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Abstract. We introduce a high-order numerical method for solving non-
linear fractional differential equation with non-uniform meshes. We first
transform the fractional nonlinear differential equation into the equiv-
alent Volterra integral equation. Then we approximate the integral by
using the quadratic interpolation polynomials. On the first subinterval
[t0, t1], we approximate the integral with the quadratic interpolation
polynomials defined on the nodes t0, t1, t2 and in the other subinter-
val [tj , tj+1], j = 1, 2, . . . N − 1, we approximate the integral with the
quadratic interpolation polynomials defined on the nodes tj−1, tj , tj+1. A
high-order numerical method is obtained. Then we apply this numerical
method with the non-uniform meshes with the step size τj = tj+1 − tj =
(j + 1)μ where μ = 2T

N(N+1)
. Numerical results show that this method

with the non-uniform meshes has the higher convergence order than the
standard numerical methods obtained by using the rectangle and the
trapzoid rules with the same non-uniform meshes.
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1 Introduction

Consider the following nonlinear fractional differential equation, with α > 0,

C
0 Dα

t y(t) = f(t, y(t)), t > 0, y(k)(0) = y
(k)
0 , k = 0, 1, . . . , �α� − 1, (1)

where C
0 Dα

t y(t) denotes the Caputo fractional derivative and �α� is the smallest
integer ≥ α. Here y

(k)
0 are the initial values.
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It is well-known that (1) is equivalent to, [4, Lemma 2.3]

y(t) =
�α�−1∑

ν=0

y
(ν)
0

tν

ν!
+

1
Γ (α)

∫ t

0

(t − s)α−1f(s, y(s)) ds. (2)

For the existence and uniqueness of the solution of (1) and the application of
the Newton iteration method for solving the nonlinear equation of the proposed
numerical method, we demand that the function f is continuous on a suitable
set (0, T )×(c, d) and f(t, ·) ∈ C2[c, d] for some c, d ∈ R

+ and any fixed t ∈ [0, T ].
Under these assumptions, Diethelm et al. [4, Theorems 2.1, 2.2] showed that (1)
has a unique solution y on some interval [0, T ].

There are many works in the literature to consider the numerical methods for
solving (1), see, e.g., [1,2,4,8,13,15,16]. Most numerical methods for solving (1)
are designed and analyzed with the uniform meshes, see, e.g., [4–6,8,16]. Since
the fractional differential equation is a nonlocal problem and the derivative of
the solution of (1) has the singularity at t = 0, it is not possible to obtain
the high order numerical methods with uniform meshes. Therefore it is natural
to use the non-uniform meshes to capture the singularity near t = 0. Diethelm
[3, Theorem 3.1] used the graded meshes to recover the optimal convergence order
for the approximation of the Hadamard finite-part integral. Recently Stynes
et al. [11,12] applied the graded meshes to recover the convergence order of the
finite difference method for solving time-fractional diffusion equation when the
solution is not sufficiently smooth. Li et al. [7] considered the error estimates
of the rectangle formula, trapezoid formula and the predictor-corrector scheme
with non-uniform meshes for solving (1) under the assumption that the solution
is sufficiently smooth. Other works for solving fractional differential equations
with non-uniform meshes may be found in, for example, [7,14,17,18].

Recently, Liu et al. [9] designed a predictor-corrector numerical method for
solving (1) with graded meshes and the detailed error estimates are provided.
Liu et al. [10] also introduced a numerical method with non-uniform meshes for
solving (1) and the detailed error estimates are considered. This paper is the
continuation of the works in [9,10] and we will introduce a high order numer-
ical method for solving (1) with non-uniform meshes. More precisely, we first
approximate the integral in (2) with the piecewise quadratic interpolation poly-
nomials with non-uniform meshes. We then use the Newton iteration for solving
the nonlinear equation. Numerical examples show that this method has the high
order convergence for solving nonlinear fractional differential equation with non-
uniform meshes, where the solution of the fractional differential equation has the
low regularity at t = 0.

The novelties of this work are as follows:

1. A new way to approximate the integral in the Volterra integral Eq. (2) by
using the piecewise quadratic polynomials is introduced.

2. A high order numerical method for solving nonlinear fractional differential Eq.
(1) with non-uniform meshes is obtained which is particular useful when f is
not sufficiently smooth with respect to time t. The convergence order of the
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proposed numerical method is higher than the available numerical methods
in [7,9,10] for solving (1) with non-uniform meshes.

The paper is organized as follows. In Sect. 2, we introduce a high-order
numerical method for solving (1). In Sect. 3, we give a numerical example which
shows that the numerical results are consistent with the theoretical results.

2 A High Order Numerical Method with Non-uniform
Meshes

For simplicity, we only consider the case with α ∈ (0, 1) below. Similarly one
may consider the general case with α > 1. More precisely, we shall consider the
numerical algorithm for solving, with α ∈ (0, 1),

y(t) − y(0) =
1

Γ (α)

∫ t

0

(t − s)α−1f(s, y(s)) ds. (3)

Let N be a positive integer. Let 0 = t0 < t1 < · · · < tn < tn+1 = T, n =
0, 1, 2, . . . , N −1 be the time partition of [0, T ]. We want to find the approximate
value yn+1 of y(tn+1) at t = tn+1. We shall consider the approximation of the
following integral, with n = 0, 1, 2, . . . , N − 1,

In+1 =
∫ tn+1

0

(tn+1 − s)α−1f(s, y(s)) ds =
n∑

j=0

∫ tj+1

tj

(tn+1 − s)α−1f(s, y(s)) ds.

It can be approximated by the following approach

In+1 ≈
n∑

j=0

∫ tj+1

tj

(tn+1 − s)α−1f̃j(s, y(s)) ds,

where f̃j(s, y(s)), j = 0, 1, 2, . . . , n is the approximation of f(s, y(s)) on the inter-
val [tj , tj+1].

It will lead to different scheme by choosing different f̃j(s, y(s)). In [7], Li et al.
introduced the fractional rectangle, trapezoid, and predictor-corrector methods
respectively. In this paper, we shall construct a high order numerical method
for solving (2) by approximating the integral in (2) with the piecewise quadratic
polynomials. Numerical examples in Sect. 3 show that the convergence order of
the proposed numerical method is almost 3 for the sufficiently smooth function
f(t, y(t)) and the suitable chosen non-uniform meshes as expected.

Let P
(j)
2 (s) denote the quadratic interpolation polynomial approximation

of f(s, y(s)) on the interval [tj , tj+1], j = 0, 1, 2, . . . , n, where P
(0)
2 (s) is the

quadratic interpolation polynomial of f(t, y(t)) on the nodes t0, t1, t2 and
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P
(j)
2 (s), j = 1, 2, . . . , n are the quadratic interpolation polynomial of f(t, y(t))

on the nodes tj−1, tj , tj . More precisely, we have

P
(0)
2 (s) =

(s − t1)(s − t2)
(t0 − t1)(t0 − t2)

f(t0, y(t0)) +
(s − t0)(s − t2)

(t1 − t0)(t1 − t2)
f(t1, y(t1))

+
(s − t0)(s − t1)

(t2 − t0)(t2 − t1)
f(t2, y(t2)),

and, with j = 1, 2, . . . , n,

P
(j)
2 (s) =

(s− tj)(s− tj+1)

(tj−1 − tj)(tj−1 − tj+1)
f(tj−1, y(tj−1)) +

(s− tj−1)(s− tj+1)

(tj − tj−1)(tj − tj+1)
f(tj , y(tj))

+
(s− tj−1)(s− tj)

(tj+1 − tj−1)(tj+1 − tj)
f(tj+1, y(tj+1)).

We then get the following numerical approximate scheme for
approximating (2),

yn+1 − y0 =
n+1∑

j=0

˜̃wj,n+1f(tj , yj), (4)

where, after some simple but tedious calculations,

1

Γ (α + 3)
w̃j,n+1 (5)

=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

2
(t0−t1)(t0−t1)C0 j = 0,

2
(t1−t0)(t1−t2)C1 + 1

(t1−t2)(t1−t3)D1 j = 1,

2
(t2−t0)(t2−t1)C2 + 1

(t2−t1)(t2−t3)D2 + 1
(t2−t3)(t2−t4)E2 j = 2,

1
(tj−tj−2)(tj−tj−1)Cj + 1

(tj−tj−1)(tj−tj+1)Dj + 1
(tj−tj+1)(tj−tj+2)Ej j = 3, 4, . . . , n − 1,

1
(tn−tn−2)(tn−tn−1)Dn + 1

(tn−tn−1)(tn−tn+1)En j = n,

1
(tn+1−tn−1)(tn+1−tn)En+1 j = n + 1.

Here

C0 =α(α + 1)
[
(tn+1 − t0)α+2 − (tn+1 − t1)α+2

]

− α(α + 2)(2tn+1 − t1 − t2)
[
(tn+1 − t0)α+1 − (tn+1 − t1)α+1

]

+ (α + 1)(α + 2)(tn+1 − t1)(tn+1 − t2)
[
(tn+1 − t0)α − (tn+1 − t1)α

]
,

C1 =α(α + 1)
[
(tn+1 − t0)α+2 − (tn+1 − t1)α+2

]

− α(α + 2)(2tn+1 − t0 − t2)
[
(tn+1 − t0)α+1 − (tn+1 − t1)α+1

]

+ (α + 1)(α + 2)(tn+1 − t0)(tn+1 − t2)
[
(tn+1 − t0)α − (tn+1 − t1)α

]

D1 =α(α + 1)
[
(tn+1 − t2)α+2 − (tn+1 − t3)α+2

]

− α(α + 2)(2tn+1 − t2 − t3)
[
(tn+1 − t2)α+1 − (tn+1 − t3)α+1

]

+ (α + 1)(α + 2)(tn+1 − t2)(tn+1 − t3)
[
(tn+1 − t2)α − (tn+1 − t3)α

]
,
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C2 =α(α + 1)
[
(tn+1 − t0)α+2 − (tn+1 − t1)α+2

]

− α(α + 2)(2tn+1 − t0 − t1)
[
(tn+1 − t0)α+1 − (tn+1 − t1)α+1

]

+ (α + 1)(α + 2)(tn+1 − t0)(tn+1 − t1)
[
(tn+1 − t0)α − (tn+1 − t1)α

]
,

D2 =α(α + 1)
[
(tn+1 − t2)α+2 − (tn+1 − t3)α+2

]

− α(α + 2)(2tn+1 − t1 − t3)
[
(tn+1 − t2)α+1 − (tn+1 − t3)α+1

]

+ (α + 1)(α + 2)(tn+1 − t1)(tn+1 − t3)
[
(tn+1 − t2)α − (tn+1 − t3)α

]
,

E2 =α(α + 1)
[
(tn+1 − t3)α+2 − (tn+1 − t4)α+2

]

− α(α + 2)(2tn+1 − t3 − t4)
[
(tn+1 − t3)α+1 − (tn+1 − t4)α+1

]

+ (α + 1)(α + 2)(tn+1 − t3)(tn+1 − t4)
[
(tn+1 − t3)α(tn+1 − t4)α

]
,

Cj =α(α + 1)
[
(tn+1 − tj)α+2 − (tn+1 − tj+1)α+2

]

− α(α + 2)(2tn+1 − tj−2 − tj−1)
[
(tn+1 − tj)α+1 − (tn+1 − tj+1)α+1

]

+ (α + 1)(α + 2)(tn+1 − tj−2)(tn+1 − tj−1)
[
(tn+1− tj)α − (tn+1− tj+1)α

]
,

Dj =α(α + 1)
[
(tn+1 − tj)α+2 − (tn+1 − tj+1)α+2

]

− α(α + 2)(2tn+1 − tj−1 − tj+1)
[
(tn+1 − tj)α+1 − (tn+1 − tj+1)α+1

]

+ (α + 1)(α + 2)(tn+1 − tj−1)(tn+1 − tj+1)
[
(tn+1− tj)α − (tn+1− tj+1)α

]
,

Ej =α(α + 1)
[
(tn+1 − tj)α+2 − (tn+1 − tj+1)α+2

]

− α(α + 2)(2tn+1 − tj+1 − tj+2)
[
(tn+1 − tj)α+1 − (tn+1 − tj+1)α+1

]

+ (α + 1)(α + 2)(tn+1 − tj+1)(tn+1 − tj+2)
[
(tn+1− tj)α − (tn+1− tj+1)α

]
,

Dn =α(α + 1)
[
(tn+1 − tn−1)

α+2 − (tn+1 − tn)α+2]

− α(α + 2)(2tn+1 − tn−2 − tn−1)
[
(tn+1 − tn−1)

α+1 − (tn+1 − tn)α+1]

+ (α + 1)(α + 2)(tn+1 − tn−2)(tn+1 − tn−1)
[
(tn+1 − tn−1)

α − (tn+1 − tn)α]
,

En =α(α + 1)(tn+1 − tn)α+2 − α(α + 2)(tn+1 − tn−1)(tn+1 − tn)α+1

+ (α + 1)(α + 2)(tn+1 − tn−1)(tn+1 − tn)α,

En+1 =α(α + 1)(tn+1 − tn)α+2 − α(α + 2)(2tn+1 − tn−1 − tn)(tn+1 − tn)α+1

+ (α + 1)(α + 2)(tn+1 − tn−1)(tn+1 − tn)(tn+1 − tn)α.
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Now we need to solve yn+1 in (4) with the weights defined in (5). Let us here
only consider how to calculate y1. The calculation of yl, l ≥ 2 is similar. Note
that, by (4),

y1 = y0 + ˜̃w0,1f(t0, y0) + ˜̃w1,1f(t1, y1).

Denote
g(y1) = y1 − [y0 + ˜̃w0,1f(t0, y0) + ˜̃w1,1f(t1, y1)].

We then need to solve g(y1) = 0 which is a nonlinear equation with respect to
the variable y1. Let z0 = y0 be the initial guess, then y1 can be approximated
by zM ≈ y1 which is obtained by the following Newton iteration formula

zl+1 = zl − g(zl)
g′(zl)

, l = 0, 1, 2, . . . ,M.

Here g′ denotes the derivative of g and the positive integer M ∈ N can be deter-
mined by using the error control quantity |zM −zM−1| < 10−10. The assumption
for f in our paper guarantees that the sequence zl, l = 0, 1, 2, . . . is convergent.

Remark 1. The work in this paper is the extension of the work in [7] where the
authors introduced the fractional rectangle, trapezoid and predictor-corrector
methods with non-uniform meshes for solving (1). The stability and error esti-
mates are discussed in [7]. One may use the similar approach to discuss the
stability and error estimates of the proposed numerical method (4) in this work.

3 Numerical Results

We will now look at some numerical results for the numerical method defined in
(4) with non-uniform mesh with the time step size

τj = tj+1 − tj = (j + 1)μ, j = 0, 1, 2, . . . , N − 1, (6)

where μ = 2T
N(N+1) .

Remark 2. Following the analysis in [7, Sect. 4], if f(t, y(t)) is sufficiently smooth,
the convergence orders of the proposed numerical methods in [7] for both uni-
form and non-uniform meshes are highly possible the same. But for non-smooth
function f(t, y(t)), non-uniform meshes are much suitable than uniform meshes.
For the non-smooth function f(t, y(t)), Li et al. [7] proved the error estimates
for the fractional rectangle, trapezoid and predictor-corrector methods with
the concrete non-uniform meshes (6). The mesh (6) is not the unique non-
uniform meshes in literature. In general one may consider the graded meshes
with tj = T (j/N)r, r > 0, see, e.g., [9,10]. In fact, after a simple calculation,
one may see that the mesh (6) is equivalent to the graded mesh with r = 2.
In some cases, one may get better convergence order when choosing the graded
mesh with r > 2 for some non-smooth function f(t, y(t)).
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In this section, we shall consider two examples. In the first example, we
consider the case where the solution of (1) is very smooth and in the second
example we consider the case where the solution is less regular.

Example 1. Consider, with α ∈ (0, 1) and β > 0,

C
0 Dα

t y(t) =
Γ (1 + β)

Γ (1 + β − α)
tβ−α + t2β − y2, (7)

where f(t, y) = Γ (1+β)
Γ (1+β−α) t

β−α + t2β − y2 and the exact solution is y(t) = tβ . We
choose β = 2 and the exact solution is now very smooth y(t) = t2.

In Table 1, we list the experimentally determined convergence orders for the
quadratic method (4) with respect to the different α = 0.4, 0.6, 0.8. We observe
that the quadratic method with the non-uniform meshes has the convergence
order almost 3 as we expected.

Table 1. Errors at T = 1 by using quadrature method (4) in Example 1

Meshes N α = 0.4 EOC α = 0.6 EOC α = 0.8 EOC

Uniform 40 2.61E−06 6.85EE−07 3.70E−06

80 6.56E−07 1.99 1.75E−07 1.97 9.26E−07 1.99

160 1.64E−07 1.99 4.39E−08 1.99 2.32E−07 1.99

320 4.10E−08 1.99 1.10E−08 1.99 5.79E−08 2.00

640 1.03E−08 2.00 2.74E−09 2.00 1.45E−08 2.00

Non-Uniform 40 1.58E−06 2.09E−06 1.80E−06

80 2.01E−07 2.98 2.59E−07 3.00 2.21E−07 3.02

160 2.54E−08 2.98 3.23E−08 3.00 2.73E−08 3.01

320 3.21E−09 2.99 4.03E−09 3.00 3.39E−09 3.00

640 4.04E−10 2.99 5.04E−10 3.00 4.24E−10 3.00

Example 2. We consider the same equation as in Example 1 with β = 0.9. In
this case the exact solution is y(t) = t0.9 which is not so regular. In Table 2,
we observe that the convergence orders are much lower than the smooth case in
Example 1 for both uniform and non-uniform meshes. This is because f(t, y(t))
behaves as tβ−α, β = 0.9 in Example 2 which is less smoother than t2−α in
Example 1. The convergence order depends on the smoothness of the regularity
of f(t, y(t)), see [7,9,10].
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Table 2. Errors at T = 1 by using quadrature method (4) in Example 2

Meshes N α = 0.4 EOC α = 0.6 EOC α = 0.8 EOC

Uniform 40 4.42E−04 1.91E−03 5.76E−03

80 2.44E−04 0.86 1.04E−03 0.88 3.11E−03 0.89

160 1.32E−04 0.88 5.59E−04 0.89 1.67E−03 0.89

320 7.13E−04 0.89 2.99E−04 0.90 8.94E−04 0.90

640 3.83E−05 0.90 1.61E−04 0.90 4.79E−04 0.90

Non-Uniform 40 1.03E−04 2.43E−04 4.58E−04

80 2.97E−05 1.79 6.98E−05 1.79 1.31E−04 1.79

160 8.54E−06 1.80 2.01E−05 1.79 3.78E−05 1.80

320 2.45E−06 1.80 5.76E−06 1.80 1.08E−05 1.80

640 7.04E−07 1.80 1.65E−06 1.80 3.11E−06 1.80
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