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Preface

The ninth issue of the series of international conferences on Numerical Methods and
Applications (NMA 2018) held in Bulgaria took place in the beautiful resort Borovets
during the period August 20–24, 2018. The conference was organized by the Faculty of
Mathematics and Informatics of Sofia University St. Kliment Ohridski, in co-operation
with two institutes of the Bulgarian Academy of Sciences: the Institute of Mathematics
and Informatics and the Institute of Information and Communication Technologies.

In total, 112 participants from 23 countries all over the world attended the con-
ference. The nice weather and the fresh air of Rila mountain highly contributed to the
creative atmosphere of the conference, providing an opportunity for researchers to
present their recent achievements, share ideas, continue existing or start new fruitful
scientific cooperations.

A wide range of problems concerning both recent theoretical advances in numerical
methods and the application of numerical methods in mathematical modeling were
discussed at NMA 2018. In total, 92 talks, including four plenary lectures, were
delivered at the conference. Five special sessions featured in the scientific program:
Numerical Search and Optimization, Problem-driven Numerical Methods, Numerical
Methods for Fractional Diffusion Problems, Orthogonal Polynomials and Numerical
Quadratures, and Monte Carlo and Quasi-Monte Carlo Methods, along with a stream of
talks that formally do not fall into these sessions.

This volume contains 56 papers, based on the talks of the participants at NMA 2018,
including the plenary lectures of Jean-Claude Latché (France) and Francisco Gaspar
(The Netherlands). The abstracts of the other two plenary lectures, delivered by Jun Hu
(China) and Rafael Kruse (Germany), are also presented here. Each of the papers in this
volume has passed a single-blind review procedure. We thank all the authors who
contributed to the volume.

The success of NMA 2018 would not have been possible without the joint efforts
and hard work of many colleagues from various institutions and organizations. We are
grateful to all members of the Organizing and Scientific Committees, to the organizers
of the special sessions, and to all reviewers. We are also thankful to the local staff for
the excellent service.

The conference was partially supported by the Sofia University Research Fund
through Grant 80-10-231/2018.

November 2018 Geno Nikolov
Natalia Kolkovska
Krassimir Georgiev
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Adaptive and Multilevel Mixed Finite Element
Methods

Jun Hu

Peking University, Beijing, China
hujun@math.pku.edu.cn

The problems that are most frequently solved in scientific and engineering computing
may probably be the elasticity equations. The finite element method (FEM) was
invented in analyzing the stress of the elastic structures in the 1950s. The mixed FEM
within the Hellinger–Reissner (H-R) principle for elasticity yields a direct stress
approximation since it takes both the stress and displacement as an independent
variable. The mixed FEM can be free of locking for nearly incompressible materials,
and be applied to plastic materials, and approximate both the equilibrium and traction
boundary conditions more accurate. However, the symmetry of the stress plus the
stability conditions make the design of the mixed FEM for elasticity surprisingly hard.
In fact, “Four decades of searching for mixed finite elements for elasticity beginning in
the 1960s did not yield any stable elements with polynomial shape functions”
[D. N. Arnold, Proceedings of the ICM, Vol. I: Plenary Lectures and Ceremonies
(2002)]. Since the 1960s, many mathematicians have worked on this problem but
compromised to weakly symmetric elements, or composite elements. In 2002, using the
elasticity complexes, Arnold and Winther designed the first family of symmetric mixed
elements with polynomial shape functions on triangular grids in 2D.

The first part of the talk presents a new framework to design and analyze the mixed
FEM of elasticity problems, which yields optimal symmetric mixed FEMs. In addition,
those elements are very easy to implement since their basis functions, based on those
of the scalar Lagrange elements, can been explicitly written down by hand. The main
ingredients of this framework are a structure of the discrete stress space on both
simplicial and product grids, two basic algebraic results, and a two-step stability
analysis method.

The second part of the talk gives a unified analysis of both convergence and
optimality of adaptive mixed finite element methods for a class of problems when the
finite element spaces and corresponding a posteriori error estimates satisfy five
hypotheses. We prove that these five conditions are sufficient for convergence and
optimality of the adaptive algorithms under consideration. The main ingredient for the
analysis is a new method to analyze both discrete reliability and quasi-orthogonality.
As applications, we prove these five hypotheses for the Raviart–Thomas and Brezzi–
Douglas–Marini elements of the Poisson and Stokes problems in both two and three
dimensions. To extend the above result to linear elasticity problems, we propose a
reliable and efficient a posteriori error estimator for the symmetric mixed finite element
methods for linear elasticity problems. In addition, we construct nested mixed finite
elements by relaxing C0 continuity of the existing mixed elements in the literature.



The third part of the talk constructs a block diagonal preconditioner with the
minimal residual method and a block triangular preconditioner with the generalized
minimal residual method for the symmetric mixed finite element methods of linear
elasticity. A fast auxiliary space preconditioner based on the H1 conforming linear
element of the linear elasticity problem is then designed for solving the Schur com-
plement. For both diagonal and triangular preconditioners, it is proved that the con-
ditioning numbers of the preconditioned systems are bounded above by a constant
independent of both the crucial Lamé constant and the mesh-size.

XII J. Hu



Error Analysis of Randomized Time-Stepping
Methods for Non-autonomous Evolution

Equations with Time-Irregular Coefficients

Raphael Kruse

Technische Universität Berlin, Straße des 17. Juni 136, 10623 Berlin, Germany
kruse@math.tu-berlin.de

In this talk, we consider the numerical approximation of Carathéodory-type
differential equations of the form

u0ðtÞ ¼ f ðt; uðtÞÞ; t 2 ð0;TÞ; uð0Þ ¼ u0;

and of nonlinear and non-autonomous evolution equations of the form

u0ðtÞþAðtÞuðtÞ ¼ f ðtÞ; t 2 ð0; TÞ; uð0Þ ¼ u0;

where f and A may be discontinuous with respect to the time variable. In this
non-smooth situation, it is notoriously difficult to construct numerical algorithms with a
positive convergence rate. In fact, it can be shown that any deterministic algorithm
depending only on point evaluations may fail to converge if, for instance, A and f only
satisfy an L2-integrability condition with respect to t.

Instead, we propose to apply randomized Runge–Kutta methods to such
time-irregular evolution equations as, for instance, a randomized version of the back-
ward Euler method. We obtain positive convergence rates with respect to the
mean-square norm under considerably relaxed temporal regularity conditions. An
important ingredient in the error analysis consists of a well-known variance reduction
technique for Monte Carlo methods, the stratified sampling. We demonstrate the
practicability of the new algorithm in the case of a fully discrete approximation of a
more explicit parabolic PDE.

This talk is based on joint works [1, 2] with Monika Eisenmann (Technische
Universität Berlin), Mihály Kovács and Stig Larsson (both Chalmers University of
Technology) as well as Yue Wu (University of Edinburgh).

References

1. Eisenmann, M., Kovács, M., Kruse, R., Larsson, S.: On a randomized backward Euler method
for nonlinear evolution equations with time-irregular coefficients (2017, Preprint). arXiv:
1709.01018

2. Kruse, R., Wu, Y.: Error analysis of randomized Runge-Kutta methods for differential
equations with time-irregular coefficients. Comput. Methods Appl. Math. 17(3), 479–498
(2017). https://doi.org/10.1515/cmam-2016-0048

https://arxiv.org/abs/1709.01018
https://arxiv.org/abs/1709.01018
https://doi.org/10.1515/cmam-2016-0048
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New Stabilized Discretizations
for Poroelasticity Equations

Francisco J. Gaspar1(B) , Carmen Rodrigo2 , Xiaozhe Hu3 ,
Peter Ohm3, James Adler3 , and Ludmil Zikatanov4

1 Centrum Wiskunde & Informatica (CWI), Science Park 123,
1090 Amsterdam, The Netherlands

2 IUMA and Department of Applied Mathematics,
University of Zaragoza, Zaragoza, Spain

F.J.Gaspar@cwi.nl
3 Department of Mathematics, Tufts University, Medford, MA 02155, USA
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Abstract. In this work, we consider two discretizations of the three-field
formulation of Biot’s consolidation problem. They employ the lowest-
order mixed finite elements for the flow (Raviart-Thomas-Nédélec ele-
ments for the Darcy velocity and piecewise constants for the pressure)
and are stable with respect to the physical parameters. The difference
is in the mechanics: one of the discretizations uses Crouzeix-Raviart
nonconforming linear elements; the other is based on piecewise linear
elements stabilized by using face bubbles, which are subsequently elim-
inated. The numerical solutions obtained from these discretizations sat-
isfy mass conservation: the former directly and the latter after a simple
postprocessing.

Keywords: Stable finite elements · Poroelasticity equations
Mass conservation

1 Introduction

The interaction between the deformation and fluid flow in a fluid-saturated
porous medium is the object of study in poroelasticity theory. Such coupling
was already modeled in the early one-dimensional work of Terzaghi [1]. A more
general three-dimensional mathematical formulation was later established by
Maurice Biot in several pioneering publications [2,3]. Biot’s models are widely
used nowadays in the modeling of many applications in different fields, ranging
from geomechanics and petroleum engineering, to biomechanics. The existence
and uniqueness of the solution for these problems have been investigated by
Showalter in [4] and by Žeńı̌sek in [5]. Regarding the numerical simulation of the
poroelasticity equations, there have been numerous contributions using finite-
difference schemes [6,7] and finite-volume methods (see [8,9] for recent develop-
ments). Finite-element methods, which are the subject of this work, have also
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been considered (see for example the monograph by Lewis and Schrefler [10] and
the references therein).

For the three-field formulation, which includes as unknowns, the displace-
ments, the pressure, and the Darcy velocity, several conforming and non-
conforming discretizations involving Stokes-stable finite-element spaces were pro-
posed in recent years. For instance, a stable finite-element method based on non-
conforming Crouzeix-Raviart finite elements for the displacements, lowest order
Raviart-Thomas-Nédélec elements for the Darcy velocity, and piecewise con-
stants for the pressure was proposed in [11]. In [12], a family of parameter-robust
three-field finite-element schemes were proposed and analyzed and a general the-
ory for the error analysis was introduced. Additionally, a novel three-field formu-
lation based on displacement, pressure, and total pressure was proposed in [13]
with error estimates independent of the Lamé constants, yielding a locking-free
approach. Furthermore, in [14], one finds a parameter-robust error analysis and
optimal preconditioning techniques for several discretizations of three-field for-
mulations for Biot’s model.

2 Preliminaries: Model Problem and Notation

We consider the quasi-static Biot model for soil consolidation in a linearly elastic,
homogeneous, and isotropic porous medium saturated by a Newtonian fluid. The
weak form of Biot’s three-field consolidation model is given as: For each t ∈ (0, T ],
find (u(t),w(t), p(t)) ∈ V × W × Q such that

a(u,v) − (αp,div v) = (ρg,v), ∀ v ∈ V , (1)

(K−1μfw, r) − (p,div r) = (ρfg, r), ∀ r ∈ W , (2)

(
1
M

∂p

∂t
, q

)
+

(
α div

∂u

∂t
, q

)
+ (div w, q) = (f, q), ∀ q ∈ Q, (3)

where,

a(u,v) = 2μ
∫

Ω

ε(u) : ε(v) + λ

∫
Ω

div u div v. (4)

The initial condition at t = 0 is p+Mα div u = 0 for x ∈ Ω. Further, λ and μ are
the Lamé coefficients, M is the Biot modulus, α is the Biot-Willis constant, K
stands for the absolute permeability tensor, and μf is the viscosity of the fluid.
The unknown functions are the displacement vector, u, the pore pressure, p, and
the Darcy velocity, w. The function spaces used in the variational form are

V = {u ∈ H1(Ω) | u|Γ c
= 0},

W = {w ∈ H(div, Ω) | (w · n)|Γc
= 0},

Q = L2(Ω).
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Notice that these function spaces incorporate, as usual, the considered boundary
conditions, which here are the following:

p = 0, for x ∈ Γ t, σ′ n = 0, for x ∈ Γt, (5)

u = 0, for x ∈ Γ c,
∂p

∂n
= 0, for x ∈ Γc, (6)

with Γ = Γ t ∪ Γ c and Γt and Γc open (with respect to Γ ) subsets of Γ with
nonzero measure. The well-posedness of the continuous problem was established
by Showalter [4]. Next, we focus on the discretizations of Biot’s model.

2.1 Discretizations

We partition Ω into shape regular (bounded ratio of the diameter of the simplex
and the radius of the inscribed ball) n-dimensional simplices, so that we have
a valid triangulation, that is, the mesh is a n-homogenous simplicial complex
and Ω = ∪T∈Th

T . We denote the partition with Th, and we associate a triple of
piecewise polynomial, finite-dimensional spaces,

Vh ⊂ V , Wh ⊂ W , Qh ⊂ Q. (7)

While we specify two choices of the spaces Vh later, we fix Wh and Qh as follows,

Wh = {wh ∈ W | wh|T = a + ηx, a ∈ R
d, η ∈ R, ∀T ∈ Th},

Qh = {qh ∈ Q | qh|T ∈ P0(T ), ∀T ∈ Th},

where P0(T ) is the one-dimensional space of constant functions on T . We note
that the inclusions listed in (7) imply that the elements of Vh are continuous
on Ω, the functions in Wh have continuous normal components across element
boundaries, and that the functions in Qh are in L2(Ω). This choice of the pair
(Wh, Qh) is the standard lowest order Raviart-Thomas-Nédélec space and the
piecewise constant space (P0) (see [15–17]). For time discretization, we use a
backward Euler scheme with constant time-step size τ . The discrete scheme
corresponding to the three-field formulation (1)–(3) reads:

Find (um
h ,wm

h , pm
h ) ∈ Vh × Wh × Qh such that

a(um
h ,vh) − (αpm

h ,div vh) = (ρg,vh), ∀ vh ∈ Vh, (8)

τ(K−1μfwm
h , rh) − τ(pm

h ,div rh) = τ(ρfg, rh), ∀ rh ∈ Wh, (9)

(
1
M

pm
h , qh

)
+ (α div um

h , qh) + τ(div wm
h , qh) = (f̃ , qh), ∀ qh ∈ Qh, (10)

where (f̃ , qh) = τ(f, qh) +
(

1
M pm−1

h , qh

)
+

(
α div um−1

h , qh

)
, and,

(um
h ,wm

h , pm
h ) ≈ (u(·, tm),w(·, tm), p(·, tm)) , tm = mτ, m = 1, 2, . . .
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2.2 Some Additional Notation

We consider the set of (d − 1) dimensional faces from Th and denote this set by
E = Eo ∪ E∂ , where Eo is the set of interior faces (shared by two elements) and
E∂ is the set of faces on the boundary. In addition, EΓt is the set of faces on
the boundary Γt and Eo,t = Eo ∪ EΓt . Note, if Γt = ∂Ω (pure traction boundary
condition), then EΓt = E∂ and Eo,t = E . For any face e ∈ Eo, such that e ∈ ∂T ,
and T ∈ Th, let ne,T be the outward (with respect to T ) unit normal vector to
e. With every face e ∈ Eo, we also associate a unit vector ne which is orthogonal
to it. Clearly, if e ∈ ∂T we have ne = ±ne,T . For the boundary faces e ∈ E∂ , we
always set ne = ne,T , where T is the unique element for which we have e ⊂ ∂T .
For the interior faces, the particular direction of ne is not important, although
it is important that this direction is fixed. More precisely,

ne = ne,T+ = −ne,T− if e = T+ ∩ T−, and T± ∈ Th. (11)

Further, with every face e ∈ E , e = T+ ∩ T−, we associate a vector-valued
function Φe,

Φe = ϕene, with ϕe

∣∣∣∣
T±

= ϕe,T± , and ϕe,T± =
d+1∏

k=1,k �=j±
λk,T± , (12)

where λk,T± , k = 1, . . . , (d + 1) are barycentric coordinates on T± and j± is
the vertex opposite to the face e in T±. We note that Φe ∈ V is a continuous
piecewise polynomial function of degree d.

3 Conforming Choice of Displacement Space

We first introduce a well-known stabilization technique based on enrichment
of the piecewise linear continuous finite-element space, Vh,1, with edge/face
(2D/3D) bubble functions (see [18, pp. 145–149]). The discretization described
below is based on a Stokes-stable pair of spaces (Vh, Qh) with Vh ⊃ Vh,1 and
follows [18]. The stabilized finite-element space Vh is defined as

Vh = Vh,1 ⊕ Vb, Vb = span{Φe}e∈Eo,t . (13)

The degrees of freedom associated with Vh are the values at the vertices of
Th and the total flux through e ∈ Eo,t of (I − Π1)vh, where Π1 is the standard
piecewise linear interpolant, Π1 : C(Ω) 
→ Vh,1. Then, the canonical interpolant,
Π : C(Ω) 
→ Vh, is defined as:

Πv = Π1v +
∑

e∈Eo,t

veΦe, ve =
1
|e|

∫
e

(I − Π1)v.

With this choice of Vh, the variational form, (8)–(10), remains the same and we
have the following block form of the discrete problem:

A

⎛
⎜⎜⎝

Ub

Ul

W
P

⎞
⎟⎟⎠ = b, with A =

⎛
⎜⎜⎝

Abb Abl 0 Gb

AT
bl All 0 Gl

0 0 τMw τG
GT

b GT
l τGT −Mp

⎞
⎟⎟⎠ , (14)
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where Ub, Ul, W and P are the unknown vectors for the bubble components
of the displacement, the piecewise linear components of the displacement, the
Darcy velocity, and the pressure, respectively. The blocks in the definition of A
correspond to the following bilinear forms:

a(ub
h,vb

h) → Abb, a(ul
h,vb

h) → Abl, a(ul
h,vl

h) → All,

−(αph,div vb
h) → Gb, −(αph,div vl

h) → Gl, −(ph,div rh) → G,

(K−1μfwh, rh) → Mw,

(
1
M

ph, qh

)
→ Mp,

where uh = ul
h + ub

h, ul
h ∈ Vh,1, ub

h ∈ Vb, and an analogous decomposition for
vh. As shown in [19] the block Abb can be replaced by a diagonal matrix and
then all bubbles can be eliminated by static condensation.

Following the parameter robust analysis in [12] we introduce a norm on Vh ×
Wh × Qh:

|||(uh,wh, ph)||| :=
[
‖uh‖A + τ‖wh‖2K−1μf

+ τ2ξ−1‖div wh‖2 + ξ‖ph‖2
]1/2

.

(15)
Above, we have defined ξ = α2

ζ2 + 1
M where ζ =

√
λ + 2μ/d, and ‖r‖K−1μf

:=
(K−1μfr, r)1/2. We introduce the composite bilinear form on the space Vh ×
Wh × Qh,

B(uh,wh, ph;vh, rh, qh) := aD(uh,vh) − (αph,div vh) + τ(K−1μfwh, rh)

−τ(ph,div rh) −
(

1
M

ph, qh

)
− (α div uh, qh) − τ(div wh, qh).

Note that the bilinear form for the mechanics part of the model, a(·, ·), has been
replaced by a bilinear form with a diagonal matrix, aD(·, ·). Since these two
forms are spectrally equivalent (see [19]) we have the following theorem.

Theorem 1. If the triple (Vh,Wh, Qh) is Stokes-Biot stable, then:

B(·, ·, · ; ·, ·, ·) is continuous with respect to |||(·, ·, ·)|||; and
the following inf-sup condition holds.

sup
(vh,rh,qh)∈Vh×Wh×Qh

B(uh,wh, ph;vh, rh, qh)
|||(uh,wh, ph)||| ≥ γ|||(vh, rh, qh)|||, (16)

with a constant γ > 0 independent of mesh size h, time step size τ , and the
physical parameters.

For the definition of Stokes-Biot stability and the proofs of the spectral equiv-
alence of a(·, ·) and aD(·, ·) we refer to [19]. As a result, we have the following
error estimates for the fully discrete problem.



8 F. J. Gaspar et al.

Theorem 2. Let u, w, and p be the solutions of (1)–(3) and um
h , wm

h , and
pm

h be the solutions of the fully discrete Biot’s system. If the following regularity
assumptions hold,

u(t) ∈ L∞ (
(0, T ],H1

0(Ω) ∩ H2(Ω)
)
,

∂tu ∈ L1
(
(0, T ],H2(Ω)

)
, ∂ttu ∈ L1

(
(0, T ],H1(Ω)

)
,

w(t) ∈ L∞ (
(0, T ],H0(div, Ω) ∩ H1(Ω)

)
,

p ∈ L∞ (
(0, T ],H1(Ω)

)
, ∂tp ∈ L1

(
(0, T ],H1(Ω)

)
,

then,

‖(u(tm) − um
h , w(tm) − wm

h , p(tm) − pm
h )‖τ ≤ c

{
‖e0u ‖1 +

1

M
‖e0p‖ + τ

∫ tm

0

‖∂ttu‖1dt

+h

[
‖u‖2 + τ1/2‖w‖1 + ‖w‖1 + ‖p‖1 +

∫ tm

0

(‖∂tu‖2 + ‖∂tp‖1) dt

]}
, (17)

where ‖(u,w, p)‖2τ := ‖u‖21 + τ‖w‖2K−1μf
+

(
1
M + 1

)
‖p‖2.

3.1 Implementation Issues

Since aD(·, ·) has a diagonal matrix representation corresponding to the bubbles’
space, we can eliminate these degrees of freedom obtaining the same degrees of
freedom as in the original P1-RT0-P0 method for the three-field formulation.
After eliminating such unknowns we obtain a (3×3) block discrete linear system:

ÂD =

⎛
⎝ All − AT

blD
−1
bb Abl 0 Gl − AT

blD
−1
bb Gb

0 τMw τG
GT

l − GT
b D−1

bb Abl τGT −Mp − GT
b D−1

bb Gb

⎞
⎠ . (18)

3.2 Mass Conservation

Finally, we briefly comment on an efficient post-processing step to ensure that
the numerical solution obtained above preserves mass. Let (uh, ph) ∈ Vh × Qh,
with uh = ul + ub be the numerical solution to Stokes’ equation obtained in
the following way: first, we solve System (18) for ul; and then, we compute
ub. Note that the second step requires only the solution of systems with Dbb,
which is a diagonal matrix. A mass-conserving approximation is then obtained
by interpolating the numerical solution using the interpolant from the lowest-
order BDM space (see Brezzi, Douglas and Marini [20], and Brezzi, Douglas,
Duran and Fortin [21] for more details).

More specifically, let ΠBDM
h be the standard interpolation operator in the

BDM space as defined in [22], [23, Sect. 5.4]. From the commuting diagram prop-
erty of BDM elements (see, e.g. [24, Proposition 2.5.2]),

div ΠBDM
h v = Π0

h div v,
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for all sufficiently smooth v ∈ V . Here, Π0
h is the L2(Ω)-orthogonal projection

on the space of piecewise constants, Qh. This implies that
∫

Ω

div ΠBDM
h uhqh =

∫
Ω

div uhqh = 0, for all qh ∈ Qh, (19)

which shows that ΠBDM
h uh is indeed mass conservative.

Furthermore, we show that ΠBDM
h uh also approximates the solution, u,

to Stokes’ equation in the L2(Ω)-norm. We recall the following classical error
estimate for the BDM interpolant (see, e.g. [24, Proposition 2.5.4], [23, Theo-
rem 5.25]):

‖w − ΠBDM
h w‖ � h|w|1. (20)

As a consequence from (20),

‖ΠBDM
h w‖ ≤ ‖w − ΠBDM

h w‖ + ‖w‖ � h|w|1 + ‖w‖. (21)

Now, using estimates (20) and (21), we obtain the following a priori error
estimate,

‖u − ΠBDM
h uh‖ ≤ ‖u − ΠBDM

h u‖ + ‖ΠBDM
h (u − uh)‖

� h|u|1 + h|u − uh|1 + ‖u − uh‖
� h|u|1 + |u − uh|1 � h‖u‖2.

Thus, (19) and the a priori estimate above guarantee that the BDM interpolant
of the numerical solution, ΠBDM

h uh , is a mass-conserving approximation to u,
which requires little extra cost to compute.

4 Nonconforming Choice of Displacement Space

In this section, we consider a spatial discretization using a nonconforming finite-
element method. We again have the following finite-element discretization cor-
responding to the three-field formulation:

Find (uh,wh, ph) ∈ Vh × Wh × Qh such that

ah(uh,vh) − (αph,div vh) = (ρg,vh), ∀ vh ∈ Vh, (22)

(
K−1μfwh, rh

)
h

− (ph,div rh) = (ρfg, rh), ∀ rh ∈ Wh, (23)

(
1
M

∂ph

∂t
, qh

)
−

(
α div

∂uh

∂t
, qh

)
− (div wh, qh)=(f, qh), ∀ qh ∈ Qh. (24)

Here, Vh is the Crouzeix-Raviart finite-element space [25]. Note that we have
ah(·, ·) instead of a(·, ·) in (22) and (·, ·)h instead of (·, ·) in (23). These are
perturbations of the bilinear forms which target important issues: the former
satisfies the discrete Korn inequality and the latter leads to monotone pressure
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approximations. More details on the definition of the bilinear forms ah(·, ·) and
(·, ·)h are given below.

We begin by the definition of nonconforming Vh. For a function u, its jump
across an interior face e ∈ Eo is denoted by [[u]]e, and defined as

[[u]]e(x) = uT+(e)(x) − uT−(e)(x), x ∈ e.

The Crouzeix-Raviart space Vh consists of vector valued functions which are
linear on every element T ∈ Th and satisfy the following continuity conditions

Vh =
{

vh ∈ L2(Ω)
∣∣∣∣
∫

e

[[vh]]e = 0, for all e ∈ Eo

}
.

Equivalently, all functions from Vh are continuous at the barycenters of the faces
in Eo. For the boundary faces, the elements of Vh are zero in the barycenters of
any face on the Dirichlet boundary.

Let us now consider the bilinear form ah(·, ·) : Vh × Vh 
→ R. Before we
write out the details, we have to assume that Γc is non-empty. If Γc = ∅, i.e.,
Γt = Γ (the pure traction problem), a(·, ·) is a positive semidefinite form and the
dimension of its null space equals the number of edges on the boundary (for both
2D and 3D). Therefore, Korn’s inequality fails. Even if Γc �= ∅, for some cases,
Korn’s inequality may fail for the standard discretization by Crouzeix-Raviart
elements without additional stabilization. In another words, if we take ah(·, ·) =
a(·, ·) then it does not satisfy the discrete Korn’s inequality and, therefore, ah(·, ·)
is not coercive. Moreover, it is also possible that Korn’s inequality holds, but
the constant will approach infinity as the mesh size h approaches zero. If we
use ah(·, ·) = a(·, ·), the coercivity constant blows up when h approaches zero.
For discussions on nonconforming linear elements for elasticity problems and the
discrete Korn’s inequality, we refer to [26,27] for more details.

One way to fix this potential problem is to add a stabilization. The following
perturbation of the bilinear form which does satisfy the Korn’s inequality was
proposed by Hansbo and Larson [28]:

ah(v,w) = a(v,w) + aJ(v,w), where aJ(v,w) = 2μγ1
∑
e∈E

h−1
e

∫
e

[[v]]e[[w]]e.

Here, the constant γ1 > 0 is a fixed real number away from 0 (i.e. γ1 = 1
2 is

an acceptable choice). As shown in Hansbo and Larson [28] the bilinear form
ah(·, ·) is positive definite and the corresponding error is of optimal (first) order in
the corresponding energy norm. Moreover, the resulting method is locking free.
In [28], the jump term aJ(·, ·) includes all the edges, i.e., the stabilization needs to
be done on both interior and boundary edges. In [29], it has been shown that the
jump stabilization only needs to be added to the interior edges and boundary
edges with Neumann boundary conditions and the discrete Korn’s inequality
still holds. In fact, in [30], it is suggested that only the normal component of the
jumps on the edges is needed for the stabilization in order to satisfy the discrete
Korn’s equality.
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We next consider the bilinear form in (23), denoted by (·, ·)h. The first choice
for such a form is just taking the usual L2(Ω) inner product, i.e. (w, r)h =
(w, r) =

∫
Ω

w · r. This is the standard choice and leads to a mass matrix in the
Raviart-Thomas-Nédélec element when we write out the matrix form.

The second choice, which is the bilinear form we use here, is based on mass
lumping in the Raviart-Thomas space, i.e.,

(r, s)h =
∑
T

∑
e⊂∂T

ωe e(r)e(s). (25)

We refer to [31] and [32] for details on determining the weights ωe, which are ωe =
|e|de

d
with de being the signed distance between the Voronoi vertices adjacent

to the face e. Roughly speaking, such weights, in the two-dimensional case, are
chosen so that

(w, r)h =
∫

Ω

w · r, w, r ∈ Wh and w, r are piecewise constants, (26)

which implies the equivalence between (w, r)h and the standard L2 inner product
(w, r). The situation in the three-dimensional case is a little bit involved since
(26) does not hold in general. Nevertheless, the equivalence between (w, r)h

and the standard L2 inner product (w, r) can still be shown. Overall, such
mass lumping, in both two- and three-dimensional cases, maintains the optimal
convergence order, see [31] for details.

In practice, a lumped mass approximation results in a block diagonal matrix
and, therefore, we can eliminate the Darcy velocity w and reduce the three-field
formulation to a two-field formulation involving only the displacements u and
pressure p. This elimination reduces the size of the linear system that needs to
be solved at each time step and saves computational cost. Moreover, for Biot’s
model, as shown by the numerical experiments section in [11], the lumped mass
approximation actually gives an oscillation-free approximation while maintaining
the optimal error estimates.

4.1 Analysis of the Fully Discrete Scheme: Nonconforming Case

Next, we consider the fully discrete scheme for (1)–(3) at time tm = mτ , m =
1, 2, . . .: Find (um

h ,wm
h , pm

h ) ∈ Vh × Wh × Qh such that

ah(um
h ,vh) − α(pm

h ,div vh) = (ρg,vh), ∀ vh ∈ Vh, (27)

(K−1μfwm
h , rh)h − (pm

h ,div rh) = (ρfg, rh), ∀ rh ∈ Wh, (28)

(
1
M

∂̄tp
m
h , qh

)
+ α(div ∂̄tu

m
h , qh) + (div wm

h , qh) = (f, qh), ∀qh ∈ Qh, (29)

where τ is the time step size and ∂̄tu
m
h := (um

h − um−1
h )/τ . For the initial data

u0
h, we use the discrete counterpart of the divergence free condition: div u0

h = 0.
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The well-posedness of the linear system (27)–(29) at each time step tm follows
from considerations similar to the conforming case. Again, we use the composite
bilinear form,

B(uh,wh, ph;vh, rh, qh) := ah(uh,vh) − (ph,div vh) + τ(K−1wh, rh)h

− τ(ph,div rh) − (div uh, qh) − τ(div wh, qh).

As the nonconforming spaces and the bilinear forms involved in the definition
above are Stokes-Biot stable then we have the following theorem showing the
solvability of the linear system corresponding to the discrete Biot’s model.

Theorem 3. The bilinear form B(·, ·, ·; ·, ·, ·) satisfies the following inf-sup
condition,

sup
(vh,rh,qh)∈Vh×Wh×Qh

B(uh,wh, ph;vh, rh, qh)
|||(vh, rh, qh)||| ≥ γ|||(uh,wh, ph)|||, (30)

with a constant γ > 0 independent of mesh size h and time step size τ . Moreover,
the discrete three field formulation is well-posed.

As a consequence, we also have the following theorem regarding the errors in
the fully discrete scheme, (27)–(29). The proofs follow from the standard error
analysis for time-dependent problems in Thomée [33].

Theorem 4. Let u, w, and p be the solutions of (1)–(3) and um
h , wm

h , and pm
h

be the solutions of (27)–(29). If the following regularity assumptions hold,

u(t) ∈ L∞ (
(0, T ],H1

0(Ω) ∩ H2(Ω)
)
,

∂tu ∈ L1
(
(0, T ],H2(Ω)

)
, ∂ttu ∈ L1

(
(0, T ],H1(Ω)

)
,

w(t) ∈ L∞ (
(0, T ],H0(div, Ω) ∩ H1(Ω)

)
,

p ∈ L∞ (
(0, T ],H1(Ω)

)
, ∂tp ∈ L1

(
(0, T ],H1(Ω)

)
,

then we have the error estimates

‖(u(tm) − um
h ,w(tm) − wm

h , p(tm) − pm
h )‖τ ≤ c

{
‖e0u‖ah

+ τ

∫ tm

0

‖∂ttu‖1dt

+h

[
‖u‖2 + τ1/2‖w‖1 + ‖w‖1 + ‖p‖1 +

∫ tm

0

(‖∂tu‖2 + ‖∂tp‖1) dt

]}
.

(31)

Remark 1. We require full regularity of the solution in space in Theorems 2 and
4 as we use standard approximation results in Sobolev spaces. With respect to
the smoothness in time, we follow the standard theory in [33]. Assuming less
regularity in space, requires approximation estimates in fractional order Sobolev
spaces and allowing less regularity of the solution in time would require special
energy estimates (see, e.g. [34]). While such extensions of the results given earlier
are plausible, the analysis would be much more involved and falls beyond the
scope of our presentation.
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Abstract. We present a class of numerical schemes for the solution of
the Euler equations; these schemes are based on staggered discretiza-
tions and work either on structured meshes or on general simplicial or
tetrahedral/hexahedral meshes. The time discretization is performed by
fractional-step algorithms, either based on semi-implicit pressure cor-
rection techniques or segregated in such a way that only explicit steps
are involved (referred to hereafter as “explicit” variants). These schemes
solve the internal energy balance, with corrective terms to ensure the
correct capture of shocks, and, more generally, the consistency in the
Lax-Wendroff sense. To keep the density, the internal energy and the
pressure positive, positivity-preserving convection operators for the mass
and internal energy balance equations are designed, using upwinding
with respect of the material velocity only. The construction of the fluxes
thus does not need any Riemann or approximate Riemann solver, and
yields particularly efficient algorithms. The stability is obtained without
restriction on the time step for the pressure correction time-stepping and
under a CFL-like condition for explicit variants: the preservation of the
integral of the total energy over the computational domain and the pos-
itivity of the density and of the internal energy are ensured, and entropy
estimates are derived.

Keywords: Euler equations · Staggered schemes

1 Introduction

We address in this paper the solution of the Euler equations for an ideal gas,
which read:

∂tρ + div(ρu) = 0, (1a)
∂t(ρu) + div(ρu ⊗ u) + ∇p = 0, (1b)
∂t(ρE) + div(ρE u) + div(pu) = 0, (1c)

p = (γ − 1) ρ e, E =
1
2
|u|2 + e, (1d)

c© Springer Nature Switzerland AG 2019
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where t stands for the time, ρ, u, p, E and e are the density, velocity, pressure,
total energy and internal energy respectively, and γ > 1 is a coefficient specific
to the considered fluid. The problem is supposed to be posed over Ω × (0, T ),
where Ω is an open bounded connected subset of Rd, 1 ≤ d ≤ 3, and (0, T ) is
a finite time interval. System (1) is complemented by initial conditions for ρ, e
and u, let us say ρ0, e0 and u0 respectively, with ρ0 > 0 and e0 > 0, and by
suitable boundary conditions (not specified for short).

Finite volume schemes for the solution of System (1), and, more generally
speaking, of hyperbolic problems, generally use a collocated arrangement of the
unknowns, all of them being associated to the cell centers, and apply a Godunov-
like technique for the computation of the fluxes at the cells faces: the face is
seen as a discontinuity line for the beginning-of-time-step numerical solution,
supposed to be constant in the two adjacent cells; a solution, either exact or
approximate, of the so-posed Riemann problem is constructed and the numerical
solution is advanced in time by projection of this construction on piecewise
constant functions (see e.g. [1,17] for the development of such solvers). Thanks
to the properties of the projection, at least for exact Riemann solvers, application
of this process to the Euler equations yields consistant schemes which preserve
the non-negativity of the density and the internal energy and, for first-order
variants, satisfy an entropy inequality. The price to pay is the computational
cost of the evaluation of the fluxes, and the fact that this issue is intricate
enough to put almost out of reach implicit-in-time formulations, which would
allow to relax CFL time step constraints. In addition, preserving the accuracy
for low Mach number flows is a difficult task (see e.g. [9] and references herein).

Dσ

Dσ

σ
K

L

M

σ

Dσ

K

L

σ

Fig. 1. Meshes and unknowns – Left: unstructured discretizations (the present sketch
illustrates the possibility, implemented in our software CALIF3S [2], of mixing simpli-
cial and quadrangular cells); scalars variables are associated to the primal cells (here K,
L and M) while velocity vectors are associated to the faces (here, σ and σ′) or, equiva-
lently, to dual cells (here, Dσ and Dσ′). – Right: MAC discretization; scalars variables
are associated to the primal cells and each face is associated to the component of the
velocity normal to the face.
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The aim of this paper is to review recent developements performed to derive a
class of schemes following a different route. The space discretization is staggered:
scalar variables are associated to cell centers while the velocity is associated to
the faces, or, equivalently, to staggered mesh(es). Two different space discretiza-
tions may be considered: either the so-called Marker-And-Cell (MAC) scheme for
structured grids [11] or, for general meshes, a space discretization using degrees
of freedom similar to low-order Rannacher-Turek [16] or Crouzeix-Raviart [3]
finite elements (see Fig. 1). With this space discretization, the use of Riemann
solvers seems difficult (scalar unknowns and velocities may still be considered
as piecewise constant functions, but not associated to the same partition of the
computational domain). The positivity of the internal energy is thus ensured by a
non-standard argument: the internal energy balance is discretized instead of the
actual (total) energy balance (1c) by a positivity-preserving scheme. This leads
to consistency problems, which are the main difficulty faced here. We develop
two time discretizations: a pressure correction technique and a fractional step
scheme involving only explicit steps. We finally obtain a class of schemes which
offer many interesting properties: both the density and internal energy posi-
tivity are preserved, unconditionnally for the pressure correction scheme and
under CFL-like conditions for the (quasi) explicit variant, and the integral of
the total energy on the computational domain is conserved (which yields a sta-
bility result); the construction of the fluxes is very simple (essentially based on
standard upwinding techniques of the convection operators with respect to the
material velocity); finally, the space approximation, the fluxes and the choice of
the internal energy balance are consistent with usual discretizations of quasi-
incompressible flows, so the pressure correction scheme is asymptotic preserving
by construction in the limit of vanishing low Mach number flows. In addition,
an entropy estimate is obtained for the pressure correction scheme, while only a
weak entropy estimate seems to hold for the explicit variant. The development
of this class of schemes started ten years ago, and we review here the essential
arguments; details may be found in [8,12,13].

The use of staggered discretization for compressible flows began with the
very first papers on the MAC scheme [10], and has been the subject of a wide
litterature (see [18] for a textbook and references in [8,12,13]). However, the use
of the internal energy equation associated to a consistency correction seems to
be restricted to the context of Lagrangian approaches, up to a very recent work
implementing a Lagrange-remap technique on staggered meshes [4].

2 A Pressure Correction Scheme

2.1 A Basic Lemma

Let ρ and u be regular scalar and vector-valued functions, respectively, such that

∂tρ + div(ρu) = 0.



18 R. Herbin and J.-C. Latché

Let z be a regular scalar function. Then we have:

C(z) = ∂t(ρz) + div(ρzu) = ρ
(
∂tz + u · ∇z

)
+ z

(
∂tρ + div(ρu)

)

= ρ
(
∂tz + u · ∇z

)
.

(2)

Let ϕ be a regular real function. Then:

ϕ′(z) C(z) = ϕ′(z) ρ
(
∂tz + u · ∇z

)
= ρ

(
∂tϕ(z) + u · ∇ϕ(z)

)
.

Now, reversing the computation performed in Relation (2) with ϕ(z) instead of
z, we get:

ϕ′(z) C(z) = ∂t

(
ρϕ(z)

)
+ div

(
ρϕ(z)u

)
. (3)

The following lemma states a time semi-discrete version of this computation.

Lemma 1. Let ρn, ρn+1, zn and zn+1 be regular scalar functions, let u be a
regular vector-valued function and let ϕ be a twice-differentiable real function.
Let us suppose that

1
δt

(ρn+1 − ρn) + div(ρn+1u) = 0, (4)

with δt a positive real number. Then

ϕ′(zn+1)
[ 1
δt

(ρn+1zn+1 − ρnzn) + div(ρn+1zn+1u)
]

=
1
δt

(
ρn+1ϕ(zn+1) − ρnϕ(zn)

)
+ div

(
ρn+1ϕ(zn+1)u

)
+ Rn, (5)

with

Rn =
1

2 δt
ρnϕ′′(z̄) (zn+1 − zn)2, z̄ = θzn + (1 − θ)zn+1, θ ∈ [0, 1].

Proof. We first begin by deriving a discrete analogue to Identity (2):

1
δt

(ρn+1zn+1 − ρnzn) + div(ρn+1zn+1u)

=
1
δt

ρn (zn+1 − zn) + ρn+1u · ∇zn+1 + zn+1
[ 1
δt

(ρn+1 − ρn) + div(ρn+1u)
]

=
1
δt

ρn (zn+1 − zn) + ρn+1u · ∇zn+1.

(6)
Then the result follows by multiplying this relation by ϕ′(zn+1), using a Taylor
expansion for the first term and the same combination of partial derivative as in
the continuous case for the second one, and finally, still as in the continuous cas,
by performing this computation in the reverse sense with ϕ(zn) and ϕ(zn+1)
instead of zn and zn+1.
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2.2 The Time Semi-discrete Scheme

We begin with a formal reformulation of the energy equation. Let us suppose that
the solution is regular, and let Ek be the kinetic energy, defined by Ek = 1

2 |u|2.
Taking the inner product of (1b) by u yields, after the formal compositions of
partial derivatives described in the previous section:

∂t(ρEk) + div
(
ρEk u

)
+ ∇p · u = 0. (7)

This relation is referred to as the kinetic energy balance. Subtracting this relation
to the total energy balance (1c), we obtain the so-called internal energy balance
equation:

∂t(ρe) + div(ρeu) + p divu = 0. (8)

Since,

– as seen in the previous section, thanks to the mass balance equation, the first
two terms in the left-hand side of (8) may be recast as a transport operator,

– and, from the equation of state, the pressure vanishes when e = 0,

this equation implies that, if e ≥ 0 at t = 0 and with suitable boundary condi-
tions, then e remains non-negative at all time. The same result would hold if (8)
featured a non-negative right-hand side, as for the compressible Navier-Stokes
equations. Solving (8) instead of the total energy balance is thus appealing, to
preserve this positivity property by construction of the scheme. In addition, it
avoids introducing a space discretization for the total energy which, for a stag-
gered discretization, combines cell-centered (the internal energy and the den-
sity) and face-centered (the velocity) variables. However, a raw discretization of
a non-conservative equation derived from a conservative system (formally, i.e.
supposing unrealistic regularity properties of the solution) may be non-consistent
(and the numerical test presented in Sect. 4 shows that, for the problem at hand,
a such a scheme would be unable to capture shock solutions). To deal with this
problem, we implement the following strategy:

– First, we derive a discrete kinetic energy balance, by mimicking at the dis-
crete level the computation used to obtain Eq. (7). This relation allows to
identify the terms which are likely to lead to non-consistency: the numeri-
cal diffusion in the momentum balance equation yields dissipation terms in
the kinetic energy balance which are observed to behave, when the space and
time step tend to zero, as measure born by the shocks which modify the jump
conditions.

– These terms are thus compensated in the internal energy balance.

At the fully discrete level, for staggered discretizations, the kinetic and inter-
nal energy balances are not posed on the same mesh (the dual and primal mesh
respectively) and cannot be combined to provide a local discrete total energy
balance, even though the dissipation and correction terms have opposite integrals
over the computational domain, so that the integral of the total energy over the
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domain is conserved. However, we are able to show that the scheme is consistent,
in the Lax-Wendroff sense, to the weak form of the total energy balance: indeed,
for a given sequence of discrete solutions (obtained with a sequence of discretiza-
tions where the space and time steps tend to zero) controlled and converging to
a limit in suitable norms (namely, controlled in BV norms and converging in Lp

norms, for p ∈ [1,+∞)), we show that the limit is a weak solution of the Euler
equations. As far as the total energy balance is concerned, the key trick to this
purpose is to use two interpolates of the test function, on the dual and primal
mesh for the kinetic and energy balance respectively, and to pass to the limit in
the equation obtained by summing the two corresponding relations.

We now derive the time semi-discrete formulation of a pressure correction
scheme following these guidelines. This scheme takes the following general form:

1
δt

(ρn ũn+1 − ρn−1 un) + div(ρn un ⊗ ũn+1) + ζn∇pn = 0, (9a)

1
δt

ρn (un+1 − ũn+1) + ∇pn+1 − ζn∇pn = 0, (9b)

1
δt

(ρn+1 − ρn) + div(ρn+1 un+1) = 0, (9c)

1
δt

(ρn+1 en+1 − ρn en) + div(ρn+1 en+1 un+1) + pn+1divun+1 = Sn+1, (9d)

pn+1 = (γ − 1) ρn+1 en+1. (9e)

The first equation allows for the computation of a tentative velocity ũn+1;
it is decoupled from the other equations of the system, and referred to as the
velocity prediction step. Equations (9b)–(9e) constitute the correction step, and
are solved simultaneously; note however that using the equation of state to recast
ρn+1 en+1 as a function of the pressure only in (9d) and eliminating un+1 in this
relation thanks to the divergence of (9b) divided by ρn yields a nonlinear and
nonconservative elliptic problem for the pressure only. This process must be
performed at the fully discrete level to preserve the properties of the scheme.
The coefficient ζn in Eq. (9a) and the correction term Sn+1 in (9d) are computed
in the derivation of the scheme so as to ensure stability and consistency. The first
step of this process is to obtain a discrete kinetic energy balance. To this purpose,
let us multiply (9a) by ũn+1 and apply Lemma 1 component by component, with
ϕ(s) = 1

2s2.
We get:

1
2 δt

(
ρn |ũn+1|2 − ρn−1 |un|2) +

1
2
div

(
ρn |ũn+1|2un

)
+ ζn∇pn · ũn+1 + Rn

1 = 0,

(10)
with

Rn
1 =

1
2 δt

|ũn+1 − un|2.
Note that the mass balance equation (9c), which is a fundamental assumption

of Lemma 1, only holds at this stage of the algorithm with the previous time
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step values, hence the shift of the time level of the density in (9a). Let us now
recast Eq. (9b) as

αnun+1 +
1

αn
∇pn+1 = αnũn+1 +

ζn

αn
∇pn, αn =

[ρn

δt

]1/2

and square this relation, to get

1
2 δt

ρn |un+1|2 + ∇pn+1 · un+1 + Rn
2 =

1
2 δt

ρn |ũn+1|2 + ζn∇pn · ũn+1, (11)

with
Rn

2 =
δt

ρn
|∇pn+1|2 − (ζn)2

δt

ρn
|∇pn|2.

Summing (10) and (11) yields the kinetic energy balance that we are seeking:

1
2 δt

(
ρn |un+1|2−ρn−1 |un|2)+1

2
div

(
ρn |ũn+1|2un

)
+∇pn+1·un+1+Rn

1+Rn
2 = 0.

We now choose the coefficient ζn in such a way that the remainder term Rn
2

becomes the difference of two consecutive time levels of the same quantity, which
is realized by choosing

ζn =
[ ρn

ρn−1

]1/2
.

Supposing the control in L1(0, T,BV ) of the pressure and in L∞ of the
pressure and of the inverse of the density, the term Rn

2 may thus be seen to
tend to zero with the discretization parameters in a distributional sense. We
just need to compensate Rn

1 in the internal energy balance, which is done by
choosing Sn+1 = Rn

1 , which thus ensures Sn+1 ≥ 0. The definition of the time-
discrete scheme is now complete.

2.3 The Fully Discrete Scheme

The fully discrete scheme is obtained from System (9) by applying the following
guidelines:

– The mass and internal energy balances (i.e. Eqs. (9c) and (9d) respectively)
are discretized on the primal mesh, while the velocity prediction (9a) and
correction (9b) are discretized on the dual mesh(es). The equation of state
only involves cell quantities, and its expression is obtained by writing (9e) for
these latter.

– The space arrangement of the unknowns (density discretized at the cell and
velocity at the faces) yields a natural expression of the mass fluxes in the
mass balance, performed by a first-order upwind scheme (with respect to the
velocity). By construction, the density is thus non-negative (in fact, positive,
at the discrete level, if the initial density is positive). The discrete mass bal-
ance equation on the cell K of measure |K| and faces σ ∈ E(K) takes the
form: |K|

δt
(ρn+1

K − ρn
K) +

∑

σ∈E(K)

Fn+1
K,σ = 0, (12)
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where FK,σ is the mass flux across σ outward K.
– The form of the time-derivative and convection operator from the internal

energy (let us denote CK(en+1) the sum of these two terms) in Eq. (9d) follows
from this relation:

CK(en+1) =
|K|
δt

(ρn+1
K en+1

K − ρn
Ken

K) +
∑

σ∈E(K)

FK,σen+1
σ ,

where en+1
σ is the upwind approximation of en+1 at σ with respect to Fn+1

K,σ

(or, equivalently, since the density is positive, with respect to the velocity).
This was shown in [14] to be a sufficient condition to obtain a positivity-
preserving operator, and is also a necessary condition for a fully discrete
version of Lemma 1 to hold; this is of course linked since both results rely
on the possibility to recast CK as a transport operator, and the positivity-
preserving property of CK may be proved by applying Lemma 1 with ϕ(s) =
min(s, 0)2. Once again, thanks to the arrangement of the unknowns, a natural
discretization for divun+1 is available. Since pn+1 is a function of en+1 given
by the equation of state and invoking the corrective term is non-negative,
we are able to show that the discrete internal energy is kept positive by the
scheme.

– For the derivation of a discrete kinetic energy balance, the same structure is
needed for the time-derivative and convection operator in the velocity predic-
tion step (9a). This raises a difficulty since this equation is posed on the dual
mesh, and thus we need an analogue of the mass balance (12) to also hold
on this mesh. The way to build the face density and the mass fluxes across
the faces of the dual mesh for such a relation to hold, while still ensuring the
scheme consistency, is a central ingredient of the scheme; it is detailed in [5]
for the MAC discretization and in [15] for unstructured discretizations.

Once the face density is defined, the discretization of the coefficient ζn is
straightforward. In order to combine the discrete equivalents of u · ∇p (kinetic
energy balance) and p divu (internal energy balance), the discrete gradient is
defined as the transposed of the divergence operator with respect to the L2

inner product (if u · ∇p + p divu = div(pu), the integral of this quantity over
the computational domain vanishes when the normal velocity is prescribed to
zero at the boundary). Note that this definition is consistent with the usual
treatment in the incompressible case, and is a key ingredient for the scheme to
be asymptotic preserving in the limit of vanishing Mach number flows. As in
the incompressible case, it also allows to control the L2 norm of the pressure by
a weak norm of its gradient, which is central for convergence studies; with this
respect, a discrete inf-sup condition is required in some sense, which is true for
staggered discretizations.
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3 A “quasi-Explicit” Variant

A variant of the proposed scheme which consists only in explicit steps (in the
sense that these steps do not require the solution of any linear or non-linear
algebraic system) reads, in the time semi-discrete setting:

1
δt

(ρn+1 − ρn) + div(ρn un) = 0, (13a)

1
δt

(ρn+1 en+1 − ρn en) + div(ρn en un) + pndivun = Sn, (13b)

pn+1 = (γ − 1) ρn+1 en+1, (13c)
1
δt

(ρn+1 un+1 − ρn un) + div(ρn un ⊗ un) + ∇pn+1 = 0. (13d)

The update of the pressure before the solution of the momentum balance
equation is crucial in our derivation of entropy estimates (see Sect. 5 below).
This issue seems to be supported by numerical experiments: ommitting it, we
observe the appearance of non-entropic discontinuities in rarefaction waves.

The space discretization differs from the pressure correction scheme in two
points:

– the discretization of the convection operator in the momentum balance equa-
tion (13d) is performed by the first order upwind scheme (still with respect
to the material velocity un),

– the corrective term Sn is still obtained by deriving a kinetic energy balance
multiplying Eq. (13d) by un+1, but its expression is quite different, due to
the time-level used in the convection operator. The time-discretization is now
anti-diffusive but, as usual for explicit schemes, this anti-diffusion is counter-
balanced by the diffusion in the approximation of the convection (hence the
upwinding) and Sn is non-negative only under a CFL condition.

4 A Numerical Test

In this section, we assess the behaviour of the scheme on a one dimensional
Riemann problem. We choose initial conditions such that the structure of the
solution consists in two shock waves, separated by the contact discontinuity, with
sufficiently strong shocks to allow an easy discrimination of correct numerical
solutions. These initial conditions are those proposed in [17, Chap. 4], for the
test referred to as Test 5. The computations are performed with the open-source
software CALIF3S [2], and results shown here are obtained with the pressure
correction scheme (9).

The density fields obtained with h = 1/2000 (or a number of cells n = 2000)
at t = 0.035, with and without assembling the corrective source term in the
internal energy balance, together with the analytical solution, are shown on
Fig. 2. We observe that both schemes seem to converge, but the corrective term
is necessary to obtain the right solution. Without a corrective term, one can
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check that the obtained solution is not a weak solution to the Euler system
(Rankine-Hugoniot conditions are not verified). We also observe that the scheme
is rather diffusive especially for contact discontinuities for which the beneficial
compressive effect of the shocks does not apply; this may be cured in the explicit
variant by implementing MUSCL-like algorithms [7].
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Fig. 2. Test 5 of [17, Chap. 4] - Density obtained with n = 2000 cells, with and without
corrective source terms, and analytical solution.

5 Entropy Estimates

Let us consider the following subsystem of the Euler equations:

∂tρ + div(ρu) = 0, (14a)
∂t(ρ e) + div(ρ eu) + p div(u) = R ≥ 0, (14b)
p = (γ − 1) ρ e. (14c)

The derivation of an entropy estimate for the continuous Euler system may
be deduced from the subsystem (14) in the following way. We seek an entropy
function η satisfying the entropy balance:

∂tη(ρ, e) + div
[
η(ρ, e)u

] ≤ 0. (15)

To this end, let the convex functions ϕρ and ϕe be defined as follows:

ϕρ(z) = z log(z), ϕe(z) =
−1

γ − 1
log(z), for z > 0.

Let us multiply (14a) by ϕ′
ρ(ρ), which yields:

∂t

[
ϕρ(ρ)

]
+ div

[
ϕρ(ρ)u

]
+

[
ρϕ′

ρ(ρ) − ϕρ(ρ)
]
div(u) = 0. (16)
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Then, multiplying (14b) by ϕ′
e(e) yields, once again formally, since ϕ′

e(z) < 0
for z > 0:

∂t

[
ρϕe(e)

]
+ div

[
ρϕe(e)u

]
+ ϕ′

e(e) p div(u) ≤ 0. (17)

Summing (16) and (17) and noting that ρϕ′
ρ(ρ)−ϕρ(ρ)+ϕ′

e(e) p = 0, we obtain
(15) for η(ρ, e) = ϕρ(ρ) + ρϕe(e).

Depending on the time and space discretization, we obtain two types of
results [6]:

– local entropy estimates, i.e. discrete analogues of (15), in which case the
scheme is called entropy-stable,

– “weak local” entropy inequalities, i.e. results of the form:

∂tη(ρ, e) + div
[
η(ρ, e)u

]
+ R ≤ 0,

with R tending to zero with respect to the space and time discretization
steps, provided that the solution is controlled in reasonable norms (here, L∞

and BV norms). Such an inequality readily yields a “Lax-consistency” property,
in the sense that the limit of a convergent sequence of solutions, bounded in
suitable norms, satisfies the following weak entropy inequality:

−
∫ T

0

∫

Ω

η(ρ, e) ∂tϕ + η(ρ, e)u · ∇ϕ dx dt −
∫

Ω

η(ρ, e)(x, 0) ϕ(x, 0) dx ≤ 0,

for any function ϕ ∈ C∞
c

(
[0, T ) × Ω̄

)
, ϕ ≥ 0.

The pressure correction scheme - In the pressure correction scheme, the cor-
rection step includes a fully implicit discretization of Subsystem (14). A fully
discrete analogue of the relation (16) may be found in [12, Lemma A1], while
the relation (17) is a direct application of Lemma 1. The pressure correction
scheme is thus entropy-stable.

The explicit variant - In this variant, the time discretization of Subsystem (14)
is explicit. An adaptation of Lemma 1 still holds under a CFL condition, but it
does not seem to be the case for Relation (16). Consequently, we only obtain a
“weak local” entropy inequality, under the restrictive assumption that the ratio
of the time to the space step tends to zero for the sequence of discretization at
hand. Nevertheless, we never observed in numerical experiment any phenomena
likely to lead to thinking that the scheme could converge to a non-entropy weak
solution.
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Abstract. The use of the unmanned aerial vehicles is rapidly growing
in the ever more extensive range of applications where the military is the
oldest ones. One of the fundamental problems in the unmanned combat
aerial vehicles (UCAV) control is the path planning problem that refers
to optimization of the flight route subject to various constraints inside
the battlefield environments. Since the number of control points is high as
well as the number of radars, the traditional methods could not produce
acceptable results when tackling this problem. In this paper, we propose
an adjustment of the recent guided fireworks algorithm from the class of
swarm intelligence algorithms for locating the optimal path by unmanned
combat aerial vehicle taking into consideration fuel consumption and
safety degree. For experimental purposes, we compared it with eight
different methods from the literature. Based on the experimental results,
it can be concluded that our proposed approach is robust, exhibits better
performance in almost all cases.

Keywords: Unmanned combat aerial vehicle · Path planning
Swarm intelligence · Metaheuristics · Fireworks algorithm

1 Introduction

Featured by high mobility and flexible deployment, unmanned combat aerial
vehicles (UCAVs) have often become solutions applied to the civilian applica-
tions over the past few years, including traffic control, cargo delivery, surveil-
lance, aerial inspection, rescue and search, video streaming, precision agricul-
ture, and so forth [15]. The UCAV partially known as a drone is an aircraft
which does not require a human pilot on the board. Also, unmanned aerial
vehicles as a remotely piloted or self-piloted aircraft can carry a lot of various
pieces of equipment such as cameras, sensors, and communications equipment
[11]. Comparing to the aircraft, UCAVs have the advantage of low-cost, high-
security, high survival ability, good maneuvering performance. Also, driven by
the continuous cost reduction in UCAV manufacturing, as well as the recent
government efforts in devising UCAV-related regulations in many countries, it
c© Springer Nature Switzerland AG 2019
G. Nikolov et al. (Eds.): NMA 2018, LNCS 11189, pp. 29–38, 2019.
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is expected that they will be used for skyrocket soon. For example, the global
UCAV market was valued at 18.14 billion U.S. dollars in 2017 and is projected
to reach 52.30 billion U.S. dollars by 2025 [2]. One important design aspect of
UCAVs is path planning [9]. In general, a path planning is one of the most critical
parts for the UCAV, and it presents a large-scale multi-constrained optimization
problem. On the one hand, these problems inherently involve an infinite num-
ber of variables due to the continuous UCAV’s trajectory to be determined. On
the other hand, the problems are also usually subject to a variety of practical
constraints (e.g., connectivity, fuel limitation, collision, and terrain avoidance),
many of which are time-varying in nature and are difficult to model accurately.
Therefore, the UCAV path planning problem relays on the calculating of the
sub-optimal route between an initial safe location and the desired hazardous
destination considering several objectives and constraints. Since the UCAV path
planning is a hard problem, there are no deterministic methods for its solving
in a reasonable time. In the last two decades, nature-inspired algorithms, espe-
cially the swarm intelligence ones, have been widely and successfully used for
rapid finding of approximative (acceptable) solutions. Some of these algorithms
have exploited for tackling of this problem, such as: the stud genetic algorithm
(SGA) [10], particle swarm optimization (PSO) [13], differential evolution (DE)
[6], ant colony optimization (ACO) [1], modified firefly algorithm [8], bat algo-
rithm (BA) [16], fireworks algorithm [3], elephant herding optimisation [4], brain
storm optimisation (BSO) [7], and so forth. In this paper we adjusted the recent
guided fireworks algorithm (GFWA) [12] for solving the UAV planning prob-
lem. To prove the feasibility and effectiveness of our GFWA method, we will
make a comparative analysis between quality of the proposed method and other
the state-of-the-art algorithms from [7]. The simulation experiments indicate
that our approach can produce an acceptable, feasible sub-optimal trajectory
for UCAV path planning problem as well it almost always gives better results
compared to rest twelve algorithms from literature, considering both accuracy
and, especially, stability of the algorithms. In subsequent sections, we foremost
introduce ourselves to the mathematical definition of the UCAV path planning
problem while in Sect. 3 our proposed method for solving the UCAV is presented.
In Sect. 4 simulation results are reported. Finally, our conclusions are discussed
in the last part of the paper.

Table 1. Information about known threatening areas

No. Location (km) Threat radius (km) Threat level

1. (45, 50) 10 2

2. (12, 40) 10 10

3. (32, 68) 8 1

4. (36, 26) 12 2

5. (55, 80) 9 3
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2 Mathematical Problem Formulation for the UCAV

In this section, we propose the mathematical model for seeking a sub-optimal
path along which a UCAV can freely fly from one point A to second point B due
to some metrics. It is important to highlight here that the sub-optimal paths
can be defined in numerous ways since different criteria can be taken into con-
siderations (the shortest or the smoothest path, the minimal fuel consumption,
the safest path, and so on). In this article, two different criteria were used, fuel
consumption and safety degree. Also, consider that on the path between these
points there are enemy-threat areas such as radars, artillery, missiles and so
on. Information about these dangerous areas is shown in Table 1. In the model,
the dangerous areas are being presented in the form of circles, inside of which
UCAV will be sensitive to the danger with a certain probability proportional to
the distance away from the threat centers, while outside of which it will not be
stricken. Hence, each of the dangerous areas has a particular risk grade. To dis-
cover the optimal trajectory connecting the points A(x1, y1) and B(x2, y2), we
suggest the model which maps the path planning problem into a d-dimensional
optimization problem in the following way. Foremost, we transform the origi-
nal Descartes’s coordinate system XOY into a new rotated one X’O’Y’, where
X’O’Y’ is obtained by rotating XOY counter-clockwise for the angle θ as well
as by translating it along the vector

−→
OA, as is depicted in Fig. 1. The angle θ

denotes the angle between the segment AB and the positive part of the x-axis,
and it is given by:

θ = arctan
( y2 − y1

x2 − x1

)
(1)

Fig. 1. The UCAV battle model in new rotated coordinate system

In the X’O’Y’ system, the starting point O’ has coordinates (0, 0), while
the target point B has the coordinates (|AB|, 0). To formulate the path
planning problem as a d-dimensional constrained optimization problem, we
first divide the segment AB into (d + 1) equals sub-segments. Then, in
each of the endpoints (x′

k, 0) of the generated sub-segments, we draw lines
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Lk(k = 1, 2, · · · , d) which are orthogonal to the segment AB. Further, by tak-
ing the values y′

k along the lines Lk, we obtain a discrete points collection
S = {(x′

1, y
′
1), (x

′
2, y

′
2), · · · , (x′

d, y
′
d)}. By extending of the set S with two addi-

tional points O′(0, 0) and B′(|AB|, 0) added at beginning and end of the S, as a
consequence we get the flight path. Hence, the path planning problem has formu-
lated as a problem of optimizing the coordinates y′

k (k = 1, 2, · · · , d) to achieve
a suboptimal path. Since the process of searching values, y′

k will be performed
in the new coordinate system, the coordinates of the centers for the dangerous
areas should be determined in the same coordinate system as well. To calculate
the new coordinates for an arbitrary center C(xa, ya) of the dangerous area, we
first should translate the point C along the x-axis for −x1 and also for −y1
along the y-axis. Then, we rotate the new translated point D(xa − x1, ya − y1)
counterclockwise around the point O(0, 0) by the angle θ. As a result, we obtain
the point C ′(x′

a, y′
a) in the new coordinate system. As is depicted in Fig. 1, it is

important to observe that coordinate x′
k of each point belonging to the trajec-

tory can be calculated by a simple formula x′
k = k|AB|/(d + 1). Therefore, the

path will pass through the points of the set S.

2.1 Performance Indicators and Constraints

In this paper, two performance indicators will be taken into consideration as well
as several constraints. The first performance indicator, fuel consumption FC is
proportional to the path length so it can be represented as a line integral of a
function wf (fuel cost) over a piecewise smooth curve L. For the implementation
purposes, we assume that wf = 1 so FC is equal to the path length which is the
sum of distances li(i = 1, 2, · · · , d + 1) between corresponding neighbor points
in the path. Hence, the discrete model of total fuel consumption is defined by:

FC =
d+1∑
i=1

li (2)

The second performance indicator is safety. To determine the optimal route,
a UCAV needs to escape all threats during the determination of the total threat
cost. Similarly to the fuel consumption FC , the continuous model of risk cost
TC can be calculated as a line integral of a function wt (threat weight) over a
piecewise smooth curve L. The total threat cost produced by Nt threats while
a UCAV flies along the path segment Lij can be calculated by [8]

wt,Lij
=

∫

Lij

Nt∑
i=1

ti(
(x − xi)2 + (y − yi)2

)2 dl (3)

where ti denotes the threat grade of the threat i with the center at point (xi, yi).
To simplify the calculation of the TC , this discrete model was used as in [16]:

TC =
1
5

d+1∑
i=1

l5i

Nt∑
j=1

tj
∑
k∈K

1
D4

k(i, j)
(4)
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where d denotes the dimension of the problem, li is the length of the ith sub-
segment, Nt is the overall number of the dangerous areas, tj is the threat grade
of the jth threat, K = {0.1, 0.3, 0.5, 0.7, 0.9}, and Dk(i, j) is Euclidian distance
between kth point belonging to the ith subsegment and the jth threat center.
The 1/10 location (for k = 0.1) which is located in the last subpath is shown
in Fig. 1. The overall cost C of a UCAV from the start position to the desired
destination can be calculated from a weighted sum of the threat and fuel costs:

C = λ · TC + (1 − λ) · FC (5)
where λ ∈ [0, 1] is a variable which is used to establish the balance between
the threat exposition degree and the fuel consumption. For comparison of our
algorithms, λ will be set to 0.5. Finally, the optimal path planning of a UCAV
can be obtained by minimizing Eq. 5 so that arbitrary sub-path of the trajectory
must not: (a) touch any threatening environment; (b) intersect any threatening
environment; (c) be entirely located inside of any threatened environments. Due
to these constraints, it is clear that the entire trajectory will be outside of the
dangerous areas, and thus ensuring a safe movement of a UCAV.

3 Adjusted GFWA for the UCAV Path Planning

Guided fireworks algorithm (GFWA) based on the FWA with dynamic resource
allocation (dynFWA) presents a promising swarm intelligence algorithm [12].
GFWA presents a recent improvement of the original fireworks algorithm (FWA)
proposed in 2010 by Tan and Zhu [14]. The latest version of guided fireworks
algorithm introduces guided sparks for each of fireworks which produce a faster
convergence rate. In the GFWA, fireworks were initially randomly deployed in
search space. The explosion of a firework generates the specific number of sparks.
For each spark that is located in search space objective function was calculated
and these solutions were further used for position selection in the next generation.
Exploitation and exploration were implemented by introducing two types of
fireworks, well and poorly manufactured. Differences between two of them are in
the number of produced sparks and their distribution around the explosion place.
For each firework, the number of sparks and explosion amplitude is determined
based on the objective function. Further, we provide in detail the implementation
of the adjusted fireworks algorithm for the UCAV path planning problem:

Step 1. Generation of the initial population: Map old system XOY to new one
X’O’Y’. Deploy a randomly distributed population xi of n solutions (fireworks)
to X’O’Y’ system. Evaluate the fitness values of xi due to Eq. 5, and set the
variable cycle to one. Based on the feasibility rules, find the best firework (core
firework, CF) xbest and its the best fitness value ymin before an iterative process.

Step 2. Calculation of the explosion spark’s number and explosion amplitudes:
Find out from the population xi (i = 1, 2, · · · , n) the worst fitness value ymax.
Then, for each firework xi determine the number of sparks si by the equation:

si = m
ymax − f(xi) + μ∑n

i=1(ymax − f(xi)) + μ
(6)
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where parameter m controls the total number of sparks, f is the cost function,
and μ is a small constant which is used to prevent the denominator from becom-
ing zero. The amplitude of explosion which is used to calculate the position of
the sparks was defined by the formula:

Ai = Â
f(xi) + ymin + μ∑n

i=1(f(xi) + ymin) + μ
(7)

where Â is the highest value of the explosion amplitude. To produce better
exploitation, the explosion amplitude for core firework was calculated as in [12]:

ACF (t) =

{
ACF (1), if t = 1

CrACF (t − 1), if f(xCF (t)) = f(xCF (t − 1))
CaACF (t − 1), if f(xCF (t)) < f(xCF (t − 1))

(8)

where t is current generation, while Ca > 1, Cr < 1 and ACF (1) are constants.

Step 3. Calculation of new sparks: Determine the initial spark’s location uj =
xi. For each location uj generate k random dimensions by the formula k =
round(σ · d), where σ ∈ [0, 1] is a uniform distributed number. Then, calculate
the displacement hi = Ai · ω, where ω is a random number from [0,1]. Move
the spark uj to a new place according to the formula uk

j = uk
j + h, where

j = 1, 2, · · · , si. In this computation step, the algorithm checks the bounds of
the calculated solution uj . If the value uk

j of the spark uj overflows the allowed
search space limits, then it is updated by bk

l + |uk
j |%(bk

u − bk
l ), where bl and bu

denote lower and upper boundaries of the spark, respectively.

Step 4. Creation of a guiding spark for the firework xi: For each firework xi

generate a new guiding spark vl as follows:

vk
l =

{
xk

i , others
ak, if r < Cf

(9)

where r ∈ [0, 1] is a random number drawn from uniform distribution, k is a
dimension of vector, Cf is a constant, while the vector a presents the mean
value of sparks generated by the firework xi. The vector vl should be mapped
to the potential space as done in Step 3. In the experiment we set Cf = 0.7.

Step 5. Memorize the best current solution: Evaluate the fitness values of the
offsprings xi, uj , vl, and then record the best offspring as xbest with the best
fitness value ymin related to feasibility rules. The best firework xbest is transferred
to the next generation as the first (core) firework x0.

Step 6. Update the positions of fireworks: In this step the new vector w is
created as a composition of fireworks x, explosion sparks u, and guiding sparks
v. The positions of fireworks xi (i = 1, · · · , n) except the core firework (CF) x0

will be updated by random choosing n − 1 individuals from the vector w.
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Step 7. Stopping criteria: If the termination criterion is met or the variable cycle
is equal to the maximum number of iterations, then the algorithm is finished.
Otherwise, increase the variable cycle by one and go to Step 2.
Since the GFWA was not designed to deal with constraints as well the UCAV
path planning is a multi-constrained problem, we propose the constraint-
handling method based on feasibility rules. Before we underpin the mentioned
rules, let us define some terms related to them. Each agent (spark, firework)
which represents the path of UCAV will be punished by negative scores if and
only if arbitrary sub-path of the trajectory violates any of three restriction con-
ditions defined in Sect. 2.1. Therefore, a solution is feasible (a UCAV can safely
move along the path) if the number of negative scores equals zero. Otherwise,
it is infeasible. Similarly, as in Deb’s mechanism [5], we introduce three feasi-
bility rules. The first rule (R1) says that any feasible solution is preferred to
any infeasible. Based on the second rule (R2), among two feasible solutions, the
one having better fitness value is preferable. The last rule (R3) states that if
both solutions are infeasible, the one with the lower sum of negative scores is
preferred.

4 Experimental Analysis

In this part, we compare the performance of our GFWA method with other
methods proposed in [7]. Our method has been implemented in C# programming
language, and all experiments were conducted on a PC with Intel(R) Core(TM)
i7-3770 K 3.5 GHz processor with 16 GB of RAM running under the Windows 10
x64 operating system. The experiments were organized in the same way as it was
done in [7] where one flight environment was considered. The coordinates of both
the starting point and target point are set as (10, 10) and (55, 100), respectively.
In this paper, we included the simulation results of the methods presented in
the papers [7,8,16] which encompassed performance analysis when the different
dimensionality d of the problem was taken into consideration. The reported
results were normalized in the same way as in [7]. The parameters for our GFWA
method were set as follows: n = 3, m = 20, Â = 100, Cr = 0.9, Ca = 1.2 and
the maximum number of sparks has bounded by 8. These parameters were set
according to the recommendations in [12]. From the values of these parameters,
the maximum population size of our GFWA method was set to 30 agents. The
maximal number of fitness function evaluations (FFE) was set to 6000 to make
it comparable with other mentioned algorithms. Algorithms were tested for the
dimensions 5, 10, 15, 20, 25, 30, 35 and 40.

From the statistical data shown in Table 2, we can observe that our GFWA
approach wins all algorithms for all dimensions and all statistical parameters
except for dimensions d = 25, d = 40 and statistical parameter BEST, where
BSO and MFA produced better performance. Based on the best-obtained results
reached by our GFWA for almost all dimensions and all statistical parame-
ters, as well as the smallest difference between the best and the worst solu-
tions, it can be concluded that compared to the other algorithms, our proposed
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Table 2. The best, worst and mean results generated over 100 runs with different
problem dimensions and 6000 fitness function evaluations

D Stat. Algorithms

SGA DE PSO ACO MFA BA BAM BSO GFWA

5 BEST 9.9596 4.3568 5.6082 10.1164 4.3573 10.6909 4.3575 0.3843 0.3685

WORST 22.6326 9.7959 9.7959 12.6928 12.4186 295.2557 10.2403 0.3873 0.3850

MEAN 10.8836 8.0557 10.0765 11.4856 9.1673 56.4830 9.0542 0.3856 0.37759

10 BEST 1.5498 1.3952 2.1101 7.4746 1.3966 2.3600 1.3953 0.3690 0.3689

WORST 5.7899 12.4821 23.2604 18.2565 3.7858 58.7386 10.7242 0.4372 0.3940

MEAN 2.2813 3.1206 7.2212 12.5333 1.5740 19.4251 2.7075 0.4304 0.3811

15 BEST 0.9700 0.6204 3.2257 9.8297 0.6115 3.0757 0.6094 0.3774 0.3756

WORST 9.9385 12.5250 28.0228 10.9917 3.8319 35.7454 10.1928 0.6771 0.5228

MEAN 1.8973 2.3737 7.7362 10.2484 0.8967 13.6018 1.2318 0.4305 0.4015

20 BEST 0.8426 0.4913 2.3738 10.0836 0.4552 2.3950 0.4679 0.4541 0.3917

WORST 11.6024 18.8897 34.7133 17.0266 2.0279 33.7068 3.7420 2.0108 0.8572

MEAN 2.8621 3.0044 9.9091 16.3303 0.7004 13.6305 0.7609 0.7003 0.5020

25 BEST 1.3743 0.6265 2.3740 11.5490 0.4571 5.0173 0.4484 0.3929 0.4083

WORST 16.0736 17.1415 31.6741 12.2373 3.7043 24.9265 3.5192 4.0914 0.9603

MEAN 3.7238 4.6029 10.3315 11.5842 0.9987 14.9017 0.7093 0.6851 0.5153

30 BEST 1.5147 1.1301 3.6751 13.8615 0.5160 7.2470 0.4671 0.4411 0.4265

WORST 14.0512 29.6529 35.6656 14.4647 8.3364 30.0844 10.2851 8.0677 4.6736

MEAN 4.3798 11.4103 12.7964 13.9422 1.3568 16.6162 1.1067 1.0530 1.0283

35 BEST 1.5319 1.2849 5.4765 16.9476 0.4709 7.4484 0.4795 0.5979 0.4652

WORST 15.6693 39.4435 38.0578 18.7271 5.8830 32.7374 8.8193 8.2009 2.6918

MEAN 5.4943 19.1074 13.8799 18.3452 1.6009 17.7033 1.4617 1.4535 1.3511

40 BEST 1.9406 3.9617 5.5384 17.6142 0.4506 8.6500 0.6028 0.6003 0.5089

WORST 22.5022 45.4130 35.5090 27.0641 7.7236 33.2634 8.4273 8.2159 4.0936

MEAN 7.4237 28.7062 15.1555 24.7642 2.1978 19.9737 1.8769 2.0039 1.8393

GFWA algorithm was the most stable one and robust method. Also, to show
that the differences between the obtained results are statistically significant, we
have applied ANOVA statistics to three groups of data BEST, WORST, MEAN
formed related to the number of control points d. We have tested two hypoth-
esis H0 and H1. The null hypothesis states: “Differences between algorithms
from Table 2 are not statistically significant”, while the second hypothesis H1

claims that “There are differences between them which are statistically signifi-
cant”. We have used statistical package SPSS to generate the results. One-way
ANOVA in SPSS produced the following results: F = 25.52 (BEST group),
F = 10.74, (MEAN group), F = 3.41 (WORST group), where Fα = 2.09, and
α = 0.05. Based on these results we see that the test statistic F falls in the
rejection region F > Fα, which means that the sample evidence supports the
alternative hypothesis H1. Otherwords, we can reject the null hypothesis H0

and conclude that there is sufficient evidence to indicate a difference between
algorithms. Presented results prove the quality of the proposed adjusted guided
fireworks algorithm for the UCAV path planning problem for all dimensions.
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5 Conclusion

In this paper, we adopted a recently introduced a guided fireworks algorithm
(GFWA) adopted for optimization of the UCAV path planning problem. The
proposed method was tested on test environments from the literature with cir-
cular danger zones and different threat degrees, and it was compared to eight
other methods from the literature. It has shown that our method was superior
to all other used algorithms. Since GFWA can find a safe flight path with the
smallest threat and minimum fuel cost, it establishes the GFWA as a promising
approach to UCAV path planning problem with possible further improvements.
Future work can include a third dimension into UCAV path planning.
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Abstract. Parameter identification of non-linear dynamic processes,
among them fermentation ones, is rather difficult and non-trivial task
to be solved. Failure of conventional optimization methods to provide a
satisfactory solution provokes the idea some stochastic algorithms to be
tested. As such, the promising metaheuristic algorithm Cuckoo search
(CS) has been adapted and applied for a first time to a parameter iden-
tification of S. cerevisiae fed-batch fermentation process model. Aiming
to improve the model accuracy and the algorithm convergence time, sev-
eral pre-tests adjustments of CS have been done according to the specific
optimization problem. Obtained results confirm the effectiveness and effi-
cacy of the applied CS algorithm. In addition, a comparison between CS
and simple genetic algorithm, proved as successful in parameter identifi-
cation of fermentation process model, has been done. Algorithms advan-
tages and disadvantages have been outlined and the more reliable one
have been distinguished.

Keywords: Cuckoo search · Genetic algorithm
Parameter identification · Fermentation process

1 Introduction

Yeasts, and particularly S. cerevisiae, play a key role in contemporary production
of medicines, foods and beverages. Also, S. cerevisiae are the microorganisms
behind the most common type of fermentation. As a whole, fermentation pro-
cesses (FP) have a numerous specific peculiarities that turned their modelling to
a rather difficult to be solved task. As such, FP models have a complex structure
described by nonlinear, dynamic systems with interdependent and time-varying
process variables. That is why the choice of an appropriate method for model
parameter identification is of a key importance [1,2,11,13,14].

The optimization techniques could be classified in two groups – exact and
heuristic. The exact strategies work well for many problems and guarantee
the optimal solution finding. However, for a large amount of real-world com-
plex tasks, including parameter identification of FP models, the exact methods
c© Springer Nature Switzerland AG 2019
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became ineffective, since they are time consuming and require higher computa-
tional resources. These problems could be solved using another group optimiza-
tion techniques, namely efficient metaheuristic algorithms.

In the group of heuristic optimization techniques, there are a plenty of
so called nature-inspired metaheuristic algorithms, such as genetic algorithms
(GA) [5], ant colony optimization (ACO) [3], artificial bee colony (ABC) opti-
mization [6], bat algorithm (BA) [18], particle swarm optimization (PSO) [7],
etc. They have been developed and used for solving of wide range optimiza-
tion problems [15], among them several successful applications in FP modelling
and control [2,10,12]. However, the researchers still work for finding the more
powerful, efficient and adequate modelling concepts for the considered problems.

Cuckoo search (CS) is one of the most promising optimization algorithm
inspired by animal behaviour phenomena. The CS algorithm, proposed by Yang
and Deb in 2009 [16], takes as a metaphor of cuckoo species reproduction strat-
egy in the nature, so called brood parasitism. CS has been applied to solving
many optimization problems [4,8,9] and has been proved as very efficient method
that, in some cases, is even outperformed other metaheuristics, such as genetic
algorithms [1,14,17]. Here, CS algorithm has been adapted and applied for a first
time to a parameter identification of S. cerevisiae fed-batch FP model. In addi-
tion, a comparison between CS and simple GA has been done with the purpose
of outlining the algorithms advantages and disadvantages.

2 Problem Formulation

For the purposes of a parameter identification of fed-batch process of S. cere-
visiae, a cultivation has been conducted in the Institute of Technical Chemistry
University of Hannover, Germany. Experimental data consist of on-line measure-
ments of substrate (glucose) and dissolved oxygen, as well as off-line measure-
ments of biomass and ethanol. The full description of process conditions and
experimental data are given in [10].

According to the mass balance and considering mixed oxidative functional
state [10], non-linear mathematical model of S. cerevisiae fed-batch FP is com-
monly described as follows:

dX

dt
= μX − F

V
X (1)

dS

dt
= −qSX +

F

V
(Sin − S) (2)

dE

dt
= qEX − F

V
E (3)

dO2

dt
= −qO2X + kO2

L a (O∗
2 − O2) (4)

dV

dt
= F (5)

where X, S, E, and O2, are concentrations, respectively of biomass [g/l], substrate
[g/l], ethanol [g/l] and dissolved oxygen [%]; O∗

2 – dissolved oxygen saturation
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concentration, [%]; F – feeding rate, [l/h]; V – volume of bioreactor, [l]; kO2
L a –

volumetric oxygen transfer coefficient, [1/h]; Sin – glucose concentration in
the feeding solution, [g/l]; μ, qS , qE , qO2 – specific growth/utilization rates of
biomass, substrate, ethanol and dissolved oxygen, [1/h].

According to functional state modelling approach [10], specific rates in
Eqs. (1)–(5) are as follows:

μ = μ2S
S

S + kS
+ μ2E

E

E + kE
, qS =

μ2S

YSX

S

S + kS

qE = − μ2E

YEX

E

E + kE
, qO2 = qEYOE + qSYOS

(6)

where μ2S , μ2E are the maximum growth rates of substrate and ethanol, [1/h];
kS , kE – saturation constants of substrate and ethanol, [g/l]; Yij – yield coeffi-
cients, [g/g].

All functions in the model (Eqs. (1)–(6)) are continuous and differentiable,
as well as all model parameters fulfil the non-zero division requirement.

For the considered here model (Eqs. (1)–(6)), the following vector including
nine model parameters is going to be identified: p = [μ2S , μ2E , kS , kE , YSX ,
YEX , kO2

L a, YOS , YOE ].
As an optimization criterion, mean square deviation between the model out-

put and the experimental data for biomass, substrate, ethanol and dissolved
oxygen, obtained during the cultivation has been used:

J =
∑

(Y − Y ∗)2 → min, (7)

where Y is the experimental data, Y ∗ – model predicted data, Y = [X,S,E,O2].

3 Cuckoo Search Algorithm

Cuckoos are amazing birds, known with their aggressive reproduction strat-
egy [16]. Cuckoo species not only lay their eggs in alien nests, but they may
also remove other birds eggs with the purpose to increase the hatching proba-
bility of their own generation. The specific cuckoo’s brood parasitism reduces
the possibility their eggs to be abandoned and thus increases the cuckoo’s repro-
ductivity. The interesting breeding behaviour is implemented in cuckoo search
metaheuristic algorithm for optimization problems solving. In the CS algorithm,
the eggs in the nest are assumed as a set of candidate solutions of an optimiza-
tion problem, while the cuckoo egg is interpreted as a new coming solution. The
ultimate goal of the method is to use iteratively these new and potentially better
solutions for very good solution finding of the problem.

In CS algorithm switching parameter pa control a balanced combination
between local random walk and global explorative random walk. Equation (8)
presents the local random walk, while Eq. (9) gives the global random walk,
carried out using Lévy flights [14,16]:

xt+1
i = xt

i + αs ⊗ H (pa − ε) ⊗ (
xt

j − xt
k

)
(8)
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xt+1
i = xt

i + αL (s, λ) (9)

In Eq. (8), xt
j and xt

k are two different solutions, selected by random per-
mutation, H(u) is a Heaviside function, ε is a random number drawn from a
uniform distribution, s is the step size, ⊗ means the entry-wise product of two
vectors.

In Eq. (9), α > 0 is the step size scaling factor, and

L(s, λ) =
λΓ (λ) sin(πλ/2)

π

1
s1+λ

, (s � s0 > 0) (10)

The initial solution generation is given by

x = Lb + (Ub − Lb) ∗ rand (size (Lb)), (11)

where rand is a random number generator uniformly distributed in the space
[0, 1] and Ub and Lb are respectively the upper and the lower boundary of the
j -th nest.

The pseudo-code of CS algorithm, according to [16], is presented in Fig. 1.

begin
Objective function F (x), x = (x1, ..., xd)T

Generate initial population of n host nests xi, (i = 1, 2, ..., n)
while (t < MaxGeneration) or (stop criterion) do

Get a cuckoo randomly by Lévy flights
Evaluate its quality or fitness value Fi

Choose a nest among n (say, j) randomly
if (Fi < Fj) then

Replace j by the new solution i
end if

A fraction (pa) of worse nests are abandoned
New solutions (nests) are built
Keep the best solutions, i.e. nests with quality solutions
Rank the solutions and find the current best

end while
Postprocess results and visualization

end

Fig. 1. Pseudo code of CS algorithm

4 Simple Genetic Algorithm

Genetic algorithms, as one of the most popular biologically inspired metaheuris-
tic methods, have pointed more and more attention mainly due to the fact that
they reach a good solution in the field of complex dynamic systems optimization,
and particularly parameter identification of FP models [2,10]. Simple genetic
algorithms (SGA), originally presented in Goldberg [5], searches a global optimal
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solution using three main genetic operators in a sequence selection, crossover and
mutation over the individuals in one population. After the reproduction, SGA
calculates the objective function for the offspring, and the best fitted individuals
are selected to replace the parents, according to their objective function values.
GA finish calculations when the stop criteria is fulfilled, in this case, when the
total number of generations is reached.

5 Results and Discussion

5.1 Numerical Computations

CS and GA implementations for the purposes of parameter identification of the
S. cerevisiae fed-batch fermentation model (Eqs. (1)–(6)) have been performed
in Matlab environment.

All computational results have been done using Intel R© CoreTMi3 CPU M
380 @ 2.53 GHz, 4 GB Memory (RAM), Windows 8 (64 bit) operating system.

Metaheuristic methods typically require a large number of parameters to be
tuned, depending on the problem solving, while CS requires only two parameters,
namely, the population size (number of nests) n and the probability rate of
replacement pa. This makes the CS parameters tuning much easier than other
metaheuristic approaches. In current investigation, the CS algorithm parameters
have been tuned taking into account the results in [1,4,14,16]. The population
size n has been investigated for the following values: n = {10; 15; 20; 30; 60; 120},
while switching parameter pa have been tried for different values as follows pa

= {0.05; 0.15; 0.25; 0.4; 0.5}. The results show that the algorithm performance
is similar for considered here different pa and n values. This fact confirms one
reported in [4,16], that no fine adjustment is needed for the method to perform
well. However, some model parameters values, as well as the objective function,
became more adequate in case of increase the number of iterations. According
to the several pre-test adjustments, in this paper CS parameters n and pa have
been set to 15 and 0.25, respectively. The following lower bounds (Lb) and upper
bounds (Ub) of the identified parameters vector p = [μ2S , μ2E , kS , kE , YSX ,
YEX , kO2

L a, YOS , YOE ] of S. cerevisiae fed-batch fermentation model (Eqs. (1)–
(6)) are going to be used [2], as in the case of GA implementation:
Lb = [0.9 0.05 0.08 0.5 0.1 0.1 0.001 0.001 0.001];
Ub = [1 0.15 0.15 0.8 1 3 300 1000 1000].

Going ahead, the results obtained with CS algorithm have been compared
to those obtained when GA has been applied for parameter identification of the
considered here S. cerevisiae fed-batch fermentation model (Eqs. (1)–(6)). The
main GA operators and parameters, according to [2] (with only one difference -
number of individuals set to 15 instead of 20, in order to be equal to the number
of nests in CS), are summarized in Table 1.

Table 2 demonstrates the averaged (after 30 runs) results obtained when
applying CS and GA for parameter identification of S. cerevisiae fed-batch
fermentation model. Applied ANOVA test to measure the relative difference
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Table 1. Main GA operators and parameters

Operator Type

Fitness function Linear ranking

Selection function Roulette wheel selection

Crossover function Double point

Mutation function Bit inversion

Reinsertion Fitness-based

Parameter Value

Generation gap 0.8

Crossover probability 0.95

Mutation probability 0.05

Number of generations 100

Number of variables 9

Number of individuals 15

between two algorithms shows that the GA and CS achieve statistically differ-
ent results. The p-value is 2.8000e–005. The ANOVA results are presented also
in Fig. 2.

GA CS

0.0221

0.0222

0.0223

0.0224

0.0225

0.0226

0.0227

Va
lu
es

Fig. 2. Results from one-way analysis of variance

The results presented in Table 2 are obtained under identical conditions con-
cerning the size of population: the number of nests in CS algorithm is 15, while
in GA the number of individuals is 15. As shown in Table 2, the values of
the optimization criterion obtained with two investigated here algorithms are
very similar, varying between 0.0221 and 0.0223. But presented herewith CS
algorithm yields slightly better results (J = 0.0221), than GA (J = 0.0223).
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Table 2. Results from model parameters identification applying CS and GA

Cuckoo search Genetic algorithm

J 0.0221 0.0223

µ2S 0.9180 0.9742

µ2E 0.1470 0.1208

kS 0.1230 0.1321

kE 0.8000 0.7984

YSX 0.3968 0.4277

YEX 1.9703 1.6428

kO2
L a 95.6787 82.2360

YOS 762.0870 647.7941

YOE 743.4037 51.7464

The logical explanation of the fact that CS outperforms GA might be found
in fewer parameters to be fine-tuned in CS, than in GA. Only two parame-
ters, namely population size n and switching parameter pa determine the CS
algorithm’s efficiency. Thus, a good balance of intensive local search and an effi-
cient exploration of the search space is more easily achieved in CS. Also, such a
balance leads to a more efficient algorithm performance [16]. Compared to CS,
GA requires fine tuning of much more parameters and operators (Table 1) for
a specific problem. This is the main disadvantage of GA compared to CS app-
roach. However, it is worth noting that for different set of GA’s parameters (for
example, presented in [2,14]) the algorithm might achieve better results.

Presented results show the effectiveness of CS algorithm for solving such
a complex nonlinear problems, as S. cerevisiae parameter identification of FP
model.

6 Conclusions

Here, for the first time, the promising Cuckoo search metaheuristic algorithm has
been adapted and applied, after several pre-test for parameters adjustments, to
the parameter identification of a S. cerevisiae fed-batch FP model. As a result, it
has been confirmed that CS algorithm could be used as powerful and efficient tool
for parameters identification of the non-linear dynamic model of a S. cerevisiae
fed-batch FP. Further, CS and GA performance have been compared and CS
algorithm has been distinguished as more reliable one, concerning the objective
function value, for the considered here optimization problem. Also, an advantage
in favour of CS approach is tuning of only two algorithm parameters, namely
the population size n and the rate of replacement pa. As future work, aiming at
improvement of algorithms effectiveness, some CS hybridizations with modified
GAs or other metaheuristic algorithms will be developed and tested.
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Abstract. String rewriting is a modification of the idea for the context-
free grammar. Modification consists in the fact that there is not separa-
tion on terminal and nonterminal symbols. Each symbol in string rewrit-
ing, is considered as nonterminal and it can produce longer sequence. By
this way infinite structures are created as fractals. In a video presentation
by Jack Hodkinson the use of 2D images instead of text symbol pixels is
suggested. Each pixel (geometric square) is divided in nine sub-squares.
The color of the pixel determine the pattern in which the nine squares
are arranged. By this way each pixel gives a rule for subdivision of the
containing area. Hodkinson gives a method, to setup the fractal, to repro-
duce a particular 2D image (for example, the glyph of the Greek letter
π). This problem is well known in the fractals theory as Fractal Inverse
Problem (FIP). It is an optimization problem, so a good option is the use
of genetic algorithm (GA), to assemble set of rules, for string rewriting
with 2D pixels. Series of experiments with the size of substitution matrix
(not only 3 × 3, but also 2 × 2 and 4 × 4) are done by Hodkinson. Also
are made series of experiments with different number of colors, starting
with black/white and reaching the final successful experiment with thirty
shades of blue.

Keywords: Fractal Inverse Problem · Genetic Algorithms
String rewriting

1 Introduction

This study addresses FIP which is well known in the fractals theory [1,2]. There is
a branch in the theory for the formal languages which is related to a context-free
grammar (CFG). In such grammar there are set of production rules. Application
of these rules, lead to generation of all possible strings in a specified formal
language [3]. In CFG, a production rule is an operation of simple replacement.
Rules are applied regardless of the context. The left hand side of a CFG rule
is always nonterminal symbol. It means that nonterminal symbols are not part
c© Springer Nature Switzerland AG 2019
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of the resulting string. The right hand side of a CFG rule, consists of terminal
symbol, nonterminal symbols or combination of both. The main idea in CFGs is
that nonterminal symbols are substituted with the given rules until there is no
nonterminal symbols in the generated string.

String rewriting system (SRS) is a substitution system in which the rules
does not contain nonterminal symbols. Each terminal symbol can appear on the
left hand side (LHS) of the rule and on the right hand side (RHS) of the rule.
With such definition SRS are useful for generation of infinite structures and they
are mainly used for the generation of some fractals (for example: Box Fractal,
Cantor Dust, Cantor Square Fractal and Sierpinski Carpet). Most of the fractals
are generated with binary rules (black and white colors), but in the Hodkinson’s
research it is clearly shown that limit of the colors can be higher.

Fig. 1. Fractal generated by Jack Hodkinson.

The problem in 1D is well presented by [4], but in Hodkinson’s research, the
genetic algorithms (GAs) are used for 2D shape of Greek letter π, to be recon-
structed with substitution rules of 30 shades of blue pixels (Fig. 1). The usage
of differential evolution is also applicable [5], but not in Hodkinson’s research,
because the optimization is in a discrete space. The key problem in this research
is which rules to be selected to achieved the final goal. GA is a promising app-
roach for such kind of combinatorial optimization. A single rule has LHS pixel
with particular color and nine pixels on the RHS as 3× 3 substitution matrix.
Image starts with a single pixel and it grows on size by 3 on each iteration.

This study extends the idea from 2D space into 3D space, which is the main
contribution of the authors. Voxels are used instead of pixels. Square matrix of
3 × 3 is replaced with cube 3 × 3 × 3. The paper is organized as follows: Sect. 1
introduces the problem; Sect. 2 presents a model and optimization approach;
Sect. 3 gives experiment details and the results are shown; Sect. 4 concludes and
some further ideas for research are pointed.
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2 Model and Optimization

A finite 3D space is represented as three-dimensional array of voxels in the
model. Each voxel is encoded with a single long integer value, which consists of
the RGB (red, green, blue) information for the color of the voxel. In this model
32 different transition 3× 3 × 3 matrices are selected, each corresponding to the
one of the 32 colors. The steps for fractal generation are given in Algorithm1.

Algorithm 1. Fractal generation algorithm.
1: procedure Generate(Level, V oxel)
2: if Level � 0 then
3: return
4: v ← Split(V oxel)
5: for each v do
6: Paint(v)
7: Generate(Leve-1, v)

The splitting of the voxel is done on 27 smaller voxels with 1/3 side size of
the original Step 4. Each sub-voxel is painted according to the color of transition
matrix pattern Step 6. A recursive call of generator procedure is done for each
sub-voxel Step 7. Recursive generation of the fractal stops when the recursion
level reached zero Step 3.

The individuals in the genetic algorithm are presented as 32 transition matri-
ces each with size 3 × 3 × 3 (Listing 1.1 in [8]). Long integer numbers are used
for RGB color representation for all 27 cells of the transition matrix.

Listing 1.1. Chromosomes encoding.

List<Chromosome> l i s t = new LinkedList<Chromosome >() ;

for ( int i = 0 ; i < 37 ; i++) {
Long c e l l s [ ] = new Long [COLORS. l ength ∗ 3∗3∗3 ] ;

for ( int j = 0 ; j < c e l l s . l ength ; j++) {
c e l l s [ j ] =
COLORS[PRNG. next Int (COLORS. l ength ) ] ;

}

l i s t . add (new TransitionsChromosome ( c e l l s ,
RECURSION DEPTH, COLORS, target , s t a r t ) ) ;

}
The order of the matrices shows which transition will be applied according to

used colors order. The steps of the optimization are illustrated in Algorithm2.
Parents in the population are appointed by tournament selection with arity

of two (Listing 1.2 in [8]).
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Algorithm 2. Genetic algorithm.
1: procedure Optimization
2: p ← Initialize() � Initialize population.
3: while TimeLimit > 0 do
4: Selection(p) � Select parents.
5: Crossover(p) � Crossover parents.
6: Mutation(p) � Mutate children.
7: Evaluation(p) � Evaluate offspring.

Listing 1.2. Genetic algorithm parameters.

GeneticAlgorithm opt imize r = new GeneticAlgorithm (
new UniformCrossover<TransitionsChromosome > (0 .5) , 0 . 9 ,
new Trans i t ionsMutat ion (COLORS) , 0 . 01 ,
new TournamentSelection ( 2 ) ) ;

Uniform crossover is taken as the most symmetric crossover (Listing 1.2 in
[8]). From each parent randomly are taken 50% of the elements. Random change
of a color is used for the mutation operator (Listing 1.3 in [8]).

Listing 1.3. Color mutation of a single voxel.

List<Long> va lues = new
ArrayList<Long>((( TransitionsChromosome ) o r i g i n a l ) .
ge tRepre sentat ion ( ) ) ;

va lue s . s e t (PRNG. next Int ( va lue s . s i z e ( ) ) ,
c o l o r s [PRNG. next Int ( c o l o r s . l ength ) ] ) ;

The evaluation is done by application of each 32 transition matrices with
the certain level of recursion depth. As suggested in [1], an Euclidean distance
between generated fractal and target shape is used as fitness function (Listing
1.4 in [8]).

Listing 1.4. Euclidean distance between voxels.

double r e s u l t = 0 ;
for ( int x = 0 ; x < a . l ength &&

x < b . l ength ; x++)
for ( int y = 0 ; y < a [ x ] . l ength &&

y < b [ x ] . l ength ; y++)
for ( int z = 0 ; z < a [ x ] [ y ] . l ength &&

z < b [ x ] [ y ] . l ength ; z++)
r e s u l t += ( a [ x ] [ y ] [ z ] − b [ x ] [ y ] [ z ] ) ∗

( a [ x ] [ y ] [ z ] − b [ x ] [ y ] [ z ] ) ;

r e s u l t = Math . s q r t ( r e s u l t ) ;
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The initial fractal is a single cube painted with the color with the first index
in the order of the colors. Genetic algorithms are global heuristics optimization
and this means that it does not matter what kind of color the initial voxel will
have.

3 Experiments and Results

All experiments are done in Java programming language with Apache Genetic
Algorithms Framework [6] as an optimization approach and Printing in 3D -
JavaSCAD [7] as 3D visualization tool. The source code used for all experiments
is an open source and can be found at [8] for the interested readers who would
like to reproduce the experiments and results. Increasing the space dimensions
from 2D to 3D greatly increases the complexity of the optimization process.
Because of the increased complexity less ambitious shape than the Greek letter
π is taken, in our case it is a voxelized sphere (Fig. 2). The sphere is one of the
simplest 3D objects and that is why it was selected as optimization target. For
visualization purposes the first color in the set of colors (1 of 32 in this case) is
accepted as transparent. The goal of the experiment is form a single side cube
to find such 3× 3 × 3 set of transitions which will lead to fractal generation of a
target 3D object (in this case sphere) (Table 1).

Fig. 2. Voxelized sphere as fractal optimization target object.
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The genetic algorithm is used with the following parameters:

Table 1. Genetic algorithm parameters.

Parameter Value

Elitism rate 0.10

Crossover rate 0.90

Mutation rate 0.01

Number of individuals 37

Number of variables 864

Optimization minutes 30

Fig. 3. Intermediate snapshots during the optimization process.

The optimization process converges much more slower in the 3D space than
what was achieved by Hodkinson in the 2D space. As it is shown in Fig. 3,
starting form a single cube it goes to the desired shape too slowly. The target
shape is sphere, but intermediate shapes looks more as cubes than the desired
target object.

4 Conclusions

In this study the idea for string rewriting is extended in the 3D space and instead
of pixels voxels are used with 3× 3 × 3 substitution matrix. The study is only
on virtual models but with the usage of industrial tomography, 3D objects can
be scanned and with 3D color printer generated fractals can be printed. The
extension of the idea for fractal generation from 2D to 3D space shows that
in 3D space the process is much more time consuming than in the 2D space.
Some speed-ups are possible by parallel implementation of the genetic algorithm
[9]. Voxel based representation of 3D objects consumes a lot of computational
resources and generated objects are with limited usefulness. A possible appli-
cation is compression of 3D images, which is similar to the idea of 2D images
compression [10,11]. Achieved results are promising for further research of the
fractal nature of the world in which all we are living.
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Abstract. First hop redundancy protocols are an essential tool for improving
the availability of IP networks. Several protocols exist to rapidly configure
redundant paths in the event of a link failure but a review of literature provides
little guidance on their relative performance. This paper proposes a method for
appraising the effectiveness of three common first hop redundancy protocols
within IP networks and critically analyses the approach. Results from a typical
network topology are presented as well as a discussion around the validity of the
results and potential sources of error. Consideration is given to the potential of
advanced numerical methods to minimise error, particularly in large scale net-
works. Recommendations are made regarding the optimal configurations to be
used when comparing first hop redundancy protocols, as well as further research
required to improve the accuracy of the results obtained.

Keywords: FHRP � HSRP � GLBP � VRRP � Network redundancy
Gateway protocol � Failover � Network performance measurement

1 Introduction

First Hop Redundancy Protocols (FHRP) provide an essential tool for increasing
availability in critical switched IP networks. They provide a mechanism for fast fail-
over to the next hop from a primary path to a secondary path within a group of backup
routers. The process is faster than waiting for spanning tree or dynamic routing pro-
tocols to converge on a new path due to the limited scope and pre-configuration of the
FHRP. Essentially two or more routers are able to share the default gateway at OSI
layer 3, which provides an alternative route or may even be used for rudimentary load
balancing. This does necessitate the use of multilayer switches but can be implemented
at the Access Layer or Distribution Layer [1, 2]. YanHua and WeiZhe [3] have shown
that such protocols are suitable for use within cable television IP networks when
combined with device redundancy, although they caution against diminishing returns
as the network complexity increases.

Cisco has developed two major proprietary protocols Hot Standby Routing Protocol
(HSRP) and Gateway Load Balancing Protocol (GLBP). Another common protocol is
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the Virtual Router Redundancy Protocol (VRRP), which is available as an open IEFT
standard RFC5798. It is similar to HSRP in operation but not compatible [4, 5].

HSRP is configured for an interface using the standby command and allows the
user to configure a virtual gateway for the connected hosts to use. Priorities are
specified such that an active router is allocated with one or more standby routers
sharing the virtual address with the active router as shown by Fig. 1. Packets are
forwarded based on an IP/MAC address pair and standby routers monitor the status of
the active router to promote a backup router in the case of a link failure on the active
path. Tracking objects can be used to monitor interfaces or Service Level Agreement
(SLA) tracking can monitor connectivity beyond the first hop. Either method can
update the router priorities to determine the active path. Different priorities can also be
assigned to different Virtual Local Area Networks (VLAN) to implement basic load
balancing, although this may become unwieldy on large networks [2, 6].

GLBP uses multiple gateways simultaneously, which enables more effective load
balancing and therefore uses all the bandwidth within the topology. Routers within a
GLBP group may be the Active Virtual Gateway (AVG), an Active Virtual Forwarder
(AVF) or the Standby Virtual Gateway (SVG). The AVG assigns virtual MAC address
to the other group members. Up to four AVFs, including the AVG, are able to forward
packets and the SVG is ready to take over from the AVG based on a similar priority
system to HSRP with decrements based on tracking objects. GLBP is implemented on
an interface using the glbp command and load balancing can be achieved within the
group by assigning packets to the MAC addresses of the AVFs via an equal round-
robin, by weighting certain paths or based on the host [2, 7].

VRRP is very similar to HSRP in that is uses a single virtual gateway that is shared
between a master and one or more backup router. It is implemented on the interface

Fig. 1. A typical HSRP configuration with the host using a common virtual gateway IP address.

56 P. Bourne et al.



using the vrrp command and supports object tracking to determine failures. Fewer IP
addresses may be used by VRRP than HSRP as the physical IP address for the master
router may also be used as the virtual IP address [8].

Several articles have been published that outline the configuration options for
HSRP, GLBP and VRRP [5, 9–11]. These discuss how the options affect the under-
lying algorithm but there appears to be little guidance on how to optimise the
parameters or how the common protocols compare under similar conditions. Ibrahimi
et al. [11] and Rahman et al. [12] demonstrate a basic method, using continuous
Internet Control Message Protocol (ICMP) echo requests to show the duration of a link
failure. Pavlik et al. [2] show a more accurate method to determine the interval between
missing and restored replies using timestamps from a packet sniffer. None of the studies
investigate the time taken to restore a link after the primary link recovers.

2 Method for Protocol Comparison

There are several network simulation packages that may be used to rapidly analyse the
behavior of different configurations. Common simulators include Cisco’s Packet
Tracer, open source application GNS3 and Riverbed Modeler. However for these to
produce accurate results, they would require detailed implementations of the software
and protocols running on the network devices as well as accurate models of the
hardware performance. Their accuracy cannot be verified so it is preferred to initially
characterise the protocol on real hardware.

A testbed was created to emulate a typical business Internet connection as shown
by Fig. 2. The customer had an edge router, which connected to their Local Area
Network (LAN). This had redundant links to the external network via primary and
secondary routers, which were then connected to the main router at the Internet Service
Provider (ISP). The switch simplified the configuration of the customer router by
removing the need for two interfaces on the same subnet. The primary link utilised a
Gigabit Ethernet connection whereas the secondary was only Fast Ethernet. Secondary
links are often metered in practice so load balancing was not implemented. To simulate
a link failure, the interface G0/0 was shut down on the primary router with a tracking
object to promote the secondary link based on the line-protocol state. The FHRPs were
configured to decrement the priority of the primary router below that of the secondary
router if the line-protocol went down; this causes the secondary router to preempt the
primary router and traffic would be rerouted. An alternative method would be to check
the reachability of the loopback interface on the destination network using ICMP
requests to decrement the priority upon failure. This would be a more meaningful
detection method within a real network but the non-deterministic nature of packet
generation and propagation may distort the results, which should be focused on the
responsiveness of the redundancy protocol itself.

Three methods were considered for measuring the interval between the interface
changing state and the FHRP responding.

1. Continuous ICMP echo requests could be sent with a 100 ms interval to the
loopback interface on the main router from a PC connected to the customer LAN.

Quantifying the Effectiveness of First-Hop Redundancy Protocols in IP Networks 57



This could be achieved using the Packet INternet Groper (PING) utility packaged
with the Ubuntu operating system. The number of dropped requests would infer the
time taken for the protocol to failover to the nearest 200 ms.

2. The same PING messages could be captured using a packet sniffer such as Wire-
shark running on the PC. The timestamps could be used to calculate the time
between the first PING request not to be followed by a reply and the first request to
be followed by a reply. The precision is based on the PING interval so would again
be to the nearest 200 ms.

3. Debug messages on the primary and customer routers could be used to determine
the interval between the primary link failure and establishment of the secondary
path. The devices could be time-synchronised using the Network Time Protocol
(NTP) and debugging logging could be configured to millisecond precision.

Method three was used as it provided better precision than ICMP messaging. The
interval between PINGs could be reduced to improve the precision of the other
methods but the accuracy of packet generation could not be guaranteed due to the

Fig. 2. Testbed topology.
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non-deterministic nature of PC applications and domestic-grade network interface
cards. Method one was also used to provide a comparison to previous studies. The test
was performed five times for each FHRP protocol – HSRP, GLBP and VRRP – with a
default (D) and rapid (R) configuration. The minimum, maximum and mean average
failover and restoration times were recorded. The restoration time was considered
important as real networks often use metered secondary connections, which incur a
charge based on the amount of data carried.

By default HSRP sets the time between hello messages to 3 s and the hold time to
be 10 s. The hold time is the interval after which the active router is declared to be
down once hello messages are not acknowledged. The hold timer must be greater than
the hello timer to avoid the active router being declared down between hello messages
– a factor of at least three is usually employed [13, 14]. GLBP uses the same system of
hello and hold timers with identical default and minimum values [15]. HSRP and
GLBP timers can be set with millisecond granularity but a shorter timer increases the
amount of overhead traffic and can cause the system to behave erratically as it becomes
too sensitive [16]. For the rapid test the hello timer will be set to 1 s and the hold timer
to 3 s; this will allow the effect of smaller timers to be observed without creating
instability in the system.

VRRP advertisements are sent every second by default with a failover delay cal-
culated by three times the advertisement interval plus the router’s skew time. The skew
time is based on the inverse of the priority. The standard doesn’t include shorter
advertisement intervals but Cisco has implemented this in their Internetwork Operating
Systems down to 20 ms [9, 17]. For the rapid test the priorities were configured as high
as possible to reduce the skew time.

A summary of configurations is included in Table 1. It should be noted that pre-
emption delay should normally be configured to allow for the boot time of the
equipment [16]. HSRP and VRRP do not load balance by default and GLBP had load-
balancing disabled for the test.

3 Analysis

The results from the investigation are summarised in Tables 2 and 3 and presented in
Figs. 3 and 4.

Table 1. Summary HSRP configurations.

Hello interval Hold timer Preemption delay Priority

HSRP D 3 10 0 -
HSRP R 1 3 0 -
GLBP D 3 10 30 -
GLBP R 1 3 3 -
VRRP D 1 - 0 100/110
VRRP R 1 - 0 253/254
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It can be seen from the results that there is a reasonably significant difference in
performance between the protocols. With the default configurations, VRRP is the
fastest to both failover and restore the primary link followed by HSRP and
GLBP. VRRP was also the fastest to failover and restore the primary link with the rapid
configuration, although this was followed by GLBP then HSRP. The rapid configu-
ration gave the most dramatic increase in sensitivity to GLBP as the protocol has an

Table 2. Failover times for FHRP in ss.ms

Min Max Mean Dropped

HSRP D 03.390 05.643 04.780 55
HSRP R 03.818 05.561 05.067 55
GLBP D 32.456 34.392 33.339 55
GLBP R 03.604 04.020 03.858 55
VRRP D 02.757 03.389 03.112 55
VRRP R 02.316 02.969 02.665 55

Table 3. Restoration times for FHRP in ss.ms

Min Max Mean Dropped

HSRP D 25.133 34.931 29.635 0
HSRP R 25.312 29.521 27.876 0
GLBP D 32.507 36.524 34.253 0
GLBP R 03.284 04.295 04.040 0
VRRP D 02.372 03.363 02.989 0
VRRP R 02.236 02.970 02.583 0

Fig. 3. Mean failover times with minimum and maximum variance.
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additional pre-emption delay of 30 s by default. HSRP appears to be very slow to
restore the primary link even with shorter timers configured.

It’s interesting that HSRP took longer to failover when given the rapid configu-
ration. This could be linked to flooding the interfaces with hello messages but would
require further investigation.

Another point of interest is that every test resulted in 11 sets of 5 PING responses
being dropped before the replies continued. This equates to a consistent outage of
approximately 5.5 s that is at odds with the variable delays calculated from the log
messages. This could be because the OSPF routing protocol is actually quite effective
within such a simple network and was able to reconverge faster than the redundancy
protocols under some circumstances. However, this doesn’t explain why there weren’t
fewer losses when the FHRP was faster.

Initially the time delay was calculated between the line-protocol and FHRP state
change messages within the logs on the secondary router. When VRRP was configured
this lead to a negative delay and closer inspection of the logs revealed that the tracking
objects logged the line-protocol state change about 3 s before the line-protocol itself.
As such the tracking protocol logs were used as the reference. This could reveal
limitations within the logging process – whilst it is possible to configure millisecond
resolution, the behaviour within the software stack is likely to be non-deterministic. In
this case it is possible that the tracking logs are prioritised over those of the line-
protocol within the software hence the discrepancy.

One final observation was made when comparing the logs of the primary and
secondary routers. The state changes of the secondary router were used as the timing
reference for the investigation, but with HSRP the primary router appeared to be
promoted to active before the secondary router returned to standby. Further investi-
gation of the packet flow would be required to determine how the routers behave in the
interim and therefore which timestamps most accurately indicate their sensitivity.

Fig. 4. Mean restoration times with minimum and maximum variance.
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4 Conclusions

The results suggest that VRRP is able to switch faster and has more flexibility in its
configuration. The results are similar to those presented by Pavlik et al. [2] in that
VRRP and HSRP are significantly faster than GLBP although the absolute values are
quite different and their study suggests that HSRP is faster than VRRP with a default
configuration. This could be due to the low precision of the methodology used. It is
surprising that HSRP should take longer as it is a proprietary protocol and would
therefore be able to take advantage of a closed ecosystem. That said VRRP is newer
and may have been able to build improvements into the pre-emption process. It is an
attractive protocol given that it is an open standard although authentication has been
removed, which may raise security concerns [16]. In mitigation, FHRPs will usually be
implemented within a closed network behind firewalls and access control lists. As load-
balancing is not used in this scenario, FHRP would make a good second option but
networks with more complex load-balancing requirements may find GLBP more
effective but the timers should be adjusted to improve sensitivity.

The investigation has produced a good indication of the sensitivity of the three
major protocols but has also raised some questions that require further study. The
majority of these questions revolve around the impact of other configuration parame-
ters. The comparison between protocols appears to be valid, with increased precision
compared to existing studies, but the absolute figures may contain some inaccuracy. As
such the results may be used to inform network design and characterisation but further
consideration should be given to the routing protocol configuration to understand its
interaction with FHRPs. The timers could be reduced further to find the minimum
failover time although it should be noted that in reality such short timers are unlikely to
be used as they may cause instability in flapping connections as well as increasing the
protocol overheads from excessive hello packets. The logging process should be
investigated to determine the accuracy of timestamps and packet flows should be
monitored to understand whether the timestamps accurately reflect the flow. This
analysis may also help with understanding the ICMP behaviour. Overall the method
appears to have been successful and could easily be scaled to systems with multiple
backup routers by using a syslog server to collate logging messages from multiple
devices. Once the accuracy of the test method has been verified, the protocols should be
characterised and compared to results obtained from a simulation of the testbed. Null
hypothesis testing may be used to verify the accuracy of the simulations so that
complex configurations involving load balancing and multiple standby routers may be
more rapidly optimised than is feasible using real hardware.
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Abstract. The paper discusses the derivation of an accurate coordinate
measuring system based on the records of three fixed laser triangulation
sensors done for a workpiece in movement.

The influence of the measurement and rounding inaccuracy on the
identification accuracy using numerical simulation methods are assessed.
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1 Introduction

The standard approach to the length measurements in coordinate metrology
assumes a moving measuring system and a fixed workpiece [1]. In the present
paper a quantitative characterization of the movement of a workpiece of interest
is given based on records provided by a system of three fixed triangulation sensors
[2,3] (see Fig. 1) using the laser triangulation principle described in [4,5]. To this
aim, we assume that the output of a sensor interface is provided by the distance
to the point target along the sensor laser beam.

The usage of stationary sensor system records asks for the accurate knowledge
of the positions of the sensors and the corresponding directions of their laser
beams. Here we describe a simple method for the identification of the fixed
coordinate system bound to the sensors based on a set of measurements done
for different positions of a gauge block [6] – a metal or ceramic block involving
two parallel opposing faces the distance w between which is known with very
high accuracy (Fig. 2).

The discussion is divided into four parts: the problem formulation (Sect. 2),
the problem solution (Sect. 3), numerical case studies (Sect. 4), and conclusions
(Sect. 5).

2 Formulation of the Problem

Given the set of three fixed sensors S1, S2, and S3, with predefined but unknown
angular directions of their laser beams, and a certain position of the gauge block
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Fig. 1. Sensor positions and orientations in a world coordinate system.
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Fig. 2. Distances to the point targets.

(Fig. 2), a triplet of distances (d1; d2; d3) measured along the laser beam from
each sensor to the block, is recorded and stored. The N times iteration of the
measuring process for different positions of the rectangular gauge block of width
w provides the input of the problem, (d1i , d2i , d3i), i = 1, 2, . . . , N .

2.1 Uniqueness of the Sensor Triplet Coordinate System

A same triplet of distances (d1; d2; d3) can be obtained for different configurations
of the arrangement shown in Fig. 2, e.g., under the rigid rotation of the sensors
together with the gauge block.



66 J. Buša et al.

To enforce solution uniqueness, the definition of the sensor coordinate system
is done under the following constraints:

1. the position of the sensor S1 in the (x, y) plane is fixed at (0, 0);
2. a same value y2 of the y-coordinate of the sensors S2 and S3 is chosen (as

illustrated in Fig. 1).

We have then to determine six parameters (three position coordinates and
three angles) for S1 = (0; 0;α1), S2 = (x2; y2;α2), and S3 = (x3; y2;α3).

2.2 Precision of Point Determination

In practice, instead of the exact coordinates of a sensor, S = (x̄, ȳ, ᾱ), we may
know only the approximate set S̃ = (x̃, ỹ, α̃). Suppose that the true distance from
the sensor S to a point target T = (xT , yT ) is d̄, while the measured distance is
d̃, such that

|x̃ − x̄| < εx, |ỹ − ȳ| < εx, |α̃ − ᾱ| < εα, |d̃ − d̄| < εd. (1)

Using the measured values, we infer an approximate point target T̃ = (xT̃ , yT̃ )
the deviation of which from the true point target T is characterized by the
following upper bound to the inaccuracy1

‖T̃ − T‖∞ = max
(|xT̃ − xT |, |yT̃ − yT |) < εx + εd + d̃ · εα. (2)

3 Solution of the Problem

Under the above constraints on the definition of the coordinate system, the only
invariant feature associated to any position of the gauge block (see Fig. 2 for
notations) follows from the fact that the targets T2 and T3 stay on a same face
of the gauge block, which is opposite to that of the target T1. Hence the distance
from T1 to the straight line T2T3 should equate w for all block placements.

Given the sensor parameters S1, S2, and S3 defined in Sect. 2.1, the values
w̃i = w̃i(S1, S2, S3) which denote the calculated distances from T1 to the line
T2T3 for the input triplets (d1i , d2i , d3i), i = 1, 2, . . . , N , will be different from the
true distance w and will depend on the accuracy of measurement of these triplets.
If the number N of the measurements is large enough, the best approximating
values of the six parameters x2;x3; y2;α1;α2;α3 are obtained as the solution of
the nonlinear least squares problem

(S∗
1 , S∗

2 , S∗
3 ) = argmin min

(S1,S2,S3)

N∑

i=1

[
w̃i(S1, S2, S3) − w

]2
. (3)

1 An accuracy better than 0.01 mm could be considered as sufficient in practice.
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To solve the problem (3) numerically it is not necessary to write an explicit
formula for the function to be minimized. For given “exact” triplets values2

we solved the problem using GNU Octave [7] – an open source alternative to
the proprietary programming language MATLAB [8]. Our scripts and functions
could be, of course, used in MATLAB as well.

The relevant part of the script sensors_identification_cs.m is:

dl=4; % lines distance in mm

S1=[0;0;pi/2]; S2=[-10;40;3*pi/2]; S3=[15;40;3*pi/2]; % initial S

x=[S1(3);S2;S3([1 3])]; % initial vector for minimization

opt=optimset(’TolX’,1.e-16,’TolFun’,1.e-16,’MaxIter’,50000,...

’MaxFunEvals’,50000,’Display’,’final’);

[x,w]=fminsearch(’dist_diff_cs’,x,opt); % Octave

Here the function to be minimized is

function [dd]=dist_diff_cs(x)

% differences between actual distances and required by dl

global dl distances nf;

nf=nf+1; % function evaluations counter

S1=[0;0;x(1)]; S2=[x(2);x(3);x(4)]; S3=[x(5);x(3);x(6)];

cs1=[cos(S1(3));sin(S1(3))]; cs2=[cos(S2(3));sin(S2(3))];

cs3=[cos(S3(3));sin(S3(3))];

[m,n]=size(distances);

for k=1:m,

T1=S1(1:2)+distances(k,1)*cs1;

T2=S2(1:2)+distances(k,2)*cs2;

T3=S3(1:2)+distances(k,3)*cs3;

d_dif(k)=AtoBC(T1,T2,T3)-dl;

end

dd=norm(d_dif);

where AtoBC(A,B,C) is a function calculating the distance from the point A to the
line defined by the points B and C.

4 Numerical Case Studies

4.1 Exact Distances Data

Let us suppose that the sensors are placed at the points (0, 0), (−10, 40), and
(15, 40) (units are mm), and oriented similar to those shown in Fig. 1 with the
corresponding beam angles 90, 270, and 270◦. However, due to some placement
inexactness the true parameters are instead:

S1 =
[
0, 0,

0.99 · π

2

]
; S2 =

[
−9.9, 40.1,

3.02 · π

2

]
; S3 =

[
15.1, 39.9,

2.99 · π

2

]
,

2 Here the double precision data rounded to 10−7 mm (1 Å) are considered to be
“exact”.
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such that the sensor positions and the beam orientations are slightly modified,
the beam angles being 89.1, 271.8, 269.1◦, respectively. The true sensor coor-
dinates do not satisfy the constraint y2 = y3. To get a sensor coordinate sys-
tem obeying to this constraint, we have to rotate the given system by an angle
ϕ = arctan

(
(y2 − y3)/(x3 − x2)

)
.

In this case it is natural to start the minimization with the parameters sup-
posed to be true. Below the results of using sensors_identification_cs command
are given3:

Original sensors

x y angle dangle

0 0 1.5550884 89.1

-9.9 40.1 4.7438049 271.8

15.1 39.9 4.6966810 269.1

Original triangle sides are 25.00080 42.66169 41.30399 mm

and angles are 34.59698 75.67362 69.72940 degrees.

Original sensors rotated by angle 0.45835646 degrees

x y angle dangle

0 0 1.5630882 89.55836

-10.220473 40.019519 4.7518047 272.25836

14.780327 40.019519 4.7046808 269.55836

Initial sensors

x y angle dangle

0 0 1.5707963 90

-10 40 4.7123890 270

15 40 4.7123890 270

Initial triangle sides are 25.00000 42.72002 41.23106 mm

and angles are 34.59229 75.96376 69.44395 degrees.

Before optimization

Test 1: straight lines distance is 3.9725118 mm.

...

Test 6: straight lines distance is 3.9848938 mm.

After optimization

Test 1: straight lines distance is 4 mm.

...

Test 6: straight lines distance is 4 mm.

Function evaluation number was 2385.

Final sensors

x y angle dangle

0 0 1.5630884 89.55837

3 The output format is slightly modified.
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-10.220492 40.019519 4.7518052 272.25838

14.780334 40.019519 4.7046808 269.55835

Final triangle sides are 25.00083 42.66169 41.30400 mm

and angles are 34.59701 75.67359 69.72939 degrees.

Angles differences are -0.45837 -0.45838 -0.45835 degrees.

The final sensor parameters with a same y-coordinate match very well the
original sensor triangle rotated by 0.45835646◦. The maximum difference in x
coordinate is less than 0.02µm. The maximum angular misfit is about 5 · 10−7

rad or 2.62 · 10−5 deg. Using (2) we get for, e.g., d̃ = 50 mm:

‖T̃ − T‖∞ = max
(|xT̃ − xT |, |yT̃ − yT |) < εx + εd + d̃ · εα < 1.5 · 10−4 mm.

For practical purposes this precision is sufficient.
In this example, six distance triplets were sufficient for the identification of

the sensor coordinate system. A combination of three different angles and two
different positions of the gauge block was used in the simulated measurement:

for k=1:6, s=[3;mod(k,3)-1]; s=s(:); s=s/norm(s); n=[s(2);-s(1)];

if n(2)<0, n=-n; end; p1=[-15;20+3*mod(k,2);s]; ... ;

end

4.2 Rounded Distances Data

If the distance triplets are not exact, then, of course, the distances from the
approximate targets T1 to the approximate lines T2T3 will, in general, be different
from the width w (see the example below).

Precision 0.1µm. Let us consider a solution to the system identification prob-
lem for input data – the distance triplets – rounded to 0.1µm.

Original lines distances

Test 1: straight lines distance is 4.0000149 mm.

...

Test 5: straight lines distance is 3.9999307 mm.

Test 6: straight lines distance is 4.0000099 mm.

After optimization

Test 1: straight lines distance is 4 mm.

...

Test 6: straight lines distance is 4 mm.

Final sensors

x y angle dangle

0 0 1.5626635 89.53402

-10.239850 40.019234 4.7522437 272.28351

14.843013 40.019234 4.7033105 269.47984
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Final triangle sides are 25.08286 42.68318 41.30852 mm

and angles are 34.70218 75.64748 69.65033 degrees.

Angles differences are -0.43402 -0.48351 -0.37984 degrees.

The error in the x-coordinate, of 0.063 mm, it is unacceptably large. The
error in the y-coordinate, of about 0.3µm, is excellent. The maximum angle
difference of about 0.0014 rad or 0.08◦ is poor. Using (2) we get for d̃ = 50 mm:

‖T̃ − T‖∞ = max
(|xT̃ − xT |, |yT̃ − yT |) < 0.14 mm,

what is obviously poor.
In this case when 6 parameters have to be determined from 6 measurements,

the “optimal” block width of 4 mm have been reached for all 6 measurements,
however resulting parameters have a poor precision. Indeed, one can see that
the “original” points corresponding to the rounded distances from sensors will
not give the wall distances of exactly 4 mm. Using more distance triplets will
result in a better precision. E.g., for 15 points we have got an upper bound of
‖T̃ − T‖∞ of about 0.012 mm, and using 21 points we have got:

After optimization

Test 1: straight lines distance is 3.9999932 mm.

...Test 21: straight lines distance is 4.0000058 mm.

Function evaluation number was 2117.

Final sensors

x y angle dangle

0 0 1.5631659 89.56281

-10.22436 40.019506 4.7519152 272.26468

14.778141 40.019506 4.7047695 269.56344

Final triangle sides are 25.00250 42.66092 41.30494 mm

and angles are 34.59946 75.66839 69.73215 degrees.

Angles differences are -0.46281 -0.46468 -0.46344 degrees.

S2 precision is 0.0038872816 1.2985923e-05 mm.

S3 precision is 0.0021865184 1.2985923e-05 mm.

Angles precision is -7.7699306e-05 -0.00011042672 -8.865779e-05 rad.

Angles precision is -0.0044518423 -0.0063269849 -0.0050797172 degree.

Using (2) we get for d̃ = 50 mm:

‖T̃ − T‖∞ = max
(|xT̃ − xT |, |yT̃ − yT |) < 0.00951 mm.

Such an accuracy is sufficient in practice.
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5 Conclusions and Future Work

In this paper the 2D solution of the problem has been derived. We have found
that using a sufficiently large number of measurement points results in a sensor
coordinate system identification with good enough accuracy.

In practice, however, we could not expect that all laser beams have a common
(horizontal) plane of propagation, and also we could not expect that all sensors
are placed at the same vertical position. This will need the solution of the general
3D problem with the sensor specifications asking for 11 parameters:

S1 = (0; 0; 0;α1;β1), S2 = (x2; y2; z2;α2;β2), S3 = (x3; y2; z3;α3;β3).

A 3D representation of a gauge block will be used under the assumption that
the block is moving on a plane (with a common vertical orientation given by the
vector normal to this plane). The solution of this general problem is in progress.
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Abstract. After the year of 2000 wild land fires are with constant occur-
rence on Bulgarian territory and the fire season is having two picks one in
March - April and another July - October periods. In 2017 wild land fires
occurred all over south Bulgaria even in places where fires are not that
common. Such place was Kresna Gorge where is located Struma Motor-
way part of the EU corridor IV connecting Vidin (North-west Bulgaria)
with Thessaloniki (North-west Greece) areas. In this paper we evaluate
the available parameters for the Kresna Gorge fire which happened in
the period 24–29 August 2017. We are summarizing the novel approaches
used in Wildfire Analyst (WFA) tool version 2.8 in comparison with
FARSITE tool. WFA is not applied so far for Bulgarian fire events, but
have very good potential for real time decision making and this is one of
its first assessments for its usage.

1 Introduction

Wildfires became more common on the territory of EU in the last decades. Offi-
cial reports published on the main web-site of the European Forest Fire Infor-
mation System (EFFIS) [1] shows that wildfires are more frequent and more
severe, especially in South EU countries. Particularly, officially published statis-
tics from the ministry of Agriculture and Forests in Bulgaria reports figures
about burned area in all affected zones in Bulgaria, which are in line with the
EU trend. Fire regime is changing and fire behavior and spread are getting more
extreme since 1970s until current days. After the year of 2000 wildfires on the
Bulgarian territory are having two fire season windows: (1) early spring: March
and April; (2) summer: from July to October. In 2017 wildfires affected South-
ern parts of Bulgaria, even in areas where fire occurrence is not usual. One of
these areas was Kresna Gorge in the period 24–29 August 2017. The area where
c© Springer Nature Switzerland AG 2019
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the fire has occurred was located east from Kresna Gorge, affecting vast area
of forest lands and endangering the local population properties and lives. The
fire started in grasslands located south from river Mechkulska and propagated
further south approaching the villages of Old Kresna, Oshtava and Vlahi. The
fire spread affected mainly grasslands, shrubs and conifer (pinus nigra type)
vegetation. The reason of the fire occurrence and its one week propagation was
caused because of the long period of dry, hot weather in July and August in
this zone. An analysis of satellite images based on Landsat 8 has been done
by GeoPolymorphic Cloud Company. It showed temperature anomalies for the
area before the fire occurrence in the range 35 − 40 ◦C at noon time [2]. The
high temperature combined with low humidity extracted by the satellite data
was presenting great increasement of the wildfire risk occurrence. The fire signal
was filed on 24.08.2017 and the satellite data warning was confirmed. The paper
is organized as follows. In Sect. 2 we present our initial investigations done for
preparation of the fire simulations. In Sect. 3 we describe the area of the Kresna
fire with special attention to its flora. Section 4 is devoted to description of
the data preparation for simulations by Wildfire Analyst tool. We show previ-
ous experience and possible improvement in wild fire simulations in Bulgaria in
Sect. 5 and give conclusions in Sect. 6.

2 Initial Analysis and Investigation

So far, statistics and investigation of the Kresna fire have not been presented
officially by the state of Bulgaria through its ministry of Agriculture, Forests
and Food. This is why we are using the satellite based analyses of private com-
pany with geoinformatics orientation - Geopolymorphic Cloud. This is done in
order to describe as accurately as possible the state of the art of the available
public data and all available (satellite) sources of information. The analysis of
Geopolymorfic provides information that the VIIRS satellite detected first the
fire when passing over the territory of Bulgaria at 13:48 (VIIRS Active Fire
Product from 24.08.2017). The affected area where it gave its first ignition point
is a pasture with south-southeast exposure. The analysis gave information about
the number of satellites capturing each part of the earth’s surface several times a
day. The ones which gave information for surface temperature and the anomaly
causing this fire were MODIS and VIIRS (Active Fire Products) for the period
24–29.08.2017 [2]. The total area described in the analysis of the affected area
after fire suppression calculated on the basis of a satellite image of Sentinel 2 was
22 915 decares (approx. 2000 ha). The analysis gives as final result that nearly
65% of the burned area is in a forest fund. A total of 14 737 decares (1473,7 ha)
were forests damaged by the fire in August 2017 in the Kresna Gorge and the
rest were areas of flat lands, grasslands and urban areas. More details about this
analysis as map distribution can be seen on Fig. 1. The analyzed data had been
presented as yellow polygon of burned area (burned scar of the wildfire) and the
rest of the colors inside the yellow polygon represent the types of forest species
which had been affected and completely burned. More descriptions in maps will
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be presented in full extent combined with the initial outcomes and simulations
of the burned area analyses under the project DISARM (see also [2]).

Fig. 1. Map of Kresna Gorge burned forestry area in the period 24–29 August 2017 [2]

3 Kresna Fire Description of the Location

The Kresna fire burnt from 24 to 29 August 2017. The terrain of the fire is hilly
and low-mountain, situated at elevations from about 250 m a.s.l. to 750 m a.s.l.
in Southwestern Bulgaria. The fire affected the eastern slopes of Kresna gorge
above Struma river and roughly between the villages Mechkul (to the north)
and Vlahi (to the south). The fire started in grassland-shrub community and
transferred to plantations from Pinus nigra, where it quickly spread assisted by
the dry conditions. The total affected area was about 22600 dka, of which 65%
were forest territories. The fire burnt mostly plantations from Austrian pine
(8700 dka), Scots pine (Pinus sylvestris), Robinia pseudoacacia (211 dka) (1260
dka), natural forests dominated by Quercus pubescens (2000 dka) and Quercus
petraea (660 dka) and smaller territories of other species. The severity of burn-
ing was highest in the pine plantations, where the fire caused almost complete
mortality. On steeper slopes above Struma River the severity of burning was
lower, where some deciduous trees and single specimen of Juniperus excelsa sur-
vived. The territory partly lies in protected zones BG002003 from the Bulgarian
Natura2000 network declared under the Birds directive and BG000366 declared
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under the Habitats Directive. The region is characterized with specific for Bul-
garia flora, which is rich on species typically found in the Mediterranean biome
and hosts numerous bird and reptile species. It is considered as one of the most
important hotspots of biodiversity in Bulgaria. The typical forests for the region
are dominated by oak species (mostly Quercus pubescens, Quercus frainetto
and Quercus cerris), Carpinus orientalis, Crataegus pentagyna and Crataegus
monogyna, Fraxinus ornus, Pistacia terebinthus, numerous bushes. In the vicin-
ity is the biggest population of Juniperus excelsa in Bulgaria and Europe, which
is protected in Tissata Strict Nature Reserve. However much of the oak forests
were degraded due to long use by local people for firewood and pasturing of
domestic animals such as goats and sheep. In the second half of the XX century
large areas were re-planted with Pinus nigra and Pinus sylvestris in order to
limit erosion processes. The climate in the area is transitional-Mediterranean
characterized by dry and hot summers, relatively mild winters with short dura-
tion of the snow cover. The average annual temperature is 14 ◦C, the annual
precipitation 514 mm with precipitation maximum in the autumn-winter period.
The average temperature of the coldest month (January) is −1.3 ◦C. The abso-
lute recorded temperature maximum is +42.5 ◦C, while the absolute minimum
is −29.6 ◦C. It is interesting to note that the area, where the fire started and
initially spread was affected also by at least two previous fires in the last 30
years, which caused the need for several subsequent re-plantings.

4 Data Preparation for Kresna Gorge Fire

In order to start specifically dedicated analyses on the Kresna Gorge parame-
ters needed for wildfire simulations we had to start collecting information from
different Bulgarian agencies. This is necessary because there is not one reposi-
tory available for all simulation inputs combined in one single source. Thus the
team which is working on data collection and preparation for its usage under
the Wildfire Analyst (WFA; [3]) simulation is combining efforts from Bulgarian
Academy of Sciences and Forestry University in Sofia. As a first step we had to
estimate the area of the fire, which has as starting point Kresna Gorge, located
north of Stara Kresna village. The fire spread was in direction south to the vil-
lage of Vlahi. In the Western direction, the fire had descended on a steep slope
almost to the Struma River, but there was a lower intensity of the fire spread. In
this area north winds are very probable to happen, so local weather conditions
created by the fire could be the case for the time frame when it was active. The
general coordinates of the fire can be described as follows:

Starting Region as ignition point and its North Border (Approx.): 41.818961◦;
23.179666◦ (for the first date of its occurrence 24th Aug. 2017) Western border:
41.814869◦; 23.160966◦ Eastern border for the first two days of the fire spread:
41.801595◦; 23.220162◦ Eastern border for the last days: 41.777043◦; 23.224270◦

(this are the coordinates of the fire in its end phase on 29th Aug. 2017) Southern
limit: 41.746235◦; 23.234691◦ As next steps we are collecting and processing
data for the local meteo conditions, relief and fuel load as Wildfire Analyst
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requirements are described. This as a final result will probably represent the
most complete data set for a fire simulation in Bulgaria. All meteorological data
from the local hydro meteorological stations will be elaborated and provided
for the period of the fire occurrence (24th–29th August 2017). WFA requires
for simulations predefined format with one hour time step. In fact, we will get
the best possible in Bulgaria data by the National Institute of Meteorology and
Hydrology of the Bulgarian Academy of Sciences. The local relief will be used
from raster 30× 30 DEM resolution available for the area of interest. This is good
DEM for a start of the simulations, however lower resolution of 25 m or even 10 m
can give even better simulation results. The most difficult part of the work is the
creation of the fuel models of the burned biological species. In order to do this we
will use Fire Behavior Fuel Models (FBFMs) by applying the Anderson (1982) [4]
and Scott-Burgan (2005) [5] in order to obtain the burning materials. This data
will be extracted from forestry maps provided by the local unit of the ministry
of agriculture, forest and food of Bulgaria. Direct extraction from forest maps of
burning materials in the FBFMs classifications known until now is very difficult,
because in Bulgaria the only classifications done are for biological species, which
requires further division for simulation purposes. Comparison with the actual
final burned area (see, for example, Fig. 2, posted from the local press in Kresna
Gorge as a drone driven picture) will be used for calibration and analysis.

Fig. 2. Kresna Gorge burned scar area one day before fire end (28.08.2017) [6]
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5 Past and New Approaches for Wildfire Simulations
in Bulgaria

In the framework of bilateral cooperation program between Greece and
Bulgaria 2007–2013 a team from Institute of Mathematics and Informatics of the
Bulgarian Academy of Sciences had the opportunity to work in the Zlatograd
forestry department under the project OUTLAND. Great amount of data
was collected and processed and several simulations of past fire events have
been implemented. The used approach had been done by implementation of
Rothermel fire spread model implemented in FARSITE [7]. The main scenarios
used under the simulations had been oriented towards grasslands with scenario
descriptions covering: Fuel moisture values: 6% (1-h), 7% (10-h), 9% (100-h),
45% (liveherba − ceous), and 75% (livewoody); Daily maximum temperatures:
17−21 ◦C; Daily minimum relative humidity: 24–50%; Winds: generally from the
west-southwest at 1-2 k h-1 Outcomes of these simulations have been oriented
towards creation of custom Fire Behaviour Fuel Models (FBFMs) and more
detailed application of FARSITE for Bulgarian test cases. The other main group
of simulations which had been done for the zone of the Forestry department in
Zlatograd was covering scenario similar to this one: Fuel moisture values: 3%
(1-h), 4% (10-h), 5% (100-h), 40% (liveherbaceous) and 70% (livewoody); Daily
maximum temperatures: 7 − 10 ◦C; Daily minimum relative humidity: 36–40%;
Winds: generally from the north-northeast at 10-2 k h-1 In this case the out-
comes have been oriented towards generalization of the available FBFMs towards
tree species that are available for Bulgaria and applicable in cases of simulations
with FARSITE. More information on how the data has been collected elabo-
rated and analyzed can be found in the papers [8], where Dobrinkova et all
have worked out in details the methodology about how data elaboration and
wild fire simulations for Bulgarian cases can be done. As mentioned above, we
are going to use WildFire Analyst (WFA) for simulations of the Kresna Fire.
WFA is software that provides real-time analysis of wildfire behavior and is
capable to simulate the spread of wildfires in real time. Simulations could be
completed quickly, in seconds, to support real time decision making. WFA is
specifically designed to address this issue, providing analysis capabilities for a
range of situations and users. WFA provides integration with ESRI’s ArcGIS
with no conversion or pre-processing required. This greatly increases usability,
allowing users to concentrate on interpreting simulation outputs, and making
important decisions about how and where to deploy firefighting resources. This
software was designed to be used with a laptop or tablet at the incident com-
mand center, in the operations center, or directly on scene, providing outputs in
less than a minute. The software has the option for usage of predefined weather
scenarios, or current and forecasted weather obtained via web services. This
is done to model fire behavior and provide outputs within seconds. For wild-
fires, time is of great importance in order Incident commanders to have good
enough estimations well in advance and deploy their forces. The fire simulator
have options to provide a range of analytical outputs, available as GIS maps and
charts, for better decision making. The software have desktop platform, or web
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and mobile, which enabled applications, capabilities and results for wide range
of users. Contemporary fire behavior software tools required a high degree of
specialization, training and effort in the preparation and conversion of GIS data
to use the software. Historically, this has been a limitation in using these tools
for initial attack and real time applications. WFA have embeded different fire
spread models like Rothermel (1972) [7] or Kitral (1998) [9] that is generally
used in South America. Additionally, it has other models such as Nelson equa-
tions to estimate fuel moistures from weather data (2000) [10] or WindNinja
(Forthofer et al. 2009) [11], a software that computes spatially varying wind
fields for wildland fire applications in complex terrain. Input data required by
the software is similar to other fire simulators such as FARSITE or BehavePlus
due to the use of same fire spread models and equations. WFA introduces new
simulation modes with innovative enhancements including real time processing
performance, automatic rate of spread (ROS) adjustments based on observations
used to create fire behavior databases, calculation of evacuation time zones (or
‘firesheds’), and integration of simulation results for asset and economic impact
analysis [12,13]. Mathematically the inverse travel time method modifies the fire
spread of the front called ROS in a certain direction θ given by the fire spread
engine in the opposite direction represented by formula 1:

ROSEvac(θ,model inputs) = ROSStand(θ + π,model inputs) for all angle θ
(1)

WFA has been used operationally for diverse agencies worldwide, for instance
by Military Emergency Unit and several regions in Spain, CONAF and private
companies in Chile, Italy and US wildfire services.

6 Conclusion

Wildfires are problem on the Bulgarian territory which every year is happening
more often. All experimental simulations with models that can provide the first
responders with tools and information for fire behavior prediction are useful
and needed. Every outcome is increasing the understanding of how this work
from nowadays can be used in real time and as a prevention measure in future.
Wildfire Analyst tool can be calibrated and proposed for implementation in test
areas, where Bulgarian authorities can test it and use it for future. The first
testing simulation results give more than 90% match with the real fire burned
scar captured by the data from the available satellite images. More elaborated
data and simulations are still in progress in order to prove the initial promising
results.
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Abstract. Cutting Stock Problem (CSP) is an important industrial
problem. In this paper we focus on the variant arising in building con-
struction, where a set of plates needs to be cut from rectangular stock,
minimizing the waste. The CSP is known to be NP-hard combinatorial
problem. The goal of this work is to propose an efficient way for sub-
tracting of two polygons with some matching vertices.

1 Introdution

The cutting stock problem (CSP) arises in many industrial applications [8].
Most of the authors solve the simplified model when the items are rectangular.
CSP with rectangular items appear in paper and glass industries [7], container
loading, Very-large-scale integration (VLSI) design, and various scheduling tasks
[9]. A more complicate version of the problem is when the items are not rect-
angular. This problem arises in building constructions in fasteners production,
clothes production, shoes production and so on. In [7] the main topic is a two-
dimensional orthogonal packing problem, where a fixed group of small rectangles
must be fitted into a large rectangle and the unused area of the large rectan-
gle is minimized. The algorithm combines a replacement method with a genetic
algorithm. In [1] a greedy randomized adaptive search procedure is developed.
In this study, there is a large primary stock that has to be cut into smaller
pieces, so as to maximize the value of the pieces. Cintra et al. [3] propose an
exact algorithm based on dynamic programming, which is appropriate for small
problems, because the problem is NP-hard. Dusberger and Raidl [4,5] propose
two metaheuristic algorithms based on variable neighborhood search. The above
mentioned works solve the simplified problem with rectangular items.

In building constructions industry the cutting shapes are polygons, which
may have irregular shape and can be convex or concave. Such diversity of shapes
increases substantially the difficulty of the problem. The aim is to arrange all
given polygons from the project in given minimum area. The polygons are often
generated by CAD environment as a list of points which will be represent as
tables with relevant attributes. Each polygon is a boundary of a bounded domain
in the plane. The goal of this work is to design an algorithm that produces
polygon (or polygons) that is intersection, union or subtraction of two domains
determined by two polygons.
c© Springer Nature Switzerland AG 2019
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2 Problem Formulation

The CSP where the items are arbitrary polygons is very difficult. Some authors
try to solve the problem with arbitrary polygons by completing the items to
rectangle, but in most of the cases it is not effective [2]. In our variant of CSP
rectangular sheet with fixed width and unlimited length is done. The set E =
{i1, i2, . . . , in} consists of ordered items - polygons, which can be convex or
concave. Every item is specified with the coordinates of his nodes and number
of orders di, for i = 1, . . . , n, when positioning the items can be rotated.

The objective is to find a cutting pattern P with a minimal waste. The
solution is an arrangement of the items from E on the stock sheet. The solution
can be represented by cutting sequence and coordinates of the nodes of the
cutting items.

3 Method for Intersecting Two Polygons

In scientific literature there are methods for intersecting of rectangle polygons
[10]. But for any concave or convex polygons there is no relevant informa-
tion about the above mentioned operations. Our algorithm uses the following
operations:

1. Find the intersection point(s) of two line segments;
2. Remove the wasted points from a given polygon, i.e. the points that are not

vertices of the polygon;
3. Identify the orientation of the polygon, namely, check if the tracing of the

points of the polygons is in clockwise or anti-clockwise direction;
4. Check whether a given point is inside a given polygon.

Figure 1 illustrates various situations of polygons with some common
vertexes.

Fig. 1. Polygons A and B with some matching vertices.

Intersection of Polygons. In this article we shall consider various cases for cross
points of two polygons, illustrated on Fig. 2.

For our purposes it is important to define precisely when two segments inter-
sect. In our consideration the line segments include the end points, i.e. they are
closed sets. We say that two line segments intersect if they have at least one
common point. In the case when the line segments coincide, the intersection
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points are the end points. And finally, if one segment is contained in another,
then the intersection points are the end points of the smaller one. Often CAD
systems produce line segments with zero lengths. We need to handle such a case
as well. In such situation we may face two possibilities: (1) One segment has
positive length and the other has zero length; in this situation the algorithm will
produce five names of one end point and one name of the other end as shown
on Fig. 2(f); (2) both segments have zero lengths; in this situation the algorithm
will produce six names of the point, shown on Fig. 2(d).

Fig. 2. Cases of crossing of two lines

How to Determine Whether a Given Point A0 is Inside of a Given Polygon. In
our previous paper, [6], we described two methods: balanced sum of angles (BSA)
and Ray crossing method (RCM). The BSA is a reliable and very informative
method, but is slower than RC. Here is a short description of the RCM algorithm:

1. Pass a horizontal line through A0, called “Ray”, and check whether the “Ray”
intersects the given polygon.

2. If the Ray does not intersect the polygon or intersects even number of points.
Then the point is outside.

3. If the Ray intersects odd number of points, then the point is inside the
polygon.

If we apply the RCM directly to a given polygon, this may result computa-
tionally intensive search, since there may have thousands of line segments. To
reduce the computational cost we use two steps. In the first step we embed the
polygon into rectangular box and check whether the point is outside the box.
This step is computationally cheap. If the point is inside the box then we will
apply the algorithm to the original polygon (Fig. 3).
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Fig. 3. Left: Checking whether a point is inside the polygon; Right: Interaction between
two polygons

Orientation of a Given Polygon. Our algorithm checks if the orientations of the
polygons A and B are opposite. That means that if we go through the table
from the top to the bottom the vertices of A and the vertices of B are traced in
opposite directions. We will consider polygons without self-cross points. In this
case, the polygon bounds a connected domain.

Two polygons may have the following positions relative to each other: (1)
the polygons do not intersect, (2) the polygons have nontrivial intersection; (3)
one of the polygons is contained in the domain determined by the other.

Fig. 4. Subtraction domains for the Polygons A and B
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Subtracting Two Polygons. For this purposes we provide a table for each polygon.
The columns of these tables are:

1. Index: Index of points 0, 1, 2, . . . , n;
2. Name: Label of each points A1, A2, ptX1, . . . and so on;
3. X,Y : Coordinates of each point;
4. Out from A (B): Attributes for the position of a point from a polygon relative

to the other polygon – “True” for inside and “False” outside;
5. Check: Attributes for checking whether the point has been passed during the

work of the algorithm – At the beginning all points have attributes “NoPass”;
when the algorithm passes though point, change the status to “Pass”.

6. Domain: Numbers of sub domains of cut Out from polygon A.

The crossing points belongs to both polygons A and B. That means two
possible status True or False, but by definition the polygon is closed set of
points. That gives to crossing point status False - inside the polygon (Table 1).

Table 1. Boolean table for polygons A and B shown in Fig. 4

Polygon A Polygon B

Index Name X,Y From B Check Domain Index Name X,Y From A Check Domain

0 A1 X,Y True NoPass 0 B1 A10 True NoPass

1 A2 A10 True NoPass 1 ptX1 A10 False NoPass

2 A3 A10 True NoPass 2 ptX8 A10 False NoPass

3 ptX1 A10 False NoPass 3 B7 A10 True NoPass

4 A4 A10 False NoPass 4 ptX7 A10 False NoPass

5 ptX2 A10 False NoPass 5 B6 A10 False NoPass

6 A5 A10 True NoPass 6 ptX6 A10 False NoPass

7 ptX3 A10 False NoPass 7 B5 A10 True NoPass

8 A6 A10 False NoPass 8 ptX5 A10 False NoPass

9 ptX4 A10 False NoPass 9 B4 A10 False NoPass

10 A7 A10 True NoPass 10 ptX4 A10 False NoPass

11 ptX5 A10 False NoPass 11 B3 A10 True NoPass

12 A8 A10 False NoPass 12 ptX3 A10 False NoPass

13 ptX6 A10 False NoPass 13 B2 A10 False NoPass

14 A9 A10 True NoPass 14 ptX2 A10 False NoPass

15 ptX7 A10 False NoPass

16 A10 A10 False NoPass

17 ptX8 A10 False NoPass
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Now we consider the problem for subtraction of two polygons - second case.
So, we will analyze the above table as follows:

1. Rotate table (A) (cycling rotating) - find one point which is noPass and Status
Out from B = True;

2. Get the first point - A1 - since it is not a cross point and Out from B= “True”;
3. Get the next point - A2 - since it is not a cross point and Out from B=

“True”;
4. Get the next point - A3 - since it is not a cross point and Out from B=

“True”;
5. Do not get next point - ptX1 - switch to table B;
6. Find ptX1 - from Table B and now the process does in table B;
7. Do not get next point - ptX8 - switch to table A and find ptX8;
8. Get ptX8 - through the table A. Now the active table is A;
9. Get next point - A1 - the table is cycling list of points! And here the method

stop because the first and the last point coincide.

Table 2. The results after the first pass of the algorithm

About Polygon A About Polygon B

Index Name A10 From B Check Domain Index Name A10 From A Check Domain

0 A1 A10 True Pass 1 0 B1 A10 True NoPass

1 A2 A10 True Pass 1 1 ptX1 A10 False Pass 1

2 A3 A10 True Pass 1 2 ptX8 A10 False Pass 1

3 ptX1 A10 False Pass 1 3 B7 A10 True NoPass

4 A4 A10 False NoPass 4 ptX7 A10 False NoPass

5 ptX2 A10 False NoPass 5 B6 A10 False NoPass

6 A5 A10 True NoPass 6 ptX6 A10 False NoPass

7 ptX3 A10 False NoPass 7 B5 A10 True NoPass

8 A6 A10 False NoPass 8 ptX5 A10 False NoPass

9 ptX4 A10 False NoPass 9 B4 A10 False NoPass

10 A7 A10 True NoPass 10 ptX4 A10 False NoPass

11 ptX5 A10 False NoPass 11 B3 A10 True NoPass

12 A8 A10 False NoPass 12 ptX3 A10 False NoPass

13 ptX6 A10 False NoPass 13 B2 A10 False NoPass

14 A9 A10 True NoPass 14 ptX2 A10 False NoPass

15 ptX7 A10 False NoPass

16 A10 A10 False NoPass

17 ptX8 A10 False Pass 1
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This cycle contains the first domain of points of section - A1, A3, ptX1,
ptX8, A1. At end of the cycle we can give name of first domain - “Domain
1”. The method is repeated while there is no points from table A which is Out
from B = “True” and status = “NoPass” (Table 2).

The first point of the polygon is given in bold.
The second step of the algorithm ignores the points that have check

“Pass”. This cycle contain second sub domain of points of section - A5,
ptX3, B2, ptX2, A5.

The algorithm terminates when all points with attribute Out from B =
“True” are given attribute Check = “Pass”.

In Table 3 we get the information about all sub-domains. Here is the correct
reading of the results:

sub-domain 1 is described by the points: A1, A2, A3, ptX1, ptX8, A1;
sub-domain 2 is described by the points: A5, ptX3, B2, ptX2, A5;
sub-domain 3 is described by the points: A7, ptX5, B4, ptX4, A7;
sub-domain 4 is described by the points: A9, ptX7, B6, ptX6, A9.

The algorithm has been tested on a variety of examples that are represen-
tative for the cutting stock problem applied to plates in construction projects.
The proposed algorithm provide to be computationally less expensive, than the
existing commercial products.

Table 3. The results after the algorithm terminates.

About Polygon A About Polygon B

Index Name X,Y From B Check Domain Index Name X,Y From A Check Domain

0 A1 X,Y True Pass 1 0 B1 X,Y True NoPass

1 A2 X,Y True Pass 1 1 ptX1 X,Y False Pass 1

2 A3 X,Y True Pass 1 2 ptX8 X,Y False Pass 1

3 ptX1 X,Y False Pass 1 3 B7 X,Y True NoPass

4 A4 X,Y False NoPass 4 ptX7 X,Y False Pass 4

5 ptX2 X,Y False Pass 2 5 B6 X,Y False Pass 4

6 A5 X,Y True Pass 2 6 ptX6 X,Y False Pass 4

7 ptX3 X,Y False Pass 2 7 B5 X,Y True NoPass

8 A6 X,Y False NoPass 8 ptX5 X,Y False Pass 3

9 ptX4 X,Y False Pass 3 9 B4 X,Y False Pass 3

10 A7 X,Y True Pass 3 10 ptX4 X,Y False Pass 3

11 ptX5 X,Y False Pass 3 11 B3 X,Y True NoPass

12 A8 X,Y False NoPass 12 ptX3 X,Y False NoPass 2

13 ptX6 X,Y False Pass 4 13 B2 X,Y False Pass 2

14 A9 X,Y True Pass 4 14 ptX2 X,Y False Pass 2

15 ptX7 X,Y False Pass 4

16 A10 X,Y False NoPass

17 ptX8 X,Y False Pass 1
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4 Conclusion

The cutting stock problem is an important industrial problem. In this paper we
focus on the subtraction of two polygons. We propose an algorithm which can
subtract two polygons with arbitrary shape. The proposed methodology is eval-
uated on experimental tasks. The obtained results are presented and analyzed.
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Abstract. Wireless sensor networks are formed by spatially distributed
sensors, which communicate in a wireless way. This network can monitor
various kinds of environment and physical conditions like movement,
noise, light, humidity, images, chemical substances etc. A given area
needs to be fully covered with minimal number of sensors and the energy
consumption of the network needs to be minimal too. We propose several
algorithms, based on Ant Colony Optimization, to solve the problem. We
study the algorithms behaviour when the number of ants varies from 1 to
10. We apply InterCriteria analysis to study relations between proposed
algorithms and number of ants and analyse correlation between them.

Keywords: Ant Colony Optimization · InterCriteria Analysis
Wireless Sensor Network

1 Introduction

Wireless Sensor Networks (WSN) allow the monitoring of large areas without
the intervention of a human operator. The WSN can be used in areas where
traditional networks fail or are inadequate. They find applications in a variety of
areas such as climate monitoring, military use, industry and sensing information
from inhospitable locations. Unlike other networks, sensor networks depend on
deployment of sensors over a physical location to fulfil a desired task.

A WSN node contains several components including the radio, battery, micro-
controller, analog circuit, and sensor interface. In battery-powered systems,
higher data rates and more frequent radio use consume more power. There are
several open issues for sensor networks such as signal processing [17], deployment
[21], operating cost, localization and location estimation. The wireless sensors,
have two fundamental functions: sensing and communicating. However, the sen-
sors which are fare from the high energy communication node (HECN) can not
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communicate with him directly. The sensors transmit their data to this node,
either directly or via hops, using nearby sensors as communication relays.

Jourdan [14] solved an instance of WSN layout using a multi-objective genetic
algorithm – a fixed number of sensors had to be placed in order to maximize
the coverage. In some applications most important is the network energy. In [12]
is proposed Ant Colony Optimization (ACO) algorithm and in [20] is proposed
evolutionary algorithm for this variant of the problem. In [7] is proposed ACO
algorithm taking in to account only the number of the sensors. In [8] a multi-
objective ACO algorithm, which solves the WSN layout problem is proposed.
The problem is multi-objective with two objective functions – (i) minimizing the
energy consumption of the nodes in the network, and (ii) minimizing the number
of the nodes. The full coverage of the network and connectivity are considered
as constraints. A mono-objective ant algorithm which solves the WSN layout
problem is proposed in [9]. In [16] are proposed several evolutionary algorithms
to solve the problem. In [15] is proposed genetic algorithm which achieves similar
solutions as the algorithms in [16], but it is tested on small test problems.

The current research is an attempt to investigate the influence of the number
of ants on the ACO algorithm performance, which solves the WSN layout prob-
lem, and quality of the achieved solutions and to find the minimal number of ants
which are enough to achieve good solutions. For this purpose the InterCriteria
Analysis (ICrA) approach is applied.

ICrA, proposed by [5], is a recently developed approach for evaluation of
multiple objects against multiple criteria and thus discovering existing correla-
tions between the criteria themselves. It is based on the apparatus of the index
matrices (IMs) [1], and the intuitionistic fuzzy sets [2,3] and can be applied to
decision making in different areas of knowledge. Various applications of the ICrA
approach have been found in science and practice – e-learning [18], algorithms
performance [11], medicine [19], etc. Data from series of ACO optimization pro-
cedures, published in [8–10], are used to construct IMs. ICrA is applied over the
so defined IMs and the results are discussed.

The paper is organized as follows: in Sect. 2 is given the WSN layout problem
formulation, in Sect. 3 is presented the background of the InterCriteria Analysis,
in Sect. 4 the numerical results are presented and a discussions is provided. The
concluding remarks are given in Sect. 5.

2 Problem Formulation

Each sensor node of WSN sense an area around itself called its sensing area,
which is determined by the sensing radius. The communication radius determines
how far the node can send his data. A special node in the WSN called High
Energy Communication Node (HECN) is responsible for external access to the
network. Every sensor node in the network must have communication with the
HECN, connectivity of the network. The communication radius is often much
smaller than the network size, they transmit their date by other nodes which
are closer to the HECN.
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In our formulation, sensor nodes has to be placed in a terrain providing full
sensing coverage with a minimal number of sensors and minimizing the energy
spent in communications by any single node. Minimal number of sensors means
cheapest network for constructing. Minimal energy means cheapest network for
exploitation. The energy of the network defines the lifetime of the network, how
frequently the batteries need to be replaced. These are opposed objectives and
we look for a good balance between number of sensors and energy consumption.

The WSN operates by rounds: In a round, every node collects the data and
sends it to the HECN. Every node transmits the information packets to the
neighbour that is closest to the HECN. If a node has n neighbours, each one
receives 1/n of its traffic load. Every node has a traffic load equal to 1 (corre-
sponding to its own sent data) plus the sum of all traffic loads received from
neighbours.

3 InterCriteria Analysis

Following [5] we will obtain an Intuitionistic Fuzzy Pair (IFP) [6] as the degrees
of “agreement” and“disagreement” between two criteria applied on different
objects. We remind briefly that an IFP is an ordered pair of real non-negative
numbers 〈a, b〉 such that a + b ≤ 1.

For clarity, let us be given an Index Matrix (IM) (see [1]) whose index sets
consist of the names of the criteria (for rows) and objects (for columns). The
elements of this IM are further supposed to be real numbers (in the general case,
this is not required). We will obtain an IM with index sets consisting of the names
of the criteria (for rows and for columns) with elements IFPs corresponding to
the “agreement” and“disagreement” of the respective criteria.

Further by O we denote the set of all objects O1, O2, . . . , On being evaluated,
and by C(O) the set of values assigned by a given criteria C to the objects, i.e.

O
def= {O1, O2, . . . , On}, C(O) def= {C(O1), C(O2), . . . , C(On)}.

Let xi = C(Oi). Then the following set can be defined:

C∗(O) def= {〈xi, xj〉|i �= j & 〈xi, xj〉 ∈ C(O) × C(O)}.

Further, if x = C(Oi) and y = C(Oj), x ≺ y will be written iff i < j.
In order to compare two criteria we must construct the vector of all internal

comparisons of each criteria, which fulfill exactly one of three relations R, R and
R̃. In other words, we require that for a fixed criterion C and any ordered pair
〈x, y〉 ∈ C∗(O) it is true:

〈x, y〉 ∈ R ⇔ 〈y, x〉 ∈ R, (1)

〈x, y〉 ∈ R̃ ⇔ 〈x, y〉 /∈ (R ∪ R), (2)

R ∪ R ∪ R̃ = C∗(O). (3)
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From the above it is seen that we need only consider a subset of C(O)×C(O)
for the effective calculation of the vector of internal comparisons since from (1)–
(3) it follows that if we know what is the relation between x and y we also know
what is the relation between y and x. Thus we will only consider lexicographically
ordered pairs 〈x, y〉. Let, for brevity: Ci,j = 〈C(Oi), C(Oj)〉.

Then for a fixed criterion C we construct the vector:

V (C) = {C1,2, C1,3, . . . , C1,n, C2,3, C2,4, . . . , C2,n, C3,4, . . . , C3,n, . . . , Cn−1,n}.

Further, to simplify our considerations, we replace the vector V (C) with V̂ (C),
where for each 1 ≤ k ≤ n(n−1)

2 for the k-th component it is true:

V̂k(C) =

⎧
⎪⎨

⎪⎩

1 iff Vk(C) ∈ R,

−1 iff Vk(C) ∈ R,

0 otherwise.

Then when comparing two criteria we determine the “degree of agreement”
between the two as the number of matching components (divided by the length
of the vector for normalization purposes).

4 Numerical Results and Discussion

In our previous works [7–10] we propose different variants of ACO algorithm
to solve WSN problem. In [10] is applied multi-objective ACO algorithm. In
[7] the problem is converted to mono-objective by multiplying the two objective
functions, and in [9] the problem is converted to mono-objective by summing the
two objective functions. We apply our algorithms on rectangular area consisting
500×500 points and the communication and coverage radius of every sensor cover
30 points. The number of used ants is from 1 to 10. For our current research we
use results published in these papers.

The input IM and the full set of obtained numerical results could be found
in http://intercriteria.net/studies/aco/.

ICA is applied over the data presented in the input IM, where different ACO
algorithms (ACOu-mono-objective with multiplication, ACOs-mono-objective
with sum and ACOm- multi-objective) are presented as criteria and number of
sensors [223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237,
238, 239, 240, 241, 242, 243, 244] – as objects. The cross-platform software for
ICrA approach, ICrAData, is used [13].

The results are analysed based on the scale proposed in [4], which defines the
consonance and dissonance between the criteria pairs.

The obtained most significant and interesting ICrA results are presented in
tables below.

Table 1 displays the criteria pairs that are in SPC. Only the relations between
algorithms with different objective functions are shown. There are 24 more cri-
teria pairs that are also in SPC. These criteria pairs correspond to the algo-
rithms with the same objective function and close number of ants, for example

http://intercriteria.net/studies/aco/
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ACOu8−ACOu9 or ACOs2−ACOs3. As some exceptions, for the criteria pairs
ACOu1 − ACOu2 and ACOs4 − ACOs5 a WPC is registered(monitored) and
for the ACOu5−ACOu6 – WD. It should be noted that these pairs correspond
to the case of mono-criteria variant of the problem. These pairs are not shown
in the table. There is only one criteria pair corresponding to the multi-criteria
case – ACOm6 − ACOm10. The presented criteria pairs show that the SPC is
observed for the four cases for ACOs−ACOm, and for one – ACOu−ACOm.
There is not observed strong relation between results using ACOu and ACOs.
It could be summarized that SPC is observed between same mono-objective
algorithms where the number of ant is closed, which is logical.

Table 1. ACO algorithms in SPC

Criteria pairs of ACO algorithms
of ACO algorithms

Value of
µC,C′

ACOs8 −ACOm8 0.98

ACOs5 −ACOm8 0.96

ACOs6 −ACOm8 0.96

ACOs7 −ACOm8 0.96

ACOu3 −ACOm3 0.95

ACOs5 −ACOm8 0.96

ACOs6 −ACOm8 0.96

ACOs7 −ACOm8 0.96

ACOs8 −ACOm8 0.98

ACOu3 −ACOm3 0.95

In Table 2 again only the results from different objective functions, that are
in PC, are displayed. In this case the pairs of multi-criteria algorithms with
a close number of ants are appeared, as well as the mono-criteria with a bit
larger difference between number of ants (e.g. ACOs2 − ACOs10, ACOs3 −
ACOs10, ACOu2−ACOu10, ACOus−ACOu10, etc.). The all obtained results
are presented in http://intercriteria.net/studies/aco/.

From total 84 cases of criteria pairs between different algorithms 19 pairs
are between ACOs and ACOu (mono-criteria) and the rest are between mono
and multi-criteria ACO algorithms. That means that the relation between mono
and multi-criteria algorithms are weaker than the relations between different
mono-criteria algorithms. The last ones are mainly in the SPC.

The presented in Table 2 results show that the algorithms ACOs − ACOu
are more related than ACOu − ACOm.

163 criteria pairs are in WPC. 157 from them are between mono and multi-
criteria ACO algorithms. Only 6 pairs between ACOs − ACOs and 4 between
ACOu − ACOu. It shows that the relation between mono and multi-criteria
ACO algorithms are weaker. 137 of the criteria pair are between ACOu−ACOs

http://intercriteria.net/studies/aco/
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and ACOu − ACOm, i.e. ACOu performance is more different in comparison
with the performance of the ACOs and ACOm.

64 criteria pairs are in WD. There are not criteria pairs ACOs − ACOs.
In Table 3 only the criteria pairs between the same objective function are

presented. The results show the influence of the different number of ants on
the ACO performance using the same objective function. The result show that
ACOs is less sensitive to the number of ants, than the ACOu and ACOm. The
larger difference of the performance are observed for ACOu and ACOm – 53%
of all criteria pairs. In 14% of the cases the WD is observed for the algorithms

Table 2. ACO algorithms in PC

Criteria pairs of
ACO algorithms

Value of
µC,C′

Criteria pairs of
ACO algorithms

Value of
µC,C′

ACOu6 −ACOm3 0.93 ACOs8 −ACOm9 0.88

ACOs9 −ACOm8 0.92 ACOu2 −ACOm2 0.88

ACOu4 −ACOm3 0.92 ACOu4 −ACOs1 0.88

ACOs8 −ACOm5 0.92 ACOu6 −ACOs9 0.88

ACOu1 −ACOm1 0.92 ACOs9 −ACOm3 0.87

ACOu3 −ACOs4 0.92 ACOu2 −ACOm4 0.87

ACOu4 −ACOm4 0.92 ACOu5 −ACOs1 0.87

ACOu5 −ACOm3 0.92 ACOs9 −ACOm7 0.87

ACOu5 −ACOm4 0.91 ACOu6 −ACOs10 0.87

ACOu3 −ACOm4 0.91 ACOs7 −ACOm6 0.86

ACOs7 −ACOm5 0.90 ACOs8 −ACOm10 0.86

ACOs9 −ACOm9 0.90 ACOu7 −ACOs10 0.86

ACOu10 −ACOm3 0.90 ACOs7 −ACOm10 0.86

ACOu7 −ACOm3 0.90 ACOu10 −ACOs9 0.86

ACOu8 −ACOm3 0.90 ACOu5 −ACOs10 0.86

ACOu9 −ACOm3 0.90 ACOu7 −ACOs9 0.86

ACOs7 −ACOm7 0.90 ACOu8 −ACOs9 0.86

ACOu1 −ACOm4 0.90 ACOu9 −ACOs9 0.86

ACOs7 −ACOm9 0.89 ACOu1 −ACOs4 0.85

ACOs8 −ACOm7 0.89 ACOu2 −ACOm5 0.85

ACOu4 −ACOs4 0.89 ACOu2 −ACOs10 0.85

ACOu2 −ACOm3 0.89 ACOu4 −ACOs10 0.85

ACOu3 −ACOs1 0.89 ACOs9 −ACOm6 0.85

ACOu5 −ACOs4 0.89 ACOu2 −ACOs4 0.85

ACOs8 −ACOm6 0.88 ACOu3 −ACOs9 0.85

ACOs9 −ACOm5 0.88 ACOu6 −ACOs1 0.85
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Table 3. ACO algorithms in WPC

Criteria pairs of ACO algorithms
of ACO algorithms

Value of
µC,C′

ACOs4 −ACOs10 0.77

ACOs4 −ACOs5 0.82

ACOs4 −ACOs6 0.82

ACOs4 −ACOs7 0.82

ACOs4 −ACOs8 0.81

ACOs4 −ACOs9 0.84

ACOu1 −ACOu2 0.78

ACOu1 −ACOu3 0.81

ACOu1 −ACOu4 0.82

ACOu1 −ACOu5 0.82

ACOu−ACOu and ACOm−ACOm with bigger difference between number of
ants (more than three), which that ACOu and ACOm highly influenced of the
number of ants.

5 Conclusion

The InterCriteria analysis is a powerful tool for studying relations between differ-
ent objects. We study three variants of ACO algorithm applied on WSN problem.
Every variant is tested with various number of ants, between 1 and 10. We search
the correlation between variants of ACO and number of ants. WSN problem is
a multi-objective problem. When it is converted to mono-objective by summing
the two objective functions, the algorithm is less sensitive to the number of
used ants. When the problem is solved like multi-objective, we observe bigger
difference of algorithm performance according to the number of ants. There is
greater similarity between performance of the two mono-objective variants, than
between some of mono-objective and multi-objective variants. In a future we will
continue with study of the influence of the ACO parameters values on algorithm
performance.
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Abstract. The state estimation problems for control systems with
unknown but bounded uncertainties with a set-membership description
of uncertain parameters and functions are studied. The modified state
estimation approaches based on special structure of nonlinearity and
uncertainty that are simultaneously present in the control system are
developed. The studies are motivated by numerous modeling problems
for dynamical systems with uncertainty and nonlinearity arising in dif-
ferent fields such as physical engineering problems, economical model-
ing, ecological problems. This investigation continues previous researches
and a more complicated case is considered here, when the dynamical
equations of control system contain two types of nonlinearities, one of
which is of quadratic type and another one contains uncertain matrix
parameters. Such models may arise in applications related, in particular,
to satellite control problems with nonlinearity and disturbances in the
model description. The main new results consist in deriving the dynami-
cal equations for the ellipsoidal estimates of reachable sets of the control
system under study. Related numerical algorithms and simulation results
are also given.

Keywords: Nonlinear control system · Reachable set
Estimation under uncertainty

1 Introduction

The research continues the study of estimation problems for uncertain dynam-
ical systems in the case when a probabilistic description of noise and errors is
not available, but only bounds on them are known [1–6]. Mathematical mod-
els of this kind appear in studies of dynamical systems under uncertainty in
many applications such as physics, cybernetics, biology, economics and other
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areas [7–10]. Therefore, the development of analytical methods and numerical
schemes for the analysis of control systems with nonlinearity and uncertainty is
an important goal for both theory and applications.

In this paper the modified state estimation techniques which use the special
type of nonlinearity of a control system and also take into account state con-
straints are proposed. We assume that the system nonlinearity is generated by
the combination of two types of functions in related differential equations, one of
which is bilinear and the other one is quadratic. The additional state constraints
(of ellipsoidal type) are also imposed.

The paper further develops results of [11–20], namely we give here the contin-
uous time version of the upper estimates of reachable sets of the control system
with uncertainty, nonlinearity and state constraints.

2 Problem Formulation

2.1 Basic Notations

Let IRn denote the n–dimensional Euclidean space and x′y is the usual inner
product of x, y ∈ IRn with the prime as a transpose and with ‖x‖ = (x′x)1/2.
We use the symbol comp IRn for the variety of all compact subsets A ⊂ IRn and
the symbol conv IRn for the variety of all compact convex subsets A ⊂ IRn.

Let us denote the set of all closed convex subsets A ⊆ IRn by the symbol
clconv IRn. Let IRn×m stands for the set of all real n × m-matrices, diag {v}
denotes a diagonal matrix with the elements of vector v on the main diagonal.
Denote by I ∈ IRn×n the identity matrix and by Tr (A) the trace of n×n-matrix
A (the sum of its diagonal elements).

We denote also by B(a, r) = {x ∈ IRn : ‖x − a‖ ≤ r} the ball in IRn with a
center a ∈ IRn and a radius r > 0 and denote by

E(a,Q) = {x ∈ IRn : (Q−1(x − a), (x − a)) ≤ 1}

the ellipsoid in IRn with a center a ∈ IRn and with a symmetric positive definite
n × n-matrix Q.

2.2 Problem Description

Consider the following nonlinear control system

ẋ = A(t)x + f(x)d + u(t), x0 ∈ X0, t ∈ [t0, T ], (1)

where x, d ∈ IRn, ‖x‖ ≤ K (K > 0), f(x) is the nonlinear function, which is
quadratic in x, that is f(x) = x′Bx, with a given symmetric and positive definite
n × n-matrix B.

Control function u(t) is assumed to be Lebesgue measurable on [t0, T ] and
it satisfies the constraint u(t) ∈ U for a.e. t ∈ [t0, T ] where U is a given set
belonging to comp IRn. We will assume further that U = E(â, Q̂).
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We assume that the n × n-matrix function A(t) in (1) has the form

A(t) = A0 + A1(t). (2)

Here A0 is a given constant n×n-matrix, the measurable and n×n-matrix A1(t)
is unknown but bounded, A1(t) ∈ A1 (t ∈ [t0, T ]).

Therefore we have the constraint

A(t) ∈ A = A0 + A1, (3)

where we assume that

A1 =
{
A = {aij} ∈ Rn×n : aij = 0 for i �= j, and

aii = ai, i = 1, . . . , n, a = (a1, . . . , an), a′Da ≤ 1
}
,

(4)

with D ∈ IRn×n being a symmetric and positive definite matrix.
We assume that X0 in (1) is an ellipsoid, X0 = E(a0, Q0), with a symmetric

and positive definite matrix Q0 ∈ IRn×n and with a center a0 ∈ IRn.
One of the important issues in the theory of control under uncertainty is how

to specify the set of all solutions x(t) to (1) that satisfy the additional state
constraints (the “viability” constraint [1,2])

x(t) ∈ Y (t), t0 ≤ t ≤ T (5)

where Y (t) ∈ conv IRn ( t ∈ [t0, T ]).
In particular, the viability constraint (5) may be induced by the so-called

measurement equation
y(t) = G(t)x + w(t),

where y(t) is a p-vector function corresponding to measurement results which
are obtained with unknown but bounded “noises” w(t)

w ∈ Q∗(t), Q∗(t) ∈ comp IRp,

here Q∗(t) is a given set-valued function, G(t) is a given p× n–matrix function,
(some earlier problem settings and previous results in this field may be found
in [2]).

Here we consider the case when the state constraint of type (5) is defined by
the ellipsoid,

x(t) ∈ Y = E(ã, Q̃), t0 ≤ t ≤ T, (6)

with the center ã ∈ IRn and the positive definite n × n–matrix Q̃. We will
assume further that there exists at least one solution x∗(t) of (1) that satisfies
the condition (6).

Let the absolutely continuous function x(t) = x
(
t;u(·), A(·), x0

)
be a solution

to dynamical system (1)–(6) with initial state x0 ∈ X0, with admissible control
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u(·) and with a matrix A(·) satisfying (2)–(4). The reachable set X (t) at time t
(t0 < t ≤ T ) of system (1)–(5) is defined as the set

X (t) =
{
x ∈ IRn : ∃x0 ∈ X0, ∃u(·) ∈ U , ∃A(·) ∈ A,

x = x(t) = x
(
t;u(·), A(·), x0

)
, x(s) ∈ Y, t0 ≤ s ≤ t

} (7)

It should be noted that the problem of exact construction of reachable sets
of control systems is very difficult even for linear systems [3]. So instead of exact
problem solution the different estimation approaches were developed in many
researches [1–5]. The main problem studied here is to find external ellipsoidal
estimates (with respect to inclusion of sets) for reachable sets X (t) (t0 < t ≤ T )
and to study the dynamics of such upper estimates in time t. We investigate
here a more complicated case than in [20], since we assume now that we have
an additional state constraint on the trajectories of the control system, which
significantly complicates the problem analysis.

3 Main Results

Earlier some approaches were proposed to obtain differential equations describ-
ing dynamics of external (and in some cases internal) ellipsoidal estimates for
reachable sets of control system under uncertainty, e.g., in [21] the authors stud-
ied estimation problems for systems with uncertain matrices in dynamical equa-
tions, but additional nonlinear terms in dynamics were not considered there.

Differential equations of ellipsoidal estimates for reachable sets of a nonlinear
dynamical control system were derived in [13] for the case when system state
velocities contain quadratic forms but in that case the uncertainty in matrix
coefficients was not assumed.

Later, in [15], differential equations for external ellipsoidal estimates of reach-
able sets of a control system with nonlinearity and with uncertain matrix were
derived under assumption that all elements {aij} of the matrix A were bounded
in modulus.

Here we investigate the case different from the above mentioned results when
we assume the quadratic-type constraints on unknown matrix A(t) included in
the system dynamics and assume also the presence of additional constraints on
the system states. In this case the related analysis of the dynamical properties
of proposed ellipsoidal estimates is more complicated and was not carried out
before.

3.1 Auxiliary Estimate

We use here the idea of [2] for the so-called elimination of state constraints in
the construction of reachable sets of the system (1)–(6) (see also related results
in [22]). Consider the following auxiliary differential inclusion with n×n–matrix
parameter L,

ż ∈ (A0 − L + A1)z + f(z) · d + E(â, Q̂) + L · E(ã, Q̃),
t0 ≤ t ≤ T, z0 ∈ X0 = E(a0, Q0).

(8)
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Denote by Z(t; t0,X0, L) (t ∈ [t0, t1]) the trajectory tube to (8) for a fixed matrix
parameter L. Let L denotes the class of all n × n-matrix L.

We will need the following result which may be used as a basis for the con-
straints elimination procedure.

Lemma 1. ([2]) The following estimate is true

X(t) ⊆
⋂

L∈L
Z(t; t0,X0, L), t0 ≤ t ≤ T. (9)

Remark 1. It was proven in [2] that more precise upper estimates similar to
(9) may be obtained if we will use a wider class of matrices L (for example, if
we consider all matrices depending on time, L = L(t)), here for simplicity we
consider only constant matrices L.

Using this approach and results of [13,15,16,19,20] we can find the upper
ellipsoidal estimates for reachable sets Z(t) = Z(t; t0,X0, L) of the nonlinear
system (8).

3.2 Main Theorem

The following result describes the dynamics of the external ellipsoidal estimates
of the reachable set X(t) = X(t; t0,X0) (t0 ≤ t ≤ T ) of the system (1)–(6).

Denote the maximal eigenvalue of the matrix B1/2Q0B
1/2 as k2, therefore

k2 is the smallest positive number for which the inclusion

X0 = E(a0, Q0) ⊆ E(a0, k2B−1)

is satisfied (see also related constructions in [19]).

Theorem 1. The inclusion

X(t; t0,X0) ⊆ E(a+L(t), r+L (t)B−1) (10)

is true for any t ∈ [t0, T ] and for any L ∈ L where functions a+L(t), r+L (t) are
the solutions of the following system of ordinary differential equations

ȧ+L(t) = (A0 − L)a+L(t) + ((a+L(t))′Ba+L(t) (11)

+ r+L (t))d + â + Lã, t0 ≤ t ≤ T,

ṙ+L (t) = max
‖l‖=1

{
l′
(
2r+L (t)B1/2(A0 − L

+ 2d(a+L(t))′B)B−1/2

+ q−1(r+L (t))B1/2Q̂∗
LB

1/2)
)
l
}

+ q(r+L (t))r+L (t),

q(r) = ((nr)−1Tr(BQ̂∗))1/2,
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where the positive definite matrix Q̂∗ is such that

A1a0 + E(0, Q̂) + k0D
1/2B1/2B(0, 1) + LE(0, Q̃) ⊆ E(0, Q̂∗) (12)

and the initial states for a+L(t) and r+L (t) are

a+L(t0) = a0, r+L (t0) = k2.

Proof. The above estimates are derived following the scheme of the proof of
Theorem 2 in [16] with the necessary corrections done according to new class
of constraints on unknown parameters and functions included in the system
description.

Corollary 1. The following estimate is true for any t ∈ [t0, T ]

X(t; t0,X0) ⊆
⋂

L∈L
E(a+L(t), r+L (t)B−1).

Proof. The inclusion follows directly from Theorem 1.

Remark 2. The numerical scheme and the related algorithm for constructing
upper estimates of reachable sets of the system under consideration may be also
formulated similar to algorithms described in [13–15].

4 Numerical Simulation

The following example illustrates the results.

Example 1. Consider the following nonlinear control system
{
ẋ1 = a1x1 + x2

1 + x2
2 + u1,

ẋ2 = a2x2 + u2,
x0 ∈ X0, t0 ≤ t ≤ T.

(13)

Here t0 = 0, T = 0.4. The uncertain initial state x0 belongs to the ball
X0 = B(0, 1), uncertain parameters {a1, a2} satisfy the constraint a21 + a22 ≤ 1,
admissible control functions belong to the set U = B(0, 0.1).

The state constraint is defined by the ellipsoid E(ã, Q̃) where ã = 0 and
Q̃ = diag {0.64, 4}.

The reachable set X(t) with the estimating ellipsoids E(aLi
(t), QLi

(t)) found
by Theorem 1 are shown in Fig. 1 for different choices of matrices Li (i = 1, 2, 3,
t = 0.1). Two estimating ellipsoidal tubes described in Theorem 1 are shown in
Fig. 2.
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Fig. 1. Ellipsoidal estimates for
reachable set X(t) (2d-picture in
the plane of state variables).

Fig. 2. Ellipsoidal tubes containing reachable
set X(t) (3d-picture in the plane of state vari-
ables and time).

5 Conclusions

The paper deals with the problems of state estimation for uncertain dynam-
ical control systems under the assumption that the initial system state and
some parameters in dynamical equations are unknown but bounded with given
constraints.

The focus of this research was done on deriving differential equations which
describe the dynamics of the ellipsoidal estimates of reachable sets of the systems
under study.

Basing on the results of ellipsoidal calculus developed earlier we present the
new state estimation results which use the special bilinear–quadratic structure
of nonlinearity and uncertainty of the control system and allow to construct the
external ellipsoidal estimates of reachable sets. Examples and numerical results
related to procedures of set-valued approximations of trajectory tubes and reach-
able sets are also given.

The results obtained here may be used in further theoretical and applied
researches in optimal control and state estimation for dynamical systems with
more complicated classes of uncertainty of set-membership and other types.
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S., Waśniewski, J. (eds.) LSSC 2011. LNCS, vol. 7116, pp. 123–130. Springer,
Heidelberg (2012). https://doi.org/10.1007/978-3-642-29843-1 13

19. Filippova, T.F., Matviychuk, O.G.: Estimates of reachable sets of control systems
with bilinear-quadratic nonlinearities. Ural Math. J. 1(1), 45–54 (2015)

https://doi.org/10.1007/978-3-642-12535-5_34
https://doi.org/10.1007/978-3-642-12535-5_34
https://doi.org/10.1063/1.4964998
https://doi.org/10.1007/978-3-540-78827-0_36
https://doi.org/10.1007/978-3-540-78827-0_36
https://doi.org/10.1007/978-3-642-29843-1_13


Description of Dynamics of Ellipsoidal Estimates of Reachable Sets 105

20. Filippova, T.F.: Estimation of star-shaped reachable sets of nonlinear control sys-
tems. In: Lirkov, I., Margenov, S. (eds.) LSSC 2017. LNCS, vol. 10665, pp. 210–218.
Springer, Cham (2018). https://doi.org/10.1007/978-3-319-73441-5 22

21. Chernousko, F.L., Rokityanskii, D.Y.: Ellipsoidal bounds on reachable sets of
dynamical systems with matrices subjected to uncertain perturbations. J. Opti-
miz. Theory Appl. 104(1), 1–19 (2000)

22. Gusev, M.I.: Application of penalty function method to computation of reachable
sets for control systems with state constraints. In: AIP Conference Proceedings,
vol. 1773, 050003, pp. 1–8 (2016). https://doi.org/10.1063/1.4964973

https://doi.org/10.1007/978-3-319-73441-5_22
https://doi.org/10.1063/1.4964973


Evaluation of Serial and Parallel
Shared-Memory Distance-1 Graph

Coloring Algorithms

Lukas Gnam1(B), Siegfried Selberherr2, and Josef Weinbub1

1 Christian Doppler Laboratory for High Performance TCAD,
Institute for Microelectronics, TU Wien, Vienna, Austria

{gnam,weinbub}@iue.tuwien.ac.at
2 Institute for Microelectronics, TU Wien, Vienna, Austria

selberherr@iue.tuwien.ac.at

Abstract. Within the scope of computational science and engineering,
the standard graph coloring problem, the distance-1 coloring, is typically
used to select independent sets on which subsequent parallel computa-
tions can be guaranteed. As graph coloring is an active field of research,
various algorithms are available, each offering advantages and disadvan-
tages. We compare several serial as well as parallel shared-memory graph
coloring algorithms for the standard graph coloring problem based on ref-
erence graphs. Our investigation covers well established as well as recent
algorithms and their support for balanced and unbalanced approaches.
An overview on speedup, used number of colors, and their respective
population for different test graphs is provided. It is shown that the
parallel approaches produce similar results as the serial methods, but
for specific cases the serial algorithms still remain a good option, when
certain properties (e.g., balancing) are of major importance.

Keywords: Graph coloring · Shared-memory · Distance-1 coloring
Parallel algorithm

1 Introduction

The decomposition of computational tasks into independent sets, which pave the
way for a subsequent parallelization step, is a widely used approach to exploit
parallel computing resources. Examples of such use cases are community detec-
tion [9], mesh adaptation [7], and linear algebra [10] algorithms.

In this work, we consider the standard graph coloring problem, the distance-1
coloring. For a general graph G(V,E) a distance-1 coloring is a coloring, where
any two adjacent vertices receive different colors. Hence, each color represents
an independent set for possible subsequent parallel processing. Usually, the goal
of a distance-1 graph coloring problem is to use as few colors as possible: One
fact which is often neglected is the population of the resulting sets. Consider-
ing the standard formulations of such algorithms, they mostly result in highly
c© Springer Nature Switzerland AG 2019
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unbalanced populations. A heavily unbalanced coloring can lead to colors which
contain insufficient workload to achieve acceptable parallel efficiency, thus lead-
ing to an undesired bottleneck in a parallel workflow. Therefore, graph coloring
algorithms typically aim to use as few colors as possible to enable the subsequent
workflow to achieve proper scalability.

Although there have been several efforts to compare different graph coloring
algorithms in the past [1,6,9], we pick up on recent developments in this field and
provide an overview on some of the newest distance-1 graph coloring algorithms.
We show their difference in the number of colors used for different graphs, as well
as a comparison of the resulting color populations. Additionally, we investigate
the overhead in execution time experienced for different balancing approaches.
For the parallel algorithms we also provide speedup and strong scalability data.

In Sect. 2, we briefly discuss the related work and present the coloring algo-
rithms we used in our evaluation, followed by the actual evaluation of the algo-
rithms in Sect. 3.

2 Coloring Algorithms

The most widely used approach to achieve a coloring of a graph is the Greedy
coloring algorithm [5]. It iterates the graph and assigns the smallest color permis-
sible to the active graph vertex, by checking the color assigned to its neighbors
(usually colors are denoted using integers). Thus, for any graph with maximum
degree d1 this algorithm uses at most d + 1 colors. One major drawback of this
algorithm is, that the highest colors are the ones assigned the least, leading to
a skewness in the population of the colors. The Greedy algorithm is part of our
study.

To alleviate this skewness, the Greedy algorithm can be adapted such that it
assigns the least used color permissible, leading to a more balanced coloring of
the graph [9,11]. This algorithm is also part of our study and henceforth denoted
as Greedy-LU.

Based on an approach from Gebremedhin and Manne [4], a parallel algo-
rithm for speculative graph coloring was introduced by Çatalyürek et al. [1],
which follows a two-step strategy. The first step is to color the graph vertices in
parallel without checking for any possible conflicts. In a second step the previ-
ously colored graph vertices are checked and, if conflicts occur, the corresponding
graph vertices are marked for recoloring in the next iteration. Hence, the num-
ber of occurring conflicts defines the number of total iterations, which could lead
to performance drawbacks. Catalyürek’s algorithm, from now on referred to as
Parallel, acts as our baseline for the shared-memory parallel coloring approach.

Recently, Lu et al. presented several serial shared-memory parallel algorithms
for distance-1 graph coloring [9]. Following their results, we selected the Sched-
uled Reverse algorithm to be included in our study. This particular approach
uses the Greedy algorithm to obtain an initial coloring and improves the bal-
ancing by moving vertices from colors with high population to colors with low
1 The degree of a vertex of a graph is the number of incident edges [3].
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population, without introducing new colors. We chose to limit the algorithm to
three iterations, following the results and suggestions presented in [9], which is
a reasonable compromise between color balancing and computational overhead.
Within the remainder of this work, we will refer to this algorithm as Parallel
Recolor.

3 Evaluation

3.1 Benchmark Platform

We used a single compute node of the Vienna Scientific Cluster 3 (VSC-3). A
node offers two Intel Xeon E5-2650v2 Ivy Bridge EP processors running with
2.6 GHz and a total of 64 GB of main memory. Hence, 16 physical and 32 logi-
cal cores are available. The benchmarks were compiled using Intel’s C++ com-
piler, version 17.0.4, with -O3 optimization. Additionally, we made use of Intel’s
thread-core affinity capabilities using the KMP AFFINITY environment vari-
able to ensure proper thread pinning to avoid thread migration. We used a
static OpenMP loop scheduling, as the problems do not pose a load-balancing
issue.

3.2 Test Graphs

For our investigations we used four different graphs, where three of them were
created with the parallel graph generation software PaRMAT [8] following the
approach from Catalyürek [1]. We varied the graph parameters a, b, and c (see
Table 1) while keeping a constant total number of vertices of 16 777 216. The first
graph, RMAT-ER, is a graph belonging to the so-called Erdös-Rényi class with
a normal degree distribution, whereas the other two, RMAT-G and RMAT-B,
have multiple local maxima of the degree distribution (for more details see
[1]). The highest number of neighbors for a vertex (maximum vertex degree)
is observed in the RMAT-B graph with 49 212. The fourth test graph is taken
from the University of Florida Sparse Matrix Collection [2] and is a mesh mod-
eling a BMW 3 series car. An overview on the graph properties is shown in
Table 1.

Table 1. Properties of the four graphs used in this evaluation study as well as the
graph parameters for the RMAT graphs used within PaRMAT.

Graph Vertices Avg. degree Max. degree a b c

RMAT-ER 16 777 216 16 42 0.25 0.25 0.25

RMAT-G 16 777 216 16 41 938 0.45 0.15 0.25

RMAT-B 16 777 216 16 49 212 0.55 0.15 0.15

BMW 227 362 48.65 335 - - -



Evaluation of Serial and Parallel Distance-1 Graph Coloring Algorithms 109

3.3 Coloring Quality

In Fig. 1 we show the maximum number of colors used by each of the individual
algorithms for the four input graphs. For the RMAT-ER graph the Greedy-LU
algorithm uses the most colors, i.e., 23, compared to 12 for all others, includ-
ing the Parallel algorithm with 32 threads. Due to its recoloring approach the
Parallel Recolor algorithm uses always the same number of colors as the Greedy
algorithm, because the latter acts as the initial input coloring and no colors are
added while balancing. This is independent of the number of threads being used.
Additionally, it can be observed that the actual number of colors is always way
below the maximum vertex degree, and often also in the range of the nearly opti-
mal Greedy coloring algorithm. In the case of the RMAT-G graph, Greedy-LU
produces an output using 70 colors, whereas the other algorithms use only 26.
The resulting colorings require about 1600 times less colors than the maximum
vertex degree occurring in this graph, except of the Greedy-LU algorithm which
uses nearly 600 times less colors. The difference results from the Greedy coloring
approach applied in the two parallel algorithms, which is unbalanced in contrast
to the Greedy-LU algorithm. Considering the RMAT-B graph, the Greedy-LU
algorithm requires the most colors, i.e., 395, which is about four times more
than the demand from the Parallel algorithm using 32 threads. The results for
the three-dimensional BMW mesh show that Parallel with 32 threads uses the
least number of colors. This is a result of the parallel execution of the Greedy
coloring approach in its tentative coloring phase, yielding a better outcome in
the number of used colors and their population for this specific graph.

Fig. 1. Maximum number of colors (left) and relative standard deviation of the color
population (right) resulting from the investigated algorithms for each of the input
graphs. For the Parallel algorithm the results obtained with 1 (1T) and 32 threads
(32T) are depicted. Note that the single-threaded version produces the same results
as the Greedy algorithm. Since the maximum number of colors used by the Parallel
Recolor algorithm does not depend on the number of threads only one result bar is
shown in each figure. (Color figure online)

To compare the population of the colors produced by the implemented algo-
rithms we use the relative standard deviation of the coloring results (see Fig. 1).
The different distributions of vertex degrees in each graph (see Table 1) strongly
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influence the resulting color populations: Vertices with a high degree compared
to the graph’s average degree lead to a higher number of colors with very low
population. This is especially observable for the RMAT graphs, where for RMAT-
ER the deviations range between 11–75%, for RMAT-G between 0–270%, and
for RMAT-B between 0–565%. For the BMW graph the deviations are between
26–74%. As can be seen, the best results (i.e., the least deviation) are obtained
using the Greedy-LU algorithm, since it initially tries to balance the colors. In
case of the three RMAT graphs the Parallel Recolor algorithm returns the second
best deviation results, followed by the Greedy and the Parallel algorithm. The
Parallel algorithm using 32 threads produces similar results as Greedy, except
for the RMAT-B graph, where its deviation is larger than the deviation resulting
from the Greedy algorithm. For the BMW graph the Parallel algorithm using
32 threads produces the best deviation results after the Greedy-LU algorithm,
followed by the Parallel Recolor algorithm. Because it assigns the smallest color
permissible, the Greedy algorithm produces the highest skewness. Regarding the
color population for the BMW graph, Parallel also performs better than Parallel
Recolor. Nevertheless, the relative standard deviation must not be viewed as a
single quality metric for the population deviation of the used colors, because
there can still be very large differences between specific colors. Figure 2 shows
these differences in the color populations occurring for the different graphs. Since
the Greedy algorithm uses the smallest color permissible for coloring a vertex,
the color population decreases for increasing color indices when applying the
Greedy as well as the Parallel algorithm. Therefore, we observe a high skew-
ness in the results produced by the Greedy and the Parallel algorithm. Since
the Parallel Recolor algorithm does not add new colors, strong jumps of color
populations can be observed, especially for high color indices, but it alleviates
the high skewness produced initially with the Greedy algorithm. This effect is
shown in Fig. 2, where Parallel Recolor produces well balanced colorings for the
RMAT-ER and RMAT-G graphs, whereas for the other two cases it results in
significant population differences for higher colors (e.g., 264 times higher for color
54 than for color 53 in the RMAT-B graph). Regarding the results obtained with
the Parallel algorithm, our investigations show that it produces similar results
as the Greedy algorithm, since the Parallel algorithm uses a Greedy approach in
its parallel coloring step. As expected, the Greedy-LU algorithm produces the
best balanced colorings for all test graphs but at the price of using 1.5 to almost
5 times more colors than the unbalanced Greedy algorithm.

3.4 Strong Scaling Analysis

Since not only the resulting number of colors and their respective population
can have a strong impact on the overall application performance, but also the
execution time of the coloring algorithm itself, we additionally investigated the
strong scaling capabilities of the Parallel and the Parallel Recolor algorithm
based on the reference graphs. For the latter there is, in addition to the initial
use of the Greedy coloring algorithm, also some serial part in the algorithm
which prepares the data for parallel execution. Therefore, it can be expected
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RMAT-ER RMAT-G

RMAT-B BMW

Fig. 2. Resulting color populations for the four test graphs evaluated in our study.
For the Parallel algorithm we show the results obtained using 32 threads (32T), since
the single threaded version produces the same output as the Greedy algorithm. The
coloring results for the Parallel Recolor algorithm are independent from the number of
threads. (Color figure online)

that the recoloring approach of the Parallel Recolor algorithm is most likely
to experience parallel performance limitations. Figure 3 and Table 2 show this
expected behavior. All timings are averaged based on three iterations.

The execution times for the single-threaded versions show major differences
for the three RMAT test graphs. The Parallel Recolor algorithm is nearly two
times faster than the Parallel algorithm for the RMAT-ER graph, and 1.3 times
faster for the other two RMAT graphs, because the Parallel algorithm iterates
at least twice over the graph (coloring and checking), whereas Parallel Recolor
retains the nearly optimal initial Greedy coloring. As shown in Table 2, the single-
threaded execution times for the BMW graph are similar, due to the smaller
number of vertices: 0.132 s for the Parallel algorithm and 0.137 s for the Parallel
Recolor algorithm. As expected, when increasing the number of threads Parallel
outperforms Parallel Recolor for more than 2 threads for the RMAT-ER and the
RMAT-G graph and for more than 4 threads for the RMAT-B graph. However,
for the BMW graph the Parallel Recolor algorithm scales best for up to 16
threads, albeit breaking down for 32 threads, because of the increased number
of recoloring conflicts occurring with a higher number of threads for this graph.
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RMAT-ER RMAT-G

RMAT-B BMW

Fig. 3. Speedups of the parallel algorithms for the different test graphs.

Table 2. Execution times in seconds of the algorithms for the test graphs, with the
fastest time for each graph in bold. For the Parallel and Parallel Recolor (Par.Rec.)
algorithms the results obtained with 1 (1T) and 32 threads (32T) are shown.

Graph Greedy Greedy-LU Parallel 1T Parallel 32T Par.Rec.1T Par.Rec.32T

RMAT-ER 7.213 12.32 26.71 2.21 13.97 10.03

RMAT-G 5.765 140.21 19.55 2.10 15.11 9.53

RMAT-B 6.372 29.02 19.50 2.17 15.43 10.21

BMW 0.036 0.378 0.132 0.075 0.137 0.242

4 Conclusions

As shown in this work, the resulting colorings depend heavily on the type and
properties of the respective input graph (e.g., see Figs. 1 and 2). In order to
make an adequate choice it is therefore necessary to determine the requirements
of the specific task for which the coloring should be used. If a balanced color
distribution is the primary metric of interest, then the Greedy-LU algorithm is
the best choice. However, if the application in mind has to repeatedly execute
the coloring algorithm, it is likely that the execution time spent in coloring
becomes more and more dominant: As the timings in Table 2 indicate, there
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are cases where the Greedy-LU algorithm takes about 24 times longer than the
unbalanced serial Greedy algorithm. This results from the fact, that the Greedy-
LU algorithm has to maintain a list of how often each color has already been
assigned, such that the least used color permissible is picked.

This introduces the execution performance - and by extension parallel scala-
bility - as a potential core metric. As shown in Figs. 2 and 3, as well as in Table 2,
in most cases the use of a parallel coloring strategy, like the Parallel algorithm
using 32 threads, can save up to 70% of time spent in coloring compared to the
Greedy algorithm while producing similar results. In our test cases the speed
of the Parallel Recolor algorithm suffers from its serial preparation step, yield-
ing inferior execution performance than the Parallel algorithm. Nevertheless,
if balancing of the colors and execution time are of importance, the recoloring
approach remains still a reasonable choice, because in some cases it is more than
14 times faster than the Greedy-LU algorithm and guarantees that the number
of colors used is the same as with the Greedy algorithm.

In all cases, the Greedy-LU algorithm proves to give the best balanced col-
orings, while in most cases the Parallel algorithm guarantees a proper tradeoff
between execution time and the number of colors. For the BMW graph, the
serial Greedy algorithm provides a well-balanced tradeoff between all three per-
formance parameters.
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Abstract. This article considers the following function approximation
problem: Given a non-negative function and a set of equality constraints,
find the closest to it non-negative function which satisfies the constraints.
As a measure of distance we propose the L2-norm of the logarithm of the
ratio of the two functions. As shown, this metric guarantees that (i) the
sought function is non-negative and (ii) to the extent to which the con-
straints allow, the magnitude of the difference between the sought and
the given function is proportional to the magnitude of the given function.
To solve the problem we convert it to a finite dimensional constrained
optimization problem and apply the method of Lagrange multipliers.
The resulting nonlinear system, together with the system for the con-
straints, are solved self-consistently by applying an appropriate iterative
procedure.

Keywords: Non-negativity · Relative difference
Constrained optimization · Lagrange multipliers

1 Introduction

Consider the following function approximation problem [1–6]: The function
u : [a, b] → R is given along with a set of equality constraints that need to
be met. We seek a function u∗ : [a, b] → R that meets the constraints and at the
same time is as close to u as possible. The functional dependence u may come
from a theoretical model, experimental results, numerical solution of a differen-
tial equation, etc. For example, u(t), t ∈ [a, b] could be the concentration of an
enzyme or the kinetic energy of a moving body as a function of time (or posi-
tion). The constraints may come, for example, from experimental observations,
overall mass or energy balance considerations, theoretical requirements for the
functional dependence, etc.

Usually, the function u∗ is defined as the function that minimizes, subject
to the given constraints, the L2-norm of the absolute difference between u∗ and
u. This approach is a particular case of the well-known Least Squares method
[7–9]. It distributes the magnitude of the absolute difference u∗ −u as uniformly
c© Springer Nature Switzerland AG 2019
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across the entire interval [a, b] as possible. Thus, small functional values of u
are usually displaced by roughly the same distance as large functional values. In
certain problems this could be undesirable. For example, a small concentration
u of a substance at a certain point in time t, after imposing the constraints and
performing the optimization, may turn into a negative concentration u∗ at that
time t. To avoid negative results, usually, the non-negativity constraint u∗ ≥ 0
is imposed. To solve the corresponding constrained optimization problem by the
method of Lagrange multipliers [10], the Karush–Kuhn–Tucker (KKT) approach
[10–12], which allows inequality constraints, can be used. To incorporate the
inequality constraint the barrier method or the penalty method [13,14] can also
be employed. In the barrier method the objective function (i.e. the function that
has to be minimized) is modified so that it grows rapidly as u∗ approaches the
forbidden region and becomes infinity at the boundary. In the penalty method a
penalty function is added to the objective function in order to “penalize” when
u∗ is outside the allowed region. After the solution is found, the barrier/penalty
is made steeper/higher and the problem is solved again. Thus, iteratively, a
solution satisfying the non-negativity requirement is reached. Other approaches,
including some recent ones, to constrained optimization problems with equality
and inequality constraints are [15–17].

To avoid negative results we propose a different approach to the considered
function approximation problem. Instead of using the L2-norm of u∗ − u as a
metric we propose the L2-norm of ln(u∗/u) [18,19]. In the sequel, we will refer
to ln(u∗/u) as the log ratio (of u∗ to u or between u∗ and u). This approach,
as shown in the following sections, ensures non-negativity of the result u∗ for
any non-negative original function u. In addition, when the deviation u∗ − u is
small, the approach also ensures that the magnitude of the relative difference
(u∗ −u)/u is as uniformly distributed across the entire interval [a, b] as possible.
The proposed approach is appropriate when the function u represents intrinsi-
cally non-negative physical quantity such as mass, density, concentration, kinetic
energy, etc. It is not appropriate when u represents a quantity that can take neg-
ative as well as positive values, e.g. position along an axis, velocity component,
force component, potential energy, etc.

This paper is structured as follows: In Sect. 2 the absolute and the relative
difference, and their connection to the log ratio, are investigated. In Sect. 3,
using the proposed log ratio based metric, the function approximation problem
is formulated. Then, in Sect. 4, the problem is discretized and the resulting con-
strained optimization problem is solved, in general form, using the method of
Lagrange multipliers. Similar solutions for minimizing the H1 semi-norm of the
absolute difference or the log ratio and applications can be found in [20–24]. In
Sect. 5, an iterative procedure for self-consistent solution of the obtained non-
linear system together with the constraints, when the constraints are linear, is
proposed. Finally, in Sect. 6, examples are presented and discussed.
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2 Absolute Difference, Relative Difference, and Log Ratio

The absolute difference δ between the functions u∗ and u at point t is

δ(t) = u∗(t) − u(t), t ∈ [a, b]. (1)

If δ(t) = const throughout the interval [a, b], then the functions u∗ and u are
equally separated at each point t. An example is shown in Fig. 1, where δ(t) =
−0.1 in the whole interval [0, 2].

Fig. 1. The functions u∗ and u are
equally separated from each other at
each point t in an absolute sense

Fig. 2. The functions u∗ and u are
equally separated from each other at
each point t in a relative sense

If δ(t) = 0 for all t ∈ [a, b], then u∗(t) ≡ u(t), i.e. the two functions are
identical. Therefore, a natural way to require closeness between the functions
u∗ and u is to require δ(t) to be as close to zero at each point t as possible
and at the same time |δ(t)| to be as uniformly distributed across the interval as
possible. Thus, the distance between u∗ and u is defined as the L2-norm of the
difference between the functions, i.e. ||u∗ − u||. The function u∗ that minimizes
this norm, subject to the imposed constraints, is the closest function to u in
an absolute sense. The square of the difference u∗ − u ensures that |δ(t)| is as
uniformly distributed throughout [a, b] as possible.

Sometimes, as discussed in the introduction, it is preferable to work with the
relative distance between the two functions and avoid negative results. Consider
the ratio μ(t) = u∗(t)/u(t), t ∈ [a, b]. If μ(t) = const throughout the interval
[a, b], then the functions u∗ and u are equally separated at each point t in a
relative sense. An example is shown in Fig. 2, where μ(t) = 0.9 in the interval
t ∈ [0, 2].

If μ(t) = 1 for all t ∈ [a, b], then u∗(t) ≡ u(t). Introducing the notation
δL(t) = lnμ(t), and taking the logarithm of μ(t) we obtain the log ratio between
the two functions at point t:

δL(t) = ln
u∗(t)
u(t)

= lnu∗(t) − ln u(t), t ∈ [a, b]. (2)
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Expanding lnu∗ in (2) in Taylor series around u gives δL = δ/u + O(δ2),
where δ is the absolute difference (1). Since δ(t)/u(t) is the relative difference
at t, it follows that for small values of δ the function δL(t) is a measure of
the relative difference between the two functions at point t. Why the relative
difference can be estimated by ln(u∗/u) is also explained in [19]. If δL(t) = 0 for
all t ∈ [a, b], then u∗(t) ≡ u(t), i.e. the two functions are identical. Hence, one
possible way to require relative closeness between u∗ and u is to require that
δL(t) be as close to zero as possible at each point t and |δL(t)| be as uniformly
distributed across the interval as possible.

3 Formulating the Function Approximation Problem
Using the L2-Norm of the Log Ratio as a Metric

Let u be a positive real-valued function of a real independent variable t ∈ [a, b].
We seek the function u∗ that minimizes the L2-norm of lnu∗ − ln u:

|| ln u∗ − ln u|| =

√
√
√
√
√

b∫

a

(ln u∗ − ln u)2 dt, (3)

and at the same time satisfies some given constrains. In this work we consider
only linear constraints for the function u∗, for example: linear combinations of
functional values at certain points, e.g. linear boundary conditions, and linear
integral constraints like

∫ b

a
f(t)u∗(t) dt = 1. Note, that the function u∗ minimizes

the distance (3) if and only if it minimizes

const|| ln u∗ − ln u||2, const > 0. (4)

Since | ln u∗| goes to infinity as u∗ goes to zero, the requirement for a minimal
distance (3) will keep u∗ “away” from zero.

4 Solving the Discretized Problem Using the Method
of Lagrange Multipliers

The formulated function approximation problem is in fact an infinite dimensional
constrained optimization problem. To solve the problem we first discretize it as
in [20–22] to obtain a corresponding finite dimensional optimization problem.
Partitioning the interval [a, b] by N mesh-points ti into N − 1 intervals of equal
size defines a uniform mesh on the interval:

{ti = a + (i − 1)h, h = (b − a)/(N − 1), i = 1, 2, . . . , N} . (5)

Any function defined on the mesh (5) will be called a mesh function. Let the
function u be given as a mesh function {ui = u(ti), i = 1, 2, . . . , N}. We want
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the function u∗, also a mesh function, to satisfy the following M < N linear
constraints:

A.u∗ = c, (6)

where u∗ = [u∗
1, u

∗
2, . . . , u

∗
N ]T is the N×1 column-vector of the unknown values of

u∗, A is an M ×N matrix with components Aji, j = 1, 2, . . . ,M , i = 1, 2, . . . , N ,
and c is an M × 1 column-vector c = [c1, c2, . . . , cM ]T . Note, that any linear
integral constraint could be incorporated in (6) after replacing the integral by a
sum. We want the function u∗ to be as close to u as possible in the sense of the
defined metric (3). In order to define distance between the mesh functions u and
u∗ expression (4) is discretized. Replacing the integral by a sum and omitting the
constant factor, which does not affect the minimization, the following objective
function is obtained:

I =
N∑

i=1

(ln u∗
i − ln ui)2. (7)

If u∗
i , i = 1, 2, . . . , N minimize I and at the same time satisfy (6), then the

function u∗ will be a solution to the discretized function approximation problem.
Finding the minimum of I (7), subject to constraints (6), is a constrained

optimization problem [10]. To solve the problem the method of Lagrange mul-
tipliers [10] is employed. First, the matrix equation (6) is rearranged by trans-
ferring the left-hand side term to the right-hand side. Then, the j-th equation
from the system of equations (6) is multiplied by the Lagrange multiplier λj ,
summed over j, and the result is added to the objective function I to obtain:

J = I +
M∑

j=1

λj

(

cj −
N∑

i=1

Ajiu
∗
i

)

. (8)

Then, the derivatives of J with respect to the unknowns u∗
1, u

∗
2, . . . , u

∗
N are

equated to zero. From the equations ∂J/∂u∗
k = 0, k = 1, 2, . . . , N the follow-

ing system is obtained:

2(ln u∗
k − ln uk)

1
u∗
k

−
M∑

j=1

λjAjk = 0, k = 1, 2, . . . , N. (9)

To write (9) in a matrix form, the following definition is introduced:

Definition 1. Let x and y be two N × 1 column-vectors: x = [x1, x2, . . . , xN ]T ,
y = [y1, y2, . . . , yN ]T . The no-sign product between the two column-vectors is
defined as xy = [x1y1, x2y2, . . . , xNyN ]T . The exponent of a column-vector is
defined as exp(x) = [ex1 , ex2 , . . . , exN ]T .

Note that if H is an N × N matrix, then H.(xy) = (H.x)y. Now the system
(9) can be written as

u∗ = u exp
(

1
2
u∗(AT

.λ)
)

, (10)
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where u∗ and u = [u1, u2, . . . , uN ]T are N × 1 column-vectors, λ =
[λ1, λ2, . . . , λM ]T is an M × 1 column-vector, while AT is the transposed matrix
A. To obtain u∗ Eq. (10) and the equation for the constraints (6) should be
solved together. The two equations constitute a system of N + M equations for
the N + M unknowns u∗

i , i = 1, 2, . . . , N and λj , j = 1, 2, . . . ,M .
That u∗ satisfies (6) means that u∗ satisfies the given constraints. That u∗

satisfies (10) means that u∗ minimizes (7), hence u∗ is the closest function to u in
the relative sense described above. Note, that Eq. (10) guarantees non-negativity
of the function u∗ for any non-negative original function u.

5 Self-consistent Iterative Procedure

The column-vector u∗ from (10) is substituted into the equation for the con-
straints (6) to get:

A.u exp
(

1
2
u∗(AT .λ)

)

= c. (11)

To obtain the unknown u∗ and λ the two equations (10) and (11) should be
solved simultaneously. We propose the following method for self-consistent solu-
tion of (10) and (11). First, choose a starting guess for λ and solve (10) iteratively
using the fixed-point (simple iteration) method to obtain the first approximation
for u∗. It is convenient to use fixed-point iteration since u∗ in (10) is expressed
as a function of u∗. Substitute the obtained u∗ into Eq. (11) and solve the equa-
tion iteratively, using the Newton’s method, to obtain the first approximation
for λ. Substitute this λ into (10) and solve (10) again to obtain the second u∗

approximation. The process is repeated until convergence. If λ = [0, 0, . . . , 0]T

is chosen as a starting guess, then the first approximation for u∗ will be just u.
In order to solve Eq. (11) for λ by the Newton’s method we transfer the left-

hand side term to the right and introduce the M × 1 column-vector e(λ) with
components:

ej = cj −
N∑

i=1

Ajiui exp
(

1
2
u∗
i (A

T .λ)i

)

, j = 1, 2, . . . ,M. (12)

Solving Eq. (11) is equivalent to solving e(λ) = 0. First, an expression for the
M × N Jacobian matrix ∂e(λ)/∂λ is obtained:

∂ej
∂λm

= −1
2

N∑

i=1

Ajiui exp
(

1
2
u∗
i (A

T .λ)i

)

u∗
i Ami, j,m = 1, 2, . . . ,M. (13)

Then, for any given approximation u∗, the equation e(λ) = 0 is solved iteratively,
obtaining each new value for λ from the previous value using the Newton’s
formula:

λnew = λ − [∂e(λ)/∂λ]−1
.e(λ). (14)

In (14) [∂e(λ)/∂λ]−1 is the inverse of the Jacobian matrix.
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6 Numerical Examples and Discussion

In this section two particular problems are solved by using both metrics: the L2-
norm of the absolute difference and the L2-norm of the log ratio. The presented
examples demonstrate the usefulness of the proposed metric.

Example 1. Consider the mesh function
{

ui = 30t2i exp(−4ti) , i= 1, 2, . . . , N
}

defined on the uniform mesh (5) with a = 0, b = 3, and N = 41. This function
could, for example, represent the change of the concentration of an enzyme over
time.

Find the non-negative mesh function u∗ that is closest to the function u in the
relative sense described above and satisfies the following two linear constraints:

N∑

i=1

u∗
i = 10.62,

N∑

i=1

exp(ti)u∗
i = 25.63. (15)

Compare the results with the mesh function ua that is closest to u in an absolute
sense and satisfies the same constraints.

Fig. 3. Solution to Example 1 Fig. 4. Solution to Example 2

We solve (10) together with constraints (15) by the method described in
Sect. 5. Starting from λ = [0, 0]T and the corresponding column-vector u, the
solution λ = [−0.3851,−0.0899]T and the corresponding vector u∗ are reached
in 6 steps within precision |δλ| < 10−6 Fig. 3 shows the original function u, the
relatively closest to it function u∗, and the absolutely closest to it function ua.
The function ua was found by minimizing the L2-norm of the absolute difference.
The figure shows that ua starts from a negative value and is also negative in the
interval 2.025 ≤ t ≤ 2.4. The function increases toward the end of the interval,
in contrast to the behavior of the original function u. The results show that the
values of ua from about t = 1.8 on are inconsistent with what is expected from
the non-negative, exponentially decreasing (in this part of the domain) function
u. On the contrary, the function u∗ is non-negative everywhere and the overall
behavior of u∗ agrees very well with that of the original function u.



122 I. D. Gospodinov et al.

Example 2. Consider the mesh function
{

ui = cos2(ti) exp(−ti/2), i=
1, 2, . . . , N

}

defined on the uniform mesh [5] with a = 0, b = 2π, and N = 41.
This could, for example, be the kinetic energy of an oscillating body in a viscous
media as a function of time.

Find the non-negative mesh function u∗ that is closest to the original function
u in the relative sense described above, and satisfies the following two linear
constraints:

N∑

i=1

u∗
i = 0.8

N∑

i=1

ui,

N∑

i=1

(t2i − 1)u∗
i = 1.2

N∑

i=1

(t2i − 1)ui. (16)

Compare the results with the mesh function ua that is closest to u in an absolute
sense and satisfies the same constraints.

Equation (10) along with constraints (16) is solved by the method described
in Sect. 5. Starting from λ = [0, 0]T and the corresponding column-vector u, the
solution λ = [−1.7530, 0.2899]T and the corresponding vector u∗ are reached in
14 steps within precision |δλ| < 10−6.

The original function u, the relatively closest function u∗, and the absolutely
closest function ua, found by minimizing the L2-norm of the absolute difference,
are shown in Fig. 4. Again, u∗ meets all imposed requirements, whereas ua does
not.

7 Conclusion

This paper considered function approximation with the L2-norm of the log ratio
as a metric. General equations were derived for the discretized problem. For
the solution of the obtained equations a self-consistent iterative procedure was
proposed. Examples were presented that demonstrate the two most important
features of the proposed approach: (i) the result u∗ is non-negative everywhere
and (ii) to the extent to which the constraints allow, the magnitude of the
absolute difference between u∗ and u is proportional to the magnitude of u.
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Abstract. In this paper parallel and hybrid metaheuristics for graph
partitioning are compared taking into account their efficiency in terms
of a cost function and computation time. Seventeen methods developed
on the basis of evolutionary algorithm, simulated annealing and tabu
search are implemented and tested against graph instances computed on
the basis of queen graphs from DIMACS repository and a class of random
R–MAT graphs. These graphs are supposed to model a class of digital
circuits being subject of decomposition into a given number of modules.
In partitioning process several additional constraints have to be satisfied
in order to enable composition of original circuits from subcircuits by
means of VLSI/FPGA modules.
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1 Introduction

The graph partitioning problem for an undirected graph G = (V,E) is a division
of V into k pairwise disjoint subsets (partitions) such that all partitions are of
approximately equal size and the edge–cut, i.e., the total number of edges having
their incident nodes in different subdomains, is minimized.

The partitioning of a digital circuit arises when the technology used for its
implementation imposes constraints related to the circuit size, available chip
resources (macro cells, interconnections), I/O pins, clock distribution, energy
dissipation etc. In real design problems a straightforward approach is to decom-
pose the original circuit into a number of sub–circuits (partition blocks) satis-
fying certain design requirements [4,9,12,15]. Usually the expected number of
blocks is known and the number of interconnections between blocks have to be
minimized. In some cases the implementation of a circuit in many heterogenious
FPGA can cause problems not only with splitting the original circuit but also
with partitioning and modifying the existing test benchmarks [2,7].
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Digital circuits are usually modeled by graphs and many design problems
can be performed by methods developed in graph theory. However, the task
of circuit partitioning falls into category of graph clustering/partitioning prob-
lems which are known to be intractable, i.e. they belong to the class of NP-hard
problems. Therefore, the search for an optimal solution is not efficient and heuris-
tics/metaheuristics providing an approximate solution are to be applied [10,11].

Graph partitioning and clustering was the topic of the 10th DIMACS Imple-
mentation Challenge [8] and included both theoretical and real world problems.
The Chalange goals were: identifying a standard set of benchmark instances and
generators, establishing the most appropriate problem formulations and objec-
tive functions for a variety of applications, comparison of present methods in
hopes of identifying the most effective algorithmic innovations that have been
proposed.

In the article seventeen approximate methods developed on the basis of evo-
lutionary algorithm (EA), simulated annealing (SA) and tabu search (TS) are
investigated. Independently, in [4], a mixed SA and TS algorithm was success-
fully applied for topological partitioning in a parallel test-pattern generator.

The resulting computer application was used for testing these metaheuris-
tics against a set of constructed problem instances and compared taking into
account their efficiency in terms of cost function and computation time. Realis-
tic modeling of benchmarks was the key issue in the conducted research. For the
first time a family of modified DIMACS queen graphs [6] as well as recursively
defined random R–MAT graphs [5] with various parameters were applied for test-
ing. These graphs are supposed to adequately model a class of digital circuits
being subject of decomposition into a given number of modules. Approximate
solving of graph partitioning problem with a realistic cost function being mini-
mized enables efficient decomposition of an original digital circuit by means of
VLSI/FPGA modules.

2 Graph Partitioning

Graph Partitioning Problem (GPP) relies on clustering of graph G(V,E) vertices
into partition blocks (clusters). Let us intruduce the notation used throughout
the paper.

A partition C = {C1, C2, . . . , Ck} of V is called clustering of G and Ci,
1 ≤ i ≤ k, are called clusters. C is called trivial if either k = 1, or all clusters Ci

contain only one element. We will indentify cluster Ci with the induced subgraph
Gi of G, i.e. Gi = (Ci, E(Ci)), where E(Ci) = {{u, v} ∈ E : u, v ∈ Ci}. Hence,
E(C) =

∑k
i=1 E(Ci) is the set of intra–cluster edges, and E\E(C)—the set of

inter–cluster edges. The graph density is denoted by d(G) = 2|E|/|V |(|V | − 1).
The purpose of the optimization problem is to find a clustering of G into

k clusters providing that the edge–cut ext = |E\E(C)| is minimal. Sometime
there are additional constraints on the maximum number of inter–cluster edges
Ei coming from a single cluster Ci. In some cases clustering is expected to be
equitable in the sense of either the number of |Vi| or |Ei|.

Constructing a k–clustering with a fixed number of k, k ≥ 3, is NP–hard [3].
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2.1 Definition of the Cost Function

According to the design requirements solution quality is defined by the following
cost function (subject of minimization):

f = a · ext + b · bn + c · |bnp|3 + d · bsp2 + e · pp2, (1)

where:

a, b, c, d – are integer coefficients;
ext – is the sum if inter–cluster edges (the edge–cut);
bn – is the assumed number of clusters called block number;
bnp – is the difference between bn and the actual number of blocks called block
number penalty;
bsp – is the difference between the assumed block size bs and the actual block
size called block size penalty;
pp – is the difference between the assumed number of block’ I/O pins pn and
the actual number of block’ I/O pins called pin penalty.

Exponents of bp and pp were determined experimentally and reflect the rel-
ative importance of the corresponding terms of cost function f . In any solution
satisfying the design assumptions bp, bsp and pp should be zeroed.

Terms of the cost function f provide the designer additional informations
about solution quality. When design constraints are not fully satisfied this infor-
mation helps the designer to choose a right way to complete the design process.

2.2 Test Instances

Graph coloring instances [6] were originally designed and collected in DIMACS
repository for the purpose of testing and comparing graph coloring algorithms.
In graph coloring problem (GCP) partition blocks are assumed to be indepen-
dent sets (ISs). For most DIMACS graphs their chromatic numbers are already
known. In the complementary problem, i.e. partitioning into cliques (PIC),
partition blocks are cliques. In both problems the number of partition blocks
k is minimized. For the given graph G(V,E) and its complementary graph
G′(V,E) = G(V,E′) solutions for GCP and PIC, respectively, are equivalent
with minimum χ(G) = k.

PIC problem resambles GPP (circuit partitioning) in which intra–connection
density in any partition block is maximal. The PIC problem instance G′ is
obtained from the instance G of GCP. Under assuption k ∈ {χ(G)−1, χ(G)−2},
the partition into k cliques is not existing, making the corresponding GPP even
harder to solve.

The queen graph Gq of size n × n has the squares of two-dimentional chess-
board for its vertices and two such vertices are adjacent if, and only if, queens
placed on the two squares attack each other. For interesting introduction to
queen graph coloring one may refere to Chvátal’s article [3]. This class of graphs
was chosen for generation of our test instances.



128 Z. Kokosiński and M. Pijanowski

Basic DIMACS graphs selected for construction of test instances were queen
graphs [6]:

1. queen6.6, |V | = 36, |E| = 290, χ(G) = 7, d(G) = 0, 460;
2. queen7.7, |V | = 49, |E| = 475, χ(G) = 7, d(G) = 0, 404;
3. queen8.8, |V | = 64, |E| = 728, χ(G) = 9, d(G) = 0, 361;
4. queen9.9, |V | = 81, |E| = 1056, χ(G) = 9, d(G) = 0, 326;
5. queen10.10, |V | =100, |E| = 1470, χ(G) = 11, d(G) = 0, 297.

The actual test instances are the corresponding complementary graphs G′,
that have the following characteristics:

Q1: queen6.6′, |V | = 36, |E′| = 340, d(G) = 0, 640, k = 5, bs = 8, pn = 110;
Q2: queen7.7′, |V | = 49, |E′| = 701, d(G) = 0, 596, k = 6, bs = 9; pn = 200;
Q3: queen8.8′, |V | = 64, |E′| = 1288, d(G) = 0, 639, k = 7, bs = 10; pn = 350;
Q4: queen9.9′, |V | = 81, |E′| = 2184, d(G) = 0, 674, k = 8, bs = 11; pn = 520;
Q5: queen10.10′, |V | = 100, |E′| = 3480, d(G) = 0, 703, k = 9, bs = 12;
pn = 800.

In addition a number of random R–MAT graphs was used in the experimental
part of the paper [5]. R–MAT graphs with |V | = 2b are generated recursively
with the required density in (b − 1 steps. Initially, adjacency matrix is zeroed.
Then the generation algorithm determines the position of a consecutive “1”
by random choosing the input matrix (submatrix) quater (NW,NE,SW,SE)
with given quater probabilities a, b, c and d, all greater then 0, which sum
a+ b+ c+d = 1. Depending of the distribution of probalibilities a graph G with
the corresponging distribution of vertices with a given degree is generated [5].

The set of R–MAT graphs G has the following characteristics:

R1: rmat50 35, |V | = 50, |E| = 429, d(G) = 0, 350, k = 5, bs = 10, pn = 150;
R2: rmat50 40, |V | = 50, |E| = 490, d(G) = 0, 400, k = 5, bs = 10, pn = 250;
R3: rmat50 65, |V | = 50, |E| = 796, d(G) = 0, 650, k = 5, bs = 10, pn = 270;
R4: rmat50 70, |V | = 50, |E| = 858, d(G) = 0, 700, k = 5, bs = 10, pn = 300;
R5: rmat75 84, |V | = 75, |E| = 2331, d(G) = 0, 840, k = 5, bs = 15, pn = 800;
R6: rmat100 90, |V | = 100, |E| = 4455, d(G) = 0, 900, k = 5, bs = 20,
pn = 1500.

2.3 Metaheuristics

The basis heuristics, their combinations and parallel/hybrid versions established
a testbed for experimental part of our research [1,13]. The tested algorithms are:

sSA—sequential Simulated Annealing (SA),
mirSA—parallel SA with Multiple Independent Runs (MIR),
aSA—asynchronous SA,
sTS—sequential Tabu Search (TS),
mirTS—parallel TS with MIR,
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aTS—asynchronous TS,
sEA—sequential Evolutionary Algorithm (EA),
mirEA—parallel EA with MIR,
iEA—island EA without migration,
ibmEA—island EA with migration of best individuals,
irmEA—island EA with migration of random individuals,
sSA-TS—sequential SA-TS,
mirSA-TS—parallel SA-TS with MIR,
aSA-TS—asynchronous SA-TS,
aEA-SA—asynchronous EA-SA,
aEA-TS—asynchronous EA-TS,
aEA-SA-TS—asynchronous EA-SA-TS.

Pseudocodes of the above algorithms are available from WWW site [16].
Initial values of basic parameters used in the above algorithms are the fol-

lowing: Number of iterations in a single step = 15, Stop criterion = 15, Initial
temperature (SA) = 10, Size of the tabu list (TS) = 7, Number of candidates
(TS) = 8, Population size (EA) = 30, Offspring number (EA) = 5, Crossover
probability (EA) = 0,8, Mutation probability (EA) = 0,1. The assumed cost
function f coefficients are: a = 1, b = 1, c = 5, d = 5, e = 5.

Parameters of parallel algorithms are: Number of processors (mir) = 6, Com-
munication rate = 10, Number of islands (iEA, ibmEA, irmEA) = 6, Migration
size (ibmEA, irmEA) = 18, Migration rate (ibmEA, irmEA) = 10.

3 Computational Experiments

The main purpose of the experimental part is graph G(V,E) partitioning satys-
fying design assumptions related to the number of blocks (clusters) and simul-
taneously minimizing the number of interconnections between partition blocks.

The primary objective is to minimize the cost function f . The secondary
objective is to minimize the computation time. In parallel algorithms computa-
tion times of parallel processors are added up (parallel execution of the algorithm
is simulated).

In the first experiment we are searching for minimal values of f and min–cut
ext. The esssential results for the four queen graphs are reported in Table 1.
The best results of f and ext, the methods winning for at least one graph and
the corresponding computation times are shown in the bold font. The iteration
details and terms of f are not reported due to lack of space.

For Q1 graph many methods produce equivalent results, but the best compu-
tation time is obtained by sSA-TS. Relatively low running times are required for
mirSA-TS and mirTS. For Q3 graph iEA provides the best f while mirEA finds
a solution the best ext. However, mirEA uses only 42,5 % of iEA computation
time. Many other parallel and hybrid algorithms can find quite satisfying solu-
tions in a shorter time. For Q4 graph mirSA-TS outperforms EA-based methods
in terms of computation time, providing optimal f and suboptimal ext. Simi-
larly, the best solution quality for Q5 graph provide iEA and ibmEA but their
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Table 1. Computational test results for graph instances Q1, Q3, Q4 and Q5.

Graph Q1 Q3 Q4 Q5

Algorithm f ext time [s] f ext time [s] f ext time [s] f ext time [s]

sSA 286 254 8,12 1168 1093 4,81 1993 1898 9,57 3200 3079 5,07

mirSA 290 255 2,09 1160 1089 12,07 1932 1867 67,04 3140 4412 92,56

aSA 288 255 4,07 1172 1094 8,15 2000 1902 9,96 3211 3083 15,40

sTS 262 242 10,43 1096 1058 14,75 1902 1852 43,00 3074 3015 43,71

mirTS 261 242 24,32 1094 1056 73,25 1888 1845 204,4 3058 3009 327,3

aTS 263 243 13,10 1091 1054 58,67 1906 1851 193,5 3082 2987 161,4

sEA 261 242 244,4 1095 1050 595,5 1887 1836 629,5 3085 3011 1414

mirEA 261 242 93,23 1080 1048 263,9 1887 1836 626,8 3063 3000 1364

iEA 261 242 95,79 1079 1049 620,8 1881 1840 1229 3056 2974 2811

ibmEA 261 242 102,9 1092 1054 525,3 1889 1837 861,3 3056 2982 2043

irmEA 264 243 98,44 1082 1049 597,1 1895 1840 731,9 3060 2976 1355

sSA-TS 261 242 2,57 1093 1056 15,59 1886 1844 15,81 3082 2995 40,57

mirSA-TS 261 242 15,45 1088 1051 46,54 1880 1838 94,40 3070 3007 242,3

aSA-TS 261 242 20,09 1088 1051 53,43 1885 1842 142,6 3078 3016 244,4

aEA-SA 261 242 31,45 1086 1051 126,8 1903 1844 113,3 3073 3005 284,3

aEA-TS 263 243 34,70 1083 1050 233,9 1903 1844 274,3 3061 2992 592,2

aEA-SA-TS 261 242 82,78 1097 1058 136,9 1887 1843 465,1 3087 3020 122,0

Table 2. Computational test results for graph instances R3, R4, R5 and R6.

Graph R3 R4 R5 R6

Algorithm f ext time [s] f ext time [s] f ext time [s] f ext time [s]

sSA 715 640 2,15 740 685 1,12 1924 1862 1,34 3681 3681 3,40

mirSA 703 643 19,5 740 685 4,42 1932 1866 13,40 3679 3612 24,23

aSA 711 638 7,50 748 686 4,04 1938 1872 12,50 3681 3616 20,76

sTS 679 622 6,93 708 669 11,04 1842 1824 13,12 3597 3574 33,75

mirTS 677 621 85,57 704 667 67,78 1840 1823 107,1 3587 3569 149,2

aTS 683 624 48,12 708 669 35,79 1844 1825 92,31 3583 3567 184,5

sEA 681 623 54,50 714 672 73,26 1854 1830 139,8 3595 3573 263,6

mirEA 681 623 346,5 710 670 406,7 1840 1823 1338 3597 3574 2755

iEA 679 622 380,3 708 669 276,8 1846 1826 1307 3745 2585 2274

ibmEA 683 624 320,8 712 671 202,5 1842 1824 1005 3579 3579 3132

irmEA 677 621 463,4 710 670 206,7 1854 1830 889,3 3589 3570 2028

sSA-TS 681 623 6,28 706 668 7,47 1836 1821 38,73 3591 3571 29,75

mirSA-TS 679 622 41,20 704 667 38,76 1840 1823 83,48 3573 3562 257,6

aSA-TS 677 621 51,79 706 668 47,48 1838 1822 97,09 3579 3565 259,1

aEA-SA 681 623 103,3 714 672 60,81 1840 1823 282,3 3601 3576 458,9

aEA-TS 681 623 151,8 708 669 115,8 1842 1824 324,8 3591 3571 265,9

aEA-SA-TS 683 624 91,68 706 668 186,3 1846 1826 255,3 3593 3572 626,4
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computation times are hardly acceptable. Good alternatives with a significantly
shorter computation times are mirTS and aEA-TS. Other results are more dis-
tant from the best solution found.

In the second experiment, devoted to R–MAT graphs, we are also searching
for minimal values of f and min–cut ext. The esssential results for four input
graphs R3, R4, R5 and R6 are reported in Table 2. The best results of f and ext,
the methods winning for at least one graph and the corresponding computation
times are shown in the bold font.

For relatively easy R3 graph instance three methods find best values of f
and ext: aSA-TS, mirTS and irmEA. They are listed in the increasing order
of computation times. For R4 graph two methods: mirTS and mirSA-TS pro-
duce equivalent results in a reasonable time, but mirSA-TS is almost two times
faster. The worst solution is found by aSA. For R5 graph the single winner is
sSA-TS with acceptable computation time, a good alternative is sTS which is
three times faster then sSA-TS still ensuring competitive resuls. Other efficient
methods: aSA-TS, mirSA-TS, aEA-SA and aEA-TS require a longer time. The
best solution quality for R6 graph ensures mirSA-TS within acceptable comput-
ing time. Other methods are worse in terms of f and ext.

Computer application Electronic Circuit Decomposition used for the pre-
sented research was written in C++/CLI within Visual C++ 2008, Express
Edition environment. GUI was made in Windows Forms Application. For pro-
gram execution .NET Framework 3.5 package is needed, supplied by ZedGraph
library.

4 Conclusions

From the reported research one can conclude that for graph partitioning problem
with modified queen and R–MAT graph instances the most valuable components
for hybrid algorithms are TS and EA, which can be combined within one algo-
rithm. This confirms earlier results on different set of benchmarks reported in
[7]. EA usually involves longer computation time. The essential part of parallel
algorithms is Multiple Independent Runs (MIR) model except mirSA algorithm.

In general, the differences in computation time by various methods can be
extremal, while the quality of all graph partitioning methods was good, usually
not exceeding several percent of the values f and ext of the best solution. The
research may be continued with focus on the outstanding mixed methods as well
as larger and harder graph partitioning instances.

It would be also desirable to apply the best methods to circuit benchmarks
resulting from engineering practice and verify their efficiency on real design
problems [14].
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Abstract. In this paper we present a method for optimizing of metal
nanoparticle structures. The core of the method is a lattice Monte-Carlo method
with different lattices combined with an approach from molecular dynamics.
Interaction between atoms is calculated using multi-particle tight-binding
potential of Gupta – Cleri&Rosato. The method allows solving of problems with
periodic boundary conditions. It can be used for modeling of one-dimensional
(nanowire, tube) and two-dimensional (nano-film) structures. If periodic
boundary conditions are not given, we assume finite dimensions of the model
lattice. In addition, automatic relaxation of the crystal lattice can be performed in
order to minimize further the potential energy of the system. Both stretching and
compressing of the lattice is permitted. A computer implementation of the
method is developed. It allows easy and efficient operation. It uses the com-
monly accepted XYZ format for describing metal nanoparticles. The parameters
of the method, such as number and type of metal atoms, temperature of the
system, etc. are entered on a separate command line. The method is tested
extensively on a large set of examples.

1 Introduction

Metal, including gold, nanowires (filamentary nanocrystals, nanofibers) is a rapidly
expanding field of research. Gold nanowires can be used in transparent electrodes for
flexible displays [1, 2]. A particularly important point related to electrodes is the
stability of nanowires at a thermal load. The minimization of surface energy caused by
thermally activated diffusion leads to the rupture of nanowires. This was observed for
copper [3], for silver [4], for gold [5], and also for platinum [6].

The behavior of nanostructures at elevated temperatures can be very different from
the macroscopic material. It is well known that small nanoparticles/nanowires will melt
at a much lower temperature, which depends on their size [7].

A combination of simulation tools for thermodynamic properties and stability of
nanosystems is proposed in [8]; mainly parallel Monte Carlo algorithms for icosahe-
dral, multilayer Pd–Pt clusters. The model is on a 3D cubic lattice. In [9], the chemical
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ordering in “magic-number” Pd-Ir nanoalloys is studied. The density functional theory
is compared with the results of the free energy concentration expansion method. In
[10], the problem for stable structures of alloy nanoparticles is investigated. A two-step
search strategy is proposed. The first strategy is based on extensive global optimization
search and is combined with an empirical potential with density-functional local
relaxation. The structure and thermodynamics of Cu-Ni nanoalloys is studied in [11].
An atomic model is described in the framework of a potential based on the second-
moment approximation of the tight binding potential. In [12], a novel structure for free
Co-Pt nanoalloys is developed. Three computational methodologies have been com-
bined. The energetic stability of the novel structure has been checked.

The structure and energetics of Pd–Pt nanoalloys are studied in [13]. The model is
based on the second-moment approximation to tight binding theory. To solve the
problem the authors apply a genetic algorithm. Schebarchov and Wales [14] study the
problem of structure predicting of multi-component systems. The system is represented
as a generalized graph. They apply a Kernighan and Lin heuristic procedure to find
locally optimal partitions of an arbitrary graph. The same problem is studied in [15].
A local optimization technique combined with multiple local-neighborhood search is
applied. In [16] is proposed a parallel modification of the Birmingham cluster genetic
algorithm for global optimization of nanoalloy clusters using a pool strategy. The
method is illustrated for global optimization of the Au10Pd10 cluster using the Gupta
potential. The structure of different AuCu clusters is studied in [17] by means of a
Parallel Excitable Walkers algorithm and molecular dynamics.

Computer simulation by the molecular dynamics method has been widely used to
study the structural defects and the melting temperature of nanowires and gold
nanostructures [18, 19] as well as their elasticity and plasticity [20, 21]. The same
problems have been studied by means of molecular statics method [22]. In these
studies, the significant role of surface tension was determined. The kinetic Monte Carlo
was used in [23] for modeling structural transitions and atomic diffusion in gold
nanoparticles. In [24] is presented a reliable way to construct a rigid lattice barrier
parameterization of face-centered and body-centered cubic metal lattices for the Kinetic
Monte Carlo model. Three different barrier sets for Cu and one for Fe are produced that
can be used for Kinetic Monte Carlo simulations.

2 The Monte Carlo Approach

The searching for stable configurations of metal and alloy nanostructures is not a trivial
problem from computational point of view. It is equivalent to minimization of the
Potential Energy Surface. This function has an extremely large number of local
minima. Thus the question for developing efficient and effective methods arises.

The proposed method has four distinctive features. First, a lattice Monte Carlo
method with different lattices is used. Second, automatic stretching/compressing of the
lattice is done in order to find better optimal solution. Third, Periodic Boundary
Conditions (PBCs) are implemented so that the method can be used for modeling of
one-dimensional (nanowire, tube) and two-dimensional (nano-film) structures. If
periodic boundary conditions are not given, we assume finite dimensions of the model
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lattice. Fourth, the resulting nanoparticle structures are relaxed at low temperature
within molecular dynamics, choosing one of them as an approximation of the global
minimum.

Interaction between atoms is calculated using the multi-particle tight-binding
potential of Gupta – Cleri & Rosato [25, 26]. The total potential energy of the system is
defined as follows:

E ¼
X

i

X
j6¼i

Eij a; bð Þ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX

j6¼i
Bij a; bð Þ

q� �
ð1Þ

Eij a; bð Þ ¼ Aab exp �pab
rij
r0;ab

� 1
� �� �

ð2Þ

Bij a; bð Þ ¼ n2ab exp �2qab
rij
r0;ab

� 1
� �� �

; ð3Þ

where i ranges over all atoms; j ranges over all atoms other than i but within distance
Rcut from i; a and b represent the species of the atoms i and j; Eij a; bð Þ is the repulsive
component of the potential due to the atoms i and j; Bij a; bð Þ is the binding component
of the potential due to the atoms i and j; rij is the distance between the atoms; r0;ab, Aab,
pab, nab, qab are parameters that depend only on the species of the atoms. Rcut is the
maximum distance beyond which the interaction is assumed to be zero.

There is no temperature effect increasing the potential energy because comparison
of the resulting energy occurs after cooling by the Molecular Dynamics method down
to 0,01 K.

According to our method, Periodic Boundary Conditions are defined as follows:

rij ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Dxij
�� ��2 þ jDyijj2 þ jDzijj2

q
; jDxijj ¼ min xi � xj

�� ��; Lx � xi � xj
�� ���� ��� 	

; ð4Þ

where xi, xj are the x-coordinates of the atoms i and j inside the periodic cell, and Lx is
the size of the periodic cell along the x axis. If the y or z axis is also periodic, then
jDyijj, jDzijj are also computed in a similar way. The non-periodic case corresponds to
Lx ¼ 1.

The complete algorithm is as follows (Fig. 1):
Step 1. Read the input data: initial positions of the atoms, the dimensions of the

window for Periodic Boundary Conditions, other control parameters, etc.
Atoms that do not have their initial positions given are placed at random.

Step 2. For all nodes, pre-compute the lists of neighbors, vicinities and other
information that is known ahead of time.

Step 3. Check the exit criteria. The cycle stops when either the requested number of
iterations is exceeded, or the system has reached equilibrium. If Yes, go to
Step 11.
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Step 4. Adjust the temperature according to the following formula:

T ¼ max 1; T0 þ sDTf g; ð5Þ

where T0 and DT are constants, and s is the iteration number. This check is
performed once every several thousand iterations.

Step 5. Choose an atom at random.
Step 6. Choose a neighboring empty node at random. If there are no empty

neighbors, return to Step 3.
Step 7. Calculate the potential energy difference for the atom moving into the

selected empty node, taking into account Periodic Boundary Conditions.
Step 8. If the energy would not increase, perform the jump and return to Step 3.
Step 9. Otherwise, calculate the jump probability P ¼ exp �DE=kTð Þ and generate

a random number p ð0� p\1Þ.
Step 10. If the number is smaller than the probability, perform the jump, otherwise

do nothing. Either way, return to Step 3.
Step 11. Perform iteratively stretching and compressing of the lattice along each axis

with step 0.01 (or using another value from an input parameter) to minimize
the potential energy further.

3 Computer Implementation

We solve several important issues during its development resulting from the charac-
teristics of the proposed method and from the nature of the problem solved.

We minimize the required computation during the main loop, since it has to be
executed for millions of iterations. To this end, we have made extensive use of pre-
computation and memorization, inspired by the approach discussed in [27].

A. For each node i, compute the list of nodes j within distance Rcut from it. As a sub-
list, remember the list of immediate neighbors of i.

B. For each node i, each node j within distance Rcut from i, and each combination of a
and b, use (2) and (3) to compute the values of Eij a; bð Þ and Bij a; bð Þ. From this
point on, we can forget about Cartesian coordinates and work exclusively with
indexes and these pre-computed values using only (1).

C. For each atom i, compute
P

j 6¼i rij �Rcutð Þ Bij a; bð Þ. This value is remembered and

kept updated throughout the algorithm.

These pre-computations allow each step of the main loop to run in constant time.
For the energy difference calculation (Step 7), doing it in the naïve way according to (1)
would require iterating over not only the Rcut-vicinities of the chosen atom and of the
chosen empty node, but also over the Rcut-vicinities of their Rcut-vicinities (since the
values under the square roots need to be modified). Pre-computation C allows us to
calculate the correct energy by iterating over only the first vicinities.
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The data structures are organized as follows. The nodes are kept in two arrays N
and A, where N gives the index of a node into A and A gives the index of a node into
N. N is sorted in input order, while A is sorted to begin with the atoms and end with the
empty nodes. This allows us to query information about nodes and atoms, select atoms
at random, add, remove and move atoms around, all in constant time.

Input is given as a list of nodes, specified by their Cartesian coordinates. Each node
can either be empty or contain an atom. The distance between adjacent nodes in the
input data may slightly vary (within 15%). The data format is given in the commonly
accepted XYZ format for describing metal nanoparticles.

Other aspects of the problem, such as the number and type of metal atoms, the
periodic or non-periodic boundary conditions, the temperature of the system, etc., are
specified as additional parameters. These can be given either on the command line, or
on the second line (“comment” line) of the input XYZ file. The output file format is
identical to the input file format, with the values for the energy of the system and all
other parameters shown on the “comment” line. This allows multiple successive runs of
the program on the same data. Output of intermediate results can also be requested.

Compute neighbors and vicinities with PBCs for all nodes.

Adjust the temperature.

Choose an atom at random.

Choose a neighboring empty node at random.

Load the initial positions of atoms or place them at random.

Calculate Δ for the atom moving into the node.

Are we at equilibrium?
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Fig. 1. Flowchart of the Monte Carlo method
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The program is written in the C programming language and is tested on Windows
and Linux platforms. Care has been taken to organize its core functions in a simple way
in order to permit compiler optimizations.

Since the proposed method is non-deterministic, during testing and using the
algorithm, several runs are performed and its behavior is stable.

4 Numerical Experiments

The method is demonstrated in the following example: fcc lattice with 6400 nodes of
total size 22.55 � 2.10 � 2.31 nm. The X axis (the longest one, corresponding to the
direction of [110]) has periodic boundary conditions. We model 1D structures of 1100,
3000 and 5000 atoms, cooling down from 2200 K to 1 K. Two variants of chemical
composition are presented: pure gold and gold-silver in a ratio of 1:1. For comparison,
8 different Monte Carlo simulation modes were used: 1 million, 2 million, 4 million, 8
million, 16 million, 32 million, 64 million and 128 million iterations (Figs. 2, 3 and 4).

For size 1100 (the thinnest nanowire), a separation into individual nanoparticles of
round shape is observed. This is a consequence of the Rayleigh-Plateau instability.
Minimizing surface energy leads to the breakage of nanowires of both compositions.
For other sizes, the layers/nodes along the Y and Z axes are not enough to obtain this
effect.

Fig. 2. Au3000 (top left), Au1500Ag1500 at T = 1 K (top right), Au550Ag550 at T = 1980 K
(bottom left), Au550Ag550 at T = 1 K (bottom right).
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5 Conclusion

A new method for modelling one-dimensional bimetallic nanostructures is proposed. It
has four distinctive features: a lattice Monte Carlo method with different lattices is
applied; automatic stretching/compressing of the lattice is done in order to find better
optimal solution; Periodic Boundary Conditions (PBCs) are implemented so that the
method can be used for modeling of 1D and 2D nanostructures; the resulting
nanoparticle structures are relaxed at low temperature within molecular dynamics.

Acknowledgments. This research is supported by the Russian Foundation for Basic Research
project No. 18-38-00571 mol_a and the Bulgarian NSF under the grant DFNI-DN 12/5.

Fig. 4. An Au3000 cluster cooling in 128 million iterations: dependency of the minimum
energy on the temperature (left) and dependency of the number of atom jumps on the iteration
number (right).

Fig. 3. Dependency of the final potential energy (per atom) on the number of Monte Carlo
iterations in 1D gold nanowires (left) and in gold-silver bimetal nanowires (right).
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Abstract. Scalability of systems performance becomes a challenge for modern
digital systems. Achievement of system ability to complete wide range of tasks
in terms of computational performance and effective use of resources require
substantial research. Significant efforts are directed towards design of large scale
hardware systems. However resolving scalable tasks require also scalable soft-
ware capable of completion both many small simple tasks and large complex
tasks using effectively available hardware, energy and time. This article dis-
cusses factors for successful search and optimisation in particular search
methods scalability. Discussion is illustrated with an overview of publications.

Keywords: Optimisation � Algorithms scalability

1 Introduction

According to recent, published analyses modern communications and remote infor-
mation services combined with high quality visual user interface lead to an extreme
data traffic and growing demand of computational resources [6, 7, 14]. Computer
Systems, as a core component of communication systems and services, face a dilemma
– maximal speed and minimal delays versus minimal energy consumption and maximal
efficiency. In practice this dilemma could be managed with scalable computational
systems capable of minimal energy consumption and maximal efficiency in particular
for low workload and in the same time able to guarantee minimal delays for high
workload. Published statistics suggest growing computer serves demand [14], which
requires substantial engineering and research efforts and initiatives [8], directed
towards large scale computational systems. Design and implementation of large scale
hardware, however, does not seem to be sufficient to guarantee minimal delays without
efficient scalable software. Consideration of computational workload could identify and
distinguish two types – first one is based on variable number of relatively small and
simple for resolving tasks and second variable number of complex resource consuming
tasks which in the same time require minimal delays and efficient use of available
hardware and other resources. This article discusses factors essential for achieving
software scalability on complex, resource consuming tasks and in particular on
methods for search and optimisation.

Evaluation of different aspect of various methods on complex tasks is already
subject of many publications. One aspect is the performance of the multi-agent
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algorithms. Evaluation identifies that there is clearly a need to develop effective test
functions to evaluate various global optimization algorithms [12].

Proposed and explored are new variants of evolutionary algorithms. Experimental
studies for high-dimensional test functions identify difficulties of fitness evaluation and
a need for future improvements on fitness evaluation [22].

In a recent study [13] are explored implications, often masked at low dimensions,
which increase significantly, when extended the domain of application to higher
dimensions. It concludes that further detailed studies are needed to examine the relative
behaviour of search methodologies in high dimensional spaces that could lead to a
striking improvement in performance.

For resolving high dimensional multi-objective tasks, distributed parallel comput-
ing technologies with novel variable decomposition and optimization strategies ere
explored [4]. This study confirms that when the objectives number is large and the
number of variables is huge, the optimization process will be extremely time-
consuming. Based on the distributed parallel strategies, the optimization tasks can be
allocated to large amount of computation units, which can substantially improve the
running efficiency [4]. Such efficiency should be subject of rigorous evaluation in terms
of communications’ delays between distributed systems and use of energy.

A recent study [3] on correlation between pairs of variables in dependence on the
problem dimensionality identifies that computational feasibility of the experiments
imposes an extremely slow search in case of high dimensions. Stated beliefs of this
publication [3] are that: - an exponential increase of budget and population with the
dimensionality is still practically impossible; and - an algorithm can quickly improve
upon initial guesses if it integrates the knowledge that an apparent weak correlation
between pairs of variables occurs, regardless the nature of the problem. This position
could face arguments of other publications [1, 19]. An exploration of heuristic rules for
nonlinear function local minimisation applied on a number of benchmark functions
achieves very positive results [11]. It recommends application of explored techniques
to constrained optimisation problems and its use as local optimiser in global optimi-
sation schemes using multi-start version, replacement of the analytical calculation of
partial derivatives with an automatic differentiation scheme and design of ease to use
tool for practical applications, which is in line with the intention of this article.

A very detailed and comprehensive study of swarm algorithms enhanced with
adaptive competition strategy and swarm heterogeneity recommends improvement of
exploration abilities [5]. This could contribute towards scalable to large scale search
and optimisation methods. An evaluation of combined several algorithms shows very
good results on some high dimension tasks [15]. It concludes that automated tuning can
be very effective on high-dimensional functions and the intention is to apply exten-
sively automatic algorithm configuration techniques, integrated into algorithm engi-
neering process, to develop new state-of-the-art algorithms for continuous
optimization. This should be encouraged. A challenging paper [1] proposes a hyper-
cube optimization algorithm for global optimization with a faster convergence, applied
to high dimension benchmarking functions. Achieved results deserve attention. It
would be of interest to see this algorithm applied to other heterogeneous benchmarks
including tasks with unknown optimal solution.
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An investigation on extremely high-dimensional optimization [2], applies
MapReduce parallel programming model to popular tests for 1000, 500 000, 1 000 000,
3 000 000 and 10 000 000 dimensions. It uses GPU (Graphics Processing Unit)
accelerated version of Memetic algorithm based on the CUDA programming model for
NVIDIA GPUs, which allows scaling to problems with millions of variables.
MapReduce demonstrates to be an effective approach to scale optimization algorithms
on extremely high-dimensional problems [2]. This is supported with large number of
results. A comparison to other published results [1, 19] shows abilities of this method.

Modified line search method which makes use of partial derivatives and re-starts
the search process after a given number of iterations by modifying the boundaries based
on the best solution obtained at the previous iteration (or set of iterations) is explored
against several high dimensional benchmark functions [9]. Empirical results illustrate
scalability of this approach tested to high dimensional functions. It would be nice to see
how this concept manages with hard rigorous tests.

According to an advanced article [16], which reviews metaheuristics accuracy and
efficiency, exploration of optimisation problems should consider also level of precision of
the achieved results, in particular when dealing with high dimension. An increase of the
results’ precision, leads to an exponential growth of the number of possible solutions,
which should be analysed, and this reflects on time for calculation and required com-
putation resources. Similar issues are already explored and published [18, 19, 21, 22].

Reviewed studies explore various search methods and their essential aspects, which
could contribute towards development of high scalable optimisation methods. The
following section discusses factors which are reflected to scalability of Free Search
method published in the literature [15, 16, 21].

2 Factors for Search Methods Scalability

Capability of a search method to resolve successfully optimisation tasks with various
parameters number will be called in this article - search method scalability. Methods
which could manage within the range of 100 dimensions could be classified as scalable
methods. Methods which could find a solution with an arbitrary precision, for
acceptable period of time, using limited computational resources for tasks with 1000
and more parameters could be classified as highly scalable methods. Achieving search
methods scalability to various parameters number could be classified as ability for
adaptation to multi-dimensional spaces. Very often search and optimisation methods
utilise concepts which are observed in nature [4, 5, 12, 15, 18, 19, 21–23]. In the
nature, due to many reasons, it could be perceived and apprehended, only, natural
behaviour within 2 dimensions for most of the creatures or within 3 dimensions for sea
creatures and birds. This makes difficult to get ideas from nature how to explore
multidimensional spaces. During the design, implementation and evaluation of the
adaptive heuristic Free Search were identified several factors, which could support
successful search within multi-dimensional spaces. Typical for Free Search ability for
adaptation to tasks with heterogeneous landscape can be interpreted as an adaptation to
large number of dimensions without changes or tuning of the search method. These
factors are discussed within the following sections.
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2.1 Knowledge

One of the most critical factor for successful adaptation is knowledge – according to the
reviewed publications [1, 3–5, 9, 11–13, 15, 17, 21, 23] common understanding is -
requirement for little, if any, prior knowledge relating to the search environment. Most
of the techniques can therefore successfully negotiate search spaces described by a
wide range of model types and structures e.g., discrete, continuous, mixed-integer,
quantitative, qualitative, etc. In Free Search as a factor for adaptation is accepted that
prior knowledge requirements should be limited to search space dimensions, search
space borders and constraints, only. For adaptation to dimension changes requirement
for knowledge about search space dimensions should be limited to technical require-
ments and should not restrict the search process. Algorithm should be able to: (1) ab-
stract valuable for the search process knowledge; (2) evaluate and assess this
knowledge; (3) store the knowledge in efficient manner, namely within minimal storage
space and minimal delays for access and use; (4) use the knowledge for process
guidance and improvement (Instead to relay on users’ tuning.); (5) update and improve
the knowledge during the process of search.

An evidence how this reflect on search scalability and adaptation to dimensions
changes is illustrated with experimental results in particular on heterogeneous hard,
tests including global and constrained with unknown optimal solutions [18, 19, 22].

2.2 Exploratory Capabilities

Other factor for search methods scalability is excellent exploratory capabilities espe-
cially where tasks is considered with hard global and most importantly unknown
solution similarly to practical tasks [17]. Exploratory capabilities should harmonise
convergence and divergence in a complete process guided by acquired during the
process of search knowledge. An example of how this could be implemented in
practice is adaptive heuristic method called Free Search [18, 19]. During the search
process this algorithm explores locations from the search space. It evaluates their
quality against the objective functions and stores the knowledge about this quality. An
original peculiarity of Free Search, which has no analogue in other optimisation
methods, is a variable called sense, which analyses stored knowledge and uses it for
further guidance of the search process. The relation sense & locations quality plays the
role of a tool for regulation of divergence and convergence within the search process.

A consideration of three idealised general states of sensibility distribution – uni-
form, enhanced and reduced related with locations quality distribution can clarify the
decision-making policy and ability for adaptation of the algorithm. In case of uniformly
distributed sensibility and locations quality, low level of sensibility can lead to
selection of any location for start position. A high level sensibility can lead to selection
for start position locations with high quality and will ignore locations with low quality.
It is assumed that during a stochastic process within a stochastic environment any
deviation could lead to non-uniform changes of the process. The achieved results play a
role of deviator. The enhancement of the sensibility urges the search around the area of
the best-found solution. This situation appears naturally when the locations qualities are
very different and stochastic generation of the sensibility produces high values.
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External adding of a constant or a variable to sensibility could make an enforced
enhancement of the sensibility. An enhanced sensibility will lead to selection and more
precise differentiation of locations with higher quality and will ignore these with lower
quality. In this manner algorithm naturally converges to the best locations. By reducing
the sensibility will be allowed exploration around locations with low quality. This
situation naturally appears when the locations qualities are very similar and randomly
generated sensibility is low. In this case low quality locations can be selected with high
probability, which indirectly will decrease the probability for selection of high quality
locations. In this manner algorithm naturally diverges across the search space. Sub-
tracting of a constant or a variable from sensibility could make an enforced reduction of
the sensibility.

By using sense algorithm builds knowledge about the quality of the search space
and in the same time creates skills how to recognise further, higher or lower quality
locations. The cognition and the skills are abstracted from the achieved results, only.
This guarantees that the method is task independent and could adapt to various tasks
and dimensions.

2.3 Avoid and Escape from Local Optima

Essential factor for search process success is ability to avoid local optima. The
stochastic nature of the various algorithms combined with continuing random sampling
of the search space can prevent convergence upon local sub-optima. Most of the
methods attempt to avoid local optima and achieve it with varying success, which is
illustrated by many publications [1, 3–5, 9, 11–13, 15, 18, 19, 21–23].

The ability to escape from trapping in local sub-optima within continuous search
space leads to better performance, reliability and scalability [18, 19].

2.4 Identification and Provision of Multiple Good Solutions

From practical point of view good factor for search scalability is identification and
provision of multiple good solutions [17]. This factor is partially explored using Step
test [18]. Appropriate benchmarks with multiple equal optima are two dimensional
Himmelblau [10] and Shubert [20] test functions. Implementation and evaluation of
this capability require development of scalable benchmarks with multiple equal optima
and needs more research.

2.5 Ability to Handle High Dimensionality

Although it may look obvious it should be stated that methods scalability explicitly
requires ability to handle high dimensionality. According to the literature [17] per-
formance of many search techniques can rapidly deteriorate as dimensionality increases
whereas the characteristic sampling of the design space of the search algorithms can
maintain relatively efficient search of high-dimensional domains. Ability to handle high
dimensionality should be interpreted not only as an ability to converge to a good
solution on some task. This should be an ability to achieve global solution with
arbitrary precision within acceptable period of time using limited (or minimal)
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computational resources and energy. Published results highlight how different methods
handle high dimensionality [1–5, 9, 11–13, 15, 18, 19, 21–23].

2.6 Time

Time is perhaps the most critical factor for search methods scalability. Consideration of
time factor can distinguish two components – time used for objective function calcu-
lation and time for algorithm’s activities.

2.6.1 Time for Objective Function Calculation
Time used for single calculation of the objective function is dependent on tasks
complexity and dimensionality and cannot be avoided. For different tasks this
dependence varies. It could be linear with low or high proportion, exponential etc.
Initial evaluation on these variations is published [19]. A possible way to decrees
overall search process time, is to decrease the number of objective function calculations
required for identification of the optimal solution. This particularly applies for time
consuming functions. This factor requires further research.

2.6.2 Time for Algorithm’s Activities
Time for algorithm’s activities is dependent on the algorithm itself. Different methods
consume different time for processing the same number of objective function evalua-
tion [18]. Time used for algorithm’s activities could be reduced and minimised by
improvement of the operations, reducing time consuming events and processes. For this
factor extensive use of computational resources does not seem to be an acceptable
solution for acceleration of the search process.

2.7 Energy

Use of energy is other most critical factor for scalability. Published research on search
methods evaluations does not explore sufficiently use of energy. Very often, intention
to accelerate optimisation process and to reduce delays lead to an extensive use of
hardware such as parallel processing, distributed computing, GPU accelerated com-
puting, etc. [2, 4]. All these approaches increase energy consumption and therefore
cannot be classified as efficient. Published [19] measurement, evaluation and analysis
of energy consumption and cost suggests that use of energy is dependent on tasks
complexity and dimensions number. This dependence becomes much more tangible for
tasks with high number of parameters. Further investigation should evaluate rigorously
and assess variety of methods against energy consumption.

3 Conclusion

This article reviews optimisation of high dimensional numerical tests and discusses
factors for search methods scalability. It could be summarised that scalability of
available methods is partially explored and needs additional evaluation and analysis.
Further investigation should focus on evaluation and measure of time and
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computational resources sufficient for completion of hard, global and constrained
multidimensional tasks. Algorithms analysis and improvement, minimisation of energy
consumption and time delays require also further research.
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Abstract. The paper presents an approach to extract and analyze con-
junctive adverbs in the first Bulgarian school books in mathematics pub-
lished during the first half of XIX c. in Serbia. It applies Information
Retrieval (IR) approach and the Sketch Engine software to search elec-
tronic readable format of the books (without normalizing their graphical
representation). The methodology uses statistically-based search tech-
niques to evaluate related queries (keywords) and further, the query
search is optimized by limiting the scope of the search using options
according to related search criteria. The search results are analyzed both
with respect to the syntactic distribution (generally as logical connectives
and transitions) and to the semantics they express.

Keywords: Data mining · Big data · Knowledge discovery

1 Introduction

The contemporary formal syntactic theories regard the conjunctive adverbs as
a connection between two clauses that convert the clause they introduce into
adverbial modifier. Often, the conjunctive adverbials are referred to as connec-
tives, and they modify the verb, the adjective, or another adverb in the main
clause, and in that way, they modify the previously expressed logical predication.
The conjunctive adverb functions as an adverbial connective (also known as a
logical transition) which is used within a second clause, so to show its logical
relationship to the first. That relations can represent sequence, contrast, cause
and effect, purpose or reason, etc.

Some authors tend to analyze conjunctive adverbs at the text level [9] intro-
ducing the term transitions and defining them as providing the text cohesion
by making text more explicit or by signaling how ideas relate to one another.
The transitions are divided into coordinating, subordinating, temporal, etc.

Nevertheless, for both analyses of conjunctive adverbs (as logical connectives
or as transitions) a formal syntactic encoding is required, so to process (to parse)
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the electronic language resources. In our research, we use a statistically-based
approach instead, so to extract the conjunctive adverbs which are specific for
the first mathematical texts written in Bulgarian language.

The approach is based on the use of the Distributional Semantic Model frame-
works which regard the use of statistical similarity (or distance) as relevant for
semantic similarity (or distance) [2]. Thus, we evaluate statistically-significant
words as semantically-relevant and we extract most common words which func-
tion as typical for that mathematical texts conjunctive adverbs showing addi-
tional information about their variability and functionality.

The techniques used adopt metrics for extraction of different types of word
semantic relations by estimation of word similarity measure [1]. Further, we are
going to present such techniques and to discuss the received results of using
statistical functions of the Sketch Engine software [7] for keywords extraction,
concordances and collocations generation in searching electronic educational
resource which contains the first mathematical school books in Bulgarian lan-
guage published during the first half of XIX c. in Serbia.

2 The Sketch Engine (SE)

The SE software allows approaches to extract semantic properties of words and
most of them are with multilingual application. Generating keywords is a widely
used technique to extract terms of particular studied domain. Also, semantic
relations can be extracted by generation of related word contexts through word
concordances which define context in quantitative terms and a further work is
needed to be done to extract semantic relations by searching for co-occurrences
and collocations of related keyword.

Co-occurrences and collocations are words which are most probably to be
found with a related keyword. They assign the semantic relations between the
keyword and its particular collocated word which might be of a similarity or of a
distance. The statistical approaches used by SE to search for co-occurrence and
collocated words are based on defining the probability of their co-occurrences
and collocations. We use techniques of T – score, MI – score and MI3 – score
for corpora processing and searching. For all, the following terms are used: N –
corpus size, fA – number of occurrences of keyword in the whole corpus (the size
of concordance), fB – number of occurrences of collocated keyword in the whole
corpus, fAB – number of occurrences of collocate in the concordance (number
of co-occurrences). The related formulas for defining T – score, MI – score and
MI3 – score are as follows:

T − Score =
fAB − fAfB

N√
fAB

(1)

MI − Score = log2
fABN

fAfB
(2)

MI3 − Score = log2
f3
ABN

fAfB
(3)
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The T – score, MI – score and MI3 – score are applicable for processing
diachronic corpora as well [6].

Collocations have been regarded as statistically similar words which can be
extracted by using techniques for estimation the strength of association between
co-occurring words. Recent developments improved that techniques with respect
to various application areas.

Further, we shall present and analyse the search results for extracting con-
junctive adverbs using the SE software and shall compare related results with
respect to their semantic types.

3 The Bulgarian Diachronic Mathematical Resource
(BDMR)

The diachronic text corpora are designed to study predominantly how the gram-
mar has changed over time. They typically use the annotation schemes which
encode the grammar relations by regarding them as a relatively constant over
certain period of time. The approach has been extensively used in diachronic
corpora for languages like English, German, Spanish, etc. [4] allowing differ-
ent types of semantic search. However, recent advances in IR offer the use of
statistically-based approaches which allow comparison of different corpora with
respect to several search criteria outlining both lexical and syntactic differences
or changes without use of syntactic annotations.

The Bulgarian Diachronic Mathematical Resource (BDMR) is the first col-
lection of mathematical texts in Bulgarian language from the first half of XIX
c. It contains the first original mathematical school books written in Bulgarian
language which were published in Serbia.

The texts included are limited according to the related historical period
and are representative both for the language of that period and for the level
of mathematical knowledge and terminology at that time. The BDMR con-
tains two authoring school books: (i) ’Aritmetika ili nauka qislitelna’
(Aritmetics or Science about Numbers) by Chr. Pavlovich, published
in 1833 in Belgrade [8] – consisting of almost 12 000 words, and (ii)
’Aritmetiqeskoe rukovodstvo za nastavlenie na bolgarskite �noxi’
(Arithmetic Guide for Bulgarian Adolescents) by N. Bozveli and Em. Vask-
idovich, published in 1835 in Kraguevac [3] – consisting of almost 7 000 words.
The BDMR uses electronic readable format of the books which are uploaded
in their original graphical representation and without normalizing the phonetic
alternations according to contemporary spelling rules.

The resource was created to analyze the grammar and lexical features as well
as to study the mathematical terminology of Bulgarian language for the related
period. The BDMR was uploaded into the SE allowing the use of its incorpo-
rated options for storing, sampling, searching and filtering the texts according to
different criteria. The resource is open for further development and enlargement.
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4 Search Results

For our search experiments, we use the techniques for corpora comparison. The
main idea is to use the BDMR as a basic resource which to compare to arbitrary
reference corpus consisting of texts from standard contemporary Bulgarian lan-
guage. In that way, we use the keyness score measurement [5], so to extract
the non-content words (possibly conjunctive adverbials or conjunctions) which
have to be specific both for the time period (the first half of XIX c.) and for
the related domain (mathematics). The results from processing BDMR(i) and
BDMR(ii) are presented at Fig. 1 and are similar.

Fig. 1. The keyness score top-down search results from BDMR(i) and BDMR(ii) for
non-content words.

They both include the word sir�q� (or) which is considered as specific for
both the time period and for the mathematical domain because it has 32 hits
for the BDMR(i), 23 hits for the BDMR(ii), and 0 hits for the reference corpus
used. The later results displayed for the BDMR(i) are given at Fig. 2.

They outline also another non-content word sl�dovatelno (consequently,
hence, therefore) which has 21 hits for BDMR(i) and 0 hits for the reference
corpus used. However, the keyness score measurement do not give any additional
information about the extracted keywords’ syntactic distribution, so to evaluate
their syntactic functions.

For that, we use the approach already presented in [10] and used for cross-
lingual mathematical terminology extraction. The main techniques applied are
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Fig. 2. The keyness score top-down search results from BDMR(i) for non-content
words (continuation).

concordances generation and collocations generation. The concordances present
all occurrences of a related keyword within all its related quantitative contexts.
Thus, we generate concordances for the keyword sir�q� for both BDMR(i) and
BDMR(ii).

The results received are presented at Figs. 3 and 4, respectively, and display
all related contexts that can be analyzed with respect to the syntactic variability
and distribution of that keyword.

Fig. 3. The concordances of the keyword sir�q� from BDMR(i).

The context analysis shows that the word sir�q� which is an adverb is
used to assign a syntactic relations of coordination (often replaceable by the
coordinating conjunction ili (or) or by toest (that is, namely). It marks a
relation of logical equivalence between the coordinating phrases or clauses and
can be regarded as an adverbial logical transition maintaining the text coherence.
Its semantics is to show similarity, to signal restatement, etc.
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The search results obtained for concordances generation of the keyword
sl�dovatelno from BDMR(i) are presented at Fig. 5 and show the syntactic
variability and distribution of that keyword.

Fig. 4. The concordances of the keyword sir�q� from BDMR(ii).

The results contain contexts which present interesting distribution and vari-
ability of the keyword. To analyze them in more details, we need to use a search
optimization that is aimed at further query profiling by generation of keyword’s
collocations. The related results are presented at Fig. 6. They outline a variabil-
ity of the keyword’s use in combination with a conjunction i (and) and taka
(thus) which are the most frequent collocations.

Fig. 5. The concordances of the keyword sl�dovatelno from BDMR(i).

However, a more detailed semantic analysis of the keyword’s syntactic distri-
bution shows that the syntactic function of the keyword is still far from its
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contemporary state. The majority of contexts show that the word
sl�dovatelno (especially in combination with i and taka) is used instead
of posledovatelno which outlines its functioning as a logical connective. Thus,
it can be regarded as subordinating transition which semantics is to introduce an
item in a series (sequence), to introduce an example, to show causality (purpose
or reason), to introduce a summary or conclusion.

Fig. 6. The collocation candidates of the keyword sl�dovatelno from BDMR(i).

5 Conclusion

We presented an IR approach which uses statistically-based techniques to search
electronic collection of diachronic mathematical texts containing the first school
books written in Bulgarian language during the first half of XIX c. The aim was
to extract and study the syntactic phenomena, specific both to that period of
time and to the domain of mathematics. We have extracted conjunctive adverbs
by using keyness score measurement and have used concordances search and
collocations generation, so to optimize the search. Later, we have analyzed the
related results both with respect to their syntactic distribution and variability.

The obtained results outlined the words sir�q� and sl�dovatelno which
were analyzed from the point of view of text coherence, and were regarded as
logical connectives (transitions). The former was evaluated as a coordinating
transition whereas the later was evaluated as a subordinating transition, and
the related semantics was defined for both, respectively.

Finally, from the point of view of diachronic syntax, the adverbial sir�q�
is not used any more in contemporary Bulgarian language and is regarded as
stylistically archaic, whereas the adverbial sl�dovatelno is very actively used
in contemporary academic writing, and not only in the domain of mathematics.
Obviously, this is probably one of the first use of that adverbial in Bulgarian
language (with the above described syntactic functions and semantics), since it
defines the semantic relations between the connected phrases or clauses explicitly
and maintains their logical interconnections.
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Abstract. The paper explores the process of decision making, related
to the appointment of the human factor in an incomplete information
environment. We propose for the first time a new approach to optimiza-
tion of the process of appointment and reappointment, based on partial
knowledge about the values of evaluation criteria of the human resources
over time, using the apparatuses of index matrices and of intuitionistic
fuzzy sets.

In the paper, the 3-dimensional optimal appointment problem is for-
mulated and an algorithm for its optimal solution is proposed, where the
evaluations of candidates against criteria formulated by several experts in
a certain time (or location), are intuitionistic fuzzy pairs. The proposed
algorithm for the solution takes into account the ratings of the experts
and the weighting coefficients of the assessment criterion according to its
priority for the respective position.
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1 Introduction

The paper explores the process of decision-making related to the appointment
of the human factor in an incomplete information environment, considered over
time. We propose for the first time a new approach to optimization of the process
for appointment (reappointment), based on partial knowledge about the values
of evaluation criteria of the human resources in a time (or a location), using the
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fuzzy sets (IFSs), introduced in 1983 [1]. Problems of appointment to vacant posi-
tions in an organization by IFSs have been investigated in [11], and in [8] a two-
dimensional model of the appointment process is presented in terms of IMs.

The rest of this paper is structured as follows. In Sect. 2, we present the
preliminary concepts of IMs and of intuitionistic fuzzy pairs (IFPs). In Sect. 3,
we define the intuitionistic fuzzy appointment problem, and suggest an algorithm
for its optimal solution, in which evaluations of candidates against the criteria
set by several experts in a certain moment time (or location) are IFPs.

2 Basic Definitions

This section provides some remarks on IFPs from [3] and on IMs from [4,12].

2.1 Short Notes on Intuitionistic Fuzzy Pairs

The IFP is an object with the form 〈a, b〉, where a, b ∈ [0, 1] and a + b ≤ 1, that
is used as an evaluation of some object or process [6] and which components are
interpreted as degrees of membership and non-membership.

Let us have two IFPs x = 〈a, b〉 and y = 〈c, d〉. In [6] are defined operations:

¬x = 〈b, a〉; x ∧1 y = 〈min(a, c),max(b, d)〉;
x ∨1 y = 〈max(a, c)),min(b, d)〉; x ∧2 y = x + y = 〈a + c − a.c, b.d〉;
x ∨2 y = xy = 〈ac, b + d − b.d〉; x − y = 〈min(a, d),max(b, c)〉

and relations

x < y iff a < c and b > d; x ≤ y iff a ≤ c and b ≥ d;
x = y iff a = c and b = d.

Let a set E be fixed. An Intuitionistic Fuzzy Set (IFS) A in E is an object
of the following form (see [3]):

A = {〈x, μA(x), νA(x)〉|x ∈ E},

where functions μA : E → [0, 1] and νA : E → [0, 1] define the degree of mem-
bership and the degree of non-membership of the element x ∈ E, respectively,
and for every x ∈ E: 0 ≤ μA(x) + νA(x) ≤ 1.

2.2 Definition of 3D-IFIM, Operations and Relations

Let I be a fixed set. By three-dimensional intuitionistic fuzzy index matrix (3D-
IFIM) with index sets K,L and H (K,L,H ⊂ I), we denote the object:

[K,L,H, {〈μki,lj ,hg
, νki,lj ,hg

〉}]

≡
hg ∈ H l1 . . . lj . . . ln

k1 〈μk1,l1,hg
, νk1,l1,hg

〉 . . . 〈μk1,lj ,hg
, νk1,lj ,hg

〉 . . . 〈μk1,ln,hg
, νk1,ln.hg

〉
...

... . . .
... . . .

...
km 〈μkm,l1,hg

, νkm,l1,hg
〉 . . . 〈μkm,lj ,hg

, νkm,lj ,hg
〉 . . . 〈μkm,ln,hg

, νkm,ln,hg
〉
,
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where for every 1 ≤ i ≤ m, 1 ≤ j ≤ n, 1 ≤ g ≤ f :

0 ≤ μki,lj ,hg
, νki,lj ,hg

, μki,lj ,hg
+ νki,lj ,hg

≤ 1.

Let X , Y, Z, U be fixed sets. Let operations “∗” and “◦” be defined so that:
∗ : X × Y → Z and ◦ : Z × Z → U . Following [4,12], we recall some operations
over IMs. Let us have two 3D-IFIMs A = [K,L,H, {〈μki,lj ,hg

, νki,lj ,hg
〉}] and

B = [P,Q,E, {〈ρpr ,qs,ed
, σpr,qs,ed

〉}].

Addition-(max, min)
A ⊕(max,min) B = [K ∪ P,L ∪ Q,H ∪ E, {〈φtu,vw,xy

, ψtu,vw,xy
〉}], where

〈φtu,vw,xy
, ψtu,vw,xy

〉

=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

〈μki,lj ,hg
, νki,lj ,hg

〉, if tu = ki ∈ K, vw = lj , xy = hg ∈ H − E
or tu = ki ∈ K, vw = lj ∈ L − Q,xy = hg ∈ H
or tu = ki ∈ K − P, vw = lj ∈ L, xy = hg ∈ H;

〈ρpr,qs,ed
, σpr,qs,ed

〉, if tu = pr ∈ P, vw = qs ∈ Q,xy = ed ∈ E − H
or tu = pr ∈ P, vw = qs ∈ Q − L, xy = ed ∈ E
or tu = pr ∈ P − K, vw = qs ∈ Q,xy = ed ∈ E;

〈max(μki,lj ,hg
, ρpr,qs,ed

), if tu = ki = pr ∈ K ∩ P, vw = lj = qs ∈ L ∩ Q
min(νki,lj ,hg

, σpr,qs,ed
)〉, and xy = hg = ed ∈ H ∩ E;

〈0, 1〉, otherwise.

Termwise multiplication-(min,max)

A ⊗(min,max) B = [K ∩ P,L ∩ Q,H ∩ R, {〈φtu,vw,xy
, ψtu,vw,xy

〉}],

where 〈φtu,vw,xy
, ψtu,vw,xy

〉 = 〈min(μki,lj ,hg
, ρpr,qs,ed

),max(νki,lj ,hg
, σpr,qs,ed

)〉.
Multiplication with a constant α

αA = [K,L,H{α〈μki,lj ,hg
, νki,lj ,hg

〉}],

If α is a real number then following [4,9]

α〈μki,lj ,hg
, νki,lj ,hg

〉 = 〈1 − (1 − μki,lj ,hg
)α, να

ki,lj ,hg
〉.

If α = 〈a, b〉 is an IFP, then

α〈μki,lj ,hg
, νki,lj ,hg

〉 = 〈a.μki,lj ,hg
, b + νki,lj ,hg

− b.νki,lj ,hg
〉.

Multiplication

A �(◦,∗) B = [K ∪ (P − L), Q ∪ (L − P ),H ∪ R, {〈φtu,vw,xy
, ψtu,vw,xy

〉}],
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where
〈φtu,vw,xy

, ψtu,vw,xy
〉

=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

〈μki,lj ,hg
, νki,lj ,hg

〉, if tu = ki ∈ K
& vw = lj ∈ L − P − Q & xy = hg ∈ H
or tu = ki ∈ K − P − Q
& vw = lj ∈ L & xy = hg ∈ H;

〈ρpr,qs,rd
, σpr,qs,rd

〉, if tu = pr ∈ P
& vw = qs ∈ Q − K − L & xy = rd ∈ R
or tu = pr ∈ P − L − K
& vw = qs ∈ Q & xy = rd ∈ R;

〈 ◦
lj=pr∈L∩P

(∗(μki,lj ,hg
, ρpr,qs,rd

)), if tu = ki ∈ K & vw = qs ∈ Q

∗
lj=pr∈L∩P

(◦(νki,lj ,hg
, σpr,qs,rd

))〉, & xy = hg = rd ∈ H ∩ R;

〈0, 1〉, otherwise.

where 〈◦, ∗〉 ∈ {〈max,min〉 , 〈min,max〉}.

Projection: Let M ⊆ K, N ⊆ L and U ⊆ H. Then,

prM,N,UA = [M,N,U, {bki,lj ,hg
}],

and for each ki ∈ M, lj ∈ N and hg ∈ U, bki,lj ,hg
= aki,lj ,hg

.

Aggregation operation by one dimension
Let h0 /∈ H. Let ◦ : X × X −→ X , ∗ : X × X −→ X and
〈◦, ∗〉 ∈ {〈min,max〉, 〈max,min〉, 〈average, average〉}.

The definition of the aggregation operation by the dimension H [14] is:

α(H,◦,∗)(A, h0) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

lj h0

k1 〈 ◦
1≤g≤f

μk1,lj ,hg
, ∗
1≤g≤f

νk1,lj ,hg
〉

k2 〈 ◦
1≤g≤f

μk2,lj ,hg
, ∗
1≤g≤f

νk2,lj ,hg
〉

...
...

km 〈 ◦
1≤g≤f

μkm,lj ,hg
, ∗
1≤g≤f

νkm,lj ,hg
〉

| lj ∈ L

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

.
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3 Index Matrices as a Decision-Making Tool for Job
Appointment

Here, we will formulate a new type of three-dimensional intuitionistic fuzzy
appointment problem, and will propose an algorithm for its optimal solution,
based on the concepts of IMs and IFSs.

3.1 Problem Formulation

An organization has u vacant positions {v1, . . . , ve, . . . , vu}. Employees who have
never worked in the organization apply to these positions, but there are those
who are currently working or have ever worked in it. A system for evaluating staff
by criteria {c1, . . . , cj , . . . , cn} in a time-moment (location) hg (for 1 ≤ g ≤ f)
by the experts {d1, . . . , ds, . . . , dD} operates in the organization. The candidates
{k1, . . . , ki, . . . , km} for the positions occupying or having similar positions in
the organization have been periodically evaluated according to the criteria for
the fulfillment of their official duties and their estimates eski,cj ,ds

(for 1 ≤ i ≤
m, 1 ≤ j ≤ n, 1 ≤ s ≤ D) are IFPs. At the moment of applying for vacancies, all
candidates are evaluated by the experts according to the criteria for job hiring,
and their evaluations eski,cj ,ds

(for 1 ≤ i ≤ m, 1 ≤ j ≤ n, 1 ≤ s ≤ D) are
IFPs. The ratings of the experts {r1, . . . , rw, . . . , rD} be given, as well as the
weighting coefficients of the assessment criteria cj (for 1 ≤ j ≤ n) according to
their priority for the respective position ve (for 1 ≤ e ≤ u) – pkcj ,ve

. The aim of
the problem is to optimally allocate vacancies among the candidates for them.

3.2 An Algorithm for Finding an Optimal Solution to the Problem

Let us create the following 3D-IFIM, in accordance with the above problem:

ES[K,C,D, {eski,cj ,ds
}]

=

ds ∈ D c1 . . . cj . . . cn

k1 〈μk1,c1,ds
, νk1,c1,ds

〉 . . . 〈μk1,cj ,ds
, νk1,cj ,ds

〉 . . . 〈μk1,cn,ds
, νk1,cn,ds

〉
...

...
. . .

...
. . .

...
km 〈μkm,c1,ds

, νkm,c1,ds
〉 . . . 〈μkm,cj ,ds

, νkm,cj ,ds
〉 . . . 〈μkm,cn,ds

, νkm,cn,ds
〉
,

where K = {k1, k2, . . . , km}, C = {c1, c2, . . . , cn} ,D = {d1, d2, . . . , dD} and the
element {eski,cj ,ds

} = 〈μki,cj ,ds
, νki,cj ,ds

〉 (for 1 ≤ i ≤ m, 1 ≤ j ≤ n, 1 ≤ s ≤ D)
is the estimate of the ds-th expert for the ki-th employee by the cj-th criterion.

N ote: The evaluation of the candidate ki ∈ K (for 1 ≤ i ≤ m) on the
criteria cj ∈ C (for 1 ≤ j ≤ n) by the expert ds ∈ D may be changed through
adding the hesitancy degrees to the membership degrees μki,cj ,ds

, if the forecast
is optimistic. As a result, the evaluation of the candidate ki ∈ K against the
criteria cj ∈ C by the expert ds ∈ D is expressed with a value from the interval
[μki,cj ,ds

;μki,cj ,ds
+ πki,cj ,ds

][10].
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If the experts have a rating of the set {r1, . . . , rw, . . . , rD}, it is necessary
before the aggregate evaluation of the candidates to perform the following oper-
ations in order to obtain a rating matrix that takes the ratings:

ES∗[K,C,D, {es∗
ki,cj ,ds

}]
= r1prK,C,d1ES ⊕(max,min) r2prK,C,d2ES . . . ⊕(max,min) rDprK,C,dD

ES,

ES := ES∗(eski,lj = es∗
ki,lj , ∀ki ∈ K,∀lj ∈ L).

Let us apply the αD-th aggregation operation to find the aggregate value
of the ki-th candidate against the cj-th criterion in a time-moment hg, (for
1 ≤ i ≤ m, 1 ≤ j ≤ n, 1 ≤ g ≤ f) as follows:

α(D,◦,∗)(ES, hg) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

cj hg

k1 〈 ◦
1≤s≤D

μk1,cj ,ds
, ∗
1≤s≤D

νk1,cj ,ds
〉

...
...

km 〈 ◦
1≤s≤D

μkm,cj ,ds
, ∗
1≤s≤D

νkm,cj ,ds
〉

| cj ∈ C

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

,

where hg /∈ D and 〈◦, ∗〉 ∈ {〈min,max〉, 〈max,min〉, 〈average, average〉}.

Let us create the 3D-IFIM A[K,C,H, {aki,cj ,hg
}]

= α(D,◦,∗)(ES, h1) ⊕(max,min) α(D,◦,∗)(ES, h2) . . . ⊕(max,min) α(D,◦,∗)(ES, hf )

=

hg ∈ D c1 . . . cj . . . cn

k1 ak1,c1,hg
. . . ak1,cj ,hg

. . . ak1,cn,hg

...
...

. . .
...

. . .
...

km akm,c1,hg
. . . akm,cj ,hg

. . . akm,cn,hg

,

where K = {k1, k2, . . . , km}, C = {c1, c2, . . . , cn} ,H = {h1, h2, . . . hf} and for
1 ≤ i ≤ m, 1 ≤ j ≤ n, 1 ≤ g ≤ f : {aki,cj ,hg

} = 〈μki,cj ,hg
, νki,cj ,hg

〉 is the
estimate of the ki-th candidate for the cj-th criterion in a time-moment hg. If
{aki,cj ,hg

} is an empty cell, then {aki,cj ,hg
} = 〈0, 1〉. Then we apply the aggre-

gation operation by the dimension H to find the aggregated evalutions of the
ki-th candidate for the cj-th criterion for the whole period in which one worked
or is still working in the organization (if one has not worked in the organiza-
tion, one’s aggregate score is the same as that applied for one’s application for
employment):

α(H,◦,∗)(A, h0) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

cj h0

k1 〈 ◦
1≤s≤D

μk1,cj ,ds
, ∗
1≤s≤D

νk1,cj ,ds
〉

...
...

km 〈 ◦
1≤s≤D

μkm,cj ,ds
, ∗
1≤s≤D

νkm,cj ,ds
〉

|cj ∈ C

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(1)
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where h0 /∈ H and

〈◦, ∗〉 ∈ {〈min,max〉, 〈max,min〉, 〈average, average〉}. (2)

If the 〈min,max〉-pair is used in the aggregation operation (1), then we accept
the pessimistic forecast for a candidate’s evaluation by a given criterion. With
〈max,min〉, we get the optimistic forecast for a candidate by the criterion and
with the pair 〈average, average〉, we get the average estimate of a candidate.

Let us define the 2D-IM PK of the weighting coefficients of the assessment
criterion according to its priority to the corresponding position ve (1 ≤ e ≤ u)

PK[C, V, {pkcj ,ve
}] =

v1 . . . ve . . . vu

c1 pkc1,v1
. . . pkc1,ve

. . . pkc1,vu

...
...

. . .
...

. . .
...

cj pkcj ,v1
. . . pkcj ,ve

. . . pkcj ,vu

...
...

. . .
...

. . .
...

cn pkcn,v1
. . . pkcn,ve

. . . pkcn,vu

,

where C = {c1, c2, . . . , cn}, V = {v1, v2, . . . , vu} and for 1 ≤ j ≤ n, 1 ≤ e ≤ u :
pkcj ,ve

are IFPs. Then we create 2D-IFIM B[K,V, {bki,ve
}] :

B = α(H,max,min)(A, h0) �(◦,∗) PK,

which contains the cumulative estimates of the ki-th candidate (for 1 ≤ i ≤ m)
for the ve-th vacancy (for 1 ≤ e ≤ u) and 〈◦, ∗〉 are the same as (2). After
this operation, we apply the aggregation operation α(K,max,min)(B, k0) by the
dimension K to find the most suitable candidate for the vacant position ve.

α(K,max,min)(B, k0)

=

⎧
⎪⎪⎨

⎪⎪⎩

v1 . . . vu

k0 〈 max

1≤i≤m

μki,v1 , min

1≤i≤m

νki,v1〉. . .〈 max

1≤i≤m

μki,vu
, min

1≤i≤m

νki,vu
〉

⎫
⎪⎪⎬

⎪⎪⎭

,

where k0 /∈ K. After applying the intuitionistic fuzzy hungarian algorithm [15]
with the cost IM B, we will get the optimal allocation of the candidates to the
jobs. In practice, evaluation criteria can be primary and secondary. The algo-
rithm for selecting the most suitable candidate for some vacancy can be applied
to the primary criteria. If several candidates have the same aggregate grade on
the core criteria for a vacancy, then the same algorithm needs to be applied
to the secondary factors. Prior to finding the optimal allocation of candidates
to the vacancies, one of the level-operators to IMs, setting a threshold for job
applicants [13] may be used.
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4 Conclusion

We presented here a new approach to decision making in the process of appoint-
ment of the human factor by integrating incomplete information from indepen-
dent experts, based on the concepts of IFSs and IMs. This method can be used
in real life applications, where data quality is a matter of concern.

The outlined approach to supporting decision making, related to recruitment,
has the following advantages: it can be applied to both the assignment problem
with crisp parameters and with fuzzy ones; the algorithm can be extended in
order to obtain the optimal solution for other types of multidimensional appoint-
ment problems.

Our future research will be related to the staff recruitment process, in which
expert evaluations of candidates under the criteria are interval valued IFSs [5].
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Abstract. In the paper a new type of assignment problem is formulated,
in which the costs of assigning tasks to candidates are intuitionistic fuzzy
pairs. Additional constraints are formulated to the problem: an upper
limit to the cost of assigning a particular resource to perform a particular
activity and preferences defined in advance for assigning the resources by
an index matrix. We propose for the first time the Hungarian algorithm
for finding an optimal solution of this new type of assignment problem,
based on the concept of index matrices.

Keywords: Assignment problem · Decision making
Hungarian algorithm · Index matrix · Intuitionistic fuzzy pair

1 Introduction

An assignment problem is a special type of linear programming problem which
deals with assigning various activities to an equal number of resources on one-to-
one basis in such a way so that the total time or total cost involved is minimized
and total sale or total profit is maximized. The basic combinatorial (nonsimplex)
method for the assignment problem is the Hungarian method, which is devel-
oped by Kuhn in 1955 [7] and solves the problem for O(n4) time. In today’s
dynamic market environment, parameters are increasingly fuzzy and unclear.
Therefore the use of intuitionistic fuzzy set theory proposed by Atanassov [1] in
1983 is more appropriate to model the real problems involving imprecise param-
eters. The latest scientific results, associated with finding an optimal solution
of assignment problem with triangular intuitionistic fuzzy costs (special case of
intuitionistic fuzzy numbers), are in the paper [8]. In our paper a new type of
assignment problem is formulated, in which the costs of assigning tasks to can-
didates are intuitionistic fuzzy pairs (IFPs) and also is defined the hungarian
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algorithm for its optimal solution, based on the theory of index matrices (IMs,
introduced in 1984 in [2]).

2 Basic Definitions

This section provides some remarks on intuitionistic fuzzy pairs from [3,6] and
on index matrix tools from [4,10].

2.1 Short Notes on Intuitionistic Fuzzy Logic

The IFP is an object of the form 〈a, b〉 = 〈μ(p), ν(p)〉, where a, b ∈ [0, 1] and
a + b ≤ 1, that is used as an evaluation of a proposition p [5,6]. μ(p) and ν(p)
respectively determine the “truth degree” and “falsity degree”.

Let us have two IFPs x = 〈a, b〉 and y = 〈c, d〉. In [6] are defined operations
and relations:

¬x = 〈b, a〉; x ∧1 y = 〈min(a, c),max(b, d)〉;
x ∨1 y = 〈max(a, c),min(b, d)〉; x ∧2 y = x + y = 〈a + c − a.c, b.d〉;

x ∨2 y = x.y = 〈a.c, b + d − b.d〉; α.x = 〈1 − (1 − a)α, bα〉(α ∈ R)
x − y = 〈max(0, a − c),min(1, b + d, 1 − a + c)〉

and relations

x ≥ y iff a ≥ c and b ≤ d; x ≤ y iff a ≤ c and b ≥ d;
x = y iff a = c and b = d.

The IFP x is an “intuitionistic fuzzy false pair” (IFFP) if and only if
a ≤ b, while x is a “false pair” (FP) iff a = 0, b = 1.

Let a set E be fixed. An “intuitionistic fuzzy set” (IFS) A in E is an
object of the following form (see [3]): A = {〈x, μA(x), νA(x)〉|x ∈ E}, where
functions μA : E → [0, 1] and νA : E → [0, 1] define the degrees of member-
ship and the non-membership of the x ∈ E, respectively, and for every x ∈ E:
0 ≤ μA(x) + νA(x) ≤ 1.

2.2 Definition, Operations and Relations over 2D-IFIMs

Let I be a fixed set. By two dimensional intuitionistic fuzzy index matrix (2D-
IFIM) with index sets K and L (K,L ⊂ I), we denote the object:

[K,L, {〈μki,lj , νki,lj 〉}]

≡
l1 . . . lj . . . ln

k1 〈μk1,l1 , νk1,l1〉 . . . 〈μk1,lj , νk1,lj 〉 . . . 〈μk1,ln , νk1,ln〉
...

...
. . .

...
. . .

...
km 〈μkm,l1 , νkm,l1〉 . . . 〈μkm,lj , νkm,lj 〉 . . . 〈μkm,ln , νkm,ln〉

,
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where for every 1 ≤ i ≤ m, 1 ≤ j ≤ n: 0 ≤ μki,lj , νki,lj , μki,lj + νki,lj ≤ 1.
Following [4], we recall some operations over two IMs A =

[K,L, {〈μki,lj , νki,lj 〉}] and B = [P,Q, {〈ρpr,qs
, σpr,qs

〉}].

Addition-(max,min) A⊕(max,min)B = [K∪P,L∪Q, {〈φtu,vw
, ψtu,vw

〉}], where

〈φtu,vw
, ψtu,vw

〉

=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

〈μki,lj , νki,lj 〉, if tu = ki ∈ K and vw = lj ∈ L − Q
or tu = ki ∈ K − P and vw = lj ∈ L;

〈ρpr,qs
, σpr,qs

〉, if tu = pr ∈ P and vw = qs ∈ Q − L
or tu = pr ∈ P − K
and vw = qs ∈ Q;

〈max(μki,lj , ρpr,qs
), if tu = ki = pr ∈ K ∩ P

min(νki,lj , σpr,qs
)〉, and vw = lj = qs ∈ L ∩ Q;

〈0, 1〉, otherwise.

Termwise Multiplication-(min,max)

A ⊗(min,max) B = [K ∩ P,L ∩ Q, {〈φtu,vw
, ψtu,vw

〉}],

where 〈φtu,vw
, ψtu,vw

〉 = 〈min(μki,lj , ρpr,qs
),max(νki,lj , σpr,qs

)〉
Reduction: We use symbol “⊥” for lack of some component in the separate
definitions. In some cases, it is suitable to change this symbol with “0”. The
operations (k,⊥)-reduction of a given IM A is defined by:

A(k,⊥) = [K − {k}, L, {ctu,vw
}],

where ctu,vw
= aki,lj for tu = ki ∈ K − {k} and vw = lj ∈ L.

Projection: Let M ⊆ K and N ⊆ L. Then, prM,NA = [M,N, {bki,lj }], where
for each ki ∈ M and each lj ∈ N , bki,lj = aki,lj .

Substitution: Let IM A = [K,L, {ak,l}] be given. Local substitution over the
IM is defined for the couples of indices (p, k) and/or (q, l), respectively, by
[p

k
;⊥

]
A = [(K − {k}) ∪ {p}, L, {ak,l}] ,

[
⊥;

q

l

]
A = [K, (L − {l}) ∪ {q}, {ak,l}] .

Index type operations: AGIndex(min,max),( �⊥) (A) = 〈ki, lj〉, which finds the
index of the minimum element of A that has no empty value.

Index( �⊥)(A) = {〈k1, lv1〉, . . . , 〈ki, lvi
〉, . . . , 〈km, lvm

〉},

where 〈ki, lvi
〉 (for 1 ≤ i ≤ m) is the index of the element of A, whose cell is full.

Index(max ν),ki
(A) = {〈ki, lv1〉, . . . , 〈ki, lvx

〉, . . . , 〈ki, lvV
〉},

where 〈ki, lvx
〉 (for 1 ≤ i ≤ V, 1 ≤ x ≤ n) is the indices of the IFFP of ki-th row

of A, for which νki,lvx
is maximum.

Index(max ν),lj (A) = {〈kw1 , lj〉, . . . , 〈kwy
, lj〉, . . . , 〈kwW

, lj〉},
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where 〈kwy
, lj〉 (for 1 ≤ y ≤ W, 1 ≤ j ≤ n) are the indices of the IFFP of lj-th

column of A, for which νkwy ,lj is maximum.

Aggregate global internal operation: AGIO⊕(max,min) (A)
This operation find the “⊕(max,min)”-operation of all the matrix elements.

Internal subtraction of IMs’ components ([9,10]):

IO−(max,min)(〈ki, lj , A〉 , 〈pr, qs, B〉) = [K,L, {〈γtu,vw
, δtu,vw

〉}],

where ki ∈ K, lj ∈ L; pr ∈ P , qs ∈ Q and 〈γtu,vw
, δtu,vw

〉

=

⎧
⎪⎪⎨

⎪⎪⎩

〈μtu,vw
, νtu,vw

〉, if tu �= ki ∈ K,
vw �= lj ∈ L;

〈max(0, μki,lj − ρpr,qs
), if tu = ki ∈ K,

min(1, νki,lj + σpr,qs
, 1 − μki,lj + ρpr,qs

)〉 vw = lj ∈ L.

The non-strict relation “inclusion about value” is defined by:

A ⊆v B iff (K = P ) & (L = Q) & (∀k ∈ K)(∀l ∈ L)(ak,l ≤ bk,l)

3 An Intuitionistic Fuzzy Approach to the Hungarian
Algorithm of a New Type of Assignment Problem

Here, we solve the two-dimensional form of a new type of an intuitionistic fuzzy
assignment problem (IFAP) by the Hungarian algorithm, based on the concept
of IMs. Its formulation is: m candidates (workers, resources) {k1, . . . , ki, . . . , km}
need to be assigned for n activities or {l1, . . . , lj , . . . , ln}. The cost for asigning
cki,lj (∀ki,∀lj) of the ki-th candidate for the lj-th job is presented as IFPs. The
additional constraints to the problem are: an intuitionistic fuzzy upper limit to
the cost of assigning a particular candidate to perform some activity and pref-
erences, defined in advance for assigning resources. The purpose of the problem
is to minimize the total cost of completing all jobs of the candidates.

The mathematical model of the above problem is as follows:

minimize
m∑

i=1

n∑

j=1

cki,lj xki,lj

Subject to:
n∑

j=1

xki,lj = 〈1, 0〉, i = 1, 2, . . . ,m;
m∑

i=1

xki,lj = 〈1, 0〉, j = 1, 2, . . . , n;

xki,lj ∈ {〈0, 1〉 or 〈1, 0〉}, for 1 ≤ i ≤ m, 1 ≤ j ≤ n.

(1)

The additional constraints to the problem (1) are:

– cpl,lj , for 1 ≤ j ≤ n – an intuitionistic fuzzy upper limit to the cost of
assigning a particular candidate to perform lj-th activity;

– preferences defined in advance for assigning resources.
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Note: The operations “addition” and “multiplication”, used in the problem (1)
are those for IFPs, defined in Sect. 2.1.

Let us construct the following IM, in accordance with the problem (1):

C[K,L] =

l1 . . . ln R
k1 〈μk1,l1 , νk1,l1〉 . . . 〈μk1,ln , νk1,ln〉 〈μk1,R, νk1,R〉
...

...
. . .

...
...

km 〈μkm,l1 , νkm,l1〉 . . . 〈μkm,ln , νkm,ln〉 〈μkm,R, νkm,R〉
Q 〈μQ,l1 , νQ,l1〉 . . . 〈μQ,ln , νQ,ln〉 〈μQ,R, νQ,R〉
pl 〈μpl,l1 , νpl,l1〉 . . . 〈μpl,ln , νpl,ln〉 〈μpl,R, νpl,R〉

,

where K = {k1, k2, . . . , km, Q, pl}, L = {l1, l2, . . . , ln, R} and for 1 ≤ i ≤ m, 1 ≤
j ≤ n, {cki,lj , cki,R, cQ,lj , cpl,lj } are IFPs. Let we denote by |K| = m + 2 the
number of elements of the set K; then |L| = n + 1. We also define

X[K∗, L∗] =

l1 . . . lj . . . ln
k1 xk1,l1 · · · xk1,lj · · · xk1,ln
...

...
. . .

...
. . .

...
km ckm,l1 . . . ckm,lj . . . ckm,ln

,

K∗={k1, k2, . . . , km}, L∗={l1, l2, . . . , ln}, and for 1 ≤ i ≤ m, 1 ≤ j ≤ n:

xki,lj = 〈ρki,lj , σki,lj 〉 =
{ 〈1, 0〉, if candidate ki is assigned the job lj

〈0, 1〉, otherwise

and let in the beginning of the algorithm xki,lj is an empty cell ∀ki ∈ K∗,
∀lj ∈ L ∗ .

Additionally, it is necessary to create the IM of preferences PREF [K∗, L∗]
for assigning resources, with the same structure as X, where K∗ =
{k1, k2, . . . , km}, L∗ = {l1, l2, . . . , ln} and

prefki,lj =
{ 〈1, 0〉, if ki-th candidate wishes to assign the lj-th activity

〈0, 1〉, if ki-th candidate does not wish to assign the lj-th activity .

Let us we define the following auxiliary matrices: S = [K,L, {ski,lj }], such
that S = C i.e. (ski,lj = cki,lj ∀ki ∈ K,∀lj ∈ L);

D[K∗, L∗] =

l1 . . . lj . . . ln
k1 dk1,l1 · · · dk1,lj · · · dk1,ln
...

...
. . .

...
. . .

...
km dkm,l1 . . . dkm,lj . . . dkm,ln

,
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where K∗={k1, k2, . . . , km}, L∗={l1, l2, . . . , ln} , and for 1 ≤ i ≤ m, 1 ≤ j ≤ n:
dki,lj = {1 or 2}, if the elements ski,lj of S are crossed out with 1 or 2 lines.

RC[K∗, e0] =

e0
k1 rck1,e0

...
...

km rckm,e0

,

where K∗={k1, k2, . . . , km} and for 1 ≤ i ≤ m: rcki,lj = {0 or 1} depending on
whether the ki-th row of the matrix S is crossed out.

CC[r0, L∗] =
l1 . . . lj . . . ln

r0 ccdr0,l1 · · · ccr0,lj · · · ccr0,ln
,

where L∗={l1, l2, . . . , ln} , 1 ≤ j ≤ n: ccki,lj = {0 or 1} depending on whether
the lj-th row of the matrix S is crossed out. At the beginning of the algorithm
rcki,e0 = 0, ccr0,lj = 0, xki,lj = 〈0, 1〉 (∀ki ∈ K∗,∀lj ∈ L∗).

We will propose a new approach for the algorithm for finding the optimal
solution of the assignment problem (1) with intuitionistic fuzzy data using the
Hungarian method [7], interpreted with the tools of IMs. A part of Microsoft
Visual Studio.NET 2010 C project’s program code [11] is used in the algorithm.
Step 1. We compare the number of rows with the number of columns in C.
Step 1.1. If the number of rows is greater than the number of columns, then
a dummy column ln+1 ∈ I is entered in the matrix C, in which all prices
cki,ln+1(i = 1, . . . ,m) are equal to 〈1, 0〉; otherwise, go to the Step 1.2.
For this purpose, the following operations are executed:

– we define the 2D-IM C1[K/{Q, pl}, {ln+1}, {c1ki,ln+1
}], whose elements are

equal to 〈1, 0〉;
– the new cost matrix is C obtained by:

C := C ⊕(max,min) C1; ski,lj = cki,lj ,∀ki ∈ K,∀lj ∈ L, Go to Step 2.

Step 1.2. If the number of columns is greater than the number of rows, then a
dummy row km+1 ∈ I is entered in the cost matrix, in which all prices are equal
to 〈1, 0〉. Similar operations to those in Step 1.1. are performed.
Step 2. Let us create IM DC, such DC := C({Q,pl},{R}) ⊗(min,max) PREF.
for (int i = 0; i < m; i + +)
for (int j = 0; j < n; j + +)
{if dcki,lj = 〈0, 1〉, then {dcki,lj :=⊥; cki,lj := dcki,lj }
If

([
ki

pl ;⊥
]
prpl,lj C

)
⊂v prki,lj C, then cki,lj =⊥ . }

Let EG = Index�⊥(C({Q,pl},{R})) = {〈ki1 , lj1〉, 〈ki2 , lj2〉, . . . , 〈kiφ
, ljφ

〉};
If |EG| < m, then the problem has not a solution and end of the algorithm.
Let us construct IM S = [K,L, {ski,lj }] such that S = C, i.e. ski,lj = cki,lj

(∀ki ∈ K, ∀lj ∈ L).
Step 3. In each row of the S, the smallest element is found and it is subtracted
from all elements in the appropriate row. Go to Step 4.
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Step 3.1. For each row of the matrix S, the smallest element is found and is
recorded to the right of the row, in column R:
for (int i = 0; i < m; i + +)
for (int j = 0; j < n; j + +)
{AGIndex(min,max),( �⊥) (prki,LS) = 〈ki, lvj

〉;
If prki,lvj

S ⊆v

([
ki

pl ;⊥
]
prpl,lvj

S
)
, then

S1[ki, lvj
] = prki,lvj

S;S2 =
[
⊥; R

lvj

]
S1; S := S ⊕(max,min) S2.}

Step 3.2. From each element of the matrix S, subtract the smallest element in
the same row:
for (int i = 0; i < m; i + +)
for (int j = 0; j < n; j + +)
If ski,lj �=⊥ then {IO−(max,min) (〈ki, lj , S〉 , 〈ki, R, prK,RS〉)}.
Step 4. For each column of the matrix S, the smallest element is found and it
is subtracted from all elements in the corresponding column and go to Step 5.
Step 4.1. For each column of the matrix S, the smallest element is found and
is recorded down at the bottom of the column, in line Q:
for (int j = 0; j < n; j + +)
{AGIndex(min,max),( �⊥)

(
prK,lj S

)
= 〈kwi

, lj〉,
Let us create two 2D-EIMs S3 S4 : S3[kwi

, lj ] = prkwi
,lj S;S4 =

[
Q

kwi
;⊥

]
S3;

S := S ⊕(max,min) S4.}
Step 4.2. for (int j = 0; j < n; j + +)
for (int i = 0; i < m; i + +)
If ski,lj �=⊥ then {IO−(max,min) (〈ki, lj , S〉 , 〈Q, lj , prQ,LS〉)}.
Step 5. Cross out all elements 〈0, 1〉, in the S with the minimum possible number
of lines (horizontal, vertical or both). If there is no element 〈0, 1〉 in a given row or
column, then the element with the maximal falsity degree is cross out from that
row or column. If the number of these lines is m, go to Step 7. If the number of
lines is less than m, go to Step 6. This step introduces IM D[K∗, L∗], which has
the same dimensions as the X matrix. We use it to mark whether an element in
the S is covered with a horizontal or vertical line, or both. If d[ki, lj ] = 1, s[ki, lj ]
is covered with 1 line, if d[ki, lj ] = 2, the s[ki, lj ] element is covered with 2 lines.

We create two matrices CC[r0, L∗] and RC [K∗, e0], in which it is recorded
that the element is covered by a line in a row or column in the S matrix.
for (int i = 0; i < m; i + +)
for (int j = 0; j < n; j + +)

– If s[ki, lj ] = 〈0, 1〉 (or 〈ki, lj〉 ∈ Index(max ν),ki
(S)) and d[ki, lj ] = 0, then

{rc[ki, e0] = 1; d[ki, lj ] = 1 ∀lj ; S(ki,⊥)}
– If s[ki, lj ] = 〈0, 1〉 (or 〈ki, lj〉 ∈ Index(max ν),ki

(S)) and d[ki, lj ] = 1, then
{d[ki, lj ] = 2; cc[r0, lj ] = 1; lj d[ki, lj ] = 1 ∀ki;S(⊥,lj)}.

Then we count the covered rows and columns (number of units) in the IMs
CC and RC through the operations:
Index(1) (RC) = {〈ku1 , e0〉, . . . , 〈kui

, e0〉, . . . , 〈kux
, e0〉};

Index(1) (CC) = {〈r0, lv1〉, . . . , 〈r0, lvj
〉, . . . , 〈r0, lvy

〉}.



174 V. Traneva et al.

If count(Index(1) (RC))+count(Index(1) (CC)) = m = n, then go to Step 7,
otherwise to Step 6.
Step 6. We find the smallest element of the S that is not crossed by the lines
in Step 5, and subtract it from from each of its uncovered elements, and we add
it to each of its elements that is covered by two lines. We return to Step 5.
AGIndex(min,max) (S) = 〈kx, ly〉; IO−(max,min) (〈S〉, 〈kx, ly, S〉) .
for (int i = 0; i < m; i + +)
for (int j = 0; j < n; j + +)
{if d[ki, lj ] = 2 then

create S1 = prkx,lyC;S2 = prki,lj C ⊕(max,min)

[
ki

kx
; lj

ly

]
S1; S := S ⊕(max,min) S2;

if d[ki, lj ] = 1 then S := S ⊕(+) prki,lj C}. Go to Step 5.
Step 7. An optimal solution has been found, which assignments of the candi-
dates to the activities are located where the elements 〈1, 0〉 in the X, with a
single such element in each row or column.
{for (int i = 0; i < m; i + +)
for (int j = 0; j < n; j + +)
if (〈ki, lj〉 ∈ Index(max ν),ki

(S)) and d[ki, lj ] <> 4) then x[ki, lj ] = 〈1, 0〉;
for (int i = 0; i < m; i + +) d[ki, lj ] = 4;
for (int j = 0; j < n; j + +) d[ki, lj ] = 4;}
The optimal solution is Xopt[K∗, L∗, {xki,lj }] and the optimal assignment cost is:

AGIO⊕(max,min))

(
C({Q,pu},{R}) ⊗(min,max) Xopt

)
.

4 Conclusion

In this paper we have defined the hungarian algorithm for a new type of intuition-
istic fuzzy assignment problem with additional restrictions by using apparatus
of IMs and IFPs. The time complexity of the proposed algorithm is comparable
with that of standard hungarian algorithm. Its main advantages are that can be
applied to problems with imprecise parameters and can be extended in order to
obtain the optimal solution for other types of multidimensional problems.
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Abstract. In this paper we solve by method of lines (MoL) a class of
pseudo-parabolic PDEs defined on the real line. The method is based on
the sinc collocation (SiC) in order to discretize the spatial derivatives
as well as to incorporate the asymptotic behavior of solution at infinity.
This MoL casts an initial value problem attached to these equations into
a stiff semi-discrete system of ODEs with mass matrix independent of
time. A TR-BDF2 finite difference scheme is then used in order to march
in time.

The method does not truncate arbitrarily the unbounded domain
to a finite one and does not assume the periodicity. These are two
omnipresent, but non-natural, ingredients used to handle such problems.

The linear stability of MoL is proved using the pseudospectrum of
the discrete linearized operator. Some numerical experiments are carried
out along with an estimation of the accuracy in conserving two invari-
ants. They underline the efficiency and robustness of the method. The
convergence order of MoL is also established.

Keywords: Pseudo-parabolic equation · Infinite domain
Camassa-Holm · Peakon · Sinc collocation · TR-BDF2
Linear stability · Pseudospectrum

1 Camassa-Holm Equation

Camassa and Holm [4] introduce the equation,

ut + 2κux − uxxt + 3uux = 2uxuxx + uuxxx, x ∈ R, t > 0, (1)

discuss its analytical properties and sketch its derivation. Here u is the fluid
velocity in the x direction, κ is a constant related to the critical shallow-water
wave speed, and subscripts denote partial derivatives.
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Actually, the equation is a new completely integrable dispersive shallow water
equation that is bi-Hamiltonian. For κ := 0 the authors quoted above showed
that this equation has solitary water waves of the form c exp (−|x − ct|) which
they called “peakons”. Dropping both high-order terms from the r. h. s. of (1)
leads to the familiar Benjamin-Bona-Mahony (BBM) equation [2], or at the same
order, to the Korteweg-de Vries (KdV) equation. Nevertheless, these extra terms
profoundly alter the behavior of solitary waves. Thus, this extension of the BBM
equation possesses soliton solutions whose limiting forms as κ → 0 have peaks
where first derivatives are discontinuous, i.e. peakons. The lack of smoothness
at the peak of the peakon introduces high-frequency dispersive errors into the
calculation. This is one of the main numerical challenges.

There is a fairly rich literature gathered around the Camassa-Holm equa-
tion. For instance, in [3] J. P. Boyd derives a perturbation series solution for
general κ which converges even at peakon limit and also gives three analytical
formulations for spatially representations of the peakons. He also observes that
although the Camassa-Holm equation is integrable for general κ, it appears that
imbricating solitary waves generates an exact spatially periodic solution only for
the special cases κ = 0 and κ/c = 1/2. Camassa, Holm and Hyman [5] present
periodic numerical solutions to Eq. (1) and a large discussion to this equation as
a Hamiltonian system. They focus on the case κ = 0. Actually, we also have some
performing methods, like Runge-Kutta discontinuous Galerkin, for periodic case
or bounded domains obtained by empiric truncation.

The main motivation to design this MoL-SiC scheme is to avoid the arbitrary
truncation of the domain or periodicity assumptions. Instead, we suggest an
asymptotic truncation of the integration domain through the scaling factor of
SiC. The present paper provides accurate numerical results for arbitrary κ case.
We use a MoL based on SiC in order to discretize the spatial derivatives and
TR-BDF2 in order to march in time.

The boundary conditions for solution u (x, t) will be taken to be regular at
infinity, i.e.

u(n)
x (x, t) → 0, as |x| → ∞, (2)

for at least n = 0, 1, 2 where u
(n)
x (x) denotes the n th derivative with respect

to x. They are here behavioral (natural) rather than numerical and have been
inspired by the analysis in [2].

The pure initial-value problem for the above equation is to ask for a solution
u defined for (x, t) ∈ R × R

+ having a specified initial configuration namely

u (x, 0) = u0 (x) , x ∈ R. (3)

A typical situation arises wherein the initial disturbance has sensibly finite
extent. Thus, we suppose a datum u0 (x) being drawn from some classes of
functions having limit at ±∞, i.e., satisfying at least the first condition in (2).
In such circumstances the pure initial value problem for (1) is well-posed in
Hadamard’s classical sense (see [1]). That is, corresponding to a suitable initial
datum u0 (x), there is a unique function u (x, t) defined on R × R

+ satisfying
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the differential equation there, and for which (2) holds. Moreover, if u0 (x) is
slightly perturbed in its function class, then the solution u changes only slightly
in response.

2 MoL Discretization to Camassa-Holm Equation

The MoL solution to the Eq. (1) reads

uN (x, t) :=
N∑

j=1

S (j, h) (x) uj (t) . (4)

where S (j, h) (x) are the sinc discrete functions introduced and analyzed by F.
Stenger in [10] and uj (t) for j := 1, . . . , N are the nodal time unknowns. N ∈ N

is the order of approximation.
The functions S (j, h) (x) are defined by

S (j, h) (x) :=
sin (π (x − xj/h))

π (x − xj/h)
,

where xj are the equispaced nodes with spacing h, symmetric with respect to
the origin and xSi := (x1, . . . , xN )T .

It is important to observe that SiC approximation uN (x, t) defined by (4)
satisfies the regularity condition at infinity (2). The sinc differentiation colloca-
tion matrices on xSi are denoted by D(n)

Si , n = 1, 2, 3. In order to implement the
MoL we have used the form of these matrices provided by Weideman and Reddy
in [12].

The Camassa-Holm PDE is one of the form

M (u) ut = L (u) + N (u) , (5)

where the operators M and L are linear and N is a nonlinear one. Once we
discretize the spatial part of this PDE we get a system of ODEs,

M (U)Ut = L (U) + N (U) , (6)

where the vector U is defined by U := (u1 (t) , . . . , uN (t))T .
The particular form of the discrete formulation (6) for Camassa-Holm equa-

tion reads
(
D

(2)
Si U−U

)
t
= −2κD

(1)
Si U− 3

(
D

(1)
Si U

)
.U + 2

(
D

(1)
Si U

)
.
(
D

(2)
Si U

)
+ U.

(
D

(3)
Si U

)
,

(7)
where the dot, as in MATLAB, signifies the element wise product of two vectors.

For our dispersive problem it is known that the eigenvalues of the linear oper-
ator are close to the imaginary axis (see the analysis in [9]). They are depicted
in Fig. 2 and are situated inside or very close to the region of stability of TR-
BDF2 depicted in Fig. 1. This is the main reason in choosing this finite difference
scheme to solve the ODEs system (7).
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Fig. 1. The absolute stability region (in cyan) of TR-BDF2 finite difference scheme.
The region is unlimited and span in the directions shown by the arrows. (Color figure
online)

3 Linear Stability of MoL

We adopt the strategy from [11] in order to establish the linear (numerical)
stability of MoL. We have successfully used this strategy in our contribution [7]
in solving numerically the BBM equation which is another pseudo-parabolic one.
The linearization of the discrete Eq. (7) is simply

(
D(2)

Si −I
)
Ut = −2κD(1)

Si U, (8)

where I is the unit matrix of order N . Its pseudospectrum is depicted in Fig. 2
and shows that indeed all eigenvalues are on the imaginary axis.

Fig. 2. The Λε pseudospectrum for ε = 10−1, 10−2, 10−3 for the discrete linearized

operator (8), i.e., of the matrix 2κD
(1)
Si

(
I−D

(2)
Si

)−1

with κ := 0.5 when SiC uses

N := 500 and h := 0.1. The eigenvalues are situated on the imaginary axis.
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If we overlap Fig. 2 and the region of stability of TR-BDF2 from Fig. 1 we
observe the ε-pseudospectrum lies within a distance O (ε) + O (Δt) of the sta-
bility region as ε → 0 and Δt → 0. Typically the time step has been of order
10−2 when (1) has been solved.

Thus we can conclude that the MoL-SiC scheme along with TR-BDF2 is
numerically stable irrespective of values of parameter κ �= 0. In fact, our numer-
ical experiments have provided reasonable numerical results for the case κ = 0
even if the above analysis of stability does not literally apply to this case.

4 Numerical Experiments

Some numerical experiments will be reported in this section. We consider the
interaction of two peakons which emerge from the initial data

u0 (x) := u0
1 (x) + u0

2 (x) = 2 exp(−|x + 5|) + 0.5 exp(−|x + .5|). (9)

Actually we solve the Cauchy’s problem (1)–(9). The interaction of two peakons
as singular soliton solutions is depicted in Fig. 3. The evolution of initial data
(9) to its final form of two separated and reversed in order peakons is provided in
Fig. 4. These solitons travel with a speed proportional to their height and remain
coherent after their collision (a short animation is instructive in this respect).
In spite of the fact that peakons are nonanalytic solitons, a careful inspection of
Figs. 3 and 4 show that no oscillations (like Gibbs’ ones) appear when resolving
the cusp of peakons.

Fig. 3. The interaction of two peakons with κ := 0.1164 when SiC uses N := 500 and
h := 0.1.
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Fig. 4. The initial, i.e., u0
1 (x) and u0

2 (x) from (9), and final form of two peakons with
κ := 0.1164 when SiC uses N := 500 and h := 0.1. The value κ := 0.1164 is the critical
one from [3].

4.1 The Accuracy of MoL

We are now concerned with the accuracy of our outcomes (see also our con-
tribution [8], Sect. 2.1). Thus in a log-linear plot we display in the b) panel of
Fig. 5 the absolute values of the coefficients uk (t) of SiC solutions at several time
moments.

We recall an important aspect of SiC, namely the formulation of the collo-
cation and the Galerkin methods for a boundary value problem using sinc func-
tions is perfectly synonymous. Consequently, two important conclusions can be
inferred from this figure. First, as time proceed the computations are carried
out with the same accuracy. Second, from the same right panel (b), we observe
that the coefficients |uk (t)| behave like 10mk with m = −1/20 which means
the coefficients of SiC solution decrease only exponentially rather than super
exponentially (which requires m < −1) as time proceed.

Constantin and Strauss [6] give a very simple proof of the orbital stability of
the peakons in the H1 norm using the following two conservation laws

I1 (t) =
∫

R

(
u2 + u2

x

)
dx, I2 (t) =

∫

R

(
u3 + u u2

x

)
dx. (10)

Now we can be more precise and call u ∈ C
(
[0, T ) ;H1 (R)

)
a solution to (1) if u

is a solution to (1)–(3) in the sense of distributions and I1 and I2 are conserved
for t ≥ 0. We will use these conservation laws in order to asses the accuracy of our
outcomes. We now introduce the relative errors for the invariants I1 and I2 with

Errrel (Im) (ti) :=
| (Im) (ti) − (Im) (0) |

(Im) (0)
, m = 1, 2, i = 1, 2, . . . , 1248, (11)

and display them in the left panel of Fig. 5. Corresponding to the initial data
(9) we have I1 (0) = 8.206559 and I2 (0) = 10.300063. Moreover, the value 1248
in (11) stands for the number of integration steps used by TR-BDF2. We carry
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Fig. 5. (a) The relative errors (11) in a log-linear plot. We assume the initial data
(9) and integrate between x1 = −24.95 and xN = 24.95. (b) In a log-linear plot the
absolute values of coefficients of solution for two peakons interaction with κ := 0.1164
when SiC uses N := 500 and h := 0.1. The solutions are evaluated at Tf := 10,
t := 3.8306 and t := 1.4926. The straight line OA has the slope m = −1/20.

out the integration in (10) using a trapezoidal quadrature between the extreme
nodes in SiC grid. In order to validate once more the above MoL we solve Eq. (1)
with the initial data

u0 (x) :=

⎧
⎨

⎩

c exp (x + K) , x ≤ −K,
c, |x| < K,

c exp (−x + K) , x ≥ K,
c := 0.6, K := 5. (12)
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Fig. 6. The break up of the plateau traveling wave. (a) zoom in, (b) the dispersive
behavior at the final momentum. We assume the initial data (12).
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The solution is depicted in Fig. 6 and is in perfect accordance with well estab-
lished results.

5 Concluding Remarks

The MoL-SiC along with TR-BDF2 proved to be a reliable and effective method
to solve some Cauchy’s problems attached to a pseudo-parabolic equation. The
computational effort is kept in fairly reasonable limits, i.e., some seconds in order
to solve the system of semi-discrete ODEs on a usual machine.

The linear stability of MoL is established but a nonlinear one is an open
problem. The conservation of two invariants is kept in reasonable limits during
the time integration interval. The first one behaves better than the second as
expected. Moreover, with respect to the accuracy of method we establish that
the convergence is only exponentially.
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Abstract. When the continuum elastic bodies in a contact problem are
discretized by finite elements, we may look some of the nodes as an
ensemble to use the concept or method of statistical physics to solve the
mechanics problem. Each potential contact node of an elastic structure
along with the normalized contact force on the node is considered as a
system and all potential contact nodes together with their normalized
contact forces are considered as a canonical ensemble, with the normal-
ized contact force of each node representing the microstate of the node.
The product of non-penetration conditions for potential contact nodes
and the normalized nodal contact forces then act as an expectation that
its value will be zero, and maximizing the entropy under the constraints
of the expectation and the minimum potential energy principle results
in an explicit probability distribution for the normalized contact forces
that shows the relation between contact forces and displacements in a
formulation similar to the formulation for particles occupying microstates
in statistical physics. Moreover, an iterative procedure that solves a
series of isolated systems to find the contact forces is presented. Finally,
an example is examined to verify the correctness and efficiency of the
procedure.

Keywords: Finite elements · Statistical property · Contact · Entropy

1 Introduction

The contact mechanics of continuum elasticity is foundational to the field of
mechanical engineering; it provides necessary information for the safe and energy
efficient design of technical systems and for the study of tribology and inden-
tation hardness [1,2]. It is one type of highly nonlinear mechanics and studies
the deformation of solids that touch each other at one point or more. The basic
solutions for contact problem we want are the displacement and contact stress in
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the state of equilibrium of the structure. Equilibrium is a popular word in both
the macrostate and microstate of physics. When the continuum elastic bodies
in a contact problem are discretized by finite elements, can we look the finite
element nodes or elements as the microscope particles? If we look the nodes on
the potential contact part of the finite element model as an ensemble, can some
core concepts related to the equilibrium of statistical physics, such as entropy
etc., be used for solving the contact problems? Entropy has been used in vari-
ous fields of science and engineering and received much attention in determining
the equilibrium, order (disorder), possibility, uncertainty in a physical ensemble
[3–6]. The motivation of this paper is to find if there are counterparts of the con-
cepts, such as ensemble, microstate, possibility etc., in the finite element model
of contact problems.

In this paper, we will discuss the statistical property in the contact prob-
lem, and verify it with an example of elastic contact problem by solving the
contact forces of elastic bodies, focusing mainly on the normal direction, i.e., on
frictionless contact mechanics. The elastic bodies discretized by finite elements
are considered as an environment, each potential contact node (or node pair,
sic passim) along with the normalized contact force on it is considered as a sys-
tem, and all potential contact nodes along with their normalized contact forces
are considered as an ensemble, with the normalized contact forces representing
the microstates of the contact nodes. Using the maximum entropy principle, the
relationship between the normalized contact forces and the displacements can
be constructed. The displacements of the elastic body can be treated as the
temperature source for the non-isolated environment. Given this formulation, we
present an iterative procedure that can then solve a series of isolated ensembles
for finding the contact forces, with the monotonicity of the potential energy used
as a termination condition.

2 Entropy in Statistical Physics

Let us define an ensemble as consisting of m systems or particles, where the
probability of system i occupying a microstate is pi. A canonical ensemble is
an ensemble defined by the probability p = {p1, p2, · · · , pm}T that characterizes
the microstates of a system in equilibrium with an environment at temperature
T . Maximizing the Gibbs entropy S = −κpT lnp subject to the normalization
condition 1Tp = 1 and an expectation value of energy 〈E〉 = eTp is equivalent
to finding the stationery condition of the following Lagrangian function:

L(p, γ, δ) = −κpT lnp + γ(eTp − 〈E〉) + δ(1Tp − 1), (1)

where κ is a coefficient related to the ensemble, γ and δ are Lagrange mul-
tipliers corresponding to the two constraints, namely, the normalization con-
dition and the expectation, respectively, and e = {e1, e2, · · · , em}T is the
energy of the particles. In this paper, we follow the convention of denoting
matrices or vectors with bold letters and logarithmic functions or exponential
functions in compact forms, e.g., 1 = {1, · · · , 1}T , lnp = {ln p1, · · · , ln pm}T ,
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exp(p) = {exp(p1), · · · , exp(pm)}T . Letting the differential of equation (1) with
respect to p be zero, that is,

− κ lnp − κ1 + γe + δ1 = 0, (2)

we can express p in terms of e as follows:

p = exp
(

δ

κ
1 − 1 +

γ

κ
e
)

= exp
(

δ

κ
− 1

)
exp

(γ

κ
e
)

. (3)

Using the normalization condition 1Tp = 1, we then obtain

p =
exp

(
γ
κe

)
Z

, (4)

where Z is the system partition function, a sum over the microstates of the
system,

Z = 1T exp(
γ

κ
e). (5)

The relationship between the entropy S, system energy E, and temperature T
can be captured as 1

T = ∂S
∂E , and so for this case of a non-isolated system, we

have
1
T

=
∂S

∂〈E〉 . (6)

Now let us use it to eliminate the Lagrange multiplier γ. After some manipula-
tions, we have the relationship between p, E and T as follows:

p =
exp

(− 1
κT e

)
1T exp

(− 1
κT e

) . (7)

The probability is obtained by maximizing the entropy for a system, and it has
been proved that the entropy for a system is simply 1

m of the entropy of the
ensemble, so maximizing the entropy of the ensemble will also produce the same
results as Eq. (7). More details on entropy in statistical physics can be found in
[6] and its references.

3 Entropy in Contact Mechanics

Let us consider an elastic structure of two bodies coming into contact; see Fig. 1.
The boundary of the elastic bodies consists of the displacement boundary Γv,
the external loads boundary Γt, and the potential contact boundary Γc. The
elastic bodies are discretized by finite elements, and the finite element nodes
are separated into two groups: one includes the potential contact nodes on the
potential contact boundary, and the other includes the nodes on the rest of the
body. We consider the contact part as a canonical ensemble, as in statistical
physics. Table 1 presents a comparison of entropy in statistical physics and in
contact mechanics.
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Fig. 1. An elastic body coming into contact with a foundation.

Table 1. The descriptions of entropy in statistical physics and contact mechanics.

Description in statistical physics Description in contact mechanics

A simple system or a particle A potential contact node

Microstate of a system Normalized contact force of a node

A complex system A number of contact nodes

A microstate of a complex system A contact state of a number of potential
contact nodes

An ensemble of complex systems All potential contact nodes and their
contact states

Probability of a microstate Normalized contact force of a node

Temperature Displacement

Non-isolation concerns temperature Non-isolation concerns displacement

Expectation of energy Expectation of work by contact forces

In statistical physics, the microstate is the distribution of the particles in a
space. The figure shows three microstates of the system, they contribute to the
macrostate of an ensemble. Assume that we have a system of four particles in a
two dimensional space that is subdivided into three equal-volume parts as shown
in Fig. 3. The probabilities of the system occupying microstates 1, 2, and 3 are
p1, p2 and p3, respectively, where p1 + p2 + p3 = 1.

In a contact mechanics problem, each contact node (specifically, the normal-
ized contact force) that appears in a separate column is assumed to be a system,
see Fig. 3. Each normalized nodal contact force λi, for i = 1, · · · , 5, is in the
range between 0 and 1, thus representing a “probability”, as the sum of the
normalized nodal contact forces is 1, that is, λ1 + λ2 + λ3 + λ4 + λ5 = 1.

Therefore, both the “microstate of a system” and the “probability of a
microstate” are identified with the “normalized nodal contact force”.

Analogously to the derivation in Sect. 2, we write the entropy in the form
S = −ρλT lnλ, and the Lagrangian function for the elastic contact problem is

L(λ, α, β) = −ρλT lnλ + αλT d(u) + β(1T λ − 1), (8)
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macrostate

microstate 1 microstate 2 microstate 3

Fig. 2. Four particles in a two dimensional space.

macrostate

microstate 1 microstate 2 microstate 3 microstate 4 microstate 5

Fig. 3. Each contact node is assumed as a system.

where α and β are Lagrange multipliers, d(u) is the function of displacement
related to the potential contact nodes, and λ is the vector of normalized con-
tact forces on the potential contact nodes – which therefore satisfies 1T λ = 1.
According to the stationary condition of the Lagrangian function with respect
to λ, we have

− ρ ln λ − ρ1 + αd(u) + β1 = 0, (9)

and thus we obtain

λ =
exp

(
α
ρ d(u)

)

1T exp
(

α
ρ d(u)

) . (10)

The next step is to find the Lagrange multiplier α. In statistical physics, the
Lagrange multiplier γ is eliminated by using the relation ∂S

∂〈E〉 = 1
T , which relates

the energy to the temperature. However, in elastic contact problems, the energy
in the ensemble we have just defined is the work done by the contact forces,
which are related to the displacement of the elastic body. Since the work here
concerns the displacement, we can eliminate the Lagrange multiplier α by using
the principle of the minimum potential energy of the structure. In the finite



192 Z. Xuan

element analysis of the displacement of a structure with a contact condition, the
principle of minimum potential energy is given by

min
u∈U

π(u), (11)

with π(u) = 1
2u

TKu − cTu and U = {u ∈ �n|d(u) ∈ �m, d(u) ≤ 0}, where
K ∈ �n×n is a positive definite stiffness matrix, n gives the degrees of freedom,
and c ∈ �n is the vector combining the body force and the external force.
The corresponding Lagrangian function for the principle of minimum potential
energy is

L(u,λ, α) = π(u) + αλT d(u). (12)

We can see that αλ is the Lagrange multiplier vector to the constraint d(u),
and 1T αλ = α1T λ = α, so α is the total sum of the Lagrange multipliers. Since
λ = αλ

α is the normalized Lagrange multiplier, α is therefore the total sum of
contact forces on the potential contact nodes and λ is the normalized contact
forces. By differentiating it partially with respect to u, we obtain the stationary
condition

Ku − c + α
∂d(u)
∂u

λ = 0. (13)

Here d(u) is the function of the relative displacement of the potential contact
nodes. For node-to-node contact mode processing in finite element analysis, it
can take the form d(u) = Au−g, where A ∈ �m×n is the transformation matrix
and g ∈ �m is the gap between two contact bodies. Therefore, using Eq. (13),
we obtain the following equation for the displacement u in terms of c,A, and λ:

u = K−1
(
c − αAT λ

)
. (14)

As stated above, in the ensemble constructed by the nodes on the potential
contact surface, the expectation of energy is the work done by the contact forces,
that is,

〈E〉 = αλT d(u). (15)

If there is a non-zero relative displacement between a contact node pair in the
normal direction of the contact surface, then the contact force on the contact
node pair is zero because there is no contact between the two nodes. If, on the
other hand, the displacement is zero, this means that contact occurs between the
two nodes and there will be a contact force, and therefore we obtain 〈E〉 = 0.
These are referred to as the complementary conditions in contact problems.
Taking d(u) = Au− g in node-to-node contact mode and substituting (14) into
(15), we have

α =
λT (AK−1c − g)
λTAK−1AT λ

. (16)

Then, by substituting the right-hand side into (14), the displacement u can be
expressed in terms of the normalized contact force λ, that is,

u = K−1c − λT (AK−1c − g)
λTAK−1AT λ

K−1AT λ. (17)
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Comparing the three Eqs. (7), (10), and (17), we see that in the first equation, the
microstate probability p is expressed in terms of the temperature T and particle
energy e; in the second equation, the normalized contact force λ is expressed
in terms of the total contact force α and the displacement u; and in the third
equation, the displacement u is expressed in terms of the normalized contact
force λ.

4 An Example

Example: An elastic structure in the state of plane strain is fixed at the top of
the left part, and a force is put on the end of the right part to make the two
parts come to contact to each other, as shown in Fig. 4, which shows the post
output of stresses of the deformed structure. The Young’s modulus of the elastic
body is E = 2900N/cm2, and Poisson’s ratio is ν = 0.4, the force f = 10N/cm2.
There is no gap between the elastic bodies. Figures 5 shows the results of contact
forces on the potential contact nodes. The number marker on the lines shows
the iteration number, and the square marker shows the reference solution by the
commercial code. The iteration numbers are not plotted for the results of node
1 and node 10 for the conciseness of the figures. The initial value of λ is set to
1
10 , 6 iterations are used to calculate the solutions.

Fig. 4. Two elastic bodies come to contact.

In the iterations, we can find entropy is always decreasing as the iteration
numbers increasing. As the maximum of entropy is used as an initial value, so
in the iterations followed, the entropy should be smaller. If there is no stop for
the iteration, it will decreases to zero monotonously as the parameter ρ becomes
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Fig. 5. The results of nodal contact stresses.

smaller and smaller. This shows one character of entropy being commonly asso-
ciated with the degree of order, disorder of a physical system. We may assume
the normalized nodal contact forces be in the state of disorder at the beginning
of the iteration procedure, then with iterations being carried on, the normalized
nodal contact forces are gradually in the state of order. More information about
the analysis of the iteration procedure can be found in [7].
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Abstract. SUSHI (Scheme Using Stabilization and Hybrid Interfaces)
is a finite volume method developed at the first time to approximate
heterogeneous and anisotropic diffusion problems. It has been applied
later to approximate several types of partial differential equations. The
formulation of SUSHI involves a consistent and stable Discrete Gradient
which is developed for a large class of nonconforming meshes in any space
dimension.

In this note, we establish a second order time accurate implicit scheme
for the Time Fractional Diffusion Equation. The space discretization is
based on the use of SUSHI whereas the time discretization is performed
using a uniform mesh. We state and prove a discrete a priori estimate
from which we derive an optimal convergence order in L∞(L2).

Keywords: Time fractional diffusion equation · SUSHI scheme
Discrete gradient · Second order implicit scheme

1 Problem to Be Solved and Aim of This Paper

We consider the following time fractional diffusion equation:

∂α
t u(x , t) − Δu(x , t) = f(x , t), (x , t) ∈ Ω × (0, T ), (1)

where Ω is an open polygonal bounded subset in IRd, T > 0, and f is a given
function. Here the operator ∂α

t is the Caputo derivative defined by:

∂α
t u(x , t) =

1
Γ (1 − α)

∫ t

0

(t − s)−α ∂u(x , s)
∂s

ds, 0 < α < 1. (2)

Initial condition is given by, for a given function u0 defined on Ω

u(x , 0) = u0(x ), x ∈ Ω. (3)
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Homogeneous Dirichlet boundary conditions are given by

u(x , t) = 0, (x , t) ∈ ∂Ω × (0, T ). (4)

Fractional differential equations have been successfully used in theory and they
appear in many areas of application, see [6].

In this work, we consider the SUSHI developed in [5] to approximate time
fractional diffusion equations. SUSHI uses general nonconforming meshes in
which the control volumes can only be assumed to be polyhedral (the bound-
ary of each control volume is a finite union of subsets of hyperplanes). We first
establish a finite volume scheme in which the gradient of the unknown solution is
replaced by the discrete gradient of the discrete solution. The time discretization
is performed using a uniform mesh and the approximation of the time fractional
derivative is defined by the so-called L2 − 1σ formula developed in [1,6]. The
scheme uses a Crank-Nicolson like method. We prove an a prior estimate for the
discrete solution in discrete norms of L∞(L2) and L∞(H1

0 ). From this a prior
estimate, we prove an optimal convergence order in a discrete norm of L∞(L2),
whereas, the stated a prior estimate does not serve us to derive an optimal
convergence order in discrete norm of L∞(H1

0 ), see Remark 1 below for more
details and for a possible different a prior estimate which yields optimal conver-
gence order in a discrete norm of L∞(H1

0 ). The present note can be viewed as a
continuation of our previous paper [3] in which we analyzed a first order finite
volume scheme for time fractional diffusion equation. This paper is organized
as follows. In Sects. 2 and 3, we recall for the sake of completeness some known
results concerning the space and time discretizations. In Sect. 4, we derive the
numerical scheme and in Sect. 5, we prove the convergence of the stated scheme.

2 The Spatial Mesh and the Definition of a Discrete
Gradient

We consider as discretization in space the mesh of [5]. In brief, such mesh is
defined as the triplet D = (M ,E ,P) where M is the set of cells, E is the
set of edges, and P is a set of points xK in each cell K. We assume that, for
all K ∈ M , there exists a subset EK of E such that ∂K = ∪σ∈EK

σ. For any
σ ∈ E , we denote by Mσ = {K,σ ∈ EK}. We then assume that, for any σ ∈ E ,
either Mσ has exactly one element and then σ ⊂ ∂Ω (the set of these interfaces,
called boundary interfaces, denoted by Eext) or Mσ has exactly two elements
(the set of these interfaces, called interior interfaces, denoted by Eint). For all
σ ∈ E , we denote by xσ the barycentre of σ. For all K ∈ M and σ ∈ E , we
denote by nK,σ the unit vector normal to σ outward to K. Denoting by dK,σ the
Euclidean distance between xK and the hyperplane including σ, one assumes
that dK,σ > 0. We then denote by DK,σ the cone with vertex xK and basis σ.
Also, hK is used to denote the diameter of K. For more details on the mesh, we
refer to [5, Definition 2.1, p. 1012].

We define the discrete space XD ,0 as the set of all v =
(
(vK)K∈M , (vσ)σ∈E

)
,

where vK , vσ ∈ IR and vσ = 0 for all σ ∈ Eext. Let HM (Ω) ⊂ L2(Ω) be
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the space of functions which are constant on each control volume K of the
mesh M . For all v ∈ XD , we denote by ΠM v ∈ HM (Ω) the function defined
by ΠM v(x ) = vK , for a.e. x ∈ K, for all K ∈ M . In order to analyze
the convergence, we need to consider the size of the discretization D defined
by hD = sup {diam(K), K ∈ M } and the regularity of the mesh given by

θD = max
(

max
σ∈E int,K,L∈M

dK,σ

dL,σ
, max
K∈M ,σ∈EK

hK

dK,σ

)
.

The formulation of the scheme we want to consider involves the discrete
gradient, denoted by ∇D , developed in [5]. The value of ∇D u, where u ∈ XD ,0,
is defined by, for all K ∈ M , for a.e. x ∈ DK,σ

∇D u(x ) = ∇Ku +

( √
d

dK,σ
(uσ − uK − ∇Ku · (xσ − xK))

)
nK,σ, (5)

with ∇Ku = 1
m(K)

∑
σ∈EK

m(σ) (uσ − uK)nK,σ. We define now the inner product

defined on XD ,0 × XD ,0 and given by 〈u, v〉F =
∫

Ω
∇D u(x ) · ∇D v(x )dx .

The time discretization is performed with a constant time step k = T
N+1 ,

where N ∈ IN�, and we shall denote tn = nk, for n ∈ �0, N + 1�. We denote by
∂1 and ∂2 the discrete first time derivative and discrete second time derivative
given respectively by

∂1vj+1 =
vj+1 − vj

k
and ∂2vj+1 = ∂1(∂1vj+1) =

vj+1 − 2vj + vj−1

k2
(6)

Throughout this paper, the letter C stands for a positive constant independent
of the parameters of the space and time discretizations.

3 A Convenient Approximation for the Caputo
Derivative and Some Known Results

Almost of the results presented in this section are given for instance in [1,6].
For completeness, we recall them. Let us consider the “fractional mesh point”
tn+σ = (n + σ)k where

σ = 1 − α

2
. (7)

Consequently (since 0 < α < 1) 0 < σ < 1. Using (2), the value ∂α
t u(tn+σ) is

given by

1
Γ (1 − α)

⎛
⎝ n∑

j=1

∫ tj

tj−1

(tn+σ − s)−αus(s)ds +
∫ tn+σ

tn

(tn+σ − s)−αus(s)

⎞
⎠ ds. (8)

For each j ∈ �1, N + 1�, let Π2,ju be the quadratic interpolation defined on
(tj−1, tj) on the points tj−1, tj , tj+1 of u. An explicit expansion for Π2,ju yields:

(Π2,ju(s))′ = ∂1u(tj+1) + ∂2u(tj+1)
(
s − tj+ 1

2

)
= ∂1u(tj) + ∂2u(tj+1)

(
s − tj− 1

2

)
. (9)
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When approximating the terms of the sum (resp. the last term) using quadratic
interpolations (resp. a linear interpolation) in (8) of ∂α

t u(tn+σ), we have to com-
pute the following integrals:

1. First set of integrals:
∫ tj

tj−1

(
s − tj− 1

2

)
(tn+σ − s)−αds =

k2−α

1 − α
bσ
n−j , (10)

where

bσ
l =

1
2 − α

(
(l + σ + 1)2−α − (l + σ)2−α

) − 1
2

(
(l + σ + 1)1−α + (l + σ)1−α

)
.

(11)

2. Second set of integrals:
∫ tj

tj−1

(tn+σ − s)−αds =
k1−α

1 − α
dn+σ−j,α, (12)

with, for all s > 0, ds,α is given by

ds,α = (s + 1)1−α − s1−α. (13)

3. Third set of integrals:
∫ tn+σ

tn

(tn+σ − s)−αds =
k1−α

1 − α
σ1−α. (14)

We then obtained approximation for the fractional derivative ∂α
t u(tn+σ) using

(8)–(14)

1
Γ (1−α)

(
n∑

j=1

∫ tj

tj−1
(tn+σ − s)−α (Π2,ju(s))′

ds + k1−α

1−α σ1−α∂1u(tn+1)

)

= k1−α

Γ (2−α)

(
n∑

j=1

∂1u(tj)dn+σ−j,α + ∂2u(tj+1)kbσ
n−j + σ1−α∂1u(tn+1)

)
. (15)

This gives, after re-ordering the sum and using the fact that k∂2u(tj+1) =
∂1u(tj+1) − ∂1u(tj) (see [1, (27)–(28), p. 429])

∂α
t u(tn+σ) ≈ k1−α

Γ (2 − α)

n∑
j=0

cσ,n
n−j∂

1u(tj+1), (16)

where, for all n ≥ 1

cσ,n
j = dj+σ−1,α + bσ

j − bσ
j−1, ∀j ∈ �1, n−1�, cσ,n

0 = σ1−α + bσ
0 , cσ,n

n = dn+σ−1,α − bσ
n−1,

(17)
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and n = 0
cσ,0
0 = σ1−α. (18)

Let us denote

Λn+σu =
n∑

j=0

kλn+1
j ∂1u(tj+1), (19)

where

λn+1
j =

cσ,n
n−j

kαΓ (2 − α)
, (20)

The following lemma summarizes some properties of the time discretization.
All these results are proved in [1] except the second estimate in (21) which
can be justified by choosing ϕ(t) = t, for all t ∈ [0, T ] in (23) below. This
yields ∂αϕ(tn+σ) = Λn+σϕ. Using now (19) implies ∂αϕ(tn+σ) =

∑n
j=0 kλn+1

j .
Gathering this with definition (2) (or also expansion (8)) of ∂αϕ(tn+σ) yields

n∑
j=0

kλn+1
j =

1
Γ (1 − α)

∫ tn+σ

0

(tn+σ − s)−αds =
t1−α
n+σ

Γ (2 − α)
≤ T 1−α

Γ (2 − α)
.

Lemma 1 (Some results concerning the time discretization, cf. [1]). Let
dj,α, bσ

l , and cσ,n
j be defined respectively by (13), (11), and (17)–(18). For any

n ∈ �0, N�, for any j ∈ �0, n�, let λn+1
j be given by (20) and Λn+σu be defined

by (19). Then the following results hold:

1. Properties of the coefficients λn+1
j , cf. [1, Lemma 4, p. 431].

λn+1
n > λn+1

n−1 > . . . > λn+1
0 > λ0 =

1

2T αΓ (1 − α)
and

n∑
j=0

kλn+1
j ≤ T 1−α

Γ (2 − α)
. (21)

2. Stability result, cf. [1, Corollary 1, p. 427]. For all
(
βj

)N+1

j=0
∈ IRN+2,

for any n ∈ �0, N + 1�:

(
σβn+1 + (1 − σ)βn) n∑

j=0

λn+1
j (βj+1 − βj) ≥ 1

2

n∑

j=0

λn+1
j

(
(βj+1)2 − (βj)2

)
. (22)

3. Consistency result, cf. [1, Lemma 2, p. 429]. For any ϕ ∈ C 3 ([0, T ]):

|∂αϕ(tn+σ) − Λn+σϕ| ≤ Ck3−α
∣∣∣ϕ(3)

∣∣∣
C ([0,T ])

. (23)

4 Formulation of a New Implicit Scheme
Using the Discrete Gradient (5)

Taking t = tn+σ in Eq. (1) and using (16) and (19) (or also (23)) yield

n∑
j=0

kλn+1
j ∂1u(tj+1) − Δu(tn+σ) ≈ f(tn+σ). (24)
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We have, thanks to a convenient Taylor expansion

σu(tn+1) + (1 − σ)u(tn) = u(tn+σ) + T
1, (25)

where

|T1| ≤ k2

2
‖u‖C 2([0,T ]). (26)

From (24) and (25), we deduce that
n∑

j=0

kλn+1
j ∂1u(tj+1) − Δun+σ ≈ f(tn+σ).

This motivates us to suggest the following finite volume scheme for problem
(1)–(4):

1. Approximation of initial condition (3). Find u0
D ∈ XD ,0 such that

〈u0
D , v〉F = − (

Δu0,ΠM v
)
L2(Ω)

, ∀ v ∈ XD ,0. (27)

2. Discretization of the time factional diffusion equation. For any n ∈
�0, N�, find un+1

D ∈ XD ,0 such that, for all v ∈ XD ,0

n∑
j=0

λn+1
j

(
ΠM (uj+1

D − uj
D ), ΠM v

)
L2(Ω)

+ 〈un+σ
D , v〉F = (f(tn+σ), ΠM v)L2(Ω) , (28)

where (·, ·)L2(Ω) denotes the L2(Ω)-inner product and vn+σ denotes the two-
point barycentric element given by

vn+σ = σvn+1 + (1 − σ)vn. (29)

5 Convergence Results for the Finite Volume Scheme
(27)–(28)

We now state one of the main results of this note, that is the convergence of
scheme (27)–(28).

Theorem 1 (Error estimate for scheme (27)–(28)). Let Ω be a polyhedral open
bounded subset of IRd, where d ∈ IN\{0}, and ∂Ω = Ω \Ω its boundary. Assume
that the solution of (1)–(4) satisfies u ∈ C 3([0, T ];C 2(Ω)) and θD satisfies θ ≥
θD . Let ∇D be the discrete gradient defined as in (5). Let k = T

N+1 , with N ∈ IN�,
and denote by tn = nk, for n ∈ �0, N + 1�. Let dj,α, bσ

l , and cσ,n
j be defined

respectively by (13), (11), and (17)–(18). For any n ∈ �0, N�, for any j ∈ �0, n�,
we define the coefficients λn+1

j as in (20).
Then there exists a unique solution (un

D )N+1
n=0 ∈ X N+2

D ,0 for scheme (27)–(28)
and the following error estimates hold:

– L∞(L2)–estimate. For all n ∈ �0, N + 1�

‖u(tn) − ΠM un
D ‖L2(Ω) ≤ C(k2 + hD )‖u‖C 3([0,T ];C 2(Ω)). (30)
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– L∞(H1
0 )–estimate. For all n ∈ �0, N�

(
λn+1

n

)− 1
2 ‖∇un+σ − ∇D un+σ

D ‖L2(Ω) ≤ C(k2 + hD )‖u‖C 3([0,T ];C 2(Ω)), (31)

where vn+σ is defined by (29).

To prove Theorem 1, we need to use the following discrete a priori estimate
result.

Theorem 2 (A priori estimate for the discrete problem). Under the same
hypotheses of Theorem 1, assume that there exists (ηn)N+1

n=0 ∈ (XD ,0)
N+2 such

that η0
D = 0 and for all n ∈ �0, N�

n∑
j=0

λn+1
j

(
ΠM (ηj+1

D − ηj
D ),ΠM v

)
L2(Ω)

+ 〈ηn+σ
D , v〉F =

(
S n+1, ΠM v

)
L2(Ω)

,

(32)
where S n+1 ∈ L2(Ω), for all n ∈ �0, N�. Then, the following estimate holds:
For all n ∈ �0, N�:

‖ΠM ηn+1‖2L2(Ω) +
(
λn+1

n

)−1 ‖∇D ηn+σ‖2L2(Ω) ≤ C

λ0
S 2, (33)

where S =
N

max
n=0

‖S n+1‖L2(Ω).

Sketch of Proof of Theorem 2

Taking v = un+σ
D in (32), using the Cauchy Schwarz inequality, the Poincaré

inequality [5, Lemma 5.4, p. 1038], and the Young inequality xy ≤ x2/2 + y2/2
imply that

n∑
j=0

λn+1
j

(
ΠM (ηj+1

D − ηj
D ),ΠM v

)
L2(Ω)

+
1
2
‖∇D ηn+σ‖2L2(Ω) ≤ C‖S n+1‖2L2(Ω).

(34)
We first remark that the terms of the sum of (34) can be written as

∫
Ω

(
σΠM ηn+1

D (x ) + (1 − σ)ΠM ηn
D (x )

) (
ΠM ηj+1

D (x ) − ΠM ηj
D (x )

)
dx .

Using this form and applying (22) with βj = ΠM ηj
D (x ), inequality (34) implies

that

1
2

n∑
j=0

λn+1
j

(
‖ΠM ηj+1‖2L2(Ω) − ‖ΠM ηj‖2L2(Ω)

)
+

1
2
‖∇D ηn+σ

D ‖2L2(Ω) ≤ C(S )2 .

(35)

This implies that, thanks to (21) (which implies that 1 ≤ λn+1
0
λ0

)

λ
n+1
n ‖ΠM η

n+1‖2
L2(Ω) + ‖∇D η

n+σ
D ‖2

L2(Ω) ≤
n∑

j=1

(λ
n+1
j − λ

n+1
j−1 )‖ΠM η

j‖2
L2(Ω) +

Cλn+1
0

λ0
(S )

2
. (36)
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To prove (33), we will use mathematical induction on n. Let us set n = 0 in (36).
This gives (33) when n = 0. Assume that the estimates (33) holds for n ≤ m
and prove this estimate for n = m+1. Taking n = m in (36) yields that, thanks
to (21)

λm+1
m ‖ΠM ηm+1‖2

L2(Ω)
+ ‖∇D ηm+σ

D ‖2
L2(Ω)

≤ (λm+1
m − λm+1

0 )
C

λ0
(S )2 +

Cλm+1
0

λ0
(S )2

≤ Cλm+1
m

λ0
(S )2. (37)

This completes the proof of Theorem 2.

Sketch of Proof of Theorem 1

The existence and uniqueness for (27)–(28) stem from the fact that ‖∇D ·‖L2(Ω)d

is a norm on XD ,0. To prove (30)–(31), we consider the scheme: for all n ∈
� 0, N + 1�, find ūn

D ∈ XD ,0 such that

〈ūn
D , v〉F = − (Δu(tn),ΠM v)L2(Ω) , ∀v ∈ XD ,0. (38)

Taking n = 0 in the scheme (38), using (3), and comparing the result with
(27) lead to η0

D = 0, where, for all n ∈ � 0, N + 1�, ηn
D ∈ XD ,0 is given by

ηn
D = un

D − ūn
D .

First step: comparison between ūn
D and exact solution u. We have (see

[4,5]), for all n ∈ �1, N + 1�, for all j ∈ {0, 1}:

‖∂j(ΠM ūn
D − u(tn))‖L2(Ω) + ‖∇D ūn

D − ∇u(tn)‖L2(Ω) ≤ ChD ‖u‖C j([0,T ]; C 2(Ω)), (39)

where ∂0(vn) = vn and ∂1 is defined in (6).

Second step: comparison between schemes (27)–(28) and (38). From (38),
we deduce that

〈ūn+σ
D , v〉F = 〈σūn+1

D + (1 − σ)ūn
D , v〉F =

(−Δun+σ,ΠM v
)
L2(Ω)

, ∀v ∈ XD ,0.

(40)
Subtracting (40) from (28) (recall that ηn

D = un
D − ūn

D )

n∑
j=0

λn+1
j

(
ΠM (uj+1

D − uj
D ), ΠM v

)
L2(Ω)

+ 〈ηn+σ
D , v〉F =

(
f(tn+σ) + Δun+σ , ΠM v

)
L2(Ω)

.

(41)

Subtracting
n∑

j=0

λn+1
j

(
ΠM (ūj+1

D − ūj
D ),ΠM v

)
L2(Ω)

from both sides of (41) and

using (25) and (1) (which implies that Δun+σ = Δu(tn+σ)+ΔT
1 = ∂α

t u(tn+σ)−
f(tn+σ) + ΔT

1) yield

n∑
j=0

λn+1
j

(
ΠM (ηj+1

D − ηj
D ),ΠM v

)
L2(Ω)

+ 〈ηn+σ
D , v〉F =

(
S n+1, ΠM v

)
L2(Ω)

,

(42)
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where S n+1 = ∂α
t u(tn+σ) −

n∑
j=0

λn+1
j ΠM (ūj+1

D − ūj
D ) + ΔT

1. Using the trian-

gle inequality, the definition (19) of Λn+σ, the consistency result (23), second

estimate in (21), and (39) yields (recall that S =
N

max
n=0

‖S n+1‖L2(Ω))

S = ‖∂α
t u(tn+σ) − Λn+σ +

n∑
j=0

kλn+1
j ∂1

(
(u(tj+1) − ΠM ūj+1

D

)
+ ΔT

1‖L2(Ω)

≤ C(k2 + hD )‖u‖C 3([0,T ];C 2(Ω)). (43)

Since (ηn)N+1
n=0 ∈ (XD ,0)

N+2 is satisfying (42) and η0
D = 0, then it satisfies

hypotheses of Theorem 2. Applying now estimate (33) of Theorem 2 and using
(43) to get

‖ΠM ηn+1‖2L2(Ω) +
(
λn+1

n

)−1 ‖∇D ηn+σ‖2L2(Ω) ≤ C(k2 + hD )2‖u‖2
C 3([0,T ];C 2(Ω)).

(44)
Gathering this with the triangle inequality, estimate (39), and the first estimate
in (21) (which yields that

(
λn+1

n

)−1 ≤ (λ0)
−1) yields the desired estimates (30)–

(31) of Theorem 1.

Remark 1 (On the convergence order stated in Theorem 1). The L∞(L2)–error
estimate (30) is optimal in the sense that it is the same one proved in [4] for
a Crank-Nicolson finite volume scheme approximating the heat equation. Since
λn+1

n = σ1−α+bσ
0

kαΓ (2−α) , hence λn+1
n is of order k−α. Therefore, the L∞(H1

0 )–error
estimate (31) implies that ‖∇D un+σ

D − ∇un+σ‖L2(Ω) is of order k− α
2 (k2 + hD )

which is a conditional convergence and consequently is not optimal. Seems that
the a priori estimate (33) of Theorem 2 serves us to get only optimal error
estimate in L∞(L2). We expect that another improved a priori estimate (see the
case of first order schemes for time fractional diffusion equations in [2, Remark
1, p. 443]) can be proved and yields an optimal order in L∞(H1

0 ). This task will
be addressed thoroughly in a future paper.

Remark 2 (On the regularity assumption of Theorem 1).The regularity assump-
tion C 3(C 2) of Theorem 1 stems from two essential facts. The first one is the
regularity C 3 w.r.t. time required in (23) whereas the second fact is the reg-
ularity C 2 w.r.t. space required in (39). In fact, the regularity C 2 in space is
assumed in [5, Theorem 4.8, p. 1033] where a first convergence order, in discrete
L2 and H1 norms, is proved for SUSHI (as approximation of elliptic equations).
The regularity C 3(C 2) of Theorem 1 can be weakened to C 3(H2) in the par-
ticular cases when d = 2 or d = 3, see [5, Remark 4.9, pp. 1033–1034]. The
regularity C 3(C 4) (which is stronger than that of Theorem 1) is assumed for
instance in [1, Lemma 5, p. 433] to deal with a second order finite difference
scheme approximating the one dimensional case of problem (1)–(4).
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6 Conclusion and Perspectives

We established a second order time accurate finite volume scheme for a time
fractional diffusion equation in any space dimension. One of the main perspec-
tives is to work on a new a priori estimate which serves to derive optimal error
estimate in L∞(H1

0 ), see Remark 1.

References

1. Alikhanov, A.-A.: A new difference scheme for the fractional diffusion equation. J.
Comput. Phys. 280, 424–438 (2015)

2. Bradji, A.: Convergence order of gradient schemes for time-fractional partial differ-
ential equations. C. R. Math. Acad. Sci. Paris 356(4), 439–448 (2018)

3. Bradji, A., Fuhrmann, J.: Convergence order of a finite volume scheme for the time-
fractional diffusion equation. In: Dimov, I., Faragǵ, I., Vulkov, L. (eds.) NAA 2016.
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Abstract. We introduce a high-order numerical method for solving non-
linear fractional differential equation with non-uniform meshes. We first
transform the fractional nonlinear differential equation into the equiv-
alent Volterra integral equation. Then we approximate the integral by
using the quadratic interpolation polynomials. On the first subinterval
[t0, t1], we approximate the integral with the quadratic interpolation
polynomials defined on the nodes t0, t1, t2 and in the other subinter-
val [tj , tj+1], j = 1, 2, . . . N − 1, we approximate the integral with the
quadratic interpolation polynomials defined on the nodes tj−1, tj , tj+1. A
high-order numerical method is obtained. Then we apply this numerical
method with the non-uniform meshes with the step size τj = tj+1 − tj =
(j + 1)μ where μ = 2T

N(N+1)
. Numerical results show that this method

with the non-uniform meshes has the higher convergence order than the
standard numerical methods obtained by using the rectangle and the
trapzoid rules with the same non-uniform meshes.

Keywords: Nonlinear fractional differential equation
Numerical method · Non-uniform meshes

1 Introduction

Consider the following nonlinear fractional differential equation, with α > 0,

C
0 Dα

t y(t) = f(t, y(t)), t > 0, y(k)(0) = y
(k)
0 , k = 0, 1, . . . , �α� − 1, (1)

where C
0 Dα

t y(t) denotes the Caputo fractional derivative and �α� is the smallest
integer ≥ α. Here y

(k)
0 are the initial values.
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It is well-known that (1) is equivalent to, [4, Lemma 2.3]

y(t) =
�α�−1∑

ν=0

y
(ν)
0

tν

ν!
+

1
Γ (α)

∫ t

0

(t − s)α−1f(s, y(s)) ds. (2)

For the existence and uniqueness of the solution of (1) and the application of
the Newton iteration method for solving the nonlinear equation of the proposed
numerical method, we demand that the function f is continuous on a suitable
set (0, T )×(c, d) and f(t, ·) ∈ C2[c, d] for some c, d ∈ R

+ and any fixed t ∈ [0, T ].
Under these assumptions, Diethelm et al. [4, Theorems 2.1, 2.2] showed that (1)
has a unique solution y on some interval [0, T ].

There are many works in the literature to consider the numerical methods for
solving (1), see, e.g., [1,2,4,8,13,15,16]. Most numerical methods for solving (1)
are designed and analyzed with the uniform meshes, see, e.g., [4–6,8,16]. Since
the fractional differential equation is a nonlocal problem and the derivative of
the solution of (1) has the singularity at t = 0, it is not possible to obtain
the high order numerical methods with uniform meshes. Therefore it is natural
to use the non-uniform meshes to capture the singularity near t = 0. Diethelm
[3, Theorem 3.1] used the graded meshes to recover the optimal convergence order
for the approximation of the Hadamard finite-part integral. Recently Stynes
et al. [11,12] applied the graded meshes to recover the convergence order of the
finite difference method for solving time-fractional diffusion equation when the
solution is not sufficiently smooth. Li et al. [7] considered the error estimates
of the rectangle formula, trapezoid formula and the predictor-corrector scheme
with non-uniform meshes for solving (1) under the assumption that the solution
is sufficiently smooth. Other works for solving fractional differential equations
with non-uniform meshes may be found in, for example, [7,14,17,18].

Recently, Liu et al. [9] designed a predictor-corrector numerical method for
solving (1) with graded meshes and the detailed error estimates are provided.
Liu et al. [10] also introduced a numerical method with non-uniform meshes for
solving (1) and the detailed error estimates are considered. This paper is the
continuation of the works in [9,10] and we will introduce a high order numer-
ical method for solving (1) with non-uniform meshes. More precisely, we first
approximate the integral in (2) with the piecewise quadratic interpolation poly-
nomials with non-uniform meshes. We then use the Newton iteration for solving
the nonlinear equation. Numerical examples show that this method has the high
order convergence for solving nonlinear fractional differential equation with non-
uniform meshes, where the solution of the fractional differential equation has the
low regularity at t = 0.

The novelties of this work are as follows:

1. A new way to approximate the integral in the Volterra integral Eq. (2) by
using the piecewise quadratic polynomials is introduced.

2. A high order numerical method for solving nonlinear fractional differential Eq.
(1) with non-uniform meshes is obtained which is particular useful when f is
not sufficiently smooth with respect to time t. The convergence order of the
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proposed numerical method is higher than the available numerical methods
in [7,9,10] for solving (1) with non-uniform meshes.

The paper is organized as follows. In Sect. 2, we introduce a high-order
numerical method for solving (1). In Sect. 3, we give a numerical example which
shows that the numerical results are consistent with the theoretical results.

2 A High Order Numerical Method with Non-uniform
Meshes

For simplicity, we only consider the case with α ∈ (0, 1) below. Similarly one
may consider the general case with α > 1. More precisely, we shall consider the
numerical algorithm for solving, with α ∈ (0, 1),

y(t) − y(0) =
1

Γ (α)

∫ t

0

(t − s)α−1f(s, y(s)) ds. (3)

Let N be a positive integer. Let 0 = t0 < t1 < · · · < tn < tn+1 = T, n =
0, 1, 2, . . . , N −1 be the time partition of [0, T ]. We want to find the approximate
value yn+1 of y(tn+1) at t = tn+1. We shall consider the approximation of the
following integral, with n = 0, 1, 2, . . . , N − 1,

In+1 =
∫ tn+1

0

(tn+1 − s)α−1f(s, y(s)) ds =
n∑

j=0

∫ tj+1

tj

(tn+1 − s)α−1f(s, y(s)) ds.

It can be approximated by the following approach

In+1 ≈
n∑

j=0

∫ tj+1

tj

(tn+1 − s)α−1f̃j(s, y(s)) ds,

where f̃j(s, y(s)), j = 0, 1, 2, . . . , n is the approximation of f(s, y(s)) on the inter-
val [tj , tj+1].

It will lead to different scheme by choosing different f̃j(s, y(s)). In [7], Li et al.
introduced the fractional rectangle, trapezoid, and predictor-corrector methods
respectively. In this paper, we shall construct a high order numerical method
for solving (2) by approximating the integral in (2) with the piecewise quadratic
polynomials. Numerical examples in Sect. 3 show that the convergence order of
the proposed numerical method is almost 3 for the sufficiently smooth function
f(t, y(t)) and the suitable chosen non-uniform meshes as expected.

Let P
(j)
2 (s) denote the quadratic interpolation polynomial approximation

of f(s, y(s)) on the interval [tj , tj+1], j = 0, 1, 2, . . . , n, where P
(0)
2 (s) is the

quadratic interpolation polynomial of f(t, y(t)) on the nodes t0, t1, t2 and
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P
(j)
2 (s), j = 1, 2, . . . , n are the quadratic interpolation polynomial of f(t, y(t))

on the nodes tj−1, tj , tj . More precisely, we have

P
(0)
2 (s) =

(s − t1)(s − t2)
(t0 − t1)(t0 − t2)

f(t0, y(t0)) +
(s − t0)(s − t2)

(t1 − t0)(t1 − t2)
f(t1, y(t1))

+
(s − t0)(s − t1)

(t2 − t0)(t2 − t1)
f(t2, y(t2)),

and, with j = 1, 2, . . . , n,

P
(j)
2 (s) =

(s− tj)(s− tj+1)

(tj−1 − tj)(tj−1 − tj+1)
f(tj−1, y(tj−1)) +

(s− tj−1)(s− tj+1)

(tj − tj−1)(tj − tj+1)
f(tj , y(tj))

+
(s− tj−1)(s− tj)

(tj+1 − tj−1)(tj+1 − tj)
f(tj+1, y(tj+1)).

We then get the following numerical approximate scheme for
approximating (2),

yn+1 − y0 =
n+1∑

j=0

˜̃wj,n+1f(tj , yj), (4)

where, after some simple but tedious calculations,

1

Γ (α + 3)
w̃j,n+1 (5)

=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

2
(t0−t1)(t0−t1)C0 j = 0,

2
(t1−t0)(t1−t2)C1 + 1

(t1−t2)(t1−t3)D1 j = 1,

2
(t2−t0)(t2−t1)C2 + 1

(t2−t1)(t2−t3)D2 + 1
(t2−t3)(t2−t4)E2 j = 2,

1
(tj−tj−2)(tj−tj−1)Cj + 1

(tj−tj−1)(tj−tj+1)Dj + 1
(tj−tj+1)(tj−tj+2)Ej j = 3, 4, . . . , n − 1,

1
(tn−tn−2)(tn−tn−1)Dn + 1

(tn−tn−1)(tn−tn+1)En j = n,

1
(tn+1−tn−1)(tn+1−tn)En+1 j = n + 1.

Here

C0 =α(α + 1)
[
(tn+1 − t0)α+2 − (tn+1 − t1)α+2

]

− α(α + 2)(2tn+1 − t1 − t2)
[
(tn+1 − t0)α+1 − (tn+1 − t1)α+1

]

+ (α + 1)(α + 2)(tn+1 − t1)(tn+1 − t2)
[
(tn+1 − t0)α − (tn+1 − t1)α

]
,

C1 =α(α + 1)
[
(tn+1 − t0)α+2 − (tn+1 − t1)α+2

]

− α(α + 2)(2tn+1 − t0 − t2)
[
(tn+1 − t0)α+1 − (tn+1 − t1)α+1

]

+ (α + 1)(α + 2)(tn+1 − t0)(tn+1 − t2)
[
(tn+1 − t0)α − (tn+1 − t1)α

]

D1 =α(α + 1)
[
(tn+1 − t2)α+2 − (tn+1 − t3)α+2

]

− α(α + 2)(2tn+1 − t2 − t3)
[
(tn+1 − t2)α+1 − (tn+1 − t3)α+1

]

+ (α + 1)(α + 2)(tn+1 − t2)(tn+1 − t3)
[
(tn+1 − t2)α − (tn+1 − t3)α

]
,
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C2 =α(α + 1)
[
(tn+1 − t0)α+2 − (tn+1 − t1)α+2

]

− α(α + 2)(2tn+1 − t0 − t1)
[
(tn+1 − t0)α+1 − (tn+1 − t1)α+1

]

+ (α + 1)(α + 2)(tn+1 − t0)(tn+1 − t1)
[
(tn+1 − t0)α − (tn+1 − t1)α

]
,

D2 =α(α + 1)
[
(tn+1 − t2)α+2 − (tn+1 − t3)α+2

]

− α(α + 2)(2tn+1 − t1 − t3)
[
(tn+1 − t2)α+1 − (tn+1 − t3)α+1

]

+ (α + 1)(α + 2)(tn+1 − t1)(tn+1 − t3)
[
(tn+1 − t2)α − (tn+1 − t3)α

]
,

E2 =α(α + 1)
[
(tn+1 − t3)α+2 − (tn+1 − t4)α+2

]

− α(α + 2)(2tn+1 − t3 − t4)
[
(tn+1 − t3)α+1 − (tn+1 − t4)α+1

]

+ (α + 1)(α + 2)(tn+1 − t3)(tn+1 − t4)
[
(tn+1 − t3)α(tn+1 − t4)α

]
,

Cj =α(α + 1)
[
(tn+1 − tj)α+2 − (tn+1 − tj+1)α+2

]

− α(α + 2)(2tn+1 − tj−2 − tj−1)
[
(tn+1 − tj)α+1 − (tn+1 − tj+1)α+1

]

+ (α + 1)(α + 2)(tn+1 − tj−2)(tn+1 − tj−1)
[
(tn+1− tj)α − (tn+1− tj+1)α

]
,

Dj =α(α + 1)
[
(tn+1 − tj)α+2 − (tn+1 − tj+1)α+2

]

− α(α + 2)(2tn+1 − tj−1 − tj+1)
[
(tn+1 − tj)α+1 − (tn+1 − tj+1)α+1

]

+ (α + 1)(α + 2)(tn+1 − tj−1)(tn+1 − tj+1)
[
(tn+1− tj)α − (tn+1− tj+1)α

]
,

Ej =α(α + 1)
[
(tn+1 − tj)α+2 − (tn+1 − tj+1)α+2

]

− α(α + 2)(2tn+1 − tj+1 − tj+2)
[
(tn+1 − tj)α+1 − (tn+1 − tj+1)α+1

]

+ (α + 1)(α + 2)(tn+1 − tj+1)(tn+1 − tj+2)
[
(tn+1− tj)α − (tn+1− tj+1)α

]
,

Dn =α(α + 1)
[
(tn+1 − tn−1)

α+2 − (tn+1 − tn)α+2]

− α(α + 2)(2tn+1 − tn−2 − tn−1)
[
(tn+1 − tn−1)

α+1 − (tn+1 − tn)α+1]

+ (α + 1)(α + 2)(tn+1 − tn−2)(tn+1 − tn−1)
[
(tn+1 − tn−1)

α − (tn+1 − tn)α]
,

En =α(α + 1)(tn+1 − tn)α+2 − α(α + 2)(tn+1 − tn−1)(tn+1 − tn)α+1

+ (α + 1)(α + 2)(tn+1 − tn−1)(tn+1 − tn)α,

En+1 =α(α + 1)(tn+1 − tn)α+2 − α(α + 2)(2tn+1 − tn−1 − tn)(tn+1 − tn)α+1

+ (α + 1)(α + 2)(tn+1 − tn−1)(tn+1 − tn)(tn+1 − tn)α.
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Now we need to solve yn+1 in (4) with the weights defined in (5). Let us here
only consider how to calculate y1. The calculation of yl, l ≥ 2 is similar. Note
that, by (4),

y1 = y0 + ˜̃w0,1f(t0, y0) + ˜̃w1,1f(t1, y1).

Denote
g(y1) = y1 − [y0 + ˜̃w0,1f(t0, y0) + ˜̃w1,1f(t1, y1)].

We then need to solve g(y1) = 0 which is a nonlinear equation with respect to
the variable y1. Let z0 = y0 be the initial guess, then y1 can be approximated
by zM ≈ y1 which is obtained by the following Newton iteration formula

zl+1 = zl − g(zl)
g′(zl)

, l = 0, 1, 2, . . . ,M.

Here g′ denotes the derivative of g and the positive integer M ∈ N can be deter-
mined by using the error control quantity |zM −zM−1| < 10−10. The assumption
for f in our paper guarantees that the sequence zl, l = 0, 1, 2, . . . is convergent.

Remark 1. The work in this paper is the extension of the work in [7] where the
authors introduced the fractional rectangle, trapezoid and predictor-corrector
methods with non-uniform meshes for solving (1). The stability and error esti-
mates are discussed in [7]. One may use the similar approach to discuss the
stability and error estimates of the proposed numerical method (4) in this work.

3 Numerical Results

We will now look at some numerical results for the numerical method defined in
(4) with non-uniform mesh with the time step size

τj = tj+1 − tj = (j + 1)μ, j = 0, 1, 2, . . . , N − 1, (6)

where μ = 2T
N(N+1) .

Remark 2. Following the analysis in [7, Sect. 4], if f(t, y(t)) is sufficiently smooth,
the convergence orders of the proposed numerical methods in [7] for both uni-
form and non-uniform meshes are highly possible the same. But for non-smooth
function f(t, y(t)), non-uniform meshes are much suitable than uniform meshes.
For the non-smooth function f(t, y(t)), Li et al. [7] proved the error estimates
for the fractional rectangle, trapezoid and predictor-corrector methods with
the concrete non-uniform meshes (6). The mesh (6) is not the unique non-
uniform meshes in literature. In general one may consider the graded meshes
with tj = T (j/N)r, r > 0, see, e.g., [9,10]. In fact, after a simple calculation,
one may see that the mesh (6) is equivalent to the graded mesh with r = 2.
In some cases, one may get better convergence order when choosing the graded
mesh with r > 2 for some non-smooth function f(t, y(t)).
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In this section, we shall consider two examples. In the first example, we
consider the case where the solution of (1) is very smooth and in the second
example we consider the case where the solution is less regular.

Example 1. Consider, with α ∈ (0, 1) and β > 0,

C
0 Dα

t y(t) =
Γ (1 + β)

Γ (1 + β − α)
tβ−α + t2β − y2, (7)

where f(t, y) = Γ (1+β)
Γ (1+β−α) t

β−α + t2β − y2 and the exact solution is y(t) = tβ . We
choose β = 2 and the exact solution is now very smooth y(t) = t2.

In Table 1, we list the experimentally determined convergence orders for the
quadratic method (4) with respect to the different α = 0.4, 0.6, 0.8. We observe
that the quadratic method with the non-uniform meshes has the convergence
order almost 3 as we expected.

Table 1. Errors at T = 1 by using quadrature method (4) in Example 1

Meshes N α = 0.4 EOC α = 0.6 EOC α = 0.8 EOC

Uniform 40 2.61E−06 6.85EE−07 3.70E−06

80 6.56E−07 1.99 1.75E−07 1.97 9.26E−07 1.99

160 1.64E−07 1.99 4.39E−08 1.99 2.32E−07 1.99

320 4.10E−08 1.99 1.10E−08 1.99 5.79E−08 2.00

640 1.03E−08 2.00 2.74E−09 2.00 1.45E−08 2.00

Non-Uniform 40 1.58E−06 2.09E−06 1.80E−06

80 2.01E−07 2.98 2.59E−07 3.00 2.21E−07 3.02

160 2.54E−08 2.98 3.23E−08 3.00 2.73E−08 3.01

320 3.21E−09 2.99 4.03E−09 3.00 3.39E−09 3.00

640 4.04E−10 2.99 5.04E−10 3.00 4.24E−10 3.00

Example 2. We consider the same equation as in Example 1 with β = 0.9. In
this case the exact solution is y(t) = t0.9 which is not so regular. In Table 2,
we observe that the convergence orders are much lower than the smooth case in
Example 1 for both uniform and non-uniform meshes. This is because f(t, y(t))
behaves as tβ−α, β = 0.9 in Example 2 which is less smoother than t2−α in
Example 1. The convergence order depends on the smoothness of the regularity
of f(t, y(t)), see [7,9,10].
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Table 2. Errors at T = 1 by using quadrature method (4) in Example 2

Meshes N α = 0.4 EOC α = 0.6 EOC α = 0.8 EOC

Uniform 40 4.42E−04 1.91E−03 5.76E−03

80 2.44E−04 0.86 1.04E−03 0.88 3.11E−03 0.89

160 1.32E−04 0.88 5.59E−04 0.89 1.67E−03 0.89

320 7.13E−04 0.89 2.99E−04 0.90 8.94E−04 0.90

640 3.83E−05 0.90 1.61E−04 0.90 4.79E−04 0.90

Non-Uniform 40 1.03E−04 2.43E−04 4.58E−04

80 2.97E−05 1.79 6.98E−05 1.79 1.31E−04 1.79

160 8.54E−06 1.80 2.01E−05 1.79 3.78E−05 1.80

320 2.45E−06 1.80 5.76E−06 1.80 1.08E−05 1.80

640 7.04E−07 1.80 1.65E−06 1.80 3.11E−06 1.80
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Abstract. An inverse problem of identifying the right-hand side of an
equation with a fractional power of an elliptic operator by the solution is
considered. The direct problem is solved via solving a Cauchy problem
for a pseudo-parabolic equation. The problem of identifying the right-
hand side is reduced to a retrospective problem for this pseudo-parabolic
equation. An iterative method is employed to adjust the initial condi-
tion. The results of numerical experiments for a 2D inverse problem are
presented.

Keywords: Fractional power of an elliptic operator
Identification of the right-hand side · Retrospective inverse problem
Iterative method for solving an ill-posed problem

1 Introduction

An important class of inverse problems for stationary partial differential equa-
tions is connected with the evaluation of an unknown right-hand side of an
equation. An additional information about the solution is given in the entire
computational domain or in some part of it, in particular, on the boundary. If
the solution is known in the whole domain with some error, then the problem of
reconstructing the right-hand side actually consists in calculating the differential
operator for a function given approximately. Problems of calculating values of
an unbounded operator belong to the class of ill-posed ones and various regu-
larizing numerical algorithms [4,9] have been developed for their approximate
solution. As for elliptic equations of second order, the main approaches for them
are considered in the book [6].
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Many new non-local mathematical models are associated with fractional pow-
ers of elliptic operators [10]. An example is the problem of super-diffusion (frac-
tional in space). At present, for numerical solving such non-classical problems,
there are actively developed approaches with rational approximation a fractional
power of an elliptic operator [1,2]. We have proposed [11] a numerical algorithm
to solve an equation with fractional power elliptic operators that is based on a
transition to a pseudo-parabolic equation. For an auxiliary Cauchy problem, the
standard two-level schemes are applied.

In the present work, we consider an inverse problem of identifying the right-
hand side of an equation with a fractional power of an elliptic second-order
operator. It reduces to a problem with inverse time for a pseudo-parabolic equa-
tion. This retrospective problem is solved iteratively with sequential adjusting
the initial condition. Earlier we have used this approach (see [6,7]) when consid-
ering the retrospective inverse problem for a parabolic equation. The standard
finite-element approximation in space is used with fully implicit time-stepping.

2 Problem Formulation

Let Ω be a bounded domain (Ω ⊂ R
d, d = 1, 2, . . .) with a piecewise

smooth boundary ∂Ω. Let (·, ·), ‖ · ‖ be the scalar product and norm in H =
L2(Ω), respectively: (u, v) =

∫
Ω

u(x)v(x)dx, ‖u‖ = (u, u)1/2. For functions
u(x), v(x) ∈ H1(Ω), we define the bilinear form a(·, ·) in the following way:

a(u, v) =
∫

Ω

(k∇u · ∇v + c u v)dx +
∫

∂Ω

μ u v dx.

The coefficients k(x), c(x) and μ(x) are smooth functions in Ω and k(x) ≥ κ >
0, μ(x) > 0, x ∈ Ω. We have a(u, v) = a(v, u), a(u, u) ≥ δ‖u‖2, with a
constant δ > 0.

For the bilinear form a(·, ·), we put (a(u, v) = (Au, v)) into the correspon-
dence an elliptic operator A such that

Au = −∇(k(x)∇u) + c(x)u, x ∈ Ω. (1)

We use calligraphic letters for denoting operators in infinite dimensional spaces
and standard capital letters for their finite dimensional approximations. The
operator A is defined on the set of functions u(x) that satisfy on the boundary
∂Ω the following conditions:

k(x)
∂u

∂n
+ μ(x)u = 0, x ∈ ∂Ω. (2)

For the spectral problem

Aϕk = λkϕk, x ∈ Ω, k(x)
∂ϕk

∂n
+ g(x)ϕk = 0, x ∈ ∂Ω,
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we have 0 < λ1 ≤ λ2 ≤ . . . , and the eigenfunctions ϕk, ‖ϕk‖ = 1, k = 1, 2, . . .
form a basis in L2(Ω). Therefore,

u =
∞∑

k=1

(u, ϕk)ϕk.

Let the operator A be defined in the following domain:

D(A) = {u | u(x) ∈ L2(Ω),
∞∑

k=0

|(u, ϕk)|2λk < ∞}.

The operator A is self-adjoint and positive definite:

A = A∗ ≥ δI, (3)

where I is the identity operator in H. For δ, we have δ = λ1. In applications,
the value of λ1 is unknown (the spectral problem must be solved). Therefore, we
assume that δ ≤ λ1 in (3). When we use the spectral definition of the fractional
power of the operator, we have

Aαu =
∞∑

k=0

(u, ϕk)λα
k ϕk, 0 < α < 1.

More general and mathematically complete definition of fractional powers of
elliptic operators is given in [3].

The direct problem consists in evaluating u(x) from the equation

Aαu = f, 0 < α < 1, (4)

with a given f(x), x ∈ Ω. In the inverse problem, we search the right-hand side
f(x) of Eq. (4) using the given u(x).

The solution of the inverse problem of identifying the right-hand side of
Eq. (4) can be found via solving the well-posed problem for the equation with a
fractional power of an elliptic operator and an ill-posed problem of identifying
the right-hand side of an elliptic equation.

From Eq. (4), we have A−1+αu = A−1f. Assume that

f = Aϕ. (5)

For ϕ with β = 1 − α, we have

Aβϕ = u, 0 < β < 1. (6)

Thus, we can firstly solve the problem (6) for ϕ using some approaches to
solving problems with a fractional power of an elliptic operator. After that, we
can find f(x) from (5) (ill-posed problem of numerical differentiation).
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3 Retrospective Problem

Our approach is based on reducing the inverse problem of identifying the right-
hand side of Eq. (4) to the problem with inverse time for the auxiliary evolution
equation. We apply the algorithm for solving approximately direct problem for
Eq. (4) that is based on its equivalence to solution of an auxiliary pseudo-time
dependent problem [11].

Let w(x, t) be a function

w(t) = δα
h (tD + δhI)−αw(0), D = A − δhI.

Due to (3), we have D = D∗ ≥ 0. By this construction w(1) = δα
hA−αw(0) and

comparing it with the solution of (4) we see that if we take w(0) = δ−α
h f then

w(1) = A−αf = u, i.e. this is the solution of the direct problem for Eq. (4).
It is also easy to see that w(t) satisfies the following pseudo-parabolic initial

value problem

(t(A − δhI) + δhI)
dw

dt
+ α(A − δhI)w = 0, 0 < t ≤ 1, (7)

w(0) = δ−α
h f. (8)

Therefore, the solution of Eq. (4) coincides with the solution of the Cauchy prob-
lem (7), (8) at the pseudo-time moment t = 1: u = w(1). Thus, when solving
the direct problem for Eq. (4), from the known right-hand side f(x), we evaluate
u(x) and so, we have the well-posed Cauchy problem (7), (8).

A quite different situation occurs, when we consider the inverse problem for
Eq. (4), where the right-hand side f(x) is evaluated using the given u(x). In this
case, we search the solution of Eq. (7) with the given

w(1) = u. (9)

For the right-hand side of Eq. (4), we have f = δα
hw(0). Thus, we arrive at the

retrospective inverse problem (the problem with inverse time) for the pseudo-
parabolic equation (7).

4 Numerical Algorithm

To solve numerically the retrospective inverse problem, different approaches [6]
are available. They can be divided into two main classes. The first class (dif-
ferent variants of the quasi-inversion method) employs regularizing algorithms
that are based on a perturbation of Eq. (7). The second class (the Tikhonov reg-
ularization method, non-local boundary conditions) is related to a perturbation
of the boundary condition (9). In the present paper, we start from the iterative
method for adjusting the initial condition for Eq. (7), which was applied to the
retrospective problem for the parabolic equation in the work [7].
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For numerical solving the initial-boundary value problem (7), (9), discretiza-
tion in space is constructed using the finite element method [8]. Define the sub-
space of finite elements Vh ⊂ H1(Ω) and the discrete elliptic operator A as
(Ay, v) = a(y, v), ∀ y, v ∈ Vh. The operator A acts on the finite dimensional
space Vh (A : Vh → Vh) and

A = A∗ ≥ δhI, (10)

where I is the identity operator in Vh and δh > 0.
After discretization in space, we arrive at the equation

(t(A − δhI) + δhI)
dy

dt
+ α(A − δhI)y = 0, 0 < t ≤ 1, (11)

for y(t) ∈ Vh. From (9), we get

y(1) = ψ, (12)

where ψ = Pu with P denoting L2-projection onto Vh.
To solve numerically the problem (11), (12) we apply implicit two-level

scheme, see, e.g. [5]. Let τ be the step-size of a uniform grid in time such that
yn = y(tn), tn = nτ , n = 0, 1, . . . , N, Nτ = 1. We approximate Eq. (11) by the
following fully implicit two-level scheme

(tn+1D + δhI)
yn+1 − yn

τ
+ αDyn+1 = 0, n = 0, 1, . . . , N − 1, (13)

where D = A − δhI. Tn accordance with (12), we put

yN = ψ. (14)

We search y0 that provides the approximate solution f ≈ δα
hy0 of the inverse

problem (4).
For solving the inverse problem (13), (14), we apply the simplest iterative

process that is based on sequential adjusting the initial condition, where at each
iteration, we solve the direct problem. The direct problem corresponds to the
specification of the initial condition

y0 = v. (15)

The initial condition is adjusted iteratively in order to satisfy condition (14) at
the final time moment t = 1.

From (13), (15), for a given y0, at the final time moment, we get

yN =
N∑

n=1

Snv, (16)

where Sn+1 is the operator of the transition from the time level tn to the next
level tn+1:

Sn+1 = ((tn+1 + τα)D + δhI)−1(tn+1D + δhI), n = 0, 1, . . . , N − 1. (17)
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In view of (14)–(16), for the approximate solution of the inverse problem
(13), (14), it seems natural to put into the correspondence the solution of the
following operator equation:

Bv = ψ, B =
N∑

n=1

Sn. (18)

In view of the self-adjointness of the operator A, the transition operators
Sn+1, n = 0, 1, . . . , N − 1 and the operator B in (18) are self-adjoint, too.
Single-valued solvability of Eq. (18) holds due to the positivity of the operator
D. In our case, for the operator B, defined according to (18), we have

0 < B = B∗ < I. (19)

To solve Eqs. (18), (19), we can use the explicit two-level iterative method in
the form

vk+1 − vk

sk+1
+ Bvk = ψ, k = 0, 1, . . . , (20)

with a given v0, where sk+1 are iterative parameters. The solution of the evolu-
tionary problem that corresponds the initial condition vk, we denote as y(k).

The above iterative method corresponds to the following implementation of
calculations for solving the retrospective inverse problem (13), (14). First, for a
given vk, we solve the direct problem

(tn+1D + δhI)
y
(k)
n+1 − y

(k)
n

τ
+ αDy

(k)
n+1 = 0, n = 0, 1, . . . , N − 1, y

(k)
0 = vk,

in order to evaluate y
(k)
N . After obtaining the solution of the direct problem at

the final time moment, we adjust in accordance with (14) the initial condition
in the following way: vk+1 = vk − sk+1(y

(k)
N − ψ).

As it follows from the general theory of iterative methods, the rate of conver-
gence of the method (20) when solving Eq. (18) is determined by the constants
of energy equivalence γj , j = 1, 2: γ1I ≤ B ≤ γ2I, γ1 > 0. By (19), we can
put γ2 = 1. The positive constant γ1 depends on the grid and has a value in the
vicinity of zero.

For the stationary iterative method (sk = s0 = const in (20)), the conver-
gence conditions for our case have the form s0 ≤ 2. For the optimal constant
value of the iterative parameter, we have s0 ≈ 1. To accelerate convergence, it
is necessary to focus on the application of iterative methods of variational type.
Using the iterative method of minimal residuals, for iterative parameters, we
have

sk+1 =
(Brk, rk)

(Brk, Brk)
, rk = Bvk − ψ. (21)

In this case, two direct problems are solved at each iteration.
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5 Numerical Example

The proposed computational algorithm of identification has been verified in the
framework of a quasi-real numerical experiment. The problem is considered in
the unit square: Ω = {x | x = (x1, x2), 0 < xi < 1, i = 1, 2} with k(x) =
1, c(x) = 0, μ(x) = 1 and α = 0.5. First, for the given right-hand side f(x) =
exp(−10((x1 − 0.4)2 + (x2 − 0.3)2)), we solve the direct problem (4). Next, the
obtained numerical solution u(x) is used to solve the inverse problem.

Below, we will present typical results. The problem was solved on a uniform
grid with 50 intervals in each direction using finite elements P2 on triangles.
The parameter δh = 3.4141 was obtained numerically from the solution of the
spectral problem. The right-hand side and the solution of the direct problem are
shown in Fig. 1.

For solving the inverse problem, we applied the iterative method with step
selection according to (21). The error of evaluation of the right-hand side is
ek = fk − f, fk = δα

hvk with the initial approximation v0 = 0. The error
for the first four iterations is shown in Figs. 2 and 3. A high convergence of
the iterative method is observed here. Similarly, problems with noisy data are
considered when iterations break off when reaching the residual level.

Fig. 1. The direct problem: the RHS f(x) (left) and solution u(x) (right).

Fig. 2. The inverse problem: errors e1(x) (left) and e2(x) (right).
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Fig. 3. The inverse problem: errors e3(x) (left) and e4(x) (right).
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Abstract. A sequence of definite quadrature formulae of order three
based on the compound midpoint rule is constructed. Their error con-
stants are evaluated and simple a posteriori error estimates are derived.

Keywords: Definite quadrature formulae
Euler-Maclaurin summation formula · Peano kernel
A posteriori error estimate

1 Introduction and Statement of the Results

The definite integral

I[f ] :=

1∫

0

f(x) dx

is approximated by quadrature formulae, which are linear functionals of the form

Q[f ] :=
n∑

i=0

aif(xi), 0 ≤ x0 < x1 < · · · < xn ≤ 1. (1)

Throughout this paper, πm stands for the set of algebraic polynomials of
degree at most m. Quadrature formula (1) is said to have algebraic degree of
precision m (in short, ADP (Q) = m), if its remainder functional

R[Q; f ] := I[f ] − Q[f ]

vanishes whenever f ∈ πm, and R[Q; f ] �= 0 when f ∈ πm+1 \ πm.

Definition 1. Quadrature formula (1) is said to be definite of order r, r ∈ N,
if there exists a real non-zero constant cr(Q) such that

R[Q; f ] = cr(Q)f (r)(ξ)

for every f ∈ Cr[0, 1], with some ξ ∈ [0, 1] depending on f . Furthermore, Q is
called positive (resp., negative) definite of order r, if cr(Q) > 0 (cr(Q) < 0).
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Definition 2. A function f ∈ Cr[0, 1] is called r-positive (resp., r-negative)
if f (r)(x) ≥ 0 (resp. f (r)(x) ≤ 0) for every x ∈ [0, 1].

If {Q+, Q−} is a pair of a positive and a negative definite quadrature formula
of order r and f is an r-positive function, then Q+[f ] ≤ I[f ] ≤ Q−[f ]. This
simple observation is a base for derivation of a posteriori error estimates and
rules for termination of calculations in the algorithms for numerical integration
(see [4] for a survey). Most of quadratures used in practice (e.g., quadrature
formulae of Gauss, Radau, Lobatto, Newton-Cotes) are definite of certain order.
The best known definite quadratures are the compound midpoint and trapezium
rules

QMi
n [f ] =

1
n

n∑
k=1

f
(2k − 1

2n

)
, QTr

n+1[f ] =
1
2n

(
f(0) + f(1)

)
+

1
n

n−1∑
k=1

f
(k

n

)
,

which are respectively positive and negative definite of order two with error
constants c2

(
QMi

n

)
= 1/(24n2) and c2

(
QTr

n+1

)
= −1/(12n2). Moreover, QTr

n+1

and QMi
n are respectively optimal negative definite and asymptotically optimal

positive definite quadrature formulae of order two (we refer to [2,5–9,11] for
more details about optimal and asymptotically optimal definite quadratures).

The simplest pair of definite quadrature formulae of odd order is the left and
the right rectangles quadratures,

Q+[f ] =
1
n

n−1∑
k=0

f
(k

n

)
, Q−[f ] =

1
n

n∑
k=1

f
(k

n

)
.

If f is 1-positive (or non-decreasing), then R[Q+; f ] ≥ 0, R[Q−; f ] ≤ 0, and

|R[Q±; f ]| ≤ Q−[f ] − Q+[f ] =
1
n

(f(1) − f(0)) .

Definition 3. Quadrature formula (1) is called symmetrical, if

ak = an−k, k = 0, . . . , n; (2)
xk = 1 − xn−k, k = 0, . . . , n. (3)

Quadrature formula (1) is nodes-symmetrical, if only condition (3) is satisfied.
The reflected quadrature formula to (1) is defined by

Q̃[f ] = Q̃[Q; f ] :=
n∑

k=0

akf(xn−k) .

While, most often, definite quadrature formulae of even order are symmetri-
cal, Q± are non-symmetrical and are obtained from each other by a reflection.

By adding (if necessary) nodes with weights equal to zero, every quadrature
formula may be viewed as nodes-symmetrical. The next statement shows that
our observations about the left and right rectangles quadratures apply to a more
general situation.
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Proposition 1 ([1]).

(i) If Q is a positive definite quadrature formula of order r (r – odd), then its
reflected quadrature formula Q̃ is negative definite of order r and vice versa.
Moreover, cr(Q̃) = −cr(Q).
(ii) If quadrature formula Q in (1) is nodes-symmetrical and definite of order
r (r – odd), and f is an r-positive or r-negative function, then, with Q∗

standing for either Q or Q̃ we have

∣∣R[Q∗; f ]
∣∣ ≤ B[Q; f ] :=

∣∣∣
�n

2 �∑
k=0

(
ak − an−k

)(
f(xn−k) − f(xk)

)∣∣∣. (4)

(iii) Under the same assumptions for Q and f as in (ii), for Q̂ = (Q + Q̃)/2
we have ∣∣R[Q̂; f ]

∣∣ ≤ 1
2
B[Q; f ] .

Proposition 1 implies, in particular, that definite quadrature formulae of odd
order are never symmetrical. The error estimate (4) is especially simple when
Q is of almost Chebyshev type, i.e. almost all weights of Q are equal to each
other. In [1] we constructed definite quadrature formulae of order three with
equidistant nodes which are of almost Chebyshev type. Here we apply a similar
approach to construct definite quadrature formulae of order three with nodes

y0,n = 0, yk,n =
2k − 1

2n
, k = 1, . . . , n, yn+1,n = 1.

Theorem 1. For every n ∈ N, n ≥ 8, the (nodes-symmetrical) quadrature

formula Qn[f ] =
∑n+1

k=0 Ak,n f(yk,n) with coefficients Ak,n =
1
n

, 4 ≤ k ≤ n−3,

A0,n =
−42+41

√
3

162n
, A1,n =

678−203
√
3

432n
, A2,n =

357+199
√
3

648n
, A3,n =

164−13
√
3

144n
,

An−2,n =
225−√

3

216n
, An−1,n =

189+2
√
3

216n
, An,n =

234−√
3

216n
, An+1,n = 0,

is positive definite of order three with the error constant

c3(Qn) =
√

3
216n3

+
169

√
3 − 210

2592n4
.

The reflected quadrature formula Q̃n is negative definite of order three with
the error constant c3(Q̃n) = −c3(Qn). If f is a 3-positive or 3-negative function,
then with Q∗

n standing for either Qn or Q̃n we have the a posteriori error estimate

∣
∣R[Q∗

n; f ]
∣
∣ ≤

∣
∣
∣
41

√
3 − 42

162n

(
f(y0,n) − f(yn+1,n)

) − 67
√
3 − 70

144n

(
f(y1,n) − f(yn,n)

)

+
193

√
3−210

648n

(

f(y2,n)−f(yn−1,n)
) − 37

√
3−42

432n

(

f(y3,n)−f(yn−2,n)
)
∣
∣
∣,
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and for Q̂n = (Qn + Q̃n)/2 the halved a posteriori error estimate holds:
∣
∣R[Q̂n; f ]

∣
∣ ≤

∣
∣
∣
41

√
3 − 42

324n

(

f(y0,n) − f(yn+1,n)
) − 67

√
3 − 70

288n

(

f(y1,n) − f(yn,n)
)

+
193

√
3−210

1296n

(

f(y2,n)−f(yn−1,n)
) − 37

√
3−42

864n

(

f(y3,n)−f(yn−2,n)
)
∣
∣
∣.

The rest of the paper is organized as follows. Section 2 provides some pre-
liminaries. In Sect. 3 we present the proof of Theorem 1. In the construction of
our quadrature formulae we perform some optimization, minimizing their error
constants and trying at the same time to keep almost Chebyshev structure.

2 Preliminaries

By W r
1 = W r

1 [0, 1], r ∈ N, we denote the Sobolev class of functions

W r
1 [0, 1] := {f ∈ Cr−1[0, 1] : f (r−1) abs. continuous,

∫ 1

0

|f (r)(t)| dt < ∞} .

If L is a linear functional defined in W r
1 [0, 1] which vanishes on πr−1, then,

by a classical result of Peano [10], L admits the integral representation

L[f ] =
∫ 1

0

Kr(t)f (r)(t) dt, Kr(t) = L
[ (· − t)r−1

+

(r − 1)!

]
, t ∈ [0, 1] ,

where u+(t) = max{t, 0} , t ∈ R.
In the case L is the remainder R[Q; ·] of a quadrature formula Q with

ADP (Q) ≥ r − 1, the function Kr(t) = Kr(Q; t) is referred to as the r-th Peano
kernel of Q. For Q as in (1), explicit representations for Kr(Q; t), t ∈ [0, 1], are

Kr(Q; t) =
(1 − t)r

r!
− 1

(r − 1)!

n∑
i=0

ai(xi − t)r−1
+ , (5)

Kr(Q; t) = (−1)r
[ tr

r!
− 1

(r − 1)!

n∑
i=0

ai(t − xi)r−1
+

]
. (6)

Since for f ∈ Cr[0, 1] we have R[Q; f ] =
1∫
0

Kr(Q; t) f (r)(t) dt, it is clear that

Q is a positive (negative) definite quadrature formula of order r if and only if
ADP (Q) = r − 1 and Kr(Q; t) ≥ 0 (resp. Kr(Q; t) ≤ 0 ) for all t ∈ [0, 1].

The following is a particular case of the Euler-Maclaurin formula (cf. [3]):

Lemma 1. Assume that f ∈ W 3
1 [0, 1]. Then

I[f ] = QMi
n [f ] +

1
24n2

[
f ′(1) − f ′(0)

] − 1
n3

1∫

0

B̃3

(
nx − 1

2

)
f (3)(x) dx, (7)

where B̃3 is the 1-periodic extension of B3(x) =
x3

6
− x2

4
+

x

12
, the Bernoulli

polynomial of degree three. Moreover,
∣∣B̃3(x)

∣∣ ≤
√

3
216

for every x ∈ R.
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3 Proof of Theorem 1

We rewrite formula (7) in Lemma 1 in the following form:

I[f ] = QMi
n [f ] +

1
24n2

[
f ′(1) − f ′(0)

] −
√

3
216n3

[
f ′′(1) − f ′′(0)

]

+
1
n3

1∫

0

( √
3

216
− B̃3

(
nx − 1

2
))

f (3)(x) dx =: Q̄[f ] + R[Q̄; f ] ,

Q̄[f ] = QMi
n [f ] − 1

24n2
f ′(0) +

√
3

216n3
f ′′(0) +

1
24n2

f ′(1) −
√

3
216n3

f ′′(1) . (8)

According to Lemma 1, Q̄ is a positive definite quadrature formula, though
not of the desired type as it involves values of integrand’s derivatives. We approxi-
mate the derivatives values at the end-points appearing in Q̄ by pairs of formulae
for numerical differentiation involving values at the closest nodes. The reason for
not using single formulae for numerical differentiation is that it is not a priory
clear whether they will result in a positive definite quadrature formula, so we
need some flexibility to achieve definiteness.

Thus, f ′(0) and f ′′(0) are approximated as follows:

f ′(0) ≈ n

3
[ − 8f(y0,n) + 9f(y1,n) − f(y2,n)

]
=: D1,1[f ] ,

f ′(0) ≈ n
[ − 2f(y1,n) + 3f(y2,n) − f(y3,n)

]
=: D1,2[f ] ,

f ′′(0) ≈ n2

3
[
8f(y0,n) − 12f(y1,n) + 4f(y2,n)

]
=: D2,1[f ] ,

f ′′(0) ≈ n2
[
f(y1,n) − 2f(y2,n) + f(y3,n)

]
=: D2,2[f ] .

For α, β ∈ R, we set

Dα
1 [f ] := αD1,1[f ] + (1 − α)D1,2[f ] , Dβ

2 [f ] := βD2,1[f ] + (1 − β)D2,2[f ] .

We approximate f ′(1) and f ′′(1) by D̃1,i[f ] and D̃2,i[f ], which are the
reflected formulae for numerical differentiation D1,i and D2,i, i = 1, 2, precisely,

D̃1,i[f ] = D1,i[g] , g(x) = −f(1 − x) , D̃2,i[f ] = D2,i[h] , h(x) = f(1 − x) .

For γ, δ ∈ R, we set

D̃γ
1 [f ] := γD̃1,1[f ] + (1 − γ)D̃1,2[f ] , D̃δ

2[f ] := δD̃2,1[f ] + (1 − δ)D̃2,2[f ] .

Note that the functionals L1[f ] := f ′(0) − Dα
1 [f ], L2[f ] := f ′′(0) − Dβ

2 [f ],
L̃1[f ] := f ′(1) − D̃γ

1 [f ] and L̃2[f ] := f ′′(1) − D̃δ
2[f ] vanish on π2, hence the

replacement of f ′(0) , f ′′(0) , f ′(1) and f ′′(1) in (8) with Dα
1 [f ] , Dβ

2 [f ] , D̃γ
1 [f ]

and D̃δ
2[f ], respectively, yields a quadrature formula

Q[f ] := Qn[α, β, γ, δ; f ] =
n+1∑
k=0

Ak,nf(yk,n) , (9)
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which evaluates I[f ] to the exact value whenever f ∈ π2. Assuming that n ≥ 8,
we have Ak,n = 1/n for 4 ≤ k ≤ n − 3. It is not difficult to see that {Ak,n}3k=0

depend on a single parameter, say θ, while {Ak,n}n+1
k=n−2 depend on another

single parameter, say 	, where θ := 9α +
√

3β, 	 := 9γ − √
3δ. Specifically,

A0,n =
θ

81n
, A1,n =

234+
√
3−5θ

216n
, A2,n =

567−6
√
3+10θ

648n
, A3,n =

225+
√
3−θ

216n
,

An−2,n=
225−√

3−�

216n
, An−1,n=

567+6
√
3+10�

648n
, An,n=

234−√
3−5�

216n
, An+1,n=

�

81n
.

A closer look at Q = Qn[α, β, γ, δ] and its third Peano kernel shows that

R[Q; f ] = R[Q̄; f ] − 1
24n2

L1[f ] +
√

3
216n3

L2[f ] +
1

24n2
L̃1[f ] −

√
3

216n3
L̃2[f ] ,

K3(Q; t) = K3(Q̄; t)− 1
24n2

[
K3(L1; t)−K3(L̃1; t)

]
+

√
3

216n3

[
K3(L2; t)−K3(L̃2; t)

]
.

From the definition of the Peano kernels, we see that K3(L1; ·) and K3(L2; ·)
vanish identically on the interval [y3,n, 1] while K3(L̃1; ·) and K3(L̃2; ·) vanish
identically on the interval [0, yn−2,n ] . Hence,

K3(Q; t) = K3(Q̄; t) = n−3
[ √

3
216

− B̃3

(
n t − 1

2

)]
≥ 0 , t ∈ [y3,n, yn−2,n]

and we need to verify condition K3(Q; t) ≥ 0 only on [0, y3,n] and [yn−2,n, 1].
Assuming this condition is satisfied, for the error constant of Q we have

c3(Q) =
∫ y3,n

0

K3(Q; t) dt +
∫ 1

yn−2,n

K3(Q; t) dt +
√

3(n − 5)
216n4

, (10)

the last summand being the integral of K3(Q; ·) on the interval [y3,n, yn−2,n] .
We aim to minimize the integrals in (10) with respect to parameters θ and

	 subject to the requirement K3(Q; t) ≥ 0 on [0, y3,n] and [yn−2,n, 1] .

3.1 Positivity of K3(Q; t) on [0, y3,n ]

Applying formula (6) for Peano kernels with r = 3, after the change of variable
t = u/n we arrive at the following representation of K3(Q; t) for t ∈ [0, y3,n]:

K3(Q; t) =− 1
6n4

[
u3− θ

27
u2− 234+

√
3−5θ

72

(
u− 1

2

)2

+
− 576−6

√
3+10θ

216

(
u− 3

2

)2

+

−225+
√

3− θ

72

(
u− 5

2

)2

+

]
=: − 1

6n4
ϕ(θ;u) = − 1

6n4
ϕ(u) .

We have the equivalence K3(Q; t) ≥ 0, t ∈ [0, y3,n] ⇔ ϕ(u) ≤ 0, u ∈ [0, 5/2].
Assuming ϕ(u) ≤ 0, u ∈ [

0, 5/2
]
, we find

∫ y3,n

0

K3(Q; t) dt = − 1
6n4

∫ 5
2

0

ϕ(u) du =
−387 + 48

√
3 + 40θ

10368n4
. (11)
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To minimize c3(Q), in view of (10), we need to find the smallest value of θ
ensuring that ϕ(u) ≤ 0, u ∈ [

0, 5/2
]
. We consider separately three cases.

Case 1: u ∈ [0, 1/2]. In this case ϕ(u) =
1
27

u2(27u − θ) and condition

ϕ(u) ≤ 0, u ∈ [0, 1/2] is equivalent to θ ≥ 27
2

.

Case 2: u ∈ [1/2, 3/2]. We set v = u − 1
2 , v ∈ [0, 1], then

ϕ(u) = u3 − θ

27
u2 − 234 +

√
3 − 5θ

72

(
u − 1

2

)2

= v3 − 126 +
√

3
72

v2 +
3
4
v +

1
8

+
θ

216
(7v2 − 8v − 2) =: ϕ1(v) .

Since 7v2 − 8v − 2 < 0 for all v ∈ [0, 1] , it follows that ϕ(u) < 0 for every
u ∈ [1/2, 3/2] provided θ is big enough; in addition, if the latter condition holds
for some θ0, it will hold also for all θ > θ0. The smallest value of θ such that
ϕ1(v) ≤ 0 for all v ∈ [0, 1] should be such that ϕ1 has a double zero in (0, 1),
i.e. θ is a zero of D(ϕ1), the discriminant of ϕ1. Using Wolfram’s Mathematica,
we find D(ϕ1), which is a quintic polynomial of θ with four distinct real zeros:
θ1 = −53.4866..., θ2 = 5.4754..., θ3 = 14.5060... and θ4 = 47.1464... For θ = θ3
the polynomial ϕ1 has the maximum value in [0, 1], which is equal to zero.
Therefore, this case imposes the restriction θ ≥ θ3.

Case 3: u ∈ [1/2, 3/2]. We set v = u − 3
2 , v ∈ [0, 1], and obtain

ϕ(u) = u3 − θ

27
u2 − 234 +

√
3 − 5θ

72

(
u − 1

2

)2

− 576 − 6
√

3 + 10θ
216

(
u − 3

2

)2

=
1
72

[
72v3 + (

√
3 − 99) v2 + 2(9 −

√
3) v + 9 −

√
3 − θ(v + 1)2

]
=: ϕ2(v).

Similarly to Case 2, with Wolfram’s Mathematica we find that ϕ2(v) ≤ 0 for
θ ≥ θ̃1 = 10.7321, where θ̃1 is the smallest zero of the discriminant D(ϕ2) of
ϕ2, i.e. the optimal value of θ in Case 3 is θ̃1 = 10.7321.

Summarizing the three cases considered above, we see that the optimal value
of θ ensuring that ϕ(θ;u) ≤ 0 for all u ∈ [0, 5/2] , is θ = θ3. Our choice is a

slightly greater value, θ∗ =
41

√
3 − 42
2

≈ 14.5070, allowing “exact” expressions
for the first four coefficients of the quadrature formula in Theorem 1.

3.2 Positivity of K3(Q; t) on [yn−2,n , 1]

We apply (5) with r = 3 and Q being quadrature formula (9) to obtain:

K3(Q; t)=
(1−t)3

6
− 1

2

n+1∑
k=0

Ak,n(yk,n−t)2+=
(1−t)3

6
− 1

2

n+1∑
k=0

Ak,n(1−t−yn+1−k,n)2+

{x=1−t}
=

x3

6
− 1

2

n+1∑
k=0

An+1−k,n(x − yk,n)2+ := K̃3(Q;x) .
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We have, with ψ(u) = ψ(	;u) given by

ψ(u) = u3 − 	

27
u2 − 234 − √

3 − 5	

72

(
u − 1

2

)2

+
− 576 + 6

√
3 + 10	

216

(
u − 3

2

)2

+
,

∫ 1

yn−3,n

K3(Q; t) dt =
∫ y3,n

0

K̃3(Q;x) dx
{x=u/n}

=
1

6n4

∫ 5
2

0

ψ(	;u) du.

By a straightforward calculation we obtain
∫ 1

yn−2,n

K3(Q; t) dt =
387 + 48

√
3 − 40	

10368n4
. (12)

From the equivalence K3(Q; t) ≥ 0, t ∈ [yn−2,n, 1] ⇔ ψ(	;u) ≥ 0, u ∈ [0, 5/2],
we see that, to minimize the error constant c3(Q) , we need to find the largest
	 such that ψ(	;u) ≥ 0 for all u ∈ [0, 5/2]. Since ψ(	;u) = u2

(
u − �

27

)
for

u ∈ [0, 1/2], a necessary condition is 	 ≤ 0. It is easily verified that the choice
	 = 	∗ = 0 is optimal, as it secures the non-negativity of ψ on [0, 5/2].

We observe that, with the (almost) optimal choice (θ, 	) = (θ∗, 	∗), quadra-
ture formula (9) coincides with the one in Theorem 1. Its error constant is easily
evaluated from (10)–(12). This proves the first part of Theorem 1. The second
part of Theorem 1 is a direct consequence of Proposition 1.
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1 Introduction: Symbolic Integration of Differential
Equation and the Progress in Numerical Methods

Many problems which we try to solve in finite terms have arisen many centuries
ago. The numerical methods of the last centuries dictated their formulations.
For example, we study the compass-and-straightedge constructions but we have
not used these devices for a long time.

In the studies of Galois differential theory [1], we use the concept of elemen-
tary functions. In the time of Liouville, when these studies were initiated, the
functions have been considered elementary if their tables of values were available
for common use. But at present, this class of functions is much narrower than
the set of functions, for which the computation algorithms are implemented in
all systems of computer algebra. Thus, now Galois differential theory seems to
be mostly of historical interest.

In XIX century the power series were really used for the numerical integra-
tion of the differential equations. Therefore mathematicians of the XIX century
have allocated those functions which can be presented by power series [2]. The
main idea can be stated as follows: the elementary functions and the higher tran-
scendental functions are such solutions of autonomous system of the differential
equations

ẋ = F (x), F ∈ Q[x], (1)

which can be calculated by means of power series for all values of variable t.
The elementary functions (like exp t, sin t, cos t) are such solutions which can

be represented by power series everywhere. The solutions of any system of the
linear differential equations can be represented by power series which converge
everywhere, but all these solutions are expressed with the help of the solution
of the scalar equation ẋ = x, known as exp t.

The higher transcendental functions are such solutions of autonomous sys-
tems of the differential equations, which can be represented as a ratio of two
power series

x1 =
a0 + a1t + a2t

2 + . . .

b0 + b1t + b2t2 + . . .
,

which converge for all values of t. This means that x is a meromorphic function
of t and the system has the Painlevé property.

Example 1. The Jacobi elliptic functions

p = sn t, q = cn t, r = dn t

are the solution of the nonlinear system
⎧
⎪⎨

⎪⎩

ṗ = qr

q̇ = −pr

ṙ = −k2pq

(2)
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with initial conditions
p = 0, q = r = 1at t = 0.

These functions can be represented everywhere as ratios of two power series.

In analytical theory of ODEs the notion of integration in finite terms means:

– constructing the algebraic substitution which reduces the initial system to a
system with the Painlevé property;

– searching the symbolic expression for the solution in elementary or higher
transcendental functions.

Anyway we can see the reference to the computational techniques of the past
centuries.

A modern method for integration of an autonomous system of differential
equations is the finite differences method (FDM). We believe that all transcen-
dental functions can be considered as solutions of such differential equations,
for which the application of the finite difference method is particularly efficient
[3,4]. In the present report, we would like to consider one of the most important
classes of such functions, namely, the elliptic functions.

2 Notations

Consider the autonomous system of the differential equations (1) on the interval
0 ≤ t ≤ T with the initial condition x|t=0 = x0. We divide the interval [0, T ]
into parts with step Δt by the points t1, . . . tN−1 and take t0 = 0 and tN = T .
The value of the approximate solution at t = tn is designated as xn and the
value of the exact solution is designated as x(tn). FDM suggests replacing the
original system of differential equations with algebraic equations (scheme) of the
form

F (x, x̂;Δt) = 0

in the commonly used notations [5]. This equation defines algebraical correspon-
dence between the neighboring layers x and x̂, which are usually investigated as
points on two affine or projective spaces.

3 Totally Conservative Difference Schemes

Since the difference scheme is a system of algebraical equations, we can conserve
algebraical properties of the exact solution. However standard explicit schemes
don’t conserve algebraic integrals of motion.

Example 2. The system (2) has two quadratic integrals

p2 + q2 = const, and k2p2 + r2 = const.

The standard scheme of Runge-Kutta does not conserve them.



238 E. A. Ayryan et al.

Definition 1. The differential scheme

F (x, x̂;Δt) = 0 (3)

is called totally conservative iff for any algebraical integral u(x) the equation

u(x̂) = u(x)

is a consequence of the system (3).

Note 1. The equality is conserved precisely if transition from one layer to another
layer becomes precise, without rounding errors.

Note 2. Modern systems of computer algebra can’t find all algebraic integrals
for a given system. All realized algorithms, for example, our package Lagutinski
for Sage [6], can find all rational integrals if the user indicates a bound for the
degree of required integrals.

By the theorem of Cooper, the implicit midpoint rule

x̂ − x

Δt
=

F (x̂) + F (x)
2

automatically inherits each quadratic conservation law [7]. If the field of alge-
braical integrals of a dynamic system is generated by quadratic forms, then the
implicit midpoint rule is totally conservative.

Example 3. All algebraic integrals of motion for the system (2) of Example 2
are quadratic forms, thus, the implicit midpoint rule gives totally conservative
scheme for Jacobi elliptic functions. Although this scheme is implicit, and for
transition to the next layer we have to solve a system of algebraic equations,
calculations are easily feasible on the modern computer. Furthermore, we have
solved this system of algebraic equations without uncontrollable error of numer-
ical methods by Gröbner basis technique. For transition we have solved numer-
ically univariable equations of the 5th degree.

The implicit nature of the scheme is the main difficulty for theoretical inves-
tigations and also for practical computations.

Problem 1. Given a system of differential equations (3) and algebraic integrals of
motions, construct an explicit difference scheme, exactly conserving the integrals
of motion.

Here we give the solution for the case when the integrals of motion specify a
curve in the space V, where x varies.

Example 4. The two quadratic integrals for the system (2) specify an elliptic
curve in the space Opqr. All layers coincide with this curve, exact solution define
an automorphism of this curve and totally conservative scheme also defines an
algebraic correspondence on this curve.
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Theorem 1. If the integrals of motion specify a curve of genus ρ > 1 in the
space V, then totally conservative explicit schemes do not exist.

Proof. For the proof we can use Zeuthen theorem [8, Sect. 65]. Let there be an
algebraic correspondence between curves C1 and C2,

– a general point P1 at the curve C1 corresponds to α2 various points at the
curve C2, and a general point P2 at the curve C2 corresponds to α1 various
points at the curve C1;

– η1 is the number of the coincidences of two points P1 corresponding to a point
P2 at the curve C2, and similarly η2 is the number of the coincidences of two
points P2;

– ρi is the genus of the curve Ci, i = 1, 2.

These numbers are connected by Zeuthen formula

η2 − η1 = 2α1(ρ2 − 1) − 2α2(ρ1 − 1).

If the integrals of motion specify a curve C in the space V, any totally con-
servative difference scheme defines an algebraic correspondence between layers
C1 = C and C2 = C. This scheme is explicit iff a general point P1 in the first
layer corresponds to one point in the second layer, thus

α2 = 1, η2 = 0.

By Zuethen formula
−η1 = 2(α1 − 1)(ρ − 1),

which is possible iff α1 = 1. This means that the correspondence is birational
automorphism.

Difference scheme has natural parameter Δt, thus it defines an one-
parametric family of birational automorphisms. This is imposible, because by
Hurwitz theorem the number N of all birational automorphisms of a curve with
the genus ρ > 1 is finite [9].

In general, a curve of degree equal or higher than 4 has a genus ρ > 1, thus
there aren’t totally conservative explicit schemes by purely geometric reasons.
There are only two cases when the system (1) can be discretized by explicit
totally conservative scheme:

– if the integrals specify an elliptic curve (the genus is equal to 1),
– if the integrals specify an unicursal curve (the genus is equal to 0).

Our example with Jacobi elliptic functions belongs to the first case.

Theorem 2. Any explicit totally conservative difference scheme with elliptic
layers defines birational automorphism and can be written as

x̂∫

x

Hdx1 = λ(Δt),

where Hdx1 is the differential form of the first kind.
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Sketch of proof. For explicit scheme, x̂ is a rational function of x,

x̂∫

o

Hdx1 = α(Δt) ·
x∫

o

Hdx1 + β(Δt).

Here α is an algebraic function without singularities, that is a constant. At
Δt = 0 the automorphism is identity, thus α = 1.

Example 5. The differential form of the first kind on the curve

p2 + q2 = const and k2p2 + r2 = const

is equal to dp
qr , thus the explicit totally conservative scheme (if it exists) can be

written as
(p̂,q̂,r̂)∫

(p,q,r)

dp

qr
= λ(Δt). (4)

The exact solution is described also as

(p̂,q̂,r̂)∫

(p,q,r)

dp

qr
= Δt.

By additions theorem for Jacobi functions we can write Eq. (4) in the algebraical
form as ⎧

⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

p̂ =
p cn λ dn λ − sn λqr

1 − k2p2 sn2 λ

q̂ =
q cn λ − sn λ dn λpr

1 − k2p2 sn2 λ

r̂ =
r dn λ − k2 sn λ cn λpq

1 − k2p2 sn2 λ
.

Thus, sn λ has to be an algebraical function of Δt and hasn’t to be equal to
sn Δt. The difference scheme approximates the differential equations iff

λ = Δt + O(Δt2),

and thus

sn λ = Δt, cn λ =
√

1 − Δt2, dn λ =
√

1 − k2Δt2.

This difference scheme gives us exactly Gudermann’s method for calculation of
the elliptic functions [10, Abh. 1].
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4 Totally Periodic Schemes

As is known, the elliptic functions are periodic and the scheme from Example 5
is also periodic in some sense.

Definition 2. A difference scheme is called totally periodic if there is a sequence{
Δtn ∈ Q

}
such that xn = x0, where {xm}Nm=0 is the approximate solution at

Δt = Δtn.

For explicit totally conservative scheme we have

xn = x0 ⇒ nλ =

x0∫

x0

Hdx1 = 4K.

For the scheme from Example 5 sn λ = Δt, thus Δtn = sn 4K
n and therefore our

scheme is totally periodic. Furthermore, we have calculated Δtn at n = 2s by
formulas of a half corner (Fig. 1).

Fig. 1. Graph of sn(t, 1
2
) and points found by the totally periodic scheme at n = 26.

In Definition 2 n is the number of points per period and nΔtn is the period
of the approximate solution. Obviously, if nΔtn → T , then the number T is the
period of the exact solution. In our example the approximate period is equal to

nΔtn = n sn
4K

n
= 4K − k2 + 1

6
43K3

n2
+ O

(
1
n4

)

.

Thus our difference scheme conserves exact the periodical nature of motion, but
we calculate the value of the period with a small error.
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5 Conclusion: What Are Elliptic Functions?

The elliptic functions can be considered as solutions of such differential equa-
tions, for which we can write a very good difference scheme. This scheme is

– explicit, that is, calculations don’t require the solution of nonlinear equations,
– totally conservative, that is, all algebraical integrals of motion are conserved

exactly,
– totally periodic, that is, the periodical nature of the motion is conserved

exactly and value of the period is conserved with small error.

In general, an autonomous system with algebraical integrals can’t be approxi-
mated by explicit totally conservative difference scheme.
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Abstract. By applying well-known techniques such as the Gershgorin
Circle Theorem and the Euler-Rayleigh method (the latter assisted by
some computer algebra), we obtain new bounds for the extreme zeroes
of the n-th Laguerre polynomial. It turns out that these bounds are
competitive to some of the known best bounds.

Keywords: Extreme zeros of Laguerre polynomials
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1 Introduction and Statement of the Results

The n-th degree Laguerre polynomial L
(α)
n is given by the explicit formula

L(α)
n (x) =

n∑

ν=0

(−1)ν

(
n + α

n − ν

)
xν

ν!
. (1)

Since L
(α)
n is orthogonal on (0,∞) with respect to the Laguerre weight function

wα(x) = xαe−x, α > −1, its zeros are positive and simple. Throughout this
paper,

x1n(α) < x2n(α) < · · · < xnn(α)

will stand for the zeros of L
(α)
n . We are interested in bounds for x1n(α) and

xnn(α), the extreme zeros of L
(α)
n . Following the terminology from [5], we call

inside bounds the upper bounds for x1n(α) and the lower bounds for xnn(α),
while the lower bounds for x1n(α) and the upper bounds for xnn(α) are called
outside bounds.

Let us give a brief account on the known bounds for the extreme zeros of
L
(α)
n , which do not involve zeros of the Bessel function. We start with an upper

bound for xnn(α) due to Szegő [12, Theorem 6.31.2]:

xnn(α) < 2n + α + 1 +
√

(2n + α + 1)2 + 1/4 − α2 , α > −1 . (2)
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In [9] Ismail and Li developed a powerful tool for estimation of the extreme zeros
of orthogonal polynomials, in particular, they proved that all the zeros of L

(α)
n

are in the interval with endpoints

2n + α − 2 ±
√

1 + 4(n − 1)(n + α − 1) cos2
π

n + 1
.

Krasikov [10] proved the following outside bounds, valid for α ≥ 8 and n ≥ 7:

x1n(α) > s − r +
(s − r)2/3

2r1/3
, (3)

xnn(α) < s + r +
(s + r)2/3

2r1/3
, (4)

where s = 2n + α + 1 and r =
√

4n2 + 2(α + 1)(2n − 1) .
Dimitrov and Nikolov [3] proved further outside bounds, valid for all α > −1:

x1n(α) >
2n2 + (α − 1)n + 2(α + 1) − 2(n − 1)

√
n2 + (α + 1)(n + 2)

n + 2
,

xnn(α) <
2n2 + (α − 1)n + 2(α + 1) + 2(n − 1)

√
n2 + (α + 1)(n + 2)

n + 2
.

Turning towards the inside bounds, let us mention the upper bounds

x1n(α) <
(α + 1)(α + 2)

n + α + 1
, (5)

x1n(α) <
(α + 1)(α + 3)

2n + α + 1
, (6)

x1n(α) <
(α + 1)(α + 2)(α + 4)(2n + α + 1)

(5α + 11)n(n + α + 1) + (α + 1)2(α + 2)
, (7)

obtained respectively by Hahn [7], Szegő [12, Eq. 6.31.12] and Gupta and Mul-
doon [6], as well as the upper bound for x1n(α):

(α + 2)2(3n + 2α + 2) −
√

(α+2)2
[
9(α+2)2 + 2(2α+5)(α2+5α+10)(n−1) + (5α2+25α+38)(n−1)2

]

2(n + α + 1)2

(8)
proved by Driver and Jordaan [4] (as usual, (β)k := β(β + 1) · · · (β + k − 1)).

Finally, we quote the following lower bounds for xnn(α), α > −1:

xnn(α) > 4n + α − 16
√

2n , (9)
xnn(α) > 3n − 4 , (10)
xnn(α) > 2n + α − 1 , (11)

xnn(α) > 2n + α − 2 +
√

n2 − 2n + αn + 2 , (12)

due to Bottemma [1], Neumann [11], Szegő [12, Eq. 6.2.14], and Driver and
Jordaan [4], respectively.

Here we prove the following bounds for the extreme zeros of L
(α)
n :
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Theorem 1. For all α > −1 and n ≥ 6, the smallest zero x1n(α) of the Laguerre
polynomial L

(α)
n satisfies the inequalities:

(i) x1n(α) <
(α+1)(α+5)[(5α+11)n(n+α+1)+(α+1)2(α+2)]
(2n+α+1)[(7α+19)n(n+α+1)+(α+1)2(α+2)] ;

(ii) x1n(α) >
(

(α+1)5(α+2)2(α+3)(α+4)(α+5)
n(n+α+1)(2n+α+1)[(7α+19)n(n+α+1)+(α+1)2(α+2)]

)1/5

.

Theorem 2. For all α > −1, the following are lower bounds for the largest zero
xnn(α) of the Laguerre polynomial L

(α)
n :

(i) 3n + α − 2 − (n−1)n
2n+α+1 , n ≥ 3 ;

(ii) 4n + α − 3 − 2(n−1)n(3n+2α−2)
5n2+(5α−6)n+(α−1)(α−2) , n ≥ 4 ;

(iii) 5n + α − 4 − (n−1)n[28n2+(35α−43)n+10α2−28α+18]
14n3+(21α−29)n2+(9α2−29α+22)n+(α−1)(α−2)(α−3) , n ≥ 5;

(iv) 6n + α − 5 − r(n, α) , n ≥ 6 , where

r(n, α)=
4(n−1)n

[
30n3+(54α−77)n2+(30α2−95α+72)n+(α−1)(α−2)(5α−12)

]

42n4+(84α−130)n3+(56α2−195α+165)n2+(14α3−85α2+165α−100)n+(α−1)(α−2)(α−3)(α−4).

Theorem 3. For all α ≥ 0 and n ≥ 4, the extreme zeros of the Laguerre poly-
nomial L

(α)
n satisfy the inequalities:

x1n(α) ≥ 1
2
[(√

n − 2 + α − √
n − 2

)2 +
(√

n − 1 + α − √
n − 1

)2] ; (13)

xnn(α) ≤ 1
2
[(√

n − 2 + α +
√

n − 2
)2 +

(√
n − 1 + α +

√
n − 1

)2]
. (14)

Let us make a short comment on how our results compare with some of the
bounds quoted above. Theorem 1(i) certainly improves inequalities (5)–(8). The
two-sided bounds for x1n(α) in Theorem 1 are especially sharp for small α, in
particular they imply limα→−1

x1n(α)
α+1 = 1

n . The bounds for xnn(α) in Theorem 2

are listed with increasing sharpness from (i) to (iv). Since limα→∞
xnn(α)

α = 1
(compare, e.g., (2) and (9)), all these bounds are asymptotically sharp when n
is fixed and α grows. For such n and α, (iv) compares favorably with the bounds
(10)–(12); moreover, (iv) compares favorably with (11) and (12) when α is fixed
and n is large, see Corollary 1 in the next section. Regarding the outside bounds
in Theorem 3, (14) both improves and extends for a wider range of n and α the
Krasikov upper bound (4). Estimate (13) is weaker than Krasikov’s lower bound
(3) but holds for a wider range of n and α.

The rest of this paper is organized as follows. In Sect. 2 a short description of
the Euler-Rayleigh method is given, and then this method is applied for proving
Theorems 1 and 2. The proof of Theorem 3 is based on the Gershgorin Circle
Theorem, and is given in Sect. 3.

2 Proof of Theorems 1 and 2

As was already mentioned, our proof of Theorems 1 and 2 exploits the so-called
Euler-Rayleigh method. This method has been described in details by Ismail
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and Muldoon [8], where the interested reader may find also some facts about
its history. This method has been originally designed for the estimation of the
(modulus of) smallest zero of entire functions having only real roots {xi}∞

i=1 such
as the Bessel functions and alike, therefore it deals with sums of powers of the
reciprocal of these roots, Sk =

∑∞
i=1 x−k

i , k ∈ N. Here Euler-Rayleigh method is
applied to real-root polynomials, and we prefer to work with power sums of the
roots rather than their reciprocals. The necessary details are given below.

Let P be a monic polynomial of degree n with zeros {xi}n
i=1,

P (x) = xn − b1 xn−1 + b2 xn−2 − · · · + (−1)nbn =
n∏

i=1

(x − xi) . (15)

For k ∈ N0, the power sums pk = pk(P ) :=
∑n

i=1 xk
i , with p0 = n = deg P , and

the coefficients {bi}n
i=1 of P are connected by the Newton identities (cf. [13])

pr +
min{r−1,n}∑

i=1

(−1)ipr−i bi + (−1)rr br = 0 , (bi = 0 , i > n) .

On using Newton’s identities, one easily obtains the following lemma:

Lemma 1. The following formulae hold for pr, 1 ≤ r ≤ 6, assuming n ≥ r:

p1 = b1 ;

p2 = b21 − 2b2 ;

p3 = b31 − 3b1b2 + 3b3 ;

p4 = b41 − 4b21b2 + 4b1b3 + 2b22 − 4b4 ;

p5 = b51 − 5b31b2 + 5b21b3 + 5b1b
2
2 − 5b1b4 − 5b2b3 + 5b5 ;

p6 = b61 − 6b41b2 + 6b31b3 + 9b21b
2
2 − 6b21b4 − 12b1b2b3 + 6b1b5 − 2b32 + 3b23 + 6b2b4 − 6b6.

Let us set

�k(P ) :=
pk(P )

pk−1(P )
, uk(P ) :=

[
pk(P )

]1/k
, k ∈ N .

The following statement is a slight modification of Lemma 3.2 in [8].

Proposition 1. Let P be a monic polynomial of degree n with positive zeros
x1 < x2 < · · · < xn . Then the largest zero xn of P satisfies the inequalities

�k(P ) < xn < uk(P ) , k ∈ N . (16)

Moreover, {�k(P )}∞
k=1 is monotonically increasing, {uk(P )}∞

k=1 is monotoni-
cally decreasing, and

lim
k→∞

�k(P ) = lim
k→∞

uk(P ) = xn . (17)

For the reader convenience, we sketch the proof.
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Proof. For i = 1, . . . , n − 1 , we set ti := xi

xn
, then 0 < ti < 1 . Inequalities (16)

and the limit relations (17) now readily follow from the representations

�k(P ) =
tk1 + · · · + tkn−1 + 1

tk−1
1 + · · · + tk−1

n−1 + 1
xn , uk(P ) =

(
tk1 + · · · + tkn−1 + 1

)1/k
xn .

The latter representation of uk(P ) together with 0 < ti < 1 implies the mono-
tonicity of {uk(P )}∞

k=1. The monotonicity of {�k(P )}∞
k=1 is a consequence of the

inequality p2k(P ) ≤ pk−1(P ) pk+1(P ), which follows from the Cauchy-Schwarz
inequality. ��

2.1 Proof of Theorem 1

Let P be the reciprocal polynomial of L
(α)
n with leading coefficient 1, then P has

zeroes xi = 1/xn+1−i,n(α), i = 1, . . . , n. Writing P (x) in the form,

P (x) = xnL(α)
n (x−1)/

(
n + α

n

)
= xn +

n∑

i=1

(−1)n−ibix
n−i ,

we deduce from (1) that the coefficients {bi} are given by

bi =
(

n

i

)
Γ (α + 1)

Γ (n + 1 − i + α)
, i = 1, . . . , n.

We apply Lemma 1 to evaluate the power sums pk(P ), k = 1, . . . , 5, and find
with the help of the Wolfram Mathematica:

p1 =
n

α + 1
;

p2 =
n(n + α + 1)

(α + 1)2(α + 2)
;

p3 =
n(n + α + 1)(2n + α + 1)

(α + 1)3(α + 2)(α + 3)
;

p4 =
n(n + α + 1)

[
(5α + 11)n(n + α + 1) + (α + 1)2(α + 2)

]

(α + 1)4(α + 2)2(α + 3)(α + 4)
;

p5 =
n(n + α + 1)(2n + α + 1)

[
(7α + 19)n(n + α + 1) + (α + 1)2(α + 2)

]

(α + 1)5(α + 2)2(α + 3)(α + 4)(α + 5)
.

From Proposition 1 we infer

xn =
1

x1n(α)
> �k(P ) =

pk(P )
pk−1(P )

⇒ x1n(α) <
pk−1(P )
pk(P )

, k = 2, . . . , 5 .

The case k = 5 is the claim of Theorem 1(i), while the cases k = 2, 3 and 4
reproduce correspondingly inequalities (5), (6) and (7), i.e., the results of Hahn
[7], Szegő [12, Eq. 6.31.12], and Gupta and Muldoon [6]. Theorem 1(i) improves
all these results, since, according to the last claim of Proposition 1, the bounds
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obtained with larger k in the Euler-Rayleigh method are sharper; it improves
also the result of Driver and Jordaan (8), as in [5] these authors observe that
(7) compares favorably with (8).

Proposition 1 implies also the inequalities

xn =
1

x1n(α)
< uk(P ) =

[
pk(P )

]1/k ⇒ x1n(α) >
1

[
pk(P )

]1/k
, k = 1, . . . , 5.

The claim of Theorem 1(ii) corresponds to the case k = 5. Note that, according
to Proposition 1, the inequalities obtained with k = 1, . . . , 4 are less precise. ��

2.2 Proof of Theorem 2

We rewrite (1) in the form L
(α)
n (x) = (−1)n

n! P (x), where

P (x) = xn +
n∑

i=1

(−1)n−ibi xn−i , bi =
(

n

i

)
Γ (n + α + 1)
Γ (i + α + 1)

, i = 1, . . . , n .

We apply Lemma 1 with the above coefficients {bi} to evaluate the power
sums pk(P ), k = 1, . . . , 6. With the assistance of Wolfram Mathematica we find:

p1 = n(n + α) ;

p2 = n(n + α)(2n + α − 1) ;

p3 = n(n + α)
[
5n2 + (5α − 6)n + (α − 1)(α − 2)

]
;

p4 = n(n + α)
[
14n3 + (21α − 29)n2 + (9α2 − 29α + 22)n + (α − 1)(α − 2)(α − 3)

]
;

p5 = n(n + α)
[
42n4 + (84α − 130)n3 + (56α2 − 195α + 165)n2

+ (14α3 − 85α2 + 165α − 100)n + (α − 1)(α − 2)(α − 3)(α − 4)
]
;

p6 = n(n + α)
[
132n5 + (330α − 562)n4 + (300α2 − 1124α + 1044)n3

+ (120α3 − 757α2 + 1566α − 1041)n2

+ (20α4 − 195α3 + 692α2 − 1041α + 548)n

+ (α − 1)(α − 2)(α − 3)(α − 4)(α − 5)
]
.

Proposition 1 implies that xn = xnn(α), the largest zero of P , satisfies

xnn(α) > �k(P ) =
pk(P )

pk−1(P )
, k = 2, 3, 4, 5, 6 ,

with {pk}6k=1 as given above, and the inequalities with larger k are stronger.
Employing again Mathematica, we find that claims (i)-(iv) of Theorem 2 cor-
respond to the cases k = 3, 4, 5, 6 of the above inequality. Note that the case
k = 2 implies Szegő’s bound (11). ��
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The following is a consequence of Theorem 2, verified with Mathematica:

Corollary 1. For every α > 1 and for k = 2, 3, . . . , 6, the largest zero xnn(α)
of the Laguerre polynomial L

(α)
n satisfies the inequalities

xnn(α) >
4k − 2
k + 1

n + α − k + 1 , n ≥ k. (18)

Clearly, (18) with k = 6 compares favorably with the estimates (10)–(12).
We conjecture that inequality (18) holds true for every k ∈ N, k ≥ 2.

Having {pk(P )}6k=1 at our disposal, we may apply Proposition 1 for deriv-
ing upper bounds for xnn(α) through the inequalities xnn(α) ≤ [

pk(P )
]1/k.

However, since pk(P ) = O(nk+1), the rates of the resulting upper bounds are
O(n1+1/k) while xnn(α) = O(n) as n → ∞.

3 Proof of Theorem 3

The monic Laguerre polynomials
{
L̂
(α)
n

}
satisfy the three term recurrence rela-

tion (cf. [2, Eq. (2.30)]

L̂(α)
n (x) = (x−2n−α+1)L̂(α)

n−1(x)− (n−1)(n+α−1)L̂(α)
n−2(x), n ≥ 1, (19)

with L̂
(α)
−1 := 0 and L̂

(α)
0 := 1. Assuming α ≥ 0, we can rewrite the recurrence

formula (19) in the form det(xEn − An) = 0, where En is the n × n identity
matrix, and An is a symmetric tri-diagonal matrix,

An =

⎛

⎜⎜⎜⎜⎜⎜⎜⎝

a1 c2 0 · · · 0 0
c2 a2 c3 · · · 0 0
0 c3 a3 · · · 0 0
...

...
...

. . .
...

...
0 0 0 · · · an−1 cn

0 0 0 · · · cn an

⎞

⎟⎟⎟⎟⎟⎟⎟⎠

with non-zero entries

ak = α + 2k − 1 , k = 1, . . . , n ,

ck =
√

(k − 1)(k − 1 + α) , k = 2, . . . , n .

In other words, the zeroes {xkn(α)}n
k=1 of L

(α)
n are the eigenvalues of An.

As a consequence from the Gershgorin Circle Theorem (or, equivalently, from
the fact that every diagonally dominant matrix is non-singular), see, e.g. [14],
we have

xnn(α) ≤ max
1≤k≤n

{ak + ck + ck+1} , (20)

x1n(α) ≥ min
1≤k≤n

{ak − ck − ck+1} , (21)
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with the convention that c1 = cn+1 = 0. It is easily verified that for α ≥ 0 and
n ≥ 4 we have max1≤k≤n{ak + ck + ck+1} = an−1 + cn−1 + cn, whence, by (20),
we obtain xnn(α) ≤ an−1 + cn−1 + cn, which is equivalent to inequality (14).

Similarly, we verify that min1≤k≤n{ak − ck − ck+1} = an−1 − cn−1 − cn for
α ≥ 0 and n ≥ 4, which by (21) implies x1n(α) ≥ an−1 − cn−1 − cn. The latter
is nothing but inequality (13). Theorem 3 is proved. ��

We conclude with showing that (14) improves a strengthened Krasikov bound
(4), namely, that s+r > an−1+cn−1+cn for α ≥ 0. Indeed, the latter is equivalent
to the inequality

4 +
√

4n2 + 2(α + 1)(2n − 1) >
√

(n − 2)(n − 2 + α) +
√

(n − 1)(n − 1 + α) ,

which is obviously true, since for its left-hand side we have

4 +
√

4n2 + 2(α + 1)(2n − 1) >
√

2n(2n − 1) + 2(α + 1)(2n − 1)

= 2

√(
n − 1

2

)
(n + α + 1) .
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Abstract. Using group theory we describe the relation between lat-
tice sampling grids and the corresponding non-aliasing Fourier basis
sets, valid for all 1-periodic lattices. This technique enable us to extend
the results established in [16]. We also provide explicit formula for the
Lagrange functions and show how the FFT algorithm may be used to
compute the expansion coefficients.

Keywords: Trigonometric interpolation · Fourier coefficients

1 Introduction

We are interested in interpolating a periodic function f on [0, 1)s by an
s−dimensional trigonometric polynomial

f(x) ≈
∑

k∈S

cke2πik·x,

We do so by sampling f in N grid points xj ∈ [0, 1)s such that

f(xj) =
∑

k∈S

cke2πik·xj ∀ xj ∈ Ω. (1)

Ω is called the sampling grid, the vector k = (k1, k2, · · · , ks) is a multi-index,
commonly called wave numbers or Fourier indices, k · x = kTx denotes the
innerproduct of k ∈ S and x ∈ Rs, and S ⊂ Z

s is a finite set with |S| = N . S
defines the approximation space HS = {e2πik·x | k ∈ S}. We write

If =
∑

k∈S

cke2πik·x,

where I denotes the interpolation operator. For fixed Ω,S and f , (1) defines a
linear system of equations for the coefficients ck. If the system is non-singular, the
grid is said to be unisolvent with respect to HS . If sufficient structure is present
in the point set, Ω, the FFT-algorithm may be used to solve (1), offering huge
savings in computational cost. Unisolvency also ensures that a set of N Lagrange
c© Springer Nature Switzerland AG 2019
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functions satisfying L�(xj) = δ�,j exists. If these can be described explicitly, the
interpolation may be written: If =

∑N
�=1 f(x�)L�(x).

The obvious extension to multi-dimensional interpolation is done by taking
the tensor product of your favorite one-dimensional interpolation grid. Then the
well-known one-dimensional theory can be straightforwardly extended. However,
the exponential increase in cost severely limits this approach and for that reason
using non-tensorial sampling grids such as sparse grids [1,3,18] and lattice grids
[4,16] have been suggested.

In this paper we will focus on the lattice grid approach. In particular we will
establish the relation between a given lattice grid and its corresponding approx-
imation space, and show how to construct the associated Lagrange functions
and efficient computation of the expansion coefficients, ck by the FFT. This was
also an issue in [16]. In that paper our proofs were restricted to rank-1 lattices
of prime order. In this paper we generalize this result to all 1-periodic lattices.
Framing these problems in terms of group theory gives access to the full arsenal
of group theoretical tools. This allows us to more precisely describe the decom-
position of higher rank lattices into rank-1 lattices, which among other things are
the bases for a variable transformation permitting the FFT to be used for fast
computation of the interpolation coefficients. Again this has been done before in
[14], but there it remains unclear exactly how to relate the computed coefficients
with the corresponding basis functions.

For a thorough understanding of the basic properties of 1-periodic integration
lattices we recommend [11,12] and Sects. 1–4 of [17]. In general, a good under-
standing of Fourier analysis on lattice grids requires basic knowledge of group
theory, especially Abelian and quotient groups. Good references are [2,13,14].

Similar work has been pursued by Li, Sun and Xu, and reported in a series of
papers [5–9]. Their work is targeting other physical domains in 2 or 3 dimensions
such as triangles, hexagons, etc. On the other hand they are not limiting them-
selves to trigonometric interpolation as they employ variable transformations to
obtain Chebyshev’s polynomials for algebraic polynomial interpolations. These
are then used to develop interpolating quadrature rules.

We first establish the correct correspondence between the interpolating lattice
points and the corresponding approximation space. In Sect. 3 we show how to
construct a full set of trigonometric Lagrange functions. In Sect. 4 we establish
the proper variable transformations allowing us to compute the interpolation
coefficients by the FFT.

2 The Correspondence Between the Sampling Grid
and the Index Set

An s-dimensional lattice Λ is a finitely generated Abelian group under vec-
tor addition. Alternatively it may be viewed as a linear integer combination
of s linearly independent basis vectors. When arranging the basis vectors as
rows in a matrix, the matrix is said to be an generator matrix for the lattice.
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In this paper we will consider only [0, 1)s-periodic integration lattices, and thus
all lattice points may be written x = z

N , with z ∈ Z
s [10].

Definition 1. The lattice (sampling) grid T of Λ is

T = Λ ∩ [0, 1)s.

If Λ is periodic on [0, 1)s, then T is a group under addition mod 1, and

T � Λ/Zs.

See [11,17] for details. From here on, any addition of lattice points in T will be
tacitly understood to be mod 1. We shall write N = |T | throughout this paper.

Definition 2. Let x ∈ T . The order d of x is the least natural number such that
dx = 0. The subgroup of T generated by x is the set

{x} = {jx | 0 ≤ j ≤ d − 1} .

It is clear that {x} is a cyclic group of order d and its periodic extension is a
lattice, Λx and Λx ⊆ Λ.

Definition 3. Let x1,x2, ...,xt ∈ T . We say that T has rank t, and is generated
by x1,x2, ...,xt if

T � {x1} ⊕ {x2} ⊕ · · · ⊕ {xt}.

All finite Abelian groups are direct products of cyclic groups. The orders of the
generators of T are called invariants, denoted d1, d2,...,dt. The generators are in
general not unique, but the invariants are, under the condition that dl|dl+1 for
all l. Elementary group theory implies that N =

∏t
l=1 dl.

Lemma 1. Let x = z
N ∈ T , with z ∈ Z

s, and a = gcd(z, N), then the order of
x is N/a.

Proof. Since a divides z, we have

N

a

z
N

= 0.

Let z′ = z/a. If there exist a natural number b < N
a such that b is the order of

x, then elementary group theory dictates that we must have bc = N
a for some

natural number c > 1. Then

z′

c
= b

z
N

= 0,

and this implies that c divides all components of z′. But then ac divides z, hence
cannot divide N , so b = N

ac is not an integer, and arriving at a contradiction, we
conclude that no b < N

a exists. ��
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It follows that we may always write x = z
d , with z ∈ Z

s, where d is the order of
x. If x ∈ T has order N , then x generates T .

We now turn our attention to approximation spaces corresponding to a par-
ticular sampling grid T . As stated above this is equivalent to finding index sets
S ∈ Z

s or Sx for sampling sets T or {x}, respectively. Associated with T (or Λ)
is the dual lattice.

Definition 4. The dual lattice of T is

Λ⊥ = {k : k · x ∈ Z ∀ x ∈ T}.

As k,h ∈ Λ⊥ ⇒ k + h ∈ Λ⊥, Λ⊥ is itself a lattice and whenever Λ is 1-periodic,
Λ⊥ is an integer lattice. We may also define

Definition 5. The dual lattice of {x} is

Λ⊥
x = {k : k · x ∈ Z ∀ x ∈ {x}}.

A key observation is that two Fourier modes e2πik·x and e2πih·x are indistin-
guishable for x ∈ T if k − h ∈ Λ⊥. k and h are said to be aliasing. To be useful
for us S must contain only non-aliasing indecies.

Note that Λx ⊆ Λ implies Λ⊥ ⊆ Λ⊥
x , and that Λ⊥

x = Λ⊥ if the order of x ∈ T
is N . The subgroup {x} is treated specifically with respect to aliasing.

Lemma 2. Let d be the order of {x}, and let z,k,h ∈ Z
s/{0}, with x = z

d ∈ T .
Then

k · z ≡ h · z (mod d) ⇔ k − h ∈ Λ⊥
x . (2)

Proof. A simple computation yields

k · z ≡ h · z (mod d)
�

(k − h) · z = m; m ∈ Z,

and the lemma follows from Definition 5. ��
Lemma 3. Let d be the order of x ∈ T . Then |Sx| = d.

Proof. Let x = z
d with z ∈ Z

s. The equivalence relation

k = h if k · z ≡ h · z (mod d),

clearly partitions Z
s into d equivalence classes. From Lemma 2 we know that

this equivalence relation is equivalent to the equivalence relation

k = h if k − h ∈ Λ⊥
x .

Accordingly, these two equivalence relations partition Z
s in the same number of

equivalence classes, and thus |Sx| = d. ��
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We now turn to the construction of unisolvent approximation spaces on T .
Since Λ⊥ is a normal subgroup of Zs, we may construct Zs/Λ⊥, which is a group
of equivalence classes under the equivalence relation

k = h if k − h ∈ Λ⊥.

Theorem 1. A non-aliasing Fourier index set for T is

S = Z
s/Λ⊥.

Proof. For computations we choose a representative from each equivalence class;
it is then evident that no two representatives will alias. Moreover, the set of
representatives will be isomorphic to Z

s/Λ⊥ under the addition inherited from
Z

s/Λ⊥: if k,h, l ∈ Z
s are representatives for [k], [h], [l] ∈ Z

s/Λ⊥, then k+h = l
if [k] + [h] = [l]. ��

We write Sx = Z
s/Λ⊥

x .

Lemma 4. The cosets of Sx partition S.

Proof. Since Λ⊥ is a normal subgroup of Λ⊥
x ⊂ Z

s, we know from the funda-
mental theorem of quotient groups [2] that

Z
s/Λ⊥

Λ⊥
x /Λ⊥ � Z

s/Λ⊥
x ,

which says that the cosets of Z
s/Λ⊥

x partition Z
s/Λ⊥. Since S = Z

s/Λ⊥ and
Sx = Z

s/Λ⊥
x , the result follows. ��

3 Trigonometric Lagrange Functions for Lattice Grids

Definition 6. The Dirichlet kernel of S on [0, 1)s is

DS(x) =
∑

k∈S

e2πik·x. (3)

We proceed to prove that the Dirichlet kernel is zero on all x ∈ T except at the
origin.

Lemma 5. For x ∈ T .

DSx(x) =
{

0; x ∈ T \ {0}
|Sx|; x = 0 .
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Proof. Let x = z
d , with z ∈ Z

s. We have k · x = k · z/d = m
d for all k ∈ Sx. Now

m takes at most d different values, and due to Lemma 2, none of them are equal
mod d. This implies that DSx(x) is a geometric series, and for x �= 0 we may
compute

DSx(x) =
∑

k∈Sx

fk(x) =
∑

k∈Sx

e2πik·x =
d−1∑

m=0

e
2πim

d = 0.

The case x = 0 is trivial. ��
Theorem 2. Let x ∈ T . Then

DS(x) =
{

0; x ∈ T \ {0}
N ; x = 0 .

Proof. Since Sx partitions S, we just rearrange the sum in (3) and apply
Lemma 5

DS(x) =
∑

k∈S

e2πik·x =
∑

h∈S/Sx

∑

l∈Sx

e2πi(h+l)·x =
∑

h∈S/Sx

e2πih·x ∑

l∈Sx

e2πil·x =

{
0; x �= 0
N ; x = 0

��
We can now construct a complete set of Lagrange functions.

Corollary 1. For any y ∈ T a trigonometric Lagrange function is given as

Ly(x) =
1
N

DS(x − y).

4 Fast Fourier Transform on Lattice Grids

By utilizing the Smith normal form, the standard FFT-algorithm may be
extended in a natural way to lattice grids of any rank. In the following, we shall
write T (A) for the sampling grid generated by the generator matrix A ∈ IRs×s.

Definition 7. The index set of T (A) is

S(A) = {kT = xT A−1| x ∈ T (A)} (4)

For integration lattices, A−1 is an integer matrix, and N = det A−1, see [10]. If
A is non-singular, we have the following trivial lemma.

Lemma 6. S(A) is a group, with T (A) � S(A).

Proof. Let x,y, z ∈ T (A), let k,h, l ∈ S(A), with k = A−1x, h = A−1y,
l = A−1z and x + y = z. If we agree that k + h = l, then under this addition,
S(A) is a group, with T (A) � S(A). ��
In the preceding section we used the letter S to denote non-aliasing Fourier index
sets, and in this subsection we use the same letter to denote lattice index sets.
This makes sense because of the following theorem, proved in [16].
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Theorem 3. S(AT ) is a non-aliasing index set for T (A).

Note that the generator matrix A is not unique. Any matrix UA where U is
unimodular (integer matrices with determinant equal ±1), generates the same
lattice and consequently T (A) = T (UA). However, using Definition 7 we see
that S(UA) = {kT U |k ∈ S(A)} and consequently S(A) �= S(UA). In [16] we
give algorithms for computing good index sets for typical function classes.

To solve (1) efficiently by the multi-dimensional FFT-algorithm the sampling
points as well as the index-set must form a hyper-rectangular equidistant grid.
This is not the case for T (A) and S(AT ), respectively. However, an appropriate
grid/index-set may be obtained by a simple structure preserving variable trans-
formation. The inverse generator matrix A−1 may be decomposed by the Smith
normal form [15] as

D̃ = ŨA−1Ṽ ; D̃ = diag(d1, . . . , ds); d�|d�+1,

where Ũ and Ṽ are s×s unimodular matrices, and D̃ ∈ Z
s×s is a unique diagonal

matrix with d�|d�+1 for 1 ≤ � < s, the invariants of T (A). If t < s we may omit
the upper s − t rows of U and the leftmost s − t columns of V , writing

D = UA−1V, (5)

where U ∈ Z
t×s, V ∈ Z

s×t, and D ∈ Z
t×t. Transposition of (5) proves that T (A)

and T (AT ) have the same invariants, hence

T (A) � T (AT ),

and Lemma 6 then implies
T (A) � S(AT ).

In [12] Lyness and Keast showed that the rows of D−1U generate T (A). Trans-
position shows that the columns of V D−1 similarly generate T (AT ), and hence
the columns of A−1V D−1 generate S(AT ). The Cartesian grid with d� points
in the �-th coordinate direction may be written T (D−1), and its non-aliasing
Fourier index set is

S(D−1) = {h : 0 ≤ h� < d� 1 ≤ � ≤ t} .

More formally we may write

T (D−1) =
{
y : y = D−1h; h ∈ S(D−1)

}
.

The sampling grid T (D−1) and the index space S(D−1) are standard regular
equidistant t-dimensional grids which allows straightforward use of the FFT for
solving Eq. (1). Now let x ∈ T (A), k ∈ S(AT ), and h, l ∈ S(D−1), with

xT = hT D−1U = yT U (6)

and
k = A−1V D−1l. (7)
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The matrix-vector form for computing all f(xj) of (1) becomes

f = Fc where (F )j,l = e2πiklxj ; kl ∈ S(AT ); xj ∈ T (A). (8)

If x, y are related by (6) and k, l by (7), then by (5) it follows that

exp(2πix · k) = exp(2πiy · l).
Thus the matrix F in (8) is just a permutation of the matrix produced by
the T (D−1) grid. The matrix obtained by the y, l entries correspond to the
standard t-dimensional inverse Fourier transform, efficiently carried out by the
FFT-algorithm. The permutation is implicitly defined by (6) and (7), and care
needs to be taken when matching coefficients with function values in (1).

The computations in (6) and (7) are linear in N . Thus the total complexity
is dominated by the FFT which is of order O(N log N), with a constant factor
weekly depending on how N factorize. This complexity stays the same regardless
of whether we do a one dimensional FFT of length N (for a rank-1 lattice) or
we do a t-dimensional FFT on a d1 × d2 × · · · × dt array for N =

∏t
j=1 dj in the

case of a rank-t lattice with N points.
See Fig. 1 and Table 1.
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Fig. 1. The left frame displays the set S(D−1). In the right frame we display two
different 2-dim projections of the 4-dim index array S(A). The 4 remaining 2-dim
projections have a similar look.
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Table 1. The relative error for the interpolating function when the grid is produced
by the lattice in this section or by a regular, equidistant Cartesian grid using N = 625
gridpoints. The error is estimated by computing ||fk(x) − Ifk(x)||1/||fk(x)||1 on a
regular fine grid (31× 31× 31× 31 gridpoints). For f3 we used p = 3 and for f4, λ = 7.

Function Lattice grid Regular grid

f1(x) =
∏s

�=1(x� − 1)2x2
� 0.031 0.038

f2(x) =
∏s

�=1 esin(2πx�)−1 0.036 0.128

f3(x) =
∏s

�=1(2 + sign(x� − 1
2
) sin(2πx�)

p) 0.250 0.367

f4(x) = e−λ
∏s

�=1(x�−1/2)2 0.068 0.084

5 Numerical Examples

As an example, consider the lattice generated by A when

A−1 =

⎛

⎜⎜⎝

0 −1 −4 −5
5 0 −1 −4
4 5 0 −1
1 4 5 0

⎞

⎟⎟⎠

Its Smith Normal form, D̃ = ŨA−1Ṽ is:
⎛

⎜⎜⎝

1 0 0 0
0 1 0 0
0 0 6 0
0 0 0 102

⎞

⎟⎟⎠ =

⎛

⎜⎜⎝

1 −4 4 0
3 4 −5 3

−17 3 1 −13
−19 −4 9 −16

⎞

⎟⎟⎠

⎛

⎜⎜⎝

0 −1 −4 −5
5 0 −1 −4
4 5 0 −1
1 4 5 0

⎞

⎟⎟⎠

⎛

⎜⎜⎝

−5 0 −19 263
−1 0 −4 55
1 −1 7 −117
0 0 0 1

⎞

⎟⎟⎠ .

This tells us that the lattice has rank 2, with invariants 6 and 102. Utilizing the
reduced Smith Normal form, the rows of

D−1U = D̃−1(3 : 4, 3 : 4)Ũ(3 : 4, :) =
(

1
6 0
0 1

102

)(−17 3 1 −13
−19 −4 9 −16

)
,

are generators for T (A). The columns of

A−1V D−1 =

⎛

⎜⎜⎝

0 −1 −4 −5
5 0 −1 −4
4 5 0 −1
1 4 5 0

⎞

⎟⎟⎠

⎛

⎜⎜⎝

−19 263
−4 55
7 −117
0 1

⎞

⎟⎟⎠

(
1
6 0
0 1

102

)
,

are generators for S(AT ). To get the lattice points in [0, 1)s, needed for practical
computation, the points obtained by (6) have to be taken modulo 1. Likewise,
members of the non-aliasing set of Fourier coefficients obtained using (7) need
to be shifted so that they represent the most significant Fourier modes, typically
the lowest frequencies. As an illustration we have computed the interpolation
on the above lattice grid for four 1-periodic functions and compared the error
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to the similar interpolation on a regular Cartesian grid. In all cases the lattice
grid produce a more accurate interpolant. More exhaustive experimental results
for these testfunctions on lattice grid versus regular grid in 2 and 3 dimension
is given in [16], and they show a clear advantage for lattice grid. The advantage
seems to increase with the dimension.
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matics, vol. 112, pp. 225–240. Birkhäuser, Basel (1993). https://doi.org/10.1007/
978-3-0348-6338-4 18

12. Lyness, J.N., Keast, P.: Application of the Smith normal form to the structure of
lattice rules. SIAM J. Matrix Anal. Appl. 16(1), 218–231 (1995)

13. Munthe-Kaas, H.Z.: On group Fourier analysis and symmetry preserving discretiza-
tions of PDEs. J. Phys. A 39(19), 5563–5584 (2006)

14. Munthe-Kaas, H., Sørevik, T.: Multidimensional pseudo-spectral methods on lat-
tice grids. Appl. Numer. Math. 62, 155–165 (2012)

15. Smith, H.J.S.: On systems of linear indeterminate equations and congruences. Phi-
los. Trans. Roy. Soc. A 151, 293–326 (1861)

16. Sørevik, T., Nome, M.A.: Trigonometric interpolation on lattice grids. BIT Numer.
Math. 56(1), 341–356 (2016)

17. Sloan, I.H., Lyness, J.N.: The representation of lattice quadrature rules as multiple
sums. Math. Comput. 52(185), 81–94 (1989)

18. Zenger, C.: Sparse grids. Notes Numer. Fluid Mech. 31, 241–251 (1991)

https://doi.org/10.1007/978-3-0348-6338-4_18
https://doi.org/10.1007/978-3-0348-6338-4_18


Monte Carlo and Quasi-Monte Carlo
Methods



A Wigner Potential Decomposition
in the Signed-Particle Monte Carlo

Approach

Majid Benam(B), Mihail Nedjalkov, and Siegfried Selberherr

Institute for Microelectronics, TU Wien, Vienna, Austria
benam@iue.tuwien.ac.at

Abstract. The description of the electron evolution, provided by the
Wigner equation, involves a force-less Liouville operator, which is asso-
ciated with particles moving over Newtonian trajectories, and a Wigner
potential operator associated with generation of positive and negative
particles. These concepts can be combined to develop stochastic algo-
rithms for solving the Wigner equation, consolidated by the so-called
signed particle approach. We investigate the option to split the Wigner
potential into two parts and to approximate one of them by a classical
force term. The purpose is two-fold: First, we search for ways to sim-
plify the numerical complexity involved in the simulation of the Wigner
equation. Second, such a term offers a way to a self-consistent coupling
of the Wigner and the Poisson equations. The particles in the signed-
particle approach experience a force through the classical component of
the potential. A cellular automaton algorithm is used to update the dis-
crete momentum of the accelerated particles, which is then utilized along
with the Wigner-based generation/annihilation processes. The effect of
the approximation on generic physical quantities such as current and
density are investigated for different cut-off wavenumbers (wavelengths),
and the results are promising for a self-consistent solution of the Wigner
and Poisson equations.

Keywords: Wigner function · Potential splitting
Signed-particle approach

1 Introduction

The Wigner function is defined with the Fourier transform of the density matrix
expressed in the mean and difference of coordinates in two dimensions:

fw(r,k, t) =
1

(2π)2

∫ +∞

−∞
dse−ik.sρ

(
r +

s
2
, r − s

2
, t).

Furthermore, the finite dimensions of the simulation domain allow the Wigner
function to be calculated over finite dimensions and discretized k values. The
physical domain in the simulations analyzed in this paper is a two-dimensional
c© Springer Nature Switzerland AG 2019
G. Nikolov et al. (Eds.): NMA 2018, LNCS 11189, pp. 263–272, 2019.
https://doi.org/10.1007/978-3-030-10692-8_29
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area of size (Lx, Ly) = (20 nm, 30 nm). We choose the center of the domain to be
the origin, and therefore, the position and momentum vectors are discretized as:

r ≡(xΔr, yΔr) −M

2
≤ x <

M

2
, −N

2
≤ y <

N

2

s ≡(mΔs, nΔs)

L =(Lx, Ly) ≡ (MΔs, NΔs)

qΔk =(p, q).(
π

Lx
,

π

Ly
) ≡ (p

π

MΔs
, q

π

NΔs
) −M

2
≤ q <

M

2
, −N

2
≤ p <

N

2

q′Δk =(p′, q′).(
π

Lx
,

π

Ly
) ≡ (p′ π

MΔs
, q′ π

NΔs
).

Δr and Δs represent the spatial spacing between nodes and are assumed to be
equal. s and q′ are used for performing summations over position and momentum
variables. We use the short notation:

f(x, y, p, q) ≡ f(xΔr, yΔr, p
π

MΔs
, q

π

NΔs
).

The Wigner equation, which follows from the von Neumann equation for the
density matrix [6], is written in the semi-discrete form as:

(
∂

∂t
+

�qΔk

m∗ ∇r

)
fw(r,q, t) =

∑
q

VW (r,q − q′)fw(r,q′, t). (1)

The semi-discrete Wigner potential (WP), which is of central importance in the
signed-particle approach, is defined as [4]:

VW (r,q) ≡ 1
i�L

∫ L
2

− L
2

dse−iqΔk.s
[
V (r +

s
2
) − V (r − s

2
)
]
. (2)

2 Wigner Potential Decomposition

Here, we focus on a full discretization, and thus use the fully discretized WP
which must be computed at each node [1] becomes:

VW (x, y, p, q) =
1

i�MN

M
2 −1∑

m=− M
2

N
2 −1∑

n=− N
2

e−i(pm π
M +qn π

N )

×
[
V

(
x +

m

2
, y +

n

2
) − V

(
x − m

2
, y − n

2
)]

. (3)

The two-dimensional discrete Fourier transform of a potential V (x, y) in a region
of size M × N is a function V̂ (p, q). The pair is given by the equations [5]:

V̂ (p, q) =

M
2 −1∑

x=− M
2

N
2 −1∑

y=− N
2

V (x, y)e−i2π( px
M + qy

N ),
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V (x, y) =
1

MN

M
2 −1∑

p=− M
2

N
2 −1∑

q=− N
2

V̂ (p, q)ei2π( px
M + qy

N ).

V̂ (p, q) can be expressed in polar form, V̂ (p, q) = A(p, q)eiφ(q,p). Since the two-
dimensional discrete Fourier transform pair is periodic (k and l being integers),

V̂ (p, q) = V̂ (p + kM, q + lN), V (x, y) = V (x + kM, y + lN),

we also assume the physical potential V (x, y) to be periodic so that a shift equal
to a multiple of the physical region lengths in the corresponding argument of
the potential does not change the value of the potential. It holds:

M
2 −1∑

m=− M
2

N
2 −1∑

n=− N
2

e−i(πmp
M +πnq

N )

[
V

(
x +

m

2
, y +

n

2
)]

= ei2(πxp
M +πyq

N )

×
x+M

4 −1∑
m′=x− M

4

y+N
4 −1∑

n′=y− N
4

e−i2(πm′p
M +πn′q

N )

[
V

(
m′, n′)] = ei2(πxp

M +πyq
N )V̂ (2p, 2q),

M
2∑

m=− M
2

N
2∑

n=− N
2

e−i( πmp
M

+ πnq
N

)

[
V

(
x − m

2
, y − n

2

)]
= e−i2( πxp

M
+ πyq

N
)

×
x+ M

4 −1∑

m′=x− M
4

y+ N
4 −1∑

n′=y− N
4

ei2( πm′p
M

+ πn′q
N

)

[
V

(
m′, n′)

]
=

[
ei2( πxp

M
+ πyq

N
)V̂ (2p, 2q)

]∗
.

We have used the properties of the discrete Fourier transform, namely periodicity
and scaling. Thus, the Wigner potential given in Eq. 3 becomes:

Vw(x, y, p, q) =
1

i�MN

{
ei2(πxp

M +πyq
N )V̂ (2p, 2q)−[

ei2(πxp
M +πyq

N )V̂ (2p, 2q)
]∗

}
. (4)

Using Euler’s formula, Eq. 4 can be rewritten in a polar form as:

Vw(x, y, p, q) =
2

�MN
A(2p, 2q)sin

[
φ(2p, 2q) + 2

πxp

M
+ 2

πyq

N

]
. (5)

In the following, we show that treating the summation in the right-hand side
of Eq. 1 in two separate regions results in the spectral decomposition of the
potential profile into a slowly varying classical component and a rapidly vary-
ing quantum mechanical component [2]. For each direction we specify a cut-
off wavenumber determining the sharpness of the corresponding low-pass filter
which is discussed later in more details. The cut-off wavenumber is specified by a
cut-off wavelength, λcx

= 2π
qcx Δkx

and λcy
= 2π

qcy Δky
. We assume qcx

and qcy
to be
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equal and use qc for both directions. Applying the decomposition, the potential
operator on the right-hand side of Eq. 1 can be rewritten as [3]:

Qfw(x, y, p, q)=
∑

p′,q′
Vw(x, y, p

′
, q

′
)fw(x, y, p − p

′
, q − q

′
) =

∑

|q′|,|p′|≤ qc
2

+
∑

|q′|,|p′|> qc
2

=Qclfw + Qqmfw

Qcl and Qqm represent the classical and potential parts of the potential operator,
respectively. We recall that Lagrange’s mean value theorem allows to express
the increment of a continuous function on an interval through the value of the
derivative at an intermediate point of the segment (for small (m − n)Δx)

f(mΔx) − f(nΔx) � f ′(kΔx)(m − n)Δx � Δf(m − n), n ≤ k ≤ m.

Using the notations Δp and Δq, we calculate the classical potential operator as:

Qclfw(x, y, p, q) =
∑

|q′|,|p′|≤ qc
2

Vw(x, y, p′, q′)fw(x, y, p − p′, q − q′)

≈
∑

|q′|,|p′|≤ qc
2

Vw(x, y, p′, q′)
[
fw(x, y, p, q) − πp′

M
Δpfw(x, y, p, q) − πq′

N
Δqfw(x, y, p, q)

]
.

In the second line, the summation over fw vanishes as Vw is an odd function in
both p and q. Using the polar form of the Wigner potential (Eq. 5), we obtain:

−
∑

|q|,|p|≤ qc
2

πp

M
Vw(x, y, p, q) =

−2

�MN

∑
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2
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M
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πyq

N
]

=
−1

�MN

∑
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πp

M
A(p, q) sin[φ(p, q) +

πxp

M
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πyq

N
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=Δx
1

�MN
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M
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]
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1

�
Δx�

{ 1

MN
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1

�
Δx�

{ 1
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|q|,|p|≤qc

V̂ (p, q)ei( πxp
M

+ πyq
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)
}

=
1

�
ΔxVcl(x, y).

With a similar approach, we can show that:

−
∑

|q|≤ qc
2

∑
|p|≤ qc

2

πq

N
Vw(x, y, p, q) =

1
�
ΔyVcl(x, y).

Here, we have introduced the classical potential component:

Vcl(x, y) =
1

MN

∑
|q|,|p|≤qc

V̂ (p, q)ei(πxp
M +πyq

N ).
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This function is real, as can be easily shown by substituting V̂ (p, q):

Vcl(x, y) =
1

MN

∑
|q|,|p|≤qc

M
2 −1∑

m=− M
2

N
2 −1∑

n=− N
2

V (m,n)ei
π(x−m)p

M .ei
π(y−n)q

N

=

M
2 −1∑

m=− M
2

N
2 −1∑

n=− N
2

V (m,n).
sin[πqc(x−m)

M ]
π(x − m)

.
sin[πqc(y−n)

N ]
π(y − n)

.

In order to calculate Vcl, we have a convolution of real functions, the potential
V (x, y) and the sinc functions in both x and y directions acting as low-pass fil-
ters. The convolution involves an infinite summation for an ideal filter. However,
we choose our low-pass filter to be bounded to the physical region. Vcl at each
node in the spatial domain is then calculated as:

Vcl(x, y) =

+∞∑

m,n=−∞
Vlp(x − m, y − n).V (m, n) � 1

Ω(x, y)

M
2 −1∑

m=− M
2

N
2 −1∑

n=− N
2

ωxymnV (m, n).

The coefficients ωxymn and Ω(x, y) are:

ωxymn =
sin[πqc(x−m)

M ]
π(x − m)

.
sin[πqc(y−n)

N ]
π(y − n)

, Ω(x, y) =

M
2 −1∑

m=− M
2

N
2 −1∑

n=− N
2

ωxymn.

Therefore, through the introduction of qc, the input potential V (x, y) is split
into a classical and a quantum-mechanical part.

V (x, y) = Vcl(x, y) + Vqm(x, y). (6)

Vcl(x, y) is the slowly varying part of the potential calculated above by filtering
out the high frequency components. Vqm(x, y) contains only the high-frequency
components and represents the rapidly varying part of V (x, y). It is easily calcu-
lated from Eq. 6 after knowing Vcl(x, y). Using Eqs. 2 and 3, the fully discretized
WP can then be computed at each node using our new approach:

Vqm,W (x, y, p, q) =
1

i�MN

M
2 −1∑

m=− M
2

N
2 −1∑

n=− N
2

e
−i( πmp

M
+ πqn

N
)[

V
(
x +

m

2
, y +

n

2

) − V (x − m

2
, y − n

2
)
]
.

The Wigner equation in the light of the spectral decomposition will be:
(

∂

∂t
+

�qΔk

m∗ Δr − 1

�

[
ΔrVcl(r)

]
Δq

)
fw(r,q, t) =

∑

q

Vqm,W (r,q − q′)fw(r,q′, t).

As shown in the left-hand side of the modified Wigner equation, Vcl gives rise
to a local force term which is calculated using the finite difference method.
Furthermore, the new Wigner potential (Vqm,W ) on the right-hand side of the
equation is calculated from the non-local component of the potential (Vqm).
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3 Calculating Local Force and Evolving the Particles

The finite difference method suggests to use the two classical potential values
from two adjacent nodes to approximate the force:

Fx(x, y) =
Vcl(x + 1, y) − Vcl(x − 1, y)

2Δr
, Fy(x, y) =

Vcl(x, y + 1) − Vcl(x, y − 1)

2Δr
.

Here, we focus on the force due to the presence of a dopant in the center; as
it is exerted on each particle, the value of the momentum in each direction is
updated and lies somewhere between two momentum grid points in the corre-
sponding direction. In the following, a probabilistic approach is discussed and
the above-mentioned grid points in the x-direction are named A and B. When
the particles change their momenta, they might jump to points on the momen-
tum grid which are several Δk farther afield. To explain our algorithm, two
variables are introduced. The first variable, krnd, is a random number between
0 and 1. The second one, kjump, is the remaining fractional part of momentum
after it is rounded to the smaller point on the momentum grid (A), and divided
by Δk, therefore, kjump is also always a real number between 0 and 1. Figure 1
illustrates these variables in more details.

Fig. 1. Left : Two possible jumps on the momentum grid. Right : A schematic of a
possible set of variables (Color figure online)

Without the probabilistic approach, for small momentum changes (compared
to Δk), the new momentum is always rounded back to the same point on the
momentum grid. In our approach, however, the decision whether to jump to the
nearby point on the grid or not is based on a comparison. krnd is compared
to kjump; if kjump is larger than krnd (the green case in Fig. 1) the momentum
of the particle will jump to the nearby grid point (B). Otherwise (the red case
in Fig. 1), it remains on the initial grid point A. Higher kjump means higher
probability of jumping to the nearby grid. The same approach is used in the
y-direction.

4 Results

For comparison purposes, we introduced ( λc

Δx ) as a dimensionless input parame-
ter in the ViennaWD simulator [7]. For λc

Δx = 2, Vqm vanishes as all the possible
contributions of the adjacent nodes are canceled out due to the nature of the
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sinc function; however, as we increase λc

Δx , Vcl becomes smoother and Vqm gets
closer to V (x, y). Potential values at each node in the physical region contribute
to Vcl (and hence Vqm) at all the other nodes through a weighted-average pro-
cess. The contribution of each node depends on two factors: (1) How far is the
node from the target node, (2) How big is qc (i.e. how small is λc). The results
for the potential decomposition in the case of a single charge in the center of a
20 nm × 30 nm region for three different values of λc are shown in Fig. 2:

Fig. 2. The potential input (left) and its classical (middle) and quantum (right) com-
ponents for a single charge in the center of a 20 nm × 30 nm region for λc

Δx
= 5 (top

row), λc
Δx

= 10 (middle row), and λc
Δx

= 30 (bottom row).

Increasing λc

Δx results in a smoother Vcl as can be seen in Fig. 2. The right-most
graphs show the rapidly varying quantum component of the potential (Vqm),
which tends to V (x, y) at higher values of λc. Vqm contains only the rapidly
varying part of the potential and dictates the generation rate of particles (γ)
at each node. Since the process of particle generation is exponentially related
to γ, Ntn+1 = Ntn

e2γ(tn+1−tn), the increase in the number of particles becomes
slower which results in fewer annihilation processes and hence improvements
in the simulation time. It also reduces the undesirable effects of approximations
inherent in the annihilation process [6]. In Fig. 3, the results for different λc values
and the pure quantum case for t = 95fs are shown. The tendency towards pure
quantum behaviour is noticed as we increase λc.
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Fig. 3. The density of particles for different values of λc
Δx

. From left to right: λc
Δx

= 2

(classical case), λc
Δx

= 10, λc
Δx

= 30, and pure quantum (given for reference)

The density values at each point in the physical region are compared to the
density values of the pure quantum case by introducing the error ratio:

ErrD(xi, yj) =
Dλc

(xi, yj) − Dqm(xi, yj)
Dqm(xi, yj)

.

Figure 4 shows the results of the averaged value of this error for different λc

values. Comparing Figs. 3 and 4, it can be noticed that even for low values
of λc (high values of qc), the error remains close to zero for the points in the
physical region where the density values are significant. Therefore, we can claim
that a spectral decomposition provides a promising step towards coupling the
Poisson and Wigner equations. For the regions with lower density values, the
improvement in ErrD is evident as we increase λc. If quantum effects such as
tunneling are to be analyzed, higher values of λc are preferred and more reliable.

Fig. 4. The error ratio of particle density for different values of λc
Δx

. From left to right:
λc
Δx

= 2 (classical case), λc
Δx

= 5, λc
Δx

= 20, and λc
Δx

= 30.

As can be seen in Fig. 5, the current values come to a saturated value after around
50fs, and for different cut-off wavelengths, this saturated value lies within the
10% range of the quantum case.
It is important to note that the accuracy of the decomposition is not linearly
related to the value of λc as depicted in Fig. 5.
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Fig. 5. Current curves for different values of λc and the pure quantum case (reference).

5 Discussion and Conclusion

The advantage of utilizing a potential splitting approximation is two-fold. On
one hand, the statistics governing the generation of particles are modified so
that the ensemble of particles experiences fewer annihilation processes. On the
other hand, using this approach, the momentum values are updated according to
Vcl and the local force term. Particles are accelerated in each time step and the
value of the momentum, while remaining on the momentum grid, is no longer
constant through the simulation time. Averaged physical quantities such as cur-
rent and density show a decent similarity to the pure quantum case, especially
for λc � Δr. Coupling the quantum character of carrier transport with the
classical evolution of particles seems to be a promising step towards an efficient
self-consistent coupling of the Wigner and Poisson equations.
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Abstract. From a modeling point of view, the inclusion of adequate
physical phenomena is mandatory when analyzing the behavior of new
transistor architectures. In particular, the high electric field across the
ultra-thin insulator in aggressively scaled transistors leads to the possi-
bility for the charge carriers in the channel to tunnel through the gate
oxide via various gate leakage mechanisms (GLMs). In this work, we
study the impact of trap number on gate leakage using the GLM model,
which is included in a Multi-Subband Ensemble Monte Carlo (MS-EMC)
simulator for Fully-Depleted Silicon-On-Insulator (FDSOI) field effect
transistors (FETs). The GLM code described herein considers both direct
and trap-assisted tunneling. This work shows that trap attributes and
dynamics can modify the device electrostatic characteristics and even
play a significant role in determining the extent of GLMs.

Keywords: Gate leakage mechanism · Direct tunneling
Trap assisted tunneling · MS-EMC · FDSOI

1 Introduction

Reducing the gate oxide thickness implies an increase in the field across the
oxide. The high electric field coupled with thin oxides leads to the possibility of
charge carriers traversing the barrier for transport set up by the dielectric layer,
resulting in tunneling processes from (to) substrate to (from) gate through the
gate oxide [1,2], and thus giving rise to a certain gate current. This effect is
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known as the gate leakage mechanism (GLM) and includes both direct and
trap-assisted tunneling.

The direct tunneling (DT) processes are always present, even if a dielectric
film of perfect quality is assumed. In the case where a very thin oxide layer (less
than 3–4 nm) is considered, electrons forming the inversion layer can tunnel to
the gate through the energetically forbidden band gap of the dielectric material.
Similarly, the trap assistant tunneling (TAT) processes are related to the exis-
tence of defect states which cause elastic or inelastic tunneling of electrons into
and out of defects. In general, direct tunneling is the dominant phenomenon due
to the small oxide thickness [3]. Nevertheless, trap attributes and dynamics can
modify the device electrostatic properties.

Apart from the analysis of these tunneling mechanisms, the investigation
of these processes on new technological nanodevices is mandatory. Currently,
Fully-Depleted Silicon-On-Insulator (FDSOI) devices have been recognized as
an alternative to bulk devices. However, the impact of GLM mainly depends
on the electron confinement near the interface [3]. Accordingly, the number of
electrons tunneling through the oxide is higher in the single gate FDSOI in
contrast with other double gate devices, such as the vertical FinFET. Therefore,
the study of this mechanism in FDSOI devices is of special interest.

The aim of this work is to perform a study of the impact of the trap attributes
on the GLM and thus on the FDSOI performance. For this purpose, a detailed
discussion of this transport mechanism is given together with the details of the
stochastic simulation process in Sect. 2. The main findings are reported in Sect. 3
including a meticulous analysis of how the trap density modifies the GLM and the
performance of FDSOI nano-transistors. Finally, conclusions are given in Sect. 4.

2 Methodology

The starting point of the simulation framework is a Multi-Subband Ensemble
Monte Carlo (MS-EMC) code, which is based on the space-mode approach for
quantum transport. The simulator solves the Schrödinger equation in the confine-
ment direction and the Boltzmann Transport Equation (BTE) in the transport
plane. The system is coupled by solving Poisson’s equation in the 2D simulation
domain. This tool has been widely used in different scenarios [4,5] including the
study of other tunneling mechanisms such as source-to-drain tunneling (S/D tun-
neling) [6] or band-to-band tunneling (BTBT) [7]. The main advantage of our
MS-EMC code is that the additional modules needed for taking into account
the tunneling processes are included as separate transport mechanisms without
increasing the computational time in comparison to purely quantum simulators.
Apart from that, they can be activated or deactivated depending on the simu-
lation scenario, giving us the possibility of independently studying GLM.

The noisy nature of the GLM, due to the random number of electrons affected
by leakage, is included by implementing it as a stochastic mechanism evaluated
for each particle at the end of the Monte Carlo cycle. However, it is necessary
to define the input of both physical and simulation parameters before starting
the Monte Carlo iterations.
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Firstly, the number of traps is deterministically calculated according to the
oxide dimensions and the trap density, which in turn depends on the material and
the wafer orientation. The trap density is a particular input parameter in this
approximation giving the possibility to the user to vary it in order to consider
the fluctuating behavior of this quantity between samples. Secondly, the traps
energy below the conduction band and its location along the oxide are chosen
considering their random nature by reckoning a uniformly distributed random
sequence of numbers. Their energy level is usually between 2.9 eV and 3.9 eV
below the conduction band for the SiO2 oxide [8,9]. Accordingly, the shift of
the conduction band is calculated with the initial conditions and fixed during
the whole simulation. Thirdly, it is indispensable to keep in mind that the MS-
EMC code makes use of a 2D description, whereas an electron can be trapped
only when it is located near a trap location in the oxide with 3D coordinates.
Therefore, the dimension of the trap is defined as a cube where the assigned
charge is estimated according to the trap density. This percentage npery will be
compared to a random number in the MC iterations, so that it is possible to
determine the probability of finding an electron located near the trap.

Then, when the traps are totally defined, the number of particles near the
dielectric is required, given that the distance between their location and the
interface modifies the tunnel probability. It is of note that the 2D MS-EMC code
characterizes the semiclassical motion of the particles in the transport direction
(x) even though its location in the confinement direction (z) is unknown. The
simulated particles are distributed along the whole device and hence the per-
centage of the ones near the interface (nintf ) with respect to the total number
of particles (n(x, z)) is estimated:

nintf =

∑
intf

∑
x n(x, z)

∑
z

∑
x n(x, z)

, (1)

where intf represents the region near the interface in the z direction. In this
study, intf is taken as 10% of the TSi.

The last step required before starting the Monte Carlo iterations is the
calculation of the initial tunneling probabilities for each mechanism [9–11].
In general, the probability for the tunneling processes is calculated using
the Wentzel Kramers Brillouin (WKB) approximation [12]. This transmission
coefficient depends on the barrier thickness and height (which, in our case, is set
up by the band gap of the dielectric material):

TWKB(E) = exp

{

−2
�

∫ b

a

√
2m∗

z(ECB(x, z) − E) dx

}

, (2)

where a and b are the starting and ending points, E and m∗
z are the energy

and the confinement effective mass of the electron, respectively, and ECB(x, z)
corresponds to the energy of the conduction band at the point (x, z). Five tun-
neling processes have been implemented for the GLM in this simulation tool as
illustrated in Fig. 1.
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Fig. 1. Schematic band diagram of a MOS structure with metal gate and silicon sub-
strate where the transport mechanisms implemented in the MS-EMC simulator are
described: (i) direct tunneling, (ii) elastic tunneling and (iii) inelastic tunneling into a
trap emitting or capturing a phonon with energy �ω, (iv) detrapping to the substrate,
and (v) tunneling from the trap to the gate.

Direct tunneling probability is given directly by the WKB approximation. In
general, when the ending point is the gate electrode, a Fermi-Dirac distribution
of the electrons and available states at any given energy in the gate electrodes
is assumed considering that, after tunneling, the electrons thermalize. For trap
assisted tunneling, the probability depends on both the WKB approximation
and some specific factors related to each mechanism. In the first place, the trap
occupation must obey the Pauli exclusion principle so that no more than two
particles as a maximum can be located in a trap. Secondly, if the tunneling is
inelastic into a trap, it must emit or absorb a phonon. When the particle energy
is higher (resp. lower) than the trap energy, a phonon is emitted (resp. absorbed).
Finally, as a result of the doping level of the substrate and the large electric field
at the oxide surface, the energy states within the semiconductor substrate are
quantized. This leads to less occupied energy states from which electrons can
tunnel and so this effect is forbidden if the energy trap state is lower than the
first subband. Furthermore, the excess energy is transferred to a phonon via
inelastic collisions. When a trapped electron tunnels again to the substrate, a
new energy level must be chosen. As the carriers tend to be at the subband with
lower kinetic energy, the approximation used in this mechanism calculates the
subband in which the electron has lower kinetic energy. More details about how
to calculate tunneling probabilities can be found in [9–11].

When all the initial parameters of the system are introduced, the Monte
Carlo iterations begin and so the positions of each electron in the transport
direction after a random flight time are calculated. There are two different sce-
narios regarding the GLM, as determined by the particle location:

– Particle in the channel: The first step is to determine if the particle is located
near the substrate-dielectric interface using a uniformly distributed random
number rch1. If rch1 > nintf , the particle continues with its normal motion,
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whereas if rch1 < nintf the particle can undergo both DT and TAT or only
DT. This choice is made again using another uniformly distributed ran-
dom number rch2. If rch2 ≤ npery, the particle can undergo both DT and
TAT, choosing the selected one from the comparison between the tunneling
probabilities and another uniformly distributed random number. Otherwise,
the particle undergoes DT through the insulator.

– Particle in a trap: In this scenario, the particle can experience three sub-
scenarios: (i) going back to the substrate (only if the trap energy is higher than
the lower subband energy), (ii) leaving the device going to the gate contact,
or (iii) remaining in the trap. Due to its random nature, this choice is made
again by comparing the tunneling probability with a uniformly distributed
random number.

At this point, it is imperative to emphasize some global concepts. All prob-
abilities must be recalculated when the conduction band changes, and when an
electron is trapped or detrapped in each Monte Carlo iteration. Apart from that,
the charge trapped is dynamically included in the 2D Poisson solution in order
to preserve the self-consistency during the simulation time. Moreover, as the
GLM has a very low frequency, the particles can only undergo this type of tun-
neling according to a certain period of occurrence and not after each integration
step. Due to the negligible tunneling time through the thin oxide and the low
frequency of these tunneling events, it is reasonable to assume that the electron
goes directly from the starting point to the ending point at the same time step.

3 Results

3.1 Description of Simulated Devices and Processes

Device parameters, effective masses and orientation for the FDSOI structure
herein analyzed are outlined in Fig. 2. The gate length ranges from LG = 7.5 nm
to LG = 20 nm, whereas the rest of technological parameters have been fixed: the
channel thickness TSi is 3 nm, the gate oxide has an Equivalent Oxide Thickness
EOT = 1 nm, and the gate work function is 4.385 eV. A Back-Plane with a
UTBOX = 10 nm, a Back-Bias polarization (VBB) of 0 V, and a Back-Plane
work function of 5.17 eV have been chosen. The number of traps is estimated
considering the typical trap density for a good quality gate oxide when the
dielectric is SiO2 and the wafer orientation is (100). In this particular work, the
trap density (NTrap) ranges from 1011 cm−2 and 1013 cm−2.

3.2 Results and Discussion

An increase in the number of traps or their close location to the interface directly
changes the tunneling probability from (to) the substrate to (from) the traps.
Figure 3 shows the number of particles that can experience any GLM for different
NTrap values. Let us make several remarks. First, the number of particles that
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Fig. 2. (left) FDSOI structure analyzed in this work with LG = 10nm. 1D Schrödinger
equation is solved for each grid point in the transport direction and BTE is solved by
the MC method in the transport plane. (right) Effective masses in silicon for the device
studied in this work: mx is the transport mass, mz is the confinement mass, m0 is the
electron free-mass, and the subindex in Δ represents the corresponding degeneracy
factor, where Δ2 is the most populated valley.

Fig. 3. Average number of electrons in arbitrary units affected by the total GLM,
and by each individual mechanism as a function of VGS in the 10 nm device, where
TSi = 3 nm and VDS = 500mV for different trap densities (NTrap): 1011 cm−2 (a),
5 × 1011 cm−2 (b), 1012 cm−2 (c), 5 × 1012 cm−2 (d), and 1013 cm−2 (e).

suffers trap assisted tunneling is higher as the trap density increase. Second,
the direct tunneling through the oxide is the dominant phenomenon due to the
ultra-thin oxide even for the highest NTrap. Third, the probability of a trapped
electron to return to the substrate directly depends on the available energy states
and so this type of TAT becomes forbidden as the gate bias increases.

In general, and as direct tunneling is the dominant mechanism, the particles
that leave the device through the oxide reduce the drain current as depicted
in Fig. 4a. This effect is almost negligible for this particular device because the
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total number of particles that undergoes any GLM is very reduced. However,
the increase of the trap density can modulate the thermionic current as shown
in the inset of Fig. 4a. The charge trapped in the oxide is dynamically included
in the 2D Poisson solution in order to preserve self-consistency during the sim-
ulation time. It can be appreciated in Fig. 4b where the electron distribution is
shown along the transport and confinement directions. Accordingly, an increase
of the trapped charge reduces the subband levels (Fig. 4c) causing an enhanced
thermionic current.

Fig. 4. (a) ID vs. VGS in the 10 nm FDSOI device at VDS = 500 mV considering a sim-
ulation without GLM and others ones with GLM for different Nit values. (b) Electron
distribution in cm−3 along the transport (X) and confinement (Z) directions in the
same device as in (a) with VGS = 0.3 V and NTrap = 1012 cm−2. Recall that X = 0 nm
corresponds to the center of the device. (c) Energy profiles of the lowest energy sub-
band in the same device as in (a) at VGS = 0.3 V, considering the case without GLM
and others ones with GLM for different NTrap values.

Fig. 5. Threshold voltage variation (ΔVth) as a function of LG calculated as the di-
fference between simulations without and with GLM for different NTrap values, for the
FDSOI device at VDS = 500mV.

The impact of GLM on the threshold voltage variation (ΔVth), as a function
of the channel length, is shown in Fig. 5. It has been calculated as the difference
between simulations without and with GLM for different NTrap values. This
mechanism is more important as the channel length increases because the area in
which the particle can undergo GLM is higher and the number of traps increases.
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4 Conclusions

This work presents the implementation of the gate leakage mechanism (GLM)
including direct and trap assisted tunneling in a MS-EMC tool for the study
of how the trap attributes can modify the device electrostatic properties in
ultrascaled FDSOI devices. Our calculations show that direct tunneling is the
dominant mechanism due to the ultra-thin oxide, resulting in the reduction of
the drain current. However, the increase of the trap density slightly decreases
the subband levels. Accordingly, this enhances thermionic current in comparison
to the case where we only consider direct tunneling.
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Abstract. Sensitivity analysis is a powerful tool for studying and
improving the reliability of large and complicated mathematical models.
Air pollution and meteorological models are in front places among the
examples of such models, with a lot of natural uncertainties in their input
data sets and parameters. We present here some results of our global sen-
sitivity study of the Unified Danish Eulerian Model (UNI-DEM). One
of the most attractive features of UNI-DEM is its advanced chemical
scheme – the Condensed CBM IV, which consider in detail a large num-
ber of chemical species and numerous reactions between them.

Four efficient stochastic algorithms (Sobol QMC, Halton QMC,
Fibonacci lattice rule and Latin hypercube sampling) have been used
and compared by their accuracy in studying the sensitivity of ammo-
nia and ozone concentration results with respect to the emission levels
and some chemical reactions rates. The numerical experiments show that
the stochastic algorithms under consideration are quite efficient for this
purpose, especially for evaluating the contribution of small by value sen-
sitivity indices.

1 Introduction

We discuss a systematic approach for sensitivity analysis studies in the area of air
pollution modelling. The Unified Danish Eulerian Model (UNI-DEM) [15,16] is
used in this particular study. Different parts of the large amount of output data,
produced by the model, were used in various practical applications, where the
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reliability of this data should be properly estimated. Another reason to choose
this model as a case study here is its sophisticated chemical scheme, where all
relevant chemical processes in the atmosphere are accurately represented.

Four efficient stochastic algorithms (Sobol QMC, Halton QMC, Fibonacci lat-
tice rule and Latin hypercube sampling) have been applied to sensitivity studies
of concentration variations of air pollutants with respect to emission levels and
some chemical reactions rates. More information on Sobol QMC algorithm can
be found in [1]. For generating Sobol quasirandom sequences we use an adaption
of INSOBL and GOSOBL routines, implemented respectively in ACM TOMS
Algorithm 647 [7] and ACM TOMS Algorithm 659 [2]. The original code can
only compute the “next” element of the sequence. The adapted code allows the
user to specify the index of the desired element. The Halton sequence is com-
pletely described in [8,9]. Fibonacci lattice rule and Latin hypercube sampling
are described in detail in our previous paper [6].

2 Description and Implementation of UNI-DEM
and Its Sensitivity Analysis Version

UNI-DEM is a powerful large-scale air pollution model for calculating the con-
centrations of a large number of pollutants and other chemical species in the
air, involved in chemical reactions with the pollutants. Among the most useful
output results are the mean values of the pollutants’ concentrations for certain
time period (day, month, year). Other accumulative functions related to them
as well as the peak values, are also calculated. These can be used in various
application areas (environmental protection, agriculture, health care, etc.).

UNI-DEM is mathematically represented by the following system (1) of
partial differential equations (PDE), in which the unknown concentrations
cs of a number of chemical species in the air (pollutants and other chemi-
cally active components) must be calculated. The main physical and chemical
processes (advection, diffusion, chemical reactions, emissions and deposition)
are represented in that system. It is computated in a large spatial domain
(4800 × 4800 km.), which covers completely the European continent and the
Mediterranean. Some typical background concentrations (which are varied both
seasonally and diurnally) are used for boundary conditions. The large size of the
computational domain and the fact that its west and north boundaries (from
where the predominating winds blow) are above the ocean (where the concen-
trations of most pollutants are, in general, stable and much lower than over the
continent) deminishes their effect on the results inside the domain. The I/O data
arrays are structured by months, so the output concentrations at the end of an
already calculated month are used as initial conditions for the next one. Initially,
when there is no such data, calculations begin with a 5-day start-up period with
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some background initial concentrations and meteo data from the previous month
in order to set up the inititial conditions.
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+ Es + Qs(c1, c2, . . . cq) − (k1s + k2s)cs, s = 1, 2, . . . q .

cs denote the concentrations of the chemical species; u, v, w are the wind
components along the coordinate axes; Kx, Ky, Kz – the diffusion coeffi-
cients; Es – the emissions; k1s, k2s – dry and wet deposition coefficients respec-
tively; Qs(c1, c2, . . . cq) – non-linear functions, describing the chemical reactions
between species under consideration.

The above PDE system is non-linear and stiff. Both non-linearity and stiffness
are introduced mainly by the chemical scheme: the condensed CBM-IV (Carbon
Bond Mechanism) [16]. It is quite detailed and accurate, but computationally
expensive as well.

For the purpose of efficient numerical treatment, the system (1) is split
according to the major physical and chemical processes and the following 3
submodels are formed: Advection-diffusion, Chemistry & deposition and
Vertical transport (vertical wind and convection).

Spatial and time discretization makes each of the submodels a tough com-
putational task even for the most advanced supercomputer systems. Efficient
parallelization has always been a crucial point in the computer implementation
of UNI-DEM. The task became much more challenging with development of the
sensitivity analysis version of the code – SA-DEM [11–13]. It consists of the
following three parts:

– A modification of UNI-DEM with ability to modify certain parameters, sub-
ject to SA study. By now we have been interested in some chemical rate
constants as well as in the input data for the anthropogenic emissions. A
small number of input parameters is reserved for this purpose.

– A driver routine that automatically generates a set of tasks to produce the
necessary results for a particular SA study. It allows to perform in parallel
a large number of runs with common input data (reusing it), producing at
once a whole set of values on a regular mesh (used later for calculating the
sensitivity indices).

– An additional program for extracting the necessary mean monthly concen-
trations and computing the normalised ratios (to be analysed further on).

Significant improvements of the earlier versions of SA-DEM were made by
introducing two additional levels of parallelism: top-level(MPI) and bottom-
level(OpenMP). They allow us to use efficiently the computational power of
the contemporary cluster supercomputers with multicore nodes. Other impor-
tant improvement in the data management strategy reduced the number of I/O
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Table 1. Time (T) and speed-up Sp of SA-DEM (MPI only) on the Spanish super-
computer IBM MareNostrum III at BSC, Barcelona

#CPU #Nodes Advection Chemistry TOTAL

T [s] Sp T [s] Sp T [s] Sp E [%]

10 1 83460 10 77273 10 171707 10 100%

40 3 19448 43 16946 46 40471 42 106%

80 5 9874 85 9047 85 22261 77 96%

160 10 5250 159 4562 169 12875 133 83%

320 20 2895 288 2403 322 8233 209 65%

640 40 1522 548 1269 609 5387 319 50%

960 60 1215 687 822 940 4075 421 44%

operations and pipelined most of them with the computationally intensive stages,
reducing significantly the CPU idle time in the parallel MPI processes.

In Table 1 we show some scalability results from experiments with SA-DEM
on one of the largest supercomputers in Europe – IBM MareNostrum III (in
BSC, Barcelona, Spain). It consists of 3028 nodes IBM dx360 M4 (16 core) with
32 GB RAM per node. It is seen from Table 1 that the chemical stage (the most
computationally expensive) scales very well (shows almost linear speed-up in the
whole range of experiments). Advection stage scales pretty well in most of the
experiments, with understandable slow-down in the highly parallel experiments.
It is caused by the significant boundary overlapping of the domain partitioning
when approaching the inherent partitioning limitations. In general, SA-DEM
performs quite efficiently and show relatively high scalability on such a large
supercomputing system.

3 Sensitivity Studies with Respect to Emission Levels

In the huge output data stream of UNI-DEM are the mean monthly concen-
trations of more than 30 pollutants. We consider 2 of them: ozone (O3) and
ammonia (NH3). In particular, we present some results of a sensitivity study of
the mean monthly concentrations of ammonia in Milan.

In this section we present some results of our research on the sensitivity of
UNI-DEM output (in particular, the ammonia mean monthly concentrations)
with respect to the anthropogenic emissions input variation. The anthropogenic
emissions input consists of 4 different components E = (EA,EN,ES,EC) as
follows:

EA − ammonia (NH3); ES − sulphur dioxide (SO2);
EN − nitrogen oxides (NO + NO2); EC − anthropogenic hydrocarbons.

The domain under consideration is the 4-dimensional hypercube [0.5, 1]4. Poly-
nomials of 2-nd degree have been used as an approximation tool [5]. The input
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data have been generated by the improved version of SA-DEM code, specialized
for sensitivity studies (see the previous section).

Table 2. Relative error for the evaluation of f0 ≈ 0.048.

# samples n Relative error

Sobol Halton FIBO LHS

210 5.56e−04 3.15e−05 2.09e−04 5.37e−04

212 1.16e−04 1.14e−04 4.32e−05 2.27e−04

214 3.14e−05 1.27e−05 2.25e−05 6.28e−05

216 8.78e−06 8.20e−06 8.70e−06 7.74e−05

218 1.75e−06 2.40e−06 1.79e−06 3.80e−06

220 4.97e−07 1.03e−06 4.21e−07 7.16e−06

The results for relative errors for evaluation of the quantities f0, total
variances and first-order and total sensitivity indices using various stochastic
approaches for numerical integration are presented in Tables 2, 3 and 4, respec-
tively. The quantity f0 is presented by 4-dimensional integral whereas the rest of
quantities under consideration are presented by 2-dimensional integrals following
the ideas of correlated sampling technique to compute sensitivity measures in a
reliable way [10,14].

Homma and Saltelli discuss in [10] which of the two formulae below gives

better estimation of f2
0 =

(∫
Ud

f(x)dx
)2

in the expression for total variance

and Sobol global sensitivity measures. The first formula is

f2
0 ≈ 1

n

n∑
i=1

f(xi,1, . . . , xi,d) f(x′
i,1, . . . , x

′
i,d) (2)

where x and x′ are two independent sample vectors, and the second one is

f2
0 ≈

{
1
n

n∑
i=1

f(xi,1, . . . , xi,d)

}2

(3)

In case of estimating sensitivity indices of a fixed order, the first formula (2) is
better (as recommended in [10]).

The results in Table 2 show that the algorithms using generalized Fibonacci
numbers and LHS simulate the behaviour of Sobol QMCA, but for higher dimen-
sions their efficiency decrease. The particular case study confirms the conclusion
that these algorithms are suitable and more efficient for smooth functions with
comparatively low dimensions. From Tables 2 and 3 we can conclude that all
stochastic approaches under consideration give reliable relative errors for suffi-
ciently large number of samples. The most efficient in terms of computational
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Table 3. Relative error for the evaluation of the total variance D ≈ 0.0002.

# samples n Relative error

Sobol Halton FIBO LHS

210 2.28e−03 1.40e−02 1.63e−01 1.74e−02

212 9.38e−04 7.81e−03 2.39e−02 1.04e−02

214 1.92e−04 1.77e−03 2.90e−03 1.04e−02

216 5.86e−05 5.96e−04 2.65e−04 3.65e−04

218 8.61e−06 1.48e−04 3.01e−04 1.21e−05

220 1.60e−06 4.77e−05 1.19e−04 5.96e−05

Table 4. Relative error for estimation of sensitivity indices of input parameters using
various Monte Carlo and quasi-Monte Carlo approaches (n ≈ 65536).

Sensit. index Ref. value Sobol Halton FIBO LHS

S1 9e−01 5.78e−06 2.95e−04 3.62e−04 9.79e−03

S2 2e−04 1.52e−03 3.49e−02 1.74e−01 6.60e−01

S3 1e−01 4.39e−05 2.30e−03 3.22e−03 8.65e−03

S4 4e−05 2.87e−03 1.21e−01 4.87e−01 6.70e−01

Stot
1 9e−01 5.19e−06 2.97e−04 4.61e−04 4.31e−04

Stot
2 2e−04 1.36e−04 3.24e−02 3.45e−01 2.94e+01

Stot
3 1e−01 4.65e−05 2.25e−03 1.96e−03 1.10e−02

Stot
4 5e−05 1.57e−03 1.20e−01 5.06e−01 2.41e+02

complexity is the algorithm of Sobol, followed by Halton algorithm. The evalu-
ated sensitivity measures, presented in the tables, are obtained either by multi-
dimensional integrals (total variances) or by ratios of multidimensional integrals
(Sobol global sensitivity indices). One can notice also from results in Table 4
that the order of relative error is different for different quantities of interest
(see column Reference value) for the same sample size. It depends both on the
integrand dimension and the magnitude of estimated quantity. The algorithms
using generalized Fibonacci numbers and LHS are characterized with unreliable
relative errors for small in value sensitivity measures.

4 Sensitivity Studies with Respect to Chemical Reactions
Rates

Another part of our research was to study the sensitivity of the ozone concen-
tration values in the air over Genova with respect to the rate variation of some
chemical reactions of the condensed CBM-IV scheme [15], namely: ## 1, 3, 7, 22
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(time-dependent) and 27, 28 (time independent). The simplified chemical
equations of those reactions are as follows:

[#1] NO2 + hν =⇒ NO + O; [#22] HO2 + NO =⇒ OH + NO2;
[#3] O3 + NO =⇒ NO2; [#27] HO2 + HO2 =⇒ H2O2;
[#7] NO2 + O3 =⇒ NO3; [#28] OH + CO =⇒ HO2.

The domain under consideration is the 6-dimensional hypercube [0.6, 1.4]6).
Polynomials of second degree have been used for approximation again (see [4]).

Table 5. Relative error for the evaluation of f0 ≈ 0.27.

# samples n Relative error

Sobol Halton FIBO LHS

210 1.62e−04 1.60e−04 2.08e−03 3.73e−04

212 4.54e−05 5.55e−05 1.40e−04 2.41e−04

214 3.59e−06 2.70e−05 3.98e−04 7.53e−05

216 4.70e−06 1.60e−06 2.61e−04 2.02e−04

218 5.90e−07 1.02e−06 7.29e−06 2.82e−05

220 1.36e−07 5.56e−07 4.57e−07 1.04e−05

Table 6. Relative error for the evaluation of the total variance D ≈ 0.0025.

# samples n Relative error

Sobol Halton FIBO LHS

210 5.75e−03 4.86e−02 6.73e+00 1.91e−02

212 2.43e−03 1.25e−03 5.27e−01 9.99e−02

214 9.90e−05 1.65e−03 1.02e−01 1.62e−02

216 5.81e−05 4.34e−04 1.97e−03 3.56e−05

218 7.71e−06 3.79e−04 4.53e−03 7.78e−03

220 1.75e−06 3.34e−05 9.33e−03 2.78e−04

The relative errors for evaluation of the quantities f0, total variances, first-
order and total sensitivity indices using various stochastic approaches for numer-
ical integration are presented in Tables 5, 6 and 7 respectively. The quantity f0
is presented by 6-dimensional integral, whereas the rest of the quantities under
consideration are presented by 2-dimensional integrals, following the ideas of
correlated sampling.

From these tables we can see that Sobol QMCA gives better results than
Halton QMCA and the difference is 1–2 orders. Quasi-MC lattice rule based on
generalized Fibonacci numbers and Latin hypercube sampling produce better
results for 6-dimensional integrals in comparison with 12-dimensional integrals.
More results in favour of this conclusion can be found in [3].
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Table 7. Relative error for estimation of sensitivity indices of input parameters using
various Monte Carlo and quasi-Monte Carlo approaches (n ≈ 65536).

Sensist. index Ref. value Sobol Halton FIBO LHS

S1 4e−01 1.83e−04 2.87e−03 3.82e−02 3.04e−02

S2 3e−01 2.69e−05 3.76e−03 1.03e−02 7.35e−04

S3 5e−02 1.08e−04 7.27e−03 5.48e−01 2.33e−02

S4 3e−01 1.37e−04 2.19e−03 1.07e−02 2.47e−02

S5 4e−07 2.69e−01 3.68e+01 3.40e+03 9.25e+02

S6 2e−02 2.81e−03 1.30e−02 1.32e+00 3.81e−02

Stot
1 4e−01 1.39e−04 2.79e−03 7.92e−02 2.03e−02

Stot
2 3e−01 4.32e−05 3.26e−03 3.06e−02 1.45e−02

Stot
3 5e−02 1.08e−04 6.43e−03 1.31e+00 1.55e−01

Stot
4 3e−01 3.77e−04 2.11e−03 3.84e−01 1.11e−02

Stot
5 2e−04 1.40e−03 1.38e−02 8.85e+01 1.45e+01

Stot
6 2e−02 1.29e−05 1.04e−02 2.15e+00 9.75e−01

S12 6e−03 6.03e−04 7.92e−03 3.21e+00 8.99e−02

S14 5e−03 2.17e−03 9.12e−03 8.64e+00 2.74e−01

S15 8e−06 9.33e+02 9.36e+02 9.19e+02 9.21e+02

S24 3e−03 4.97e−04 1.83e−02 1.37e+01 7.10e−01

S45 1e−05 1.48e−02 9.08e−01 4.25e+01 1.05e+01
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Abstract. We investigate the microscopic behavior of oxide-based resis-
tive random-access memory (RRAM) cells by using a unique three-
dimensional (3D) physical simulator. RRAMs are attracting substan-
tial attention and are considered as the next generation of non-volatile
memory technologies. We study the operation of RRAM cells based on
silica-rich silicon (SiOx) and hafnia (HfOx), by employing the stochastic
kinetic Monte Carlo (KMC) approach for charge transport. The simu-
lator self-consistently couples electron and ionic transport to the heat
generation and diffusion phenomena and includes carefully the physics
and random nature of vacancy generation and recombination, and trap-
ping mechanisms. It models the dynamics of conductive filaments (CFs)
in the 3D real space and captures correctly resistance switching regimes,
including the CF formation (electroforming), set and reset processes. We
describe the stochastic simulation process used for device analysis. We
discuss the differences in the origin of switching between silica and hafnia
based devices, and address the influence of the initial vacancy population
on resistance switching in silicon rich silica RRAMs. We also emphasis
the need for using 3D models and including thermal self-consistency to
capture accurately the memristive nature of device switching.

Keywords: Kinetic Monte Carlo · RRAM · Nano-devices
Charge transport · Thermal effects

1 Introduction

In this work, we analyze the microscopic behavior of resistive random-access
memory (RRAM) devices, based on silica-rich silicon (SiOx) and transition metal
oxides (TMOs) such as hafnia (HfOx), using the stochastic kinetic Monte Carlo
(KMC) approach, providing a deeper insight into RRAM physics and opera-
tion. RRAMs are viewed as the next generation of non-volatile memory devices,
attracting considerable attention in recent years. Indeed, the ITRS report of
2013 [1] highlights the various incentives for developing RRAMs, including e.g.
low cost and power dissipation, high endurance, and suitability for integration in
c© Springer Nature Switzerland AG 2019
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three-dimensional (3D) crossbars. RRAMs are suitable for various applications,
including e.g. novel processor architectures, neuromorphic computing or neural
networks.

Due to their memristive behavior, RRAMs are best simulated using stochas-
tic ‘microscopic’ methods such as KMC. Moreover, and to uncover the poten-
tial of RRAMs, it is imperative to use physical models instead of the widely
used empirical approximations. Charge and thermal transport phenomena are
explored using a thermally self-consistent 3D simulator, coupling a KMC descrip-
tion of ion and electron transport to device self-heating. The KMC solver employs
the appropriate models describing vacancy generation and recombination, and
trapping mechanisms in oxides. It allows the study of the dynamics of conduc-
tive filaments (CFs) in 3D, correctly reconstructing resistance switching features,
including the electroforming, set and reset processes.

This work presents a comparison between two material systems: the widely
used TMOs (currently the most attractive technology) and the promising yet less
studied SiOx (offering low-cost Si on-chip integration). In the background section
(Sect. 2), we summarize progress in RRAM modeling, describe the originality
of our simulation methodology, and give details about the studied structures.
In Sect. 3, we discuss the details of the stochastic simulation process used for
device analysis, and highlight the distinctive peculiarities of the numerical mod-
els employed in the simulator. In Sect. 4, we (i) highlight the differences in the
origin of switching between SiOx and HfOx, (ii) address the role of initial vacan-
cies in switching in SiOx RRAMs, (iii) show the need for using 3D models to
capture accurately switching, by comparison to two-dimensional (2D) models,
and (iv) emphasize the need to account for coupled electro-thermal transport.

2 Background

During the operation of a RRAM device, resistance switching results from the
creation and destruction of conductive filaments (CFs) [2–4]; CFs appear as
oxygen ion-vacancy pairs are generated and ions are redistributed under the
effect of the electric field and temperature. Most activities on RRAMs focus on
transition metal oxide (TMO) devices, which are generally characterized by a
high dielectric constant, which is a highly desirable feature towards high-density
integration. Indeed, TMO RRAMs are nowadays considered as the most promis-
ing RRAM technology. However, they face numerous serious challenges, mainly
Si microelectronics integration, hence our interest in SiOx RRAMs, which can
potentially result in cheap integration in Si CMOS chips. Furthermore, previous
simulation work on RRAMs employed mostly phenomenological models, such
as the resistor breaker network method [5,6], but also 2D approximations [7,8].
These models do not determine in a fully self-consistent manner the electric fields
and do not consider accurately heat generation and conduction.

For an accurate understanding of the microscopic behavior of oxide-based
RRAMs, we developed and refined a 3D KMC simulator. Our simulation frame-
work has numerous unique capabilities distinguishing it from other established
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phenomenological models [5,7,8]. The framework uses a powerful combination
of tools to describe electron-ion interactions and reconstruct in a realistic man-
ner the CF formation and rupture in the 3D space. Additionally, it couples
in a self-consistent fashion time-dependent electron and oxygen ion transport
simulations, using the stochastic KMC approach, to the local electric field and
temperature distributions in three-dimensions. Moreover, the dynamic nature of
the ion-vacancy generation mechanisms in oxides is accounted for accurately, as
described in Ref. [4]. Furthermore, the simulator accounts carefully for trapping
dynamics and electron transport mechanisms in the oxide layer [9,10]. Last but
not least, the simulation study is backed by experiments by various collaborators
demonstrating switching in oxide RRAMs (see e.g. Refs. [11,12]).

We study the oxide-based structure shown in Fig. 1(a). The structure consists
of an oxide (SiOx or HfOx) layer of a thickness T ∼ 10 nm sandwiched between
two titanium nitride (TiN) contacts. While experimental devices have areas as
large as 100µm × 100µm [11], we can limit the simulations to a much smaller
(Si-rich) area (e.g. L × W = 20 nm× 20 nm), where a grain boundary may be
present, as is the practice in the KMC modeling of RRAMs [3,4,7]. Coinciden-
tally, experimental results suggest the existence of only one dominating CF per
plate [11], justifying further the focus on a smaller contact area. Figure 1(b)
summarizes the mechanisms governing electron transport in the oxide.

Fig. 1. (a) The studied RRAM structure, with an oxide (SiOx or HfOx) thickness
H = 10 nm located between two contacts with an area L×W = 20 nm× 20 nm. (b) The
processes governing electron transport, which include: (1) electrode-trap, (2) trap-trap,
(3) trap-electrode, (4) electron to the conduction band (CB), and (5) Fowler-Nordheim
tunneling mechanisms, as well as (6) Poole-Frenkel emission, (7) Schottky emission, and
(8) direct electron tunneling.
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3 Numerical Simulation Method

The device simulator uses a rigorous procedure self-consistently coupling the
time-dependent electron and oxygen ion dynamics to the local electric field and
temperature distribution in the oxide. Figure 2 is a flowchart illustrating the
simulation framework. The simulator is calibrated using experimental results
[11,12].

Fig. 2. The simulator, coupling the KMC description of electron and ion transport to
the temperature and electric field distributions in the oxide, and accounting carefully
for the vacancy generation process.

We use a stochastic KMC description to model the drifting and diffusion
of ions between interstitial sites and oxygen vacancies, and ion-vacancy pair
generation and recombination processes. The simulator effectively solves for the
ionic transport equation given by:

∇ · [D∇n(r, t) − vn(r, t)] + RG =
∂n(r, t)

∂t
, (1)

where n and v are the ion concentration and velocity, respectively, D is the
diffusivity coefficient, and RG is the net ion generation rate. r and t are the
position and time, respectively. While the established vacancy generation model
(through bond breakage) is used for hafnia [7,13], the reliable study of switching
in SiOx RRAM requires using the more refined generation model, as carefully
detailed in Refs. [3,4]. As the field and temperature distributions are updated
regularly, important physical quantities are re-calculated, including the attempt-
to-escape rate for oxygen to jump over the barrier Pg (ion-vacancy generation
rate), and the probability of ion-vacancy recombination Pr, as described in Ref.
[3]. The generated ions move through lattice sites (interstitials or vacancies),
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either by drifting with an average velocity v (i.e. field and temperature-assisted
ion hopping) and probability Pdr, or diffusing according to the diffusion constant
D and probability Pdf .

To apply the KMC algorithm for ion transport, the simulator first constructs
the device geometry by assuming a 3D matrix of oxide molecules and (initial)
oxygen vacancies at lattice sites, located between two contacts (where Dirichlet
boundary conditions are applied). Ion-vacancy generation events are selected (in
time) according to the probability Pg using random numbers. The generated
ions move between neighboring lattice points (vacancies or interstitials), or to
one of the contacts. The trajectory of an ion is also selected using the KMC
algorithm, by constructing cumulative drifting and diffusion probability (Pdr

and Pdf ) ladders (accounting for all possible neighboring lattice sites and/or
electrodes), and using a random number to choose the subsequent destination
of all ions. Equally, an ion-vacancy recombination process is selected randomly
according to the probability Pr.

We consider the effect of all important processes governing electron trans-
port in an oxide, as summarized in Fig. 1(b), including: trap-assisted tunneling
(TAT) (i.e. electrode-trap, trap-trap, and trapped electron to the conduction
band (CB) tunneling mechanisms), Fowler-Nordheim tunneling, Poole-Frenkel
emission, Schottky emission, and direct electron tunneling [3,9]. TAT mecha-
nisms need special attention, as they represent the dominant transport compo-
nent. We apply the KMC algorithm to track down the trapped electron popula-
tion in the oxide and update the occupancy of traps, instead of using the simpler
current solver described in Ref. [7]. We model electron movements according to
the tunneling rates given in Refs. [3,9]. For all electrons in the oxide, we generate
a cumulative tunneling rate ladder including all possible destinations (vacancies
or electrodes). The final electron destination is selected from the ladder using a
random number. Electrons are injected from the electrodes (to occupy a vacancy
or tunnel through) using the same cumulative ladder approach.

As the location of particles (electrons at traps and oxygen ions) are tracked in
time and vacancies are generated, the electric potential and the lattice temper-
ature distributions are calculated (in a self-consistent fashion) by solving Pois-
son’s equation and the time-dependent heat diffusion equation (HDE), respec-
tively. For this purpose, we use established finite-volume solvers developed by
the authors [14]. The contributions of ions and electrons to the heat generation
distribution (as needed to solve the HDE) are determined by the dot product of
the local field and current density vectors.

4 Results and Discussion

To verify the reliability of the simulator, in modeling RRAMs based on various
oxide materials, we show in Fig. 3(a) the time-to-failure (TF) variation with the
applied electric field, as obtained using both our simulator and the procedure
described in Ref. [13] at room temperature. The results are obtained by impos-
ing a field on a 10 nm-thick metal-oxide-metal structure based on several pristine
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materials including SiO2, HfO2, Al2O3 and Ta2O5. We use the vacancy gener-
ation parameters (activation energy and field acceleration parameter) described
in Ref. [13]. Clearly, the simulator reconstructs established TF data in the thin
layers with reasonable accuracy. To show the corresponding device behavior, we
show in Fig. 3(b) and (c) the I−V characteristics during electroforming, for silica
and hafnia, respectively, for various bias ramp rates. As expected, the forming
biases are lower in hafnia, following the bond breakage behavior highlighted in
Fig. 3(a). Similarly, forming occurs in general at lower biases, when the ramp
rate is smaller.
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Fig. 3. (a) Time-to-failure variation with the applied field using our model and the
method presented in [13], for SiO2, HfO2, Al2O3 and Ta2O5. The I−V characteristics
during electroforming for (b) silica and (c) hafnia.

Figure 4(a) shows the basic I − V characteristics (for a bipolar mode) of a
SiOx RRAM device, using a bias ramping rate of 0.1 V/µs. Figure 4(b) shows
the corresponding variation of the peak temperature in the oxide. The memris-
tive behavior of the devices is captured, matching experimental trends [11]. We
demonstrate two different regimes: the CF forming process and the subsequent
set process. The peak temperatures follow the same trend as currents, reach-
ing relatively high values (∼440 K) after the forming of the CF, when the device
switches from a high-resistance state (HRS) to a low-resistance state (LRS). The
results shown in Fig. 4(b) illustrate the need to correctly include thermal self-
consistency (heating), to accurately reconstruct RRAM device characteristics.

As pointed out by the authors [3,4], the CFs are of a 3D nature, and hence
using 2D models does not reflect the full physics of RRAMs. Figure 5 shows the
variation of the forming bias with the initial (arbitrary) vacancy concentration,
for the SiOx structure. Figure 5 shows a strong dependence (for both 2D and 3D
models) of the forming bias on initial concentrations, indicating that the CF cre-
ation occurs at lower biases as the initial concentration of vacancies is increased.
As explained in Ref. [3], the activation energy for ion-vacancy generation Ea is
lowered when the initial neutral oxygen vacancies are occupied by two electrons,
facilitating the creation of a CF at lower biases in defect rich areas. The forming
biases are highest in the pristine SiO2 structure, enhancing the possibility of
hard breakdown and hence irreversible ON/OFF transitions. Figure 5 illustrates
how 2D models can lead to the erroneous prediction of the forming bias.
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Fig. 4. (a) The I−V characteristics and (b) the peak temperature variation with bias,
for a device with an arbitrary initial oxygen vacancy population. We apply a current
compliance limit 10−6 A.
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5 Conclusion

We used an electrothermal KMC simulator to investigate the switching behavior
of oxide RRAM devices. We analyzed the differences in the origin of switching
between SiOx and HfOx structures, and discussed the influence of the initial
vacancy population on resistance switching in SiOx RRAMs. We demonstrated
the need for using 3D models and accounting for device self-heating to capture
correctly device operation. The simulator is very well-suited for the analysis and
optimization of new RRAM designs, with a focus on performance, variability
and reliability.
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Abstract. We consider a stiff system of ordinary differential equa-
tions within a spintronic model of the superconductor-ferromagnetic-
/superconductor Josephson junction (SFS JJ). For some values of param-
eters, the explicit algorithms failed for numerical solution of this sys-
tem and special numerical approaches like the implicit two-stage Gauss-
Legendre method are required. In our study, we use both explicit and
implicit numerical schemes which have been implemented in the respec-
tive interactive software on the basis of Wolfram Mathematica tech-
nique. In this software, we employ the 4-step explicit Runge-Kutta algo-
rithm and the two-stage Gauss–Legendre method of the 4th accuracy
order (also known as the implicit Runge-Kutta scheme), combined with
the fixed point method. We analyze the effectiveness of two numerical
approaches and demonstrate an advantage of implicit method over the
explicit scheme. Results of numerical simulation of superconducting pro-
cesses in the SFS JJ depending on parameters are presented.

Keywords: Stiff system · Implicit method · Spintronic model

1 Introduction

Superconducting properties of spintronic systems (Josephson junctions with
magnetic moment) are of great interest due to a perspective of various appli-
cations in nanoelectronics and quantum computing [1,2]. Spintronic models are
described by multiparameter systems of nonlinear differential equations. They
cannot be solved analytically in most cases. Thus the only way of investigation
of such models is a numerical study that can be a hard process. This makes
important a development of appropriate numerical approach in respective user
software with effective visualization of the results. Beside, in some cases the
systems under study can be stiff and require a special methods for numerical
solution.

In this paper we consider an implicit method of numerical solution of
the stiff Cauchy problem within the spintronic model. Effectiveness of this
c© Springer Nature Switzerland AG 2019
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approach in comparison with standard explicit numerical scheme is demon-
strated. This method is incorporated into the Wolfram Mathematica user soft-
ware that was developed for numerical study of Josephson junctions with mag-
netic momenta [5].

2 Mathematical Model

Geometry of the system of the superconductor-ferromagnetic-superconductor
Josephson junction (SFS JJ) under consideration is presented in Fig. 1. The
ferromagnetic easy-axis is directed along the z-axis, which is also the direction
n of the gradient of the spin-orbit potential. The magnetization component my

is coupled with Josephson current Is, which is along the x-axis. The magnetic
moment M is investigated by its three spatial components along the axises.

Fig. 1. Geometry of the considered SFS JJ system. Here S is superconductor and F –
ferromagnetic.

The dynamics of the magnetic moment and phase difference in the SFS JJ
is described by a system of first order ordinary differential equations [3]. The
system in dimensionless form is as follows:

dmx

dt
= − ωF

1 + Mα2
{(myHz − mzHy) + α[mx(mxHx + myHy + mzHz)− Hx]}

dmy

dt
= − ωF

1 + Mα2
{(mzHx − mxHz) + α[my(mxHx + myHy + mzHz)− Hy]}

dmz

dt
= − ωF

1 + Mα2
{(mxHy − myHx) + α[mz(mxHx + myHy + mzHz)− Hz]}

dϕ

dt
=

1
w

(Ipulse(t) − sin(ϕ − rmy)),

Ipulse(t) =
{

As, t ∈ [t0 − 1/2Δt, t0 + 1/2Δt];
0, otherwise, (1)

where t ≥ 0 is the time, the components of the effective magnetic field Hx(t),
Hy(t), Hz(t) are determined as follows: Hx(t) = 0, Hy(t) = Gr sin(ϕ(t)−rmy(t)),
Hz(t) = mz(t).

The physical parameters of the system (1) are following: ωF – a feromagnetic
resonance frequency, α – a damping parameter, G – parameter of the phase
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difference coupling, r – the spin-orbit coupling parameter, w = VF /(IcR) =
ωF /ωR, VF = �ωF /(2e), Ic – critical current, R – resistance of JJ, ωR = 2eIcR/�

– characteristic frequency. The parameters of amplitude As, the middle time
of influence t0 and the time interval of influence Δt characterize the electric
current pulse. The unknown functions are the magnetic moment components
mx(t),my(t),mz(t) and the phase difference ϕ(t). Initial conditions for these
time-dependent functions are:

mx(0) = 0, my(0) = 0, mz(0) = 1, ϕ(0) = 0. (2)

The superconducting current Is(t) is calculated via the function ϕ(t) by the
following formula Is(t) = Ic sin (ϕ(t) − rmy(t)) , t ≥ 0.

3 Numerical Approach

Let us start to describe the numerical method with the general formulation of
the Cauchy problem [4]:

ȳ′ = f̄(x, ȳ), ȳ(0) = ȳ0, x ≥ 0. (3)

In the problem (1), (2), we have ȳ = (mx,my,mz, ϕ), x = t, and f̄ corre-
sponds to the right hand side of the system (1).

In many cases, explicit Runge-Kutta algorithm can be successfully used for
numerical solution of system (1), (2) (see, e.g. [3,5]). However, for some values
of parameters (for example, G = 500π, r = 0.1;α = 0.1; t0 = 25;Δt = 6;As =
1.1;ωF = 1) it becomes stiff and explicit numerical scheme requires a significant
decreasing of the time-stepsize to avoid an overflowing. It is demonstrated in
Fig. 2 (h = 0.1) and Fig. 3 (h = 0.001).

Fig. 2. Results of the simulations for the case G = 500π, r = 0.1; α = 0.1; t0 = 25;
Δt = 6; As = 1.1; ωF = 1, h = 0.1.

The computations with large step h = 0.1 reach overflowing for only 15 steps
after pulsing the current at t = 22. This can be seen at the graphics in first line
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of Fig. 2 (for the functions mx(t),my(t),mz(t) and ϕ(t)). Here the computation
stops at t = 23.5. Also the values of my(t) exponentially grow. One can see
that they reach 14 at the end of the computations. This could not be possible
because my ∈ [−1, 1]. Chaotic movements are also good seen (see, for example,
the parametric curve mz(mx)).

Fig. 3. Results of the simulations for the case G = 500π, r = 0.1; α = 0.1; t0 = 25; Δt =
6; As = 1.1; ωF = 1, h = 0.001.

It can be seen that the problem can be solved within the explicit method
only in case of sufficiently small step (h = 0.001 in Fig. 3) that takes a lot of
computer time. So, special numerical approach is required in case when our
system becomes stiff. For our purposes we use the following definition of the
stiffness [4]:

Definition 1: A system is called stiff when for every x and ȳ in certain area
(for all solutions of Cauchy problem (3)) the eigenvalues λj , j = 1, n of the
n-dimension Jacobi matrix A = ∂f̄/∂ȳ satisfy the conditions:

1. Re(λj) < 0, j = 1, n,
2. C = max

j
|Re(λj)|/min

k
|Re(λk)| >> 1 – coefficient of stiffness.

System (1), (2) usually becomes stiff when the phase difference coupling G
is growing, especially for G ≥ 50. It is shown in the Table 1 where the quantities
Re(λj) and the coefficient of stiffness C from Definition 1 are presented in the
cases of G = 50 and G = 150. Here the solution ȳ was calculated with the time
stepsize h = 0.001 and accuracy 10−8 by means of the Gauss-Legendre method.

In our study we use both explicit and implicit Runge-Kutta methods. They
are represented with the following formulas for s-stages and N nodes:

ȳn+1 = ȳn + h

s∑
i=1

bik̄i, n = 0, N − 1 (4)

k̄i = f̄(tn + cihi, ȳn + h
s∑

j=1

aij k̄j) i = 1, s. (5)
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Table 1. Values of Re(λj), j = 1, 2, 3, 4 and C from Definition 1 in the case of r =
0.1; α = 0.3; t0 = 5; Δt = 10; As = 2.1; ωF = 1, for two values of G.

t G = 50 G = 150

Re(λ1) Re(λ2) Re(λ3) Re(λ4) C Re(λ1) Re(λ2) Re(λ3) Re(λ4) C

2 −0.93 −0.93 −0.60 −0.001 612.82 −3.09 −3.09 −0.62 −5.01E-6 617

5 −0.93 −0.93 −0.61 −0.009 95.77 −3.09 −3.09 −0.62 −1.59E-7 1.94E7

10 −0.91 −0.91 −0.61 −0.007 128.11 −3.09 −3.09 −0.62 −4.72E-9 6.54E8

The method is explicit in case of s ≤ i in (5), otherwise we have implicit
scheme. The coefficients ci, bi, aij when i, j = 1, 2, ..., s are given in the form of
Butcher Tableau (see Table 2(a)).

Table 2. Butcher Tableau. The coefficients ci, bi, aij (i, j = 1, 2, ..., s) of the scheme
(4), (5).

(a) General (b) Runge-Kutta 4 (c) Gauss-Legendre

c1 a11 ... a1s 0 0 0 0 0 1
2

− 1
6

√
3 1

4
1
4

− 1
6

√
3

c2 a21 ... a2s 1/2 1/2 0 0 0 1
2

+ 1
6

√
3 1

4
+ 1

6

√
3 1

4

... ... ... ... 1/2 0 1/2 0 0

cs as1 ... ass 1/2 0 0 1 0

b1 ... bs 1/6 2/6 2/6 1/6 1/2 1/2

The case of the 4-step explicit Runge-Kutta(RK4) is given in Table 2(b).
The implicit two-stage Runge-Kutta scheme (also known as the Gauss-
Legendre(GL2) method and Hammer-Hollingsworth method [4][p.137]) is shown
in Table 2(c). In order to find k̄i, i = 1, s in the implicit scheme, we have to solve
the nonlinear system via the fixed point method:

k̄
(m+1)
i = f̄(x + cih, ȳn + h

s∑
j=1

aij k̄
(m)
j ), i = 1, ..., s,m = 0, 1, 2.... (6)

Table 3. Difference between the stability for RK4 and GL2 methods for the case
G = 500, r = 0.2; α = 0.1; t0 = 5; Δt = 10; As = 1; ωF = 1 and four different values
of h.

h = 0.1 h = 0.02 h = 0.01 h = 0.001

RK4 GL2 RK4 GL2 RK4 GL2 RK4 GL2

n 2 7 2500 2500 5000 5000 50000 50000

error ≈ 10−2 ≈ 10−6 ≈ 10−3 ≈ 10−11 ≈ 10−5 ≈ 10−12 ≈ 10−9 ≈ 10−78
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Advantage of Gauss-Legendre method is that with only 2 stage we receive
accuracy of order O(h4). The stability of the numerical scheme is also better
than that of the Runge-Kutta method. Results of the reached computed values
while solving the system (1), (2) and the accuracy are given in Table 3. Here n is
the number of the last calculated point. Taking into account that the magnetic
moment is normalized (the length ‖M‖ =

√
m2

x + m2
y + m2

z should be always

equal to 1), error represents the difference |‖M‖ − 1| for the last computed
values. Iterations (6) stop when the previously set accuracy of h4 is received
(max
i=1,s

‖k̄
(m+1)
i − k̄

(m)
i ‖ ≤ h4.) The last found k̄

(m)
i , i = 1, s are used in formula

(4) for executing the next values for ȳn+1.
The privilege of implicit method over the explicit one is very good demon-

strated comparing the errors at the end of the computations. The order of accu-
racy for GL2 method is approximately 3 times higher than that using the stan-
dard RK4 method. When the step is small (h = 0.001) the received accuracy
is even much more higher (≈ 10−78). For large values of the step (for example
h = 0.1 in Table 3) GL2 gives the opportunity of computing the solutions for
more points than using RK4.

Implementation of the Gausse-Legendre implicit method sufficiently extends
capabilities of the Wolfram Mathematica user software which was developed for
numerical study of Josephson junctions with magnetic momenta on the basis of
system (1), (2) [5].

4 Numerical Results

Below we present results of phase and magnetization dynamics simulations and
demonstrate that developed numerical scheme works properly at rather large
step in time: h = 0.01 for G = 50π and h = 0.005 for G = 500π.

Fig. 4. Results of the simulations for the case G = 50π, r = 0.1; α = 0.4; t0 = 25; Δt =
6; As = 2.1; ωF = 1, h = 0.01.

In Fig. 4 we show time dependence of magnetic moment components mx(t),
my(t), mz(t) and phase difference ϕ(t) together with trajectories in planes
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mz − mx, mz − my, mx − my and time dependence of superconducting cur-
rent Is(t). Magnetic moments and phase difference start at their initial states
(2) but after pulse of current magnetic moment components mx(t),my(t),mz(t)
and phase difference ϕ(t) are getting perturbated. They can be stabilized in
their initial state (see Fig. 4) or they come to another stable state as shown in
Figs. 5, 6 and 7. As we see in Fig. 4, after current pulse the values of mx and my

are getting equal to zero, and mz = 1.

Fig. 5. Results of the simulations for the case G = 500π, r = 0.3; α = 0.02; t0 =
25; Δt = 6; As = 0.35; ωF = 1, h = 0.005.

Figure 5 shows how x-component returns to zero state (mx = 0), but y and z
components of the magnetic moment change their state to my = 1 and mz = 0,
respectively. It demonstrates the well known Kapitza pendulum feature [3].

Fig. 6. Results of the simulations for the case G = 50π, r = 0.1; α = 0.2; t0 = 25; Δt =
6; As = 2.1; ωF = 1, h = 0.01.

The effect shown in Fig. 6 where only z-component turns from mz = 1 to
mz = −1 is known as the magnetic moment reversal effect. This effect can be
used to create a memory’s cell demonstrating a bit of information and used in
the quantum computing models [3].
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The state of the magnetic moment is very sensitive of the parameters values.
For example, changing only the value of parameter α from 0.4 (Fig. 4) to α = 0.2
(Fig. 6) causes the significant difference between returning in the initial state and
the magnetic reversal.

Fig. 7. Results of the simulations for the case G = 50π, r = 0.1; α = 0.3; t0 = 25;
Δt = 6; As = 10; ωF = 1, h = 0.01.

The dependence of the number of local extreme in the curve of the super-
conducting current function Is(t) on the value of As is clearly seen in Fig. 6 for
As = 0.35, Fig. 5 for As = 2.1 and Fig. 7 for As = 10 depends to the values of
phase difference in the corresponding figures [3].

5 Conclusions

By detailed investigation of the phase and magnetization dynamics we have
demonstrated that the developed numerical scheme works properly at rather
large step in time. The developed numerical scheme allowed to find all stable
states of magnetization of the investigated system: orientation along the easy
axes, manifestation of Kapitza pendulum features and complete magnetization
reversal.
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Abstract. One of the important trends of modern nanobiophysics is
the development of the drug delivery systems on the basis unilamellar
vesicles (ULVs) of phospholipids. The small angle scattering of neutrons
(SANS) and of X-rays (SAXS) are well known tools for investigation
of the structure of the nanosystems like ULVs. In our study, analysis
of SANS/SAXS experimental data is based on the separated form fac-
tors method (SFF). Effectiveness of parallel implementation of the SFF
approach on the basis of MPI-version of the local minimization proce-
dure is investigated; the results of SFF-SANS analysis of structure of the
phospholipid ULVs are presented.

Keywords: Phospholipid · Small angle scattering
Minimization procedure · Parallel algorithm

1 Introduction

Phospholipids play important role in biological systems as a part of the cell mem-
branes. In liquid media, phospholipid molecules can form unilammelar or mul-
tilammelar vesicles (liposomes): a nanosize breather-like objects with the shell
(bilayer) of special structure. This property of phospholipids has a wide range
of applications in biochemistry, pharmacology, biomedicine. One of important
applications of unilammelar vesicles (ULVs) is the transport of medical drugs
incorporated into ULVs [1,2]. Thus, the information about structure and prop-
erties of phospholipid ULVs is of great practical interest.

The small angle scattering of neutrons (SANS) is the well known experi-
mental tool for study of structure of nanosize objects like ULVs. An efficient
method of analysis of SANS data is the separated form factors method (SFF)
[3]. In this approach, basic parameters of polydispersed vesicular systems are
determined by minimization of a discrepancy between experimental data and
calculated characteristics of SANS.

The work is performed under the grant of Russian Science Foundation (project No
14-12-00516).
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Depending on complexity of the problem, global or local minimization pro-
cedure should be used. The global minimization is based on the asynchronous
differential evolution algorithm (ADE) [4]; it is employed in case of the com-
plex multi-parameter model of bilayer (see, e.g. [5]). For the local minimization,
the iterative procedure [6,7] can be successfully used (see, e.g. [3,8–11]). This
approach provides a quick convergence to the local minimum but in massive
calculations, the minimization process can take a significant computer time. So,
for parallel optimization, we employ the parallel version of the same algorithm
implemented in the code PFUMILI [13].

The effectiveness of parallel implementation of the SFF-PFUMILI fitting
procedure was analysed in [12]. In this contribution, we extend this analysis
considering both SANS and SAXS spectra with different number of experi-
mental points. Also, the SANS-estimations of basic parameters of two poly-
dispersed ULV systems are presented: the system of dipalmitoylphosphatidyl-
choline (DPPC) vesicles and the population of ULVs of the phospholipid trans-
port nanosystem (PTNS). The PTNS drug delivering system with extremely
small ULV size has been obtained on the basis of the soybean phosphatidyl-
choline in the Orekhovich Research Institute of Biomedical Chemistry (Moscow,
Russia). Incorporation of drugs into PTNS ULVs is found to increase sufficiently
the therapeutic effectiveness [14].

The calculations have been made at the cluster HybriLIT which is a part
of the heterogeneous platform of the Multipurpose information and computing
complex (MICC) of the Laboratory of Information Technologies of JINR. We
used the CPU-node of this cluster consisting of two CPUs Intel Xeon E5-2695v2
(2.4 GHz, 12 cores).

2 Separated Form Factors Method

The SFF method for analysis of SANS data is determined by the following
formulas (details are given in [3,5,15]). The expression of the intensity I(q) has
the following form:

Itheor(q) = Im(q) +
1
2
Δ2 d2Im(q)

dq2
+ IB, (1)

Im(q) =

⎡
⎣

Rmax∫

Rmin

ISFF(q,R)G
(
R, R̄

)
dR

⎤
⎦ ×

⎡
⎣

Rmax∫

Rmin

G
(
R, R̄

)
dR

⎤
⎦

−1

, (2)

q is the scattering vector, IB characterizes the incoherent background, Δ2 is the
second momentum of spectrometer resolution function. Im is the ULV system
SANS intensity with average radius R̄. Polydispersity σ is accounted for by the
Schulz distribution G(R, R̄) with coefficient m:

G
(
R, R̄

)
=

Rm

m!

(
m + 1

R̄

)m+1

exp
[
− (m + 1)R

R̄

]
, σ =

1√
m + 1

. (3)
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ISFF is the intensity of monodispersed system of ULVs:

ISFF(q) = n Io Fs(q)Fb(q)S(q), (4)

where Io is the intensity of the incident beam, n is a number of vesicles in cm3,
S(q) ∼1 is a structural factor, Fs is the form factor of the spherical surface with
radius R:

Fs(q) =
(

4πR2 sin(qR)
qR

)2

, (5)

and Fb is the form factor of the symmetric lipid bilayer of thickness d:

Fb(q) =

⎛
⎜⎝

+d/2∫

−d/2

ρc(x) cos(qx) dx

⎞
⎟⎠

2

. (6)

Here ρc(x) is the contrast between the scattering length density of the lipid
bilayer and the density of the solvent. Structure of the density function depends
on the temperature and chemical properties of the phospholipid molecules. In
our analysis, we use the hydrophilic-hydrophobic model (HH) of the density dis-
tribution across bilayer (see Fig. 1(a)) and the “step” density shown in Fig. 1(b)).
The HH model with “smooth” bound between hydrophilic and central hydropho-
bic region of bilayer is appropriate in case of the liquid phase of phospholipid [3]
while the “step” density is used in the gel phase case.

-d/2 -D/2   0 +D/2 +d/2

ρ0

ρCH

(a)
-d/2 -D/2   0 +D/2 +d/2

(b)

ρ0

ρPH

ρCH

Fig. 1. Models of the scattering length density across bilayer: d is the bilayer thickness,
D is the thickness of hydrophobic region, ρCH is the hydrocarbon chains density, ρPH

is the polar head group density, ρ0 is the solvent density. (a) HH-density, (b) “step”
density.
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3 Parallel Implementation

Parameters of ULVs are adjusted by means of the minimization of the least
square discrepancy between theoretical and experimental values of SANS
(SAXS) intensity at the ULV system:

χ2 =
1

N − k

N∑
j=1

(
Itheor(qj) − Iexper(qj)

δexper(qj)

)2

, (7)

where Itheor(qj) and Iexper(qj) are, respectively, the theoretical and the exper-
imental small angle intensity values at the points qj of the scattering vector,
N is the number of experimental points, k is the number of parameters to be
fitted, δ are the experimental errors. Parameters to be fitted are following: aver-
age radius R̄, coefficient of polydispersity m, thickness of bilayer d, incoherent
background IB, number of vesicles per volume unit n, and parameters of the
density function. In the HH-model, only the thickness of hydrophobic region D
is to be fitted. In case of the “step”-density, we have one more varied parameter,
the polar head group density ρPH .

As mentioned in Sect. 1, we employ both global and local minimization for
the ULVs SFF-parameters adjustment in the investigations. The global mini-
mization is based on the asynchronous differential evolution algorithm (ADE).
The ADE minimizer with adaptive correlation matrix automatically adapts to
the landscape of the optimized objective function, see [4] and references therein
for details. This approach was successfully employed for the SFF analysis of
SAXS data [5,16]. High effectiveness of the SFF-ADE parallel implementation is
demonstrated in [16] by means of methodical calculations at the multi-processor
cluster CICC (JINR, LIT, Dubna).

The local minimization is based on the iterative procedure described in [6].
In many cases, this approach implemented in the code DFUMIL1 and FUMILIM
[7], provides a quick convergence to the minimum of the χ2 expression (7). In
the parallel MPI-version of this method, PFUMILI2, the parallelism is based on
a distribution of the set of experimental points between parallel MPI-processes,
with the collection of intermediate results to the master process at each itera-
tion. Because of the intensive interaction between the MPI-processes, one can-
not expect so high acceleration of calculations on multi-processor systems as
observed in the ADE-minimization case. Nevertheless, one expects a noticeable
decrease of computer time in case the number of parallel processes is sufficiently
smaller the number of experimental points. In our SFF-SANS analysis problem,
for each experimental point qi at each iteration of the fitting process, the theo-
retical values of Itheor(q) are calculated according to the formulas in Sect. 2 that
requires a significant computational load. Therefore, one can expect the accel-
eration of computations when working in parallel mode, even with a relatively

1 https://wwwinfo.jinr.ru/programs/jinrlib/d510.
2 https://wwwinfo.jinr.ru/programs/jinrlib/pfumili.

https://wwwinfo.jinr.ru/programs/jinrlib/d510
https://wwwinfo.jinr.ru/programs/jinrlib/pfumili
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small number of experimental points. Obviously, the parallel implementation
efficiency should increase as the number of experimental points is growing.

In order to test the effectiveness of the PFUMILI-based parallel implementa-
tion of the SFF-parameters fitting procedure, we have made methodical calcula-
tions for three sets of experimental points. Two of them are the same as in [12]:
the SANS experimental data on a polydispersed ULVs population of dimiros-
toilphosphatidilholin (DMPC) in D2O. The first spectrum with 60 experimental
points was measured at the YuMO spectrometer (Dubna), the second one (227
experimental points) was obtained at the SANS-I PSI facility (Paul Scherrer
Institute, Villingen, Switzerland). Both measurements have been made at the
temperature 30 ◦C. In calculations, we used the HH-model of the scattering
length density across bilayer, with ρCH = −0.36 ·1010cm−2, ρ0 = 6.4 ·1010cm−2.
Both sets of experimental data in comparison with the respective theoretical
curves are shown in Fig. 2(a) (reproduced from [12]). The adjusted parameters
of average radius, polydispersity and bilayer thickness are given in Table 1. The
PFUMILI fitting results are in agreement with the results of [3,8,10]. This con-
firms correctness of the parallel implementation of the SFF approach.

The third spectrum of 1115 experimental points of the small angle X-ray
scattering (SAXS) was collected at the Kurchatov Synchrotron Radiation Source
of the NRC “Kurchatov Institute” (Moscow, Russia) from the polydispersed
population of PTNS ULVs in water solvent with 20% maltose concentration. This
measurement was made at temperature 20 ◦C. The calculations are performed
with the “step”-model of the scattering length density across bilayer, with ρCH =
7.95 · 1010cm−2, ρ0 = 10.7 · 1010cm−2. The experimental and theoretical curves
are shown in Fig. 2(b). The results of fitting (see Table 1) are close to the ADE-
estimations in [17].
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I(q
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Fig. 2. (a) Theoretical and experimental SANS spectra of the polydispersed DMPC
ULV system in D2O. SANS data have been obtained at spectrometers YuMO (Dubna)
and SANS-I PSI (Villingen). (b) Theoretical and experimental SAXS spectra of poly-
dispersed population of PTNS ULVs in the 20% maltose concentration solvent.

Figure 3(a) presents the speedup of calculations versus the number of parallel
MPI-processes in cases of 60, 227 and 1115 experimental points. The maximal
speedup is about 6.6 times for the 60-point YuMO spectrum, about 8.6 time
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for the 227-points SANS-I spectrum, and about 13 times for the 1115-points
SAXS-PTNS spectrum. Fig. 3(b) demonstrates the graph of effectiveness calcu-
lated as the speedup divided by the number of MPI-processes. Analysis of both
graphs determines a preferable number of parallel MPI-processes depending on
the number of experimental points (8, 16 and 24 MPI-processes in case of 60,
227 and 1115 experimental points, respectively).
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Fig. 3. (a) Speedup of PFUMILI-SFF calculations versus the number of MPI-processes
in case of analysis of the 60-point YuMO spectrum, the 227-points SANS-I spectrum,
and 1115-points SAXS spectrum (reproduced from [12]). (b) Effectiveness of parallel
implementation versus the number of MPI-processes.

Table 1. Parameters of the average radius R̄, the polydispersity coefficient m, the
bilayer thickness d, and the hydrophobic region thickness D for the vesicular systems
of DMPC, DPPC, PTNS.

Setup ULV Maltose R̄, Å m d, Å D, Å χ2

YuMO SANS DMPC 0% 277.0 ± 5.0 9.8 ± 0.7 49.0 ± 2.0 20.0 ± 3.0 1.1

SANS-I PSI DMPC 0% 275.6 ± 0.5 12.6 ± 0.3 47.8 ± 0.2 20.5 ± 0.4 1.7

YS SANS DPPC 0% 261.2 ± 1.6 14.1 ± 0.5 55.0 ± 2.4 20.0 3.5

YuMO SANS PTNS 20% 192.2 ± 1.5 7.7 ± 0.7 38.9 ± 3.4 18.0 ± 1.9 8.2

KISI SAXS PTNS 20% 205 ± 3 18 ± 1 44.9 ± 0.4 27.1 ± 0.2 0.7

4 Analysis of ULVs Structure

Within the SFF model, the structure of the polydispersed population of the
DPPC ULVs in heavy water has been analysed on the basis of the SANS data col-
lected at the “Yellow submarine” (YS) small angle spectrometer, Budapest, Hun-
gary (temperature 20 ◦C). Fig. 4(a) demonstrates that the SFF theoretical curve
well reproduce the experimental data. As in [11], the calculation was performed
with the “step”-model of the scattering length density, ρCH = −0.36 ·1010cm−2,
ρ0 = 6.4 ·1010cm−2, parameter D was fixed D = 20Å from the data of the X-ray
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small angle diffraction. The values of adjusted parameters (given in Table 1) are
in reasonable agreement with the estimations in [11] on the basis of analysis of
the YuMO DPPC spectrum (a discrepancy between values of parameters R̄, m,
d, D fitted to the YS data and to the YuMO data is about 10%).

The results the SFF analysis of the PTNS ULVs structure on the basis of
the YuMO SANS data collected at temperature 20 ◦C are presented in Fig. 4(b).
Previously, the structure of PTNS ULVs was analysed in [16,18,19] on the basis
of SAXS data collected at the Kurchatov Synchrotron Radiation Source of the
NRC “Kurchatov Institute” (Moscow, Russia). Here we present the SANS esti-
mations of basic parameters of PTNS ULVs in the heavy water solvent of the
20% maltose concentration on the basis of the “step”-model of bilayer. In this
calculation, ρ0 = 5.33 · 1010cm−2, ρCH = −0.36 · 1010cm−2. Figure 4(b) demon-
strates a reasonable agreement of the SFF theoretical curve with experimental
data. The results are close to the ADE-analysis of the same spectrum in [20] and
to the PFUMILI-calculations within the HH bilayer model [12]. Values of basic
parameters of PTNS system are given in Table 1. It is seen from the Table 1 that
the estimations of average radius of the PTNS ULVs on the basis of SANS and
SAXS data are close to each other. Discrepancy between SANS and SAXS val-
ues of d is about 15%. Note that the SAXS- and SANS-estimations of m and D
are not in good agreement that requires the further experimental and numerical
study.

It is also seen from the Table 1 that the average radius R̄ of PTNS ULVs is
significantly smaller than the radius of “classical” DMPC and DPPC ULVs.
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Fig. 4. Theoretical and experimental SANS spectra: (a) for the polydispersed DPPC
ULV system in D2O and (b) for the polydispersed population of PTNS ULVs in the
20% maltose concentration heave water solvent.

5 Summary

– We have found that the PFUMILI-based parallel implementation of the SFF-
parameters fitting procedure can provide the 6–13 times speedup in compar-
ison with the serial calculations.

– The SFF analysis of structure of DPPC ULVs on the basis of the YS SANS
data confirmed the results of analysis of the YuMO SANS spectrum in [11].
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– Estimations of basic parameters of the PTNS ULVs within the SFF analysis
of the YuMO SANS data have been made. The calculation confirms the small
size of PTNS vesicle in comparison with the “classical” ULVs of DMPC and
DPPC.
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Abstract. Molecular dynamic simulation of the long-range effect in a
metal target, irradiated by nanoclusters, is carried out. Calculations have
shown that under simultaneous irradiation by several nanoclusters, hav-
ing different areas of interaction with the target surface, fusion of high
temperature moving regions occurs in depth. The temperature in the
fusion region rises sharply, exceeding the melting temperature of the
target. As a result, structural changes in the crystal lattice at a target
depth, exceeding the penetration depth of the nanoclusters, can occur.

Keywords: Molecular dynamics · Long-range effect · Nanoclusters

1 Introduction

In materials irradiated by particles, often structural changes occur at a depth of
the irradiated target, that exceeds the penetration depth of the particles [1–6].
This phenomenon, called long-range effect, has been studies experimentally and
theoretically by several research groups in Russia for more than twenty years.
There is a large number of experimental works in this area, using various types
of materials and irradiation sources. However, a unified theoretical model for
describing the long-range effect has not been developed yet [3,4].

In the works [1–6], a special attention is given to research of ion implanta-
tion into metals, which led to the initial study of the long-range effects [1,2].
A theoretical model of this phenomenon was discussed in [3]. This model is
based on acoustic wave propagation, characterized by dependance on the ther-
mal processes and on the structural changes, that occur in the metal, due to
the accelerated ions implantation. In our works [7,8] the wave dynamics of the
heat transfer inside a copper target irradiated by copper nanoclusters of energies
10–50 eV/atom, was simulated using the molecular dynamics method [9]. The
effect of a moving region with a high temperature (or a shock wave), described
by a nonlinear heat equation [10] and found by numerical simulations in 1D–
3D models, was confirmed in [7,8]. Therefore, it is of great interest to study
c© Springer Nature Switzerland AG 2019
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the long-range interaction phenomenon by numerical simulations based on the
molecular dynamics method.

We are not aware of investigations of the long-range effect, using the molec-
ular dynamic modeling. Lack of such studies is partly due to impossibility of the
direct application of this method, since for irradiation beams, starting with ion
energy 1 keV, the fraction of the inelastic interactions of the ions, incident with
the target, increases. Accounting for inelastic interactions requires the introduc-
tion of an electronic subsystem for the target (the heat equation of the electron
gas of the target), and, accordingly, the modeling problem becomes more compli-
cated. At present, such an approach (introduction of the electron subsystem) has
been developed and applied upon irradiation with high-energy heavy ions (10–
1000 MeV) [11], when the elastic interactions of the incident ion with the target
can be neglected (their fraction is 5–0.1%, respectively). At irradiation energies
1-1000 keV/ion, elastic and inelastic interactions of the incident ions with the
target are substantial. As the simulation shows, the irradiation of metal targets
by nanoclusters [7,8] is similar to the irradiation by other sources: high-energy
heavy ions and pulsed beams. In both cases, irradiation with nanoclusters and
irradiation with beams of high-energy heavy ions, a large amount of energy per
unit volume is released in the local target region. Thus, ion beam irradiation
can be treated as nanocluster irradiation within the framework of energy release
in a small volume, which makes it possible to use the methods of molecular
dynamics [9].

This work differs from the previous works [7,8] in that the metal target is
irradiated not by one nanocluster, but simultaneously by two and four nanoclus-
ters, whose interaction areas with the target surface are separated from each
other at a certain distance (4–10 nm). That gives the possibility to intensify the
long-range effect and to show its dependence on the irradiations intensity.

2 Molecular Dynamics Method

At present, for application of the molecular dynamics methods, there are ready-
made software packages (LAMMPS, DL.POLY, NAMD, etc.). In this work, the
simulation was carried out using the LAMMPS package [12], installed on the
HybriLit cluster [13]. Multi-particle systems are considered in the package, where
all particles (atoms or molecules) are material points. The behavior of an indi-
vidual particle is described by the classical Newton motion equations:

mi
d2ri

dt2
= fi. (1)

Here i is the order number of the particle (1 ≤ i ≤ N), N is the total number
of particles, mi is the mass of the particle, fi is the resultant of all forces, acting
on the particle:

fi = −∂U(r1, . . . , rN)
∂ri

+ fex
i ,
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where U is the interaction potential between the particles, f exi is the force of the
external fields (neglected further).

Under the assumption that the force of interaction between any pair of par-
ticles depends only on the distance between them, the interaction potential U
takes the form:

U(r1, . . . , rN) =
N−1∑

i=1

N∑

j=i+1

V (rij), rij = ||ri − rj||, (2)

V (rij) is the potential of the pair interaction between particles i and j.
To integrate the equations of particle motion the Verlet method is used [14].

The discretization of the classical equations of motion (1) is performed as follows:

fi = − ∂

∂ri

N∑

j=1,j �=i

V (rij).

Then the new coordinates of the particles are calculated, from which the
resultant forces are determined:

ri(t + Δt) = ri(t) + vi(t)Δt +
ai(t)

2
Δt2. (3)

Here, a is the acceleration, a(t + Δt) = f(t + Δt)/m. Further the velocities of
the particles are determined:

v(t + Δt) = v(t) +
a(t + Δt) + a(t)

2
Δt. (4)

For the numerical solution of the system (1) by means of the difference scheme
(3)–(4) it is necessary to set initial conditions. A general approach to statement
of initial conditions is given in [14]. In the present work, the simulation of the
long-range effect in the copper target irradiated by copper nanoclusters is carried
out. For this purpose, the LAMMPS package has been modified. By using the
methodology from [15], additional programs for nanocluster formation were con-
structed and incorporated in the package. The EAM (Embedded atom model)
potential for copper, from the LAMMPS package [12] was used as the inter-
atomic potential (2). Initial conditions were used from the LAMMPS package
according to the selected EAM potential [12].

By using the velocities (4), the instant temperature T is calculated:

T =
1

dNk

N∑

i=1

miv2
i ,

where k is the Boltzmann constant, d is the space dimension, here d = 3.
After averaging over time interval Δt, we obtain the temperature of the

system:

T̄ =
1

3NkΔt

t0+Δt∫

t0

N∑

i=1

miv2
i dt.
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3 Methodology of Modeling and Obtained Results

The simulation of the interaction of nanoclusters with a metal target was carried
out as follows. Within the framework of the molecular dynamic approach, we
solve the problem of irradiating a metal target by several nanoclusters with
different energies. In the first stage, the simulation was carried out for region
of interaction of irradiation by two nanoclusters. In the simulation, the distance
between clusters was varied to obtain the desired effect. In the second stage, the
simulation was carried out for simultaneous irradiation by four nanoclusters. In
the previous works of the authors, at the study of thermal processes in the target
material from copper irradiated with copper nanoclusters, the effect of the wave
process of thermal conductivity (a moving region with a high temperature) was
obtained [7]. The wave transfer of heat propagates diagonally, and the fusion of
moving regions with a high temperature in the depth of the target takes place.
The computational domain is a parallelepiped with sides of 22 × 18 × 11 nm
and a number of particles is 373,000 in a copper target when it is irradiated by
two nanoclusters of copper (Fig. 1.a). If the irradiation by four nanoclusters is
simulated, the computational domain is a parallelepiped with sides 22 × 22 ×
11 nm with a particle number 447,000 (Fig. 1.b). The EAM copper potential
built into the LAMMPS package was used as the interatomic potential [12]. The
simulation was carried out for nanoclusters with a particle number of 141 and
irradiation energy 10 eV/atom to 50 eV/atom.

The results of simulation, visualized by means of the OVITO program [16],
are presented on Figs. 2, 3, 4 and 5.

Figures 2 and 3 show the results obtained when the irradiation is by two
nanoclusters of energy 50 eV/atom. The figures demonstrate the dynamics of
the structural changes at the surface (Fig. 2) and at a depth of 5 nm (Fig. 3)
of the irradiated target. It can be seen on Fig. 3.d, that the main changes in
the target in the depth take place at the center, where the regions with a high
temperature merge.

(a) (b)

Fig. 1. Scheme of target irradiation with two (a) and four (b) nanoclusters. The arrows
show the direction of irradiation.
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(a) (b)

(c) (d)

Fig. 2. Structural changes of the target and formation of craters on the surface of the
target when irradiated with two nanoclusters of energy 50 eV/atom at instants of time
1 ps (a), 4 ps (b), 7 ps (c), and 10 ps (d). The distance between clusters is 6 nm.

(a) (b)

(c) (d)

Fig. 3. Concentration of the structural changes in the target at a depth of 5 nm upon
irradiation with two nanoclusters of energy 50 eV/atom at instants of time 1 ps (a),
4 ps (b), 7 ps (c), and 10 ps (d).
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Figures 4 and 5 show the results obtained after irradiation of the target by
four nanoclusters of energy 50 eV/atom. These figures also demonstrate the
dynamics of structural changes on the surface (Fig. 4) and in a depth of 5 nm
(Fig. 5) of the irradiated target. Our calculations show, that a single nanocluster
of energy 50 eV/atom penetrates the target to a depth of 2–2.5 nm. The results
show how structural changes occur in the depth of the target due to wave heat
transfer. In addition, the target undergoes strong elastic interactions with the
nanoclusters and some of the heat transfer is related to the thermoelastic effect.

(a) (b)

(c) (d)

Fig. 4. Structural changes of the target and formation of craters on the surface of the
target when irradiated with four nanoclusters of energy 50 eV/atom at instants of time
1 ps (a), 4 ps (b), 7 ps (c), and 10 ps (d).

The temperature in the fusion region rises sharply, exceeding the melting
temperature of the target, that leads to structural changes in the target. It
is numerically determined that this region is located in a depth exceeding the
depth of penetration of the cluster. This result can be used to explain the long-
range effect. The concentration of the structural changes in the case of four
nanoclusters is higher than that in the case of two nanoclusters. Thus, we can
expect more significant structural changes in the case of four nanoclusters.
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(a) (b)

(c) (d)

Fig. 5. Concentration of the structural changes in the target at a depth of 5 nm when
irradiated with four nanoclusters of energy 50 eV/atom at instants of time 1 ps (a),
4 ps (b), 7 ps (c), and 10 ps (d).

4 Conclusions

In the work, molecular dynamic modeling of the irradiation of a target from
copper simultaneously by several copper nanoclusters was carried out.

The results can be used to explain the long-range effect, since structural
changes can occur at a target depth exceeding the penetration depth of the
nanoclusters.

Acknowledgement. The work was financially supported by RFBR grant No.
17-01-00661-a and by a grant of the Plenipotentiary Representative of the Republic
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Abstract. Classifications studies are performed for various kinds of
objects. Several 2-dimensional classification diagrams have been created.
It is shown that this kind of mathematical models can be useful in dif-
ferent areas of science.

Keywords: Mathematical modeling · Classification
Distribution moments

1 Introduction

Classification is one of the ways to see the analogs and the properties of consid-
ered objects. Initially, it was based on the observations only. Recently it became
an inspiration for the creation of various mathematical models. The problem of
classification is strictly related to the notion of similarity. The objects can be
classified in many different ways depending on the similarity criteria. In partic-
ular, this kind of mathematical models has been developed in chemistry, where
the theory of molecular similarity, with various applications, has been created
[1–10]. The basis of the molecular classifications are numerical characteristics
called descriptors. In particular, we have proposed moments of the intensity dis-
tributions as molecular descriptors [11]. This kind of descriptors we have also
applied for the classifications of the biological sequences [12], of the solutions
in chaotic systems [13], and of the stellar spectra [14]. In the present work, we
continue our studies related to the classification. The classified objects are of
different nature. In this work we consider molecules and groups of individuals
for which we have already performed some pilot studies [15,16].

2 Methods

As far as the molecules are concerned, the criterion of the classification (the
descriptor) considered in the present work is the moment of the intensity
c© Springer Nature Switzerland AG 2019
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distribution. The n-th moment of a discrete intensity distribution Iν is defined as:

Mn = N
∑

i

Iνi
νn

i , n = 0, 1, 2, . . . (1)

Iνi
is the intensity of the i-th line, νi is the corresponding frequency and

N =

(
∑

i

Iνi

)−1

(2)

is the normalization constant. We also consider the moments which are normal-
ized to the mean value equal to zero (M ′

1 = 0) (centered moments):

M ′
n = N

∑

i

Iνi
(νi − M1)n. (3)

The moments for which, additionally, the variance is equal to 1 (M ′′
1 = 0, M ′′

2 =
1) are defined as

M ′′
n = N

∑

i

Iνi

[
(νi − M1)√
M2 − (M1)2

]n

. (4)

Similar descriptors (the distribution moments) we have also introduced for the
characterization of the biological sequences within the 2D-Dynamic Representa-
tion of DNA/RNA Sequences [17].

Such a choice of the descriptors leads to the classifications of two groups of
the DNA sequences: histone H4 coding sequences of plants and of vertebrates.
Since by using the standard sequence alignment methods, for example BLAST
[18], CLUSTAL [19] one obtains large similarities between these two groups
of sequences, it is difficult to find descriptors which distinguish between them.
Therefore, obtaining the classification in this case, is a good test of the quality
of the descriptors used in this work.

In the 2D-dynamic method, the nucleotides in the sequence are represented
by unit vectors: adenine = (−1, 0), guanine = (1, 0), cytosine = (0, 1), and
thymine/uracil = (0, −1). The method is based on walks in a 2D space. We start
the walk at (0, 0) point and then continue moving along consecutive vectors
representing nucleotides in the sequence. After each single step of the walk a
point-mass with m = 1 is put at the end of the unit vector corresponding to this
step. If the ends of the vectors meet several times at the same point then the
mass of this point is equal to the sum of the single masses. As a consequence, the
sequence is represented by a set of point-masses in the 2D space (2D-dynamic
graph). Non-standard treatment of the biological sequences considered as rigid
bodies, analogously as in the classical dynamics, has been also generalized to 3
dimensions [20].

In the case of groups of individuals the criteria of the classification are
answers to questionnaire questions. The classification diagrams (similarity maps)
have been obtained using the correspondence analysis [21–23]. The questions
have been taken from the World Health Organization Quality of Life-BREF
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(WHOQOL-BREF) questionnaire [24,25]. They concern the Overall Quality
of Life and General Health, and the quality of life in four domains: Physical
Health, Psychological, Social Relationships, and Environment. To each question
the respondents could choose between 5 answers. We consider 3-point scale of
answers: negative, neutral, and positive. Two answers that correspond to the least
and the most favorable quality of life we combined into one negative, and pos-
itive, respectively. The same methodology can be applied to the 5-point scale.
The studies were performed from February to May, 2017. We considered 449
individuals, citizens of Bydgoszcz - a city in Poland: 160 employees (100 females
and 60 males) and 289 retirees (186 females and 103 males). The group of retirees
has been split to two subgroups: 106 students of the University of the Third Age
retirees2 (79 females and 27 males) and 183 non-students of the University of
the Third Age retirees1 (107 females and 76 males).

3 Results and Discussion

A typical way of presentations of the results related to the answers to particular
questions in the questionnaires is showing the number of answers given by sub-
groups of individuals. This information can be shown in the form of the spine
plots. Two examples for the Physical Health domain are shown in Fig. 1 (males -
left panel; females - right panel). One can compare the numbers of answers
(normalized to 1) for particular subgroups. The χ2 test performed by us means
that the results are statistically significant: p − value = 7.33 ∗ 10−6 (Fig. 1, left
panel) and p − value < 2.2 ∗ 10−16 (Fig. 1, right panel).
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Fig. 1. Normalized numbers of answers for the groups of individuals.

In order to show graphically a global description of the system we introduce
similarity maps obtained using a computational tool known as the correspon-
dence analysis. In this method, one creates 2-dimensional maps in which the
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objects under consideration cluster in a specific way. The structure and the dis-
tribution of the clusters carry information about the objects.

Figures 2 and 3 show the maps for different groups of individuals.
For example, in the left panel of Fig. 2, the first dimension of our correspon-

dence analysis explains 98.5% of the variance in the data and the second 1.5%
(the numbers in the brackets shown in the labels of the axes of the map).

The left panels describe the males and the right ones – the females. Consid-
ering gender in the Physical Health domain, the differences between females and
males are small. The structures of the maps are similar for males and females
(Fig. 2, top panels).

This means that gender is not an important factor determining the qual-
ity of life in the Physical Health domain. In the Psychological domain gen-
der plays an important role. The structures of the two maps are different for
males and females (Fig. 2, bottom panels). For females we observe a cluster:
positive—neutral—employees—retirees2, and for males two clusters: employees—
positive and retirees1—neutral. Analogously, in the domain Social Relationships:
the structures of the two maps for males and females are different. The clus-
ter appears only for females: retirees2—positive—employees (Fig. 3, top panels).
Gender is an important factor of determining the quality of life in the Social Rela-
tionships domain. In the domain Environment the differences are not large. For
males we observe a cluster: neutral—positive—retirees1—employees. For females
positive is excluded from this cluster (Fig. 3, bottom panels). Gender has an
influence on the quality of life in this domain but this influence is weaker than
in the Psychological and Social Relationships domains.

Figure 4 shows 2-dimensional maps for the chemical compounds. We consider
two groups of molecules, nitriles and amides. Their infrared spectra have been
calculated using the Density Functional Theory (DFT) method [11]. This invalu-
able tool in organic structure determination and verification involves the class
of electromagnetic (EM) radiation with frequencies between 4000 and 400 cm−1

(wavenumbers). The category of EM radiation is termed infrared (IR) radiation,
and its application to organic chemistry known as IR spectroscopy. DFT is a
physical theory in which the description of a many-electron system is performed
using the information contained in the density function only. As a consequence,
the complexity of the description is considerably reduced. For more details
see [26].

The main idea of our approach has been taken from the Statistical Theory
of Spectra [27]. In the Statistical Theory of Spectra a spectrum is treated as
a statistical ensemble and is characterized by the distribution moments. This
results in a very substantial reduction of data. The maps have been obtained
using high-order moments defined in Eq. 4. As we see, Statistical Theory of
Spectra leads to the classification of the chemical compounds. The two groups
of molecules (nitriles and amides) are located in different parts of the maps. This
proves the efficiency and adequacy of the proposed approach. The descriptors
characterizing different groups of molecules are separated by lines and denoted
by different symbols in Fig. 4.
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Fig. 2. Correspondence analysis maps: Physical Health - top panels, Psychological -
bottom panels.

We notice that the patterns in the two maps are similar. This means that
higher-order moments do not introduce any new essential information. The prob-
lem of correlations in spectral statistics we discussed in [28].

Summarizing, the classification maps are a source of information in different
areas of studies. One can find new aspects of similarities between the considered
objects using such an approach.
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Fig. 3. Correspondence analysis maps: Social Relationships - top panels, Environment -
bottom panels.
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Abstract. Similarity maps are proposed as mathematical models that
can be used in different areas of science. Using this kind of a graphical
representation one can reveal the properties that determine similarity or
dissimilarity of the considered objects. Several new similarity maps have
been created.
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1 Introduction

Different kinds of problems in many areas of science can be treated as similar-
ity studies. Such kind of mathematical modeling may reveal new properties of
the investigated systems. The objects in different similarity maps (classification
diagrams) may be of entirely different characters but the objects located close
to each other on the maps are similar in some way.

One of the objects considered here are the biological (DNA/RNA, protein)
sequences. Recently, we have created a new mathematical model called by us 3D-
Dynamic Representation of DNA/RNA Sequences [1–3]. We have proved high
accuracy of this approach which offers both numerical and graphical tool for
similarity/dissimilarity analysis of the biological sequences. Other objects ana-
lyzed by us are various kinds of spectra [4–6]. As a consequence, a new method of
similarity analysis of the stellar spectra, more accurate than the commonly used
approach, has been formulated. We have also performed pilot studies in which
the objects under considerations are groups of people with similarity studies
based on their answers to specific questions [7,8].

In the present work we continue these studies. In the subsequent sections we
describe the methods which are the basis for the creation of new similarity maps.
The objects in the maps are either biological sequences and their structures or
groups of individuals and their questionnaire answers.
c© Springer Nature Switzerland AG 2019
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https://doi.org/10.1007/978-3-030-10692-8_37

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-10692-8_37&domain=pdf
https://doi.org/10.1007/978-3-030-10692-8_37


Mathematical Modeling: Interdisciplinary Similarity Studies 335

2 Methods

One of the computational methods we used for obtaining the similarity
maps is 3D-Dynamic Representation of DNA/RNA Sequences. This approach
belongs to nonstandard (alignment-free) groups of methods aiming at similar-
ity/dissimilarity analysis of the biological sequences [9–13]. Within this approach
the sequence is represented by the 3D-dynamic graph composed of point masses
in a 3D space. The DNA sequence is a sequence composed of four letters corre-
sponding to four nucleotides: A - adenine, C - cytosine, G - guanine, T - thymine.
In this method we represent the nucleotides by the basis vectors: A = (−1, 0, 1),
G = (1, 0, 1), C = (0, 1, 1), and T = (0, −1, 1). The process of the creation of the
3D-dynamic graph is based on shifts in a 3D-space. We start the shifts from the
origin of the coordinate system. After the first shift representing the first base
in the sequence a point-mass is located at the end of the vector representing this
shift. For example, if the first base is A, then the vector representing the first
shift is (−1, 0, 1) and the coordinates of the first point-mass are (−1, 0, 1). The
next shift, defined by the next base in the chain, originates from the end-point
of the previous shift. At its end the next point-mass is located. The procedure
continues until the end of the chain. An example is shown in Fig. 1. The shape
and the location in the space of the graph is specific for the sequence described
by this graph.
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Fig. 1. 3D-dynamic graphs representing human and wheat histone H4 coding
sequences.

For the numerical characterization of the sequences different kinds of char-
acteristics called descriptors have been designed [1–3]:

– Coordinates of the centers of mass of the 3D-dynamic graphs (µx, µy, µz),
– Normalized principal moments of inertia of the graphs (r1, r2, r3),
– Cosines of the angles between the planes Cij , i, j = 1, 2, 3.



336 A. Bielińska et al.

The coordinates of the center of mass of the 3D-dynamic graph, in the XY Z
coordinate system are defined as

μx =
∑

i mixi∑
i mi

, μy =
∑

i miyi∑
i mi

, μz =
∑

i mizi∑
i mi

, (1)

where (xi, yi, zi) are the coordinates of the mass mi. The tensor of the moment
of inertia is defined by the matrix

Î =

⎛

⎝
Ixx Ixy Ixz
Iyx Iyy Iyz
Izx Izy Izz

⎞

⎠ (2)

with

Iaa =
N∑

i

mi

[
(b′

i)
2 + (c′

i)
2
]
, Iab = Iba = −

N∑

i

mia
′
ib

′
i, (3)

where {a, b, c} = {x, y, z}, a �= b �= c. (x′
i, y′

i, z′
i) are the coordinates of mi in the

Cartesian coordinate system with the origin selected at the center of mass, and
N is the length of the sequence.

The principal moments of inertia are defined as the eigenvalues of Î

Îωk = Ikωk, k = 1, 2, 3. (4)

The eigenvectors ω1, ω2, ω3 form a basis for a new coordinate system. The
corresponding axes of this system are denoted Ω1, Ω2, Ω3 and they are called
the principal axes. The normalized principal moments of inertia are defined as

r1 =

√
I1
N

, r2 =

√
I2
N

, r3 =

√
I3
N

. (5)

Let M1, M2 and M3 denote, respectively, the planes (X,Y ), (X,Z) and (Y,Z).
Analogously, Q1, Q2, Q3 denote the planes (Ω1, Ω2), (Ω1, Ω3), (Ω2, Ω3), respec-
tively. The cosines of the angles between the planes of the two systems of coor-
dinates are defined as

Cij ≡ cos (Mi, Qj), i, j = 1, 2, 3. (6)

Another computational method used for obtaining the similarity maps is the
correspondence analysis [14–16]. The objects in these similarity maps are partic-
ular subgroups of individuals and their answers to some specific questions. The
questions are related to the quality of life in different domains. The subgroups
of individuals are the retirees and the employees. By such a choice of individ-
uals one can study changes of the quality of life at the retirement threshold.
The individuals were evaluated using the Polish version of the World Health
Organization Quality of Life-BREF (WHOQOL-BREF) questionnaire [17,18].
The questionnaire is composed of 26 questions. Two questions are related to the
Overall Quality of Life and the General Health. The remaining 24 questions con-
cern four domains: Physical Health (Domain 1); Psychological (Domain 2); Social
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Relationships (Domain 3); Environment (Domain 4). One could choose one of
five answers to each question. Two answers that correspond to the least favorable
quality of life we combined into one negative and two answers that correspond
to the most favorable quality of life we denote as positive. As a consequence we
consider 3-point scale of answers: negative, neutral, and positive. The group of
retirees has been divided to two subgroups: the one of not attending lectures at
the University of the Third Age (retirees1) and the one attending the University
(retirees2).

3 Results and Discussion

Using the methods described in the previous section we have already obtained
several similarity maps [1,3,7,8]. In the present work we continue the studies
and show several new maps for the biological sequences and for the groups
of individuals and their answers to the questions. We can see that the points
representing specific objects cluster in a specific way.

In Figs. 2 and 3 histone H4 coding sequences available in the GenBank
database for different species are used. These protein coding sequences are very
similar for plants and for vertebrates and it is difficult to find a property which
distinguishes between these two groups of sequences. Therefore these sequences
may be used as a test for new methods. Our aim is to design descriptors which
would be able to separate them. As we can see, the descriptors defined in Eq. (6)
and used for the creation of the maps lead to a separation of the two subgroups of
the sequences (the lines in the Figures separate the two subgroups). This proves
the efficiency of the method. Analogous similarity maps for histone H4 coding
sequences have also been obtained using the 2D-dynamic method [19].
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Fig. 2. Map obtained using the 3D-dynamic method: C12 − C13.

As a consequence, good descriptors which lead to the classification of his-
tone H4 coding sequences of plants and of vertebrates are, among others: the
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distribution moments, the moments of inertia, angles between the x axis and the
principal axis of inertia of the graphs, or the cosines of the angles between the
planes used in this work.
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Fig. 3. Maps obtained using the 3D-dynamic method: C21−C22 (left panel), C32−C33

(right panel).

As far as the subgroups of individuals are concerned, the standard way of
presenting the results is showing the percentage of answers to a given question
by each subgroup. The numbers of answers (normalized to 1) to the questions
by different subgroups are shown in the spine plots in Fig. 4. As we can see, the
total number of positive answers is the largest, and the number of the negative
answers is the smallest both for married and for others. We have performed
the χ2 test and the results are statistically significant: p − value < 2.2 ∗ 10−16

(Fig. 4, left panel) and p − value = 1.05 ∗ 10−11 (Fig. 4, right panel).
The histograms show only the number of answers, separately for each object.

In the correspondence analysis particular objects are treated as a single system.
For obtaining the maps the information about all objects is taken into account
simultaneously. Therefore, by studying the structure of the maps we obtain the
global description of the system.

In Figs. 5 and 6 two subgroups of individuals are represented by the corre-
spondence analysis maps: married (left panels of the Figures) and others (right
panels of the Figures). Comparing the structures of the Figures we can see some
aspects of the differences between the estimations of the quality of life by dif-
ferent subgroups of the individuals. For example, the structures of the top left
and the top right panels of Fig. 5 are similar. This means that the subgroups
married and others estimate their quality of life in a similar way in the Physical
Health domain (the marital status does not influence the quality of life in this
domain). However, this factor is important in other domains (the structures of
the Figures are different).
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Fig. 4. Spine plots for the subgroups of individuals.

Fig. 5. Maps obtained using the correspondence analysis method (Domains 1, 2).
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Fig. 6. Maps obtained using the correspondence analysis method (Domains 3, 4).

Summarizing, as we can see, the presented graphical representation of the
results is helpful in the comparative studies performed on many diverse sets of
objects in different areas of science.
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Abstract. The present study is devoted to the stabilization of a biore-
actor model, describing an anaerobic fermentation process for biological
degradation of organic wastes with methane production. The stabiliza-
tion is realized by means of a feedback control law related to the model
output and involving a discrete time delay. We determine a nontrivial
equilibrium point of the closed-loop system and investigate its asymp-
totic stability as well as the appearance of bifurcations with respect to
the delay parameter. We establish the existence of an attracting and
invariant region around the equilibrium such that all trajectories enter
this region in finite time for some values of the delay and remain there.
An iterative numerical extremum seeking algorithm is applied to the
closed-loop system aimed to maximize the methane flow rate in real time.
Simulation results are presented to illustrate the theoretical studies.

1 Introduction

Delayed mathematical models of bioprocesses have been extensively studied in
recent years in order to explain the appearance of different phenomena in the
real process, cf. [8,9] and the references therein. In the same time, feedback
control of bioreactor models provides many advantages in operating a plant and
is used to increase its efficiency. In the present paper we combine the above
mentioned approaches in studying a bioprocess mathematical model, namely we
use a feedback control related to the (on-line measurable) process output for the
dynamics stabilization, and introduce a discrete time delay. The time delay is
involved in the feedback, because there is always a delay between the output
measurements and the system’s response (cf. [4]).

We consider one of the bench-mark mathematical models of the continuous
methane fermentation, the so-called “single biomass/single substrate” model.
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It is described by two nonlinear ordinary differential equations

ds

dt
= −k1μ(s)x + u(sin − s)

dx

dt
= (μ(s) − αu)x

(1)

and one algebraic equation for the gaseous output

Q(s, x) = k2μ(s)x. (2)

The state variables x = x(t) and s = s(t) represent biomass concentration
[mg/dm3] and substrate concentration [mg/dm3] respectively, sin is influent sub-
strate concentration [mg/dm3], u is dilution rate [day−1], k1 is yield coefficient,
k2 is coefficient [(dm3)2/mg], and Q is methane gas flow rate [dm3/day]. The
parameter α ∈ (0, 1) accounts for the biomass retention. The model function
μ(s) presents the specific growth rate of the biomass.

The paper is organized as follows. The next Sect. 2 contains the assumptions
imposed on the model. Section 3 is devoted to stability and bifurcation analysis
of the equilibrium points with respect to the delay parameter. In Sect. 4 we proof
the existence of an attracting and invariant set in the phase plane, such that all
trajectories enter it in finite time and remain there for sufficiently small values
of the delay. The last Sect. 5 demonstrates the applicability of the model-based
extremum seeking algorithm using a numerical example.

2 Assumptions on the Model

The theoretical studies of the model (1) are carried out under several assump-
tions presented below.

Assumption 1. The function μ is defined for s ∈ [0,+∞), μ(0) = 0, μ(s) > 0
for s > 0, and μ(s) is continuously differentiable for all s ≥ 0.

Assumption 2. Lower bounds s−
in and k−

2 for the values of sin and k2 respec-
tively, and an upper bound k+

1 for the value of k1 are known.

Denote β− =
k+
1

k−
2 s−

in

and consider the feedback control law

κ(s(t), x(t)) = β k2 μ(s(t)) x(t) with β ∈ (
β−, +∞)

. (3)

Obviously, κ(·) = βQ(·) holds true. Replacing in the model (1) the dilution rate
u by the feedback κ(s(t−τ), x(t−τ)), where τ > 0 is a discrete delay, we obtain

ds

dt
= −k1μ(s(t))x(t) + κ(s(t − τ), x(t − τ)) (sin − s(t)) (4)

dx

dt
= μ(s(t))x(t) − ακ(s(t − τ), x(t − τ)) x(t). (5)
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Choose some β ∈ (β−, +∞) and define

s̄ = sin − k1
k2β

, x̄ =
1

αβk2
, p̄β = (s̄, x̄). (6)

It is straightforward to see that p̄β is an equilibrium point for (4)–(5), and s̄
belongs to the interval (0, sin).

Assumption 3. There exist points s− and s+ such that s− < s̄ < s+ < sin

and

(i) the function μ is strictly increasing on the interval (s−, s+];
(ii) μ(s) < μ(s−) < μ(sin) for each s ∈ [0, s−);
(iii) there exists ε > 0 such that μ(s+) < μ(s) for each s ∈ (s+, s+ + ε).

Denote
u− = μ(s−)/α, u+ = μ(s+)/α. (7)

Assumption 3 implies that u− < u+.

Assumption 4. Each point from the interval [u−, u+] is an admissible value
for the control function u.

Denote further ū = κ(s̄, x̄) = μ(s̄)/α; obviously ū ∈ (u−, u+) holds true.

3 Stability and Bifurcations of the Equilibrium Point

We shall investigate the local asymptotic stability of the equilibrium point p̄β

from (6) with respect to the parameters of the system (4)–(5).
The characteristic equation of system (4)–(5) evaluated at the equilibrium

point p̄β has the form (cf. [5,7])

λ2 + aλ + b + (cλ + d)e−λτ = 0, (8)

where λ is a complex number, and

a = a(β) = k1x̄μ′(s̄) + 1
αμ(s̄), b = b(β) = k1x̄μ(s̄)μ′(s̄),

c = c(β) = μ(s̄) − k1x̄μ′(s̄), d = d(β) = μ(s̄)
(
1
αμ(s̄) − k1x̄μ′(s̄)

)
.

Theorem 1. Let Assumptions 1, 2 and 3 be satisfied. (i) If b ≥ d then the
equilibrium point p̄β is locally asymptotically stable for any value of the delay
τ ≥ 0. (ii) If b < d then there exists τ0 > 0 such that the equilibrium point p̄β is
locally asymptotically stable for all values τ such that 0 < τ < τ0; the equilibrium
is locally unstable if τ ≥ τ0, and a Hopf bifurcation occurs for τ = τ0.

Proof. First we shall show that if τ = 0 then the characteristic equation does
not possess roots λ with nonnegative real part. For τ = 0 Eq. (8) takes the form

λ2 + (a + c)λ + b + d = 0. (9)
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Assumption 3(i) implies a > 0 and b > 0. Since a + c =
(
1 + 1

α

)
μ(s̄) > 0 and

b+d = 1
αμ2(s̄) > 0 it follows that the roots of the quadratic Eq. (9) have negative

real parts.
Let τ > 0. We are looking for purely imaginary roots λ = ±iω of (8) with

ω > 0. We obtain consecutively:

−ω2 + aiω + b + (ciω + d)e−iωτ = 0,

−ω2 + aiω + b + (ciω + d)(cos(ωτ) − i sin(ωτ)) = 0.

Separating the real and the imaginary parts of the last equation leads to

−ω2 + b = −c ω sin(ωτ) − d cos(ωτ)
a ω = −c ω cos(ωτ) + d sin(ωτ). (10)

Squaring both sides of the Eq. (10) and adding them together implies

ω4 − (c2 − a2 + 2b)ω2 + b2 − d2 = 0.

With v := ω2 we obtain the quadratic equation

v2 − (c2 − a2 + 2b)v + b2 − d2 = 0. (11)

It is straightforward to see that the discriminant Δ = (c2−a2)(c2−a2+4b)+4d2

of (11) is strongly positive, i. e. the quadratic Eq. (11) possesses two real roots
v1 and v2, say v1 < v2, satisfying the relations v1 + v2 = c2 − a2 + 2b < 0,
v1v2 = b2 − d2 = (b − d)(b + d).

Case 1: 0 < b = d. In this case v1 = c2 − a2 + 2b < 0 and v2 = 0, thus the
characteristic Eq. (8) does not possess purely imaginary roots for any τ > 0.
However, λ = 0 is not a root of (8) since b + d = 2b > 0 holds. Hence, there is
no stability switch of the equilibrium point p̄β for any τ > 0.
Case 2: b > d. Now the two real roots v1 and v2 are strongly negative, so the
characteristic Eq. (8) does not have purely imaginary roots for any τ > 0. The
equilibrium point p̄β is locally asymptotically stable for any τ > 0.
Case 3: 0 < b < d. Equation (11) has one negative and one positive root;
the positive root is v2 = 1

2

(
c2 − a2 + 2b +

√
Δ

)
, i. e. the characteristic Eq. (8)

possesses a purely imaginary root when τ takes certain values. Denoting ω+ =√
v2, these values of τ can be determined from system (10):

sin(ω+τ) =
ω+(cω+ + ad − bc)

c2ω2
+ + d2

, cos(ω+τ) =
(d − ac)ω2

+ − bd

c2ω2
+ + d2

. (12)

If c < 0 then ad − bc > 0; if c > 0 then ad − bc > d(a − c) > 0 holds. Therefore,
we have sin(ω+τ) > 0. Denote θ = ω+τ , 0 < θ < π. If cos(θ) > 0, then we take
0 < θ < π/2, otherwise we take π/2 < θ < π. Hence,

θ = arccot
(d − ac)ω2

+ − bd

ω+(cω2
+ + ad − bc)

.
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Denote τ0 =
θ

ω+
> 0. We shall see whether a Hopf bifurcation occurs at τ = τ0.

To check the transversality condition for a Hopf bifurcation (cf. [5,7]), we need
to determine the sign of the derivative of Reλ(τ) at the point where λ(τ) is
purely imaginary. Differentiating implicitly (8) with respect to τ we obtain

dλ

dτ
=

(cλ + d)λe−λτ

2λ + a + (c − (cλ + d)τ)e−λτ
.

For convenience, we shall study the sign of
(

dλ

dτ

)−1

. We have

(
dλ

dτ

)−1

=
2λ + a + (c − (cλ + d)τ)e−λτ

(cλ + d)λe−λτ
=

(2λ + a)eλτ + c

λ(cλ + d)
− τ

λ

= − 2λ + a

λ(λ2 + aλ + b)
+

c

λ(cλ + d)
− τ

λ
,

and further

sign
(

d (Re λ)
dτ

)

λ=iω+

= sign

{

Re
(

dλ

dτ

)−1
}

λ=iω+

= sign
{

Re
(

− 2λ + a

λ(λ2 + aλ + b)

)
+ Re

(
c

λ(cλ + d)

)}

λ=iω+

= sign
{

Re
(

− (2iω+ + a)(−aω2
+ − iω+(b − ω2

+))
ω2
+(a2ω2

+ + (b − ω2
+)2)

)
+ Re

(
cω+(−cω+ − id)
ω2
+(c2ω2

+ + d2)

)}

= sign
{

a2 − 2(b − ω2
+)

a2ω2
+ + (b − ω2

+)2
− c2

c2ω2
+ + d2

}
= sign

{
2ω2

+ − (c2 − a2 + 2b)
}

= +1.

The last result means that all roots that cross the imaginary axis at iω+, cross
this axis from left to right as τ increases. The proof is completed.

4 Asymptotic Stabilization of the Model Solutions

In practice, the dilution rate u is proportional to the speed of the input me-
chanism which feeds the bioreactor with substrate. Thus u is always lower- and
upper-bounded [3]. Let u− and u+ be determined according to (7).

Define the set
Ω = {ζ = (s, x) : s > 0, x > 0}.

Let τ > 0 and ζ0 = (s0, x0) ∈ Ω be an arbitrary point such that s(t) = s0 > 0,
x(t) = x0 > 0 for each t ∈ [−τ, 0]. Consider the following closed-loop system Σ

ṡ(t) = −k1μ(s(t))x(t) + χ(t)(sin − s(t)) (13)
ẋ(t) = (μ(s(t)) − αχ(t)) x(t), (14)
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where χ(t) is defined in the following way:

χ(t) =

⎧
⎨

⎩

u−, if κ(s(t − τ), x(t − τ)) ≤ u−,
κ(s(t − τ), x(t − τ)), if u− ≤ κ(s(t − τ), x(t − τ)) ≤ u+,
u+, if κ(s(t − τ), x(t − τ)) ≥ u+.

(15)

Obviously, p̄β = (s̄, x̄) is an equilibrium point of Σ, i. e. of (13)–(14). Denote by
ϕ(·, ζ0) = (s(·), x(·)) the solution of Σ starting from ζ0. Important properties of
ϕ(·, ζ0) are given in the next Lemma 1. Similar assertions can be found e.g. in
[3,8,9] for various bioreactor models.

Lemma 1. For each point ζ0 = (s0, x0) ∈ Ω the solution ϕ(t, ζ0) = (s(t), x(t))
of Σ is defined for each t > 0, and

(i) for each ε1 > 0 there exists T1 > 0 such that for each t > T1 the inequa-
lities sin − ε1 < s(t) + k1x(t) < sin/α + ε1 hold true.

(ii) there exist ε2 > 0 and T2 > 0 such that for each t > T2 the estimates
s(t) < sin and x(t) ≥ ε2/k1 =: xmin > 0 hold true.

For the proof of the next theorem we need the following lemma.

Barbălat’s Lemma (cf. [2]). If f : (0,∞) → R is Riemann integrable and
uniformly continuous, then lim

t→∞ f(t) = 0.

Theorem 2. Let Assumptions 1, 2, 3 and 4 be fulfilled. Then there exists τ̄ > 0
such that for each τ ∈ (0, τ̄) and for each point ζ0 = (s0, x0) ∈ Ω the solution
ϕ(t, ζ0) of Σ has the following property: there exists T > 0 such that for each
t > T ,

ϕ(t, ζ0) ∈ Ωs−,s+ := {(s, x) : s ∈ [s−, s+], x > 0}.

Proof. Let us fix an arbitrary τ > 0 and assume that s(t) ≤ s− for each t ≥ 0.
Then Assumption 3(ii) and (7) imply that μ(s(t)) ≤ μ(s−) = αu−. The definition
of χ(·) implies χ(t) ≥ u− for each t ≥ 0. Then μ(s(t))−αχ(t) ≤ μ(s(t))−αu− ≤ 0
for each t ≥ 0, and hence ẋ(t) = (μ(s(t)) − αχ(t))x(t) ≤ 0. Thus the function
x(·) is non increasing and there exists x̃ = limt→∞ x(t). According to Barbălat’s
Lemma, we obtain that ẋ(t) → 0 as t → +∞. Since x(t) ≥ xmin > 0 (see
Lemma 1(ii)), Eq. (14) implies that (μ(s(t)) − αu−) + α(u− − χ(t)) → 0 as
t → +∞. The last relation leads to

μ(s(t)) → αu− and χ(t) → u− as t → +∞.

Applying again Assumption 3(ii) we obtain that s(t) → s− as t → +∞. It follows
from Barbălat’s Lemma that ṡ(t) = χ(t)(sin−s(t))−k1μ(s−)x(t) → 0 as t → ∞,
and hence

u−(sin − s−) − k1μ(s−)x̃ = 0, i. e. u−(sin − s−) − αk1u
−x̃ = 0.

Therefore, sin = s−+αk1x̃. We also have χ(t) → u− as t → +∞. This is possible
iff for each ε > 0 there exists Tε > 0 such that κ(s(t − τ), x(t − τ)) < u− + ε for
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each t > Tε for which κ(s(t − τ), x(t − τ)) > u− (if κ(s(t − τ), x(t − τ)) ≤ u−,
then χ(t) = u−). Then for each t > Tε we have

u− + ε > κ(s(t − τ), x(t − τ)) = βk2μ(s(t − τ))x(t − τ) =
μ(s(t − τ))x(t − τ)

αx̄
.

Taking a limit in the latter inequality we obtain
μ(s−)x̃

αx̄
≤ u−, i. e.

αu−x̃

αx̄
≤ u−

or x̃ ≤ x̄. But this is impossible because x̃ =
sin − s−

αk1
>

sin − s̄

αk1
= x̄.

Assuming that s(t) ≥ s+ for each t ≥ 0, we obtain a contradiction in a similar
way.

If τ > 0 is sufficiently small, one can easily apply the Lyapunov functions
approach to prove that (s(t), x(t)) tends to (s̄, x̄) as t → ∞. This completes the
proof of Theorem 2.

Remark 1. It follows from Theorem 2 that the feedback (15) ensures attractivity
and invariance of the region Ωs−,s+ for some values of the time delay τ ≥ 0. If
s− and s+ are sufficiently close to each other and p̄β = (s̄, x̄) is locally asymp-
totically stable, then the trajectories remain close to p̄β because s̄ ∈ (s−, s+)
holds true. The existence of Ωs−,s+ is important for the practical applications
(cf. [3]) and we shall exploit it in the next section.

5 Numerical Extremum Seeking

Consider the Haldane model function for the specific growth rate (cf. [6])

μ(s) =
m1s

ks + s + s2/ki
,

where m1 is the maximum specific growth rate of the microorganisms [1/day],
ks and ki are the saturation and inhibition constants respectively. We use the
following values for the model coefficients (cf. [6]):

k1 = 3, sin = 2, m1 = 0.35, ks = 0.7, ki = 0.6, α = 0.5, k2 = 5.6.

With k+
1 = 3.1, s−

in = 1.95 and k−
2 = 5.59 we obtain β− ≈ 0.2844.

The function μ(s) achieves its maximum at the point sμmax =
√

kski ≈ 0.6481
and μ(s) is strongly increasing for s ∈ (0, sμmax). Solving the equation s̄ = sμmax

with respect to β implies β = βμmax ≈ 0.3963. Since s̄ is an increasing function of
β, it suffice to consider β ∈ (β−, βμmax) in order to have Assumption 3 satisfied.

Consider Eq. (2) describing the process output, and evaluate the function
Q on the set of all equilibrium points p̄β , parameterized with respect to β.
The so obtained function Q(β) is called input-output static characteristic of the
model. It is straightforward to see that Q(β) is strongly unimodal, i. e. there
exists a unique point βmax ≈ 0.3411 < βμmax , where Q(β) takes a maximum,
Qmax = Q(βmax), the function strongly increases in the interval (β−, βmax) and
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strongly decreases in (βmax, βμmax). Denote by pβmax = (smax, xmax) the steady
state where Qmax is achieved. We have smax ≈ 0.4294, xmax ≈ 1.047, and
Qmax = Q(pβmax) ≈ 0.6134. Our goal is to stabilize in real time the system
(13)–(14) towards this (unknown) equilibrium point pβmax and therefore to the
maximum methane flow rate. This is realized by applying a numerical model-
based extremum seeking algorithm (ESA). The ESA is described in details in
[1] for the same model (1) with another feedback and without delay. Now ESA
is adopted to Σ and implemented in the programme language Python.

In the simulation process we consider β ∈ (0.29, 0.39) and take s− = 0.1527,
u− = 0.1199, s+ = 0.6264 < sμmax , u+ = 0.2214; obviously smax ∈ (s−, s+). We
choose β = 0.37. According to Theorem 1(ii) a stability switch of p̄β may occur
at τ0 = 121 [days], and p̄β is locally asymptotically stable if τ < τ0. The delay
τ0 = 121 [days] is however rather large and not feasible in actual practice. The
numerical results from ESA are visualized in Fig. 1 for τ = 4 and τ = 7.

Fig. 1. A trajectory in the (s, x) phase plane for τ = 4 (left); time evolution of s(t),
x(t), Q(t) towards smax, xmax, Qmax respectively for τ = 7 (right)
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Abstract. Delay differential equations occur in many applications such
as ecology and biology. They have long played important roles in the
literature of theoretical population dynamics, and they have been con-
tinuing to serve as useful models.

There is a huge literature on the approximation of ODDEs (Ordinary
Delay Differential Equations) whereas a few contributions, w.r.t. ODDEs,
dealt with DPDEs (Delay Partial Differential Equations). Some of these
works which dealt with the numerical approximation of DPDEs consider
only the one dimensional case.

In this contribution we construct a linearized implicit scheme, in which
the space discretization is performed using a general class of nonconform-
ing finite volume meshes, to approximate a semilinear parabolic equation
with a time delay. We prove the existence and uniqueness of the discrete
solution. We derive a discrete a priori estimate which allows to derive
error estimates in discrete seminorms of L∞(H1

0 ) and W 1,2(L2).

Keywords: Delay equation · SUSHI scheme · Discrete gradient

1 Description of the Model, Aim of This Contribution,
and Motivation

We consider the following semilinear parabolic equation with a delay in time:

ut(x, t) − Δu(x, t) = f(x, t, u(x, t), u(x, t − τ)), (x, t) ∈ Ω × (0, T ), (1)

where Ω is an open polygonal bounded subset in IRd, f is a given function, and
T > 0 and τ > 0 are given.
Initial condition is given by, for a given function u0 defined on Ω

u(x, t) = u0(x, t), x ∈ Ω, −τ ≤ t ≤ 0, (2)
c© Springer Nature Switzerland AG 2019
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Homogeneous Dirichlet boundary conditions are given by

u(x, t) = 0, (x, t) ∈ ∂Ω × (0, T ). (3)

The following assumption on the function f is needed in our analysis:

Assumption 1 (Assumption on f) We assume that the function f(x, t, s, r)
is Lipschitz continuous with respect to (s, r) with constant κ, i.e.

|f(x, t, s, r) − f(x, t, s′, r′)| ≤ κ
(|s − s′| + |r − r′|) , ∀(x, t, s, r), (x, t, s′, r′) ∈ Ω × IR3.

Note that the Assumption 1 is satisfied when for instance f ∈ C 1(Ω × IR3)
and

sup
Ω×IR3

∣
∣
∣
∣

∂f

∂s

∣
∣
∣
∣
+

∣
∣
∣
∣

∂f

∂r

∣
∣
∣
∣
≤ κ.

One dimensional case of Eq. (1) (i.e. d = 1) is considered in [7] where a compact
multisplitting finite difference scheme is analyzed. Ordinary Differential version
for the Eq. (1), i.e. without a consideration for the spacial domain Ω, is consid-
ered for instance in [6] where discontinuous Galerkin methods are applied.

We first establish a linear numerical scheme in which the space discretization
is performed using the SUSHI method [4] whereas the time stepping is Euler
implicit. We then provide a convergence analysis for this scheme. The SUSHI
developed in [4] refers to the “Scheme Using Stabilization and Hybrid Interfaces”
uses general nonconforming meshes in which the control volumes can only be
assumed to be polyhedral (the boundary of each control volume is a finite union
of subsets of hyperplanes). In addition to this, the formulation of SUSHI involves
a consistent and stable Discrete Gradient.

Delay differential equations occur in several applications such as ecology,
biology, medicine, see [1,5,7] for more details. However, the numerical methods
which are carried out with Partial (or Ordinary) Differential Equations are not
enough to deal with Delay Partial Differential Equations. Indeed, the implemen-
tation of schemes and some desirable accuracy and stability results which are
known for Partial Differential Equations can be destroyed when applying these
methods to Delay Partial Differential Equations, cf. [1, Pages 9–19].

In addition, numerical methods for the delay equations are well developed for
the case of Ordinary Differential Equations but the subject of numerical analysis
for Delay Partial Differential Equations has not attracted the attention it merits
yet, see [1,7].

To the best of our knowledge, we are not aware of the existing of any previous
work which deals with Finite Volume methods for Delay Partial Differential
equations.
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2 Space and Time Discretizations and Some Preliminaries

Definition 1 (Space discretization, cf. [4]). Let Ω be a polyhedral open
bounded subset of IRd, where d ∈ IN \ {0}, and ∂Ω = Ω \ Ω its boundary. A
discretization of Ω, denoted by D , is defined as the triplet D = (M ,E ,P),
where:

1. M is a finite family of non empty connected open disjoint subsets of Ω (the
“control volumes”) such that Ω = ∪K∈M K. For any K ∈ M , let ∂K = K\K
be the boundary of K; let m(K) > 0 denote the measure of K and hK denote
the diameter of K.

2. E is a finite family of disjoint subsets of Ω (the “edges” of the mesh), such
that, for all σ ∈ E , σ is a non empty open subset of a hyperplane of IRd,
whose (d − 1)–dimensional measure is strictly positive. We also assume that,
for all K ∈ M , there exists a subset EK of E such that ∂ K = ∪σ∈EK

σ. For
any σ ∈ E , we denote by Mσ = {K,σ ∈ EK}. We then assume that, for
any σ ∈ E , either Mσ has exactly one element and then σ ⊂ ∂ Ω (the set
of these interfaces, called boundary interfaces, denoted by Eext) or Mσ has
exactly two elements (the set of these interfaces, called interior interfaces,
denoted by Eint). For all σ ∈ E , we denote by xσ the barycentre of σ. For all
K ∈ M and σ ∈ E , we denote by nK,σ the unit vector normal to σ outward
to K.

3. P is a family of points of Ω indexed by M , denoted by P = (xK)K∈M ,
such that for all K ∈ M , xK ∈ K and K is assumed to be xK–star-shaped,
which means that for all x ∈ K, the property [xK ,x] ⊂ K holds. Denoting
by dK,σ the Euclidean distance between xK and the hyperplane including σ,
one assumes that dK,σ > 0. We then denote by DK,σ the cone with vertex xK

and basis σ.

The time discretization is performed with a constrained time step-size k

such that
τ

k
∈ IN. We set then k =

τ

M
, where M ∈ IN \ {0}. Denote by N the

integer part of
T

k
, i.e. N =

[
T

k

]

. We shall denote tn = nk, for n ∈ [[−M,N]].

As particular cases t−M = −τ , t0 = 0, and tN ≤ T . One of the advantages of
this time discretization is that the point t = 0 is a mesh point which is suitable
since we have Eq. (1) defined for t ∈ (0, T ) and initial condition (2) defined for
t ∈ (−τ, 0). We denote by ∂1 the discrete first time derivative given by

∂1vj+1 =
vj+1 − vj

k
. (4)

Throughout this paper, the letter C stands for a positive constant indepen-
dent of the parameters of the space and time discretizations.

We define the discrete space XD ,0 as the set of all v =
(

(vK)K∈M , (vσ)σ∈E

)

,
where vK , vσ ∈ IR and vσ = 0 for all σ ∈ Eext. Let HM (Ω) ⊂ L2(Ω) be the space
of functions which are constant on each control volume K of the mesh M . For all
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v ∈ XD , we denote by ΠM v ∈ HM (Ω) the function defined by ΠM v(x) = vK ,
for a.e. x ∈ K, for all K ∈ M .
In order to analyze the convergence, we need to consider the size of the dis-
cretization D defined by hD = sup {diam(K), K ∈ M } and the regularity of
the mesh given by

θD = max
(

max
σ∈E int,K,L∈M

dK,σ

dL,σ
, max
K∈M ,σ∈EK

hK

dK,σ

)

. (5)

The scheme we want to consider is based on the use of the discrete gradient
given in [4]. For u ∈ XD , we define, for all K ∈ M

∇D u(x) = ∇K u +

( √
d

dK,σ
(uσ − uK − ∇Ku · (xσ − xK))

)

nK,σ , a.e. x ∈ DK,σ, (6)

where ∇Ku =
1

m(K)

∑

σ∈EK

m(σ) (uσ − uK)nK,σ.

Using the discrete gradient ∇D , we are able to define the following bilinear form
defined on XD × XD by

〈u, v〉F =
∫

Ω

∇D u(x) · ∇D v(x)dx, ∀(u, v) ∈ XD × XD . (7)

3 Formulation of a New Finite Volume Scheme for a
Delay Equation

We now set a formulation of an implicit linear finite volume scheme for problem
(1)–(3). The unknowns of this scheme are the set {un

D ;n ∈ [[−M,N]]} which are
expected to approximate the set of the unknowns

{u(tn);n ∈ [[−M,N]]} .

1. Approximation of initial condition (2). The discretization of initial con-
dition (2) can be performed as: for any n ∈ [[−M, 0]]

〈un
D , v〉F = − (

Δu0(tn),ΠM v
)

L2(Ω)
, ∀ v ∈ XD ,0. (8)

2. Approximation of (1) and (3). For any n ∈ [[ 0, N − 1]], find un
D ∈ XD ,0

such that, for all v ∈ XD ,0

(

∂1ΠM un+1
D ,ΠM v

)

L2(Ω)
+ 〈un+1

D , v〉F

=
(

f(tn+1,ΠM un
D ,ΠM un+1−M

D ),ΠM v
)

L2(Ω)
, (9)

where f(tn+1,ΠM un
D ,ΠM un+1−M

D ) denotes the function

x 
→ f(x, tn+1,ΠM un
D (x),ΠM un+1−M

D ).
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4 Convergence Order of Scheme (8)–(9)

The main result of this note is the following theorem, that is the existence,
uniqueness, and convergence order of the finite volume scheme (8)–(9).

Theorem 1. (Error estimates for the finite volume scheme (8)–(9)) Let Ω be
a polyhedral open bounded subset of IRd, where d ∈ IN \ {0}, and ∂Ω = Ω \ Ω its
boundary. Assume that the solution of (1)–(3) satisfies u ∈ C 2([0, T ];C 2(Ω)).

Let k =
τ

M
, where M ∈ IN \ {0}. Denote by N the integer part of

T

k
, i.e.

N =
[
T

k

]

. We shall denote tn = nk, for n ∈ [[−M,N]]. As particular cases

t−M = −τ and t0 = 0. Let D = (M ,E ,P) be a discretization in the sense
of Definition 1. Assume that θD (given by (5)) satisfies θ ≥ θD . Let ∇D be
the discrete gradient given by (6) and denote by 〈·, ·〉F the bilinear form defined
by (7).
Then there exists a unique solution (un

D )N
n=−M ∈ X M+N+1

D ,0 for the discrete
problem (8)–(9). If we assume in addition that Assumption 1 is satisfied, then
the following error estimates hold:

– L∞(H1
0 )–estimate. For all n ∈ [[−M,N]]

‖∇D un
D − ∇u(tn)‖L2(Ω) ≤ C(k + hD )‖u‖C 2([0,T ];C 2(Ω)). (10)

– W 1,2(L2)–estimate.

⎛

⎝
N∑

n=−M+1

k
∥
∥ut(tn) − ΠM ∂1un

D

∥
∥2

L2(Ω)

⎞

⎠

1
2

≤ C(k + hD )‖u‖C 2([0,T ]; C 2(Ω)). (11)

To prove Theorem 1, we need to use the following discrete a priori estimate:

Lemma 1 (A priori estimate for the discrete problem). Under the same
hypotheses of Theorem 1, assume that there exists (ηn)N

n=0 ∈ (XD ,0)
N+1 such

that for all n ∈ [[0, N − 1]]
(

∂1ΠM ηn+1
D ,ΠM v

)

L2(Ω)
+ 〈ηn+1

D , v〉F =
(

S n+1,ΠM v
)

L2(Ω)
, (12)

where S n+1 ∈ L2(Ω), for all n ∈ [[0, N − 1]].
Then, the following estimate holds, for all J ∈ [[1, N]]

J−1∑

n=0

k‖∂1ΠM ηn+1
D ‖2L2(Ω) + ‖∇D ηJ

D ‖2L2(Ω) ≤
J−1∑

n=0

k
(

S n+1
)2

+ ‖η0
D ‖2L2(Ω). (13)

Proof. To derive an estimate for the solution ηn+1
D of (12), we take v = ∂1ηn+1

D
in (12) to get, for all n ∈ [[ 0, N − 1]]

‖∂1ΠM ηn+1
D ‖2L2(Ω) + 〈 ηn+1

D , ∂1ηn+1
D 〉F =

(

S n+1, ∂1ΠM ηn+1
D

)

L2(Ω)
. (14)
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The following rule will be useful:

〈 ηn+1
D , ∂1ηn+1

D 〉F =
1
2k

〈 ηn+1
D − ηn

D , ηn+1
D − ηn

D 〉F

+
1
2k

(〈 ηn+1
D , ηn+1

D 〉F − 〈 ηn
D , ηn

D 〉F

)

. (15)

Gathering now (14) and (15) yields

2k‖ ∂1ΠM ηn+1
D ‖2L2(Ω) + 〈ηn+1

D , ηn+1
D 〉F − 〈 ηn

D , ηn
D 〉F

≤ 2k
(

S n+1, ∂1ΠM ηn+1
D

)

L2(Ω)
. (16)

Summing the previous inequality over n ∈ [[0, J − 1]] where J ∈ [[1, N]] yields

2
J−1∑

n=0

k‖ ∂1ΠM ηn+1
D ‖2L2(Ω) + ‖∇D ηJ

D ‖2L2(Ω)

≤ 2
J−1∑

n=0

k
(

S n+1, ∂1ΠM ηn+1
D

)

L2(Ω)
+ ‖η0

D ‖2L2(Ω). (17)

Using the Cauchy Schwarz inequality together with the Young inequality implies
that

(

S n+1, ∂1ΠM ηn+1
D

)

L2(Ω)
≤ ‖S n+1‖L2(Ω)‖∂1ΠM ηn+1

D ‖L2(Ω)

≤
‖S n+1‖2L2(Ω)

2
+

‖∂1ΠM ηn+1
D ‖2L2(Ω)

2
. (18)

Using this inequality, inequality (17) yields the desired estimate (13). �

SKETCH OF PROOF OF THEOREM 1.
1. Existence and uniqueness for scheme (8)–(9). The existence and

uniqueness of (un
D )n∈[[−M,0]] for (8) is straightforward (see [4]). To prove the

existence and uniqueness of the solution (un
D )n∈[[1,N]] for the linear scheme

(9) with (8), we set (as usual to prove the uniqueness for linear systems)
f(tn+1,ΠM un

D ,ΠM un+1−M
D ) = 0 and un

D = 0. Taking v = un+1
D in (9) yields

‖∇D un+1
D ‖L2(Ω) = 0. This implies that, since un+1

D ∈ XD ,0, un+1
D = 0. This

yields the uniqueness of the solution un+1
D for (9) for given un

D and un+1−M
D .

The existence of un+1
D follows the uniqueness, since (9) is a finite dimensional

linear system with respect to the unknowns {(un+1
K , un+1

σ

)

; K ∈ M , σ ∈ Eint}
(with as many unknowns as many equations). This implies, successively on n,
the existence and uniqueness of un

D for all n ∈ [[0, N]].
2. Proof of estimates (10)–(11). To prove (10)–(11), we compare (8)–(9)

with the following auxiliary scheme: For any n ∈ [[−M,N]], find ūn
D ∈ XD ,0 such

that

〈ūn
D , v〉F = (−Δu(tn),ΠM v)L2(Ω) , ∀v ∈ XD ,0. (19)
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2.1. Comparison between the solution (19) and the solution of
problem (1)–(3). The following convergence results hold, see [3,4]:

– Discrete L∞(L2)–error estimate. For all n ∈ [[−M,N]]

‖u(tn) − ΠM ūn
D ‖L2(Ω) ≤ ChD ‖u‖C ([0,T ]; C 2(Ω)). (20)

– W 1,∞(L2)–error estimate. For all n ∈ [[−M + 1, N]]

‖ut(tn) − ∂1ΠM ūn
D ‖L2(Ω) ≤ C(hD + k)‖u‖C 2([0,T ]; C 2(Ω)). (21)

– Error estimate in the gradient approximation. For all n ∈ [[−M,N]]

‖∇u(tn) − ∇D ūn
D ‖(L2(Ω))d ≤ ChD ‖u‖C ([0,T ]; C 2(Ω)). (22)

2.2. Comparison between the solution of (8)–(9) and the auxiliary
scheme (19). Let us define the auxiliary error

ηn
D = un

D − ūn
D ∈ XD ,0. (23)

Comparing (19) with (8) and using the fact that u(tn) = u0(tn) for all n ∈
[[−M, 0]] (subject of (2)) imply that, for all n ∈ [[−M, 0]]

ηn
D = 0. (24)

Writing scheme (19) in the level n+1 and subtracting the result from (9) to get,
for all v ∈ XD ,0

(

∂1ΠM un+1
D ,ΠM v

)

L2(Ω)
+ 〈ηn+1

D , v〉F

=
(

f(tn+1,ΠM un
D ,ΠM un+1−M

D ) + Δu(tn+1),ΠM v
)

L2(Ω)
. (25)

Subtracting
(

∂1ΠM ūn+1
D ,ΠM v

)

L2(Ω)
from both sides of the previous equation

and replacing Δu(x, tn+1) by ut(x, tn+1) − f(x, tn+1, u(x, tn+1), u(x, tn+1 − τ))
(which stems from (1)), we get, for all v ∈ XD ,0

(

∂1ΠM ηn+1
D ,ΠM v

)

L2(Ω)
+ 〈ηn+1

D , v〉F =
(

S n+1,ΠM v
)

L2(Ω)
, (26)

where

S n+1(x) = T
1(x) + T

2(x), (27)

with

T
1(x) = ut(x, tn+1) − ∂1ΠM ūn+1

D (28)

and (recall that −τ = t−M )

T
2(x) = f(x, tn+1, ΠM un

D , ΠM un+1−M
D ) − f(x, tn+1, u(x, tn+1), u(x, tn+1 − τ))

= f(x, tn+1, ΠM un
D (x), ΠM un+1−M

D (x)) − f(x, tn+1, u(x, tn+1), u(x, tn+1−M ). (29)
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Using (21) yields

‖T1‖L2(Ω) ≤ C(hD + k)‖u‖C 2([0,T ]; C 2(Ω)). (30)

Using Assumption 1 together with (20) implies that

‖T2‖L2(Ω) ≤ C
(
‖ΠM un

D − u(tn+1)‖L2(Ω) + ‖ΠM un+1−M
D − u(tn+1−M )‖L2(Ω)

)

≤ C
(
‖ΠM ηn

D ‖L2(Ω) + ‖ΠM ηn+1−M
D ‖L2(Ω) + (hD + k)‖u‖C 1([0,T ]; C 1(Ω))

)
. (31)

Since (ηn)N
n=0 ∈ (XD ,0)

N+1 is satisfying (26), hence it satisfies the hypothesis
(12) of Lemma 1. Applying now (13) of Lemma 1 and using (24) and (30)–(31)
to get, for all J ∈ [[1, N]]

J−1∑

n=0

k‖∂1ΠM ηn+1
D ‖2

L2(Ω)
+ ‖∇D ηJ

D ‖2
L2(Ω)

≤
J−1∑

n=0

k
(
S n+1

)2

≤
J−1∑

n=0

k‖ΠM ηn
D ‖2

L2(Ω)
+

J−1∑

n=0

k‖ΠM ηn+1−M
D ‖2

L2(Ω)
+ C(hD + k)2‖u‖2

C 2([0,T ]; C 2(Ω))

≤ 2

J−1∑

n=0

k‖ΠM ηn
D ‖2

L2(Ω)
+ C(hD + k)2‖u‖2

C 2([0,T ]; C 2(Ω))
.

This with the Poincaré inequality [4, Lemma 5.4, Page 1038] imply that

J−1∑

n=0

k‖∂1ΠM ηn+1
D ‖2L2(Ω) + ‖∇D ηJ

D ‖2L2(Ω)

≤ C

J−1∑

n=0

k‖∇D ηn
D ‖2L2(Ω) + C(hD + k)2‖u‖2

C 2([0,T ]; C 2(Ω))
. (32)

This implies that

‖∇D ηJ
D ‖2L2(Ω) ≤ C

J−1∑

n=0

k‖∇D ηn
D ‖2L2(Ω) + C(hD + k)2‖u‖2

C 2([0,T ]; C 2(Ω))
(33)

and

N∑

n=0

k‖∂1ΠM ηn
D ‖2

L2(Ω)
≤ C

N−1∑

n=0

k‖∇D ηn
D ‖2

L2(Ω)
+ C(hD + k)2‖u‖2

C 2([0,T ]; C 2(Ω))
. (34)

Using a discrete form of Gronwall’s Lemma together with the fact that
N−1∑

n=0

k ≤ T , (33) implies that, for all J ∈ [[1, N]]

‖∇D ηJ
D ‖2L2(Ω) ≤ C(hD + k)2‖u‖2

C 2([0,T ]; C 2(Ω))
. (35)
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Using this estimate, (34) implies that

N∑

n=0

k‖∂1ΠM ηn
D ‖2L2(Ω) ≤ C(hD + k)2‖u‖2

C 2([0,T ]; C 2(Ω))
. (36)

Using now the triangle inequality, (21)–(22), and (35)–(36) yield the desired
estimates (10)–(11) of Theorem 1. �

Remark 1. (A possible extension) The present results can be extended to the
following general semilinear parabolic equation with delays which occur not only
in the exact solution but also in its gradient:

ut(x, t) − Δu(x, t) = f (x, t, u(x, t), u(x, t − τ),∇u(x, t),∇u(x, t − τ)).

5 Conclusion and Perspectives

We considered the convergence of an implicit finite volume scheme, in any space
dimension, for a simple semi-linear delay parabolic equation. The order is proved
to be one (both in time and space). One of the main tasks we will work on is the
use of Crank Nicolson method in order to improve the order in time. Another
interesting path to be followed is to consider the semi-linear time fractional
diffusion equation with time delay, i.e. the time derivative ut in (1) is replaced
by a fractional derivative ∂α

t u with 0 < α < 1.
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Abstract. The paper presents a suite of 26 datasets of climate indices
on monthly, seasonal and annual basis, as well as linear trend and sta-
tistical significance estimation for the considered time windows. They
are calculated with the standard software of the STARDEX and ETC-
CDI international projects correspondingly, with data from the ECA&D
E-OBS and CARPATCLIM gridded databases. The database of climate
indices presented in this paper, named ClimData, is intended to serve
as a convenient, barrier free and versatile tool for research. The present
article, which is part one of more common study, is dedicated on the
description of the motivation for the creation, the content, structure and
the access point of ClimData.

Keywords: Climate indices · E-OBS · CARPATCLIM · STARDEX
ETCCDI · ClimData database

1 Introduction

The oncoming climate changes are the biggest challenge that the mankind faces.
For decades, most analyses of long-term global climate change using observa-
tional temperature and precipitation data are focused on changes in mean values.
However, immediate damages to humans and their properties are not obviously
caused by gradual changes in these variables but mainly by so-called extreme cli-
mate events. The extreme weather phenomena are discussed in all reports of the
Intergovernmental Panel on Climate Change (see, for example, [17]). There are
various methods to investigate extreme events, but the computation and analysis
of climate indices (CIs) derived from daily data is probably the most widely used
non-parametric approach. In order to detect changes in climate extremes, it is
important to develop a set of indices that are statistically robust, cover a wide
c© Springer Nature Switzerland AG 2019
G. Nikolov et al. (Eds.): NMA 2018, LNCS 11189, pp. 360–367, 2019.
https://doi.org/10.1007/978-3-030-10692-8_40

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-10692-8_40&domain=pdf
http://orcid.org/0000-0002-7658-3041
https://doi.org/10.1007/978-3-030-10692-8_40


ClimData—General Description 361

range of climate conditions, and have a high signal-to-noise ratio. CIs include
absolute-thresholds indices, percentile-based indices, and indices based on the
duration of an event. They are used in several projects on climate change with
focus on different spatial scales, from planetary to continental, regional, national
or local scale, as prevailing indicators of changes of the extreme events. Thus,
the number of publications on this topic is very large and the main results will
be summarized and only the major conclusions will be presented very concisely.
Earlier studies as these from Groisman et al. [7] and Frich et al. [6] are ham-
pered by the data scarcity over big territories. The comprehensive global study of
Alexander et al. [2] shows widespread significant changes in temperature
extremes for the period 1951–2003, especially those related to daily minimum
temperatures. Changes in daily maximum temperature are less marked, imply-
ing that many regions around the world has become less cold rather than hotter.
Precipitation changes have been much less coherent than temperature changes,
but annual precipitation has shown a widespread significant increase. Several
recent studies, as the most cited above, have concentrated on the analysis of
CIs based on observational data from weather stations (e.g., [6,16,21] and many
others). Thus, for example, Moberg et al. [16] computes a set of CIs from records
for stations in Europe west of 60 ◦E as well as linear trends over the period 1901–
2000. The study shows a warming for all temperature indices but, large regional
differences in temperature trend patterns. It is revealed also that the winter
areal averaged precipitation totals have increased significantly and absence of
overall long-term trend in summer precipitation ones. Other group of studies
are dedicated primarily on the assessment of the present climate [1] and/or in
future climate projections [18,22] using CIs, derived from climate models (CMs)
output.

As far as many of these studies (e.g. [18]) use partially pre-existing datasets
of CIs, the availability of such databases could facilitate any future work, which
relies more or less on CIs-based analysis of the present climate. The objectives
of the present study are, first, to construct and present to the expert community
for barrier free use a comprehensive suite of climate indices datasets (called
ClimData), computed from reliable input data from one side and well elaborated
and internationally accepted methodology from other. The second objective is
to demonstrate some of the possibilities of ClimData for CIs-based analysis for
selected key indicators. Hence the importance of assessing trends in climate
extremes is often emphasized (e.g. [16]), estimations of the magnitude of the
trend as well as its statistical significance, are accepted as ‘natural’ supplement
to the CIs-time series. Thus, such information for all indices on seasonal and
annual basis, is also included in ClimData. Although, as it will be commented in
Sect. 3, similar sets are already available, partially from the input data vendors,
their completeness are not full and/or are based on outdated data. In contrast,
our intend is to provide consolidated database, based on the most recent source.

The gridded time series of the necessary parameters from the CARPATCLIM
and E-OBS projects are used as input and the procedures from the STARDEX
and ETCCDI initiatives are applied for computation of the CIs. The paper is
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organized as follows. The both CIs suites, as well as the motivation for their selec-
tion, are briefly described in Sect. 2, followed by a discussion of the input data
for their calculation in Sect. 3. Previous climatological applications of the same
sources as well as some issues are also presented. The performed calculations,
validation and results as form of complete list of all 26 datasets in ClimData, are
placed in Sect. 4. The access to the complete ClimData is commented in Sect. 5.

2 Climate Indices Selection

The relative big number of CIs and the popularity of the CIs-based analysis
among the expert community impose standardization of the definitions
world-wide. The importance of the of exact formulation of an internation-
ally accepted set of indices of climate extremes related to precipitation
and temperature, obtained from daily data, was recognized during the last
decades. The use of approved indices allows comparison of analyses con-
ducted in any part of the world and seamless merging of index data to pro-
duce a global picture as well. Many attempts were made some in frames
of international collaborative projects – such are the European Commission
funded CIRCE (Climate change and impact research: the Mediterranean
environment, https://www.cmcc.it/projects/circe-climate-change-and-impact-
research-the-mediterranean-environment) and STARDEX (STAtistical and
Regional dynamical Downscaling of EXtremes for European regions, http://
www.cru.uea.ac.uk/projects/stardex). STARDEX is focused on relatively mod-
erate extremes rather than the most extreme events. The project uses in total
57 CIs calulated on annual (noted further as Y-basis) and seasonal basis
(S-basis). The STARDEX core subset consists of 10 indices. Additionally is
computed the slope of the linear trend by means of Least Squares Estimation
(LSE) and, second, is analyzed the statistical significance of trends with the
Mann-Kendall (MK) test for each CI. The MK test [10,15] is a non-parametric
and rank-based procedure, especially suitable for non-normally distributed data,
data containing outliers and nonlinear trends. Consequently, this test is widely
used in the geosciences as standard tool for trend significance estimation [3,4].
The two tailed test is applied in this study. Based on [6], the Commission for
Climatology (CCl)/CLIVAR/JCOMM Expert Team on Climate Change Detec-
tion and Indices (ETCCDI) (previously known as the Expert Team on Climate
Change, Detection, Monitoring and Indices (ETCCDMI), http://www.clivar.
org/organization/etccdi/etccdi.php) defined a suite of indices that have subse-
quently become known as the ETCCDI-indices. These indices were chosen to
sample a wide variety of climates. However, the definitions and usefulness of
some of these indices, although meant to be globally valid, became a subject of
discussion. As a result, definitions of some of them as well as their calculations
were reconsidered. The ETCCDI-indices are obtained on Y-basis and monthly
basis (M-basis) and the threshold-based ones that have to be calculated relative
to a base period are calculated according to the bootstrap method [23].

The main features of the both CIs-suites are summarized in Table 1.

https://www.cmcc.it/projects/circe-climate-change-and-impact-research-the-mediterranean-environment
https://www.cmcc.it/projects/circe-climate-change-and-impact-research-the-mediterranean-environment
http://www.cru.uea.ac.uk/projects/stardex
http://www.cru.uea.ac.uk/projects/stardex
http://www.clivar.org/organization/etccdi/etccdi.php
http://www.clivar.org/organization/etccdi/etccdi.php
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Table 1. Main features of the STARDEX and ETCCDI CIs-suites. See the cited above
web-pages for details.

Feature STARDEX ETCCDI

Total number 57 29

on Y-basis 57 29

on S-basis 54 0

on M-basis 0 13

Temperature based 24 18

Precipitation based 33 11

Input variables tn, tx, td, prec. tn, tx, prec.

Bootstrap correction No Yes

Trend & MK test Yes No

Complete lists of all CIs, together with the definitions, could be found on the
web-pages of the corresponding projects cited above.

A key moment of the both initiatives, STARDEX and ETCCDI, is that they
supply standard software, in form of open source, for computation of the corre-
sponding CIs-suite. This possibility ensures effective and reliable calculation of
the considered indicators from arbitrary input dataset and this will be demon-
strated in Sect. 4.

3 Input Data

Daily maximum, minimum and mean temperatures (tx, tn, td) as well as the
daily precipitation sum (prec.) are core climatic parameters particularly involved
in determining climate change impacts on society and ecosystems. We use two
data sets in this study: both of them are based on surface measurements,
are in form of gridded database and, last but not least, they are free avail-
able. Although some criticism exists, calculating of CIs from gridded data is
not unusual [2,14]. First of the datasets, used in this study, is CARPATCLIM
(http://www.carpatclim-eu.org/), which is a high-resolution homogeneous grid-
ded database covering 1961–2010 for the Carpathian region (44◦N-50◦N and
17◦E-27 ◦E) with 0.1◦ horizontal resolution, containing all the major surface
meteorological variables [19]. The commonly used methods and software were
the method MASH (Multiple Analysis of Series for Homogenization) for homog-
enization, quality control, completion of the observed daily data series; and
the method MISH (Meteorological Interpolation based on Surface Homogenized
Data Basis; [20]) for gridding of homogenized daily data series. Besides the
common software, the harmonization of the results across country borders was
promoted also by near border data exchange. The second data set is the well

http://www.carpatclim-eu.org/
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known and widely used in the meteorological community E-OBS (https://www.
ecad.eu/download/ensembles/download.php) of the European Climate Assess-
ment & Dataset (ECA&D) project [8]. Unlike the CARPATCLIM, E-OBS is
updated periodically and version 16.0, spanning from 1950 til the end of 2016,
for domain, covering whole Europe (30.125 ◦N - 71.875 ◦N and 11.875 ◦W -
59.875 ◦E) with 0.25◦ horizontal resolution, is selected. The E-OBS produc-
tion procedure includes two step spatial interpolation of station observations
(thin-plate spline interpolation of monthly means/totals; kriging of daily anoma-
lies) after the quality control. Although intended primarily for validation of
regional CMs, the E-OBS is synoptic scale dataset. In contrast, the CARPAT-
CLIM is a typical mesoscale application. Due to this reason, along the embedded
in the both projects different treatment chains of raw data selection, quality con-
trol and processing, is reasonable to expect differences in the output estimates.
E-OBS may be affected by some potentially important limitations, such as het-
erogeneities (both spatial and temporal) and large absolute and relative differ-
ences over regions where dense station networks exist [9] or undercatching in
mountain areas [13]. When compared to a high-density network over the Czech
Republic, Kyselý and Plavcová [11] found that E-OBSv2.0 shows large biases,
especially for tn at the tail of the probability distribution function. Despite
these issues, CARPATCLIM and diverse versions of E-OBS are widely used
in climatology, partially applying CIs-based analysis. The web-portals of the
both projects offers CIs in form of digital maps or interactive figures. Many of
the key indicators as well as atmospheric drought indicators are available also
in CARPATCLIM; ECA&D provides 31 climate indices for the E-OBSv11.0
using, however, 1981–2010 as normal period instead of 1961–1990. Dosio [5] uses
E-OBSv10.0 as reference in work, where the outputs of an ensemble of regional
CMs from the Coordinated Regional-climate Downscaling Experiment over
Europe (EURO-CORDEX, http://www.cordex.org/) have been bias adjusted.
A number of ETCCDI-CIs have been calculated for the present and projected
future climate. Using CARPATCLIM, Lakatos et al. [12] calculates several tem-
perature and precipitation CIs. The obtained trends together with the confidence
are also demonstrated. In order to identify changes in the annual temperature
extremes, the MK test has been applied in [3] to several thermal indices, com-
puted from CARPATCLIM. Our approach is similar to these studies. Intend-
ing to assess the influence of the input data, the same CIs, calculated from
E-OBSv16.0 and CARPATCLIM, are demonstrated simultaneously in the sec-
ond part of this article.

4 Calculations, Validation and Results

The implementation of standard, own for the each of the corresponding projects,
software for calculation of the CIs, ensures the reliability of the computational
results. STARDEX provides FORTRAN 90 source code and ETCCDI-written
in R script RClimDex as well as FORTRAN 90 source code FClimDex. The
FClimDex is console application and thus is better than RClimDex situated for

https://www.ecad.eu/download/ensembles/download.php
https://www.ecad.eu/download/ensembles/download.php
http://www.cordex.org/
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embedding in bigger projects. Such method is applied in [18], but in this case,
we have not altered even the input/output interface. The pre-build FClimDex
as well as the STARDEX code are invoked as external procedures and the CIs
and additional quantities are calculated for each CARPATCLIM and E-OBS
gridcell individually. The World Meteorological Organization standard period
1961–1990 is set as reference. Hence FClimDex does not perform calculation
of CIs of S-basis, as well as linear trend and significance measure by means of
the MK test, these quantities are obtained a posteriori the CIs with purposely
written by the authors procedures. The output datasets, composed in such way,
are summarized in Table 2.

Table 2. List of the ClimData output datasets. These, calculated a posteriori, are
marked with asterisk

CIs set Input Data STARDEX ETCCDI

CARPATCLIM CIs - M-basis

CIs - S-basis *CIs - S-basis

CIs - Y-basis CIs - Y-basis

LT estimation - S-basis *LT estimation - S-basis

LT estimation - Y-basis *LT estimation - Y-basis

MK test - S-basis *MK test - S-basis

MK test - Y-basis *MK test - Y-basis

E-OBSv16.0 CIs - M-basis

CIs - S-basis *CIs - S-basis

CIs - Y-basis CIs - Y-basis

LT estimation - S-basis *LT estimation - S-basis

LT estimation - Y-basis *LT estimation - Y-basis

MK test - S-basis *MK test - S-basis

MK test - Y-basis *MK test - Y-basis

Seasonal indices are calculated as average from the monthly indices, where
for December-January-February (DJF) the December of the previous year is
used. As in STARDEX, the probability value of the MK test from our compu-
tations is stored, which is most important for the null hypothesis testing. The
validation of the outcomes is performed in different ways. All the calculations
are checked periodically for randomly selected gridcells for correct output of the
CIs. Although the applied procedures uses the STARDEX-subroutines for the
MK test, the STARDEX dataset with MK test results is used as benchmark:
Our program computes the MK test probability value independently with the
STARDEX CIs-time series, delivering the same output as from the STARDEX
procedure. Finally, the spatial distributions of some key parameters (tropical
nights, number of frost/ice days, growing season length) are visually compared
with same figures from independent sources (e.g. [3]).
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5 Results Dissemination

The barrier free access to all datasets of ClimData is key point of the initiative
and is in accordance with the tendencies in the modern geophysical sciences.
The VI–SEEM project (https://vi-seem.eu/), which is focused on the scientific
communities of Life Sciences, Climatology and Digital Cultural Heritage, is con-
venient single point access to ClimData and thus it is made available at https://
repo.vi-seem.eu/handle/21.15102/VISEEM-343.

References

1. Alexander, L.V., Arblaster, J.M.: Assessing trends in observed and modelled cli-
mate extremes over Australia in relation to future projections. Int. J. Climatol.
29(3), 417–435 (2009). https://doi.org/10.1002/joc.1730

2. Alexander, L.V., et al.: Global observed changes in daily climate extremes of tem-
perature and precipitation. J. Geophys. Res. 111(D5) (2006). https://doi.org/10.
1029/2005jd006290

3. Birsan, M.V., Dumitrescu, A., Micu, D.M., Cheval, S.: Changes in annual temper-
ature extremes in the Carpathians since AD 1961. Nat. Hazards 74(3), 1899–1910
(2014). https://doi.org/10.1007/s11069-014-1290-5

4. Chervenkov, H., Tsonevsky, I., Slavov, K.: Drought events assessment and trend
estimation-results from the analysis of long-term time series of the standardized
precipitation index. C. R. Acad. Bulg. Sci. 69(8), 983–994 (2016)

5. Dosio, A.: Projections of climate change indices of temperature and precipitation
from an ensemble of bias-adjusted high-resolution EURO-CORDEX regional cli-
mate models. J. Geophys. Res.: Atmos. 121(10), 5488–5511 (2016). https://doi.
org/10.1002/2015jd024411

6. Frich, P., et al.: Observed coherent changes in climatic extremes during the second
half of the twentieth century. Clim. Res. 19(3), 193–212 (2002)

7. Groisman, P.Y., et al.: Changes in the probability of heavy precipitation: Important
indicators of climatic change. Clim. Change 42(1), 243–283 (1999). https://doi.
org/10.1023/a:1005432803188

8. Haylock, M.R., et al.: A European daily high-resolution gridded data set of surface
temperature and precipitation for 1950–2006. J. Geophys. Res.: Atmos. 113(D20),
D20119 (2008). https://doi.org/10.1029/2008JD010201

9. Hofstra, N., New, M., McSweeney, C.: The influence of interpolation and station
network density on the distributions and trends of climate variables in gridded
daily data. Clim. Dyn. 35(5), 841–858 (2009). https://doi.org/10.1007/s00382-
009-0698-1

10. Kendall, M.G.: A new measure of rank correlation. Biometrika 30(1–2), 81–93
(1938). https://doi.org/10.1093/biomet/30.1-2.81
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Abstract. In part one of the present article are described the motivation
for the creation, the content, structure and the access point to the free
available database of climate indices ClimData. Part two is dedicated on
the possibilities of climate indices-based analysis with ClimData. They
are demonstrated with some thermal absolute-thresholds and percentile-
based indices. Most significant outcome of the study, beside the cre-
ation of ClimData itself, is the clearly expressed warming signal in the
considered climate indices. This outcome agrees generally with the pre-
vailing number recent studies. This signal is spatially dominating over
Europe, almost everywhere statistically significant and coherent in the
STARDEX and ETCCDI variants of the same indices. The latter suggest
that relatively small modifications of the index-definitions or selection of
the input data are not sufficient enough to change the general picture of
revealed changes.

Keywords: Climate indices · E-OBS · CARPATCLIM · STARDEX
ETCCDI · ClimData database

1 Examples for ClimData in Use

Detailed description of the database of climate indices ClimData is performed
in [3] and ClimData is available at https://repo.vi-seem.eu/handle/21.15102/
VISEEM-343. The sets of climate indices (CIs) were introduced and discussed
in [3]. However, the number of these indices is rather big. Therefore, it is neces-
sary to reduce their number in each of these sets by choosing only the most rep-
resentative of them. The problem is obviously not straightforward. STARDEX
outlines a subset of 10 (‘top10’) indices, 6 precipitation and 4 temperature-based.
Sillmann and Röckner [7] uses the minimum tn (TNn) and maximum tx (TXx) as
well as the number of tropical nights (TR) from the ETCCDI suite, Birsan et al.
[2] - the number of frost/ice/summer days, tropical nights, as well as cold/warm
spell duration index and growing season length as thermal representatives. The
tendency of the change of ice and summer days is investigated also in [4]. Regard-
less of their practical importance, however, the absolute-thresholds as well as the
c© Springer Nature Switzerland AG 2019
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indices based on the duration of an event suffers from common issue: They are
not transferable across the range of climatic regimes experienced across Europe.
Thus, for example, the tropical night index is substantial only in low-elevation
areas (below 800 m) and not over big areas in N and NE Europe. Similarly, the
number of ice/frost days index have little meaning along the Mediterranean cost.
To avoid this problem, we will demonstrate the usefulness of ClimData with four
percentile-based indices: the relative share of days in year with tn below/above
the 10th/90th percentile, called often cold/warm nights threshold and the rela-
tive share of days in year with tx below/above the 10th/90th percentile, known
also as cold/warm days threshold. The cold nights as well as the warm days
threshold, are in the STARDEX top10 subset.

1.1 Selected Cases

The aim of the following demonstration is both to assess the biases in the spa-
tial distribution of the considered CIs, caused from the different definitions in
the STARDEX and ETCCDI, and to examine the influence of the meteorolog-
ical input dataset. According the Climate Indicator Bulletins (http://cib.knmi.
nl/mediawiki/index.php/CIBs), 1976 is one of the coldest and 1989 - one of
the warmest in pan-European context years and thus they are selected for the
demonstration, as shown on Fig. 1.

Many conclusions could be drawn from these examples, but the most impor-
tant of them are obvious. First and foremost, there are not significant discrepan-
cies between the STARDEX and ETCCDI suite in the general pattern of the spa-
tial distribution of the concerned CIs, obtained from E-OBS, nor from CARPAT-
CLIM. The biases between the corresponding fields are dominantly between –5%
and 5% and seems not systematic. The difference between the STARDEX and
ETCCDI suite, concerning percentile-based CIs, is in the procedures in the cal-
culation of the threshold in the base period. According [9], the problem occurs
because it is affected by sampling error. The authors of this study states, that the
proposed by them bootstrap procedure, which is consequently embedded in the
FclimDex, effectively removes the inhomogeneity. Second, the values of the CIs,
obtained with the E-OBS data for the CARPATCLIM domain, shown as frame
on Fig. 1, are consistent with the corresponding distributions on Fig. 2. Intend-
ing to asses this consistency for other CIs, we present on Fig. 3 the fields of the
number of frost and ice days as well as the growing season length for both years.
They are valuable agrometeorological indicators relevant for cultivated plants
phenology and active growth of crops. Hence the procedure, both in STARDEX
and ETCCDI, for computation of the absolute-thresholds CIs is simple counting
the events below/above the corresponding threshold, the fields of the frost/ice
days from the same inputs are identical. The small differences in the growing
season length could be rooted in the fact, that in the ETCCDI-suite the average
from the tn and tx is used as a proxy for the td, instead of td in STARDEX,
where it is independent input parameter. The differences for the same indica-
tors, obtained from the both sources, either E-OBSv16.0 or CARPATCLIM, are
inherited from the input data. They are more prominent near the Carpathian

http://cib.knmi.nl/mediawiki/index.php/CIBs
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Fig. 1. Cold/warm days and cold/warm nights threshold (unit: %) for 1976 (lower
group) and 1989 (upper group). The CIs from STARDEX are on the first, these of
ETCCDI - on the second and the biases - on the third rows correspondingly. The
original CIs-notation are preserved. The CARPATCLIM domain is marked with frame.

Fig. 2. Same as Fig. 1, but for CARPATCLIM
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Fig. 3. Number of frost, ice days and growing season length for 1976 (left group) and
1989 (right group). The CIs from E-OBS/STARDEX, CARPATCLIM/STARDEX,
E-OBS/ETCCDI and CARPATCLIM/ETCCDI are on the first second, third and
fourth row correspondingly.

ridge, where the impact of the interpolation applied, altitude of concrete pixel
and the influence of the orientation of slopes on climatology becomes visible.

The overall consistency between the STARDEX and ETCCDI CIs-suites for
the considered indicators could be confirmed not only in space, but also in time.
The spatially averaged time series of the cold/warm days as well as these of
the cold/warm nights, obtained from E-OBS for the CARPATCLIM-domain
and these from CARPATCLIM, are presented together on Fig. 4. Hence the

Fig. 4. Time series (unit: %) of the cold days (first row), warm days (second row), cold
nights (thirth row) and warm nights (fourth row) thresholds. The E-OBS based values
are marked with dots and these of CARPATCLIM - with crosses. The STARDEX-CIs
are shown in red and these of ETCCDI - in blue. The green lines denotes the end of
the years 1976 and 1989. (Color figure online)
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corresponding chronograms are almost overlapping for the whole time-span of
the E-OBS and CARPATCLIM, it could be concluded that systematic differences
are absent.

1.2 Trend Analysis

The importance of assessing trends in weather extremes is often emphasized.
The principal reason is that extreme weather conditions related to temperature,
precipitation, storms or other aspects of climate, can cause loss of life, severe
damage and large economic and societal losses (see [5] and references therein).
As mentioned in [3], ClimData contains estimation linear trend by means of LSE
and estimation of the statistical significance of trends with the MK test for all
CIs-datasets on annual and seasonal basis according Table 2 in [3]. Figures 5
and 6 are examples for the considered in SubSect. 1.1 CIs. First and foremost,
the warming trend is obvious on the both figures. It is almost overall spatially
dominating and positive for the warm day/nights threshold and negative for
the cold day/nights threshold. Generally, the trend for the nights, both cold
and warm, is stronger than for the days. No remarkable differences between
the STARDEX and ETCCDI indices could be outdrawn in this case as a whole.
These conclusions are strengthened by the fact, that the trends are almost overall
significant at the 5% level. From the few exceptions from the general picture for
continental Europe, most interesting is the warm nights trend anomaly over
Romania. The analysis shows that this is caused by very high values of the
minimum temperature in couple adjacent gridcells in the early 1950s. Although
presented in narrow time window, these outliers are strong enough to change
the sign of the trend. In CARPATCLIM, which do not covers this period and
uses other raw data and methods, this defect, as shown on Fig. 6, is completely
absent. This problem, which is also apparent on the ECA&D maps, could be
treated as E-OBS issue.

Fig. 5. LSE of the trend slope (unit: %/year) for the cold/warm days and cold/warm
nights threshold from STARDEX (first row) and ETCCDI (second row) CIs calculated
from E-OBS. The gridcells with significance at the 5% level are marked with dots.
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Fig. 6. Same as Fig. 5, but for CARPATCLIM

2 Conclusion

The CARPATCLIM and ECA&D projects contributes to the availability of a
viable sets of spatially and temporally representative data to prepare relevant
climate change studies in the corresponding domains. These datasets are reliable
sources for input data for calculation of climate indices, which can be organized
as continuous, both in space and time, digital maps.

Most significant outcome of the presented study, beside the creation of
ClimData itself, is the clearly expressed warming signal in the considered cli-
mate indices. It is spatially dominating over Europe, almost everywhere statis-
tically significant and coherent in the STARDEX and ETCCDI variants of the
same indices. The last outcome suggest that small, but methodologically signif-
icant from point of view of the statistics (see [10] again) modifications in the
CIs-definitions, could not alter the overall picture.

Although most widely used, the LSE of the slope of the linear trend is non-
robust technique and have to be applied with caution in presence of even few
outliers, which is the common case in the climatology. This fact is also stated
in [1], which recommends the use the outlier-resistant Theil-Sen method [6,8] as
alternative. This method is used also in other studies, as the cited in [3] CIRCE
project for example.

ClimData is intended to be barrier free and convenient versatile for broad
range of experts - meteorologists, climatologists, hydrologist, which scientific
research includes Cis-based analysis. Thus far, the ClimData datasets, together
with their descriptors, are in GrADS binary form, but could be supplied also
for the corresponding user in standard (netCDF) format upon request. They are
available via the repository service of the VI–SEEM project (https://vi-seem.
eu/) at https://repo.vi-seem.eu/handle/21.15102/VISEEM-343.
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Abstract. The goal of this paper is to carry out a global sensitivity anal-
ysis applied to a mathematical model for chronic myelogenous leukemia
(CML) dynamics with T cell interaction. The interaction mechanism
between näıve T cells, effector T cells, and CML cancer cells in the
body is modeled by a system of ordinary differential equations which
defines rates of variation for the three cell populations. We explain how
to globally analyse the sensitivity of this complex system by means of two
graphical objects: the sensitivity heat map and the parameter sensitivity
spectrum.

1 Introduction

Sensitivity analysis methods have a long history and it has been widely applied
in different fields such as environmental modeling study [2], economical model-
ing for decision making [16], parameter estimation and control [3–5,12], chemical
kinetics [19], and biological modeling analysis, with metabolic networks, signal-
ing pathways and genetic circuits [14]. Local sensitivity analyses in biological
models were performed in [7] (applied for a SEIT - Susceptible, Exposed, Infec-
tious, and Treated - epidemic model), [8] (applied for an activated T cell model
describing virus dynamics), and [6] (applied to a mathematical model for chronic
myelogenous leukemia (CML) dynamics with T cell interaction).

In comparison with the local sensitivity analysis performed in [6], the aim of
this study is to carry out a global sensitivity analysis [18] applied to the same
model (proposed by Moore and Li in [15]), with the help of two graphical objects:
the sensitivity heat map and the parameter sensitivity spectrum. The model
defines the response of the human immune system to CML in a hypothetical
patient. The immune system is known to play an important role in the dynamics
of CML. That is why great efforts have been made to design new targeted and
effective immunotherapies, possibly combined with controlled chemotherapies,
capable to generate an active systemic immune response leading to elimination
of residual and malignant cells [9,13].

c© Springer Nature Switzerland AG 2019
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2 Application to a Chronic Myelogenous Leukemia
Model with T Cell Interaction

2.1 Defining the Model

The model proposed in [15] consists of a system of three nonlinear ordinary
differential equations which define the rates of change for näıve and effector T
cell populations, as well as the CML cancer cell population. It is based in the
blood circulation system. We assume the effector T cells come randomly into
contact with CML cancer cells in the blood.

We introduce the following three populations of cells existed in the circulating
blood system, measured as concentrations of cells per μl: Tn – näıve T cells, Te –
effector T cells specific to CML, and C – chronic myelogenous leukemia (CML)
cancer cells. The system of ODEs is presented below (more details about the
model are given in [15]):

dTn

dt
= sn − dnTn − knTn

(
C

C + η

)
, (1)

dTe

dt
= αnknTn

(
C

C + η

)
+ αeTe

(
C

C + η

)
− deTe − γeCTe, (2)

dC

dt
= rcC ln

(
Cmax

C

)
− dcC − γcCTe. (3)

The parameter values are taken from available experimental data and estimates
and the model is analyzed for sensitivity to changes in the parameters (see
Table 1, p. 516 in [15] for more details). The Eqs. (1)–(3) define the rates of
change with respect to time variable of the three cell populations. The system
(1)–(3) also contains 12 parameters, which are all positive constants (Table 1).
The saturation effect of CML cells is generated in this model by the presence of
the Michaelis-Menten term C/(C + η) in the equations (1) and (2). The growth
of CML cells is modeled in the last Eq. (3) by using a term defining a Gompertz
distribution. The Gompertz law is considered the best choice for leukemic cancer

Table 1. Description of parameters of the CML model

Parameter Biological meaning Parameter Biological meaning

sn Tn source term αn Tn proliferation rate

dn Tn death rate αe Te recruitment rate

de Te death rate Cmax maximum C

dc C death rate rc C growth rate

kn Tn differentiation rate γe Te loss rate (due to C)

η Michaelis-Menten constant γc C loss rate (due to Te)
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behavior, and generally for cancerous tumors proliferation (see, e.g., [22]). Afenya
and Calderón [1] proved that the shape of the Gompertz curve gives a much
better fit for clinical data in leukemic cancer data than other well-known curves
(e.g., logistic, exponential, or polynomial).

2.2 Numerical Simulations

We evaluate the sensitivity of the 12 parameters in the system (1)–(3) using the
toolbox PeTTSy (Perturbation Theory Toolbox for Systems, see [10]). A matrix
M is generated by stacking the variable time series, so that the j-th column
represents the derivative of each variable time series with respect to the j-th
selected parameter. A singular value decomposition is then performed on this
matrix, such that M = UΣV T (V T denotes the transpose of the matrix V ).

Matrix U contains the principal components (PC) of M , it will have one
column for each selected parameter and a number of rows equal to the product
of the number of selected time points and selected variables. The matrix Σ
contains the diagonal entries σj (known as the singular values of M) equal to
the number of selected parameters. We denote by W , the inverse of V – a square
matrix with dimension equal to the number of selected parameter.

The sensitivity heat maps (see Figs. 1, 3 and 5) show the sensitivity of the
variables to the principal components, versus time. These sensitivities are defined
as the product of the j-th singular value and the j-th PC of M , σjUj .

The parameter sensitivity spectrum, or strength values, are calculated by
multiplying the j-th row of W by the j-th singular value, σjWj . This repre-
sents the effect of perturbing each parameter on the j-th principal component.
Strengths are very useful when you have identified a particular principal com-
ponent to which the time series in very sensitive (see Figs. 2, 4 and 6).

The model (1)–(3) was solved numerically by choosing the solver ode15s in
Matlab for stiff systems. The initial values for the three populations (measured
in cells/μl) have been set as [15]

(Tn(0), Te(0), C(0)) = (1510, 20, 10000). (4)

These initial estimates of Tn(0), Te(0), C(0) have been set in accordance with
numerous clinical databases. In what follows, the components of the vector state
(Tn, Te, C) are represented in Figs. 1, 3 and 5 by (y1, y2, y3). We focus our sen-
sitivity analysis on three scenarios.

Scenario #1: Here we consider the situation when CML are kept under control,
in the sense that CML cell counts continuously decreases in time. The stability
condition [15] regarding the number of equilibrium solutions

dc
rc

< ln
(

γeCmax

dn

)
(5)

is not fulfilled. In this case, the system (1)–(3) has only one equilibrium, the triv-
ial (healthy) state P1 = (1, 0, 0), and this equilibrium is asymptotically stable.
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Time
0 100 200 300 400 500 600 700

-775.19

-509.92

-244.65

20.62

285.88

551.15

816.42

1081.69
ratio max min

PC 1, y3 1.00 1081.69 -1040.46

CML Sensitivity, sig_j * U_j from Experiment_1, max value 1081.6892

PC 1, y2 0.06 67.51 -17.77

PC 1, y1 0.00 0.06 -0.03

PC 2, y2 0.14 -144.93 -146.20

PC 2, y3 0.02 17.24 -14.42

PC 2, y1 0.00 0.00 0.00

PC 3, y1 0.00 0.60 0.59

PC 3, y3 0.00 0.00 0.00

PC 3, y2 0.00 0.00 -0.00

Fig. 1. The sensitivity heat map of the variables with respect to time corresponding to
the first three principal components. Taking into account the first principal component,
the variable y3 (C) presents the highest sensitivity, followed by y2 (Te), and then y1

(Tn). We also remark that only variable y3 (CML cells) exceed 75% of the global
maximum (regions highlighted by four small rectangles). – Scenario #1.

Fig. 2. The parameter sensitivity spectrum illustrates the effect of each parameter
with respect to first three principal components. Focusing only on the first principal
component, the parameter p3 (de) is the most sensitive among all the model parameters,
followed by p8 (αe) and p11 (γe) – Scenario #1.

The sensitivities are evaluated around the nominal parameter value (see [15]):

p̃0 = [p1 p2 p3 p4 p5 p6 p7 p8 p9 p10 p11 p12]
T

= [sn dn de dc kn η αn αe Cmax rc γe γc]
T

= [0.37; 0.23; 0.3; 0.028; 0.0062; 720; 0.14; 0.98; 2.3 × 105; 0.0057; 0.057; 0.0034]T .
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Time
0 50 100 150 200 250 300 350 400 450 500

-226192.11

-119824.97

-13457.83
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412010.73

518377.87
ratio max min

PC 1, y3 1.00 518377.87 -332559.25

CML Sensitivity, sig_j * U_j from Experiment_2, max value 518377.8692

PC 1, y2 0.01 2085.80 -3210.77

PC 1, y1 0.00 29.52 -222.66

PC 2, y2 0.00 -5.42 -5.42

PC 2, y3 0.00 0.04 0.00

PC 2, y1 0.00 0.00 0.00

PC 3, y1 0.00 0.24 0.24

PC 3, y3 0.00 0.01 0.00

PC 3, y2 0.00 0.00 0.00

Fig. 3. The sensitivity heat map of the variables with respect to time corresponding
to the first three principal components. – Scenario #2.

Fig. 4. The most sensitive parameter is p10 (rc) taking into account only the first
principal component – Scenario #2.

Scenario #2: In this experiment the parameter sensitivities are computed around
the nominal parameter value:

p̃0 = [sn dn de dc kn η αn αe Cmax rc γe γc]T

= [0.29; 0.35; 0.40; 0.012; 0.066; 140; 0.39; 0.65; 1.6 × 105; 0.011; 0.079; 0.058]T .

It corresponds to the situation when CML cells increase over the time period.

Scenario #3: The parameter values used in this simulation lead to a remis-
sion and a relapse or rebound of CML. Initially, CML cell counts decrease, but
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Fig. 5. The sensitivities of the variables y3 (C) and y2 (Te) exceed for a longer period
of time during treatment 75% of the global maximum – Scenario #3.

Fig. 6. The parameter sensitivity spectrum indicates p12 (γc) as the most sensitive
parameter – Scenario #3.

later rebound. The parameter sensitivities were computed around the nominal
parameter value:

p̃0 = [sn dn de dc kn η αn αe Cmax rc γe γc]T

= [0.071; 0.05; 0.12; 0.68; 0.0063; 43; 0.56; 0.53; 1.9 × 105; 0.23; 0.0077; 0.047]T .

The condition (5) is satisfied in the scenarios #2 and #3, and it was proved in
[15] that the state system (1)–(3) exhibits two asymptotically stable equilibria,
P1 = (1, 0, 0) and P2 = (Tn, Te, C).
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We notice that in all three scenarios the sensitivity heat maps indicate the
same decreasing ordering of importance of the variables: y3 (C), y2 (Te), and
y1 (Tn) with respect to their sensitivities on the first principal component.

3 Conclusions

In this work, we carried out a global sensitivity analysis with respect to param-
eters for a chronic myelogenous leukemia model with T cell interaction. Three
scenarios have been taken into account in this sensitivity analysis.

In the first scenario, corresponding to the situation when the disease is kept
under control, the parameter de (Te death rate) was found the most sensi-
tive among all the model parameters, followed by αe (Te recruitment rate) and
γe (Te loss rate due to C).

The sensitivity analysis applied to the second scenario (the case when CML
cells increase over time period) revealed that the most sensitive parameter is rc
(the growth rate of CML) followed by de (Te death rate) and αe (Te recruitment
rate). These findings are in agreement with the observation in [15] that rc, and
the natural death rate, dc, are the most significant parameters in the control of
CML model. However, our sensitivity analysis placed the parameter dc on the
fifth position on a decreasing ordering of the sensitivity magnitudes (see Fig. 4,
parameter p4 corresponds to dc). This result matches clinical observations by
which increasing dc may not be sufficient in all cases in controlling CML.

The third scenario simulated a remission of CML. The parameter γc (C loss
rate due to Te) was found the most sensitive parameter, followed by rc (the
growth rate of C cells) and de (the death rate of the effector T cells).

Other global sensitivity analyses (e.g., multi-parametric sensitivity analy-
sis, Morris sensitivity analysis, weighted average of local sensitivities and Sobol
sensitivity analysis) are also recommended to explore the impact of large model
input variations [17,18,20,21]. At the same time, the extension to models includ-
ing stochastic terms, nonlinear incidence rates of infection and distributed delays
[11,23] could find new and plausible strategies for clinical relevance and labora-
tory research on treatment protocols with CML.
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Abstract. Finite difference and finite element approximations for solv-
ing numerically the systems of partial differential equations, by which
comprehensive models for studying complex environmental problems are
studied, are proposed and discussed in this paper. First, we establish
a minimum principle for the differential problem and then nonnegativ-
ity of the semidiscrete solutions. Algorithms of explicit-implicit and fully
explicit schemes are realized for solution of the discrete systems. Numeri-
cal experiments are provided to illustrate the efficiency of the algorithms.

Keywords: Environment interaction model · Parabolic system
Finite difference scheme · FEM · Immersed interface method

1 Introduction

Modern air pollution models can be used to simulate the evolution of the con-
centrations of contaminants in the atmosphere and living environment, see e.g.
[1–3,7,9,11]. Our objective is the numerical investigation of the interaction
between a pollutant and the living environment. It is known that the animate
nature can absorb pollutant up to certain limits (threshold value) and after
this amount this capability is loosed. Various experiments show that the depen-
dence between the emitted quantity of a pollutant and remaining quantity can
be described by a certain function. If some quantity of the pollutant is emitted
regularly, one obtain the iterative process for a sequence of functions describ-
ing the dependence between the emitted and the remaining quantities of the
pollutant. It is proved in [1,2] that this sequence converges. Using this discrete
functional model, the authors construct a system of two parabolic equations of
Lotka-Volterra types and derived two- and three-dimensional models.

The patterns exhibited by the conceptual model lay the foundation for intro-
ducing a dynamic model based on differential equations. The authors of [1,2]
consider the distributed model of the interaction between the pollutant and
environment on the plane. Let xk, yk be coordinates of the pollutant’s sources
c© Springer Nature Switzerland AG 2019
G. Nikolov et al. (Eds.): NMA 2018, LNCS 11189, pp. 383–391, 2019.
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on the plane, let Qk be the intensities of these sources, k = 1, 2, . . . ,m. Taking
as a basis the differential model of air pollution [7,11] and using the equation
of biomass concentration, they obtain the following initial value problem for the
system of two semi-linear parabolic equations

∂w

∂t
= kx

∂2w

∂x2
+ ky

∂2w

∂y2
+ νx

∂w

∂x
+ νy

∂w

∂y
+ f(w, v) +

m∑

i=1

Qiδ(x − xi, y − yi),

∂v

∂t
= dx

∂2v

∂x2
+ dy

∂2v

∂y2
+ g(w, v) (1)

w(x, y, 0) = ϕ(x, y), v(x, y, 0) = ψ(x, y),

where, following the modeling in [1,2], the nonlinear terms have the form

f(w, v) = −g0w − wv

λ + w
+ u0(x, t), g(w, v) = u0v − dv2 − wv. (2)

Here w is the concentration of the substance (the pollution level) and v is the
concentration of the biological mass, kx, ky are diffusion coefficients, νx, νy are
spreading velocities of the pollutant and dx, dy are diffusion coefficients, while
ϕ(x, y), ψ(x, y) are some initial distributions of the pollutant and the animate
nature on the plane, respectively. If the pollutant sources cover some set on the
plane, then in the first equation of (1) the sum becomes the product of the values
of intensity Q by the delta-function of this set. For instance, if the pollution is
a highway, then the term with the delta-function has the form

Qδ(y − χ(x)) on the curve y = χ(x), (3)

which is determined by the location of the highway on the plane and Q =
Q(t)> 0. For application of atmosphere dispersion models in the estimations of
vehicle emissions from cars driving along busy highways, which can be approxi-
mated as continuous curves, see e.g. in [2,3].

In this paper, we focus our attention on the application of parabolic systems
to modeling in the interaction between pollution and environment. For spatial
discretization we have implemented two variants of the Galerkin FEM scheme
and also simple difference schemes in order to investigate the possible benefits
of the immersed interface FEM approach. In Sect. 2, we introduce the models
we will investigate throughout the remainder of the paper. In Sect. 3, we discuss
the basic properties of the differential solutions concentrating on the positivity
property. Section 4 is devoted to the space FDM and FEM semidiscretizations
with positivity conservation. Numerical results are analyzed in Sect. 5. Finally,
the last section presents some conclusions.
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2 One-Dimensional Problem

In this paper we present our methods on the 1D reaction-diffusion-convection
system

∂w

∂t
= a

∂2w

∂x2
+ b

∂w

∂x
+ f(w, v) + Q(t)δ(x − x0), (4)

∂v

∂t
= c

∂2v

∂x2
+ g(w, v), x > 0, t > 0. (5)

Here a, b, c, d, f0, g0, λ and u0 in (2) we take as positive constants and also we
suppose that the process doesn’t depend of the space variable y. We assume
that the particle concentration is negligible at the distances far enough from the
sources, so that we can impose the far-field boundary condition [7,11]

w(x, t) → 0 as x → ∞. (6)

At x = 0 we impose for w a mixed (Robin) boundary condition
(

a
∂w

∂x
+ bw

)∣∣∣∣
x=0

= we(t), 0 < t < T. (7)

For biomass concentration we take the boundary conditions

c
∂v

∂x

∣∣∣∣
x=0

= vl(t), v(X, t) = vr(t), X large, 0 < t < T. (8)

Multiplying both sides of (4) and (5) by a functions ϕ,ψ ∈ H1(Ω), Ω = (0,X),
after integration by parts and taking boundary conditions ((6), (7) and (8)) into
account, we obtain the following variational formulation:
∫ X

0

∂w

∂t
ϕ(x)dx = −

∫ X

0

(
a
∂w

∂x
+ bw

)
ϕ′(x)dx − wl(t)ϕ(0)

+
∫ X

0

f(w, v)ϕ(x)dx + Qϕ(x0), ∀ ϕ ∈ H1(Ω), ϕ(X) = 0, (9)

∫ X

0

∂v

∂t
ψ(x)dx = −

∫ X

0

c
∂v

∂x
ψ′(x)dx + vl(t)ψ(0)

+
∫ X

0

g(w, v)ψ(x)dx, ∀ ψ ∈ H1(Ω), ψ(X) = 0. (10)

Existence and uniqueness of solutions in appropriate functional spaces can be
treated on the base of the theory in [8], but the maximum (minimum) principle
requires additional consideration.

Theorem 1 (Minimum principle). Let u0 ≥ 0, Q(t) ≥ 0 and w, v be any pair
of solutions of system (4), (5) with initial conditions, such that

w(x, 0) = w0(x) ≥ 0, v(x, 0) = v0(x) ≥ 0.

Then, w ≥ 0, v ≥ 0 for all x ∈ Ω, t ∈ (0, T ).

Proof (Outline). It uses linearization of the functions f(w, v), g(w, v) around
(0, 0), see e.g. [8], and the positivity property of f and g as in Lemma 1 below.



386 I. Dimov et al.

3 Space Discretizations and Positivity

In this section we derive and analyze FDM and FEM space approximations of
problem (4)–(8).

3.1 Second-Order Finite Difference Discretization

We can now discretize (4), (5) by FDM in order to obtain a system of ordinary
differential equation (ODEs). The spatial domain Ω = (0,X) is divided into
N equal intervals of length h and we consider points in Ω = [0, 1] : xi = (i −
1)h, i = 1, . . . , N + 1. Using an artificial grid node x−1 = −h we derive the
following second-order FDM scheme:

ẇ1 = −
(

2b

h
+

2a

h2
+

b2

a
+ g0

)
w1 +

2a

h2
w2 − w1vl

λ + w1
+

2

h
wl(t),

ẇi =

(
+

a

h2
− b

2h

)
wi−1 −

(
2a

h2
+ g0

)
wi +

(
a

h2
− b

2h

)
wi+1 − wivi

λ + wi
+

1

h
Q(t)δii0 ,

for i = 2, . . . , N, and wN+1 = wr(t),

v̇1 = −
(

2c

h2
+ u0

)
v1 +

2c

h2
v2 − dv2

1 − w1v1 +
2

h
vl(t), (11)

v̇i =
c

h2
vi−1 +

(
− 2c

h2
+ u0

)
vi +

c

h2
vi+1 − dv2

i − wivi,

for i = 2, . . . , N, and vN+1 = vr(t).

3.2 Galerkin FEM Discretizations

We denote Ωi = (xi, xi+1), i = 1, . . . , N and introduce the standard linear
functions

S1 =
{

(x2 − x)/h, x ∈ Ω1,
0, x ∈ Ω\Ω1,

SN+1 =
{

(x − xN )/h, x ∈ ΩN ,
0, x ∈ Ω\ΩN ,

Si =

⎧
⎨

⎩

(x − xi−1)/h, x ∈ Ωi−1,
(xi+1 − x)/h, x ∈ Ωi,
0, x ∈ Ω\(Ωi−1 ∪ Ωi).

We also introduce the modified basis functions of the immersed interface
method (IIM) [6], concerning the interface x0 and x0 ∈ [xi0 , xi0+1):

Si0 =
{

A1x + B1, x0 ∈ [xi0 , x0],
C1x + D1, x ∈ [x0, xi0+1],

Si0+1 =
{

A2x + B2, x ∈ [xi0 , x0],
C2x + D2, x ∈ [x0, xi0+1].

where the constants A1, A2, B1, B2, C1, C2,D1,D2 are found from the relations

[Si] = 0, [aS′
i] = Q, i = i0, i0+1,

Si0(xi0) = 1, Si0(xi0+1) = 0, Si0+1(xi0) = 0, Si0+1(xi0+1) = 1.
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We carry out the following approximations of w and v

w(x, t) ≈ wh(x, t) =
N∑

i=1

wi(t)Si(x), v(x, t) ≈ vh(x, t) =
N∑

i=1

vi(t)Si(x).

Substituting these approximations in Eqs. (9), (10) and taking successively
ϕ(x) = Sj(x) and ψ(x) = Sj(x), j = 1, . . . , N and performing a special treat-
ment of the nonlinear terms of f(w, v) and g(w,w) we obtain:

1
3
ẇ1 +

1
6
ẇ2 =

(
− a

h2
+

b

2h

)
w1 +

(
a

h2
+

b

2h

)
w2 +

λv1
2(λ + w1)

−g0

(
1
3
w1 +

1
6
w2

)
−

(
1
3
v1 +

1
6
v2

)
+ wl(t),

1
6
ẇi−1 +

2
3
ẇi +

1
6
ẇi+1 =

(
a

h2
− b

2h

)
wi−1 − 2a

h2
wi +

(
a

h2
+

b

2h

)
wi+1

−g0
6

(wi−1 + 4wi + wi+1) − 1
6

(vi−1 + 4vi + vi+1) +
λvi

2(λ + wi)
+ Q(t)Si(x0),

for i = 2, . . . , N, wN+1 = wr(t);
1
3
v̇1 +

1
6
v̇2 =

c

h2
(v1 − v2) + u0

(
1
3
v1 +

1
6
v2

)
(12)

−d

(
1
4
v2
1 +

1
6
v1v2 +

1
12

v2
2

)
− 1

12
(3v1w1 + w1v2 + w2v1 + w2v2) ,

1
6
vi−1 +

2
3
vi +

1
6
vi+1 = c

vi−1 − 2vi + vi+1

h2
+

1
6
u0 (vi−1 + 4vi + vi+1)

− d

12
(
v2
i−1 + 2vi−1vi + 6v2

i + 2vivi+1 + v2
i+1

)

− 1
12

(wi−1vi−1 + wi−1vi + wivi−1 + 6wivi + wivi+1 + wi+1vi + wi+1vi+1) ,

for i = 1, . . . , N, and vN+1 = vr(t).

Following (9), we treated the fractional nonlinear term as follows:

∫ X

0

wv

λ + w
Si(x)dx ≈

N∑

l=1

vi(t)
∫ X

0

Si(x)Sl(x)dx

− λ

N∑

j=1

vi(t)
∫ X

0

Sj(x)Si(x)

λ +
∑N

k=1 wk(t)Sk(x)
dx

For the computation of the integrals we used the compact support of Si(x) and
the integrals of the second sum are approximated by the trapezoidal rule.
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3.3 Positivity

Following the physical motivation we will discuss the non-negativity of the
semidiscrete solutions. Consider the initial value problem (IVP)

∂P

∂τ
= F(τ, P ), τ ≥ 0, P (0) = P0, P0 ∈ R

µ, (13)

where F : R+ × Rµ → Rµ is continuous and (13) has unique solution for all P0.
In the following we will write v ≥ 0 for a vector v ∈ Rµ if all the components

are non-negative. The ODE system (13) will be called positive (short for
“non-negative preserving”) if P (t) ≥ 0 holds for all t ≥ 0 whenever P0 ≥ 0. An
often used criteria is given by the following lemma:

Lemma 1 (Theorem 7.1 in [4]). The IVP (13) is positive if and only if

Pi = 0, Pj ≥ 0 for all j 	= i =⇒ Fi(τ, P ) ≥ 0, i = 1, . . . ,M

holds for all τ .

As a preparation for our analysis we express the semidiscrete problems in
(11) and (12) in matrix form

Mw dW

dt
= SwW + Fw(W,V ), Mv dV

dt
= SvV + Fv(W,V ), (14)

where Mw,Mv and Sw, Sv are mass and stiffness matrices. We also use
the lumped mass method, which results from replacing the mass matrices
Mw(mw

ij) and Mv(mv
ij) by diagonal matrices Dw,Dv with diagonal elements

dwii =
∑N

j=1 mw
ij and respectively dvii =

∑N
j=1 mv

ij , see e.g. [10]. We now give suf-
ficient conditions for positivity of the discrete solutions of problems (11) and (12).

Theorem 2. Let the conditions of Theorem 1 are fulfilled. If 0.5 h < a/b then
the ODE systems (11) and ODE mass lumped system and (14) are positive.

4 Numerical Results

We consider the problem (4)–(8) with the following values of the parameters:
a = 0.4, b = 4, c = 0.001, d = 1, λ = 1, u0 = 0, u0 = 0.5, g0 = 1 and x0 = 1/3,
see e.g. [2]. We take the initial conditions of the form: v(x, 0) = sin(πx) and

w(x, 0) =
{

1 + sin(πx)/sin(π/3) + Q(1/a − 2/3)x, 0 ≤ x ≤ x0,
1 + sin(π(1 − x))/sin(2π/3) + Q(1/(3a) − 2x/3), x0 ≤ x ≤ 1.

In Fig. 1 we present the numerical solutions obtained by the implicit-explicit
(IMEX) scheme in the case of Dirichlet boundary conditions w(0, t) = 1,
w(1, t) = 1 + Q(1/(3a) − 2/3), v(0, t) = v(1, t) = 0 and Q = 17. If we take
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Fig. 1. Numerical solution with mesh parameters N = 32, M = 40, and constant
Dirichlet boundary conditions and IMEX FDS: (a) for wh; (b) for vh.
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Fig. 2. Numerical solution with mesh parameters N = 32, M = 40, and mixed bound-
ary conditions: (a) for wh, Q = 17 and implicit FDS (b) for wh, Q = 170 and FEM

Table 1. The errors in maximum norm for the numerical example

M N IMEX Standard FEM Modified FEM

wh Diff. Order wh Diff. Order wh Diff. Order

32 40 6.6757 6.4142 – – 6.4663

64 80 6.9912 0.3155 6.7112 0.2970 – 6.7119 0.2456

128 160 6.8436 0.1476 1.0959 6.5601 0.1511 0.9749 6.6232 0.0886 1.47

256 320 6.9198 0.0762 0.9538 6.6348 0.0747 1.0163 6.6519 0.0286 1.63

512 640 6.9634 0.0436 0.8054 6.5972 0.0376 0.9904 6.6431 0.0087 1.71

bigger values of the local source term Q = 170, to preserve the positivity of the
numerical solution we must decrease the space mesh parameter h. The position of
the source term is chosen so that it is not a node of the stencil. Then instead the
term 1/hQδii0 in (11) using the ideas from the IIM we add respectively for the
i = i0 and i = i0+1 the terms (xi0+1−x0)

h2 (1+bh)Qa δi,i0 ,
(x0−xi0 )

h2 (1−bh)Qa δi,i0+1.
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In Fig. 2(a) we present the numerical solution wh obtained by the fully
implicit scheme in the case of mixed boundary condition wl(0) = 0, w(1, t) =
1 + Q(1/(3a) − 2/3), vl(t) = vr(t) = 0, Q = 17 and in Fig. 2(b) - for Q = 170
and FEM. In both cases due to the mixed left boundary condition initially the
solution wh increases on the left boundary and then it slowly goes to the con-
stant value. The results for the implicit scheme and for the FEM are obtained
using Matlab function ode15s. In all experiments the positivity of the solution is
clearly seen. The common behaviour for the computed solution vh is the rapidly
decreasing to zero as a result of the pollutant source term.

In Table 1 we present the results, obtained by IMEX scheme, standard FEM,
and modified FEM for Q = 17. As there is not an analytical solution we use
the double mesh principle. We control the value of the numerical solution wh

at final time t = 1 and at x = 10/32 = 0.3125 - the mesh point, closed to the
interface x0 = 1/3 and common for all meshes. The results show first order of
the standard schemes and near second order for the modified FEM.

5 Conclusion

We performed the rigorous numerical analysis of the semi-discrete in space
approximations of the FDS and FEM schemes for a pollution and environment
interaction model. The semidiscretizations are coupled with explicit-implicit and
fully implicit schemes and they preserve the non-negativity property of the differ-
ential problem solution as numerical experiments also show. Detail experimental
and theoretical analysis will be very interesting as well as the implementation of
the immersed interface method [6] if the pollutant is a highway, see (3).
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and the second author - by the Bilateral Project DNTS/Russia 02/12 from 2018.

References

1. Bratus, A., Mescherin, A., Novozhilov, A.: Mathematical models of interaction
between pollutant and environment. In: Proceedings of the International Confer-
ence on “Control of Oscillations and Chaos’2000”, vol. 3, St. Petersburg (2000)

2. Bratus, A., Mescherin, A., Novozhilov, A.: Mathematical models of interaction
between pollutant and environment, Vest. MGU, Vych. Mat. Kybern. vol. 1, pp.
23–28 (2001)

3. Ganev, K.G., Syrakov, D.E., Zlatev, Z.: Effective indices for emissions from road
transport. In: Lirkov, I., Margenov, S., Waśniewski, J. (eds.) LSSC 2007. LNCS,
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Computer Simulation of Heat Exchange
Through 3D Fabric Layer
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Abstract. In this study the mathematical model of coupled problem of
fluid flow and heat transfer through 3D polypropylene textile layer at
micro-scale is presented. The purpose of the study is to investigate the
influence of the fabric structural pattern on the heat resistance between
human skin and the outer environment. The heat transfer mechanism
includes the heat conduction of the solid fabric structure, as well as
the convective heat transfer by means of the air and water vapor flow
through the structure. The finite element model was created by using
COMSOL Multiphysics software. The simulation results are analyzed to
verify heat transfer properties, which make influence on the wearing com-
fort of the clothes. Simultaneously, the heat conduction, air and water
vapor permeability and other important parameters used for the fabric
properties characterization at macro-scale can be obtained on the base
of the micro-scale analysis results.

Keywords: 3D fabric layer · Heat exchange · Finite element
COMSOL Multiphysics

1 Introduction

The aim of this work is to investigate the influence of 3D polypropylene tex-
tile layer on the heat loss between human skin and the fabric. Polypropylene
is widely used in products such as plastic parts, carpeting, reusable products,
paper, laboratory equipment, technology, thermoplastic fiber reinforced compos-
ites, etc. [5]. Polypropylene does not absorb moisture, has high heat resistance
and is mechanically flexible. One of the important challenges for clothing design-
ers is to ensure the wearing comfort by providing necessary thermal and moisture
concentration balance at the human skin surface referred to as the microclimate
layer [2].

In the recent decades various aspects of heat exchange have been investi-
gated. Heat transfer by conduction and radiation has been well understood and
documented. The heat transfer by convection through porous media layer is
not straightforward as there is no exact solution to this heat transfer problem.
Most of the solutions are approximate or based on empirically obtained very
c© Springer Nature Switzerland AG 2019
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simplified models [4,11]. The heat resistance of a fabric can be determined by
applying the standard hot plate chamber experiment. The heat power necessary
for maintaining the prescribed steady temperature value of the hot plate cov-
ered by the fabric sample is measured during the experiment [3]. Bhattacharjee
et al. [4] used computational fluid dynamics (CFD) software for obtaining the
equivalent heat transfer coefficient of the fabric under natural and forced heat
convection by simulation. Alptekin et al. [1] numerically simulated 1D coupled
transient heat transfer inside multi-layer firefighter protective clothing and skin
layer. Dennis et al. [6] numerically simulated the time relationships of head and
neck cooling with local tissue properties. They presented the 3D head-cooling
helmet model. The surface convection boundary conditions were used in the
regions where the helmet would contact the head. The tissue perfusion has been
neglected in the model, and the heat transfer coefficient as h = 25 W/m2 ◦C
has been derived from real data. Verleye et al. [10] investigated the fluid flow
through the woven structure, where the flow through air pores and around the
yarns was considered. Generally, the flow through textiles is governed by the
Navier-Stokes equations in the fluid domain and by the Brinkman equations in
the porous domain. Venkataraman et al. [9] modelled the insulation behavior
of nonwoven fabrics without and with aerogel. The heat transfer mechanism
was simulated by using ANSYS and COMSOL Multiphysics finite element soft-
ware. However, more precise theoretical investigations of heat exchange through
3D polypropylene fabric layer are not straightforward due to coupled heat and
mass transfer and other physical processes, complex internal structure, unknown
material properties which should be obtained from micro-scale analysis [2].

In this paper the finite element model of heat exchange through the 3D
polypropylene textile layer at micro-scale was investigated including heat con-
duction through solid structures of the textile, heat convection due to the flow
of air and water vapor. Numerical simulations were used to evaluate the heat
flux and temperature distribution in the fibrous insulating material by using
COMSOL Multiphysics software.

2 Methodology

2.1 Governing Equations

The air flow was modelled by Navier-Stokes equations in the free flow spaces
of the textile structure and by Brinkman equations in the porous parts of the
structure. The Navier-Stokes momentum equation reads as

0 = ∇ · [−pI + μ(∇u + (∇u)T )],

and is solved together with the continuity equation as

ρ∇ · u = 0, (1)

where ∇ is the gradient operator, u is the fluid flow velocity, ρ is the fluid mass
density, p is the fluid pressure, μ is the fluid dynamic viscosity, I is the identity
matrix.
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The Brinkman equation for steady-state in the porous media flow reads as

0 = ∇ · [−pI +
μ

εp
(∇u + (∇u)T ] − (μκ−1 +

Qbr

ε2p
)u,

ρ∇ · u = Qbr, (2)

where εp- constant porosity, κ- permeability. For zero mass source (Qbr = 0) the
equation of continuity, Eq. 2 reduces to Eq. 1.

For a homogeneous fluid region, the governing heat transfer equation is
expressed as

ρCpu · ∇T + ∇ · q = Q,

q = −k∇T,

where Cp- specific heat capacity, Q- overall heat transfer, k- thermal conductivity
of fluid. In porous media

q = −keff∇T

where keff = θpkp + (1 − θp)k is effective thermal conductivity of the fluid-solid
mixture, kp is the thermal conductivity of the porous medium and θp is the
volume fraction.

2.2 Finite Element Model

We developed three finite element models to analyze heat exchange mechanism
in 3D textile layer at micro-scale. All models include two porous media domains
which are 1.4 mm × 1.4 mm × 1 mm in length (x direction), width (y direction)
and height (z direction) (see Fig. 1). In model 1 air domain is 1.4 mm × 1.4 mm
× 6.3 mm in length, width, and height. In model 2 and model 3 the air domain
is 1.4 mm × 1.4 mm × 5.3 mm in length, width, and height. The initial material
properties of air and polypropylene are given in Table 1. The boundary conditions
of heat transfer in porous media and the boundary conditions of free and porous
media flow used in the three models are shown in Fig. 1. Model 1 simulates
the heat transfer in porous media driven by the change of temperature from
T = 37 ◦C at the human skin to the ambient temperature T = 20 ◦C at the
opposite surface of the model. Model 2 presents the situation when convective
heat flux from the human skin is given as a boundary condition. In Model 3 the
heat source boundary condition at the human skin was employed.

Table 1. The characteristics of air and polypropylene at T = 20 ◦C [7,8]

Material Density
kg · m−3

Thermal
conductivity
W/(m · K)

Dynamic
viscosity
kg/(m · s)

Specific heat
J/(kg · K)

Air 1.2047 0.0256 1.8205 · 10−5 1006.1

Polypropylene 900 0.22 – 1700
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Fig. 1. Model 1, Model 2, Model 3 geometry and boundary conditions

3 Numerical Results

All three Models were constructed using the laminar flow mode combined
with heat transfer in porous media flow mode. Model 1 presents the heat
exchange process at constant temperature of skin (heating plate). Figure 2
shows the temperature distribution along Oz when porosity is 1%, 50% and
99% correspondingly. Figure 3 presents the dependencies of the temperature
distribution along Oz where the heat transfer coefficient was varied from
h = 20 W/m2K to h = 25 W/m2K at porosity 99%.

Model 1 and Model 2 are comparable when h = 25 W/m2K (without normal
mass flow rate m = 0 kg/s) and h = 22 W/m2K (with normal mass flow rate
m = 1.5092 · 10−8 kg/s). In our opinion, the assumed value h = 25(W/m2K)
of the surface convection coefficient could be regarded as realistic basing on
previous works of several researchers [6]. At porosity value 50% the same heat
transfer coefficient values (h = 25 W/m2K and h = 22 W/m2K) were obtained
(Fig. 4).

In model 3 we applied the surface convection coefficient value 22 W/m2K
at normal mass flow rate m = 1.5092 · 10−8 kg/s. Figure 5 demonstrates tem-
perature distribution and z position dependencies on general source Q. Model 1
and Model 3 are comparable when general source Q varies from 41 W/m2 to
42 W/m2.
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Fig. 2. Temperature distribution along Oz in Model 1, normal mass flow rate
m = 0 kg/s, m = 1.5092 · 10−8 kg/s

Fig. 3. Temperature distribution along Oz in Model 2, normal mass flow rate
m = 0 kg/s, m = 1.5092 · 10−8 kg/s, porosity 99%
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Fig. 4. Temperature distribution along Oz in Model 2, normal mass flow rate
m = 0 kg/s, m = 1.5092 · 10−8 kg/s, porosity 50%

Fig. 5. Temperature distribution along Oz in Model 3, normal mass flow rate
m = 1.5092 · 10−8 kg/s, porosity 50%, heat transfer coefficient h = 22(W/m2K)
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4 Conclusions and Future Work

Computer simulations of heat exchange were carried out through 3D polypropy-
lene textile layer by COMSOL Multiphysics software. The simulation results
showed that Model 1, Model 2 and Model 3 can provide similar results when
using appropriate boundary conditions.

The comparison of the results among the three models provided a certain
background for obtaining the reasonable types of the boundary conditions and
the values of the heat transfer coefficients. Skin (heating plate) temperature
T = 37 ◦C (Model 1) approximately corresponds to the surface heat generation
power density as 41–42 W/m2 (Model 3). From the results provided by Model 2
we obtained that the value of the surface convection coefficient h = 22 W/m2K
could be regarded as reasonable. As a structure, Model 3 is the most realistic
model which presents heat exchange between human skin and 3D textile layer
at micro-scale.

Further research is to investigate convective heat transfer and the effect of
polypropylene geometry structure (pore sizes) in Model 3.
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1 Introduction

In this paper, we compare the possibilities of vectorization of operations with
arrays in Fortran and Julia [6,7] languages and the application of vectorization
for implementation of classical Runge–Kutta schemes [9,11,12]. Average time
measurements are made by the method described in papers [1,15]. This tech-
nique allows to obtain the statistically significant estimator of average time and
determine the optimal number of measurements. In [1,15] the authors described
in detail all the steps of their methodology for obtaining statistically significant
estimators of the average time of programs execution. They also provided some
numerical examples. In the first part of our paper, we will describe how all neces-
sary statistical computations may be implemented by using Python [5,16] with
NumPy [4], SciPy [14] and Matplotlib [3]. Our source code is open and available
at https://bitbucket.org/mngev/fortran-vs-julia. The second part of the article
describes the possibilities of arrays vectorization in Fortran and Julia languages.
The programs that we used to compare these two languages are presented. We
calculate statistically significant estimators of programs average time execution
and the confidence interval for each measurement.

In the third part of the article, we compare the performance of two imple-
mentation of classical Runge-Kutta method — in Fortran and Julia languages.
SIMD Vectorization is the most natural way to improve the performance of
such methods, so the language (strictly speaking the compiler) that implements
the best vectorization of actions with small arrays (vectors) will show better
performance.

2 The Method of Program Execution Time Measuring

When measuring the execution time of the program the repetition of trials is
generally accepted, as well as skipping a certain number of runs for so-called
“warm-up”. However, the number of trials and the number of runs for warm-up is
often determined heuristically and the measurement results may be statistically
insignificant.

In our work, we use the [1,15] methodology, which we briefly will describe
in this part of paper, focusing on the implementation with Python and stack of
scientific libraries.

2.1 The Number of the Experiment’s Levels

In our case, the experiment will be understood as execution time measurement
for a function, subprogram, program or software complex. Before starting an
experiment, one should determine the maximum number of experiment levels.

For example, if we want to estimate the execution time of some function
in a compiled programming language, we can distinguish three levels of the
experiment. The first level is r1 function calls inside the program, the second

https://bitbucket.org/mngev/fortran-vs-julia
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level is r2 executions of program and the third is r3 completions of the program
source file.

In general, we assume that there is n+1 level of repetition of the experiment.
At each level i, ri tests are performed, where i = 1, . . . , n + 1. Number of tests
at the highest level is rn+1. The described technique is divided into three stages.

2.2 The Results of the Time Measurements

At the first stage, a preliminary experiment with a heuristic choice of the number
of levels n + 1 and the number of tests ri at each i-th level is carried out. Each
test gives a value of the measurement time Xjn+1jn...j2j1 , where ji = 1, . . . , ri.
For example, if we measure the time spent on the third call of a function when
the program is run for the second time using the fourth compiled executable
file, it will be X423. To store the results of measurements we used a multidimen-
sional NumPy array. Every element of this array may be considered independent
random number. At each level, a one-dimensional sample of the obtained time
measurements is considered.

2.3 First Step: Visual Analysis

After the measurements are completed, one should proceed to a visual evaluation
of the data, which will give an opportunity to estimate the number of pre-runs
required for the system warm-up. We denote the number of pre-runs for each
level by c1, c2, . . . , cri . For each level i one should draw three plots: run-sequence
plot, lag-plot and auto-correlation function plot (ACF-plot).

To plot the autocorrelation graph, the use of the acorr function will give an
incorrect result, since it uses a different algorithm for calculating autocorrelation
in signal processing. So the calculation of autocorrelation must be implemented
independently. The result of its work can be displayed on the chart using the
vlines function.

2.4 Second Step: Biased and Unbiased Estimators

S2
i is biased estimator for variance at level i. Despite the cumbersome mathe-

matical formulas, the computation of S2
i in terms of NumPy arrays is a trivial

task. For example, let us measure time with three levels of experiment. As a
result of measurements we obtain a three-dimensional array X. To calculate S2

i ,
use mean function for 2 and 3 dimensions, and then var function to find the
unbiased sample variance.

3 Vectorization of Action with Arrays in Fortran
and Julia

3.1 SIMD Instructions

Most modern processors support SIMD (single instruction stream/multiple data
stream) instructions. This means that a single processor core can apply the same
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operation to multiple numbers at the same time. To do this, the data should be
written to special vector registers. For x86 architecture the most widespread
technologies are: MMX (MultiMedia eXtension), SEE (Streaming SIMD Exten-
sions) and AVX (Advanced Vector Extensions) of different revisions. For the
measurements we used processors with AVX support, which gives 16 registers
with a total volume of 256 bits.

3.2 Support for SIMD Instructions in Fortran and Julia

To measure the efficiency of SIMD capabilities utilization, let’s consider several
ways to add one array to another in Fortran and Julia languages. Let’s begin
from Fortran and set three dynamic arrays and then fill them with random
numbers. You may also use the concurrent statement added to the Fortran
2008 [8,10,13] standard to explicitly point out the loop independence.

There are three options for similar actions in Julia. Two of them are compa-
rable with Fortran. The third option allows using @simd and @inbounds macros
to explicitly specify the usage of SIMD instructions.

3.3 Benchmarking

For Fortran program tests we used GNU Fortran [2] compiler version 7.3.0. To
get a file with a report about loops vectorization attempts, it is necessary to add
the option -fopt-info-vec-all=file.log to compiler. We have implemented
pre-mentioned examples as separate pure functions. The Fortran source code is
located in the fortran directory in the src folder. Each function takes numeric
arrays as arguments, performs their addition and returns the result as an array.
To measure the time required to call functions, we used the intrinsic subroutine
cpu time.

Summation was performed over arrays with floating point numbers of single
precision (32 bits). The length of the array was calculated from the total volume
of vector AVX registers (256 bits). The division by 32 bits gives us exact 8.
The time required for 104 function calls was measured. Each measurement was
repeated 100 times, the program was executed 20 times and compilation was
performed also 20 times. In general, it turned out 100 · 20 · 20 measurements.

Note also that optimization flags -O1, -O2 and -O3 were used during
compilation.

Table 1. Results for Fortran time measurements. Confident interval was calculated for
α = 0.01

Overall mean Conf. interval sizes Optimum

Function O1 O2 O3 O1 O2 O3 O1 O2 O3

Iter. 0.000436 0.000405 0.000400 0.000009 0.000010 0.000008 34 41 33

Vect. 0.000246 0.000374 0.000379 0.000011 0.000009 0.000009 27 29 36
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The obtained results are summarized in the Table 1. In table one can find the
overall mean time of execution for each of two functions, the confidence interval
and the optimal number of repetitions for all stages, calculated by the method
described above. For clarity, the overall mean time is shown as bar charts in the
Fig. 1.

The bar chart clearly shows that when adding arrays without loops and with-
out optimization (flag -O1), the compiler automatically applied vectorization. At
higher optimization levels, the compiler apply vectorization also to loops. It is
noteworthy that the performance of the function with non-index addition excels
slightly from more aggressive optimization (-O2 and -O3 flags).

Fig. 1. Overall mean from Table 1 Fig. 2. Overall mean from Table 2

Similar measurements were carried out for programs in Julia. Due to the
use of JIT compilation, the experiment levels were reduced from three to two:
20 program launches with 100 measurements at each launch. Also, there are no
levels of optimization.

The results of measurements are summarized in the Table 2, and the overall
mean time is clearly shown in the form of bar chart 2.

Table 2. Results for Julia time measurements. Confident interval was calculated for
α = 0.01

Iterations Vectorization @simd

Overall mean 0.00163201 0.00131059 0.00105772

Conf. interval sizes 0.0011087924109 0.00087504387 0.00071035994

Optimal 11 11 11

The bar chart shows that the average time of Julia program is almost two
orders of magnitude lower than Fortran. However, the median time is less than
the average Fortran program execution time by an order of magnitude. If we
consider the run-sequence plot, it becomes clear that a some values of measure-
ments differ greatly from the average time. It is these anomalous measurements
that lead to an increase in the average time.

As mentioned in the official documentation of the Julia language, the use
of non-index operations in the Julia language does not provide any significant
increase in productivity (see median time), as at the moment is only a syntactic
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sugar. However, the use of the @simd macro allows to get slightly better loop
performance.

4 Performance Measurements for Runge-Kutta Schemes

Let us first introduce the numerical scheme of the explicit Runge-Kutta method
for Cauchy problem [9,12]. Let’s consider two smooth functions: x(t) : [t0, T ] →
R

N and f(t,x(t)) : R × R
N → R

N , where [t0, T ] ∈ R. The initial value is x0 =
x(t0). Then the Cauchy problem for a system of N ordinary differential equations
is formulated as follows: ⎧

⎨

⎩

dx(t)
dt

= f(t,x),

x(t0) = x0.
(1)

The explicit s-stage Runge–Kutta method for the Cauchy problem (1) with
constant step is given by the following formulas:

k1 = f(tm,xm),

k2 = f(tm + c2h,xm + ha21k
1),

. . .

ks = f
(
tm + csh,xm + h(as1k

1 + as2k
2 + . . . + ass−1k

s−1)
)
,

xm+1 = xm + h(b1k1 + b2k2 + . . . + bs−1ks−1 + bsks)

For this scheme it is difficult to build a parallel algorithm based on processes,
since each ki, i = 1, . . . , s depends explicitly on all previous ones and cannot be
calculated independently. However, vectorization with SIMD instructions can
give a performance benefit, since expression ai1k

1 + ai2k
2 + . . . + ais−1k

i−1, i =
1, . . . , s can be efficiently vectorized at each stage.

We implemented an explicit numerical scheme with order p = 6 and stage s =
7 in Fortran and Julia languages in the most similar way (the function is called
RKp6). In Fortran, we set the coefficients of the method as separate variables
with the parameter attribute, and in Julia we used the const statement. This
will allow Fortran and Julia compiles to optimize the program, as the values of
the coefficients will be known at the compilation stage and can not be changed
during the program run time.

For testing we used simple linear oscillator equation:

dx1(t)
dt

= −x2,
dx2(t)

dt
= x1,

on the time interval [0, 10] with initial value x = (1, 1/2)T and with the method
step h = 10−4. Was performed 1000 calls to the function RKp6, with 10 runs
of programs (for Julia and for Fortran). We didn’t repeat the compilations for
Fortran, because the estimator S2

3 showed that this level of experiment does not
have a statistically significant effect on the result.
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Fig. 3. The run-sequence plot, lag-plot and ACF-plot for Julia Runge-Kutta program
measurements.

The Fig. 3 shows three plots required for visual estimation of measurements.
The first run-sequence plot shows that approximately the first 100 measurements
yielded results that were significantly different from the next ones, so we had
to discard them. Moreover, the autocorrelation coefficient for the first 100 mea-
surements was also much higher than the allowed values [−0.1, 0.1]. According
to lag-plot, the measured values are distributed randomly and do not form any
regular structures.

Fortran program was compiled with different optimization flags. The vec-
torization report showed that the compiler found beneficial to vectorized the
addition of ki inside the functions. As in our previous measurements, the Julia
program was much slower (Fig. 4).

Fig. 4. Fortran and Julia Runge–Kutta performance comparison

5 Conclusion

We have measured the performance of Fortran and Julia languages in tasks
that benefit from the use of vector instructions of modern processors. In addi-
tion, we briefly described the methodology [1,15], which we used during for our
measurements.
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Despite the fact that Julia showed worse results than Fortran program, it is
necessary to make a number of notes in favor of Julia.

– Julia Language is still under heavy development and major changes may be
expected in the syntax and the individual aspects of performance.

– We have performed measurements only for a specific array vectorization task,
so for other tasks the performance difference may not be so significant.

– We have not considered the external library for static arrays for Julia, which
could potentially bring performance boost.

– Julia is a dynamic language, so in most cases it will win against Fortran in
development speed.

The source code of the examples and additional performance measurements
can be found by link https://bitbucket.org/mngev/fortran-vs-julia.
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Abstract. Modelling a random fibre network representative of a real
world material leads to a large sparse linear matrix system with a
high condition number. Current off-lattice networks are not a realis-
tic model for the mechanical properties of the large volume of random
fibres seen in actual materials. In this paper, we present the numerical
methods employed within our two-dimensional and three-dimensional
models that improve the computational time limitations seen in exist-
ing off-lattice models. Specifically, we give a performance comparison of
two-dimensional random fibre networks solved iteratively with different
choices of preconditioner, followed by some initial results of our three-
dimensional model.

Keywords: Fibre network · Iterative · Preconditioning

1 Introduction

Many real world materials can be represented at the microscopic level by a
random network of fibres, including paper and felt, non-woven fabrics, tissue
scaffolds, and the cytoskeletons of eukaryotic cells. A good understanding of
the mechanical behaviour of these networks is key to understanding physical
properties at the macroscopic level and for the development of new materials.

2 Modelling a Random Fibre Network

In many applications, especially biological, it is appropriate to model individual
fibres as semiflexible polymers [5]. With this assumption in place, the extensi-
ble Wormlike Chain model has been shown to adequately describe the elastic
behaviour of individual semiflexible fibres [6]. Discretising this we can define fibre
stretching, compression and bending, but we choose to neglect thermal contribu-
tions for simplicity. To expand this theory from single fibres to whole networks
we adopt the Mikado model [3,4,7], which allows us to express the energy of the
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system as the total sum of stretching energy added to the total sum of bending
energy of the network,

E =
μ

2

∑

ij

δ�2ij
�ij

+
1
2

∑

〈ijk〉

κijkθ2
ijk

�̄ijk
, (1)

where the left sum considers all segments, ij, of every fibre of the network, and
the right sum considers all of the consecutive segments, ij, jk, along each fibre,
for stretching constant μ, bending modulus κijk, segment length �ij , average
length of two consecutive segments �̄ijk, and angular deflection θijk. To better
understand (1), it is useful to first consider individual fibres.

2.1 Fundamentals

Defining fibres as slender elastic bodies with uniform circular cross-sections, we
can consider a two-dimensional plane or three-dimensional cuboid wherein a pre-
determined number of fibres are generated with random position and orientation.
After cross-linking these fibres (see Sect. 2.5), a mechanical structure remains in
which nodes are identified as freely rotating points, and categorised as one of
three types. Boundary nodes occur as points fixed at the aperiodic boundaries
of the domain, dangling nodes are attributed to the end points of fibres not on
the boundary, and internal nodes are the points associated with cross-links. For
adjacent nodes ϕ, ψ the tangent vector along the segment is

t̂ϕψ =
sψ − sϕ

�ϕψ
,

where sϕ is the position vector at ϕ and �ϕψ = |sψ − sϕ| is the segment length.
We denote uϕ as the displacement of an individual node after a load or pertur-
bation has been applied to the network, and refer to individual components as
uϕx

, uϕy
, uϕz

.

2.2 Local Stretching Behaviour

Consider a segment ϕψ comprising of an adjacent node pair ϕ, ψ respectively,
treated as a simple Hookean spring. The stretching energy for this segment is

E stretch
ϕψ =

kϕψ

2
[(uψ − uϕ) · t̂ϕψ]2

with a stretching constant kϕψ = μ
�ϕψ

= AEf

�ϕψ
, for A = πr2, radius r and Young’s

modulus Ef . The second partial derivatives of this energy contribute to the
global Hessian matrix at rows and columns corresponding to the displacements
of ϕ and ψ, and the first partial derivatives contribute to the right hand side
vector.
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2.3 Local Bending Behaviour

For the adjacent node triplet α, ω, β, segment αωβ has bending energy

E bend
αωβ =

καωβθ2
αωβ

2�̄αωβ
=

καωβ [(sω − sα) × (uβ − uω) + (uω − uα) × (sβ − sω)]2

�2αω�2ωβ(�αω + �ωβ)
,

for a bending constant καωβ = AEf r2

4 , with A = πr2 and Young’s modulus Ef .
Similar to the stretching case, local contributions to the global Hessian and right
hand side vector can be derived from this energy.

2.4 Global Assembly

Combining the displacements uϕ of every node ϕ, in the vector U,

U = [U1, U2, U3, U4, ...] = [u1x
, u2x

, ..., u1y
, u2y

, ..., u1z
, u2z

, ...],

then a Taylor series expansion of the energy of the system about U = 0 is

E(U) = E0 +
N∑

i=1

Ui
∂E

∂Ui

∣∣∣∣
U=0

+
1
2

N∑

i=1

N∑

j=1

UiUj
∂2E

∂Ui∂Uj

∣∣∣∣
U=0

+ ...

The resulting system represents the network in mechanical equilibrium with the
applied load or perturbation;

∑

j

Uj
∂2E

∂Ui∂Uj
= Bi, where Bi = − ∂E

∂Ui

∣∣∣∣
U=0

for i, j = 1, ..., N . Denoting the Hessian matrix as H, this gives the global linear
matrix system HU = B which can be assembled from the local contributions
defined in Sects. 2.2 and 2.3.

2.5 Cross-Linking Fibres

In a two dimensional plane, a pair of randomly orientated fibres are trivially
cross-linked at their unique point of intersection, if this exists. In three dimen-
sions direct intersections of randomly orientated fibres occur with probability
zero for radius r → 0+. In this case, the minimum separation is considered, and
if this is below a given threshold, a short cross-linking fibre is inserted between
the two closest points of the original pair of fibres. The cross-linking fibre can
either be treated as a stiff and non-rotating inextensible rod, in which case each
end point displaces identically, or as an elastic spring, in which case each end
point can displace individually. An alternative approach is to constrain fibre
orientation to lie along lattice vectors, such that fibres directly intersect. This
lattice-based approach can achieve mechanical rigidity at lower fibre counts due
to the higher coordination (connectivity) number, zc, and has been used suc-
cessfully to predict mechanical properties comparable to randomly orientated
fibre networks seen in real-world materials [2]. We have made some preliminary
lattice-based experiments (discussed in Sect. 4.3) before moving to randomly
orientated networks.
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3 Numerical Model

3.1 Linear System Structure (in 2D)

By grouping the unknown displacements in U by coordinate direction, the block
structure of H can be written as

H =
[
Hxx Hxy

HT
xy Hyy

]
, where Hϕψ =

∂2E

∂uϕi
∂uψj

, (2)

for i, j = 1, ..., N .
The sparsity of H is determined from the local connectivity of each fibre

with the other fibres in the network. An initial estimate of the sparsity pattern
can be obtained from the adjacency matrix of the internal nodes of a network,
and is repeated for each sub-block Hϕψ of the global matrix H. To exploit the
sparsity of H, we store the non-zero values in compressed sparse row (CSR)
format. The matrix H is symmetric, as are each of the diagonal sub-blocks, but
each off-diagonal sub-block is not necessarily symmetric.

3.2 Iterative Solution Strategy

Our system is symmetric but may not be positive definite, hence we choose the
MINRES iterative method from the family of Krylov subspace methods. These
methods perform best when the system is preconditioned to cluster the matrix
eigenvalues. Exploiting the block structure seen in (2), we take the diagonal
blocks

PDb =
[
Hxx O
O Hyy

]
, (3)

as the first choice of preconditioner. A similar preconditioner can be defined when
extending to three dimensions. Additionally we can also consider a simple asym-
metric preconditioner and a symmetric preconditioner with a Schur complement
block

PAb =
[
Hxx Hxy

O Hyy

]
, PS =

[
Hxx O
O S

]
, (4)

where S = Hyy − HT
xyH−1

xx Hxy. GMRES was used with PAb, since this precon-
ditioner does not preserve the symmetry of H.

4 Results

4.1 Performance Comparison in 2D

To evaluate the performance of the different choices of preconditioner, we mea-
sured the number of iterations required to converge to a relative tolerance of
10−3, using the MINRES and GMRES solvers in MATLAB. The rate of con-
vergence was measured for increasing system size by increasing the number of
fibres, Nf , with fixed length � = 0.25 and radius r = 0.01. For each interval of
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Nf , the results were averaged over 10 reproducibly-seeded randomly generated
networks. Examples of individual network generations with varying Nf can be
seen in Fig. 1.

As can be seen from Table 1, PDb shows a consistent performance as Nf

increases, with good evidence that we would expect to see the iteration number
converge if Nf were to increase further. PS also performs well, and PAb con-
sistently shows the lowest iteration count for increasing Nf , but the additional
cost in building the PS preconditioner, and the additional cost per iteration of
GMRES versus MINRES leaves PDb as potentially the preferred choice. The
diagonally scaled preconditioner D performs the worst, with large fluctuations
in the iteration count and a large standard error.

Fig. 1. Examples of generated 2D random fibre networks increasing in area with a
fixed fibre density. The number of fibres, Nf , is 100 (left), 400 and 1600 (right), and
fibre length, �, and radius, r, are fixed at 0.25 and 0.01 respectively, but r is not to
scale. Dangling ends have not been removed.

Table 1. Number of iterations required to converge for different preconditioners and
an increasing number of fibres, Nf , of length 0.25 and radius 0.01. Standard error was
calculated from a sample of 10 networks.

Nf 100 200 400 800

D 300.2 ± 54.0 480.8 ± 67.3 570.6 ± 77.3 410.9 ± 103.0

PDb 8.0 ± 0.8 8.5 ± 0.5 7.7 ± 0.7 7.2 ± 0.6

PS 12.3 ± 1.1 14.6 ± 1.2 13.8 ± 1.3 14.1 ± 0.9

PAb 5.3 ± 0.2 5.4 ± 0.2 5.4 ± 0.2 5.3 ± 0.2

As a further indication of performance we also collected estimates for the
condition numbers of the preconditioned system and for H. To do this we con-
sider a similar range of Nf as previously and provided the default seed to the
condest function in MATLAB for 10 network generations at each interval. From
the results in Table 2 we find additional evidence for the poor performance of D,
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with condition number estimates consistently higher than H without any pre-
conditioning. PS reduces the condition number of H by roughly an order of
magnitude, and PDb and PAb demonstrate the best performance, showing simi-
lar estimates to each other with the symmetric having slightly lower values on
average for larger Nf .

Table 2. Estimated condition numbers, κ, of different preconditioners applied to H,
for varied number of fibres, Nf .

Nf 100 200 400 800 1600

κ(H) 3.74e6 7.58e6 1.81e7 4.34e7 9.72e7

κ(D−1H) 8.51e6 2.41e7 7.09e7 1.98e8 4.54e8

κ(P−1
Db H) 7.32e4 1.47e5 4.85e5 1.60e6 5.12e6

κ(P−1
S H) 1.39e5 4.97e5 1.18e6 4.22e6 -

κ(P−1
Ab H) 6.98e4 1.96e5 5.99e5 2.11e6 -
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Fig. 2. r/�, for � = 0.25 and Nf = 100 in a 0.5 × 0.5 plane against G/Gaff (left) and
against Eb/E (right). Nodes within a distance of 10−3 were merged into a single node
prior to solution. The line G/Gaff = 1 (left) corresponding to affine response is also
shown.

In addition to analysing the performance of the preconditioners, we also
investigated the mechanical properties of the networks. In particular for Nf =
100, with � = 0.25, we varied r and measured the shear modulus, G, and ratio of
bending energy over total energy, Eb/E. From Fig. 2 (right) we can see a smooth
crossover from a regime with comparable stretching and bending energies for
small r, to a stretching dominated regime for large r. Figure 2 (left) demonstrates
a smooth transition between affine (i.e. uniform deformation field) dominated
behaviour at large r to non-affine behaviour for small r. This coincides well with
the known result that stretching-dominated networks become close to affine [4].
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Fig. 3. Calculated values of the energy (left) and shear modulus (right) verified against
the affine predictions for an increasing number of fibres with fixed length 0.25 and radius
0.01. The solid line is added to verify linear scaling.

4.2 Validation

To validate our model results, we verified that the calculated energy, E, and shear
modulus, G, were bounded by the affine predictions Eaff and Gaff respectively.
To do this, we increased Nf for � = 0.25 and r = 0.01, and plotted E and
G alongside their corresponding affine predictions. Figure 3 demonstrates that
E (left) and G (right) lie below the limits provided by the affine predictions. We
can also see that E increases linearly with Nf , as we would expect.

4.3 Preliminary Results in 3D

In a step towards solving randomly orientated three dimensional networks built
from the Mikado approach, we were able to obtain preliminary results by solving
networks with predetermined direct intersections between fibres. These have
irregularity introduced by overlaying different lattice based components together
to form a rigid structure. More specifically we take 25 vertical fibres extending
the height of a 1 × 1 × 1 cube and insert lattice forming plates through the
vertical fibres with varied orientations.

The example seen in Fig. 4 has an average coordination number of zc = 4.31
with fibres of varied length, �, radius r = 0.01, and a prescribed but irregular
orientation. Given a shear strain γ = 0.05, the network is fixed in the plane y = 0,
and sheared in the y = 1 plane in the positive x direction. Figure 4 (left) shows
the structure prior to any shear, Fig. 4 (centre) shows the structure displaced
after shearing, where the displacements are calculated using a direct solver.
Figure 4 (right) shows the structure with every node displaced affinely. The total
energy in this case is E total

aff = 5.0e−7. Comparing (centre) and (right), we can
see regions of the network in (centre) where bending is more favourable than
affine displacement. The total energy here is E total = 1.4e−7, where bending
energy E bend = 1.3e−7 is the main contribution.
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Fig. 4. Visualisations of one of the lattice based 3D networks, for the undisplaced
(left), displaced (centre) and affinely displaced (right) generations of the network where
γ = 0.05.

5 Continued Work

Although lattice-based modelling can provide valuable insight into the mechan-
ical properties of random fibre networks, truly representing real-world materials
is still an issue. This will require a model with genuinely random orientation,
using one of the two approaches for minimum distance calculation discussed in
Sect. 2.5.

The size of the linear system becomes significant in 3D and parallel comput-
ing will be essential to model realistic volumes of material. We intend to use
PETSc [1] to develop scalable tools for solving our systems, employing the block
preconditioned iterative methods demonstrated in Sect. 4.1.
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Abstract. A front fixing finite difference method for pricing a corpo-
rate bond with credit rating migration is developed. Two algorithms are
proposed: the first one is of a predictor-corrector type while the second
one is a Newton-like method. Comparison numerical experiments show
the efficiency and effectiveness of the numerical algorithms.
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1 Introduction

Option pricing and prediction of the variation of options value is a key factor
for optimized capitals management. The Black-Sholes model of option pricing is
considered to be a major tool of financial engineering. A financial derivative is
called an American option if the payoff can take place before the expiration date
T ∈ [0,∞). American option problem is formulated as parabolic complimen-
tary problem or as one-phase free boundary value problem. On this base many
methods are developed for pricing of American options, see e.g. [1–3,5–9,13].

In the last years, the modeling of credit rating migration becomes increasingly
important in the world of finance. The most credit risk research in academic
studies is focused on default, see e.g. the references in [4,10]. In this paper is
proposed a new free boundary model in which the rating migration boundary
depends on the proportion of the debt and the value of the firms. The pricing
corporate bond with credit rating migration problem can be posed as a two-phase
free boundary value problem. Let φH and φL be the functions of the firm value
S and time t. Then they satisfy the following PDEs in their regions, [4,11,12]:

∂φH

∂t
+

1
2
σ2

HS2 ∂2φH

∂S2
+ rS

∂φH

∂S
− rφH = 0, S >

1
γ

φH , 0 ≤ t < T, (1)

∂φL

∂t
+

1
2
σ2

LS2 ∂2φL

∂S2
+ rS

∂φH

∂S
− rφL = 0, 0 < S <

1
γ

φL, 0 ≤ t < T, (2)
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with the terminal condition at the maturity time T

φH(S, T ) = φL(S, T ) = min{S, F}. (3)

Here σL and σH (0 < σL < σH) represent the volatilities of the firm under the
high and low credit grades respectively, r is the risk free interest rate, 0 < γ < 1
represents the threshold proportion of the debt and the value of the firm’s rating
and F is the face value of the zero-coupon bond.

The value of the bond is constant when it passes the rating threshold, i.e.

φH = φL on the ratingmigration boundary S = s(t), t ∈ (0, T ). (4)

Also, if one constructs a risk free portfolio π by longing a bond and shorting
� amount asset value S, i.e., πt = φt − �tSt and such that dπt = rπt, this
portfolio is also continuous when it passes the rating migration boundary:

πH = πL, (5)

or by (4) on the rating migration boundary

�H = �L. (6)

By the Black-Scholes theory, (see e.g. [10]), it is equivalent to

∂φH

∂S
=

∂φL

∂S
on the rating migration boundary. (7)

In this paper a front fixing finite difference method for solving of the formu-
lated free boundary value problem is proposed. In the next section the front fixing
transformation is introduced and a finite difference approximations for the fixed
boundary problem are derived. In Sect. 3 two algorithms are developed: the first
one is of a predictor-corrector type while the second one is a Newton-like method.
Comparison numerical experiments which show the efficiency and effectiveness
of the numerical algorithms are presented in Sect. 4. Finally, some conclusions
and future work are commented.

2 Front Fixing Transformation and Approximation

After changing of the variable x = S
s(t) , i.e. S = xs(t) and renaming t := T − t

(the time to maturity), then

ϕ(x, t) = φ(S, t) = φ(xs(t), t)

and from the Eqs. (1), (2) we derive for 0 < t ≤ T

∂ϕH

∂t
− 1

2
σ2

Hx2 ∂2ϕH

∂x2
− x

(
r − ṡ(t)

s(t)

)
∂ϕH

∂x
+ rϕH = 0, 1 < x < ∞, (8)

∂ϕL

∂t
− 1

2
σ2

Lx2 ∂2ϕL

∂x2
− x

(
r − ṡ(t)

s(t)

)
∂ϕL

∂x
+ rϕL = 0, 0 ≤ x < 1. (9)
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The terminal condition (3) now is an initial condition

ϕ(x, 0) = min(xF/γ, F ), 0 ≤ x < ∞. (10)

Across the free boundary s(t) (x → 1) the following conditions are fulfilled

φH(s(t)+, t) = φL(s(t)−, t) = γs(t),
∂φH

∂x
(s(t)+, t) =

∂φL

∂x
(s(t)−, t),

from where we have

ϕH(1, t) = ϕL(1, t) = γs(t), (11)
∂ϕH

∂x
(1, t) =

∂ϕL

∂x
(1, t). (12)

In order to solve the problem (8)–(12) numerically, we introduce X as a large
value of x, where we impose the boundary condition

ϕ(X, t) = F. (13)

Next, for given positive integers I, k, M and N = kI we define the meshes:

ωL
h = {0} ∪ {1} ∪ ωL

h , ωL
h = {xi = ihL, i = 1, . . . , I − 1, hL =

1

I
}

ωH
h = {1} ∪ {X} ∪ ωH

h , ωH
h = {xI+i = 1 + ihH , i = 1, . . . , N − I − 1, hH =

X − 1

N − I
}

ωτ = {0} ∪ ωτ , ωτ = {tj = jτ, j = 1, . . . , M, τ =
T

M
}.

Our goal is to propose a finite difference method for computing ϕj
i ≈ ϕ(xi, t

j)
for (xi, t

j) ∈ ωh × ωτ , ωh = ωL
h ∪ {1} ∪ ωH

h and associated free boundary
position sj ≈ s(tj) for tj ∈ ωτ . First, from the continuity condition (4) we have
ϕj

H,I = ϕj
L,I and hence we will omit the subindices H and L.

An implicit-upwind finite difference approximation of (8), (9) has the form

ϕj+1
i − ϕj

i

τ
− 1

2
σ2

i x2
i

ϕj+1
i−1 − 2ϕj+1

i + ϕj+1
i+1

h2
i

− xi

(
r − sj+1 − sj

τsj+1

)
ϕj+1

i+1 − ϕj+1
i

hi
+ rϕj+1

i = 0 (14)

for i = 1, . . . , I − 1, I + 1, . . . , N − 1, j = 0, . . . , M − 1, where

σi =
{

σL for i = 1, 2, . . . , I − 1,
σH for i = I + 1, . . . , N − 1,

hi =
{

hL for i = 1, 2, . . . , I − 1,
hH for i = I + 1, . . . , N − 1.

From the terminal (initial) condition we have

ϕ0
i = min (xiF/γ, F ) i = 0, . . . N . (15)
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The boundary conditions imply that

ϕj
0 = 0, ϕj

N = F, j = 0, . . . , M . (16)

From condition (12) we obtain

ϕj+1
I+1 − ϕj+1

I

hH
=

ϕj+1
I − ϕj+1

I−1

hL
for j = 0, 1, . . . , M − 1 . (17)

Finally, from (11) we get

ϕj+1
I = γsj+1 . (18)

Assuming that the discrete solution ϕj
i , i = 1, . . . , N − 1 and sj are known,

on the new (j + 1)-th time layer the canonical form of the FDS is as follows:

aj+1
i ϕj+1

i−1 + cj+1
i ϕj+1

i + bj+1
i ϕj+1

i+1 = dj+1
i , i = 1, . . . , N − 1 (19)

aj+1
i = − τ

2h2
i
σ2

i x2
i , d

j+1
i = ϕj

i , i 	= I,

cj+1
i = 1 + τ

h2
i
σ2

i x2
i + τ

hi
xi

(
r − sj+1−sj

τsj+1

)
+ rτ, i 	= I,

bj+1
i = − τ

h2
i
σ2

i x2
i − τ

hi
xi

(
r − sj+1−sj

τsj+1

)
, i 	= I,

aj+1
I = − 1

hL , bj+1
I = − 1

hH , cj+1
I = 1

hL + 1
hH , dj+1

I = 0.

The initial condition for the free boundary is s0 = F/γ.
In this way we obtain for the unknowns ϕj+1

i , i = 1, . . . , N − 1 and sj+1 a
nonlinear system of N algebraic equation.

3 Numerical Algorithms

In order to solve the nonlinear system of algebraic equations we developed the
following two algorithms.

Algorithm 1. This algorithm is based on the predictor-corrector scheme and
consists in the following steps (see also [13] for the case of pricing American Put
options and [7] for the case of Asian options):

Step 1. Predictor. Let the solution and the free boundary position on the
time level tj be known. Instead of the implicit scheme (14) we make use of its
explicit variant (with respect to ϕ) and combining with the second order central
difference for the convective term for i = I − 1 and i = I + 1 we derive

ϕj+1
I−1 − ϕj

I−1

τ
− 1

2
σ2

I−1x
2
I−1

ϕj
I−2 − 2ϕj

I−1 + ϕj
I

h2
I−1

− xI−1

(
r − sj+1 − sj

τsj+1

)
ϕj

I − ϕj
I−2

2hI−1
+ rϕj

I−1 = 0 (20)

ϕj+1
I+1 − ϕj

I+1

τ
− 1

2
σ2

I+1x
2
I+1

ϕj
I − 2ϕj

I+1 + ϕj
I+2

h2
I+1

− xI+1

(
r − sj+1 − sj

τsj+1

)
ϕj

I+2 − ϕj
I

2hI+1
+ rϕj

I+1 = 0. (21)
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We find from (20) and (21) ϕj+1
I+1 and ϕj+1

I−1 and put them into (17), from where
we find an expression for ϕj+1

I as a function of sj+1. Finally, putting ϕj+1
I in (18)

we obtain a quadratic equation for the unknown position sj+1. It has roots with
difference signs and the positive one forms the predictor value of the moving
boundary, denoted by s̃j+1.

Step 2. Corrector. From (19) for i = 1, ..., N − 1 and replacing sj+1 by
the predicted value s̃j+1 we obtain the linear system for the unknowns ϕj+1

i ,
i = 1, ..., N − 1. Solving this system, we find the numerical solution on the
new time layer. Then we correct the value of the free boundary using (18),
sj+1 = ϕj+1

I /γ.

Algorithm 2. We now describe an algorithm based on the Newton method.
This method was applied for an American Call option pricing model in [6].

Step 1. We eliminate the known boundary values ϕj+1
0 = 0 and ϕj+1

N = F
from (19) for i = 1 and i = N −1. Taking into account (18) and (19) we obtain a
nonlinear system for N unknowns: ϕj+1

i , i = 1, 2, ..., N − 1 and sj+1. We denote

by
l

Y the vector of these N unknowns at the l-th iteration.

Step 2. We have to solve the equation
l

F= 0, with
l

F= (
l

F1

l

F2)T where
l

Fi,
i = 1, 2 corresponds to Eqs. (19) and (18), respectively. To this end, we apply
the Newton method in the following form:

l

J (
l+1

Y −
l

Y)= − l

F, (22)

with the Jacobi matrix defined by:
l

J= (
l

Jij)i,j=1,2 where

l

J11=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

cj+1
1 bj+1

1

aj+1
2 cj+1

2 bj+1
2

. . . . . . . . .

aj+1
N−2 cj+1

N−2 bj+1
N−2

aj+1
N−1 cj+1

N−1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

l

J12=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

∂bj+1
1

∂sj+1 yj+1
2

∂aj+1
2

∂sj+1 yj+1
1 + ∂bj+1

2
∂sj+1 yj+1

3

...

∂aj+1
N−2

∂sj+1 yj+1
N−3 +

∂bj+1
N−2

∂sj+1 yj+1
N−1

∂aj+1
N−1

∂sj+1 yj+1
N−2 +

∂bj+1
N−1

∂sj+1 F

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

l

J21= (0, ..., 0,−1/γ, 0, ..., 0) and
l

J22= 1. The position of the nonzero element of
l

J21 is I. Similarly
l

Y=
(

l

Y11

l

Y12

)T

,
l

Y11=
(
ϕj+1
1 , ..., ϕj+1

N−1

)
,

l

Y12= sj+1.

The iteration process is repeated until the condition max |(l+1

Y − l

Y)| < tol
is fulfilled.

Step 3. The solution on the (j+1)-th time layer is taken as an initial iteration
for the next time layer.
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Table 1. Mesh-refinement analysis of the predictor-corrector method for Example 1.

N M T = 5 T = 10 T = 50

s(T ) Differ. Rate s(T ) Differ. Rate s(T ) Differ. Rate

50 10 0.92395 - - 0.73946 - - 0.36212 - -

100 20 0.93099 7.0389e−03 - 0.74066 1.1970e−03 - 0.35137 1.0747e−02 -

200 40 0.93442 3.4354e−03 1.035 0.74109 4.3336e−04 1.466 0.34514 6.2309e−03 0.786

400 80 0.93612 1.7022e−03 1.013 0.74129 1.9421e−04 1.158 0.34180 3.3421e−03 0.899

800 160 0.93697 8.4741e−04 1.006 0.74138 9.2651e−05 1.068 0.34007 1.7241e−03 0.955

Table 2. Mesh-refinement analysis of the Newton method for Example 1.

N M T = 5 T = 10 T = 50

s(T ) Differ. Rate s(T ) Differ. Rate s(T ) Differ. Rate

50 10 0.93098 - - 0.73074 - - 0.3348 - -

100 20 0.93433 3.3500e−03 - 0.73658 5.84e−03 - 0.33680 2.00e−03 -

200 40 0.93606 1.7300e−03 0.953 0.73195 2.57e−03 1.184 0.33762 8.20e−04 1.286

400 80 0.93693 8.7000e−03 0.992 0.74034 1.19e−03 1.111 0.33799 3.70e−04 1.148

800 160 0.93737 4.4000e−04 0.984 0.74091 5.70e−04 1.062 0.33816 1.70e−04 1.122

4 Numerical Experiments

Example 1. We consider problem (1)–(7) with parameter values r = 0.05, σL =
0.3, σH = 0.2, F = 1, γ = 0.8 and T = 5, see [4].

From practical point of view it is enough to take k = 5, i.e. X = 5. Since there
exists no analytical solution to the proposed free boundary problem, we use the
mesh refinement analysis with doubling the mesh size h. Since the approximation
on time and space is a first order, in the numerical experiments we keep the
proportion N/M to be constant N/M = k. We denote the absolute value of
the difference between the final position of the free boundary obtained on two
consecutive meshes and the rate of convergence, respectively by:

sM
diff = |sM − sM/2|, rate = log2(sM

diff/s2M
diff ).

In Table 1 we give the results for the free boundary position s(t) at dif-
ferent times t = 5, 10, 50, obtained by the predictor-corrector scheme. Also,
the difference in maximum norm between two consecutive values and the rate
of convergence are presented. The results show first order of accuracy for the
moving boundary. The results obtained by the Newton method are presented in
Table 2, where the tolerance value is tol = 1.0e − 06. Again the first order of the
method and the position of the free boundary are confirmed. In Table 3 we make
a CPU time analysis of the predictor-corrector method versus Newton method.
It is clearly seen that the predictor-corrector method is faster than the Newton
method and for bigger values of the mesh parameters N and M the Newton
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method uses approximately eight times bigger CPU time in seconds. Also the
average number of iterations for the Newton method are presented and it is
obvious that the method converges after three iterations for bigger N and M .

Table 3. CPU time analysis of the predictor-corrector method versus Newton method
for Example 1 and the averaged number of iterations for the Newton method.

N 50 100 200 400 800

M 10 20 40 80 160

Pr.-Corr. (in sec.) 0.03126 0.03318 0.05640 0.26914 2.08979

Newton (in sec.) 0.07682 0.17689 0.48847 1.95180 15.42786

aver. numb. iter. 4.100 4.000 4.000 3.100 3.0125

In Fig. 1a) the free boundary position s(t), obtained for N = 100, M = 20:
solid line - by the predictor-corrector method; circles - by the Newton method;
dashed line - theoretical upper bound, proposed in [4]. It is clearly seen the coin-
cidence of the results from both numerical algorithms to the same free boundary.
Also, the decreasing of the free boundary is numerically confirmed. In Fig. 1b)
the 3D plot of the function ϕ(x, t) for T = 5, N = 100, M = 20 in the new
coordinate system is presented.

Fig. 1. (a) The free boundary position for s(t), obtained for N = 100, M = 20: solid
line - by the predictor-corrector method; circles - by the Newton method; dashed line
- theoretical upper bound; (b) The solution ϕ in new coordinates (x, t).
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5 Conclusion

In this work we construct front fixing finite difference schemes for pricing a
corporate bond with credit rating migration. We exploit two algorithms: one
of a predictor-corrector type and the other of Newton-like method, which also
work well for time-dependent volatility models σ = σ(t). We plan to extend our
numerical methods to 2D models [11].

Acknowledgements. This work was partially supported by the Project 2018-FNSE-
03 of the University of Ruse and by the Bulgarian National Fund of Science under the
Project DN 12/4-2017.

References

1. Chernogorova, T., Koleva, M., Valkov, R.: A two-grid penalty method for American
options. Comp. Appl. Math. (2018). https://doi.org/10.1007/s40314-017-0457-6

2. Company, R., Egorova, V.N., Jodar, L.: Solving American option pricing models
by the front fixing method: numerical analysis and computing. Abstr. Appl. Anal.
2014 (2014). Article ID 146745

3. Gyulov, T., Valkov, R.: American option pricing problem transformed on finite
interval. Intern. J. of Comp. Math. 93, 821–836 (2016)

4. Hu, B., Liang, J., Wu, Y.: A free boundary problem for corporate bond with credit
rating migration. J. Math. Anal. Appl. 428(2), 896–909 (2015)

5. Jiang, L.: Modeling and Methods for Option Pricing. World Scientific, Singapore
(2005)

6. Kandilarov, J.D., Valkov, R.L.: A numerical approach for the American call option
pricing model. In: Dimov, I., Dimova, S., Kolkovska, N. (eds.) NMA 2010. LNCS,
vol. 6046, pp. 453–460. Springer, Heidelberg (2011). https://doi.org/10.1007/978-
3-642-18466-6 54
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Abstract. We consider a two-dimensional regime switching model with
power utility function. The problem is a system of parabolic partial dif-
ferential equations with non-linear gradient terms and weakly coupled by
non-linear exponential terms. We establish lower bounds for the solutions
and then we construct an adequate finite difference method, preserving
the qualitative properties of the exact solution. Finally, we present and
discuss numerical results.

1 Introduction

Regime-switching models allow to capture the dynamics of the price, risk etc.,
when the economy switches between different states. In this work, we consider
the regime-switching problem, derived in [12], with power utility function U(y) =
yγ/γ, γ < 1, γ �= 0, y ∈ R. Let s = (s1, s2, . . . , sd) ⊂ R

d be a vector of stock
prices si ∈ [0,∞), i = 1, 2, . . . , d, s := diag(s) and t ∈ [0, T ] is a time variable.
The value functions V k(t, s, y), k = 1, 2, . . . m are defined by V k = (yeck)γ/γ,
where ck(t, s) are solutions of the following system of parabolic equations

ck
t +

1
2
tr(sΣkΣT

k sck
ss) +

(
μk +

γ

1 − γ
(μk − r1)

)
sck

s +
1
γ

m∑

j=1

(e−γ(ck−cj) − 1)λkj

+
1

2(1 − γ)
z2k +

γ

2(1 − γ)
‖sck

sΣk‖2 + r = 0,

ck(T, s) = c0(s) ≥ 0.

(1)

Here r is the risk-free interest rate, μk = μk(t, s) : [0, T ] × B ⊂ R
d → R

d

are drift coefficients, ΣkΣT
k are positive definite, locally Lipschitz and bounded,

Σk = Σk(t, s) : [0, T ]×B ⊂ R
d → R

d×d are nonsingular for all (t, s), Σ−1
k μk and

λkj : [0, T ] × B → [0,∞), λkj ∈ C1
b ([0, T ] × B) are bounded on ΩT = [0, T ] × B,

B = (0,∞)d for all k, j = 1, . . . , m, 1 is the d-dimensional unit column vector,
‖ · ‖ is Euclidean norm, ck

s is the gradient with respect to the vector s, ck
ss is the

Hessian matrix with entries ck
sisj

, i, j = 1, 2, . . . , d and functions z2k are given by

z2k(t, s) := (μk(t, s) − r1)T
(
Σk(t, s)ΣT

k (t, s)
)−1 (μk(t, s) − r1).
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Available in the literature results for existence and uniqueness of the solution
for parabolic systems, see e.g. [10], exclude the models with exponential non-
linearity. In this work, assuming existence and uniqueness of classical solution,
we establish minimum principle for the problem (1).

In our previous papers [3,4] were considered the one-dimensional case of
(1). The focus in the present work is the numerical investigation of the two-
dimensional case of the system (1). We will construct numerical method that
preserves the qualitative properties of the exact solution. The results for higher-
dimensional case can be generalized in a similar way as we did in [6] for the
exponential utility regime-switching model.

The remaining part of the paper is organized as follows. In the next section,
we formulate the model problem and establish minimum principle, Theorem 1.
Numerical method and its properties are presented in Sect. 3 (see Theorems 2, 3).
In Sect. 4 we discuss numerical results and finally we give concluding remarks.

2 The Differential Problem

Consider the two-dimensional case of the system (1), namely

ck
t +

1
2
(σk

11s
2
1c

k
s1s1

+ 2σk
12s1s2c

k
s1s2

+ σk
22s

2
2c

k
s2s2

) +
(

μk
1 +

γ

1 − γ
(μk

1 − r)
)

s1c
k
s1

+
(

μk
2 +

γ

1 − γ
(μk

2 − r)
)

s2c
k
s2

+
1
γ

m∑

j=1

(e−γ(ck−cj) − 1)λkj +
1

2(1 − γ)
z2k

+
γ

2(1 − γ)
(
(σ̃k

11s1cs1 + σ̃k
21s2cs2)

2 + (σ̃k
12s1cs1 + σ̃k

22s2cs2)
2
)

+ r = 0,

ck(T, s1, s2) = c0(s), k = 1, 2, . . . ,m.

(2)

where Σk = {σ̃k
il}2,2

i,l=1, ΣkΣT
k = {σk

il}2,2
i,l=1 and σk

11 = (σ̃k
11)

2 + (σ̃k
12)

2, σk
22 =

(σ̃k
22)

2 + (σ̃k
21)

2, σk
12 = σ̃k

11σ̃
k
21 + σ̃k

22σ̃
k
12, μk

i = μk(t, si).
Note that for s1 = 0 and/or s2 = 0, from (2) we obtain natural boundary

conditions. Applying the variable change s∗
i = 1/si in the equations in (2), we

get a similar to (2) system. Letting s∗
i = 0 (i.e. si → ∞), i = 1, 2, we obtain

natural boundary conditions. Returning to the original variable si, we deduce
that at infinity we may consider similar conditions as for si = 0.

Further, in (2) we apply logarithmic change of the space variables xi = ln si,
i = 1, 2 and invert the time τ = T − t. As a result the space region s ∈ [0,∞) ×
[0,∞) transforms to the infinite domain x ∈ (−∞,∞) × (−∞,∞). In order to
construct numerical method, the unbounded spatial domain is truncated by large
enough finite region D = [L−

1 , L+
1 ]×[L−

2 , L+
2 ], where L−

i < 0 and L+
i > 0. Taking

into account the above consideration, we impose natural boundary conditions
on the remote boundaries. Let us define the function δi:

δi = δ(xi) =
{

0, if xi = L±
i ,

1, otherwise, δ2i = δi.
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The resulting initial-boundary value problem, defined in QT = [0, T ] × D is

ck
τ − 1

2
(δ1σk

11c
k
x1x1

+ 2δ1δ2σ
k
12c

k
x1x2

+ δ2σ
k
22c

k
x2x2

)

− δ1

(
μk
1+

γ

1 − γ
(μk

1 − r)− 1
2
σk
11

)
ck
x1

−δ2

(
μk
2+

γ

1 − γ
(μk

2−r) − 1
2
σk
22

)
ck
x2

− γ

2(1 − γ)
(
δ1σ

k
11(c

k
x1

)2 + 2δ1δ2σ
k
12c

k
x1

ck
x2

+ δ2σ
k
22(c

k
x2

)2
)

− 1
γ

m∑

j=1

(e−γ(ck−cj)−1)λkj − 1
2(1 − γ)

z2k − r = 0, (τ, x) ∈ QT = (0, T ] × D,

ck(0, x) = ck
0(x), x = (x1, x2) ∈ D, k = 1, 2, . . . ,m.

(3)

Note that δ1σ
k
11(c

k
x1

)2 + 2δ1δ2σ
k
12c

k
x1

ck
x2

+ δ2σ
k
22(c

k
x2

)2 = (δ1σ̃k
11cx1 +

δ1δ2σ̃
k
21cx2)

2 + (δ1δ2σ̃k
12cx1 + δ2σ̃

k
22cx2)

2 ≥ 0.

For the system (3) we establish minimum principle.

Theorem 1. Let m = min
k

mk, mk ≤ z2k(τ, x), (τ, x) ∈ QT and suppose that

the functions ck ∈ C(QT ) ∩ C1,3(QT ) satisfy the problem (3) in QT . If ck
0(x) ≥

0, k = 1, 2, . . . , m, then

ck(τ, x) ≥
(

m

2(1 − γ)
+ r

)
τ, k = 1, 2, . . . , m.

Proof (outline). We follow the same line of considerations as in [4].

3 Numerical Method

We define an uniform space mesh ωh = ωh1×ωh2 with mesh step sizes hi, i = 1, 2

ωhi
=

{
xi,ji : xi,ji = L−

i + (ji − 1)hi, ji = 1, . . . , Ni, hi = (L+
i − L−

i )/(Ni − 1)
}

and a non-uniform mesh ωτ in time with increments �τn, i.e. τn+1 = τn +�τn,
n = 0, 1, . . . , Nτ . The numerical solution at point (τn, x1j1 , x2j2) is denoted by
Ck

n,j1,j2
:= Ck(τn, x1j1 , x2j2). We will exploit also the following notations

Ck
j1,j2 := Ck

n,j1,j2 , Ĉk
j1,j2 := Ck

n+1,j1,j2 , Ck
tj1,j2

=
Ĉk

j1,j2
− Ck

j1,j2

�τn
,

Ck
ei+q =

{
Ck

j1+q,j2
, i = 1,

Ck
j1,j2+q, i = 2.

, Ck
xiei

=
Ck

ei
− Ck

ei−1

h
, Ck

xiei
= Ck

xiei+1
,

Ck
x̊i

= 1
2 [Ck

xi
+ Ck

xi
], Ck

xpxq
= (Ck

xp
)xq

, Ck
xpxq

= (Ck
xp

)xq
, Ck

xpxq
= (Ck

xp
)xq

,

(Ck)+xpxq
= 1

2 [Ck
xpxq

+ Ck
xpxq

], (Ck)−
xpxq

= 1
2 [Ck

xpxq
+ Ck

xpxq
].
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In order to approximate the first spatial derivative in (3), we use also the
following conservative discretization

ξk(x1j1 , x2j2)
∂Ck

∂xi
(x1j1 , x2j2) � ξk

ei

Ck
ei+1/2 − Ck

ei−1/2

hi
=: ξk

ei
Ck

x̃iei
. (4)

Next, for Ck
ei±1/2 in (4), we apply van Leer flux limiter [2,5,8,9] in each

spatial direction, namely

Φ(θk) =
|θk| + θk

1 + |θk| , where θk
ei+1/2 =

Ck
xiei

Ck
xiei

, (5)

Φ(θk) is Lipschitz continuous, continuously differentiable for all θk �= 0, and

Φ(θk) = 0, if θk ≤ 0 and Φ(θk) ≤ 2min{1, θk}. (6)

Following [2] the numerical flux Ck
ei+1/2 is approximated in a non-linear way

Ck
ei+1/2 =

{
Ck

ei
+ 1

2Φ(θk
ei+1/2)(C

k
ei

− Ck
ei−1), ξk

ei
≤ 0,

Ck
ei+1 + 1

2Φ((θk
ei+3/2)

−1)(Ck
ei+1 − Ck

ei+2), ξk
ei > 0.

(7)

and the flux Ck
ei−1/2, corresponding to (7) is defined by shifting the indexes ji.

Using the symmetry property of the flux limiter Φ(θ) = θΦ(θ−1) [7] and
(5), we approximate ξkCk

x̃i
, at each grid node (τ, x1j1 , x1j2), applying (4), (7)

in dependence of the sign of ξei
= (ξei

)+ − (ξei
)−, ξ+ei

= max{0, ξei
} and ξ−

ei
=

min{0,−ξei
}:

ξk
ei

∂Ck

∂xi
� (ξk

ei
)+(Λk

i )+Ck
xi

− (ξk
ei

)−(Λk
i )−Ck

xi
, i = {1, 2},

(Λk
i )+ = 1 +

1
2
Φ((θk

ei+1/2)
−1) − 1

2
Φ(θk

ei+3/2),

(Λk
i )− = 1 +

1
2
Φ(θk

ei+1/2) − 1
2
Φ((θk

ei−1/2)
−1),

(8)

where in view of (5), (6) we have 0 ≤ (Λk
i )− ≤ 2 and 0 ≤ (Λk

i )+ ≤ 2.
For computing the gradient ratio in (5) at points near to the boundaries,

namely ji = {2, Ni − 1}, we need the values of Ck
j1,j2

at the outer grid nodes,
i.e for ji = 0 or ji = Ni + 1. Then, the second-order extrapolation formulas [11]
will be used.

Applying different approximation for the mixed derivative, depending on the
sign of σk

12, and (8) for the discretization of the first derivative, where in the
the gradient term we use either (8) or central finite difference depending on
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the sign of γ, we construct implicit-explicit discretization of (3). Using the nota-
tion Ak

i = μk
i + γ

1−γ (μk
i − r) − 1

2 (σ̃k
ii)

2, at each grid node of ωh × ωτ , we have

Ck
t − 1

2
(δ1σ̂k

11Ĉ
k
x1x1

+ 2δ1δ2(σ̂k
12)

+(Ĉk)+x1x2
− δ1δ2(σ̂k

12)
−(Ĉk)−

x1x2
+δ2σ̂

k
22Ĉ

k
x2x2

)

=δ1[(Ak
1)

+(Λk
1)

+Ck
x1
−(Ak

1)
−(Λk

1)
−Ck

x1
]+δ2[(Ak

2)
+(Λk

2)
+Ck

x2
−(Ak

2)
−(Λk

2)
−Ck

x2
]

+
γ+

2(1 − γ+)
(
δ1σ

k
11(c

k
x̊1

)2 + 2δ1δ2σ
k
12c

k
x̊1

ck
x̊2

+ δ2σ
k
22(c

k
x̊2

)2
)

− γ−δ1σ
k
11

2(1 + γ−)
(
(Ck

x̊1
)+(Λk

1)
−Ck

x1
− (Ck

x̊1
)−(Λk

1)
+Ck

x1

)

− γ−δ2σ
k
22

2(1 + γ−)
(
(Ck

x̊2
)+(Λk

2)
−Ck

x2
− (Ck

x̊2
)−(Λk

2)
+Ck

x2

)

− γ−δ1δ2σ
k
12

2(1 + γ−)
(
(Ck

x̊1
)+(Λk

2)
−Ck

x2
−(Ck

x̊1
)−(Λk

2)
+Ck

x2
+(Ck

x̊2
)+(Λk

1)
−Ck

x1

−(Ck
x̊2

)−(Λk
1)

+Ck
x1

)
+

1
γ

m∑

j=1

(e−γ(Ck−Cj) − 1)λkj +
1

2(1 − γ)
ẑ2k + r,

Ck(0, x1, x2) = Ck
0 (x1, x2).

(9)

The numerical scheme (9) is constructed so that we can guarantee that the dis-
crete solution will have the same lower bound as the exact solution. For further
investigations it is convenient to represent the unknown solution in vector form,
reordering Ck

j1,j2
and the corresponding equations row by row. Thus the J-th

(J = 1, 2, . . . , N1N2) finite difference equation corresponding to (j1, j2) has the
following relation J = j1 + (j2 − 1)N1, j1 = 1, 2, . . . , N1, j2 = 1, 2, . . . , N2.
Therefore, the unknowns Ck

j1,j2
according to the ordering, are expressed as

column-vector Ck = [Ck
1 , Ck

2 , . . . , Ck
J , . . . , Ck

N1N2
]T and (9) can be written in an

equivalent matrix-vector form (EMVF).
Let denote by ‖·‖h the maximal discrete norm, ◦ is a point-wise (Hadamard)

matrix product and βk is N1N2-dimensional vector with entries

βk
J =

{
0, if Ck

J = α, α =
(

m
2(1−γ) + r

)
τ,

1, otherwise.

Theorem 2. Suppose that the conditions of Theorem 1 are fulfilled and γ > 0.
Then, if

δ2|σ̂k
12|

σ̂k
11

≤ h2

h1
≤ σ̂k

22

δ1|σ̂k
12|

for all J = 1, 2, . . . , N1N2, (10)

�τn ≤ γh1h2

2γ(h2‖Ak
1 ◦ βk‖h + h1‖Ak

2 ◦ βk‖h) + h1h2‖Pkj‖h
, (11)

Pkj
J =

⎧
⎪⎨

⎪⎩

1
Ck

J−α

(
m∑

j=1

(1 − e−γ(Ck
J−Cj

J )
+
)λkj

J

)

, Ck
J > α,

0, otherwise,
, J = 1, . . . , N1N2,
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for the numerical solution of (9) at each time level we have

Ck
J ≥

(
m

2(1 − γ)
+ r

)
τ, J = 1, . . . , N1N2.

Proof (outline). Substitute Uk
J = Ck

J − α in the EMVF of (9). For the resulting
problem we prove that the coefficient matrix is an M-matrix if the restriction
(10) is satisfied. Then, we show that the right-hand side is non-negative, if (11)
is fulfilled. Thus, we deduce that Uk

J ≥ 0, J = 1, 2, . . . , N1N2 [1].

The condition (10) is not restrictive with respect to the financial modeling [12].
In the same manner we establish the following result.

Theorem 3. Let γ < 0. If the restriction (10) and conditions of Theorem 1 are
fulfilled and

�τn ≤ γ−(1 + γ−)h1h2

2γ−(1 + γ−)Ak + h1h2((γ−)2Qk + (1 + γ−)‖N kj‖)
, (12)

N kj
J =

⎧
⎪⎨

⎪⎩

1
Ck

J−α

(
m∑

j=1

(eγ−(Ck
J−Cj

J )
+ − 1)λkj

J

)

, Ck
J > α,

0, otherwise,
, J = 1, . . . , N1N2,

Ak = h2‖Ak
1 ◦ βk‖ + h1‖Ak

2 ◦ βk‖,

Qk = ‖βk ◦ Ck
x̊1

‖(‖σk
11‖ + ‖σk

12‖) + ‖βk ◦ Ck
x̊2

‖(‖σk
22‖ + ‖σk

12‖),

then, for the numerical solution of (9) at each time level, we have

Ck
J ≥

(
m

2(1 − γ)
+ r

)
τ, J = 1, 2, . . . , N1N2.

4 Numerical Results

We will verify the order of convergence of the solution, obtained by (9) and
the statements of Theorems 2 and 3. For the first test problem (TP1) we chose
the model parameters, similar to the Example 1.1 in [12]: m = 2, γ = 0.1,
σ1
11 = σ1

22 = 0.04, σ1
12 = 0.004, σ2

11 = σ2
22 = 0.09, σ2

12 = 0.054, r = 0.005, λ12 =
0.01(

√
s1s2), λ21 = 0.03( 3

√
s1s2), μk

i = 0.015, k, i = 1, 2 and c10(s) ≡ c20(s) ≡ 0.
For the second test problem (TP2) we set γ = −3 and σ1

12 = −0.004. Mesh
parameters are h = h1 = h2 (the condition (10) is satisfied), N = N1 = N2,
L±

i = ± ln(100), T = 0.5.
For the convergence test we set fixed time step �τ = h2. Let Ck

h be the
solution of (9), computed on the mesh with space step size h. Thus, we define
the error Ek

h = ‖Ck
2h − Ck

h‖h. On Fig. 1 we plot errors for TP1 and TP2 at final
time T , computed by space meshes with different step sizes for both solutions
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Fig. 1. Ek
h vs. N for TP1 (left) and TP2 (right)

Fig. 2. C1 (left), C2 (right) for TP1 and α-plane

C1 and C2 vs. the number N of the space grid nodes in each spatial direction.
We also plot comparison line, which correspond to a second order convergence
rate. We observe second order convergence in space of C1 and C2 and as the
ratio �τ = h2 is fixed, we may conclude that the order of convergence in time
is not less than one.

Next, we compute the solution of (9) with variable time step, satisfying the
equalities in (11) for TP1 and (12) for TP2 with c10(s) ≡ 8.10−5, c20(s) ≡ 0. On
Figs. 2 and 3 we plot the solutions at final time τ = T in the original (s1, s2)
variables for TP1 and TP2, respectively. For comparison, on the same graphs we
depict also α - plane. We observe that at each grid node Ck ≥ α.
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Fig. 3. C1 (left), C2 (right) for TP2 and α-plane

5 Conclusions

The main results of this paper are summarized as follows. We establish lower
a-priory positive bounds for the differential problem solution. We construct
implicit-explicit finite difference method preserving the qualitative properties
of the exact solution.

Numerical results illustrate the order of convergence of the numerical solution
- second order in space and first in time, and confirm theoretical statements.

Acknowledgements. This research is supported by the Bulgarian National Science
Fund under Project DN 12/4 “Advanced analytical and numerical methods for non-
linear differential equations with applications in finance and environmental pollution”,
2017.
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Abstract. The calculation of electro-dipping force, acting on a dielectric
particle, attached to the boundary between water and nonpolar fluid,
is important for the characterization of the surface charge density of
micron-size objects and their three-phase contact angles [1]. The problem
was solved semi-analytically, using the Mahler–Fox transformation in the
simplified case of one phase with infinite dielectric permittivity [4]. We
generalize this approach, taking into consideration the finite dielectric
permittivity of the polar phase. We propose a numerical method for
calculating the distribution of the electrostatic potential in all phases
and the respective values of the dimensionless electro-dipping force. The
expression for the weak singularity parameter at the three-phase contact
line is analytically derived. In all studied cases, it is weaker than that in
the model case [2]. The obtained results show that: (i) the electrostatic
potential distribution is close to that in the model case for micron-size
particles, large values of the ionic strength and dielectric constant of the
polar phase; (ii) the force, arising from the electrostatic field in the polar
phase, cannot be neglected for small (nano-size) particles and low ionic
strengths.

Keywords: Electrostatic potential distribution · Laplace equations
Complex numerical domains and boundary conditions
Toroidal coordinates

1 Introduction

The interactions between electrically charged colloidal particles, adsorbed at
an oil–water interface, depend on the magnitude of the surface charge density
and the three-phase contact angle. The prediction of the properties of dielectric
particles is of crucial importance for the characterization of a particle monolayer,
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formation of particle-stabilized emulsions and colloidosomes [1]. Experimentally,
it has been established that the electrostatic repulsion is due to the presence of
charges at the particle–nonpolar phase boundary [2,3].

The problem was solved semi-analytically, using the Mahler-Fox transforma-
tion in the simplified case of water phase with infinite dielectric permittivity [4].
The effect of an external electric field, applied to the particle, was discussed in
[5]. Our aim in the present study is to analyze the effect of water phase with
a finite value of the dielectric constant and to calculate the distribution of the
electrostatic potentials in all phases. We solve the Laplace equations in complex
physical domains, using appropriate toroidal coordinates. The developed numer-
ical scheme, which is of second order with respect to space and numerical time,
allows fast and precise calculations.

2 Mathematical Formulation of the Problem

Let a spherical charged dielectric particle of radius R and dielectric constant
εp is attached to the interface between nonpolar (oil, air) and polar (water)
phases with dielectric constants εn and εw, respectively (Fig. 1a). The particle
position is determined by the central angle α (three-phase contact angle) and
therefore the radius of the three-phase contact line is rc = R sin α. The electric
field intensities, Ej (j = n, p, w), are induced by surface charges of constant
surface charge density σpn, located at the particle–nonpolar phase boundary,
Spn. The electric fields in the dielectric phases, occupying volumes Vj (j =
n, p, w), obey the equations ∇ · Ej = 0 and the corresponding electrostatic
potentials have the form Ej = −∇ϕj , where ∇ is the gradient operator. Thus,
the potentials can be modelled as solutions of the Laplace equations in the
volumes, Vj . At the boundaries between water and dielectric phases, Spw and
Snw, there are no adsorbed charges, therefore εwn ·∇ϕw = εpn ·∇ϕp at Spw and
εwn ·∇ϕw = εnn ·∇ϕn at Snw hold true, where n is the outer unit normal vector
from the particle surface (Fig. 1a). At the charged part of the particle surface,
Spn, we apply the boundary condition ε0εpn ·∇ϕp−ε0εnn ·∇ϕn = σpn, where ε0
is the dielectric permittivity in vacuum [2,4]. The tangential boundary conditions
state that all potentials are continuous functions at the dividing boundaries.

For numerical calculations, it is convenient to reformulate the problem in a
dimensionless form. We use the following dimensionless electrostatic potentials,
Φp, Φn, and Φw, and ratios between the dielectric constants, εpn and εwn:

Φj =
ϕjε0εn
rcσpn

(j = p, n, w), εpn =
εp
εn

, εwn =
εw
εn

. (1)

The cylindrical coordinate system Orθz with axis of revolution Oz defines the
radial, vertical and polar coordinates, r, z and θ, respectively (Fig. 1a). The
complex geometry of the domains is transformed into rectangles (Fig. 1b) by
introducing modified toroidal coordinates t and s analogous to those in [2]:

r

rc
=

1 − t2

h
,

z

rc
=

2t sin s

h
, h(t, s) = 1 + t2 − 2t cos s. (2)
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Fig. 1. (a) Sketch of a particle at the interface between nonpolar and water phases.
(b) Toroidal coordinate system (t, s), in which the physical domains are transformed
into rectangles.

For the curvilinear orthogonal coordinate system, we denote the unit vectors of
the local basis by et and es. Let us remark that the introduced t and s are similar
to the classical toroidal coordinates—we transform the original first coordinate
to be in the interval [0, 1]. In the new variables, the positions of the interfaces
are: s = 0 and s = 2π from both sides of Snw; s = π − α at Spn; s = 2π − α
at Spw. The axis of revolution corresponds to t = 1 and the three-phase contact
line—to the pole, A+, where t = 0. The Lamé coefficients, ht, hs, and hθ, of the
toroidal coordinate system are calculated from the following relationships:

ht =
2
h

rc, hs =
2t

h
rc, hθ = r =

1 − t2

h
rc. (3)

Using the general formulae for the Laplace operator and directional deriva-
tives in orthogonal coordinates [2], we get

h

t(1 − t2)
∂

∂t

[
t(1 − t2)

h

∂Φj

∂t

]
+

h

t2
∂

∂s

(
1
h

∂Φj

∂s

)
= 0 in Vj (j = n,p,w), (4)

n · ∇u = − h

2trc

∂u

∂s
at Spn, n · ∇u =

h

2trc

∂u

∂s
at Spw. (5)

From the latter, we obtain the dimensionless formulation of the considered prob-
lem for the electrostatic potentials: (i) in the volumes—equation (4); (ii) at the
dividing physical boundaries:

Φp|s=2π−α = Φw|s=2π−α , εpn
∂Φp

∂s

∣∣∣∣
s=2π−α

= εwn
∂Φw

∂s

∣∣∣∣
s=2π−α

, (6)

Φn|s=0 = Φw|s=2π ,
∂Φn

∂s

∣∣∣∣
s=0

= εwn
∂Φw

∂s

∣∣∣∣
s=2π

, (7)

Φn = Φp,
∂Φn

∂s
− εpn

∂Φp

∂s
=

2t

1 + t2 + 2t cos α
for s = π − α; (8)

(iii) at the axis of revolution, t = 1, and at the three-phase contact line, t = 0:

∂Φj

∂t
= 0 for t = 1 (j = n,p,w), Φn = Φp = Φw = 0 for t = 0, (9)
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Fig. 2. Dependence of singularity parameter ν on the contact angle α and ratio εwn:
(a) εpn = 4; (b) εpn = 0.25. Dashed lines show the model case, studied in [4].

where the electrostatic potentials at the pole A+ are defined to be equal to zero.
It is shown in [4] that the particulate problem has a weak singularity of the

electric field intensity in the close vicinity of the contact line. The leading order
solutions of Eq. (4) for t → 0 are Φj = tν(Aj sin(νs) + Bj cos(νs)), where Aj

and Bj (j =n, p, w) are unknown constants and 0.5 < ν < 1. The substitution
of these solutions into the boundary conditions (6)–(8) leads to a homogeneous
system of six linear equations for Aj and Bj . This system has a nontrivial solu-
tion, when its determinant is equal to zero. Thus, we arrive to the following
equation for the singularity parameter ν:

2εpn(1 − εwn)2

(1 + εpn)(1 + εwn)(εpn + εwn)
− sin2(νπ) =

(1 − εpn)(1 − εwn)
(1 + εpn)(1 + εwn)

cos2(να) +
(1 − εwn)(εpn − εwn)
(1 + εwn)(εpn + εwn)

cos2 [ν(π − α)] . (10)

The model case, studied in [4], follows from (10) when εwn → ∞ (dashed lines
in Fig. 2). The solutions of Eq. (10) for the singularity parameter, ν, for two
different ratios εpn are shown in Fig. 2. The following conclusions can be drawn
from it. In all cases, the singularity is weaker than that in the model case.
The values of ν increase with the decrease of the ratio between the dielectric
constants of water and nonpolar phase, εwn. This effect is more pronounced for
larger values of εwn and more hydrophilic particles.

3 Numerical Method

In order to find a numerical solution of the problem, we apply the alternating
direction implicit method (ADIM), introducing numerical time τ . The continu-
ous function f(τ, t, s) describes the electrostatic potentials, ordered as follows:
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Φn, Φp, and Φw. In the volumes, f(τ, t, s) obeys an equation of the form (4):

∂f

∂τ
= T[f ] + S[f ],

T[f ] =
h

t(1 − t2)
∂

∂t

[
t(1 − t2)

h

∂f

∂t

]
, S[f ] =

h

t2
∂

∂s

(
1
h

∂f

∂s

)
, (11)

where the operators T and S act in directions t and s, respectively. For the
discretization of (11), we introduce an uniform mesh with time step δτ and
space steps δn, δp, δw by dividing each numerical domain Ṽj (j = n, p, w) into
squares of length δj . We denote the solution at a given moment τ by subscript
“0” and at the moment τ + 2δτ—by subscript “2”. Using the Crank–Nicolson
method in the ADIM scheme, we obtain the following second order numerical
model:

(U − δτS)(U − δτT)[f2 − f0] = 2δτT[f0] + 2δτS[f0] + O(δ3τ ), (12)

where U is the unit operator. Firstly, we solve numerically an equation for a func-
tion g(t, s) in the s-direction, and subsequently—an equation in the t-direction

(U − δτS)[g] = 2δτT[f0] + 2δτS[f0] and (U − δτT)[f2 − f0] = g (13)

as the derivatives in T and S are approximated with second-order central dif-
ferences with respect to t and s.

The main problem in the ADIM arises from the complexity of the boundary
conditions, applied to the function g. In order to have a second order precision
with respect to t and s, we modify the boundary conditions, assuming the validity
of the Laplace equations in the close vicinity of the dividing surfaces and the
axis of revolution [6]. We use the following approximation:

u′′(x) =
−7u(x) + 8u(x ± δx) − u(x ± 2δx)

2δ2x
∓ 3

δx
u′(x) + O(δ2x), (14)

which relates the second and the first derivative of a given function. For example,
the limit of the operator T at the axis of revolution, taking into account the
boundary conditions (9) and equation (11), yields

lim
t→1

T[u] = 2
∂2u

∂t2

∣∣∣∣
t=1

=
−7u(1) + 8u(1 − δt) − u(1 − 2δt)

2δ2t
. (15)

Therefore, we replace the boundary conditions (9) with Eq. (13), in which the
operator T is given by the difference form (15). The result is a modified boundary
condition in relaxed form.

From Eqs. (11) and (14), the finite difference representations of the operator
S in the close vicinity of the boundary s = π − α are

t2anS[u] =
−7u(s) + 8u(s − δn) − u(s − 2δn)

2δ2n
an + u′(s − 0), (16)

t2apS[u] =
−7u(s) + 8u(s + δp) − u(s + 2δp)

2δ2p
ap − εpnu

′(s + 0), (17)
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where the functions an(t) and ap(t) are defined with

an(t) = δn

(
3 − δn

h

∂h

∂s

)−1

, ap(t) = εpnδp

(
3 +

δp
h

∂h

∂s

)−1

for s = π − α. (18)

The sum of Eqs. (16) and (17) along with the boundary conditions (8) leads
to the final expression for the finite difference form of the operator S at the
boundary Spn:

S[u] =
−7u(s) + 8u(s − δn) − u(s − 2δn)

2δ2nt
2(an + ap)

an

+
−7u(s) + 8u(s + δp) − u(s + 2δp)

2δ2pt
2(an + ap)

ap +
2

ht(an + ap)
for s = π − α. (19)

Thus, the boundary conditions (8) are replaced by Eq. (13), in which the operator
S is given by definition (19). Following an analogous procedure, we derive the
respective expression for the difference form of S at the boundary s = 2π − α
and on both sides of Snw (s = 0 and s = 2π).

Because of the boundary conditions, the considered algorithm reduces the
matrix of the linear algebraic system in the t-direction to a five-diagonal matrix.
The respective matrix of the system in the s-direction is again with five non-
zero diagonals, but because of the periodicity of the solution at Snw its first row
contains two more elements at the end and the last row contains two more ele-
ments at the beginning. We implemented a direct elimination numerical method
in order to solve the system.

4 Results and Discussion

To achieve good precision of the numerical calculations, we discretize each
numerical domain Ṽj (j = n, p, w) by introducing a 100 × 100 uniform mesh
(see Sect. 3). The time step is chosen to be equal to the minimum of δn, δp and
δw. The illustrative figures (Figs. 3b and 4b) correspond to experimental system
parameters [2] εpn = 2 and εwn = 40. If the oil phase has a larger dielectric
constant (for example, castor oil with εn = 4.54), then the system parameters
are εpn = 0.874 and εwn = 17.2 (Figs. 3a and 4a, respectively). The mathemat-
ical formulation of the problem assumes that the electrostatic potential at the
three-phase contact line is equal to zero (see Eq. (9)) and the intensity of the
electric field at large distances from the charged particle is equal to zero. Thus,
the calculated potential at infinity has a non-zero value. It is subtracted from
the calculated Φj in order to obtain the physical electrostatic potential.

Figure 3 shows the distribution of the physical values of Φj in the numerical
domains for three-phase contact angle α = 90◦. The considerably higher dimen-
sionless potentials are well illustrated for larger values of the dielectric constant
of the nonpolar phase. At the coordinate lines, s = 0 (Snw) and s = 3π/2 (Spw),
the electrostatic potentials are considerably lower than those at coordinate line
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Fig. 3. Distribution of the electrostatic potentials in numerical domains for contact
angle α = 90◦: (a) εpn = 0.874 and εwn = 17.2; (b) εpn = 2 and εwn = 40.

s = π/2 (Spn). As it can be expected, the maxima of the electrostatic potentials
are at the cross-section of the particle–nonpolar interface and the axis of revolu-
tion. The dielectric constant of water is so high that the water phase suppresses
the penetration of the electric field in polar phase.

The calculations in [2,4] are performed, assuming zero values of the poten-
tials at the boundaries of the polar fluid. The magnitude of the electro-dipping
force decreases if the electrostatic potentials of these boundaries are different
than zero. Figure 4 shows the distribution of the surface potentials along the
boundaries (solid lines correspond to Spn; dashed lines to Spw; dot-dashed lines
— to Snw). The increase of the three-phase contact angle (more hydrophobic
particles) leads to higher potentials because of the more charges adsorbed at the
particle–nonpolar fluid interface. The effect of the water phase becomes more

Fig. 4. Distribution of potentials along the interfaces for different values of contact
angle α: (a) εpn = 0.874 and εwn = 17.2; (b) εpn = 2 and εwn = 40.
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pronounced. It is important to note that the surface potentials at the particle–
water boundary are different from zero. Thus, the boundary Spw also contributes
to the electro-dipping force. For α = 45◦ and α = 90◦ this contribution is small,
while for α = 135◦ — it is not negligible. The weak singularities at the three-
phase contact line (t = 0) correspond to those depicted in Fig. 2. If the dielectric
constant of the particle phase, εp, is smaller than that of the nonpolar phase,
εn, then the electric field penetration inside the particle phase is more effective
and the electrostatic potential at boundary Spw is higher.

5 Conclusions

The developed effective numerical algorithm, based on the ADIM scheme,
gives possibility for fast and precise calculation of the distributions of elec-
trostatic potentials, generated from a charged dielectric particle, attached to
the nonpolar–water interface. For faster calculations, the complex numerical
domains are transformed into rectangles, using appropriate toroidal coordinates.
The resulting cyclic five diagonal systems of linear equations in the respective
directions of ADIM are solved, using a direct elimination method.

The numerical results show the effect of the three-phase contact angle and
the dielectric properties of the phases on the induced electric fields and the
magnitude of the electro-dipping force. Generally, the decrease of the ratios of
the dielectric constants of the particle and nonpolar phase, εp/εn, and that of
water and nonpolar phase, εw/εn, leads to the more pronounced penetration of
electric field and higher surface potentials at the particle–water and nonpolar
fluid–water boundaries. The magnitude of the potentials (electro-dipping force)
is larger for more hydrophobic particles. The calculations generalize what is
known from literature [2,4] and give a more precise description of the problem.
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Abstract. Electroencephalogram (EEG) classification accuracy of dif-
ferent automatic algorithms (including their setup) is discussed. Two
patient groups, characterized by visually similar (to neurologists) EEG
rolandic spikes, are under classification. The first group consists of
patients with benign focal childhood epilepsy. Patients with structural
focal epilepsy define the second group. We analyzed 94 EEGs (with
known diagnosis) obtained from Children’s Hospital, Affiliate of Vilnius
University Hospital Santaros Klinikos.

The EEGs are preprocessed by applying these steps: (i) spike detec-
tion; (ii) extraction of spike parameters. After preprocessing of EEGs we
gather parameters of detected spikes into lists of equal length Nspikes.

The classification algorithms are trained employing one set of patients
(containing patients from both groups) and tested on another non-over-
lapping set of patients (also from both groups). This prevents artificial
accuracy inflation due to overfitting.

We compared eight machine learning type classifiers: (1) random for-
est, (2) decision tree, (3) extremely randomized tree, (4) adaptive boost-
ing (AdaBoost), (5) artificial neural network (ANN), (6) supported vec-
tor machine (SVM), (7) linear discriminant analysis (LDA), (8) logistic
regression. To estimate quality of classifiers we discuss a set of metrics.
The results are following: (I) as expected, for all examined algorithms,
the accuracy tends to grow (when Nspikes increases), saturating at some
asymptotic value; (II) ANN has prevailed as best classifier.

Impact of: (a) different training strategies and (b) spike detection
errors on classification accuracy is also discussed.

Novelty and originality of this study comes not only from classify-
ing different types of epilepsy, but also from employed computational
methodology (involving parameters of EEG spikes and machine learn-
ing type classifier), as well as comparing different methodologies of such
type, based on their accuracy and other classifier metrics.
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1 Introduction

Manual analysis of electroencephalograms (EEGs) is a very difficult and time
consuming process, thus a lot of automatic algorithms dedicated to help neurolo-
gists with this analysis are proposed, e.g. [4,13]. EEG classification analysis may
aim at: classifying healthy vs ill patient EEGs (e.g. ictal and non-ictal EEGs
[5], patients diagnosed with epilepsy and healthy [11]), patients with addiction
(e.g. from alcohol) and addiction-free [1]. Various machine learning (ML) algo-
rithms are employed in solving ever increasing variety of EEG analysis related
problems. The choice of classification algorithm is not the only important choice
to make. Algorithm parameters and training strategies, EEG preprocessing are
significant too.

In this study problem of classification by diagnosis is tackled (different from
most other works, dealing with healthy vs ill type tasks). Previously (in [9]) we
proposed the three-stage (EEG spikes detection, evaluation of spikes character-
istics, classification) algorithm, based on artificial neural network (ANN) for this
problem, as well as some analysis of ANN and SVM classifiers. In this paper we
analyze more ML type methods for the same classification problem.

Details and in-depth analysis of data preprocessing (including EEG spikes
detection), see e.g. [7,8], are out of scope of this article. Instead, here we try to
answer the following questions: which classification algorithm is most accurate
and most robust (to low amount of spikes in one EEG, false positive and false
negative detections of EEG spikes). By discussing these questions (see Sects. 4
and 5), we challenge ANN based method against other known classifiers: random
forest, decision tree, extremely randomized tree [3], adaptive boosting (Ada-
Boost) [2], supported vector machine (SVM), linear discriminant analysis (LDA)
and logistic regression.

In numerical experiments Python 3.6.4 programming language was employed
as well as scikit-learn library (for implementations of ML algorithms and their
performance metrics, see Sect. 4.1).

2 Data

EEGs analyzed in this study were provided by Children’s Hospital, Affiliate
of Vilnius University Hospital Santaros Klinikos. EEG recordings span over a
2010 – 2017 period, only 3 – 17 year old patients (all with known exact diagnosis)
were included.

94 EEGs (of 86 different patients) were processed – divided into two groups,
characterised by visually similar (to neurologists) EEG spikes:

– RE Group: Benign childhood epilepsy (rolandic epilepsy) with centrotem-
poral spikes (62 EEGs or about 66% of all EEGs), 35 of them boys, ≈56.4%.
75% of all detected EEG spikes were in this group.

– CP Group: Structural focal epilepsy patients with cerebral palsy, dysplastic
brain lesion, gliosis etc. (32 EEGs, or about 34% of all EEGs), 18 of them
boys, ≈56.3%. 25% of all detected EEG spikes were in this group.
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It should be pointed out that only 30% of all EEGs were manually cleaned
by neurologist from artifacts (e.g. patient movement) – thus decreasing error
of spikes detection (see Sect. 3.1). Rest of the data were processed uncleaned.
Cleaned data were used for classification algorithm training while uncleaned
data – for algorithm validation (except for testing robustness of the algorithm,
by including uncleaned data in the training data set, see Sect. 4.2).

3 Preprocessing of Data

In this section we briefly discuss the steps and algorithms that are performed on
the data before it is been tried to classify. Our algorithm consists of three basic
steps:

1. EEG spike detection by morphological filter, discussed in [6,7,10], also see
Sect. 3.1;

2. Extraction of EEG parameters, introduced and discussed in [8], also see
Sect. 3.2;

3. EEG parameter validation, for details see [8], also see Sect. 3.2.

3.1 EEG Spike Detection by Morphological Filter

The first step of our algorithm is EEG spike detection by morphological filter
based algorithm. The morphological filter is defined using close-opening and
open-closing operations which can be defined using morphological erosion and
dilation. For exact definitions please see [6,7].

The idea of morphological filter is to filter out known normal brain activity
(brain rhythms, patient movements, etc.) leaving abnormal brain activity. Then
a detection limit is calculated, all maxima (higher than the detection limit) in
filtered signal are treated as potential spikes. However this generates some false
positive detections, this problem is addressed in the third step of this algorithm.

3.2 EEG Spike Parameter Extraction and Validation

After EEG spikes are detected, some parameters of these spikes are extracted.
These parameters include upslope, downslope, width and baseline at half maxi-
mum. Our earlier investigations show that upslope and downslope are the most
significant for the classification. In this work upslope and downslope value pairs
for each spike are employed for classification.

These values are validated against range of known medically possible values of
these parameters. This helps us to decrease false positive detections [8] (however
some false positive detections remain). All values that do not meet these criteria
are excluded from further analysis.
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4 Comparison of Various Classification Methodologies
by Performance

A strict rule of keeping each patient in either testing or training data set was
kept during this work. The main reason this was done is that each patients EEG
spikes are similar to one another and mixing patients in both training and testing
samples would result in artificially inflated accuracy values since it would result
in same effect as training and testing the classifiers on same data.

Since all EEGs have different amount of spikes and most classification algo-
rithms can be trained and used with fixed number of inputs, EEGs were cut
into non-overlapping lists of length Nspikes. This allowed us to treat each list as
virtual EEG thus making our data accessible to algorithms and allowing us to
measure the performance metrics of algorithms more reliably. For most experi-
ments Nspikes = 100, except for experiment to test accuracy vs length of spike
lists (see Sect. 4.3). As mentioned in Sect. 2 we had limited amount of artifact-
free data as well. All the clean data were used to train or fit algorithms and rest
of the data – to test except for testing robustness of the classifiers (see Sect. 4.2).

In this section we are going to explore quality and robustness of different
machine learning type classifiers (presented in the Introduction) in respect to var-
ious ML classifier metrics (see Sect. 4.1), by falsely detected spikes (see Sect. 4.2)
and dependency accuracy spike series length (see Sect. 4.3).

4.1 Performance Metrics of EEG Classification Algorithms

The main aim of this study is to find the ML classification algorithm best suited
for classifying EEGs obtained from patients from RE and CP groups. In order
to achieve this task, some quantifiable parameters of algorithm performance are
needed. The most obvious metric for this task is accuracy, which is sum of true
positives and true negatives divided over all detections. This metric is very useful
in detecting poorly performing algorithms.

After measuring the accuracy, LDA and logistic regression algorithms were
excluded from further analysis due to their accuracy being poor: 53% and 59%
respectively. Multiple supported vector machine (SVM) classifier configurations
were tested as well. SVM classifiers with linear and quadratic kernels performed
consistently with worse accuracy than SVM with cubic kernel thus were removed
from further analysis.

While accuracy is a great tool for finding out some poorly performing algo-
rithms, it does not show all of them. For that reason some true positive rate
(TPR) and true negative rate (TNR) analysis was done. Although SVM with
both RBF and sigmoid kernels were performing with good accuracy of 75%, they
were classifying all the data as RE group. The accuracy was achieved purely due
to our data set being biased towards RE group (see Sect. 2). Due to this reason
these algorithms were excluded from further analysis.

Random forest, decision tree, extremely randomized trees, AdaBoost and
ANN presented comparable results for both groups and thus were analyzed fur-
ther. Table 1 presents the commonly used performance metrics [12] for algorithms
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tested. These tests were performed to evaluate overall quality of the discussed
classifiers. In order to minimize statistical error caused by oscillations (e.g. see
Fig. 1) of these metrics we first apply linear fitting (for large 30 � Nspikes � 100)
and then take numerical value of the fitted trend.

Table 1. Performance metrics [12] for algorithms selected group of algorithms with
Nspikes = 100. Ideal classifier column represents metric values for theoretical ideal
classifier.

Score/
Algorithm

Random
forest

Decision
tree

Extremely
randomised
tree

AdaBoost ANN SVM
N=3

Ideal
classifier

Accuracy 0.78 0.76 0.80 0.81 0.75 0.69 1.00

TNR 0.79 0.76 0.83 0.90 0.79 0.79 1.00

TPR 0.74 0.77 0.71 0.52 0.74 0.48 1.00

F1 score 0.76 0.76 0.75 0.64 0.78 0.57 1.00

ROC AUC 0.53 0.49 0.56 0.69 0.64 0.49 1.00

Cohen
kappa

0.06 −0.01 0.12 0.38 0.28 0.26 1.00

Hamming
loss

0.48 0.52 0.45 0.32 0.37 0.38 0.00

Jaccard
simmilarity
score

0.52 0.48 0.55 0.68 0.63 0.62 1.00

Log loss 16.72 17.92 15.55 11.00 12.93 12.96 0.00

Matthews
correlation
coefficient

0.07 −0.01 0.15 0.42 0.38 0.28 1.00

Recall score 0.78 0.76 0.81 0.84 0.78 0.69 1.00

Zero one
loss

0.48 0.52 0.45 0.32 0.25 0.38 0.00

AdaBoost seems to be the best algorithm by most metrics presented in
Table 1, except a couple key ones: TPR and F1 score. This is due to the fact
that AdaBoost classifies RE (dominant group) correctly 90% of the time and
CP group – only about 52% of the time, SVM with cubic kernel suffers from
the same problem. Despite of good performance of AdaBoost across all other
metrics, this algorithm is not suited for the task at hand – detecting more rare
CP group cases in the pool of CP and RE group data. However AdaBoost could
be explored further for potential use in ensemble (voting) type of classifier. This
leads to discussion that some classifier quality metrics can be misleading in this
case (see Sect. 5).

Table 1 shows some more interesting results. Although random forest, deci-
sion tree and extremely randomized trees show both high TPR and TNR, their
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ROC AUC, Cohen kappa and Matthews correlation coefficient are poor. This
is probably due to the reason that these metrics are designed to take into
account chance of classifying a record correctly by guessing, therefore these met-
rics suggest that these algorithms are getting the correct answer by guessing
it. Extremely randomized tree suffers less from this problem, its Cohen kappa
and Matthews correlation coefficient scores are still poor. This means that these
algorithms are less suited for EEG classification than ANN and are excluded
from further analysis.

This leaves us with ANN, SVM (with cubic kernel) and AdaBoost classifiers.
Of these three, the ANN classifier is better considering all metrics, thus it is
recommended to be used for automatic classification by diagnosis.

4.2 Accuracy Dependency on Falsely Detected Spikes
in Training Set

In this section we test robustness of algorithm to both small (by percentage)
training sample and falsely positively or falsely negatively detected spikes in
the training data set. It should be noted that quality of classification depends
not only on choice of classification algorithm, but also on: (a) employed train-
ing strategy (percentage of training data vs testing data); (b) spike detection
errors (during EEG preprocessing, falsely positively or falsely negatively detected
spikes).

As expected, more false detections exist when analyzing not cleaned EEGs
(see Sect. 2). Our results show that all testing classifiers are sensitive to inclusion
of not cleaned data to some extent, however ANN is most sensitive to inclusion
of large amounts of artifacts. Similar results are observed when only clean data
is used for training, but the percentage of the training sample size is reduced.
This result is expected since our analysis (see Sect. 4.1) show that ANN is the
most intelligent classifier while other classifiers are guessing the answer by using
uneven distribution across groups of our data sample (see Sect. 2). However this
is not an issue if large and clean enough data sample is available for the training.

4.3 Accuracy Dependency on Length of Spikes Lists

It is difficult to tell the diagnosis from a single or a few spikes and their parame-
ters. In order to make more accurate attempt at classification more spike param-
eters are needed. Thus we divided spikes found in all EEGs into lists (see Sect. 4)
containing up to 100 spikes (1 � Nspikes � 100) and examined the dependency
between number of spikes in series and accuracy of classification for all classifi-
cation algorithms employed in this study (see Fig. 1).

For most classifiers (except SVM with cubic kernel) accuracy increases as
NSpikes grows, for higher NSpikes all classification algorithms reach saturation
levels. For this reason length of 100 spike parameter series was used in all other
experiments in this work. Accuracy of SVM with Nspikes < 30 is not presented
due to very long calculation times.
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Fig. 1. Accuracy dependency on spike count.

5 Results and Discussion

In this paper we compared quality of different machine learning (ML) type
methodologies for EEG classification by diagnosis (see Sect. 4.1 and Table 1).

The analysis of ML classification algorithms present an important point
about the metrics (see Table 1) themselves. If unevenly distributed across groups
data set is analyzed (see Sect. 2), and classifier (e.g. AdaBoost) is biased towards
larger group, most metrics still score high, except for F1 score and either TPR or
TNR. Another important point is that if data set is unevenly distributed across
groups – it is much easier to guess the correct answer. Random forest, decision
tree and extremely randomized tree seems to be doing that as shown by Cohen
kappa and Matthews correlation coefficient. Other metrics (ROC AUC, Ham-
ming loss, Jaccard similarity score, log loss, recall score and zero one loss) do not
present any new information compared to plain accuracy. Furthermore one could
consider these metrics misleading (e.g. with AdaBoost) for binary classification
problem with unevenly distributed across groups data set.

For algorithm selection to solve classification problems similar to one pre-
sented in this work, we recommend evaluation of F1 score, TPR, TNR and
either Cohen kappa or Matthews correlation coefficient metrics. For purposes
of selecting candidate algorithms for further analysis accuracy could be used
since low accuracy always means poor performance, while high accuracy does
not universally suggest good overall performance of algorithm.

Considering all available data we determined that ANN currently is best
tested algorithm for classifying spike series of CP and RE groups.

Robustness of ANN classifier (see Sect. 4.2) is not an issue if correct train-
ing strategy is selected (clean data employed in training) and big enough clean
data sample is available. Following that conclusion we employed all clean data
available in the training data sample.
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These results also raise some possibilities for future work: improving spike
detection accuracy, using ensemble (voting) or statistical boosting for ANN clas-
sifier in order to achieve higher classification accuracy with higher both TPR
and TNR.
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automatic spike detection. Nonlinear Anal. Model. Control 16(4), 375–386 (2011)
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Abstract. We propose an alternate overlapping Schwarz method to
solve the singularly perturbed semilinear convection-diffusion problems.
The method decomposes the original domain into two overlapping subdo-
mains. One, the outside boundary layer subdomain, and the other, inside
boundary layer subdomain. On the outside boundary layer subdomain, a
combination of the second order compact difference scheme and central
difference scheme with uniform mesh is considered; while on the inside
boundary layer subdomain a central difference scheme with a special
piecewise-uniform mesh is considered. The convergence analysis is given
and the method is shown to have almost second order parameter-uniform
convergence. Numerical experiments are presented to demonstrate the
efficiency of the method.
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1 Introduction

Consider the singularly perturbed semilinear convection-diffusion problem

Tu := −εu′′ + au′ + f(x, u) = 0, x ∈ Ω = (0, 1) (1a)

u(0) = p0, u(1) = p1, (1b)

where 0 < ε < 1 is a small positive perturbation parameter. a and f are suffi-
ciently smooth functions, satisfying the following assumptions:

a(x) ≥ α > 0, (2)

β ≤ fu(x, u) ≤ δ, ∀ (x, u) ∈ (0, 1) × R, (3)

where β and δ are some positive constants. Under the above assumptions, there
exists a unique solution to the problem (1) ([6]). The solution has exponen-
tial boundary layer of width O

(
ε ln(1ε )

)
at x = 1 ([8]). Singular perturbation
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problems arise frequently in many physical phenomena and chemical processes.
Model problems of the form (1) are the semi-conductor device simulations based
on the drift-diffusion modelling ([15]), modelling in mathematical biology ([10]),
fluid dynamics, heat conduction ([1]) and counterflow flames modelling ([11]).
Linearized version of problem (1) was investigated in [3,17]. Farrel et. al. [4]
considered upwind scheme on piecewise uniform meshes for singularly perturbed
semilinear elliptic problems and showed almost first order parameter uniform
convergence. An almost second order parameter uniform convergent numerical
methods for singularly perturbed semilinear reaction-diffusion problems using
the B-spline collocation method and exponential spline difference method were
considered in [14] and [12] respectively. For the solution of semilinear self adjoint
and non-self adjoint singularly perturbed problems, iterative domain decompo-
sition algorithms based on Schwarz type alternating methods were studied in
[2,5,9,13] and the references therein. In the present paper, we design and ana-
lyze an alternate overlapping Schwarz method for semilinear convection-diffusion
problems using the HODIE technique of [7]. The method decomposes the given
domain into two overlapping subdomains. On the outside boundary layer sub-
domain, we use a combination of the compact difference scheme and central
difference scheme, which depends on the relationship between the mesh width
and the perturbation parameter; while on the inside boundary layer subdomain,
we use a combination of the schemes at the second mesh point and a central
difference scheme at the other (N − 1) mesh points with uniform mesh spacing.

This paper is arranged as follows. In Sect. 2, the continuous overlapping
Schwarz method and the bounds on the derivatives of the solution, and the
bounds on the regular and the singular components of the solution are given. Dis-
cretization of the domain and a discrete alternate overlapping Schwarz method
are given in Sect. 3. Almost second order parameter uniform convergence of the
method is proved in Sect. 4. Numerical experiments are presented in Sect. 5 and
finally conclusions are given in Sect. 6.

Notations. Throughout the paper, we use C with or without a subscript to
denote a generic positive constant independent of the perturbation parameter
ε, iteration parameter k and discretization parameter N . We consider the maxi-
mum norm and denote it by ||.||D, where D is a closed and bounded subset of Ω.
For a real valued function f ∈ C(D), we define ||f ||D = max

x∈D
|f(x)|. The analo-

gous discrete maximum norm on the mesh DN is denoted by ||.||DN . We drop
D from the notation if D = Ω. If g, zs ∈ C(Ω), then gj = g(xj), zs,j = zs(xj).
The analogous discrete maximum norm on the mesh Ω

N
is denoted by ||.||

Ω
N .

2 Properties of the Exact Solution

Continuous Overlapping Schwarz Method. The continuous overlapping
Schwarz method finds the solution u of (1) by generating a sequence of approxi-
mations u[k] which converge to the exact solution u as k → ∞. First, we decom-
pose the domain Ω = (0, 1) into two overlapping subdomains Ωl = (0, ξ+) and
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Ωr = (ξ−, 1), where 0 < ξ− < ξ+ < 1. Assume Ωp = (c, d), p = l, r. The iterative
process is defined as follows

u[0](x) ≡ u0(x), 0 < x < 1, u[0](0) = u(0), u[0](1) = u(1).

For each k ≥ 1, the iterates u[k] are defined by

u[k](x) =

{
u
[k]
l (x), x ∈ Ωl \ Ωr,

u
[k]
r (x), x ∈ Ωr,

(4)

where for each k ≥ 1, u
[k]
p , p = l, r are defined by

Tu
[k]
l = 0 in Ωl, u

[k]
l (0) = u(0), u

[k]
l (ξ+) = u

[k−1]
r (ξ+),

Tu
[k]
r = 0 in Ωr, u

[k]
r (ξ−) = u

[k]
l (ξ−), u

[k]
r (1) = u(1).

In the case of semilinear problems, the stability is essentially obtained
by inverse-monotonicity properties of the classes of linear boundary value
problems [6].

From (1a), we have −εu′′ + au′ +
1∫

s=0

fu(x, su)ds u = −f(x, 0). Define the

linear operator L as Lu := −εu′′ +au′ +
1∫

s=0

fu(x, su)ds u, x ∈ Ω, u ∈ C2(Ω),

where
1∫

0

fu(x, su)ds ≥ β > 0. Observe that L(±u) = ∓f(x, 0).

Lemma 1 (Maximum Principle). Assume that u ∈ C2(Ω), satisfying u(0) ≥ 0
and u(1) ≥ 0. Then Lu ≥ 0 for x ∈ Ω implies that u ≥ 0 for x ∈ Ω.

The following parameter-uniform stability result is a straightforward conse-
quence of the maximum principle.

Lemma 2 (Stability Estimate). Let u be the exact solution of (1). Then

||u||Ω ≤ 1
α

||f(·, 0)||Ω + max{|p0|, |p1|}.

Lemma 3. Let u be the exact solution of (1). Then

||u(n)(x)||Ω ≤ C

(
1 + ε−n exp

(−α(1 − x)
ε

))
, 0 ≤ n ≤ 4.

Proof. Follows from the similar approach used in [18].

To derive the parameter-uniform convergence of the numerical method, a decom-
position of the exact solution u, into a regular component v and a singular
component w is required. That is, u = v + w. Then Tu = Tv + vTw, where
Tv := −εv′′ +av′ +f(x, v) and vTw := −εw′′ +aw′ +f(x, v +w)−f(x, v). Note
that vT is a new operator.
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Lemma 4. For all x ∈ Ω, the solution u of (1) has the decomposition as u =
v + w, where the regular component v satisfies

|v(k)(x)| ≤ C(1 + ε4−k), 0 ≤ k ≤ 4, (5)

and for all x ∈ Ω, the singular component w satisfies

|w(k)(x)| ≤ Cε−k exp(
−α(1 − x)

ε
), 0 ≤ k ≤ 4. (6)

Proof. Follows from the similar approach used in [16].

3 Discrete Problem

The transition parameter σ is defined as σ := min
{

1
3
, σ0ε ln N

}
, in which

the constant σ0 will be chosen later in Sect. 5. A uniform mesh Ω
N

l = {xj =
j (1−σ)

N }N
j=0 is placed on the subdomain Ωl with mesh spacing hl,j = Hl = (1−σ)

N

for 1 ≤ j ≤ N. Note that xN = ξ+. A special type of piecewise-uniform mesh Ω
N

r

is constructed on the subdomain Ωr. The mesh points on the subdomain Ω
N

r

are given by x0 = ξ− = N−1
N (1−σ), xj = (1−σ)+(j−1) σ

N , 1 ≤ j ≤ N +1
with mesh spacing hr,1 = (1−σ)

N and hr,j = Hr = σ
N for 2 ≤ j ≤ N + 1. Define

Ω
N

:= Ω
N

r ∪ (Ω
N

l \ Ω
N

r ).
On each subdomains Ω

N

p , p = l, r, the corresponding discretization is :
[TN

p Up]j = 0, where
[TN

p Up]j := r−
p,jUp,j−1+rc

p,jUp,j+r+p,jUp,j+1+q−
p,jf(xj−1, Up,j−1)+qc

p,jf(xj , Up,j)
and the coefficients r∗

p,j , ∗ = −, c,+ are given by

r−
p,j =

−2ε − ajhp,j+1 + q−
p,j [−(2hp,j + hp,j+1)aj−1 + ajhp,j+1]
hp,j(hp,j + hp,j+1)

,

r+p,j =
−2ε + ajhp,j − q−

p,jhp,j(aj + aj−1)
hp,j+1(hp,j + hp,j+1)

, rc
p,j = −r−

p,j − r+p,j , qc
p,j = 1 − q−

p,j .

Here the coefficients are determined so that the scheme is exact for the polyno-
mials up to degree two and satisfies the normalization condition. The coefficients
q−
p,j are free parameters and their values are given later in (8).

The sequence of discrete alternate overlapping Schwarz iterates are defined by
U [0](xj) ≡ u0(xj), 0 < xj < 1, U [0](0) = u(0), U [0](1) = u(1).
For k ≥ 1,

U [k](xj) =

{
U

[k]
l (xj), xj ∈ Ω

N

l \ Ω
N

r ,

U
[k]
r (xj), xj ∈ Ω

N

r ,

where for all k ≥ 1, U
[k]
p , p = l, r satisfy

TN
l U

[k]
l = 0 in ΩN

l , U
[k]
l (0) = u(0), U

[k]
l (ξ+) = U

[k−1]
r (ξ+),

TN
r U

[k]
r = 0 in ΩN

r , U
[k]
r (ξ−) = U

[k]
l (ξ−), U

[k]
r (1) = u(1).
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4 Error Analysis

The error of the scheme for each xj ∈ ΩN
p , p = l, r is given by

T N
p uj − Tuj = T N

p uj − T N
p U

[k]
p,j

= r−p,jζ
[k]
p,j−1 + rc

p,jζ
[k]
p,j + r+p,jζ

[k]
p,j+1 + Qp

(∫ 1

0
fu(xj , U

[k]
p,j + s ζ

[k]
p,j)ds

)
ζ
[k]
p,j

= [U
[k]
p LN

p ζ
[k]
p ]j

where the error function ζ
[k]
p is defined as ζ

[k]
p := u − U

[k]
p and the lin-

ear operator is defined by [yLN
p z]j := r−

p,jzj−1 + rc
p,jzj + r+p,jzj+1 +

Qp

(∫ 1

0

fu(xj , yj + szj)ds

)
zj ,

with [Qpg]j := q−
p,jgj−1 + qc

p,jgj .

Next is to prove that the matrix associated with U [k]
p LN

p , p = l, r is an M-matrix
and the scheme is uniformly stable.
Define R−

p,j := r−
p,j + q−

p,jfu, Rc
p,j := rc

p,j + qc
p,jfu, and R+

p,j := r+p,j .

Lemma 5. Let N0 be the smallest positive integer such that
σ0||a||

2
<

N0

ln N0
,

(||a′|| + δ)
N0

< α hold. Also, assume that ||a||hp,j ≥ 2ε, p = l, r, and q−
p,j is chosen

as q−
p,j ≥ aj

(aj + aj−1)
. Then the matrix associated with U [k]

p LN
p becomes an M-

matrix, if there exist positive constants C1 and C2 such that for each xj ∈ ΩN
p ,

p = l, r
R−

p,j < 0, R+
p,j < 0, C1 ≤ R−

p,j + Rc
p,j + R+

p,j ≤ C2. (7)

Moreover, the scheme is uniformly stable in the maximum norm, if
hp,j+1R

+
p,j − hp,jR

−
p,j ≥ C > 0, where C is a positive constant.

For xj ∈ ΩN
p , p = l, r, q−

p,j , p = l, r is chosen as

q−
p,j =

⎧
⎪⎨

⎪⎩

aj

(aj + aj−1)
, ‖a‖hp,j ≥ 2ε

(hp,j − hp,j+1)
3hp,j

, ‖a‖hp,j < 2ε.
(8)

For k ≥ 1, the discrete alternate overlapping Schwarz iterate U [k](xj) is decom-
posed as U [k](xj) = V [k](xj) + W [k](xj), ∀ xj ∈ Ω

N
, where

V [k](xj) :=
{

V
[k]
l (xj), xj ∈ Ω

N
l \ Ω

N
r ,

V
[k]
r (xj), xj ∈ Ω

N
r ,

and W [k](xj) :=
{

W
[k]
l (xj), xj ∈ Ω

N
l \ Ω

N
r ,

W
[k]
r (xj), xj ∈ Ω

N
r .

Here for all k ≥ 1, V
[k]
p,j , p = l, r are the solutions of

TN
l V

[k]
l = 0 in ΩN

l , V
[k]
l (0) = v(0), V

[k]
l (ξ+) = V

[k−1]
r (ξ+),

TN
r V

[k]
r = 0 in ΩN

r , V
[k]
r (ξ−) = V

[k]
l (ξ−), V

[k]
r (1) = v(1).
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Likewise, for all k ≥ 1, W
[k]
p,j , p = l, r are the solution of

V
[k]
l

TN
l W

[k]
l = 0 in ΩN

l , W
[k]
l (0) = w(0), W

[k]
l (ξ+) = W

[k−1]
r (ξ+),

V
[k]
r

TN
r W [k]

r = 0 in ΩN
r , W

[k]
r (ξ−) = W

[k]
l (ξ−), W

[k]
r (1) = w(1).

Note that
V

[k]
p

TN
p , p = l, r are the discrete analogue of the operator vT in their

respective subdomains. The nodal error estimate in the regular component of
the solution is given in the following lemma.

Lemma 6. Let v and V [k] denote the regular components of u and U [k] respec-
tively. Then, for all k ≥ 1, ||v − V [k]||

Ω
N ≤ C1λ

−k + C2σ
2
0N

−2 ln2 N , where
λ = (1 + α(1−σ)

εN ).

To find an error estimate for the singular component in Ω
N

p , p = l, r, we
use the mesh functions φp,j(γ), p = l, r for some positive constant γ defined

by φp,j(γ) :=
Λ∏

k=j+1

(1 + γhp,k

ε )−1, 0 ≤ j ≤ Λ − 1, where φp,Λ(γ) = 1; with

Λ = N for Ω
N

l and Λ = N + 1 for Ω
N

r .

Lemma 7. Suppose that all the assumptions of Lemma 5 hold, then for
xj ∈ ΩN

p , p = l, r there exists a constant C(γ), such that U [k]
p LN

p φp,j(γ) ≥
C(γ)

max{ε, hp,j}φp,j(γ), where γ ≤ α/2 and α is same as defined in (2).

The nodal error estimate in the singular component of the solution is given in
the following lemma.

Lemma 8. Let w and W [k] be the singular components of u and U [k] respec-
tively. Then for all k ≥ 1, ||w −W [k]||

Ω
N ≤ C

(
N−γσ0 + σ2

0N
−2 ln2 N

)
, where

γ ≤ α/2.

Now, we state and prove the main result of the Section, using the Lemmas 6
and 8.

Theorem 1. Let u be the exact solution of the problem (1) and let U [k] be the
kth iterate of the discrete alternate overlapping Schwarz method. If γ ≤ α/2 then
for any N ≥ N0, ||(u−U [k])||

Ω
N ≤ C1λ

−k+C2

(
N−γσ0 + σ2

0N
−2 ln2 N

)
, where

λ = (1 + α(1−σ)
εN ).

Proof. The triangle inequality gives
||u − U [k]|| ≤ ||v − V [k]|| + ||w − W [k]|| ≤ C1λ

−k + C2

(
N−γσ0 + σ2

0N
−2 ln2 N

)
,

where λ =
(
1 + α(1−σ)

εN

)
; and for almost second order uniformly convergent

method, we need to take γσ0 ≥ 2.
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5 Numerical Experiments

Example 1. Consider the following singularly perturbed semilinear convection-
diffusion problem −εu′′ + (1 + x)u′ + exp(u) = 0, x ∈ (0, 1), u(0) = 0, u(1) = 0.

To solve the corresponding discrete nonlinear systems, the Newton’s method
is used with the initial approximation w[0] = (u0(x0), u0(x1), . . . , u0(xN ))T ,
where u0(x) is the solution of the reduced problem. The stopping criterion is
‖w[k] − w[k−1]‖ < 10−12. For each N and ε, it takes only 2 iterations to sat-
isfy the stopping criterion to get the discrete solution. The stopping criterion
for the present high order Schwarz iteration is ||U [k+1] − U [k]||

Ω
N ≤ 10−8. We

omit the superscript k on the final iterate and write simply U . As the exact
solution is not known for the test problem, a variant of the double mesh prin-
ciple is used to calculate the maximum pointwise errors for different values of
ε and N using EN

ε := ||UN − U2N ||
Ω

N and the parameter-uniform errors by
EN := max

ε
EN

ε . We calculate the parameter-uniform numerical order of con-

vergence by ρN :=
ln EN − ln E2N

ln(2 ln N) − ln(ln(2N))
. For different values of ε and N ,

Table 1 represent the maximum pointwise errors EN
ε , rates of convergence ρN

ε ,

Table 1. Maximum pointwise-errors EN
ε , EN , numerical rates of convergence ρN

ε , and
ρN for Example 1 with σ0 = 4.

ε = 2−j N = 25 N = 26 N = 27 N = 28 N = 29 N = 210

j = 4 1.20E−03 2.98E−04 7.43E−05 1.86E−05 4.80E−06 1.49E−06

2.73 2.58 2.47 2.35 1.99 ρN
ε

8 1.01E−02 3.39E−03 1.13E−03 3.61E−04 1.14E−04 3.52E−05

2.13 2.04 2.04 2.00 2.00 ρN
ε

12 1.01E−02 3.40E−03 1.12E−03 3.65E−04 1.15E−04 3.56E−05

2.13 2.06 2.00 2.01 1.99 ρN
ε

16 1.01E−02 3.40E−03 1.13E−03 3.65E−04 1.15E−04 3.55E−05

2.13 2.04 2.02 2.01 2.00 ρN
ε

20 . . . . . .

ρN
ε

24 . . . . . .

ρN
ε

28 . . . . . .

ρN
ε

32 1.01E−02 3.40E−03 1.13E−03 3.65E−04 1.15E−04 3.55E−05

2.13 2.04 2.02 2.01 2.00 ρN
ε

EN 1.01E−02 3.40E−03 1.13E−03 3.65E−04 1.15E−04 3.56E−05

2.13 2.04 2.02 2.01 2.00 ρN
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Table 2. Number of alternate Schwarz iterations required to satisfy the stopping cri-
terion for Example 1 with σ0 = 4.

ε = 2−j N = 25 N = 26 N = 27 N = 28 N = 29 N = 210

j = 4 31 59 112 213 405 769

8 8 10 13 8 20 40

12 5 5 6 7 8 10

16 4 4 4 4 5 5

20 3 3 3 3 4 4

24 3 3 3 3 3 3

28 3 3 3 3 3 3

32 2 2 2 3 3 3

parameter uniform errors ENand parameter uniform rates of convergence ρN ,
of the discrete alternate overlapping Schwarz method for the Example 1. The
iteration counts for different values of ε and N for Example 1 is given in Table 2.
In all the computations the value of σ0 is chosen as 4.

6 Conclusions

In this work, we proposed and analyzed an alternate overlapping Schwarz method
for numerical solution of singularly perturbed semilinear convection-diffusion
problems. The stability of both the continuous and discrete semilinear problems,
is proved by inverse-monotonicity properties of the classes of linear boundary
value problems. The error analysis is done using truncation error and barrier
function approach. The present scheme is almost second order parameter uniform
convergent. From Table 1, we see that the numerical results are in agreement with
the theoretical results. From Table 2, we observe that the number of iterations
are less for small values of ε.

Acknowledgements. The authors gratefully acknowledge the valuable comments and
suggestions from the anonymous referees. The research work of the second author is
supported by Council of Scientific and Industrial Research, India.
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Abstract. We consider a waveguide having the constant cross-section
S with ideally conducting walls. We assume that the filling of waveguide
does not change along its axis and is described by the piecewise contin-
uous functions ε and μ defined on the waveguide cross section. We show
that it is possible to make a substitution, which allows dealing only with
continuous functions.

Instead of discontinuous cross components of the electromagnetic field
E and H we propose to use four potentials. Generalizing the Tikhonov-
Samarskii theorem, we have proved that any field in the waveguide allows
such representation, if we consider the potentials as elements of respec-
tive Sobolev spaces.

If ε and μ are piecewise constant functions, then in terms of four poten-
tials the Maxwell equations are reduced to a pair of independent equa-
tions. This fact means that a few dielectric waveguides placed between
ideally conducting walls can be described by a scalar boundary problem.
This statement offers a new approach to the investigation of spectral
properties of waveguides. First, we can prove the completeness of the
system of the normal waves in closed waveguides using standard func-
tional spaces. Second, we can propose a new technique for calculating
the normal waves using standard finite elements. Results of the numeri-
cal experiments using FEA software FreeFem++ are presented.

Keywords: Waveguide · Maxwell equations · Sobolev spaces
Normal modes

1 Introduction

In a hollow waveguide it is possible to introduce two scalar potentials, using
which the Maxwell equations are reduced to a pair of uncoupled wave equations,
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as it was proved in the classical papers by Tikhonov and Samarskii [1]. The
most important consequence from the Tikhonov and Samarskii theorem is the
completeness of the system of normal waves in a hollow waveguide, according
to which any wave propagating through the waveguide can be presented as a
superposition of transverse electric and transverse magnetic waves (TE and TM
waves) [2]. In 1990s this consequence extremely important for substantiating the
partial radiation conditions and the incomplete Galerkin method [3] was gener-
alized for the case of a waveguide, in which the filling varies over the transverse
section, but is constant along the waveguide axis [4]. As a result, the theorem of
field representation using potentials became shadowed by its consequence.

Due to this circumstance, the computational complexity of the spectral prob-
lems for hollow waveguides and for the waveguides filled with inhomogeneous
matter differs in principle. In the first case, the resulting problems are scalar,
and one can use the well-developed methods, equally applicable to acoustics and
quantum mechanics. In the case of a waveguide filled with inhomogeneous mat-
ter, one has to solve numerically the full vector electrodynamic problem. Such
problems possess the zero eigenvalue of infinite multiplicity, due to which their
numerical solution requires nontrivial procedures hard for computer implemen-
tation, e.g., the method of mixed finite elements [5,6].

We should also note that for the problems of radiophysics the case of piece-
wise constant filling is of particular interest, since a waveguide with smoothly
changing filling can be practically fabricated only by using thin homogeneous
layers with finite but small difference of ε and μ between the adjacent layers.
At the junction between different layers the transverse components of the vector
fields E and H have discontinuities, which lead to additional difficulties in their
approximation by continuous finite elements.

In the present paper we return to the problem of presenting an arbitrary
electromagnetic field in a waveguide with piecewise constant filling in its classical
formulation. Usually, as in the case of a hollow waveguide, the introduction
of potentials allows integrating some of the Maxwell equations and reducing
the number of desired functions. It is well known that in a waveguide filled by
inhomogeneous medium this is not the case. However, we believe that the main
advantage of introducing potentials is dealing with continuous potentials instead
of discontinuous field components. From this point of view, the introduction of
potentials can be considered as a change of variables providing a transition from
discontinuous functions to continuous ones.

2 Notations

In this paper the subject of study is a closed waveguide having the constant
cross section S with piecewise constant distribution of ε and μ filling invariable
along the waveguide axis. The line of filling discontinuity will be denoted by Γ .
Let the axis Oz of Cartesian coordinates be directed along the waveguide axis
and assume for brevity that

A⊥ = (Ax, Ay, 0)T and ∇ = (∂x, ∂y, 0)T , ∇′ = (−∂y, ∂x, 0)T .
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The electromagnetic field in the closed waveguide S×Z×T with the filling ε, μ is
described by the vector fields E,H with the components defined in (S−Γ )×Z×
T under the condition that the contraction of E,H and their partial derivatives
in z and t to the section S for all values of z and t represents piecewise smooth
functions satisfying Maxwell equations

⎧
⎨

⎩

curlE = −μ

c
∂tH, div εE = 0,

curlH = +
ε

c
∂tE, div μH = 0

(1)

in the waveguide S × Z × T , ideal conductivity conditions of waveguide walls

E × n = 0, H · n = 0 (2)

at the regular points of the boundary ∂S × Z × T , matching conditions
{

[E × n] = 0, [εE · n] = 0
[H × n] = 0, [μH · n] = 0

(3)

at regular points of the filling discontinuity boundary Γ × Z × T .

3 Helmholtz Decomposition

Let us define the relation between the fields and potentials as

E⊥ = ∇ue +
1
ε
∇′ve, H⊥ = ∇vh +

1
μ

∇′uh. (4)

Each of these formulae is a 2D analogue of Helmholtz decomposition, well known
in the elasticity theory.

Note 1. In electrodynamics, for the field H⊥ such potentials arose in the proof
of completeness of the system of normal modes as an auxiliary construction [7].
The four potentials were introduced in our papers [8,9] for smooth filling without
the coefficients 1

ε and 1
μ , important only in the case of discontinuity.

Theorem 1. For any electromagnetic field E,H in the waveguide, one can find
such functions ue, uh of the variables z, t taking the values in the Sobolev space
0

W 1
2(S) and such functions ve, vh of the variables z, t taking the values in the

Sobolev space W 1
2 (S), that the equality (4) is valid. The above representation is

unique up to additive constants.

The Theorem 1 means that under the change of variables E, H by two poten-
tials and two components Ez, Hz using the Eq. (4) no solutions of Maxwell equa-
tions are lost. The conditions

ue, uh, Ez ∈
0

W 1
2(S) and ve, vh, Hz ∈ W 1

2 (S)

replace the conditions at the filling discontinuity, as well as the boundary condi-
tions. Since the potentials are elements of Sobolev spaces, it is natural to consider
the Maxwell equations in the weak form [10]. In the case of arbitrary ε and μ
these equations are cumbersome and not presented here.
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4 Splitting of the System of Maxwell Equations
in Waveguides with Piecewise Constant Filling

Now let us dwell on the case of particular interest for practice, when the filling
of the waveguide is piecewise constant. According to the Theorem 1, the electro-
magnetic field E,H in such waveguide can be presented in the form (4). From
Maxwell equations it follows that the potentials ue, uh and Ez are elements of
0

W 1
2(S), coupled by the equations

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

∫∫

S

ε(∇u,∇ue)dxdy = ∂z

∫∫

S

εuEzdxdy,

∫∫

S

c

μ
(∇u,∇uh)dxdy = −∂t

∫∫

S

εuEzdxdy,

(5)

for any u from C∞
0 (S), where Ez = ∂zue + ∂tuh, the potentials ve, vh and Hz

are elements of W 1
2 (S), coupled by the equations
⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

∫∫

S

c

ε
(∇v,∇ve)dxdy = ∂t

∫∫

S

μvHzdxdy,

∫∫

S

μ(∇v,∇vh)dxdy = ∂z

∫∫

S

μvHzdxdy,

(6)

for any v from C∞(S), where Hz = ∂zvh − ∂tve.
The Eqs. (5) and (6) can be used also for waveguide field tailoring. If ue, uh

and Ez from
0

W 1
2(S) satisfy the Eq. (5), and ve, vh and Hz from W 1

2 (S) satisfy
Eq. (6), then the field E,H, calculated using Eq. (4), satisfies Maxwell equations
in the generalized sense. Moreover, if this field has continuous partial deriva-
tives of the first order in all variables everywhere except the filling discontinuity
points, and the filling discontinuities are of the first kind, then this field satisfies
Maxwell equations (1) in the continuity domain, the matching conditions (3) at
the discontinuities, and the conditions of ideal conductivity at the boundary (2).

Since the system of Maxwell equations has been separated into two indepen-
dent systems, the electromagnetic field E,H in the waveguide with the filling
described by piecewise constant functions ε and μ is a superposition of TE and
TM fields.

5 Monochromatic Fields in Waveguides with Piecewise
Filling

Let us apply the developed theory to the case of monochromatic fields, when the
time dependence is described by the factor e−iωt.
The monochromatic TM field is described by the potentials

ue = ũee
−iωt, uh = ũhe−iωt,
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that satisfy the equations
⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

∫∫

S

ε(∇u,∇ũe)dxdy = ∂2
z

∫∫

S

εuũedxdy − ik∂z

∫∫

S

εuũhdxdy,

∫∫

S

1
μ

(∇u,∇ũh)dxdy = ik∂z

∫∫

S

εuũedxdy + k2

∫∫

S

εuũhdxdy,

(7)

for any u ∈
0

W 1
2(S), here k = ω/c. Let us rewrite this system of equations in the

operator form using the standard technique of the theory of Sobolev spaces [11].
The symmetric bilinear form

∫∫

S

(∇u,∇ũ)k(x, y)dxdy

for any piecewise smooth k is bounded in the norm W 1
2 , therefore, such bounded

self-adjoint operator Ak exists that this form equals (u,Akũ). The symmetric
bilinear form ∫∫

S

uũk(x, y)dxdy

for any piecewise smooth k is completely continuous in the norm W 1
2 , so that

such bounded self-adjoint operator Bk exists that this form equals (u,Bkũ).
Therefore, the system (7) can be rewritten as

{
Aεũe = ∂2

zBεũe − ik∂zBεũh,

A 1
µ
ũh = ik∂zBεũe + k2Bεũh.

(8)

Assume that the frequency ω = kc of the considered field differs from the special
frequencies (magnetic cutoff frequencies) at which the operator A 1

µ
− ω2Bε.

Excluding ũh from this system, we get

Aεũe = ∂2
z

(
Bε + k2Bε(A 1

µ
− k2Bε)−1Bε

)
ũe. (9)

Therefore, the TM field can be described as the solution of Eq. (9), which in the
case of piecewise constant filling plays the same role as the Helmholtz equation
in the case of hollow waveguides.

For linear differential equations, the coefficients of which are compact oper-
ators, one can always write a general solution by means of a system of root
vectors of the appropriate polynomial operator bundle [12]. In particular, one
can present the general solution of the Eq. (9) as a sum of TM fields having the
form

E(x, y)eiγz−iωt, H(x, y)eiγz−iωt,

each of them being a generalized solution of Maxwell equations in the waveguide.
Here the parameter γ can take purely real and purely imaginary values.
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The object resulting from this consideration is well known in the waveguide
theory. The nontrivial field E,H in the waveguide S × Z × T , depending on z
and t as eiγz−iωt, where ω, γ are constants, is referred to as a normal mode of
the waveguide, ω being the frequency and γ being the wavenumber. Complex
values of γ are possible.

The consideration of TE modes is quite similar.

Theorem 2. Let the filling of the waveguide be described by piecewise contin-
uous functions ε and μ. For the frequencies different from the cutoff ones, any
monochromatic electromagnetic field E,H in the waveguide can be presented as
a superposition of normal modes of the waveguide, the corresponding series for
the fields E,H converging in norm L2(S).

Note 2. The completeness of the system of normal modes for the waveguides
with composite filling was established by Delitsyn [4]. In his papers, the initial
system of Maxwell equations was reduced to a new one, which could be written
in compact, but, unfortunately, non-self-adjoint operators. The theory developed
by Keldysh [12] allowed proving the completeness of the system of eigenvectors
and adjoined vectors. However, for non-self-adjoint operators the completeness
is not identical to basisness; the latter was established using this method only
for waveguides having circular cross section [13]. In the proposed version of the
theory of normal modes, based on the technique of four potentials, the search for
the normal modes is reduced to a self-adjoint problem, which removes multiple
delicate issues, including the question of basisness.

The Theorem 2 reduces the calculations in waveguide problems to the deter-
mination of normal modes. For example, the TM mode is an eigenfunction of
the problem {

Aεũe = −γ2Bεũe + kγBεũh,

A 1
µ
ũh = −kγBεũe + k2Bεũh.

(10)

All the points of the kγ-plane where this problem has nontrivial solution form
the dispersive curve of the waveguide.

To solve this problem it is natural to use the truncation method: we will use
finite element spaces instead of Sobolev spaces and change the operators Aε, A 1

µ

and Bε to the sparse matrices, generated by the same bilinear forms.
For calculation of these matrices and further manipulations with block-sparse

matrices we use free FEA software FreeFem++ [14]. Our FreeFem++ program
for the construction of waveguide dispersion curves can work with any waveguide
cross-sections if the boundaries can be described parametrically with the help of
elementary functions and with any piecewise-constant filling described with the
help of algebraic inequalities.

Example 1. On the Fig. 1 we can see the dispersive curve of the waveguide with
the cross-section

S = {0 < x < 1} × {0 < y < 1},



464 D. V. Divakov et al.

Fig. 1. The dispersive curve for the Example 1.

the piecewise-constant filling is

ε =

{
1.2, (x − 0.5)2 + (y − 0.3)2 < 0.5
1, otherwise

, μ = 1. (11)

We use the mesh with 2120 triangles and solve the eigenvalue problem at several
values of β (the step Δβ = 0.1).

To check the convergence we made the series of the numerical experiments
for the hollow waveguide with a box cross-section.

6 Conclusion

In the present paper, the main theorems of the hollow waveguide theory are
generalized over the case of waveguides with piecewise constant filling. Similar
to the case of hollow waveguides, an arbitrary field can be presented as a sum
of TE and TM fields. In the case of a hollow waveguide, the monochromatic TE
and TM fields satisfy Helmholtz equation. Instead, for a filled waveguide the
following equation arises

Au = ∂2
zKu, (12)

where A and K are bounded self-adjoint operators, A determines strictly positive
defined quadratic form, and K is a completely continuous operator. This equa-
tion is by no means more complicated than the Helmholtz equation, so that the
proposed method allows applying the numerical methods developed for scalar
waveguides to the vector model. Presented results of the numerical experiments
made in FEA software FreeFem++ confirm this statement.
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Abstract. We compare the performance of traditional Gaussian elim-
ination with a solver utilizing hierarchical compression of the matrix.
The test problems are obtained by Boundary Element Method (BEM)
simulation of laminar flow around airfoils. The most computationally
expensive part of the BEM algorithm is to solve the arising system of
linear algebraic equations. The related dense matrix can be compressed
using a Hierarchically Semi-Separable (HSS) representation. This signifi-
cantly lowers the computational complexity of the solution method, thus
allowing faster overall execution.

The performance of STRUMPACK library implementation of HSS
and the MKL direct solver is compared on Intel Xeon architecture. At
the end, we examine the accuracy of the HSS approximation using the
(exact) results of Gaussian elimination as a reference solution.

1 Introduction

This work is motivated by the recent development of heterogeneous high per-
formance computing (HPC) architectures. Solving systems of linear algebraic
equations with dense matrices is among the most computationally intensive
numerical linear algebra problems. This is the topic of the article. The focus
is on the comparative performance analysis of a solution method based on hier-
archical compression of a class of test matrices obtained by BEM simulation of
laminar flows around airfoils.

The traditional Gaussian elimination has computational complexity O(n3),
where n is the number of unknowns (degrees of freedom). The methods based
on hierarchical compression have nearly optimal complexity, i.e. O(r2n), where
r is the maximum rank of off-diagonal blocks of the matrix. Typically r is much
smaller than n. For some problems it is either a constant or it grows slowly like
O(ln n).

The STRUMPACK (STRUctured Matrices PACKage) software package
implements HSS compression to solve structured matrices (both sparse and
dense). This is done by exploiting the structure of such matrices in order to
lower the complexity of the overall problem.
c© Springer Nature Switzerland AG 2019
G. Nikolov et al. (Eds.): NMA 2018, LNCS 11189, pp. 466–473, 2019.
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The contribution of our study includes both, sequential performance analysis
and parallel scalability analysis. The organization of this article is as follows. A
brief overview of the HSS implementation in STRUMPACK is given in Sect. 2.
The presented numerical results are analyzed in Sect. 3 ending with a brief sum-
mary in Sect. 4.

2 HSS Method

A summary of Hierarchically Semi-Separable (HSS) matrices is available in [1],
while the parallel algorithm implemented in the STRUMPACK package is
described in [2]. A more involved theoretical analysis of HSS matrices can be
found in [3].

The HSS framework developed in STRUMPACK consists of:

1. Compression into HSS form using random sampling.
2. Solving linear systems using ULV-like factorization.
3. Computing HSS matrix-vector products.

The HSS compression is the most important part of the HSS framework. Once
the matrix is compressed we can efficiently solve the system of equations.

2.1 HSS Representation

The HSS compression uses a cluster tree that defines a hierarchical partitioning
of the dense matrix A. This decomposition can be performed for any matrix, but
it has a practical value mostly when the off-diagonal blocks of A have a low-rank.
An n × n matrix A have an HSS form if:

1. The off-diagonal blocks of a 2 × 2 partitioning of A are low-rank:

A =
[
A1,1 A1,2

A2,1 A2,2

]
=

[
D1 Ubig

1 B1,2V
big
2

∗

Ubig
2 B2,1V

big
1

∗
D2

]

Ui, Bi,j and V ∗
i are called generators. The Di matrices are the diagonal

blocks of A. If the off-diagonal blocks are “low rank” than the Ui matrices
will be “tall and skinny”, Bi,j matrices will be “small and square” and the V ∗

i

matrices will be “short and wide”. Their aspect ratio depends on the rank.
2. Recursively we can repartition the diagonal blocks D1 and D2 and so on.

After second level of recursion and renumbering we get:

A =

⎡
⎢⎢⎢⎢⎣

[
D1 Ubig

1 B1,2V
big
2

∗

Ubig
2 B2,1V

big
1

∗
D2

]
Ubig
3 B3,6V

big
6

∗

Ubig
6 B6,3V

big
3

∗
[

D4 Ubig
4 B4,5V

big
5

∗

Ubig
5 B5,4V

big
4

∗
D5

]

⎤
⎥⎥⎥⎥⎦
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3. The following recurrence relation holds true for the generators appearing on
two consecutive levels of recursion:

Ubig
3 =

[
Ubig
1 0
0 Ubig

2

]
U3 and V big

3 =
[
V big
1 0
0 V big

2

]
V3.

Then:

A =

⎡
⎢⎢⎢⎢⎢⎢⎣

[
D1 Ubig

1 B1,2V
big
2

∗

Ubig
2 B2,1V

big
1

∗
D2

] [
Ubig

1 0

0 Ubig
2

]
U3B3,6V

∗
6

[
V big
4

∗
0

0 V big
5

∗

]

[
Ubig

4 0

0 Ubig
5

]
U6B6,3V

∗
3

[
V big
1

∗
0

0 V big
2

∗

] [
D4 Ubig

4 B4,5V
big
5

∗

Ubig
5 B5,4V

big
4

∗
D5

]

⎤
⎥⎥⎥⎥⎥⎥⎦

The HSS representation of an n×n matrix A relies on the recursive clustering of
the index set {1, ..., n}. This partitioning is referred to as HSS tree. Each node
τ is associated with a subset Iτ of {1, ..., n}. The root node is associated with
{1, ..., n}, and every non-leaf node τ with its children ν1 and ν2.

Iτ = Iν1 ∪ Iν2

The HSS representation of A follows the tree structure:

– For leaf node τ , the diagonal blocks Dτ = A(Iτ , Iτ ) are uncompressed.
– For each non leaf node τ , with children ν1 and ν2, the corresponding off-

diagonal blocks Aν1,ν2 and Aν2,ν1 are represented by

Aν1,ν2 = Ubig
ν1

Bν1,ν2V
big∗
ν2

(1)

Furthermore, the following hierarchical relation holds:

Ubig
τ =

[
Ubig

ν1
0

0 Ubig
ν2

]
and V big

τ =
[
V big

ν1
0

0 V big
ν2

]
.

We never have to calculate or store explicitly the “big” matrices at non-leaf
nodes. We can always construct them from their children, grandchildren and so
on until we go down to the leaf nodes. The resulting from the above example is
shown on Fig. 1.

The importance of ordering the rows and columns of A has to be noticed. In
some particular cases, the matrices coming from real life problems are generated
in an order that preserves the low-rank property.

In general, for a given dense matrix A, Eq. (1) does not hold exactly. A proper
threshold ε is introduced to calculate the generators. Typically a large threshold
will result in higher compression (i.e. the HSS form of the matrix will take less
space and will be faster to compute) but lower accuracy.
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7

3

1 2

6

4 5

B1,2

B2,1

B4,5

B5,4

B3,6

B6,3

U1, V1

D1

U2, V2

D2

U4, V4

D4

U5, V5

D5

U3, V3 U6, V6

Fig. 1. 3-level HSS tree.

2.2 HSS Compression with Random Sampling

The compression algorithm implemented in STRUMPACK uses randomized
sampling, which is implemented by multiplying the matrix with a set of ran-
dom vectors. The method is introduced by Martinsson [1]. The main advantage
of this approach is that it doesn’t need to access the entire matrix A, but only
parts of it.

If a fast sparse matrix-vector product is utilized, the complexity of the HSS
compression is O(r2n), where n is the size of the matrix and r is the maximum
rank of the off-diagonal blocks, found during the (approximate) compression. For
matrices with proper structural properties, r is much smaller than n. A typical
behaviour of r for matrices arising form BEM discretization is O(ln n).

2.3 ULV-like Factorization and Solution

Once (approximately) compressed into HSS form the matrix A can be factorized
using ULV factorization [4] (a special form of LU factorization). This factoriza-
tion uses orthogonal transformations to transform the problem of eliminating
n unknowns into the problem of eliminating O(r) unknowns. The remaining
unknowns are then eliminated using LU factorization.

The factorization used in STRUMPACK does not use orthogonal transforma-
tion, and instead uses the special structure of the HSS generators therefore it is
referred to as “ULV-like” factorization (Fig. 2). The complexity is O(r2n) [4,5].

After the ULV-like factorization, the linear system is solved using triangular
solution in two passes. The complexity is O(rn) [4,5].

At parent

Fig. 2. Illustration of the ULV-like factorization process.
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3 Numerical Results

The presented numerical results are obtained on the HPC cluster AVITOHOL
of the Institute of Information and Communication Technologies, Bulgarian
Academy of Sciences. We run the tests on a single node with two Intel Xeon
E5-2650v2 8C 2.6 GHz CPUs with 8 cores each. The examined test problem is
based on applying boundary element method for numerical simulation of laminar
flow around airfoils [6].

Fig. 3. Values of the γ function on the central airfoil, velocity field around the wing
profiles (center), streamlines (right)

In a nutshell we simulate the laminar flow around five airfoils as shown on
Fig. 3. After solving the arising system of linear equations we obtain the values
of the γ function for each boundary element on the five airfoils (the solution
for the middle one is shown on the left). From there we can also calculate the
velocity field around the airfoils as well as the streamlines.

The compression tolerance ε, required by the HSS algorithm, is associated
with the relative and absolute thresholds εrel and εabs. STRUMPACK allows
both to be specified by the user. The compression process stops when one of
them is reached or the algorithm determines that the matrix is singular. The
latter happens when the tolerance is too large and, consequently, STRUMPACK
is unable to get a proper approximate compression of the matrix.

We present numerical tests for several different settings of εrel (the default
value of 10−2 as well as 10−4, 10−8 and 10−12). For the absolute threshold εabs,
the default value of 10−8 is used.

The times of the sequential tests are presented on Fig. 4 (left). The asymptotic
behavior of O(n3) is clearly seen for the MKL implementation of the Gaussian
elimination. We see also the nearly optimal complexity of the STRUMPACK
of the HSS algorithm, as well as the impact of increasing the rank r with the
decrease of εrel. STRUMPACK significantly outperforms MKL for all settings
of εrel in sequential mode.

The best parallel times are observed when 16 threads are used. The obtained
results are plotted on Fig. 4 (right). Not surprisingly, the parallel speedup of
Gaussian solver from MKL is better than the STRUMPACK ones. The sec-
ond important conclusion concerns the overall performance. For larger n, the
observed advantage of STRUMPACK is restricted to the case of relatively larger
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Fig. 4. Performance of STRUMPACK and MKL: sequential test (left), and parallel
scalability tests using 16 cores (right)

Fig. 5. Parallel speedup of MKL (up, left), STRUMPACK with εrel =
10−2(up, right), 10−8(down, left), 10−12(down, right),
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εrel = 10−2, 10−4 and εrel = 10−8. For the highest accuracy tested εrel = 10−2

the results are comparable with the MKL performance.
The parallel speedup is presented in Fig. 5. MKL shows almost optimal

speedup. Using 16 threads gives us almost 16 times faster execution times. This
is not the case for STRUMPACK though, which achieves only a fraction of this
speedup with all settings of the εrel. This is due to the much more complicated
recursive structure of the algorithm.

An important question when working with an approximate compression (fac-
torization) method, like HSS, is how accurate it is. In order to examine the used
threshold settings of the STRUMPACK package we consider the relative accu-
racy Rrelative expressed in the ratio of the �2 norm of the difference between
the results produced by MKL and STRUMPACK divided by the �2 norm of the
MKL solution.

Rrelative =

∣∣xGauss − xHSS
∣∣
l2

|xGauss|l2
=

√∑n
i=1(x

Gauss
i − xHSS

i )2√∑n
i=1(x

Gauss
i )2

The MKL solution is taken as reference/exact. This choice is ruled by the fact
that the computed solution as well as the resultant velocity field seem physically
plausible.

Table 1. Relative accuracy and the maximum rank of the off-diagonal matrices

n εrel = 10−2 εrel = 10−4 εrel = 10−8 εrel = 10−12

Rrelative rank Rrelative rank Rrelative rank Rrelative rank

5000 1703.62 34 3.05 163 0.05 345 0.0001 237

10000 12820.38 43 8.48 159 0.08 452 0.0012 269

15000 10150.31 43 235.54 149 0.36 494 0.0066 307

20000 17408.79 65 322.98 160 2.8 549 0.0131 415

25000 2489700.59 66 37.05 150 1.09 566 0.0089 490

40000 227805 105 188.1 213 0.56 645 0.052 838

In Table 1 we present the calculated relative �2 norms varying the problem
sizes and the relative tolerances tested. We also show the maximum rank of
the off-diagonal blocks of the approximate HSS compression of A. The rank is
directly dependent on the values that we have chosen for the tolerances. The
higher the calculated rank is the better accuracy we get but the time needed is
also increased.

Decreasing the threshold improves the accuracy. The results with the smallest
relative threshold εrel = 10−12 show the best accuracy. It should be noted that
for a given set of thresholds, the accuracy of the results degrades as n grows.
With the default threshold of εrel = 10−2 the relative error is particularly high.
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4 Concluding Remarks

Performance analysis of the STRUMPACK package for solving dense systems
of linear algebraic equations arising from the use of Boundary Element Method
is presented. A Hierarchical Semi-Separable (HSS) based method is tested on
Intel Xeon E5-2650v2 8C 2.6 GHz CPUs and the parallel performance is mea-
sured against using a direct method. Several different tolerances for the HSS
compression are examined in order to evaluate the accuracy of the method.

The HSS based method works significantly faster in the sequential mode but
it’s not as parallel efficient as the direct method from MKL. The accuracy of
the method is sensitive with respect to threshold parameters which must be fine
tuned for a given size of the problem in order to achieve acceptable results.
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Abstract. The advanced air quality modelling system WRF-CMAQ is
applied to estimate the spatial distribution of sulfur and nitrogen wet
deposition on seasonal basis for 2016 and 2017. The numerical system is
set-up for nested domains, from European scale (d1-81 km resolution)
to country level (d3-9 km resolution) to account for transport and chem-
istry processes taking place over broad range of scales and impacting the
deposition at given location. A precipitation bias adjustment approach
is applied to all grid nodes of domain d3 in order to reduce effects of pre-
cipitation overestimation by the model. The effect of the bias adjustment
on the seasonal deposition pattern is discussed. The approach leads to
25% decrease in annual wet depositions for the country.

Keywords: Depositions · Modelling · Precipitation chemistry

1 Introduction

Atmospheric deposition is part of complex air pollution and environmental pro-
cesses that link emissions of pollutants, their chemical transformation and sinks,
and their effects on the earth’s surface. While the deposition of air pollutants
is seen as a natural cleansing process of the atmosphere, and thus beneficial
for the air quality, the uptake of deposited substances has been investigated
for the adverse effects on terrestrial and aquatic ecosystems (acidification and
eutrophication).

Nowadays, with the sharp reductions of sulfur oxides (SOx) emissions in
Europe, nitrogen oxides and ammonia (NOx and NH3) are main acidifying com-
pounds in Western and Northern Europe, although emissions of SOx have higher
acidifying potential and are still contributing to acidification [1]. The atmo-
spheric deposition occurs through “wet” and “dry” mechanisms, and the sum of
both defines the total deposition. The wet deposition is mainly due to precipi-
tation, the dry deposition - to gravitational settlement, diffusion and turbulent
c© Springer Nature Switzerland AG 2019
G. Nikolov et al. (Eds.): NMA 2018, LNCS 11189, pp. 474–482, 2019.
https://doi.org/10.1007/978-3-030-10692-8_54
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transfer processes. To monitor the wet deposition, precipitation chemistry net-
works have been established worldwide, e.g. EMEP in Europe [2]. Monitoring
of dry deposition is still challenging, with sparse data for limited periods. Eval-
uation of deposition based on observations has lower spatial resolution with
significant interpolation errors over larger areas [3].

Chemical transport models (CTM) based on numerical modelling of atmo-
spheric transport and chemical transformation processes are recognized as pow-
erful tools to fill in gaps in monitoring data. Their use is driven both by advances
in high performing computer technology and availability of open source codes.
Numerical models for deposition studies have been applied over the last decade
for many regions of the world, [4–6].

In Bulgaria observations on precipitation chemistry are available only for
short term periods and in few locations only [7,8]. Numerical simulations have
been carried out recently at the National Institute of Meteorology and Hydrology
(NIMH) for wet, dry and total sulfur (S) and nitrogen (N) depositions in Bulgaria
for the years 2016 and 2017 [9]. The approach of precipitation bias adjustment
(PBA) for wet depositions following [4] was tested for single monitoring sites.

This study is an extension of the previous work, with a methodology for
PBA not only at single sites, but for the whole territory of the country. The
main objective is to investigate the spatio-temporal distribution of these new,
“adjusted”, S and N wet depositions and to check model performance based on
comparison to wet depositions data for sulfur, reduced nitrogen and oxidized
nitrogen for 2017 in Sofia.

2 The Modelling System

The Bulgarian Chemical Weather Forecasting System (BgCwFS), operationally
running at NIMH since 2012, is applied for the estimation of monthly accumu-
lated depositions of different pollutants.

2.1 Overview and Set-Up

BgCwFS has four main computational modules [10]:

– Meteorological model – the Weather Research and Forecasting Model (WRF
v.3.6.1) for 3D fields of winds, temperature, precipitation etc. [11];

– CTM of Eulerian type – the Community Multi-scale Air Quality model,
CMAQ v.4.6 - for chemistry transformations, transport and deposition of
pollutants [12];

– Interface for linking meteorological data to CTM – the Meteorology-
Chemistry Interface Processor; MCIP v.3.6

– Emission module – The Sparse Matrix Operator Kernel Emissions Modelling
System (SMOKE v.2.4) - used partly for calculating biogenic emissions and
for merging area sources (AS), large point sources (LPS), and biogenic emis-
sion files.
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As deposition fluxes are the end result of complex atmospheric and chemistry
processes taking place over broad range of spatial scales, the nesting approach
is applied. Five nested modelling domains are defined: Europe (d1) with grid
resolution of 81 km, Balkan Peninsula (d2) - 27 km, Bulgaria (d3) - 9 km, Sofia
region (d4) - 3 km, and Sofia city (d5) - 1 km. The vertical structure of the
atmosphere is represented by 14 σ-levels with 8 levels in the Planetary Boundary
Layer (PBL). The initial and boundary conditions for WRF are provided by the
National Centers for Environmental Prediction Global Forecast System (NCEP
GFS) data with space resolution of 1°× 1° and temporal resolution of 6 h.
Initial conditions for CMAQ are part of previous day calculations. A predefined
set of vertical concentration profiles is used as chemical boundary condition for
the European domain (d1), all other domains receive their boundary conditions
from the previous one in the hierarchy.

Extensively tested parameterization schemes have been selected in the model
set-up – the Yonsei University scheme for the PBL, the WSM6 scheme for the
microphysics, the Noah Land-Surface model. The chemical mechanism in CMAQ
v.4.6 is the 4th generation module “cb4 ae4 aq”.

Results for domain d3 (“Bulgaria”) are used in the analysis.

2.2 Emissions

The emissions are based on the TNO inventory for 2009 [13], for Bulgaria
national emission inventories for 2010 are used. The primary emission source
for S deposition is SO2 coming from combustion of fossil fuels in thermal power
plants (TPP) and from industrial processes (refineries). N deposition is due to
emissions of NOx from transport, combustion processes and to NH3 emissions
from agriculture and livestock manure. These gases have also significant effect
on the formation of secondary aerosols – sulfates (SO4

2–), nitrate (NO3
–) and

ammonium (NH4
+), which may account for a substantial part of the total S (N)

depositions.
Sulfur emissions are prevailing in SE Europe, while higher emissions of nitro-

gen oxides and ammonia are noted in the northern part of Central Europe
(Fig. 1). The largest LPS of SO2 in Bulgaria is the coal fired TPPs “Maritza
East” in the south-eastern part of the country, other coal operating TPPs are
located to the west and north of the country. The nitrogen emissions relevant
to deposition in Bulgaria are mainly in the Lower Danube Plain (agricultural
regions).

2.3 Deposition Calculations

The atmospheric deposition outputs of CMAQ have been archived in separate
files containing hourly values for 29 species, gas and aerosol particles. The S
deposition is estimated as the sum of the depositions of sulfate (SO4

2–) and
sulfur dioxide (SO2). The oxidized nitrogen Noxi deposition flux includes nitrate
(NO3), nitrogen oxide (NO), and nitrogen dioxide (NO2). The reduced nitrogen
Nred is the sum of ammonia (NH3) and ammonium (NH4

+). The sum of Noxi
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Fig. 1. Emissions (Gg per year) of SOx (left) and (NH3 plus NOx) (right) for 2010 in
domain d1

and Nred is denoted as N deposition, while the sum of wet and dry is denoted as
total deposition.

3 Precipitation Bias Adjustment (PBA) for Wet
Depositions

Previous studies on model evaluation for wet deposition in Bulgaria [9,14] indi-
cated that BgCwFS overestimates the precipitation amounts. The application
of PBA [4] as post-processing to model wet depositions at single observational
sites has shown positive effect on seasonal and annual depositions.

The model wet depositions WDmod were linearly corrected by the ratio of
the observed PRobs to estimated precipitation PRmod, following [4]:

WDadj
mod = WDmod.(PRobs/PRmod) (1)

The extension of the approach to all grid nodes in d3 requires the construction
of a reference, “observed” precipitation field. The objective analysis of precipita-
tion is a challenging task due to the heterogeneity in the spatial distribution. A
precipitation analysis method, developed at the Forecast Center at NIMH, con-
sist in combination of data from the operational numerical weather prediction
model ALADIN [15] and from observations using Cressman [16] analysis. The
precipitation model field is used as a first guess, further corrected for the dif-
ference between forecasted and observed precipitation amount at a given point.
The weight function depends on the distance between the grid points and the
observation point, as well as on the difference in their elevation. The current
version of the precipitation analysis system has horizontal resolution of about
1 km and uses topographic data from the U.S. Geological Survey with resolution
30 arc-seconds. This system is used to produce diurnal, monthly and seasonal
maps of accumulated precipitations in an operational way.

Here, the monthly accumulated precipitation, obtained by the above analysis
method, is noted as gridded “observed” precipitation and is used for corrections
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of model wet depositions in d3. At each grid point the correction factor RAT is
calculated:

RAT = (PRobs/PRmod)

{
= 1, for PRobs ≥ PRmod;
�= 1, for PRobs < PRmod

(2)

RAT is then used to scale the model monthly wet depositions at grid nodes,
where monthly model precipitations are higher than the observed ones.

4 Results and Discussion

4.1 Precipitation

Figure 2a shows average values of gridded precipitation in domain d3 for different
seasons in 2016 and 2017 as estimated by the model and by the observations.
The normalized mean bias (NMB) has absolute values between 2.5% and 25.4%.
In summer (JAS) the underestimation is about 16%, probably due to sub-scale
events typical for this season. In spring (AMJ) and autumn (OND) the model
overestimation is about 16%. On annual basis, the overestimation is 8.4% (2017)
and 1.2% (2016). Figure 2b shows the scatterplot of gridded precipitations for
April 2016 as an example for model overestimation in the range (100–150 mm).
This overestimation is observed mainly in the mountain areas.

Fig. 2. (a) Precipitation (mm) – Model and observed for different seasons in 2016 and
2017 (b) Scatterplot of gridded precipitations (mm) for April 2016

The spatial distribution of simulated and observed precipitations, and the
corresponding correction factor RAT (Fig. 3 for April 2016 as example) show
overestimation mainly in the mountainous regions and in the NE part of the
country.
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Fig. 3. Monthly precipitation (mm) – model (left), observed (center), RAT (right),
April 2016

4.2 Simulated S and N Wet Depositions with PBA

Figure 4 shows the spatial distribution of accumulated S-WD and N-WD
(kg.km–2) for the period from January to March 2017 (winter) obtained without
PBA and with PBA (adjusted), along with the model and observed precipita-
tion. The extreme SE part of the country has both higher precipitation and
wet depositions. This area includes nature parks and depositions might impact
adversely the ecosystems. More significant emission sources are located outside
of the area, indicating that the simulated deposition is due to regional and long-
range transport processes. The maps of the adjusted deposition fields indicate
also areas with higher depositions but with not so high precipitation – the areas
around the TPP “Maritza East” in southern Bulgaria and the NW part of the
country.

The seasonal and annual S-WD and N-WD without PBA (mod) and with
PBA (mod-a) are summarized in Table 1. The values represent the average of
the depositions for the grid nodes located in Bulgaria. On annual basis, the
adjustment leads to 28% decrease for S-WD and to 25% decrease for N-WD.

Fig. 4. S-WD (left) and N-WD (center) for winter 2017: without PBA (top) and
with PBA (bottom). Accumulated precipitation (mm) (right): model (top), observed
(bottom).
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Table 1. Simulated seasonal and annual S-WD and N-WD, without PBA (mod) and
PBA (mod-a) for 2016 and 2017. Units are (kg.km–2 period–1.)

S-WD 2016 N-WD 2016 S-WD 2017 N-WD 2017

mod mod-a mod mod-a mod mod-a mod mod-a

Winter 333 224 401 328 262 201 361 277

Spring 482 319 377 301 486 383 413 324

Summer 190 163 125 107 250 210 187 158

Autumn 238 177 302 224 337 177 403 224

Annual 1243 883 1205 960 1335 971 1364 983

The smallest decrease is obtained for summer (14–16%), the greatest decrease
(48%) for S-WD in autumn 2017.

4.3 Comparison to Observed Deposition in Sofia

Figure 5 shows results for the wet depositions of S, Nred and Noxi for Sofia in
2017. Daily precipitation samples were collected at the NIMH site (42.655N,
23.384E, 586 m a.s.l.) with an automatic wet only precipitation sampler
WADOS. 78 precipitation samples were collected and analyzed for acidity-
pH, electrical conductivity-EC, main anions and cations, and some elements.
The depositions were estimated by multiplying the measured concentration of
SO4

2–, NO3
–, NH4

+ by the observed precipitation amount and summing for the
relative periods. The model values are two – without PBA (mod) and with PBA
(adj). The nearest grid node is used for the interpolation of model values to the
site of the sampler.

The model simulates correctly the prevalence of S over N depositions for Sofia.
Noxi-WD represents the main part of the N-WD. On annual basis NMB for S-WD
decreases from 43% (overestimation) to −12% (slight underestimation). NMB
for Nred-WD is respectively 27% and −26%, NMB for Noxi-WD varies from 35%
to −15%.

Fig. 5. S-WD (left), Nred-WD (center) and Noxi-WD (right) for Sofia on seasonal basis
in 2017. First bar – observations, middle bar – model; third bar – model with PBA.
Units are (kg.km–2).
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5 Conclusion

The Bulgarian Chemical Weather Forecasting System has been set up for calcu-
lations of deposition fluxes using nested domains from European to country and
city level. The focus in the analysis here is on the effect of the precipitation bias
adjustment on the spatial distribution of sulfur and nitrogen wet depositions,
as well as on mean gridded values for different seasons in 2016 and 2017. The
precipitation bias adjustment approach [4] has been applied to all grid points of
the modelling domain. The reference (“observed”) precipitation field is obtained
by an objective analysis technique, combining observations and data from the
analysis of an operational weather forecasting model at NIMH.

The precipitation bias adjusted wet depositions are lower than the original
model depositions – on annual basis by about 25%, with higher impact in spring
and autumn – up to 48% for sulfur in autumn. The spatial distribution of the
adjusted depositions has similar pattern to the original one, but provides better
evidence on areas with elevated depositions where the precipitation amounts are
not very high. For example the south eastern part of the country is characterized
by higher sulfur wet depositions and northern Bulgaria has more nitrogen than
sulfur wet depositions in winter.

The results indicate possible beneficial effect of applying precipitation bias
adjustment as post-processor to model depositions on seasonal or annual basis.
The techniques adopted represent a step towards a methodology for long-term
deposition calculations in Bulgaria on regular basis.
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Abstract. We consider a discrete version of pseudo-differential oper-
ators and equations in appropriate discrete functional spaces. Using a
special factorization for an elliptic symbol we obtain certain results on
a solvability for such discrete equations and give a comparison between
discrete and continuous solutions.
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1 Introduction

This paper is devoted to the approximation of the solution of a very wide class
of integro-differential equations, namely pseudo-differential equations [1,2]. A
pseudo-differential operator A in a domain D of Euclidean space Rm is defined
by its symbol A(x, ξ), i.e. function defined in D ×Rm, by the following formula

(Au)(x) =
∫

D

∫

Rm

A(x, ξ)ei(x−y)·ξu(y)dξdy, x ∈ D.

To construct a good approximate solution for the equation

(Au)(x) = v(x), x ∈ D, (1)

we use some discrete-periodic constructions. First we start from simplest equa-
tion (1) in which the symbol A(x, ξ) does not depend on a spatial variable x.
Thus, for the Eq. (1) with symbol A(ξ) we construct a discrete operator Ad with
the symbol Ad(ξ). Such discrete operator is defined for functions ud(x̃) of a dis-
crete variable x̃ ∈ hZm, h > 0, and acts in certain discrete functional spaces.
Then we replace the Eq. (1) by its discrete analogue

(Adud)(x̃) = vd(x̃), x̃ ∈ Dd, (2)

where Dd = D ∩ hZm.
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Further we study solvability of the equation (2) for some canonical domains
D using the discrete Fourier transform Fd

(Fdud)(ξ) =
∑

x̃∈hZm

e−ix̃·ξud(x̃)hm, ξ ∈ h−1[−π, π]m,

and its inverse, and give some comparison estimates for solutions of the equations
(1) and (2) in some discrete functional spaces.

If ud(x̃), x̃ ∈ hZm, is a function of a discrete variable then we say “discrete
function”. For such discrete functions one can define the discrete Fourier transform

(Fdud)(ξ) ≡ ũd(ξ) =
∑

x̃∈hZm

e−ix̃·ξud(x̃)hm, ξ ∈ �Tm,

if the latter series converges. The obtained function ũd(ξ) is periodic in Rm

with basic cube of periods �Tm. Such discrete Fourier transform preserves all
key properties of the integral Fourier transform, particularly the inverse discrete
Fourier transform is given by the formula

(F−1
d ũd)(x̃) =

1
(2π)m

∫

�Tm

eix̃·ξũd(ξ)dξ, x̃ ∈ hZm.

2 Digital Pseudo-differential Operators

Let Ad(ξ) be a periodic function in Rm with basic cube of periods h−1[−π, π]m

so that
c1(1 + |ζ2h|)α

2 ≤ |Ad(ξ)| ≤ c2(1 + |ζ2h|)α
2 , (3)

where ζ2h = h−2
m∑

k=1

(e−ihξk −1)2, and the positive constants c1, c2 do not depend

on h.
Let D ⊂ Rm be a domain (finite or infinite). We will consider the functions

ud(x̃) defined in Dd ≡ D ∩ hZm, h > 0, and introduce the following operator

(Adud)(x̃) =
∑

ỹ∈hZm

∫

�Tm

Ad(ξ)ud(ỹ)ei(x̃−ỹ)·ξhmdξ, x̃ ∈ Dd,

where � ≡ h−1,Tm ≡ [−π, π]m.

Definition 1. The operator Ad is called a discrete pseudo-differential operator
or shortly h-operator. The periodic function Ad(ξ) is called its �-symbol.

Let us remind that a symbol (operator) is called elliptic if

ess inf
ξ∈�Rm

|Ad(ξ)| > 0,

and obviously all symbols under consideration are elliptic.
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3 Equations in a Cone

Definition 2. By definition the space Hs(hZm) is a closure of the discrete
Schwartz space S(hZm) with respect to the norm

||ud||s =

⎛
⎝

∫

�Tm

(1 + |ζ2h|)s|ũd(ξ)|2dξ

⎞
⎠

1/2

. (4)

Definition 3. The space Hs(Dd) consists of discrete functions from Hs(hZm)
with supports in Dd. The norm in the space Hs(Dd) is induced by the norm of the
space Hs(hZm). The space Hs

0(Dd) consists of discrete functions (distributions
from S′(Rm)) ud with supports in Dd, additionally these discrete functions must
admit a continuation � onto Hs(hZm). A norm in the space Hs

0(Dd) is given by
the formula

||ud||+s = inf ||�ud||s,
where the infimum is taken over all continuations �.

The solvability of the equation (2) in such spaces for the half-space D = Rm
+

was studied earlier [5–9]. Below we will consider briefly a more complicated case
than a half-space.

3.1 Tube Domains and Periodic Bochner Kernel

Let D be a convex cone that does not include a whole straight line, and
∗
D be a

conjugate cone for D, i.e.,

∗
D= {x ∈ Rm : x · y > 0, y ∈ D}.

Let T (
∗
D) ⊂ Cm be a set of the type �Tm + i

∗
D. For �Tm ≡ Rm(h → 0) such a

domain of multidimensional complex space is called a radial tube domain over
the cone

∗
D [3,4,13]. We introduce the function which is called periodic Bochner

kernel
Bd(z) =

∑
x̃∈Dd

eix̃·zhm, z = ξ + iτ, ξ ∈ �Tm, τ ∈ ∗
D,

and define the operator

(Bdu)(ξ) = lim
τ→0

∫

�Tm

Bd(z − η)ud(η)dη.

This operator is roughly speaking a conical analogue of the periodic Hilbert
transform [5,6].
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3.2 The Periodic Wave Factorization

To describe solvability conditions for the equation (2) we introduce the following
concept.

Definition 4. The periodic wave factorization for an elliptic symbol Ad(ξ) is
called its representation in the form

Ad(ξ) = Ad, �=(ξ)Ad,=(ξ),

where the factors Ad, �=(ξ), Ad,=(ξ) admit an analytical continuation into domains

T (
∗
D), T (− ∗

D) respectively and satisfy the estimates

|A±1
d, �=(ξ)| ≤ c1(1 + |ζ̂2|)± æ

2 , |A±1
d,=(ξ)| ≤ c2(1 + |ζ̂2|)± α−æ

2 ,

with constants c1, c2 non-depending on h,

ζ̂2 ≡ �
2

(
m∑

k=1

(e−ih(ξk+τk) − 1)2
)

, ξ ∈ �Tm, τ ∈ ± ∗
D .

The number æ ∈ R is called an index of the periodic wave factorization.

3.3 A Solvability

Theorem 1. If the elliptic symbol Ãd(ξ) admits periodic wave factorization with
the index æ so that |æ − s| < 1/2 then the operator Ad : Hs(Dd) → Hs−α(Dd)
is invertible and a solution of the equation (2) for arbitrary right-hand side vd ∈
Hs−α

0 (Dd) in Fourier images is given by the formula

ũd(ξ) = A−1
d, �=(ξ)Bd(A−1

d,=(ξ)�̃vd(ξ)), (5)

where �vd is an arbitrary continuation of vd into Hs(hZm).

Proof. Let �vd be an arbitrary continuation of vd on the whole hZm so that
�vd ∈ Hs−α(hZm). Let

wd(x̃) = (�vd)(x̃) − (Adud)(x̃)

and rewrite
(Adud)(x̃) + wd(x̃) = (�vd)(x̃).

Further applying the discrete Fourier transform Fd and using the periodic fac-
torization we write

Ad, �=(ξ)ũd(ξ) + A−1
d,=(ξ)w̃d(ξ) = A−1

d,=(ξ)�̃vd(ξ).

According to considerations from [10–12] we have Ad, �=(ξ)ũd(ξ)∈ H̃s−æ(hZm),
Ã−1

d,=(ξ)w̃d(ξ) ∈ H̃s−α+α−æ(hZm) and analogously A−1
d,=(ξ)�̃vd(ξ) ∈ H̃s−æ(hZm).
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Moreover, really Ad, �=(ξ)ũd(ξ) ∈ H̃s−æ(Dd) in view of a holomorphy property,
and accurate considerations with supports of Ad,=(ξ) and w̃d(ξ) show that in fact
A−1

d,−(ξ)w̃d(ξ) ∈ H̃s−æ(hZm \ Dd).
Thus we obtain a variant of a jump problem for the space H̃s−æ(hZm) which

was considered in [12] and according to this result we have

Ãd, �=(ξ)ũd(ξ) = Bd(Ã−1
d,=(ξ)�̃vd(ξ))

or finally
ũd(ξ) = Ã−1

d, �=(ξ)Bd(Ã−1
d,=(ξ)�̃vd(ξ)).

This finishes the proof. �

4 Approximation Rate

4.1 Test Operators and the Periodic Wave Factorization

It is natural there is a question if we have such factorization for some cases.
Here we consider simple variant of a pseudo-differential operator, namely the
Calderon–Zygmund operator. Such operators satisfy the condition (3) with α = 0
so we can consider these operators as linear bounded operators in the space
H0(hZm) = L2(hZm) (see also [5,8]). We will give here certain sufficient condi-
tions for an existence of the periodic wave factorization for an elliptic symbol.

Theorem 2. Let an elliptic symbol Ad(ξ) ∈ C(�Tm) be such that

supp F−1
d (ln Ad(ξ)) ⊂ Dd ∪ (−Dd), (6)

Then the symbol Ad(ξ) admits a periodic wave factorization with vanishing
index.

Proof. If we start from equality

Ad(ξ) = A�=(ξ) · A=(ξ)

then taking a logarithm we obtain

ln Ad(ξ) = lnA�=(ξ) + lnA=(ξ)

and we have a special kind of a jump problem [10–12]. Let us note that ln Ad(ξ)
is a univalent function because the domain is a simply connected.

Further, we will denote by A1(�Tm) a subspace of the space L2(�Tm) consist-

ing of functions which admit a holomorphic bounded continuation into T (
∗
D). So

evidently we consider the possibility of decomposition of the function lnAd(ξ)
into two summands one of which belongs to the space A1(�Tm) and the sec-
ond one belongs to the space A2(�Tm)(bounded holomorphic continuations into

T (− ∗
D)). Let us denote

F−1(ln Ãd(ξ)) ≡ v(x).
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If supp v ⊂ Dd ∪ (−Dd) then we have the unique representation

v = χ+v + χ−v

where χ± is an indicator of the discrete set ±Dd.
Further passing to the Fourier transform and potentiating we obtain the

required factorization. �
Remark 1. The condition (6) is not necessary but we have no algorithm for
constructing a periodic wave factorization. For D = Rm

+ a such algorithm always
exists (see [6,7]).

4.2 A Comparison

For a comparison we need to introduce the special projector Qh : Rm → hZm

which is defined for smooth functions at least. For such a function v we take
its Fourier transform Fv ≡ ṽ, then we take a restriction of ṽ to the �Tm and
periodically continue it to the whole Rm. Finally we take its inverse discrete
Fourier transform F−1

d and denote the result by Qhv. Obviously this is a discrete
function defined in hZm.

If we impose strong enough restrictions on the right-hand side and the factor-
ization elements then one can give a comparison between discrete and continuous
solutions.

Let S(Rm) be the Schwartz space of infinitely differentiable rapidly decreas-
ing at infinity functions, and Ph be a restriction operator on hZm, i.e. for
u ∈ S(Rm)

(Phu)(x) =
{

u(x̃), x = x̃ ∈ hZm;
0, x /∈ hZm.

Lemma 1. For u ∈ S(Rm),∀β > 0, we have

|(Phu)(x̃) − (Qhu)(x̃)| ≤ Chβ , ∀x̃ ∈ hZm,

where the constant C depends on u only.

Proof. Indeed, we need to compare two Fourier transforms. By definition

(Phu)(x̃) =
1

(2π)m

∫

Rm

eix̃·ξũ(ξ)dξ,

and respectively

(Qhu)(x̃) =
1

(2π)m

∫

�Tm

eix̃·ξũ(ξ)dξ,

thus this difference is given by the integral

(Phu)(x̃) − (Qhu)(x̃) =
1

(2π)m

∫

Rm\�Tm

eix̃·ξũ(ξ)dξ.
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The conclusion of Lemma 1 follows from the invariance of the Schwartz class
S(Rm) with respect to the Fourier transform and the simple estimate

|ũ(ξ)| ≤ Cu|ξ|−γ

∀γ > 0. �
A non-periodic analogue of the operator Bd is the following [3,4,13]

(Bũ)(ξ) = lim
τ→0+

∫

Rm

B(x − y + iτ)ũ(y)dy,

where B(z) is the Bochner kernel

B(z) =
∫

D

eiy·zdy, z = x + iτ, x ∈ Rm, τ ∈ ± ∗
D .

Lemma 2. If u ∈ S(Rm) then the following estimate

|(F−1Bũ)(x̃) − (F−1
d BdQ̃hu)(x̃)| ≤ Chβ , x̃ ∈ Dd,

holds for ∀β > 0, and the constant C depends on u only.

Proof. Here we need the description and comparison for two projectors related
to the Hilbert transform, both standard and periodic. Let us denote by χ(x)
an indicator of the cone D and χd(x̃) an indicator of the discrete cone Dd.
Then according to structural properties of two mentioned transforms we have
the following equalities

F−1Bũ = χ · u, F−1
d BdQ̃hu = χd · (Qhu).

Further one can apply the Lemma 1. �

4.3 Continuous and Discrete Solutions

Starting from Lemma 2 and Theorem 1 we are able to compare discrete and con-
tinuous solutions in a cone. Below we give this comparison under the conditions
of Theorem 2 for the existence of a unique solution. We suppose in this section
that initial symbol A(ξ) admits the wave factorization with respect to the cone
D [4]

A(ξ) = A�=(ξ) · A=(ξ),

and Ad(ξ) is a restriction of A(ξ) on �Tm which is periodically extended to the
whole Rm.

Theorem 3. If the symbol A(ξ) is infinitely differentiable in Rm with the factors
A�=(ξ), A=(ξ), u is the unique solution of the equation (1) with support in D, ud

is a solution of the equation (2) then for v ∈ S(Rm) we have the following error
estimate

|u(x̃) − ud(x̃)| ≤ Chβ , ∀x̃ ∈ hZm
+ ,

for arbitrary β > 0.
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To refine this theorem we will show how to choose a right-hand side for
solving the Eq. (2). The solution of the equation (1) in Fourier images has the
form [4]

ũ(ξ) = A−1
�= (ξ)BA−1

= (ξ)�̃v(ξ),

where �v is an arbitrary continuation of v from D onto the whole Rm in the
corresponding functional space. Since the right-hand side in the Eq. (2) is defined
in Dd only then one needs to choose Qh(�v) instead of �vd to obtain the required
estimate.
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Abstract. In this study, sixth and eighth-order finite difference schemes
combined with a third-order strong stability preserving Runge-Kutta
(SSP-RK3) method are employed to cope with the nonlinear Klein-
Gordon equation, which is one of the important mathematical models in
quantum mechanics, without any linearization or transformation. Vari-
ous numerical experiments are examined to verify the applicability and
efficiency of the proposed schemes. The results indicate that the cor-
responding schemes are seen to be reliable and effectively applicable.
Another salient feature of these algorithms is that they achieve high-
order accuracy with relatively less number of grid points. Therefore, these
schemes are realized to be a good option in dealing with similar processes
represented by partial differential equations.

Keywords: Klein-Gordon equation · Nonlinear processes
High-order finite difference scheme
Strong stability preserving Runge-Kutta

1 Introduction

Several physical phenomena of quantum mechanics, electricity, plasma physics,
fluid dynamics, propagation of waves and many other physical processes like
these are described by partial differential equations within their range of valid-
ity. Since the partial differential equations have become a very useful tool for
describing these natural models, a wide variety of physically significant prob-
lems modeled by nonlinear partial differential equations has been the focus of
extensive studies. One of the most important mathematical models is the non-
linear Klein-Gordon equation in quantum field theory. The equation is the basic
evolution equation in relativistic field theory [1] and is known as one of the non-
linear wave equations. It arises in nonlinear optics, plasma physics and quantum
field theory. This equation has attracted much attention in studying condensed
matter physics, in investigating the interaction of solitons in collisionless plasma,
the recurrence of initial states [2]. Due to these reasons, the Klein-Gordon equa-
tions have been the focus of a great deal of studies in that either proofs of
c© Springer Nature Switzerland AG 2019
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the existence of solutions or seeking analytical and numerical solutions were
considered. There are many researchers who used various approaches [3–14] to
produce the solutions of the Klein-Gordon equation. Although the equation has
been extensively studied, it is still a problem of continuing interest because
different physical phenomena are modeled by the Klein-Gordon equation. It is
desirable to use higher-order numerical schemes to obtain significantly accurate
and numerically more economic responses of many problems. As pointed out
in [15], the high-order schemes are not only accurate and effective but also can
give rise to satisfactory results with less number of grid points. The current
paper, therefore, explores the utility of two high order schemes named sixth and
eighth-order finite difference (FD6 and FD8) to solve different forms of the non-
linear Klein-Gordon equations. These methods are applied for discretizing spatial
derivatives. Then, the third-order strong stability preserving Runge-Kutta (SSP-
RK3) method is accepted to deal with the temporal derivation of the processes.
The computed results are compared with available results in the literature and
thus the accuracy of them have been shown in terms of some error norms. This
paper is arranged as follows. In Sect. 2, the model equation called the general
form of one-dimensional Klein-Gordon equation is introduced. In Sect. 3, FD6
and FD8 schemes for spatial discretization, and the SSP-RK3 approximation
for the time integration are presented. In order to demonstrate the applicability
and efficiency of the proposed methods, numerical experiments are conducted
in Sect. 4. Finally, conclusions are given that briefly summarize the results in
Sect. 5.

2 The Model Equation

The following Klein-Gordon equation

utt + αuxx + βu + γuk = f(x, t), a ≤ x ≤ b, t ≥ 0 (1)

with the initial and boundary conditions

u(x, 0) = g1(x), ut(x, 0) = g2(x), u(a, t) = g3(a, t), u(b, t) = g4(b, t) (2)

where α, β and γ are known constants, f(x, t), g1, g2, g3, g4 are known functions,
and unknown function u(x, t) are considered in this paper. In order to assess
the applicability and accuracy of the high order finite difference methods for
considered problems, different forms of the nonlinear Klein-Gordon equation
mentioned above are taken into consideration.

3 Discretizations

3.1 Spatial Variation via High-Order FD Schemes

Spatial derivatives are evaluated by various orders of finite difference schemes.
At first, the domain of the problem [a, b] is divided into N subintervals as follows

a = x1 < x2 < ... < xN < xN+1 = b, h = Δx = xi+1 − xi
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for i = 1, 2, ..., N . Thus, the numerical solution of u is denoted by un
i at grid

point (xi, t
n). To discretize the term uxx in Eq. (1), the FD6 and FD8 schemes

are derived for the second order derivatives. The second order spatial derivative
u′′

i at point i can be approximated by the following (R+L)-order finite difference
scheme using (R + L + 1)-point stencil

u′′
i =

1
h2

R∑

j=−L

aj+Lui+j , 1 ≤ i ≤ N + 1. (3)

In the above formulae, R and L indicate the number of grid points in the right
and left hand sides for the taken stencil, respectively. At internal points, R and
L are equal while they are different for the boundary nodes. The coefficients aj

are unknown constants which need to be known at each point i. To determine
the coefficients aj , Taylor series expansion is used with 7-point stencil generating
the FD6 schemes. After these operations, the computed values of aj belonging
to the FD6 are written into matrix forms as follows:

A =
1

180

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

812 −3132 5265 −5080 2970 −972 137 0 . . . . . . 0
137 −147 −255 470 −285 93 −13 0 . . . . . . 0
−13 228 −420 200 15 −12 2 0 . . . . . . 0
2 −27 270 −490 270 −27 2 0 . . . . . . 0
0 2 −27 270 −490 270 −27 2 0 . . . 0
0 0 2 −27 270 −490 270 −27 2 0 0
...
0 . . . . . . 0 2 −12 15 200 −420 228 −13
0 . . . . . . 0 −13 93 −285 470 −255 −147 137
0 . . . . . . 0 137 −972 2970 −5080 5265 −3132 812

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Thus, the second order spatial derivative term can be re-written into matrix
form as follows:

U ′′ = AU

where U = (u1, u2, ..., uN+1)T . The coefficients aj for FD8 schemes are deter-
mined by using 9-point stencil in a similar way (see [16]).

3.2 Temporal Variation via Third-Order Strong Stability Preserving
Runge-Kutta Method

After application of the FD techniques to the related equation, the equation
can be reduced into a set of ordinary differential equations in time. Then the
governing equation becomes

d2ui

dt2
= Pui (4)

where P indicates a spatial linear/nonlinear differential operator. The spatial
terms are approximated by the schemes. To solve Eq. (4), the SSP-RK3 is
applied. Each spatial derivative on the right hand side of Eq. (4) was computed
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using the present methods and then the semi-discrete Eq. (4) was solved consid-
ering the SSP-RK3 through the following process:

u
(1)
i = um

i + ΔtPum
i ,

u
(2)
i =

3
4
um

i +
1
4
u
(1)
i +

1
4
ΔtPu

(1)
i ,

um+1
i =

1
3
um

i +
2
3
u
(2)
i +

2
3
ΔtPu

(2)
i .

To use these operations, Eq. (4) was re-writen as a system of first-order ordinary
differential equations.

It is well-known that several factors such as computer speed, available mem-
ory, desired accuracy and stability influence the choice of time integration tech-
nique. For solving hyperbolic conservation laws with stable spatial discretiza-
tions, Gottlieb et al. [17] developed a high-order SSP time discretization tech-
nique. As was pointed out by them, there is no stability criterion for fully discrete
methods where P is nonlinear, unlike in the case of linear operators. However,
the SSP methods guarantee the stability properties expected of the forward
Euler method [17]. Notice that it is possible to use existing stability conditions
when the problems are linearized. It can be recognized that the linearization of
a model leads to loss of originality of the physical problem.

4 Numerical Experiments

The above approaches are applied to obtain numerical solutions for certain forms
of the nonlinear Klein-Gordon equation. Three examples are considered to show
the applicability and efficiency of the proposed methods. The numerical compu-
tations have been performed using uniform grids. To show the accuracy of the
schemes, the following error norms

L∞ = max |uexact
i − unumerical

i |, RMS =

√∑N+1
i=1 |uexact

i − unumerical
i |2

N + 1

are used via the corresponding exact solutions and the results are compared with
available results in the literature.

Example 1. The following nonlinear and nonhomogenous form of the Klein-
Gordon equation

utt = uxx − u2 + 6xt(x2 − t2) + x6t6,

is taken with the initial conditions u(x, 0) = 0, ut(x, 0) = 0 where 0 ≤ x ≤ 1.
The exact solution is given by u(x, t) = x3t3. For this example, the RMS and
L∞ error norms of the proposed schemes are calculated up to t = 6 and are
documented in Table 1 together with the literature results. As seen in Table 1,
the results computed with less grid points are relatively more accurate than the
literature results given in the table.
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Table 1. The RMS and L∞ errors of the presented methods at various times for
Example 1

FD6 FD8 Ref. [12] Ref. [10] Ref. [6]
Δt = 0.00001, h = 0.1 Δt = 0.00001, h = 0.1 Δt = 0.0001, h = 0.05 Δt = 0.00005, h = 0.01 Δt = 0.0001, h = 0.02

t L∞ RMS L∞ RMS L∞ RMS L∞ RMS L∞ RMS

1 1.50E-05 6.36E-06 1.50E-05 6.36E-06 7.80E-06 4.86E-06 5.87E-04 1.92E-04 1.10E-05 5.47E-06
2 6.00E-05 2.54E-05 6.00E-05 2.54E-05 1.23E-04 7.77E-05 4.66E-03 2.15E-03 1.65E-04 1.15E-04
3 1.35E-04 5.73E-05 1.35E-04 5.73E-05 5.30E-04 2.45E-05 1.51E-02 4.92E-03 5.97E-04 3.24E-04
4 2.40E-04 1.02E-04 2.10E-04 1.03E-04 1.86E-03 9.70E-04 3.42E-02 8.47E-03 1.83E-03 9.77E-04
5 3.50E-04 1.47E-04 4.20E-02 1.80E-02 3.52E-03 1.90E-03 6.32E-02 1.30E-02 3.69E-03 1.90E-03
6 2.85E-02 1.04E-02 — — — — — — — —

Example 2. Now, the following cubically nonlinear homogenous Klein-Gordon
equation

utt =
5
2
uxx − u − 3

2
u3

is taken with the interval 0 ≤ x ≤ 1. The initial and boundary conditions are
given by

u(x, 0) =

√
2
3

tan(

√
2
9
x), ut(x, 0) =

1
2

√
2
3

√
2
9

sec2(

√
2
9
x),

u(0, t) =

√
2
3

tan(

√
2
9

t

2
), u(1, t) =

√
2
3

tan(

√
2
9
(1 +

t

2
))

with the exact solution

u(x, t) =

√
2
3

tan(

√
2
9
(x +

t

2
)).

The L∞ and RMS error norms of the proposed schemes are calculated at differ-
ent time t and presented in Table 2 together with some available results in the
literature. It can be seen from the corresponding table that the results especially
produced by the FD6 scheme are in good agreement with the compared results.
Furthermore, the number of grid points used in the proposed schemes is less
than the number of grid points used in the literature works. On the other hand,
the results revealed that the FD8 scheme starts to lose the accuracy earlier than
the FD6 scheme, because in higher order methods the overflow can be seen more
quickly as compared to lower order methods.

Example 3. As a final example, a quadratically nonlinear, nonhomogenous form
of the Klein-Gordon equation is taken by

utt = uxx − π2

4
u − u2 + x2(sin

πt

2
)2

over 0 ≤ x ≤ 1 with the initial and boundary conditions

u(x, 0) = 0, ut(x, 0) =
πx

2
, u(0, t) = 0, u(1, t) = sin

πt

2
extracted from the exact solution u(x, t) = x sin πt

2 .
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Table 2. The RMS and L∞ errors of the presented methods at various times for
Example 2

FD6 FD8 Ref. [6] Ref. [8]

Δt = 0.001, h = 0.1 Δt = 0.001, h = 0.1 Δt = 0.001, h = 0.01 Δt = 0.0001

t L∞ RMS L∞ RMS L∞ RMS L∞ RMS

1 8.90E-08 4.89E-08 4.89E-07 2.00E-07 4.08E-05 4.06E-06 6.12E-06 3.56E-06

2 2.80E-06 1.61E-06 5.97E-04 3.30E-04 1.58E-04 1.57E-05 2.22E-05 1.35E-05

3 7.08E-05 4.40E-05 1.63E-00 7.33E-01 6.48E-04 6.45E-05 9.13E-05 5.42E-05

4 2.56E-03 1.07E-03 — — 5.36E-03 5.33E-03 7.79E-04 4.48E-04

Ref. [10] Ref. [11] Ref. [14]

Δt = 0.00005, h = 0.01 Δt = 0.001, h = 0.01 Δt = 0.00001, h = 0.00625

t L∞ RMS L∞ RMS L∞ RMS

1 1.42E-04 6.62E-05 3.57E-05 2.23E-06 1.36E-07 7.45E-08

2 4.66E-04 1.54E-04 1.32E-04 7.43E-06 9.96E-07 7.15E-07

3 1.95E-03 4.93E-04 4.29E-04 2.18E-05 6.32E-06 4.59E-06

4 2.82E-02 7.15E-03 2.18E-03 8.63E-05 1.99E-04 1.33E-04

Table 3. The RMS and L∞ errors of the present methods for Example 3

FD6
t = 0.1 t = 1 t = 2 t = 3 t = 4

Δt h L∞ RMS L∞ RMS L∞ RMS L∞ RMS L∞ RMS

0.001 0.1 3.13E-07 1.49E-07 3.60E-05 2.44E-05 6.71E-05 4.45E-05 1.19E-04 6.88E-05 3.66E-04 2.09E-04
0.05 3.27E-07 1.60E-07 3.62E-05 2.50E-05 6.78E-05 4.58E-05 1.73E-04 1.08E-04 4.75E-03 1.87E-03

0.0001 0.1 3.16E-08 1.50E-08 3.60E-06 2.44E-06 6.67E-06 4.45E-06 1.15E-05 6.76E-06 3.05E-05 1.75E-05
0.05 3.30E-08 1.62E-08 3.62E-06 2.50E-06 6.66E-06 4.56E-06 1.33E-05 7.98E-06 1.67E-04 9.21E-05

0.00001 0.1 3.16E-09 1.50E-09 3.60E-07 2.44E-07 6.67E-07 4.45E-07 1.14E-06 6.75E-07 2.99E-06 1.72E-06
0.05 3.30E-09 1.62E-09 3.62E-07 2.50E-07 6.65E-07 4.56E-07 1.30E-06 7.82E-07 1.61E-05 8.60E-06

t = 5 t = 6 t = 7 t = 8
Δt h L∞ RMS L∞ RMS L∞ RMS L∞ RMS

0.001 0.1 2.18E-03 1.48E-03 1.20E-02 8.70E-03 1.07E-01 4.89E-02 9.56E-01 5.82E-01
0.05 1.36E-01 6.04E-02 4.52E-00 2.06E-00 — — — —

0.0001 0.1 2.11E-04 1.26E-04 1.20E-03 8.21E-04 7.37E-03 4.45E-03 5.90E-02 2.75E-02
0.05 3.65E-03 1.58E-03 7.02E-02 3.54E-02 2.30E-00 1.04E-00 — —

0.00001 0.1 2.07E-05 1.23E-05 1.21E-04 8.13E-05 7.05E-04 4.46E-04 5.73E-03 2.62E-03
0.05 3.17E-04 1.47E-04 6.55E-03 2.96E-03 1.86E-01 8.49E-02 4.32E-00 2.11E-00

FD8
t = 0.1 t = 1 t = 2 t = 3 t = 4

Δt h L∞ RMS L∞ RMS L∞ RMS L∞ RMS L∞ RMS

0.001 0.1 3.15E-07 1.49E-07 3.64E-05 2.44E-05 4.16E-04 1.62E-04 2.99E-02 1.48E-02 5.09E-00 2.29E-00
0.05 3.27E-07 1.61E-07 5.03E-05 2.82E-05 2.02E-01 6.15E-02 — — — —

0.0001 0.1 3.18E-08 1.50E-08 3.63E-06 2.44E-06 3.87E-05 1.51E-05 2.57E-03 1.19E-03 3.81E-01 1.78E-01
0.05 3.30E-08 1.62E-08 3.91E-06 2.71E-06 1.29E-02 3.14E-03 — — — —

0.00001 0.1 3.18E-09 1.50E-09 3.63E-07 2.44E-07 3.85E-06 1.50E-06 2.53E-04 1.17E-04 3.69E-02 1.73E-02
0.05 3.30E-09 1.62E-09 3.80E-07 2.70E-07 1.23E-03 2.97E-04 8.12E-00 1.96E-00 — —

t = 5 t = 6 t = 7 t = 8
Δt h L∞ RMS L∞ RMS L∞ RMS L∞ RMS

0.001 0.1 — — — — — — — —
0.05 — — — — — — — —

0.0001 0.1 — — — — — — — —
0.05 — — — — — — — —

0.00001 0.1 3.26E-00 1.52E-00 — — — — — —
0.05 — — — — — — — —
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The error norms are calculated for various values of Δt and h up to times
t = 8, and are presented in Table 3. It can be said from the table that the
accuracy of the suggested schemes are quite high especially for relatively small
time values. It is also clear that the error norms decrease as the values of Δt
decrease. However, if the parameter h is decreased simultaneously together with
the value of Δt, the errors tend to increase in time. The results also revealed
that the FD8 scheme starts to lose the accuracy earlier than the FD6 scheme as
in the previous example.

The average absolute errors and convergence rate (CR) of the proposed
schemes are produced for values of Δt at t = 2 in Table 4. The numerical rate
of convergence (CR) has been studied to know about the convergency of the
schemes. The CR values are calculated using the following formula:

CR ≈ log(E(Δt1)/E(Δt2))
log(Δt1/Δt2)

,

where E(Δtj) is the average absolute error when using the time steps Δtj .

Table 4. The CR values of the present methods with h = 0.1 at t = 2 in Example 3

FD6 FD8

Δt Average absolute error CR Δt Average absolute error CR

1/16 3.0584E-01 - 1/16 7.0698E+01 -

1/20 1.0749E-01 4.69 1/20 1.1676E+01 8.07

1/24 3.1030E-02 6.82 1/24 2.4932E+00 8.47

It can be observed from the examples that the produced results are satisfac-
tory until a certain time t, but this may not always be the case for large time
values. This is understandable since the proposed methods are explicit. To over-
come this drawback, an exponential, implicit or a finite element method [8,11]
etc. can be preferred.

5 Conclusions

In this paper, high-order difference schemes combined with the SSP-RK3 have
been proposed to efficiently solve the nonlinear Klein-Gordon equations. The
validity and accuracy of the numerical models have been verified through the
computed results and the literature. The results indicate that the corresponding
schemes have been seen to be reliable and easy to use. Furthermore, the results
produced with relatively less grid points have been understood to be more accu-
rate than some available results in the literature. It has been revealed that pro-
posed techniques have been realized to be very good alternatives to some existing
ones in solving physical problems represented by the Klein-Gordon equations.
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