part of Speech
(POS) tags using Penn Treebank notation [11]. Using heuristics and identifying words
in the POS-tagged sentence, the question is converted to statement replacing “Do you
provide tenants” with “Tenants must be provided”. The rephrased statement is reparsed
again.

5 (n 1).

Towards Automatic Comparison of Cloud Service Security Certifications 305

Splitting. Looking for conjunctions and commas, connected clauses are split and each
respective part is raised in the syntax tree recursively producing separate sentences. In
the example above, “production environments and tests” is split into “production
environment” and “tests” and both are used to produce atomic requirements “Tenants
must be provided with guidance on how to create production environments” and
“Tenants must be provided with guidance on how to create tests”. Note that correctly
identifying how far to raise/connect the split clause (linguistic phenomenon known as
right node raising) is an open research problem and due to ambiguities in complex
cases, the compound requirements may be split incorrectly, therefore this method only
produces candidates for atomic requirements subject to human approval.

Mapping. By looking for verbs and heuristically identifying objects and subjects, the
respective parts of the atomic sentence are compared against known existing security
attributes and metrics to aid in mapping the rest of the sentence to respective classes
and their properties, producing Control Objective candidates, if no suitable instances
are found, candidates of new security attributes and metrics are also produced.

4 Prototype Implementation and Results

To evaluate the feasibility of the proposed method, we implemented a web-based
system for basic use-cases:

• Importing certification schemes. A certification scheme can be imported using a
common spreadsheet format listing its controls and control questions and additional
data. The raw text serves as base for NLP processing or manual description.

• Describing new certification schemes manually. A certification scheme can be also
created manually without any import.

Fig. 3. Example of a parsed control question (IVS-08.2, CSA CCM v3.0.1).

306 M. Labaj et al.

• Proposing ontological descriptions using NLP. The scheme text, either imported or
created manually, is processed and split into control objectives with associated
metrics and security attributes are proposed. This is approved/further edited by the
domain expert responsible for the scheme transcription.

• Updating and managing descriptions. When the published scheme becomes upda-
ted, its ontological description must be updated in the system.

• Comparing described schemes and providing mapping/gap reports.
• Publishing described schemes in an interoperable RDF format.
• Managing system-wide vocabulary (security attributes and metrics). When

describing a new scheme with controls not previously present in the system (a first
scheme or a scheme containing additional controls compared to existing schemes),
new security attributes and metrics are created by the domain expert at the same
time. These are then to be reused in subsequent schemes having similar require-
ments. Therefore, vocabulary management (approving/editing/rejecting newly cre-
ated attributes) is an important process in the workflow.

The front-end of the prototype system was implemented in Python using Django
framework, the back-end uses combination of Python and Java for background
intensive tasks (import, natural language processing). PostgreSQL was used as a
datastore, the ontology is stored in relational representation. For natural language
processing, we used Stanford CoreNLP [12] for POS-tagging the free text and
Nodebox English Linguistics6 library for improving initially preprocessed sentences
and unifying synonymic definitions, verb forms, etc. in various requirements. Because
it is crucial to use existing metrics and attributes created from previous requirements,
full-text search was provided for users who are transcribing the schemes to easily
search through existing elements and this was facilitated through Elasticsearch. Sample
screen from the system is shown in Fig. 4, showing sample comparison of two schemes
using the same security attribute in their requirements.

Using the above system, 7 persons who have not previously worked with ontolo-
gies and untrained in the schemes in question were recruited as scheme editors and
tasked with transcribing selected parts of CSA CCM v3.0.1 and ISO/IEC 27001:2013
schemes from scratch using the system both in the manual workflow by breaking down
the scheme’s requirements manually as described in Sect. 3 and by using the import of
spreadsheet files with NLP-assisted pre-processing into control objective and metric
candidates, to be further manually edited and confirmed. The work performed is
summarized up in Table 2. The preliminary evaluation has shown that both the method
for describing individual certification schemes into proposed ontology and the pro-
posed ontology are feasible and allow easier comparison of certification schemes than
when comparing schemes directly by experts, even allowing for security non-
experts/persons untrained in populating ontologies to be engaged in the process.

6 https://www.nodebox.net/code/index.php/Linguistics.

Towards Automatic Comparison of Cloud Service Security Certifications 307

https://www.nodebox.net/code/index.php/Linguistics

5 Looking Ahead

The proposed ontology and NLP-based assistance was implemented and tested through
prototype web-based system showing promise both in the proposed ontology for
describing and fully automatically comparing certification schemes and in the NLP-
assisted semiautomated conversion of free text format of schemes into the ontology.
The NLP-based method, although only an assistive function to save initial human
efforts, can be further improved with advances in text processing, e.g. using deep
learning methods.

The core, proposed ontology, approach is not limited only to the domain of cer-
tification schemes and even cloud security. A very similar domain, both in the nature of
the underlying data (free text requirements/statements) and the need for cross-border
comparison, exists in the area of laws. Laws in different countries are harmonized to
some extent (e.g. traffic signs unified through Vienna Conventions, or EU member state
national laws unified through EU directives, or laws of countries split from previous
common state), yet smaller or larger details are incrementally added or nevertheless
implemented differently and, in the same way cloud service users and providers benefit

Fig. 4. Screenshot of scheme comparison showing different use of one security attribute in two
different schemes, highlighting the difference.

Table 2. (Part of) evaluated schemes as transcribed into the ontology in the prototype system.

Property Certification scheme
CSA CCM v3.0.1 ISO/IES 27001:2013

Controls 133 140
Control objectives 1529 289
Unique security attributes used 278 191
Unique metrics used 111 81

308 M. Labaj et al.

from up-to-date and possibly cross-border comparison of security schemes between
each other or between security schemes and laws/requirements applicable to them, for
example, a motorist travelling abroad would benefit greatly from summarized up-to-
date review of differences in traffic rules across the border.

Acknowledgement. This work was partially supported by the project EU 731845 – EU-SEC.

References

1. Androcec, D., Vrcek, N., Seva, J.: Cloud computing ontologies: a systematic review. In:
MOPAS 2012: The Third International Conference on Models and Ontology-Based Design
of Protocols, Architectures and Services Cloud. IARIA, pp. 9–14 (2012)

2. Singh, V., Pandey, S.K.: A comparative study of cloud security ontologies. In: Proceedings
of 3rd International Conference on Reliability, Infocom Technologies and Optimization.
IEEE (2014)

3. Zhang, M., Ranjan, R., Haller, A., et al.: An ontology-based system for cloud infrastructure
services’ discovery. In: 8th International Conference on Collaborative Computing:
Networking, Applications and Worksharing (CollaborateCom). IEEE, Pittsburgh, pp. 524–
530 (2012)

4. Zhu, J.: Survey on ontology mapping. Phys. Procedia 24, 1857–1862 (2012). https://doi.org/
10.1016/j.phpro.2012.02.273

5. Hooi, Y.K., Hassan, M.F., Shariff, A.M.: A survey on ontology mapping techniques. In:
Jeong, H.Y., S. Obaidat, M., Yen, N.Y., Park, J.J.(Jong Hyuk) (eds.) Advances in Computer
Science and its Applications. LNEE, vol. 279, pp. 829–836. Springer, Heidelberg (2014).
https://doi.org/10.1007/978-3-642-41674-3_118

6. Pedrinaci, C., Cardoso, J., Leidig, T.: Linked USDL: a vocabulary for web-scale service
trading. In: Presutti, V., d’Amato, C., Gandon, F., d’Aquin, M., Staab, S., Tordai, A. (eds.)
ESWC 2014. LNCS, vol. 8465, pp. 68–82. Springer, Cham (2014). https://doi.org/10.1007/
978-3-319-07443-6_6

7. Gonzalez, N., Miers, C., Redígolo, F., et al.: A quantitative analysis of current security
concerns and solutions for cloud computing. J. Cloud Comput. Adv. Syst. Appl. 1, 11
(2012). https://doi.org/10.1186/2192-113x-1-11

8. Veloudis, S., Paraskakis, I.: Ontological templates for modelling security policies in cloud
environments. In: Proceedings of the 20th Pan-Hellenic Conference on Informatics - PCI
2016. ACM Press, New York (2016)

9. Garcia, J.M., Fernandez, P., Pedrinaci, C., et al.: Modeling service level agreements with
linked USDL agreement. IEEE Trans. Serv. Comput. 10, 52–65 (2017). https://doi.org/10.
1109/TSC.2016.2593925

10. Takahashi, T., Kadobayashi, Y., Fujiwara, H.: Ontological approach toward cybersecurity in
cloud computing. In: Proceedings of the 3rd International Conference on Security of
Information and Networks - SIN 2010. ACM Press, New York, pp. 100–109 (2010)

11. Marcus, M.P., Marcinkiewicz, M.A., Santorini, B.: Building a large annotated corpus of
English: the Penn treebank. Comput. Linguist. 19, 313–330 (1993)

12. Manning, C., Surdeanu, M., Bauer, J., et al.: The Stanford CoreNLP natural language
processing toolkit. In: Proceedings of 52nd Annual Meeting of the Association for
Computational Linguistics: System Demonstrations. Association for Computational Lin-
guistics, Stroudsburg, pp. 55–60 (2014)

Towards Automatic Comparison of Cloud Service Security Certifications 309

http://dx.doi.org/10.1016/j.phpro.2012.02.273
http://dx.doi.org/10.1016/j.phpro.2012.02.273
http://dx.doi.org/10.1007/978-3-642-41674-3_118
http://dx.doi.org/10.1007/978-3-319-07443-6_6
http://dx.doi.org/10.1007/978-3-319-07443-6_6
http://dx.doi.org/10.1186/2192-113x-1-11
http://dx.doi.org/10.1109/TSC.2016.2593925
http://dx.doi.org/10.1109/TSC.2016.2593925

On the Expressive Power
of GF(2)-Grammars

Vladislav Makarov(B) and Alexander Okhotin

St. Petersburg State University, 7/9 Universitetskaya nab.,
Saint Petersburg 199034, Russia

vm450@yandex.ru, alexander.okhotin@spbu.ru

Abstract. GF(2)-grammars, recently introduced by Bakinova et al.
(“Formal languages over GF(2)”, LATA 2018), are a variant of ordinary
context-free grammars, in which the disjunction is replaced by exclusive
OR, whereas the classical concatenation is replaced by a new opera-
tion called GF(2)-concatenation: K � L is the set of all strings with
an odd number of partitions into a concatenation of a string in K and
a string in L. This paper establishes several results on the family of
languages defined by these grammars. Over the unary alphabet, GF(2)-
grammars define exactly the 2-automatic sets. No language of the form
{anbf(n) | n � 1}, with uniformly superlinear f , can be described by
any GF(2)-grammar. The family is not closed under union, intersection,
classical concatenation and Kleene star, non-erasing homomorphisms.
On the other hand, this family is closed under injective nondeterministic
finite transductions, and contains a hardest language under reductions
by homomorphisms.

1 Introduction

A new family of formal grammars, the GF(2)-grammars, was recently intro-
duced by Bakinova et al. [2]. These grammars differ from the ordinary grammars
(Chomsky’s “context-free”) as follows. In ordinary grammars, the operations
are: the disjunction of syntactical conditions, expressed by multiple rules for the
same nonterminal symbol, and the concatenation of languages, which is defined
through conjunction and disjunction [17]. In GF(2)-grammars, these operations
are modified by replacing the underlying Boolean logic with the GF(2) field.
Accordingly, instead of set-theoretic union of languages, GF(2)-grammars fea-
ture symmetric difference, whereas concatenation of languages is replaced with
a new operation called GF(2)-concatenation, defined as follows.

K � L = {w | the number of partitions w = uv, with u ∈ K and v ∈ L, is odd}

GF(2)-grammars were introduced as a part of a general study of GF(2)-
concatenation as an operation on formal languages. Their formal definition

Supported by Russian Science Foundation, project 18-11-00100.

c© Springer Nature Switzerland AG 2019
B. Catania et al. (Eds.): SOFSEM 2019, LNCS 11376, pp. 310–323, 2019.
https://doi.org/10.1007/978-3-030-10801-4_25

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-10801-4_25&domain=pdf
https://doi.org/10.1007/978-3-319-77313-1_5
https://doi.org/10.1007/978-3-030-10801-4_25

On the Expressive Power of GF(2)-Grammars 311

is based on parse trees in the corresponding ordinary grammar with classical
concatenation and union: assuming that every string has a finite number of
parse trees, the GF(2)-grammar defines all strings with an odd number of parse
trees. The intuitive correctness of this definition is confirmed by a result that if
a grammar is represented by a system of language equations, similar to the equa-
tions of Ginsburg and Rice [8], but using the operations of GF(2)-concatenation
and symmetric difference, then the language defined by this GF(2)-grammar
satisfies the system.

A few related, more general grammar models were studied before. Knuth [13]
investigated specification of multisets by grammars, with every parse tree con-
tributing an element to a multiset. A more general extension are formal lan-
guages over multiplicities, that is, mappings from the set of strings to a semiring.
Under certain monotonicity assumptions on the semiring, equations in formal
power series over a semiring behave similarly to ordinary grammars, and a sub-
stantial theory has been developed around them, see the survey by Petre and
Salomaa [18]. However, the two-element field does not have the required mono-
tonicity properties, and this general theory does not apply to GF(2)-grammars.
Another matter is that languages over multiplicities are, after all, functions,
and not languages as such. There are just two cases when actual languages are
defined: this is when the semiring is either the Boolean semiring or the GF(2)
field. Whereas the former case is classical, the other case deserves investigation.

The study of GF(2)-grammars is a part of the research on formal grammars
with different sets of operations [17]. All these grammars are variants of Chom-
sky’s “context-free” model, and particular models include conjunctive grammars
equipped with a conjunction operator in the rules [15]; multi-component gram-
mars [19] that allow substrings with gaps as basic constituents; grammars with
context operators [3], and a few other models.

Every unambiguous grammar is a GF(2)-grammar, and it still defines the
same language. In the presence of ambiguity, ordinary grammars assert the exis-
tence of a parse tree, whereas GF(2)-grammars check the parity. For this reason,
ordinary grammars and GF(2)-grammars are two different generalizations of
unambiguous grammars. These two generalizations share the same complexity
upper bound: there is a basic cubic-time parsing algorithm, more efficient pars-
ing by matrix multiplication, and parallel parsing in NC2 [2]. These practically
valuable properties make the class of GF(2)-grammars potentially useful and
accordingly deserving further study.

There is some evidence that the formal properties of ordinary and GF(2)-
grammars are not symmetric. First, unlike the classical concatenation, the
GF(2)-concatenation is invertible: to be precise, for every language L containing
the empty string, there exists a language L−1, for which L � L−1 = L−1 � L =
{ε} [2]. How this property affects language specification, remains to be inves-
tigated. Second, over a unary alphabet, GF(2)-grammars can describe some
non-regular sets, such as {a2n | n � 0}. These differences make this family
an interesting subject for theoretical research.

The goal of this paper is to investigate the family of GF(2)-grammars and
to determine, which languages they can describe and which they cannot. These

312 V. Makarov and A. Okhotin

results shall be used to establish the basic closure properties of GF(2)-grammars.
as well as to compare their expressive power with that of the main families of
formal grammars.

2 GF(2)-Grammars

Syntactically, a GF(2)-grammar is defined exactly as an ordinary grammar, with
a finite sequence of symbols and nonterminal symbols on the right-hand side of
each rule. However, every such sequence has semantics of GF(2)-concatenation,
whereas multiple rules for the same nonterminal symbol implicitly denote sym-
metric difference of the given conditions.

Definition 1 ([2]). A GF(2)-grammar is a quadruple G = (Σ,N,R, S), where:

– Σ is the alphabet of the language;
– N is the set of nonterminal symbols;
– every rule in R is of the form A → X1 � . . .�X�, with � � 0 and X1, . . . X� ∈

Σ∪N , which represents all strings that have an odd number of partitions into
w1 . . . w�, with each wi representable as Xi;

– S ∈ N is the initial symbol.

The grammar must satisfy the following condition. Let ̂G = (Σ,N, ̂R,S) be the
corresponding ordinary grammar, with ̂R = {A → X1 . . . X� | A → X1 � . . . �
X� ∈ R}. It is assumed that, for every string w ∈ Σ∗, the number of parse trees
of w in ̂G is finite; if this is not the case, then G is considered ill-formed.

Then, for each A ∈ N , the language LG(A) is defined as the set of all strings
with an odd number of parse trees as A in ̂G.

A grammar is GF(2)-linear, if, in each rule, at most one of X1, . . . , X� is a
nonterminal symbol.

Theorem A ([2]). Let G = (Σ,N,R, S) be a GF(2)-grammar. Then the substi-
tution A = LG(A) for all A ∈ N is a solution of the following system of language
equations.

A = �
A→X1�...�X�∈R

X1 � . . . � X� (A ∈ N)

Multiple rules for the same nonterminal symbol can be denoted by separating
the alternatives with the “sum modulo two” symbol (⊕), as in the following
example.

Example 2 ([2]). The following GF(2)-linear grammar defines the language
{a�bmcn | � = m or m = n, but not both}.

S → A ⊕ C

A → aA ⊕ B

B → bBc ⊕ ε

C → Cc ⊕ D

D → aDb ⊕ ε

On the Expressive Power of GF(2)-Grammars 313

Indeed, each string a�bmcn with � = m or with m = n has a parse tree, and if
both equalities hold, then there are accordingly two parse trees, which cancel
each other.

Since GF(2)-concatenation with a singleton language is the same as classi-
cal concatenation, GF(2)-linear grammars are a special case of linear Boolean
grammars, in which the allowed operations are all Boolean operations and con-
catenation with singletons. In the latter grammars, negation can be eliminated,
resulting in a linear conjunctive grammar [14].

Since linear conjunctive grammar over a unary alphabet define only regu-
lar languages, so do the GF(2)-linear grammars. On the other hand, GF(2)-
grammars of the general form can define some non-regular unary languages.

Example 3 ([2]). The following grammar describes the language {a2n | n � 0}.

S → (S � S) ⊕ a

The main idea behind this grammar is that the GF(2)-square S�S over a unary
alphabet doubles the length of each string: L�L = {a2� | a� ∈ L}. The grammar
iterates this doubling to produce all powers of two.

3 GF(2)-Grammars over the Unary Alphabet

Ordinary grammars over the unary alphabet Σ = {a} define only regular lan-
guages [8]. On the other hand, as demonstrated by Example 3, GF(2)-grammars
can define some non-regular languages. The question is, which unary languages
can be defined? The answer follows from the famous Christol’s theorem [5].

A few definitions are necessary.

Definition 4. A set of natural numbers S ⊆ N is called k-automatic [1], if there
is a finite automaton over the alphabet Σk = {0, 1, . . . , k − 1} recognizing base-k
representations of these numbers.

Let Fk[t] be the ring of polynomials over the k-element field GF(k), and let
Fk[[t]] denote the ring of formal power series over the same field.

Definition 5. A formal power series f ∈ Fk[[t]] is said to be algebraic, if there
exists a non-zero polynomial P with coefficients from Fk[t], such that P (f) = 0.

Theorem B (Christol’s theorem for GF(2)). A formal power series
∑∞

n=0 fntn ∈ F2[[t]] is algebraic if and only if the set {n ∈ N0 | fn = 1} is
2-automatic.

For a unary alphabet, solutions of language equations corresponding to a
GF(2)-grammar, as in Theorem A, are algebraic formal power series in F2[[t]],
which has the following consequence.

Corollary 6. Every unary language defined by GF(2)-grammar is 2-automatic.

314 V. Makarov and A. Okhotin

Inferring the converse characterization from Christol’s theorem is not trivial,
it is easier to give a direct proof.

Theorem 7. Every 2-automatic unary language is described by a GF(2)-
grammar.

Proof. Let A = ({0, 1}, Q, q0, δ, F) be a DFA that recognizes binary represen-
tations of natural numbers without leading zeroes. The corresponding GF(2)-
grammar is defined as G = ({a}, {Aq | q ∈ Q} ∪ {S}, R, S), with the following
set of rules.

Aq → Ap � Ap (p ∈ Q, δ(p, 0) = q)
Aq → a � Ap � Ap (p ∈ Q, δ(p, 1) = q)
Aq → a (δ(q0, 1) = q)
S → Aq (q ∈ F)
S → ε (if 0 ∈ L(A))

Here, as in Example 3 the rule for Aq → Ap � Ap produces all strings a2�, with
a� defined by Ap: this effectively appends zero to the binary representation. The
rule Aq → Ap �Ap �a doubles the length and adds one, thus appending digit 1.

Then, L(Aq) consists of all strings a(1w)2 , with δ(q0, 1w) = q. 	

By the above, the unary languages defined by GF(2)-grammars are exactly

the 2-automatic languages. This characterization also gives a tool for proving
that a given language over a non-unary alphabet cannot be defined by any
GF(2)-grammar.

Theorem 8 (Method of unary image). Let a language L over an alphabet
Σ be defined by a GF(2)-grammar, and let h : Σ → {t}∗ be a non-erasing homo-
morphism that is injective on L, in the sense that h(u) �= h(v) for any distinct
u, v ∈ L. Then, h(L) is a 2-automatic language over the unary alphabet {t}.

In the GF(2)-grammar for L, it is sufficient to replace every occurrence of
every symbol a ∈ Σ in the rules with h(a). The resulting GF(2)-grammar defines
the language h(L), which is then 2-automatic by Corollary 6.

4 Representability of Subsets of a∗b∗

Defining languages of the form L ⊆ a∗b∗ in a certain formalism represents its abil-
ity to count. A particular special case are languages of the form Lf = {anbf(n) |
n � 1}, where f is a function f : N → N.

Finite automata cannot keep count, in the sense that Lf is regular only if there
is a partition of N into finitely many pairwise disjoint arithmetic progressions,
including singletons, and for each arithmetic progression {m0 + ip | i � 0}, the
language contains a subset {am0+ipbn0 | i � 0}, for a fixed number n0.

On the Expressive Power of GF(2)-Grammars 315

For ordinary grammars, the subset may be linear, that is, of the form
{am0+ipbn0+iq | i � 0}. Using linear conjunctive grammars, more sophisticated
languages with exponential growth can be expressed.

Example 9 (Ibarra and Kim [11]). The language {anb2
n | n � 1} is recognized

by a one-way real-time cellular automaton, and, equivalently, is described by a
linear conjunctive grammar.

At the same time, there is the following bound on the growth of f .

Theorem C (Buchholz and Kutrib [4]). For every function f : N → N, if
the language {anbf(n) | n � 1} is linear conjunctive, then f is bounded by an
exponential function.

Buchholz and Kutrib [4] further examined the ability to count for several
classes of cellular automata. The question investigated in this paper is, what
kind of languages of the form Lf can be expressed using GF(2)-grammars? The
starting point is the following class of obviously representable languages.

Theorem 10. Let N be represented as a disjoint union of finitely many
2-automatic sets: N = S1 � . . . � Sk. For each of these sets, Sj, let Lj be a
language of the following form: either Lj = {ambn0 | m ∈ Sj}, for some n0 � 0,
or, as long as Sj is an arithmetic progression {m0 + ip | i � 0} with m0 � 0 and
p � 1, a language Lj = {am0+ipbn0+iq | i � 0} with n0 � 0 and q � 1. Then,
the languages L1, . . . , Lk are pairwise disjoint, their union is a language of the
form Lf , and it can be described by a GF(2)-grammar.

The current conjecture is that no other languages of the form Lf can be
represented. The next theorem identifies a class of non-representable languages,
which are all those with a superlinearly growing function f , under the following
uniformness restriction.

Definition 11. A function f : N → N is called uniformly superlinear, if, for
every c > 0, there exists N ∈ N, such that f(n + 1) − f(n) > c for all n >
N ; in other words, f(n + 1) − f(n) is eventually larger than any constant, or
lim inf
n→+∞ f(n + 1) − f(n) = +∞.

Theorem 12. Let f : N → N be a monotonically increasing uniformly super-
linear function. Then the language {anbf(n) | n ∈ N} is not described by any
GF(2)-grammar.

Proof. Proof by contradiction. Suppose that L := {anbf(n) | n ∈ N} is described
by some GF(2)-grammar. Then S1 := {n + f(n) | n ∈ N} and S2 := {2n +
f(n) | n ∈ N} are both 2-automatic by virtue of being unary images of L under
homomorphisms a → t, b → t and a → t2, b → t, respectively.

Let � be an integer large enough, so that 2�/2 is greater than the number of
states in the minimal NFAs recognizing both S1 and S2 in binary notation. By the
uniform superlinearity of f , there exists a number M , such that f(n+1)−f(n) >
2� for all n � M . Consider the integers M + 1,M + 2, . . . ,M + 2�. Clearly, they
all have different remainders modulo 2�.

316 V. Makarov and A. Okhotin

Claim. For any function f : N → N and for any two numbers �,M ∈ N, there
exists a factor k ∈ {1, 2} and a set X ⊆ {M + 1,M + 2, . . . ,M + 2�}, such that
|X| = �2�/2� and all residues kn + f(n) modulo 2� for n ∈ X are distinct.

Proof (of the claim). The first observation is that the mapping n �→ (n +
f(n), 2n + f(n)) (mod 2�) is injective on {M + 1, . . . ,M + 2�}. Indeed, if, for
any two arguments n, n′ ∈ {M + 1, . . . , M + 2�} the values coincide, that is,
n + f(n) ≡ n′ + f(n′) (mod 2�) and 2n + f(n) ≡ 2n′ + f(n′) (mod 2�), then,
subtracting the former equality from the latter yields n ≡ n′ (mod 2�), which
implies that the arguments must be the same.

Now the statement is proved by contradiction. For k = 1, the assumption
that no such set X exists means that there are fewer than 2�/2 distinct values
n + f(n) modulo 2�, for n ∈ {M + 1,M + 2, . . . , M + 2�}. Similarly, for k = 2,
by assumption, there are fewer than 2�/2 distinct values 2n + f(n) modulo 2�,
for all n ∈ {M + 1,M + 2, . . . , M + 2�}. Therefore, the number of distinct
pairs (n + f(n), 2n + f(n)) modulo 2�, obtained for different n, is strictly less
than 2�/2 · 2�/2 = 2�. Since there are 2� different arguments n, the mapping
n �→ (n + f(n), 2n + f(n)) (mod 2�) cannot be injective, which contradicts the
above observation. 	

Resuming the proof of the theorem, by the lemma, there exist k ∈ {1, 2}
and X ⊆ {M + 1,M + 2, . . . , M + 2�}, such that all numbers (kn + f(n)), with
n ∈ X, are pairwise distinct modulo 2�. Let X := {n1, n2, . . . , n|X|}. For each
number ni, the least significant � digits in its binary representation are denoted
by vi ∈ {0, 1}�; if ni is less than 2�−1, the string is accordingly padded by
zeroes. Similarly, let ui ∈ {0, 1}∗ be the string of all remaining digits, so that
(uivi)2 = kni + f(ni). By the choice of X, all vi are different.

It is claimed that the set of |X| pairs (u1, v1), . . . , (u|X|, v|X|) forms a fooling
set for the language of binary representations of Sk. Indeed, (uivi)2 = (kni +
f(ni)) ∈ Sk for i = 1, 2, . . . , |X|. On the other hand, for any i and j from
{1, 2, . . . , |X|}, such that i �= j, at least one of the numbers (uivj)2 and (ujvi)2
is not in Sk. By choice of X, vi �= vj . Without loss of generality, let (vi)2 < (vj)2.
For the sake of a contradiction, suppose that (ujvi)2 ∈ Sk, that is, (ujvi)2 =
km+ f(m) for some m ∈ N. On the one hand, (ujvi)2 < (ujvj)2 < (ujvi)2 +2�,
because (ujvj)2 and (ujvi)2 differ only in � lowest bits, and (vi)2 < (vj)2.
On the other hand, since km + f(m) = (ujvi)2 < (ujvj)2 = knj + f(nj) and
f is non-decreasing, one can conclude that m < nj and (ujvj)2 − (ujvi)2 =
(knj + f(nj)) − (km + f(m)) > f(nj) − f(m) � f(nj) − f(nj − 1) > 2�, because
nj − 1 � M and f(n + 1) − f(n) > 2� for n � M . Together these facts yield
2� > (ujvj)2 − (ujvi)2 > 2�, contradiction.

It has thus been proved that the language of binary representations of Sk.
has a fooling set of size 2�/2, and therefore every NFA recognizing this language
must have at least this many states. This contradicts the assumption that there
is a smaller NFA for this language. 	

On the Expressive Power of GF(2)-Grammars 317

Example 13 (cf. Example 9). The language {anb2
n | n � 1} is not described by

any GF(2)-grammar, because the function f(n) = 2n is increasing and uniformly
superlinear.

5 A Separating Example and the Hierarchy

In order to compare the expressive power of GF(2)-grammars to other grammar
families, it is essential to find a simple language which they could not represent,
but other kinds of grammars could. Most of the results presented later on are
based on the following language over the alphabet {a, b}.

L = {ba2·3n−1 . . . ba17 ba5 ba bbb a3b a11b a35b . . . a4·3n−1b | n � 0}
Lemma 14. The language L is representable as L = L1 ∩ L2, where both L1

and L2 are described by unambiguous linear grammars.
Furthermore, their complements L1 and L2 are described by linear grammars,

and therefore so is the complement of L.

Proof (a sketch). This is a standard construction, inspired by a proof by
Ginsburg and Spanier [9]. Each string in L encodes two sequences of numbers:
1, 5, 17, . . . , 2 · 3n − 1 on the left, and 3, 11, 35, . . . , 4 · 3n − 1 on the right.
The language L1 ensures that for each i-th element m on the left-hand side, the
i-th element on the right-hand side must be 2m + 1; the language L2 similarly
ensures that for each i-th element 2m − 1 on the right-hand side, the (i + 1)-th
element on the left-hand side must be 3m − 1, and also that the first element of
the left-hand-side sequence is 1.

Linear grammars for the complements of L1 and of L2 simply check that
there is at least one error in the above correspondence. 	

Lemma 15. Neither L nor its complement are described by any GF(2)-
grammars.

Proof. Indeed, the unary image of L is {a3n | n � 2}, and the latter language is
not described by any GF(2)-grammar by Christol’s theorem. Since complemen-
tation is representable in GF(2)-grammars, there cannot be a grammar for the
complement of L either. 	

With this last example, the position of GF(2)-grammars in the hierarchy of
grammars with different sets of operations can be determined as follows. The
hierarchy in Fig. 1 includes the following grammar families: ordinary grammars
or Chomsky’s context-free (union and concatenation: Ordinary); unambiguous
grammars (disjoint union, unambiguous concatenation: Unamb); linear gram-
mars (union, concatenation with symbols: Lin); unambiguous linear grammars
(disjoint union, concatenation with symbols: UnambLin); linear conjunctive
grammars (union, intersection, concatenation with symbols: LinConj); conjunc-
tive grammars (union, intersection, concatenation: Conj).

The families are separated by the following examples.

318 V. Makarov and A. Okhotin

Fig. 1. The hierarchy of grammars: solid lines indicate proper inclusions, dashed lines
mark incomparable families (shown only for GF(2)-families).

– GF(2)-linear, but not ordinary (and thus not linear and not unambiguous):
{a�bmcn | � = m or m = n, but not both} (Example 2).

– GF(2), but not ordinary (and thus not unambiguous) and not linear conjunc-
tive (and thus neither linear nor GF(2)-linear): {a2n | n � 0} (Example 3).

– Linear conjunctive but not GF(2) (and thus not GF(2)-linear): {anb2
n | n �

1} (Example 13).
– Linear (and also ordinary), but not GF(2) (and thus not GF(2)-linear): the

complement of L (Lemmata 14–15).
– Conjunctive, but not GF(2): the complement of L applies as well. Further-

more, non-containment is witnessed by the unary language {a3n | n � 0},
which has a conjunctive grammar [12], but not a GF(2)-grammar (Corol-
lary 6).

– Unambiguous, but not GF(2)-linear: a language defined by an unambigu-
ous grammar, but not a linear conjunctive grammar, was constructed by
Okhotin [16, Lemma 4] using a method of Terrier [20].

The comparison between GF(2)-grammars and conjunctive grammars remains
incomplete, because no example of a language defined by a GF(2)-grammar,
but not by any conjunctive grammar, is known. The conjectured example is
{uv | u, v ∈ {a, b}∗, |u| = |v|, u and v differ in an odd number of positions} [2].
No way of constructing a conjunctive grammar for this language is known; how-
ever, no proof of this could be given due to the general lack of knowledge on
conjunctive grammars [15].

6 Closure Properties

Some closure properties of GF(2)-grammars are quite expected, and follow
by well-known arguments. Such is the closure under intersection with regular

On the Expressive Power of GF(2)-Grammars 319

languages: the classical construction by Bar-Hillel et al. applies verbatim,
because it preserves multiplicities of parse trees. It makes sense to prove this
result in its most general form, for all mappings computed by injective nonde-
terministic finite tranducers (NFT). First, it is established under the following
technical assumption.

Lemma 16. Let G be a GF(2)-grammar over an alphabet Σ, and let a mapping
T : Σ∗ → 2Ω∗

be computed by an injective NFT, which has the following property:
for every pair (w, x) ∈ Σ∗×Ω∗, there is at most one computation on w that emits
x. Then the language T (L(G)) is defined by a GF(2)-grammar G′. Furthermore,
if G is linear, then so is G′.

Proof (a sketch). The construction is standard, and the assumptions of injectiv-
ity and of the uniqueness of a computation ensure that, whenever the original
grammar G defines w and x ∈ T (w), the number of parse trees of x in the con-
structed grammar G′ is the same as the number of parse trees of w in G. For
that reason, L(G′) = T (L(G)), as desired. 	

Using this result, the desired closure property is proved as follows.

Theorem 17. Let a mapping T : Σ∗ → 2Ω∗
be computed by an injective NFT.

Then the language families defined by GF(2)-grammars and GF(2)-linear gram-
mars are closed under T .

Proof (a sketch). Since the definition of NFT is symmetric with respect to its
input and its output, there is a single-valued NFT implementing a partial map-
ping T ′ : Ω∗ → Σ∗, with w = T ′(x) if and only if x ∈ T (w). As proved by
Eilenberg [6, p. 186] a single-valued NFT can be transformed to an unambiguous
NFT, that is, with at most one accepting computation on every input. Swap-
ping the input and the output again yields an NFT implementing the original
mapping T that satisfies the conditions of Lemma 16. Therefore, by Lemma 16,
both language families are closed under T . 	

Corollary 18. The families defined by GF(2) and GF(2)-linear grammars are
closed under intersection with regular languages, as well as under union with
regular languages.

For all other standard operations on languages, GF(2)-grammars demon-
strate non-closure.

Theorem 19. The family of languages described by GF(2)-grammars is not
closed under (a) union, (b) intersection, (c) concatenation, (d) Kleene star, (e)
left- and right-quotient with a two-element set, and (f) non-erasing homomor-
phisms. The same results hold for GF(2)-linear grammars.

Intuitively, all these operations essentially use conjunction or disjunction in
their definitions, and those Boolean operations are not expressible in GF(2).

320 V. Makarov and A. Okhotin

Proof. The proofs of all cases are based on the languages L, L1 and L2 given in
Lemmata 14–15. By Lemma 14, L1 and L2 are described by unambiguous linear
grammars, and hence both these languages and their complements are described
by GF(2)-linear grammars.

(a) Both L1 and L2 are described by GF(2)-linear grammars, but their union
L1 ∪ L2 = L is not.

(b) Similarly, L1 ∩L2 = L, where L1 and L2 are described by GF(2)-grammars,
but L is not.

(c) Let c be a new symbol. By the assumptions, {ε, c} and cL1 �L2 = cL1 ∪L2

are described by some GF(2)-grammars. Their concatenation is the following
language.

({ε, c} · (cL1 ∪ L2)) = L2 ∪ c(L1 ∪ L2) ∪ ccL1

If it is represented by some GF(2)-grammar, then, by Theorem 17, so is its
image under a finite transduction T defined by T (cw) = w for all w ∈ Σ∗,
and undefined on all other strings. This image is the language L, which is
not described by any GF(2) grammar, contradiction.

(d) By Corollary 18, (cccL1�ccL2�c)∗ ∩ (c3{a, b}∗) = (cccL1 ∪ ccL2 ∪ c)∗ ∩
(c3 {a, b}∗) = c3(L1 ∪ L2 ∪ {ε}) = c3(L ∪ {ε}) = c3L. Similarly to (c), this
language is not described by any GF(2)-grammar.

(e) For symmetry reasons it suffices to prove only the left-quotient result. Denote
K\M = {v | ∃u ∈ K : uv ∈ M}. Indeed, ({ε, c}\(cL1�L2))�cL1 =
({ε, c}\(cL1 ∪ L2))�cL1 = (cL1 ∪ L2 ∪ L1 ∪ ∅)�cL1 = (L1 ∪ L2) = L.

(f) h(cL1�dL2) = h(cL1 ∪ dL2) = c(L1 ∪ L2) = cL, where the images of the
letters under homomorphism h : {a, b, c, d} → {a, b, c}∗ are h(a) = a, h(b) =
b, h(c) = h(d) = c respectively. 	

In Table 1, the closure properties of GF(2)-grammars and of their linear sub-
class are summarized and compared with other grammar families. The operations
featured in the table are: intersection with regular languages (∩Reg), union (∪),
intersection (∩), complementation (∼), concatenation (·), Kleene star (∗), GF(2)-
concatenation (�), GF(2)-inverse (−1), quotient with regular languages (/Reg),
homomorphisms (h), injective homomorphisms (hinj), inverse homomorphisms
(h−1). All closure properties of GF(2) and GF(2)-linear grammars are proved
in this paper. Non-closure of the classical families under GF(2)-concatenation
and GF(2)-inverse is known [2]; most likely, this non-closure extends to linear
conjunctive grammars and could be proved by the method of Terrier [20].

7 Hardest Language

Some formal properties of GF(2)-grammars are the same as for ordinary gram-
mars and are established by the same argument. One such property is Greibach’s
hardest language theorem [10], which has the same statement in the case of
GF(2)-grammars.

On the Expressive Power of GF(2)-Grammars 321

Table 1. Closure properties of grammars under classical and under GF(2)-operations.

∩Reg ∪ ∩ ∼ · * � −1 /Reg h hinj h−1

GF(2)-linear (�, lin·) + − − + − − − − − − + +

Unambiguous (�, unamb·) + − − − − − − − − − + +

Ordinary (∪, ·) + + − − + + − − + + + +

GF(2) (�,�) + − − + − − + + − − + +

Linear conjunctive (∪,∩, lin·) + + + + − − ? ? − − + +

Conjunctive (∪,∩, ·) + + + ? + + ? ? − − + +

Theorem 20. There exist an alphabet Σ0 and a GF(2)-grammar G0 =
(Σ0, N0, R0, S0), such that for every GF(2)-grammar over any alphabet Σ, there
exists a homomorphism h : Σ → Σ∗

0 , such that a non-empty string w over Σ is
in L(G) if and only if h(w) is in L(G0).

The proof requires a Greibach normal form.

Definition 21. A GF(2)-grammar is said to be in Greibach normal form
(GNF), if all its rules are of the form A → a � B1 � . . . � B�, with a ∈ Σ,
� � 0 and B1, . . . , B� ∈ N .

Proposition 22. For every GF(2)-grammar G with ε /∈ L(G), there exists a
GF(2)-grammar in the Greibach normal form that describes the same language.

It is known that the transformation to the Greibach normal form preserves
the number of parse trees [7, Lemma 4]. Taking this modulo two yields Propo-
sition 22.

Proof (of Theorem 20). Greibach’s classical construction for ordinary grammars
applies here, because it is known to preserve multiplicities: for a non-empty
string w ∈ Σ∗, its image h(w) has the same number of parse trees in G0 as w
has in G [10, p. 307]. Therefore, the number of trees modulo 2 is preserved as
well. 	

8 Conclusion

The new negative results for GF(2)-grammars were sufficient to establish their
position in the hierarchy and their basic closure properties. However, these
methods are still quite limited, and the existence of GF(2)-grammars remains
unknown even for some very simple languages. For instance, can the language
{anbncn | n � 0} be defined by these grammars? Exactly which subsets of a∗b∗

can be defined? In particular, what is the exact class of functions f , for which
the language Lf = {anbf(n) | n � 0} can be defined—is it any larger than the
class in Theorem 10?

322 V. Makarov and A. Okhotin

References

1. Allouche, J.-P., Shallit, J.: Automatic Sequences: Theory, Applications, General-
izations. Cambridge University Press, Cambridge (2003)

2. Bakinova, E., Basharin, A., Batmanov, I., Lyubort, K., Okhotin, A., Sazhneva, E.:
Formal languages over GF(2). In: Klein, S.T., Mart́ın-Vide, C., Shapira, D. (eds.)
LATA 2018. LNCS, vol. 10792, pp. 68–79. Springer, Cham (2018). https://doi.org/
10.1007/978-3-319-77313-1 5

3. Barash, M., Okhotin, A.: An extension of context-free grammars with one-sided
context specifications. Inf. Comput. 237, 268–293 (2014). https://doi.org/10.1016/
j.ic.2014.03.003

4. Buchholz, T., Kutrib, M.: On time computability of functions in one-way cellu-
lar automata. Acta Informatica 35(4), 329–352 (1998). https://doi.org/10.1007/
s002360050123

5. Christol, G.: Ensembles presque periodiques k-reconnaissables. Theor. Comput.
Sci. 9, 141–145 (1979). https://doi.org/10.1016/0304-3975(79)90011-2

6. Eilenberg, S.: Automata, Languages and Machines, vol. 1. Academic Press, Cam-
bridge (1974)

7. Forejt, V., Jančar, P., Kiefer, S., Worrell, J.: Language equivalence of probabilistic
pushdown automata. Inf. Comput. 237, 1–11 (2014). https://doi.org/10.1016/j.ic.
2014.04.003

8. Ginsburg, S., Rice, H.G.: Two families of languages related to ALGOL. J. ACM
9, 350–371 (1962). https://doi.org/10.1145/321127.321132

9. Ginsburg, S., Spanier, E.H.: Quotients of context-free languages. J. ACM 10(4),
487–492 (1963). https://doi.org/10.1145/321186.321191

10. Greibach, S.A.: The hardest context-free language. SIAM J. Comput. 2(4), 304–310
(1973). https://doi.org/10.1137/0202025

11. Ibarra, O.H., Kim, S.M.: Characterizations and computational complexity of sys-
tolic trellis automata. Theor. Comput. Sci. 29, 123–153 (1984). https://doi.org/
10.1016/0304-3975(84)90015-X

12. Jeż, A.: Conjunctive grammars can generate non-regular unary languages.
Int. J. Found. Comput. Sci. 19(3), 597–615 (2008). https://doi.org/10.1142/
S012905410800584X

13. Knuth, D.E.: Context-free multilanguages. In: Theoretical Studies in Computer
Science, pp. 1–13. Academic Press, Cambridge (1992)

14. Okhotin, A.: On the equivalence of linear conjunctive grammars to trellis automata.
RAIRO Informatique Théorique et Applications 38(1), 69–88 (2004). https://doi.
org/10.1051/ita:2004004

15. Okhotin, A.: Conjunctive and Boolean grammars: the true general case of the
context-free grammars. Comput. Sci. Rev. 9, 27–59 (2013). https://doi.org/10.
1016/j.cosrev.2013.06.001

16. Okhotin, A.: Input-driven languages are linear conjunctive. Theor. Comput. Sci.
618, 52–71 (2016). https://doi.org/10.1016/j.tcs.2016.01.007

17. Okhotin, A.: Underlying principles and recurring ideas of formal grammars. In:
Klein, S.T., Mart́ın-Vide, C., Shapira, D. (eds.) LATA 2018. LNCS, vol. 10792,
pp. 36–59. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-77313-1 3

18. Petre, I., Salomaa, A.: Algebraic systems and pushdown automata. In: Droste,
M., Kuich, W., Vogler, H. (eds.) Handbook of Weighted Automata, pp. 257–289.
Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-01492-5 7

https://doi.org/10.1007/978-3-319-77313-1_5
https://doi.org/10.1007/978-3-319-77313-1_5
https://doi.org/10.1016/j.ic.2014.03.003
https://doi.org/10.1016/j.ic.2014.03.003
https://doi.org/10.1007/s002360050123
https://doi.org/10.1007/s002360050123
https://doi.org/10.1016/0304-3975(79)90011-2
https://doi.org/10.1016/j.ic.2014.04.003
https://doi.org/10.1016/j.ic.2014.04.003
https://doi.org/10.1145/321127.321132
https://doi.org/10.1145/321186.321191
https://doi.org/10.1137/0202025
https://doi.org/10.1016/0304-3975(84)90015-X
https://doi.org/10.1016/0304-3975(84)90015-X
https://doi.org/10.1142/S012905410800584X
https://doi.org/10.1142/S012905410800584X
https://doi.org/10.1051/ita:2004004
https://doi.org/10.1051/ita:2004004
https://doi.org/10.1016/j.cosrev.2013.06.001
https://doi.org/10.1016/j.cosrev.2013.06.001
https://doi.org/10.1016/j.tcs.2016.01.007
https://doi.org/10.1007/978-3-319-77313-1_3
https://doi.org/10.1007/978-3-642-01492-5_7

On the Expressive Power of GF(2)-Grammars 323

19. Seki, H., Matsumura, T., Fujii, M., Kasami, T.: On multiple context-free gram-
mars. Theor. Comput. Sci. 88(2), 191–229 (1991). https://doi.org/10.1016/0304-
3975(91)90374-B

20. Terrier, V.: On real-time one-way cellular array. Theor. Comput. Sci. 141(1–2),
331–335 (1995). https://doi.org/10.1016/0304-3975(94)00212-2

https://doi.org/10.1016/0304-3975(91)90374-B
https://doi.org/10.1016/0304-3975(91)90374-B
https://doi.org/10.1016/0304-3975(94)00212-2

An Efficient Algorithm for Combining
Verification and Validation Methods

Isela Mendoza1(&), Uéverton Souza1, Marcos Kalinowski2,
Ruben Interian1, and Leonado Gresta Paulino Murta1

1 Computer Institute, Fluminense Federal University,
Niterói, Rio de Janeiro, Brazil

{imendoza,ueverton,rinterian,leomurta}@ic.uff.br
2 Informatics Department, Pontifical Catholic University of Rio de Janeiro,

Rio de Janeiro, Rio de Janeiro, Brazil
kalinowski@inf.puc-rio.br

Abstract. An adequate combination of verification and validation (V&V)
methods is important to improve software quality control throughout the
development process and to reduce costs. However, to find an appropriate set of
V&V methods that properly addresses the desired quality characteristics of a
given project is a NP-hard problem. In this paper, we present a novel approach
that combines V&V methods efficiently in order to properly cover a set of
quality characteristics. We modelled the problem using a bipartite graph to
represent the relationships between V&V methods and quality characteristics.
Then we interpreted our problem as the Set Cover problem. Although Set Cover
is considered hard to be solved, through the theoretical framework of Parame-
terized Complexity we propose an FPT-Algorithm (fixed-parameter tractable
algorithm) that effectively solves the problem, considering the number of quality
characteristics to be covered as a fixed parameter. We conclude that the pro-
posed algorithm enables combining V&V methods in a scalable and efficient
way, representing a valuable contribution to the community.

Keywords: Combination � Verification � Validation � Software quality
FPT � Set cover � Parameterized Complexity

1 Introduction

Studies suggest high costs related to quality assurance activities in software develop-
ment projects [1]. The appropriate combination of verification and validation (V&V)
methods is seen in the literature as a way to reduce these costs and increase product
quality [2]. Over the years, some knowledge has been generated regarding V&V
methods when observed in isolation [3]. However, the selection of different V&V
methods as well as the interdependencies among them are still not well-understood [4].

A significant part of the software industry is made up of small and medium-sized
companies that, given the lack of guidelines for performing the right combination of
V&V methods, have difficulties in optimizing this combination for their context,
increasing the costs of resources and time and mainly harming the quality of the
produced software.

© Springer Nature Switzerland AG 2019
B. Catania et al. (Eds.): SOFSEM 2019, LNCS 11376, pp. 324–340, 2019.
https://doi.org/10.1007/978-3-030-10801-4_26

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-10801-4_26&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-10801-4_26&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-10801-4_26&domain=pdf
https://doi.org/10.1007/978-3-030-10801-4_26

According to the Guide to the Software Engineering Body of Knowledge (SWE-
BOK) [5], verification is used to ensure that the software product is built in the correct
way, that is, it complies with the previously defined specifications. On the other hand,
validation guarantees that the product is adherent to the user needs. It is known that an
adequate combination of V&V methods outperforms any method alone [6]. Most of the
studies presented in a systematic mapping [9] do not clearly specify which V&V
methods cover which quality characteristics (e.g., considering the quality characteris-
tics described in the ISO 25010 quality model standard).

Finding a set of methods that together properly addresses all quality characteristics
of interest can be seen as a Set Cover Problem (SCP) [11]. The SCP is a classic NP-
hard problem in the computational complexity area, whose decision version belongs to
the list of the 21 Karp’s NP-complete problems [11]. This means that when the number
of methods or quality characteristics increase, the performance of an algorithm to
aiming at combining them in an optimal way would drastically decrease.

The existence of efficient algorithms to solve NP-complete, or otherwise NP-hard,
problems is unlikely, if the input parameters are not fixed; all known algorithms that
solve these problems require exponential time (or at least super-polynomial time) in
terms of the input size. However, some problems can be solved by algorithms for
which we can split the running time into two parts: one exponential, but only with
respect to the size of a fixed parameter, and another polynomial in the size of the input.
Such algorithms are denoted FPT (fixed-parameter tractable) in the Parameterized
Complexity field, because the problem can be solved efficiently for small values of the
fixed parameter [13–15]. This field emerged as a promising alternative for working
with NP-hard problems [12].

In this paper, we propose an algorithm to obtain an optimal combination of
methods covering software quality characteristics of interest in reasonable computa-
tional time. In order to find an optimal solution for the problem (based on the desired
software quality characteristics and the relation between those and V&V methods,
provided as input), we adopted a parameterized approach, considering the set of quality
characteristics as fixed parameter, and obtaining an algorithm classified as FPT. The
implemented FPT algorithm is the first of its kind that solves the SCP.

Our proposed algorithm reached its goals: it runs in O f kð Þ � nð Þ, where the con-
stant k is the number of quality characteristics, n is the number of methods, and f kð Þ is
some function of k. Considering that the number of quality characteristics of a given
quality standard is always constant, the algorithm runs in polynomial time in terms of
the number of V&V methods to be combined. As a result, it provides the minimum set
of V&V methods addressing all quality characteristics of interest. While this infor-
mation is surely useful, we are aware that companies may choose to complement these
methods with others to further assure the quality of the product (or even chose others)
and that other factors, such as cost, should be considered when taking the final
decision.

The remainder of this paper is organized in the following sections: Sect. 2 presents
the background and related work concerning quality characteristics, V&V methods,
and the combination of V&V methods. In Sect. 3 the problem is modeled as a
SCP. Section 4 briefly introduces parameterized complexity theory. Section 5 presents
the FPT–Algorithm that obtains the optimal combination. Section 6 contains a

An Efficient Algorithm for Combining Verification and Validation Methods 325

computational experiment analysis. Section 7 discusses the contributions and limita-
tions of our approach. Section 8 presents the concluding remarks.

2 Background and Related Work

2.1 Quality Characteristics

Concerning software product quality characteristics, the product quality model defined
in the ISO 25010 standard includes eight characteristics, for which quality requirements
may be defined and measured during software development [10]. The characteristics
and short descriptions for them, based on the ISO 25010 standard, can be found in
Table 1.

2.2 V&V Methods

Several V&V methods have been proposed over the years. In this paper we concentrate
on a subset of V&V methods extracted mainly from the SWEBOK [5] and some other
sources [19, 20] to compose our corpus. The list of methods can be found in Table 2.
Due to space constraints, a short description of the methods is not provided, but it can

Table 1. ISO 25010 quality characteristics.

Characteristic Short description

Function
suitability

Degree to which a product or system provides functions that meet stated
and implied needs when used under specified conditions

Performance
efficiency

Represents the performance relative to the amount of resources used
under stated conditions

Compatibility Degree to which a product, system or component can exchange
information with other products, systems or components, and/or perform
its required functions, while sharing the same hardware or software
environment

Usability Degree to which a product or system can be used by specified users to
achieve specified goals with effectiveness, efficiency and satisfaction in a
specified context of use

Reliability Degree to which a system, product or component performs specified
functions under specified conditions for a specified period

Security Degree to which a product or system protects information and data so
that persons or other products or systems have the degree of data access
appropriate to their types and levels of authorization

Maintainability Degree of effectiveness and efficiency with which a product or system
can be modified to improve it, correct it or adapt it to changes in
environment, and in requirements

Portability Degree of effectiveness and efficiency with which a system, product or
component can be transferred from one hardware, software or other
operational or usage environment to another

326 I. Mendoza et al.

be easily obtained in the cited sources. It is noteworthy that there are variations for each
of these methods (e.g., different control flow-based criteria, different inspection tech-
niques). Nevertheless, we use this more generic classification as a starting point, given
that characterizing all possible variations to obtain a representative input for our
algorithm would be hard to accomplish. Thus, a method covering a quality charac-
teristic, in the context of this paper, means that there are ways of appropriately
addressing it using the method.

2.3 Combination of V&V Methods

It is known that the quality of software products is strongly dependent on the appro-
priate combination of V&V methods employed during development [2]. Experimental
studies have long demonstrated that the use of combinations of different V&V methods
to ensure the quality of a software is more effective than using isolated methods [7, 8].

Elbertzhager et al. [9] conducted a mapping study concerning the combination of
V&V methods. They describe two fundamental approaches: Compilation and Inte-
gration. We focus on the Compilation approach since our purpose is purely to combine
existing V&V methods (Compilation process). We are not focusing on creating new
techniques by combining different methods into one, nor in using the results of the
application of some technique as an instance to apply another one (Integration of V&V
methods).

Table 2. V&V methods.

Classification Method

Based on intuition & experience Ad Hoc Testing
Exploratory Testing

Input domain-based Equivalence Partitioning
Pair wise Testing
Boundary-Value Analysis
Random Testing
Cause-Effect Graphing

Code-based Control Flow-Based Criteria
Data Flow-Based Criteria

Fault-based Error Guessing
Mutation Testing

Usage-based Operational Profile
Usability Inspection Methods

Model-based Finite-State Machines
Workflow Models

Reviews Walkthrough
Peer Review or desk checking
Technical Review
Inspection

An Efficient Algorithm for Combining Verification and Validation Methods 327

In order to establish how other works perform the combination of V&V methods in
the Compilation approach, Elberzhager et al. [9] created a categorization to classify and
organize these studies into three subgroups.

In the first subgroup, static and dynamic techniques are combined, focusing on
thread escape analysis, atomicity analysis, protocol analysis, vulnerability analysis,
concurrent program analysis or on defects in general. All these combinations are
supported by open-source or proprietary tools.

The second subgroup compares different testing and inspection techniques discussing
advantages and disadvantages among them. In most cases, two or three techniques are
compared to each other. Several studies initially perform inspections, followed by some
tests, corroborating then the effectiveness of the combination of both techniques.

The last subgroup describes other combinations, such as testing techniques and
inspections combined with formal specifications, bug-finding tools, comprehensive
quality control processes in industrial environments, comprising several inspections
and technical tests, requirements and static analysis, tutorials, simulations, and vision-
based approaches.

The most cited papers in the systematic mapping [9] regarding the Compilation
approach are: Basili [22], Kamsties and Lott [23], and Wagner et al. [24]. Basili [22]
makes a comparison of three software testing techniques: reading of code by gradual
abstraction, functional testing using equivalence partition and border value analysis,
and structural testing using total coverage of criticism, according to efficiency, cost, and
fault detection classes. Kamsties and Lott [23], evaluate three techniques through a
controlled experiment: reading of code by gradual abstraction, functional (black-box)
testing and structural (white-box) testing. Wagner [24] describes a case study where
several projects are analyzed in an industrial environment. In this project, automatic
static analysis, testing, and reviews are used to detect defects. Their results show that
these techniques complement each other and that they should be combined.

In the systematic mapping [9], papers were analyzed until 2010. This led us to carry
out an update regarding the compilation approach, with the aim of finding more rel-
evant and recent papers from 2010 to present. Due to space constraints the details of
our mapping update will not be provided in this paper and we focus directly on the
recent related work.

Dwyer and Elbaum [25] suggest an approach based on dividing V&V methods into
two main classes: those that make dynamic analyses (or focused on behavior of the
system, e.g., testing) and those that use static analysis (typically focused on a single
property of the system at a time). Runeson et al. [27] compare code inspections and
structural unit tests by analyzing three replications of an experiment in order to know
which method finds more faults. Olorisade et al. [28] investigate the effectiveness of two
test techniques (partition of equivalence class and decision coverage) and one review
technique (code by abstraction) in terms of their ability to detect faults. Cotroneo et al.
[29] combine testing techniques adaptively, based on machine learning, during the
testing process, by learning from past experience and adapting the technique selection to
the current testing session. Bishop et al. [30] combine a monotonicity analysis with a
defined set of tests, showing that, unlike “independent” dynamic methods, this com-
bination provides a full error coverage. Solari and Matalonga [31] study the behavior of
two techniques, equivalence partition and decision coverage, to determine the types of

328 I. Mendoza et al.

defects that are undetectable for either of them. Finally, Gleirscher et al. [32] analyze
three different techniques of automated static analysis: code clone detection, bug pattern
detection, and architecture conformance analysis. They claim that this combination
tends to be affordable in terms of application effort and cost to correct defects.

It is noteworthy that none of the related work has implemented something similar to
our proposal, since we focus on covering a set of quality characteristics with few
methods, thus obtaining an optimal combination of V&V methods. While applying all
available methods represents a solution, this option might not be applicable due to cost
constraints.

3 Modeling the Problem

In this section we describe how the problem of finding the smallest combination of
methods that cover a specific set of quality characteristics can be modelled as a Set
Cover Problem.

Consider C as the set of characteristics, and N mð Þ as the subset of C that is covered
by a specific method m. We need to find the smallest set of subsets that cover C. The
problem is NP-hard in general. The relation between the characteristics and the
methods can be modeled as an undirected bipartite graph as shown in Fig. 1.

The example instance was obtained from the results of a survey [21] that collected
the opinion of experts about these V&V methods. The experts answered about their
agreement on the suitability of the methods to address the different quality attributes of

Fig. 1. Undirected bipartite graph. In the left-hand side the methods are positioned, and in the
right-hand side the characteristics. Edges reflect the relationship between methods and
characteristics. In the depicted instance, the set of methods contains the following elements:
Peer Review (PR), Workflow Models (WM), Finite-State Machines (FSM), Operational Profile
(OP), Mutation Testing (MT), and Exploratory Testing (ET). The set of characteristics is
composed by four characteristics: Usability (U); Reliability (R); Security (S), and Maintainability
(M). The graph shows a scenario in which method PR covers characteristics M and S, WM
covers S and U, FSM covers S and R, OP covers R and U, MT covers R, and ET covers U.

An Efficient Algorithm for Combining Verification and Validation Methods 329

the ISO 25010 standard. The relationship between some method m and some charac-
teristic c is obtained from the median of the survey answers (1 – disagree, 2 – partially
disagree, 3 – partially agree, 4 – agree). In this example we considered that m properly
covers c if the median is bigger or equal to 3. I.e., only methods that cover a quality
characteristic to a certain degree will have edges in the graph. The outcome of the
survey relating the quality characteristics to the V&V method can be seen in more
details in [21].

For illustrative purposes we built this graph instance taking a subset of our real
data, considering only four quality characteristics and some of the methods that can be
used to properly address them according to the answers of the respondents (19 experts
from 7 different countries, all with PhDs in software engineering, active in major
software engineering and V&V venue committees, and with relevant publications in
the area of V&V). The example perfectly serves our illustrative purposes to present the
V&V method combination algorithm. Actually, this smaller example allows providing
a better understanding of the algorithm’s execution and correctness.

4 Parameterized Complexity

The Parameterized Complexity field emerged as a promising way to deal with NP-hard
problems [12, 26]. It is a branch of the Computational Complexity Theory that focuses
on classifying computational problems according to their hardness with respect to
different parameters of the input. The complexity of a problem is mainly expressed
through a function of these parameters.

The theory of NP-completeness was developed to identify problems that cannot be
solved in polynomial time if P 6¼ NP. However, several NP-complete and NP-hard
problems still need to be solved in practice.

For many problems, only super-polynomial time algorithms are known when the
complexity is measured according to the size of the input, and in general, they are
considered “intractable” from the theoretical point of view assuming that P is different
from NP. Nevertheless, for several problems we can develop algorithms in which we
can split the running time into a part computed in polynomial time with respect to the
size of the input and another part computed in at least exponential time, but only with
respect to a parameter k. Consequently, if we set the parameter k to a small value and its
growth is relatively small we could consider these problems as “manageable” and not
“intractable” [13–15].

Thus, an important question arises: “Do these hard problems admit non-polyno-
mial time algorithms whose exponential complexity part is a function of merely some
aspects of the problem?” [12]. The existence of such algorithms was analyzed by
Downey and Fellows in [13], and is briefly discussed in the next section.

4.1 Fixed-Parameter Tractable (FPT) Approach

The fixed-parameter tractable (FPT) approach [13] considers the following format for
the problems: “Given an object x and a non-negative integer k, the goal is to determine
whether x has some property that depends on k?” The parameter k is considered small

330 I. Mendoza et al.

compared to the size of x. The relevance of these parameters lies precisely in the small
range of values they can take, being a very important factor in practice [12].

The FPT-algorithms sacrifice the execution time, which can be exponential, but
guarantee that the exponential dependency is restricted to the parameter k, which means
that the problem can be solved efficiently for small values of that fixed parameter. The
use of these algorithms provides a more rigorous analysis of problem’s time complexity
since this complexity is generally obtained from the size of the input [12].

Formally, a problem P belongs to the class FPT (it is fixed-parameter tractable)
with respect to a parameter k if it admits an algorithm to solve it whose running time is
of the form: f kð Þ � na, where a is a constant, and f is an arbitrary computable function.
Note that whenever k is bounded by a constant we have f kð Þ ¼ O 1ð Þ, hence the
running time of the algorithm will be polynomial.

Finally, for the problem of this paper, we present a fixed-parameter tractable
algorithm where the size k of the set of characteristics to be covered is the parameter.
I.e., we are limiting the complexity by the number of relevant product characteristics to
be considered when developing the software.

4.2 Scalability of the FPT-Algorithms

Scalability is the ability of a system or process to handle an increasing amount of data
[16]. Computer algorithms can be called scalable if they are efficient when applied to
large instances, i.e., instances with a large size of the input [17].

We can say that FPT-algorithms are scalable because they are efficient when
executed in large instances. These algorithms take advantage of the specific structure of
the instances, which is a differential when compared to exact or exhaustive search
algorithms that require high computational time.

It is important to note that the studied problem can handle a large number of V&V
methods, given that the number of quality characteristics tends to be relatively small.
Therefore, an FPT-algorithm with respect to the number of characteristics to be covered
will produce a tool for combination of V&V methods with high scalability.

Indeed, in our problem, the number of quality characteristics is already a known
small integer (in the ISO standard this number is 8). Therefore, scalability relies on the
ability to find the optimal solution even if the number of considered methods is
growing. Our initial set comprises 19 methods, but additional methods have been
reported by the survey respondents and our algorithm allows to efficiently work, for
example, with 30, 50, or 100 methods.

5 FPT–Algorithm to Combine V&V Methods

The goal of the algorithm, shown in the Fig. 2, is to obtain the optimal combination
(smallest number) of V&V methods that properly cover all the relevant quality char-
acteristics for the product to be developed. Certainly, a software organization could
complement the resulting set with other V&V methods that cover similar quality
characteristics to find more defects and to further enhance quality, but at least they
would know about the minimum set of methods to consider in order to address all the

An Efficient Algorithm for Combining Verification and Validation Methods 331

quality characteristics that are relevant for the product to be developed. I.e., a com-
bination such that there is a method properly addressing (i.e., with an edge in the graph
for) each relevant quality characteristic and none of them remains uncovered.

The objective function is the number of selected methods that properly cover all the
characteristics. The parameter to be set is the number of the selected quality charac-
teristics. In this way, we are parameterizing the Set Cover Problem by the number of
characteristics to be covered by the V&V methods.

Coming up next, we present some definitions that are used in the algorithm pre-
sented in Fig. 2:

C – set of characteristics.
M – set of methods.
N mð Þ – set of characteristics covered by the method m.
P cð Þ ¼ x 2 M : c 2 N xð Þf g – set of methods that cover the characteristic c.
R mð Þ ¼ x 2 M : N xð Þ�N mð Þf g – set of methods that cover a subset of N mð Þ.
The input parameters are the set of characteristics C and the set of methods M. The

redundant methods are removed in line 6 by using a simple preprocessing step. It
removes methods that cover a subset of characteristics covered by any other method.
A characteristic c is selected from the set of characteristics in line 7. The algorithm then
focuses on selecting the method that will cover c in the optimal solution. In line 8, the

Fig. 2. Pseudocode of the set cover FPT-algorithm.

332 I. Mendoza et al.

variable Ct that contains the characteristics to be covered is initialized. A loop runs
through all the methods that cover c in lines 9–25. The set M0 that stores the methods
that will be part of a feasible solution is initialized with method m in line 10. The set of
characteristics to cover Ct is updated in line 11 by removing the characteristics already
covered by m. The set Mt, containing the methods available to cover Ct, is initialized in
line 12 with all methods of M except those covering a subset of N mð Þ. In lines 13–18 a
loop is executed while there are characteristics c0 that are covered by a single method
m0. The variables Ct, Mt and M0 are updated in lines 15–17. The available Mt methods
and the characteristics that have not been covered until now are used to obtain an
optimal sub-problem solution by recursively calling the SetCover algorithm. In line 19,
the obtained optimal solution is stored in M

0�. If the methods selected in M0 together
with the optimal solution M

0� of the sub-problem improve the optimum value found so
far ðf �Þ, then f � and M� are updated in lines 20–23. The value of Ct is reinitialized in
line 24. The best solution found ðM�Þ, is returned as the optimal solution to the
problem in line 27.

5.1 Execution of the Set Cover Algorithm

Taking the graph represented in Fig. 1 as the entry of the algorithm, we now illustrate
the execution of the pseudocode. After initialization steps 1–5, line 6 removes
redundant methods. In this case, methods MT and ET are removed, because they cover
only one characteristic, already covered by other methods. The result is shown in
Fig. 3.

Afterwards, the first characteristic M is chosen as c, and all the methods that cover
M must be considered in the loop that begins on line 9. Therefore, method PR is
selected. In line 11, we remove all the characteristics already covered by PR, that is,
M and S. The variable Mt gets the set of methods {WM, FSM, OP} in line 12. Since
there are no characteristics covered by only one method, the loop on lines 13–18 does
not perform any action, and the algorithm is called recursively in line 19 with set of
characteristics {R, U}, and set of methods {WM, FSM, OP} as parameters. Figure 4
illustrates the graph at this stage.

Fig. 3. Algorithm execution. State of the graph after the preprocessing step.

An Efficient Algorithm for Combining Verification and Validation Methods 333

Finally, the algorithm is executed again from the beginning. MethodsWM and FSM
are immediately removed as redundant, and the remaining method OP is selected to
cover the last two characteristics. The variables Ct and Mt became empty, and in the
next recursive call, the stopping criterion is reached. The OP method is returned as a
solution of the instance represented in Fig. 4, forming the final solution of the whole
instance together with already selected method PR. The smallest set of methods M� is
set as {PR, OP}, and the optimal value f � is set to 2.

As can be observed from the execution, the algorithm considers all the possible
ways of covering the quality characteristics, keeping the most efficient ones. In this
sense, the obtained solution can be considered optimal for the problem and model we
pose. In fact, the algorithm is able to determine the optimal combination (smallest
number) of V&V methods that properly cover quality characteristics of interest for a
product to be developed based on any initial graph configuration connecting V&V
methods to the quality characteristics they properly address (Fig. 5).

Fig. 4. Algorithm execution. State of the graph after the recursive call.

Fig. 5. Methods that form the optimal solution returned by the algorithm when executed in the
graph. If M is selected as the first characteristic at the beginning of the execution, then the
optimal set of methods returned by the algorithm is {PR, OP}.

334 I. Mendoza et al.

5.2 Running Time Analysis

Suppose that there are n methods in the set M, and there are k characteristics in the set
C, being k some small integer. We note that a naive (brute force) algorithm would test
all solutions (subsets of the set M) and chose which of them cover C having smaller
size. Because there are 2n subsets of the set M, this naive algorithm has a time
complexity of O 2nð Þ. This exponential order is intractable even for some relatively
small values of n, like 30 or 40 (which could easily be achieved when including
specific variations of the V&V methods as input).

Instead, the proposed algorithm tries to determinate which method is the best option
to cover each characteristic. After choosing some characteristic c, the algorithm tries to
select each method that properly covers c, covering the rest of characteristics recur-
sively. Because the number of methods that cover each characteristic is at most n, the
order of this algorithm can be initially bounded by OðnkÞ. In general, this order is
already better than the ‘naive’ solution.

Nevertheless, we improve the upper bound of our algorithm’s running time by
refining the actual number of methods it will analyze. In fact, there are only 2k different
ways of covering a set C of k elements. If there is more than 2k methods, then
necessarily there will be two of them that cover exactly the same set of characteristics.
That means that these two methods would be indistinguishable to our algorithm; that is,
if they cover the same characteristics, any one of them can be used. Using this fact, we
can successively preprocess the input, improving the algorithm performance from

O nk
� �

to O f kð Þ � nð Þ, where f kð Þ� 2k
� �k¼ 2k

2
. In our case, k ¼ 8 and this means that

f kð Þ is bounded above by a constant, i.e., f kð Þ ¼ O 1ð Þ. Then, we have a linear algo-
rithm for the problem instead of an exponential or even a O n8ð Þ-time algorithm.

Once again, the upper bound for f kð Þ is improved (decreased) using the fact that if
some method m1 covers a subset of characteristics covered by some other method m2,
then m1 can be removed from the set of methods. This is because if m1 is actually
chosen, you can instead choose m2, since m2 is ‘better’ method in the sense that it
covers all that m1 covers, and possibly more. Lubell [18] showed that there are no more

than
k

k=2b c
� �

combinations with the property that no one is a subset of the other. This

implies that for k ¼ 8, there can be much less than 2k different methods with the
property that there is no method that covers a subset of characteristic of some other

method. In particular, for k ¼ 8 there can be at most
8
4

� �
¼ 70 methods satisfying

this property, and there can be at most
7
3

� �
¼ 35 of these methods covering one

common characteristic. Therefore, the redundant methods are removed by using a
simple preprocessing step that searches for methods that cover a subset of character-
istics covered by any other method. At each iteration of the algorithm, the number of
characteristics to be covered decreases and the previous steps of the algorithm are
repeated considering a decremented k value.

An Efficient Algorithm for Combining Verification and Validation Methods 335

Summarizing, it holds that:

f kð Þ\ k � 1
k � 1ð Þ=2b c

� �
� k � 2

k � 2ð Þ=2b c
� �

� � � � � 2
1

� �
ð1Þ

For k ¼ 8, it follows that f kð Þ\ 35� 20� 10� 6� 3� 2, then our Oðf kð Þ � nÞ-
time algorithm is an efficient (linear) algorithm where f kð Þ is bounded above by a
constant. In practice, this constant is even lower, and does not depend on the number of
existing methods, which produces scalability with respect to the number of methods to
be worked.

6 Computational Experiments

Several experiments were performed to assess the algorithm presented above. The
algorithm was implemented in C# programming language and compiled by Roslyn, a
reference C# compiler, in an Intel Core i3 machine with a 2.0 GHz processor and 4 GB
of random-access memory, running under the Windows 10 operating system.

A number of test problems created by a random generator is considered. Each test
problem has two parameters: the number of vertices n and the probability p of a method
to cover a characteristic.

The FPT–algorithm is also executed on the instance obtained from the survey
described in [21], according to the criteria explained in the Sect. 3 when we build the
example with a subset of this same data.

Table 3 shows the optimal solution sizes and execution times (in seconds) for the
FPT-Algorithm solver with and without instance preprocessing (Fig. 2, line 6) and a
naive algorithm (brute force), for each instance. The name of the instance indicates the
number of methods, followed by the probability of a characteristic to be covered by a
method, in percent. The optimal solution sizes (number of methods returned) are equal
for all instances, indicating the correctness of the Algorithms.

The FTP–Algorithm with the preprocessing is more efficient than without pre-
processing and the Naive Algorithm, obtaining the result in less than 0:01 s in all cases
even for the biggest instances, unlike the other algorithms in which for some instance
sizes the solution is not found in a reasonable waiting time (—). The FTP–Algorithm
without processing proves to be, in turn, more efficient than the Naive Algorithm,
executing more instances with better runtime.

For the instance obtained from the survey [21], the FPT–Algorithm with the pro-
cessing of the instance returned the methods: 12, 19 and the FPT–Algorithm without
the processing and the Naive Algorithm returned the methods: 12, 18. The solution
returned by the FPT–Algorithm with the processing contains the method 19 that covers
a superset of the characteristics covered by the method 18 in the others algorithm
solutions, showing that FPT–Algorithm with preprocessing performs better when
concerning coverage, by using this additional comparison criterion.

336 I. Mendoza et al.

7 Discussion

Our proposed algorithm is effective, being able to provide the optimal combination
(smallest number) of V&V methods properly covering a set of chosen quality char-
acteristics to be considered when developing a software product. Additionally, it is
more efficient than brute-force or exhaustive search algorithms and its execution time
properties match the particularities of the problem well. Indeed, the algorithm can be
applied to instances of different sizes, making our approach scalable, i.e., suitable for
larger case studies (for instance, considering more V&V methods, including specific
variations of the more generic methods used for our sample).

There is, however, a basic assumption for applying the algorithm, which is having a
defined input with information on which V&V methods properly address the different
quality characteristics. For illustrative purposes, our example was based on initial
outcomes of an expert survey. It is also noteworthy that our set of 19 V&V methods
represents generic methods for which several variations are available (e.g., applying
specific testing criteria or variations of inspection methods). While they perfectly fit our
illustrative example and allowed us getting feedback from experts on whether they can
be employed to properly address quality characteristics, information on more specific
methods could be provided as input to combination algorithm. We highlight that this

Table 3. Computational experiments

Instance Runtime
FPT-Alg
(with pre-
processing)

Optimal
solution
FPT-Alg
(with pre-
processing)

Runtime
FPT-Alg
(no pre-
processing)

Optimal
solution
FPT-Alg
(no pre-
processing)

Runtime
Alg-
Naive
(brute
force)

Optimal
Alg-
Naive
(brute
force)

Instance_20_10 0.00031 5 0.00375 5 0.14907 5
Instance_20_20 0.00047 3 0.01094 3 0.17703 3
Instance_20_50 0.00062 2 0.08859 2 0.22297 2
Instance_50_10 0.00031 5 0.14359 5 — —

Instance_50_20 0.00110 2 4.97453 2 — —

Instance_50_50 0.00094 2 11.4025 2 — —

Instance_100_10 0.00094 2 64.7025 2 — —

Instance_100_20 0.00125 3 — — — —

Instance_100_50 0.00110 2 — — — —

Instance_200_10 0.00344 3 — — — —

Instance_200_20 0.00188 2 — — — —

Instance_200_50 0.00094 1 — — — —

Instance_500_10 0.00359 3 — — — —

Instance_500_20 0.00469 2 — — — —

Instance_500_50 0.00234 1 — — — —

Instance_1000_10 0.00766 3 — — — —

Instance_1000_20 0.00578 2 — — — —

Instance_1000_50 0.00500 1 — — — —

An Efficient Algorithm for Combining Verification and Validation Methods 337

initial configuration is out of the scope of the intended contribution of this paper and
that companies could use an initial configuration based on their own sets of evidence on
the V&V methods they typically use or on their own elicited expert beliefs.

Moreover, from a practical point of view, companies might decide to complement
the optimal solution provided by the algorithm by applying additional V&V methods
that cover similar quality characteristics (e.g., aiming at finding additional defects and
further enhancing product quality), in particular for critical projects. However, using
our approach at least they would know about a minimum set of methods that would
allow them avoiding neglecting quality characteristics that are relevant for the product
to be developed.

Also, specialists on software engineering economics might argue that our solution
providing the smallest number of V&V methods is not considering the cost of applying
each method. However, to address this issue we would need to know the relative cost
among the V&V methods and this information is extremely context specific and hard to
generalize. We are aware of this limitation and further addressing it is part of our future
work. A solution option to handle this issue when using the approach described in this
paper would be removing the methods that are cost restrictive from the initial
configuration.

8 Concluding Remarks

In this paper, we modeled the problem of finding a combination of V&V methods to
cover software quality characteristics as the Set Cover problem, a NP-hard combina-
torial optimization problem. We defined a parameterized FPT algorithm that is spe-
cially designed for our instances, since typically the number of considered quality
characteristics is small. Provided by a valid input, the proposed algorithm is able to
efficiently provide an optimal combination (smallest number) of V&V methods
properly covering a set of chosen quality characteristics to be considered when
developing a software product. Additionally, we showed that it is more efficient than
Naive (brute-force) algorithms. Furthermore, the algorithm can be applied to instances
of different sizes, making our approach scalable, i.e., suitable for larger studies (for
instance, considering more V&V methods).

Our future works consist of development of a support tool that, given a set of
selected quality characteristics and an initial configuration (e.g., from the survey
results, or any other source such as within-company expert belief elicitation), provide
the optimal combination of V&V methods. Finally, for now we focused on product
quality, and a next step would be to integrate cost-related issues into the approach.
Moreover, we believe that the Fixed-Parameter Tractable algorithm approach can be
applied to solve other problems in the software engineering domain and that sharing
our V&V method combination experience with the community could foster discussions
towards other graph theory-based solutions for relevant software engineering problems.

338 I. Mendoza et al.

Acknowledgment. The authors would like to thank CNPq and FAPERJ for the financial sup-
port (Project No. E-26/010.001578/2016, Title: “Resolution of Critical Problems of the Software
Industry through Graph Theory and its algorithms”). Thanks also to the survey respondents,
which provided us the initial configurations to test our approach.

References

1. Meyers, G.J., Badgett, T., Thomas, T., Csandler, C.: The Art of Software Testing, 3rd edn.
Wiley, Hoboken (2011). ISBN 978-1118031964

2. Feldt, R., Torkar, R., Ahmad, E., Raza, B.: Challenges with software verification and
validation activities in the space industry. In: Third International Conference on Software
Testing, Verification and Validation (ICST) (2010)

3. Boehm, B., Basili, V.: Software defect reduction top 10 list. IEEE Softw. 34(1), 135–137
(2001)

4. Feldt, R., Marculescu, B., Schulte, J., Torkar, R., Preissing, P., Hult, E.: Optimizing
verification and validation activities for software in the space industry. In: Data Systems in
Aerospace (DASIA), Budapest (2010)

5. Bourque, P., Fairley, R.E.: SWEBOK guide V3.0, guide to the software engineering body of
knowledge. IEEE Computer Society (2004)

6. Endres, A., Rombach, D.: A Handbook of Software and Systems Engineering. Addison
Wesley, Reading (2003)

7. Myers, G.J.: A controlled experiment in program testing and code walkthroughs/inspections.
Commun. ACM 21(9), 760–768 (1978)

8. Wood, M., Roper, M., Brooks, A., Miller, J.: Comparing and combining software defect
detection techniques: a replicated empirical study. In: Jazayeri, M., Schauer, H. (eds.)
ESEC/SIGSOFT FSE-1997. LNCS, vol. 1301, pp. 262–277. Springer, Heidelberg (1997).
https://doi.org/10.1007/3-540-63531-9_19

9. Elberzhager, F., Münch, J., Nha, V.T.N.: A systematic mapping study on the combination of
static and dynamic quality assurance techniques. Inf. Softw. Technol. 54(1), 1–15 (2012)

10. ISO25000 Software Product Quality, ISO/IEC 25010, Official site (2011). http://iso25000.
com/index.php/en/iso-25000-standards/iso-25010

11. Karp, R.M.: Reducibility among combinatorial problems. In: Miller, R.E., Thatcher, J.W.
(eds.) Complexity of Computer Computations, pp. 85–103. Plenum, New York (1972)

12. dos Santos, V.F., dos Santos Souza, U.: Uma Introdução à Complexidade Parametrizada. In:
Anais da 34º Jornada de Atualização em Informática, CSBC, pp. 232–273 (2015)

13. Downey, R.G., Fellows, M.R.: Parameterized Complexity. Monographs in Computer
Science. Springer, New York (1999). https://doi.org/10.1007/978-1-4612-0515-9

14. Flum, J., Grohe, M.: Parameterized Complexity Theory. Springer, Heidelberg (2006).
https://doi.org/10.1007/3-540-29953-X

15. Niedermeier, R.: Invitation to Fixed-Parameter Algorithms. Oxford Lecture Series in
Mathematics and Its Applications. Oxford University Press, Oxford (2006)

16. Bondi, A.B.: Characteristics of scalability and their impact on performance. In: Proceedings
Second International Workshop on Software and Performance WOSP, pp. 195–203 (2000)

17. Laudon, K.C., Traver, C.G.: E-commerce: Business, Technology, Society. Stanford
University, Stanford (2008)

18. Lubell, D.: A short proof of Sperner’s lemma. J. Comb. Theory 1(2), 299 (1996)
19. Wagner, S.: Software Product Quality Control. Springer, Heidelberg (2013). https://doi.org/

10.1007/978-3-642-38571-1

An Efficient Algorithm for Combining Verification and Validation Methods 339

http://dx.doi.org/10.1007/3-540-63531-9_19
http://iso25000.com/index.php/en/iso-25000-standards/iso-25010
http://iso25000.com/index.php/en/iso-25000-standards/iso-25010
http://dx.doi.org/10.1007/978-1-4612-0515-9
http://dx.doi.org/10.1007/3-540-29953-X
http://dx.doi.org/10.1007/978-3-642-38571-1
http://dx.doi.org/10.1007/978-3-642-38571-1

20. Wiegers, K.E.: Peer Reviews in Software: A Practical Guide, 1st edn. Addison-Wesley
Longman Publishing Co., Inc., Boston (2002)

21. Mendoza, I., Kalinowski, M., Souza, U., Felderer, M.: Relating verification and validation
methods to software product quality characteristics: results of an expert survey. In: 11th
Software Quality Days (SWQD). Lecture Notes on Business Information Processing,
Vienna, Austria. Springer (2019, to appear)

22. Basili, V.R.: Comparing the effectiveness of software testing strategies. IEEE Trans. Softw.
Eng. 13(12), 1278–1296 (1987)

23. Kamsties, E., Lott, C.M.: An empirical evaluation of three defect-detection techniques. In:
Schäfer, W., Botella, P. (eds.) ESEC 1995. LNCS, vol. 989, pp. 362–383. Springer,
Heidelberg (1995). https://doi.org/10.1007/3-540-60406-5_25

24. Wagner, S., Jürjens, J., Koller, C., Trischberger, P.: Comparing bug finding tools with
reviews and tests. In: Khendek, F., Dssouli, R. (eds.) TestCom 2005. LNCS, vol. 3502,
pp. 40–55. Springer, Heidelberg (2005). https://doi.org/10.1007/11430230_4

25. Dwyer, M.B., Elbaum, S.: Unifying verification and validation techniques: relating behavior
and properties through partial evidence. In: FSE/SDP Workshop on Future of Software
Engineering Research (FOSE), Santa Fe, New Mexico, USA, pp. 93–98 (2010)

26. Cygan, M., et al.: Parameterized Algorithms. Springer, Cham (2015). https://doi.org/10.
1007/978-3-319-21275-3

27. Runeson, P., Stefik, A., Andrews, A., Grönblom, S., Porres, I., Siebert, S.: A comparative
analysis of three replicated experiments comparing inspection and unit testing. In:
Proceedings 2nd International Workshop on Replication in Empirical Software Engineering
Research (RESER), Banff, AB, Canada, Article No. 6148335, pp. 35–42 (2012)

28. Olorisade, B.K., Vegas, S., Juristo, N.: Determining the effectiveness of three software
evaluation techniques through informal aggregation. Inf. Softw. Technol. 55(9), 1590–1601
(2013)

29. Cotroneo, D., Pietrantuono, R., Russo, S.: A learning-based method for combining testing
techniques. In: Proceedings 35th International Conference on Software Engineering (ICSE),
San Francisco, CA, USA, Article No. 6606560, pp. 142–151 (2013)

30. Bishop, P., Bloomfield, R., Cyra, L.: Combining testing and proof to gain high assurance in
software: a case study. In: IEEE 24th International Symposium on Software Reliability
Engineering (ISSRE), Pasadena, CA, USA, Article No. 6698924, pp. 248–257 (2013)

31. Solari, M., Matalonga, S.: A controlled experiment to explore potentially undetectable
defects for testing techniques. In: Proceedings of the 26th International Conference on
Software Engineering and Knowledge Engineering (SEKE), Canada, pp. 106–109 (2014)

32. Gleirscher, M., Golubitskiy, D., Irlbeck, M., Wagner, S.: Introduction of static quality
analysis in small- and medium-sized software enterprises: experiences from technology
transfer. Softw. Qual. J. 22(3), 499–542 (2014)

340 I. Mendoza et al.

http://dx.doi.org/10.1007/3-540-60406-5_25
http://dx.doi.org/10.1007/11430230_4
http://dx.doi.org/10.1007/978-3-319-21275-3
http://dx.doi.org/10.1007/978-3-319-21275-3

Robustness Radius
for Chamberlin-Courant on Restricted

Domains

Neeldhara Misra(B) and Chinmay Sonar

Indian Institute of Technology, Gandhinagar, Gandhinagar, India
{neeldhara.m,sonar.chinmay}@iitgn.ac.in

Abstract. The notion of robustness in the context of committee elec-
tions was introduced by Bredereck et al. [SAGT 2018] [2] to capture the
impact of small changes in the input preference orders, depending on
the voting rules used. They show that for certain voting rules, such as
Chamberlin-Courant, checking if an election instance is robust, even to
the extent of a small constant, is computationally hard. More specifically,
it is NP-hard to determine if one swap in any of the votes can change
the set of winning committees with respect to the Chamberlin-Courant
voting rule. Further, the problem is also W[1]-hard when parameterized
by the size of the committee, k. We complement this result by suggest-
ing an algorithm that is in XP with respect to k. We also show that on
nearly-structured profiles, the problem of robustness remains NP-hard.
We also address the case of approval ballots, where we show a hardness
result analogous to the one established in [2] about rankings and again
demonstrate an XP algorithm.

Keywords: Robustness radius · Chamberlin-Courant · Single-peaked
Single-crossing · NP-hardness

1 Introduction

A voting rule is a function that maps a collection of preferences over a fixed set of
alternatives to a set of winning options, where each option could be one or more
alternatives—corresponding, respectively, to the scenarios of single-winner and
committee elections. A voting rule is vulnerable to change if small perturbations
in the input profile can cause its outcome to vary wildly. There have been several
notions in the contemporary computational social choice literature that captures
the degree of vulnerablity of various voting rules.

A recent exercise in this direction was carried out in [2], where the notion
of robustness radius was introduced as the minimum number of swaps that was
required between consecutive alternatives to change the outcome of a multiwin-
ner voting rule. We note here that we are implicitly assuming that preferences
are modeled as linear orders over the alternatives, although the notion of swaps
can be defined naturally for the situation where the votes are given by approval
c© Springer Nature Switzerland AG 2019
B. Catania et al. (Eds.): SOFSEM 2019, LNCS 11376, pp. 341–353, 2019.
https://doi.org/10.1007/978-3-030-10801-4_27

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-10801-4_27&domain=pdf
https://doi.org/10.1007/978-3-030-10801-4_27

342 N. Misra and C. Sonar

ballots (each vote indicates the set of approved candidates). In the work of [2],
several voting rules are considered, and efficient algorithms were proposed for
Robustness Radius for many of these rules. On the other hand, for some voting
rules, the problem turned out to be hard: even when the question was to decide
if there is one swap that influences the outcome. This is the motivation for the
present work: we focus on the Chamberlin-Courant voting rule (c.f. Sect. 2 on
Preliminaries for the definition), for which Robustness Radius turns out to
be intractable, and look for exact algorithms on general profiles and ask if the
problem becomes easier to tackle on structured preferences.

Our Contributions. Our first contribution is an explicit XP algorithm (recall that
a problem is XP parameterized by k if there exists an algorithm which solves it
in time O(n)f(k)) for the Robustness Radius problem in the context of the
Chamberlin-Courant voting rule. Recall that it is already NP-hard to determine
if there exists one swap which changes the set of winning committees. Notice
that the natural brute-force approach to check if there are at most r swaps
which affect the set of winning committees is to simply try all possible ways of
executing r swaps and recompute the set of winning committees at every step.
This approach, roughly speaking, requires O((mn)r · mk) time where m,n are
number of candidates and voters (respectively) in the given election instance. We
improve this by suggesting an algorithm whose running time can be bounded by
O�(mk). We show this result for both the Chamberlin-Courant voting rule with
the Borda misrepresentation function as well as for the approval version of the
Chamberlin-Courant voting rule. For the latter, we also show that an analogous
hardness result holds.

On the other hand, we initiate an exploration of whether the Robustness
Radius problem remains hard on structured preferences. We provide some
insights on this issue by demonstrating that the problem remains NP-hard on
“nearly-structured” profiles. In particular, we show that:

1. Determining if the robustness radius of a profile is one for the �1-CC (respec-
tively, �∞-CC) voting rule, with respect to the Borda misrepresentation score,
is NP-hard even when the input profiles are restricted to the six-crossing
domain1 (respectively, the four-crossing domain).

2. Determining if the robustness radius of a profile is one for the �∞-CC voting
rule, with respect to the Borda misrepresentation score, is NP-hard even when
the domain is a four-composite single-peaked domain.

Related Work. The notion of robustness is also captured by other closely related
notions, such as the margin of victory (MoV) [11] and swap bribery [5]. In the
former, the metric of change is the number of voters who need to be influenced,
rather than the total number of swaps. On the other hand, in swap bribery,
the goal is not to simply influence a change in the set of committees, but to
1 We refer the reader to the section on Preliminaries for the definition of �-single-
crossing domains. Some definitions and results are deferred to the full version due
to lack of space and are marked with a (�).

Robustness Radius for Restricted Domains 343

ensure that a specific committee does or does not win (corresponding to con-
structive and destructive versions of the problem, respectively). We note that
swap bribery has been mostly studied in the context of single-winner voting rules.
Observe that any profile that is a non-trivial Yes-instance of swap bribery is
also a Yes-instance of Robustness Radius with the same budget, but the
converse is not necessarily true. Similarly, any profile that is a Yes-instance of
Robustness Radius is also a Yes-instance of MoV with the same budget, but
again the converse need not be true. However, we remark that in the case of the
Approval-CC voting rule, the notions of Robustness Radius and MoV happen
to coincide. Robustness has also been studied for single-winner voting rules in
earlier work [10].

2 Preliminaries

In this section, we introduce some key definitions and establish notation. For a
comprehensive introduction, we refer the reader to [1,6].

Notation. For a positive integer �, we denote the set {1, . . . , �} by [�]. We first
define some general notions related to voting rules. Let V = {vi : i ∈ [n]} be a
set of n voters and C = {cj : j ∈ [m]} be a set of m candidates. If not mentioned
otherwise, we denote the set of candidates, the set of voters, the number of
candidates, and the number of voters by C, V , m, and n respectively.

Every voter vi has a preference �i which is typically a complete order over
the set C of candidates (rankings) or a subset of approved candidates (approval
ballots). An instance of an election consists of the set of candidates C and the
preferences of the voters V , usually denoted as E = (C, V). A multiwinner
committee rule R is a function that, given an election E and a committee size k,
outputs a family R(E, k) consisting winning committees of k-sized subsets of C.

We now state some definitions in the context of rankings, although we remark
that analogous notions exist also in the setting of approval ballots. We say voter
vi prefers a candidate x ∈ C over another candidate y ∈ C if x �i y. We denote
the set of all preferences over C by L(C). The n-tuple (�i)i∈[n] ∈ L(C)n of the
preferences of all the voters is called a profile. Note that a profile, in general, is a
multiset of linear orders. For a subset M ⊆ [n], we call (�i)i∈M a sub-profile of
(�i)i∈[n]. For a subset of candidates D ⊆ C, we use P|D to denote the projection
of the profile on the candidates in D alone. A domain is a set of profiles.

Chamberlin-Courant for Rankings. The Chamberlin–Courant voting rule is
based on the notion of a dissatisfaction function or a misrepresentation function
(we use these terms interchangeably). This function specifies, for each i ∈ [m],
a voter’s dissatisfaction from being represented by candidate she ranks in posi-
tion i. A popular dissatisfaction function is Borda, given by αm

B (i) = αB(i) =
i − 1, and this will be our measure of dissatisfaction in the setting of rankings.

We now turn to the notion of an assignment function. Let k be a positive
integer. A k-CC-assignment function for an election E = (C, V) is a mapping

344 N. Misra and C. Sonar

Φ: V → C such that ‖Φ(V)‖ = k, where ‖Φ(V)‖ denotes the image of Φ. For a
given assignment function Φ, we say that voter v ∈ V is represented by candidate
Φ(v) in the chosen committee. There are several ways to measure the quality of
an assignment function Φ with respect to a dissatisfaction function α; we use
the following:

1. �1(Φ, α) =
∑

i=1,...,n α(posvi
(Φ(vi))), and

2. �∞(Φ, α) = maxi=1,...,n α(posvi
(Φ(vi))).

Unless specified otherwise, α will be the Borda dissatisfaction function described
above. We are now ready to define the Chamberlin-Courant voting rule.

Definition 1 (Chamberlin-Courant [3]). For � ∈ {�1, �∞}, the �−CC voting
rule is a mapping that takes an election E = (C, V) and a positive integer k
with k � |C| as its input, and returns the images of all the k-CC-assignment
functions Φ for E that minimizes �(Φ, α).

Chamberlin Courant for Approval Ballots. Recall that an approval vote v on the
set of candidates C is an arbitrary subset Sv of C such that v approves all the
candidates in Sv. We define the misrepresentation score for k-sized commmittee
T for an approval voting profile as the number of voters which do not have any of
their approved candidates in T (i.e. T ∩ Sv = φ). Hence the optimal committees
under approval Chamberlin Courant are the committees which maximize the
number of voters with at least one approved candidate in the winning commit-
tee. This notion of Chamberlin-Courant for the setting of approval ballots was
proposed by [8].

Single Crossing Profiles. A preference profile is said to belong to the single
crossing domain if it admits a permutation of the voters such that for any pair
of candidates a and b, there is an index j[(a, b)] such that either all voters vj

with j < j[(a, b)] prefer a over b and all voters vj with j > j[(a, b)] prefer b over
a, or vice versa. The formal definition is as follows.

Definition 2 (Single Crossing Domain). A profile P = (�i)i∈[n] of n pref-
erences over a set C of candidates is called a single crossing profile if there
exists a permutation σ of [n] such that, for every pair of distinct candidates
x, y ∈ C, whenever we have x �σ(i) y and x �σ(j) y for two integers i and j
with 1 � σ(i) < σ(j) � n, we have x �σ(k) y for every σ(i) � k � σ(j).

We generalize the notion of single-crossing domains to r-single crossing
domains in the following natural way (c.f. [9]): for every pair of candidates
(a, b), instead of demanding one index where the preferences “switch” from
one way to the other, we allow for r such switches. More formally, a profile
is r-single crossing if for every pair of candidates a and b, there exist r indices
j0[(a, b)], j1[(a, b)], . . . jr[(a, b)], jr+1[(a, b)] with j0[(a, b)] = 1 and jr+1[(a, b)] =
n+1, such that for all 1 � i � r+1, all voters vj with ji[(a, b)] � j < ji+1[(a, b)]
are unanimous in their preferences over a and b.

Robustness Radius for Restricted Domains 345

Robustness Radius. Let R be a multiwinner voting rule. For the given election
E = (C, V), a committee size k, and an integer r, in the R-Robustness Radius
problem we ask if it is possible to obtain an election E′ by making at most r swaps
of adjacent candidates within the rankings in E (or by introducing or removing
at most r candidates from the approval sets of voters in case of approval ballots)
so that R(E′, k) �= R(E, k).

Parameterized Complexity. We occasionally use terminology from parameterized
complexity, mainly to describe our results in an appropriate context. A parame-
terized problem is denoted by a pair (Q, k) ⊆ Σ∗ ×N. The first component Q is
a classical language, and the number k is called the parameter. Such a problem
is fixed–parameter tractable (FPT) if there exists an algorithm that decides it in
time O(f(k)nO(1)) on instances of size n. On the other hand, a problem is said to
belong to the class XP if there exists an algorithm that decides it in time nO(f(k))

on instances of size n. We refer the reader to [4] for a comprehensive introduction
to parameterized algorithms.

3 XP Algorithms for Robustness Radius

The Robustness Radius problem for the �1-Chamberlin-Courant voting rule
with the Borda dissatisfaction function is known to be in FPT when parameter-
ized by either the number of candidates or the number of voters. For the for-
mer, the approach involves formulating the problem as an ILP and then using
Lenstra’s algorithm. In the case of the latter, the algorithm is based on guessing
all possible partitions of the voters based on their anticipated representatives
and then employing a dynamic programming approach.

In this section, we give a simple but explicit algorithm for the problem which
has a XP running time in k, the committee size. This complements the W[1]-
hardness of the problem when parameterized by k [2]. We establish this result
for both when the votes are rankings as well as when they are approval ballots.
First, we address the case when the votes are rankings.

Theorem 1. On general profiles comprising of rankings over alternatives,
Robustness Radius for the �1-Chamberlin-Courant voting rule with the Borda
dissatisfaction function admits a O�(mk) algorithm, where m is the number of
candidates and k is the committee size.

Proof. We first determine the set of all optimal committees of size k in time
O(mk). Suppose there are at least two committees, say A and B, that are both
optimal. The manner in which this case can be handled is also addressed in [2].
For the sake of completeness, we reproduce the main point here, but in particular
we do not address certain edge cases: for example, a slightly different discussion
is called for if there are less than k candidates in total occupying the top positions
across the votes. We refer the reader to [2] for a more detailed explaination.

Now, note that since A and B are distinct committees, there is at least
one voter v whose Chamberlin-Courant representative with respect to A and

346 N. Misra and C. Sonar

B are distinct candidates: say ca and cb, respectively. Assume, without loss of
generality, that ca �v cb. Note that swapping the candidate cb so that its rank
in the vote v decreases by one results in a new profile where:

1. the dissatisfication score of the committee B is one less than in the original
profile, and,

2. the dissatisfication score of the committee A is at least its score in the original
profile (indeed; the dissatisfaction score either stays the same or increases if
ca is adjacent to cb in the vote v).

Therefore, when there are at least two optimal committees, it is possible to
change the set of winning committees with only one swap, making this situa-
tion easy to resolve. We now turn to the case when the input profile admits a
unique winning committee A. Our overall approach in this case is the follow-
ing: we “guess” a committee B that belongs to the set of winning committees
after r swaps (note that such a committee must exist if we are dealing with a
Yes-instance). For a fixed choice of B, we determine, greedily, the minimum
number swaps required to make B a winning committee. We now turn to a
formal description of the algorithm.

Recall that a profile Q is said to be within r swaps of a profile P if Q can
be obtained by at most r swaps of consecutive candidates in P. In the following
discussion, we say that a committee B is nearly winning if there exists a profile
Q, within r swaps of P, where B is a winning committee. We refer to Q as the
witness for B. Note that the existence of a nearly winning committee B �= A
characterizes the Yes-instances. Let ΔB,A(P) denote the difference between the
dissatisfaction scores of the committees B and A with respect to the profile P.
We begin by making the following observation.

Proposition 1. Let P and Q be two profiles such that Q can be obtained by
making at most r swaps of consecutive candidates in the profile P. Note that:

ΔB,A(P) − 2r � ΔB,A(Q) � ΔB,A(P) + 2r.

The claim above follows from the fact that if Q is a profile obtained from P
by one swap of consecutive candidates in some vote of P, then it is easy to see
that ΔB,A(P) − 2 � ΔB,A(Q) � ΔB,A(P) + 2. Note that if B is nearly winning,
then ΔB,A(Q) � 0, where Q is the witness profile. We now have a case analysis
based on ΔB,A(P).

Case 1. ΔB,A(P) > 2r. In this case, by Proposition 1, we know that in every
profile Q within r swaps of P, ΔB,A(Q) > 0, which is to say that B will have a
greater Borda dissatisfaction score than A in every profile that is r swaps away
from the input profile. Therefore, in this case, we reject the choice of B as a
potential nearly winning committee.

Case 2. ΔB,A(P) � r. An analogous argument can be used to see that B is in
fact nearly winning in this case. Indeed, any r swaps that improve the ranks of
the candidates in B will result in a profile Q that is within r swaps of P and

Robustness Radius for Restricted Domains 347

where ΔB,A(Q) � 0. So, B is either nearly winning with witness profile Q, or A
is no longer a winning committee in Q. Therefore, in this situation, we output
Yes.

Case 3. ΔB,A(P) = r + s, 1 � s � r. For a vote v, let A(v) and B(v) denote,
respectively, the candidates from A and B with the highest rank in the vote v.
Further, let dB,A(v) denote the difference between the ranks of B(v) and A(v).
Let W ⊆ V be the subset of votes for which dB,A(v) > 0, and let w1, w2, . . .
denote an ordering of the votes in W in increasing order of these differences. We
now make the following claim.

Proposition 2. There exists a profile Q that is r swaps away from P where
ΔB,A(Q) � 0 if, and only if:

t :=
s∑

i=1

dB,A(wi) � r. (1)

Proof. In the forward direction, suppose (1) holds. Then perform swaps in the
votes w1, . . . , ws so that for any i ∈ [s], the candidate B(wi) is promoted to
the position just above A(wi). In other words, each swap involves B(wi) and
in the profile obtained after the swaps, B(wi) � A(wi) for all i ∈ [s], and the
difference in the ranks of these pairs is exactly one. Note that a total of t swaps
are performed to obtain this profile. Denote this profile by R and note that
ΔB,A(R) = r + s − t − s = r − t (since the last swap made on each vote wi

reduces the gap between the dissatisfaction scores of the two committees by
two). Also, (r − t) is also exactly the number of remaining swaps we can still
make, so a witness profile can be obtained using the argument we made in the
previous case. The proof of the other direction is deferred to a full version due
to lack of space. 	

To summarize, our algorithm in this case identifies and sorts the votes in W ,
and returns Yes if condition (1) holds, and rejects the choice of B otherwise.
Observe that we output No if no choice of B results in a positive outcome
in this case analysis. In terms of the running time, we require O(mk) time in
distinguishing whether we have a unique winning committee or not, and if we
are in the former situation, we need O(mk) time to guess a nearly winning
committee. For each choice B of a potential winning committee, we spend time
O(mn log n) in the worst case to determine if B is indeed a nearly winning
committee. Therefore, hiding polynomial factors, the overall running time of our
algorithm is O�(mk) and this concludes the proof. 	

We now turn to the case of approval ballots. First, we show that the robust-
ness radius problem in this setting remains NP-hard even for determining if the
robustness radius is one, as was true for the case when the votes were rankings.

Theorem 2. Robustness Radius for the Approval Chamberlin-Courant vot-
ing rule is NP-hard, even when the robustness radius is one and each voter
approves at most three candidates. It is also W[2]-hard parameterized by the size

348 N. Misra and C. Sonar

of the committee when there are no restrictions on the size of the number of
candidates approved by a voter, and the robustness radius is one.

Proof. We reduce from the Hitting Set problem. Note that the NP-hardness
in the restricted setting follows from the fact that Hitting Set is already hard
for sets of size at most two (recall that this is the Vertex Cover problem),
while the W[2]-hardness follows from the fact that Hitting Set is W[2]-hard
when parameterized by the size of the hitting set [4] and our reduction will be
parameter-preserving with respect to the parameter of committee size.

Let (U,F ; k) be an instance of Hitting Set. Recall that this is a Yes-
instance if and only if there exists S ⊆ U , with |S| � k such that S ∩ X �= ∅ for
any X ∈ F . We construct a profile P over alternatives A as follows. Let:

A := {cu | u ∈ U}
︸ ︷︷ ︸

C

∪ {d1, . . . , dk}
︸ ︷︷ ︸

D

Also, for every 1 � i � k, and for every X ∈ F , introduce a vote v(X, i) that
approves the candidates corresponding to the elements in X along with di. This
completes the construction of the instance. We claim that this instance has a
robustness radius of one if and only if (U,F ; k) is a Yes-instance of Hitting
Set.

Forward Direction. Suppose S is a hitting set for (U,F) of size k. Then the
set CS := {cu | u ∈ S} and D are two optimal Approval-CC committees with
dissatisfaction scores of zero each. Note that removing the candidate d1 from any
vote of the form v(X, 1) will lead to a profile where the set of winning committees
contains CS but does not contain D. Hence, the robustness radius is indeed one.

Reverse Direction. For the reverse direction, suppose the profile P has robust-
ness radius one. We will now argue the existence of a hitting set of size at most
k. Note that D is already an optimal committee with respect to P as it has the
best possible Approval-CC dissatisfaction score of zero. Now, suppose P admits
another winning committee W distinct from D. Then notice that the Approval-
CC dissatisfaction score of W must also be zero, and since there is at least one
candidate from D (say di) that is not present in W, it is easy to see that the
candidates in C ∩ W form a hitting set for the instance (U,F ; k)—indeed, note
that every voter in the sub-profile {v(X, i) | X ∈ F} does not approve anyone in
D ∩ W, and therefore must approve someone of in C ∩ W, making this a hitting
set for F .

Therefore, the interesting case is when D is the unique winning committee
for P. We claim that any other subset of candidates W of size k has an Approval-
CC dissatisfaction score of at least two. This would imply that the robustness
radius of P cannot possibly be one, and therefore there is nothing to prove. To
this end, observe that CW := W ∩ C is not a hitting set2 for F : indeed, if CW

2 Note the slight abuse of terminology here: when referring to CW as a hitting set, we
are referring to the elements of U corresponding to the candidates in CW . As long
as this is clear from the context, we will continue to use this convention.

Robustness Radius for Restricted Domains 349

was a hitting set then it is easy to see that W is also an optimal committee with
respect to P, contradicting the case that we are in. Let X denote a set that is
not hit by CW . Now, we consider two cases:

W Omits Two Candidates from D. In this case, there are at least two candidates
in D—say di and dj—who do not belong to W. Then W earns a dissatisfaction
score of one from each of v(X, i) and v(X, j), which makes its dissatisfaction
score at least two, as desired.

W Omits Exactly One Candidate from D. In this case, notice that |CW | = 1
and that CW does not hit at least two sets, say X and Y : else CW along with
an arbitrarily chosen element from X and another chosen from Y , along with
an arbitrary choice of k − 3 additional candidates would constitute a winning
committee in P different from D, again contradicting the case that we are in.
Therefore, observe that di is the candidate from D that is not present in W, the
votes v(X, i) and v(Y, i) contribute one each to the dissatisfaction score of the
committee W .

Overall, therefore, if D is the unique winning committee in P, then the robust-
ness radius is greater than one, and there is nothing to prove. This concludes
our argument in the reverse direction. 	

We now turn to O�(mk) algorithm for Robustness Radius with respect
to approval ballots. The general approach is quite analogous to the setting of
rankings. However, the notion of swaps is slightly different, and the overall case
analysis is, in fact, simpler. Since the main ideas are identical, in the interest of
space, we defer a proof of the following claim to a full version of the paper.

Lemma 1 (�). On general profiles comprising of approval ballots over alter-
natives, Robustness Radius for the �1-Chamberlin-Courant voting rule with
the Borda dissatisfaction function admits a O�(mk) algorithm, where m is the
number of candidates and k is the committee size.

4 Hardness for �-Crossing Profiles

In this section, we explore the complexity of Robustness Radius on nearly-
structured preferences. We discover that the problem remains NP-hard parame-
terized by the size of the committee sought, even on profiles which are 6-crossing
even when the robustness radius is one. We note that our overall approach is
very similar to the one employed in [2].

Theorem 3. Determining if the robustness radius of a profile is one for the
�1-CC voting rule, with respect to the Borda misrepresentation score, is NP-hard
even when the input profiles are restricted to the six-crossing domain.

Proof. We reduce from Independent Set on 3-regular graphs. Let (G, t)
be an Independent Set on 3-regular graphs [7]. We construct a profile
based on G as follows. Our set of candidates C is given by:

350 N. Misra and C. Sonar

C := {cu | u ∈ V (G)}
︸ ︷︷ ︸

V

∪ {d1, . . . , dh}
︸ ︷︷ ︸

D

∪ {Z0, Z1}
︸ ︷︷ ︸

Z

∪ {x1, . . . , xt+1}
︸ ︷︷ ︸

X

,

where h is a parameter that we will specify in due course. We refer to the
candidates in X as the safe candidates and Z0 & Z1 are two special candidates.
We will use τ denote a subset of Δ many unique dummy candidates, where Δ :=
12nt. Now we describe the votes. Our voters are divided into three categories as
follows:

Special Candidate Votes: This group consists of t + 3 copies of the vote,

Z0 � τ � · · ·

These votes ensure that every winning committee must include Z0.

“Safe Committee” Votes: For each candidate xi we have 18t2

t+1 copies of the
vote:

vxi
:= xi � Z1 � τ � · · ·

Independent Set Votes: For every edge {u, v} in the graph, we introduce 2t
copies of following two votes:

u � v � Z0 � τ � · · ·
v � u � Z0 � τ � · · ·

We denote the block of these 4t votes by Vu,v. The intuition for this is to ensure
that if some committee has both the endpoints of some edge then the overall
misrepresentation will be more than Δ.

The votes described above together constitute our profile P. By fixing an
ordering on C and respecting it on the unspecified votes, it is straightforward
to verify that all pairs of candidates cross at most six times in this profile. We
note that the candidates corresponding to the vertices cross at most six times
because the construction is based on a three regular graph. Define k = t+2 and
r = 1. The �1-CC -Robustness Radius instance thus constructed is given by
(C,P, k = t+2, r = 1). This completes the construction of the instance. We now
make some observations about the nature of the optimal committees which will
help us argue the equivalence subsequently.

Possible Winning Committees. Let T denote the set of candidates corresponding
to t-sized independent set in G (whenever it exists). We refer to the subset of
candidates given by {Z0, x1, x2, . . . , xt+1} as the safe committee and denote it
by S.

Robustness Radius for Restricted Domains 351

Lemma 2. The constructed profile has a unique winning committee if and only
if the graph G has no independent set of size t. The safe committee S has a
dissatisfaction score of Δ and is always a winning committee. If (G, t) is a Yes
instance, then {Z0, Z1} ∪ T is also an optimal committee, where T denotes an
independent set of size t in G. Further, any k-sized committee not of this form
will have dissatisfaction strictly greater than Δ + 1.

Proof. It is easy to see that the dummy candidate will not appear in any optimal
committee, since it appears in the top Δ positions for exactly one vote.

Let us compute the dissatisfaction score for the two proposed committees. For
the safe committee, we get zero dissatisfaction from the special candidate votes
and safe committee votes and we get 8t dissatisfaction for each edge which gives
us a total dissatisfaction score of 8t · 3n

2 = 12nt = Δ. For the committee based
on the independent set, we get zero dissatisfaction from the special candidate
votes, 18t2 from the safe committee votes (one per vote) and (3n

2 − 3t) · 8t + 3t ·
2t = 12nt − 18t2 from the independent set detector votes. Hence, for both the
committees the total dissatisfaction is Δ. It is easy to see that this is the best
possible dissatisfaction score that can be achieved by any committee of size k.

Note that any optimal winning committee will have candidate Z0 otherwise,
one has to pick k+1 dummy candidates (to remain optimal), which would exceed
the committee size. With Z0 in optimal committee if we intend to choose only
few of x′

is then candidate Z1 is forced in the committee. With these constraints,
now, we only have two possible structures for any optimal committee. We will
analyze both in next part of the proof.

Consider the possible optimal committees which picks Z0, Z1, few endpoints
of edges which are covered twice and the partial independent set (set of vertices
which only has one endpoint with given edge). The edges for which both the end-
points are in committee gives zero dissatisfaction, edges for which one endpoint
lies in committee gives 2t dissatisfaction and edges for which both the endpoints
are not in committees gives 8t dissatisfaction. Hence, the non-uniformity in dis-
satisfaction clearly indicates that it is better to cover maximum number of edges
by picking one end-point rather than completely losing an edge which causes
very high dissatisfaction. So, with the remaining budget for t-candidates, the
committee with all candidates from independent set will cover maximum edges
(to represent by one endpoint) and will cause strictly less dissatisfaction from
any other committee by at least 2t points.

We now consider a possible winning committee which contains Z0, Z1, par-
tial independent set and x′

is for the remaining budget. Let’s compute the dis-
satisfaction for this committee. Say we pick p candidates among the x′

is and
(k − 2− p) = (t− p) candidates from the independent set. The dissatisfaction is:

(t + 1 − p) · 18t2

t + 1
+

(
3n

2
− 3(t − p)

)

· 8t + (3 · (t − p) · 2t)

which simplifies to: Δ + (t − p)
(

18t2

t+1 − 18t

)

+ 18t2

t+1 .

352 N. Misra and C. Sonar

For any value of t, it is straightforward to verify the above expression has
value strictly greater than Δ+1. Hence, committees with this structure will also
not be optimal, and this proves the claim. 	

Now, we turn to the equivalence of the two instances.

Forward Direction. We need to show that the existence of t-sized independent
set in the graph implies the existence of one swap of adjacent candidates which
changes the set of winning committees for the new election instance. From the
above claim we know that when there exist a t-sized independent set T, we have
two winning committees. In this election instance consider the swap of Z1 with a
dummy candidate on right in any of the safe committee votes. Now the score for
{Z0, Z1}∪T is Δ+1 and it’s not optimal anymore. Hence, we have changed the
set of winning committees. This completes the argument for forward direction.

Reverse Direction. From Lemma 2, we know that unless independent set exists
any k-candidate committee other than the safe committee has dissatisfaction
score strictly greater than Δ + 1. This implies there does not exist any swap
which can introduce a new committee in winning committee set (since a single
swap can change the score of any committee by at most one) or can knock off
safe committee from the set. Hence, in this case robustness radius equal to one
forces the existence of required independent set (since this is the only committee
that can change the set of winning committees). This concludes the proof. 	

We remark that an analogous result can be established for the �∞-CC voting
rule as well, but exclude the proof due to lack of space.

5 Concluding Remarks and Open Problems

We demonstrated XP algorithms for the Robustness Radius problem, when
parameterized by the size of the committee, for both the �1-CC and the Approval-
CC voting rules, using a greedy approach. This complements the known W[1]-
hardness of the problem with respect to this parameter. We also explicitly estab-
lish the W[2]-hardness of Robustness Radius for the Approval-CC voting
rule when parameterized by the size of the committee, even when every voter
approves at most three candidates, and when the robustness radius is one. We
also established that Robustness Radius for the �1-CC and �∞-CC voting
rules remains intractable on fairly structured preferences, such as six-crossing
profiles.

A natural direction for further thought is if our XP algorithm can be improved
to a better running time, especially on structured profiles such as single-peaked or
single-crossing domains. A tempting approach is to see if we can exploit the fact
that optimal Chamberlin-Courant committees can be computed in polynomial
time on these domains. One immediate challenge is the following: if we require
our swaps to be such that the resulting profile also remains in the domain that
we are working on, then the case when the input profile has multiple winning
committees is harder to decide: we can no longer push a committee out of the

Robustness Radius for Restricted Domains 353

winning set with one swap, because the said swap may disturb the structure
of the profile. We also believe that instead of guessing all possible choices for a
nearly winning committee B, on structured profiles one might be able to cleverly
anticipate the right choice of B without trying all of them.

References

1. Brandt, F., Conitzer, V., Endriss, U., Lang, J., Procaccia, A.: Handbook of Com-
putational Social Choice. Cambridge University Press, Cambridge (2016)

2. Bredereck, R., Faliszewski, P., Kaczmarczyk, A., Niedermeier, R., Skowron, P.,
Talmon, N.: Robustness among multiwinner voting rules. In: Bilò, V., Flammini, M.
(eds.) SAGT 2017. LNCS, vol. 10504, pp. 80–92. Springer, Cham (2017). https://
doi.org/10.1007/978-3-319-66700-3 7

3. Chamberlin, J.R., Courant, P.N.: Representative deliberations and representative
decisions: proportional representation and the Borda rule. Am. Polit. Sci. Rev.
77(03), 718–733 (1983)

4. Cygan, M., et al.: Parameterized Algorithms. Springer, Cham (2015). https://doi.
org/10.1007/978-3-319-21275-3

5. Elkind, E., Faliszewski, P., Slinko, A.: Swap bribery. In: Mavronicolas, M.,
Papadopoulou, V.G. (eds.) SAGT 2009. LNCS, vol. 5814, pp. 299–310. Springer,
Heidelberg (2009). https://doi.org/10.1007/978-3-642-04645-2 27

6. Endriss, U.: Trends in Computational Social Choice. lulu.com (2017)
7. Fleischner, H., Sabidussi, G., Sarvanov, V.I.: Maximum independent sets in 3- and

4-regular Hamiltonian graphs. Discrete Math. 310(20), 2742–2749 (2010). Graph
Theory Dedicated to Carsten Thomassen on his 60th Birthday

8. Lackner, M., Skowron, P.: Consistent approval-based multi-winner rules. In: Pro-
ceedings of the 2018 ACM Conference on Economics and Computation, pp. 47–48.
ACM (2018)

9. Misra, N., Sonar, C., Vaidyanathan, P.R.: On the complexity of Chamberlin-
Courant on almost structured profiles. In: Rothe, J. (ed.) ADT 2017. LNCS
(LNAI), vol. 10576, pp. 124–138. Springer, Cham (2017). https://doi.org/10.1007/
978-3-319-67504-6 9

10. Shiryaev, D., Yu, L., Elkind, E.: On elections with robust winners. In: Proceedings
of the International Conference on Autonomous Agents and Multi-Agent Systems,
(AAMAS), pp. 415–422. IFAAMAS (2013)

11. Xia, L.: Computing the margin of victory for various voting rules. In: Proceedings
of the ACM Conference on Electronic Commerce, (EC), pp. 982–999. ACM (2012)

https://doi.org/10.1007/978-3-319-66700-3_7
https://doi.org/10.1007/978-3-319-66700-3_7
https://doi.org/10.1007/978-3-319-21275-3
https://doi.org/10.1007/978-3-319-21275-3
https://doi.org/10.1007/978-3-642-04645-2_27
https://doi.org/10.1007/978-3-319-67504-6_9
https://doi.org/10.1007/978-3-319-67504-6_9

On the Complexity of Color-Avoiding Site
and Bond Percolation

Roland Molontay1,2(B) and Kitti Varga3

1 Department of Stochastics, Budapest University of Technology and Economics,
Budapest, Hungary

2 MTA-BME Stochastics Research Group, Budapest, Hungary
molontay@math.bme.hu

3 Department of Computer Science and Information Theory,
Budapest University of Technology and Economics, Budapest, Hungary

vkitti@cs.bme.hu

Abstract. The mathematical analysis of robustness and error-tolerance
of complex networks has been in the center of research interest. On the
other hand, little work has been done when the attack-tolerance of the
vertices or edges are not independent but certain classes of vertices or
edges share a mutual vulnerability. In this study, we consider a graph
and we assign colors to the vertices or edges, where the color-classes
correspond to the shared vulnerabilities. An important problem is to
find robustly connected vertex sets: nodes that remain connected to
each other by paths providing any type of error (i.e. erasing any ver-
tices or edges of the given color). This is also known as color-avoiding
percolation.

In this paper, we study various possible modeling approaches of shared
vulnerabilities, we analyze the computational complexity of finding the
robustly (color-avoiding) connected components. We find that the pre-
sented approaches differ significantly regarding their complexity.

Keywords: Computational complexity · Color-avoiding percolation
Robustly connected components · Attack tolerance
Shared vulnerability

1 Introduction and Related Works

Understanding the attack and error tolerance of complex networks – i.e. the abil-
ity to maintain the overall connectivity of the network as the vertices (or edges)
are removed – has attracted a great deal of research interest in the last two
decades [1–3,18,26]. Most of the works have focused on random error, meaning
that the nodes are considered to be homogeneous with respect to their vulner-
abilities, or hub-targeted attack, i.e. the nodes fail preferentially according to
a structural property such as degree or betweenness centrality. However, real-
world networks are typically heterogeneous (not only with respect to their degree
distribution): nodes (or edges) can be separated into different classes regarding
c© Springer Nature Switzerland AG 2019
B. Catania et al. (Eds.): SOFSEM 2019, LNCS 11376, pp. 354–367, 2019.
https://doi.org/10.1007/978-3-030-10801-4_28

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-10801-4_28&domain=pdf
https://doi.org/10.1007/978-3-030-10801-4_28

On the Complexity of Color-Avoiding Site and Bond Percolation 355

a mutually shared vulnerability within the class. The shared vulnerabilities can
be modeled by assigning a color to each class that may represent a shared eaves-
dropper, a controlling entity or correlated failures. A “color-avoiding” percolation
framework was developed by Krause et al. [10,12,13].

Traditional percolation theory can be used to study the behaviour of con-
nected components in a graph if a vertex (site) or edge (bond) failure occurs
with a given probability [15,23]. In the traditional approach a single path pro-
vides connectivity, however, here connectivity corresponds to the ability to avoid
all vulnerable sets of vertices or edges via multiple paths such that no color is
required for all paths (color-avoiding connectivity).

This question is different from k-core percolation where any k paths are suf-
ficient between two nodes [5,25]; and also different from k-connectivity, where
k mutually independent paths are required [16]. Another related concept is per-
colation on multiplex networks [9,22] where the layers can be thought of as the
colors, but this approach also differs in the definition of connectivity [10].

To study color-avoiding percolation a new framework was needed. The prob-
lem was introduced by Krause et al. [12] who analyzed the color-avoiding con-
nectivity of networks with shared vulnerabilities on the vertices. The authors
also examined the latent color-avoiding connectivity structure of the AS-level
Internet [20] where the color of the node represents the country to which the
router is registered. They have found that 26,228 out of 49,743 of the routers
are in the largest color-avoiding component, i.e. secure communication can be
obtained among them by splitting the message into more pieces and transmit-
ting them on different paths - even if every country is eavesdropping on its traf-
fic [12]. In [13] the theory of color-avoiding percolation has been extended. The
authors study analytically and numerically the maximal set of nodes that are
color-avoiding connected in random networks with randomly distributed colors.
Shekhtman et al. [19] generalize this framework to study secure message-passing
in networks with a given community structure and different classes of vulnerabil-
ities. Kadović et al. [10] formulated color-avoiding percolation for colored edges
as well and studied color-avoiding bond and site percolation for networks with
a power-law degree distribution.

Beside color-avoiding percolation, finding paths in colored graphs has gained
interest in other domains as well. Wu [24] introduced the Maximum Colored
Disjoint Paths (MaxCDP) problem that is to find the maximum number of
vertex-disjoint paths with edges of the same color between two vertices. The
complexity of MaxCDP has been investigated: it can be solved in polynomial
time if the input graph contains one color but if there are at least two colors
the problem is NP-hard [7,24]. An even harder variant of the problem, to find
the maximum number of vertex-disjoint and color-disjoint uni-color paths, was
introduced by Dondi et al. [4].

Another related problem is finding k-multicolor paths in a graph. Santos
et al. [17] show that the problem is NP-hard and it is also hard to approxi-
mate. Another interesting problem is finding a path from a vertex that meets all
the colors in a graph. This problem is NP-hard considering a properly colored

356 R. Molontay and K. Varga

directed graph, as well as finding the shortest or longest such paths [8]. A survey
on algorithmic and computational results for other coloring problems can be
found in [14].

On the other hand, none of the previously mentioned works have addressed
the computational complexity of color-avoiding percolation. In this article we
present various modeling approaches to handle shared vulnerabilities along with
the analysis regarding computational complexity. Section 2 is devoted to the
problem definition considering both vertices and edges as the targets of the
attack. In Sect. 3 we conduct complexity analysis and find that, although the
presented approaches are seemingly very similar, they differ significantly regard-
ing computational complexity. Section 4 concludes the work.

2 Modeling Shared Vulnerabilities in Networks

There are two main approaches of modeling shared vulnerabilities in networks
depending on the target of the attack: either the links between the nodes can
be destroyed (or eavesdropped) or the nodes themselves are the subject of a
possible failure. The former is modeled by coloring the edges according to the
shared vulnerabilities leading to color-avoiding bond percolation, while the latter
is represented by assigning a color to the vertices having the same vulnerability
resulting in color-avoiding site percolation. The color-avoiding edge- and vertex-
connectivity is illustrated in Fig. 1 on an Erdős-Rényi random graph, the exact
concepts will be introduced later in this section.

2.1 Coloring the Edges

It is natural to consider the case when the edges with shared vulnerabilities
are the subject of the attack and the vertices remain indistinguishable and
unharmed. Some possible real-world examples with edges having shared vulner-
abilities: different means of transportation (bus, underground, railway etc.) for a
traffic network, various metabolic pathways depending on particular biochemical
profiles [11].

Every Edge Has One Color

Definition 1. Let G be a graph, C = {c1, . . . , ck} a color set and c : E(G) → C
a function that assign colors to the edges.

For any i ∈ {1, . . . , k} the vertices u, v ∈ V (G) are called ci-avoiding edge-
connected if after the removal of the edges of color ci, u and v are in the same
component in the remaining graph, i.e there exists a path between u and v which
does not contain any edges of color ci – such a path is called a ci-avoiding
path.

We say that the vertices u, v ∈ V (G) are color-avoiding edge-connected
if they are ci-avoiding edge-connected for all i ∈ {1, . . . , k}.

The relation of color-avoiding edge-connectivity (see Fig. 2) is an equivalence
relation and thus it defines a partition of the vertex set. The equivalence classes
are called color-avoiding edge-connected components.

On the Complexity of Color-Avoiding Site and Bond Percolation 357

1

2

3
4

5

6

7

8

9

10

11

12 13

1415

16

17

18

19

20

1

2

3
4

5

6

7

8

9

10

11

12 13

1415

16

17

18

19

20

1

2

3
4

5

6

7

8

9

10

11

12 13

1415

16

17

18

19

20

1

2

3
4

5

6

7

8

9

10

11

12 13

1415

16

17

18

19

20

1

2

3
4

5

6

7

8

9

10

11

12 13

1415

16

17

18

19

20

1

2

3
4

5

6

7

8

9

10

11

12 13

1415

16

17

18

19

20

1

2

3
4

5

6

7

8

9

10

11

12 13

1415

16

17

18

19

20

1

2

3
4

5

6

7

8

9

10

11

12 13

1415

16

17

18

19

20

Fig. 1. Illustrating the color-avoiding edge- and vertex-connectivity on an Erdős-Rényi
random graph G(20, 0.15). The first row depicts an edge-colored and a vertex-colored
graph with three equiprobable colors. The second and third rows show the graphs after
removing the green, blue and red edges/vertices, respectively. Note that vertex 5 and
vertex 14 are color-avoiding edge-connected since the path 5-11-14 serves as both a
green-avoiding and a blue-avoiding path, while the path 5-2-6-8-14 serves as a red-
avoiding path. On the other hand, vertex 16 is not color-avoiding edge-connected to
any other vertices since without green edges it gets isolated. Considering color-avoiding
vertex-connectivity, vertex 6 and vertex 10 are strongly (and therefore weakly) color-
avoiding connected since the path 6-11-5-10 serves as a blue-avoiding path, the path
6-13-5-10 serves as a red-avoiding path, while the path 6-2-7-10 serves as a green-
avoiding path for internal vertices – this last condition is only required for strong
color-avoiding connectivity. Vertex 3 and vertex 10 are weakly color-avoiding connected
since the path 3-5-10 serves as both a red-avoiding and blue-avoiding path, while they
are not strongly color-avoiding connected since no path from vertex 3 can avoid green
vertices as internal nodes. Vertex 7 and vertex 11 are not strongly/weakly color-avoiding
connected since no green-avoiding path exists between them. (Color figure online)

358 R. Molontay and K. Varga

v1

v2 v3

Fig. 2. The vertices v2 and v3 are color-avoiding edge-connected. But v1 and v2 are
not: the removal of the blue edges disconnects them. (Color figure online)

Multiple Edges. A natural modification of the previous definition is if we
allow for multiple edges, meaning that there can be more types of connection
between two nodes (see Fig. 3). Multiple edges make the network less vulnerable:
if there are at least two edges of different colors between two nodes, then they
are color-avoiding edge-connected since their connection cannot be destroyed by
attacking only one color at a time.

v1 v2 v3

Fig. 3. The vertices v1 and v2 are color-avoiding edge-connected. But v2 and v3 are
not: the removal of the red edges disconnects them. (Color figure online)

Every Edge Has a List of Colors. Another possible generalization of the
framework is to modify Definition 1 in such a way that we make the edges more
sensitive to attack by assigning a list of colors to the vertices representing all
the vulnerabilities that an edge has and an edge is destroyed whenever one of its
colors is attacked (see Fig. 4). Formally, the function c is modified: c : E(G) →
2C , where 2C is the power set of the color set C = {c1, . . . , ck}. Furthermore, in
this scenario we say that the vertices u, v ∈ V (G) are ci-avoiding edge-connected
if after the removal of the edges that contain ci on their lists of colors, u and v
are in the same component in the remaining graph.

2.2 Coloring the Vertices

It is also interesting to consider the case when the colors are assigned to vertices
that are exposed to attack or failure while the edges remain indistinguishable
and unharmed. Possible real-world scenarios of having vulnerable classes of nodes
include AS-level Internet with routers registered in different countries, telecom-
munication networks with transmission towers operated by different providers.
The color of the nodes can also represent e.g. ownership, geographical location,
dependence on a critical material [12]. The strong/weak vertex color-avoiding
connectivity is illustrated in Fig. 1 on an Erdős-Rényi random graph.

On the Complexity of Color-Avoiding Site and Bond Percolation 359

v1

v2

v3

v4

red
, b
lue blue

red, green

blue, green

gr
ee
n

Fig. 4. The vertices v2 and v4 are color-avoiding edge-connected: a red-, blue- and
green-avoiding path between them are v2v4, v2v3v4 and v2v1v4, respectively. But v1 and
v2 are not: the removal of the edges containing the color blue on their lists disconnects
them. (Color figure online)

Strong Color-Avoiding Connectivity

Definition 2 ([12]). Let G be a graph, C = {c1, . . . , ck} a color set and c :
V (G) → C a function that assigns colors to the vertices.

For any i ∈ {1, . . . , k} the vertices u, v ∈ V (G) are called strongly ci-
avoiding vertex-connected (or strongly ci-avoiding connected) if after
the removal of the vertices of color ci excluding these two vertices, they are in
the same component in the remaining graph, i.e. there exists a path between
u and v whose internal vertices are not of color ci – such a path is called a
ci-avoiding path.

We say that the vertices u, v ∈ V (G) are strongly color-avoiding vertex-
connected (or strongly color-avoiding connected) if they are strongly ci-
avoiding connected for all i ∈ {1, . . . , k}.

In this case the relation of strong color-avoiding connectivity is not transitive,
therefore it is not an equivalence relation (see Fig. 5). The strongly color-avoiding
connected components are maximal sets of vertices such that any two of them
are strongly color-avoiding connected.

More Colors on the Vertices. Similarly to the case when the edges were
colored, here we can also assign multiple colors to vertices. One can think of the
multiple colors (lists of colors) as multiple vulnerabilities on the nodes making
the network less robust. Another approach is to consider the scenario analogously
to multiple edges. Here it is important to note that if a node has at least two
different colors, it makes the vertex immortal under the previously mentioned
color attacks analogously to the “multiple edges” approach.

Weak Color-Avoiding Connectivity. Contrary to color-avoiding edge-
connectivity, if we color the vertices, it is dubious how to handle the source and
target nodes in the definition of color-avoiding vertex-connectivity. In Definition 2

360 R. Molontay and K. Varga

a possible approach was presented that can capture several realistic scenarios. Con-
sidering eavesdropping, it is reasonable that the sender and receiver guarantee the
security of the message but vulnerability may affect the nodes as transmitters.
However, when the attack of the vertices rather means destroying the entities,
it is more natural to consider another approach to define color-avoiding vertex-
connectivity: attacking red vertices makes it pointless which nodes a red vertex
can reach on a path without other red vertices. This scenario is captured by the
concept of weak color-avoiding connectivity (see Fig. 5).

Definition 3. Let G be a connected graph, C = {c1, . . . , ck} a color set and
c : V (G) → C a function that assigns colors to the vertices.

For any i ∈ {1, . . . , k} the vertices u, v ∈ V (G) are called weakly ci-
avoiding vertex-connected (or weakly ci-avoiding connected) if after the
removal of the vertices of color ci, either at least one of u or v is deleted or they
are in the same component in the remaining graph, i.e. if neither u nor v are
of color ci, there exists a path between them whose vertices are not of color ci –
such a path is called a ci-avoiding path.

We say that the vertices u, v ∈ V (G) are weakly color-avoiding vertex-
connected (or weakly color-avoiding connected) if they are weakly ci-avoid-
ing connected for all i ∈ {1, . . . , k}.

Similarly to the strong case, weak color-avoiding connectivity is also not an
equivalence relation (see Fig. 5). The weakly color-avoiding connected components
are maximal sets of vertices such that any two of them are weakly color-avoiding
connected.

We can extend the definition to non-connected graphs with the extra condi-
tion that two vertices can be weakly color-avoiding connected only if they are in
the same component in the original graph.

Remark 1. The notion of weakly color-avoiding connectivity is indeed a weaker
concept than the one defined in Definition 2. It is easy to see that if two vertices
are strongly color-avoiding connected then it implies that they are weakly color-
avoiding connected as well.

v1 v2 v3 v4 v5

Fig. 5. The vertices v1 and v2 are weakly/strongly color-avoiding connected, and so
are the vertices v2 and v3. But v1 and v3 are not: the removal of the blue vertices
(i.e. the removal of v2) disconnects them. The vertices v3 and v5 are weakly but not
strongly color-avoiding connected. The above observation also shows that neither the
strong nor the weak color-avoiding connectivity is a transitive relation. (Color figure
online)

More Colors on the Vertices. Weak color-avoiding connectivity can be
extended to multiple colors as well, in the exact same manner as strong color-
avoiding connectivity.

On the Complexity of Color-Avoiding Site and Bond Percolation 361

Other Generalizations. It is worth mentioning that other generalizations have
been also proposed. Krause et al. [13] consider nodes with differentiated func-
tions, either as senders/receivers or transmitters. They introduce a flexible trust
scenario where vertices can be trusted or avoided in both functions. Trusting
colors for transmission naturally increases color-avoiding connectivity [13].

3 Computational Complexity of Finding the
Color-Avoiding Components

After presenting the problem of color-avoiding percolation and various modeling
approaches, in this section we analyze the computational complexity of finding
the robustly (color-avoiding) connected components considering the different
problem definitions. In the following we assume the reader’s acquaintance with
standard concepts of computational complexity theory that may be found e.g. in
[21]. We will use in this section that the following well-known decision problem
is NP-complete [21].

Clique
Instance: a graph G and a positive integer l.
Question: does G have a clique of size at least l?

Now we list the decision problems for which the computational complexity
will be presented in this section. Although the problems are seemingly very
similar, they differ considerably concerning their complexity.

ColorAvoidingEdgeConnectedComponent
Instance: a graph G, a color set C = {c1, . . . , ck}, a function c : E(G) → C and
a positive integer l.
Question: is it true that G has a color-avoiding edge-connected component of
size at least l?

StronglyColorAvoidingConnectedComponent
Instance: a graph G, a color set C = {c1, . . . , ck}, a function c : V (G) → C and
a positive integer l.
Question: is it true that G has a strongly color-avoiding connected component
of size at least l?

WeaklyColorAvoidingConnectedComponent
Instance: a graph G, a color set C = {c1, . . . , ck}, a function c : V (G) → C and
a positive integer l.
Question: is it true that G has a weakly color-avoiding connected component of
size at least l?

WeaklyColorAvoidingConnectedComponent-ListOfColors
Instance: a graph G, a color set C = {c1, . . . , ck}, a function c : V (G) → 2C

and a positive integer l.
Question: is it true that G has a weakly color-avoiding connected component of
size at least l?

362 R. Molontay and K. Varga

First we prove that the color-avoiding edge-connected components can be
found in polynomial time.

Theorem 1. The problem ColorAvoidingEdgeConnectedComponent is
in P. More precisely, the color-avoiding edge-connected components of G can be
found in polynomial time.

Proof. Let G′ be a graph on the vertex set of G where two vertices are connected
if and only if they are color-avoiding edge-connected (for an example see Fig. 6).
Obviously, G′ can be constructed in polynomial time: we need to check for every
pair of vertices whether they remain in the same component after erasing the
edges of each color separately.

G v1

v2

v3

v4

v5

v6

G′
v1

v2

v3

v4

v5

v6

Fig. 6. Two vertices are adjacent in G′ if and only if they are color-avoiding edge-
connected in G.

Since the color-avoiding edge-connectivity is an equivalence relation, the
graph G′ is P3-free, i.e. it cannot contain a path on 3 vertices as an induced
subgraph. Obviously, the color-avoiding edge-connected components of G are
exactly the maximal cliques of G′.

It is easy to see that the components of a P3-free graph are cliques, therefore
the maximal cliques of G′ are its components. Hence, the color-avoiding edge-
connected components of G can be found in polynomial time.

The above theorem obviously can be applied when there are multiple edges
or when lists of colors are associated with the edges. Clearly, the same proof
works in both cases.

Now, we move on to the analysis of color-avoiding vertex percolation. First,
we prove that the stronger definition (Definition 2) leads to an NP-complete
problem.

Theorem 2. The problem StronglyColorAvoidingConnectedCompo-
nent is NP-complete.

Proof. Obviously, this problem is in NP: a witness is a strongly color-avoiding
connected component of size at least l. To show that this problem is NP-hard
we reduce Clique to it.

If we use only one color, then by definition the strongly color-avoiding con-
nected components of G are exactly its maximal cliques, therefore our problem
is indeed NP-complete.

On the Complexity of Color-Avoiding Site and Bond Percolation 363

Next, we present that using the weak definition of color-avoiding connectivity
(Definition 3) the connected components can be found in polynomial time. The
proof consists of two main parts. First, we show that finding the weakly color-
avoiding connected components in any graph is equivalent to finding the cliques
of an associated locally chordal graph. This together with the fact that cliques
can be found in polynomial time in a locally chordal graph gives us the desired
result.

Theorem 3. Let G be a graph, C = {c1, . . . , ck} a set of colors and c : V (G) →
C a function that assigns colors to the vertices. Let G′ be a graph on the vertex
set of G where two vertices are connected if and only if they are weakly color-
avoiding connected. Then the graph G′ is locally chordal, i.e. the neighborhood
of any vertex cannot contain an induced cycle of length at least 4.

For an example on the construction of graph G′ from Theorem 3 see Fig. 7.

G v1

v2

v3

v4

v5

v6

G′
v1

v2

v3

v4

v5

v6

Fig. 7. Two vertices are adjacent in G′ if and only if they are weakly color-avoiding
connected in G.

Proof. We note that throughout this proof the notion “color-avoiding” always
stands for “weakly color-avoiding”.

It is easy to see that a graph is locally chordal if and only if it does not
contain a wheel on at least five vertices as an induced subgraph: if the graph
contains an induced wheel on at least five vertices, then the outer cycle of this
wheel is an induced cycle of length at least four in the neighborhood of the center
vertex, therefore the graph is not locally chordal. To prove the reverse direction,
suppose that the graph is not locally chordal, i.e., there exists a vertex whose
neighborhood contains an induced cycle of length at least four. Then this vertex
and this cycle together form an induced wheel on at least five vertices.

Suppose to the contrary that G′ contains a wheel on l+ 1 ≥ 5 vertices as an
induced subgraph. Let u be the center vertex of this wheel, and w1, . . . , wl be
the vertices of the outer cycle (in this order), see Fig. 8.

We can assume that the color of the vertex w2 is c1. Now consider the vertices
w1 and w3. Since they are not connected in G′, there exists at least one color
such that the removal of the vertices of that color disconnects them. On the other
hand, the ci-avoiding paths from w1 to w2 and from w2 to w3 (which exist since
w1w2, w2w3 ∈ E(G′)) can be combined into ci-avoiding paths from w1 to w3 for

364 R. Molontay and K. Varga

every color ci ∈ C \{c1}. (Obviously, this procedure does not work with color c1
since the vertex w2 is of color c1.) Thus, only the removal of the vertices of color
c1 can disconnect w1 and w3. Therefore, u must have also color c1 (otherwise
the c1-avoiding paths from w1 to w2 and from w2 to w3 could be combined into
a c1-avoiding path from w1 to w3).

Now consider the vertices w2 and w4. Since they are not connected in G′,
there exists at least one color such that the removal of the vertices of that color
disconnects them. However, the ci-avoiding paths from w2 to u and from u to
w4 (which exist since uw2, uw4 ∈ E(G′)) can be combined into ci-avoiding paths
from w2 to w4 for every color ci ∈ C \{c1}. Again, this procedure does not work
with color c1 since the vertex u is of color c1. But since w2 is also of color c1, w2

and w4 are weakly c1-avoiding connected by definition. Hence, they are weakly
color-avoiding connected, which is a contradiction.

u

w1

w2

w3

w4

. . .
wl

Fig. 8. The wheel on l + 1 vertices.

Theorem 4 ([6]). The maximal cliques of any locally chordal graph can be found
in polynomial time.

Corollary 1. TheproblemWeaklyColorAvoidingConnectedComponent
is in P. More precisely, the weakly color-avoiding connected components of G can
be found in polynomial time.

The above theorem obviously can be applied in the more robust case when
there may be multiple colors on the vertices resulting in indestructible nodes.

On the other hand, in the other case – when the vertices have multiple colors
(lists of colors) and a vertex is destroyed whenever one of its colors is attacked
– seemingly paradoxically – leads to a much harder, NP-complete problem.

Theorem 5. The WeaklyColorAvoidingConnectedComponent-List-
OfColors problem is NP-complete.

On the Complexity of Color-Avoiding Site and Bond Percolation 365

Proof. Obviously, this problem is in NP. To show that this problem is NP-hard
we reduce shape Clique to it.

Assign a color to any two vertices, and add this color to the list of every other
vertex (so altogether we use

(
n
2

)
colors and every vertex has

(
n
2

) − (n− 1) colors
on its list). For an example on the construction of lists of colors see Fig. 9. Now,
two vertices are weakly color-avoiding connected if and only if they are adjacent
in G. Hence, the weakly color-avoiding connected components of G are exactly
its maximal cliques, therefore our problem is indeed NP-complete.

v1
orange
violet
brown

v2
blue
green
brown

v3
red
green
violet

v4
red
blue

orange

Fig. 9. Constructing the lists of colors: we assign red to v1 and v2 (and add the color
red to the list of v3 and v4), blue to v1 and v3, green to v1 and v4, orange to v2 and
v3, violet to v2 and v4 and brown to v3 and v4. (Color figure online)

Remark 2. In the above proof we can reduce the number of used colors by assign-
ing colors only to nonadjacent pair of vertices; we can also reduce the lengths of
the lists by adding this color only to a minimum vertex cut for these two nodes.

4 Conclusion

In this paper, we presented different notions to model various scenarios of shared
vulnerabilities in complex networks by assigning colors to the edges or ver-
tices using the framework of color-avoiding percolation developed by Krause
et al. [13]. We also analyzed the complexity of finding the color-avoiding con-
nected components. Despite the similarity of the presented concepts, the asso-
ciated percolation problems – seemingly paradoxically – differ significantly
regarding computational complexity. We showed that the color-avoiding edge-
connected components can be found in polynomial time. However, the complex-
ity of finding the color-avoiding vertex-connected components highly depends on
the exact definition, using a strong version the problem is NP-hard, while using
a weaker notion makes it possible to find the components in polynomial time.

Acknowledgment. We thank Michael Danziger, Panna Fekete and Balázs Ráth for
useful conversations. The research reported in this paper was supported by the BME-
Artificial Intelligence FIKP grant of EMMI (BME FIKP-MI/SC). The publication is
also supported by the EFOP-3.6.2-16-2017-00015 project entitled “Deepening the activ-
ities of HU-MATHS-IN, the Hungarian Service Network for Mathematics in Industry
and Innovations” through University of Debrecen. The work of both authors is partially
supported by the NKFI FK 123962 grant. R. M. is supported by NKFIH K123782 grant
and by MTA-BME Stochastics Research Group.

366 R. Molontay and K. Varga

References

1. Albert, R., Jeong, H., Barabási, A.-L.: Error and attack tolerance of complex net-
works. Nature 406(6794), 378 (2000)

2. Barabási, A.-L., et al.: Network Science. Cambridge University Press, Cambridge
(2016)

3. Callaway, D.S., Newman, M.E.J., Strogatz, S.H., Watts, D.J.: Network robustness
and fragility: percolation on random graphs. Phys. Rev. Lett. 85(25), 5468 (2000)

4. Dondi, R., Sikora, F.: Finding disjoint paths on edge-colored graphs: more
tractability results. J. Comb. Optim. 36(4), 1315–1332 (2018)

5. Dorogovtsev, S.N., Goltsev, A.V., Mendes, J.F.F.: Kcore organization of complex
networks. Phys. Rev. Lett. 96(4), 040601 (2006)

6. Gavril, F.: Intersection graphs of Helly families of subtrees. Discrete Appl. Math.
66(1), 45–56 (1996)

7. Gourves, L., Lyra, A., Martinhon, C.A., Monnot, J.: On paths, trails and closed
trails in edge-colored graphs. Discrete Math. Theor. Comput. Sci. 14(2), 57–74
(2012)

8. Granata, D., Behdani, B., Pardalos, P.M.: On the complexity of path problems in
properly colored directed graphs. J. Combin. Optim. 24(4), 459–467 (2012)

9. Hackett, A., Cellai, D., Gómez, S., Arenas, A., Gleeson, J.P.: Bond percolation on
multiplex networks. Phys. Rev. X 6(2), 021002 (2016)

10. Kadović, A., Krause, S.M., Caldarelli, G., Zlatic, V.: Bond and site color-avoiding
percolation in scale free networks. arXiv preprint arXiv:1807.08553 (2018)

11. Kadović, A., Zlatić, V.: Color-avoiding edge percolation on edge-colored network.
In: Complenet (2017)

12. Krause, S.M., Danziger, M.M., Zlatić, V.: Hidden connectivity in networks with
vulnerable classes of nodes. Phys. Rev. X 6(4), 041022 (2016)

13. Krause, S.M., Danziger, M.M., Zlatić, V.: Color-avoiding percolation. Phys. Rev.
E 96(2), 022313 (2017)

14. Malaguti, E., Toth, P.: A survey on vertex coloring problems. Int. Trans. Oper.
Res. 17(1), 1–34 (2010)

15. Newman, M.: Networks. Oxford University Press, Oxford (2018)
16. Penrose, M.D.: On k-connectivity for a geometric random graph. Random Struct.

Algorithms 15(2), 145–164 (1999)
17. Santos, R.F., Andrioni, A., Drummond, A.C., Xavier, E.C.: Multicolour paths in

graphs: NP-hardness, algorithms, and applications on routing in WDM networks.
J. Combin. Optim. 33(2), 742–778 (2017)

18. Shao, S., Huang, X., Stanley, H.E., Havlin, S.: Percolation of localized attack on
complex networks. New J. Phys. 17(2), 023049 (2015)

19. Shekhtman, L.M., et al.: Critical field-exponents for secure message-passing in
modular networks. New J. Phys. 20(5), 053001 (2018)

20. Siganos, G., Faloutsos, M., Faloutsos, P., Faloutsos, C.: Power laws and the AS-
level internet topology. IEEE/ACM Trans. Netw. (TON) 11(4), 514–524 (2003)

21. Sipser, M.: Introduction to the Theory of Computation. Cengage Learning, Boston
(2012)

22. Son, S.-W., Bizhani, G., Christensen, C., Grassberger, P., Paczuski, M.: Percolation
theory on interdependent networks based on epidemic spreading. EPL (Europhys.
Lett.) 97(1), 16006 (2012)

23. Stauffer, D., Aharony, A.: Introduction to Percolation Theory: Revised Second
Edition. CRC Press, Boca Raton (2014)

http://arxiv.org/abs/1807.08553

On the Complexity of Color-Avoiding Site and Bond Percolation 367

24. Wu, B.Y.: On the maximum disjoint paths problem on edge-colored graphs. Dis-
crete Optim. 9(1), 50–57 (2012)

25. Yuan, X., Dai, Y., Stanley, H.E., Havlin, S.: k-core percolation on complex net-
works: comparing random, localized, and targeted attacks. Phys. Rev. E 93(6),
062302 (2016)

26. Zhao, L., Park, K., Lai, Y.-C., Ye, N.: Tolerance of scale-free networks against
attack-induced cascades. Phys. Rev. E 72(2), 025104 (2005)

Lackadaisical Quantum Walks
with Multiple Marked Vertices

Nikolajs Nahimovs(B)

Center for Quantum Computer Science, Faculty of Computing, University of Latvia,
Raina bulv. 19, Riga 1586, Latvia

nikolajs.nahimovs@lu.lv

Abstract. The concept of lackadaisical quantum walk – quantum walk
with self loops – was first introduced for discrete-time quantum walk on
one-dimensional line [8]. Later it was successfully applied to improve the
running time of the spacial search on two-dimensional grid [16].

In this paper we study search by lackadaisical quantum walk on
the two-dimensional grid with multiple marked vertices. First, we show
that the lackadaisical quantum walk, similarly to the regular (non-
lackadaisical) quantum walk, has exceptional configuration, i.e. place-
ments of marked vertices for which the walk has no speed-up over the
classical exhaustive search. Next, we demonstrate that the weight of the
self-loop suggested in [16] is not optimal for multiple marked vertices.
And, last, we show how to adjust the weight of the self-loop to overcome
the aforementioned problem.

1 Introduction

Quantum walks are quantum counterparts of classical random walks [9]. Sim-
ilarly to classical random walks, there are two types of quantum walks:
discrete-time quantum walks (DTQW), introduced by Aharonov et al. [1], and
continuous-time quantum walks (CTQW), introduced by Farhi et al. [4]. For
the discrete-time version, the step of the quantum walk is usually given by two
operators – coin and shift – which are applied repeatedly. The coin operator
acts on the internal state of the walker and rearranges the amplitudes of going
to adjacent vertices. The shift operator moves the walker between the adjacent
vertices.

Quantum walks have been useful for designing algorithms for a variety of
search problems [10]. To solve a search problem using quantum walks, we intro-
duce the notion of marked elements (vertices), corresponding to elements of the
search space that we want to find. We perform a quantum walk on the search
space with one transition rule at the unmarked vertices, and another transi-
tion rule at the marked vertices. If this process is set up properly, it leads to
a quantum state in which the marked vertices have higher probability than the
unmarked ones. This method of search using quantum walks was first introduced
in [12] and has been used many times since then.

c© Springer Nature Switzerland AG 2019
B. Catania et al. (Eds.): SOFSEM 2019, LNCS 11376, pp. 368–378, 2019.
https://doi.org/10.1007/978-3-030-10801-4_29

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-10801-4_29&domain=pdf
https://doi.org/10.1007/978-3-030-10801-4_29

Lackadaisical Quantum Walks with Multiple Marked Vertices 369

Most of the papers studying quantum walks consider a search space con-
taining a single marked element only. However, in contrary of classical random
walks, the behavior of the quantum walk can drastically change if the search
space contains more that one marked element. Ambainis and Rivosh [3] have
studied DTQW on two-dimensional grid and showed that if the diagonal of the
grid is fully marked then the probability of finding a marked element does not
grow over time. Wong [15] analyzed the spatial search problem by CTQW on
the simplex of complete graphs and showed that the placement of marked ver-
tices can dramatically influence the required jumping rate of the quantum walk.
Wong and Ambainis [17] analysed DTQW on the simplex of complete graphs
and showed that if one of the complete graphs is fully marked then there is
no speed-up over classical exhaustive search. Nahimovs and Rivosh [5,6] stud-
ied DTQW on two-dimensional grid for various placements of multiple marked
vertices and proved several gaps in the running time of the walk (depending
on the placement of marked vertices). Additionally the authors have demon-
strated placements of a constant number of marked vertices for which the walk
have no speed-up over classical exhaustive search. They named such placements
exceptional configurations. Nahimovs and Santos [7] have extended their work
to general graphs.

The concept of lackadaisical quantum walk (quantum walk with self loops)
was first studied for DTQW on one-dimensional line [8,13]. Later on, Wong
showed an example of how to apply the self-loops to improve the DTQW based
search on the complete graph [14] and two-dimensional grid [16]. The running
time of the lackadaisical walk heavily depends on a weight of the self-loop. Saha
et al. [11] showed that the weight l = 4

N suggested by Wong for two-dimensional
grid of N vertices with a single marked vertex may be not optimal for multiple
marked vertices (i.e. result in larger number of steps and lower probability). They
have demonstrated that for a block of

√
m×√

m marked vertices one should use
the weight l = 4

N(m+
√
m/2)

.
In this paper, we study search by discrete-time lackadaisical quantum walk

on two-dimensional grid with multiple marked vertices. First, we show that the
lackadaisical quantum walk, similarly to the regular (non-lackadaisical) quantum
walk, has exceptional configurations, i.e. placements of marked vertices for which
the walk have no speed-up over the classical exhaustive search. Next, we study
an arbitrary placement of m marked vertices and demonstrate that the weight l
suggested by Wong is not optimal for multiple marked vertices. The same holds
for the weight suggested by Saha et al., which seems to work only for a block
of

√
m × √

m marked vertices. Last, we analyze how to adjust the weight to
overcome the aforementioned problem. We propose two better constructions –
l = 4m

N and l = 4(m−√
m)

N – and discuss their boundaries of application.

370 N. Nahimovs

2 Quantum Walk on the Two-Dimensional Grid

2.1 Regular (Non-lackadaisical) Quantum Walk

Consider a two-dimensional grid of size
√

N × √
N with periodic (torus-like)

boundary conditions. The locations of the grid are labeled by the coordinates
(x, y) for x, y ∈ {0, . . . ,

√
N − 1}. The coordinates define a set of state vectors,

|x, y〉, which span the Hilbert space HP associated with the position. Addition-
ally, we define a 4-dimensional Hilbert space HC , spanned by the set of states
{|c〉 : c ∈ {↑, ↓,←,→}}, associated with the direction. We refer to it as the coin
subspace. The Hilbert space of the quantum walk is HP ⊗ HC .

The evolution of a state of the walk (without searching) is driven by the
unitary operator U = S · (I ⊗ C), where S is the flip-flop shift operator

S|x, y, ↑〉 = |x, y + 1, ↓〉 (1)
S|x, y, ↓〉 = |x, y − 1, ↑〉 (2)

S|x, y,←〉 = |x − 1, y,→〉 (3)
S|x, y,→〉 = |x + 1, y,←〉, (4)

and C is the coin operator, given by the Grover’s diffusion transformation

C = 2|sc〉〈sc| − I4 (5)

with
|sc〉 =

1√
4
(| ↑〉 + | ↓〉 + | ←〉 + | →〉).

The system starts in

|ψ(0)〉 =
1√
N

√
N−1∑

x,y=0

|x, y〉 ⊗ |sc〉, (6)

which is uniform distribution over vertices and directions. Note, that this is a
unique eigenvector of U with eigenvalue 1.

To use quantum walk for search, we extend the step of the algorithm with a
query to an oracle, making the step

U ′ = U · (Q ⊗ I4).

Here Q is the query transformation which flips the sign at a marked vertex,
irrespective of the coin state. Note that |ψ(0)〉 is a 1-eigenvector of U but not
of U ′. If there are marked vertices, the state of the algorithm starts to deviate
from |ψ(0)〉. In case of a single marked vertex, after O(

√
N log N) steps the inner

product 〈ψ(t)|ψ(0)〉 becomes close to 0. If the state is measured at this moment,
the probability of finding a marked vertex is O(1/ log N) [2]. With amplitude
amplification this gives the total running time of O(

√
N log N) steps.

Lackadaisical Quantum Walks with Multiple Marked Vertices 371

2.2 Lackadaisical Quantum Walk

In case of lackadaisical quantum walk the coin subspace of the walk is
5-dimensional Hilbert space spanned by the set of states {|c〉 : c ∈ {↑, ↓,←,
→,�}}. The Hilbert space of the quantum walk is C

N ⊗ C
5.

The shift operator acts on a self loop as

S|x, y,�〉 = |x, y,�〉. (7)

The coin operator is
C = 2|sc〉〈sc| − I5 (8)

with
|sc〉 =

1√
4 + l

(| ↑〉 + | ↓〉 + | ←〉 + | →〉 +
√

l| �〉).
The system starts in

|ψ(0)〉 =
1√
N

√
N−1∑

x,y=0

|x, y〉 ⊗ |sc〉, (9)

which is uniform distribution over vertices, but not directions. As before |ψ(0)〉
is a unique 1-eigenvector of U .

The step of the search algorithm is U ′ = U · (Q ⊗ I5). As it is shown in [16],
in case of a single marked vertex, for the weight l = 4

N , after O(
√

N log N) steps
the inner product 〈ψ(t)|ψ(0)〉 becomes close to 0. If one measures the state at
this moment, he will find the marked vertex with O(1) probability, which gives
O(log N) improvement over the loopless algorithm.

3 Stationary States of the Lackadaisical Quantum Walk

In this section we will show that the lackadaisical quantum walk, similarly to
the regular (non-lackadaisical) quantum walk, has exceptional configurations,
i.e. placements of marked vertices for which the walk have no speed-up over the
classical exhaustive search.

Consider a state |sa↑〉 = a(−(3+l)| ↑〉+| ↓〉+| ←〉+| →〉+√
l| �〉)T . Similarly

one can define states |sa↓〉, |sa←〉 and |sa→〉. The defined states are orthogonal to
|sc〉. Consider an effect of the coin transformation on |sa↑〉:

C|sa↑〉 = (2|sc〉〈sc| − I5) |sa↑〉 = −|sa↑〉.
As one can see, the coin transformation inverts a sign of the state.

Now, consider a two-dimensional grid with two marked vertices (i, j) and
(i + 1, j). Let |φa

stat〉 be a state where the coin part of all unmarked vertices is
|sac 〉 = a(| ↑〉 + | ↓〉 + | ←〉 + | →〉 +

√
l| �〉)T , the coin part of (i, j) is |sa→〉 and

the coin part of (i + 1, j) is |sa←〉 (see Fig. 1), that is,

|φa
stat〉 =

√
N−1∑

x,y=0

|x, y〉|sac 〉 − (4 + l)a (|i, j,→〉 + |i + 1, j,←〉) . (10)

372 N. Nahimovs

Fig. 1. Stationary state of two marked vertices (i, j) and (i + 1, j).

We claim that this state is not changed by a step of the algorithm.

Lemma 1. Consider a grid of size
√

N ×√
N with two adjacent marked vertices

(i, j) and (i + 1, j). Then the state |φa
stat〉, given by Eq. (10), is not changed by

the step of the algorithm, that is, U ′|φa
stat〉 = |φa

stat〉.
Proof. Consider the effect of a step of the algorithm on |φa

stat〉. The query trans-
formation flips the sign of marked vertices. The coin transformation has no effect
on |sac 〉 but flips the signs of |sa←〉 and |sa→〉. Thus, (I⊗C)(Q⊗I) does not change
the amplitudes of unmarked vertices and twice flips the signs of amplitudes of
marked vertices. Therefore, we have (I ⊗ C)(Q ⊗ I)|φa

stat〉 = |φa
stat〉. The shift

transformation swaps the amplitudes of near-by vertices. For |φa
stat〉, it swaps a

with a and −(3 + l)a with −(3 + l)a. Thus, we have S(I ⊗ C)(Q ⊗ I)|φa
stat〉 =

|φa
stat〉. ��
The initial state of the algorithm, given by Eq. (9), can be written as

|ψ0〉 = |φa
stat〉 + (4 + l)a(|i, j,→〉 + |i + 1, j,←〉), (11)

for a = 1/
√

(4 + l)N . The only part of the initial state which is changed by the
step of the algorithm is

√
4 + l√
N

(|i, j,→〉 + |i + 1, j,←〉). (12)

Let us establish an upper bound on the probability of finding a marked vertex.

Lemma 2. Consider a grid of size
√

N ×√
N with two adjacent marked vertices

(i, j) and (i + 1, j). Then for any number of steps, the probability of finding a
marked vertex pM is O

(
1
N

)
.

Proof. We have M = {(i, j), (i + 1, j)}. The only part of the initial state |ψ(0)〉
changed by the step of the algorithm is |φ〉 = (4+l)a(|i, j,→〉+ |i+1, j,←〉). The
basis states |i, j,→〉 and |i + 1, j,←〉 have the biggest amplitudes of −(3 + l)a in
the stationary state. Therefore, the maximum probability of finding a marked
vertex is reached if the state |φ〉 becomes

|φ′〉 = −α|i, j,→〉 − β|i + 1, j,←〉, (13)

Lackadaisical Quantum Walks with Multiple Marked Vertices 373

for α, β ≥ 0. Thus, pM is at most

pM ≤ 6a2 + 2(a
√

l)2 + (−(3 + l)a − α)2 + (−(3 + l)a − β)2 . (14)

Since the evolution is unitary, we have α2 + β2 = |||φ〉||2 = 2 ((4 + l)a)2. Due to
symmetry α and β should be equal, so the expression (14) reaches the maximum
when α = β = (4 + l)a.

We have l = 4
N and a = 1√

(4+l)N
= 1√

4(N+l)
. Each of summands in the

expression (14) is O
(

1
N

)
and, therefore, we have pM = O

(
1
N

)
. ��

That is the probability of finding a marked vertex is of the same order as for the
classical exhaustive search.

Note that if we have a block of marked vertices we can construct a stationary
state as long as we can tile the block by the sub-blocks of size 1×2 and 2×1. For
example, consider M = {(0, 0), (1, 0), (1, 1), (1, 2)} for n ≥ 3. Then the stationary
state is given by

|φa
stat〉 =

n−1∑

x,y=0

|x, y〉|sac 〉 − (4 + l)a (|0, 0,→〉 + |1, 0,←〉 + |1, 1, ↑〉 + |1, 2, ↓〉) .

For more details on constructions of stationary states for blocks of marked ver-
tices on two-dimensional grid see [7]. The paper focuses on the non-lackadaisical
quantum walk, nevertheless, the results can be easily extended to the lackadaisi-
cal quantum walk.

4 Optimality of l for Multiple Marked Vertices

In [16] Wong showed that in case of a single marked vertex, for the weight l = 4
N ,

after O(
√

N log N) steps the inner product 〈ψ(t)|ψ(0)〉 becomes close to 0. If one
measures the state at this moment, one will find the marked vertex with O(1)
probability1. The suggested value of l, however, is optimal for a single marked
vertex only. Saha et al. [11] studied search for a block of

√
m × √

m marked
vertices and showed that optimal weight in this setting is l = 4

N(m+
√
m/2)

.
In this section we study search for an arbitrary placement of multiple marked

vertices. The presented data is obtained from numerical simulations. The values
listed in the tables are calculated in the following way. The number of steps of the
algorithm T is the smallest t for which |〈ψ(t)|ψ(0)〉| reaches its minimum (that is
the current and the initial states are maximally orthogonal). By the probability
we mean the probability of finding a marked vertex when |ψ(T)〉 is measured.

Tables 1 and 2 give the number of steps and the probability of finding a
marked vertex for random placements of 2 and 3 marked vertices on 100 × 100
grid for l = 4

N . As one can see the probability of finding a marked vertex is no
more close to 1 as it is for a single marked vertex.
1 The numerical results in [16] show that probability of finding a marked vertex is

close to 1 and approaches 1 as N goes to infinity.

374 N. Nahimovs

Table 1. The number of steps and the probability of finding a marked vertex for
different placements of two marked vertices for 100 × 100 grid for l = 4

N
.

Marked vertices T Pr

(0, 0), (23, 27) 153 0.586377681077719

(0, 0), (35, 68) 150 0.591030741055657

(0, 0), (30, 69) 151 0.588384716869901

(0, 0), (42, 4) 152 0.590451037529614

(0, 0), (84, 60) 151 0.584982804352049

Table 2. The number of steps and the probability of finding a marked vertex for
different placements of three marked vertices for 100 × 100 grid for l = 4

N
.

Marked vertices T Pr

(0, 0), (34, 52), (93, 53) 117 0.440756928151790

(0, 0), (26, 12), (22, 32) 126 0.434581723157292

(0, 0), (40, 94), (13, 62) 119 0.430688837061525

(0, 0), (7, 44), (7, 98) 131 0.430029225026132

(0, 0), (80, 78), (28, 31) 118 0.454915029501263

Table 3 shows the number of steps and the probability for 200×200 grid with
the set of marked vertices

Mm = {(0, 10i) | i ∈ [0,m − 1]} (15)

for weights of a self-loop suggested by Wong (the 2nd and the 3rd columns)
and by Saha et al. (the last two columns). As one can see for both weights the
probability goes down with the number of marked vertices.

Table 3. The number of steps and the probability of finding a marked vertex for
200 × 200 grid with the set of marked vertices Mm for different l.

m l = 4
N

l = 4
N(m+

√
m/2)

T Pr T Pr

1 602 0.987103466750771 602 0.9871034667507710

2 374 0.556471227830710 355 0.3290596740364150

3 320 0.393873564782729 307 0.1901285270921410

4 288 0.318205769345174 278 0.1362737798676850

5 266 0.269653054659757 258 0.1120867687513450

6 250 0.234725633256426 243 0.0963898188447711

7 235 0.205158185237765 229 0.0847091122232096

8 223 0.184324335272977 218 0.0764074018340319

9 213 0.168420810292804 208 0.0694735116911546

10 203 0.153267792359668 198 0.0634301283171891

Lackadaisical Quantum Walks with Multiple Marked Vertices 375

We tried to adjust the value of l to increase the probability of finding a
marked vertex. We searched for a better value of l in the form l = 4

N a. The
Figs. 2 and 3 show the probability of finding a marked vertex for 100 × 100 grid
with the sets of marked vertices M2 and M3, respectively, for different values
of a.

Fig. 2. Probability of finding a marked vertex for 100×100 grid with the set of marked
vertices M2 for different values of a.

As one can see the optimal value of a for M2 is close to 2 and for M3 is close to
3. The similar results were obtained for bigger grids with larger sets of marked
vertices. Table 4 gives the optimal value of a and the corresponding number of
steps and the probability for 200× 200 grid with the set of marked vertices Mm.

Fig. 3. Probability of finding a marked vertex for 100×100 grid with the set of marked
vertices M3 for different values of a.

This raises a conjecture that the optimal weight of a self loop is l =
4(m−O(m))

N . The Table 5 shows the number of steps and the probability for
200 × 200 grid with the set of marked vertices Mm for the weight l = 4m

N (the
2nd and the 3rd columns) and l = 4m−√

m
N (the last two columns). As one can

see l = 4m
N results in a high probability of finding a marked vertices for a small

number of marked vertices, however, the probability goes down with the number

376 N. Nahimovs

Table 4. The number of steps and the probability of finding a marked vertex for
200 × 200 grid with the set of marked vertices Mm for optimal a.

m aopt T Pr

2 1.94 470 0.970784853767743

3 2.90 419 0.968156591210997

4 3.82 394 0.957428109231279

5 4.66 374 0.93524432034913

6 5.44 358 0.910278544128265

7 6.17 329 0.884824083920976

8 7.06 301 0.884650346189075

9 8.00 295 0.891195819702051

10 8.86 292 0.889060897077511

Table 5. The number of steps and the probability of finding a marked vertex for
200 × 200 grid with the set of marked vertices Mm for different l.

m l = 4m
N

l = 4m−√
m

N

T Pr T Pr

1 602 0.987103466750771 421 0.138489015636136

2 480 0.973610115577208 358 0.368553562270952

3 426 0.970897595293325 326 0.474753065755793

4 400 0.957956584718826 305 0.541044821578945

5 376 0.933005243569973 288 0.593276362658860

6 352 0.904811189309431 277 0.633876384394702

7 312 0.885901799105365 268 0.661120674334215

8 300 0.891698403206386 260 0.678417412900138

9 296 0.892165251874117 254 0.694145864271432

10 293 0.884599315314024 250 0.709033853082403

of marked vertices. On the other hand, l = 4(m−√
m)

N gives a modest probability
for a small number of marked vertices, but the probability grows with the num-
ber of marked vertices (and, moreover, seems to tend to a constant). Therefore,
we would suggest to use the last of the proposed value of l, especially for bigger
grids and large number of marked vertices.

The found values of l result in high probability not only for Mi sets of marked
vertices, but work equivalently well for other placements of m marked vertices,
including a random placement. For example, Table 6 gives the mean and the
standard deviation over 100 runs for the number of steps and the probability
of finding a marked vertex for 200 × 200 grid with m randomly placed marked
vertices for l = 4m

N .

Lackadaisical Quantum Walks with Multiple Marked Vertices 377

Table 6. The mean and standard deviation for the number of steps and the probability
of finding a marked vertex for 200×200 grid with m randomly placed marked vertices.

m μ(T) σ(T) μ(Pr) σ(Pr)

2 426.53 18.19115947 0.986380083 0.005025848

3 351.24 14.97683059 0.970760080 0.006463305

4 305.01 11.52379620 0.952193422 0.011523802

5 276.77 15.78636095 0.922327254 0.023677911

6 250.28 13.54385320 0.892480153 0.035932293

7 231.25 16.57573680 0.871024499 0.043598408

8 213.52 13.51428724 0.857905654 0.049283674

9 199.78 13.08525271 0.841684604 0.049829490

10 186.70 10.11199907 0.843118514 0.058874363

5 Conclusions

In this paper, we have demonstrated the existence of exceptional configurations
of marked vertices for search by lackadaisical quantum walk on two-dimensional
grid. We also numerically showed that weights of the self-loop l, suggested by pre-
vious papers [11,16], are not optimal for multiple marked vertices (both weight
seems to work in specific cases only). We proposed two values of l resulting in
a much higher probability of finding a marked vertex than previously suggested
weights. Moreover, for the found values, the probability of finding a marked
vertex does not decrease with number of marked vertices.

References

1. Aharonov, Y., Davidovich, L., Zagury, N.: Quantum random walks. Phys. Rev. A
48(2), 1687–1690 (1993)

2. Ambainis, A., Kempe, J., Rivosh, A.: Coins make quantum walks faster. In: Pro-
ceedings of the 16th ACM-SIAM Symposium on Discrete Algorithms, pp. 1099–
1108 (2005)

3. Ambainis, A., Rivosh, A.: Quantum walks with multiple or moving marked loca-
tions. In: Geffert, V., Karhumäki, J., Bertoni, A., Preneel, B., Návrat, P., Bieliková,
M. (eds.) SOFSEM 2008. LNCS, vol. 4910, pp. 485–496. Springer, Heidelberg
(2008). https://doi.org/10.1007/978-3-540-77566-9 42

4. Farhi, E., Gutmann, S.: Quantum computation and decision trees. Phys. Rev. A
58, 915–928 (1998)

5. Nahimovs, N., Rivosh, A.: Exceptional configurations of quantum walks with
Grover’s coin. In: Kofroň, J., Vojnar, T. (eds.) MEMICS 2015. LNCS, vol. 9548,
pp. 79–92. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-29817-7 8

6. Nahimovs, N., Rivosh, A.: Quantum walks on two-dimensional grids with multiple
marked locations. In: Proceedings of SOFSEM 2016, vol. 9587, pp. 381–391 (2016).
arXiv:quant-ph/150703788

https://doi.org/10.1007/978-3-540-77566-9_42
https://doi.org/10.1007/978-3-319-29817-7_8
http://arxiv.org/abs/quant-ph/150703788

378 N. Nahimovs

7. Nahimovs, N., Santos, R.A.M.: Adjacent vertices can be hard to find by quantum
walks. In: Steffen, B., Baier, C., van den Brand, M., Eder, J., Hinchey, M., Mar-
garia, T. (eds.) SOFSEM 2017. LNCS, vol. 10139, pp. 256–267. Springer, Cham
(2017). https://doi.org/10.1007/978-3-319-51963-0 20

8. Inui, N., Konno, N., Segawa, E.: One-dimensional three-state quantum walk. Phys.
Rev. E Stat. Nonlin. Soft Matter Phys. 72(5), 168–191 (2005)

9. Portugal, R.: Quantum Walks and Search Algorithms. Springer, New York (2013).
https://doi.org/10.1007/978-1-4614-6336-8

10. Reitzner, D., Nagaj, D., Buzek, V.: Quantum walks. Acta Physica Slovaca 61(6),
603–725 (2011). arxiv.org/abs/1207.7283

11. Saha, A., Majumdar, R., Saha, D., Chakrabarti, A., Sur-Kolay, S.: Search of clus-
tered marked states with lackadaisical quantum walks (2018). arXiv:1804.01446

12. Shenvi, N., Kempe, J., Whaley, K.B.: A quantum random walk search algorithm.
Phys. Rev. A 67, 052307 (2003)

13. Stefanak, M., Bezdekova, I., Jex, I.: Limit distributions of three-state quantum
walks: the role of coin eigenstates. Phys. Rev. A 90(1), 124–129 (2014)

14. Wong, T.G.: Grover search with lackadaisical quantum walks. J. Phys. A Math.
Gen. 48 (2015)

15. Wong, T.G.: Spatial search by continuous-time quantum walk with multiple
marked vertices. Quantum Inf. Process. 15(4), 1411–1443 (2016)

16. Wong, T.G.: Faster search by lackadaisical quantum walk. Quantum Inf. Process.
17, 68 (2018)

17. Wong, T.G., Ambainis, A.: Quantum search with multiple walk steps per oracle
query. Phys. Rev. A 92, 0022338 (2015)

https://doi.org/10.1007/978-3-319-51963-0_20
https://doi.org/10.1007/978-1-4614-6336-8
http://arxiv.org/abs/org/abs/1207.7283
http://arxiv.org/abs/1804.01446

A 116/13-Approximation Algorithm
for L(2, 1)-Labeling of Unit Disk Graphs

Hirotaka Ono(B) and Hisato Yamanaka(B)

Department of Mathematical Informatics, Graduate School of Informatics,
Nagoya University, Nagoya 464-8601, Japan

ono@i.nagoya-u.ac.jp, ymnk0114@nagoya-u.jp

Abstract. Given a graph, an L(2, 1)-labeling of the graph is an assign-
ment � from the vertex set to the set of nonnegative integers such that for
any pair of vertices (u, v), |�(u) − �(v)| ≥ 2 if u and v are adjacent, and
�(u) �= �(v) if u and v are at distance 2. The L(2, 1)-labeling problem
is to minimize the span of � (i.e., maxu∈V (�(u)) − minu∈V (�(u)) + 1).
In this paper, we propose a new polynomial-time 116/13-approximation
algorithm for L(2, 1)-labeling of unit disk graphs. This improves the pre-
viously best known ratio 12.

Keywords: Frequency/channel assignment · Graph algorithm
L(2, 1)-labeling · Approximation algorithm · Unit disk graphs

1 Introduction

Let G be an undirected graph. An L(2, 1)-labeling of a graph G is an assignment
� from the vertex set V (G) to the nonnegative integers such that |�(x)−�(y)| ≥ 2
if x and y are adjacent and |�(x)− �(y)| ≥ 1 if x and y are at distance 2 for all x
and y in V (G). A k-L(2, 1)-labeling is an L(2, 1)-labeling � : V (G) → {0, . . . , k},
and the L(2, 1)-labeling problem asks the minimum k among all possible L(2, 1)-
labelings. We call this invariant, the minimum value k, the L(2, 1)-labeling num-
ber, and denote it by λ(G). Notice that we use at most λ(G) + 1 different labels
in an optimal L(2, 1)-labeling, and we call this λ(G) + 1 the optimal span of
L(2, 1)-labeling, and denote it by σ(G). As the objective function of L(2, 1)-
labeling problem, we adopt not λ(G) but σ(G), which is more natural for the
approximation guarantee.

The original notion of L(2, 1)-labeling can be seen in Hale [11] and Roberts
[16] in the context of frequency/channel assignment, where ‘close’ transmitters
must receive different frequencies and ‘very close’ transmitters must receive fre-
quencies that are at least two apart so that they can avoid interference. Due
to its practical importance, the L(2, 1)-labeling problem has been intensively
and extensively studied. Furthermore, this problem is attractive from the graph
theoretical point of view since it is a kind of vertex coloring problem.

This work is partially supported by KAKENHI 17K19960, 17H01698.

c© Springer Nature Switzerland AG 2019
B. Catania et al. (Eds.): SOFSEM 2019, LNCS 11376, pp. 379–391, 2019.
https://doi.org/10.1007/978-3-030-10801-4_30

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-10801-4_30&domain=pdf
https://doi.org/10.1007/978-3-030-10801-4_30

380 H. Ono and H. Yamanaka

Related Work
In general, L(h, k)-labelings of a graph G are defined for arbitrary nonnegative
integers h and k, as an assignment of nonnegative integers to V (G) such that
adjacent vertices receive labels at least h apart and vertices connected by a path
of length 2 receive labels at least k apart. This problem is one of the gener-
alizations of the vertex coloring problem since the L(h, 0)-labeling problem is
equivalent to it. Therefore, we can hardly expect that the L(h, k)-labeling prob-
lem is tractable, and in fact, L(0, 1)- and L(1, 1)-labeling problems are known to
be NP-hard, for example. We can find a lot of related results on L(h, k)-labelings
in comprehensive surveys by Calamoneri [3] and Yeh [18].

There are also a number of studies about the L(2, 1)-labeling problem from
the algorithmic point of view [13]. It is known to be NP-hard for general
graphs [10], and it still remains NP-hard for some restricted classes of graphs,
such as planar, bipartite, chordal graphs [1], and graphs of treewidth 2 [7]. In
contrast, only a few graph classes are known to have polynomial time algorithms
for this problem. Outerplanar graphs and its sub-classes of graphs (e.g., trees)
are such rare classes of graphs [12,15].

From the viewpoint of frequency/channel assignment in wireless networks, it
is natural and interesting to restrict instances of graphs to disk graphs. Unfor-
tunately, even for unit disk graphs, the L(2, 1)-labeling problem is known to be
NP-hard [8]. As a positive result, a 12-approximation algorithm is proposed by
Fiala et al. [6].

Our Contributions
The contribution of this paper is to provide a new 116/13-approximation
polynomial-time algorithm for L(2, 1)-labeling of unit disk graphs, which
improves the previously best known ratio 12. The previous 12-approximation
algorithm first divides the plane into wide strips, and after that, it labels vertices
in each strip by 18ω labels, where ω is the size of a maximum clique in a given
graph. Since 2ω−1 is a lower bound on the optimal span of L(2, 1)-labeling, this
labeling achieves approximation ratio 12, which comes from 18ω/(2ω − 1) ≤ 12.

Our algorithm divides the plane into big squares with a certain size instead.
We can label vertices in a big square by 16ω+7 labels, but this does not immedi-
ately yield approximation ratio 9. In fact, if we adopt 2ω −1 as a lower bound of
σ, we just have (16ω+7)/(2ω−1) ≤ 13, which is even worse. As an extra idea, we
focus on the lower bound 2ω − 1, which means that σ = 2ω − 1 or σ ≥ 2ω. If we
can distinguish these two cases and label vertices by a smaller number of labels
than 16ω + 7 for the former case, we can expect a better approximation ratio.
Although the task itself might be difficult, a necessary condition of σ = 2ω − 1
is helpful to achieve a smaller upper bound on labels. This is the key idea to
achieve the approximation ratio 116/13.

Organization of This Paper
The rest of this paper is organized as follows. Section 2 introduces the ter-
minology and gives basic definitions. In Sect. 3, we introduce basic results on
L(2, 1)-labeling number of unit disk graphs and review the 12-approximation

A 116/13-Approximation Algorithm for L(2, 1)-Labeling of Unit Disk Graphs 381

algorithm [6]. Section 4 is the main part of this paper and we present a new
polynomial-time 116/13-approximation algorithm.

2 Preliminaries

2.1 Definitions and Notations

A graph G is an ordered set of its vertex set V (G) and edge set E(G) and
denoted by G = (V (G), E(G)). We often denote G = (V (G), E(G)) simply by
G = (V,E), if no confusion arises. We assume throughout this paper that all
graphs are undirected, simple and connected, unless otherwise stated. An edge
e ∈ E is an unordered pair of vertices u and v, which are end vertices of e,
though we often denote it conventionally by e = (u, v). Two vertices u and v are
adjacent if (u, v) ∈ E, and two edges are adjacent if they share one of their end
vertices. A graph G is called complete if every two vertices in V are adjacent.

A subset V ′ ⊆ V is a clique if a subgraph G[V ′] of G induced by V ′ is
complete. A maximum clique of G is, naturally, a clique whose cardinality is
largest, and the number is called the clique number of G, which is denoted by
ω(G). Also we use Δ(G) to denote the maximum degree of graph G. These are
just denoted by Δ and ω, if no confusion arises.

For the definitions of an L(2, 1)-labeling of a graph G and related concepts,
see Introduction. We denote the L(2, 1)-labeling number and the optimal span
of L(2, 1)-labeling of G by λ(G) and σ(G), respectively. These are also simply
denoted by λ and σ, if no confusion arises. In L(2, 1)-labeling �, the condition
that |�(x) − �(y)| ≥ 2 if x and y are adjacent is called the condition of distance
one and the condition that |�(x) − �(y)| ≥ 1 if x and y are at distance 2 for all x
and y is called the condition of distance two. These two conditions together are
referred as just L(2, 1)-condition.

2.2 Unit Disk Graphs (UDG)

Let D be a set of disks in the Euclidean plane. Any disk in D is defined by its
center and the value of its diameter. Then, the intersection graph G of the disks
in D is called a disk graph, and D is called its disk representation. Let dmin and
dmax be the minimum and maximum diameter values of the disks in D. Then,
the value of dmax/dmin is called the diameter ratio of D, denoted also by ρ(D).
Let ρ be some constant. A disk graph G is called a ρ-disk graph if there exists
its representation D whose diameter ratio ρ(D) ∈ (1, ρ]. If ρ(D) = 1, then G is
called a unit disk graph. Figure 1 is an example of a collection of unit disks, and
Fig. 2 shows a unit disk graph constructed from the intersection set of Fig. 1. In
this paper, we assume that all the disks in D have unit diameter since we deal
with UDG.

By definition, we can easily construct a graph from its disk representation,
but the opposite is not trivial. In fact, the recognition problem of an unit disk
graph is known to be NP-hard [2]. Whether it is natural to be given graph rep-
resentation or disk representation as the input depends on the original problem.

382 H. Ono and H. Yamanaka

Fig. 1. Intersections of unit disks
Fig. 2. Graph representation of Fig. 1

As mentioned above, the original notion of L(2, 1)-labeling can be seen in the
context of frequency/channel assignment. Since the vertices in G correspond to
the wireless sites and the diameter values of the disks in D correspond to commu-
nication coverage, we assume that our algorithm is given a disk representation
as the input. It should be noted that there is a polynomial time algorithm to
find a maximum clique for disk representation [5].

In this paper, we use word “distance” in two contexts. One is Euclidean
distance between two vertices in D and the other is the shortest path length
between two vertices on G. We distinguish them by D and G.

3 Basic Results and an Existing Algorithms

In this section, we introduce basic results on L(2, 1)-labeling number of unit disk
graphs and review the 12-approximation algorithm [6].

3.1 Upper and Lower Bounds on L(2, 1)-Labeling Numbers

The following are general lower bounds on λ(G) (or σ(G)): λ(G) ≥ Δ(G) + 1
and λ(G) ≥ 2(ω(G)−1). These are easily shown by focusing on a subgraph that
forms K1,Δ or ω-clique.

Concerning upper bounds, several results are known. Although it is conjec-
tured that λ(G) ≤ Δ2, there is still a gap between Δ2 and the current best one.
For general graphs, Goncalves gives λ(G) ≤ Δ2 + Δ − 2, for example [9]. It is
a constructive proof, and the labeling itself is generated by a polynomial-time
algorithm based on Chang and Kuo (CK algorithm) [4].

For restricted graph classes, Shao et al. [17] showed that λ(G) ≤ (k −
2)Δ2/(k − 1) + 2Δ holds for K1,k-free graphs. Since unit disk graphs are K1,6-
free, this bound implies that λ(G) ≤ 4Δ2/5 + 2Δ for unit disk graphs. Note
that this bound is also obtained by CK algorithm. Furthermore, the algorithm

A 116/13-Approximation Algorithm for L(2, 1)-Labeling of Unit Disk Graphs 383

by Fiala et al. [6] proposes an approximation algorithm for L(2, 1)-labeling of
unit disk graphs, which is reviewed in the next subsection. Since the algorithm
constructs an L(2, 1)-labeling of a unit disk graph with the maximum label
18ω − 1, it implies that λ(G) ≤ 18ω − 1. Also Junosza-Szaniawski et al. [14]
show λ(G) ≤ 3Δ2/4 + 3(Δ − 1) for unit disk graphs with Δ ≥ 7.

3.2 Existing Algorithms and Its Improvement

In this subsection, we roughly review two existing algorithms for L(2, 1)-labeling.
One is CK algorithm for general graphs by Chang and Kuo [4] and the other is
a 12-approximation algorithm for unit disk graphs, which is proposed by Fiala
et al. [6].

CK algorithm is a greedy algorithm based on the concept of 2-stable set of
G, which is a subset S of V (G) such that every two distinct vertices in S are of
distance greater than 2. Let X0 be a maximal 2-stable set of G. We then define Yi

and Xi for each i ≥ 1 by Yi = {x ∈ V \(X0∪· · ·∪Xi−1) | ∀y ∈ Xi−1 : d(x, y) ≥ 2},
where d(x, y) is the distance between x and y on G, and Xi is a maximal 2-stable
set of G[Yi]. This yields X0,X1, . . . , Xk such that V = X0 ∪ X1 ∪ · · · ∪ Xk. For
X1,X2, . . . , Xk, CK algorithm labels vertices in Xi by label i.

CK algorithm would be originally proposed not for approximating the L(2, 1)-
labeling problem but for giving an upper bound on optimal L(2, 1)-labelings. As
mentioned in the previous subsection, (slightly modified) CK algorithm finds an
L(2, 1)-labeling with at most min{Δ2 + Δ − 1, 4Δ2/5 + 2Δ + 1} labels [9,17].
Since Δ + 2 ≤ σ, the approximation ratio of CK is bounded by

min{Δ2 + Δ − 1, 4Δ2/5 + 2Δ + 1}
Δ + 2

. (1)

Unfortunately, since this value is monotonically increasing with respect to Δ, the
approximation ratio of CK algorithm is not bounded by a constant, but the ratio
is not large for small Δ. For example, it is at most (4 · 112+10 · 11+5)/5(11+2) =
599/65 = 9.215 · · · if Δ ≤ 11.

Fiala et al.’s algorithm (FFF algorithm) works as follows: It first divides the
plane into wide strips with a certain width, each of which contains 6 sub-strips.
Then it periodically labels vertices in each sub-strip from left to right with a set
of 3ω labels. Adjacent sub-strips are labeled by different sets of 3ω labels, and
18ω labels are used for one wide strip in total; the next wide strip is labeled by
the same 18ω labels and so on in a periodic manner. Combining these 18ω labels
and σ(G) = λ(G) + 1 ≥ 2ω − 1, Fiala et al. analyzed the approximation ratio as
follows:

ALG(G)
OPT(G)

≤ 18ω

2ω − 1
≤ 12,

where ALG(G) is the span output by the algorithm for G. This is the argument
that the approximation ratio is bounded by 12.

Actually, this bound 12 can be improved to 9.6 by combining with CK algo-
rithm as follows: It is easy to see that 18ω/(2ω − 1) is monotonically decreasing

384 H. Ono and H. Yamanaka

and maximum; FFF algorithm achieves approximation ratio 18 · 8/(2 · 8− 1) =
9.6 for unit disk graph with ω ≥ 8. On the other hand, if Δ ≤ 11, the approxi-
mation ratio of CK algorithm is at most 9.215 · · · as seen above. The remaining
case is ω ≤ 7 and Δ ≥ 12. In this case, the approximation ratio of FFF algorithm
can be bounded by ALG(G)/OPT(G) ≤ 18ω/(Δ + 2) ≤ 18 · 7/14 = 9. In total,
the approximation ratio is bounded by 9.6.

However, it would be difficult to achieve approximation ratio 9 by using FFF
algorithm as a main routine, because (18ω)/(2ω − 1) > 9 holds for positive ω.

4 116/13-Approximation Algorithm

In this section, we present a 116/13-approximation algorithm. Similar to the 12-
approximation algorithm, our algorithm also utilizes the division of the plane,
though the division is different. The 12-approximation algorithm divides the
plane into wide strips with a certain width, each of which contains 6 sub-strips.
Then it periodically labels vertices in each sub-strip from left to right with a set
of 3ω labels, where ω is the size of a maximum clique in a given graph. Adjacent
sub-strips are labeled by different sets of 3ω labels, and 18ω labels are used for
one wide strip in total; the next wide strip is labeled by the same 18ω labels
and so on in a periodic manner. The approximation ratio is analyzed by the
comparison with a lower bound 2ω−1 on the optimal span σ of L(2, 1)-labelings
of a given graph.

Our algorithm divides the plane into big squares with a certain size instead,
each of which contains 16 sub-squares. As we see later, we can label vertices in a
big square by 16ω +7 labels, but this does not immediately yield approximation
ratio 116/13. In fact, if we adopt 2ω − 1 as a lower bound of σ, we just have
(16ω + 7)/(2ω − 1) ≤ 13, which is even worse. Even though we exclude small ω
by a similar analysis of in the end of Sect. 3.2, we obtain (16 · 7 + 7)/(14 − 1) =
119/13 = 9.1538 · · · ≤ 9.215 · · · , which is still worse than 116/13. As an extra
idea, we focus on the lower bound 2ω − 1, which means that σ = 2ω − 1 or
σ ≥ 2ω. If we can distinguish these two cases and label vertices by a smaller
number of labels than 16ω + 7 for the former case, we can expect a better
approximation ratio. Although the task itself might be difficult, a necessary
condition of σ = 2ω − 1 is helpful to achieve a smaller upper bound on labels.
This is the idea to achieve the approximation ratio 116/13.

In the following subsections, we explain the details of the above ideas. In
Sect. 4.1, we introduce Square division and consider its properties. Based on the
division, we design a basic labeling, which can always label vertices in a big square
by 16ω +7 labels. We then give a necessary condition for σ = 2ω −1 in Sect. 4.2.
Since vertices in every big square are sparsely located in such a situation, we
can design another labeling called 2-phase labeling that can label vertices in each
big square by 16ω + 4 labels. This is explained in Sect. 4.3. Finally, we give an
analysis that the approximation ratio is bounded by 116/13 in total in Sect. 4.4.

A 116/13-Approximation Algorithm for L(2, 1)-Labeling of Unit Disk Graphs 385

4.1 Square Division and Basic Labeling

In this subsection, we introduce the notion of square division, which plays a key
role of our algorithm.

Suppose that a unit disk graph is given as a collection of points in a
2-dimensional Euclidean plane. We then divide the area where the points are
placed into small squares with side length 1/

√
2 as Fig. 3. Each small square is

referred by its row and column location (i, j), say Si,j(i, j = 0, 1, . . .). Here, we
assume without loss of generality that no vertex is located at boundaries of two
or four small squares in the division; otherwise, we can avoid such a case by
perturbing the division. By this assumption, every vertex belongs to exactly one
small square. For convenience of explanation, for p = 0, 1, 2, . . . and q = 0, 1, 2 . . .,
we define a big square Bp,qas a collection of consecutive 16 small squares Si,j of
i = 4p, 4p + 1, 4p + 2, 4p + 3, j = 4q, 4q + 1, 4q + 2, 4q + 3. We denote Si,j ∈ Bp,q

if Si,j is a sub-square of Bp,q. We also denote v ∈ Bp,q if some Si,j contains v
and Si,j ∈ Bp,q.

We next consider a unit disk graph induced by a small square, called square-
UDG. Let us denote a square-UDG induced by Si,j by Gi,j . See figures in Fig. 4
as square-UDG’s of the instance of Fig. 3. Note that Gi,j forms a complete graph,
since the diagonal length of each Si,j is 1. Furthermore, |V (Gi,j)| ≤ ω. Thus we
can label vertices in every Gi,j by 2ω −1 labels, e.g., 0, 2, . . . , 2ω −2 if we ignore
labels used in surrounding square-UDG’s.

Fig. 3. Square division

We next define sets of labels. Let L(i) = {(2ω +1)i, (2ω +1)i+2, (2ω +1)i+
4, . . . , (2ω + 1)i + 2ω − 2} and L(̄i) = {(2ω + 1)i + 1, (2ω + 1)i + 3, (2ω + 1)i +
5, . . . , (2ω + 1)i + 2ω − 1} for i = 0, 1, . . . , 7. We call these L(i) and L(̄i)’s label
sets. The concrete elements of label sets are listed in Table 1.

We are now ready to explain the basic labeling. We define a mapping f
from the set of small squares to the set of indices of label sets, that is, f :

386 H. Ono and H. Yamanaka

(a) Gi+1,j+1 (b) Gi+1,j+2 (c) Gi+2,j+1 (d) Gi+2,j+2

Fig. 4. Square-UDGs in Fig. 3

Fig. 5. Positions of label sets L(0),
L(0̄), L(1), . . . , L(7), L(7̄)

Fig. 6. Euclidean distances between
L(0) and L(0̄) squares

{0, 1, . . . , } × {0, 1, . . . , } → {0, 1, . . . , 7} ∪ {0̄, 1̄, . . . , 7̄} as follows:

f(i, j) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

j (mod 4) i ≡ 0 (mod 4),
j (mod 4) + 4 i ≡ 1 (mod 4),
j + 2 (mod 4) i ≡ 2 (mod 4),
j + 2 (mod 4) + 4 i ≡ 3 (mod 4).

(2)

The mapping (or assignment) is illustrated in Fig. 5. The part indicated by the
color in Fig. 5 represents a big square, and the assignment is done in a periodic
manner. The basic labeling is just to label vertices in Si,j by labels in L(f(i, j)).
The following lemma is about the correctness of the basic labeling.

Lemma 1. A labeling output by the basic labeling satisfies the L(2, 1)-condition,
and its span is 16ω + 7.

A 116/13-Approximation Algorithm for L(2, 1)-Labeling of Unit Disk Graphs 387

Table 1. Label set for basic labeling

Label set Labels Label set Labels

L(0) 0, 2, 4, . . . , 2ω − 2 L(0̄) 1, 3, 5, . . . , 2ω − 1

L(1) 2ω + 1, 2ω + 3, . . . , 4ω − 1 L(1̄) 2ω + 2, 2ω + 4, . . . , 4ω

L(2) 4ω + 2, 4ω + 4, . . . , 6ω L(2̄) 4ω + 3, 4ω + 5, . . . , 6ω + 1

L(3) 6ω + 3, 6ω + 5, . . . , 8ω + 1 L(3̄) 6ω + 4, 6ω + 6, . . . , 8ω + 2

L(4) 8ω + 4, 8ω + 6, . . . , 10ω + 2 L(4̄) 8ω + 5, 8ω + 7, . . . , 10ω + 3

L(5) 10ω + 5, 10ω + 7, . . . , 12ω + 3 L(5̄) 10ω + 6, 10ω + 8, . . . , 12ω + 4

L(6) 12ω + 6, 12ω + 8, . . . , 14ω + 4 L(6̄) 12ω + 7, 12ω + 9, . . . , 14ω + 5

L(7) 14ω + 7, 14ω + 9, . . . , 16ω + 5 L(7̄) 14ω + 8, 14ω + 10, . . . , 16ω + 6

Proof. Since the cardinality of L(i) or L(̄i) is 2ω − 1 and Gi,j forms a complete
graph with at most ω vertices, each Gi,j is always appropriately labeled. There-
fore, what we need to consider is the relationship between L(f(i, j)) and the
assigned label set for its neighbor small squares.

First notice that the difference between label values in two different label
sets except the case L(i) and L(̄i) are at least 2. The labels in L(i) and L(̄i)
are different but the difference could be just 1. Keeping this in mind, we will
see that the mapping (label assignment) does not violate both the conditions of
distance 2 and distance 1.

First we consider the condition of distance 2. See Fig. 5 and focus on a square
assigned with 1, without loss of generality. As we can see in Figs. 5 and 6, the
Euclidean distance between a square assigned with 1 and another square assigned
with 1 is greater than 3/

√
2 > 2. This implies that vertices labeled by a same

label in L(0) are at distance more than 2 in G. Thus this does not violate the
condition of distance 2. We next consider the condition of distance 1; we focus
on square assigned with 0 and 0̄ without loss of generality. Again see Fig. 6.
The Euclidean distance between a square assigned with 0 and a square with 0̄
is greater than 1. This implies that vertices labeled by L(0) and L(0̄) are at
distance at least 2 in G, which satisfies the condition of distance 1.

Obviously, the span of this labeling is 16ω + 7 (See Table 1). ��
By a similar analysis of FFF algorithm, the basic labeling achieves approxi-

mation ratio 13, but the performance is not good enough.

4.2 Necessary Condition for σ = 2ω − 1

The lower bounds used in the analyses of FFF and CK algorithms are 2ω − 1
and Δ+2. For more detailed analyses, we focus on the lower bound 2ω−1. If we
can distinguish instances with σ = 2ω − 1 from σ ≥ 2ω and label vertices by a
smaller number of labels than 16ω+7 for the former case, we can expect a better
approximation ratio. The goal of this subsection is to give a good characterization
of instances with σ = 2ω − 1.

We first focus on how Gi,j ’s of Kω are located.

388 H. Ono and H. Yamanaka

Lemma 2. If there are two adjacent Gi,j and Gi′,j′ such that they are both Kω

and directly connected in G, σ ≥ 2ω holds.

Proof. Prove by contradiction. Assume that σ = 2ω − 1 and the usable labels
are {0, 1, . . . , 2ω−2}. Let Gi,j and Gi′,j′ be such Kω’s, and thus there is an edge
(u, v) such that u ∈ V (Gi,j) and v ∈ V (Gi′,j′). Since Gi,j is Kω, the ω vertices
in Gi,j are labeled by ω labels, say 0, 2, . . . , 2ω−2, and same for Gi′,j′ . However,
vertices in Gi,j and v are at distance two via u; the labels for v and one vertex
in Gi,j must conflict, which violates the condition of distance two. ��

Lemma 2 implies that if σ = 2ω − 1, any two Gi,j ’s forming Kω are not
directly connected. This property enables a smaller span of labeling as we see in
the next subsection.

4.3 2-Phase Labeling

In this subsection, we assume that there are no two adjacent Gi,j and Gi′,j′ such
that they are both Kω and directly connected in G. We design 2-phase labeling
based on the property.

We pick up one vertex from every Gi,j forming Kω, and name it vi,j . Let T
be the set of such vi,j ’s. The idea of 2-phase labeling is as follows: we first give
a labeling with {0, 1, . . . , 16(ω − 1) + 6} based on the basic labeling by ignoring
vertices in T . This is possible because every Gi,j becomes a clique with size at
most ω −1 by ignoring T . After that, we label vertices in T with extra 12 labels.
In the resulting labeling, the span is at most 16ω + 4.

To explain 2-phase labeling, let us define L′(i) = {(2ω−1)i, (2ω−1)i+2, (2ω−
1)i+4, . . . , (2ω−1)i+2ω−4} and L′(̄i) = {(2ω−1)i+1, (2ω−1)i+3, (2ω−1)i+
5, . . . , (2ω − 1)i + 2ω − 5} for i = 0, 1, . . . , 7. The concrete elements of label sets
are listed in Table 2. Additionally, we define L′′(0) = {16ω − 8, 16ω − 7, 16ω −
6}, L′′(1) = {16ω−5, 16ω−4, 16ω−3}, L′′(2) = {16ω−2, 16ω−1, 16ω}, L′′(3) =
{16ω + 1, 16ω + 2, 16ω + 3}. These are the label set for T .

Now we are ready to explain the 2-phase labeling.

Lemma 3. Assume that there are no two adjacent Gi,j and Gi′,j′ such that they
are both Kω and directly connected in G. A labeling generated by the 2-phase
labeling satisfies the L(2, 1)-condition, and its span is 16ω + 4.

Proof. Labeling in line 2. of Algorithm1 is essentially same as the basic labeling
with maximum clique size ω−1. Hence except for the excluded vertices in T , the
correctness of this step follows from the proof of Lemma 1. Used labels a line 3.,
that is, in L′′, are 2 different from ones in L′(i) and L′(̄i) used at line 2; we just
need to be careful about the relations among T . Notice that T is an independent
set of G by the construction and that the width of Si(= Si,1∪Si,2∪· · ·) is 1/

√
2.

If u1, u2, u3 and u4 are aligned on Si in order from the left, d(u1, u4) > 2 since
the width of Si is /

√
2 and d(u1, u2), d(u2, u3), d(u3, u4) > 1. Thus, it is always

possible to label vi,j ∈ T by L′′(k) by the left-to-right manner, periodically. Since
vertices in T are at distance at least 2, what we need to be careful about is the
condition of distance two, which is clearly satisfied. ��

A 116/13-Approximation Algorithm for L(2, 1)-Labeling of Unit Disk Graphs 389

Table 2. Label set for 2-phase labeling

Label set Labels Label set Labels

L′(0) 0, 2, 4, . . . , 2ω − 4 L′(0̄) 1, 3, 5, . . . , 2ω − 3

L′(1) 2ω − 1, 2ω + 1, . . . , 4ω − 5 L′(1̄) 2ω, 2ω + 2, . . . , 4ω − 4

L′(2) 4ω − 2, 4ω + 2, . . . , 6ω − 6 L′(2̄) 4ω − 1, 4ω + 1, . . . , 6ω − 5

L′(3) 6ω − 3, 6ω − 1, . . . , 8ω − 7 L′(3̄) 6ω − 2, 6ω, . . . , 8ω − 6

L′(4) 8ω − 4, 8ω − 2, . . . , 10ω − 8 L′(4̄) 8ω − 3, 8ω − 1, . . . , 10ω − 7

L′(5) 10ω − 5, 10ω − 3, . . . , 12ω − 9 L′(5̄) 10ω − 4, 10ω − 2, . . . , 12ω − 8

L′(6) 12ω − 6, 12ω − 4, . . . , 14ω − 10 L′(6̄) 12ω − 5, 12ω − 3, . . . , 14ω − 9

L′(7) 14ω − 7, 14ω − 5, . . . , 16ω − 11 L′(7̄) 14ω − 6, 14ω − 4, . . . , 16ω − 10

Algorithm 1. 2-phase labeling
1: Pick up vi,j from every Gi,j with ω vertices, and let T be the set of such vi,j ’s.
2: (first phase) Label vertices in V [Gi,j] \ {vi,j} by labels in L′(f(i, j)).
3: (second phase)
4: for all i do
5: Let i ≡ k (mod 4). Periodically label vi,j ∈ T by L′′(k) by the left-to-right

manner.
6: end for

4.4 Overall Algorithm and Approximation Ratio

By combining all the ideas, our algorithm forms as stated in Algorithm2.

Algorithm 2. L(2, 1)-labeling of UDG
1: Compute the maximum degree Δ and the maximum clique number ω.
2: if Δ ≤ 10 then
3: Apply CK algorithm, output the result, and halt.
4: else
5: Define a Square Division.
6: if there exist two Gi,j and Gi′,j′ such that they are both Kω and directly con-

nected in G. then
7: Apply basic labeling, output the result, and halt.
8: else
9: Apply 2-phase labeling, output the result, and halt. .

10: end if
11: end if

Now we analyze the approximation ratio. Our algorithm outputs a labeling
in lines 3, 7 and 9. We see each of these cases.

390 H. Ono and H. Yamanaka

Line 3. The output is based on CK algorithm under Δ ≤ 10. By Eq. (1), the
approximation ratio is bounded by

4Δ2/5 + 2Δ + 1
Δ + 2

≤ 101
12

= 8.416 · · · <
116
13

.

Line 7. By Lemma 2, σ ≥ 2ω holds. Since the span output by the basic labeling

is 16ω + 7 and Δ ≥ 11, the approximation ratio is bounded by

16ω + 7
max{2ω,Δ + 2} ≤ 8 +

7
Δ + 2

≤ 8.5384 · · · <
116
13

.

Line 9. By Lemma 3, the 2-phase labeling outputs a labeling with span 16ω+4.
Since Δ ≥ 11 for this case, the approximation ratio is bounded by

16ω + 4
max{2ω − 1,Δ + 2} ≤ 8 +

12
Δ + 2

≤ 116
13

.

Thus in all the cases, the approximation ratio is bounded by 116/13.

Theorem 1. The approximation ratio of Algorithm2 is bounded by 116/13.

References

1. Bodlaender, H.L., Kloks, T., Tan, R.B., Van Leeuwen, J.: Approximations for λ-
colorings of graphs. Comput. J. 47(2), 193–204 (2004)

2. Breu, H., Kirkpatrick, D.G.: Unit disk graph recognition is NP-hard. Comput.
Geom. 9(1), 3–24 (1998)

3. Calamoneri, T.: The L(h, k)-labelling problem: an updated survey and annotated
bibliography. Comput. J. 54(8), 1344–1371 (2011)

4. Chang, G.J., Kuo, D.: The L(2, 1)-labeling problem on graphs. SIAM J. Discrete
Math. 9(2), 309–316 (1996)

5. Clark, B.N., Colbourn, C.J., Johnson, D.S.: Unit disk graphs. Discrete Math. 86(1),
165–177 (1990)

6. Fiala, J., Fishkin, A.V., Fomin, F.: On distance constrained labeling of disk graphs.
Theor. Comput. Sci. 326(1), 261–292 (2004)

7. Fiala, J., Golovach, P.A., Kratochv́ıl, J.: Distance constrained labelings of graphs
of bounded treewidth. In: Caires, L., Italiano, G.F., Monteiro, L., Palamidessi, C.,
Yung, M. (eds.) ICALP 2005. LNCS, vol. 3580, pp. 360–372. Springer, Heidelberg
(2005). https://doi.org/10.1007/11523468 30

8. Fiala, J., Kloks, T., Kratochv́ıl, J.: Fixed-parameter complexity of λ-labelings.
Discrete Appl. Math. 113(1), 59–72 (2001)

9. Gonçalves, D.: On the L(p, 1)-labelling of graphs. Discrete Math. 308(8), 1405–
1414 (2008). Third European Conference on Combinatorics

10. Griggs, J.R., Yeh, R.K.: Labelling graphs with a condition at distance 2. SIAM J.
Discrete Math. 5(4), 586–595 (1992)

11. Hale, W.K.: Frequency assignment: theory and applications. Proc. IEEE 68(12),
1497–1514 (1980)

https://doi.org/10.1007/11523468_30

A 116/13-Approximation Algorithm for L(2, 1)-Labeling of Unit Disk Graphs 391

12. Hasunuma, T., Ishii, T., Ono, H., Uno, Y.: A linear time algorithm for L(2, 1)-
labeling of trees. Algorithmica 66(3), 654–681 (2013)

13. Hasunuma, T., Ishii, T., Ono, H., Uno, Y.: Algorithmic aspects of distance con-
strained labeling: a survey. Int. J. Netw. Comput. 4(2), 251–259 (2014)

14. Junosza-Szaniawski, K., Rzażewski, P., Sokó�l, J., Wesek, K.: Coloring and L(2, 1)-
labeling of unit disk intersection graphs. In: European Workshop on Computational
Geometry (EuroCG), pp. 83–86 (2016)

15. Koller, A.E.: The frequency assignment problem. Ph.D. thesis. Brunel University,
School of Information Systems, Computing and Mathematics (2005)

16. Roberts, F.S.: T -colorings of graphs: recent results and open problems. Discrete
Math. 93(2), 229–245 (1991)

17. Shao, Z., Yeh, R.K., Poon, K.K., Shiu, W.C.: The L(2, 1)-labeling of K1,n-free
graphs and its applications. Appl. Math. Lett. 21(11), 1188–1193 (2008)

18. Yeh, R.K.: A survey on labeling graphs with a condition at distance two. Discrete
Math. 306(12), 1217–1231 (2006)

Minimizing the Cost of Team Exploration

Dorota Osula(B)

Faculty of Electronics, Telecommunications and Informatics,
Gdańsk University of Technology, Gdańsk, Poland

dorurban@student.pg.edu.pl

Abstract. A group of mobile agents is given a task to explore an edge-
weighted graph G, i.e., every vertex of G has to be visited by at least
one agent. There is no centralized unit to coordinate their actions, but
they can freely communicate with each other. The goal is to construct
a deterministic strategy which allows agents to complete their task opti-
mally. In this paper we are interested in a cost-optimal strategy, where
the cost is understood as the total distance traversed by agents coupled
with the cost of invoking them. Two graph classes are analyzed, rings
and trees, in the off-line and on-line setting, i.e., when a structure of a
graph is known and not known to agents in advance. We present algo-
rithms that compute the optimal solutions for a given ring and tree of
order n, in O(n) time units. For rings in the on-line setting, we give
the 2-competitive algorithm and prove the lower bound of 3/2 for the
competitive ratio for any on-line strategy. For every strategy for trees in
the on-line setting, we prove the competitive ratio to be no less than 2,
which can be achieved by the DFS algorithm.

Keywords: Graph exploration · Distributed searching
Cost minimization · Mobile agents · On-line searching

1 Introduction

A group of mobile agents is given a task to explore the edge-weighted graph G,
i.e., every vertex of G has to be visited by at least one agent. Initially agents are
placed on one vertex, called homebase1, they are distinguishable (each entity has
its unique id) and they can communicate freely during the whole exploration
process. The goal is to find a deterministic strategy (protocol or algorithm),
which is a sequence of steps, where each step consists of parallel moves. Each
move is one of the two following types: (1) traversing an edge by an agent or
(2) invoking a new agent in the homebase. The strategy should be optimal in
specified sense; in the literature we discuss the following approaches: exploration
time, number of entities, energy and total distance optimization. Exploration

Research partially supported by National Science Centre (Poland) grant number
2015/17/B/ST6/01887.
1 After finishing the exploration, agents do not have to come back to the homebase.

c© Springer Nature Switzerland AG 2019
B. Catania et al. (Eds.): SOFSEM 2019, LNCS 11376, pp. 392–405, 2019.
https://doi.org/10.1007/978-3-030-10801-4_31

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-10801-4_31&domain=pdf
https://doi.org/10.1007/978-3-030-10801-4_31

Minimizing the Cost of Team Exploration 393

time is the number of time units required to complete the exploration, with the
assumption that a walk along an edge e takes w(e) time units (where w(e) is
the weight of the edge e). As one agent is sufficient to explore the whole graph,
in the problem of minimizing the number of entities additional restrictions of
the size of the battery of searchers (i.e., the maximum distance each agent can
travel) or the maximum exploration time are added. Energy is understood as
the maximum value taken over all agents traversed distances. Lastly, the total
distance is the sum of distances traversed by all agents. In this work we introduce
a new approach: we are looking for the cost-optimal strategy, where cost is
the sum of the distances traversed by agents and a cost of invoking them. We
consider the problem in the off-line setting, where a graph is known in advance
for searchers and the on-line one, where agents have no a priori knowledge about
the graph. We assume, for simplicity, that in one step only one agent can perform
a move.2 As the measure for an on-line algorithm the competitive ratio is used
(formally defined later), which is the maximum taken over all networks of the
results of the on-line strategy divided by the optimal one in the off-line setting.

Related Work. For exploration in the off-line setting (referred often as search-
ing) many different models were extensively studied and numerous deep results
have been obtained. Interestingly, there is a strong connection between graph
exploration and many different graph parameters, e.g., pathwidth, treewidth,
vertex separation number; see e.g., [10] for a survey and further references. In
[4] edge-weighted trees in the off-line setting were studied, where a group of
k mobile agents has a goal to explore the tree minimizing the total distance.
Agents (as in the model presented in this paper) do not have to return to the
homebase after the exploration. Thus, for k big enough, it is a special case of our
model, for which the invoking cost is equal to zero. For k greater or equal to the
number of leaves authors present the O(n) time algorithm solving the problem.
In the on-line setting, the most results were established in minimizing the time of
the exploration. Algorithms and bounds of competitive ratio were investigated,
mostly for trees [9,11,13] in different communication settings. As for the edge-
exploration of general graphs (where apart from vertices also every edge has to
be explored) see [3,11]. The competitive ratio of exploration arbitrary graphs for
teams of size bigger than

√
n was studied in [6,7]. As for different graph classes,

grids [15] and rings [13] were investigated. Several studies have been also under-
taken minimizing the energy [8,9] and the number of agents [5] for trees. As
one can observe trees are very important graph class and in this paper we give
the algorithms in off-line and on-line setting and prove the upper bound for the
competitive ratio. We note that our results may be of particular interest not only
by providing theoretical insight into searching dynamics in agent computations,
but may also find applications in the field of robotics. This model describes well
the real life problems, where every traveled unit costs (e.g., used fuel or energy)
and entities costs itself (e.g., equipping new machines or software license cost).
It can be viewed also as a special case of traveling salesmen, vehicle routing or
2 One may notice, that in order to reduce the number of time units of the algorithm,

agents moves, when possible, should be perform simultaneously.

394 D. Osula

pickup and delivery problem. Many deep results were established in these fields,
see e.g., [1,2,12,14,16] for the further references.

This work is constructed as follows: in the next Section we introduce the
necessary notation and formally define the problem. The further two Sections
present results for rings. In Sect. 3 the cost-optimal algorithm for the off-line
setting is presented, whereas in Sect. 4 the 2-competitive algorithm in the on-
line setting is described. It is also proved, that for a positive invoking cost and
any on-line strategy there exist a ring, which force the strategy to produce at
least 3/2 times higher cost than the optimal, off-line one. Section 5 contains the
algorithm and its analysis for trees in the off-line setting, while Sect. 6 provides
the proof that no algorithm can perform better on trees in the on-line setting
than DFS. In other words, the competitive ratio for every on-line algorithm is
no less than 2. We finish this work with the summary and a future outlook, and
suggest areas of further research.

The missing proofs will appear in the full version of the paper.

2 Notation

Let G be a class of non-directed, edge-weighted graphs. For every G ∈ G we
denote the sets of vertices and edges of G as V (G) and E(G), respectively,
n = |V (G)| and a weight function w : E(G) → R

+. The sum of all weights of
a subgraph H of G is denoted by w(H) =

∑
e∈E(H) w(e). For every tree T and

the pair of vertices v, u ∈ V (T) we denote a path between them as PT (v, u) (as
a path is understood an open walk with no repeated vertices). We refer to the
sum of all weights between two vertices v, u ∈ V (T) as to a distance and denote
it by dT (v, u), i.e., dT (v, u) = w(PT (v, u)). We omit the bottom index, when a
graph is clear from the context.

We define a strategy S as a sequence of moves of the following two types: (1)
traversing an edge by an agent and (2) invoking a new agent in the homebase.
We say that a strategy explores a vertex, when it is reached for the first time.
Let k ∈ N

+ be the number of agents used by S (notice that k is not fixed) and
di ∈ R

+∪{0} the distance that i-th agent traversed, i = 1, 2, . . . , k. The invoking
cost q ∈ R

+ ∪ {0} is the cost connected to the agents: every time the strategy
uses a new agent it has to ‘pay’ for it q. In other words, before exploring any
vertex, the strategy needs to decide what is more profitable: invoke a new agent
(and pay for it q) or use an agent already present in the graph. The number of
agents, that can be invoked, is unbounded. The cost c is understood as the sum of
invoking costs and the total distance traversed by entities, i.e., c = kq+

∑k
i=1 di.

The goal is to find a cost-optimal strategy, which explores every graph G ∈ G.
Let S be an on-line strategy and Sopt be the cost-optimal, off-line strategy

for every graph in G. We denote as S(G) and Sopt(G) the cost of proceeding
the strategy S and Sopt, respectively, on G ∈ G. As a measure for an on-line
algorithm S the competitive ratio is used, which is the maximum taken over all
networks of the results of the on-line strategy divided by the optimal one in the
off-line setting, i.e., r(S) = maxG∈G{S(G)\Sopt(G)}. In the on-line setting it is

Minimizing the Cost of Team Exploration 395

assumed that an agent, which occupies the vertex v, knows the length of edges
incident to v and the status of vertices adjacent to v, i.e., if they have been
already explored.

3 Rings in the Off-Line Setting

Let C = (v1, v2, . . . , vn) ∈ G be a ring with a homebase in v1. We enumerate
edges in E as ei = (vi, vi+1), i ∈ {1, 2, . . . , n − 1} and en = (vn, v1). We define
the problem in the off-line setting as follows: Given the ring C, the invoking
cost q and the homebase h, find a strategy of the minimum cost. Due to space
limitations we give only an informal description of procedure RingOffline.

In the cost-optimal solution exactly one of the edges does not have to be
traversed. Procedure RingOffline finds in O(n) steps, which edge is optimal
to omit. If this edge is incident to the homebase, then only one agent is used,
which simply traverses the whole ring without it. Otherwise, depending on the
cost q, there might be one or two agents in use. Let e be an omitted edge and
let C ′ = C\e, i.e., C ′ is a tree rooted in v1 with two leaves. We denote as
vmin and vmax the closer and further, respectively, leaf in C ′. If the invoking
cost q is lower than dC′(v1, vmin), then it is more efficient to invoke two agents,
which traverse two paths PC′(v1, vmin) and PC′(v1, vmax). On the other hand,
if q ≥ dC′(v1, vmin), then only one agent is used, which traverses the path
PC′(v1, vmin) twice. For any invoking cost q and ring C, the strategy S, returned
by the procedure RingOffline is cost-optimal.

4 Rings in the On-Line Setting

In this section we present the procedure RingOnline, which produces in O(n)
steps an 2-competitive strategy, which explores any unknown ring C. We also
prove the lower bound of 3/2 for the competitive ratio for any q > 0.

We start by giving the informal description of the procedure RingOnline.
Let S be the on-line strategy returned by the procedure RingOnline for a given
homebase v0 and invoking cost q. Firstly S invokes an agent a1 in v0 and denotes
as e1 and e−1 edges incident to v0, with the lower and higher weight respectively
(lines 4–5). Searcher a1 traverses first e1 and then continues the exploration
process as long as it is profitable, i.e., the cost of traversing the next edge is
less or equal to the invoking cost plus w(e−1) (lines 7–10). If at some point a
new agent is invoked, then it traverses the edge e−1 (lines 11–16). We notice
here that the lines 11–16 are executed at most once, as these are initial steps for
the second agent. Later, the greedy approach is performed: an edge with lesser
weight is traversed either by a1 (lines 7–10) or by a2 (lines 17–21). Below we
give a formal statement of the procedure RingOnline.

The next lemma says that for any invoking cost and any ring procedure
RingOnline returns the solution at most twice worse than the optimum, which
is tight. The following theorem shows that for any positive invoking cost and
any on-line strategy there exist a ring for which the strategy achieves at least
3/2 times higher cost than the optimal one.

396 D. Osula

Lemma 1. The strategy returned by RingOnline is 2-competitive.

Theorem 1. For any invoking cost q > 0, every on-line strategy S is at least
3
2 -competitive.

At the end we observe, that for q = 0 the strategy returned by the procedure
RingOnline is cost-optimal for every ring.

Procedure. RingOnline
Input: Homebase v0, invoking cost q
Result: Strategy S
1: ir ← 1
2: il ← −1
3: s ← 1
4: Add a move to S: invoke an agent a1 in v0
5: Denote as e1 and e−1 edges adjacent to v0, with the lower and higher weight

respectively
6: while Graph is not explored do
7: while (w(eil) + q · s) ≥ w(eir) and graph is not explored do
8: Add a move to S: traverse eir by a1

9: Denote the unexplored edge incident to the vertex occupied by a1 as eir+1

10: ir ← ir + 1

11: if s == 1 and (w(e−1) + q) < w(eir) then
12: Add a move to S: invoke an agent a2 in v0
13: Add a move to S: traverse e−1 by a2

14: Denote the unexplored edge incident to the vertex occupied by a2 as e−2

15: il ← −2
16: s ← 0
17: if s == 0 then
18: while w(eil) < w(eir) and graph is not explored do
19: Add move to S: traverse eil by a2

20: Denote the unexplored edge incident to the vertex occupied by a2 as
eil−1

21: il ← il − 1

22: return S

5 Tree in the Off-Line Setting

Let T ∈ G be a tree rooted in a homebase r and L(T) be the set of all leaves in
T . For every v ∈ V (T) we denote by Tv a subtree of T rooted in v, c(v) list of
its children and p(v) its parent vertex.

Vertex v ∈ V (T) is called a decision vertex if |c(v)| ≥ 2 and an internal vertex
if |c(v)| = 1 and v is different from the root. We say that an agent terminates
in v ∈ V (T), if v is its last visited vertex. We state the problem in the off-line
setting formally: Given the tree T, the invoking cost q and the homebase in the
root of T, find a strategy of the minimum cost.

Minimizing the Cost of Team Exploration 397

5.1 The Algorithm

In order to simplify our algorithm, a compressing operation on a tree T is pro-
ceeded. Let v ∈ V (T) be a decision vertex and u ∈ V (T) be a decision ver-
tex, a leaf or the root. The new tree T ′ is obtained by substituting every path
PT (v, u), which apart from u and v consists only internal vertices, with a single
edge e = (v, u). The weight of e is set as the weight of the whole path, i.e.,
w(e) = w(PT (v, u)). See Fig. 1 for an example of the compressing operation.

Fig. 1. The compressing operation on an exemplary tree T . The new tree T ′ has no
internal vertices.

Observation 1. In every cost-optimal strategy if an agent enters a subtree Tv,
it has to explore at least one leaf in it.

Observation 2. In every cost-optimal strategy once an agent leaves any subtree,
it never comes back to it.

Remark 1. Let v be any internal vertex. It is never optimal for an agent, which
occupies v, to return to the previously occupied vertex in its next move.

In other words, it is always optimal for agents to continue movement along
the path once entered. Thus, if we find the optimal strategy for compressed tree
T ′, then we can easily obtain the optimal strategy for T . The only difference is
that instead of walking along one edge (v, u) in T ′, the agent has to traverse the
whole path PT (v, u) in T . From now on, till the end of this Section, whenever
we talk about trees, we refer to its compressed version.

For all vertices v ∈ V (T) we consider a labeling Λv, which is a triple (k, ul, uc),
where k stands for the minimum number of agents needed to explore the whole
subtree Tv by any cost-optimal strategy. The second one, ul, is the furthest leaf
from v in Tv (if there is more than one, then v is chosen arbitrary) and uc is the
child of v, such that ul ∈ Tuc

. We will refer to this values using the dot notation,
e.g., the number of agents needed to explore tree rooted in v is denoted by Λv.k.
The set of labels for all vertices is denoted by Λ = {Λv, v ∈ V (T)}.

398 D. Osula

Procedures. The algorithm is built on the principle of dynamic programming:
first the strategy is set for leaves, then gradually for all subtrees and finally
for the root. We present three procedures: firstly, labeling Λ is calculated by
SetLabeling, which is the main core of our algorithm. Once labels for all the
vertices are set, the procedure SetStrategy builds a strategy based on them.
The main procedure CostExpl describes the whole algorithm.

Procedure SetLabeling for every subtree Tv, calculates and returns labeling
Λv. We give a formal statement of the procedure and its informal description
followed by an example. Firstly, for every leaf v label Λv = (1, v,null) is set, as
one agent is sufficient to explore v. Then, by recursion, labels for the ancestors
are set until the root r is reached. Let us describe now how the labeling for the
vertex v is established based on the labeling of its children (main loop, lines
9–16). Firstly, the number of needed agents for v is increased by the number
of needed agents for its child u (line 10). Then, if the distance between v and
the furthest leaf in Tu (i.e., d(v, Λu.ul)) is less or equal to the distance from the
root r to v plus the invoking cost q, the number of required agents is reduced
by 1 (lines 12–13). Intuitively, it is more efficient to reuse this agent, than to
invoke a new one from r. As we show formally later at most one agent can be
returned, and it can happen only if Λu.k = 1. Meanwhile the child of v, which
is an ancestor of the furthest leaf in Tv is being set (lines 14–16). See the formal
statement of the procedure and an example on the Fig. 2.

Procedure. SetLabeling
Input: Tree T , vertex v, invoking cost q, labeling Λ
Result: Updated Λ
1: if v ∈ L(T) then
2: Λv ← (1, v, null)
3: return Λ
4: for each u ∈ c(v) do
5: Invoke Procedure SetLabeling for T, u, q and Λ

6: k, dmax ← 0
7: umax

c ← null
8: dr ← d(r, v) + q
9: for each u ∈ c(v) do

10: k ← k + Λu.k
11: d ← d(v, Λu.ul)
12: if Λu.k == 1 and d ≤ dr then
13: k ← k − 1

14: if d > dmax then
15: dmax ← d
16: umax

c ← u

17: k ← max{1, k}
18: Λv ← (k, Λumax

c
.ul, u

max
c)

19: return Λ

Minimizing the Cost of Team Exploration 399

Procedure SetStrategy builds a strategy for a given subtree Tv based on the
labeling Λ. If v ∈ V (T)\L(T), then for each of its child u, firstly, the required
number of agents is sent to u (line 7) and then the strategy is set for u (line 8).
Lastly, for all children u of v (apart from the one, which has to be visited as
the last one) if it is efficient for the searcher, which finished exploration of Tu

in Λu.ul, to come back to v, then the ‘return’ sequence of moves is added (lines
9–10). It is crucial that for every v the subtree TΛv.uc

is explored as the last one,
but the order of the remaining subtrees is not important (line 5). To summarize,
we give a formal statement of the procedure.

Fig. 2. Example of the performing of the procedure SetLabeling for q = 0. Three
agents are required to explore this tree in the cost-optimal way.

Procedure. SetStrategy
Input: Tree T , vertex v, invoking cost q, labeling Λ, strategy S
Result: Strategy S
1: if v �∈ L(T) then
2: if v == r then
3: Add a move to S: invoke Λr.k agents in r

4: dr ← d(r, v) + q
5: Let c1, . . . , cl be children of v, where cl = Λv.uc

6: for i = 1, . . . , l do
7: Add a sequence of moves to S: traverse (v, ci) by Λci .k agents
8: Invoke Procedure SetStrategy for T, ci, q,Λ and S
9: if d(v, Λci .ul) ≤ dr and ci �= Λv.uc then

10: Add a sequence of moves to S: send an agent back from Λci .ul to v

Procedure CostExpl consists of two procedures presented in the previous
subsections. Firstly, SetLabeling is being invoked for the whole tree T . And
then the strategy S is being calculated from the labeling Λ by the procedure
SetStrategy. We observe that CostExpl finds a strategy in O(n) time. To sum-
marize, we give a formal statement of the procedure.

400 D. Osula

5.2 Analysis of the Algorithm

In this Section, we analyze the algorithm by providing the necessary observations
and lemmas and give the lower and upper bounds. Firstly, let us make a simple
observation about the behavior of agents in the cost-optimal strategies.

Observation 3. In every cost-optimal strategy all agents terminates in leaves
and every leaf is visited exactly once.

Procedure. CostExpl
Input: Tree T , invoking cost q
Result: Strategy S

Invoke Procedure SetLabeling for T, r, q and ∅; set Λ as an output
Invoke Procedure SetStrategy for T, r, q,Λ and ∅; set S as an output
Return S

In our strategies, subtrees Tv of the maximum height d(r, v) + q are always
explored by one agent. The next observation says that in the cost-optimal solu-
tion this agent finishes in the furthest leaf of Tv.

Observation 4. If one agent is cost-optimal to search a tree T, then it termi-
nates in one of the furthest leaves.

Let v ∈ V (T) different then root. Lemma 2 guarantees us that after the
exploration of Tv at most one agents returns to p(v). Lemma 3 and Theorem 2
present our main results.

Lemma 2. In every cost-optimal strategy if an agent leaves any subtree, it has
explored it on its own.

Lemma 3. Let Λ be a labeling returned by the procedure SetLabeling for an
arbitrary tree T . Every cost-optimal strategy uses at least Λv.k agents to explore
Tv, v ∈ V (T).3

Theorem 2. Procedure CostExpl for every tree T returns a strategy, which
explores T in the cost-optimal way.

Lower and Upper Bounds. For any tree T the value of the optimal cost c is
bounded by q +w(T) ≤ c ≤ q +2w(T)−H. A trivial lower bound is achieved on
the path graph, where one agent traverses the total distance of w(T). The upper
bound can be obtained by performing DFS algorithm by one entity, which set
it on q +2w(T). Let DFS′ be the modified version of DFS, such that the agent
does not return to the homebase (i.e., terminates in one of the leaves). Then
3 There exist cost-optimal strategies that can use more than Λv.k agents. Indeed, if

d(v, Λv.ul) = d(r, v)+q reusing the agent and calling a new one generates equal cost.

Minimizing the Cost of Team Exploration 401

we get an improved upper bound of q + 2w(T) − H, where H is the height of
T , which is tight (e.g., for paths). It is worth to mention that although DFS′

performs well on some graphs, it can be twice worse than CostExpl. Let q ≥ 0
be any invoking cost and K1,n be a star rooted in the internal vertex with edges
of the weight l > q. While DFS′ produces the cost of c′ = q+2ln−l, the optimal
solution is c = qn + ln. The ratio c′/c grows to 2 with the growth of l and n.

6 Tree in the On-Line Setting

In this Section we take a closer look at the algorithms for trees in the on-line
setting. Because the height of tree T is not known, the upper bound of the cost,
set by DFS′, is q + 2w(T) − ε, where ε is some small positive constant. This
leads to the upper bound of 2 for the competitive ratio. We are going to prove
that it is impossible to construct an algorithm that achieves better competitive
ratio than 2.

For any tree T and vertex v ∈ V (T) we define branch as a subtree rooted in a
child c of v enlarged by the vertex v and edge (v, c). Denote as G an infinite class
of rooted in v0 trees, where every edge has weight equal to 1. For every integer l ∈
N

+, i ∈ {1, 2, . . . , l} and li ∈ {1, 2, . . . , l}, we add to the class G a tree constructed
in the following way: (1) construct l + 1 paths P (vi, vi+1), i ∈ {0, 1, . . . , l} of
the length l; (2) for every i ∈ {1, 2, . . . , l} construct a path P (u′

i, ui) of the
length li − 1 (if li = 1, then ui = u′

i) and add edge (vi, u
′
i). In other words,

every graph in G has a set of decision vertices {v1, v2, . . . , vl} and set of leaves
{vl+1, u1, u2, . . . , ul}. Every decision vertex has exactly two children, vi is an
ancestor of vj and d(vi, vi+1) = l for every 1 ≤ i < j ≤ l + 1. See Fig. 3.

Fig. 3. Illustration of graphs from the class G, where l ∈ N
+ and li ∈ {1, 2, . . . , l},

i ∈ {1, 2, . . . , l}.

Theorem 3. Any on-line cost-optimal solution for trees is 2-competitive.

Proof. DFS′ is an example of an algorithm at most twice worse than the best
solution, which sets the upper bound. We are going now to show that for any
invoking cost q ≥ 0 and strategy S there exists a tree T ∈ G and a strategy S ′,
such that S(T) ≥ 2S ′(T). Let l ∈ N

+ be any integer. Values of li, i ∈ {1, 2, . . . , l}
are set during the execution of S. For every vi, i ∈ {1, 2, . . . , l} three cases can
occur.
A1: More than one agent reaches vi before any child of vi is explored. The value
of li is set as 1.

402 D. Osula

A2: One of the agents explores one of the branches of vi at the depth 0 ≤ h < l
and the second branch at the depth l, before any other agent reaches vi for the
first time. In this situation we choose a set of graphs from G for which the
explored vertex at the depth l is vi+1 and li = h + 1. The value of h might be 0,
as it takes place e.g., for DFS.
A3: One of the agents explores two branches of vi at the depth 0 ≤ h1 < l, 1 ≤
h2 < l, before any other agent reaches vi for the first time. Without loss of
generality, we assume that the branch explored to the level h2 is visited as the
last one. In this situation we choose a set of graphs from G for which vertex vi+1

belongs to the branch of vi explored till the level h2 and li = h1 +1. Once again,
h1 = 0 means that the branch was not explored at all.

When S explores vl+1, all li are defined and the set of graphs is narrowed to
the exactly one graph, which we denote as T . We claim first that the distance d0
traversed along the path P (v1, vl+1) is at least 2l2 − l in any S. Let agent a1 be
the one, which explores vl+1 and let k ∈ {0, 1, . . . , l} be the number of decision
vertices visited by more than one agent.
B1: k = 0, i.e., T is explored by one agent. In other words, for all vi holds the case
A2. We notice that, whenever a strategy S explores vi+1, i ∈ {1, 2, . . . , l}, exactly
one vertex (i.e., leaf ui) on the path P (vi, ui) is unexplored. Thus, P (v1, vl+1)
has to be traversed at least twice and d0 ≥ 2l2.
B2: k = l. Path P (v1, vl) has to be obviously traversed at least twice and
P (vl, vl+1) once, i.e., d0 ≥ 2l(l − 1) + l = 2l2 − l.
B3: 0 < k < l. In other words, Tvk+1 is explored by one agent. Paths P (v1, vk)
and P (vk+1, vl+1) are traversed at least twice and P (vk, vk+1) at least once.
Thus, d0 ≥ 2l(k − 1) + 2l(l − k) + l = 2l2 − l.

Now, we have to analyze paths P (vi, ui), i ∈ {1, 2, . . . , l}. We divide decision
vertices into the four groups based on the performance of S:

– V1 = {vi|li = 1, no agent terminates in ui, i ∈ {1, 2, . . . , l}};
– V2 = {vi|li = 1, at least one agent terminates in ui, i ∈ {1, 2, . . . , l}};
– V3 = {vi|li > 1, no agent terminates in any vertices of the path

P (vi, ui), i ∈ {1, 2, . . . , l}};
– V4 = {vi|li > 1, at least one agent terminates in a vertex from the path

P (vi, ui), i ∈ {1, 2, . . . , l}}.

Notice that V1, V2, V3 and V4 form a partition of decision vertices. Let us
denote as di the total distance traversed by all the agents along P (vi, ui) in S.
For any vi ∈ V1 we have di ≥ 2 and vi ∈ V2 we have di ≥ 1. From the way how
T is constructed follows, that if li > 1, then either holds A2 and h > 0 or A3
and h1 > 0. In both situations path P (vi, p(ui)) is first traversed at least twice,
leaving ui unexplored. If now, no agent terminates in any vertex of P (vi, ui),
then P (vi, p(ui)) has to be traversed at least twice more. Thus, for any vi ∈ V3

stays di ≥ 4(li − 1) + 2 ≥ 4li − 2. On the other hand, if at least one agent
terminates in any vertex of P (vi, ui), then P (vi, p(ui)) can be traversed only one
extra time. Which leads to, di ≥ 3(li − 1) + 1 ≥ 3li − 2.

Minimizing the Cost of Team Exploration 403

Lastly, we have to consider the extra cost d′ generated by searchers. Every
invoked agent, which terminates on some path P (vi, ui) has to traverse the edge
(v0, v1), thus d′ ≥ (q + l) (|V2| + |V4|) ≥ |V2| + l|V4|.

The total cost of exploring T by S can be lower bounded by

S(T) ≥ 2l2 − l + 2|V1| + |V2| +
∑

vi∈V3

(4li − 2) +
∑

vi∈V4

(3li − 2) + |V2| (1)

+ l|V4| ≥ 2l2 − l + 2|V1| + 2|V2| + 4
∑

vi∈V3

li − 2|V3| + 4
∑

vi∈V4

li − 2|V4| (2)

= 2l2 − l + 4
l∑

i=1

li − 2(|V1| + |V2| + |V3| + |V4|) = 2l2 + 4
l∑

i=1

li − 3l. (3)

Consider now the following off-line strategy S ′, which explores the same graph
T by using one agent, which after reaching the decision vertex vi, i ∈ {1, 2, . . . , l},
firstly traverses the path P (vi, ui), then returns to vi and explores further the
tree. The agent finally terminates in vl+1. Thus, the path P (v0, vl+1) of the
length (l + 1)l is traversed only once and paths P (vi, ui), i ∈ {1, 2, . . . , l} twice.
The optimal strategy can be then upper bounded by

Sopt(T) ≤ S ′(T) = q + l2 + 2
l∑

i=1

li + l. (4)

This leads to the following competitive ratio

r(S) = lim
l→∞

S(T)
Sopt(T)

≥ lim
l→∞

2l2 + 4
l∑

i=1

li − 3l

q + l2 + 2
l∑

i=1

li + l

(5)

= 2 − lim
l→∞

5l + 2q

q + l2 + 2
l∑

i=1

li + l

= 2, (6)

which finishes the proof.

7 Conclusion

In this work we propose a new cost of the team exploration, which is the sum of
total traversed distances by agents and the invoking cost which has to be paid
for every searcher. This model describes well the real life problems, where every
traveled unit costs (e.g., used fuel or energy) and entities costs itself (e.g., equip-
ping new machines or software license cost). The algorithms, which construct
the cost-optimal strategies for any given edge-weighted ring and tree in O(n)
time are presented. As for the on-line setting the 2-competitive algorithm for
rings is given and the lower bounds of 3/2 and 2 for the competitive ratio for

404 D. Osula

rings and trees, respectively, are proved. While there is very little done in this
area, a lot of new questions have been pondered. Firstly, it would be interest-
ing to consider other classes of graphs, also for the edge-exploration (where not
only every vertex has to be visited, by also every edge). Intuitively, for some of
them, the problem would be easy and for some might be NP-hard (e.g., cliques).
Another direction is to look more into the problem in the on-line setting, which
is currently rapidly expanding due to its various application in many areas. It
would be highly interesting to close the gap between lower and upper bounds
of the competitive ratio for rings. Another idea is to bound communication for
agents, which will make this model truly distributed. One may notice, that a
simple solution of choosing one leader agent to pass messages between the other
entities might not be cost-optimal, as it significantly rises the traveling cost.
Lastly, different variation of this model might be proposed, e.g., the invoking
cost might increase/decrease with the number of agents in use or time might be
taken under consideration as the third minimization parameter.

References

1. Bellmore, M., Nemhauser, G.L.: The traveling salesman problem: a survey. Oper.
Res. 16(3), 538–558 (1968)

2. Berbeglia, G., Cordeau, J.F., Gribkovskaia, I., Laporte, G.: Static pickup and deliv-
ery problems: a classification scheme and survey. Top 15(1), 1–31 (2007)

3. Brass, P., Vigan, I., Xu, N.: Improved analysis of a multirobot graph exploration
strategy. In: 2014 13th International Conference on Control Automation Robotics
& Vision (ICARCV), pp. 1906–1910. IEEE (2014)

4. Czyzowicz, J., Diks, K., Moussi, J., Rytter, W.: Energy-optimal broadcast in a
tree with mobile agents. In: Fernández Anta, A., Jurdzinski, T., Mosteiro, M.A.,
Zhang, Y. (eds.) ALGOSENSORS 2017. LNCS, vol. 10718, pp. 98–113. Springer,
Cham (2017). https://doi.org/10.1007/978-3-319-72751-6 8

5. Das, S., Dereniowski, D., Karousatou, C.: Collaborative exploration by energy-
constrained mobile robots. In: Scheideler, C. (ed.) Structural Information and
Communication Complexity. LNCS, vol. 9439, pp. 357–369. Springer, Cham (2015).
https://doi.org/10.1007/978-3-319-25258-2 25

6. Dereniowski, D., Disser, Y., Kosowski, A., Pajak, D., Uznanski, P.: Fast collabo-
rative graph exploration. Inf. Comput. 243, 37–49 (2015)

7. Disser, Y., Mousset, F., Noever, A., Škorić, N., Steger, A.: A general lower bound
for collaborative tree exploration. In: Das, S., Tixeuil, S. (eds.) SIROCCO 2017.
LNCS, vol. 10641, pp. 125–139. Springer, Cham (2017). https://doi.org/10.1007/
978-3-319-72050-0 8

8. Dynia, M., Korzeniowski, M., Schindelhauer, C.: Power-aware collective tree explo-
ration. In: Grass, W., Sick, B., Waldschmidt, K. (eds.) ARCS 2006. LNCS,
vol. 3894, pp. 341–351. Springer, Heidelberg (2006). https://doi.org/10.1007/
11682127 24

9. Dynia, M., �Lopuszański, J., Schindelhauer, C.: Why robots need maps. In:
Prencipe, G., Zaks, S. (eds.) SIROCCO 2007. LNCS, vol. 4474, pp. 41–50. Springer,
Heidelberg (2007). https://doi.org/10.1007/978-3-540-72951-8 5

10. Fomin, F., Thilikos, D.: An annotated bibliography on guaranteed graph searching.
Theor. Comput. Sci. 399(3), 236–245 (2008)

https://doi.org/10.1007/978-3-319-72751-6_8
https://doi.org/10.1007/978-3-319-25258-2_25
https://doi.org/10.1007/978-3-319-72050-0_8
https://doi.org/10.1007/978-3-319-72050-0_8
https://doi.org/10.1007/11682127_24
https://doi.org/10.1007/11682127_24
https://doi.org/10.1007/978-3-540-72951-8_5

Minimizing the Cost of Team Exploration 405

11. Fraigniaud, P., Gasieniec, L., Kowalski, D.R., Pelc, A.: Collective tree exploration.
Networks 48(3), 166–177 (2006)

12. Golden, B.L., Raghavan, S., Wasil, E.A.: The Vehicle Routing Problem: Latest
Advances and New Challenges, vol. 43. Springer, Heidelberg (2008). https://doi.
org/10.1007/978-0-387-77778-8

13. Higashikawa, Y., Katoh, N., Langerman, S., Tanigawa, S.: Online graph exploration
algorithms for cycles and trees by multiple searchers. J. Comb. Optim. 28(2), 480–
495 (2014)

14. Kumar, S.N., Panneerselvam, R.: A survey on the vehicle routing problem and its
variants. Intell. Inf. Manag. 4(03), 66 (2012)

15. Ortolf, C., Schindelhauer, C.: Online multi-robot exploration of grid graphs with
rectangular obstacles. In: Proceedings of the Twenty-Fourth Annual ACM Sym-
posium on Parallelism in Algorithms and Architectures, pp. 27–36. ACM (2012)

16. Vaishnav, P., Choudhary, N., Jain, K.: Traveling salesman problem using genetic
algorithm: a survey. Int. J. Sci. Res. Comput. Sci. Eng. Inf. Technol. 2(3), 105–108
(2017)

https://doi.org/10.1007/978-0-387-77778-8
https://doi.org/10.1007/978-0-387-77778-8

Two-Head Finite-State Acceptors
with Translucent Letters

Benedek Nagy1 and Friedrich Otto2(B)

1 Department of Mathematics, Faculty of Arts and Sciences, Eastern Mediterranean
University, Famagusta, North Cyprus, via Mersin 10, Turkey

nbenedek.inf@gmail.com
2 Fachbereich Elektrotechnik/Informatik, Universität Kassel, 34109 Kassel, Germany

f.otto@uni-kassel.de

Abstract. Finite-state acceptors are studied that have two heads that
read the input from opposite sides. In addition, a set of translucent letters
is associated with each state. It is shown that these two-head automata
are strictly more expressive than the model with a single head, but that
they still only accept languages that have a semi-linear Parikh image. In
fact, we obtain a characterization for the class of linear context-free trace
languages in terms of a specific class of two-head finite-state acceptors
with translucent letters.

Keywords: Two-head finite-state acceptor · Translucent letter
Linear context-free language · Semi-linear Parikh set · Trace language

1 Introduction

The finite-state acceptor is one of the most fundamental computing devices for
accepting languages, and it is being used in many areas like compiler construc-
tion, text editors, hardware design, etc. A finite-state acceptor reads its input
strictly sequentially from left to right. However, in the literature one finds many
extensions of this model that process their inputs in different ways like, e.g.,

– the multi-head finite-state acceptor, which has a finite number of heads that
all read the input from left to right [17], the Watson-Crick (WK for short)
automaton [3], which has two heads that read the input from left to right,
but which works on double stranded words where letters on corresponding
positions are connected by a complementarity relation,

– the 5′ → 3′sensing Watson-Crick automaton [7,9], which has two heads that
start from the two ends of an input word, one reading the word from left to
right and the other reading it from right to left, halting when the two heads
meet,

– the nondeterministic linear automata of [1] (see also [8,18]), and
– the finite-state acceptor with translucent letters [10,14], which has a single

head starting at the left end of an input word, but depending on the actual
c© Springer Nature Switzerland AG 2019
B. Catania et al. (Eds.): SOFSEM 2019, LNCS 11376, pp. 406–418, 2019.
https://doi.org/10.1007/978-3-030-10801-4_32

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-10801-4_32&domain=pdf
https://doi.org/10.1007/978-3-030-10801-4_32

Two-Head Finite-State Acceptors with Translucent Letters 407

state, it skips across a prefix of letters that are translucent, in this way reading
(and deleting) a letter from the input. This type of automaton is equivalent
to the cooperating distributed systems of stateless deterministic restarting
automata with window size 1 that were introduced and studied in [11,15].

– Finally, there is the jumping finite automaton [6], which has a single head
starting at the left end of the input, but that jumps in each step to an arbitrary
position reading (and deleting) the letter at that position.

In this paper we propose a new type of two-head finite-state acceptor, the
two-head finite-state acceptor with translucent letters (2hNFAwtl, for short). It is
obtained by combining the concept of the 5′ → 3′ sensing WK automaton with
the idea of translucent letters, in this way giving a new more powerful finite
state model. Such a device is given an input word surrounded by sentinels, and
it has two heads that start at the two ends of the given input, being positioned
on the sentinels, one scanning the input from left to right, the other scanning
it from right to left. However, depending on the actual state, certain letters are
translucent. This means that the left head, that is, the one scanning the input
from left to right, skips across a prefix of translucent letters and reads (and
deletes) the first letter that is not translucent for the current state. Analogously,
the right head, that is, the head that scans the input from right to left, skips
across a suffix of translucent letters and reads (and deletes) the first letter from
the right that is not translucent for the current state. If no such letter is found,
then the automaton halts, accepting if the current state is final.

As the 2hNFAwtl extends the 5′ → 3′ sensing WK automaton, it accepts all
linear context-free languages. Actually, the 2hNFAwtl even accepts some lan-
guages that are not context-free, but we will see that each language L accepted
by a 2hNFAwtl contains a linear context-free sublanguage L′ that is letter-
equivalent to L, that is, L and L′ have the same Parikh image. This implies in
particular that all these languages have semi-linear Parikh images. Further, we
will see that all linear context-free trace languages are accepted by 2hNFAwtls,
and we can even characterize this class of trace languages by a restricted type of
2hNFAwtls. In addition, we will see that the 2hDFAwtl, the deterministic variant
of the 2hNFAwtl, is less expressive than the 2hNFAwtl, and we establish some
closure and some non-closure properties for the classes of languages accepted by
2hNFAwtls and by 2hDFAwtls. Also we consider a number of decision problems
for 2hNFAwtls.

This paper is structured as follows. In Sect. 2, we recall basic notions and
notation of formal language theory. In Sect. 3, we introduce the two-head finite-
state acceptor with translucent letters, we present an example illustrating its
expressive power, and we establish a normal form for 2hNFAwtls. In Sect. 4,
we derive the aforementioned results on the expressive power of the 2hNFAwtl.
Finally, we study closure and decidability results in Sect. 5.

2 Preliminaries

For a finite alphabet Σ, we use Σ+ to denote the set of non-empty words over Σ
and Σ∗ to denote the set of all words over Σ including the empty word ε. For

408 B. Nagy and F. Otto

a word w ∈ Σ∗, |w| denotes the length of w, and |w|a is the a-length of w,
that is, the number of occurrences of the letter a in w. For any automaton A,
we will use the notation L(A) to denote the language that consists of all words
that are accepted by A, and for any type of automaton A, L(A) is the class of
languages that are accepted by automata of type A. Here we assume that the
reader is familiar with the basics of formal language and automata theory for
which we refer to the textbook [5]. By REG, LIN, and CFL we denote the classes
of regular, linear context-free, and context-free languages, respectively. Finally,
two languages over the same alphabet Σ = {a1, a2, . . . , an} are called letter-
equivalent if they have the same image under the Parikh mapping ψ : Σ∗ → N

n.
A two-head finite automaton (2hNFA) is described by a 5-tuple A =

(Q,Σ, I, F, δ), where Q is a finite set of states, Σ is a finite input alphabet,
I ⊆ Q is the set of initial states, F ⊆ Q is the set of final (or accepting) states,
and δ : Q × (Σ ∪ {ε}) × (Σ ∪ {ε}) → 2Q is a transition relation.

A 2hNFA A works as follows. On an input word w ∈ Σ∗, it starts in an
initial state q0 ∈ I with its first (or left) head on the first letter of w and its
second (or right) head on the last letter of w. This configuration is encoded as
q0w. Now, depending on the allowed transitions, it reads the first and/or the last
letter (or nothing) of w, and changes its state. Formally, the configuration qavb
can be transformed into the configuration pv if p ∈ δ(q, a, b), where p, q ∈ Q and
a, b ∈ Σ ∪ {ε}. If no transition can be applied, then A halts without accepting
if w = avb is nonempty. Otherwise, it continues reading (and deleting) letters
until w has been consumed completely. We say that A accepts w if A has a
computation that is in a final state qf ∈ F after reading w completely. It is
known that the language class L(2hNFA) coincides with the class LIN of linear
context-free languages [7,9].

In [14] the finite-state acceptor with translucent letters (NFAwtl) was intro-
duced. Essentially it is a nondeterministic finite-state acceptor A for which a
subset τ(q) of translucent letters is associated with each state q. Thus, when in
state q, then A does not read the first letter on its input tape, but it looks for the
first occurrence from the left of a letter that is not translucent for state q. Thus,
if w = uav such that u ∈ (τ(q))∗ and a �∈ τ(q), then A nondeterministically
chooses a state q1 ∈ δ(q, a), erases the letter a from the tape thus producing
the tape contents uv�, and enters state q1. In case δ(q, a) = ∅, A halts without
accepting. Finally, if w ∈ (τ(q))∗, then A reaches the endmarker � and the com-
putation halts, accepting iff q is a final state. NFAwtls accept a class of languages
that properly contains all rational trace languages [14].

3 Two-Head Finite-State Acceptors with Translucent
Letters

Definition 1. A two-head finite-state acceptor with translucent letters
(2hNFAwtl) consists of a finite-state control, a single flexible tape with end-
markers, and two heads that are positioned on these endmarkers. It is defined
by an 8-tuple A = (Q,Σ,�,�, τ, I, F, δ), where Q is a finite set of states that

Two-Head Finite-State Acceptors with Translucent Letters 409

is partitioned into two subsets Q = QL ∪ QR of left and right states, Σ is a
finite input alphabet, �,� �∈ Σ are special symbols that are used as endmarkers,
τ : Q → 2Σ is a translucency mapping, I ⊆ Q is a set of initial states, F ⊆ Q
is a set of final states, and δ : Q × Σ → 2Q is a transition relation. For each
state q ∈ Q, the letters from the set τ(q) are translucent for q, that is, in state q
the automaton A cannot see them.

A is called a deterministic two-head finite-state acceptor with translucent
letters, abbreviated as 2hDFAwtl, if |I| = 1 and if |δ(q, a)| ≤ 1 for all q ∈ Q and
all a ∈ Σ.

A 2hNFAwtl A = (Q,Σ,�,�, τ, I, F, δ) works as follows. For an input word
w ∈ Σ∗, an initial configuration consists of the automaton being in an initial
state q0 chosen nondeterministically from the set I with the word �w� on its
tape. On the set Q · �Σ∗� of configurations, A executes the following compu-
tation relation:

q �w� 	A

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

q′ �uz�, if q ∈ QL and w = uaz for u ∈ (τ(q))∗, a ∈ Σ � τ(q),
and q′ ∈ δ(q, a),

Reject, if q ∈ QL and w = uaz for u ∈ (τ(q))∗, a ∈ Σ � τ(q),
and δ(q, a) = ∅,

q′ �vy�, if q ∈ QR and w = vby for y ∈ (τ(q))∗, b ∈ Σ � τ(q),
and q′ ∈ δ(q, b),

Reject, if q ∈ QR and w = vby for y ∈ (τ(q))∗, b ∈ Σ � τ(q),
and δ(q, b) = ∅,

Accept, if w ∈ (τ(q))∗ and q ∈ F,
Reject, if w ∈ (τ(q))∗ and q �∈ F.

A word w ∈ Σ∗ is accepted by A if there exist an initial state q0 ∈ I and
a computation q0 �w� 	∗

A Accept, where 	∗
A denotes the reflexive transitive

closure of the single-step computation relation 	A.
If A is a 2hNFAwtl such that τ(q) = ∅ for all states q of A, then A can

actually be seen as a 2hNFA. Conversely, if B is a 2hNFA, then by splitting each
state q of B into a left state qL and a right state qR and by rearranging the
transitions accordingly, we obtain a 2hNFAwtl A with empty transparency sets
such that L(A) = L(B). Hence, the 2hNFAwtl is an extension of the 2hNFA,
which shows that LIN ⊆ L(2hNFAwtl).

Obviously, the 2hNFAwtl is also an extension of the NFAwtl. The linear
language { anbn | n ≥ 0 } is not accepted by any NFAwtl [14], while L(NFAwtl)
does even contain some non-context-free languages, for example, the language
{w ∈ {a, b, c}∗ | |w|a = |w|b = |w|c }. However, the 2hNFAwtl is more expressive
than the NFAwtl.

Example 2. Let L be the non-context-free language

L = {w1#u#w2 | w1, w2 ∈ {a, b}∗, |w1|a = |w2|a, |w1|b = |w2|b
and u ∈ {c, d}∗ is a palindrome }.

410 B. Nagy and F. Otto

As L does not contain any regular subset that is letter-equivalent to L itself, L
is not accepted by any NFAwtl [14]. However, L is accepted by the 2hNFAwtl
A = (Q,Σ,�,�, τ, I, F, δ) that is defined as follows:

– Q = QL ∪ QR, where QL = {qa, qb, q#, qc, qd} and QR = {pa, pb, p#, pc, pd},
– Σ = {a, b, c, d,#}, I = {qa, qb, q#}, and F = {qc, qd, pc, pd},
– τ(qa) = τ(pa) = {b}, τ(qb) = τ(pb) = {a}, and τ(q) = ∅ for all other states,
– and the transition relation is given through the following table:

qa qb q# qc qd pa pb p# pc pd

a pa − − − − qa, qb, q# − − − −
b − pb − − − − qa, qb, q# − − −
− − p# − − − − qc, qd − −
c − − − pc − − − − qc, qd −
d − − − − pd − − − − qc, qd

Thus, we have the following proper inclusions.

Proposition 3. L(2hNFA) = LIN � L(2hNFAwtl) and L(NFAwtl) �

L(2hNFAwtl).

Next we introduce a restricted type of 2hNFAwtls that yields very transpar-
ent computations, in this way simplifying constructions and proofs.

Definition 4. Let A = (Q,Σ,�,�, τ, I, F, δ) be a 2hNFAwtl. For each state
q ∈ Q we define μ(q) = { a ∈ Σ | δ(q, a) �= ∅ }, that is, μ(q) is the set of
letters which A can read in state q. Observe that we can assume w.l.o.g. that
μ(q)∩τ(q) = ∅ for all states q ∈ Q. Now the 2hNFAwtl A is said to be in normal
form if

1. it always accepts with empty tape, that is, each word from L(A) is read (and
deleted) completely before A accepts,

2. |μ(q)| ≤ 1 for each state q ∈ Q, that is, for each state q ∈ Q, there exists at
most one letter a ∈ Σ such that δ(q, a) is defined.

Concerning this normal form we have the following result.

Proposition 5. From a given 2hNFAwtl A = (Q,Σ,�,�, τ, I, F, δ) one can
effectively construct a 2hNFAwtl B = (QB , Σ,�,�, τB , IB , FB , δB) in normal
form such that L(B) = L(A).

If A is a 2hNFAwtl that is in normal form, then by removing the translucency
relation from A, we obtain a 2hNFA A′. In fact, the following result holds.

Proposition 6. By removing the translucency relation from a 2hNFAwtl A that
is in normal form, we obtain a 2hNFA A′ such that L(A′) is a sublanguage of
L(A) that is letter-equivalent to L(A).

Two-Head Finite-State Acceptors with Translucent Letters 411

Proof. Let A = (Q,Σ,�,�, τ, I, F, δ) be a 2hNFAwtl that is in normal form,
and let B = (Q,Σ, I, F, δB) be the 2hNFA that is obtained from A by removing
the translucency relation τ and the endmarkers � and �. In addition, if q ∈ QL

and a ∈ Σ � τ(q), then δB(q, a, ε) = δ(q, a) and δB(q, b, ε) = ∅ for all b ∈ τ(q),
and if q ∈ QR and a ∈ Σ � τ(q), then δB(q, ε, a) = δ(q, a) and δB(q, ε, b) = ∅ for
all b ∈ τ(q). Then each accepting computation of B corresponds to an accepting
computation of A in which no translucent letter is ever skipped over. Thus,
L(B) ⊆ L(A).

Conversely, assume that w ∈ L(A), where w = a1a2 · · · an. From the first
condition in Definition 4, it follows that an accepting computation of A on input
w must read and erase the word w completely, that is, it has the form

q0�w� 	A qi1 �w1� 	A qi2 �w2� 	A · · · 	A qin−1 �wn−1� 	A qin ��,

where q0 ∈ I and qin ∈ F . We claim that there exists a word z ∈ Σ∗ such that
q0z 	n

B qin and ψ(z) = ψ(w) hold. We proceed by induction on the length n
of w.

If n = 0, then w = ε, which means that q0 = qin . Hence, we can take
z = ε = w.

Now assume that q0 ∈ QL and that w = xay for some x ∈ (τ(q0))∗ and
a ∈ Σ�τ(q0) such that |δ(q0, a)| > 0. Then w1 = xy and qi1 ∈ δ(q0, a). From the
induction hypothesis we see that there exists a word z1 ∈ Σ∗ such that qi1z1 	n−1

B

qin and ψ(z1) = ψ(w1). Let z = az1. Then q0z = q0az1 	B qi1z1 	n−1
B qin , that is,

B accepts on input z, and ψ(z) = ψ(az1) = ψ(aw1) = ψ(axy) = ψ(xay) = ψ(w).
Finally, if q0 ∈ QR and w = ubv for some v ∈ (τ(q0))∗ and b ∈ Σ �τ(q0) such

that |δ(q0, b)| > 0, then w1 = uv and qi1 ∈ δ(q0, b). Again from the induction
hypothesis we see that there exists a word z1 ∈ Σ∗ such that qi1z1 	n−1

B qin and
ψ(z1) = ψ(w1). Let z = z1b. Then q0z = q0z1b 	B qi1z1 	n−1

B qin , that is, B
accepts on input z, and ψ(z) = ψ(z1b) = ψ(w1b) = ψ(uvb) = ψ(ubv) = ψ(w).
Thus, we see that, for each word w ∈ L(A), there exists a word z ∈ L(B) such
that w and z are letter-equivalent. �

This yields the following consequence.

Corollary 7. Each language L ∈ L(2hNFAwtl) contains a sublanguage that is
linear context-free and letter-equivalent to L. In particular, this implies that L
is semi-linear, that is, ψ(L) is a semi-linear subset of N

n.

As the language L′ = { ambn#u#ambn | m,n ≥ 0, u ∈
{c, d}∗ is a palindrome } does not contain a linear sublanguage that is letter-
equivalent to L′ itself, it follows from Corollary 7 that L′ is not accepted by any
2hNFAwtl. As

L′ = L ∩ a∗ · b∗ · # · {c, d}∗ · # · a∗ · b∗,

where L is the language from Example 2, this yields the following non-closure
property.

Corollary 8. L(2hNFAwtl) is not closed under intersection with regular
languages.

412 B. Nagy and F. Otto

As all regular languages are accepted by 2hNFAwtls, we see that the class
L(2hNFAwtl) is not closed under intersection. However, it is easily seen that this
class is closed under union. Thus, we obtain the following result.

Corollary 9. The language class L(2hNFAwtl) is closed under union, but it is
neither closed under intersection nor under complementation.

The languages L1 = { ambm | m ≥ 0 } and L2 = { cndn | n ≥ 0 } are both
linear context-free and they are accepted by 2hDFAwtls. However, their product
L1 · L2 = { ambmcndn | m,n ≥ 0 } does not contain a sublanguage that is linear
context-free and letter-equivalent to the language itself. Hence, by Corollary 7,
L1 · L2 is not accepted by any 2hNFAwtl. This yields the following non-closure
property.

Corollary 10. L(2hNFAwtl) and L(2hDFAwtl) are not closed under product.

Finally, we separate the 2hDFAwtl from the 2hNFAwtl.

Proposition 11. The language class L(2hDFAwtl) is closed under complemen-
tation.

Proof. Let A = (Q,Σ,�,�, τ, q0, F, δ) be a 2hDFAwtl. We define a 2hDFAwtl
Ac = (Q ∪ {qf}, Σ,�,�, τc, q0, Fc, δc), where qf is a new left state, by taking
τc(qf) = Σ and τc(q) = τ(q) for all q ∈ Q, Fc = (Q � F) ∪ {qf}, and by defining
δc as follows:

δc(q, a) = δ(q, a) for all q ∈ Q and all a ∈ μ(q),
δc(q, b) = qf for all q ∈ Q and all b ∈ Σ � (τ(q) ∪ μ(q)).

Thus, given a word w ∈ Σ∗ as input, Ac performs the same steps as A until A
halts. Let q ∈ Q and u ∈ Σ∗ be the current state and the current tape contents
at that point.

– If q ∈ F and u ∈ (τ(q))∗, then A accepts, which means that w ∈ L(A).
However, as q �∈ Fc, we see that Ac does not accept on input w.

– If q �∈ F , but u ∈ (τ(q))∗, then A does not accept, which means that w �∈ L(A).
However, as q ∈ Fc, we see that Ac accepts on input w.

– Finally, if q is a left state and u = xay for some word x ∈ (τ(q))∗ and a
letter a �∈ (τ(q) ∪ μ(q)), then A just gets stuck without accepting, which
means that w �∈ L(A). However, Ac continues the current computation by
q � xay� 	Ac qf � xy�, and then Ac accepts as qf ∈ Fc and xy ∈ (τ(qf))∗,
that is, w ∈ L(Ac).

– If q is a right state and u = xay for some word y ∈ (τ(q))∗ and a letter
a �∈ (τ(q) ∪ μ(q)), then it follows analogously that Ac accepts on input w.

Thus, we see that L(Ac) = Σ∗
� L(A). �

From the definition it follows immediately that L(2hDFAwtl) ⊆ L(2hNFAwtl).
By Proposition 11, L(2hDFAwtl) is closed under complementation, while by
Corollary 9, L(2hNFAwtl) is not. Thus, we obtain the following separation result.

Corollary 12. L(2hDFAwtl) � L(2hNFAwtl).

Two-Head Finite-State Acceptors with Translucent Letters 413

4 Linear Context-Free Trace Languages

Let Σ be a finite alphabet, and let D be a binary relation on Σ that is reflexive
and symmetric. Then D is called a dependency relation on Σ, and ID = (Σ ×
Σ)�D is called the corresponding independence relation. Obviously, the relation
ID is irreflexive and symmetric. The independence relation ID induces a binary
relation ≡D on Σ∗ that is defined as the smallest congruence relation containing
the set of pairs { (ab, ba) | (a, b) ∈ ID }. For w ∈ Σ∗, the congruence class of
w mod ≡D is denoted by [w]D, that is, [w]D = { z ∈ Σ∗ | w ≡D z }. These
congruence classes are called traces, and the factor monoid M(D) = Σ∗/≡D is a
trace monoid. In fact, M(D) is the free partially commutative monoid presented
by (Σ,D) (see, e.g., [2]).

To simplify the notation, we introduce the following notions. For w ∈ Σ∗, we
use Alph(w) to denote the set of all letters that occur in w, and we extend the
independence relation from letters to words by defining, for all words u, v ∈ Σ∗,
(u, v) ∈ ID if and only if Alph(u) × Alph(v) ⊆ ID.

A language L ⊆ Σ∗ is called a rational trace language, if there exist a trace
monoid M(D) and a regular language R ⊆ Σ∗ such that L = ϕ−1

D (ϕD(R)) =⋃
w∈R[w]D. Here ϕD denotes the morphism that maps a word w to the cor-

responding trace [w]D. By LRAT (D) we denote the set of rational trace lan-
guages ϕ−1

D (RAT(M(D))) over M(D). In [11] (see also [14]) it is shown that
LRAT (D) � L(NFAwtl).

Here we are interested in more general trace languages. A language L ⊆
Σ∗ is called a (linear) context-free trace language, if there exist a dependency
relation D on Σ and a (linear) context-free language R ⊆ Σ∗ such that L =
ϕ−1

D (ϕD(R)) =
⋃

w∈R[w]D. By LLCF(D) we denote the set of linear context-free
trace languages obtained from (Σ,D). In [12,13] it is shown that the context-
free trace languages are accepted by certain cooperating distributed systems
of a very restricted type of restarting automata, which can be interpreted as
nondeterministic pushdown automata with translucent letters. Here we derive
the following result.

Theorem 13. For each trace monoid M(D) presented by (Σ,D), where D is a
dependency relation on the alphabet Σ, LLCF(D) ⊆ L(2hNFAwtl).

Proof. Let R be a linear context-free language over Σ, let S = ϕD(R) ⊆ M(D),
and let L = ϕ−1

D (S) ⊆ Σ∗ be the linear context-free trace language defined by
R and D. As R ⊆ Σ∗ is a linear context-free language, there exists a 2hNFA
A = (Q,Σ, I, F, δ) such that L(A) = R. Applying well-known techniques (see,
e.g., [1,7]), we may assume without loss of generality that the set Q of states
of A is partitioned into two disjoint subsets QL and QR such that, in a state
q ∈ QL, A reads (and deletes) the first letter of the current tape contents, and
in a state p ∈ QR, A reads (and deletes) the last letter of the current tape
contents. Further, we may assume that, for each left state q ∈ QL � F , there
is at most a single letter aq ∈ Σ such that δ(q, aq, ε) �= ∅, for each right state
q ∈ QR � F , there is at most a single letter aq ∈ Σ such that δ(q, ε, aq) �= ∅,
that F = {q+} consists of a single left state only, and that δ(q+, a, ε) = ∅ for all

414 B. Nagy and F. Otto

letters a ∈ Σ (that is, no transition is allowed from the accepting state). From
A we now construct a 2hNFAwtl B = (QB , Σ,�,�, τ, IB , FB , δB) as follows:

– QB = Q, IB = I, and FB = F = {q+},
– τ(q) = { b ∈ Σ | (b, aq) ∈ ID } for all q ∈ Q � F and τ(q+) = ∅, and
– the transition relation δB is defined as follows:

δB(q, aq) = δ(q, aq, ε) for all q ∈ QL � F,
δB(q, aq) = δ(q, ε, aq) for all q ∈ QR � F,
δB(q, b) = ∅ for all q ∈ Q � F and all b �= aq,
δB(q+, a) = ∅ for all a ∈ Σ.

It remains to show that L(B) = L = ϕ−1
D (S) =

⋃
u∈R[u]D. Notice that in

order to accept a word w, B must read (and delete) it completely.

Claim 1.
⋃

u∈R[u]D ⊆ L(B).

Proof. Assume that w ∈
⋃

u∈R[u]D. Then there exists a word u ∈ R such that
w ≡D u, and so there exists a sequence of words u = w0, w1, . . . , wn = w such
that, for each i = 1, 2, . . . , n, wi is obtained from wi−1 by replacing a factor ab
by ba for some pair of letters (a, b) ∈ ID. By induction on i, wi ∈ L(B) can now
be shown for all i. �

Claim 2. L(B) ⊆
⋃

u∈R[u]D.

Proof. Let w ∈ L(B), and let

qn�w� = qn�wn� 	B qn−1�wn−1� 	B qn−2�wn−2� 	B

· · · 	B q1�w1� 	B q+��

be an accepting computation of B on input w, where qn ∈ IB. We claim that,
for each i = 1, 2, . . . , n, there exists a word ui ∈ Σ∗ such that ui ≡D wi and
qiui 	∗

A q+, that is, the 2hNFA A accepts the word ui when starting from state qi.
We prove this claim by induction on i. For i = 1 we have wi = a1, and q+ ∈

δB(q1, a1). From the definition of B, either q+ ∈ δ(q1, a1, ε) or q+ ∈ δ(q1, ε, a1)
depending on whether q1 is a left or a right state. According to this, we can
simply take u1 = a1 = w1. Now assume that, for some i ≥ 1, ui ≡D wi and
qiui 	∗

A q+ hold. The above computation of B contains the step qi+1�wi+1� 	B

qi�wi�. Again from the definition of B, we see that either qi+1 is a left state and
qi ∈ δ(qi+1, ai+1, ε), where wi+1 = xai+1y and wi = xy for some words x, y ∈ Σ∗

such that (x, ai+1) ∈ ID, or qi+1 is a right state and qi ∈ δ(qi+1, ε, ai+1) with
wi+1 = xai+1y and wi = xy for some words x, y ∈ Σ∗ such that (y, ai+1) ∈ ID.
In the former case let ui+1 be the word ui+1 = ai+1ui, and in the latter case, let
ui+1 be the word ui+1 = uiai+1. Then

ui+1 = ai+1ui ≡D ai+1wi = ai+1xy ≡D xai+1y = wi+1

and qi+1ui+1 = qi+1ai+1ui 	A qiui, or

ui+1 = uiai+1 ≡D wiai+1 = xyai+1 ≡D xai+1y = wi+1

Two-Head Finite-State Acceptors with Translucent Letters 415

and qi+1ui+1 = qi+1uiai+1 	A qiui. As by the induction hypothesis qiui 	∗
A q+,

we see that in either case qi+1ui+1 	∗
A q+ follows.

For i = n we obtain a word u ∈ Σ∗ such that u ≡D w and A accepts u
starting from state qn ∈ I. Hence, u ∈ R, and it follows that L(B) ⊆

⋃
u∈R[u]D

holds. �

Now Claims 1 and 2 together show that L(B) =
⋃

u∈R[u]D = ϕ−1
D (S) = L,

which completes the proof of Theorem 13. �
Next we present a restricted class of 2hNFAwtls that accept exactly the

linear context-free trace languages. Here the second condition of Definition 4 is
essential.

Definition 14. Let B = (Q,Σ,�,�, τ, I, F, δ) be a 2hNFAwtl in normal form
that satisfies the following additional condition:

(∗) ∀p, q ∈ Q : μ(p) = μ(q) implies that τ(p) = τ(q).

With B we associate the binary relation IB =
⋃

q∈Q (τ(q) × μ(q)), that is,
(a, b) ∈ IB if and only if there exists a state q ∈ Q such that a ∈ τ(q) and δ(q, b)
is defined. Further, by DB we denote the relation DB = (Σ × Σ) � IB.

Observe that the relation IB defined above is necessarily irreflexive, but that
it will in general not be symmetric. On the other hand, consider the 2hNFAwtl
B that is constructed in the proof of Theorem 13. It satisfies the condition (∗)
and the relation IB coincides with the relation ID restricted to the subset of
letters of Σ that actually occur in the language L. Hence, this relation is in fact
symmetric. The following result shows that also the converse of this observation
holds.

Theorem 15. Let B be a 2hNFAwtl in normal form over Σ satisfying condi-
tion (∗) above. If the associated relation IB is symmetric, then L(B) is a linear
context-free trace language over Σ. In fact, from B one can construct a 2hNFA
A over Σ such that L(B) = ϕ−1

DB
(ϕDB

(L(A))).

Theorems 13 and 15 together yield the following characterization.

Corollary 16. A language L ⊆ Σ∗ is a linear context-free trace language if and
only if there exists a 2hNFAwtl B in normal form satisfying condition (∗) such
that the relation IB is symmetric and L = L(B).

Let D1 be the Dyck language over Σ = {a, b}. This language is accepted by a
2hNFAwtl A that satisfies the above condition (∗), but the corresponding relation
IA is not symmetric. And indeed, the language D1 is not a linear context-free
trace language.

5 Further Closure Properties and Decidability Results

We have seen above that the language class L(2hNFAwtl) is closed under union,
but it is not closed under intersection (with regular sets), complementation, and

416 B. Nagy and F. Otto

product. Further, the language class L(2hDFAwtl) is closed under complementa-
tion, but not under product. Obviously, both classes are closed under reversal.
In addition, the former class is closed under a weaker product operation.

Proposition 17. L(2hNFAwtl) is closed under product with regular sets, that
is, if L ∈ L(2hNFAwtl) and R ∈ REG, then L · R and R · L are accepted by
2hNFAwtls.

The language L of Example 2 is accepted by a 2hDFAwtl, but as

L′ = L ∩ a∗ · b∗ · # · {c, d}∗ · # · a∗ · b∗

is not accepted by any 2hNFAwtl (see Sect. 3), the following non-closure results
follow.

Corollary 18. The language class L(2hDFAwtl) is not closed under intersection
with regular sets, and hence, it is not closed under union and intersection.

In [16] it has been noted that the rational trace language

L∨ = {w ∈ {a, b}∗ | ∃n ≥ 0 : |w|a = n and |w|b ∈ {n, 2n} }

is not accepted by any stl-det-global-CD-R(1)-system, that is, it is not accepted
by any DFAwtl. Actually, the proof of that result (Proposition 4.7 of [16]) gen-
eralizes to 2hDFAwtls.

Proposition 19. The language L∨ is not accepted by any 2hDFAwtl.

This observation yields the following result.

Corollary 20. L(2hDFAwtl) does not even contain all rational trace languages.

Let L′
∨ denote the following variant of the language L∨:

L′
∨ = {wc | w ∈ {a, b}+, |w|a = |w|b−1 }∪{wd | w ∈ {a, b}+, 2·|w|a = |w|b−1 }.

It is easy to design a 2hDFAwtl A for this language. Now let ϕ : {a, b, c, d}∗ →
{a, b}∗ be the alphabetic morphism that is defined by a �→ a and b, c, d �→ b.
Then

ϕ(L′
∨) = {wb | w ∈ {a, b}+,∃n ≥ 0 : |w|a = n and |w|b + 1 ∈ {n, 2n} },

which is not accepted by any 2hDFAwtl (see the proof of Proposition 19). Thus,
we obtain the following non-closure property.

Corollary 21. L(2hDFAwtl) is not closed under alphabetic morphisms.

However, it remains open whether any of the classes L(2hDFAwtl) and
L(2hNFAwtl) is closed under Kleene star or inverse morphisms, and whether
L(2hNFAwtl) is closed under ε-free morphisms.

Finally, we turn to decision problems. A 2hNFAwtl can easily be simulated
by a nondeterministic one-tape Turing machine that is simultaneously linearly
space-bounded and quadratically time-bounded. Hence, we have the following
complexity result.

Two-Head Finite-State Acceptors with Translucent Letters 417

Proposition 22. L(2hNFAwtl) ⊆ NSpaceTime(n, n2).

By Proposition 6, a 2hNFA A′ can be obtained from a 2hNFAwtl A such that
E = L(A′) is a subset of L = L(A) that is letter-equivalent to L. Hence, E is
non-empty if and only if L is non-empty, and E is infinite if and only if L is
infinite. This shows that emptiness and finiteness are decidable for 2NFAwtls.
Since universality is undecidable for linear languages (see, e.g., [5]), and as one
can easily design a 2hNFAwtl for the language Σ∗, universality, containment of
a regular set, inclusion and equivalence are undecidable for 2hNFAwtls. Finally,
using the effective closure under product with a regular set (Proposition 17),
Greibach’s general undecidability result from [4] implies that it is undecidable in
general whether the language accepted by a given 2hNFAwtl is linear context-
free.

6 Conclusion

We have presented two-head finite-state acceptors with translucent letters, and
we have seen that they are quite expressive. In fact, they accept a subclass of
the class of all languages with semi-linear Parikh image that properly contains
all linear context-free trace languages. In addition, we have stated a number
of closure and non-closure results for the language classes L(2hNFAwtl) and
L(2hDFAwtl), but some operations still remain to be considered.

References

1. Bedregal, B.R.C.: Some subclasses of linear languages based on nondeterministic
linear automata. arXiv:10276v1 (2016)

2. Diekert, V., Rozenberg, G.: The Book of Traces. World Scientific, Singapore (1995)
3. Freund, R., Păun, Gh., Rozenberg, G., Salomaa, A.: Watson-Crick finite automata.

In: Rubin, H., Wood, D.H. (eds.) DNA Based Computers, Proceedings of DIMACS
Series in Discrete Mathematics and Theoretical Computer Science, pp. 297–328.
DIMACS/AMS (1999)

4. Greibach, S.: A note on undecidable properties of formal languages. Math. Syst.
Theory 2, 1–6 (1968)

5. Hopcroft, J.E., Ullman, J.D.: Introduction to Automata Theory, Languages, and
Computation. Addison-Wesley, Reading (1979)

6. Meduna, A., Zemek, P.: Jumping finite automata. Int. J. Found. Comput. Sci. 23,
1555–1578 (2012)

7. Nagy, B.: On 5′ → 3′ sensing Watson-Crick finite automata. In: Garzon, M.H.,
Yan, H. (eds.) DNA 2007. LNCS, vol. 4848, pp. 256–262. Springer, Heidelberg
(2008). https://doi.org/10.1007/978-3-540-77962-9 27

8. Nagy, B.: A class of 2-head finite automata for linear languages. Triangle: Lang.
Math. Approaches 8, 89–99 (2012)

9. Nagy, B.: On a hierarchy of 5′ → 3′sensing Watson-Crick finite automata lan-
guages. J. Log. Comput. 23, 855–872 (2013)

http://arxiv.org/abs/10276v1
https://doi.org/10.1007/978-3-540-77962-9_27

418 B. Nagy and F. Otto

10. Nagy, B., Kovács, L.: Finite automata with translucent letters applied in natural
and formal language theory. In: Nguyen, N.T., Kowalczyk, R., Fred, A., Joaquim,
F. (eds.) Transactions on Computational Collective Intelligence XVII. LNCS, vol.
8790, pp. 107–127. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-
662-44994-3 6

11. Nagy, B., Otto, F.: CD-systems of stateless deterministic R(1)-automata accept
all rational trace languages. In: Dediu, A.-H., Fernau, H., Mart́ın-Vide, C. (eds.)
LATA 2010. LNCS, vol. 6031, pp. 463–474. Springer, Heidelberg (2010). https://
doi.org/10.1007/978-3-642-13089-2 39

12. Nagy, B., Otto, F.: An automata-theoretical characterization of context-free trace
languages. In: Černá, I., et al. (eds.) SOFSEM 2011. LNCS, vol. 6543, pp. 406–417.
Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-18381-2 34

13. Nagy, B., Otto, F.: CD-systems of stateless deterministic R(1)-automata governed
by an external pushdown store. RAIRO Theor. Inform. Appl. 45, 413–448 (2011)

14. Nagy, B., Otto, F.: Finite-state acceptors with translucent letters. In: Bel-Enguix,
G., Dahl, V., De La Puente, A.O. (eds.) BILC 2011: AI Methods for Interdis-
ciplinary Research in Language and Biology, Proceedings, pp. 3–13. SciTePress,
Portugal (2011)

15. Nagy, B., Otto, F.: On CD-systems of stateless deterministic R-automata with
window size one. J. Comput. Syst. Sci. 78, 780–806 (2012)

16. Nagy, B., Otto, F.: Globally deterministic CD-systems of stateless R-automata
with window size 1. Int. J. Comput. Math. 90, 1254–1277 (2013)

17. Rosenberg, A.L.: On multi-head finite automata. IBM J. Res. Dev. 10, 388–394
(1966)

18. Rosenberg, A.L.: A machine realization of the linear context-free languages. Inf.
Control 10, 175–188 (1967)

https://doi.org/10.1007/978-3-662-44994-3_6
https://doi.org/10.1007/978-3-662-44994-3_6
https://doi.org/10.1007/978-3-642-13089-2_39
https://doi.org/10.1007/978-3-642-13089-2_39
https://doi.org/10.1007/978-3-642-18381-2_34

Do Null-Type Mutation Operators Help
Prevent Null-Type Faults?

Ali Parsai1(B) and Serge Demeyer2

1 University of Antwerp, Antwerp, Belgium
ali.parsai@uantwerpen.be

2 University of Antwerp and Flanders Make, Antwerp, Belgium
serge.demeyer@uantwerpen.be

Abstract. The null-type is a major source of faults in Java programs,
and its overuse has a severe impact on software maintenance. Unfor-
tunately traditional mutation testing operators do not cover null-type
faults by default, hence cannot be used as a preventive measure. We
address this problem by designing four new mutation operators which
model null-type faults explicitly. We show how these mutation operators
are capable of revealing the missing tests, and we demonstrate that these
mutation operators are useful in practice. For the latter, we analyze the
test suites of 15 open-source projects to describe the trade-offs related
to the adoption of these operators to strengthen the test suite.

Keywords: Software maintenance · Software testing
Mutation testing · Null-type · Test quality

1 Introduction

The null-type is a special type in Java that has no name, cannot be casted, and
practically equates to a literal that can be of any reference type [11]. The null-
type is commonly misused, and frequently reported and discussed as an issue
by developers [24]. The null-type is the source of the majority of faults in Java
programs [25], and its overuse has a severe impact on software maintenance [15].
On the one hand, this scenario should push developers to build test suites capable
of identifying null-type faults. On the other hand, developers without specific
test requirements may struggle to identify all code elements or properties that
the test must satisfy. To address this problem, we propose mutation testing as
a way for improving the test suite to handle potential null-type faults.

Mutation testing is a technique to measure the quality of a test suite by
assessing its fault detection capabilities [5]. Mutation testing is a two-step pro-
cess. First, a small syntactic change is introduced in the production code. This
change is obtained by applying a “mutation operator”, and the resulting changed
code is called a “mutant”. Then, the test suite is executed for that mutant; if
any of the tests fail, the mutant is “killed”, otherwise, the mutant has “sur-
vived”. Herein lies the aspect of mutation testing that we want to exploit: the
identification of survived mutants that need to be killed.
c© Springer Nature Switzerland AG 2019
B. Catania et al. (Eds.): SOFSEM 2019, LNCS 11376, pp. 419–434, 2019.
https://doi.org/10.1007/978-3-030-10801-4_33

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-10801-4_33&domain=pdf
http://orcid.org/0000-0001-8525-8198
http://orcid.org/0000-0002-4463-2945
https://doi.org/10.1007/978-3-030-10801-4_33

420 A. Parsai and S. Demeyer

Mutation operators are modeled after the common developer mistakes [14].
Over the years, multiple sets of mutation operators have been created to fit
in different domains. By far the most commonly used mutation operators are
the ones introduced in Mothra by Offutt et al. [21]. They use 10 programs
written in Fortran to demonstrate that their reduced-set mutation operators
is enough to produce a mutation-adequate test suite that can kill almost all
of the mutants generated by the mutation operators of the complete-set. Later
on, several attempts have been made to extend Offutt’s mutation operators,
for instance, to cope with the specificities of object-oriented programming [19].
Yet, none of the proposed mutation operators explicitly model null-type faults.
As a result, mature general-purpose mutation testing tools currently used in
literature, such as PITest [4] and Javalanche [35], do not cope explicitly with
this type of faults by default. Therefore, the created mutants risk not being
adequate to derive test requirements that handle null-type faults. Whether this
risk is concrete or not depends on the ability of the available mutation operators
to account for these faults. Yet, no study has explored this aspect.

This paper investigates the usefulness of mutation operators able to model
null-type faults in order to strengthen the test suite against these faults. For
this reason, we introduce four new mutation operators related to null-type faults.
These mutation operators are modeled to cover the typical null-type faults intro-
duced by developers [24]. We incorporate these mutation operators in LittleDar-
win, an extensible open-source tool for mutation testing [32], creating a new
version called LittleDarwin-Null. We organize our research in two steps: we show
that (i) the current general-purpose mutation testing tools do not account for
null-type faults by default, and modeling operators for null-type faults can drive
the improvement of the test suite in practice, and (ii) the test suites of real
open-source projects cannot properly catch null-type faults. The paper is driven
by the following research questions:

– RQ1: Are traditional mutation operators enough to prevent null-type faults?
– RQ2: To what extent is the addition of null-type mutation operators useful
in practice?

The rest of the paper is organized as follows: In Sect. 2, background informa-
tion and related work is provided. In Sect. 3, the details of the experiment are
discussed. In Sect. 4, the results are analyzed. In Sect. 5, we discuss the threats
that affect the results. Finally, we present the conclusion in Sect. 6.

2 Background and Related Work

Mutation testing is the process of injecting faults into a software system and
then verifying whether the test suite indeed fails, and thus detects the injected
fault. First, a faulty version of the software is created by introducing faults into
the system (Mutation). This is done by applying a transformation (Mutation
Operator) on a certain part of the code. After generating the faulty version of
the software (Mutant), it is passed onto the test suite. If a test fails, the mutant

Do Null-Type Mutation Operators Help Prevent Null-Type Faults? 421

is marked as killed (Killed Mutant). If all tests pass, the mutant is marked as
survived (Survived Mutant).

Mutation Operators. A mutation operator is a transformation which intro-
duces a single syntactic change into its input. The first set of mutation operators
were reported in King et al. [16]. These mutation operators work on essential
syntactic entities of programming languages such as arithmetic, logical, and rela-
tional operators. For object-oriented languages, new mutation operators were
proposed [19]. The mature mutation testing tools of today still mostly use the
traditional (i.e. method-level) mutation operators [27].

Equivalent Mutants. An equivalent mutant is a mutant that does not change
the semantics of the program, i.e. its output is the same as the original program
for any possible input. Therefore, no test case can differentiate between an equiv-
alent mutant and the original program. The detection of equivalent mutants is
undecidable due to the halting problem [22].

Mutation Coverage. Mutation testing allows software engineers to monitor
the fault detection capability of a test suite by means of mutation coverage [13].
A test suite is said to achieve full mutation test adequacy whenever it can kill all
the non-equivalent mutants, thus reaching a mutation coverage of 100%. Such
test suite is called a mutation-adequate test suite.

Mutant Subsumption. Mutant subsumption is defined as the relationship
between two mutants A and B in which A subsumes B if and only if the set of
inputs that kill A is guaranteed to kill B [18]. The subsumption relationship for
faults has been defined by Kuhn in 1999 [17]. Later on, Ammann et al. tackled
the theoretical side of mutant subsumption [2] where they define dynamic mutant
subsumption as follows: Mutant A dynamically subsumes Mutant B if and only
if (i) A is killed, and (ii) every test that kills A also kills B. The main purpose
behind the use of mutant subsumption is to detect redundant mutants. These
mutants create multiple threats to the validity of mutation analysis [26]. This
is done by determining the dynamic subsumption relationship among a set of
mutants, and keep only those that are not subsumed by any other mutant.

Mutation Testing Tools. In this study, we use three different mutation test-
ing tools: Javalanche, PITest, and LittleDarwin. Javalanche is a mutation test-
ing framework for Java programs that attempts to be efficient, and not produce
equivalent mutants [35]. It uses byte code manipulation in order to speed up
the process of mutation testing. Javalanche has been used in numerous studies
in the past (e.g. [9,10]). PITest is a state-of-the-art mutation testing system for
Java, designed to be fast and scalable [4]. PITest is the de facto standard for
mutation testing within Java, and it is used as a baseline in mutation testing

422 A. Parsai and S. Demeyer

research (e.g. [12,34]). LittleDarwin is a mutation testing tool designed to work
out of the box with complicated industrial build systems. For this, it has a loose
coupling with the test infrastructure, instead relying on the build system to
run the test suite. LittleDarwin has been used in several studies, and is capable
of performing mutation testing on complicated software systems [30,31,33]. For
more information about LittleDarwin please refer to Parsai et al. [32]. We imple-
mented the new null-type mutation operators in a special version of LittleDarwin
called LittleDarwin-Null. LittleDarwin and LittleDarwin-Null only differ in the
set of mutation operators used, and are identical otherwise.

Related Work. Creating new mutation operators to deal with the evolution of
software languages is a trend in mutation testing research. For example, mutation
operators have been designed to account for concurrent code [3], aspect-oriented
programming [7], graphical user interfaces [23], modern C++ constructs [29],
and Android applications [6]. Nanavati et al. have previously studied mutation
operators targeting memory-related faults [20]. However, the difference in the
semantics of null object of Java and NULL macro of C is sufficient to grant the
need for a separate investigation.

3 Experimental Setup

In this section, we first introduce our proposed mutation operators, and then we
discuss the experimental setup we used to address our research questions.

3.1 Null-Type Mutation Operators

We derived four null-type mutation operators to model the typical null-type
faults often encountered by developers [25]. These mutation operators are pre-
sented in Table 1.

Table 1. Null-type faults and their corresponding mutation operators

Mutation operator Description

NullifyReturnValue If a method returns an object, it is replaced by null

NullifyInputVariable If a method receives an object reference, it is replaced by null

NullifyObjectInitialization Wherever there is a new statement, it is replaced with null

NegateNullCheck Any binary relational statement containing null at one side is negated

3.2 Case Study

For RQ1, we use a didactic project. For RQ2, we use 15 open-source projects.

Do Null-Type Mutation Operators Help Prevent Null-Type Faults? 423

RQ1. In order to address RQ1, we chose a modified version of VideoStore
as a small experimental project [8]. Choosing a small project allows us to (i)
create a mutation-adequate test suite ourselves, (ii) find out which mutants are
equivalent, and (iii) avoid complexities when using multiple mutation testing
tools. The source code for VideoStore is available in the replication package.

Table 2. Projects sorted by mutation coverage

Project Ver. Size (LoC) #C TS SC BC MC

Prod. Test

Apache Commons CLI 1.3.1 2, 665 3, 768 816 15 96% 93% 94%

JSQLParser 0.9.4 7, 342 5, 909 576 19 81% 73% 94%

jOpt Simple 4.8 1, 982 6, 084 297 14 99% 97% 92%

Apache Commons Lang 3.4 24, 289 41, 758 4, 398 30 94% 90% 91%

Joda Time 2.8.1 28, 479 54, 645 1, 909 42 90% 81% 82%

Apache Commons Codec 1.10 6, 485 10, 782 1, 461 10 96% 92% 82%

Apache Commons Collections 4.1 27, 914 32, 932 2, 882 26 85% 78% 81%

VRaptor 3.5.5 14, 111 15, 496 3, 417 65 87% 81% 81%

HTTP Request 6.0 1, 391 2, 721 446 15 94% 75% 78%

Apache Commons FileUpload 1.3.1 2, 408 1, 892 846 19 76% 74% 77%

jsoup 1.8.3 10, 295 4, 538 888 43 82% 72% 76%

JGraphT 0.9.1 13, 822 8, 180 1, 150 31 79% 73% 69%

PITest 1.1.7 17, 244 19, 005 1, 044 19 79% 73% 63%

JFreeChart 1.0.17 95, 354 41, 238 3, 394 4 53% 45% 35%

PMD r7706 70, 767 43, 449 7, 706 20 62% 54% 34%

Acronyms: Version (Ver.), Line of code (LoC), Production code (Prod.), Number of
commits (#C), Team size (TS), Statement coverage (SC), Branch coverage (BC),
Mutation coverage (MC)

RQ2. We selected 15 open-source projects for our empirical study (Table 2). The
selected projects differ in size of their production code and test code, number of
commits, and team size to provide a wide range of possible scenarios. Moreover,
they also differ in the adequacy of their test suite based on statement, branch,
and mutation coverage (Table 2). We used JaCoCo and Clover for statement and
branch coverage, and LittleDarwin for mutation coverage.

4 Results and Discussion

RQ1: Are Traditional Mutation Operators Enough to Prevent Null-type

Faults?

We are interested to compute the number of killed, survived and equivalent
mutants along with three versions of VideoStore. The first version we analyze

424 A. Parsai and S. Demeyer

is the original one (VideoStore Orig). This version has only 4 tests. Then, we
create a mutation-adequate test suite that kills all mutants generated by the
general-purpose tools (Javalanche, PITest, and LittleDarwin). In this version
(VideoStore TAdq) we added 15 tests. Finally, we create a mutation-adequate
test suite that kills all mutants, included the ones generate by LittleDarwin-Null.
In this version (VideoStore NAdq) we added 3 more tests.

Table 3. Mutation testing results for VideoStore

Program LittleDarwin PITest Javalanche LittleDarwin-Null

K S E K S E K S E K S E

VideoStore Orig 24 18 2 25 43 5 87 69 11 11 14 1

VideoStore TAdq 42 0 2 68 0 5 202 0 11 22 3 1

VideoStore NAdq 42 0 2 68 0 5 202 0 11 25 0 1

K: Killed, S: Survived, E: Equivalent

Table 3 shows the number of remaining mutants after each phase of test
development: VideoStore Orig, VideoStore TAdq, and VideoStore NAdq. The
discrepancy in total number of generated mutants for the three versions of
the program in case of Javalanche is due to its particular optimizations. In
VideoStore Orig, there are several survived mutants according to all the tools.
This is because the test suite accompanying the VideoStore program was not
adequate.

Fig. 1. The surviving non-equivalent null-type mutants

In VideoStore TAdq,
we create a mutation-
adequate version of the
test suite with respect
to the results of PITest,
Javalanche, and LittleDar-
win. In the process of cre-
ating this test suite, we
noticed that all of these
tools produce equivalent
mutants. Two of such
mutants are shown in
Fig. 2. Mutant A is equiv-
alent because the method
super.determineAmount
always returns 0, so it
does not matter whether
it is added to or sub-
tracted from thisAmount.

Do Null-Type Mutation Operators Help Prevent Null-Type Faults? 425

Mutant B is also equivalent, because if daysRented is 2, the value added to
thisAmount is 0. We analyzed VideoStore TAdq with LittleDarwin-Null in order
to find out whether the mutation-adequate test suite according to three general-
purpose tools is able to kill all the null-type mutants. By analyzing the 26
generated mutants, we noticed that 22 mutants were killed and 4 survived.
The manual review of these mutants show that one of them is an equivalent
mutant.

Fig. 2. Two of the equivalent mutants generated by traditional mutation operators

Fig. 3. One of the equivalent mutants generated by null-type mutation operators

Considering that 3 mutants generated by null-type mutation operators are
not equivalent, and yet the mutation-adequate test suite we created according to
the general-purpose tools cannot kill them, we conclude that using traditional
mutation operators to strengthen the test suite does not necessarily
prevent null-type faults.

The four mutants survived in VideoStore TAdq are all of type NullifyObjec-
tInitialization. Figure 3 shows the equivalent null-type mutant. Here the default
behavior of Rental object is to create a new RegularMovie object when it
receives null as its input. So, replacing new RegularMovie(null) with null
does not change the behavior of the program.

426 A. Parsai and S. Demeyer

Fig. 4. The tests written to kill the surviving null-type
mutants

The three remain-
ing surviving mutants
are described in Fig. 1.
Here, mutants A and
B replace the excep-
tion with null. Con-
sequently, as opposed
to the program throw-
ing a detailed excep-
tion, the mutant alw-
ays throws an empty
NullPointerException.
Such a mutant is desir-
able to kill, since the
program would be able
to throw an unexpected
exception due to a fault
that the test suite can-
not recognize. In the
case of Mutant C, it
replaces the initializa-
tion of a RegularMovie
object with null. This
means that as opposed
to the program that
guarantees the private
attribute movie is alw-
ays instantiated, the
same attribute contains
a null literal in the mutant. If not detected, a NullPointerException might be
thrown when another object tries to access the movie attribute of this object.

We created three new tests to kill each of the survived mutants. These tests
are shown in Fig. 4. Here, testMutantA and testMutantB verify whether the
unit under test throws the correct exception if called with an invalid input value.
testMutantC verifies whether the unit under test is able to handle a null input
correctly. These three tests are not “happy path tests”, namely a well-defined
test case using known input, which executes without exception and produces an
expected output. Consequently, they might not be intuitive for a test developer
to consider, even though they are known as good testing practice [1]. If not for the
three survived null-type mutants, these tests would not have been written. This
leads us to conclude that traditional mutation operators are not enough
to prevent null-type faults.

Do Null-Type Mutation Operators Help Prevent Null-Type Faults? 427

RQ2: To What Extent is the Addition of Null-type Mutation Operators

Useful in Practice?

RQ1 shows for the VideoStore project that mutation testing tools need to
introduce explicit mutation operators for modeling null-type faults. Yet, such
a project is not representative of real projects. In this RQ, we want to verify
to what extent null-type mutation operators are useful in practice. For this rea-
son, we perform an experiment that involves real open-source projects. After
introducing null-type mutants, two groups of mutants are affected: (i) survived
mutants are the targets the developer needs during test development, (ii) killed
mutants show the types of faults the test suite can already catch.

Considering this, we can justify the effort needed for extending mutation
testing by incorporating null-type mutants only if: (i) the real test suites do
not already kill most of the null-type mutants, (ii) the null-type mutants are
not increasing redundancy by a large margin. Otherwise, the current mutation
testing tools are already “good enough” for preventing null-type faults.

To verify to what extent the null-type mutants “do matter” when testing for
null-type faults we analyze both killed and survived mutants:

In case of survived mutants, we analyze the number of survived mutants
that each mutation operator generates for each project. We divide this analysis
into two parts. First, we analyze survived mutants for null-type and traditional
mutation operators. Second, we analyze each mutation operator individually to
find out which one produces the most surviving mutants. This analysis shows
whether the survived mutants produced by the null-type mutation operators are
“enough” to drive the test development process.

In case of killed mutants, we take all projects as a whole, and we analyze
whether the killed null-type mutants are redundant when used together with
traditional mutation operators. We measure redundancy using dynamic mutant
subsumption: we analyze the distributions of subsuming, killed, and all null-type
mutants. This way we can tell whether or not the null-type mutation operators
are producing “valuable” mutants to strengthen the test suite.

Survived Mutants. Table 4 shows for each project the number of survived, killed,
and total generated mutants for both groups of mutation operators. The first
noticeable trend is a strong correlation (R2 = 0.81) between survived to killed
ratio (SKR) of the traditional mutants and SKR of the null-type mutants. One
exception to this trend is JSQLParser, in which there are significantly more
survived null-type mutants than survived traditional mutants. Investigating fur-
ther, we find that this happens because 50 small classes lack statements that can
be mutated by the traditional mutation operators. However, null-type mutation
operators are able to generate mutants for these classes. This uncovers many of
the weaknesses of the test suite. On the other side of the fence, there is PITest,
in which a single class (sun.pitest.CodeCoverageStore) contains many arith-
metic operations while poorly tested, so it produces 129 out of 398 survived
traditional mutants. This shows that the usefulness of the null-type muta-
tion operators is program-dependent.

428 A. Parsai and S. Demeyer

Table 4. Mutants generated by LittleDarwin and LittleDarwin-Null

Project Traditional mutation operators Null-type mutation operators

Survived Killed Total Survived Killed Total

Apache Commons CLI 24 318 342 71 415 486

JSQLParser 31 457 488 358 1, 062 1, 420

jOpt Simple 17 189 206 37 494 531

Apache Commons Lang 559 5, 455 6, 014 564 5, 469 6, 033

Joda Time 892 3, 978 4, 870 836 5, 371 6, 207

Apache Commons Codec 364 1, 612 1, 976 147 927 1, 074

Apache Commons Collections 638 2, 705 3, 343 1, 179 5, 851 7, 030

VRaptor 111 478 589 795 2, 111 2, 906

HTTP Request 49 178 227 69 383 452

Apache Commons FileUpload 81 273 354 137 211 348

jsoup 291 928 1, 219 553 1, 455 2, 008

JGraphT 416 940 1, 356 834 1, 457 2, 291

PITest 398 672 1, 070 551 2, 964 3, 515

JFreeChart 10, 558 5, 603 16, 161 8, 563 6, 248 14, 811

PMD 5, 205 2, 734 7, 939 5, 099 4, 613 9, 712

Total 19,634 26,520 46,154 19,793 39,031 58,824

Figure 5 shows the number of killed and survived mutants for each mutation
operator. We see that among the traditional mutation operators, Arithmetic-
OperatorReplacementBinary, LogicalOperatorReplacement, and ArithmeticOper-
atorReplacementUnary have the highest ratio of survived to killed mutants. This
means that these mutation operators are generating mutants that are harder to
kill than the rest. The same can be observed among the null-type mutation oper-
ators, where NullifyObjectInitialization produces harder to kill mutants than the
others. This is as we expected, since NullifyInputVariable applies a major change
to the method (removal of an input), and NegateNullCheck negates a check that
the developer deemed necessary. However, the unexpected part of the result is
that so many of the mutants generated by NullifyReturnValue have survived.
This means that lots of methods are not tested on their output correctly. This
can be due to the fact that many of such methods are not tested directly, and
when tested indirectly, their results only affect a small part of the program state
of the method under test.

In general, the number of survived null-type mutants has a strong correlation
with the number of survived traditional mutants for most projects. This implies
that not all parts of the code are tested well. However, the exceptions to this
rule are caused by classes that produce many more mutants of a particular type.
Here, our results show that the null-type mutation operators complement
the traditional mutation operators and vice versa by each providing
a large portion of survived mutants.

Killed Mutants. Considering all projects as a whole, the number of generated
mutants is 104,978. Out of this total, the number of killed and subsuming

Do Null-Type Mutation Operators Help Prevent Null-Type Faults? 429

Fig. 5. Number of killed and survived mutants for each mutation operator

mutants are 65,551 and 16,205 respectively. This means that at least 50,029
were subsumed, and thus redundant. To put null-type and traditional mutants in
perspective, Fig. 6 shows the percentages for all, killed, and subsuming mutants
for both groups. Here, we notice that the percentage of the null-type mutants
remains similar in these three categories. The null-type mutants have a higher
impact on the semantics of the program due to being applied at the entry and
exit points of a method, the branching statements, and the declaration of an
object. Therefore, the fact that they comprise a higher percentage of the killed
mutants is not surprising. However, it is important to note that the distribution
of null-type mutants differs only 4% in all and killed mutants. While 60% of
the killed mutants are null-type, they still account for almost 55% of subsum-
ing mutants. This indicates that the inclusion of the null-type mutants
increases the mutant redundancy only marginally.

Fig. 6. Ratio of null-type and traditional
mutants in all, killed, and subsuming

To delve deeper, Fig. 7 shows for
each mutation operator the percent-
age of killed and subsuming mutants.
Among the traditional mutation oper-
ators, RelationalOperatorReplacement
and ConditionalOperatorReplacement
produce the most subsuming mutants.
The rest of the mutation operators cre-
ate mutants that have the same dis-
tribution among subsuming and killed
mutants. As this figure shows, the
marginal increase in redundancy by the null-type mutation operators can be
blamed on NullifyInputVariable mutation operator. This mutation operator

430 A. Parsai and S. Demeyer

produces mutants that are easier to kill compared to other mutation opera-
tors (21% of all, 24% of the killed), and more of these mutants are redundant
compared to others (24% of killed, only 15% of subsuming). On the contrary,
NullifyReturnValue is producing fewer redundant mutants, which confirms our
previous observation.

Fig. 7. Ratio of mutants by each mutation operator in all, killed, and subsuming

Given the results of RQ2, we can conclude that while the inclusion of the
null-type mutation operators increases the redundancy marginally,
they complement the traditional mutation operators in their role of
strengthening the test suite against null-type faults.

5 Threats to Validity

To describe the threats to validity we refer to the guidelines reported by Yin [36].
Threats to internal validity focus on confounding factors that can influence
the obtained results. These threats stem from potential faults hidden inside our
analysis tools. While theoretically possible, we consider this chance limited. The
tools used in this experiment have been used previously in several other studies,
and their results went through many iterations of manual validation. In addition,
the code of LittleDarwin and LittleDarwin-Null along with all the raw data of
the study is publicly available for download in the replication package [28].

Threats to external validity refer to the generalizability of the results. In
RQ1 we advocate for the adoption of null-type mutation operators by using

Do Null-Type Mutation Operators Help Prevent Null-Type Faults? 431

a didactic project. We alleviate the non-representativeness of this project, by
analyzing 15 real open-source projects in RQ2. Although our results are based on
projects with various levels of test adequacy in terms of traditional and null-type
mutation coverage, we cannot assume that this sample is representative of all
Java projects. We use PITest, LittleDarwin, and Javalanche as mutation testing
tools. We cannot assume that these tools are representative of all mutation tools
available in literature. For this reason, we refer to these tools as general-purpose
since they can work with little effort on many open-source projects. We modeled
null-types mutation operators upon the typical null-type faults described by
Osman et al. [24]. However, there may be other types of null-type faults that
we did not consider. Even if this was the case, our results should still hold since
we already demonstrate with four mutation operators that they are in need of
explicit modeling.

Threats to construct validity are concerned with how accurately the obser-
vations describe the phenomena of interest. The problem of equivalent mutants
affects the analysis of surviving mutants on the test suites of the 15 open-source
projects. Due to the large number of created mutants, it is impractical to filter
equivalent mutants in the final results. Still, we believe this threat is minimal,
because we analyze two different aspects of mutation testing, which lead to con-
verging results. The total number of generated mutants can be different based on
the set of mutation operators that are used in each tool. However, this difference
has been taken into account when discussing the results of the experiments. To
measure redundancy among the mutants, we use dynamic subsumption relation-
ship. However, the accuracy of the dynamic subsumption relationship depends
on the test suite itself. This is a compromise, as the only way to increase the
accuracy is to have several tests that kill each mutant, which is not practical.

6 Conclusion

Developers are prone to introduce null-type faults in Java programs. Yet, there
is no specific approach devoted to helping developers strengthen the test suite
against these faults. On the one hand, mutation testing provides a systematic
method to create tests able to prevent common faults. On the other hand, the
general-purpose mutation testing tools available today do not model null-type
faults explicitly by default.

In this paper, we advocate for the introduction of null-type mutation oper-
ators for preventing null-type faults. As a first step, we show that traditional
mutation operators are not enough to cope with null-type faults as they cannot
lead to the creation of a mutation-adequate test suite that can kill all of them.
Then we demonstrate, by means of code examples, how the null-type mutants can
drive the extension of the test suite. Finally, we highlight that null-type muta-
tion operators are helpful in practice by showing on 15 open-source projects that
real test suites are inadequate in detecting null-type faults. In this context, we
explore the trade-offs of having null-type mutants. On the downside, we show
that the inclusion of null-type mutants increases the mutant redundancy. Yet,

432 A. Parsai and S. Demeyer

this increment is only marginal. On the upside, we show that null-type mutants
complement traditional mutants in two ways. First, they provide a large number
of survived mutants to the developer to strengthen the test suite. Second, they
comprise a large part of subsuming mutants.

As a consequence, developers can increase their confidence in the test suite
regarding to the null-type faults by (i) prioritizing the classes that have a large
difference in traditional and null-type mutation coverage, (ii) creating tests to
kill the survived null-type mutants in these classes, and (iii) repeating the process
until all classes have similar levels of traditional and null-type mutation coverage.

References

1. Alexander, I.: Misuse cases: use cases with hostile intent. IEEE Softw. 20(1), 58–66
(2003). https://doi.org/10.1109/ms.2003.1159030

2. Ammann, P., Delamaro, M.E., Offutt, J.: Establishing theoretical minimal sets
of mutants. In: 2014 IEEE Seventh International Conference on Software Test-
ing, Verification and Validation, pp. 21–30. IEEE, March 2014. https://doi.org/
10.1109/icst.2014.13

3. Bradbury, J.S., Cordy, J.R., Dingel, J.: Mutation operators for concurrent Java
(J2SE 5.0). In: MUTATION 2006, Proceedings of the Second Workshop on Muta-
tion Analysis (Mutation 2006 - ISSRE Workshops 2006), School of Computing,
Queen’s University, Kingston, p. 11. IEEE, Washington, DC, November 2006.
https://doi.org/10.1109/mutation.2006.10

4. Coles, H., Laurent, T., Henard, C., Papadakis, M., Ventresque, A.: PIT: a practical
mutation testing tool for Java (Demo). In: Proceedings of the 25th International
Symposium on Software Testing and Analysis - ISSTA 2016, pp. 449–452. ACM
Press, New York (2016). https://doi.org/10.1145/2931037.2948707

5. DeMillo, R.A., Lipton, R.J., Sayward, F.G.: Hints on test data selection: help for
the practicing programmer. Computer 11(4), 34–41 (1978). https://doi.org/10.
1109/c-m.1978.218136

6. Deng, L., Offutt, J., Ammann, P., Mirzaei, N.: Mutation operators for testing
Android apps. Inf. Softw. Technol. 81, 154–168 (2017). https://doi.org/10.1016/j.
infsof.2016.04.012

7. Ferrari, F.C., Maldonado, J., Rashid, A.: Mutation testing for aspect-oriented pro-
grams. In: 2008 International Conference on Software Testing, Verification, and
Validation. ICST 2008, Department of Computer System, Sao Paulo University,
Sao Carlos, pp. 52–61. IEEE, Washington, DC, April 2008. https://doi.org/10.
1109/icst.2008.37

8. Fowler, M.: Refactoring: Improving the Design of Existing Code. Addison-Wesley,
Boston (1999)

9. Fraser, G., Zeller, A.: Mutation-driven generation of unit tests and oracles. IEEE
Trans. Softw. Eng. 38(2), 278–292 (2012). https://doi.org/10.1109/tse.2011.93

10. Gligoric, M., Groce, A., Zhang, C., Sharma, R., Alipour, M.A., Marinov, D.: Com-
paring non-adequate test suites using coverage criteria. In: Proceedings of the 2013
International Symposium on Software Testing and Analysis - ISSTA 2013, pp. 302–
313. ACM Press, New York (2013). https://doi.org/10.1145/2483760.2483769

11. Gosling, J., Joy, B., Steele, G., Bracha, G., Buckley, A.: The Java Language Spec-
ification (Java SE). Oracle, 8th edn. Addison-Wesley, Boston (2014)

https://doi.org/10.1109/ms.2003.1159030
https://doi.org/10.1109/icst.2014.13
https://doi.org/10.1109/icst.2014.13
https://doi.org/10.1109/mutation.2006.10
https://doi.org/10.1145/2931037.2948707
https://doi.org/10.1109/c-m.1978.218136
https://doi.org/10.1109/c-m.1978.218136
https://doi.org/10.1016/j.infsof.2016.04.012
https://doi.org/10.1016/j.infsof.2016.04.012
https://doi.org/10.1109/icst.2008.37
https://doi.org/10.1109/icst.2008.37
https://doi.org/10.1109/tse.2011.93
https://doi.org/10.1145/2483760.2483769

Do Null-Type Mutation Operators Help Prevent Null-Type Faults? 433

12. Inozemtseva, L., Holmes, R.: Coverage is not strongly correlated with test suite
effectiveness. In: Proceedings of the 36th International Conference on Software
Engineering - ICSE 2014, pp. 435–445. ACM Press, New York (2014). https://doi.
org/10.1145/2568225.2568271

13. Jia, Y., Harman, M.: An analysis and survey of the development of mutation
testing. IEEE Trans. Softw. Eng. 37(5), 649–678 (2011). https://doi.org/10.1109/
tse.2010.62

14. Just, R., Jalali, D., Inozemtseva, L., Ernst, M.D., Holmes, R., Fraser, G.: Are
mutants a valid substitute for real faults in software testing? In: Proceedings of
the 22nd ACM SIGSOFT International Symposium on Foundations of Software
Engineering - FSE 2014, pp. 654–665. ACM Press, New York (2014). https://doi.
org/10.1145/2635868.2635929

15. Kimura, S., Hotta, K., Higo, Y., Igaki, H., Kusumoto, S.: Does return null mat-
ter? In: 2014 Software Evolution Week - IEEE Conference on Software Main-
tenance, Reengineering, and Reverse Engineering (CSMR-WCRE), pp. 244–253.
IEEE, February 2014. https://doi.org/10.1109/csmr-wcre.2014.6747176

16. King, K.N., Offutt, A.J.: A fortran language system for mutation-based software
testing. Softw.: Pract. Exp. 21(7), 685–718 (1991). https://doi.org/10.1002/spe.
4380210704

17. Kuhn, D.R.: Fault classes and error detection capability of specification-based test-
ing. ACM Trans. Softw. Eng. Methodol. 8(4), 411–424 (1999). https://doi.org/10.
1145/322993.322996

18. Kurtz, B., Ammann, P., Offutt, J.: Static analysis of mutant subsumption. In:
2015 IEEE Eighth International Conference on Software Testing, Verification and
Validation Workshops (ICSTW), pp. 1–10. IEEE, April 2015. https://doi.org/10.
1109/icstw.2015.7107454

19. Ma, Y.S., Kwon, Y.R., Offutt, J.: Inter-class mutation operators for Java. In: 13th
International Symposium on Software Reliability Engineering, 2002. Proceedings,
pp. 352–363. IEEE Computer Society (2002). https://doi.org/10.1109/issre.2002.
1173287

20. Nanavati, J., Wu, F., Harman, M., Jia, Y., Krinke, J.: Mutation testing of memory-
related operators. In: 2015 IEEE Eighth International Conference on Software Test-
ing, Verification and Validation Workshops (ICSTW), pp. 1–10. IEEE, April 2015.
https://doi.org/10.1109/icstw.2015.7107449

21. Offutt, A.J., Lee, A., Rothermel, G., Untch, R.H., Zapf, C.: An experimental deter-
mination of sufficient mutant operators. ACM Trans. Softw. Eng. Methodol. 5(2),
99–118 (1996). https://doi.org/10.1145/227607.227610

22. Offutt, A.J., Pan, J.: Automatically detecting equivalent mutants and infeasible
paths. Softw. Test. Verif. Reliab. 7(3), 165–192 (1997). https://doi.org/10.1002/
(SICI)1099-1689(199709)7:3〈165::AID-STVR143〉3.0.CO;2-U

23. Oliveira, R.A., Alegroth, E., Gao, Z., Memon, A.: Definition and evaluation
of mutation operators for GUI-level mutation analysis. In: 2015 IEEE Eighth
International Conference on Software Testing, Verification and Validation Work-
shops (ICSTW), pp. 1–10. IEEE, April 2015. https://doi.org/10.1109/icstw.2015.
7107457

24. Osman, H., Leuenberger, M., Lungu, M., Nierstrasz, O.: Tracking null checks in
open-source java systems. In: 2016 IEEE 23rd International Conference on Soft-
ware Analysis, Evolution, and Reengineering (SANER), vol. 1, pp. 304–313. IEEE,
March 2016. https://doi.org/10.1109/saner.2016.57

https://doi.org/10.1145/2568225.2568271
https://doi.org/10.1145/2568225.2568271
https://doi.org/10.1109/tse.2010.62
https://doi.org/10.1109/tse.2010.62
https://doi.org/10.1145/2635868.2635929
https://doi.org/10.1145/2635868.2635929
https://doi.org/10.1109/csmr-wcre.2014.6747176
https://doi.org/10.1002/spe.4380210704
https://doi.org/10.1002/spe.4380210704
https://doi.org/10.1145/322993.322996
https://doi.org/10.1145/322993.322996
https://doi.org/10.1109/icstw.2015.7107454
https://doi.org/10.1109/icstw.2015.7107454
https://doi.org/10.1109/issre.2002.1173287
https://doi.org/10.1109/issre.2002.1173287
https://doi.org/10.1109/icstw.2015.7107449
https://doi.org/10.1145/227607.227610
https://doi.org/10.1002/(SICI)1099-1689(199709)7:3<165::AID-STVR143>3.0.CO;2-U
https://doi.org/10.1002/(SICI)1099-1689(199709)7:3<165::AID-STVR143>3.0.CO;2-U
https://doi.org/10.1109/icstw.2015.7107457
https://doi.org/10.1109/icstw.2015.7107457
https://doi.org/10.1109/saner.2016.57

434 A. Parsai and S. Demeyer

25. Osman, H., Lungu, M., Nierstrasz, O.: Mining frequent bug-fix code changes.
In: 2014 Software Evolution Week - IEEE Conference on Software Maintenance,
Reengineering, and Reverse Engineering (CSMR-WCRE), pp. 343–347. IEEE,
February 2014. https://doi.org/10.1109/csmr-wcre.2014.6747191

26. Papadakis, M., Henard, C., Harman, M., Jia, Y., Traon, Y.L.: Threats to the valid-
ity of mutation-based test assessment. In: Proceedings of the 25th International
Symposium on Software Testing and Analysis - ISSTA 2016, pp. 354–365. ACM
Press, New York (2016). https://doi.org/10.1145/2931037.2931040

27. Papadakis, M., Kintis, M., Zhang, J., Jia, Y., Traon, Y.L., Harman, M.: Muta-
tion testing advances: an analysis and survey. In: Advances in Computers (2018).
https://doi.org/10.1016/bs.adcom.2018.03.015

28. Parsai, A.: Replication package. http://parsai.net/files/research/
SofSemReplicationPackage.7z

29. Parsai, A., Demeyer, S., De Busser, S.: C++11/14 mutation operators based on
common fault patterns. In: Medina-Bulo, I., Merayo, M.G., Hierons, R. (eds.)
ICTSS 2018. LNCS, vol. 11146, pp. 102–118. Springer, Cham (2018). https://
doi.org/10.1007/978-3-319-99927-2 9

30. Parsai, A., Murgia, A., Demeyer, S.: Evaluating random mutant selection at class-
level in projects with non-adequate test suites. In: Proceedings of the 20th Inter-
national Conference on Evaluation and Assessment in Software Engineering -
EASE 2016, pp. 11:1–11:10. ACM Press, New York (2016). https://doi.org/10.
1145/2915970.2915992

31. Parsai, A., Murgia, A., Demeyer, S.: A model to estimate first-order mutation
coverage from higher-order mutation coverage. In: 2016 IEEE International Con-
ference on Software Quality, Reliability and Security (QRS), pp. 365–373. IEEE,
August 2016. https://doi.org/10.1109/qrs.2016.48

32. Parsai, A., Murgia, A., Demeyer, S.: LittleDarwin: a feature-rich and extensible
mutation testing framework for large and complex Java systems. In: Dastani, M.,
Sirjani, M. (eds.) FSEN 2017. LNCS, vol. 10522, pp. 148–163. Springer, Cham
(2017). https://doi.org/10.1007/978-3-319-68972-2 10

33. Parsai, A., Murgia, A., Soetens, Q.D., Demeyer, S.: Mutation testing as a safety
net for test code refactoring. In: Scientific Workshop Proceedings of the XP2015
on - XP 2015 workshops, pp. 8:1–8:7. ACM Press, New York (2015). https://doi.
org/10.1145/2764979.2764987

34. Parsai, A., Soetens, Q.D., Murgia, A., Demeyer, S.: Considering polymorphism
in change-based test suite reduction. In: Dingsøyr, T., Moe, N.B., Tonelli, R.,
Counsell, S., Gencel, C., Petersen, K. (eds.) XP 2014. LNBIP, vol. 199, pp. 166–
181. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-14358-3 14

35. Schuler, D., Zeller, A.: Javalanche: efficient mutation testing for Java. In: Proceed-
ings of the 7th Joint Meeting of the European Software Engineering Conference
and the ACM SIGSOFT Symposium on the Foundations of Software Engineer-
ing on European Software Engineering Conference and Foundations of Software
Engineering Symposium - ESEC/FSE 2009, pp. 297–298. ACM Press, New York
(2009). https://doi.org/10.1145/1595696.1595750

36. Yin, R.K.: Case Study Research: Design and Methods. Applied Social Research
Methods. SAGE Publications, Thousand Oaks (2003)

https://doi.org/10.1109/csmr-wcre.2014.6747191
https://doi.org/10.1145/2931037.2931040
https://doi.org/10.1016/bs.adcom.2018.03.015
http://parsai.net/files/research/SofSemReplicationPackage.7z
http://parsai.net/files/research/SofSemReplicationPackage.7z
https://doi.org/10.1007/978-3-319-99927-2_9
https://doi.org/10.1007/978-3-319-99927-2_9
https://doi.org/10.1145/2915970.2915992
https://doi.org/10.1145/2915970.2915992
https://doi.org/10.1109/qrs.2016.48
https://doi.org/10.1007/978-3-319-68972-2_10
https://doi.org/10.1145/2764979.2764987
https://doi.org/10.1145/2764979.2764987
https://doi.org/10.1007/978-3-319-14358-3_14
https://doi.org/10.1145/1595696.1595750

Towards Combining Multitask
and Multilingual Learning

Matus Pikuliak(B), Marian Simko, and Maria Bielikova

Faculty of Informatics and Information Technologies,
Slovak University of Technology in Bratislava, Ilkovicova 2, Bratislava, Slovakia

matus.pikuliak@stuba.sk

Abstract. Machine learning is an increasingly important approach to
Natural Language Processing. Most languages however do not possess
enough data to fully utilize it. When dealing with such languages it is
important to use as much auxiliary data as possible. In this work we
propose a combination of multitask and multilingual learning. When
learning a new task we use data from other tasks and other languages at
the same time. We evaluate our approach with a neural network based
model that can solve two tasks – part-of-speech tagging and named entity
recognition – with four different languages at the same time. Parameters
of this model are partially shared across all data and partially they are
specific for individual tasks and/or languages. Preliminary experiments
show that this approach has its merits as we were able to beat baseline
solutions that do not combine data from all the available sources.

Keywords: Transfer learning · Multilingual learning
Deep natural language processing

1 Introduction

Modern machine learning approaches to natural language processing (NLP) are
notoriously data hungry. Currently there is a significant disparity in volume
of available datasets between various languages. While English, Chinese and
a handful of other major languages have the most data, other languages are
seriously lacking. This is naturally slowing down the research and development
of crucial NLP algorithms, models and services for these low-resource languages.

Collecting new data is laborious and expensive. Transfer learning is some-
times proposed as a possible remedy. Instead of creating new datasets we might
try to utilize existing ones, even though they are not completely related to our
problem. In NLP this means using data from other tasks, languages or domains.
Research so far predominately focused on only one of these options at the time.
The novelty of our work lies in the fact that we are combining multitask and
multilingual learning.

We combine them to utilize as much available data during learning as pos-
sible. We believe that combining data from multiple sources might be crucial
c© Springer Nature Switzerland AG 2019
B. Catania et al. (Eds.): SOFSEM 2019, LNCS 11376, pp. 435–446, 2019.
https://doi.org/10.1007/978-3-030-10801-4_34

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-10801-4_34&domain=pdf
https://doi.org/10.1007/978-3-030-10801-4_34

436 M. Pikuliak et al.

when trying to create robust and efficient solutions. This is especially important
for low-resource languages as it might significantly reduce data requirements.

We propose a method of training a model with multiple tasks from multiple
languages at the same time. In theory the task-specific part can be adapted to
solve any task that can use contextualized word representations. However so far
we experimented only with two: part-of-speech tagging (POS) and named entity
recognition (NER). Both these tasks were solved for four languages (English,
German, Spanish, Czech). We evaluated the performance of this model when
trained on train data from target task only versus when trained on train data
from all tasks. In some cases we noted significant score improvements.

2 Related Work

Parameter Sharing. Parameter sharing is a popular technique of multitask
learning. Multiple models trained on different tasks share the values of subset
of parameters. Such sharing can boost the results for any of the relevant tasks
by the virtue of having additional data influencing the training process. Various
combinations of sequence tagging tasks were already considered [14,17,20,24].
These approaches usually share certain layers (e.g. LSTM layer processing word
embeddings or character embeddings) between tasks or languages. These layers
are then supervised from multiple tasks and these task regularize each other in
a sense. Subramanian et al. use parameter sharing with multiple tasks to create
robust sentence representations [21].

Multilingual Learning. Multilingual learning can be perceived as a special
type of multitask learning, when the samples come from different languages. The
goal is to transfer knowledge from one language to others. Various techniques
to multilingual learning exist, using annotation projection [1,5], language inde-
pendent representations [2,25] or parameter sharing [7,24]. Parameter sharing
techniques are the most relevant to us. We chose to use this technique because in
contrast with other techniques it can be used for both multilingual and multitask
learning at the same time. They share certain layers between more languages and
these layers are therefore becoming multilingual. We extend this idea and com-
bine multilingual learning with multitask learning. Recently concurrently with
our research Lin et al. experimented with a setup similar to ours [13]. They have
a hierarchical LSTM model that is solving sequential tagging tasks. Compared
to our task some details of model implementations differ. Our unique contribu-
tion is that we really use multiple auxiliary tasks, as opposed to their approach
when they always use just two - one with the same task but a different language
and one with the same language but with a different task. Other works use dif-
ferent techniques for combining multilingual and multitask learning, e.g., [1,22]
use annotation projection to solve POS tagging and dependency parsing with
multiple languages at the same time.

Towards Combining Multitask and Multilingual Learning 437

3 Proposed Method

We propose a multitask multilingual learning method based on parameter shar-
ing. In our approach, the training is done with multiple datasets at the same
time. In this work we work with two tasks – NER and POS – and four natural
languages. In effect we have 8 unique training datasets and for each of these
datasets we have a separate model that is being trained. All these models have
the same neural network based architecture. In various experiments selected
parameters are shared between certain models to achieve transfer of information
between them. Sharing parameters in this case means having identical weight
matrices on selected layers of a neural network.

3.1 Architecture

The architecture of our model needs to be general enough to allow us to effec-
tively solve multiple tasks at once. In our work we use sentence level tasks,
i.e., we expect a sentence as an input to our model. The form of the output
depends on the task. Our model is not suited to process higher level units, such
as paragraphs or documents. We propose a model with three consecutive parts:

Part 1: Word Embeddings. Word embeddings are fixed-length vector rep-
resentation of words that became very popular in previous years [8,15] as they
are able to significantly outperform other types of word representations, namely
one-hot encodings. They are based on an idea of using language modeling as
auxiliary task when learning about words. The first step of our architecture is to
project the words into vector space. For each language L we have a dictionary
of words DL and a function dL that takes a given word and returns an integer
identifier of this word in given dictionary. The id of Czech word on is dcs(on),
while the id of English word on is den(on). Even though the form (the characters
they are composed of) of these two words is the same, they have different ids in
their respective dictionaries.

For each language we also have an embedding matrix EL whose i-th row
is a word representation for a word W for which dL(W) = i. The matrix EL

has dimensions a × b, where a is the number of words in dictionary DL and b
is the arbitrarily set length of word representation that is set before the word
embeddings are created. For words that are not in the dictionary of its language
we use a zero vector.

The input of our model is a sentence of N words from language L:

I = 〈W1,W2,W3, . . . ,WN 〉 (1)

For clarity, we define a function d′ that return a vector for a given word as:

d′
L(W) = EL(dL(W)) (2)

With this we can then define the output of this model layer as a sequence of
embeddings:

e = 〈d′
L(W1), d′

L(W2), d′
L(W3), . . . , d′

L(WK), 〉 (3)

438 M. Pikuliak et al.

In our case we use so called multilingual word embeddings as pre-trained word
representations that are stored in the E matrices. Multilingual word embeddings
are an extension of standard word embeddings technique where words from mul-
tiple languages share one semantic vector space [18]. Semantically similar words
have similar representations even when they come from different languages. This
is the only information that explicitly tells our model what is the relation between
various languages and their words. Sometimes researchers let the word embed-
dings be trainable parameters. In our case we fix them so we do not lose this
link between languages.

Part 2: LSTM. Word embeddings are processed in a bi-directional LSTM
recurrent layer [9]. The weights of this layer are shared across both tasks and
languages – the same LSTM layer is used during each pass in the network. This is
the part that contains the majority of trainable parameters and is therefore also
responsible for most of the computation that is performed. This is also where
most of the information sharing happens. The output of this layer is a sequence
of contextualized word representations. While in the previous layer the same
word always has the same representation, here the same word will have different
representation if it is used in different contexts. The context in our case is the
whole sentence.

We used LSTM recurrent layer as they are able to partially tackle the forget-
ting problem of basic recurrent networks, which tend to forget what they saw in
previous steps if the input sequence length is too big. LSTMs use several gates
that let the model learn what parts of the signal should it keep between the
steps and which parts should be forgotten. The LSTM is traditionally defined
as follows:

ft = σ(Wfxt + Ufht−1 + bf) (4)

it = σ(Wixt + Uiht−1 + bi) (5)

ot = σ(Woxt + Uoht−1 + bo) (6)

ct = ft ◦ ct−1 + it ◦ σ(Wcxt + Uxht−1 + bc) (7)

ht = ot ◦ σ(ct) (8)

where xt, ht and ct is the LSTM input, output and cell state at the time t. The
size of h and c can be set arbitrarily. ft, it and ot are forgetting, input and output
activation gates that govern how much signal is kept during the computation.
W ’s, U ’s and b’s are trainable weights and biases. Finally ◦ is Hadamard product
and σ is a non-linear activation function.

This defines an LSTM function that takes a sequence of inputs and returns a
sequence of outputs that encode the state of the LSTM at individual timestamps:

LSTM(〈x1, x2, x3, . . . , xK〉) = 〈h1, h2, h3, . . . , hK〉 (9)

The bi-directional LSTM layer of our model is then defined with two LSTM
networks. The first one processes the word embeddings from the start, while the
second one processes it from the end:

h1, h2, h3, . . . , hK = LSTM(e) (10)

Towards Combining Multitask and Multilingual Learning 439

〈h′
K , h′

K−1, h
′
K−2, . . . h

′
1〉 = LSTM(reverse(e)) (11)

The output q of this layer is finally defined as:

q = 〈(h1;h′
1), (h2;h′

2), (h3;h′
3), ..., (hK ;h′

K)〉 (12)

with a semicolon marking a concatenation of the two vectors and e being an
output of previous layer.

Part 3: Output Layers. Finally the output of the LSTM is processed by task-
specific layers (architectures might differ depending on the tasks). The param-
eters of this part might or might not be shared across languages. So far we
experimented with two tasks, part-of-speech tagging and named entity recogni-
tion. As both of them are sequence tagging tasks we use the same architecture
for this part.

Each contextualized word representation from the bi-LSTM layer is used to
predict the appropriate tag for a given word with a linear projection:

p = Wh + b (13)

where p is the prediction vector containing probabilities for each possible tag
within given task, W and b are weights and biases and h is a contextualized
vector for one particular word from previous layer. We use the same parameters
(W and b) for each word.

All these predictions for one sentence are then processed by a CRF sequence
modeling algorithm [12] to calculate final results. Using this algorithm means
that instead of simply optimizing for the p to predict the correct tag as much
as possible we also take into account the order of individual tags. To this end
a transition matrix counting how many times one particular tag followed all
the other tags is used. During training this step is differentiable but during
inference we need to use dynamic programming to calculate the final tags from
the predictions p our model generates while also taking the transition matrix
into account. A detailed description of this part of the network is outside of the
scope of this article, cf. Lample et al. [12].

The complete architecture is depicted in Fig. 1. From bottom up we can see
the word being transformed into their respective embedding representations and
processed by a bi-directional layer. The output then flows into a task-specific
part. In our case we always use a CRF component that predicts the tag for each
word. If we were to extend our experiments with additional tasks that might not
be sequential tagging tasks, this final part would differ.

3.2 Training

We consider several training modes, based on what kind of data the model is
exposed to:

1. Single task, single language (ST-SL). This is the standard machine learn-
ing setting when we have data for one task from one language only.

440 M. Pikuliak et al.

Fig. 1. Architecture of our solution. The final depicted layer is CRF, however in theory
an arbitrary architecture can follow the bi-LSTM layer.

2. Multitask (MT). More tasks from single language are solved at once, e.g.,
we train both NER and POS for English.

3. Multilingual (ML). Data from multiple languages are used to train one
shared task, e.g. we train POS on all languages at the same time.

4. Multitask, multilingual (MT-ML). A combination of multitask and mul-
tilingual learning. Multiple tasks are solved for multiple languages all at the
same time.

We use epochs with fixed amount of training steps. When training with more
languages and/or tasks, each training step consists of several minibatches – one
minibatch for each relevant dataset. For example, during multitask learning we
might have two relevant datasets, English POS and English NER. This means
that we first run one English POS minibatch followed by one English NER
minibatch as one training step. Minibatches always contain the same amount of
samples.

Each model processes epochs×steps×datasets minibatches during training.
In effect this means that the model gets exposed to more data with an increas-
ing number of datasets used for training. Naturally during each pass only the
parameters that are relevant for a given task and language gets updated. Rest
of the parameters lie unchanged.

4 Experiments and Results

4.1 Datasets

In our experiments we used four languages (English, German, Spanish and
Czech) and two tasks (part-of-speech tagging, named entity recognition). This
means that in overall we had 8 datasets, each with training, development and
testing part. The amount of annotated sentences for each dataset can be found
in Table 1.

Towards Combining Multitask and Multilingual Learning 441

Table 1. Number of sentences in datasets (in thousands).

en es de cs

NER train 38.4 7.1 24.0 7.2

NER dev 4.8 1.6 2.2 0.9

NER test 4.8 1.4 5.1 0.9

POS train 12.5 14.1 13.8 68.5

POS dev 2.0 1.4 0.8 9.3

POS test 2.0 0.4 1.0 10.1

Part-of-Speech Tagging. For POS we used Universal Dependencies [16]
datasets for each language. These are annotated using the universal POS tagging
schema containing 17 common tags.

Named Entity Recognition. We used Groningen Meaning Bank [4] for
English, GermEval 2014 NER dataset [3] for German, CoNLL 2002 [19] for
Spanish and Czech Named Entity Corpus [11] for Czech. The tagging schemata
differ between these datasets so we had to unify them ourselves. We converted
them to standard BIO schema used for NER. We used 4 types of named entities
(persons, locations, organizations and miscellaneous). English dataset was the
only one that did not have separated training, development and testing data so
we split it with 8:1:1 ratio.

Word Embeddings. For multilingual word embeddings we use publicly avail-
able MUSE embeddings [6]. These can be trained for any two languages if we
have a monolingual corpus for each language and a bilingual dictionary. They
have word vectors of size 300 for 200,000 words in each language. Vectors for
other words were set to zero.

4.2 Experiment

We trained our model in all modes as mentioned in Sect. 3.2. Every time we have
8 models for each task-language combination. In various settings they share dif-
ferent parameter subspaces. When using multilingual learning they share all
the parameters (in effect this means they are identical so it is one model being
trained with more data). When using multitask learning the two models share
an LSTM layer, but the task-specific weights used to make the final tag predic-
tions are naturally not shared across tasks. When using multitask multilearning
models, they still all share the LSTM layer, while the output layer is shared only
between the models with the same task. To explain more clearly what models
are connected through parameter sharing we illustrate our settings in Fig. 2.

Hyperparameters. We used RMSProp [23] optimization algorithm with learn-
ing rate 1e − 4 with gradient clipping set to 1. Dropout was used before and after
LSTM layer and it was set to 50%. For each run we had 60 epochs, each with
512 training steps. Batch size was 32. LSTM hidden cell size was 300.

442 M. Pikuliak et al.

Fig. 2. Illustration of how different training modes use all the datasets. E.g. we can
see that in MT we have 4 model pairs that share parameters.

Results from these experiments are presented in Table 2 for NER and Table 3
for POS. We use tag F1 score for NER and tag accuracy for POS. The precision
for NER is calculated as a number of correctly predicted NER tags (excluding O
tag for words without named entity tag) divided by a number of all NER tags in
labels. Recall on the other hand is the number of correctly predicted NER tags
divided by a overal number of predicted NER tags. In all cases by NER tags
we still mean only non-O tags. F1 is then traditionally defined as a harmonic
average of precision and recall.

Table 2. NER results for various learning modes for individual languages. Results are
per tag F1 scores.

en es de cs

ST-SL 77.3 73.0 73.3 66.2

MT 77.4 74.3 75.3 67.8

ML 78.1 75.6 74.6 68.1

MT-ML 77.5 77.1 74.3 69.8

Combination of multilingual and multitask learning managed to beat other
learning modes in 4 out of 8 cases. The most significant was 4.1% improvement
for Spanish NER. In all but two cases it beat the single task single language
baseline. The result was a slight decline of 0.11% was measured for Czech POS.
When reviewing these results we noted that there seems to be a negative corre-
lation between the amount of training samples for the task and the improvement
we achieved with MT-ML training. This is depicted in Fig. 3. The two datasets
with highest and lowest number of samples are in fact those with the lowest and

Towards Combining Multitask and Multilingual Learning 443

Table 3. POS results for various learning modes for individual languages. Results are
per tag accuracy scores.

en es de cs

ST-SL 90.66 94.16 91.19 94.06

MT 90.90 94.19 91.27 94.05

ML 91.17 94.30 91.42 93.95

MT-ML 91.21 94.41 91.16 93.95

Fig. 3. Relation between training set size and the change in score when using MT-ML
instead of ST-SL for each dataset. The score is F1 for NER and accuracy for POS.

highest improvement in score. This indicates that our method is well suited for
low-resource scenarios but it loses its effectiveness when we have enough training
data.

4.3 Sharing the Output Layer

In previous experiments when performing multilingual learning (both ML and
MT-ML) the output layers with CRF were not shared across languages. Each
language had its own private subset of parameters. Our goal was to let the model
learn specifics of each language this way. To confirm our hypothesis that it is
beneficial to have private output layers we run the same experiments as before for
these two learning modes but this time with only one set of output parameters
shared across all four languages. We compare the absolute change in score (F1
for NER, accuracy for POS) in Table 4.

We can see slight improvement in NER (on average +0.17) and slight fall in
POS (on average −0.02). The way parts of speech are used in various languages
differ more than the way named entities behave. Instinctively this difference in
results makes sense. During analysis we noticed that with shared output layers it
took longer for the model to converge to a near optimal solution in all cases. We

444 M. Pikuliak et al.

think that private output layers make the work easier for the rest of the model as
they are able to correct the mistakes of model. When the output layer is shared
the LSTM is forced to predict correct tags as there is no fallback mechanism.
It is ultimately able to overcome this challenge but it takes longer because the
task solved is harder.

Table 4. The absolute change in score when output layer parameters are shared
between languages.

en es de cs

ML NER +0.2 +0.8 −0.3 −0.6

MT-ML NER +0.5 +0.2 +0.2 +0.3

ML POS −0.06 +0.06 −0.02 −0.04

MT-ML POS +0.16 −0.06 +0.05 −0.25

5 Future Work and Conclusion

The most important future work is the experimenting with additional languages
and also tasks, such as dependency parsing, language modeling and machine
translation. We also plan to shift from the multitask learning paradigm to the
transfer learning paradigm. Instead of training the model for all available tasks
at once, we are interested if we could specialize it only for one specifically selected
task (perhaps an extremely low-resource one). To do this we will need an agent
capable of dynamically changing the selection policy. Using partially private
models [14], adversarial learning [10] or sub-word level representations [24] are
several other ideas we plan to experiment with.

So far our model proved itself to be capable of multitask multilingual learning.
We were able to beat reasonable single task baselines that use less auxiliary data,
especially in small training set cases. Combining data from various heterogeneous
sources might be crucial for developing effective solutions especially for low-
resource languages. We perceive this work as one step towards this goal.

The proposed model work on the sentence level which is compatible with
many NLP tasks the community is solving so far. It can be easily extended by
modifying the output layer to solve other tasks. By aggregation we could even
combine representations from several sentences to form representations for para-
graphs or documents. From these we could gather additional signal for learning
as some tasks are traditionally solved in a document level fashion, e.g. document
classification.

Acknowledgements. This work was partially supported by the Slovak Research and
Development Agency under the contract No. APVV-15-0508, and by the Scientific
Grant Agency of the Slovak Republic, grants No. VG 1/0667/18 and No. VG 1/0646/15.

Towards Combining Multitask and Multilingual Learning 445

References

1. Agić, Ž., Johannsen, A., Plank, B., Alonso, H.M., Schluter, N., Søgaard, A.: Multi-
lingual projection for parsing truly low-resource languages. Trans. Assoc. Comput.
Linguist. 4, 301–312 (2016)

2. Ammar, W., Mulcaire, G., Ballesteros, M., Dyer, C., Smith, N.: Many languages,
one parser. Trans. Assoc. Comput. Linguist. 4, 431–444 (2016)

3. Benikova, D., Biemann, C., Reznicek, M.: NoSta-D named entity annotation for
German: guidelines and dataset. In: Proceedings of the Ninth International Con-
ference on Language Resources and Evaluation. LREC 2014, 26–31 May 2014,
Reykjavik, Iceland, pp. 2524–2531 (2014)

4. Bos, J., Basile, V., Evang, K., Venhuizen, N.J., Bjerva, J.: The Groningen meaning
bank. In: Ide, N., Pustejovsky, J. (eds.) Handbook of Linguistic Annotation, pp.
463–496. Springer, Dordrecht (2017). https://doi.org/10.1007/978-94-024-0881-
2 18

5. Buys, J., Botha, J.A.: Cross-lingual morphological tagging for low-resource lan-
guages. In: Proceedings of the 54th Annual Meeting of the Association for Com-
putational Linguistics (Volume 1: Long Papers), pp. 1954–1964. Association for
Computational Linguistics (2016)

6. Conneau, A., Lample, G., Ranzato, M., Denoyer, L., Jégou, H.: Word translation
without parallel data. In: 6th International Conference on Learning Representa-
tions, Vancouver, Canada, May 2018

7. Cotterell, R., Heigold, G.: Cross-lingual character-level neural morphological tag-
ging. In: Proceedings of the 2017 Conference on Empirical Methods in Natural Lan-
guage Processing, pp. 759–770. Association for Computational Linguistics (2017)

8. Gallay, L., Šimko, M.: Utilizing vector models for automatic text lemmatization. In:
Freivalds, R., Engels, G., Catania, B. (eds.) SOFSEM 2016. LNCS, vol. 9587, pp.
532–543. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-49192-
8 43

9. Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Comput. 9(8),
1735–1780 (1997)

10. Joty, S., Nakov, P., Màrquez, L., Jaradat, I.: Cross-language learning with adver-
sarial neural networks. In: Proceedings of the 21st Conference on Computational
Natural Language Learning (CoNLL 2017), pp. 226–237. Association for Compu-
tational Linguistics (2017)

11. Kravalova, J., Zabokrtsky, Z.: Czech named entity corpus and SVM-based rec-
ognizer. In: Proceedings of the 2009 Named Entities Workshop: Shared Task on
Transliteration (NEWS 2009), pp. 194–201. Association for Computational Lin-
guistics (2009)

12. Lample, G., Ballesteros, M., Subramanian, S., Kawakami, K., Dyer, C.: Neural
architectures for named entity recognition. In: Proceedings of the 2016 Conference
of the North American Chapter of the Association for Computational Linguis-
tics: Human Language Technologies, pp. 260–270. Association for Computational
Linguistics (2016)

13. Lin, Y., Yang, S., Stoyanov, V., Ji, H.: A multi-lingual multi-task architecture for
low-resource sequence labeling. In: Proceedings of the 56th Annual Meeting of the
Association for Computational Linguistics (Volume 1: Long Papers), pp. 799–809.
Association for Computational Linguistics (2018). http://aclweb.org/anthology/
P18-1074

https://doi.org/10.1007/978-94-024-0881-2_18
https://doi.org/10.1007/978-94-024-0881-2_18
https://doi.org/10.1007/978-3-662-49192-8_43
https://doi.org/10.1007/978-3-662-49192-8_43
http://aclweb.org/anthology/P18-1074
http://aclweb.org/anthology/P18-1074

446 M. Pikuliak et al.

14. Liu, P., Qiu, X., Huang, X.: Adversarial multi-task learning for text classification.
In: Proceedings of the 55th Annual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pp. 1–10. Association for Computational
Linguistics (2017)

15. Mikolov, T., Yih, W., Zweig, G.: Linguistic regularities in continuous space word
representations. In: Human Language Technologies: Proceedings and Conference of
the North American Chapter of the Association of Computational Linguistics, 9–
14 June 2013, Westin Peachtree Plaza Hotel, Atlanta, Georgia, USA, pp. 746–751
(2013)

16. Nivre, J., et al.: Universal dependencies v1: a multilingual treebank collection. In:
Proceedings of the Tenth International Conference on Language Resources and
Evaluation. LREC 2016, 23–28 May 2016, Portorož, Slovenia (2016)

17. Peng, N., Dredze, M.: Multi-task domain adaptation for sequence tagging. In:
Proceedings of the 2nd Workshop on Representation Learning for NLP, pp. 91–
100. Association for Computational Linguistics (2017)

18. Ruder, S.: A survey of cross-lingual embedding models. CoRR abs/1706.04902
(2017)

19. Sang, E.F.T.K., Meulder, F.D.: Introduction to the CoNLL-2003 shared task:
language-independent named entity recognition. In: Proceedings of the Seventh
Conference on Natural Language Learning. CoNLL 2003, 31 May–1 June 2003,
Held in Cooperation with HLT-NAACL 2003, Edmonton, Canada, pp. 142–147
(2003)

20. Søgaard, A., Goldberg, Y.: Deep multi-task learning with low level tasks supervised
at lower layers. In: Proceedings of the 54th Annual Meeting of the Association for
Computational Linguistics (Volume 2: Short Papers), pp. 231–235. Association for
Computational Linguistics (2016)

21. Subramanian, S., Trischler, A., Bengio, Y., Pal, C.J.: Learning general purpose
distributed sentence representations via large scale multi-task learning. In: 6th
International Conference on Learning Representations, Vancouver, Canada, May
2018

22. Tiedemann, J.: Rediscovering annotation projection for cross-lingual parser induc-
tion. In: Proceedings of COLING 2014, The 25th International Conference on
Computational Linguistics: Technical Papers, pp. 1854–1864. Dublin City Univer-
sity and Association for Computational Linguistics (2014)

23. Tieleman, T., Hinton, G.: Lecture 6.5-rmsprop: divide the gradient by a running
average of its recent magnitude. COURSERA: Neural Netw. Mach. Learn. 4(2),
26–31 (2012)

24. Yang, Z., Salakhutdinov, R., Cohen, W.W.: Transfer learning for sequence tagging
with hierarchical recurrent networks. In: 5th International Conference on Learning
Representations, Toulon, France, April 2017

25. Zirikly, A., Hagiwara, M.: Cross-lingual transfer of named entity recognizers with-
out parallel corpora. In: Proceedings of the 53rd Annual Meeting of the Association
for Computational Linguistics and the 7th International Joint Conference on Nat-
ural Language Processing (Volume 2: Short Papers), pp. 390–396. Association for
Computational Linguistics (2015)

On the Size of Logical Automata

Martin Raszyk(B)

Department of Computer Science, ETH Zürich, Universitätstrasse 6, 8092 Zürich,
Switzerland

m.raszyk@gmail.com

Abstract. The state complexity of simulating 1NFA by 2DFA is a long-
standing open question, which is of particular interest also due to its
connection to the DLOG vs. NLOG problem for Turing machines.

What makes proving lower bounds on the size of deterministic two-
way automata particularly hard is the fact that one has to consider any
automaton, and unlike the designer, one does not have any meaning of
the states at hand. This motivates the notion of logical automata whose
states are annotated by formulas representing the meaning of a state.

In the paper at hand, we first introduce the notion of logical automata
and present a general approach to proving lower bounds on the number
of states of logical automata. We then apply this approach to derive an
exponential lower bound on the size of logical automata over formulas
with a restricted set of atomic predicates. Finally, we complement the
lower bound with an (also exponential) upper bound.

1 Introduction

A two-way finite-state automaton is a natural generalization of a (one-way)
finite-state automaton. It is known for a long time that the two models (and
both their deterministic and non-deterministic versions) accept the same set of
languages—the regular languages. Nevertheless, a long-standing open question is
the state complexity of simulating 1NFA by 2DFA, i.e., the minimum number of
states of 2DFA accepting a language for which there exists a 1NFA with a given
number of states. The question is of particular interest also due to its connection
to the DLOG vs. NLOG problem for Turing machines. As shown in [1], if the
simulation of 1NFA by an equivalent 2DFA requires a superpolynomial number
of states when restricted to words of polynomial length, then DLOG �= NLOG.

Sakoda and Sipser [5] conjecture that the minimum number of states of 2DFA
simulating a 1NFA with a given number of states is not polynomial. Neverthe-
less, up to now, exponential lower bounds have only been proved for certain
restrictions of 2DFA, such as sweeping automata [6] (reversing the direction of
the reading head movement only at the left and right delimiter of the input word)
and oblivious automata [4] (exhibiting only a sublinear number of trajectories
of the reading head on input words of a given length).

Refer to [2] for a more comprehensive survey of known results.

c© Springer Nature Switzerland AG 2019
B. Catania et al. (Eds.): SOFSEM 2019, LNCS 11376, pp. 447–460, 2019.
https://doi.org/10.1007/978-3-030-10801-4_35

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-10801-4_35&domain=pdf
https://doi.org/10.1007/978-3-030-10801-4_35

448 M. Raszyk

1.1 Logical Automata

What makes proving lower bounds on the size of deterministic two-way automata
particularly hard is the fact that one has to consider any automaton, and unlike
the designer, one does not have any meaning of the states at hand. This motivates
a line of research which has been initiated by introducing the notion of reasonable
automata in [3] and further followed in [2]. Based on this concept, we introduce
the notion of logical automata in this paper.

Every state of a logical automaton is annotated by a formula. The formula
assigned to a state of a logical automaton is over a finite or countably infinite set
of atomic predicates. We represent formulas as functions, mapping any binary
vector of truth assignments to the corresponding truth value. The unbounded
number of atomic predicates allows a logical automaton to operate on words of
an unbounded length.

Unlike in reasonable automata, a state of a logical automaton does not have
any focus (i.e., an assigned position on the input word). This way, the transitions
of a logical automaton behave more like that of a standard two-way deterministic
finite-state automaton. Note that information about the current position on the
input word can still be encoded in the formula assigned to a state.

One more difference with respect to reasonable automata is that the compu-
tation of a logical automaton started from any valid configuration must be finite
(a valid configuration is such that the input word and current position satisfy
the formula assigned to the current state). This property prevents the automa-
ton from storing some information only into the state and not into the formula
associated with it. Otherwise, a valid logical automaton could, for instance, start
the computation on states which are assigned the tautology as their formula, and
thus store all the information about the input word transparently into the state.
Then, after reaching a state at which the automaton knows whether to accept or
reject, but still annotated by the tautology, the automaton could properly finish
the computation on the input words which reach this state and loop indefinitely
on those input words which do not reach this state (which would not violate the
condition that the computation on any input word is finite).

It is not hard to see that, with a suitable choice of the set of formulas, any two-
way deterministic finite-state automaton is also a logical automaton (one just
has to choose a set of formulas expressive enough, e.g., being able to uniquely
describe the current word on the input tape and setting the formula of a state
so that it is only satisfied by configurations which do occur in a computation on
a word). Hence, we want to study the state complexity of logical automata with
some restricted classes of formulas, in order to get more insight into the general
(hard) problem.

1.2 A Complete Family of Languages

As shown in [5], there exists a family of languages {Bn}n∈N which is complete
with respect to the simulation of 1NFA by 2DFA. This means that, among all
languages accepted by a 1NFA with n states, the language Bn, which is accepted

On the Size of Logical Automata 449

by a 1NFA with n states, requires a 2DFA with the maximum number of states.
The family {Bn}n∈N is also referred to as one-way liveness.

Let Σn denote the alphabet of the language Bn. A symbol s ∈ Σn corresponds
to a directed bipartite graph consisting of two columns of n nodes each. Directed
edges then connect nodes from the left column to nodes in the right column.

A non-empty word w ∈ Σ∗
n is to be interpreted as a directed graph obtained

by concatenating the graphs corresponding to the individual symbols and merg-
ing the right column of a symbol with the left column of the next symbol. It is
in the language Bn if there exist some vertices in the leftmost column (left side)
and rightmost column (right side) of the corresponding directed graph which are
connected by a directed path.

Example 1. Fig. 1 contains two words over Σ5, each of length 3. The corre-
sponding graph for a word from Fig. 1 thus consists of four columns. The word
w(1) �∈ B5, since there exists no directed path from any vertex a1, . . . , a5 in the
leftmost column to any vertex d1, . . . , d5 in the rightmost column. On the other
hand, the word w(2) ∈ B5, since there exists, e.g., a directed path a3, b5, c1, d4
from the left side to the right side.

a1

a2

a3

a4

a5

b1

b2

b3

b4

b5

c1

c2

c3

c4

c5

d1

d2

d3

d4

d5

(a) A word w(1) �∈ B5.

a1

a2

a3

a4

a5

b1

b2

b3

b4

b5

c1

c2

c3

c4

c5

d1

d2

d3

d4

d5

(b) A word w(2) ∈ B5.

Fig. 1. Words of length 3.

1.3 Definitions

Let N := {0, 1, 2, . . .}, and [n] := {1, 2, . . . , n}, for any n ∈ N.
For a word w ∈ Σ∗, let |w| denote the length of the word w, and for

any k ∈ [|w|], let wk denote the k-th symbol of w. We further define w0 :=�,
w|w|+1 :=�.

Definition 1. We call a pair (w, k) ∈ Σ∗ ×N of a word over an alphabet Σ and
a position on it a positioned word.

Definition 2. An atomic predicate h on a positioned word is a function h :
Σ∗ × N → {0, 1}. A positioned word (w, k) satisfies h if and only if h(w, k) = 1.

450 M. Raszyk

Definition 3. For a (finite or countably infinite) set U of atomic predicates, let
F(U) denote the set of functions defined as: F(U) :=

{
f : {0, 1}|U| → {0, 1}}

.
The set F(U) is the set of all formulas over U .

Definition 4. A positioned word (w, k) satisfies a formula f ∈ F(U) over a set
U = {h1, h2, . . . , hj , . . .} of atomic predicates if and only if

f(h1(w, k), h2(w, k), . . . , hj(w, k), . . .) = 1.

We write (w, k) � f if and only if (w, k) satisfies f .

Example 2. Let us look at words over Σ5. Let hi : Σ∗
5 × N → {0, 1}, for i ∈ [5],

be an atomic predicate which is satisfied for a positioned word if and only if
there exists a (directed) edge from the i-th vertex at the left part of the current
symbol (in particular, the current symbol must not be �, �). Let the set U of
atomic predicates be U = {h1, . . . , h5}.

Let a function f : {0, 1}5 → {0, 1} be defined as follows: f(b) = 1 ⇐⇒
b2 = 1 ∨ b5 = 1, for any b ∈ {0, 1}5. The function f ∈ F(U) is a formula which
can also be written as: f ≡ h2 ∨h5. The positioned word (w(1), 1) �� f , with w(1)

from Fig. 1a, since h2(w(1), 1) = h5(w(1), 1) = 0, i.e., there is no directed edge
from a2 or a5. On the other hand, the positioned word (w(1), 2) � f , since there
exists a directed edge from b2 (and also b5).

We formally define the notion of a logical automaton for the liveness problem.

Definition 5. A logical automaton A over a set F of formulas is a tuple A =
(Q,Σ, δ, qs, QF , QR, κ) such that

– Q is a (finite) set of states,
– Σ is the input alphabet,
– δ : (Q \ (QF ∪ QR)) × (Σ ∪ {�,�}) → Q × {−1, 1} is the transition function

which has the following properties:
• δ(q,�) ∈ Q × {1} for any q ∈ Q \ (QF ∪ QR),
• δ(q,�) ∈ Q × {−1} for any q ∈ Q \ (QF ∪ QR),

– qs ∈ Q \ (QF ∪ QR) is the initial state,
– QF ⊆ Q is the set of accepting states,
– QR ⊆ Q is the set of rejecting states such that QF ∩ QR = ∅,
– κ : Q → F is a function assigning formulas to the states.

A configuration of A is a tuple (q, w, k) ∈ Q×Σ∗ ×N, where q is the current
state of A, w is the word on the input tape, and k ∈ N is the current position of
the reading head on the input tape.

The set C of valid configurations of A is the set C = {(q, w, k) ∈ Q × Σ∗ ×
N | (w, k) � κ(q)}, i.e., the set of all configurations (q, w, k) for which the posi-
tioned word (w, k) satisfies the formula κ(q) assigned to the state q.

A step �A of A is a relation on the configurations of A such that (q, w, k) �A
(q′, w′, k′) if and only if w = w′ and δ(q, wk) = (q′, k′ − k).

On the Size of Logical Automata 451

A computation of A is a sequence of configurations in which all pairs of
consecutive configurations are contained in the relation �A, i.e., the latter con-
figuration can be reached in one step of A from the former one. The computation
of A on an input word w ∈ Σ∗ is a computation that starts in the configuration
(qs, w, 0), i.e., on the symbol �, and finishes in a configuration (r, w, k), for some
r ∈ QF ∪ QR and k ∈ N.

A logical automaton must satisfy the following properties:

(i) the initial state qs is assigned the formula κ(qs) ≡ � (i.e., the tautology),
(ii) for any q ∈ QF , (w, k) � κ(q) implies w ∈ Bn,
(iii) for any q ∈ QR, (w, k) � κ(q) implies w �∈ Bn,
(iv) for any c1 ∈ C, if c1 �A c2, then c2 ∈ C,
(v) the computation started from any valid configuration c ∈ C is finite.

The condition (i) reflects the fact that initially the automaton does not know
anything about the input word. The condition (ii) ensures that the formula
assigned to an accepting state is only satisfied by words in the language Bn, and
the condition (iii) ensures that the formula assigned to a rejecting state is only
satisfied by words not in the language Bn, so that Bn is the language accepted
by A. The condition (iv) makes the set C of valid configurations closed under
�A, i.e., no invalid configurations can be reached from a valid configuration. In
particular, this ensures that all configurations reached in a computation of A on
any word are valid. The condition (iv) can also be phrased as follows: whenever
δ(q, a) = (q′, d) for any q ∈ Q \ (QF ∪ QR), q′ ∈ Q, a ∈ (Σ ∪ {�,�}), d ∈ {−1, 1},
then for all words w ∈ Σ∗ and positions k ∈ N, (w, k) � κ(q) and wk = a imply
(w, k + d) � κ(q′). Finally, the condition (v) ensures that the computation on
any input word is finite.

In the next definition, we also restrict the set U of available atomic predicates.

Definition 6. A logical automaton A = (Q,Σn, δ, qs, QF , QR, κ) over a set F
of all formulas over atomic predicates in a set U is called reachability-logical if
the set U consists only of the following types of atomic predicates:

– pt : Σ∗
n × N → {0, 1}, where t ∈ N is a fixed position on the input word. The

atomic predicate pt is defined as follows: pt(w, k) = 1 if and only if k = t
(i.e., if the current position equals t),

– dt : Σ∗
n × N → {0, 1}, where t ∈ N. The atomic predicate dt is defined as

follows: dt(w, k) = 1 if and only if k = |w| + 1 − t, i.e., the current symbol is
at offset t from the end of the input word,

– ri,j : Σ∗
n × N → {0, 1}, where ui,j denotes the i-th vertex in the j-th column.

The atomic predicate ri,j is defined as follows: ri,j(w, k) = 1 if and only if w
contains the vertex ui,j, i.e., i ∈ [n], j ∈ [|w| + 1], and ui,j is reachable from
a vertex in the leftmost column via a directed path in w,

– si,j : Σ∗
n × N → {0, 1}, where ui,j denotes the i-th vertex in the j-th column.

The atomic predicate si,j is defined as follows: si,j(w, k) = 1 if and only if
w contains the vertex ui,j, i.e., i ∈ [n], j ∈ [|w| + 1], and a vertex in the
rightmost column is reachable from the vertex ui,j via a directed path in w.

452 M. Raszyk

The following example shows that the atomic predicates from Definition 6
allow to express the reachability of some vertex at the left part of the current
symbol from the left side.

Example 3. Let n be an arbitrary fixed positive integer. Then the formula

f ≡ ∀j ≥ 1.

(

pj ⇒
n∨

i=1

ri,j

)

is satisfied for a positioned word (w, k), k ∈ [|w|], if and only if some vertex in
the k-th column is reachable from the left side, i.e., if and only if some vertex at
the left part of the current symbol is reachable from the left side.

The positioned word (w(1), 3), with w(1) from Fig. 1a, satisfies (w(1), 3) � f ,
since pj(w(1), 3) = 1 ⇐⇒ j = 3 and ri,3(w(1), 3) = 1 ⇐⇒ i = 3 ∨ i = 5. The
positioned word (w(1), 4) �� f , since pj(w(1), 4) = 1 ⇐⇒ j = 4, but ri,4(w(1), 4) =
0, for all i ∈ [5].

1.4 Related Results

Up to now, the only exponential lower bound for reasonable automata over all
propositional formulas on a restricted set of atomic predicates is contained in
Theorem 7 in [2]. It attempts to show an exponential lower bound on the size
of reasonable automata over all propositional formulas on the set of available
atomic predicates restricted to ri,j . We noticed that the proof of the theorem in
[2] is wrong, and provide an explanation with a counterexample in the appendix.
Nevertheless, the lower bound claimed by the theorem holds, and can be proved
by adapting the technique from our paper to the model of reasonable automata.

2 Main Results

2.1 General Approach

We prove a theorem which provides lower bounds on the number of states of
logical automata. To apply the theorem, one has to find two sequences w(i),
z(i) of t words each, and a fixed position k which form a witness for a logical
automaton.

Definition 7. Let A = (Q,Σn, δ, qs, QF , QR, κ) be a logical automaton over a
set F of formulas. Let W = {w(1), . . . , w(t)} ⊆ Σ∗

n and Z = {z(1), . . . , z(t)} ⊆ Σ∗
n

be two sequences of t words each. Let a position k be fixed. Suppose that

(a) w(i) �∈ Bn holds for any word w(i) ∈ W,
(b) whenever

(p,w(i), k′) �A (q, w(i), k′′),

for some states p, q ∈ Q, some word w(i) ∈ W, and some positions k′, k′′ ∈ N

such that (z(i), k′) � κ(p) and (z(i), k′′) �� κ(q), then k′ = k, and for all
i < j ≤ t, (z(j), k′) � κ(p) implies (z(j), k′′) � κ(q),

On the Size of Logical Automata 453

(c) (z(i), k′) �� κ(qr) holds for all qr ∈ QR, z(i) ∈ Z, k′ ∈ N.

Then (W,Z, k) is a witness for A.

Informally, (W,Z, k) is a witness for a logical automaton A if none of the
words w(i) ∈ W is in the one-way liveness (a) and no formula assigned to a
rejecting state of A is satisfied under any word z(i) ∈ Z and any position k′ ∈ N

(c). Furthermore, it must hold that, whenever A learns in one step on the i-th
word w(i) that z(i) and the current position do not satisfy the formula assigned
to the current state, then the current position is k and A may not learn that
z(j) and the current position do not satisfy the formula assigned to the current
state, for any j > i, in the same step of computation (b).

Theorem 1. Let A = (Q,Σn, δ, qs, QF , QR, κ) be any logical automaton over a
set F of formulas. Let W = {w(1), w(2), . . . , w(t)} ⊆ Σ∗

n be a sequence of t words
and let Z = {z(1), z(2), . . . , z(t)} ⊆ Σ∗

n be a sequence of t words. Let k ∈ N be a
fixed position. Suppose that (W,Z, k) is a witness for A. Then A must have at
least

√
t/2 states.

Proof. Note that any word w(i) ∈ W should be rejected by (a) of Definition 7.
Since for all qr ∈ QR, z(i) ∈ Z, k′ ∈ N, (z(i), k′) � κ(qs) holds by (i) of Defini-
tion 5, and (z(i), k′) �� κ(qr) holds by (c) of Definition 7, there exists a step in the
computation of A on any w(i) ∈ W such that

(qs, w
(i), 0) �∗

A (P (w(i)), w(i), k
(i)
1) �A (S(w(i)), w(i), k

(i)
2), (1)

for some positions k
(i)
1 , k

(i)
2 ∈ N, where P, S are functions mapping the words

w(i) ∈ W to the corresponding states, (z(i), k(i)
1) � κ(P (w(i))) and (z(i), k(i)

2) ��
κ(S(w(i))).

Let us now distinguish the following two cases with respect to the size of the
image of P :

(a) the size of the image |P (W)| ≥ √
t, i.e., there are at least

√
t distinct states

which are assigned to the words in W by the function P ,
(b) the size of the image |P (W)| <

√
t, i.e., in total less than

√
t distinct states

are assigned to the words in W by the function P .

Case (a)
Since P (W) ⊆ Q, we conclude

|Q| ≥ |P (W)| ≥ √
t ≥

√
t

2
.

Case (b)
Refer to the diagram in Fig. 2 for an overview of this case. Since |W| = t, it

is easy to see that there exists some state p ∈ P (W) in the image of P whose
preimage under P is of size at least

√
t (otherwise the size of the domain of

P : W → Q would be strictly less than |P (W)| · √
t <

√
t · √

t = t = |W|). Let
W ′ ⊆ W be the largest subset of all words w(i) ∈ W such that P (w(i)) = p

and k
(i)
2 is constant in (1). Since k

(i)
1 = k is constant by (b) of Definition 7 and

|k(i)
2 − k

(i)
1 | ∈ {−1, 1}, it is easy to see that |W ′| ≥

√
t

2 .

454 M. Raszyk

Fig. 2. The diagram of case (b) in the proof of Theorem1. The dashed lines represent
the mapping by the function P , whereas the dotted lines represent the mapping by the
function S.

Lemma 1. The function S|W′ : W ′ → Q restricted to the set W ′ is injective.

Proof. For the sake of contradiction, assume that S(w(i)) = S(w(j)) for some
w(i), w(j) ∈ W ′, i �= j. Without loss of generality, assume that i < j.

By (1), we have (z(i), k(i)
1) � κ(P (w(i))) and (z(i), k(i)

2) �� κ(S(w(i))). Since
P (W ′) = {p}, we have P (w(i)) = P (w(j)). By (1), (z(j), k(j)

1) � κ(P (w(j))) with
k
(j)
1 = k = k

(i)
1 , and thus (z(j), k(i)

1) � κ(P (w(i))).
By (b) of Definition 7, (z(j), k(i)

1) � κ(P (w(i))) and i < j imply (z(j), k(i)
2) �

κ(S(w(i))).
Since S(w(i)) = S(w(j)), we get (z(j), k(i)

2) � κ(S(w(j))), and with k
(i)
2 = k

(j)
2

(z(j), k(j)
2) � κ(S(w(j))), which is a contradiction to (z(j), k(j)

2) �� κ(S(w(j)))
by (1).

Hence, the function S|W′ : W ′ → Q restricted to the set W ′ is injective. ��
From Lemma 1, we immediately get

|Q| ≥ |W ′| ≥
√

t

2
,

which concludes the case (b), and thus also the proof of Theorem 1. ��

2.2 Lower Bounds

We are going to use Theorem 1 to prove a lower bound on the number of states
of reachability-logical automata. To this end, we define a witness (W,Z, k) for
an arbitrary reachability-logical automaton. Let us point out that the witness
consists solely of words of length 3.

In the following, let A,B,C,D denote the sets of vertices in the first, second,
third, and fourth column. For any ∅ � R � [n], let w(R) ∈ Σ3

n be a graph
which contains exactly the edges (a1, bi) for all i ∈ R, (bi, cj), (bj , ci) for all

On the Size of Logical Automata 455

a1

a2

a3

a4

a5

b1

b2

b3

b4

b5

c1

c2

c3

c4

c5

d1

d2

d3

d4

d5

(a) A word w(R) for R =
{1, 2, 4}.

a1

a2

a3

a4

a5

b1

b2

b3

b4

b5

c1

c2

c3

c4

c5

d1

d2

d3

d4

d5

(b) A word z(R) for R =
{1, 2, 4}.

a1

a2

a3

a4

a5

b1

b2

b3

b4

b5

c1

c2

c3

c4

c5

d1

d2

d3

d4

d5

(c) A word w
(R2)
1 w

(R1)
2 w

(R2)
3

for R1 = {1, 2, 4} and R2 =
{1, 2, 5}.

Fig. 3. Sample words from the witness (W,Z, k).

i ∈ R, j ∈ [n] \ R, and (ci, d1) for all i ∈ R. An example of a word w(R) is shown
in Fig. 3a.

For any ∅ � R � [n], let z(R) ∈ Σ3
n be a graph which contains exactly the

edges (a1, bi) for all i ∈ R, (bi, cj) for all i, j ∈ [n], and (ci, d1) for all i ∈ R. An
example of a word z(R) is shown in Fig. 3b.

Let R1, R2, . . . , Rm be the sequence of all subsets ∅ � R � [n], |R| > n
2 ,

ordered such that |Ri| ≤ |Rj | for all 1 ≤ i ≤ j ≤ m. Here m ∈ N denotes the
number of all such subsets.

Let W,Z be two sequences of m words each which are defined as follows:

W := {w(R1), w(R2), . . . , w(Rm)},

Z := {z(R1), z(R2), . . . , z(Rm)}.

Let the position k = 2 be fixed. We prove some observations we will
use to establish that (W,Z, k) as defined above is a witness for an arbitrary
reachability-logical automaton.

Let us consider words of the form w
(R2)
1 w

(R1)
2 w

(R2)
3 with a sample word shown

in Fig. 3c.

Lemma 2. Let w = w
(R2)
1 w

(R1)
2 w

(R2)
3 for some ∅ � R1, R2 � [n] with R1 �= R2,

n
2 < |R1| ≤ |R2|. Then (w, k′), (z(R2), k′) evaluate to the same truth values of all
atomic predicates in Definition 6, for any k′ ∈ N.

Proof. Since w1 = w
(R2)
1 , exactly the vertices with indices in R2 are reachable

from the left side among the vertices in the second column. Since R1 �= R2,
|R1| ≤ |R2|, it is easy to see that R2 �⊆ R1, and thus there exists some index
i ∈ R2, i �∈ R1 so that all the vertices with indices in R1 are reachable from the
left side among the vertices in the third column (through the vertex bi). Since
n
2 < |R1|, |R2|, it is easy to see that R2 ∩ R1 �= ∅, and thus there exists some
index i′ ∈ R2, i

′ ∈ R1 so that all the vertices with indices in [n]\R1 are reachable

456 M. Raszyk

from the left side among the vertices in the third column (through bi′). It follows
that all the vertices in the third column are reachable from the left side, and
since R2 �= ∅ and w3 = w

(R2)
3 , the right side (exactly the first vertex) is reachable

from the left side.
Analogously, we can show that the right side is reachable exactly from the

vertices with indices in R2 among the vertices in the third column, from all the
vertices in the second column, and from the first vertex in the first column.

Finally, the current position is k′ in both (w, k′), (z(R2), k′), which means that
pt and dt evaluate to the same truth values. Hence, (w, k′), (z(R2), k′) evaluate
to the same truth values of all atomic predicates in Definition 6, for any k′ ∈ N.

��
Lemma 3. Let A = (Q,Σn, δ, qs, QF , QR, κ) be any reachability-logical automa-
ton. Let ∅ � R � [n] with n

2 < |R|. Suppose that

(p,w(R), k′) �A (q, w(R), k′′),

for some states p, q ∈ Q, and positions k′, k′′ ∈ {0, 1, 2, 3, 4}, where (z(R), k′) �
κ(p) and (z(R), k′′) �� κ(q). Then k′ = k, and for all ∅ � R′ � [n] with R �= R′,
|R| ≤ |R′|, (z(R

′), k′) � κ(p) implies (z(R
′), k′′) � κ(q).

Proof. We first prove that k′ = 2 = k. For the sake of contradiction, assume that
k′ �= 2. Since w(R), z(R) only differ at the second symbol, we get (p, z(R), k′) �A
(q, z(R), k′′) which is a contradiction to (iv) of Definition 5.

Let ∅ � R′ � [n] be such that R �= R′, |R| ≤ |R′|, and (z(R
′), k′) � κ(p). We

show that (z(R
′), k′′) � κ(q).

Consider the word w′ := w
(R′)
1 w

(R)
2 w

(R′)
3 . Since (z(R

′), k′) � κ(p), and both
(w′, k′), (z(R

′), k′) evaluate to the same truth values of all atomic predicates in
Definition 6 (see Lemma 2), we get that (w′, k′) � κ(p). Since k′ = 2, it holds
that w′

k′ = w′
2 = w

(R)
2 = w

(R)
k′ , and thus (p,w′, k′) �A (q, w′, k′′), from which we

get that (w′, k′′) � κ(q). Finally, since both (w′, k′′), (z(R
′), k′′) evaluate to the

same truth values of all atomic predicates in Definition 6 (see Lemma 2), we get
that (z(R

′), k′′) � κ(q). ��
Now, we can state that (W,Z, k) is a witness for an arbitrary reachability-

logical automaton.

Lemma 4. (W,Z, k) as defined above form a witness for an arbitrary reach-
ability-logical automaton.

Proof. It is easy to see that any w(Ri) �∈ Bn, i.e., (a) of Definition 7 holds. Lemma
3 then implies (b) of Definition 7. Finally, z(Ri) ∈ Bn and (iii) of Definition 5
imply (c) of Definition 7. ��

The lower bound using the witness (W,Z, k) is contained in the next theorem.

Theorem 2. Let A = (Q,Σn, δ, qs, QF , QR, κ) be any reachability-logical
automaton. Then A must have at least Ω(2

n
2) states.

On the Size of Logical Automata 457

Proof. Recall that m denotes the number of all subsets ∅ � R � [n], |R| > n
2 .

It is easy to show that m ∈ Ω(2n). By Lemma 4, (W,Z, k) is a witness for A.
Hence, Theorem 1 allows us to conclude that A must have at least

√
m
2 ∈ Ω(2

n
2)

states. ��

2.3 Upper Bounds

We complement the exponential lower bound with an (also exponential) upper
bound. In fact, the following theorem shows that the straightforward 1DFA
for one-way liveness, which stores the subset of vertices of the current symbol
which are reachable from the left side into the state, can be represented as a
reachability-logical automaton.

Theorem 3. There exists a reachability-logical automaton A with 2n +3 states.

Proof. Informally, the reachability-logical automaton A keeps track of the set of
vertices at the left part of the current symbol which are reachable from the left
side. Then upon reaching the right delimiter � after a single pass through the
input word, A checks whether the set of reachable vertices is empty, or not.

More formally, let A = (Q,Σn, δ, qs, QF , QR, κ) be defined as follows. The
set of states is Q = {qs, qf , qr} ∪ ⋃

∅⊆R⊆[n] qR, the set of accepting states is
QF = {qf}, and the set of rejecting states is QR = {qr}.

The formula assigned to a state qR, ∅ ⊆ R ⊆ [n], is

κ(qR) ≡ ∀j ≥ 1.

(

pj ⇒
n∧

i=1

li,j

)

,

where li,j ≡ ri,j if i ∈ R, and li,j ≡ ¬ri,j if i �∈ R. It expresses that exactly the
vertices with indices in R are reachable among the vertices at the left part of
the current symbol. This (relative) property is expressed by quantifying over the
(absolute) position j ∈ {1, 2, . . .}.

The formula assigned to the starting state qs is κ(qs) ≡ �, i.e., the tautology.
The formulas assigned to the accepting and rejecting states are κ(qf) ≡ d1 ∧
∀j ≥ 1. (pj ⇒ ∨n

i=1 ri,j+1) and κ(qr) ≡ d1 ∧ ∀j ≥ 1. (pj ⇒ ∧n
i=1 ¬ri,j+1). They

express that the current position is the last symbol of the word (i.e., the position
just before the right delimiter �), and that some (none, respectively) vertex at
the right part of the current (last) symbol is reachable from the left side. Again,
the (relative) property is expressed by quantifying over the (absolute) position
j ∈ {1, 2, . . .}.

The transition function δ from the starting state qs is defined as follows:
δ(qs,�) = (q[n], 1), and δ(qs, a) = (qs,−1), for all a �≡ �.

The transition function δ from a state qR, ∅ ⊆ R ⊆ [n], is defined as follows:
δ(qR,�) = (q[n], 1). For an arbitrary symbol a ∈ Σn, let R′ ⊆ [n] be the set of
indices of vertices at the right part of a which are reachable from the vertices at
the left part of a with indices in R via directed arcs on a. Then δ(qR, a) = (qR′ , 1).
Finally, δ(q∅,�) = (qr,−1), and δ(qR,�) = (qf ,−1), for any R �= ∅.

458 M. Raszyk

Let us remark that we define the (complete) transition function δ so that
the property (v) of Definition 5 holds for A. In particular, valid configurations
(qs, w, k), for k ≥ 1, which do not occur in any computation of A on a word, lead
to the initial configuration (qs, w, 0), from which a finite computation follows. ��

Finally, let us show the actual computation of the reachability-logical
automaton A from Theorem 3 on the words w(R), z(R), as in Fig. 3:

(qs, w
(R), 0) �A (q[n], w(R), 1) �A (qR, w(R), 2)

�A (q[n]\R, w(R), 3) �A (q∅, w(R), 4) �A (qr, w
(R), 3),

(qs, z
(R), 0) �A (q[n], z(R), 1) �A (qR, z(R), 2)

�A (q[n], z(R), 3) �A (q{1}, z(R), 4) �A (qf , z(R), 3).

Acknowledgements. The author would like to thank Hans-Joachim Böckenhauer,
Juraj Hromkovič, and the referees for their valuable comments and suggestions.

A Wrong Proof in Previous Work

In this section, we show that the proof of Theorem 7 in [2] is wrong. Following [2],
we define 1-liv2 to denote the family of languages Bn restricted to words of
length 2. Let us first restate the theorem.

Theorem 7 (Bianchi et al. [2]). Consider propositional variables r(a) (¬r(a),
resp.) with the interpretation that the vertex a is reachable (non reachable, resp.)
from the left side, and let F be the set of all propositional formulæ on such
variables. Then, any reasonable automaton over F solving the n-th language
from 1-liv2 must have Ω(2

n
2) states.

Analogously to Sect. 2.2, let A = {a1, . . . , an}, B = {b1, . . . , bn}, and C =
{c1, . . . , cn} be the vertices in the first, second, and third column, respectively.

The proof in [2] proceeds as follows. For any ∅ � R � [n], let w(R) ∈ Σ2
n be

a graph which contains exactly the edges (a1, bi) for all i ∈ R, and (bj , c1) for
all j ∈ [n] \ R. Hence, any word w(R) should be rejected by a valid reasonable
automaton. For any set R, let fR be the formula which is defined as follows:
fR ≡ ∧

i∈R r(bi) ∧ ∧
j∈[n]\R ¬r(bj). Let L be the set of all 2n − 2 words w(R).

To arrive at a contradiction, let A be a reasonable automaton over F solving
the n-th language from 1-liv2, which is in the normal form defined in [2], with
m < 2

n
2 states. Then there are at most m2 < 2n−2 pairs of states, and thus there

exists a pair of words w(R1), w(R2) ∈ L, such that the pair of states preceding
the (rejecting) final state in the computation of A on w(R1), w(R2) is identical on
both of them. Let qpp, qp be these two states in the order in which they appear
in the computation of A on w(R1), w(R2). Since A is in the normal form, the
formula κ(qpp) together with the information carried by either w

(R1)
τ(qpp)

or w
(R2)
τ(qpp)

cannot imply either r(c1) or ¬r(c1).

On the Size of Logical Automata 459

The next step in the proof is the conclusion that the formula κ(qpp) must hold
for all words satisfying any of the following four formulas: fR1∧r(c1), fR1∧¬r(c1),
fR2 ∧ r(c1), and fR2 ∧ ¬r(c1). This conclusion is wrong as demonstrated by the
formula κ(qpp) ≡ (fR1 ⇒ ∧

c∈C ¬r(c))∧ (fR2 ⇒ ∧
c∈C ¬r(c)). If τ(qpp) = 2, then

the formula κ(qpp) together with the information carried by either w
(R1)
2 or w

(R2)
2

does not imply either r(c1) or ¬r(c1) (observe that the first symbol of the current
word could potentially contain no edges, or contain edges to all vertices in the
second column, and still satisfy the formula κ(qpp) which is a conjunction of two
implications). However, the formula κ(qpp) contradicts the formula fR1 ∧ r(c1),
and thus it does not hold for any word satisfying the formula fR1 ∧ r(c1).

Another minor issue in the reasoning of the proof is that the word w
(R1)
1 w

(R2)
2

is in the n-th language from 1-liv2 only if R1 �⊆ R2, which can be nevertheless
assumed without loss of generality.

In the following, we construct a concrete counterexample to the (wrong) step
in the proof in [2]. Let A′ = (Σn, Q′, 2, q′

s, Q
′
F , Q′

R, δ′, τ ′, κ′) be an arbitrary
reasonable automaton over F solving the n-th language from 1-liv2, which is in
the normal form. We construct a valid reasonable automaton A over F solving
the n-th language from 1-liv2, which is in the normal form, and still contradicts
the reasoning in the proof of Theorem 7 in [2].

Let us fix two words w(R1), w(R2) ∈ L, R1 �= R2, such that R1 �⊆ R2. In the
following, let us abbreviate w(R1) ≡ x, w(R2) ≡ y.

Let us define the reasonable automaton A = (Σn, Q, 2, qs, QF , QR, δ, τ, κ)
as follows. The set of states Q = {qs, qx, qy, qpp, qp, qf , qr} ∪ Q′. The starting
state is qs ∈ Q. The set of accepting states is QF = {qf} ∪ Q′

F , and the set of
rejecting states is QR = {qr} ∪ Q′

R. The focus of a state q ∈ Q is as follows:
τ(qs) = τ(qp) = 1, τ(qx) = τ(qy) = τ(qpp) = 2, and τ(q′) = τ ′(q′) for any
q′ ∈ Q′ \ (Q′

F ∪ Q′
R).

Let us define fx ≡ fR1 , and fy ≡ fR2 . The formula assigned to a state
q ∈ Q is as follows: κ(qs) = �, κ(qx) = fx ∨ ∧

b∈B r(b), κ(qy) = fy ∨ ∧
b∈B r(b),

κ(qpp) = κ(qp) = (fx ⇒ ∧
c∈C ¬r(c)) ∧ (fy ⇒ ∧

c∈C ¬r(c)), κ(qf) =
∨

c∈C r(c),
κ(qr) =

∧
c∈C ¬r(c), and κ(q′) = κ′(q′) for any q′ ∈ Q′.

The transition function is as follows: δ(qs, x1) = qx, δ(qs, y1) = qy, δ(qx, x2) =
δ(qy, y2) = qpp, δ(qpp, x2) = δ(qpp, y2) = qp, δ(qp, x1) = δ(qp, y1) = qr, and
δ(q, a) ∈ {qf , qr, q

′
s} for any q ∈ {qs, qx, qy, qpp, qp} and a ∈ Σn such that δ(q, a)

has not been defined previously. Note that δ(q, a) ∈ {qf , qr} whenever possible,
so that A is in the normal form. Finally, δ(q′, a) = δ′(q′, a) for any q′ ∈ Q′ \
(Q′

F ∪ Q′
R) and a ∈ Σn.

The computation of A on the words x, y looks as follows:

(x, qs) �A (x, qx) �A (x, qpp) �A (x, qp) �A (x, qr),
(y, qs) �A (y, qy) �A (y, qpp) �A (y, qp) �A (y, qr).

Hence, the computation of A on x, y has the same pair of states preceding the
(rejecting) final state qr. According to the proof of Theorem 7 in [2], the formula
κ(qpp) must hold for all words satisfying fx ∧ r(c1), which is not the case as we
see from the definition of κ(qpp).

460 M. Raszyk

It only remains to show that A is a valid reasonable automaton in the normal
form. Since A′ is assumed to be a valid reasonable automaton in the normal form,
it suffices to only check the transitions from the states q ∈ {qs, qx, qy, qpp, qp}.
We omit the details.

References

1. Berman, P., Lingas, A.: On complexity of regular languages in terms of finite
automata. Technical report 304, Institute of Computer Science, Polish Academy
of Sciences (1977)

2. Bianchi, M.P., Hromkovič, J., Kováč, I.: On the size of two-way reasonable automata
for the liveness problem. In: Potapov, I. (ed.) DLT 2015. LNCS, vol. 9168, pp. 120–
131. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-21500-6 9

3. Hromkovič, J., Královič, R., Královič, R., Štefanec, R.: Determinism vs. nonde-
terminism for two-way automata. In: Yen, H.-C., Ibarra, O.H. (eds.) DLT 2012.
LNCS, vol. 7410, pp. 24–39. Springer, Heidelberg (2012). https://doi.org/10.1007/
978-3-642-31653-1 4

4. Hromkovič, J., Schnitger, G.: Nondeterminism versus determinism for two-way finite
automata: generalizations of Sipser’s separation. In: Baeten, J.C.M., Lenstra, J.K.,
Parrow, J., Woeginger, G.J. (eds.) ICALP 2003. LNCS, vol. 2719, pp. 439–451.
Springer, Heidelberg (2003). https://doi.org/10.1007/3-540-45061-0 36

5. Sakoda, W.J., Sipser, M.: Nondeterminism and the size of two way finite automata.
In: Proceedings of the Tenth Annual ACM Symposium on Theory of Computing.
ACM (1978)

6. Sipser, M.: Lower bounds on the size of sweeping automata. In: Proceedings of the
Eleventh Annual ACM Symposium on Theory of Computing. ACM (1979)

https://doi.org/10.1007/978-3-319-21500-6_9
https://doi.org/10.1007/978-3-642-31653-1_4
https://doi.org/10.1007/978-3-642-31653-1_4
https://doi.org/10.1007/3-540-45061-0_36

Bayesian Root Cause Analysis
by Separable Likelihoods

Maciej Skorski(B)

DELL, Klosterneuburg, Austria
maciej.skorski@gmail.com

Abstract. Root Cause Analysis for anomalies is challenging because
of the trade-off between the accuracy and its explanatory friendliness,
required for industrial applications. In this paper we propose a frame-
work for simple and friendly RCA within the Bayesian regime under
certain restrictions (namely that Hessian at the mode is diagonal, in this
work referred to as separability) imposed on the predictive posterior.
Within this framework anomalies can be decomposed into independent
dimensions which greatly simplifies readability and interpretability.

We show that the separability assumption is satisfied for important
base models, including Multinomial, Dirichlet-Multinomial and Naive
Bayes. To demonstrate the usefulness of the framework, we embed it
into the Bayesian Net and validate on web server error logs (real world
data set).

Keywords: Bayesian modeling · Anomaly detection
Root Cause Analysis

1 Introduction

1.1 Anomaly Detection and Root Cause Analysis

In the likelihood-based approaches to anomaly detection, a generative proba-
bilistic model for data is learned and used to evaluate new data records. Records
with unusually low likelihoods are marked as anomalies. A classical example is
the Z-score measure, which fits a Gaussian distribution to 1-dimensional data
(estimating the mean and variance) and scores observations in the decreasing
order with respect to the log-likelihood; for its simplicity it is widely used in
explanatory data analysis, quality controls and other industrial applications.

The challenge with real data sets, however, is that they usually contain both
continuous and categorical features, as well as inter-dependencies (in particular
anomaly scores cannot be applied independently across features). Interactions
and dependencies can be effectively modeled by the modern framework of prob-
abilistic graphical models [KF09]. Further, simplicity can be traded for accuracy

Full version available on arXiv https://arxiv.org/pdf/1808.04302.pdf.

c© Springer Nature Switzerland AG 2019
B. Catania et al. (Eds.): SOFSEM 2019, LNCS 11376, pp. 461–472, 2019.
https://doi.org/10.1007/978-3-030-10801-4_36

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-10801-4_36&domain=pdf
https://arxiv.org/pdf/1808.04302.pdf
https://doi.org/10.1007/978-3-030-10801-4_36

462 M. Skorski

by using more sophisticated models as building blocks (for example more exotic
base distributions or mixtures); only for multivariate counts several models have
been proposed [ZZZS17].

This paper concerns the constrained scenario of Root Cause Analysis (RCA)
where in addition to identifying anomalies, a readable explanation (in terms of
predefined features) is required. Because the purpose of RCA is to support busi-
ness decision making, complexity and fit accuracy are often traded for explana-
tory abilities. This makes some powerful models (such as neural set) not adequate
for this task [SMRE17]. In this paper we show how to build, out of simple build-
ing blocks, an anomaly detection system for error logs. While our model is a
fairly simple variant of Bayes Network, the main added value is the proposed
paradigm of determining anomaly contributions, which is used to estimate how
different features contribute to the likelihood of the anomaly data record. These
scores can be used directly to perform efficient RCA which is illustrated by a
case study on real data.

1.2 Contribution

Root-Cause Analysis for Separable Posteriors. For the task of anomaly
detection the main quantity of interest is the likelihood of the new data record
x = (x1, . . . , xd) given the training data D, called the predictive posterior.
Assuming a generative process Pr(·|θ) for the data, with some parameter vector
θ, the likelihood of a new point can be computed by one of the following formulas

L(x) = Pr(x|D) =
∫

Pr(x|θ) Pr(θ|D)dθ

L(x) ≈ Pr(x|θ∗), θ∗ = argmaxθ Pr[D|θ]

where the first formula is the fully Bayesian predictive posterior (parameters inte-
grated) and the second one is the maximum a posteriori approximation (MAP),
preferred for analytical tractability and justified when the parameter posterior
Pr(θ|D) is sharply peaked around its mode θ∗.

For successful RCA it would be helpful to answer the following question

Q: How individual components xi impact the likelihood L?

Obtaining analytical estimates on these impacts is not possible in general,
because posteriors are often not analytically tractable and can be only approxi-
mated by sampling. However in certain cases the predictive posterior, after sub-
tracting its mode, factorizes into terms depending on individual terms θi. More
precisely, suppose that the predictive posterior log-likelihood can be written as

log L(x) ≈ log L(x∗) +
∑

i

I(xi). (1)

where x∗ = argmaxx log L(x) is the mode. When the posterior obeys Eq. (1) we
say it is separable. The term I(xi) can be then thought as influence of the i-th

Bayesian Root Cause Analysis by Separable Likelihoods 463

coordinate of the data point x. Moreover, similarly to the notion of the aver-
aged log-likelihood, these influences can be aggregated over several independent
observations x (e.g. daily). We note conceptual similarity of this decomposition
technique to independent component analysis (ICA) which decompose signals
into (almost) independent components [HO00].

This formula has the following intuitive meaning: we decompose the defi-
ciency w.r.t. the mode per individual dimensions; the deficiency is understood
as the difference in the log-likelihood with respect to the mode and can be seen
as a natural anomaly measure (note that

∑
i I(xi) � 0 by the definition of x∗).

We stress that it is important to subtract the mode in Eq. (1), otherwise we
explain the likelihood of the whole point, rather than its abnormal part.

It is worth mentioning that Eq. (1) can be characterized alternatively, by
noticing that the hessian matrix H satisfies (assuming xi are unconstrained1)

Hi,j(x∗) =
∂2L

∂xi∂xj
(x∗) = [i = j] · ∂I(xi)

∂xi
· ∂I(xj)

∂xj
(2)

hence is diagonal at the mode. In fact, from the diagonal hessian an approxima-
tion of form Eq. (1) can be obtained by means of Laplace approximation.

We will show theoretical results on separability for two popular building
blocks: the posterior of Dirichlet-Multinomial distribution and the posterior of
categorical variable given category-dependent multivariate Bernoulli or Multi-
nomial observations (for example, naive bayes text classification on the bag-of-
words representation). They will be discussed in Sect. 2; now we sketch a simpler
example. Consider the multinomial model with total counts of k and probability
p = (p1, . . . , pd). The likelihood of counts x = (k1, . . . , kd) is

L(x) =
(

k

k1, . . . , kd

) d∏
i=1

pki
i .

Denote by qi = ki

k the observed frequencies. The log-likelihood normalized by
the number of observations can be approximated by Stirling formulas [Shl14]
establishing the connection to the Kullback-Leibler divergence of observed and
real frequencies, respectively q = (q1, . . . , qd) and p = (p1, . . . , pd).

1
k

log L(x) ≈ O(k−1 log k) + DKL(q||p)

= O(k−1 log k) −
d∑

i=1

qi log
qi

pi

It is not hard to see that the mode is at k · p and the log-likelihood at this point
equals O(log k). Thus we obtain Eq. (1) with I(xi) = qi log qi

pi
.

1 For example in the multinomial model
∑

i xi is fixed.

464 M. Skorski

Case Study on Real Data. We apply our framework to the real data set of
error logs from company servers. Each record contains the number of errors for
a given zone, project, procedure and the error message. The data was collected
for more than 120 consecutive days. Every day consists of a full log of errors and
has size of several GB. For efficient training the data was preaggregated on Hive
(by considering multiplicities) which decreased the size to few MB. A sample of
the data set is shown in Table 1. The model we build is analytically tractable, we
avoid complicated posterior sampling. The results will be discussed in Sect. 3.

Table 1. Dataset for log errors.

row id date region project name procedure name error detail err cnt

15362 2018-04-01 EMEA GLOBAL ONLINE SERVICE EXPLODE BUNDLE Object reference not set to an instance of an ... 3
29308 2018-04-01 EMEA Y API Y.Controllers.Configurator.Global.Glo... VerifyError:Invalid option selected 1
29222 2018-04-01 EMEA G Services: CustomerService NaN Operation: GetSalesPerson 26
3157 2018-04-01 EMEA G Services: CustomerService NaN Operation: GetCustomer Exception: G.Ex... 77
7801 2018-04-01 EMEA Y API Y.Controllers.Configurator.Global.Glo... BuildError:InvalidOrderCodeOrCustomerSet 5

1.3 Organization

In Sect. 2 we derive theoretical results for separable posteriors. In Sect. 3 we
apply our framework to real-world data. The paper is concluded in Sect. 4.

2 Separable Posteriors

2.1 Dirichlet-Multinomial Model

The Dirichlet-Multinomial Model (DM) is popular for modeling multivariate
counts. As opposed to the plain multinomial model, it captures uncertainty in
the probability parameter, which helps avoiding over-dispersion.

(p1, . . . , pd) ∼ Dir(α1, . . . , αd)
(k1, . . . , kd) ∼ Mult(p1, . . . , pd|k)

(3)

This model is analytically tractable, we utilize formulas derived in [Tu15].

P ((ki)i|D) =
Γ(k + 1)∏
i Γ(ki + 1)

· Γ(α′)∏
i Γ(α′

i)
·
∏

i Γ(ki + α′
i)

Γ(k + α′)
(4)

where α′
i = αi +

∑
x∈D

∑
xi and α′ =

∑
i α′

i or the sake of concise notation. By
using the Stirling approximation we obtain

log L ≈ (5)

− k
∑

i

ki

k
log

ki

k
− α′ ∑

i

α′
i

α′ log
α′

i

α′ + (k + α′)
∑

i

ki + α′
i

k + α′ log
ki + α′

i

k + α′

Bayesian Root Cause Analysis by Separable Likelihoods 465

In order to see separability we will apply the well known trick called Laplace
approximation, which is merely a multivariate Gaussian approximation to the
predictive posterior (see for example [Deh17] for theoretical justifications). Tech-
nically, we expand the log-likelihood in a Talyor series around its mode, so that
linear term disappear (by the first-derivative test, as the mode maximizes the
likelihood!) and quadratic terms correspond to the Gaussian terms. In our case,
the second-order terms turn out to be diagonal hence we obtain separability.

In order to find the mode we need to use the Lagrangian because of the
implicit constraint k =

∑
i ki. For some constant C, the mode satisfies2

− log k∗
i + log(k∗

i + α′
i) + C = 0 (6)

which implies

k∗
i =

k

α′ · α′
i. (7)

By the Taylor expansion around the mode we obtain (note that the linear part
disappears and the coefficients of the quadratic part are determined from the
first order conditions Eq. (6))

log L((ki)) ≈ log L((k∗
i)) − 1

2

∑
i

α′
i

(k∗
i + α′

i)k
∗
i

(
ki − k

α′ · α′
i

)2

= log L((k∗
i)) − 1

2

∑
i

1
1 + k

α′
·
(
ki − k

α′ · α′
i

)2
k
α′ · α′

i

(8)

denoting qi = ki

k (observed frequency) and p∗ = α′
i

α′ (mode frequency) we have

Lemma 1 (Predictive Posterior vs Mode for DM)

log L(q) ≈ log L(p∗) − 1
2

· α′

α′ + k
· k

∑
i

(qi − p∗
i)

2

p∗
i

(9)

Since usually k � α′ (α′ collects all occurrences over the training data) we have
α′

k+α′ ≈ 1 and we conclude

Corollary 1 (DM Posterior Predictive Impacts). For the DM-model the
impact for the i-th component in Eq. (1) equals

I(ki) ≈ 1
2

· k
∑

i

(qi − p∗
i)

2

p∗
i

. (10)

Remark 1 (Intuition). The major reason for impacts being large negative is a
significant relative increase in frequencies (observed vs posterior), under large
volume. Indeed, let qi = (1 + ri)p∗

i then the i-th impact equals I(ki) = r2i p∗
i .

2 We extend the likelihood over non-integer frequencies as the gamma function is
well-defined and the Stirling approximation works.

466 M. Skorski

2.2 BNB Model

We prove separability only for Bernoulli Naive Bayes (BNB) as we will be using
this model in our case study. However, separability is not limited to the Bernoulli
variant and can be also proved for Multinomial Naive Bayes.

The BNB model is popular for classification of short text messages. Texts are
represented as as the |V |-dimensional boolean vectors where V is the vocabulary.
Each entry is a boolean number indicating occurrence of the word w in a given
text w; we will use the notation I(w ∈ w). The model with Beta prior (which
smooths zero-frequencies adding extra “pseudocounts” of one for each class-
word) can be written as

∀c ∈ C∀w ∈ V pw|c ∼ Beta(1, 1)
∀c ∈ C∀w ∈ V I(w ∈ w|c) ∼ Ber(pw|c)

where C is the set of classes (categories). Let pw|c and pc be posterior probabil-
ities for word given class and for class (bayesian estimation is discussed in the
appendix in the full version).

Proposition 1 (Predicitve Posterior for BNB). Probability of the class c
given the vector of words w ∈ R

V is given by

L(c|w) ∝ pc ·
∏
w∈w

p
I(w∈w)
w|c (1 − pw|c)I(w �∈w) (11)

where the proportionality constant is independent on c (but depends on w).

By taking the logarithm of Eq. (11) evaluated at c and c∗, and subtracting
(the unknown constant cancels) we obtain

Lemma 2 (Predictive Posterior vs Mode for BNB). For the BNB model,
let c∗ be the most likely class given the sequence of words w ⊂ V . We have

log L(c|w) − log L(c∗|w) = (12)

log
pc

pc∗
+

∑
w∈w

[
I(w ∈ w) log

pw|c
pw|c∗

+ I(w 	∈ w) log
1 − pw|c
1 − pw|c∗

]

From we immediately obtain the word impact.

Corollary 2 (BNB Posterior Predictive Impact). For the BNB-model the
impact for the w-th word in Eq. (1) equals

I(w) =
∑
w∈w

[
I(w ∈ w) log

pw|c
pw|c∗

+ I(w 	∈ w) log
1 − pw|c
1 − pw|c∗

]
(13)

where c is the actual class.

Remark 2 (Intuition). The major reason for impacts I(w) to be large negative
is the presence of class-untypical words (so that pw|c � pw|c∗). The effect is
stronger with large volume when evaluating averaged likelihoods.

Bayesian Root Cause Analysis by Separable Likelihoods 467

3 Root Cause Analysis of Anomalies

3.1 Generative Model

Before we apply the results of the previous section, we need to construct the
joint model for all features in our data set. We model the Data by a Bayes Net
illustrated in Fig. 1. Every feature is dependent on zone (justification: different
zones use servers in different location) and at most one other feature (in the
natural hierarchical way). Thus, the model is actually a Tree-Augmented Net-
work (TAN). These models generally allow for a feature-root relation and one
more level of interaction. While TANs can capture non-trivial dependencies, they
are computationally attractive since every node has at most two parents which
reduces the size of internal conditional probability tables [Pad14].

Zone

Project Procedure Error

Fig. 1. TAN model for occurrences of a single error.

More precisely, we assume

Proj|Zone ∼ Cat(p = p(Zone))
Proc|Proj,Zone ∼ Cat(p = p(Proj,Zone))

Err|Proc,Proj,Zone ∼ Ber(p = p(Proc,Zone))
(14)

with empirical Dirichlet priors (estimated from data) for Proj,Proc and non-
informative Beta prior for Err). Bernoulli distributions are over the (binarized)
bag-of-word text representation of Err.

Given the graph, the likelihood factorizes into likelihoods of individual fea-
tures given parents; these models can be fit separately [Pad14]. In our case

Pr[Proj,Proc,Err|Zone] = Pr[Err|Proc,Zone] · Pr[Proc|Proj,Err,Zone] · Pr[Proj|Zone]

We also use this fact to structure our anomaly detection: we will analyze sepa-
rately anomalies in Proj,Zone and separately in tuples Err,Proc,Zone. Since we
are interested in discovering and explaining anomalies on the daily bases, we
perform the inference day by day, training the algorithm on the past data. The
model was implemented under Python package PyMC3 [SWF16].

468 M. Skorski

(a) Likelihood for Proj, Zone = EMEA (b) Likelihood for Proj, Zone = APJ

Fig. 2. Project counts likelihoods by zone.

3.2 RCA for Projects

The posterior for Proj given observed projects counts is Dirichlet-Multinomial.
The daily-averaged likelihood is illustrated in Fig. 2. Anomalies are detected as
unusually low values (for example, lowest values over recent 14 days).

Anomalies 2018/05/17 and 2018/06/11, EMEA. By applying Corollary 1 we
obtain most impacting projects. We see that the anomalies corresponds to peaks
in project hits as illustrated in Fig. 3.

Fig. 3. Daily hits by project (Zone = EMEA).

Anomalies 2018/05/07 and 2018/07/28, APJ. By applying Corollary 1 we
obtain most impacting projects (we pick two). The anomalies again corresponds
to peaks in project hits as illustrated in Fig. 4.

3.3 RCA for Procedures and Error Messages

According to our model, the distribution of procedures given error descriptions
follows the classification Bernoulli Naive Bayes (BNB) model (where Proc is the
class and Err is text; class priors are determined by fitting Proc[Proc|Proj,Zone]).
To detect anomalies in errors, we evaluate the likelihood of procedures given
observed error messages rather than investigating for individual errors.

To see daily anomalies, we use daily-averaged likelihoods (see Fig. 5).

Bayesian Root Cause Analysis by Separable Likelihoods 469

Fig. 4. Daily hits by project (Zone = APJ).

(a) Likelihood of Proc in Zone = EMEA (b) Likelihood of Proc in Zone = APJ

Fig. 5. Likelihood of Proc split by Zone.

Anomaly 2018/05/17 in EMEA. By Corollary 2 we identify the set

S = {‘object’, ‘set’, ‘reference’, ‘instance’, ‘connection’}
of 3 keywords with biggest negative influence on the likelihood. By inspecting
hits on these keywords (by hit we understand every message matching at least
one word in S) across the classes we notice a huge difference between the anomaly
day and the reference data set (see Fig. 6).

By inspecting message texts we also recognize the specific messages related
to the keywords S. The result is summarized in Table 2.

Table 2. RCA for anomaly 2018/05/17 EMEA.

Procedure Error message

Proc1 Object reference not set to an instance of an object

Proc4 Object reference not set to an instance of an object

Anomaly 2018/06/11 in EMEA. By Corollary 2 we identify the set

S = {‘channel’, ‘timed’, ‘remote’, ‘returned’, ‘request’}

470 M. Skorski

Fig. 6. Average daily hits of the keywords ‘object’, ‘set’, ’reference’, ‘instance’, ‘con-
nection’ split by class (Proc), for EMEA zone.

of 5 keywords with biggest negative influence on the likelihood. By inspecting
hits on these keywords across the classes we notice a significant shift between
the anomaly day and the reference data set (see Fig. 7).

Fig. 7. Average daily hits of the keywords ‘channel’, ‘timed’, ‘remote’, ‘returned’,
‘request’ split by class (Proc) for EMEA zone.

Having localized the keywords, we easily find procedures with biggest shifts
and also the messages. The explanation is summarized in Table 3.

Anomaly 2018/05/18 APJ. By Cororllary 2 we identify the set

S = {‘null’, ‘reference’, ‘set’}

of 3 keywords with biggest negative influence on the likelihood. By inspecting
hits on these keywords across the classes we notice a significant shift between
the anomaly day and the reference data set (see Fig. 8). The explanation by
procedures and error messages is shown in Table 4 below.

Anomaly 2018/06/11 APJ. By Corollary 2 we identify the set

S = {‘contract’, ‘G’, ‘contracts’, ‘target’, ‘invocation’}

Bayesian Root Cause Analysis by Separable Likelihoods 471

Table 3. RCA for anomaly 2018/06/11 EMEA.

Procedure Error message

Proc8 The operation has timed out

Proc25 The request channel timed out

Proc20 The request failed with HTTP status 404

Fig. 8. Daily average hits for the keywords ‘null’, ‘reference’, ‘set’ split by Proc, APJ
zone.

Table 4. RCA for anomaly 2018/05/18 APJ.

Procedure Error message

Proc8 Argument is null

of 5 keywords with biggest negative influence on the likelihood. By inspecting
hits on these keywords across the classes we notice a significant shift between
the anomaly day and the reference data set (see Fig. 9). The explanation by
procedures and error messages is shown in Table 5 below.

Fig. 9. Average daily hits of the keywords ‘contract’, ‘G’, ‘contracts’, ‘target’, ‘invoca-
tion’ split by class (Proc), for APJ zone.

472 M. Skorski

Table 5. RCA for anomaly 2018/06/11 APJ.

Procedure Error message

Proc1 Operation: G.Exceptions.CustomerNotFoundException

Proc4 Exception has been thrown by the target of an invocation

4 Conclusion

We proposed a framework for anomaly detection and root cause analysis based
on separable posterior approximation. This approximation has been proved for
the case of Multinomial, Dirichlet-Multinomial and Naive Bayes Models. The
validation on the real data set shows that the framework detects anomalies and
offers reasonable and simple explanations.

References

[Deh17] Dehaene, G.P.: Computing the quality of the Laplace approximation,
November 2017. http://adsabs.harvard.edu/abs/2017arXiv171108911D

[HO00] Hyvrinen, A., Oja, E.: Independent component analysis: algorithms and
applications. Neural Netw. 13, 411–430 (2000)

[KF09] Koller, D., Friedman, N.: Probabilistic Graphical Models: Principles and
Techniques - Adaptive Computation and Machine Learning. The MIT
Press, Cambridge (2009)

[Pad14] Padmanaban, H.: Comparative analysis of naive Bayes and tree augmented
naive Bayes models (2014). http://scholarworks.sjsu.edu/etd projects/356

[Shl14] Shlens, J.: Notes on Kullback-Leibler divergence and likelihood. http://
arxiv.org/abs/1404.2000 (2014)

[SMRE17] Solé, M., Muntés-Mulero, V., Rana, A.I., Estrada, G.: Survey on models and
techniques for root-cause analysis. http://arxiv.org/abs/1701.08546 (2017)

[SWF16] Salvatier, J., Wiecki, T.V., Fonnesbeck, C.: Probabilistic programming in
Python using PYMC3. Peer J. Comput. Sci. 2, e55 (2016)

[Tu15] Stephen, T.: The Dirichlet-multinomial and Dirichlet-categorical models for
Bayesian inference (2015). https://people.eecs.berkeley.edu/∼stephentu/
writeups/dirichlet-conjugate-prior.pdf

[ZZZS17] Zhang, Y., Zhou, H., Zhou, J., Sun, W.: Regression models for multivariate
count data. J. Comput. Graph. Stat. 26(1), 1–13 (2017)

http://adsabs.harvard.edu/abs/2017arXiv171108911D
http://scholarworks.sjsu.edu/etd_projects/356
http://arxiv.org/abs/1404.2000
http://arxiv.org/abs/1404.2000
http://arxiv.org/abs/1701.08546
https://people.eecs.berkeley.edu/~stephentu/writeups/dirichlet-conjugate-prior.pdf
https://people.eecs.berkeley.edu/~stephentu/writeups/dirichlet-conjugate-prior.pdf

Algorithms and Complexity Results
for the Capacitated Vertex Cover

Problem

Sebastiaan B. van Rooij and Johan M. M. van Rooij(B)

Department of Information and Computing Sciences, Utrecht University,
PO Box 80.089, 3508 TB Utrecht, The Netherlands

J.M.M.vanRooij@uu.nl

Abstract. We study the capacitated vertex cover problem (CVC). In
this natural extension to the vertex cover problem, each vertex has a pre-
defined capacity which indicates the total amount of edges that it can
cover. In this paper, we study the complexity of the CVC problem. We
give NP-completeness proofs for the problem on modular graphs, tree-
convex graphs, and planar bipartite graphs of maximum degree three.
For the first two graph classes, we prove that no subexponential-time
algorithm exist for CVC unless the ETH fails.

Furthermore, we introduce a series of exact exponential-time algo-
rithms which solve the CVC problem on several graph classes in O((2−
ε)n) time, for some ε > 0. Amongst these graph classes are, graphs of
maximum degree three, other degree-bounded graphs, regular graphs,
graphs with large matchings, c-sparse graphs, and c-dense graphs. To
obtain these results, we introduce an FPT treewidth algorithm which
runs in O∗((k + 1)tw) or O∗(kk) time, where k is the solution size and
tw the treewidth, improving an earlier algorithm from Dom et al.

Keywords: Capacitated vertex cover
Exact exponential-time algorithms · Treewidth
Fixed parameter tractability

1 Introduction

In the last couple of decades, exact exponential-time algorithms for NP-hard
problems gained more attention. It is expected that there are no algorithms
which solve NP-complete problems in polynomial time. Therefore, we must
try different approaches, such as approximation algorithms, (meta) heuristics,
parameterized algorithms, and moderately exponential-time algorithms. Many
NP-hard problems have a trivial exponential-time algorithm running in O∗(2n)
time, where the O∗-notation suppresses all polynomial factors. An active field of
research is to find algorithms that improve these trivial bounds and solve these
problems in O∗(cn) time for some constant c < 2.

c© Springer Nature Switzerland AG 2019
B. Catania et al. (Eds.): SOFSEM 2019, LNCS 11376, pp. 473–489, 2019.
https://doi.org/10.1007/978-3-030-10801-4_37

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-10801-4_37&domain=pdf
https://doi.org/10.1007/978-3-030-10801-4_37

474 S. B. van Rooij and J. M. M. van Rooij

Many vertex subset problems are NP-hard problems. If there exists a
polynomial-time check to test whether a given vertex subset is a solution to the
given problem, then these problems can be solved trivially in O∗(2n) time by
checking every possible subset of vertices. Many of these vertex subset problems,
such as Vertex Cover1 (e.g., see [3,9,23,25,28,29,33,34]) and Dominating
Set (e.g., see [9,12,16,22,27,31,32]), can be solved in O∗(cn) time for some
constant c < 2.

A natural extension to the these two problems is to add a capacity constraint.
Each vertex v in the graph gets a predefined capacity c(v), which indicates
the maximum amount of edges/vertices it can cover/dominate. The resulting
Capacitated Vertex Cover and Capacitated Dominating Set problems
are in many ways more difficult that their counterparts without capacities. For
both these problems, the questions whether there exist O((2 − ε)n)-time algo-
rithms, for some ε > 0, were stated at IWPEC 2008 by van Rooij [2]. For
the Capacitated Dominating Set problem, this question was resolved by
Cygan et al. [7], who gave an O(1.89n)-time algorithm. This runtime was later
improved by Liedloff et al. [26] to O(1.8463n). An O((2 − ε)n)-time algorithm
for the Capacitated Vertex Cover problem is still unknown.

Definition 1 (Capacitated Vertex Cover Problem (CVC)). Let G =
(V,E) be an undirected graph, c : V → N a capacity function on the ver-
tices V , and k a positive integer. A subset of vertices V ′ ⊆ V is a capacitated
vertex cover if there exists a function f : E → V ′ such that for every edge
e = {v, w} ∈ E : f(e) ∈ {v, w} and for every vertex v ∈ V ′ : |f−1(v)| ≤ c(v).
The Capacitated Vertex Cover problem asks whether there exists a capac-
itated vertex cover of size ≤ k.

In prior work, Guo et al. [18] proved that the capacitated vertex cover prob-
lem is FPT with respect to the solution size k and can be solved in O∗(1.2k2

)
time. Dom et al. [8] improved this bound to O∗(k3k) using a treewidth algorithm,
and they proved that the CVC problem is W [1]-hard when parameterized by
treewidth. Guha et al. [17] considered the more general weighted CVC problem
and gave a primal-dual based approximation algorithm with an approximation
ratio of 2. They also proved that the problem restricted to trees can be solved
in O(n log n) time.

This Work. We show that the Capacitated Vertex Cover problem is NP-
complete on tree-convex and modular graphs and that it cannot be solved in
subexponential time, unless the ETH fails. We also show that CVC is NP-
complete on planar bipartite graphs of maximum degree three.

Next, we introduce a treewidth algorithm that runs in O∗((k+1)tw) or O∗(kk)
time, where k is the solution size, improving the bound from Dom et al. [8].
Thereafter, we introduce a series of algorithms that solve CVC on some specific
graph classes in O((2 − ε)n) time, for some ε > 0. We will give an algorithm on
1 Note that Vertex Cover equals Independet Set and Clique when considered

from the viewpoint of exact exponential-time algorithms.

Algorithms and Complexity Results for the CVC Problem 475

graphs which contain a degree-bounded spanning tree, which includes the graphs
of bounded degree. We generalize this algorithm to solve the CVC problem
on graphs with a significantly sized matching. Using a combination of these
approaches, we show that there are O((2 − ε)n)-time algorithms for CVC on
graphs of maximum degree three, other degree-bounded graphs, regular graphs,
graphs with large matchings, sparse graphs, and c-dense graphs.

2 Difficulty of the Problem

We start by giving several NP-completeness proofs for Capacitated Vertex
Cover. There is a trivial reduction from Vertex Cover, which shows that
Capacitated Vertex Cover is NP-complete on any graph class on which the
vertex cover problem is NP-complete. There are, however, many graph classes
on which Vertex Cover is in P, while CVC is NP-complete.

Below, we will give reductions from NP-complete problems to CVC on pla-
nar bipartite graphs with maximum degree 3, modular graphs and tree-convex
graphs. Note that the problem is in NP as we can check in polynomial time
whether a given subset of vertices V ′ is a valid capacitated vertex cover using a
maximum flow algorithm.

Theorem 1. Capacitated vertex cover is NP-complete on planar bipartite graphs
of maximum degree three.

Proof. We use that Vertex Cover is NP-complete on planar graphs with max-
imum degree 3 [15]. Given a Vertex Cover instance that is a planar graph
G = (V,E) of maximum degree 3 and an integer k, we will create a new planar
bipartite graph G′ of maximum degree 3 which has a capacitated vertex cover
of size at most |E| + k if and only if G has a vertex cover of size at most k.

Let G′ = (V ′, E′) be a copy of G, and let all copied vertices have a capacity
equal to their degree. Next, subdivide every edge e ∈ E′, which introduces a new
node ve per edge e. We give these vertices ve a capacity of 2. Finally, for every
ve, add a new capacity zero vertex of degree one connected only to the vertex ve.
Note that the new graph G′ remains planar, that every vertex in G′ has degree
at most 3, and that G′ is a bipartite graph.

Now, we show that G has a vertex cover of size at most k if and only if G′

has a capacitated vertex cover of size at most |E| + k. First, we note that any
capacity zero vertex is never in an optimal capacitated vertex cover. This forces
the vertices ve in the cover giving us at least |E| vertices in any capacitated
vertex cover in G′. Notice that the vertices ve have capacity 2 and can cover at
most one edge besides the edge to its capacity zero neighbour, thus the third
edge of ve must be covered by one of the original endpoints of e. As such, any
vertex cover of size k in G corresponds to a capacitated vertex cover of size
|E| + k in G′ and vice versa. ��

This theorem implies that Capacitated Vertex Cover on bipartite
graphs in general is also NP-complete. We know that CVC on planar graphs

476 S. B. van Rooij and J. M. M. van Rooij

can be solved in subexponential time (see, Corollary 2). However, assuming the
ETH, this does not seem to be the case for bipartite graphs.

Definition 2 (Exponential Time Hypothesis (ETH) [20]). There exists
an ε > 0 such that 3 − SAT cannot be solved in O∗(2εn) time.

Theorem 2. Assuming the ETH, capacitated vertex cover on bipartite graphs
cannot be solved in subexponential time.

Proof. We will give a reduction from SAT to Capacitated Vertex Cover on
bipartite graphs that transforms a formula with n variables and m clauses into
a graph with O(n + m) vertices. Because of the Sparsification Lemma [21], this
implies that, assuming the ETH, CVC on bipartite graphs cannot be solved in
subexponential time. See [11] for a discussion on this standard approach.

Fig. 1. SAT variable gadget of three vertices and the special vertex g and a clause
vertex for clause C1. The vertex g and the variable assignment vertices (Xi and !Xi)
are in vertex partition X, the clause vertices (C1) and the centre vertex of the gadget
are in vertex partition Y .

Let x1, . . . , xn be the variables of the SAT instance and let C1, . . . , Cm be
the clauses. We will construct a bipartite graph G = (X,Y,E) with capacities
c(v) which has a capacitated vertex cover of size 2n + m if and only if the SAT
instance is satisfiable.

We construct G in the following way. First add a single vertex g with capac-
ity 0 to vertex partition X. For every variable xi, create a gadget (see Fig. 1)
that consists of a capacity two vertex and connected to two more new vertices
representing the true and false assignments for the variable xi. Next add, for
every clause Ci, a vertex to partition Y connected to g, and connect the clause
vertices by new edge to the corresponding variable assignment vertices. Set the
capacity of the clause vertices equal to their degree minus one. Finally, connect
the vertex g to the centre vertex of all variable gadgets.

Algorithms and Complexity Results for the CVC Problem 477

We will now show that the SAT instance is satisfiable if and only if the
minimum capacitated vertex cover on G has size 2n + m. First note that the
capacity zero vertex g is connected to all vertices in Y , and therefore all vertices
in Y must be included in any minimum (size) capacitated vertex cover. This
results in a cover of size at least n+m because there are m clause vertices and n
variable gadgets. Also, the centre vertex of the variable gadget has three edges
and a capacity of two, since g had capacity zero, we conclude that either the
true or the false assignment vertex must also be in any minimum capacitated
vertex cover. Therefore, any minimum capacitated vertex cover is of size at least
m + 2n. Lastly, observe that every clause vertex requires that at least one of its
incident edges is covered by a neighbouring vertex.

It follows that any satisfying assignment to the SAT problem corresponds
to a capacitated vertex cover of size m + 2n by taking all vertices in Y plus
the variable assignment vertices corresponding to the assignment. Vice versa,
any minimum capacitated vertex cover of size m + 2n must include the m + n
vertices in Y plus at most one variable assignment vertex per variable, and thus
corresponds to a satisfying assignment of the SAT formula. ��

The reduction in Theorem 2 is also valid for tree-convex graphs, a subclass
of bipartite graphs.

Definition 3. A bipartite graph G = (X,Y,E) is called tree convex if there
exists a tree T = (X,F) such that for any v ∈ Y , N(v) is a connected subtree
in T .

The tree T = (X,F) in this definition is not a subtree of the graph G but has
its own set of edges F .

It is not hard to see that the graph G constructed in the proof of Theorem2
is a tree-convex graph. To construct the tree T = (X,A), select g as the root
of T and every other vertex in X as a leaf in T . Because all the vertices in Y are
connected to the vertex g, no matter what other neighbours they might have,
they will form a connected subtree in T .

Corollary 1. The capacitated vertex cover problem is NP-complete on tree-
convex graphs, and it cannot be solved in subexponential time on tree-convex
graphs, unless the ETH fails.

Next, we consider another subclass of bipartite graphs, namely modular
graphs (e.g., see [1]).

Definition 4. A bipartite graph G is modular if for every vertex triplet x, y, z
there exist three shortest paths, one from x to y, one y to z, and one from x to
z, that share a common vertex.

We will modify the reduction of Theorem2 to construct a modular graph.

Theorem 3. The capacitated vertex cover problem is NP-complete on modu-
lar bipartite graphs, and it cannot be solved in subexponential time on modular
graphs, unless the ETH fails.

478 S. B. van Rooij and J. M. M. van Rooij

Proof. Given an instance of SAT, let G = (X,Y,E) be the bipartite graph
constructed with the SAT reduction described in Theorem2. We will transform G
into a new graph G′ = (X ′, Y ′, E′) such that G′ is a modular graph. Start with
G′ = G. Then, add a new vertex h to Y ′ connected to all vertices in X ′, and let
the capacity of h equal its degree. Because h is connected to g (see Theorem 2),
it has to be included in any capacitated vertex cover, and because it has capacity
equal to its degree, it can cover all its edges. It is easy to see that G′ is equivalent
to G in the sense that any capacitated vertex cover on G can be transformed into
a capacitated vertex cover on G′ and vice versa, by adding or removing h from
the cover, respectively. Hence by the proof of Theorem 2, G′ has a capacitated
vertex cover of size 2n + m + 1 if and only if the SAT instance is satisfiable.

We will now show that the new graph G′ is a modular graph by proving
that, for any vertex triplet x, y, z ∈ V ′, three shortest paths between the three
vertices share a common vertex. Without loss of generality, we will look at four
cases.

– x, y, z ∈ X ′. The three vertices can reach each other directly via h, with h as
common vertex.

– x, y ∈ X ′, z ∈ Y ′ with none of the three vertices adjacent. A shortest path
from x to y goes directly through h. Because z is not adjacent to x and y, a
shortest path from z to x has to pass through a third vertex w ∈ X ′, which
is a neighbour of z. From w we can go through h and reach both x and y.
Thus h is the common vertex on three shortest paths.

– x, y ∈ X ′, z ∈ Y ′ and z is adjacent to both x and y. Now, z is on the shortest
paths from z to x and from z to y. And, as stated by this subcase, z also lies
on a direct path from x to y.

– x, y ∈ X ′, z ∈ Y ′ and, without loss of generality, z adjacent to x and z not
adjacent to y. The shortest path from z to x and from y to x all go through
x. A shortest path from z to y goes through x followed by h to y. Thus x lies
on three shortest paths.

All other combination of x, y, and z, where two or more vertices are in Y ′ can
be reduced to these four cases by replacing the vertex h with the vertex g in the
arguments.

This reduction proves the NP-completeness. And, analogous to Theorem2,
we have an O(n+m) sized reduction from SAT to the CVC problem on modular
graphs, implying that, assuming the ETH, we cannot solve the capacitated vertex
cover on modular graphs in subexponential time. ��

3 Treewidth

In this section, we introduce a dynamic programming algorithm on a tree decom-
position of a graph G. The algorithm improves a result by Dom et al. [8] and
has some interesting corollaries.

Definition 5. A tree decomposition of a graph G = (V,E) is pair (T,X) with
T = (I, F) a tree and X = {Xi|i ∈ I} a family of subsets of V , called bags, one
for each node of T such that:

Algorithms and Complexity Results for the CVC Problem 479

– For every v ∈ V , there exists a bag Xi such that v ∈ Xi.
– For every edge {v, w} ∈ E, there exists a bag Xi such that v, w ∈ Xi.
– For every v ∈ V , all the bags Xi which contain v form a connected subtree

of T .

The width of a tree decomposition is the size of the largest bag minus one. The
treewidth of a graph G, tw(G), is the minimum width of a tree decomposition
over all tree decompositions of G.

A dynamic programming algorithm on a tree decomposition works as follows.
First, set one arbitrary node of the tree decomposition as the root, and define
for every node i, Gi = G[

⋃
j∈Δ(i) Xj] where Δ(i) is the set of descendants of i

in T . Then, for each node i in a bottom-up fashion on the decomposition tree T ,
compute all partial solutions to the problem on Gi that can be extended to a
global optimal solution. As a result, the solution to the problem is found at the
root node.

To simplify the formulation of a dynamic programming algorithm, one uses
nice tree decompositions [24]. We will use a nice tree decomposition with edge
introduce bags [5], where a vertex set Xi and an edge set Yi are used to define
the subgraph Gi for which partial solutions are computed.

Definition 6. A nice tree decomposition with edge introduce bags of a graph G
is a rooted tree decomposition (T,X) with tree T = (I, F), X = {Xi|i ∈ I} a
family of subsets of V , and Y = {Yi|i ∈ I} a family of subsets of E, such that
every node i of T is of one the following types:

– Leaf node: the node i has no child nodes, Xi = {v}, and Yi = ∅.
– Vertex introduce node: the node i has one child node j, Xi = Xj ∪ {v} for a

v ∈ V , and Yi = Yj.
– Vertex forget node: the node i has one child node j, Xi = Xj \ {v} for a

v ∈ Xj, and Yi = Yj.
– Edge introduce node: the node i has one child node j, Xi = Xj, and Yi =

Yj ∪{e} for some edge e with both endpoints in Xi. Such a node exists exactly
once for every edge e ∈ E.

– Join node: the node i has two children j and k, Xi = Xj = Xk, and Yi =
Yj ∪ Yk.

The root node r of a nice tree decomposition with edge introduce bags is a special
vertex forget node with Xr = ∅. Finally, we define for every node i ∈ I, the
subgraph Gi for which partial solutions are computed at each node as Gi =
(
⋃

j∈Δ(i) Xj , Yi).

A nice tree decomposition with edge introduce bags of the same width can be
calculated from a given tree decomposition in polynomial time [5,24].

Theorem 4. Given a graph G = (V,E) with a capacity function c(v) with a
maximum capacity of M = max{c(v) : v ∈ V }, and a tree decomposition of G of
width tw, capacitated vertex cover can be solved in O∗((M + 1)tw) time.

480 S. B. van Rooij and J. M. M. van Rooij

Proof. First, we compute a nice tree decomposition with edge introduce bags T
of G of width k.

In the algorithm, we will decide which incident vertex should cover the edge
considered in every edge introduce node. The algorithm bottom-up computes
values ci(f), for every node i of T , indicating the smallest partial solution to
Capacitated Vertex Cover on Gi corresponding to a capacity function f
on Xi. These capacity functions f : Xi → N define f(v) as the total amount of
capacity vertex v has used to cover edges on Gi. The optimal solution to the
problem is found in the single entry of the root node of the tree decomposition T .

We will now give the recursive formulas to calculate the table ci(f) for a given
node i for every type of node in a nice tree decomposition with edge introduce
bags.

– Leaf node: Let i be a leaf node with Xi = {v} for some vertex v and Yi = ∅.
If the capacity function assigns more than 0 capacity, we have an invalid
solution, as there are no edges in Gi on which the capacity could be spent.
Otherwise, we have a solution of size 0.

ci(f) =
{∞ if f(v) > 0

0 if f(v) = 0

– Vertex introduce node: Let i be a vertex introduce node with child node j,
Xi = Xj ∪ {v}, for a vertex v, and Yi = Yj . Xi = Xi−1 ∪ {v} with v a vertex.
Because the new vertex has no incident edges in Gi, the capacity function
cannot assign more than 0 spent capacity.

ci(f) =
{∞ if f(v) > 0

cj(f ′) if f(v) = 0 where ∀w ∈ Xi−1 : f ′(w) = f(w)

– Vertex forget node: Let i be a vertex forget node with child node j, Xi =
Xj \ {v}, for a vertex v ∈ Xj , Yi = Yj . Because in a vertex forget node a
vertex is removed from the bag Xi compared to Xj , it will no longer receive
new edges in edge introduce nodes. Now, we check whether the vertex is used
in partial solutions represented by cj(f) by checking whether v has spent any
of its capacity. That is, if f(v) = 0 it has not spent any capacity and thus
can be left out of the cover, while if f(v) > 0 we must add one to the size of
the partial solution.

ci(f) = min

{
minf ′(v)=1,... ,c(v){1 + ci−1(f

′)} where f ′ equals f except on v
cj(f

′) where f ′ equals f except f ′(v) = 0

– Edge introduce node: Let i be an edge introduce node with child node j,
Xi = Xj and Yi = Yj ∪ {e} for some edge e with both endpoints in Xi. The
introduced edge has to be covered by one of its end points. Let e = {v, w},
we then get:

ci(f) = min{cj(f ′), cj(f ′′)}

Algorithms and Complexity Results for the CVC Problem 481

where f ′ and f ′′ equal f with the exceptions f ′(v) = f(v) − 1 and f ′′(w) =
f(w) − 1. Here, we use the value ∞ for cj(f ′) and cj(f ′′) if f(v) = 0 or
f(w) = 0, respectively. This results in ∞ for ci(f) if there is no valid partial
cover (when f(v) = f(w) = 0).

– Join node: Let i be a join node with children j and k, Xi = Xj = Xk and
Yi = Yj ∪ Yk. For a join node, we need to add the spent capacity from both
subtrees rooted at the child nodes.

ci(f) = min
g,h

{cj(g) + ck(h)} (1)

where we take the minimum over all pairs of capacity functions g, h such that
∀v ∈ Xi : g(v) + l(v) = f(v).

For the running time of the algorithm, notice that for any vertex v ∈ Xi the
capacity function can have c(v) + 1 different values. This results in an upper
bound of (M +1)tw different capacity functions per node i. For all types of nodes
except the join node, it is easy to see that all values ci(f) can be computed in
O∗(M + 1)tw time. For the join node, we can use the fast fourier transform
based join algorithm from [6] to obtain the same time bound. Since the number
of nodes in the tree decomposition is linear in the size of the graph, the total
running time is O∗((M + 1)tw). ��

We emphasise the following corollary, that also follows from the results by
Dom et al. [8],

Corollary 2. Capacitated vertex cover can be solved in O(2O(
√

n log n)) time on
planar graphs.

Proof. For planar graphs, we can compute a tree decomposition of width O(
√

n)
in polynomial time [13]. Using M ≤ n, the treewidth algorithm runs in O∗((n +
1)O(

√
n)) = O∗(2O(

√
n log n)) time. ��

We can use the treewidth algorithm to obtain a fast exponential-time algo-
rithm for Capacitated Vertex Cover on graphs of maximum degree three.
For this, we need the following result.

Lemma 1 ([10]). Graphs of maximum degree three have treewidth at most (16 +
ε)n, for any ε > 0.

Clearly, any vertex in a graph with maximum degree three has a capacity of at
most 3. Therefore, we can apply the treewidth algorithm and solve Capacitated
Vertex Cover in O∗(4

1
6n) time. The worst case in this algorithm is achieved

when we have a bag whose vertices all have a capacity 3. Then, the capacity
function has four possible values for each vertex. However, if a vertex has capacity
3 in a graph with maximum degree three, then we could either take the vertex
and cover all the edges (no longer needing to keep track which one exactly), or
we do not take the vertex and cover no edges. In particular, we can reduce the
amount of values we store by only allowing f(v) = 0 or f(v) = 3, resulting in at
most 3 different values for f per vertex. We obtain a run time of O∗(3

1
6n).

482 S. B. van Rooij and J. M. M. van Rooij

Corollary 3. Capacitated vertex cover can be solved in O∗(3
1
6n) time on graphs

of maximum degree three.

We can alter the treewidth algorithm to obtain an FPT algorithm with
respect to the solution size k, improving the O∗(k3k) time result by Dom
et al. [8]. To do this, we will modify what the capacity functions f in the for-
mulation of the algorithm keep track of: f(v) no longer defines the amount of
edges covered by v in Gi, but the amount of edges not covered by v in Gi (this is
similar to [8]). These new capacity functions f effectively define the amount of
edges in Gi incident to v covered by the neighbours of v. In an FPT algorithm
computing a solution of size at most k, f(v) can thus have most k + 1 values
(including zero), leading to O∗((k + 1)tw) values ci(f) per node i.

The recursions given in the proof of Theorem4 stay mostly the same, which
we leave to the reader to verify. The only differences are in the vertex forget
nodes and edge introduce nodes. In a vertex forget node, the algorithm has to
check whether a vertex v is included in the cover, which is now done by checking
whether the amount of edges covered by neighbours is less than the degree of v.
In an edge introduce node, the algorithm decides which endpoint of an edge e
covers e and checks whether a vertex does not spend more capacity than it has
available (then we have an invalid solution). This can be checked by comparing
difference between the amount of edges covered by neighbours and the degree of
the vertex to the capacity of v.

Theorem 5. Given a graph G = (V,E) with a capacity function c(v), a tree
decomposition of G of width tw, and an integer k, we can check whether there
exists a capacitated vertex cover of size at most k in G in O∗((k + 1)tw) time.

Corollary 4. Given an instance of capacitated vertex cover and an integer k.
We can check whether there exists a solution of size at most k in O∗(kk) time.

Proof. The treewidth of any graph is at most the size of its minimum vertex
cover, and a minimum vertex cover has at most the size of a minimum capacitated
vertex cover. Thus, we can use a fast FPT-algorithm (e.g. [4]) to find a vertex
cover of size at most k in G. If it does not exist we are done as there also cannot
be a capacitated vertex cover of size k. and, if it does exists, we use the vertex
cover to obtain an tree decomposition of width at most k and apply Theorem5.

4 Exact Exponential Time Algorithms

In this section, we look at algorithms solving Capacitated Vertex Cover on
several graph classes in O((2 − ε)n) time, for some ε > 0.

4.1 Graphs of Bounded Degree

We start with a branching algorithm solving CVC on graphs containing a
bounded degree spanning tree, which includes graph of bounded degree. Our

Algorithms and Complexity Results for the CVC Problem 483

algorithm is based on the observation that any capacitated vertex cover is a ver-
tex cover on a spanning tree of the same graph. The algorithm enumerates all
vertex covers on a spanning tree T of G, and for every enumerated vertex cover
on T , it checks whether it is a capacitated vertex cover on G. The algorithm then
returns the smallest solution found. To prove the running time of the algorithm,
we need the following lemma.

Lemma 2. All vertex covers on a tree with maximum degree k ≥ 3 can be
enumerated in O∗((1 + 2k−1)

n
k) time. All vertex covers on a tree with maximum

degree 2 (a path) can be enumerated in O(1.619n) time.

Proof. Let T be a tree with maximum degree k. Choose a node of the tree as
the root of T such that each node has at most k − 1 children. We propose a
branching algorithm. See e.g. [11], for an introduction to the fundamentals of
branching algorithms.

On the current instance, let v be a leaf with maximum depth in T . The
algorithm considers the set of vertices S consisting of v, the parent node of v,
and all the sibling nodes of v. Given this set S, we let ES be the edges of T
between nodes in S. The algorithm branches into a subproblem for each subset
C ⊆ S that contains at least one endpoint of every edge in ES : it puts the chosen
vertices in C in the vertex cover and removes all vertices in S. Notice, that if
the parent node is not in C, then all other nodes in S must be in C. Thus, the
algorithm branches into at most 1 + 2|S|−1 subproblems. Note that T remains
a tree after removing S because v is of maximum depth. It is not hard to see
that this branching algorithm enumerates all vertex covers as it forces all edges
incident to vertices in S to be covered by vertices assigned to the vertex cover.
The algorithm can, however, output a vertex set that is not a vertex cover, not
covering the edge between the parent of v and the parent of the parent of v, but
we can discard such sets afterwards.

We will measure the running time of this branching rule with respect to the
number of vertices removed in each branch. By standard methods (see, e.g. [11]),
the branching rule has a branching factor of τ(|S|, |S|, . . . , |S|) = (1+2|S|−1)

1
|S| ,

where the τ -function has 1+2|S|−1 arguments. The running time of the algorithm
is O∗(cn) where c is the largest branching factor. We first note that |S| ≤ k.
Second, note that we can ignore the case |S| = 1 here, as this only happens
when the algorithm ends with a single root node. Because this occurs at most
once in each branch of the search tree, this has only a constant effect on the
running time. As such, we restrict our analysis of the worst-case running time
to the cases where 2 ≤ |S| ≤ k.

For all k ≥ 4, the running time of the algorithm is O∗((1 + 2k−1)
n
k) because

it is dominated by the case |S| = k since (1 + 2k−1)
n
k < (1 + 2k)

n
k+1 for any

k ≥ 4. For the case k = 3, the running time is dominated by the case where a
parent node has one child (|S| = 2), instead of two children since τ(2, 2, 2) >
τ(3, 3, 3, 3, 3). However, in this case, we can branch differently: we either take v
in the vertex cover, or we discard it and take the parent of v in the vertex cover.
This results in a run time of at most τ(1, 2) < 1.619. This improves the running

484 S. B. van Rooij and J. M. M. van Rooij

time for the cases where k = 2 and k = 3. For k = 3, we get a runtime of
O∗((1 + 2k−1)

n
k) = O(1.733n). For k = 2, we get a runtime of O(1.619n) time.

��
For any given constant k, the runtime is of the form O((2 − ε)n) for some ε > 0.

Theorem 6. Capacitated vertex cover on graphs of bounded degree k, for any
k ≥ 3, can be solved in O∗((1 + 2k−1)

n
k) time.

Proof. Let T be any spanning tree in G. Use Lemma 2 to enumerate all vertex
covers on T and notice that this enumeration must include all vertex covers on G
as well. For each enumerated vertex cover, check in polynomial time whether it
is a valid capacitated vertex cover. ��
We note that CVC on graphs of bounded degree k ≤ 2 can be solved in polyno-
mial time.

Corollary 5. Capacitated vertex cover on graphs given with a spanning tree
with maximum degree k ≥ 3 can be solved in O∗((1 + 2k−1)

n
k) time. If the

graph is given with a spanning tree with maximum degree 2 (a Hamiltonian
path), then CVC can be solved in O(1.619n) time. If the spanning tree is not
given in advance, then CVC on graphs containing a spanning tree of maximum
degree k ≥ 2 can be solved in O∗((1 + 2k)

n
k+1) time.

Proof. We can use the construction in Theorem6 on any graph with a given
bounded degree spanning tree as long as we have such a spanning tree. If the
spanning tree is not given, we cannot compute the required spanning tree as
finding a minimum maximum degree spanning tree is NP-hard. In that case,
we use a polynomial time approximation which results in a spanning tree of
maximum degree at most k + 1 [14], and apply Lemma 2 with slightly worse
running times. ��

4.2 Graphs with Large Matchings

The main observation which allowed us to break the O∗(2n) time barrier on
graphs with a bounded degree spanning tree, is that for every edge at least one
endpoint needs to be in the cover. This gave us three possibilities per set of edge
endpoints, instead of four. We have a similar branching rule when we are given
a single edge for which we have not yet decided whether both endpoints should
be in the capacitated vertex cover. This branching rules branches in the three
possibilities, as we cannot have that both endpoints are not in the capacitated
vertex cover, in τ(2, 2, 2) time.

This rule requires that both endpoints are undecided. Therefore, to use it
effectively, we need a significantly large set of disjoint edges, i.e. a matching.
The next theorem formalizes this idea.

Theorem 7. Let G = (V,E) be a graph. If G contains a matching M with
|M | ≥ εn for some ε > 0, then we can solve capacitated vertex cover on G in
O∗(3εn2(1−2ε)n) time.

Algorithms and Complexity Results for the CVC Problem 485

Proof. Let M be a matching in G with |M | ≥ εn for some ε > 0. For every
edge e ∈ M at least one of the endpoints needs to be in the cover. Hence, we
can branch into the three relevant subproblems, for every edge e ∈ M , with
a branching factor of τ(2, 2, 2) =

√
3. Together, these branches remove exactly

2ε vertices and take O∗(
√

3
2εn

) time. For every branch, we will brute force the
remaining vertices in O∗(2(1−2ε)n) time, which results in the total running time
of O∗(3εn2(1−2ε)n). ��

This matching-based algorithm allows us to solve CVC on any graph which
contains a significantly sized matching. In particular, we can apply this to regular
graphs.

Definition 7. A graph G = (V,E) is regular if all vertices have the same degree.
A graph G is called k-regular if all vertices have a degree k.

For k-regular graphs (k ≥ 3), we can apply Theorem 6 to solve CVC in O∗((1 +
2k−1)

n
k) time.

To solve CVC on regular graphs in general, we need the following Theorem
by Henning and Yeo [19] which states that k-regular graphs have a significant
large matching.

Lemma 3. ([19]). Let G be a connected k-regular graph with k ≥ 3. If k is
even, G has a maximum matching of size at least min{(k2+4

k2+k+2)n
2 , n−1

2 }. If k is

uneven, G has a maximum matching of size at least (k3−k2−2)n−2k+2
2(k3−3k) .

We use this lemma to give a lower bound on the size of the maximum match-
ing in any regular graph, and then solve CVC on regular graphs in general by
applying Theorem7.

Corollary 6. The capacitated vertex cover problem on regular graphs can be
solved in O∗(3

4
9n2

1
9n) = O(1.760n) time.

Proof. From Lemma 3, we can conclude that for even k, the minimum lower
bound of the size of the maximum matching over all connected k-regular graphs
is achieved for both k = 4 and k = 6, which gives a lower bound of 10n

22 . For
odd k ≥ 3, the minimum lower bound on the size of the maximum matching
is achieved for k = 3, which attains a value of 4n

9 . We conclude that for any
k-regular graph with k ≥ 3, we have a lower bound on the size of a maximum
matching of 4n

9 . Applying Theorem7 completes the proof if k ≥ 3, while we note
that CVC can be solved in polynomial time on 1 and 2-regular graphs. ��

4.3 Instances with Capacity and Edge Restrictions

Thus far we have seen, amongst others, a treewidth-based and a matching-based
algorithm to solve Capacitated vertex cover on some graph classes. Next,
we will combine these two algorithms to solve CVC in other cases. In particular,
we will look at instances of CVC where the capacities are bounded by some
constant k, followed by CVC on graphs with restrictions on the number of edges.
For this we will make frequent use of the following lemma.

486 S. B. van Rooij and J. M. M. van Rooij

Lemma 4. For any graph G with a maximal matching M , the treewidth of G
is at most 2|M |.
Proof. Let I be the set of vertices without endpoint in M : this is an independent
set. The constructed tree decomposition is a path with a node for every i ∈ I
such that the associated bag equals Xi = (V \ I) ∪ {i}. It is easy to verify that
this satisfies all properties of a tree decomposition. ��
Theorem 8. Capacitated vertex cover restricted to graphs with maximum vertex

capacity k ≥ 2 can be solved in O∗(2
1

1−logk+1(1
2

√
3)

n
) time.

Proof. Compute a maximum matching M in G. If |M | ≥ δn, for a yet to deter-
mine δ, use Theorem 7 to solve the problem in the problem in O∗(

√
3
2δn

2(1−2δ)n)
time. Otherwise, use Lemma 4 to obtain a tree decomposition of G of width of
at most 2δn. Because every vertex has capacity of at most k, we can use Theo-
rem 4 to solve the problem in O∗((k +1)2δn) time. If we choose δ such that both

running times are equal, this results in a running time of O∗(2
1

1−logk+1(1
2

√
3)

n
). ��

Note that, for any constant k, the proven running time is O∗((2− ε)n), for some
ε > 0.

Next, we look at c-sparse graphs: graphs with at most cn edges, for a fixed
c ≥ 1. The restriction on the number of edges allows us to improve the running
time of the treewidth algorithm.

Theorem 9. Capacitated vertex cover on c-sparse graphs can be solved in
O((2 − ε)n) time, for some ε > 0.

Proof. Compute a maximum matching M in G. If |M | ≥ 1
2δn, for a yet to

determine δ, use Theorem 7 to solve the problem in O((2− ε)n) time. Otherwise,
use Lemma 4 to obtain a tree decomposition T of G of width of at most δn and
apply the algorithm of Theorem4.

Observe that sum of the capacities over all vertices in the graph is at most
2cn. Consider a bag Xi associated node i of T . Now, we will bound total
number of capacity functions f used to index the values ci(f) in the algo-
rithm in Theorem 4 differently. There are at most

∏
v∈Xi

(c(v) + 1) such capac-
ity functions f : Xi → N, which should also satisfy

∑
v∈Xi

c(v) ≤ 2cn due
to the capacity restriction. If we maximise

∏
v∈Xi

(c(v) + 1) under the con-
straint

∑
v∈Xi

c(v) ≤ 2cn, we find that the worst-case running time occurs when
c(v) = 2cn

|Xi| for all v ∈ Xi, resulting in (2cn
|Xi| + 1)|Xi| different capacity func-

tions f . This is an increasing function with respect to |Xi|. Therefore, it takes
a maximum value when |Xi| is it’s maximum: |Xi| = δn. The runtime of the
treewidth algorithm then becomes O∗((2cn

δn + 1)δn) = O∗((2c
δ + 1)δn) time. For

any constant c we can find a small enough constant δ such that (2c
δ + 1)δ < 2,

which results in a run time of O∗((2 − ε)n) for some ε > 0. ��
Finally, we will look at c-dense graphs: graphs having at least cn2 edges, for

a fixed c > 0.

Algorithms and Complexity Results for the CVC Problem 487

Theorem 10. Capacitated vertex cover on c-dense graphs can be solved in
O∗(

√
3

cn
2(1−c)n) time.

Proof. We will prove that c-dense graphs have a matching M of size at least
1
2cn. The result then follows from Theorem7.

Assume a c-dense graph G does not have a matching M of size at least 1
2cn.

Then, G has an independent set I with |I| > (1−c)n. Because of this independent
set, the graph has |E| < cn · (1 − c)n + (cn)2 = cn2. This is a contradiction to
G being a c-dense graph. ��

5 Conclusion

We have shown several NP-completeness proofs, showing that Capacitated
Vertex Cover (CVC) is NP-complete on planar bipartite graphs with maxi-
mum degree 3, modular graphs and tree-convex graphs. We showed that, assum-
ing the ETH, CVC on two subclasses of bipartite graphs, namely modular graphs
and tree-convex graphs, cannot be solved in subexponential time.

We have also given a treewidth algorithm, which runs in O∗((k + 1)tw) or
O∗(kk) time, improving the results of Dom et al. [8]. Finally, we have introduced
a series of algorithms which break the O∗(2n) time barrier for Capacitated
Vertex Cover on some graph classes.

We have looked for, but have not found, an algorithm which solves the general
CVC problem in O((2 − ε)n) time, which remains an open problem for further
research. In this search [30], we have considered an interesting variation of CVC,
namely Partial Capacitated Vertex Cover (PCVC). In this problem, we
are given a graph with capacities and a subset V ′ ⊆ V such that I = V \ V ′

forms an independent set. For the vertices in V ′ it is decided whether they are
included in or excluded from the capacitated vertex cover. The problem asks to
determine if there exists a capacitated vertex cover smaller than some integer k
respecting the choices already made on V ′.

For the PCVC problem, one can show [30] that it cannot be solved in
O((2−ε)|I|) time, for any ε > 0, unless the Strong Exponential Time Hypothesis
fails. This shows the difficulty of the CVC problem with respect to branching
algorithms, as a branching algorithm can hit instances of the PCVC as subprob-
lems. In order to get an O((2 − ε)n)-time algorithm for CVC, we might need to
use more involved analyzing techniques like measure and conquer to overcome
the difficulty of the PCVC subproblems. We have not tried this because in all
of our attempts we already found PCVC instance very early in the branching
tree, for example on split graphs with a very large independent set and a small
clique. It might be the case that no O((2 − ε)n) time algorithm exists for CVC.

We would like to conclude this paper by a comment on the O(n log n) time
algorithm for the weighted capacitated vertex cover problem on trees by Guha
et al. [17]. When one considers this algorithm for the unweighted CVC problem,
one directly sees that their sorting step that costs O(n log n) time can be replaced
by a counting sort in O(n) time. One then obtains the following.

Proposition 1. Capacitated vertex cover on trees can be solved in O(n) time.

488 S. B. van Rooij and J. M. M. van Rooij

References

1. Bandelt, H.J.: Hereditary modular graphs. Combinatorica 8(2), 149–157 (1988)
2. Bodlaender, H.L., et al.: Open problems in parameterized and exact computation -

IWPEC 2008. Technical report UU-CS-2008-017, Department of Information and
Computing Sciences, Utrecht University (2008)

3. Bourgeois, N., Escoffier, B., Paschos, V.Th., van Rooij, J.M.M.: Fast algorithms
for max independent set. Algorithmica 62(1), 382–415 (2012)

4. Chen, J., Kanj, I.A., Xia, G.: Improved upper bounds for vertex cover. Theoret.
Comput. Sci. 411(40), 3736–3756 (2010)

5. Cygan, M., Nederlof, J., Pilipczuk, M., Pilipczuk, M., van Rooij, J.M.M., Woj-
taszczyk, J.O.: Solving connectivity problems parameterized by treewidth in single
exponential time. arXiv.org. The Computing Research Repository abs/1103.0534
(2011)

6. Cygan, M., Pilipczuk, M.: Exact and approximate bandwidth. Theoret. Comput.
Sci. 411(40–42), 3701–3713 (2010)

7. Cygan, M., Pilipczuk, M., Wojtaszczyk, J.O.: Capacitated domination faster than
O(2n). Inf. Process. Lett. 111(23), 1099–1103 (2011)

8. Dom, M., Lokshtanov, D., Saurabh, S., Villanger, Y.: Capacitated domination
and covering: a parameterized perspective. In: Grohe, M., Niedermeier, R. (eds.)
IWPEC 2008. LNCS, vol. 5018, pp. 78–90. Springer, Heidelberg (2008). https://
doi.org/10.1007/978-3-540-79723-4 9

9. Fomin, F.V., Grandoni, F., Kratsch, D.: A measure & conquer approach for the
analysis of exact algorithms. J. ACM 56(5), 25:1–25:32 (2009)

10. Fomin, F.V., Høie, K.: Pathwidth of cubic graphs and exact algorithms. Inf. Pro-
cess. Lett. 97(5), 191–196 (2006)

11. Fomin, F.V., Kratsch, D.: Exact Exponential Algorithms. TTCSAES. Springer,
Heidelberg (2010). https://doi.org/10.1007/978-3-642-16533-7

12. Fomin, F.V., Kratsch, D., Woeginger, G.J.: Exact (exponential) algorithms for the
dominating set problem. In: Hromkovič, J., Nagl, M., Westfechtel, B. (eds.) WG
2004. LNCS, vol. 3353, pp. 245–256. Springer, Heidelberg (2004). https://doi.org/
10.1007/978-3-540-30559-0 21

13. Fomin, F.V., Thilikos, D.M.: A simple and fast approach for solving problems on
planar graphs. In: Diekert, V., Habib, M. (eds.) STACS 2004. LNCS, vol. 2996, pp.
56–67. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-24749-4 6

14. Fürer, M., Raghavachari, B.: Approximating the minimum degree spanning tree
to within one from the optimal degree. In: 3rd Annual ACM-SIAM Symposium on
Discrete Algorithms, SODA 1992. pp. 317–324. Society for Industrial and Applied
Mathematics (1992)

15. Garey, M.R., Johnson, D.S.: The rectilinear steiner tree problem is NP-complete.
SIAM J. Appl. Math. 32(4), 826–834 (1977)

16. Grandoni, F.: A note on the complexity of minimum dominating set. J. Discret.
Algorithms 4(2), 209–214 (2006)

17. Guha, S., Hassin, R., Khuller, S., Or, E.: Capacitated vertex covering with appli-
cations. In: 13th Annual ACM-SIAM Symposium on Discrete Algorithms, SODA
2002, pp. 858–865. Society for Industrial and Applied Mathematics (2002)

18. Guo, J., Niedermeier, R., Wernicke, S.: Parameterized complexity of vertex cover
variants. Theory Comput. Syst. 41(3), 501–520 (2007)

19. Henning, M.A., Yeo, A.: Tight lower bounds on the size of a maximum matching
in a regular graph. Graphs Comb. 23(6), 647–657 (2007)

https://doi.org/10.1007/978-3-540-79723-4_9
https://doi.org/10.1007/978-3-540-79723-4_9
https://doi.org/10.1007/978-3-642-16533-7
https://doi.org/10.1007/978-3-540-30559-0_21
https://doi.org/10.1007/978-3-540-30559-0_21
https://doi.org/10.1007/978-3-540-24749-4_6

Algorithms and Complexity Results for the CVC Problem 489

20. Impagliazzo, R., Paturi, R.: On the complexity of k-SAT. J. Comput. Syst. Sci.
62(2), 367–375 (2001)

21. Impagliazzo, R., Paturi, R., Zane, F.: Which problems have strongly exponential
complexity? J. Comput. Syst. Sci. 63(4), 512–530 (2001)

22. Iwata, Y.: A faster algorithm for dominating set analyzed by the potential method.
In: Marx, D., Rossmanith, P. (eds.) IPEC 2011. LNCS, vol. 7112, pp. 41–54.
Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-28050-4 4

23. Jian, T.: An O(20.304n) algorithm for solving maximum independent set problem.
IEEE Trans. Comput. 35(9), 847–851 (1986)

24. Kloks, T. (ed.): Treewidth. LNCS, vol. 842. Springer, Heidelberg (1994). https://
doi.org/10.1007/BFb0045375

25. Kneis, J., Langer, A., Rossmanith, P.: A fine-grained analysis of a simple indepen-
dent set algorithm. In: 29th IARCS Annual Conference on Foundations of Soft-
ware Technology and Theoretical Computer Science, FSTTCS 2009, pp. 287–298.
Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik (2009)

26. Liedloff, M., Todinca, I., Villanger, Y.: Solving capacitated dominating set by using
covering by subsets and maximum matching. Discret. Appl. Math. 168, 60–68
(2014)

27. Nederlof, J., van Rooij, J.M.M., van Dijk, T.C.: Inclusion/exclusion meets measure
and conquer. Algorithmica 69, 685–740 (2014)

28. Robson, J.M.: Algorithms for maximum independent sets. J. Algorithms 7(3), 425–
440 (1986)

29. Robson, J.M.: Finding a maximum independent set in time O(2n/4). Technical
report, Laboratoire Bordelais de Recherche en Informatique, Université Bordeaux
I, 1251–01, Bordeaux, France (2001)

30. van Rooij, S.B.: A search for faster algorithms for the capacitated vertex cover
problem. Master’s thesis. Department of Information and Computing Sciences,
Utrecht University (2018)

31. van Rooij, J.M.M., Bodlaender, H.L.: Exact algorithms for dominating set. Discret.
Appl. Math. 159(17), 2147–2164 (2011)

32. Schiermeyer, I.: Efficiency in exponential time for domination-type problems. Dis-
cret. Appl. Math. 156(17), 3291–3297 (2008)

33. Tarjan, R.E., Trojanowski, A.E.: Finding a maximum independent set. SIAM J.
Comput. 6(3), 537–546 (1977)

34. Xiao, M., Nagamochi, H.: Exact algorithms for maximum independent set. Inf.
Comput. 255, 126–146 (2017)

https://doi.org/10.1007/978-3-642-28050-4_4
https://doi.org/10.1007/BFb0045375
https://doi.org/10.1007/BFb0045375

Comparative Expressiveness of Product
Line Calculus of Communicating Systems
and 1-Selecting Modal Transition Systems

Mahsa Varshosaz1(B) and Mohammad Reza Mousavi2

1 Centre for Research on Embedded Systems, Halmstad University,
Halmstad, Sweden

mahsa.varshosaz@hh.se
2 Department of Informatics, University of Leicester, Leicester, UK

mm789@le.ac.uk

Abstract. Product line calculus of communicating systems (PL-CCSs)
is a process calculus proposed to model the behavior of software product
lines. Modal transition systems (MTSs) are also used to model variability
in behavioral models. MTSs are known to be strictly less expressive than
PL-CCS. In this paper, we show that the extension of MTSs with hyper
transitions by Fecher and Schmidt, called 1-selecting modal transition
systems (1MTSs), closes this expressiveness gap. To this end, we propose
a novel notion of refinement for 1MTSs that makes them more suitable
for specifying variability for software product lines and prove its various
essential properties.

Keywords: Product line calculus of communicating systems (PL-CCS)
Modal transition system (MTSs)
1-selecting modal transition system (1MTS)
Comparative expressiveness

1 Introduction

Variability modeling is a cornerstone of software product line (SPL) engineering,
through which an inventory of commonalities and differences among different
products are specified in a structured manner. Efficient analysis of variability-
intensive systems is a major challenge due to the potentially large number of
valid products. To this end, many techniques have been adapted, which exploit
variability in different types of analysis. A basic building block of many of these
techniques is a model for capturing variability at the structural or behavioral
level. In this paper, we focus on formal behavioral models that can be used to
capture variability; examples of such models include modal transition systems
(MTSs) [18], product line calculus of communicating systems (PL-CCS) [14],
and featured transition systems (FTSs) [10].

In a previous paper [9], we studied the comparative expressiveness of these
formalisms with respect to the set of products (labeled transition systems
c© Springer Nature Switzerland AG 2019
B. Catania et al. (Eds.): SOFSEM 2019, LNCS 11376, pp. 490–503, 2019.
https://doi.org/10.1007/978-3-030-10801-4_38

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-10801-4_38&domain=pdf
https://doi.org/10.1007/978-3-030-10801-4_38

Comparative Expressiveness of PL-CCS and 1-Selecting MTS 491

(LTSs)) they can specify. There, we proved that MTSs are strictly less expressive
than PL-CCS (and its underlying semantic model, product line labeled transition
systems (PL-LTSs)). A formalism that was not studied in our previous paper [9]
is 1-Selecting Modal Transition System (1MTS) [12], which extends modal tran-
sition systems with (must/may) hyper transitions. Such hyper transitions bundle
a number of possible behavior, of which exactly one will be included in each valid
product. Using 1MTSs it is possible to model alternative behaviour (choices with
XOR relation) in products, which cannot be modeled using MTSs. Intuitively,
this seems the very missing modeling feature in order to fill the expressiveness
gap between MTSs and PL-LTSs.

In this paper, we show that this extension is indeed sufficient to close the
expressiveness gap between MTS and PL-LTS (see Sect. 5). Furthermore, we
observed that by considering the current refinement relation provided for 1MTSs,
some aspects of behavioral variability, such as persistent choices in recursive
specifications, cannot be modeled satisfactorily (see Sect. 3). Hence, we propose
a new refinement relation for 1MTSs which addresses these concerns (see Sect. 4)
and also leads to more succinct models, and we show that the new refinement
relation enjoys the same intuitive properties as the original one [12]. The other
direction of comparison (from 1MTSs to PL-LTSs) is left as a future work.
However, we conjecture that encoding 1MTSs into PL-LTSs is also possible.

2 Preliminaries

In this section, we explain some basic concepts regarding software product lines,
1-selecting modal transition systems, and product-line labeled transition systems
that are used throughout the rest of the paper.

2.1 Software Product Lines

The products in a software product line are developed from a common core.
The commonalities and variabilities among products are usually described in
terms of features. A feature is a distinctive user-visible aspect or characteristic
of the system [15]. The products in a product line can be described as sets of
features. There are different types of relations between features in a product
line. We explain some of these relations using an example of a vending machine
product line. The product line includes three mandatory features, namely, Coin,
Drink, and Coffee, which means all the products in this product line should
include these three features. There are two types of coin, namely, Dollar and
Euro which have alternative relation. This means that a product in this product
line can either accept dollar or euro coins but not both. The Drink feature has
two sub-features as well, namely, Tea and Coffee. The Tea is an optional feature.
This means that a product in this product line can offer both tea and coffee or
only coffee as drinks (since, Coffee is a mandatory feature).

492 M. Varshosaz and M. R. Mousavi

2.2 1-Selecting Modal Transition Systems

Fecher and Schmidt [12] introduced the following definition of 1MTSs.

Definition 1 (1MTS). A 1-selecting modal transition system, is a tuple
(S, A,→, , sinit), where:

– S is a set of states or processes,
– A is a set of actions,
– →⊆ S × (2A×S \ ∅), is the must hyper transition relation,
– ⊆ S × (2A×S \ ∅) is the may hyper transition relation,
– sinit ⊆ S, is a non-empty set of initial states.

In each 1MTS, the relation →⊆ holds between the sets of may- and must
hyper transitions. This means that must hyper transitions also implicitly repre-
sent may hyper transitions.

We use 1MTS, to denote the class of all 1MTSs.
Based on the above definition, there are two types of hyper transitions in a

1MTS, called may- and must hyper transitions. A may hyper transition repre-
sents a set of alternative choices which are optional (at most one of the choices
can be selected). On the other hand, a must hyper transition represents a set of
alternative choices where selecting one of the choices is obligatory. Furthermore,
we assume that for each state s, (s) = {γ | (s, γ) ∈ }. A simple example
of a 1MTS is provided in Fig. 1. This 1MTS represents the behavior of products
in the vending machine product line.

In order to define how a transition among those in a hyper transition is
chosen, the following notion of choice function is used.

Definition 2 (Choice Function). Let A be a set, and B ⊆ 2A and γ : B → A.
Then γ is a choice function if ∀b∈B : γ(b) ∈ b. The set of all choice functions on
B is defined by choice(B).

As 1MTSs are abstract models, one can associate with each 1MTS a set of 1MTSs
that refine it by allowing for fewer optional choices. The refinement relation on
1MTSs is defined as follows [12].

s0

s1
insert dollar

s2

s3

select tea

select coffee

insert euro

s4

s5

s6select coffee

select tea

s7

get drink

get drink

get drink

get drink

Fig. 1. 1MTS for vending machine product line.

Comparative Expressiveness of PL-CCS and 1-Selecting MTS 493

Definition 3 (Refinement for 1MTSs). A refinement relation between two
1MTSs such as M = (S, L,→, , sinit) and M̄ = (S̄, L, →̄, ¯ , s̄init), is defined
as a relation R1MTS ⊆ S× S̄ such that ∀s∈sinit

· ∃s̄∈s̄init
· s R1MTS s̄ and ∀(s, s̄) ∈

R1MTS · ∀γ ∈ choice(s) · ∃γ̄ ∈ choice(s̄ ¯), such that:

1. ∀ ω ∈ (s) · ∃ ω̄ ∈ (s̄ ¯) · ∃ a ∈ L, s′ ∈ S, s̄′ ∈ S̄ · γ(ω) = (a, s′) ∧ γ̄(ω̄)
= (a, s̄′) ∧ s′ R1MTS s̄′,

2. ∀ ω̄ ∈ (s̄→̄) · ∃ ω ∈ (s →) · ∃ a ∈ L, s′ ∈ S, s̄′ ∈ S̄ · γ(ω) = (a, s′) ∧ γ̄(ω̄)
= (a, s̄′) ∧ s′ R1MTS s̄′.

M is said to refine M̄ , written as M �M̄ , when there exists a refinement relation
R1MTS relating each of the initial states of M to one of the initial states of M̄ .

As a simple example in Fig. 2(1), a 1MTS is shown which refines the 1MTS
in Fig. 1. In this 1MTS, the may hyper transitions are not present.

t0

t1insert dollar

t2

t3
select coffee

insert euro t4
select coffee

t5

get drink

get drink

t′0 t′1 t′2
select coffeeinsert euro

t′3
get drink

(1) (2)

Fig. 2. (1) 1MTS and (2) LTS refining the model in Figs. 1 and 2(1).

We define the concrete implementations of a 1MTS as labeled transition
systems, defined below.

Definition 4 (LTS). An LTS is a tuple (S,A,→, sinit), where S is a set of
states, A is a set of actions, →: S × A × S is the transition relation, and sinit is
the initial state. We denote the class of LTSs by LTS. (We follow the definition
given for LTSs as implementations of 1MTSs with single initial states in [12]).

As a simple example in Fig. 2(2), an LTS is shown which refines the 1MTSs in
Figs. 1 and 2(1). In this LTS, the may hyper transitions are not present and
the alternative choice among the insert euro and insert dollar is resolved by
choosing the former.

2.3 Product Line Process Algebras

Milner’s Calculus of Communicating Systems (CCS) [20] is extended by Gruler
et al. [14] into PL-CCS by introducing a new operator, called binary variant,
to represent the alternative behavior. The introduced binary variant operator
⊕i is different from the ordinary alternative composition operator + in CCS

494 M. Varshosaz and M. R. Mousavi

in that the binary variant choice is made once and for all. As an example,
consider the process terms s = a.(b.s + c.s) and t = a.(b.t ⊕1 c.t); recursive
process s keeps making choices between b and c in each recursion, while process
t makes a choice between b and c in the first recursion after performing a, and the
choice is recorded and respected in all the following iterations. This means that
process t behaves deterministically after the first iteration with respect to the
choice between b and c. To simplify the formal development of the theory, Gruler
et al. assume that in every PL-CCS term, there is at most one appearance of the
operator ⊕i for each and every index i. We use the same assumption throughout
the rest of the paper, as well.

The semantics of a PL-CCS term is defined based on PL-LTSs [14], using a
structural operational semantics, which is explained informally next. The states
of a product line labeled transition system are pairs of ordinary states, i.e.,
process terms, and configuration vectors. The transitions of a PL-LTS are also
labeled with configuration vectors. These vectors are of type {L,R, ?}I with I
being an index set, L and R, respectively, denoting that the choice has been
made in favor of the left- or right-hand-side term and ? denoting that the choice
has not been made yet.

Definition 5 (PL-LTS). Let {L,R, ?}I denote the set of all total functions
from an index set I to the set {L,R, ?}. A product line labeled transition
system is a 5-tuple (P × {L,R, ?}I , A, I,→, pinit) consisting of a set of states
P×{L,R, ?}I , a set of actions A, and a transition relation →⊆ (P×{L,R, ?}I)×
(A × {L,R, ?}I) × (P × {L,R, ?}I), and an initial state pinit ∈ P × {L,R, ?}I ,
satisfying the following restrictions:

1. ∀P,ν,a,Q,ν′,ν′′ (P, ν)
a,ν′
−−→ (Q, ν′′) =⇒ ν′ = ν′′.

2. ∀P,ν,a,Q,ν′,i (P, ν)
a,ν′
−−→ (Q, ν′) ∧ ν(i) �= ? =⇒ ν′(i) = ν(i).

3. ∀P0,ν0,a,Q0,ν′
0,i,P1,ν1,b,Q1,ν′

1,i (P0, ν0)
a,ν′

0−−→ (Q0, ν
′
0) ∧ (P1, ν1)

b,ν′
1−−→ (Q1, ν

′
1) ∧

ν0(i) = ν1(i) = ? ∧ ν′
0(i) �= ? �= ν′

1(i) =⇒ (P0, ν0) = (P1, ν1).

In Definition 5, the conditions follow from the operational rules given by Gruler
et al. [14]. The first condition indicates that the change in the configuration is
identically reflected in the label and the target. The second condition indicates
that a decision made on a choice is recorded as L or R in the configuration
vector and would not change in the future. The third condition reflects that
the configuration at index i can be resolved in at most one state; this follows
immediately from the uniqueness of indices in PL-CCS terms.

In order to define the valid implementations of a PL-LTS, we start with the
following relation between the configuration vectors [9].

Definition 6 (Configuration Ordering). The ordering relation � on the
set {L,R, ?} is defined as �= {(?, ?), (L,L), (R,R), (?, L), (?, R)}. We lift this
ordering relation to the level of configuration vectors by defining ν � ν′ ⇐⇒
∀i∈I ν(i) � ν′(i), for any ν, ν′ ∈ {L,R, ?}I .

Comparative Expressiveness of PL-CCS and 1-Selecting MTS 495

Considering the above definition, for each ν, ν′ ∈ {R,L, ?}I , we say ν(i) ��
ν(j) ⇔ ν(i) � ν(j) ∨ ν(j) � ν(i), for each i, j ∈ I. We lift this ordering relation
to the level of configuration vectors by defining ν �� ν′ ⇐⇒ ∀i∈I ν(i) �� ν′(i),
for any ν, ν′ ∈ {L,R, ?}I .

In order to compare the expressiveness of 1MTS with PL-LTS, we define
product derivation relation for a PL-LTS as follows [9].

Definition 7 (Refinement for PL-LTSs). Let (P × {L,R, ?}I , A,→, pinit)
be a PL-LTS and let (S, A,→, sinit) be an LTS. A binary relation Rθ ⊆ S ×
(P × {L,R, ?}I) (parameterized by every product configuration θ ∈ {L,R}I) is
a product-derivation relation if and only if the following transfer properties are
satisfied:

(a) ∀P,Q,a,ν,ν′,s s Rθ (P, ν) ∧ (P, ν)
a,ν′
−−→ (Q, ν′) ∧ ν′ � θ ⇒ ∃t s

a−→ t ∧
t Rθ (Q, ν′),

(b) ∀P,a,ν,s,t s Rθ (P, ν) ∧ s
a−→ t ⇒ ∃Q,ν′ (P, ν)

a,ν′
−−→ (Q, ν′) ∧ ν′ � θ ∧

t Rθ (Q, ν′).

A state s ∈ S in an LTS is (the initial state of) a product of a PL-LTS (P, ν)
with respect to a configuration vector θ, denoted by (P, ν) �θ s, if ν � θ and
there exists an Rθ product-derivation relation such that s Rθ (P, ν).

We say an LTS T = (S, A,→, sinit) is a valid implementation of a PL-LTS
P = (P× {L,R, ?}I , A, I,→, pinit), denoted by T ≺ P if and only if there exists
a configuration θ ∈ {L,R, ?}I such that pinit �θ sinit .

s0

s1

s2 s3

s′
0

s′
1 s′

2

s′
3 s′

4

(2)

a a a

b c b c

s0

s1

s2

(3)

a

b c

s4

s5

s6

a

s0

s1

s2

s3

(4)

a

b1

b2

sn−1

snbn−2

bn−1...

s0, 〈?〉

a, 〈?〉

s1, 〈?〉

s2, 〈L〉 s3, 〈R〉

b, 〈L〉 c, 〈R〉

(1) (5)

Fig. 3. (1) A PL-LTS example (2) A 1MTS with an LTS implementation (3). (4) A
1MTS modeling the same behavior as the PL-LTS in (1). (5) An example of a 1MTS
to demonstrate conciseness problem.

3 Design Decisions

In this section, we study the refinement relation provided for 1MTSs by Fecher
and Schmidt [12] (see Definition 3) and use some examples to point out a few
issues in using this notion of refinement for product derivation. These issues
lead us to design decisions for a new notion of refinement, introduced in the
next section, that is more suitable for the setting of software product lines.

496 M. Varshosaz and M. R. Mousavi

The first example concerns alternative behavior. Consider the PL-CCS terms
s0 = a.s1 and s1 = b.s2 ⊕1 c.s3. The corresponding underlying PL-LTS is rep-
resented in Fig. 3(1). Then, consider the 1MTS shown in Fig. 3(2). Intuitively,
this model may be considered as a solution to represent the same set of prod-
ucts using 1MTSs: it bundles the choice between the b- and c-labeled transitions
into a must hyper transition. (Recall from Definition 1 that must hyper tran-
sitions intuitively represent mandatory choices.) However, in Fig. 3(3), a valid
implementation of this 1MTS based on the refinement relation in Definition 3 is
depicted. (The dashed arrows show how the states of the LTS and 1MTS are
related using the refinement relation.) In the LTS implementation, both the b-
and c-labeled transitions are included. A 1MTS that has the same implemen-
tations as the PL-LTS in Fig. 3(1), is given in Fig. 3(4); namely, the choice has
been lifted to the initial states. This way, the exclusive behavior can be separated
among the two parts of the model initiated in these two states.

The process of lifting choices to the initial states can lead to an exponential
blow up in 1MTS representation of product lines. This is already hinted at by the
1MTS given in Fig. 3(4) and can be generalized as follows. Consider the 1MTS
shown in Fig. 3(5). This model is similar to the 1MTS given in Fig. 3(2) with k =
n/2 independent exclusive choices (modeled by k must hyper transitions). There
are 2k possible combinations of all choices. This model suffers from the same
problem as described above, namely, the alternative transitions can be included
simultaneously in some LTS implementations. As mentioned above, in order to
model alternative behavior the solution is to use a model with several initial
states where each part of the model includes one of the possible combinations.
Hence, the model should include 2k separate parts each with a different initial
state. This issue severely compromises succinctness in 1MTS representation of
product lines.

Another issue in using 1MTSs for modeling product lines concerns persistent
choices. Assume that we add the term s3 = d.s1 to the aforementioned PL-CCS
process term. This will lead to having a new state in the PL-LTS (s1, 〈R〉) and
a transition from (s3, 〈R〉) to this state. As mentioned in Sect. 2.3, the decisions
made about the exclusive choices are stored in configuration vectors. Hence,
when going back again to s1, the choice that was made before, which is R, will
not change. Using the current notion of refinement for 1MTSs, it is not possible
to keep track of the choices that are made in the past. Assume that we want
to model the same behavior (as in Fig. 3(1)) using 1MTSs. Assume a transition
from state s3 to state s1 with label d is added to the 1MTS represented in
Fig. 3(2). One of the valid implementations of such 1MTS is an LTS where b is
chosen the first time reaching state s1 and then c is chosen the next time that
this state is reached. The solution to solve this problem, is the same as above
(using several initial states) in addition to unrolling loops.

To address these 3 issues, namely, alternative behavior, succinct representa-
tion of choice, and persistence choice, we introduce a new notion of refinement
for 1MTSs in the next section.

Comparative Expressiveness of PL-CCS and 1-Selecting MTS 497

4 Revisiting the Refinement Relation

In this section, we propose a new refinement relation for 1MTSs to address
the issues pointed out in the previous section regarding the original refinement
relation [12]. Then, we show that our new refinement relation preserves the
intuitive properties posed for the original one [12].

4.1 New Refinement Relation

We revisit the refinement relation in Definition 3, and provide a new refinement
relation for 1MTSs as follows. First, we define an auxiliary function, namely, the
choice resolution function.

Definition 8 (Choice Resolution Function). Consider a 1MTS M =
(S, L,→, , sinit). A choice resolution function is a total function Γ : S →⋃

s∈S
choice(s). We denote the set of all choice resolution functions of the

1MTS M by ΓM .

The purpose of defining the choice resolution function is to assign a choice func-
tion to each state of the 1MTS once and for all. Next, we give the refinement
relation for 1MTSs as follows.

Definition 9 (New Refinement for 1MTS). Consider two arbitrary 1MTSs
M = (S, L,→, , sinit) and M ′ = (S′, L,→′, ′, s′

init), we say M refines M ′,
denoted by M �M ′, iff there exists a refinement relation R1MTS ⊆ S×S′ ×ΓM ×
ΓM ′ such that ∀f ∈ ΓM ∃f ′ ∈ ΓM ′ ∀s0 ∈ sinit ∃s′

0 ∈ s′
init · (s0, s′

0, f, f ′) ∈ R1MTS

and ∀(s, s′, f, f ′) ∈ R1MTS, the following conditions hold:

(i) ∀ ω ∈ (s) · ∃ ω′ ∈ (s′ ′) · ∃ a ∈ L, s′′ ∈ S, s′′′ ∈ S
′ · f(s)(ω) = (a, s′′)

∧ f ′(s′)(ω′) = (a, s′′′) ∧ (s′′, s′′′, f, f ′) ∈ R1MTS , and
(ii) ∀ ω′ ∈ (s′ →′) · ∃ ω ∈ (s →) · ∃ a ∈ L, s′′ ∈ S, s′′′ ∈ S

′ · f(s)(ω) = (a, s′′)
∧ f ′(s′)(ω′) = (a, s′′′) ∧ (s′′, s′′′, f, f ′) ∈ R1MTS .

(iii) Additionally, ∀s1 ∈ S, f ′′ ∈ ΓM ′ · (s1, s′, f, f ′′) ∈ R1MTS ⇒ f ′ = f ′′.

In the rest of the paper, we use Rf,f ′
1MTS to denote a 1MTS refinement relation

that follows the above definition (that uses choice resolution functions f and
f ′). In Fig. 4(1), an example of a 1MTS is given. Based on the Definition 3, the
1MTS in Fig. 4(2) is refining this 1MTS. However, based on the Definition 9,
this is not a valid refinement for the 1MTS in Fig. 4(1). Hence, the problem
with modeling alternative behavior that was mentioned in Sect. 3 is solved in
the new definition. Similarly the problems with modeling the conciseness and
the persistent behavior are solved.

498 M. Varshosaz and M. R. Mousavi

4.2 Refinement Relation Properties

We prove a set of properties for the new refinement relation as follows. This is
the same set of properties proven for the original 1MTS refinement relation by
Fecher and Schmidt in [12]. (Due to space limitation, the proofs are omitted and
we will include them in an extended version of the paper.) First, we show that
the new refinement relation is a preorder.

Proposition 1. The refinement relation given in Definition 9, is a preorder.

Next, we show that all the LTS implementations of a 1MTS also implement the
1MTSs that are refined by this 1MTS.

Proposition 2. Consider two 1MTSs M and M ′ such that M�M ′. Then ∀lts ∈
LTS · lts � M ⇒ lts � M ′.

Next, we prove that the bisimulation relation satisfies the properties of the refine-
ment relation in Definition 9.

Proposition 3. Consider two arbitrary LTSs lts1 and lts2 such that lts1 ∼ lts2,
where ∼ denotes strong bisimilarity; it follows that lts1 � lts2.

a

b e

e c

d

a

b

e

e

c

d

(1) (2)

s0

s1

s2

s3

s4

s5

s1

s0

s2

s3

s4

s6

s5

Fig. 4. (1) A 1MTS example. (2) A 1MTS refining (1).

5 Encoding PL-LTSs into 1MTSs

In order to compare the expressiveness of PL-LTSs with 1MTSs, following the
approach provided by Beohar et al. in [9], we define an encoding from PL-LTSs
into 1MTSs. The main idea of giving an encoding is to define a transforma-
tion from one class of models into the other class of models that is semantic
preserving. First, we give the following auxiliary definitions taken from [9].

Definition 10 (Product Line Structure). A product line structure is a tuple
M = (M, � �), where M is the class of the intended product line models (in
this paper 1MTSs and PL-LTSs) and � � : M → LTS is the semantic function
mapping a product formalism to a set of product LTSs that can be derived from
each product line model.

Next, we give the formal definition of an encoding.

Comparative Expressiveness of PL-CCS and 1-Selecting MTS 499

Definition 11 (Encoding). An encoding from a product line structure M =
(M, � �) into M′ = (M′, � �′), is defined as a function E : M → M′ satisfying the
following correctness criterion: � � = � �′ ◦E. We say a product line structure M′

is at least as expressive as M if and only if there exists an encoding E : M → M′.

Before elaborating on the proposed encoding, we give two auxiliary definitions
which are used for encoding the transitions of a PL-LTS into must/may hyper
transitions of a 1MTS. As (hyper) transitions in a 1MTS are transitions with
multiple targets (see Definition 1), we need to group some of the transitions in a
PL-LTS, which correspond to resolving the same alternative choice, and encode
them as a (may/must) hyper transition. To this end, we consider the type of
changes that is made by a transition to the configuration vector of a PL-LTS. A
transition for which the configuration vectors in the source and target states are
not identical, is corresponding to resolving a choice (making a decision about
one of the variant operators). We formally define the hyper must closed set and
hyper may closed set as follows.

Definition 12 (Hyper Must Closed Set). Consider a state (P, ν) of a PL-
LTS such as (P × {L,R, ?}I , A, I, →, pinit); we assume that Out (P,ν) denotes
the set of all outgoing transitions from state (P, ν) and Out (P,ν)

δ denotes the set
of outgoing transitions form (P, ν) that make a change in at least one of the

elements of the configuration vector of the source state, i.e., for each (P, ν)
a,ν′
−−→

(P ′, ν′) ∈ Out (P,ν)
δ , there exists an i ∈ I s.t. ν(i) = ? ∧ ν′(i) �= ?. A set T ⊆→ of

transitions is hyper must-closed for (P, ν) when it is a maximal subset of Out(P,ν)
δ

such that:

– For each (P, ν)
a0,ν0−−−→ (Q0, ν0) ∈ T , and each i ∈ I s.t. ν(i) �= ν0(i) there

exists a (P, ν)
a1,ν1−−−→ (Q1, ν1) ∈ T s.t. ¬(ν0(i) �� ν1(i)) and for all j �= i,

ν0(j) �� ν1(j).
– For each two different transitions (P, ν)

a0,ν0−−−→ (Q0, ν0) ∈ T and (P, ν)
a1,ν1−−−→

(Q1, ν1) ∈ T , exists i ∈ I s.t. ¬(ν0(i) �� ν1(i)).

We denote the set of all such maximal subsets for a state (P, ν), by T (P,ν)
→ .

Definition 13 (Hyper May Closed Set). The hyper may closed set for a
state (P, ν), denoted by T (P,ν), is defined the same as the hyper must closed
set as given in Definition 12, with the only difference that the first condition is
replaced with the following condition.

– For each (P, ν)
a0,ν0−−−→ (Q0, ν0) ∈ T , for some i ∈ I s.t. ν(i) �= ν0(i) there

exists a (P, ν)
a1,ν1−−−→ (Q1, ν1) ∈ T s.t. ¬(ν0(i) �� ν1(i)) and for all j �= i,

ν0(j) �� ν1(j).

Next, we formalise the encoding of a PL-LTS into a 1MTS.

Definition 14 (PL-LTS to 1MTS Encoding). Let (P, A, I,→, pinit) be a
PL-LTS. We construct a 1MTS M = (S, A,→, , sinit) as an encoding of such
a PL-LTS as follows.

500 M. Varshosaz and M. R. Mousavi

– The set S of states is defined as P, i.e., the set of states in the PL-LTS,
pinit = sinit , A is the same set of actions,

– We construct the → and , which, respectively, denote the must and may
hyper transition relations for each state of the the encoding 1MTSs as follows.
Given Definitions 12 and 13, we define the following transition rules:

((P, ν) →) =
⋃

Λ∈T (P,ν)
→

|Λ|〉1

{
⋃

1≤i≤|Λ|
{(ai, (Pi, νi))}| (P, ν)

ai,νi−−−→ (Pi, νi) ∈ Λ}∪

⋃

1≤i≤|Out(P,ν)\Out
(P,ν)
δ |

{{(ai, (Pi, ν))}| (P, ν)
ai,ν−−→ (Pi, ν) ∈ Out (P,ν) \Out (P,ν)

δ }

((P, ν)) =
⋃

Λ∈T (P,ν)

{
⋃

1≤i≤|Λ|
{(ai, (Pi, νi))}| (P, ν)

ai,νi−−−→ (Pi, νi) ∈ Λ}∪

{(a, (P ′, ν′))| (P, ν)
a,ν′
−−→ (P ′, ν′) ∈

(
Out (P,ν)

δ \ (T (P,ν)
→ ∪ T (P,ν))

)
}

Given the above encoding, we prove that the class of 1MTSs is at least as expres-
sive as the class of PL-LTSs. (Due to space limitation, the proofs are omitted
and we will include them in an extended version of the paper.)

Theorem 1. The class of 1MTSs is at least as expressive as the class of PL-
LTSs.

6 Related Work

In this section, we discuss related work regarding formalisms used for modeling
product lines and the comparison of their expressiveness. We limit our consid-
eration to the models which have LTSs as the semantic domain.

Considering the comparison of the expressiveness of the formalisms used
for modeling variability, Beohar et al. in [9] provide a comparison between the
expressiveness of three fundamental models, namely, MTSs, PL-CCSs, and Fea-
ture Transition Systems (FTSs). (FTSs [11] are extensions of LTSs with proposi-
tional formulas called feature expressions.) A novel notion of encoding, based on
the set of implementing LTSs, from one class of models to the other is provided.
The existence of mutual encodings between two classes of models is described
as having the same expressiveness. As a result a hierarchy of formalisms based
on their expressiveness is provided. Furthermore, Benduhn et al. in [7], provide
a survey on formalisms focusing on the suitability of these models in applying
different analysis techniques.

Considering the formalisms proposed for modeling product lines; In [13], Fis-
chbein et al. for the first time argued that MTSs are adequate for modeling

Comparative Expressiveness of PL-CCS and 1-Selecting MTS 501

variability. In several works, MTSs have been used for modeling variability in
the behavior of product lines [1–3,16,19]. As shown in [9], MTSs are the least
expressive in the provided hierarchy. In order to tackle the limited expressive-
ness of MTSs, several extensions of such models have been proposed. In a set
of works, MTSs are used with variability constraints [6], which are constraints
expressed in Modal-Hennessy-Milner-Logic (MHML) [1–3]. In [17], an extension
of MTSs, namely, Disjunctive Modal Transition Systems (DTMSs) are intro-
duced which provides the possibility to model an or relation between choices
in the behavior using hyper transitions. Fecher and Schmidt in [12], introduce
1MTSs, which (as mentioned in Sect. 2) can be used for modeling alternative
choices. Furthermore, in this work, a comparison between the expressiveness of
these two models is provided, which shows that the two classes of models have
the same expressiveness concerning the sets of implementing LTSs. Benes et al.
in [8], introduce an extension of MTSs, namely, parametric modal transition
systems in which the concept of obligation functions is used. The obligation
functions are defined upon atomic propositions of states, the transitions, and
a set of parameters, which can be used for representing features. By setting
the valuation of parameters the presence or absence of states and transitions in
a specific product model can be specified. Moreover, an extension of contract
automata with modality [5] is introduced by Basile et al. in [4]. In this extension
of the model, permitted and necessary requests are distinguished using feature
constraints. There have been other approaches introduced that use some inter-
face theories principles to indicate the set of derivable variants from an MTS as
the ones that are compatible under parallel composition with regards to a given
environmental specification [16,19].

As mentioned in Sect. 2, PL-CCS [14], introduced by Gruler et al. [14], is an
extension of Milner’s CCS [20] by means of an alternative choice operator called
“binary variant”. This operator provides the possibility of modeling persistent
choices in the behavior. The validity of variants can be further restricted using
the multi-valued modal mu-calculus [21].

To the best of our knowledge, the provided encoding from PL-LTSs into
1MTSs, the results regarding the expressiveness, and the provided refinement
relation for 1MTSs that addresses the limitations of such models in modeling
variability in the behavior in this paper are novel.

7 Conclusion

In this paper, we compared the expressiveness of PL-LTSs and 1MTSs. To this
end, we defined the set of products for specifications in both formalisms, of which
the behaviors are commonly specified in the domain of LTSs. We then showed
that 1MTSs can capture all products that can be specified by the product line
calculus of communicating systems. Furthermore, we provided a set of obser-
vations regarding the limitations in modeling variability in the behavior which
are enforced by the refinement relation given for 1MTSs. We proposed a new
refinement relation for 1MTSs to tackle these limitations and proved a set of
properties for the new refinement relation.

502 M. Varshosaz and M. R. Mousavi

An immediate question to ask is whether the two formalism have the same
expressive power or not. We conjecture that the answer is positive and leave
this for immediate future work. We also would like to combine the results of
this paper with our earlier results in [9] and present a comprehensive lattice of
expressive power among all fundamental behavioral models for software product
lines. As another part of our future work, we plan to provide a stronger relation
between PL-LTSs and PL-CCS terms by introducing a set of conditions (on the
configuration vectors of states) in a PL-LTS which guarantee that the PL-LTS
is induced from a PL-CCS term.

References

1. Asirelli, P., ter Beek, M.H., Fantechi, A., Gnesi, S.: A model-checking tool for
families of services. In: Bruni, R., Dingel, J. (eds.) FMOODS/FORTE -2011. LNCS,
vol. 6722, pp. 44–58. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-
642-21461-5 3

2. Asirelli, P., ter Beek, M.H., Gnesi, S., Fantechi, A.: Formal description of variability
in product families. In: Proceedings of the 15th International Software Product
Line Conference, SPLC 2011, pp. 130–139. IEEE (2011)

3. Asirelli, P., ter Beek, M.H., Fantechi, A., Gnesi, S.: A compositional framework to
derive product line behavioural descriptions. In: Margaria, T., Steffen, B. (eds.)
ISoLA 2012. LNCS, vol. 7609, pp. 146–161. Springer, Heidelberg (2012). https://
doi.org/10.1007/978-3-642-34026-0 12

4. Basile, D., ter Beek, M.H., Di Giandomenico, F., Gnesi, S.: Orchestration of
dynamic service product lines with featured modal contract automata. In: Pro-
ceedings of the 21st International Systems and Software Product Line Conference,
SPLC 2017, vol. B, pp. 117–122. ACM, New York (2017). https://doi.org/10.1145/
3109729.3109741

5. Basile, D., Di Giandomenico, F., Gnesi, S., Degano, P., Ferrari, G.L.: Specify-
ing variability in service contracts. In: Proceedings of the Eleventh International
Workshop on Variability Modelling of Software-Intensive Systems, VAMOS 2017,
pp. 20–27. ACM, New York (2017). https://doi.org/10.1145/3023956.3023965

6. ter Beek, M.H., Fantechi, A., Gnesi, S., Mazzanti, F.: Modelling and analysing vari-
ability in product families: model checking of modal transition systems with vari-
ability constraints. J. Logic. Algebraic Methods Program. 85(2), 287–315 (2016)

7. Benduhn, F., Thüm, T., Lochau, M., Leich, T., Saake, G.: A survey on modeling
techniques for formal behavioral verification of software product lines. In: Proceed-
ings of the Ninth International Workshop on Variability Modelling of Software-
Intensive Systems, VaMoS 2015, New York, NY, USA, pp. 80:80–80:87 (2015)

8. Beneš, N., Křet́ınský, J., Larsen, K.G., Møller, M.H., Srba, J.: Parametric modal
transition systems. In: Bultan, T., Hsiung, P.-A. (eds.) ATVA 2011. LNCS, vol.
6996, pp. 275–289. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-
642-24372-1 20

9. Beohar, H., Varshosaz, M., Mousavi, M.R.: Basic behavioral models for software
product lines: expressiveness and testing pre-orders. Sci. Comput. Program. (2015,
in press)

10. Classen, A., Cordy, M., Schobbens, P.Y., Heymans, P., Legay, A., Raskin, J.F.:
Featured transition systems: foundations for verifying variability-intensive systems
and their application to LTL model checking. IEEE Trans. Softw. Eng. 39(8),
1069–1089 (2013)

https://doi.org/10.1007/978-3-642-21461-5_3
https://doi.org/10.1007/978-3-642-21461-5_3
https://doi.org/10.1007/978-3-642-34026-0_12
https://doi.org/10.1007/978-3-642-34026-0_12
https://doi.org/10.1145/3109729.3109741
https://doi.org/10.1145/3109729.3109741
https://doi.org/10.1145/3023956.3023965
https://doi.org/10.1007/978-3-642-24372-1_20
https://doi.org/10.1007/978-3-642-24372-1_20

Comparative Expressiveness of PL-CCS and 1-Selecting MTS 503

11. Classen, A., Heymans, P., Schobbens, P.Y., Legay, A., Raskin, J.F.: Model check-
ing lots of systems: efficient verification of temporal properties in software product
lines. In: Proceedings of the 32nd International Conference on Software Engineer-
ing, ICSE 2010, vol. 1, pp. 335–344. ACM (2010)

12. Fecher, H., Schmidt, H.: Comparing disjunctive modal transition systems with an
one-selecting variant. J. Logic Algebraic Program. 77(1–2), 20–39 (2008)

13. Fischbein, D., Uchitel, S., Braberman, V.: A foundation for behavioural confor-
mance in software product line architectures. In: Proceedings of the ISSTA Work-
shop on Role of Software Architecture for Testing and Analysis, pp. 39–48. ACM
(2006)

14. Gruler, A., Leucker, M., Scheidemann, K.: Modeling and model checking software
product lines. In: Barthe, G., de Boer, F.S. (eds.) FMOODS 2008. LNCS, vol.
5051, pp. 113–131. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-
540-68863-1 8

15. Kang, K., Cohen, S., Hess, J., Novak, W., Peterson, S.: Feature-oriented domain
analysis (FODA) feasibility study. Technical report CMU/SEI-90-TR-21. Software
Engineering Institute, Carnegie Mellon University (1990)

16. Larsen, K.G., Nyman, U., W ↪asowski, A.: Modal I/O automata for interface and
product line theories. In: De Nicola, R. (ed.) ESOP 2007. LNCS, vol. 4421, pp.
64–79. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-71316-6 6

17. Larsen, K.G., Xinxin, L.: Equation solving using modal transition systems. In:
Proceedings of the Fifth Annual Symposium on Logic in Computer Science, LICS
1990, pp. 108–117. IEEE Computer Society (1990). https://doi.org/10.1109/LICS.
1990.113738

18. Larsen, K., Thomsen, B.: A modal process logic. In: Proceedings of the 3rd Annual
Symposium on Logic in Computer Science, LICS 1988, pp. 203–210. IEEE (1988)

19. Lochau, M., Kamischke, J.: Parameterized preorder relations for model-based test-
ing of software product lines. In: Margaria, T., Steffen, B. (eds.) ISoLA 2012. LNCS,
vol. 7609, pp. 223–237. Springer, Heidelberg (2012). https://doi.org/10.1007/978-
3-642-34026-0 17

20. Milner, R. (ed.): A Calculus of Communicating Systems. LNCS, vol. 92. Springer,
Heidelberg (1980). https://doi.org/10.1007/3-540-10235-3

21. Shoham, S., Grumberg, O.: Multi-valued model checking games. J. Comput. Syst.
Sci. 78(2), 414–429 (2012)

https://doi.org/10.1007/978-3-540-68863-1_8
https://doi.org/10.1007/978-3-540-68863-1_8
https://doi.org/10.1007/978-3-540-71316-6_6
https://doi.org/10.1109/LICS.1990.113738
https://doi.org/10.1109/LICS.1990.113738
https://doi.org/10.1007/978-3-642-34026-0_17
https://doi.org/10.1007/978-3-642-34026-0_17
https://doi.org/10.1007/3-540-10235-3

A Hierarchy of Polynomial Kernels

Jouke Witteveen1(B) , Ralph Bottesch2, and Leen Torenvliet1

1 Institute for Logic, Language, and Computation, Universiteit van Amsterdam,
Amsterdam, The Netherlands

j.e.witteveen@uva.nl
2 Department of Computer Science, Universität Innsbruck, Innsbruck, Austria

Abstract. In parameterized algorithmics the process of kernelization is
defined as a polynomial time algorithm that transforms the instance of
a given problem to an equivalent instance of a size that is limited by
a function of the parameter. As, afterwards, this smaller instance can
then be solved to find an answer to the original question, kernelization
is often presented as a form of preprocessing. A natural generalization of
kernelization is the process that allows for a number of smaller instances
to be produced to provide an answer to the original problem, possibly
also using negation. This generalization is called Turing kernelization.
Immediately, questions of equivalence occur or, when is one form possible
and not the other. These have been long standing open problems in
parameterized complexity. In the present paper, we answer many of these.
In particular we show that Turing kernelizations differ not only from
regular kernelization, but also from intermediate forms as truth-table
kernelizations. We achieve absolute results by diagonalizations and also
results on natural problems depending on widely accepted complexity
theoretic assumptions. In particular, we improve on known lower bounds
for the kernel size of compositional problems using these assumptions.

Keywords: Kernelization · Parameterized complexity
Turing reductions · Truth-table reductions · Kernel lower bounds

1 Introduction

Fixed-Parameter Tractability. For many important computational problems, the
best known algorithms have a worst-case running time that scales exponentially
or worse with the size of the input. Generally however, the size of an input
instance is a poor indicator of whether the instance is indeed difficult to solve.
This is because for most natural problems, a good fraction of all instances of a
given size can be solved much more efficiently than the worst-case instance of that
size. To gain a better understanding of the complexity of individual instances,
we might define a function κ : {0, 1}∗ → N that assigns to each instance x
a numeric parameter κ(x). This parameter then indicates the extent to which
certain features that we have identified as a potential cause of computational

c© Springer Nature Switzerland AG 2019
B. Catania et al. (Eds.): SOFSEM 2019, LNCS 11376, pp. 504–518, 2019.
https://doi.org/10.1007/978-3-030-10801-4_39

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-10801-4_39&domain=pdf
http://orcid.org/0000-0002-1661-6382
https://doi.org/10.1007/978-3-030-10801-4_39

A Hierarchy of Polynomial Kernels 505

hardness are present in the given instance. If the function κ is itself polynomial-
time computable, we call it a parameterization. We shall assume that κ(x) ≤ |x|
holds for all x ∈ {0, 1}∗.

Consider a problem for which the fastest known algorithm has a worst-case
running time in 2O(|x|). If, for some parameterization κ, we can give an algorithm
of which the worst-case running time on any instance x is in 2O(κ(x))poly(|x|)
and, furthermore, we have that κ(x) � |x| holds for at least some arbitrarily
large instances, then we can argue that κ is a more accurate measure of the
complexity of instances than is their size, since the running time of the second
algorithm is exponential only in the parameter value. Note that this implies that
interesting parameterizations cannot be monotonic functions. More generally, for
X ⊆ {0, 1}∗ and a parameterization κ, a parameterized problem (X,κ) is said to
be fixed-parameter tractable (fpt) if, for some computable function f and constant
c ≥ 0, there is an algorithm solving any instance x of X in time f(κ(x))|x|c.1 The
essential feature of such running times is that the parameter value and instance
size appear only in separate factors.

Kernelization. An important notion in the study of fixed-parameter tractability
is that of kernelization. Informally, a kernelization (or kernel) for a parameterized
problem is a polynomial-time algorithm that, for any input instance, outputs an
equivalent instance of which the size is upper-bounded by a function of the
parameter. This type of algorithm is usually presented as a formalization of
preprocessing in the parameterized setting. It reduces any instance with large
size but small parameter value to an equivalent smaller instance, after which
some other algorithm (possibly one with large complexity) is used to solve the
reduced instance. Another explanation, which fits well with the idea of studying
the complexity of individual instances, is that a kernelization extracts the hard
core of an instance.

Of particular interest is the case where the upper bound on the size of the
output instance of a kernelization is itself a polynomial function in the parame-
ter. Such polynomial kernelizations are important because they offer a quick way
to obtain efficient fpt-algorithms for a problem. If X is solvable in exponential-
time, then the existence of a polynomial kernelization for (X,κ) means that
the problem can be solved in time 2poly(k)poly(n), which roughly corresponds
to what we might reasonably consider to be useful in practice. Conversely, for
many parameterized problems that can be solved by algorithms with such run-
ning times (for example, k-Vertex-Cover), it is also possible to show the
existence of polynomial kernelizations. However, there are also exceptions, such
as the k-Path problem, where an algorithm with time complexity 2O(k)poly(n),
but no polynomial kernelization, is known. It was a long-standing open ques-
tion whether the existence of polynomial kernelizations is equivalent to having
fpt-algorithms with a particular kind of running time. Eventually, Bodlaender
et al. [2] showed that for many fixed-parameter tractable problems (including

1 From here onward, we may write k for κ(x) when there is no risk of confusion. Also,
n stands for |x| when specifying the complexity of an algorithm.

506 J. Witteveen et al.

k-Path), the existence of polynomial kernels would imply the unlikely
complexity-theoretic inclusion NP ⊆ coNP/poly. This framework for proving
conditional lower bounds against polynomial kernels was subsequently consid-
erably extended and strengthened [3,6] (see also the survey of Kratsch [12]). In
the same paper, Bodlaender et al. also unconditionally prove the existence of a
parameterized problem that is solvable in time O(2kn), but has no polynomial
kernels, thus ruling out the possibility of an equivalence between polynomial
kernels and fpt-algorithms with running times of the form 2poly(k)poly(n).

Generalized Kernelization. A Turing kernelization is an algorithm that can solve
any instance of a parameterized problem in polynomial-time, provided it can
query an oracle for the same problem with instances of which the size is upper-
bounded by a function of the parameter value of the input. The idea here is that
if we are willing to run an inefficient algorithm on an instance of size bounded
in terms of the parameter alone (as was the case with regular kernelizations),
then we might as well run this algorithm on more than one such instance. A
regular kernelization can be regarded as a particular, restricted type of Turing
kernelization that (a) runs the polynomial kernelization algorithm on the input,
(b) queries the oracle for the resulting output instance, and (c) outputs the
oracle’s answer. As in the case of regular kernelizations, a polynomial Turing
kernelization is such that the bound on the size of the query instances is itself a
polynomial function.

Polynomial Turing kernelizations are not as well-understood as regular ker-
nels. The methods for proving lower bounds against the size of regular kernels
do not seem to apply to them. Indeed, there are problems that most likely have
no polynomial kernels, but which do admit a polynomial Turing kernelization.
An example being k-Leaf-Subtree (called Max-Leaf-Subtree in [4]). Fur-
thermore, there are only a few examples of non-trivial polynomial Turing ker-
nelizations for problems that are not believed to admit polynomial regular ker-
nelizations, such as restricted versions of k-Path [9,10] and of k-Independent
Set [15]. Whether the general versions of these problems also have polynomial
Turing kernels are major open questions in this field.

Compared to the regular kind, polynomial Turing kernelizations have a num-
ber of computational advantages, such as the ability to output the opposite of the
oracle’s answer to a query (non-monotonicity), the ability to make polynomially
(in the size of the input) many queries, and the ability to adapt query instances
based on answers to previous queries (adaptiveness). Rather than focus on spe-
cific computational problems to determine the difference in strength between
Turing and regular kernelizations, we instead look into the possibility of uncon-
ditionally separating the computational strengths of these two types of algo-
rithms in general. We investigate and answer a number of questions that, to our
knowledge, were all open until now:
– Without relying on any complexity-theoretic assumptions, can we prove the

existence of parameterized problems that admit polynomial Turing but not
polynomial regular kernelizations? If so, which of the computational advan-
tages of Turing kernelizations are sufficient for an unconditional separation?

A Hierarchy of Polynomial Kernels 507

Note that for k-Leaf-Subtree, only a larger number of queries is used, the
known polynomial Turing kernel being both monotone and non-adaptive (see
[4], Sect. 9.4). On the other hand, the kernels in [9] and [15] are adaptive.

– Does every parameterized problem that is decidable in time 2poly(k)poly(n),
also admit a polynomial Turing kernelization?

– To what extent can we relax the restrictions on regular kernelizations (viewed
as Turing kernelizations), while still being able to apply known lower bound
techniques? For example, can we rule out, for some natural problems, the
existence of non-monotone kernels that make a few adaptive oracle queries?

1.1 Overview of Our Results

polynomial kernels

polynomial Turing kernels with
a constant number of queries

psize kernels

polynomial
truth-table kernels

polynomial
Turing kernels

fixed-parameter tractable

Fig. 1. A hierarchy of polynomial
kernels. Arrows signify a strict
increase in computational power.

We show that each of the advantages of poly-
nomial Turing kernelizations over polynomial
regular kernelizations is, by itself, enough
to unconditionally separate the two notions.
This produces a hierarchy of kernelizability
within the class of problems that admit poly-
nomial Turing kernelizations, Fig. 1. Specifi-
cally, we show that:

– there are problems that are not poly-
nomially kernelizable, but do admit
a polynomial Turing kernelization
that makes a single oracle query (Theo-
rem 1);

– there are problems that admit non-
adaptive polynomial Turing kernelizations
(also known as polynomial truth-table ker-
nelizations), but cannot be solved by poly-
nomial Turing kernelizations making a
constant number of queries, even adap-
tively (Theorems 2 and 3);

– there are problems that admit adap-
tive polynomial Turing kernelizations but
not polynomial truth-table kernelizations
(Theorem 4).

Next, we show (Theorem 5) that it is not enough for a problem to be decidable
in time 2poly(k)poly(n) in order for it to have a polynomial Turing kernelization.
In fact, the problem we construct can be solved in time O(2kn). Our theorem
is stronger than a comparable result of Bodlaender et al., who only exclude
regular kernelizations. We obtain a considerably simpler proof, harnessing the
Time Hierarchy Theorem in favor of a direct diagonalization.

Finally, we ask how far up the hierarchy the known methods for proving
lower bounds against polynomial kernelization can be applied. The example of

508 J. Witteveen et al.

k-Leaf-Subtree shows that they should already fail somewhere below poly-
nomial truth-table kernelizations. Indeed, we identify what we call psize kernel-
izations as the apparently strongest type of polynomial Turing kernel that can
be ruled out by current lower bound techniques (Sect. 4). A psize kernelization
makes poly(k) non-adaptive oracle queries (of size poly(k)), and then feeds the
oracle’s answers into a poly-sized circuit to compute its own final answer. In
terms of computational power, this type of kernelization stands between poly-
nomial Turing kernelizations that make only a constant number of queries and
polynomial truth-table kernelizations (Sect. 3, Theorems 2 and 3).

1.2 Proof Techniques

The price we pay for being able to prove unconditional separations is that the
problems we construct in the proofs are artificial rather than natural. This is
unavoidable, however, because computational problems that arise naturally will
typically belong to classes that are hard to separate from P (such as NP, PH,
PP, etc.). Thus, any claim that some parameterized version of a natural prob-
lem admits no polynomial kernelization, would currently have to rely on some
complexity-theoretic assumptions.

In the construction of every problem witnessing a separation, diagonalization
will be involved, in one way or another. However, the application of diagonaliza-
tion arguments in this context has some subtle issues. An intuitive reason for this
is the fact that it is very difficult to control the complexity of a problem that
is constructed via an argument using diagonalization against polynomial-time
machines. Without additional complexity-theoretic assumptions, such problems
can be forced to reside in powerful classes such as EXP. Positioning them in
any interesting smaller classes is not straightforward. By contrast, the difference
between P and the class of problems that can be decided in polynomial-time
with a very restricted form of access to an oracle, seems rather thin, and it is by
no means clear whether a problem that is constructed via diagonalization can
be placed between these two classes. In Sect. 3 we discuss these issues, as well as
how to overcome them, in detail. Here, let us mention that the overall structure
of our artificial problems resembles that of examples of natural problems which,
subject to complexity-theoretic assumptions, admit polynomial Turing but not
regular kernelizations. Because of this, even the artificial examples we construct
provide new insights into the power of Turing kernelization.

2 Preliminaries

We assume familiarity with standard notations and the basics of parameterized
complexity theory, and refer the reader to [7] for the necessary background. Here
we review only the definitions of the notions most important for our work.

Definition 1. A kernelization (or kernel) for a parameterized problem (X,κ),
where X ⊆ {0, 1}∗ and κ is a parameterization, is a polynomial-time algorithm

A Hierarchy of Polynomial Kernels 509

that, on a given input x ∈ {0, 1}∗, outputs an instance x′ ∈ {0, 1}∗ such that
x ∈ X ⇔ x′ ∈ X holds, and, for some fixed computable function f , we have
|x′| ≤ f(κ(x)). The function f is referred to as the size of the kernel. The kernel
is said to be polynomial if f is a polynomial.

Definition 2. A Turing kernelization for a parameterized problem (X,κ) is a
polynomial-time algorithm that decides any instance x of X using oracle queries
to X of restricted size. For some fixed computable function f that is independent
of the input, the size of the queries must be upper bounded by f(κ(x)). A Turing
kernelization is polynomial if f is a polynomial.

A Turing kernelization is a truth-table kernelization if, on every input, all
of its oracle queries are independent of the oracle’s answers. Thus, as an oracle
machine, a truth-table kernelization is non-adaptive.

A parameterized problem that exemplifies the relevance of our results is
k-Leaf-Subtree, where a graph G and integer k are given, and the ques-
tion is whether G has a subtree with at least k leaves. This problem admits a
polynomial Turing kernelization but no polynomial regular kernelization, unless
NP ⊆ coNP/poly. See Sect. 9.4 of [4] for a proof of the former, and Chap. 15 of
the same reference for a proof of the latter fact.

3 Separations

To prove an unconditional separation between polynomial Turing kernelizability
and polynomial regular kernelizability (or between two intermediate kinds of
kernelizability), we construct a problem of which the instances can be solved in
polynomial-time with oracle queries for small instances of the same problem. We
shall make sure that the instances cannot be solved in polynomial-time without
such queries (remember, polynomial kernelizations are also poly-time decision
procedures). These requirements prevent us from constructing the classical part
of our parameterized problem via simple diagonalization against polynomial-
time machines. The instances of the resulting language would not depend on
each other in a way that would allow oracle queries to be useful, nor would
all instances be solvable in time p(n) for some fixed polynomial p. Solving an
instance of such a language requires simulating Turing machines (TM s) for a
polynomial number of steps, but the degree of these polynomials increases with
n. Thus, a hypothetical polynomial Turing kernelization would neither be able
to solve the instances of such a language directly within the allowed time, nor
use its oracle access to speed up the computation. An additional difficulty arises
due to the bound on the size of the oracle queries (polynomial in k). If the
parameter value of an instance x is too small relative to |x|, then the restricted
oracle access of a polynomial Turing kernelization may offer no computational
advantage, since the instances for which the oracle can be queried will be small
enough to be solved directly within the required time bound.

These issues can be overcome by designing a problem that shares what seems
to be the essential feature of natural problems that, under complexity-theoretic

510 J. Witteveen et al.

assumptions, admit polynomial Turing but not polynomial (regular) kerneliza-
tions, such as the k-Leaf-Subtree problem. Recall that for this problem, a
quadratic kernelization exists for the case when the input graph is connected,
but that a polynomial kernelization for general graphs is unlikely to exist. The
known polynomial Turing kernelization for this problem works on general graphs
by computing the kernel for each connected component of the input graph, and
then querying the oracle for each of the O(n) resulting instances of size O(k2)
(see [4], Sect. 9.4). The crucial aspect here is that although the general prob-
lem may not admit polynomial kernelizations, it has a subproblem that does.
Furthermore, the polynomial Turing kernelization only queries instances of this
subproblem.

The problems we construct will also have a polynomially kernelizable “core,”
as well as a “shell” of instances that can be solved efficiently with small queries
to the core. Taking V to be some decidable language, we can define

X(V) = {0x | x ∈ V } ∪ {1x | . . .} ,

where the ellipsis stands for a suitable condition that can be verified with small
queries to V . With the parameterization κ such that κ(0x) = |x| and κ(1x) =
log |x| for all x ∈ {0, 1}∗, the first set in the above disjoint union plays the role of
the polynomially kernelizable core (it admits the trivial kernelization), while the
second set plays the role of the shell. The crucial observation now is that we can
choose the condition that determines membership of an element of the form 1x
in X(V) in such a way that a polynomial-time algorithm can decide the instance
using small queries of the form 0w, regardless of the choice of V . Having thus
secured the existence of a polynomial Turing kernelization (perhaps one that is
further restricted), we are now free to construct V via diagonalization against
some weaker type of kernelization, so as to get the desired separation.

Using this approach, we prove that each of the computational advantages
a polynomial Turing kernelization has over polynomial (regular) kernelizations,
results in a strictly stronger type of kernelization, as shown in Fig. 1.

Theorem 1. There is a parameterized problem that has a polynomial Tur-
ing kernelization using only a single oracle query, but admits no polynomial
kernelizations.

Proof. Given any decidable set V , we can define

X(V) = {0x | x ∈ V } ∪
{
1x

∣∣∣ log |x| ∈ N and 0log |x| /∈ V
}

,

parameterized so that for all x ∈ {0, 1}∗, κ(0x) = |x| and κ(1x) = log |x|.
Clearly, the problem (X(V), κ) has a polynomial Turing kernelization making

a single query, regardless of the decidable set V . For instances of the form 0x,
the answer can be obtained by querying the oracle directly for the input, and if
the input is 1x, one can query 0log |x|+1 and output the opposite answer.

We shall construct the set V by diagonalization, ensuring that X(V) does
not admit a polynomial (regular) kernelization. Note that the kernelization pro-
cedures we diagonalize against can query X(V), whereas we only decide the

A Hierarchy of Polynomial Kernels 511

elements of V . Because every problem that admits a polynomial kernelization
can also be decided by a polynomial-time TM that makes a single query of
size poly(k) and then outputs the oracle’s answer, we only need to diagonalize
against this type of TM. As in a standard diagonalization argument, we run
every such machine for an increasing number of steps, using as input the string
102

n

(the parameter value of which is n), where n is chosen large enough for
decisions made at previous stages to not interfere with the current simulation.
Each machine is simulated until it runs out of time or makes an oracle query.
Whenever the machine makes an oracle query different from 102

n

, we answer it
according to the current state of the set V . To complete the diagonalization, we
either add 0n to V or not, so as to ensure the machine’s answer is incorrect.

Note that for sufficiently large values of n, the string 102
n

cannot be queried,
because 2n outgrows any fixed polynomial in n (∈ poly(k)). Additionally, a query
to 00n is of no concern as the machine is incapable of negating the answer of the
oracle.
�

Next, we show that polynomial truth-table kernelizations, which can make
poly(n) oracle queries of size poly(k) but cannot change their queries based on
the oracle’s previous answers, are more powerful than a restricted version of the
same type of kernelization that makes at most poly(k) queries. This restricted
form of polynomial truth-table kernelization is of further interest because it can
be ruled out by the current lower bounds techniques (see Sect. 4). We give the
definition here.

Definition 3. A polynomial truth-table kernelization is a psize kernelization if,
on any input instance with parameter value k, it makes at most poly(k) oracle
queries and its output can be expressed as the output of a poly(k)-sized circuit
that takes the answers of the oracle queries as input.

The proof of the next theorem follows the same pattern as that of Theorem1,
except that in the diagonalization part of the proof we now use the restriction
on the number of queries the machines can make. Recall that in Theorem 1 we
made use of the machine’s monotonicity, that is, the fact that its output must
be equivalent to the outcome of its single oracle query.

Theorem 2. There is a parameterized problem that has a polynomial truth-table
kernelization but no psize kernelization.

A proof is available in the appendix. The condition used for the shell is that
V contains a string of length log |x|. The conclusion of the proof is actually that
there exists a parameterized problem with a polynomial truth-table kernelization
making n − 1 oracle queries, that admits no polynomial (possibly adaptive!)
Turing kernelization making fewer than n−2 queries on certain inputs of length
n. A psize kernel fits this condition, but is much more restricted (in particular,
the number of allowed queries is polynomial in the parameter value).

Via a very similar proof, with a diagonalization argument relying on the
number of oracle queries a machine can make, we can show that psize kerneliza-
tions are stronger than polynomial Turing kernelizations making any fixed finite
number of queries, even adaptively.

512 J. Witteveen et al.

Theorem 3. There is a parameterized problem that has a psize kernelization but
no polynomial Turing kernelization making only a constant number of (possibly
adaptive) queries.

We can also show that adaptive queries provide a concrete computational
advantage. The proof of the separation between general polynomial Turing and
truth-table kernelizations also follows the pattern of the previous three theo-
rems, but with a more involved diagonalization argument, due to the need to
distinguish between adaptive and non-adaptive oracle TMs.

Theorem 4. There is a parameterized problem that has a polynomial Turing
kernelization but no polynomial truth-table kernelization.

A proof is included in the appendix and hinges on a series of (log |x|)2 queries
to V , each query depending on the outcome of the one before it.

Finally, we show that decidability in time 2poly(k)poly(n) does not guaran-
tee the existence polynomial Turing kernelizations for the same problem. This
strengthens a theorem of Bodlaender et al. [2], who construct a problem with
the above complexity but rule out only polynomial regular kernelizations.

Theorem 5. For every time-constructible function g(k) ∈ 2o(k), there is a prob-
lem that is solvable in time O(2kn) but admits no Turing kernelization of size
g(k). In particular, there is a problem that is solvable in time O(2kn) but admits
no polynomial Turing kernelization.

Proof. Let g(k) be a time-constructible function in 2o(k). Without loss of gen-
erality, we may assume that g(k) is also in Ω

(
2(log k)2

)
. Let κ : N → N be a

time-constructible function such that we have κ(n) ∈ ω(log n) ∩ o(n) as well as
κ(g(k)) ∈ o(k) (for example, κ(n) = log n log

(
g−1(n)
log n

)
is suitable). Let t(n) =

2κ(n)n and let L be a language in DTIME(t(n)) \ DTIME(o(t(n)/ log(t(n))).
Such a language exists by the Time Hierarchy Theorem. Assigning each instance
x of L the parameter value k = κ(|x|), we find that L can be solved in time
O(2kn).

Furthermore, we have

t(n)
log t(n)

=
2κ(n)n

κ(n) + log n
∈ Ω

(
2κ(n)

)
,

so we may conclude 2o(κ(n)) ⊆ o(t(n)/ log(t(n)).
Assume now that for some polynomial p, there exists a Turing kernelization

for L that runs in time p(n) and queries the oracle with instances of size bounded
by g(k), where we set k = κ(n). We show that such a Turing kernelization can be
used to solve L in time o(t(n)/ log(t(n)), contradicting the choice of the language.
Our new algorithm will solve any instance x with parameter value k = κ(|x|)
by running the Turing kernelization on it, except that the instances for which
the oracle is supposed to be queried are solved directly using the O(2κ(n)n)-time

A Hierarchy of Polynomial Kernels 513

algorithm whose existence is guaranteed by the choice of L. The total running
time of this new algorithm is then upper-bounded by:

p(n) + p(n)2κ(g(k))g(k) = 2o(k) = 2o(κ(n)),

which contradicts the lower bound on the deterministic time complexity of L.
�

4 Lower Bounds

An immediate consequence of the separations arrived at in the previous section is
that not all fixed-parameter tractable problems have polynomial kernelizations.
However, for any particular parameterized problem the (non-)existence of a poly-
nomial kernelization may not be easy to establish. The most fruitful program
for deriving superpolynomial lower bounds on the size of regular kernelizations
was started by Bodlaender et al. [2]. While a straightforward application of their
technique to Turing kernelizations is not possible, an extension to the psize level
in our hierarchy, Fig. 1, is feasible.

In order to keep our presentation focussed, we shall include only a limited
exposition of the lower bound technique. For a more complete overview, refer
to [5,12], or turn to [3] for an in-depth treatment. Central to the lower bounds
engine are two similar looking classifications of instance aggregation. The first
of these does not involve a parameterization.

Definition 4. A weak and-distillation (weak or-distillation) of a set X into a
set Y is an algorithm that

• receives as input a finite sequence of strings x1, x2, . . . , xt,
• uses time polynomial in

∑t
i=1 |xi|,

• outputs a string y such that
– we have y ∈ Y if and only if for all (any) i we have xi ∈ X,
– |y| is bounded by a polynomial in max1≤i≤t |xi|.

Note how the size of the output of a distillation is bounded by a polynomial in
the maximum size of its inputs and not by the sum of the input sizes. Originally,
distillations where considered where the target set Y was equal to X, hence the
weak designator in this more general definition. The parameterized counterpart
to distillations is, as we shall soon see, more lenient than the non-parameterized
one.

Definition 5. An and-compositional (or-compositional) parameterized prob-
lem (X,κ) is on for which there is an algorithm that

• receives as input a finite sequence of strings x1, x2, . . . , xt sharing a parameter
value k = κ(x1) = κ(x2) = . . . = κ(xt),

• uses time polynomial in
∑t

i=1 |xi|,
• outputs a string y such that

– we have y ∈ X if and only if for all (any) i we have xi ∈ X,
– κ(y) is bounded by a polynomial in k.

514 J. Witteveen et al.

Here, a bound is placed on the parameter value of the output of the algorithm,
instead of on the length of the output. Additionally, this bound is a function of
the unique parameter value shared by all input strings. Conceptually, a bound
of this kind makes sense as parameter values serve as a proxy of the computa-
tional hardness of instances. Thus, a parameterized problem is compositional,
when instances can be combined efficiently, without an increase in computational
hardness.

Generalizing the results of Bodlaender et al. [2,3], we find that not just reg-
ular polynomial kernelizations, but also psize kernelizations tie the two ways of
aggregating instances together. For our proof to work, two aspects of the defi-
nition of psize kernelizations on page 8 that were not made explicit are crucial.
Firstly, because a psize kernelization is a polynomial truth-table kernelization,
the size of the queries can be bounded by a polynomial of the parameter value.
Secondly, it is important to note that the circuits involved must be uniformly
computable from the input instances.

Theorem 6. If (X,κ) is an and-compositional (or-compositional) parameter-
ized problem that has a psize kernelization, then X has a weak and-distillation
(weak or-distillation).

Proof. Given a set X, consider the following set based on circuits and inputs
derived from membership in X,

C(X) = {〈φ, (x1, x2, . . . , xt)〉 | φ is a circuit with t inputs,
accepting (x1 ∈ X,x2 ∈ X, . . . , xt ∈ X)}.

Note that a pairing of the specification of a circuit φ and t strings (x1, x2, . . . , xt)
can be done so that |〈φ, (x1, x2, . . . , xt)〉| is bounded by a polynomial in |φ| +
|x1| + |x2| + . . . + |xt|.

We sketch the proceedings of a distillation that is given x1, x2, . . . , xt as
input. This procedure is adapted from [2].

First, the inputs are grouped by their parameter value ki = κ(xi)
and the composition algorithm is applied to each group, obtaining
(y1, k′

1), (y2, k
′
2), . . . , (ys, k

′
s). Taking kmax = max1≤i≤t ki, we have s ≤ kmax and,

for some polynomial p, all k′
i are bounded by p(kmax).

Next, the psize kernelization is applied to each (yi, k
′
i), obtaining s polynomial

sized circuits and s sequences of strings to query in order to get the inputs of the
circuits. These circuits and strings can be amalgamated (dependent on the type
of composition) into a single circuit φ and sequence of strings (z1, z2, . . . , zr).

We claim that the mapping of (x1, x2, . . . , xt) to 〈φ, (z1, z2, . . . , zr)〉 consti-
tutes a weak distillation of X into C(X). Both s and kmax are bounded by
max1≤i≤t |xi|, since, for all i, we have ki ≤ |xi|. Therefore, the proposed weak
distillation procedure produces an output of which the size is bounded by a poly-
nomial in max1≤i≤t |xi| and its running time is indeed polynomial in

∑t
i=1 |xi|.

Moreover, by definition of a psize kernelization the required preservation of mem-
bership is satisfied, hence the procedure is truly a weak distillation of X into
C(X).
�

A Hierarchy of Polynomial Kernels 515

Assuming we have NP �⊆ coNP/poly, it has been shown that NP-hard
problems admit neither weak or-distillations [8], nor weak and-distillations [6].
Thus we can further our generalization of the results of Bodlaender et al. [3].

Corollary 1. If (X,κ) is an and-compositional (or-compositional) parameter-
ized problem and X is NP-hard, then (X,κ) does not have a psize kernelization
unless we have NP ⊆ coNP/poly.

Accordingly, our hierarchy of polynomial kernels is not merely synthetic and
the place of many natural problems in the hierarchy is lower bounded. In light
of the more general setting of Bodlaender et al. [3], we remark that a general-
ization of our results to cross-composition (generalizing compositionality) and
psize compression (generalizing psize kernelization) is immediate.

5 Classical Connections

Algorithms for fixed-parameter tractable problems are not easily diagonalized
against. Such algorithms have a running time of the form f(κ(x))|x|c, where f is
a computable function and c a constant. The challenge in diagonalizing is caused
by the absence of a computable sequence of computable functions such that
every computable function is outgrown by a member of the sequence. However,
as witnessed by this document, diagonalization can be used to uncover structure
inside FPT. Key to this possibility is that a problem is fixed-parameter tractable
precisely when it is kernelizable, and the running time bound for kernelizations
does not include arbitrary computable functions.

While, to our knowledge, not done before in a parameterized context, sepa-
rating many–one, truth-table, and Turing reductions is an old endeavour, dating
back to Ladner et al. [13]. Indeed, kernelizations are in essence reductions, more
specifically, they are autoreductions in the spirit of Trakhtenbrot [16]. Since ker-
nelizations come with a time bound, a Turing kernelization could more accurately
be described as a bounded Turing kernelization, or weak truth-table kernelization
(see [14], Sect. 3.8). However, the adaptiveness of a Turing kernelization entails
that the number of different queries it could make (unaware of the answers of the
Oracle) is much higher than that of a truth-table kernelization, given the same
time bound. In that sense, our separation based on adaptiveness, Theorem4, is
also a separation based on the number of queries made.

An important feature of kernelizations is not covered by an interpretation
of kernelizations as autoreductions. Where the definition of an autoreduction
excludes querying the input string, the definition of a kernelization imposes a
stronger condition on the queries, namely a size bound as a function of the
parameter value. In this light, it may be worthwhile comparing kernelizations
to a more restrictive type of autoreduction, the self-reduction (see [1], Sect. 4.5).
Self-reducibility is defined in [1] as autoreducibility where all queries are shorter
than the input. However, many of the results around self-reducibility extend
to more general orders than the “shorter than”-order and the definition can
be generalized [11]. While the size bound on the queries that is required of

516 J. Witteveen et al.

kernelizations does not fit the self-reducibility scheme perfectly, the similarities
in the definitions urge the consideration of other forms of self-reducibility in a
parameterized context. In particular, reducibility with a decreasing parameter
value may be of interest.

Appendix (Deferred Proofs)

Theorem 2. There is a parameterized problem that has a polynomial truth-table
kernelization but no psize kernelization.

Proof. Given any decidable set V , we can define

X(V) = {0v | v ∈ V } ∪
{
1x

∣∣∣ log |x| ∈ N and {0, 1}log |x| ∩ V �= ∅
}

,

parameterized so that for all x ∈ {0, 1}∗, κ(0x) = |x| and κ(1x) = log |x|.
Clearly, (X(V), κ) has a polynomial truth-table kernelization regardless of V :
on input 0x it queries the oracle for the input, and on input 1x, with log |x| ∈ N,
it queries the oracle with each string 0y, for all y ∈ {0, 1}log |x|, and accepts if
one of the queries has a positive answer (otherwise it rejects). This procedure
runs in polynomial time and makes at most n oracle queries on any input of
length n + 1.

We construct V by diagonalizing against psize kernelization algorithms. To
do this, we consider a computable list of TMs such that every machine appears
infinitely often. At stage i of the construction we choose n, a power of 2, so that
membership in V has not been decided at a previous stage for any strings of
length at least log n. We then run the i-th machine on input 10n for ni steps. All
new oracle queries are answered with ‘no’, all other queries are answered so as to
be consistent with previous answers. If the machine at stage i terminates without
having queried the oracle for all strings of the form 0y with y ∈ {0, 1}log n, we
add an unqueried string of this length to V if and only if the machine rejects.

If P is a psize kernelization, then the number of oracle queries it makes on
an input 1x is upper-bounded by q(log |x|), for some fixed polynomial q. This
is clearly o(|x|), so for some sufficiently large i and n, P will terminate with-
out having queried all n strings which can determine the correct answer. Thus,
our diagonalization procedure will ensure that it terminates with the incorrect
answer. On the other hand, the above-mentioned polynomial truth-table ker-
nelization will always query all necessary strings in order to output the correct
answer.
�
Theorem 4. There is a parameterized problem that has a polynomial Turing
kernelization but no polynomial truth-table kernelization.

Proof. For any decidable set V we can define the function: sV : {0, 1}∗ → {0, 1}∗

by

sV (q) =

{
0q if q /∈ V,

1q if q ∈ V.

A Hierarchy of Polynomial Kernels 517

Also for a decidable set V , we define the following parameterized problem:

X(V)={0x | x ∈ V }∪

⎧
⎪⎨
⎪⎩
1x

∣∣∣∣∣∣∣
log |x| ∈ N and (sV ◦ sV ◦ · · · ◦ sV)︸ ︷︷ ︸

(log |x|)2 times

(0log |x|) ∈ V

⎫
⎪⎬
⎪⎭

,

where the parameterization is defined so that for all x ∈ {0, 1}∗, κ(0x) = |x|
and κ(1x) = log |x|. The problem X(V) has a polynomial Turing kernelization
regardless of the set V : On inputs of the form 0x, the machine queries the oracle
with its input (whose size is linear in the parameter value), and outputs the
answer. On inputs of the form 1x the machine makes the following (log |x|)2
queries: 0log |x|+1, 0b10log |x|, 0b2b10log |x|, . . . , 0b(log |x|)2 . . . b10log |x|, where bi is
the outcome of the i-th query, for each i ≤ (log |x|)2. The output is the answer of
the last oracle query. Since each of the queries in the second case is of size at most
quadratic in κ(1x) = log |x|, this procedure is a polynomial Turing kernelization.

We now construct the set V so that no polynomial truth-table kernelization
can solve X(V). Consider a variant of oracle TMs where the oracle can be queried
for an arbitrary number of queries at once. Let P1, P2, . . . be a computable list
of all such TMs in which each machine appears infinitely often.

At each stage i ∈ N, we set n to be the smallest positive integer so that
no oracle queries to X(V) at any previous stage of the simulation depend on
instances of V of size at least n, and so that n > i and 2n > ni. At stage i
of the construction, we run Pi on input 102

n

for (2n)i steps (note that this is
a polynomial of degree i in 2n + 1, the size of the input). In case the machine
queries the oracle, let S be the set of strings it queries. If S includes strings of
length at least 2n, we move on to the next stage. In particular, when no query of
length 2n + 1 is made, Pi is not making a query with prefix 1 that is equivalent
to the input. By the time bound, we have |S| ≤ 2ni < 2n2

, so there must be a
string y = bn2 . . . b2b10n, bj ∈ {0, 1}, such that 0y is not in S. The queries in S
are answered as follows: all queries also made at previous stages are answered so
as to be consistent with previous answers; all queries of the form 0bj . . . b2b10n,
with j ≤ n2 − 1, are answered with bj+1; all other queries are answered with
0 (‘no’). For all j ≤ n2 − 1 such that bj+1 = 1, we place bj . . . b2b10n into
V . After thus answering the queries in S, we resume the simulation of Pi for
the remainder of its allotted 2ni steps and treat every subsequent invocation of
the query instruction as a crash. Finally, we place y into V if and only if Pi

terminated within the time bound and rejected, making 102
n

a ‘yes’-instance if
and only the Pi rejects it.

Assume now that there is a polynomial truth-table kernelization for X(V).
Such a procedure will eventually be targeted in the above construction. Indeed, a
problem has a truth-table kernelization precisely when it is decided by a machine
that runs in polynomial time and can make all its queries at once. Let i be
such that Pi is a polynomial truth-table kernelization for X(V), running in
time p(|x|) on any input of the form 1x, and non-adaptively making oracle
queries of size at most q(log |x|), where p and q are fixed polynomials. As this
machine occurs infinitely often in the list P1, P2, . . ., we may assume that i and

518 J. Witteveen et al.

its corresponding n are large enough for Pi to terminate on input 102
n

, because
we have p(2n +1) < 2ni. Moreover, we may assume that i and n are large enough
for q(n) < ni < 2n to hold. As Pi will not be able to query all strings of the form
0y0n with |y| = n2, it will, by our construction of V , incorrectly decide some
instance of X(V).
�

References

1. Balcázar, J.L., Dı́az, J., Gabarró, J.: Structural Complexity I. Springer, Heidelberg
(1995). https://doi.org/10.1007/978-3-642-79235-9

2. Bodlaender, H.L., Downey, R.G., Fellows, M.R., Hermelin, D.: On problems with-
out polynomial kernels. J. Comput. Syst. Sci. 75(8), 423–434 (2009)

3. Bodlaender, H.L., Jansen, B.M., Kratsch, S.: Kernelization lower bounds by cross-
composition. SIAM J. Discret. Math. 28(1), 277–305 (2014)

4. Cygan, M., et al.: Parameterized Algorithms. Springer, Heidelberg (2016). https://
doi.org/10.1007/978-3-319-21275-3

5. Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity.
Springer, Heidelberg (2016). https://doi.org/10.1007/978-1-4471-5559-1

6. Drucker, A.: New limits to classical and quantum instance compression. SIAM J.
Comput. 44(5), 1443–1479 (2015)

7. Flum, J., Grohe, M.: Parameterized Complexity Theory. TTCSAES. Springer,
Heidelberg (2006). https://doi.org/10.1007/3-540-29953-X

8. Fortnow, L., Santhanam, R.: Infeasibility of instance compression and succinct
PCPs for NP. J. Comput. Syst. Sci. 77(1), 91–106 (2011)

9. Jansen, B.M.: Turing kernelization for finding long paths and cycles in restricted
graph classes. J. Comput. Syst. Sci. 85, 18–37 (2017)

10. Jansen, B.M., Pilipczuk, M., Wrochna, M.: Turing kernelization for finding long
paths in graphs excluding a topological minor. In: 12th International Symposium
on Parameterized and Exact Computation (IPEC 2017), vol. 89, pp. 23:1–23:13.
Schloss Dagstuhl-Leibniz Zentrum fuer Informatik (2018)

11. Ko, K.I.: On self-reducibility and weak P-selectivity. J. Comput. Syst. Sci. 26(2),
209–221 (1983)

12. Kratsch, S.: Recent developments in kernelization: a survey. Bull. EATCS 2(113),
57–97 (2014)

13. Ladner, R.E., Lynch, N.A., Selman, A.L.: A comparison of polynomial time
reducibilities. Theor. Comput. Sci. 1(2), 103–123 (1975)

14. Soare, R.I.: Turing Computability. Springer, Heidlberg (2016). https://doi.org/10.
1007/978-3-642-31933-4

15. Thomassé, S., Trotignon, N., Vušković, K.: A polynomial Turing-kernel for weighted
independent set in bull-free graphs. Algorithmica 77(3), 619–641 (2017)

16. Trakhtenbrot, B.A.: On autoreducibility. Doklady Akademii Nauk SSSR 192(6),
1224–1227 (1970)

https://doi.org/10.1007/978-3-642-79235-9
https://doi.org/10.1007/978-3-319-21275-3
https://doi.org/10.1007/978-3-319-21275-3
https://doi.org/10.1007/978-1-4471-5559-1
https://doi.org/10.1007/3-540-29953-X
https://doi.org/10.1007/978-3-642-31933-4
https://doi.org/10.1007/978-3-642-31933-4

Behavioral Strengths and Weaknesses of
Various Models of Limited Automata

Tomoyuki Yamakami(B)

Faculty of Engineering, University of Fukui, 3-9-1 Bunkyo, Fukui 910-8507, Japan
TomoyukiYamakami@gmail.com

Abstract. We examine the behaviors of various models of k-limited
automata, which naturally extend Hibbard’s [Inf. Control, vol. 11, pp.
196–238, 1967] scan limited automata, each of which is a linear-bounded
automaton satisfying the k-limitedness requirement that the content of
each tape cell should be modified only during the first k visits of a tape
head. One central model is k-limited probabilistic automaton (k-lpa),
which accepts an input exactly when its accepting states are reachable
from its initial state with probability more than 1/2. We further study
the behaviors of one-sided-error and bounded-error variants of such k-
lpa’s as well as deterministic and nondeterministic models. We discuss
fundamental properties of those machine models and obtain inclusions
and separations among language families induced by these machine mod-
els. In due course, we study special features—the blank skipping prop-
erty and the closure under reversal—which are keys to the robustness of
k-lpa’s.

Keywords: Limited automata · Pushdown automata
Probabilistic computation · Bounded-error probability
One-sided error · Blank skipping property · Reversal

1 Background and Main Contributions

1.1 Limited Automata and Probabilistic Computation

In 1967, Hibbard [3] studied a novel computational model of so-called scan lim-
ited automata to characterize context-free languages by conducting direct sim-
ulations between one-way nondeterministic pushdown automata (or 1npda’s)
and his model. Hibbard’s model seems to have been paid little attention until
Pighizzini and Pisoni [10] reformulated the model from a modern-machinery per-
spective and reproved a characterization theorem of Hibbard in a more sophis-
ticated manner. A k-limited automaton,1 for each fixed index k ≥ 0, is in gen-
eral a one-tape (or a single-tape) Turing machine whose tape head is allowed
1 Hibbard’s original formulation of “k-limited automaton” is equipped with a semi-

infinite tape that stretches only to the right with no endmarker but is filled with the
blank symbols outside of an input string. Our definition in this paper is different from
Hibbard’s but it is rather similar to Pighizzini and Pisoni’s [10].

c© Springer Nature Switzerland AG 2019
B. Catania et al. (Eds.): SOFSEM 2019, LNCS 11376, pp. 519–530, 2019.
https://doi.org/10.1007/978-3-030-10801-4_40

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-10801-4_40&domain=pdf
https://doi.org/10.1007/978-3-030-10801-4_40

520 T. Yamakami

to rewrite each tape cell between two endmarkers only during the first k scans
or visits (except that, whenever a tape head makes a “turn,” we count this
move as double visits). Although these automata can be viewed as a special
case of linear-bounded finite automata, the restriction on the number of times
that they rewrite tape symbols brings in quite distinctive effects on the com-
putational power of the underlying automata, different from other restrictions,
such as upper bounds on the numbers of nondeterministic choices or the num-
ber of tape-head turns. Hibbard actually proved that k-limited nondeterminis-
tic automata (or k-lna’s) for k ≥ 2 are exactly as powerful as 1npda’s, whereas
1-lna’s are equivalent in power to 2-way deterministic finite automata (or
2dfa’s) [12].

In a subsequent paper [11], Pighizzini and Pisoni discussed a close relation-
ship between k-limited deterministic automata (or k-lda’s) and one-way deter-
ministic pushdown automata (or 1dpda’s). In fact, they proved that 2-lda’s
embody exactly the power of 1dpda’s; in contrast, Hibbard observed that, when
k ≥ 3, k-lda’s do not, in general, coincide in computational power with 1dpda’s.
This observation gives a clear structural difference between determinism and
nondeterminism on the machine model of “limited automata” and this differ-
ence naturally raises a question of whether other variants of limited automata
matches their corresponding models of one-way pushdown automata.

Lately, a computation model of one-way probabilistic pushdown automata (or
1ppda’s) has been discussed extensively to demonstrate computational strengths
as well as weaknesses in [5,7,9,17]. Hromkovič and Schnitger [5] as well as
Yamakami [17], in particular, demonstrated clear differences in computational
power between two pushdown models, 1npda’s and 1ppda’s.

While nondeterministic computation is purely a theoretical notion, proba-
bilistic computation could be implemented in real life by installing a mechanism
of generating (or sampling) random bits (e.g., by flipping fair or biased coins).
A bounded-error probabilistic machine makes error probability bounded away
from 1/2, whereas an unbounded-error probabilistic machine allows error to take
arbitrarily close to probability 1/2. In most cases, a probabilistic approach helps
us solve a target mathematical problem algorithmically faster, and probabilistic
(or randomized) computation often exhibits its superiority over its determin-
istic counterpart. For example, 2-way probabilistic finite automata (or 2pfa’s)
running in expected exponential time can recognize non-regular languages with
bounded-error probability [2]. By contrast, when restricted to expected subex-
ponential runtime, bounded-error 2pfa’s recognize only regular languages [1,6].
As this example shows, the expected runtime bounds of probabilistic machines
largely affect the computational power of the machines, and thus its probabilistic
behaviors significantly differ from deterministic behaviors.

The usefulness of probabilistic algorithms motivates us to take a proba-
bilistic approach toward an extension of Hibbard’s original model of k-limited
automata. This paper in fact introduces k-limited probabilistic automata (or k-
lpa’s) and their variants, including one-sided-error and bounded-error variants,
and to explore their fundamental properties to obtain strengths and weaknesses
of families of languages recognized by those machine models.

Behavioral Strengths and Weaknesses of Various Models 521

1.2 Main Contributions

Our first goal is to provide in the field of probabilistic computation a complete
characterization of finite and pushdown automata in terms of limited automata.
All probabilistic machines are assumed to run in expected polynomial time.

For any error bound ε ∈ [0, 1/2), the notations 1PPDAε and 2PFAε refer
to the families of all languages recognized by ε-error 1ppda’s and ε-error 2pfa’s,
respectively. As a restriction of 2PFAε, 2RFAε denotes the family of all lan-
guages recognized by 2pfa’s with one-sided error probability at most ε. Simi-
larly, we define 1RPDAε as the one-sided-error variant of 1PPDAε. In addition,
we often use more familiar notation of PCFL, BPCFL, and RCFL respectively
for 1PPDAub,

⋃
0≤ε<1/2 1PPDAε, and

⋃
0≤ε<1 1PPDAε, while CFL denotes the

family of context-free languages. Since {anbncn | n ≥ 0} is in BPCFL [5],
BPCFL � CFL follows, further leading to PCFL �= CFL.

For limited automata, k-LPAε with an index k ≥ 1 refers to the fam-
ily of all languages recognized by k-lpa’s with error probability at most ε.
Using bounded-error k-lpa’s, we denote by k-LBPA the union

⋃
ε∈[0,1/2) k-LPAε.

In the unbounded-error case, we write k-LPA (or k-LPAub for clarity). Sim-
ilarly, k-LRAε is characterized by one-sided ε-error k-lpa’s. Let k-LRA =⋃

ε∈[0,1) k-LRA.
Using k-lda’s and k-lna’s, we define k-LDA and k-LNA, respectively.

Pighizzini and Pisoni [11] demonstrated that 2-LDA coincides with DCFL, which
is the deterministic variant of CFL. Hibbard [3] proved that k-LNA = CFL for
any k ≥ 2. It is also possible to show that PCFL ⊆ 2-LPA and BPCFL ⊆
2-LBPA; however, the opposite inclusions are not known to hold. Therefore, our
purpose of exact characterizations of PCFL and BPCFL requires a specific prop-
erty of k-lpa’s, called blank skipping, for which a k-lpa writes only a unique blank
symbol, say, B during the kth visit and it makes only the same deterministic
moves while reading B in such a way that it neither changes its inner state nor
changes the head direction (either to the right or to the left); in other words,
it behaves exactly in the same way while reading consecutive blank symbols.
This property plays an essential role in simulating various pushdown automata
by limited automata. To emphasize the use of the blank skipping property, we
append the prefix “bs-”, as in bs-2-LPAε. We then obtain the following charac-
terizations.

Theorem 1. Let ε ∈ [0, 1/2) be any error bound.

1. 2PFAε = 1-LPAε and 2PFAub = 1-LPAub.
2. 1PPDAε = bs-2-LPAε, 1RPDAε = bs-2-LRAε, and PCFL = bs-2-LPAub.

Theorem 1(2), in particular, follows from the fact shown in Sect. 3.2 that
1ppda’s can be converted into their “ideal shapes.”

In the case of k-lda’s, as shown in Proposition 2, we can transform limited
automata into their blank skipping form and this is, in fact, a main reason that
2-LDA equals DCFL (due to Theorem 1(2) with setting ε = 0).

Proposition 2. For each index k ≥ 2, k-LDA = bs-k-LDA.

522 T. Yamakami

For other limited automata, it is not yet clear that, for example, k-LPA =
bs-k-LPA.

The second goal of this paper is to argue on various separations of the
aforementioned language families. Earlier, Hibbard [3] devised an example lan-
guage that can separate (k + 1)-LDA from k-LDA for each index k ≥ 2.
In the case of k = 2, a much simpler example language was given in [11]:
L = {anbnc, anb2nd | n ≥ 0}, which is in 3-LDA but not in 2-LDA.

Proposition 3. For any k ≥ 2, k-LDA � k-LRA � k-LBPA ⊆ k-LPA.

Unfortunately, it is unknown whether k-LBPA �= (k+1)-LBPA for each index
k ≥ 2. Proposition 3 will be shown by exploring basic closure properties of target
language families. In Sect. 4.4, we will explore these properties in depth.

The language family 2-LRA turns out to be relatively large since it contains
languages not recognized by any k-lda for every fixed index k ≥ 2.

Theorem 4. For any index k ≥ 2, 2-LRA � k-LDA.

Let ω-LDA stand for
⋃

k≥1 k-LDA. Notice that Theorem 4 is not strong
enough to yield the separation of 2-LRA � ω-LDA. We also do not know whether
or not 3-LDA � 2-LRA and 3-LRA � 2-LBPA.

We seek a refinement of CFL using unambiguous computation (i.e., nonde-
terministic computation with at most one accepting path). Let us define UCFL,
from CFL, by restricting 1npda’s to have unambiguous computation (see [15]).

Theorem 5. ω-LDA ⊆ UCFL � CFL.

To show Theorem 5, we need to (1) introduce a new model of k-limited unam-
biguous automata (or k-lua’s, for short) and its corresponding language family
k-LUA, (2) show that k-LUA = bs-k-LUA by a similar argument used for k-LDA,
and (3) prove that k-LUA = (k + 1)-LUA for each index k ≥ 1 by employing
a similar argument for k-LNA. Item (3) then yields a conclusion that ω-LUA
(=

⋃
k≥1 k-LUA) equals 2-LUA. Since k-LDA ⊆ k-LUA, we immediately obtain

ω-LDA ⊆ 2-LUA = UCFL. This obviously implies Theorem5. Due to page limit,
we omit the details of the above proof.

Wang [13] showed that DCFL contains all languages recognized with
bounded-error probability by 2pfa’s having rational transition probabilities. Let
k-LBPA(rat) denote the subclass of k-LBPA defined by k-lpa’s using only ratio-
nal transition probabilities. Let k-LRA<1/2 =

⋃
ε∈[0,1/2) k-LRAε. Theorem 1(1)

thus implies the following.

Corollary 6. 1-LBPA(rat) ⊆ DCFL ⊆ 2-LRA<1/2.

2 Limited Automata

Let us formally introduce various computational models of limited automata, in
which we can rewrite the content of each tape cell only during the first k scans
or visits of the cell.

Behavioral Strengths and Weaknesses of Various Models 523

Let N be the set of all non-negative integers and set N+ = N − {0}. We
denote by [m,n]Z the set {m,m + 1,m + 2, . . . , n} for any two integers m and
n with m ≤ n. In addition, we abbreviate as [m] the integer interval [1,m]Z for
any integer m ≥ 1.

2.1 Definitions of k-lpa’s with the k-Limitedness Requirement

A k-limited probabilistic automaton (or a k-lpa, for short) M is formally defined
as a tuple (Q,Σ, {|c, $}, {Γi}i∈[k], δ, q0, Qacc, Qrej), which accesses only tape area
in between two endmarkers (those endmarkers can be accessible but not change-
able), where Q is a finite set of (inner) states, Qacc (⊆ Q) is a set of accepting
states, Qrej (⊆ Q) is a set of rejecting states, Σ is an input alphabet, {Γi}i∈[k] is
a collection of mutually disjoint finite sets of tape symbols, q0 is an initial state in
Q, and δ is a probabilistic transition function from (Q−Qhalt)×Γ ×Q×Γ ×D
to the real unit interval [0, 1] with D = {−1,+1}, Qhalt = Qacc ∪ Qrej , and
Γ =

⋃k
i=0 Γi for Γ0 = Σ and |c, $ ∈ Γk. We implicitly assume that Qacc∩Qrej = ∅.

The k-lpa has a rewritable tape, on which an input string is initially placed, sur-
rounded by two endmarkers |c (left endmarker) and $ (right endmarker). In our
formulation of k-lpa, the tape head always moves either to the right or to the
left without stopping still. Along each computation path, M probabilistically
chooses one of all possible transitions given by δ.

Purely for clarity reason, we express δ(q, σ, p, τ, d) as δ(q, σ | p, τ, d). Each
value δ(q, σ | p, τ, d) indicates the probability that, when M scans σ on the tape
in inner state q, M changes its inner state to p, overwrites τ onto σ, and moves
its tape head in direction d. We set δ[q, σ] =

∑
(p,τ,d)∈Q×Γ×D δ(q, σ | p, τ, d).

The function δ must satisfy δ[q, σ] = 1 for every pair (q, σ) ∈ Q × Γ .
The k-lpa M must satisfy the following k-limitedness requirement : during

the first k scans of each tape cell, at the ith scan with 0 ≤ i < k, if M reads the
content of the cell containing a symbol in Γi, then M rewrites it to another sym-
bol in Γi+1. After the the kth scan, the cell becomes unchangeable (or frozen);
that is, M still reads a symbol in the cell but M no longer alters the symbol.
For the above rule, there is one exception: whenever the tape head makes a turn
(either from the left to the right or from the right to the left) at any tape cell, we
count this move as “double scans” or “double visits.” To make the endmarkers
special, we assume that no symbol in

⋃k−1
i= Γi can be replaced by any endmarker.

This k-limitedness requirement is formally stated as follows: for any transition
δ(q, σ | p, τ, d) �= 0 with p, q ∈ Q, σ ∈ Γi, τ ∈ Γj , and d ∈ {+1,−1}, (1) if i = k,
then σ = τ and j = i, (2) if i < k and i is even, then j = i + 2(1−d)/2, and (3) if
i < k and i is odd, then j = i + 2(1+d)/2.

The probability of each computation path is determined by the multiplication
of all chosen transition probabilities along the path. The acceptance probability
of M on input x is the sum of all probabilities of accepting computation paths
of M starting with the input x. We express by pM,acc(x) the total acceptance
probability of M on x. Similarly, we define pM,rej(x) to be the rejection probabil-
ity of M on x. Given a k-lpa M , we say that M accepts x if pM,acc(x) > 1/2 and

524 T. Yamakami

rejects x if pM,rej(x) ≥ 1/2. The notation L(M) stands for the set of all strings
x accepted by M . Given a language L, we say that M recognizes L exactly when
L = L(M). We further say that M makes bounded error if there exists a con-
stant ε ∈ [0, 1/2) (called an error bound) such that, for every input x, either
pM,acc(x) ≥ 1 − ε or pM,rej(x) ≥ 1 − ε. With or without this condition, M is
said to make unbounded error. For a language L, the error probability of M on
x for L is the probability that M ’s outcome is different from L.

Generally, a k-lpa may produce an extremely long computation path or even
an infinite computation path. Following an early discussion in Sect. 1.1 on the
expected runtime of probabilistic machines, it is desirable to restrict our atten-
tion to k-lpa’s whose computation paths have a polynomial length on average;
that is, there is a polynomial p for which the expected length of all terminat-
ing computation paths on input x is bounded from above by p(|x|). In what
follows, we implicitly assume that all k-lpa’s should satisfy this expected poly-
nomial termination requirement. Given an input x, we say that M accepts (resp.,
rejects) x with probability p if the total probability of accepting (resp., rejecting)
computation paths is exactly p.

Let us recall the language families introduced in Sect. 1.2, associated with
limited automata. Among these language families, for each index k ≥ 2, it follows
from the above definitions and by [3] that k-LDA ⊆ k-LRAε ⊆ 2-LNA = CFL
and k-LBPAε′ ⊆ k-LPAε′ for any constants ε ∈ [0, 1) and ε′ ∈ [0, 1/2). Moreover,
by amplifying the success probability of k-lra’s, we easily obtain the inclusion:
k-LRA ⊆ k-LBPA for every index k ≥ 1.

3 One-Way Pushdown Automata

We will formally describe various one-way pushdown automata.

3.1 One-Way Probabilistic Pushdown Automata

One-way deterministic and nondeterministic pushdown automata (abbreviated
as 1dpda’s and 1npda’s, respectively) can be viewed as special cases of the fol-
lowing one-way probabilistic pushdown automata (or 1ppda’s, for short).

Formally, a 1ppda M is a tuple (Q,Σ, {|c, $}, Γ,ΘΓ , δ, q0, Z0, Qacc, Qrej), in
which Q is a finite set of (inner) states, Σ is an input alphabet, Γ is a stack
alphabet, ΘΓ is a finite subset of Γ ∗ with λ ∈ ΘΓ , δ is a probabilistic transition
function (with Σ̌ = Σ ∪ {λ, |c, $}) from (Q − Qhalt) × Σ̌ × Γ × Q × ΘΓ to [0, 1],
q0 (∈ Q) is an initial state, Z0 (∈ Γ) is a bottom marker, Qacc (⊆ Q) is a set
of accepting states, and Qrej (⊆ Q) is a set of rejecting states, where λ is the
empty string and Qhalt = Qacc ∪ Qrej .

For clarity reason, we express δ(q, σ, a, p, u) as δ(q, σ, a | p, u). Let δ[q, σ, a] =∑
(p,u)∈Q×ΘΓ

δ(q, σ, a | p, u) with σ ∈ Σ̌. When σ = λ, we call its transition a
λ-move (or a λ-transition) and the tape head must stay still. At any point, M can
probabilistically select either a λ-move or a non-λ-move. This is formally stated
as δ[q, σ, a]+δ[q, λ, a] = 1 for any given tuple (q, σ, a) ∈ (Q−Qhalt)×(Σ ∪ {|c, $})×

Behavioral Strengths and Weaknesses of Various Models 525

Γ . In a way similar to k-lpa’s, we can define the notions of unbounded-error,
bounded-error, acceptance/rejection probability, etc. We require every 1ppda
to run in expected polynomial time. Two 1ppda’s M1 and M2 are (recognition)
equivalent if L(M1) = L(M2). Let us recall the language families described in
Sect. 1.2. It is well-known that DCFL ⊆ BPCFL ⊆ PCFL.

For two language families F and G, the notation F ∨G (resp., F ∧G) denotes
the 2-disjunctive closure {A ∪ B | A ∈ F , B ∈ G} (resp., the 2-conjunctive
closure {A ∩ B | A ∈ F , B ∈ G}). For any index d ∈ N+, define F(1) = F and
F(d + 1) = F ∧ F(d). Notice that CFL(k) �= CFL(k + 1) for any k ∈ N+ [8].

3.2 An Ideal Shape of 1ppda’s

We want to show how to convert any 1ppda to a “pop-controlled form” (called
an ideal shape), in which the pop operations always take place by first reading
an input symbol σ and then making a series (one or more) of the pop operations
without reading any further input symbol. In other words, a 1ppda in an ideal
shape is restricted to take only the following transitions. Let Γ (−) = Γ − {Z0}.
(1) Scanning σ ∈ Σ, preserve the topmost stack symbol (called a stationary
operation). (2) Scanning σ ∈ Σ, push a new symbol u (∈ Γ (−)) without changing
any other symbol in the stack. (3) Scanning σ ∈ Σ, pop the topmost stack
symbol. (4) Without scanning an input symbol (i.e., λ-move), pop the topmost
stack symbol. (5) The stack operations (4) comes only after either (3) or (4).

Lemma 7 states that any 1ppda can be converted into its “equivalent” 1ppda
in an ideal shape. We say that two 1ppda’s are error-equivalent if they are
recognition equivalent and their error probabilities coincide on all inputs. The
push size of a 1ppda is the maximum length of any string pushed into a stack
by any single move.

Lemma 7 (Ideal Shape Lemma for 1ppda’s). Let n ∈ N+. Any n-state
1ppda M with stack alphabet size m and push size e can be converted into another
error-equivalent 1ppda N in an ideal shape with O(en2m2(2m)2enm) states and
stack alphabet size O(enm(2m)2enm). This is true for the model with no end-
marker.

The proof of this lemma is lengthy, consisting of a series of transformations
of automata, and is proven by utilizing, in part, ideas of Hopcroft and Ullman
[4, Chap. 10] and of Pighizzini and Pisoni [11, Sect. 5].

The ideal shape lemma is useful for simplifying certain proofs. In what fol-
lows, we give one such example. Given a language A, the notation AR denotes
the reverse language {xR | x ∈ A}. For a family F of languages, FR expresses
the collection of AR for any language A in F .

Lemma 8. PCFL is closed under reversal; that is, PCFLR = PCFL.

4 Behaviors of Limited Automata

In the subsequent subsections, we intend to verify our main results stated in
Sect. 1.2 by making structural analyses on the behaviors of k-lpa’s.

526 T. Yamakami

4.1 Blank Skipping Property, Theorem1, and Proposition 2

We will show the proofs of Theorem 1 and Proposition 2. For the former proof, we
want to restrict the behaviors of k-lpa’s so that we can control their computation.
Firstly, we give the formal description of the notion of blank skipping property.
A k-lpa is blank skipping if (1) Γk = {|c, $, B}, where B is a unique blank symbol,
and (2) there are two disjoint subsets Q+1, Q−1 of Q for which δ(q,B | q,B, d) =
1 for any direction d ∈ {±1} and any state q ∈ Qd. In other words, when a k-lpa
passes a cell for the kth time, it must make the cell blank (i.e., the cell has B)
and the cell becomes frozen afterward.

Let us begin with the proof of Theorem1.

Proof Sketch of Theorem 1. (1) It is rather easy to simulate a 2pfa by a 1-lpa
that behaves like the 2pfa but changes each input symbol σ to its corresponding
symbol σ′. On the contrary, we want to simulate a 1-lpa M by the following 2pfa
N . A key idea is that it is possible to maintain and update a list of state pairs,
each (p, q) of which indicates that, if M ’s tape head enters the tape area left of
the currently scanning cell from the right in state p, then M eventually leaves
the area to the right in state q with positive probability.

(2) This directly comes from Lemmas 9 and 10. �
In what follows, we describe Lemmas 9 and 10 and present their proofs.

Lemma 9. Let n ≥ 2 and l ≥ 1. Every n-state blank-skipping 2-lpa working on
an l-letter alphabet can be converted into a recognition-equivalent 1ppda with the
same error probability and of states at most 2n.

Proof Sketch. Given a blank-skipping 2-lpa M , we simulate it as follows. On
input x, when M reads a new input symbol σ by changing it to τ , we read σ
and push τ into a stack. In contrast, when M moves its tape head leftwards by
skipping B to the first non-blank symbol τ and changes it to B, we simply pop
a topmost stack symbol. This simulation can be done by a certain 1ppda. �

The ideal shape form of 1ppda’s is a key to the next lemma.

Lemma 10. Let n, l ∈ N+. Let L be a language over an alphabet Σ of size l
recognized by an n-state 1ppda M in an ideal shape with error probability at most
ε. There is a blank-skipping 2-lpa N that has O(nl) states and recognizes L with
the same error probability.

Proof Sketch. Let M be a 1ppda and assume that M is in an ideal shape. We
simulate M by an appropriate 2-lpa in the following way. Let x be any input
string. Assume that M reads a new input symbol σ. If M pushes τ into a stack,
then we read σ and change it into τ . If M pops a topmost stack symbol, then
we move a tape head leftwards to read the first non-blank symbol τ and then
replace it with B. On the contrary, assume that M makes a λ-move. Since M ’s
move must be a pop operation, we move the tape head leftwards and replace the
first non-blank symbol by B. �

Behavioral Strengths and Weaknesses of Various Models 527

It is possible to convert any k-lda into its equivalent blank-skipping k-lda.
The following is a key lemma, from which Proposition 2 follows immediately.
Our proof partly takes an idea from [11].

Lemma 11. Let k be any integer with k ≥ 2. Given any k-lda M , there exists
another k-lda N such that (1) N is blank-skipping and (2) N agrees with M on
all inputs.

4.2 Properties of ω-LPFA

As done in [14–16], we equip each 1nfa with a write-only output tape.2 Let
1NFAMV denote the class of all multi-valued partial functions from Σ∗

1 to
Σ∗

2 whose output values are produced on write-only tapes along only accept-
ing computation paths of 1nfa’s, where Σ1 and Σ2 are arbitrary alphabets. We
further write 1NFAMVt for the collection of all total functions in 1NFAMV.
Let k ≥ 2. For any f : Σ∗

1 → Σ∗
2 in 1NFAMVt witnessed by a 1nfa, say,

Mf with an output tape and for any k-lpa M over Σ2, let Lf,M = {x ∈ Σ∗
1 |∑

y∈Σ∗
2

|APf (x|y)|ProbM [M(y) = 1]/|APf (x)| > 1/2}, where APf (x|y) is the set
of all accepting computation paths of Mf producing y on input x and APf (x) =⋃

y∈Σ∗
2

APf (x|y). By abusing the notation, we write k-LPA◦1NFAMVt to denote
the set of all such Lf,M ’s.

We argue that k-LPA is “invariant” with an application of 1NFAMVt-
functions in the following sense.

Lemma 12. For any index k ≥ 2, k-LPA ◦ 1NFAMVt = k-LPA.

Proof Sketch. Let k ≥ 2. Since it is obvious that k-LPA ⊆ k-LPA◦1NFAMVt,
we want to show the opposite inclusion. Take a function f ∈ 1NFAMVt and a
k-lpa M , and consider Lf,M . There is a 1nfa Mf computing f . Consider the
following machine N . On input x, run Mf and, whenever Mf produces one
output symbol σ, run M to process σ. Along each computation path of Mf , if
Mf enters an accepting state, then N does the same, otherwise, N enters both
accepting and rejecting states with equiprobability. Clearly, N is also a k-lpa
and it recognizes L with unbounded-error probability. �

Consider any k-lpa M used in the definition of k-LPA◦1NFAMVt. If we feed
such an M with the reverses xR of inputs x, then we obtain k-LPAR◦1NFAMVt.
We show the following relationship between (k + 1)-LPA and k-LPAR.

Lemma 13. For any k ≥ 2, k-LPAR ◦ 1NFAMVt ⊆ (k + 1)-LPA.

Proof Sketch. Fix k ≥ 2.
We show the inclusion of k-LPAR ◦ 1NFAMVt ⊆ (k + 1)-LPA. Let M be a

k-lpa and let f be a function in 1NFAMVt witnessed by a certain 1nfa, say, Mf .
Define Lf,MR = {x ∈ Σ∗ | ∑

y |APf (x|y)|ProbM [M(yR) = 1]/|APf (x)| > 1/2}.

2 An output tape is write only if its cells are initially blank and its tape head moves
to the right whenever it writes a non-blank symbol.

528 T. Yamakami

Our goal is to verify that Lf,MR ∈ (k + 1)-LPA. Consider the following machine
N . On input x, run Mf on x, change x into y in f(x) along all computation paths
in ACf (x|y), and run M on |cy$ starting at $ and ending at |c. Since M is k-limited,
N must be (k + 1)-limited. We thus conclude that Lf,MR ∈ (k + 1)-LPA. �

4.3 Power of Probabilistic Computation and Theorem4

We will give the proof of Theorem 4. The proof requires, for each index k ≥ 2, a
certain language, which is in (k + 1)-LDA but outside of k-LDA. The example
languages shown below are slight modifications of the ones given by Hibbard [3].

(1) When k = 3, the language L3 is composed of all strings of the forms
an2bn2cp2#a and an2bm2cm2#b for all integers n2,m2, p2 ≥ 0.

(2) Let k ≥ 4 be any index and assume that Lk−1 is already defined.
For each index i ∈ [2, k − 1]Z, we succinctly write wi in place of anibmicpi

for certain numbers ni,mi, pi ∈ N. The desired language Lk is composed of
all strings w of the form w2#w4# · · · #wk−1# · · · #w5#w3#x with x ∈ {a, b}
satisfying Conditions (i)–(iv) given below. For each index i ∈ [3, k − 2]Z, we
define w̃

(k)
i = wi−1 if i is even, and wi+1 otherwise. Moreover, let w̃

(k)
k−1 =

wk−1 if k is even, and wk−2 otherwise. Finally, let w̃(−) express the string
w̃

(k)
4 #w̃

(k)
6 # · · · #w̃

(k)
k−1# · · · #w̃

(k)
5 #w̃

(k)
3 . (i) If x = a and n2 = m2, then

w̃(−)#a ∈ Lk−1. (ii) If x = a and n2 < m2, then w̃(−)#b ∈ Lk−1. (iii) If
x = b and m2 = p2, then w̃(−)#a ∈ Lk−1. (iv) If x = b and m2 < p2, then
w̃(−)#b ∈ Lk−1.

An argument similar to [3, Sect. 4] verifies that, for each index k ≥ 2, the
language Lk+1 is included in (k + 1)-LDA but excluded from k-LDA.

Fix k ≥ 2. For each symbol x ∈ {a, b}, let Lx = {w#x ∈ Lk+1 | w =
w2#w4# · · · #wk# · · · #w5#w3}. Note that Lk+1 = La ∪ Lb. Since La, Lb ∈
k-LDA, it follows that Lk+1 ∈ k-LDA∨k-LDA. Therefore, we obtain the follow-
ing corollary.

Corollary 14. For every k ≥ 2, k-LDA ∨ k-LDA � k-LDA.

Lemma 15. For any k ≥ 3, Lk ∈ 2-LRA(1−2−2k+5).

Proof. We first show that L3 ∈ 2-LRA1/2. Let L′
a = {anbncp#a | n, p ≥ 0} and

L′
b = {anbmcm#b | n,m ≥ 0}. Clearly, L3 = L′

a∪L′
b holds. Since L′

a, L′
b ∈ DCFL,

for each symbol x ∈ {a, b}, we take a 2-lda Mx that recognizes L′
x. Consider the

following 2-lra N . Let w be any input. Initially, choose an index x ∈ {a, b} with
equiprobability and then run Mx. If w ∈ L3, then N accepts w with probability
1/2; otherwise, N rejects w with probability 1.

By induction hypothesis, we assume that Lk ∈ 2-LRA(1−2−2k+5). Let us con-
sider Lk+1. Using the aforementioned notation, define La= = {w#a | n2 =
m2, w̃

(−)#a ∈ Lk} and La< = {w#a | n2 < m2, w̃
(−)#a ∈ Lk}, where w is

of the form w2#w4# · · · #wk# · · · #w5#w3#x for a certain symbol x ∈ {a, b}.
Similarly, we define Lb= and Lb<. Note that Lk+1 = La=∪La< ∪Lb=∪Lb<. It is
not difficult to show that La=, La<, Lb=, Lb< all belong to 2-LRA(1−2−2k+5) since

Behavioral Strengths and Weaknesses of Various Models 529

Lk ∈ 2-LRA(1−2−2k+5). Consider the following machine N . On the input of the
form w#x, choose one of the pairs {a =, a <, b =, b <} with equal probability.
Suppose that we have chosen a =. As an example, let Ma= be a 2-lra recognizing
the language La=. In this case, run Ma= on w#x. When w#a ∈ Lk+1, N accepts
the input with probability 1

4 ×2−2k+5, which equals 2−2(k+1)+5. The other cases
are similarly treated. �

Lemma 15 implies that Lk+1 ∈ 2-LRA. Since Lk+1 /∈ k-LDA, we instantly
conclude that 2-LRA � k-LDA. This completes the proof of Theorem 4.

4.4 Closure Properties of Probabilistic Classes and Proposition 3

We will explore basic closure properties of k-LRA, k-LBPA, and k-LDA. By
utilizing some of those properties, we will prove Proposition 3 in the end.

Lemma 16. For any k ≥ 2, k-LRA is closed under finite union but not under
finite intersection.

Lemma 17. For any k ≥ 2, k-LBPA is closed under complementation but
k-LRA is not.

Proof. It is not difficult to show that k-LBPA = co-k-LBPA for all indices
k ≥ 2. By Lemma 16, k-LRA is closed under finite union. If k-LRA = co-k-LRA,
then k-LRA must be closed under finite intersection. This contradicts the second
part of Lemma 16. �

Recall that 2-LDA = DCFL [11]. Although k-LDA �= DCFL for all k ≥ 3,
k-LDA still satisfies many non-closure properties as DCFL does.

Lemma 18. For any k ≥ 2, k-LDA is not closed under reversal, concatenation,
λ-free homomorphism, or Kleene star.

Next, we look at the closure properties of k-LBPA.

Lemma 19. For each operator � ∈ {∧,∨}, k-LDA � k-LDA ⊆ k-LBPA; thus,
k-LDA(2) ⊆ k-LBPA.

Proof. It suffices to consider the case of � = ∨ because k-LBPA is closed under
complementation. Let M1,M2 be two k-lpa’s working over the same alphabet
Σ. We design a new k-lpa N to work as follows. On input x, choose an index
i ∈ {1, 2} uniformly at random, run Mi on x. If Mi enters an accepting state,
accept x with probability 1; otherwise, accept x with probability 1/3 and reject
with probability 2/3. If x ∈ L(M1)∪L(M2), then the acceptance probability of N
is at least 2/3. In contrast, if x /∈ L(M1) ∪ L(M2), then the rejection probability
is at least 2/3. Therefore, L(M1) ∪ L(M2) is in k-LBPA. �

It is, however, unknown that k-LDA(d) ⊆ k-LBPA for every index d ≥ 3.

Proof of Proposition 3. All inclusions obviously hold. We want to show the
remaining two separations. Note that k-LDA = co-k-LDA for any k ≥ 1.
By Lemma 16, it follows that k-LDA �= k-LRA. Similarly, from k-LBPA =
co-k-LBPA, we obtain k-LRA �= k-LBPA. �

530 T. Yamakami

References

1. Dwork, C., Stockmeyer, L.: Finite verifiers I: the power of interaction. J. ACM 39,
800–828 (1992)

2. Freivalds, R.: Probabilistic two-way machines. In: Gruska, J., Chytil, M. (eds.)
MFCS 1981. LNCS, vol. 118, pp. 33–45. Springer, Heidelberg (1981). https://doi.
org/10.1007/3-540-10856-4 72

3. Hibbard, T.N.: A generalization of context-free determinism. Inf. Control 11, 196–
238 (1967)

4. Hopcroft, J.E., Ullman, J.D.: Introduction to Automata Theory, Languages, and
Computation. Addison-Wesley, Boston (1979)

5. Hromkovič, J., Schnitger, G.: On probabilistic pushdown automata. Inf. Comput.
208, 982–995 (2010)

6. Kaņeps, J., Freivalds, R.: Minimal nontrivial space complexity of probabilistic one-
way turing machines. In: Rovan, B. (ed.) MFCS 1990. LNCS, vol. 452, pp. 355–361.
Springer, Heidelberg (1990). https://doi.org/10.1007/BFb0029629

7. Kaņeps, J., Geidmanis, D., Freivalds, R.: Tally languages accepted by Monte Carlo
pushdown automata. In: Rolim, J. (ed.) RANDOM 1997. LNCS, vol. 1269, pp.
187–195. Springer, Heidelberg (1997). https://doi.org/10.1007/3-540-63248-4 16

8. Liu, L.Y., Weiner, P.: An infinite hierarchy of intersections of context-free lan-
guages. Math. Syst. Theory 7, 185–192 (1973)

9. Macarie, I.I., Ogihara, M.: Properties of probabilistic pushdown automata. Theor.
Comput. Sci. 207, 117–130 (1998)

10. Pighizzini, G., Pisoni, A.: Limited automata and regular languages. Int. J. Found.
Comput. Sci. 25, 897–916 (2014)

11. Pighizzini, G., Pisoni, A.: Limited automata and context-free languages. Fund.
Inform. 136, 157–176 (2015)

12. Wagner, K., Wechsung, G.: Computational Complexity. D. Reidel Publishing, Dor-
drecht (1986)

13. Wang, J.: A note on two-way probabilistic automata. Inf. Process. Lett. 43, 321–
326 (1992)

14. Yamakami, T.: Oracle pushdown automata, nondeterministic reducibilities, and
the hierarchy over the family of context-free languages. In: Geffert, V., Preneel,
B., Rovan, B., Štuller, J., Tjoa, A.M. (eds.) SOFSEM 2014. LNCS, vol. 8327, pp.
514–525. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-04298-5 45

15. Yamakami, T.: Structural complexity of multi-valued partial functions computed
by nondeterministic pushdown automata. In: Proceedings of ICTCS 2014, CEUR
Workshop Proceedings, vol. 1231, pp. 225–236 (2014)

16. Yamakami, T.: Not all multi-valued partial CFL functions are refined by single-
valued functions (extended abstract). In: Diaz, J., Lanese, I., Sangiorgi, D. (eds.)
TCS 2014. LNCS, vol. 8705, pp. 136–150. Springer, Heidelberg (2014). https://
doi.org/10.1007/978-3-662-44602-7 12

17. Yamakami, T.: One-way bounded-error probabilistic pushdown automata and kol-
mogorov complexity (preliminary report). In: Charlier, É., Leroy, J., Rigo, M.
(eds.) DLT 2017. LNCS, vol. 10396, pp. 353–364. Springer, Cham (2017). https://
doi.org/10.1007/978-3-319-62809-7 27

https://doi.org/10.1007/3-540-10856-4_72
https://doi.org/10.1007/3-540-10856-4_72
https://doi.org/10.1007/BFb0029629
https://doi.org/10.1007/3-540-63248-4_16
https://doi.org/10.1007/978-3-319-04298-5_45
https://doi.org/10.1007/978-3-662-44602-7_12
https://doi.org/10.1007/978-3-662-44602-7_12
https://doi.org/10.1007/978-3-319-62809-7_27
https://doi.org/10.1007/978-3-319-62809-7_27

Locality Sensitive Hashing Schemes,
Similarities, and Distortion

(Invited Talk)

Flavio Chierichetti(&)

Dipartimento di Informatica, Sapienza University of Rome, Rome, Italy
flavio@di.uniroma1.it

Abstract. Locality sensitive hashing (LSH) is a key algorithmic tool that lies at
the heart of many information retrieval and machine learning systems [1, 2, 8].
LSH schemes are used to sketch large objects (e.g., Web pages, fields of flowers,
or – more generally – sets and vectors) into fingerprints of few bits each; the
fingerprints are then used to quickly, and approximately, reconstruct some
similarity relation between the objects.
A LSH scheme for a similarity (or, analogously, for a distance) can

significantly improve the computational cost of many algorithmic primitives
(e.g., nearest neighbor search, and clustering). For this reason, in the last two
decades, researchers have tried to understand which similarities admit efficient
LSH schemes: such schemes were obtained for many similarities [1–3, 7–9],
while the non-existence of LSH schemes was proved for a number of other
similarities [3].
In our talk, we will introduce the class of LSH-preserving transformations [4]

(functions that, when applied to a similarity that admits a LSH scheme, return a
similarity that also admits such a scheme). We will give a characterization of this
class of functions: they are precisely the probability generating functions, up to
scaling. We will then show how this characterization can be used to construct
LSH schemes for a number of well-known similarities.
We will then discuss a notion of similarity distortion [6], in order to deal with

similarities which are known to not admit LSH schemes — this notion aims to
determine the minimum distortions that these similarities have to be subject of,
before starting to admit a LSH scheme. We will introduce a number of general
theoretical tools that can be used to determine the optimal distortions of some
important classes of similarities.
Finally, we will consider the computational problem of checking whether a

similarity admits a LSH scheme [5], showing that, unfortunately, this problem is
computationally hard in a very strong sense.

Supported in part by the ERC Starting Grant DMAP 680153 and by a Google Focused Research
Award.

© Springer Nature Switzerland AG 2019
B. Catania et al. (Eds.): SOFSEM 2019, LNCS 11376, pp. 531–532, 2019.
https://doi.org/10.1007/978-3-030-10801-4

https://doi.org/10.<HypSlash>1007/�978-�3-�030-�10801-�4</HypSlash>

References

1. Andoni, A., Indyk, P.: Near-optimal hashing algorithms for approximate nearest neighbor in
high dimensions. In: FOCS, pp. 459–468 (2006)

2. Broder, A.Z.: On the resemblance and containment of documents. In: Proceedings of the
SEQUENCES, pp. 21–29 (1997)

3. Charikar, M.: Similarity estimation techniques from rounding algorithms. In: Proceedings of
the STOC, pp. 380–388 (2002)

4. Chierichetti, F., Kumar, R. LSH-preserving functions and their applications. J. ACM 62(5),
33:1–33:25 (2015)

5. Chierichetti, F., Kumar, R., Mahdian, M.: The complexity of LSH feasibility. Theor.
Comput. Sci. 530, 89–101 (2014)

6. Chierichetti, F., Kumar, R., Panconesi, A., Terolli, E.: The distortion of locality sensitive
hashing. In: ITCS (2017)

7. Christiani, T., Pagh, R.: Set similarity search beyond minhash. In: Proceedings of the 49th
Annual ACM SIGACT Symposium on Theory of Computing, STOC 2017, pp. 1094–1107,
New York, NY, USA. ACM (2017)

8. Gionis, A., Indyk, P., Motwani, R., et al.: Similarity search in high dimensions via hashing.
In: VLDB, pp. 518–529 (1999)

9. Indyk, P., Motwani, R.: Approximate nearest neighbors: Towards removing the curse of
dimensionality. In: STOC, pp. 604–613 (1998)

532 F. Chierichetti

Author Index

Aßmann, Uwe 1

Banerjee, Indranil 54
Baste, Julien 67
Bielikova, Maria 435
Bodlaender, Hans L. 81
Bonchi, Francesco 21
Bottesch, Ralph 504

Carosi, Raffaello 94
Chen, Taolue 206
Chierichetti, Flavio 531
Chromý, Miloš 108
Chudá, Daniela 298
Cicalese, Ferdinando 122

D’Emidio, Mattia 136
Das, Shantanu 150, 164
Demeyer, Serge 419
Di Luna, Giuseppe A. 150
Di Stefano, Gabriele 136
Donselaar, Nils 179

Fernau, Henning 192
Fioravanti, Simone 94

Gao, Chong 206
Gasieniec, Leszek A. 150
Giachoudis, Nikos 164
Gözüpek, Didem 67
Grzelak, Dominik 1
Gualà, Luciano 94
Gupta, Manoj 221
Gurski, Frank 234

Hemaspaandra, Lane A. 247

Interian, Ruben 324

Kalinowski, Marcos 324
Kapoutsis, Christos A. 28
Kaufmann, Michael 260
Komusiewicz, Christian 272

Kučera, Petr 108
Kumar, Hitesh 221
Kuppusamy, Lakshmanan 192
Kutrib, Martin 285

Labaj, Martin 298
Lipták, Zsuzsanna 122
Luccio, Flaminia L. 164

Makarov, Vladislav 310
Markou, Euripides 164
Mendoza, Isela 324
Mey, Johannes 1
Misra, Neeldhara 221, 341
Molontay, Roland 354
Monaco, Gianpiero 94
Mousavi, Mohammad Reza 490
Murta, Leonado Gresta Paulino 324

Nagy, Benedek 406
Nahimovs, Nikolajs 368
Narváez, David E. 247
Navarra, Alfredo 136

Okhotin, Alexander 310
Ono, Hirotaka 379
Osula, Dorota 392
Otto, Friedrich 406

Parsai, Ali 419
Pikuliak, Matus 435
Pukhkaiev, Dmytro 1
Püschel, Georg 1

Raman, Indhumathi 192
Rástočný, Karol 298
Raszyk, Martin 447
Rehs, Carolin 234
Richards, Dana 54
Rossi, Massimiliano 122

Schöne, René 1
Shalom, Mordechai 67
Shinkar, Igor 54

Simko, Marian 435
Skorski, Maciej 461
Sommer, Frank 272
Sonar, Chinmay 341
Souza, Uéverton 324
Staron, Miroslaw 39

Theobald, Martin 50
Thilikos, Dimitrios M. 67
Torenvliet, Leen 504

van der Wegen, Marieke 81
van Rooij, Johan M. M. 473

van Rooij, Sebastiaan B. 473
van der Zanden, Tom C. 81
Varga, Kitti 354
Varshosaz, Mahsa 490

Wendlandt, Matthias 285
Werner, Christopher 1
Witteveen, Jouke 504
Wu, Zhilin 206

Yamakami, Tomoyuki 519
Yamanaka, Hisato 379

534 Author Index

	Preface
	Organization
	Contents
	Cross-Layer Adaptation in Multi-layer Autonomic Systems (Invited Talk)
	1 Introduction
	2 State of the Art
	2.1 Multi-layer Autonomic Systems
	2.2 Examples of MuLAS
	2.3 Background in Programming Technology

	3 Consistent Multi-layer Variation of Autonomic Controllers with Cross-Cutting Contexts
	4 Cross-Layer Self-optimization in Multi-layer Autonomic Systems
	5 Energy-Aware Self-optimization in Energy-Proportional Servers
	6 Conclusion
	References

	Distance-Based Community Search (Invited Talk Extended Abstract)
	1 Community Search
	2 The Minimum Wiener Connector
	3 The Minimum Inefficiency Subgraph
	4 Adaptive Community Search in Dynamic Networks
	References

	Minicomplexity
	1 Machines vs. Machines
	2 Problems vs. Problems
	2.1 RETROCOUNT
	2.2 PROJECTION
	2.3 MEMBERSHIP
	2.4 LIST MEMBERSHIP

	3 Modular Witnesses
	References

	Action Research in Software Engineering: Metrics' Research Perspective (Invited Talk)
	1 Introduction – What Action Research Is
	2 The Phases of Action Research Projects
	2.1 Diagnosing
	2.2 Action Planning
	2.3 Action Taking
	2.4 Evaluation
	2.5 Learning

	3 Maximizing Impact – Who Should be a Part of the Action Team
	4 Metrics Action Research
	5 Conclusions: The Future of Action Research
	References

	From Big Data to Big Knowledge
	1 Information Extraction
	2 Probabilistic Databases
	3 Distributed Graph Databases
	References

	Sorting Networks on Restricted Topologies
	1 Introduction
	2 Definitions
	3 Our Results
	4 Routing via Matchings
	4.1 Routing on Subgraphs of G

	5 General Upper Bounds on st(G)
	6 Bounds on Concrete Graph Families
	6.1 The Pyramid Graph

	References

	Minimum Reload Cost Graph Factors
	1 Introduction
	2 Preliminaries
	3 Classical Complexity of r-MRCF
	4 Parameterized Complexity of r-MRCF
	References

	Stable Divisorial Gonality is in NP
	1 Introduction
	2 Preliminaries
	3 A (Partial) Certificate
	4 Correctness
	5 A Bound on Subdivisions
	6 Conclusion
	References

	Coalition Resilient Outcomes in Max k-Cut Games
	1 Introduction
	2 Preliminaries
	3 Non-existence of a Minimal Strong Potential Function
	4 The Existence of a 5-SE in Unweighted Graphs
	5 Local Strong Equilibria
	6 Existence of SE for Special Cases
	7 Conclusions and Future Work
	References

	Phase Transition in Matched Formulas and a Heuristic for Biclique Satisfiability
	1 Introduction
	2 Definitions and Related Results
	2.1 Graph Theory
	2.2 Boolean Formulas
	2.3 Matched Formulas
	2.4 Biclique Satisfiable Formulas
	2.5 Generating Experimental Data

	3 Phase Transition on Matched Formulas
	4 Bounded Biclique Cover Heuristic
	4.1 Description of Heuristic Algorithm
	4.2 Experimental Evaluation of Heuristic Algorithm

	5 Bounded Biclique SAT Encoding
	5.1 Description of SAT Encoding
	5.2 Experimental Evaluation of Heuristic Algorithm
	5.3 Experimental Environment

	6 Conclusion
	References

	On Infinite Prefix Normal Words
	1 Introduction
	2 Basics
	3 A Characterization of Periodic and Aperiodic Prefix Normal Words with Respect to Minimum Density
	4 Sturmian Words and Prefix Normal Words
	4.1 From Flipext to Lazy--Flipext

	5 Prefix Normal Words, Prefix Normal Forms, and Abelian Complexity
	5.1 Balanced and c-Balanced Words
	5.2 Prefix Normal Forms and Abelian Complexity
	5.3 Prefix Normal Forms of Sturmian Words

	6 Prefix Normal Words and Lexicographic Order
	References

	Priority Scheduling in the Bamboo Garden Trimming Problem
	1 Introduction
	2 Notation
	3 Theoretical Results
	3.1 Priority Schedulings
	3.2 ReduceMax Scheduling

	4 Experimental Results
	5 Conclusion
	References

	Patrolling on Dynamic Ring Networks
	1 Introduction
	2 Model
	3 Preliminaries
	4 Patrolling with Local Visibility
	5 Two Agents with Global Visibility
	5.1 UNKNOWN Setting
	5.2 KNOWN Setting

	6 Patrolling with k>2 Agents Having Global Visibility
	6.1 UNKNOWN Setting: Generalising TICK-TOCK for k Agents
	6.2 KNOWN Setting: PLACE-&-SWIPE for k Agents

	7 Conclusion
	References

	Gathering of Robots in a Grid with Mobile Faults
	1 Introduction
	2 Our Model
	3 Agents with Global Visibility
	3.1 Impossibility Result for Two Honest Agents
	3.2 Gathering of Three Honest Agents

	4 Agents with Local Visibility
	5 Conclusions
	References

	Probabilistic Parameterized Polynomial Time
	1 Preliminaries
	2 Error Parameterization
	3 Reductions and Completeness
	4 Application of Results
	5 Closing Remarks
	References

	On Matrix Ins-Del Systems of Small Sum-Norm
	1 Introduction
	2 Preliminaries
	2.1 Matrix Insertion-Deletion Systems
	2.2 Regular Closure of Linear Languages

	3 Computational Completeness Results
	4 Describing the Regular Closure of Linear Languages
	5 Conclusion
	References

	Separation Logic with Linearly Compositional Inductive Predicates and Set Data Constraints
	1 Introduction
	2 Logics for Sets
	3 Linearly Compositional SLID with Set Data Constraints
	4 Satisfiability of SLIDSLC [P]
	5 Transitive Closure of Difference-Bound Set Relations
	6 Satisfiability of RQSPA
	7 Conclusion
	References

	On the Complexity of Optimal Matching Reconfiguration
	1 Introduction
	2 Preliminaries
	3 NP-Hardness of Optimal Reconfiguration
	4 An Exact Algorithm for Optimal Reconfiguration
	5 Concluding Remarks
	References

	Forbidden Directed Minors, Directed Path-Width and Directed Tree-Width of Tree-Like Digraphs
	1 Introduction
	2 Preliminaries
	3 Directed Cactus Forests and Pseudoforests
	4 Directed Graph Minors of Tree-Like Digraphs
	5 Directed Path-Width of Tree-Like Digraphs
	6 Directed Tree-Width of Tree-Like Digraphs
	7 Conclusion and Outlook
	References

	Existence Versus Exploitation: The Opacity of Backdoors and Backbones Under a Weak Assumption
	1 Introduction
	2 Definitions and Notations
	3 Results on Backdoors to CNF Formulas
	4 Results on Backbones
	5 Conclusions
	References

	On Point Set Embeddings for k-Planar Graphs with Few Bends per Edge
	1 Introduction
	2 Preliminaries
	3 1-Plane Graphs
	4 2-Plane Graphs
	5 k-Plane Graphs
	6 Discussions and Conclusions
	References

	Enumerating Connected Induced Subgraphs: Improved Delay and Experimental Comparison
	1 Introduction
	2 Preliminaries and Main Algorithm
	3 Polynomial Delay with Simple
	4 Polynomial Delay with Pivot
	5 An Experimental Comparison
	References

	Multi-stranded String Assembling Systems
	1 Introduction
	2 Preliminaries and Definitions
	3 Single-Stranded SAS
	4 String Assembling Systems with Multiple Strands
	References

	Towards Automatic Comparison of Cloud Service Security Certifications
	Abstract
	1 The Problem Domain
	1.1 Proposed Automatic Comparison
	1.2 Organization of This Paper

	2 Formalizing Certification Schemes Using Ontology
	3 Employing Natural Language Processing
	4 Prototype Implementation and Results
	5 Looking Ahead
	Acknowledgement
	References

	On the Expressive Power of GF(2)-Grammars
	1 Introduction
	2 GF(2)-Grammars
	3 GF(2)-Grammars over the Unary Alphabet
	4 Representability of Subsets of a* b*
	5 A Separating Example and the Hierarchy
	6 Closure Properties
	7 Hardest Language
	8 Conclusion
	References

	An Efficient Algorithm for Combining Verification and Validation Methods
	Abstract
	1 Introduction
	2 Background and Related Work
	2.1 Quality Characteristics
	2.2 V&V Methods
	2.3 Combination of V&V Methods

	3 Modeling the Problem
	4 Parameterized Complexity
	4.1 Fixed-Parameter Tractable (FPT) Approach
	4.2 Scalability of the FPT-Algorithms

	5 FPT–Algorithm to Combine V&V Methods
	5.1 Execution of the Set Cover Algorithm
	5.2 Running Time Analysis

	6 Computational Experiments
	7 Discussion
	8 Concluding Remarks
	Acknowledgment
	References

	Robustness Radius for Chamberlin-Courant on Restricted Domains
	1 Introduction
	2 Preliminaries
	3 XP Algorithms for Robustness Radius
	4 Hardness for -Crossing Profiles
	5 Concluding Remarks and Open Problems
	References

	On the Complexity of Color-Avoiding Site and Bond Percolation
	1 Introduction and Related Works
	2 Modeling Shared Vulnerabilities in Networks
	2.1 Coloring the Edges
	2.2 Coloring the Vertices

	3 Computational Complexity of Finding the Color-Avoiding Components
	4 Conclusion
	References

	Lackadaisical Quantum Walks with Multiple Marked Vertices
	1 Introduction
	2 Quantum Walk on the Two-Dimensional Grid
	2.1 Regular (Non-lackadaisical) Quantum Walk
	2.2 Lackadaisical Quantum Walk

	3 Stationary States of the Lackadaisical Quantum Walk
	4 Optimality of l for Multiple Marked Vertices
	5 Conclusions
	References

	A 116/13-Approximation Algorithm for L(2,1)-Labeling of Unit Disk Graphs
	1 Introduction
	2 Preliminaries
	2.1 Definitions and Notations
	2.2 Unit Disk Graphs (UDG)

	3 Basic Results and an Existing Algorithms
	3.1 Upper and Lower Bounds on L(2, 1)-Labeling Numbers
	3.2 Existing Algorithms and Its Improvement

	4 116/13-Approximation Algorithm
	4.1 Square Division and Basic Labeling
	4.2 Necessary Condition for = 2- 1
	4.3 2-Phase Labeling
	4.4 Overall Algorithm and Approximation Ratio

	References

	Minimizing the Cost of Team Exploration
	1 Introduction
	2 Notation
	3 Rings in the Off-Line Setting
	4 Rings in the On-Line Setting
	5 Tree in the Off-Line Setting
	5.1 The Algorithm
	5.2 Analysis of the Algorithm

	6 Tree in the On-Line Setting
	7 Conclusion
	References

	Two-Head Finite-State Acceptors with Translucent Letters
	1 Introduction
	2 Preliminaries
	3 Two-Head Finite-State Acceptors with Translucent Letters
	4 Linear Context-Free Trace Languages
	5 Further Closure Properties and Decidability Results
	6 Conclusion
	References

	Do Null-Type Mutation Operators Help Prevent Null-Type Faults?
	1 Introduction
	2 Background and Related Work
	3 Experimental Setup
	3.1 Null-Type Mutation Operators
	3.2 Case Study

	4 Results and Discussion
	5 Threats to Validity
	6 Conclusion
	References

	Towards Combining Multitask and Multilingual Learning
	1 Introduction
	2 Related Work
	3 Proposed Method
	3.1 Architecture
	3.2 Training

	4 Experiments and Results
	4.1 Datasets
	4.2 Experiment
	4.3 Sharing the Output Layer

	5 Future Work and Conclusion
	References

	On the Size of Logical Automata
	1 Introduction
	1.1 Logical Automata
	1.2 A Complete Family of Languages
	1.3 Definitions
	1.4 Related Results

	2 Main Results
	2.1 General Approach
	2.2 Lower Bounds
	2.3 Upper Bounds

	A Wrong Proof in Previous Work
	References

	Bayesian Root Cause Analysis by Separable Likelihoods
	1 Introduction
	1.1 Anomaly Detection and Root Cause Analysis
	1.2 Contribution
	1.3 Organization

	2 Separable Posteriors
	2.1 Dirichlet-Multinomial Model
	2.2 BNB Model

	3 Root Cause Analysis of Anomalies
	3.1 Generative Model
	3.2 RCA for Projects
	3.3 RCA for Procedures and Error Messages

	4 Conclusion
	References

	Algorithms and Complexity Results for the Capacitated Vertex Cover Problem
	1 Introduction
	2 Difficulty of the Problem
	3 Treewidth
	4 Exact Exponential Time Algorithms
	4.1 Graphs of Bounded Degree
	4.2 Graphs with Large Matchings
	4.3 Instances with Capacity and Edge Restrictions

	5 Conclusion
	References

	Comparative Expressiveness of Product Line Calculus of Communicating Systems and 1-Selecting Modal Transition Systems
	1 Introduction
	2 Preliminaries
	2.1 Software Product Lines
	2.2 1-Selecting Modal Transition Systems
	2.3 Product Line Process Algebras

	3 Design Decisions
	4 Revisiting the Refinement Relation
	4.1 New Refinement Relation
	4.2 Refinement Relation Properties

	5 Encoding PL-LTSs into 1MTSs
	6 Related Work
	7 Conclusion
	References

	A Hierarchy of Polynomial Kernels
	1 Introduction
	1.1 Overview of Our Results
	1.2 Proof Techniques

	2 Preliminaries
	3 Separations
	4 Lower Bounds
	5 Classical Connections
	References

	Behavioral Strengths and Weaknesses of Various Models of Limited Automata
	1 Background and Main Contributions
	1.1 Limited Automata and Probabilistic Computation
	1.2 Main Contributions

	2 Limited Automata
	2.1 Definitions of k-lpa's with the k-Limitedness Requirement

	3 One-Way Pushdown Automata
	3.1 One-Way Probabilistic Pushdown Automata
	3.2 An Ideal Shape of 1ppda's

	4 Behaviors of Limited Automata
	4.1 Blank Skipping Property, Theorem1, and Proposition2
	4.2 Properties of -LPFA
	4.3 Power of Probabilistic Computation and Theorem4
	4.4 Closure Properties of Probabilistic Classes and Proposition3

	References

	Locality Sensitive Hashing Schemes, Similarities, and Distortion (Invited Talk)
	References
	Author Index

