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Integrating Soil Microbiology into
Ecosystem Science

David A. Lipson and Xiaofeng Xu

Abstract There has been an increasing effort to incorporate the inner workings of
soil microbial communities into conceptual and quantitative models of processes at
the ecosystem or global scale. Many studies show that the characteristics of micro-
bial species and their interactions with each other and with plants strongly influence
larger-scale processes and that explicitly including microbes can improve the per-
formance of ecosystem models. We review the current understanding of how the
physiology and community structure of soil microbial communities can impact
cycling of carbon (C), nutrients, and greenhouse gases and recent progress in
integrating this knowledge into quantitative models of ecosystems and climate
change. Microbes can be characterized by ecological strategies that influence carbon
use efficiency, stress physiology, elemental ratios (stoichiometry), production of
extracellular enzymes, and responses to temperature. Competitive, synergistic, and
trophic interactions within soil microbial communities influence process rates and
responses to climate change. Plant-microbe interactions are central in climate change
responses of ecosystems and can operate by changes in nutrient cycling or through
alterations in the balance of mutualists and parasites. There are trends that connect
broad-scale community structure with functioning and evidence that ecological roles
of microbes can be mapped to phylogeny at the genus or species level. Models that
explicitly simulate microbes have included their physiological limits, growth
kinetics, interactions with plants, stoichiometry, dormancy, community structure,
and community interactions. Given recent advances in conceptual frameworks for
microbial ecology and in techniques for describing microbial communities and
computing power, further progress will depend on increased interactions between
microbiologists and modelers.
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3.1 Introduction

It has long been known that microbial communities play a central role in biogeo-
chemical cycles and potential biological feedbacks to climate change (Alexander
1964; Baes et al. 1977). Despite this recognition it has been a long-standing
challenge in microbial ecology to incorporate the inner workings of microbial
communities into conceptual and quantitative ecosystem models (Schimel 1995).
Environmental microbial communities are notoriously diverse and dominated by
species that resist attempts at cultivation (DeLong and Pace 2001; Rappe and
Giovannoni 2003; Yarza et al. 2014; Youssef et al. 2015). The past two decades
have seen great technical advances in describing the diversity and metabolism of
uncultured microbes, and many previously uncultured bacterial phyla have recently
been isolated in pure culture (George et al. 2011; Stewart 2012). Interdisciplinary
studies that combine a wide range of techniques to study microbial communities and
their role in the environment have become increasingly common. These studies
highlight the relevance of microbial ecology and physiology for ecosystem models,
but incorporating complex microbial processes and community structure into
already complex models is a daunting task. Large uncertainties in coupled climate
models arise from biological feedbacks; however, microbes are not yet explicitly
included in models used by the Intergovernmental Panel on Climate Change (IPCC)
(Hararuk et al. 2015; Wieder et al. 2015; Luo et al. 2016). Given the computational
costs of adding more model components and the qualitative nature of much micro-
bial research, it is not obvious how ecosystem models should be modified to fit the
emerging understanding of how microbial communities function (Chapin et al.
2009; Lawrence et al. 2009; Todd-Brown et al. 2011).

So, when is a detailed biological understanding of soil microbial communities
necessary for predicting ecosystem processes? Models assume microbial activity can
be predicted from a set of environmental drivers, like temperature and soil moisture
(Schimel 2001; Bloom et al. 2010). This is insufficient when:

1. Microbial activities are driven by variables that are not included in the model,
such as soil texture, nutrients, trace metal availability, and specific interactions
with plant species. These extraneous variables could control microbial function
either directly or indirectly, through effects on the community composition.

2. The microbial community composition is unpredictable due to dispersal limita-
tion and disturbances such as pulse dynamics or local soil properties.

3. There are community interactions such as competition, synergism, and predation
that alter rates in complex ways that are hard to predict based on the standard
environmental variables.

Figure 3.1 outlines the various ways that the properties of soil microbial com-
munities and the species that comprise them can scale up to have impacts on
ecosystem functions ranging from plot, regional, and global scales. In this chapter,
we summarize the current understanding of how the physiology and community
structure of soil microbial communities can scale up to impact cycling of C,
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nutrients, and greenhouse gases and the recent progress in integrating this knowl-
edge into quantitative models of ecosystems and climate change. A great deal of
thought has been given to this subject in recent years, and numerous useful reviews
have been published on how soil microbes impact ecosystem processes (Schimel and
Schaeffer 2012; Wallenstein and Hall 2012; Nemergut et al. 2014; Sinsabaugh et al.
2014; Bier et al. 2015; Ferris and Tuomisto 2015; García-Palacios et al. 2015;
Nielsen et al. 2015; Zechmeister-Boltenstern et al. 2015; van der Putten et al.
2016), incorporating microbes into models (Todd-Brown et al. 2011; Treseder
et al. 2012; Nazaries et al. 2013; Wieder et al. 2015; Luo et al. 2016), and the
impacts of climate change and other disturbances on microbes (Bradford 2013; de
Vries and Shade 2013; Griffiths and Philippot 2013; Classen et al. 2015) and their
extracellular enzymes (Burns et al. 2013; Henry 2013).
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Fig. 3.1 Microbial traits and community interactions that might have significant impacts at the
ecosystem and global scale. Effects are shown as arrows. Through their ecological strategies and
interactions within the community and with plants, microbes impact trace gas fluxes and the C
balance of ecosystems, influencing climate change, which in turn feeds back on all these processes
and characteristics
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3.2 Physiological Traits that Scale to Ecosystem Processes

3.2.1 Carbon Use Efficiency

Respiration by soil microbes accounts for about half of the CO2 efflux from
terrestrial ecosystems (Ciais et al. 2013). Therefore, the rate and efficiency of soil
microbial respiration are key factors regulating the C balance of ecosystems. Carbon
use efficiency (CUE), the fraction of C consumed by microbes that is converted to
biomass as opposed to CO2, is influenced by factors such as temperature, substrate
quality, and the ecological strategies of the microbes that comprise the community.
Consequently, CUE is emerging as an important characteristic of microbial com-
munities that can strongly influence the C balance of ecosystems and their response
to climate change (Lipson et al. 2009; Allison et al. 2010; Manzoni et al. 2012;
Cotrufo et al. 2013; Sinsabaugh et al. 2013; Allison 2014). There is often a trade-off
observed between maximum growth rate and growth yield, as thermodynamic
constraints generally prevent microorganisms from being both fast-growing and
efficient (Lipson 2015). This can lead to an axis representing two contrasting life
history strategies: slow-growing efficient microbes that thrive under resource scarce
conditions versus fast-growing, inefficient microbes that dominate under resource-
rich conditions (Kreft and Bonhoeffer 2005). These trade-offs and ecological strat-
egies that they produce have direct impacts on C cycling. A fast-growing, inefficient
microbial community produces much more CO2 per unit biomass than a slow-
growing community (Lipson et al. 2009). Studies in a high-elevation forest found
that seasonal changes in the soil microbial community and its predominant growth
strategy had major repercussions for ecosystem respiration, in particular in the late
winter, when a cold-adapted, fast-growing community developed under the thick,
protective snow pack, where high concentrations of sugars accumulated due to frost
damage of roots (Monson et al. 2006; Scott-Denton et al. 2006; Schmidt et al. 2009).
A simple model that included microbial growth kinetics and temperature response
parameters performed well in predicting ecosystem respiration (Lipson et al. 2009).

Furthermore, CUE may play a major role in microbial and ecosystem responses to
climate change. A modeling study found that warming led to decreased CUE, which
in turn led to reduced microbial biomass, limiting C loss from soils under warmer
temperature regimes (Allison et al. 2010). A follow-up modeling study found that a
trade-off between growth rate and yield would prevent adaptation of higher-yield
microbes under this warming scenario, thereby maintaining this limit to C loss from
soils (Allison 2014). These studies could explain earlier experimental results show-
ing “acclimatization” of soils to warming treatments, in which the temperature
sensitivity of soil respiration decreased in warmed plots (Luo et al. 2001). This
so-called acclimatization has often been attributed to changes in substrate availabil-
ity in warmed soils, but there are also changes in microbial community structure and
function that can produce these effects (Wei et al. 2014; Osanai et al. 2015).
However, it is uncertain whether global warming will result in a sustained decrease
in CUE or whether microbes will adapt their CUE over time (Dijkstra et al. 2011;
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Tucker et al. 2013). Reductions in CUE with warming have been reported (Steinweg
et al. 2008; Manzoni et al. 2012), but there is evidence that the CUE of microbial
communities may adapt in the long term (Bradford et al. 2008; Bradford 2013; Frey
et al. 2013; Tucker et al. 2013). Increased temperature can also increase rates of
microbial turnover in soil, which can have the opposite effect of decreased CUE,
increasing the stability of soil organic matter (Hagerty et al. 2014). Interpretation of
these studies is further complicated in that microbial temperature responses are
sensitive to the chemistry of soil organic matter (Wagai et al. 2013), which can
change in response to warming as the decomposition rates and inputs of different
forms of soil organic matter shift. Similarly, mineral nutrient availability can also
have a strong influence on CUE (Keiblinger et al. 2010; Manzoni et al. 2012;
Sinsabaugh et al. 2016). In summary, CUE represents a strong potential link between
microbial communities and the global C cycle, and so resolving the uncertainties in
this area and incorporating this knowledge into coupled climate change models
should be a priority.

3.2.2 Microbial Temperature Responses

Microbial responses to temperature can shape ecosystem processes in unexpected
ways. The temperature sensitivity of microbial activities, such as respiration or
enzyme activity, is often described as an apparent Q10, the proportional increase in
activity with a 10 �C increase in temperature. The Q10 concept was initially devel-
oped for simple chemical reactions, and so its application to complex microbial
processes in the natural environment presents some difficulties. First of all, biolog-
ical processes depend on enzymes, which are only functional within a certain
temperature range, and so microbial growth is best described by a square root
function rather than an exponential Q10 (Arrhenius) function. Furthermore, biolog-
ical processes such as microbial respiration are the result of many different enzymes
and transport processes, both within the cell and in the environment. In soils very
high apparent Q10s are observed around the freezing point of water, resulting from
changes in the thickness of unfrozen water films in subzero soils, changes in the
physiological state of microbes, and growth of microbes over time (when the Q10 is
generated from respiration data collected in the field over a period of several weeks)
(Mikan et al. 2002; Monson et al. 2006; Panikov et al. 2006; Schmidt et al. 2009).
The optimal temperature ranges for microbial growth vary greatly from
psychrophiles [less than 15 �C by definition, some at least as low as 5 �C (Morita
1975)] to hyperthermophiles (optimal temperatures over 80 �C), and so clearly the
composition of the microbial community could affect how an environment responds
to climate change in the short term. However, microbial communities appear to be
well-adapted to the ambient temperatures they experience in their environment, and
so changes in temperature can have a smaller impact on microbial processes than
would be predicted from a model that assumes a simple Q10 relationship for all
environments (Giardina and Ryan 2000). Maximum growth rates of bacteria are not
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well correlated to their optimum temperature (Hanus and Morita 1968; Ratkowsky
et al. 1982, 1983). The fastest-growing bacterium currently known, Vibrio
natriegens, which doubles in about 9 min at 37 �C, is a mesophile (Maida et al.
2013), and one of the fastest-growing psychrophiles, Pseudoalteromonas
haloplanktis, can give many thermophiles a run for their money (doubles in 4 h at
4 �C) (Piette et al. 2010). In the case of permafrost (permanently frozen soil layers
found in polar regions), the communities in these frozen soils, despite being capable
of growth at surprisingly low temperatures, are currently at suboptimal temperatures
for growth (Bakermans et al. 2003; Steven et al. 2006), and melting will certainly
lead to substantial losses of C (Schaefer et al. 2014; Schuur et al. 2015). However,
current models do not capture the nuances of microbial activity at low temperatures.
It is clear that microbial activity continues at low temperatures, for example, in
permafrost and during the winter, and these activities are not yet fully incorporated
into annual C cycling budgets and models (Clein and Schimel 1995; Brooks et al.
1996, 1997; Lipson et al. 1999; Monson et al. 2006; Panikov 2009; Zona et al.
2016). Despite adaptations for extreme cold, it is likely that winter microbial
communities generally experience suboptimal temperatures and should be more
sensitive to warming than the communities that are active in the summer. A model
that incorporated seasonal microbial dynamics found large C losses in response to
winter warming, when microbes were allowed to acclimate their temperature
responses to changing seasons (Sistla et al. 2014). The Q10 values of respiration
can vary by season and across altitudinal gradients, and these variations are corre-
lated to changes in microbial community structure (Lipson 2007). These results
highlight the importance of microbial characteristics and their seasonal dynamics for
ecosystem processes.

3.2.3 Stoichiometry of Microbial Cells in Relation to Soil
Organic Matter

The stoichiometric ratios of carbon, nitrogen, and phosphorus typically are
expressed as C:N:P in plant litter, and soil organic matter in relation to that of
microbial biomass are major determinants of C and nutrient cycling (Zechmeister-
Boltenstern et al. 2015). While marine microbial primary producers have a relatively
narrow range of atomic C:N:P ratios around 106:16:1, known as the Redfield ratio
(Redfield 1958), land plants vary more in their nutrient concentrations due to
structural materials like lignin and cellulose and variations in nutrient concentrations
between lifeforms such as trees vs. herbs, deciduous vs. evergreen, etc. Microbes
generally have higher N and P concentrations (lower C:N and C:P ratios) than do
macroscopic organisms, and since microbes are the primary decomposers in soils,
stoichiometric ratios in soil organic matter are driven toward that of the microbes
over time. This occurs because N and P tend to be retained in microbial biomass but
C is respired away as CO2. When the C:N and C:P of decomposing litter drop below

70 D. A. Lipson and X. Xu



a threshold value, which depends on microbial CUE, N and P from the litter are in
excess of microbial demand and are mineralized and released back into the soil.
While the range of element ratios is limited by the nature of cellular life on Earth,
there is also considerable variation in C:N:P among microbial groups, particularly
between bacteria and fungi. Microbes are also capable of storing C (e.g., as neutral
lipids, glycogen, and starch) and also P (typically stored as polyphosphate) when
these nutrients are in excess of immediate needs. Therefore different plant litter types
lead to variations in stoichiometry of soil organic matter and microbial biomass,
especially in terms of P concentrations (Cleveland and Liptzin 2007; Fanin et al.
2013; Hartman and Richardson 2013; Xu et al. 2013). While these variations in
microbial element ratios are presumably driven by plants, there is the possibility that
changes in microbial community structure could reinforce and accelerate changes in
the plant community through their stoichiometry, as discussed in the Plant-Microbe
Interactions section below.

There is a strong but complex relationship among stoichiometric ratios, ecological
strategies, and CUE in microbes. Faster-growing microbes tend toward higher N and
P concentrations and lower CUE (Keiblinger et al. 2010; Zechmeister-Boltenstern
et al. 2015; Sinsabaugh et al. 2016). Faster growth rates require more enzymes,
ribosomes, and RNA synthesis, increasing the demand for N and P (Gillooly et al.
2005; Hartman and Richardson 2013). Therefore, CUE might decrease with increas-
ing P availability, as C:P ratios decline (Sinsabaugh et al. 2016). On the other hand,
under conditions of nutrient limitation (which would occur with high C:N and C:P
ratios of soil organic matter), microbial respiration can become decoupled from
growth, leading to low CUE (Schimel and Weintraub 2003; Manzoni et al. 2012).
In marine and aquatic ecosystems, P limitation commonly reduces bacterial growth
efficiency (Del Giorgio and Cole 1998). Soil microbial growth is generally consid-
ered to be limited by labile C, even in relatively nutrient-poor soils (Heuck et al.
2015). However, P can limit microbial biomass in some tropical soils (Cleveland et al.
2002), and nutrient additions can stimulate microbial nutrient uptake and activity
without necessarily causing an immediate increase in biomass (Jonasson et al. 1996;
Schimel and Weintraub 2003; Allen and Schlesinger 2004; Sistla et al. 2012). The
effects of high C:N and C:P ratios of plant litter can sometimes have negative effects
on CUE (Spohn and Chodak 2015). It has also been shown that social interactions
within microbial communities, such as when a subset of microbes “cheat” by not
contributing to extracellular enzyme production, lead to different outcomes than
those predicted by stoichiometric theory (Kaiser et al. 2014). In summary, ecological
stoichiometry is a promising approach for scaling from microbes to ecosystems, but
the relationships are complex due to potentially opposing forces of nutrient limitation
and ecological strategies.

3 Integrating Soil Microbiology into Ecosystem Science 71



3.2.4 Extracellular Enzymes

Soil extracellular enzymes are a major link between the microbial community and its
impact on the ecosystem, particularly through litter decomposition. The majority of
organic inputs to soil are polymers like cellulose, lignin, and proteins that require
extracellular enzymes for their degradation, and so extracellular enzymes usually
catalyze the rate-limiting steps in the C and N cycles. For example, it was shown that
litter decomposition was limited by the activity of phenol oxidases in anaerobic
peatlands due to a lack of oxygen required by these enzymes (Freeman et al. 2001).
The production and turnover of enzymes along with their substrate specificity,
turnover rate, and temperature responses shape ecosystem processes. Shifts in the
microbial community can change the compliment of enzymes in the soil, altering
patterns of decomposition and nutrient cycling. Soil feedbacks in plant invasions are
an example where this seems to be important (Henry 2013) (also discussed in the
following section). Similarly, the role of the microbial community in stabilizing soil
C could depend on the enzyme profile produced by the community, for example,
through the relative dominance of fungi or bacteria (Waring et al. 2013). Because
extracellular enzymes represent a cost for cells in terms of both C and N, and because
they control rates of decomposition, extracellular enzymes tightly integrate C and N
cycling with microbial physiology (Schimel and Weintraub 2003; Burns et al. 2013).
Enzymes that degrade cell walls are often regulated by N availability, and it is
thought that the main microbial motivation for producing them is increasing their
access to N bound in this litter. For example, N deposition can alter soil C storage by
reducing production of extracellular enzymes in oak forests with low litter quality
(Waldrop et al. 2004). However, this relationship between N availability and lignin
degradation varies by biome and microbial community (Sinsabaugh 2010). Another
argument for explicitly considering extracellular enzymes in ecosystem-scale pro-
cesses is that they represent a semiautonomous entity in themselves: they can be
functional in the soil matrix after the cells that released them have already died,
adding to the complexity of pulse dynamics in soils, such as drying-rewetting or
freeze-thaw events (Burns et al. 2013). Furthermore, climate change could bring
about changes in the stability of extracellular enzymes in the soil.

One potential advantage to explicitly including extracellular enzymes in eco-
system models might be to more realistically model temperature responses and
acclimation to climate change. Enzymes and the whole microorganisms that produce
them do not share the same temperature envelopes: psychrophilic enzymes have
higher temperature optima than the optimal growth temperature for the whole cell
(Huston et al. 2000), and thermophilic enzymes can function at higher temperatures
than thermophilic microbes can tolerate (Cowan 2004). This disparity between
temperature optima of microbes and their enzymes is one factor in decoupling of
respiration and growth that can occur at supraoptimal temperatures in soils
(Pietikäinen et al. 2005). Not only is the maximum catalytic rate (Vmax) of enzymes
controlled by temperature, but the substrate affinity (Km) is also sensitive to temper-
ature (German et al. 2012). This cross-latitudinal study found that soil extracellular
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enzymes had higher affinity for their substrates at low temperatures, partly offsetting
decreases in Vmax, and in the case of β-glucosidase, the Km of enzymes from an
Alaskan soil were more sensitive to temperature than those from Costa Rica. This
demonstrates that adaptations for high activity at low temperatures can come with a
cost in affinity as temperatures are raised.

One final consideration that could earn enzymes (both intracellular and extracel-
lular) some respect in global models is the requirement for trace elements. Enzymes
involved in the production and consumption of greenhouse gases, CH4 and N2O,
require metals such as Fe, Ni, Cu, Zn, Mo, and W (Glass and Orphan 2012; Wang
et al. 2013b), and several phenol oxidases involved in lignin degradation require Cu
or Mn (Sinsabaugh 2010). It is established that trace element limitation is a major
factor in oceans (Morel and Price 2003) and that alternative nitrogenase enzymes
(the key enzyme in N fixation) use V in soils that are poor in Mo (Bellenger et al.
2014). Local limitations in micronutrients could provide surprises in how the
soil environment constrains microbial activity.

3.2.5 Stress Tolerance

The capacity for soil microbes to deal with stresses, such as drought or extreme
temperatures, will influence ecosystem responses to disturbance and climate change
(Schimel et al. 2007). Evolutionary trade-offs, such as the one between rate and yield,
can constrain how microbial communities respond to climate change (Wallenstein
and Hall 2012). For example, the ecological strategies of soil microbes may also
predict the resistance and resilience of the communities to global change, with
communities dominated by K-strategists hypothesized to be more resistant to distur-
bance and those dominated by r-selected microbes to be more resilient (de Vries and
Shade 2013).

Local adaptations of microbial communities can lead to unpredictable responses
to climate. Microbial responses to climate change experiments tend to vary by eco-
system (Castro et al. 2010; Weber et al. 2011; A’Bear et al. 2014b; Lipson et al.
2014; Classen et al. 2015), showing that microbial communities vary widely in their
resistance to disturbance and stress. In arid and semiarid ecosystems, the drought
resistance of soil microbes (especially fungi and their extracellular enzymes) and of
biological soil crusts can lead to surprising levels of biological activity under very
dry conditions (Collins et al. 2008; Austin 2011).

Dry ecosystems are subject to pulse dynamics from drying-rewetting events that
cause the soil microbial community and biomass fluctuate rapidly, leading to
ecosystem losses of C and N that are not captured by standard models (Collins
et al. 2008; Inglima et al. 2009; Dijkstra et al. 2012). During these windows of
disequilibrium, the local characteristics of microbial communities can have large
impacts on ecosystem function (Lawrence et al. 2009; Placella et al. 2012; Kuzyakov
and Blagodatskaya 2015). For example, different phylogenetic groups responded at
different rates to rain pulses in California grasslands (Placella et al. 2012). In this
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study, the set of bacterial groups implicated in immediate, intermediate, and delayed
responses was surprising, as the rapid responders included Actinobacteria and
Verrucomicrobia, groups generally considered slow-growing and K-selected,
while the delayed responders included Proteobacteria associated with rapid growth
rates. The authors found that the rapid responders already had high ribosome levels
in the pre-wet soils, indicating that the stress resistance of these microbes contributed
to their ability to rapidly exploit these pulses, and speculated that the extracellular
enzymes these bacteria are known to produce may have been stabilized in the soil
matrix and instantly available for activity upon rewetting. Conversely the fast-
growing, less stress-tolerant microbes represented a smaller, dormant pool before
wetting and therefore required time to become active and grow. Spore formers
(Bacillus spp.) showed an intermediate response, as they also required time to
germinate but are adapted to rapidly respond to such pulses.

In arid and semiarid ecosystems, biological soil crusts can have major impacts on
ecosystem functioning and responses to pulses (Austin et al. 2004; Delgado-
Baquerizo et al. 2013). Collins et al. (2008) proposed a “fungal-loop” model for
arid ecosystems in which a network of fungi connect plants and biological soil
crusts, allowing interchange of fixed N and C. Biological soil crusts are sensitive to
disturbance, including N deposition and climate change (Johnson et al. 2012). The
continued loss of soil crusts could drastically alter processes such as N fixation, C
storage, and plant community dynamics in these ecosystems (Bowker et al. 2014).
Incorporating the spatial heterogeneity of biological soil crusts and the “resource
islands” produced by patchy plant distribution in dry ecosystems would pose a chal-
lenge for ecosystem models but might be worth the effort in terms of improving
understanding of processes in arid ecosystems (Austin 2011).

3.3 Microbial Community Interactions that Impact
Ecosystem Processes

3.3.1 Microbial Food Webs

Protozoal grazers, soil animals, and viruses can alter outcomes of climate change
experiments and alter temperature responses of microbial communities (A’Bear et al.
2014a; Crowther et al. 2015; Pelini et al. 2015). Top-down control of microbial
biomass would have a big impact on modeling respiration and other microbial
activities, as it is generally assumed that microbes are limited by supply of C or
nutrients. For example, climate change models have assumed that elevated CO2 will
stimulate soil respiration and methanogenesis in the Arctic by increasing the flux of
labile C to soil microbes (Melton et al. 2013), but in C-rich peat soils like those in the
Arctic Coastal Plain of Alaska, C additions do not result in stimulation of
methanogenesis (von Fischer et al. 2010) or respiration (Allen et al. 2009), and
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bacteriophage may represent an important top-down control that limits microbial
responses to increased substrate (Allen et al. 2009).

3.3.2 Competition and Synergism in Microbial Communities

There are cases where positive and negative interactions within microbial commu-
nities have impacts on larger-scale processes, and it may sometimes improve the
predictive capabilities of ecosystem models to include these processes. Microbes
compete for energy sources, mineral nutrients, and electron acceptors. In an
individual-based model of social interactions within microbial communities, it was
found that “cheaters” that benefit from extracellular enzymes produced by other
microbes can lead to retention of N and accumulation of soil organic matter (Kaiser
et al. 2015). Similarly, modeled changes in enzyme production activities depend on
interactions among consortia of complimentary microbes that produce extracellular
enzymes for acquiring different nutrients (C, N, or P) (Folse and Allison 2012). In
anoxic environments, the presence of alternative acceptors can inhibit less thermo-
dynamically favorable pathways. For example, ferric iron [Fe(III)] and humic acids
can inhibit sulfate reduction and methanogenesis, though these processes can also
coexist in environments where energy is plentiful (Lovley and Phillips 1987; Keller
et al. 2009; Miller et al. 2015). Synergistic relationships also contribute to the
coexistence of otherwise competing functional groups. For example, the Fe(III)-
reducer, Geobacter metallireducens, can donate electrons from the fermentation of
ethanol to the methanogen, Methanosarcina barkeri, in a process known as direct
interspecies electron transfer (DIET) (Rotaru et al. 2014). There is a plethora of
potentially competitive and synergistic interactions that influence the relative and
absolute production rates of CO2 and CH4 in soils. Given that CH4 has about
34 times the greenhouse warming potential of CO2, when considered over a
100-year time span (Myhre et al. 2013), the relative fluxes of CH4 and CO2 will
have a big impact on the dynamics of climate change over the next century.
Hydrogenotrophic methanogens, which use H2 gas, must compete with many
other groups for this prized substrate. Acetate can sometimes accumulate in soils
as the end product of fermentation and acetogenesis reactions, eventually leading to
the establishment of acetoclastic methanogens that can exploit this pool (Hines et al.
2008). Why does it matter if a model includes these two different methanogenic
pathways? The two functional groups probably respond differently to environmental
factors such as temperature and pH and also to biological factors like competition for
substrate or synergistic relationships with fermenters. Therefore, hydrogen- and
acetate-dependent methanogens could respond differently to changes in C flux
through the soil community driven by elevated CO2 or warming. In a permafrost
thaw gradient in Sweden, increasing methane fluxes were associated with a switch to
more acetoclastic production, and these changes coincided with the abundance of
Candidatus Methanoflorens stordalenmirensis (McCalley et al. 2014). Another
warming study found changes in the functional groups responsible for pathways
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leading to methane production (polysaccharide breakdown, fermentation, and
methanogenesis), with different steps limiting the overall process at different tem-
peratures (Tveit et al. 2015).

The majority of CH4 that is produced in soils is thought to be oxidized to CO2 by
methanotrophs before it leaves the soil (Le Mer and Roger 2001). The existence of
two rapid, nearly balanced processes that are subject to different controls could
produce complex behavior, such as rapid spikes or crashes in net fluxes as the
production and consumption become uncoupled. Until recently, all methanotrophic
activity was mainly attributed to groups of bacteria within the Proteobacteria
phylum (Methylocystaceae, Methylococcales; Table 3.1). However, acidophilic
methane oxidizers within the Verrucomicrobia phylum have recently been described
(Pol et al. 2007), and anaerobic oxidation of methane (AOM), originally discovered
in marine environments, also plays a role in soils (Smemo and Yavitt 2011). The
presence of alternative electron acceptors in methanogenic environments can lead to
a reduction of CH4 flux to the atmosphere due to the activity of AOM species or
consortia. The presence of AOM could have the same impact as aerobic
methanotrophs, except their activity would be harder to predict. Dissolved oxygen
can be modeled relatively simply based on the water table height, but AOM relies on
the presence of a variety of other alternative electron acceptors [e.g., nitrite, sulfate,
Fe(III)] that are not as easily modeled.

Like CH4, nitrous oxide (N2O) is a powerful greenhouse gas that is subject to
complex transformations in soils by diverse groups of microbes. By our current
understanding, N2O is produced by (1) facultative anaerobes (including bacteria,
archaea, and fungi) that use either nitrite or nitrate as terminal electron acceptors in
anaerobic respiration (including denitrification and dissimilatory nitrate reduction to
ammonium, DNRA), (2) nitrifiers (chemoautotrophic bacteria and archaea that
oxidize NHþ

4 for energy using oxygen), (3) anammox (anaerobic oxidation of
ammonium using nitrite as the terminal electron acceptor, carried out by chemoau-
totrophic bacteria within the Planctomyces phylum), and (4) codenitrification
(a process carried out by fungi and bacteria in which reduced N compounds, such
as ammonium, hydroxylamine, or amino acids, react with oxidized forms of N such
as nitrite or nitric oxide) (Giles et al. 2012; Long et al. 2012; Mothapo et al. 2015;
Stein and Klotz 2016). The full denitrification pathway leads to the production of N2,
with intermediate products NO and N2O emitted depending on the level of oxygen
limitation in the soil. Some denitrifying microbes lack N2O reductase, including
most denitrifying fungi, and so have a truncated pathway that strictly leads to N2O
production rather than N2 (Mothapo et al. 2015; Roco et al. 2016). Recent studies
showed that N2O can be consumed by a wider diversity of soil microbes than
recently thought (Jones et al. 2012; Sanford et al. 2012). The diversity of microbes
that produce and consume N2O leads to complex controls over N2O emissions from
soils, as these groups may have different production efficiencies and respond
differently to environmental controls such as pH, temperature, oxygen, and energy
availability (Pan et al. 2013; Stieglmeier et al. 2014; Jiang et al. 2015; Mothapo et al.
2015).
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Table 3.1 Examples of prokaryotic groups that can generally be assigned an ecological role based
on phylogeny

Taxonomic group Associated function

C cycling

Methanosarcinales Methanogenesis (from H2, acetate or
methanol)

Methanobacteriales, Methanopyrales,
Methanococcales, Methanomicrobiales

Hydrogenotrophic methanogenesis

Methanosphaera Methylotrophic methanogenesis

Methylocystaceae, Methylococcales Methane oxidation

Methanosarcinales subgroups (ANME) Anaerobic oxidation of methane
(in consortia with various anaerobic
bacteria)

NC10 (Methylomirabilis oxyfera) Nitrite-dependent methane oxidationa

Methylacidiphilales Low pH methane oxidationb

Cyanobacteria Photosynthesis

Chromatiales, Chlorobiaceae, Rhodospirillaceae Anoxygenic photosynthesisc

Clostridia, Bacteroides Fermentation

N cycling

Nitrosomonas Ammonium oxidation

Nitrobacter Nitrite oxidation

Thaumarchaeota Ammonium-oxidizing archaea (AOA),
important in acidic soilsd

Planctomyces subgroup Anaerobic ammonia oxidation
(anammox)

Frankia, Rhizobium, Bradyrhizobium Symbiotic N fixatione

Azotobacter, Azospirillum Associative N fixationf

Other functions

Desulfovibrionales, Desulfobacterales,
Desulfotomaculum

Sulfate reduction

Thiobacillus, Epsilonproteobacteriag Oxidation of inorganic S compounds

Geobacteriales Reduction of Fe(III), other metals, humic
substances

Gallionella, Zetaproteobacteria Fe(II) oxidation

Dehalococcoides Organohalide respiration

Dechloromonas, Dechlorosoma (Azospira) Perchlorate and chlorate reductionh

Pseudomonas syringae, Ralstonia solanacearum,
Agrobacterium tumefaciens, Xanthomonas spp.,
Erwinia amylovora, Xylella fastidiosa, Dickeya spp.,
Pectobacterium spp.

Plant pathogensi

aOnly enrichment cultures have been studied
bThe full physiological diversity of this clade is not known
cContain some non-photosynthetic members
dProbably capable of other forms of chemoautotrophy
eAlso commonly free-living in soils
fN fixation is a common trait among prokaryotes, but these groups commonly form associations
with plant roots
gEpsilonproteobacteria also includes human pathogens
hMetabolically versatile group capable of other pathways
iInclude nonpathogenic varieties
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Microbial community interactions that influence soil processes depend on small
spatial scales, such as redox gradients across soil horizons or soil aggregates,
diffusion rates between extracellular enzymes and microbial colonies, and differing
processes in the rhizosphere, bulk soil, and litter layer compartments. Incorporating
this small-scale spatial heterogeneity into the understanding of processes at larger
scales is a challenge but is probably worth the effort, at least in some cases (Faust and
Raes 2012; Folse and Allison 2012; Giles et al. 2012; Schimel and Schaeffer 2012;
Kaiser et al. 2015; Kuzyakov and Blagodatskaya 2015).

3.4 The Impact of Plant-Microbe Interactions on Ecosystem
Processes and Global Change

3.4.1 Global Change and Nutrient Cycling

Soil microbes represent an important feedback in the growth responses of plants to
global change by modulating the availability of nutrients (Lipson and Kelley 2014).
Elevated atmospheric CO2 stimulates photosynthesis rates in the short term, but
plants in natural environments generally experience limited growth benefits from
elevated CO2 due to nutrient limitations (notably N in most temperate ecosystems).
As a result of increased photosynthesis while growth is constrained by nutrient
limitations, N concentrations generally decrease in plant tissues when grown under
elevated CO2. This lower quality litter can slow down N mineralization in soils,
leading to progressive N limitation. Because of this effect, the stimulation of the
terrestrial C sink under elevated CO2 is expected to be finite, as plants run out of
limiting mineral nutrients from the soil (Ciais et al. 2013). However, increased root
growth and microbial activity can partly counteract progressive N limitation (Finzi
et al. 2007). Elevated CO2 generally increases plant allocation to roots and to the soil
community. The increased roots help plants mine for nutrients more effectively, and
increased “rhizodeposition” can stimulate N fixers and mycorrhizae, leading to
increased nutrient acquisition. Increased flow of labile exudates from roots to soil
can also stimulate N cycling rates through “priming” effects, in which heightened
activity in the rhizosphere leads to increased mineralization of N from soil organic
matter. And to make matters even more complicated, increased soil temperature
generally speeds up N mineralization, partly compensating for progressive N limi-
tation (Dieleman et al. 2012). In summary, the responses of plant growth to climate
change depend on changes to the N cycle, which in turn are driven in opposing
directions by microbial responses to elevated CO2 and temperature. These biological
feedbacks lead to large model uncertainties and are probably best resolved by studies
that explicitly examine soil microbes and their interactions with plants and multi-
factorial climate change.

78 D. A. Lipson and X. Xu



3.4.2 Soil Feedbacks and Plant Community Change

In climate change experiments, changes in plant communities tend to overwhelm
effects of elevated CO2 and temperature (Classen et al. 2015; Steinauer et al. 2015),
and so when plant communities change as a result of direct human disturbance or
climate change, the rules change completely for the soil microbes. Changes of plant
communities to an alternative stable state are often facilitated by feedbacks through
the soil microbial community (van der Putten et al. 2016). These can be manifested
as changes in nutrient cycling or in a shift of the microbial community in terms of the
mutualism-parasitism axis. For example, initial disturbance can allow the establish-
ment of plants with higher litter N content, leading to a faster mineralization rate,
further encouraging the invasion by weedy species (Liao et al. 2008; Castro-Díez
et al. 2014). Or initial introduction of an exotic plant can favor the presence of
microbes that are beneficial or neutral to the invading species and harmful to the
natives (Sigüenza et al. 2006; Callaway et al. 2008). The microbial community, if
left undisturbed and intact, could also function to limit the invasion of a new
community by preferentially benefitting native species (Bozzolo and Lipson 2013;
Abbott et al. 2015). Similarly, changes in plant ranges can be limited by the presence
of suitable symbiotic microbes. Ectomycorrhizal fungi seem to be more subject to
dispersal limitation than arbuscular mycorrhizae (Peay et al. 2010; Davison et al.
2015). For example, invasion by ectomycorrhizal trees into a heathland dominated
by ericaceous shrubs is reportedly limited by the influx of mycorrhizal spores
(Collier and Bidartondo 2009). Conversely, the maintenance of ectomycorrhizal
fungi can help plant species maintain the trailing edge of their range as the climate
changes (Lankau et al. 2015).

3.5 Relating Soil Microbial Community Structure
to Ecosystem Function

The previous sections dealt with how the individualistic properties of soil microbial
species and their interactions might influence ecosystems. But how are these micro-
bial traits and interactions expressed when aggregated into complex communities
with tens of thousands of species? Because of their complexity, soil microbial
communities are generally described in broad terms, such as the relative proportion
of major taxonomic groups (like phyla or classes), or by other coarse metrics like
bacterial/fungal ratio. Given the premise that microbial species composition matters
at larger scales, how can we know which species are important and how the general
structure of communities influences ecosystem processes? One also needs to keep in
mind that the relative abundance of microbes is not necessarily proportional to their
importance in ecosystem functioning. For example, rare microbes can have very
small but active populations due to rapid turnover from predation (Lynch and
Neufeld 2015; Neuenschwander et al. 2015). And it might be expected that the
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microbes that contribute most to CO2 flux might be fast-growing r-selected types that
respond quickly to resource pulses but otherwise have low populations most of the
time. However, many studies have shown relationships between broad-scale micro-
bial community structure and function, as detailed below.

3.5.1 Predicting Ecological Strategies from Taxonomy

The taxonomic structure of microbial communities varies greatly among soils of the
world and is strongly influenced by soil properties (such as pH, texture, and organic
and matter content) and by the plant community (Högberg et al. 2007a; Fierer et al.
2009; Caporaso et al. 2011; Chau et al. 2011; Legay et al. 2014; Docherty et al.
2015). Most descriptions of soil microbial communities are focused on bacteria and
are based on the sequences of 16S rRNA genes, though a growing number of studies
describe entire microbial communities using shotgun sequencing of the soil
metagenome (Fierer et al. 2012). While there can be remarkable physiological
diversity among closely related bacterial species (Jaspers and Overmann 2004;
Hahn and Pöckl 2005), some general trends have emerged that link broad taxonomic
groups with ecological strategies (Fierer et al. 2007; Philippot et al. 2010; Goldfarb
et al. 2011; Evans and Wallenstein 2014). For example, the Acidobacteria phylum is
very common in soils but has few cultured representatives, all of which grow quite
slowly (Ward et al. 2009). This group appears to represent a K-selected
(or oligotrophic) strategy, growing slowly on complex substrates derived from
plant tissues and tolerating stresses. Some species within the Acidobacteria have
also been implicated as rhizosphere dwellers (da Rocha et al. 2013). On the other
extreme are groups such as the Betaproteobacteria, containing many cultured
representatives and representing an r-selected (or copiotrophic) strategy, growing
rapidly on labile substrates like amino acids and taking advantage of disturbances
that increase resource availability, but with higher sensitivity to stress.

The ratio of bacteria to fungi is another broad index that is linked to soil
processes. Fungi are generally associated with improving C sequestration in soils
(Six et al. 2006; Fontaine et al. 2011; Waring et al. 2013). Filamentous fungi
generally have an advantage over bacteria when growing in complex, high C:N
substrates, especially those rich in lignin, and in low pH soils (Högberg et al. 2007a).
Their nutrient requirements are lower, having a more flexible C:N ratio, and their
extensive hyphal network allows them to exploit sporadic hotspots of resource
availability in an otherwise resource-poor environment. The dominance of fungi is
associated with nutrient retention in soils and slower mineralization rates (Allen and
Zink 1998; Högberg et al. 2007b; Waring et al. 2013). High fungal/bacterial ratios
are linked with lower biomass-specific respiration rates (Sakamoto and Oba 1994;
Lipson et al. 2005; Six et al. 2006; Lipson et al. 2009). Fungi tend to have lower
growth rates and turnover rates than do bacteria in soil (Rousk and Bååth 2011),
which would generally lead to lower CO2 production per unit biomass. However,
this may not be universally true (Thiet et al. 2006). Fungi are physiologically diverse
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and include a variety of ecological strategies, growth rates, and growth yields. There
is increasing evidence that mycorrhizal fungi have direct and indirect effects on soil
C storage. Mycorrhizal fungi, in addition to receiving C from their host plant, can
also degrade soil organic matter, either in search of mineral nutrients or for supple-
mental energy (Talbot et al. 2008). There is also evidence that ectomycorrhizae
stimulate C sequestration in soils by competing with saprotrophs for soil nutrients
(Averill et al. 2014).

Soil bacteria and fungi generally respond differently to climatic variables. In a
study of two soils in Sweden (an agricultural soil and a forest soil), fungal growth
was more sensitive to warming than was bacterial growth (Pietikäinen et al. 2005).
Additionally, fungal species have been noted as having individualistic phenological
responses to past climatic variation, with saprotrophic and mycorrhizal groups
associated with deciduous and evergreen trees responding differently to patterns in
temperature and rainfall (Diez et al. 2013). These observations indicate that warming
could lead to functional changes in fungal communities, with some species increas-
ing vegetative growth and respiration due to delayed fruiting body formation.
Several studies have shown differential effects of elevated CO2 on bacteria and
fungi, though the results vary by ecosystem (He et al. 2010; Anderson et al. 2011;
Lipson et al. 2014).

3.5.2 Assigning Ecological Roles Based on DNA
Sequence Data

Numerous techniques are now available to study the functional roles of uncultured
environmental microbes, such as shotgun sequencing of soil metagenomes,
PCR-based surveys of functional genes, stable isotope probing, fluorescent in situ
hybridization and other advanced imaging techniques, single cell genomics, and
other innovative approaches such as epicPCR, in which functional genes and 16S
rRNA genes from the same cell can be linked (Spencer et al. 2015). However, many
descriptions of soil microbial communities are based on 16S rRNA genes, and so it is
convenient if conclusions can be drawn from these taxonomic data regarding the
functional capabilities of the community. While many prokaryotic taxa are
extremely physiologically diverse (e.g., most of the Proteobacteria classes), there
are some taxonomic groups that share a reasonably coherent lifestyle (Table 3.1).
While it is harder to make generalizations about the relationship between phylogeny
and function at finer taxonomic scales, recent studies support the idea that there are
consistent relationships between the phylogenetic placement of a bacterial opera-
tional taxonomic unit’s (OTU) 16S rRNA gene and its ecological role (Langille et al.
2013).
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3.5.3 Temperature Responses Versus Taxonomy

Because of the strong influence of soil chemistry on microbial community structure,
no differences are detected between tropical, temperate, and arctic biomes when
communities are compared at a broad (e.g., phylum-level) phylogenetic scale (Fierer
and Jackson 2006; Fierer et al. 2012). However, temperature is clearly an important
selective factor given the tight adaptations to ambient conditions reported in many
studies (Bennett and Lenski 1993; Giardina and Ryan 2000; Bárcenas-Moreno et al.
2009; Salvadó et al. 2011; Rousk et al. 2012). In fact, the effect of temperature is so
fundamental that cold-adapted species occur in nearly every major bacterial phyla
(Margesin and Miteva 2011). This could explain the difficulty in detecting a clear
temperature signature in overall community comparisons that are driven by phylum-
level differences. However, when focusing on a narrow group of microbes, latitudi-
nal patterns have been observed at a finer taxonomic scale (Rodrigues et al. 2009;
Robador et al. 2015). Similarly, a correlation was observed between the diversity of
Betaproteobacteria and temperature responses with changes in season and altitude
(Lipson 2007).

Adaptations to temperature occur over the entire genome. For example, each
enzyme must be adapted for ambient conditions by having the optimal flexibility for
functioning at low temperatures or, conversely, high stability for functioning at
higher temperatures (Feller and Gerday 2003). Although cold-tolerance genes have
been found in plasmids (Dziewit and Bartosik 2014), it is unlikely that a single
mobile element could transform a mesophile into a high functioning psychrophile
capable of competing within a diverse community. Therefore temperature adaptation
should leave an evolutionary signature on a taxonomic marker gene like 16S rRNA,
as observed for other complex traits (Langille et al. 2013).

Bacterial genomes from extremely cold environments such as the Arctic, Antarc-
tic, and permafrost zones show very clear signatures of cold adaptation, such as
alterations in amino acid composition of the proteins, changes in membrane com-
position, and enhanced expression of cold shock proteins (Bakermans et al. 2012;
Kuhn 2012). However, there is considerable variability among different species and
environments (Grzymski et al. 2006; Ayala-del-Río et al. 2010). We are still years
away from being able to predict the temperature responses of complex soil processes
from metagenomic data, but in principle, all the information is there.

3.5.4 Emergent Properties of Microbial Communities: The
Importance of Diversity in Ecosystem Functioning

To this point, we have only considered the constituent microbes that make up
microbial communities and how their relative abundance might impact ecosystem
processes. But biodiversity (including species richness and evenness) is a property of
biological communities with important ecological consequences (McCann 2000),
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and this appears to be true for microbial communities as well (Ferris and Tuomisto
2015). Diversity-function relationships are often nonlinear, with decreasing impacts
of diversity at high levels of species richness. Given the high diversity of soil
microbial communities, it would be expected that species-function relationships in
soil communities would be fairly flat or require drastic reductions in diversity to see
an effect in manipulative experiments. Consistent with this logic, relationships
between soil microbial diversity and C cycling are found more frequently in exper-
iments with low diversity levels, and it is often found that because of the high degree
of functional redundancy in these communities, species composition matters more
than species richness (Nielsen et al. 2011). Nonetheless it still appears that microbial
biodiversity is important for the overall functioning of ecosystems and that even
given the high functional redundancy within microbial communities, increased
diversity can increase process rates (Nielsen et al. 2015). More diverse microbial
communities are also more stable and resistant to invasion by pathogens (van Elsas
et al. 2012).

The impacts of climate change on microbial diversity vary by ecosystem and
microbial group (Nielsen et al. 2015). Elevated CO2 increased fungal diversity in a
semiarid shrubland (Lipson et al. 2014), but a similar effect was only seen in two of
seven ecosystems in a different study (Weber et al. 2011). In an analysis of several
long-term studies, drought stress and pressure on pinyon pine from competitors,
herbivory, and parasites decreased the diversity of ectomycorrhizal fungi but did not
tend to decrease their mutualistic benefit to the plant host (Gehring et al. 2014).
Warming led to increased species evenness in the bacterial community (DeAngelis
et al. 2015). Theoretically, more diverse communities should be more resistant to
disturbances. Therefore, disturbances or land management practices that reduce soil
microbial diversity could lead to increased vulnerability of microbial communities
and ecosystems.

3.6 Integrating Microbial Diversity and Physiology into
Ecosystem Models

It has been well recognized that microbial mechanisms dominate the biological
aspects of soil biogeochemistry (Jenkinson and Ladd 1981; Staley et al. 1997;
Schimel and Gulledge 1998; Falkowski et al. 2008). However, soil models do not
always simulate the microbial roles on biogeochemistry in an explicit way (Schimel
2001). For example, first-order differential equations have been broadly used to
describe transformation rates of soil carbon and nitrogen pools, with rate constants
for these equations controlled by a variety of environmental factors such as soil
temperature, moisture, soil pH, texture, etc. (Manzoni and Porporato 2009). It has
been argued that these traditional soil models do simulate microbial mechanisms
implicitly, as the microbial impacts are embedded in the decomposition rate con-
stant, k (turnover rate of the pools) (Schimel 2001; Manzoni and Porporato 2009).
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However, compared to microbial kinetics, the first-order differential equations lack
feedbacks because they are developed based on a strategy of donor-controlled flow.
The mechanistic controls (primarily physiological and structural feedback) from
microbes are ignored.

3.6.1 Emergence of Microbial Models

Modeling microbial processes started as early as the development of the first soil
organic matter model (Veen and Paul 1981; Van Veen et al. 1984; Jenkinson et al.
1987; Parton et al. 1987). When the early soil organic matter models were built, soil
microbes were ignored. Later model evolution wherein the microbial pool was
treated as a small labile pool without any feedbacks to either upstream litter or soil
organic matter decomposition did not result in significant improvements of microbial
representation (Jenkinson et al. 1987; Schimel 2001). For example, the VVV model
(Veen and Paul 1981; Van Veen et al. 1984), Century model (Parton et al. 1987) and
RothC model (Coleman and Jenkinson 1996) separate microbial biomass as an
independent labile carbon pool, while none of the three models explicitly simulate
the impact of microbial regulation on litter and soil organic matter decomposition.
This lack of feedbacks has been identified as a potential uncertainty for projecting
soil carbon dynamics with Earth system models (Wieder et al. 2015; Luo et al.
2016). Therefore, there is a strong call for developing a microbial modeling frame-
work for use in Earth system models (DeLong et al. 2011; Treseder et al. 2012; Xu
et al. 2014).

3.6.2 Classification of Microbial Physiology and Diversity
Simulated in Selected Models

A number of microbial models have been developed (Allison et al. 2010; Allison
2012; Wieder et al. 2013; Sulman et al. 2014). Some are individual-based microbial
models, emphasizing the societal and interactions between microbes (Kaiser et al.
2014, 2015); some are functional group-based microbial models to simulate trade-
offs among different microbial functions (Wieder et al. 2013, 2015; Xu et al. 2015);
some are enzyme-kinetics microbial models, emphasizing the dynamics of microbial
processes in response to different substrate quality and environmental conditions
(Allison et al. 2010; Wang et al. 2013a). In this section, we will review the state of
the art of microbial models simulating microbial physiology and diversity and show
the gaps which evidence need for future modeling efforts. Microbial models con-
sider various microbial traits or functions. Categorized below are the primary aspects
of microbial physiology and diversity that have been modeled (Table 3.2, Fig. 3.2).
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This section reviews a few of the typical microbial models developed over the
past decade (it is not intended to be a comprehensive review).

3.6.2.1 Physiological Limits

All living organisms have limits for physiological functioning. The physiological
limits could be soil temperature, soil moisture, soil pH, oxygen, substrate avail
ability, etc. For example, the lowest currently reported temperature for soil microbial
respiration is �39 �C, although it has been suggested that activity at lower temper-
atures is possible (Panikov et al. 2006). Models normally simulate microbial activ-
ities over a limited range of temperature and soil moisture. For example, �2 �C has
been considered as a threshold for microbial activities in the microbial community

Table 3.2 Microbial physiological functions represented in a group of selected microbial models

Microbial
functions Model representation Models References

Physiological
limits

Ranges of microbial
responses (e.g., pH,
oxygen, redox, water
potential)

CLM-Microbe,
CORPS, MIMIC, Tang
and Riley model,
Manzoni’s model

Manzoni et al. (2014),
Sulman et al. (2014),
Wieder et al. (2014), Tang
and Riley (2015), and Xu
et al. (2015)

Microbial
growth

Monod, logistic
growth

CLM-Microbe,
Manzoni’s model,
MIMIC, MEND

Wang et al. (2013a),
Manzoni et al. (2014),
Wieder et al. (2014), and Xu
et al. (2014)

Plant-microbe
interaction

Rhizosphere, compe-
tition for nutrients

CORPSE,
CLM-Microbe

Sulman et al. (2014) and Xu
et al. (2014)

Stoichiometry Dynamic elemental
ratio (C:N:P:S)

Kaiser’s model,
SCAMPS,
CLM-Microbe, GDM

Moorhead and Sinsabaugh
(2006), Kaiser et al. (2014),
Sistla et al. (2014), Xu et al.
(2014), and Zechmeister-
Boltenstern et al. (2015)

Microbial
interaction

Competition, altru-
ism (compete for
space, nutrients)

DEMENT, Kaiser’s
model

Allison (2012), Kaiser et al.
(2014), and Kaiser et al.
(2015)

Microbial
dormancy

Active and total bio-
mass or microbial
dormancy

MEND, Manzoni’s
model, CLM-Microbe

Manzoni et al. (2014), Xu
et al. (2014), and Wang
et al. (2015)

Community
structure shift

Bacteria: fungi, K-
and r-strategy

MIMIC, SCAMPS Sistla et al. (2014) and
Wieder et al. (2014)

Environmental
control

Function of tempera-
ture, moisture, pH,
etc.

MIMIC, GDM,
CLM-Microbe,
DEMENT, MEND,
Kaiser’s model,
SCAMPS

Moorhead and Sinsabaugh
(2006), Moorhead et al.
(2012), Wang et al. (2013a),
Kaiser et al. (2014), Moor-
head et al. (2014), Sistla
et al. (2014), Wieder et al.
(2014), and Xu et al. (2014)
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land surface model, CLM-Microbe (Xu et al. 2014), which simulates the seasonality
of microbial activities in response to changes in soil temperature and moisture. In
addition, soil physical conditions provide limits for microbial physiology. For
example, MIMIC model, CORPS (Sulman et al. 2014), and the model of Tang
and Riley (Tang and Riley 2015) simulate the effects of physical protection on
microbial carbon cycling. Manzoni’s model simulates water diffusion and its
impacts on microbial activity (Manzoni et al. 2014). All these physiological limits
control the microbial activity to maintain microbes functioning well under favorable
conditions while avoiding detrimental conditions. A good simulation of microbial
physiological limits is fundamental in order for models to accurately capture the real
dynamics of ecosystem functions.

3.6.2.2 Microbial Growth

Microbial growth is the fundamental component in microbial models designed to
simulate microbial mechanisms and their controls on ecosystem functions. Normally
microbial growth is a function of substrate and microbial uptake under the control of

Microbe
(C:N:P)

Microbe
(C:N:P)

Litter with various
quality (C:N:P)

Nutrient
(N, P)

Soil organic matter (C:N:P)

CO2

(B)

(E)

(F)
Dormant

(C)

(D)

(A)
(G)

Fig. 3.2 Conceptual diagram showing microbial physiology and diversity in models (A) physio-
logical limits, (B) microbial growth, (C) plant-microbe interaction, (D) stoichiometry, (E) microbial
interaction, (F) microbial dormancy, and (G) microbial community structure; solid lines indicate
flows and dashed lines indicate controls; the red dash lines represent microbial regulation of soil
organic matter decomposition; the dashed rectangle represents the entire microbial population in
soils, which is composed of different states and functional groups of microbes
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environmental factors, simulated by Monod and Michaelis-Menten functions. Most
microbial models simulate microbial assimilation of carbon. The CLM-Microbe
model simulates microbial assimilation of soil organic carbon under the control of
litter quality and microbial physiology and microbial biomass as a net balance
between growth and respiration (Xu et al. 2014). The CUE parameter has been
considered as an important factor controlling microbial carbon assimilation and
carbon sequestration in global soils because it determines how much carbon is
released as CO2 versus how much carbon is used for biomass buildup (Manzoni
and Porporato 2009; Wieder et al. 2013; Xu et al. 2014; Wang et al. 2013a, b). The
environmental controls on microbial growth are another important aspect of micro-
bial modeling, for example, warming impacts on microbial growth efficiency (sim-
ilar to CUE) (Wieder et al. 2013; Xu et al. 2014) and moisture impacts on microbial
activities (Manzoni et al. 2014). Microbial metabolic quotient (the biomass-specific
microbial respiration rate) is another important parameter for simulating microbial
activities that can benefit the performance of microbial models (Xu et al. 2017).

3.6.2.3 Plant-Microbe Interactions

Plant roots have strong impacts on microbial growth and uptake of nutrients. Of the
developed microbial models, the CORPS model simulates plant impacts on micro-
bial cycling of soil carbon (Sulman et al. 2014), and the CLM-Microbe model
explicitly simulates root exudation. However, most microbial models are based
upon a theoretical framework and have not been incorporated into real ecosystem
models. Therefore, microbial models typically lack the important aspects of inter-
actions with plants and plant roots. Plant-microbe interactions have a variety of
ecological consequences (Kuzyakov and Xu 2013). For example, plant-microbe
competition for nitrogen affects carbon sequestration of the ecosystem (de Vries
and Bardgett 2012), and plant-microbe interactions facilitate plant diversity and
production (Van Der Heijden et al. 2008). Considering the centrality of plant-
microbe interactions to the biology of both plants and soil microbes, a larger
investment in these phenomena is warranted in future microbial modeling develop-
ment and application. The impact of roots on microbial activities is a particularly
important mechanism models should represent.

3.6.2.4 Stoichiometry

Substrate quality (primarily expressed as C:N stoichiometry or lignin content)
controls microbial activity. The C:N ratio has been explicitly simulated in SCAMPS
(Sistla et al. 2014) and implicitly in CLM-Microbe (Xu et al. 2014). The GDM
model uses a lignocellulose index (LCI) to simulate substrate quality impacts on
litter decomposition. The LCI is well correlated with litter stoichiometry. The
individual-based microbial model, such as Kaiser’s model, also explicitly simulates
microbial community dynamics and stoichiometry during litter decomposition
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(Kaiser et al. 2014). Strong microbial homeostatic regulation has also been found for
nitrogen, phosphorus, and sulfur (Zechmeister-Boltenstern et al. 2015; Sinsabaugh
et al. 2016). We need to further advance our understanding with a framework that
explicitly simulates both microbial dynamics in assimilating substrates with varying
stoichiometry and how microbes respond to different qualities of substrates. The
interplay of stoichiometry in litter and the microbial community under changing
environmental conditions is additional critical information needed for better simu-
lations of microbial physiology.

3.6.2.5 Microbial Community Interactions

Interactions within microbial communities are widely recognized as having important
controlling effects upon microbial activity (Faust and Raes 2012). For example, micro-
bial interactions lead to evolutional separation of generalists and specialism for enzyme
production (Nam et al. 2012), cheaters and producers of enzyme production (Travisano
and Velicer 2004). Yet, these interactions have not been well simulated in most
microbial models. There are a few approaches used in microbial models to simulate
different groups of microbes. For example, the MIMIC model uses the r- and
K-strategies for separating the microbial groups, as suggested by Fierer in a previous
concept paper (Fierer et al. 2007). The GDMmodel simulates interactions among three
guilds of microbes (groups of microbes that exploit the same resources, see Moorhead
and Sinsabaugh 2006). Kaiser’s model simulates societal interaction among individual
microbes (Kaiser et al. 2015). The Decomposition Model of Enzymatic Traits
(DEMENT) model simulates trade-offs between different functional groups (Allison
2012). Although multiple microbial groups or traits have been simulated to a certain
degree in some microbial models, the representation of microbial community interac-
tions in models is far from complete. Given the importance of microbial interactions in
ecosystem functions and microbial evolution (Faust and Raes 2012), more effort should
be invested to modeling microbial interactions and their impacts on ecosystem
functions.

3.6.2.6 Microbial Dormancy

The majority of microbial biomass in soils is in an inactive state during most of the
year. Because only a small portion of the microbial biomass is active, the ecosystem
functions are carried out by this active microbial biomass. The active microbial
biomass and dormant biomass should be differentiated, and this separation has
proved to be important for better simulating microbial processes (Wang et al.
2015). Over the past years, few microbial models have been developed to simulate
the dormant microbial biomass either as an independent pool or as a season over
certain time period. Both the MEND model and Manzoni’s model have separated
active versus dormant microbial biomass from the total microbial biomass pool
(Manzoni et al. 2014; Wang et al. 2015). In a different approach, the
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CLM-Microbe model simulates temporally separated active microbial biomass and
its impacts on litter mineralization as a seasonality component of microbial func-
tioning (Xu et al. 2014). Both approaches have been proved to be robust in
simulating microbial biomass and their contribution to carbon cycling.

3.6.2.7 Community Structure

The Guild Decomposition Model (GDM) is among the first to simulate the dynamic
of microbial community shift during litter decay (Moorhead and Sinsabaugh 2006).
The MIMIC model simulated two microbial functional groups (MICr and MICk) to
represent r- and K-strategists (Wieder et al. 2014). The SCAMPS model is a
mechanistic microbial model explicitly simulating the separation of bacteria- and
fungi-like microbes and the interplay dynamics of these two groups of microbes
(Sistla et al. 2014). Moorhead’s model is based on guilds, which represent the
microbial groups with different traits (Moorhead and Sinsabaugh 2006). Xu’s
functional group-based methane model (incorporated in CLM-Microbe) also simu-
lates different microbial functional groups and their dynamics in response to
substrate and environmental conditions (Xu et al. 2015). These models consider
the dynamics of different microbial functional groups, representing the microbial
community structure.

In summary, microbial physiology and community structure have been simulated
to a certain degree, and some convincing results have been obtained. While much
knowledge has accumulated, it is important to note that modeling microbial phys-
iology and diversity is still in its infancy. More effort is particularly needed in the
areas of microbial interactions, community structure shifts and their associated
changes in microbial functions, ecological stoichiometry of phosphorus beyond
carbon and nitrogen, and microbial interactions with plants. All these aspects are
beneficial for model improvement in simulating terrestrial microbial biogeochemis-
try in the context of climate change. We anticipate that the investment of modeling
microbial processes in theoretical and applicable ways will pay off with significant
contributions to the robustness of Earth system models in one or two decades.

3.7 Conclusion

The broad range of topics relevant to connecting soil microbial communities to
ecosystem function underscores the need for interdisciplinary studies. In particular,
it is profitable for soil microbiologists and ecosystem modelers to work together, as
this can inform microbiologists how to tailor their studies to make them immediately
helpful to modelers, while helping modelers become aware of the importance of
mechanisms they may not have considered. The field of environmental microbiology
has been revolutionized by modern molecular and isotopic techniques. As computers
become more powerful, modelers will be less hesitant to build increasing complexity
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into their models. It is likely that this field is already, or will soon become, limited
only by the level of communication among scientists studying the same processes at
multiple scales and the imagination of these researchers.
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