
Dalibor Klusáček
Walfredo Cirne
Narayan Desai (Eds.)

 123

LN
CS

 1
13

32

22nd International Workshop, JSSPP 2018
Vancouver, BC, Canada, May 25, 2018
Revised Selected Papers

Job Scheduling Strategies
for Parallel Processing

Lecture Notes in Computer Science 11332

Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, Lancaster, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Friedemann Mattern
ETH Zurich, Zurich, Switzerland

John C. Mitchell
Stanford University, Stanford, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

C. Pandu Rangan
Indian Institute of Technology Madras, Chennai, India

Bernhard Steffen
TU Dortmund University, Dortmund, Germany

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

More information about this series at http://www.springer.com/series/7407

http://www.springer.com/series/7407

Dalibor Klusáček • Walfredo Cirne
Narayan Desai (Eds.)

Job Scheduling Strategies
for Parallel Processing
22nd International Workshop, JSSPP 2018
Vancouver, BC, Canada, May 25, 2018
Revised Selected Papers

123

Editors
Dalibor Klusáček
CESNET
Prague, Czech Republic

Walfredo Cirne
Google
Mountain View, CA, USA

Narayan Desai
Google
Seattle, WA, USA

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISBN 978-3-030-10631-7 ISBN 978-3-030-10632-4 (eBook)
https://doi.org/10.1007/978-3-030-10632-4

Library of Congress Control Number: 2018965504

LNCS Sublibrary: SL1 – Theoretical Computer Science and General Issues

© Springer Nature Switzerland AG 2019
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors, and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, express or implied, with respect to the material contained herein or for any errors or
omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

https://doi.org/10.1007/978-3-030-10632-4

Preface

This volume contains the papers presented at the 22nd workshop on Job Scheduling
Strategies for Parallel Processing that was held in Vancouver, Canada, on May 25, 2018,
in conjunction with the 32nd IEEE International Parallel and Distributed Processing
Symposium (IPDPS 2018). The proceedings of previous workshops are also available
from Springer as LNCS volumes 949, 1162, 1291, 1459, 1659, 1911, 2221, 2537, 2862,
3277, 3834, 4376, 4942, 5798, 6253, 7698, 8429, 8828, 10353, and 10773.

This year 12 papers were submitted to the workshop, of which we accepted seven.
All submitted papers went through a complete review process, with the full version
being read and evaluated by an average of four reviewers. We would like to especially
thank to our Program Committee members and additional reviewers for their will-
ingness to participate in this effort and their excellent, detailed, thoughtful reviews.

From its very beginning, JSSPP has strived to balance practice and theory in its
program while encouraging vivid discussions with the audience. This combination was
repeatedly shown to provide a rich environment for technical debate about scheduling
approaches. This year, the workshop opened with a keynote delivered by John Wilkes.
Principal Engineer at Google, John motivated and described Google’s Flex, the key
piece of Google’s resource management system. The main goal of Flex is to assure that
internal users have access to enough resources to meet their business needs. Doing it
efficiently, reliably, and scalably (i.e., with little human intervention) is very chal-
lenging. John described how techniques like controlled over-subscription, risk man-
agement, and leveraging different service-level objectives are used to meet this
challenge. The presentation is available at: http://jsspp.org/papers18/Google-Flex-
JSSPP.pdf.

Papers accepted for this year’s JSSPP focused on several interesting problems in
resource management and scheduling domain. The first two papers discuss the issues
related to imprecise job walltimes estimates. Job walltimes estimates, usually specified
by users, are known to be very imprecise, which causes problems both to the users and
to the scheduling policies. Soysal et al. present a novel approach to use job metadata for
job classification and improved walltime prediction. Klusáček et al. present an
experimental analysis that discusses how the use of walltime predictors impacts the
actual performance of a job scheduler.

Azevedo and Suter present an experience report from a real infrastructure,
describing their efforts to reduce the need for a “human expert” when scheduling large
HTC workloads in a system that is subject to many operational constraints that may
impede the optimization efforts of the scheduler.

Merzkyet et al. describe a new pilot-based scheduling system called
RADICAL-Pilot. Unlike classic HPC scheduling systems that schedule jobs on a
job-per-job basis, pilot-based systems decouple workload specification, resource
selection, and task execution via job placeholders and late-binding, helping to satisfy
the resource requirements of workloads comprising multiple tasks. In their paper,

http://jsspp.org/papers18/Google-Flex-JSSPP.pdf
http://jsspp.org/papers18/Google-Flex-JSSPP.pdf

Merzkyet et al. describe RADICAL-Pilot’s design, architecture, and implementation,
and characterize the good performance of RADICAL-Pilot when executing multiple
concurrent tasks.

Bashizade et al. propose a dynamic mechanism for sharing GPUs among multiple
tenants, i.e., users. This adaptive simultaneous multi-tenancy allows the GPU to be
shared among multiple kernels, as opposed to single-kernel multi-tenancy that only
runs one kernel on the GPU at any given time and static simultaneous multi-tenancy
that does not adapt to events in the system. By dynamically adjusting the kernels’
parameters at run-time — when a new kernel arrives or a running kernel ends —
Bashizade et al. show that system throughput is improved by an average of 9.8%,
compared with sequentially executed kernels.

Bhuiyan et al. present a stochastic optimization-based framework for robust
decision-making in the selection of distributed resources for scientific workflows with
uncertain demands over a given planning horizon. Using their novel two-stage
stochastic programming model for resource selection, they demonstrate up to 30% and
54% cost reductions relative to solutions lacking explicit considerations of demand
uncertainties for 24-month and 36-month planning horizons, respectively.

Last but not least, Abdelmoamen et al. present an approach to control resource usage
among multiple tenants in a distributed system. In their approach they built upon the
concept of actors, which are autonomous concurrently executing active objects. In this
paper, authors compare two different ways of supporting resource control for actor
systems built using the Scala’s Akka library. Abdelmoamen et al. then experimentally
establish the performance cost of using these approaches, as well as their impact on
resource utilization.

We hope you can join us at the next JSSPP workshop, this time in Rio de Janeiro,
Brazil, on May 24, 2019. Enjoy your reading!

September 2018 Walfredo Cirne
Narayan Desai

Dalibor Klusáček

VI Preface

Organization

Workshop Organizers

Walfredo Cirne Google, USA
Narayan Desai Google, USA
Dalibor Klusáček CESNET, Czech Republic

Program Committee

Henri Casanova University of Hawaii at Manoa, USA
Julita Corbalan Barcelona Supercomputing Center, Spain
Hyeonsang Eom Seoul National University, South Korea
Dror Feitelson Hebrew University, Israel
Liana Fong IBM T. J. Watson Research Center, USA
Eitan Frachtenberg Facebook, USA
Alfredo Goldman University of Sao Paulo, USA
Allan Gottlieb New York University, USA
Virajith Jalaparti Microsoft, USA
Kostantinos Karanasos Microsoft, USA
Zhiling Lan Illinois Institute of Technology, USA
Bill Nitzberg Altair, USA
P-O. Östberg Umeå University, Sweden
Larry Rudolph Two Sigma, USA
Gonzalo Rodrigo Berkeley Lab, USA
Uwe Schwiegelshohn TU Dortmund University, Germany
Yingchong Situ Google, USA
Leonel Sousa Universidade de Lisboa, Portugal
Mark Squillante IBM, USA
Wei Tang Google, USA
Ramin Yahyapour University of Göttingen, Germany

Additional Reviewers

Emilio Francesquini
Pedro Bruel
Sergio Santander-Jiménez

Contents

Analysis of Job Metadata for Enhanced Wall Time Prediction 1
Mehmet Soysal, Marco Berghoff, and Achim Streit

Evaluating the Impact of Soft Walltimes on Job Scheduling Performance. . . . 15
Dalibor Klusáček and Václav Chlumský

Reducing the Human-in-the-Loop Component of the Scheduling
of Large HTC Workloads. 39

Frédéric Azevedo, Luc Gombert, and Frédéric Suter

Using Pilot Systems to Execute Many Task Workloads
on Supercomputers . 61

Andre Merzky, Matteo Turilli, Manuel Maldonado, Mark Santcroos,
and Shantenu Jha

Adaptive Simultaneous Multi-tenancy for GPUs . 83
Ramin Bashizade, Yuxuan Li, and Alvin R. Lebeck

Stochastic Programming Approach for Resource Selection Under
Demand Uncertainty . 107

Tanveer Hossain Bhuiyan, Mahantesh Halappanavar, Ryan D. Friese,
Hugh Medal, Luis de la Torre, Arun Sathanur, and Nathan R. Tallent

Approaching Actor-Level Resource Control for Akka 127
Ahmed Abdelmoamen, Dezhong Wang, and Nadeem Jamali

Author Index . 147

Analysis of Job Metadata for Enhanced
Wall Time Prediction

Mehmet Soysal(B), Marco Berghoff, and Achim Streit

Steinbuch Centre for Computing (SCC), Karlsruhe Institute of Technology (KIT),
Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany

{mehmet.soysal,marco.berghoff,achim.streit}@kit.edu

Abstract. For efficient utilization of large-scale HPC systems, the task
of resource management and job scheduling is of highest priority. There-
fore, modern job scheduling systems require information about the esti-
mated total wall time of the jobs already at submission time. Proper
wall time estimates are a key for reliable scheduling decisions. Typically,
users specify these estimates, already at submission time, based on either
previous knowledge or certain limits given by the system. Real-world
experience shows that user given estimates are far away from accurate.
Hence, an automated system is desirable that creates more precise wall
time estimates of submitted jobs. In this paper, we investigate different
job metadata and their impact on the wall time prediction. For the job
wall time prediction, we used machine learning methods and the work-
load traces of large HPC systems. In contrast to previous work, we also
consider the jobname and in particular the submission directory. Our
evaluation shows that we can better predict the accuracy of jobs per
user by a factor of seven than most users, without any in-depth analysis
of the job.

1 Introduction

For the execution of applications on HPC systems, a so-called job is created
and submitted to a queue. A job describes the application, needed resources,
and requested wall time. An HPC scheduler manages the queue and orders the
jobs for efficient use of the resources. The jobs are waiting in the queue until
the requested resources are available. The scheduler allocates the resources and
starts the job [1]. For planning future usage of the resources, schedulers typically
use a wall time that corresponds to the maximum execution time for each job.
This wall time, also known as estimated job runtime or wall clock time, is usually
given by the user, or a default value of the system is applied.

Often, users could be able to do a reasonable job runtime estimation, because
they have detailed knowledge about their jobs. Nevertheless, the users tend to
request more time then the job needs, to prevent jobs being terminated too early
by the scheduler. This detailed knowledge is not available without interviewing
the user. Without this knowledge, it is difficult for the scheduler to perform
exact resource planning. Without accurate job wall time estimation, it is almost
c© Springer Nature Switzerland AG 2019
D. Klusáček et al. (Eds.): JSSPP 2018, LNCS 11332, pp. 1–14, 2019.
https://doi.org/10.1007/978-3-030-10632-4_1

http://crossmark.crossref.org/dialog/?doi=10.1007/>978-3-030-10632-4_1&domain=pdf
https://doi.org/10.1007/978-3-030-10632-4_1

2 M. Soysal et al.

impossible to make any preparation of the system for future job requirements.
This challenge is more important if the HPC systems become larger. For future
exascale systems, this can help to improve the overall efficiency significantly.
The project ADA-FS [2] (as part of the DFG-funded priority program 1648
“Software for Exascale Computing” SPPEXA) focuses on pre-staging of input
data for massively parallel jobs. Previous to the data staging it is going to deploy
a private filesystem across the allocated nodes. For this, it is essential to know on
which nodes a queued job will be executed. The scheduler predicts these nodes
based on the user given wall times of the already running jobs. Hence, precise
wall time estimates are critical.

In this paper, we take a closer look at the individual metadata and examine
their impact on the prediction. Machine learning methods are used to determine
the influence of additional metadata. In particular, we use previously unconsid-
ered metadata for jobs in the workload traces of our HPC systems to support
the machine learning methods, e.g., information about the working directory of
jobs, which typically contains valuable information about the jobs itself.

The remainder of this paper is structured as follows: In Sect. 2 we give a brief
introduction to machine learning and similar approaches. We show in Sect. 3 how
we prepared our historical data and also explain metrics to rate our results. In
Sect. 4 we present the results on the used metadata and finish with a conclusion
and outlook to future work in Sect. 5.

2 Related Work

2.1 Predicting Job Walltimes

Enhanced predictions of HPC job wall time can be used to improve the schedul-
ing performance [3]. With exact information about the runtime of a job, the
scheduler can predict more accurately when sufficient resources are available to
start queued jobs. [4]. However, the user requested wall time is not close to the
real used wall time. Gibbons [3,5], and Downey [4] use historical workloads to
predict the wall times of parallel applications. They predict wall times based
on templates. These templates are created by analyzing previously collected
metadata and grouped according to similarities. However, both approaches are
restricted to simple definitions. Smith et al. [6,7] applied greedy and genetic
search techniques to identify similar jobs and partition them into categories. The
studies as mentioned above use templates to find similarities and use these for
wall time predictions. In our evaluation, we do not use templates. In the recent
years, the machine learning algorithms are used to predict resource consumption
in several studies [5,8–13]. However, these studies do not take into account the
additional metadata we do. There is also a online prediction system available for
the XSEDE [14] resources – KARNAK [15]. Karnak also uses machine learning
to provide a prediction for users either when their job will start, or how long a
hypothetical job would wait before starting on selected XSEDE resources. For
this prediction the requested wall time, processors, queue, and the system has
to be provided. In our evaluation we consider more metadata.

Analysis of Job Metadata for Enhanced Wall Time Prediction 3

2.2 Machine Learning

Machine learning (ML) is about knowledge retrieval from data. It can also be
understood as statistical learning and predictive analytics. In general, machine
learning is a method to learn from a set of samples with a target value and
use the learned data to predict target values from unknown samples. For our
evaluation, we use a supervised machine learning approach [16].

In supervised learning, an algorithm is used to train a model with input data
and its associated output. This process is called training. A trained model pre-
dicts the desired output value from new input samples. However, the success of
the method relies on expert knowledge in the machine learning discipline, to pre-
process the input data and to select the correct model including the optimization
of parameters. These tasks are very complicated and time-consuming. Therefore,
there is a high demand for automatizing the machine learning process, so the
use of Automatic Machine Learning (AUTOML) has gained high acceptance in
a variety of domains. In our evaluation, the AUTOML library auto-sklearn [17]
(based on scikit-learn [18,19]) is used to automate the complex work of machine
learning optimization. In a classical ML process, different models and systems
are explored until the best is chosen. Auto-sklearn estimates the best performing
model out of a range of various classifiers or pre-processors. The training of the
model can be time and resource consuming until an accurate model is found.
Therefore, the training can be time-limited.

3 Methods

For the prediction of the wall times, machine learning models are trained with
historical workload data. A large collection of parallel workload traces is available
online [20]. The Parallel Workloads Archive offers workload traces in the stan-
dard workload format [21]. Our workload traces enhances this standard work-
load format. For example, it also offers the initial working directory (IWD) or
the jobname. Here, we have to note that these metadata fields may contain
privacy-sensitive information which should not be published online.

For our evaluation, we use the recorded workloads from two of the HPC-
systems at the Karlsruhe Institute for Technology, the ForHLR I + II [22,23].
These workload traces are generated for the accounting system to track resource
consumption. The reason for the job termination is not recorded in these logs,
e.g., for technical reasons, by the user, or by the scheduler. It should also be
taken into account that there are similar problems with the parallel workload
archives as described by Feitelson et al. [24].

Incorrect entries have been removed from our records. Also, jobs with shortly
used wall time are eliminated, which indicates technical problems. 177 users
remain for the ForHLR I cluster with a total of 169 358 jobs. 107 143 jobs from
135 users stay for the ForHLR II cluster for our evaluation. The used metadata
entries from the traces are explained below.

4 M. Soysal et al.

3.1 Job Metadata

The used walltime describes the real runtime used by the job in seconds. Jobs
with a used wall time less than 60 s are discarded, to ignore jobs with mistakes
in the start script. The aim of our approach is to predict a value close to the
used wall time, hence, this is the target value for the AUTOML model.

Like mentioned earlier, the human given requested walltimes are anything but
ideal. The requested wall time is considered because users might use smaller wall
times for short test runs and longer wall times for the simulation. The maximum
wall time on both machines is three days. The users can omit to specify the
requested wall time, then the default value of 10 min is automatically applied.
The requested wall time is an integer representing the required time in seconds.

Queues are associated with each job. Usually, the system operators define
available resources for the specific queues, e.g., higher priority or specialized
hardware. Both clusters offer a “develop” queue with higher priority but reduced
maximum wall time. The queue name is converted into a categorical value to
make it usable for machine learning.

The requested taskcount—the number of requested cores— is a user requested
value. Some users tend to use a small task count to test their simulations before
they run the real workload. Like wall time, the task count is used as an integer
value. For example, Fig. 1 shows a subset of categorized datasets from two users
based on the requested wall time and task count. User A with 249 jobs used two
different task counts. The used wall time of the jobs are within a small range and
can be easily predicted. User B has submitted 214 jobs, all with identical task
count. Here, the used wall time is spread over a large range. This shows that
the given input values (requested wall time and task count) are not sufficient to
predict the job wall time for user B.

Fig. 1. Categorized dataset for two users, based on the requested walltime and
taskcount.

Analysis of Job Metadata for Enhanced Wall Time Prediction 5

SubmitTime represents the time of job submission, StartTime the time when
the job starts to execute. The users usually observe jobs submitted during busi-
ness hours. Submitting jobs right before the weekend result in unobserved runs.
If users see unplanned behavior in their job, they will cancel them and restart.
While this behavior is very user specific, jobs submitted and started at the the
weekend will likely run until the simulation finishes or the requested wall time
ends and the job gets canceled by the scheduler. To take this observation into
account, the day of the week and the hour of the day was sampled from the
SubmitTime and StartTime (Table 1).

Table 1. Example creation of the input matrix for two jobnames.

jobname myjob jan feb 10 16 18

myjob jan.16-18 1 1 0 0 1 1

myjob feb.10-18 1 0 1 1 0 1

At least two job parameters are a free chosen string by the user, the jobname
and the initial working directory (IWD). While some users set a specific jobname
for each job, others do not use a jobname at all. There are also some users, which
use a specific jobname for specific parts of a work, e.g., preprocessing, simulation,
and post-processing. More interestingly, in real-world, it can often be observed,
that users organize their jobs by either jobname or the IWD. We split both
parameters into smaller components to gather additional information. For the
jobname, we use a generic regular expression to split the string by the following
delimiter " |-| |.". The split string is then converted to a matrix. For splitting
the IWD a regular expression is used to separate the directory path into three
components. The first part points to the parallel file systems. This separates
jobs using the regular home file system or the optimized and faster scratch file
system. The second and third parts contain the directory, where the third part
is the basename of the working directory. Table 2 shows a small example, how
directories are converted into a matrix for the machine learning.

Table 2. Example creation of the input matrix for directory names.

IWD /p1/joe-abc /p3/joe-xyz sim data run a data/run x 1 x 2 x 3

/p1/joe-abc/sim/run a 1 0 1 0 1 0 0 0 0

/p3/joe-xyz/data/run a 0 1 0 1 1 0 0 0 0

/p1/joe-abc/data/run/x 1 1 0 0 0 0 1 1 0 0

/p1/joe-abc/data/run/x 2 1 0 0 0 0 1 0 1 0

/p1/joe-abc/data/run/x 3 1 0 0 0 0 1 0 0 1

6 M. Soysal et al.

3.2 Metrics

The built-in metrics from the scikit library [25] are used to evaluate the trained
models. Scikit offers several metrics for the regression tasks. The R2 score (coeffi-
cient of determination) provides a metric how well the trained model will predict
new samples. It is defined by

R2(y, ŷ) = 1 −
∑nsamples−1

i=0 (yi − ŷi)
2

∑nsamples−1
i=0 (yi − ȳ)2

, (1)

where yi is the real used walltime and ŷi is the predicted value of the i-th sample,
and

ȳ =
1

nsamples

nsamples−1∑

i=0

yi, (2)

where ȳ as the average of yi. The best possible value is 1.0 which corresponds
to a perfect prediction. The R2 score can also be negative and indicates a badly
trained model [26]. Other metrics are the mean absolute error (MAE) [27] and
the median absolute error (MedAE) [28]. Both measure the difference between
predicted and used wall time. MAE is the mean over all pairs of predicted and
used wall time,

MAE(y, ŷ) =
1

nsamples

nsamples−1∑

i=0

|yi − ŷi|. (3)

MedAE is the median value of these pairs,

MedAE(y, ŷ) = median(|y1 − ŷ1|, . . . , |yn − ŷn|). (4)

In contrast to MAE, MedAE is robust against outliers. The individual users’
historical workload traces are divided into two parts. For this purpose, scikit-
learn provides a function that divides the data into a test dataset and a training
dataset. The default value is to use 25% as test data and the remaining as
training data. A random selection decides which records are added to which
set [29]. The training dataset is used to train the machine model, called training
set. A high R2 score for the training data implies that AUTOML was able to
find a good model. The other part is used to test the trained model, called test
set. A high R2 score on the test set indicates that the trained model makes good
predictions. In our case, this means that the predicted wall time of the job is
close to the used wall time. Figure 2 shows the results of AUTOML trained with
all above mentioned metadata: requested wall time, task count, initial working
dir, jobname, class, start time, and submit time. Each point represents a pair of
the R2 scores from the training and test set for a specific user of the machines
(ForHLR I+II). In Fig. 2 an accumulation of the pairs in the right upper half
can be seen, which indicate that a well-trained model for most of the users are
found. Some low scores for the ForHLR II users indicates, that better model for
ForHLR I users are found.

Analysis of Job Metadata for Enhanced Wall Time Prediction 7

Fig. 2. X-Axis R2 score on training samples, Y -Axis R2 score on test samples for
ForHLR I+II with 20 min auto-sklearn.

4 Results

The AUTOML model predicted wall times are compared to the user requested
wall times. Therefore, a separate model for each user is trained, and then the
R2 score for the prediction calculated. Figure 3 shows a cumulative distribution
plot of the accuracies for the models for the different users for the ForHLR I. For
the training of the AUTOML model, we used a training set with the requested
walltime as metadata. Besides, we extend the requested wall time with other
metadata records, e.g., req. wall time + task count, req. wall time + jobname,
req. wall time + start time, and so on. Finally, all available metadata are used to
train the AUTOML model. Ideally, a curve should be flat at the beginning and
rise late (high R2 prediction scores). In contrast, 80 % of users have a negative
R2 score based on user estimated wall times on ForHLR I. In Fig. 5a and b these
results are grouped into four categories of the R2 scores for the ForHLR I+II. The
ranges less 0 and from 0 to 0.5 show a really bad and bad trained model. Whereas
in the two ranges from 0.5 to 0.8 and 0.8 to 1 indicate a good and excellent
trained model. The four fields have been selected to illustrate the improvement
in the individual areas. Adding the different fields of the metadata the number
of user in the low R2 ranges decreases and increases in the high ranges. A model
trained with all metadata shows the best results. Similar results for ForHLR II
are plotted in Figs. 4 and 5b. Based on user estimated walltimes on ForHLR II
over 90 % of the users have a negative R2 score. In the Table 3 we used the
metric MAE (mean absolute error) to present the results based on time. For this
purpose, we have grouped the users according to the wall time accuracy. The
last line shows the MAE value of the user’s requested wall time as the prediction
and compares it to the used wall time of the jobs. While only eight users have
a mean absolute error less than 30 min, over 127 users are more than 6 h mean
absolute error with their requested wall time. While AUTOML achieves even
with a few metadata fields good results.

8 M. Soysal et al.

Fig. 3. X-axis R2 score on test samples, Y -axis cumulative distribution for ForHLR I.

Fig. 4. X-axis R2 score on test samples, Y -axis cumulative distribution for ForHLR II.

Table 3. Number of users categorized in mean absolute error (MAE) values for the
ForHLR I+II.

ForHLR I ForHLR II

Req. Walltime 30min 30min-3h 3h-6h 6h- 30min-3h 30min-3h 3h-6h 6h-

+req. Walltime 22 42 29 84 28 40 25 42

+IWD 28 44 34 71 32 47 14 42

+StartTime 29 49 41 58 30 45 25 35

+SubmitTime 32 47 43 55 31 42 25 37

+TaskCount 28 39 29 81 32 42 18 43

+Jobname 24 45 33 75 30 40 21 44

+Class 26 41 32 78 32 39 19 45

ALL 31 52 42 52 33 46 21 35

User 8 22 20 127 10 21 21 83

Analysis of Job Metadata for Enhanced Wall Time Prediction 9

It is noticeable that on both machines the start time and submit time make a
significant contribution to accuracy. In Figs. 6 and 7 we show the results using the
date components of submittime and starttime. For this, we used the requested
wall time together with the hour of day component (Fig. 6) of the start time and
submit time. The day of the week component is presented in Fig. 7. The third
line show the results of all job metadata (requested walltime, taskcount, initial
working dir, jobname, class, starttime, and submittime), while using only the
date components for submittime and starttime.

(a) Y -axis number of users for ForHLR I (b) Y -axis number of users for ForHLR II.

Fig. 5. Histogram of categories of the R2 score

Fig. 6. X-axis R2 score on test samples, Y -axis cumulative distribution for ForHLR I
with only StartTime hour.

All three lines in both figures are very close together, which indicates that
the components, hour of day and day of week, from StartTime and SubmitTime
provide significant information for the model.

In Figs. 8 and 9 the comparison of the user prediction and AUTOML trained
models can be seen. Figure 8 the mean aboslute error (MAE) in hours. Figure 9

10 M. Soysal et al.

Fig. 7. X-axis R2 score on test samples, Y -axis cumulative distribution for ForHLR I
with only StartTime weekday.

shows the cumulative distribution for the median absolute error (medAE) in
hours and in both Figures the horizontal line at 0.6 on the Y -Axis represents
60 % of the users. The user estimations, of both clusters, has a medAE deviation
of about 7.4 h. A model trained with AUTOML shows for 60 % of the users a
medAE of approximately 1 h on the ForHLR I and 1.4 h for the FORHLR II.
Figure 8 shows the difference for 60 % of the users using MAE as a metric.
Using AUTOML improves the accuracy from 15.4 h (user estimation) to 4.6
h (AutoML). The accuracy of the predictions for the ForHLR II improve from
almost 16 h to only 3 h by AUTOML. Taking into account that only job metadata
is used without a knowledge of the payload, this is a good result. More detailed
knowledge about the job could result in better predictions, but require in-depth
knowledge about the tools and applications of the users. This can not be done
in an automated way for the vast number of users.

Fig. 8. Comparison of MAE for ForHLR I+II. X-axis mean absolute error in hours,
Y-axis cumulative distribution.

Analysis of Job Metadata for Enhanced Wall Time Prediction 11

Fig. 9. Comparison of medAE for ForHLR I+II. X-axis Median absolute error in hours,
Y-Axis cumulative distribution.

A trained model can be saved to disk for model persistence. This file can be
then loaded within seconds and subsequently be used for further predictions [30].

The size of the compressed trained model files are up to 280 MB per user on
the ForHLR I and 214 MB on the ForHLR II. The average size is around 23 MB
per user. We use a generic regular expression of the job name and the working
directory, without any further processing. This leads to a drastic increase in the
dimension of the input data. For top users, this results in up to 5000 columns
for input parameters. These high numbers are caused by the user giving his
directories and jobs names which contain many characters of our regular expres-
sion. Analyzing this high dimension can cause the well-known problem “curse
of dimensionality” [31,32]. The problem describes issues with high dimensional
data. Data with increasing dimension becomes sparse. This sparsity is problem-
atic for any machine learning methods. In our case, a user creating a new direc-
tory for every job could make the information of the working directory useless
for us, because no more correlations can be recognized as each date is individual.
AUTOML use a principal component analysis [33] to reduce the dimension of
the input parameter by omitting meaningless columns. This helps to reduce this
issue, but this process needs more time and resources to recognize meaningless
dimensions. Another approach could be to apply a compression algorithm on
these user chosen strings or to discard meaningless names right before training
the machine model.

5 Conclusion and Future Work

In this work, we have shown that all the chosen job metadata contains infor-
mation which improves the wall time predictions. In particular, the previously
unnoticed metadata for the initial working directory and jobname provide an
additional source of information. Automatic prediction of job wall times is pos-
sible without an in-depth analysis of user data and behavior. Good prediction

12 M. Soysal et al.

models can be trained with very simple job metadata without having precise
knowledge of the user’s work. The expressiveness of the job metadata depends
on the operating model of each supercomputer and the way the users use that
machine.

A further examination with workload traces from other machines will be con-
ducted in the future, e.g., from other HPC systems in Germany, as our approach
uses general job metadata as long as enough metadata like the jobname and ini-
tial working directory is available. These are available in most schedulers. The
preprocessing of the data is also generic so that no cluster-specific parameters
are used.

Providing these predictions to the scheduler is the next step. This means that
the scheduler can use the prediction as a basis for its planning; instead, the user
requested wall time. The user requested wall time could be used as a guaranteed
wall time and the planning could be done with the predicted wall time.

Another necessary investigation is the accuracy of predictions over time. A
model that has been trained could become inaccurate over time due to a change
of the user behavior, i.e., submitting different workloads and applications in the
jobs. Another topic is the fundamental problem with unknown users, known as
the cold start. In our approach, a model is trained for each user. There is no
model for new users which we can use for prediction. A possible solution for the
cold start problem could be an evaluation with a model containing all the job
records of all users.

Acknowledgement. This work inside of the project ADA-FS is funded by the DFG
Priority Program “Software for Exascale Computing” (SPPEXA, SPP 1648), which is
gratefully acknowledged.

References

1. Hovestadt, M., Kao, O., Keller, A., Streit, A.: Scheduling in HPC resource manage-
ment systems: queuing vs. planning. In: Feitelson, D., Rudolph, L., Schwiegelshohn,
U. (eds.) JSSPP 2003. LNCS, vol. 2862, pp. 1–20. Springer, Heidelberg (2003).
https://doi.org/10.1007/10968987 1

2. Oeste, S., Kluge, M., Soysal, M., Streit, A., Vef, M., Brinkmann, A.: Exploring
opportunities for job-temporal file systems with ada-fs. In: 1st Joint International
Workshop on Parallel Data Storage and Data Intensive Scalable Computing Sys-
tems (2016)

3. Gibbons, R.: A historical application profiler for use by parallel schedulers. In: Feit-
elson, D.G., Rudolph, L. (eds.) JSSPP 1997. LNCS, vol. 1291, pp. 58–77. Springer,
Heidelberg (1997). https://doi.org/10.1007/3-540-63574-2 16

4. Downey, A.B.: Predicting queue times on space-sharing parallel computers. In:
11th International Proceedings on Parallel Processing Symposium, pp. 209–218.
IEEE (1997)

5. Gibbons, R.: A historical profiler for use by parallel schedulers. Master’s thesis,
University of Toronto (1997)

6. Smith, W., Foster, I., Taylor, V.: Predicting application run times using historical
information. In: Feitelson, D.G., Rudolph, L. (eds.) JSSPP 1998. LNCS, vol. 1459,
pp. 122–142. Springer, Heidelberg (1998). https://doi.org/10.1007/BFb0053984

https://doi.org/10.1007/10968987_1
https://doi.org/10.1007/3-540-63574-2_16
https://doi.org/10.1007/BFb0053984

Analysis of Job Metadata for Enhanced Wall Time Prediction 13

7. Smith, W., Taylor, V., Foster, I.: Using run-time predictions to estimate queue
wait times and improve scheduler performance. In: Feitelson, D.G., Rudolph, L.
(eds.) JSSPP 1999. LNCS, vol. 1659, pp. 202–219. Springer, Heidelberg (1999).
https://doi.org/10.1007/3-540-47954-6 11

8. Matsunaga, A., AB Fortes, J.: On the use of machine learning to predict the
time and resources consumed by applications. In: Proceedings of the 2010 10th
IEEE/ACM International Conference on Cluster, Cloud and Grid Computing, pp.
495–504. IEEE Computer Society (2010)

9. Kapadia, N.H., AB Fortes, J.: On the design of a demand-based network-computing
system: the purdue university network-computing hubs. In: Proceedings of the
Seventh International Symposium on High Performance Distributed Computing,
pp. 71–80. IEEE (1998)

10. Mu’alem, A.W., Feitelson, D.G.: Utilization, predictability, workloads, and user
runtime estimates in scheduling the ibm sp2 with backfilling. IEEE Trans. Parallel
Distrib. Syst. 12(6), 529–543 (2001)

11. Nadeem, F., Fahringer, T.: Using templates to predict execution time of scientific
workflow applications in the grid. In: Proceedings of the 2009 9th IEEE/ACM
International Symposium on Cluster Computing and the Grid, pp. 316–323. IEEE
Computer Society (2009)

12. Smith, W.: Prediction services for distributed computing. In: IEEE International
Parallel and Distributed Processing Symposium, IPDPS 2007, pp. 1–10. IEEE
(2007)

13. Tsafrir, D., Etsion, Y., Feitelson, D.G.: Backfilling using system-generated pre-
dictions rather than user runtime estimates. IEEE Trans. Parallel Distrib. Syst.
18(6), 789–803 (2007)

14. Xsede. https://www.xsede.org/
15. Karnak start/wait time predictions. http://karnak.xsede.org/karnak/index.html
16. Mohri, M., Rostamizadeh, A., Talwalkar, A.: Foundations of Machine Learning.

MIT Press, Cambridge (2012)
17. Feurer, M., Klein, A., Eggensperger, K., Springenberg, J., Blum, M., Hutter, F.:

Efficient and robust automated machine learning. In: Cortes, C., Lawrence, N.D.,
Lee, D.D., Sugiyama, M., Garnett, R. (eds.) Advances in Neural Information Pro-
cessing Systems, vol. 28, pp. 2962–2970. Curran Associates Inc., New York (2015)

18. Pedregosa, F., et al.: Scikit-learn: machine learning in Python. J. Mach. Learn.
Res. 12, 2825–2830 (2011)

19. Buitinck, L., et al.: API design for machine learning software: experiences from the
scikit-learn project. In: ECML PKDD Workshop: Languages for Data Mining and
Machine Learning, pp. 108–122 (2013)

20. Parallel Workloads Archive. http://www.cs.huji.ac.il/labs/parallel/workload/
21. The Standard Workload Format. http://www.cs.huji.ac.il/labs/parallel/workload/

swf.html
22. Forhlr i, kit/scc. https://www.scc.kit.edu/dienste/forhlr1.php
23. Forhlr ii, kit/scc. https://www.scc.kit.edu/dienste/forhlr2.php
24. Feitelson, D.G., Tsafrir, D., Krakov, D.: Experience with using the parallel work-

loads archive. J. Parallel Distrib. Comput. 74(10), 2967–2982 (2014)
25. scikit - regression metrics. http://scikit-learn.org/stable/modules/model

evaluation.html#regression-metrics
26. scikit - r2 score. http://scikit-learn.org/stable/modules/generated/sklearn.

metrics.r2 score.html#sklearn.metrics.r2 score
27. scikit - mean absolute error. http://scikit-learn.org/stable/modules/generated/

sklearn.metrics.mean absolute error.html#sklearn.metrics.mean absolute error

https://doi.org/10.1007/3-540-47954-6_11
https://www.xsede.org/
http://karnak.xsede.org/karnak/index.html
http://www.cs.huji.ac.il/labs/parallel/workload/
http://www.cs.huji.ac.il/labs/parallel/workload/swf.html
http://www.cs.huji.ac.il/labs/parallel/workload/swf.html
https://www.scc.kit.edu/dienste/forhlr1.php
https://www.scc.kit.edu/dienste/forhlr2.php
http://scikit-learn.org/stable/modules/model_evaluation.html#regression-metrics
http://scikit-learn.org/stable/modules/model_evaluation.html#regression-metrics
http://scikit-learn.org/stable/modules/generated/sklearn.metrics.r2_score.html#sklearn.metrics.r2_score
http://scikit-learn.org/stable/modules/generated/sklearn.metrics.r2_score.html#sklearn.metrics.r2_score
http://scikit-learn.org/stable/modules/generated/sklearn.metrics.mean_absolute_error.html#sklearn.metrics.mean_absolute_error
http://scikit-learn.org/stable/modules/generated/sklearn.metrics.mean_absolute_error.html#sklearn.metrics.mean_absolute_error

14 M. Soysal et al.

28. scikit - median absolute error. http://scikit-learn.org/stable/modules/generated/
sklearn.metrics.median absolute error.html#sklearn.metrics.median absolute
error

29. scikit - datasset spliting
30. scikit - model persistence. http://scikit-learn.org/stable/modules/model

persistence.html
31. Bellman, R.: Dynamic Programming. Courier Corporation, North Chelmsford

(2013)
32. Hughes, G.: On the mean accuracy of statistical pattern recognizers. IEEE Trans.

Inf. Theory 14(1), 55–63 (1968)
33. Pearson, K.: LIII. on lines and planes of closest fit to systems of points in space.

Lond, Edinb, Dublin Philos. Mag. J. Sci. 2(11), 559–572 (1901)

http://scikit-learn.org/stable/modules/generated/sklearn.metrics.median_absolute_error.html#sklearn.metrics.median_absolute_error
http://scikit-learn.org/stable/modules/generated/sklearn.metrics.median_absolute_error.html#sklearn.metrics.median_absolute_error
http://scikit-learn.org/stable/modules/generated/sklearn.metrics.median_absolute_error.html#sklearn.metrics.median_absolute_error
http://scikit-learn.org/stable/modules/model_persistence.html
http://scikit-learn.org/stable/modules/model_persistence.html

Evaluating the Impact of Soft Walltimes
on Job Scheduling Performance

Dalibor Klusáček(B) and Václav Chlumský

CESNET a.l.e., Brno, Czech Republic
{klusacek,vchlumsky}@cesnet.cz

Abstract. For two decades researchers have been analyzing the impact
of inaccurate job walltime (runtime) estimates on the performance of
job scheduling algorithms, especially in case of backfilling. Several stud-
ies analyzed the pros and cons of using accurate vs. inaccurate estimates.
Some researchers focused on the ways users of the system can be moti-
vated to provide more accurate runtime estimates. The recent addition of
so-called “soft walltime” parameter in the widely used PBS Professional
enables a system administrator to actually use some of these techniques
to refine user-provided walltime estimates. The obvious question of a sys-
tem administrator is whether such walltime predictions are useful and
“safe” and what will be the impact on the overall system performance.
In this work, we use several detailed simulations to analyze the actual
impact of using soft walltimes in a job scheduler, discussing the scenarios
when such “refined” estimates can be meaningfully used.

Keywords: Job · Scheduling · Backfilling · Walltime estimate
Soft walltime

1 Introduction

In 1995, the seminal EASY backfilling [23] algorithm has been introduced and
soon became defacto standard scheduling algorithm in all mainstream resource
managers. Since then, many variants of the baseline backfilling have been pro-
posed, e.g., backfilling with multiple job reservations [20], slack-based backfilling
supporting priorities and bounded wait times [27] or conservative backfilling
where each waiting job gets a reservation [18]. All variants of backfilling that use
job reservation(s) have one thing in common. They rely on (inaccurate) job wall-
time estimates when (A) establishing job reservation(s), i.e., when determining
the earliest expected start time for a queued job, and (B) when selecting “filler”
jobs that must not collide with these existing reservation(s).

1.1 Walltime Estimates

In practice, these walltime estimates are typically very inaccurate and overesti-
mated [10,18]. Existing computing systems often use a user’s walltime estimate
c© Springer Nature Switzerland AG 2019
D. Klusáček et al. (Eds.): JSSPP 2018, LNCS 11332, pp. 15–38, 2019.
https://doi.org/10.1007/978-3-030-10632-4_2

http://crossmark.crossref.org/dialog/?doi=10.1007/>978-3-030-10632-4_2&domain=pdf
https://doi.org/10.1007/978-3-030-10632-4_2

16 D. Klusáček and V. Chlumský

as the upper bound of job’s runtime and kill the job when it exceeds its estimated
walltime. This causes the relatively high overestimation. Second, scheduling sys-
tems also frequently classify jobs according to some default runtime limits. For
example, there can be different job queues with different maximum job runtime
defaults. Frequently, these default runtime values are then used by many jobs. As
a result, most jobs in the system use only few common estimates and therefore
“look similar” to the backfilling algorithm.

Overestimation and limited walltime variability then impede the effective-
ness of backfilling on many levels [29]. First, predicted start time(s) for waiting
job(s) are very inaccurate, while available “holes” in the schedule appear to
be too small for waiting jobs which decreases utilization and throughput. This
well-known fact motivated several researchers to either develop some form of
runtime prediction technique or find a significant incentive for individual users
to improve the accuracy of their runtime requests [4,16]. Although these efforts
were significant, they remained mostly “academic” and most systems still face
these problems due to several contributing factors.

We believe that there are two main reasons for this unfortunate situation that
are surprisingly simple. First, it is just unrealistic to expect that users will thor-
oughly analyze their walltime requirements, updating them with each new job
submission. Therefore, it is up to the resource manager or system administrator
to develop and apply some automated technique. However, for many years main-
stream resource managers were not prepared to provide safe ways how to refine
walltime estimates without killing a job when a refined (smaller) estimate is
exceeded. Fortunately, this situation has changed in 2017, when the mainstream
PBS Professional delivered the concept of so-called soft walltime [26].

1.2 Soft Walltimes in PBS Professional

Soft walltimes are designed to safely refine user-provided job walltime (runtime)
estimates. When enabled, the scheduler does not use user-provided estimates but
instead uses so-called soft walltimes for all scheduling operations. Most impor-
tantly, it uses them to create job reservation(s) and perform backfilling. Soft
walltimes are safe from the point of view of the user, because jobs are not killed
when their soft walltimes are exceeded. As usual, a job is only killed when it
exceeds its original, user-provided estimate. An important security feature is
that soft walltimes cannot be specified or modified by users. Only the manager
(system administrator) is allowed to setup them, typically using the so-called job
hook script. This guarantees that users cannot obtain unfair priority in back-
filling by providing very low (unrealistic) soft walltimes. More details on soft
walltimes can be found in the documentation [26].

1.3 Paper Contribution and Structure

The main contribution of this paper is an experimental analysis that uses sim-
ulation to demonstrate the effect of soft walltimes on the job scheduling perfor-
mance. Our goal was not the development of “yet another runtime prediction

Evaluating the Impact of Soft Walltimes on Job Scheduling Performance 17

technique”. Instead, we use four very trivial walltime prediction techniques to
define soft walltimes and then show that even with such trivial techniques the per-
formance of the system can improve significantly. The demonstration uses eight
publicly available workload traces with different job characteristics and different
estimate accuracies, showing the impact on average job wait times and slow-
downs. Importantly, we provide detailed wait time analysis using performance
heatmaps that show performance improvement or deterioration with respect to
different job sizes (i.e., job lengths and CPU requirements).

We believe that this new soft walltime functionality available in the open-
source PBS Professional together with our promising results—that are however
based on very simple prediction techniques—can motivate a new round of prac-
tically oriented research on backfilling and runtime prediction techniques.

This paper is organized as follows. Section 2 briefly discusses the related work.
Prediction techniques that were used to calculate soft walltimes in this paper are
presented in Sect. 3. Experimental setup and simulation results are presented in
Sect. 4. We conclude the paper in Sect. 5 and present possible future research
directions related to soft walltimes.

2 Related Works

Many works have addressed the problem of inaccurate runtime estimates and
the impact they have on the performance of backfilling. For quite some time,
it was believed that the inaccuracy has little [11] or even positive effect on
the performance of backfilling [4,10]. However, Tsafrir [29] has demonstrated
that accuracy is in fact favorable, similarly to the variability of estimates. The
major problem in some of those older works was that they used unrealistic
(deterministic/randomized) F -model [10] to synthetically generate (inaccurate)
user runtime estimates. However, as pointed out by Tsafrir [29,30], estimates
generated by F -model provide too much information to the scheduler and do
not correspond to the typical coarse-grained nature of user-provided estimates.

At the same time, researchers have considered ways how to obtain better job
runtime estimates. One way is to try to motivate users by incentives. Authors
of [16] have shown that even when users are motivated to improve the accuracy
of their estimates—with the assurance that their jobs will not be killed if the
improved estimates are too short—the accuracy of their new estimates was, on
average, only slightly better than their original estimates [16].

In such situation, it is not surprising that several automated techniques have
been proposed to establish more precise estimates. These techniques can be
divided into several categories according to the applied estimation technique.
The technique proposed in [5] uses repeated executions of the job to establish the
estimate while other solutions work on the basis of compile-time analysis [2,21]
or using a historical information together with the statistical analysis [25] of
previously executed jobs. Such approach has been applied in [24] where the
authors use a template-based approach to categorize and then predict job exe-
cution times. This approach is based on the observation that similar applications

18 D. Klusáček and V. Chlumský

are more likely to have similar runtimes than applications that have nothing in
common. The similarity is based on several parameters such as the type of the
job, the owner of the job, the requested number of CPUs, etc. According to
this information the jobs are divided into categories and the runtime estimate is
computed using historical data [24]. Such categorization according to similarity
has been used by many researchers [15,28].

Often, predicted runtimes were used to address a closely related issue of
estimating queue wait times [15,19,25]. For example, the mean queue delay
predictions are derived by simulating the future behavior of the scheduler [25],
or a uniform-log distribution is used to model the remaining lifetimes of jobs
currently executing to predict when required machine(s) will become available
and thus when the job waiting at the head of the queue will start [6]. Also,
fully automatic methods for predicting bounds (with specific levels of certainty)
on the amount of queue delay each individual job will experience have been
developed [19]. Although these methods often use some form of job runtime
prediction, they are out of the scope of this paper.

We kindly refer, e.g., to this survey [22] for more details concerning various
runtime prediction techniques.

3 Runtime Prediction Techniques

In order to evaluate the suitability of soft walltimes we have used four different
ways of computing such “refined” runtime estimate that we describe in this
section. We did not use any of the aforementioned advanced techniques but used
rather straightforward and easy-to-compute predictions.

Each technique is working on a per-user basis, i.e., a new runtime estimate
for a given job of a user is computed using information about previous jobs of
that user1. Our first and most trivial solution uses the actual runtime of the last
completed user’s job as the new soft walltime for the newly arrived user’s job (see
Formula 1). The second solution depicted by Formula 2 keeps track of all run-
times of all completed user’s jobs and uses the average runtime as the new soft
walltime. Although these techniques are truly easy to implement, they are not
very accurate. For example, if a given user is simultaneously using two different
types of calculations (represented by short and long jobs), then the first tech-
nique will often either overestimate or underestimate the runtime significantly
while the latter (average) will produce estimates that lie between those actual
runtimes, i.e., such estimates will be always either over or underestimated.

soft walltime(jobi) = runtime(jobi−1) (1)

soft walltime(jobi) =
1

i− 1

i−1∑

k=1

runtime(jobk) (2)

1 In case that a given user has no completed jobs so far then such historic information
is obviously missing, thus we use the user-provided estimate instead.

Evaluating the Impact of Soft Walltimes on Job Scheduling Performance 19

In order to address this issue, the third and fourth solutions are somehow
more complicated and do not use the actual job runtime directly. Instead,
they measure the fraction of job’s actual runtime and user’s estimate (see
walltimeusage in Formula 3), i.e., they measure to what extent the estimated
walltime was actually used. Since the user’s estimate is the upper bound of job
runtime2, walltimeusage falls between 0.0 and 1.0 representing the relative usage
of requested walltime. In other words, the technique measures by how much a
user overestimates job’s runtime. It is fair to mention, that similar approach has
been used in [28]. Once the walltimeusage is computed, it is used by our third
and fourth prediction techniques to generate a soft walltime.

The third prediction technique first computes the average of walltimeusage
values, i.e., it computes the fractions of used walltimes of all previously completed
jobs, and then multiplies the walltime estimate of a new job by the average of
these numbers (see Formula 4). The result is then used as the new soft wall-
time. The fourth technique—instead of using the average—keeps track of five
most recent completed jobs. For each such job it computes the walltimeusage
and then chooses the maximum and multiplies the job’s walltime estimate by
this maximum (see Formula 5). It represents a conservative strategy, where the
new soft walltime is calculated using the known relative accuracy of user’s recent
estimates. By choosing the maximum walltimeusage (i.e., choosing a job where
the difference between actual and estimated runtime was minimal), this tech-
nique aims to minimize the number of cases where the new soft walltime will be
underestimated. At the same time, by ignoring older jobs it reflects aging and
orients itself more on the recent user’s workload characteristics—which is not
the case when the average-based method is used instead.

walltimeusage(jobi) =
runtime(jobi)
walltime(jobi)

(3)

soft walltime(jobi) = walltime(jobi) · 1
i− 1

i−1∑

k=1

walltimeusage(jobk) (4)

soft walltime(jobi) = walltime(jobi) · max
i−5≤k≤i−1

walltimeusage(jobk) (5)

During our initial experiments, we have soon realized that out of these four
techniques, the worst results are typically obtained by the average-based tech-
niques (second and third technique). Therefore, in the remaining part of this
paper we only use the first (runtime of last completed job) and the fourth pre-
diction technique, depicting them as last runtime and min. diff., respectively.

4 Experimental Evaluation

This section describes the results of our evaluation, where we use aforemen-
tioned prediction techniques to generate soft walltime limits. Before we proceed
to the results of our simulations, we describe the workload traces used in our
experiments and the simulation methodology.
2 The system is configured to kill a job if it exceeds user’s walltime estimate.

20 D. Klusáček and V. Chlumský

4.1 Workload Log Characteristics

In this work, we use eight different workloads coming from different systems with
different parameters. Four workloads come from the Czech National distributed
computing infrastructure. This infrastructure is managed by two major resource
providers—CERIT-SC and MetaCentrum—each having its own job scheduler.
We use three workload traces from CERIT-SC [3] system and one trace from
MetaCentrum [17]. MetaCentrum 2013 trace includes 150 K jobs, while CERIT-
SC 2013, CERIT-SC 2015 and CERIT-SC 2017 contain 257 K, 102 K and 252 K
jobs, respectively. Remaining four workloads come from the Parallel Workloads
Archive (PWA) [8]. We have used HPC2N, KTH SP2, CTC SP2 and SDSC SP2
traces that contain 202 K, 28 K, 77 K and 59 K jobs, respectively.

These workloads were selected because they represent very different systems.
For example, both MetaCentrum and CERIT-SC are rather heterogeneous envi-
ronments, providing access to several different clusters simultaneously. MetaCen-
trum 2013 workload trace comes from 14 clusters, CERIT-SC 2013 comes from
4 clusters while CERIT-SC 2015 and CERIT-SC 2017 come from 6 and 7 clus-
ters, respectively. On the other hand, HPC2N, KTH SP2, CTC SP2 and SDSC
SP2 traces each represent workloads coming from a single homogeneous cluster.
Most importantly, these eight workloads exhibit very different levels of accuracy
and different variability of users’ runtime estimates. This is a very important
factor which allows us to analyze how soft walltimes behave subject to either
very imprecise or reasonably accurate estimates.

Figure 1 shows the cumulative distribution functions (CDF) of user esti-
mates and actual runtimes for all eight data sets. Clearly, MetaCentrum 2013
and CERIT-SC 2013 traces have very poor estimates, where most users chose
the default 24 h estimate. The situation is slightly better in CERIT-SC 2015
and CERIT-SC 2017 workloads because by that time the default 24 h estimate
has been disabled by system administrators and users were forced to specify
estimates upon job submissions. Still, the shape of the CDF resembles a stair-
case [29], which means that users preferred several common estimates, e.g., 2 h,
4 h, 24 h, 2 days or 1 week.

On the other hand, all workloads from PWA show better precision and vari-
ability of walltime estimates. It is also worth mentioning, that with the excep-
tion of HPC2N, these workloads do not contain jobs requesting walltime greater
than 24 h, which is another major difference with respect to MetaCentrum and
CERIT-SC traces.

4.2 Simulation Methodology

All experiments have been performed using Alea jobs scheduling simulator [13],
with EASY backfilling as the scheduling algorithm [23]. The simulation code can
be found at GitHub [1], while all traces can be obtained either from the Parallel
Workloads Archive [8] or from the JSSPP’s workloads archive [12].

Evaluating the Impact of Soft Walltimes on Job Scheduling Performance 21

Fig. 1. Cumulative distribution functions (CDF) of actual and estimated job runtimes
for all eight workloads.

Perfect Estimates, User-Provided Estimates and Soft Walltimes. The
experiments have been conducted as follows. First, we have simulated work-
load execution using perfect estimates, i.e., actual job runtimes were used by
EASY backfilling to determine job reservations and backfilling opportunities.
This setup represented our baseline ideal solution, where EASY is performing
“correct decisions” based on accurate information. In the second step, we have
used the user-provided estimates (without using soft walltimes). This setup rep-
resented the standard solution, i.e., the common situation which is normal in
systems where no additional walltime refinement is used. Finally, we have run
the same experiment while using soft walltimes in the EASY backfilling. As dis-
cussed in Sect. 3, only the last runtime and the min. diff. soft walltime prediction
techniques have been used because average-based prediction techniques did not
work very well.

Workload Replay and Dynamic Workload Adaptation. It is a common
practice to perform simulations by using job workloads in a static way. In such

22 D. Klusáček and V. Chlumský

scenario, a given workload is “replayed” in the simulator using original job sub-
mission timestamps. Although such experiments allow for easy comparison of
different simulation setups they are less likely to realistically “mimic” users
interactions and behavior. As explained in [31], job submission times in a real
system depend on how users react to the performance of previous jobs. More-
over, usually there are some logical structures of dependencies between jobs. It is
therefore not very reasonable to use a workload “as is” with fixed (original) job
submission timestamps, as the subsequent simulation may produce unrealistic
scenarios with either too low or too high system loads, skewing the final results
significantly.

Instead, dependency information and user behavior can be extracted from a
workload trace, in terms of job batches, user sessions and think times between
the completion of one batch and the submission of a subsequent batch. Then,
each user’s workload is divided into a sequence of dependent batches. During the
simulation, these dependencies are preserved, and a new user’s batch is submit-
ted only when all its dependencies are satisfied (previous “parent” batches are
completed). This creates the desired feedback effect, where job submission times
are not dictated by the workload but are the result of the (simulated) scheduler-
to-user interaction as users dynamically react to the actual performance of the
system. At the same time, major characteristics of the workload including job
properties or per-user job ordering are still preserved. More details can be found
at [13,31].

In order to get reasonable results we use a compromise simulation scenario,
combining both static and dynamic workloads. We use the dynamic approach of
Zakay and Feitelson [31] with our two most recent workloads (CERIT-SC 2017
and CERIT-SC 2015). These workloads are “fresh”, representing realistically
the system that we are trying to optimize in practice. For the six remaining
workloads we use the standard simulation practice, i.e., we use them statically.

Result Analysis. In case of both static and dynamic workloads we analyze
the performance using two different approaches. First, we measure the overall
impact of inaccurate walltimes and soft walltimes using the common average
wait time [7] and the average slowdown [9] criteria. These results are discussed
in Sect. 4.3. Next, we use detailed heatmaps [14] to better understand the impact
of estimates and soft walltimes on jobs with respect to their CPU and runtime
requirements. In a heatmap, a given metric is computed separately for each
square of that heatmap. A square (or a bucket) on a heatmap is defined by its
x and y coordinates and represents all jobs that fall into this category based
on their CPU (y-axis) and runtime requirements (x-axis). Heatmaps are very
useful visual aids allowing for quick and rather detailed result comparisons. These
detailed results based on heatmaps are presented in Sect. 4.4. Furthermore, when
the dynamic workload adaptation is used (CERIT-SC 2015/2017 workloads),
we provide an additional analysis that measures the impact that soft walltimes

Evaluating the Impact of Soft Walltimes on Job Scheduling Performance 23

have on individual jobs and users3. These additional results are also presented in
Sect. 4.4. Finally, we conclude our experiments with the discussion in Sect. 4.5.

4.3 Overall Results

We start our evaluation by focusing on the overall impact that inaccurate esti-
mates and soft walltimes have on the average wait time and slowdown. As
the baseline experiment we always use the results obtained when simulating
EASY backfilling using perfect estimates (i.e., estimate = runtime). Next we
measure the improvement or deterioration of average wait time and slowdown.
The improvement or deterioration is expressed as percentage and is computed
using Formula 6, where metricbaseline denotes the avg. wait time/slowdown of
the baseline solution (perfect estimates) and metricx is the value of avg. wait
time/slowdown of the solution where perfect estimates were replaced either with
the user-provided estimates (estimated) or soft walltimes (either last runtime or
min. diff.).

percentage =
metricbaseline −metricx

metricbaseline/100
(6)

If a given metric is improved (i.e., avg. wait time/slowdown is decreased)
then the resulting percentage is positive while a deterioration of a metric results
in a negative percentage. It is worth noticing that positive percentage cannot
exceed 100%, while negative percentage is not upper bounded4. The results
of this experiment are shown in Fig. 2 (avg. wait time) and Fig. 3 (avg. slow-
down), respectively. As discussed, for each workload trace we show the improve-
ment/deterioration obtained with respect to the baseline solution5.

Let us start with the average wait time. With the exception of HPC2N work-
load, the average wait times deteriorated when original user-provided estimates
(estimated) were used compared to a solution computed using perfect estimates.
Similarly, also the average slowdown of estimated deteriorated in all case, com-
pared to the baseline scenario. As discussed, e.g., in Tsafrir’s papers [29,30], this
is not surprising since less accurate and less variable estimates may worsen the
performance.

3 Unlike in the static scenario, user-oriented analysis makes a great sense when the
workload is dynamically adapted.

4 For example, if the result is 25% it means that, e.g., the original wait time was
decreased by 25%. On the other hand, if the result is −300%, it means that the
original wait time was increased by 300%, i.e., four times.

5 The actual average wait times of the baseline solution were as follows: CERIT-
SC 2015 (6.5 h), CERIT-SC 2017 (4.1 h), MetaCentrum 2013 (3.0 h), CERIT-
SC 2013 (6.0 h), HPC2N (4.2 h), KTH SP2 (1.8 h), CTC SP2 (3.8 h) and SDSC
SP2 (4.9 h). The average slowdowns of the baseline solution were following: CERIT-
SC 2015 (249.9), CERIT-SC 2017 (127.9), MetaCentrum 2013 (115.5), CERIT-
SC 2013 (620.7), HPC2N (143.2), KTH SP2 (105.8), CTC SP2 (49.9) and SDSC
SP2 (72.8).

24 D. Klusáček and V. Chlumský

Fig. 2. Avg. wait time improvement (+) and deterioration (−) for all eight workloads.

Fig. 3. Avg. slowdown improvement (+) and deterioration (−) for all eight workloads.

More interesting results are achieved by those two soft walltime-based predic-
tion techniques (last runtime or min. diff.). In this case we are not only interested
whether or not they improve/deteriorate the performance with respect to the
baseline solution but more importantly we focus how good or bad are they with
respect to (A) estimated solution and (B) each other. When the soft walltimes
are constructed using last runtime, the results are better with respect to esti-
mated in five workloads. In the remaining three workloads, using last runtime
as the soft walltime prediction technique actually deteriorates the performance,
both from the point of view of the avg. wait time and slowdown. The min. diff.

Evaluating the Impact of Soft Walltimes on Job Scheduling Performance 25

technique works better. It outperforms the estimated scenario in six workloads
(both wait time and slowdown). Also, it outperforms the results of last runtime
technique in six of eight workloads (both wait time and slowdown). Therefore,
from now on we will only consider the min. diff. soft walltime prediction tech-
nique in the following experiments.

What these results show is that it certainly makes sense to consider soft
walltimes in some cases. As can be seen, soft walltimes work best in the first
five or six workloads (six, if only min. diff. is considered). We now try to answer
the question why is it so. The main difference between the first five workloads
and the remaining three (KTH SP2, CTC SP2 and SDSC SP2) is that all of
them contain very long jobs that run/require more than 24 h. Also, all CERIT-
SC/MetaCentrum-based workloads have very poor user-provided runtime esti-
mates, compared to the remaining four traces. Clearly, the combination of long
jobs and poor original estimates increases the chance that even trivial predic-
tion technique such as min. diff. will produce a reasonable “mixture” of varying
estimates that are very useful when“filling the holes” in the schedule6.

Although our initial experiments shed some light on the problem, we now
proceed to a more detailed analysis. So far, we have only used the average wait
time/slowdown criteria which can be easily skewed by the long-tail effects of the
underlying job wait time and slowdown distributions. Therefore, in the following
section we use performance heatmaps [14] to better demonstrate the improving
effect of soft walltimes.

4.4 Detailed Performance Analysis Using Heatmaps

This analysis uses two different types of heatmaps. The first type is used to
show the distribution of jobs with respect to their actual runtime and CPU
requirements, i.e., it shows which job classes (sizes) are the most common ones
and which on the other hand are quite rare. The color scale of such heatmap
represents the number of jobs belonging to a given “bucket”.

The second type of heatmap is used to show the difference among average
wait times of two different simulation setups. We compare the average wait
time on a per “job bucket” basis. The color scale of such heatmap then shows
the differences between the avg. wait times of the baseline solution and either
estimated or min. diff. scenario. The result is either positive, negative or zero.
A positive value (shades of red) represents an improvement with respect to the
baseline solution (wait time of the baseline solution was higher), while a negative
value represents a deterioration with respect to the baseline solution (shades of
blue). A zero value represents no difference of average wait times (white color).

6 With only few estimates used throughout the whole workload, backfilling has signif-
icantly decreased opportunity to fill these holes, because “most jobs look the same”
and thus do not fit within available holes.

26 D. Klusáček and V. Chlumský

Dynamic Workloads. We start the discussion with our two dynamic
workloads—CERIT-SC 2015/2017. The heatmaps for these workloads are pre-
sented in Figs. 4 and 5. Each such figure shows the job distribution heatmap
(top), avg. job wait time difference heatmaps for baseline vs. estimated setup
(middle) and baseline vs. min. diff.-based soft walltimes (bottom).

Fig. 4. CERIT-SC 2015. Job distribution heatmap (top), avg. job wait time difference
heatmaps for baseline vs. estimated (middle) and baseline vs. min. diff. (bottom).
(Color figure online)

Evaluating the Impact of Soft Walltimes on Job Scheduling Performance 27

Fig. 5. CERIT-SC 2017. Job distribution heatmap (top), avg. job wait time difference
heatmaps for baseline vs. estimated (middle) and baseline vs. min. diff. (bottom).
(Color figure online)

As we can observe, the promising results related to soft walltimes that were
observed in Sect. 4.3 are confirmed by the (bottom) heatmaps in Figs. 4 and
5. Here, the bottom heatmaps—showing the avg. wait time difference between
baseline and soft walltime-based solution—are always “more red and less blue”
than middle heatmaps, in which the difference between the baseline solution

28 D. Klusáček and V. Chlumský

Fig. 6. Percentage of users with improved/deteriorated avg. wait times (top left), the
total saved/added wait time of jobs (top right), % of jobs with improved/deteriorated
avg. slowdown (bottom right) and % of jobs with improved/deteriorated avg. wait time
(bottom left).

and the solution based solely on user-provided runtime estimates is shown. This
demonstrates that the use of min. diff.-based soft walltimes helps to improve the
performance of EASY backfilling, reducing the average job wait time significantly
for most job “sizes”.

Accompanying results related to the two dynamic workloads are provided in
Fig. 6. Here we use several additional measurements (based on wait time and
slowdown) to further illustrate the overall positive effect that soft walltimes
create compared to the original user-provided estimates. Starting in the upper
left corner and moving clockwise, the figure shows the percentage of users with
improved/deteriorated average wait times, the total saved/added wait time of
jobs in the system, the percentage of jobs with improved/deteriorated average
slowdowns and finally the percentage of jobs with improved/deteriorated average
wait times.

These results confirm, that soft walltimes improve the overall performance of
the system. As the metrics indicate, many users now wait shorter and many jobs
now have better wait times and slowdowns. As a result, the system minimizes
overall waiting, as shown by the “total saved/added wait time” chart. Sure, every
improvement comes with a price and we can see some performance deterioration
for a fraction of jobs or users. However, the overall balance is always positive.

Evaluating the Impact of Soft Walltimes on Job Scheduling Performance 29

Static Workloads. Heatmap-based results for the remaining six static work-
loads are shown in Figs. 7, 8, 9, 10, 11 and 12. Again, the promising results of soft
walltimes that were observed for MetaCentrum 2013 and CERIT-SC 2013 work-
loads in Sect. 4.3 are confirmed by the heatmaps in Figs. 7 and 8. The improve-
ment obtained by soft walltimes (bottom heatmaps) is significant compared to

Fig. 7. MetaCentrum 2013. Job distribution heatmap (top), avg. job wait time differ-
ence heatmaps for baseline vs. estimated (middle) and baseline vs. min. diff. (bottom).

30 D. Klusáček and V. Chlumský

Fig. 8. CERIT-SC 2013. Job distribution heatmap (top), avg. job wait time difference
heatmaps for baseline vs. estimated (middle) and baseline vs. min. diff. (bottom).

the middle heatmaps which show the difference between baseline (perfect) solu-
tion and solution based on the inaccurate user-provided runtime estimates.

A different situation is visible in case of HPC2N (Fig. 9) and KTH SP2
(Fig. 10) workloads. Here we see that soft walltime-based solutions (bottom
heatmap) slightly improve average wait times for jobs requiring small amounts

Evaluating the Impact of Soft Walltimes on Job Scheduling Performance 31

Fig. 9. HPC2N. Job distribution heatmap (top), avg. job wait time difference heatmaps
for baseline vs. estimated (middle) and baseline vs. min. diff. (bottom).

of CPUs. The effect is more visible for HPC2N. On the other hand, wait times
of longer and more CPU demanding jobs are slightly increased (compared to
the middle heatmap). As the top heatmaps reveal, both HPC2N and KTH SP2
have large job concentrations in the upper half of the heatmap, meaning that
many jobs in the workload require only up to 32 CPUs. These are the same parts
where the improvement can be observed. Together, it help us to understand the

32 D. Klusáček and V. Chlumský

Fig. 10. KTH SP2. Job distribution heatmap (top), avg. job wait time difference
heatmaps for baseline vs. estimated (middle) and baseline vs. min. diff. (bottom).

average wait time results seen in the Fig. 2, where the setup involving soft wall-
times (min. diff.) slightly outperformed the setup using user-provided estimates.

Finally, Figs. 11 and 12 (SDSC SP2 and CTC SP2 workloads) show the two
situations in which soft walltimes based on min. diff. predictions do not work at
all. In case of SDSC SP2, setup involving soft walltimes behaves similarly to the

Evaluating the Impact of Soft Walltimes on Job Scheduling Performance 33

Fig. 11. SDSC SP2. Job distribution heatmap (top), avg. job wait time difference
heatmaps for baseline vs. estimated (middle) and baseline vs. min. diff. (bottom).

one relying on user-provided estimates, which corresponds to the observations in
Fig. 2. In case of CTC SP2, the use of soft walltimes deteriorates the performance
for nearly all job sizes, as demonstrates the bottom heatmap in Fig. 12. Again,
this heatmap corresponds to the bad average wait time result observed in Fig. 2.

34 D. Klusáček and V. Chlumský

Fig. 12. CTC SP2. Job distribution heatmap (top), avg. job wait time difference
heatmaps for baseline vs. estimated (middle) and baseline vs. min. diff. (bottom).

4.5 Discussion

The experiments presented in Sects. 4.3 and 4.4 clearly demonstrated that for
some workloads (and actual systems) even trivially constructed soft walltimes
may represent an interesting option compared to the imprecise, coarse-grained
user-provided estimates. On the other hand, it seem very likely that systems

Evaluating the Impact of Soft Walltimes on Job Scheduling Performance 35

that (A) have reasonably variable user runtime estimates, and (B) do not contain
long jobs, will not gain much improvement from presented techniques. This is not
surprising, because such workloads already offer a lot of backfilling opportunities.
Perhaps, it will be worth trying soft walltimes in such systems if some more
accurate prediction method is available.

One of the interesting features of soft walltimes is that they do not directly
rely on a user’s (un)willingness to provide reasonable guesses. In a saturated
system, where users compete for resources it would be very probable that some
users would try to cheat the scheduler, by providing long walltime limits and
(very) short soft walltimes. Without further “anti-cheating” mechanisms these
users would be favored by the backfilling and would degrade both the accu-
racy and fairness of the system. Therefore, the use of soft walltimes provided by
some “black box solution” will be more safe and fair than if users are allowed to
directly specify both walltimes and soft walltimes. Sure, since prediction tech-
niques usually use historic information concerning job runtimes, users can still
“game” the prediction system in an indirect fashion, e.g., by submitting large
numbers of very short jobs before submitting a very long computation. It is then
up to the system administrator to develop some form of an anti-cheating policy.

5 Conclusion and Future Work

In this paper, we have analyzed the suitability and impact of using soft walltimes
in parallel job scheduling. Soft walltimes clearly represent an interesting solution
for systems where users are either unable or unwilling to provide reasonably het-
erogeneous and/or accurate estimates. In such systems even very simple runtime
prediction techniques (like those used in this paper) can significantly improve
the performance of the scheduler through increasing the portfolio of jobs suitable
for backfilling.

On the other hand, our simulation results suggest that soft walltimes do not
improve the performance in systems where the user-provided runtime estimates
are already reasonably accurate or at least exhibit great variability. In such cases
our simple prediction techniques fail to deliver better solutions.

In the future, it would be very interesting to analyze whether more advanced
prediction techniques can deliver better performance. Here, it is important to
define what “better perfomance” means. Using our own experience as well as the
observations of other researchers it is highly likely that “better estimates” will
not always produce, e.g., better average wait time or slowdown. This is obvious
from the fact, that there are several examples (workloads) where the use of
perfect estimates (estimate = runtime) leads to worse average wait time and/or
slowdown, compared to the setup where the user-provided inaccurate estimates
are used instead. However, there are other important metrics that can benefit
from improved estimates. For example, the reliability of predicted start times of
jobs in a queue will improve if more accurate estimates are used. For some use
cases this improved predictability may represent more important role than, e.g.,
the wait time.

36 D. Klusáček and V. Chlumský

Last but not least, we see another promising direction of using soft walltimes
in systems with heterogeneous resources that have (significantly) different speeds
of CPUs, GPUs and I/O devices. MetaCentrum and CERIT-SC represent such
heterogeneous systems where different clusters are of different age and use differ-
ent CPU/GPU architectures with big differences in processing and I/O speeds
(local SSD scratch disks vs. local HDD vs. shared file system). In such systems,
it would be interesting to adapt user-provided estimates and/or soft walltimes
with respect to the actual machine being used. Our observations suggest that the
runtime of CPU/GPU intensive applications significantly decreases on modern
CPUs/GPUs while I/O intensive applications benefit from using fast local SSD
scratch disks. It seems promising to use a prediction technique to adapt soft
walltimes dynamically according to the performance characteristics of available
resources and expected application’s CPU/GPU and I/O demands.

Acknowledgments. We kindly acknowledge the support and computational
resources provided by the MetaCentrum under the program LM2015042 and the
CERIT Scientific Cloud under the program LM2015085, provided under the programme
“Projects of Large Infrastructure for Research, Development, and Innovations” and the
project Reg. No. CZ.02.1.01/0.0/0.0/16 013/0001797 co-funded by the Ministry of Edu-
cation, Youth and Sports of the Czech Republic. We also highly appreciate the access
to the workload traces provided by the Parallel Workloads Archive, MetaCentrum and
CERIT-SC.

References

1. Alea 4: Job scheduling simulator, February 2018. https://github.com/aleasimulator
2. Balasundaram, V., Fox, G., Kennedy, K., Kremer, U.: A static performance esti-

mator to guide data partitioning decisions. ACM SIGPLAN Not. 26(7), 213–223
(1991)

3. CERIT Scientific Cloud, February 2018. http://www.cerit-sc.cz
4. Chiang, S.-H., Arpaci-Dusseau, A., Vernon, M.K.: The impact of more accurate

requested runtimes on production job scheduling performance. In: Feitelson, D.G.,
Rudolph, L., Schwiegelshohn, U. (eds.) JSSPP 2002. LNCS, vol. 2537, pp. 103–127.
Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-36180-4 7

5. Devarakonda, M.V., Iyer, R.K.: Predictability of process resource usage: a measure-
ment based study on UNIX. IEEE Trans. Softw. Eng. 15(12), 1579–1586 (1989)

6. Downey, A.B.: Predicting queue times on space-sharing parallel computers. In:
11th International Parallel Processing Symposium, pp. 209–218 (1997)

7. Ernemann, C., Hamscher, V., Yahyapour, R.: Benefits of global Grid computing
for job scheduling. In: GRID ’04: Proceedings of the 5th IEEE/ACM International
Workshop on Grid Computing, pp. 374–379. IEEE (2004)

8. Feitelson, D.G.: Parallel workloads archive, February 2018. http://www.cs.huji.ac.
il/labs/parallel/workload/

9. Feitelson, D.G., Rudolph, L., Schwiegelshohn, U., Sevcik, K.C., Wong, P.: Theory
and practice in parallel job scheduling. In: Feitelson, D.G., Rudolph, L. (eds.)
JSSPP 1997. LNCS, vol. 1291, pp. 1–34. Springer, Heidelberg (1997). https://doi.
org/10.1007/3-540-63574-2 14

https://github.com/aleasimulator
http://www.cerit-sc.cz
https://doi.org/10.1007/3-540-36180-4_7
http://www.cs.huji.ac.il/labs/parallel/workload/
http://www.cs.huji.ac.il/labs/parallel/workload/
https://doi.org/10.1007/3-540-63574-2_14
https://doi.org/10.1007/3-540-63574-2_14

Evaluating the Impact of Soft Walltimes on Job Scheduling Performance 37

10. Feitelson, D.G., Weil, A.M.: Utilization and predictability in scheduling the IBM
SP2 with backfilling. In: 12th International Parallel Processing Symposium, pp.
542–546. IEEE (1998)

11. Guim, F., Corbalan, J., Labarta, J.: Prediction f based models for evaluating
backfilling scheduling policies. In: Eighth International Conference on Parallel and
Distributed Computing, Applications and Technologies (PDCAT 2007), pp. 9–17.
IEEE (2007)

12. Klusáček, D.: Workload traces from metacentrum and CERIT Scientific Cloud,
February 2018. http://jsspp.org/workload/

13. Klusáček, D., Tóth, Š., Podolńıková, G.: Complex job scheduling simulations with
Alea 4. In: Ninth EAI International Conference on Simulation Tools and Techniques
(SimuTools 2016), pp. 124–129. ACM (2016)

14. Krakov, D., Feitelson, D.G.: Comparing performance heatmaps. In: Desai, N.,
Cirne, W. (eds.) JSSPP 2013. LNCS, vol. 8429, pp. 42–61. Springer, Heidelberg
(2014). https://doi.org/10.1007/978-3-662-43779-7 3

15. Kumar, R., Vadhiyar, S.: Prediction of queue waiting times for metascheduling on
parallel batch systems. In: Cirne, W., Desai, N. (eds.) Job Scheduling Strategies
for Parallel Processing. LNCS, vol. 8828, pp. 108–128. Springer (2014)

16. Bailey Lee, C., Schwartzman, Y., Hardy, J., Snavely, A.: Are user runtime estimates
inherently inaccurate? In: Feitelson, D.G., Rudolph, L., Schwiegelshohn, U. (eds.)
JSSPP 2004. LNCS, vol. 3277, pp. 253–263. Springer, Heidelberg (2005). https://
doi.org/10.1007/11407522 14

17. MetaCentrum, February 2018. http://www.metacentrum.cz/
18. Mu’alem, A.W., Feitelson, D.G.: Utilization, predictability, workloads, and user

runtime estimates in scheduling the IBM SP2 with backfilling. IEEE Trans. Parallel
Distrib. Syst. 12(6), 529–543 (2001)

19. Nurmi, D., Brevik, J., Wolski, R.: QBETS: queue bounds estimation from time
series. In: Frachtenberg, E., Schwiegelshohn, U. (eds.) JSSPP 2007. LNCS, vol.
4942, pp. 76–101. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-
78699-3 5

20. PBS Works. PBS Professional 14.2, Administrator’s Guide, February 2018. http://
www.pbsworks.com

21. Sarkar, V.: Determining average program execution times and their variance. In:
ACM SIGPLAN Conference on Programming Language Design and Implementa-
tion, pp. 298–312 (1989)

22. Seneviratne, S., Witharana, S.: A survey on methodologies for runtime predic-
tion on grid environments. In: 7th International Conference on Information and
Automation for Sustainability, pp. 1–6. IEEE (2014)

23. Skovira, J., Chan, W., Zhou, H., Lifka, D.: The EASY — LoadLeveler API project.
In: Feitelson, D.G., Rudolph, L. (eds.) JSSPP 1996. LNCS, vol. 1162, pp. 41–47.
Springer, Heidelberg (1996). https://doi.org/10.1007/BFb0022286

24. Smith, W., Foster, I., Taylor, V.: Predicting application run times using historical
information. In: Feitelson, D.G., Rudolph, L. (eds.) Job Scheduling Strategies for
Parallel Processing. LNCS, vol. 1459, pp. 122–142. Springer, Heidelberg (1998)

http://jsspp.org/workload/
https://doi.org/10.1007/978-3-662-43779-7_3
https://doi.org/10.1007/11407522_14
https://doi.org/10.1007/11407522_14
http://www.metacentrum.cz/
https://doi.org/10.1007/978-3-540-78699-3_5
https://doi.org/10.1007/978-3-540-78699-3_5
http://www.pbsworks.com
http://www.pbsworks.com
https://doi.org/10.1007/BFb0022286

38 D. Klusáček and V. Chlumský

25. Smith, W., Taylor, V., Foster, I.: Using run-time predictions to estimate queue
wait times and improve scheduler performance. In: Feitelson, D.G., Rudolph, L.
(eds.) JSSPP 1999. LNCS, vol. 1659, pp. 202–219. Springer, Heidelberg (1999).
https://doi.org/10.1007/3-540-47954-6 11

26. Soft walltime documentation, February 2018. https://pbspro.atlassian.net/wiki/
spaces/PD/pages/42532871/PP-482+Soft+Walltime

27. Talby, D., Feitelson, D.G.: Supporting priorities and improving utilization of the
IBM SP scheduler using slack-based backfilling. In: IPPS 1999/SPDP 1999: Pro-
ceedings of the 13th International Symposium on Parallel Processing and the 10th
Symposium on Parallel and Distributed Processing, pp. 513–517. IEEE Computer
Society (1999)

28. Tang, W., Desai, N., Buettner, D., Lan, Z.: Analyzing and adjusting user run-
time estimates to improve job scheduling on the Blue Gene/P. In: IEEE Inter-
national Symposium on Parallel and Distributed Processing (IPDPS), pp. 1–11.
IEEE (2010)

29. Tsafrir, D.: Using inaccurate estimates accurately. In: Frachtenberg, E.,
Schwiegelshohn, U. (eds.) JSSPP 2010. LNCS, vol. 6253, pp. 208–221. Springer,
Heidelberg (2010). https://doi.org/10.1007/978-3-642-16505-4 12

30. Tsafrir, D., Etsion, Y., Feitelson, D.G.: Modeling user runtime estimates. In:
Feitelson, D., Frachtenberg, E., Rudolph, L., Schwiegelshohn, U. (eds.) JSSPP
2005. LNCS, vol. 3834, pp. 1–35. Springer, Heidelberg (2005). https://doi.org/10.
1007/11605300 1

31. Zakay, N., Feitelson, D.G.: Preserving user behavior characteristics in trace-based
simulation of parallel job scheduling. In: 22nd Modeling, Analysis and Simulation
of Computer and Telecommunications Systems (MASCOTS), pp. 51–60 (2014)

https://doi.org/10.1007/3-540-47954-6_11
https://pbspro.atlassian.net/wiki/spaces/PD/pages/42532871/PP-482+Soft+Walltime
https://pbspro.atlassian.net/wiki/spaces/PD/pages/42532871/PP-482+Soft+Walltime
https://doi.org/10.1007/978-3-642-16505-4_12
https://doi.org/10.1007/11605300_1
https://doi.org/10.1007/11605300_1

Reducing the Human-in-the-Loop
Component of the Scheduling of Large

HTC Workloads

Frédéric Azevedo, Luc Gombert, and Frédéric Suter(B)

IN2P3 Computing Center, CNRS, Lyon-Villeurbanne, France
{frederic.azevedo,luc.gombert,frederic.suter}@cc.in2p3.fr

Abstract. A common characteristic to major physics experiments is an
ever increasing need of computing resources to process experimental data
and generate simulated data. The IN2P3 Computing Center provides its
2,500 users with about 35,000 cores and processes millions of jobs every
month. This workload is composed of a vast majority of sequential jobs
that corresponds to Monte-Carlo simulations and related analysis made
on data produced on the Large Hadron Collider at CERN.

To schedule such a workload under specific constraints, the CC-IN2P3
relied for 20 years on an in-house job and resource management system
complemented by an operation team who can directly act on the deci-
sions made by the job scheduler and modify them. This system has been
replaced in 2011 but legacy rules of thumb remained. Combined to other
rules motivated by production constraints, they may act against the job
scheduler optimizations and force the operators to apply more corrective
actions than they should.

In this experience report from a production system, we describe the
decisions made since the end of 2016 to either transfer some of the actions
done by operators to the job scheduler or make these actions become
unnecessary. The physical partitioning of resources in distinct pools has
been replaced by a logical partitioning that leverages scheduling queues.
Then some historical constraints, such as quotas, have been relaxed. For
instance, the number of concurrent jobs from a given user group allowed
to access a specific resource, e.g., a storage subsystem, has been pro-
gressively increased. Finally, the computation of the fair-share by the
job scheduler has been modified to be less detrimental to small groups
whose jobs have a low priority. The preliminary but promising results
coming from these modifications constitute the beginning of a long-term
activity to change the operation procedures applied to the computing
infrastructure of the IN2P3 Computing Center.

1 Introduction

In the field of high-energy and astroparticle physics, detectors, satellites, tele-
scopes, and numerical simulations of physical processes produce massive amounts
of data. The comparison of these experimental and simulated data allows physi-
cists to validate or disprove theories and led to major scientific discoveries over
c© Springer Nature Switzerland AG 2019
D. Klusáček et al. (Eds.): JSSPP 2018, LNCS 11332, pp. 39–60, 2019.
https://doi.org/10.1007/978-3-030-10632-4_3

http://crossmark.crossref.org/dialog/?doi=10.1007/>978-3-030-10632-4_3&domain=pdf
https://doi.org/10.1007/978-3-030-10632-4_3

40 F. Azevedo et al.

the last decade. For instance, in 2012, the ATLAS [10] and CMS [11] experi-
ments running on the Large Hadron Collider (LHC) at CERN, both observed a
new particle which is consistent with the Higgs boson predicted by the Standard
Model. These observations confirmed a theory of the origin of mass of subatomic
particles which was awarded the Nobel Prize in physics in 2013. In 2016, the
LIGO and VIRGO scientific collaborations announced the first observation of
gravitational waves [13] which confirmed the last remaining unproven prediction
of general relativity.

The next decade will see the beginning of major projects that will allow
astroparticle physicists to address the most pressing questions about the struc-
ture and evolution of the universe and the objects in it. From 2022, the Large
Synoptic Survey Telescope (LSST) will conduct a 10-year survey of the sky to
produce the largest catalog of celestial objects ever built while the Euclid spatial
telescope aims at drawing a 3D map of hundreds of millions galaxies from 2020.

A common characteristic to all these physics experiments is an ever increasing
need of computing and storage resources to process and store experimental data
and generate simulated data. Moreover, the sheer amount of data produced by
physics experiments enforces the distribution of data and computations across
a worldwide federation of computing centers.

The Computing Center of the National Institute of Nuclear Physics and Par-
ticle Physics (CC-IN2P3) [12] is one of the largest academic computing centers
in France. It provides its more than 2,500 users from 80 scientific collaborations
with about 35,000 cores and 340PB of storage. The reliability and high avail-
ability of the CC-IN2P3 allows it to achieve an utilization of these resources
above 90%. In particular, the CC-IN2P3 is one of the twelve Tier-1 centers in
the Worldwide LHC Computing Grid (WLCG) engaged in the primary process-
ing of the data produced by the LHC and one of the only four centers that
provide storage and processing resources for all four experiments installed on
the accelerator.

This participation in the WLCG strongly influences the organization and
the operation of the computing at the CC-IN2P3. It also defines and shapes
the workload that is executed. Indeed, the four LHC experiments alone have
used up to 75% of the allocated resources. In 2018, they represented 58% of the
allocations, as the needs expressed by other experiments have been increasing.

The main characteristic of the CC-IN2P3’s workload is that it is a High
Throughput Computing (HTC) workload composed of a vast majority of sequen-
tial jobs. It mainly corresponds to Monte-Carlo simulation jobs and related data
analysis made on the data produced at the LHC. We observed an increasing
share of multi-core jobs (i.e., using several cores within the limits of a single
node) in the workload over the last three years. Most of these multi-core jobs
also run Monte-Carlo simulations but allow physicists to share some libraries
and data structure and thus reduce the memory footprint. Finally, HPC jobs
(e.g., using MPI or GPUs) are executed on a distinct set of nodes, which only
represents a small fraction of the overall computing capacity of the CC-IN2P3.

Reducing the Human-in-the-Loop Component 41

The requirements of the main experiments running at the CC-IN2P3 influ-
ence the performance metrics the job scheduling system has to optimize. Indeed,
the resource allocation procedure differs from that of traditional HPC centers
where scientific collaborations usually submit a research proposal which includes
a request for an envelope of cores.hours to use during a limited time period.
For a Tier-1 center of the WLCG such as the CC-IN2P3, resource requests are
expressed as pledges for a given computing power expressed in HS06 [9]. The
computing center is then committed to provide enough resources to answer to
those pledges. Moreover, the accounting is made with regard to the actual CPU
usage of a job rather than on its duration. This specific allocation procedure has
been extended beyond the four LHC experiments to all the groups computing at
the CC-IN2P3. The main objectives for the batch scheduling system are thus to
ensure a fair sharing [4] of the resources according to the different pledges and
to guarantee that all the pledges are respected. These objectives are translated
into priorities and quotas assigned to jobs and user groups.

Scheduling also has to take into account the data-driven nature of the exe-
cuted jobs. Several experiments running at CC-IN2P3 make a heavy use of the
different storage subsystems the center provides (e.g., GPFS, HPSS, iRODS).
To prevent the saturation of a storage subsystem and a failure which could have
a cascading impact on the execution of the workload, additional conservative
quotas are assigned to groups to limit the number of concurrent running jobs.

To schedule such a peculiar workload with regard to the aforementioned
constraints and objectives, the CC-IN2P3 developed and maintained its own in-
house job and resource management system for nearly 20 years. The development
of the Batch Queuing System (BQS) started in 1992 and was initially based on
NASA’s Network Queuing System (NQS). This system has been tailored to suit
the specific needs of the computing center and its major users. For instance,
it was possible to “program” the scheduler to meet the production objectives
expressed by the different experiments. Moreover, the respect of a fair sharing of
the resources among the scientific groups and accounting mechanisms to ensure
the respect of the pledges were part of the initial design.

The job and resource management system is complemented by a team dedi-
cated to the operation of the computing infrastructure that adds an important
“human-in-the-loop” component to the scheduling of the workload. Indeed, the
role of the operators is not limited to reacting to incidents related to either
resources or jobs. They can also directly act on the decisions made by the job
scheduler and modify them. For instance, an operator can manually boost or
lower the priority of a job/user/group or change the allocations of resources to
a given queue in a proactive way.

The decision to stop the development of BQS was taken in 2011. It had
become too costly in terms of human resources over the years. Since then, the
job and resource management system of the CC-IN2P3 is Univa Grid Engine
[14]. However, some legacy rules of thumb from the operation of BQS remained
and add to the different rules motivated by the constraints on the hardware
and software resources and the respect of pledges. This accumulation of rules

42 F. Azevedo et al.

sometimes acts against the job scheduler optimizations and forces the operators
to apply more corrective actions than they should.

In this experience report from a production system, we describe the decisions
made since the end of 2016 to transfer some the actions done by operators to the
job scheduling system or simply make these actions become unnecessary. The
objective is to improve the job scheduling decisions, especially for small user
groups and optimize the resource utilization, while minimizing the “human-in-
the-loop” component in such decisions Three complementary modifications have
already been implemented which deal with: (i) the partitioning of resources; (ii)
the quotas assigned to the different user groups; and (iii) the computation of the
fair-share by the job scheduler.

The remaining of this paper is organized as follows. First, we describe how
large HTC workloads are processed at the CC-IN2P3 in Sect. 2 by detailing its
computing infrastructure and scheduling and resource allocation procedures and
characterizing the executed workload. Then, in Sect. 3, we motivate, present,
and illustrate the benefits, be they an optimization of the scheduling and/or a
reduction of the operation costs, for each of the three proposed modifications.
Section 4 concludes this experience report and details future work directions.

2 Scheduling Large HTC Workloads at CC-IN2P3

2.1 Organization and Management of the Computing Infrastructure

As mentioned in the introduction, the CC-IN2P3 provides its users with about
35,000 virtual cores (i.e., hyper-threading is activated on physical cores). More
precisely, and at the time of writing of this article, this computing infrastructure
is made of 816 nodes whose characteristics are given in Table 1.

Table 1. Characteristics of the nodes in the CC-IN2P3’s computing farm.

Model #Nodes #vCores/Node #vCores

Intel Xeon E5-2650 v4@2.20 GHz 232 48 11,136

Intel Xeon Silver 4114@2.20 GHz 240 40 9,600

Intel Xeon E5-2680 v2@2.80 GHz 149 40 5,960

Intel Xeon E5-2680 v3@2.50 GHz 123 48 5,904

Intel Xeon E5-2670 0@2.60 GHz 72 32 2,304

Total 816 34,904

Due to the recent upgrade of the default Operating System from Scientific
Linux 6 to CentOS 7, this set of nodes is currently split into two distinct par-
titions of respectively 768 and 48 nodes. This allows the user groups that chose
to not migrate their codes to get access to some resources. Nodes were progres-
sively moved from one partition to the other from June 2017 to June 2018 as

Reducing the Human-in-the-Loop Component 43

shown by Fig. 1. This variation in the size of the partitions and the set of user
groups allowed to access each partition had an impact on several aspects of the
scheduling process. We will highlight some of the consequences of this migration
in the characterization of the workload given in Sect. 2.3.

250

500

750

Jul 2017 Oct 2017 Jan 2018 Apr 2018 Jul 2018

N
um

be
r o

f N
od

es Scientific Linux 6

CentOS 7

Fig. 1. Transition from the Scientific Linux 6 Operating System to CentOS 7.

In addition to these nodes that are dedicated to the execution of the HTC
workload, the CC-IN2P3 also offers resources for parallel (512 cores without
hyper-threading in 16 nodes), GPU-based (32 NVIDIA K80 GPUs and 128 cores
in 8 nodes), and large memory (a node with 40 cores and 1.5 TB of memory)
jobs, and five nodes dedicated to interactive jobs.

These computing resources are managed by Univa Grid Engine (UGE v8.4.4)
whose scheduling algorithm is an implementation of the Fair Share Scheduler
first described in [5]. Its principle is to assign priorities to all the unscheduled
jobs to determine their order of execution. These priorities derive from three
fundamental policies. The first policy is related to the entitlement of a job to
access resources. It relies on the implementation of the Share Tree policy which
defines this entitlement of a job according to the previous resource usage of a
user/project/group. The administrators of the systems first define a total number
of tickets which basically corresponds to a virtualized view of the complete set of
resources managed by the system. This total number of tickets is then distributed
among groups (and then among sub-projects, users, and eventually jobs). In the
configuration used at CC-IN2P3, the different shares are proportional to the
resource pledges expressed by the different user groups.

When a given group A does not use its allocated share, pending jobs of other
groups are allowed to use the corresponding resources. The group with the least
accumulated past usage has the highest priority in that case. However, when
group A starts to submit jobs again, a compensation mechanism is triggered
to allow this group to reach back its target share. Two parameters control the
behavior of this policy, illustrated by Fig. 2. The half-life specifies how UGE
forgets about the past usage of a given group. This parameter thus acts on the
selection of groups allowed to benefit of the resources left unused by another
group. The second parameter is the compensation factor that limits how fast a
group will reach back its target share. The higher the value, the more reactive

44 F. Azevedo et al.

to variations in the workload the system will be. The current values used at
CC-IN2P3 are 2,160 for the half-life and 2 for the compensation factor.

Fig. 2. Example of the Share-tree policy applied to two user groups allowed to use a
half of the resources each.

The second policy implemented by UGE corresponds to the expression of the
urgency of a job and defines some weights in the computation of the priority of
the job. This urgency is decomposed in three components. First, the closer a job
is to its deadline (if one has been specified at submission time, which is not the
case at CC-IN2P3), the higher its priority will be. Second, the priority will also
increase along with the waiting time of the job in the scheduling queue. Finally,
a higher priority will be given to jobs that request expensive resources. For
instance, at CC-IN2P3, resources are organized in queues whose characteristics
are given in Table 2. These queues mainly differs by the maximum duration,
both in terms of wallclock and CPU times, of the jobs, the available memory
and scratch disk space, and the type of jobs, i.e., sequential or multi-core. In the
current configuration, a greater weight is given to the multi-core queues, which
are thus seen as more “expensive resources” than sequential queues.

Table 2. Upper bound on resources usage of the different batch scheduling queues.

Queue CPU time (in hours) Walltime (in hours) Memory (in

GB)

Disk space (in GB) #vCores

huge 72 86 10 110 10,337

long 48 58 4 30 31,040

longlasting 168 192 4 30 3,996

mc huge 72 86 8 30 9,336

mc long 48 58 3.6 30 34,752

mc longlasting 202 226 3 30 20,416

Reducing the Human-in-the-Loop Component 45

The sum of the maximum numbers of virtual cores that each queue can use
is more than 2.86 times the actual number of available cores. This guarantees
the highest possible utilization of the resources but also prevents the saturation
of queues. Any type of job thus has a good chance to access resources, hence
increasing the quality of service experienced by the users, who are not advised to
specify a queue on submission. They are encouraged to express job requirements
instead and let the scheduling system select the most appropriate queue.

The configuration of these queues also illustrates the operational priorities of
the CC-IN2P3. We can see that the mc * queues dedicated to multi-core jobs are
allowed to access much more cores than the queues reserved to sequential jobs.
This confirms the higher priority given to multi-core jobs which now represent a
large fraction of the CPU consumption as the characterization of the workload
given in Sect. 2.3 will show. We also note that jobs are not really distinguished by
their execution time in this configuration. Indeed, the huge and mc huge queues
are primarily intended to jobs that need more memory or disk space. Moreover,
the access to the longlasting queues is limited to certain user groups. Then, the
bulk of the workload is directed to the long and mc long queues. The rationale is
to simplify the computation of the fair-share by the job scheduler whose respect
is the main operational objective. However, this also calls for good estimations
of job duration. Bad estimate can have two drawbacks. First, it may be harmful
to the scheduler as it has to cope with important discrepancies between the
“estimated” and actual duration of the jobs. Second, short jobs submitted by
small groups whose priority is low with regard to the global fair-share policy may
be severely delayed. Indeed, their short duration is not translated in an increase
of their priority. As we will see in Sect. 2.3, estimations are not always provided
or automatically defined and are usually far for being accurate.

The last component in the computation of job priorities by UGE is the capac-
ity for users to manually specify a POSIX priority at submission which only acts
as another weighting factor in the formula used to determine the overall schedul-
ing priority of the job.

In addition to these policies implemented by the job and resource manage-
ment system, a last configuration parameter has a strong influence on scheduling.
This is the definition of limitations as Resource Quota Sets (RQS). These limi-
tations are expressed as a maximal number of virtual cores (or slots in the UGE
terminology) that can access a given hardware of software resource and thus be
allowed to enter the system. They are applied at two levels. Global limitations
are applied to all groups and jobs indifferently. Such limits are classically used to
define resource pools (e.g., depending on the operating system running), prevent
the saturation of a storage or database service, or are related to the number of
available license tokens for commercial software.

In the specific configuration of the CC-IN2P3 system, extra RQS are applied
to groups to either limit the number of concurrent jobs or the number of
jobs accessing a given resource. The former is used as a way to enforce the
respect of the resource pledges expressed by each group by averaging their esti-
mated consumption over each quarter of the year. The latter corresponds to the

46 F. Azevedo et al.

implementation of a conservative approach to further prevent the saturation of
sensitive storage subsystems such as a shared parallel file system.

2.2 Resource Allocation Procedure

Every year in September, the representative of each of the scientific collabora-
tions using the CC-IN2P3 is asked to pledge resources for the next year. Each
group provides an estimation of its needs in terms of computing and storage on
each of the available subsystems. While the large collaborations such as those of
the LHC experiments have a well defined and planned definition of their require-
ments at a worldwide scale, smaller groups usually define their needs from their
consumption of the previous year with an empirically estimated delta.

The accuracy of these pledges is critical for two reasons. First, the sum of
the expressed requirements, combined to the available budget, define, after an
arbitration process, the purchase of new hardware to ensure that the CC-IN2P3
can fulfill its primary mission and serve all the experiments. This is another
major difference with traditional HPC centers that buy and host the biggest
affordable supercomputer and then arbitrate the demands with regard to the
capacity of this machine. Second, the pledges define the Resource Quota Sets
applied to each group and thus have a direct impact on job scheduling.

The allocation of computing resources works as follows. Each group expresses
its pledge as an amount of work to be done during each quarter of the year. This
amount is given in Normalized HS06.hours, a unit coming from the High Energy
Physics community. It corresponds to the normalization of the results of the HS06
benchmark [9] on the different types of nodes in the computing infrastructure to
take node heterogeneity into account multiplied by a number of hours.

The accumulation of all the required numbers of HS06.hours defines the com-
puting power the CC-IN2P3 has to deliver. Once arbitration has been done, the
respective share of this total number that has to be allocated to each group is
computed. Then this share is converted into a number of virtual cores needed to
process this amount of work in a year. Finally, this number of virtual cores defines
a consumption objective used by the job scheduler to compute its fair-share.

2.3 Characterization of the Workload

We analyzed the workload processed at CC-IN2P3 over ten weeks from March 29,
2018 to June 12, 2018. This corresponds to the period between two scheduled
maintenance shutdowns of the computing center. Job submissions are blocked a
day before the maintenance in order to drain the scheduling queues while jobs
are progressively allowed into the system after the maintenance to prevent stress
on the storage subsystems.

We extracted and combined information on jobs from three tables of the
Accounting and Reporting Console (ARCo) provided by Univa Grid Engine:

– The sge job table contains basic information about jobs such as the job id,
the user who submitted it and its group, or the submission date;

Reducing the Human-in-the-Loop Component 47

– The sge job usage table contains information about the resource usage made
by a job, including its beginning and end date, the number of cores on which
the job has been executed, its memory consumption, or its exit status;

– The sge job request table stores key-value pairs that correspond to the
different resource requests made by jobs, such as the requested number of
cores or memory, an estimation of the walltime, the specification of a given
queue, or the need for a specific storage subsystem.

We performed a first processing of these database extracts to solve two major
issues related to the way UGE stores information into ARCo. First, ARCo creates
several entries for jobs whose execution spans over more than a day. For instance,
for a job starting on April 25th at 5 PM and ending on April 26th at 11 AM,
two entries will be created, one for April 25th from 5 PM to 12 AM and one
for April 26th from 12 AM to 11 AM. Moreover, only the last entry will log
the total runtime of the job, the other ones leaving that field to 0. We thus had
to merge all the entries for such long jobs into a single one. Second, the CPU
consumption is not stored in seconds but in normalized HS06, the unit used for
resource pledges. A normalization factor is applied that depends on the node
onto which the job has been executed to take into account the heterogeneity
of the computing nodes. This factor ranges from 9.7 to 11.3. For each job in
the workload, we found out the normalization factor that was applied to the
actual CPU consumption and converted the value back to seconds. Finally, we
kept the jobs that start before (resp. end after) but end (resp. begin) within
the considered period. This allows us to have a complete view of the workload
over the 10 weeks. However, these jobs may be excluded for some of the specific
analyses we present in the remaining of this section.

We developed a Python script to convert this information to the Standard
Workload Format (SWF) [1] used by the Parallel Workloads Archive [3]. This
format describes a job by 18 fields. While the conversion was straightforward for
some of these fields, e.g., job number, submission, start, end and wait times, or
number of allocated processors, others required more thinking and work.

The memory consumption of the jobs is logged by ARCo as two comple-
mentary metrics: the integral memory usage expressed in GB.CPU.seconds, i.e.,
the average memory consumption of the job, and the maximum Resident Set
Size (RSS). We decided to keep the latter as exceeding the maximum amount of
memory allowed by the configuration of a queue would cause the failure of the
job. Consequently, we also used the RSS as the requested amount of memory,
even though jobs also expressed requirements related to Virtual Memory.

The most problematic field in this conversion to the SWF format was the
time requested by jobs. Indeed, the run time of a job is classically computed
as the difference between its end and start times. However, at submission time,
users are encouraged to express their requests not as a hard or soft walltime
limit (using the h rt or s rt flags) but as a hard or soft CPU time limit (using
the h cpu or s cpu flags). Again, this is dictated by the plegding and accounting
procedures that use HS06 as main metric, and thus an efficient CPU consumption
as both an objective and a performance indicator. To reflect this peculiar way

48 F. Azevedo et al.

of expressing the maximal duration of a job, we fill the Requested Time field of
the SWF with the CPU Time requested by users.

Information about users and groups has been anonymized by converting them
to integer values. The configuration of UGE allows administrators to distinguish
different projects within a user group. For instance, for the ATLAS collaboration,
the Monte-Carlo simulation jobs do not belong to the same project as the data
analysis jobs. As the induced workloads may differ a lot from one project to
another within a single user group, we decided to reflect this differences in the
produced SWF file by using the project information rather than the group one.

For the fields related to the queue and partition to which a job has been
scheduled, we associate two conversion tables to the SWF logs. There are six
queues, described in Table 2, and two partitions defined by the running Oper-
ating System, whose boundaries evolved over the considered period as shown in
Fig. 1. Finally, three fields (i.e., Executable (Application) Number, Preceding Job
Number, and Think Time from Preceding Job) remain undefined as the corre-
sponding information was not logged by UGE.

The resulting SWF file is composed of 7,607,154 individual jobs. Almost
90% of these jobs (i.e., 6,824,118 jobs) are sequential. However, if we consider
the cumulative CPU consumption of jobs, we observe a different distribution.
Multi-core jobs represent about 40% of the CPU consumption. More precisely,
96.1% of these multi-core jobs run on eight cores and are submitted by only two
users groups: ATLAS (73.3%) and CMS (22.8%).

We start our analysis by comparing the CPU usage made by the different
user groups to their pledges. This is a way to measure how well the job scheduler
allocates resources to groups with the objective of respecting the fair-share that
derives from these pledges. Figure 3a shows the observed distribution of the CPU
usage over 10 weeks while Fig. 3b shows how the pledges for computing power
were distributed among the different user groups for 2018. We only distinguish
the groups whose shares are greater than 2% of the total CPU consumption
in these graphs for the sake of readability. The “Other Experiments” section
aggregates the usages and pledges of the more than 70 other user groups.

The fact that most of the user groups with the largest pledges are also the
biggest consumers of CPU resources confirms the overall respect of the fair-share
by the batch scheduling system. On both graphs, the four LHC experiments
(ATLAS, CMS, Alice, and LHCb) have the biggest shares, which explains why
the whole resource allocation procedure and the performance objectives assigned
to the job scheduler are driven by the demands of these groups. However, those
graphs also show large discrepancies between pledges and usages that can be
explained by the combination of several factors. First, the submission patterns
of the different groups vary over the year in periods of high or low activity.
Another monitoring tool used by the operation team shows that the two groups
that are among the top pledgers but not among the top users (i.e., CTA and
HESS) did not submit enough jobs to meet their objectives for the second quar-
ter of the year. Conversely, the Alice, CMS, and LHCb groups increased their
submissions with regard to their objectives and took advantage of these unused

Reducing the Human-in-the-Loop Component 49

30%

17%

16%

14%

3%
2%

2%

15% ATLAS

CMS

Alice

LHCb

Antares
Comet
Nantheo

Other Groups

28%

13%

9%8%

4%
3%

2%
2%

2%

27%

ATLAS

CMS

AliceLHCb

Comet
HESS

Antares
CTA

Nantheo

Other Groups

Fig. 3. Distribution of the computing resource consumptions (a) and requests (b)
among the different scientific collaborations using the CC-IN2P3.

shares. Second, the upgrade of the default OS and the moving boundaries of the
partitions shown by Fig. 1 were beneficial to some groups that were among the
first to migrate. They were thus able to access a less crowded set of nodes while
others groups had to compete for a smaller amount of CPU resources. However,
we consider that this behavior is related to a transient yet impacting event and
should not have appeared so clearly with a single stable partition.

An important characteristic of the considered workload is that almost half the
jobs (47.55% or 3,615,225 jobs) are submitted through a grid middleware stack
while the other half (52.45% or 3,991,929 jobs) is submitted by actual users
directly to the batch systems. Figure 4 shows the daily (left) and weekly (right)
arrival rates for these Grid and Batch jobs.

1000

2000

3000

4000

0 3 6 9 12 15 18 21 24
Time of day

N
um

be
r o

f s
ub

m
itt

ed
 jo

bs

Origin of jobs
Batch
Grid

2000

4000

6000

Mon. Tue. Wed. Thu. Fri. Sat. Sun.
Day of week

N
um

be
r o

f s
ub

m
itt

ed
 jo

bs

Origin of jobs
Batch
Grid

Fig. 4. Daily (left) and weekly (right) arrival rates for Grid and Batch jobs. For the
daily arrival rate, the gray area depicts the typical working hours.

50 F. Azevedo et al.

We clearly observe two different submission patterns. While the batch job
arrival rate follows a traditional “working hours and business days” pattern, grid
jobs are submitted at an almost constant rate. We also note that the average
number of submissions per hour over the considered period is very similar for
both types of jobs (respectively 1956 and 2160 jobs per hour).

Then, we study what is the utilization of the computing resources induced by
these submissions. Figure 5 shows how many virtual cores (or slots) are simulta-
neously used. The dashed black line indicates the total number of available slots
which evolved over the considered period. The solid black line represents the
overall utilization, while the other two lines show which part of this utilization
respectively comes from grid and batch jobs.

0

10000

20000

30000

03/26 04/02 04/09 04/16 04/23 04/30 05/07 05/14 05/21 05/28 06/04 06/11

N
um

be
r o

f u
se

d
sl

ot
s

Grid

Batch

Fig. 5. Utilization of the resources, in terms of slots, over the considered period. The
dashed black line indicates the total number of available slots, the solid black line rep-
resents the overall utilization and the other two lines show which part of this utilization
respectively comes from grid and batch jobs.

We observe that one of the major operational objectives of the CC-IN2P3
is met as the utilization is generally well over 90%. One noticeable exception is
around April 13th when a change in the configuration of UGE prevented jobs
to be scheduled. We also see that while there are more jobs submitted by local
users than coming through the grid, the number of slots respectively used by
these two types of jobs shows a different distribution. About 80% of the overall
utilization in terms of slots comes from grid jobs. This important difference can
be explained by the fact that the vast majority of the multi-core jobs executed on
CC-IN2P3’s resources and most of the jobs related to the four LHC experiments
come from the grid.

An interesting thing to note is that when less slots are used by grid jobs,
more are used by batch jobs to reach a close to maximum overall utilization.
This could mean that the jobs and resource management system makes a good
job at balancing the resource allocations between the two categories of jobs.
However, if we consider the number of pending slot requests, i.e., the sum of the
numbers of slots requested by jobs waiting in the queues, we observe a less ideal
situation shown by Fig. 6.

Reducing the Human-in-the-Loop Component 51

We observe that there are much less pending requests for grid jobs than for
batch jobs. Over the whole period, around 3,000 slots are requested by grid jobs
that have to wait for resources to be available while this average is of nearly
14,000 for batch jobs. The difference between the maximum number of pending
slot requests is even more glaring: 7,400 for grid jobs and 79,200 for batch jobs.
More importantly, we observe three periods (April 16–20, May 3–4, and June 4–
7) where this number of pending slot requests for batch jobs remains well above
15,000 for more than two days.

0

20000

40000

60000

80000

03/26 04/02 04/09 04/16 04/23 04/30 05/07 05/14 05/21 05/28 06/04 06/11

N
um

be
r o

f p
en

di
ng

 s
lo

t r
eq

ue
st

s

Grid

Batch

Fig. 6. Evolution of the number of pending slot requests over the considered period
with regard to the job category.

Several factors can explain the results shown in Fig. 6. First, the differences
in submission patterns illustrated in Fig. 4 indicate that a high number of batch
jobs can be submitted at certain periods and needs to be absorbed by the system.
To some extent, we can observe peaks in Fig. 6 at the beginning of each week
that match the higher submission rates for Mondays and Tuesday shown by
Fig. 4 (right). Conversely, the almost constant submission rate of grid jobs can
be straightforwardly translated in an almost constant number of slot requests and
explain the little variations we observe for this category of jobs. Second, grid jobs
are usually not directly submitted to the batch system. The middleware stacks
used by the different experiments typically include another layer that control the
submission rate according to the observed status of the queue and the number of
running jobs. A third potential cause is that grid jobs are submitted by groups
with the largest shares, hence the highest priorities. Then, batch jobs submitted
by smaller groups tend to have lower priorities, experience more delays in their
scheduling, and thus tend to accumulate in the scheduling queues. However, these
reasons do not fully explain why the observed peaks in the number of pending
slot requests take so much time to be absorbed by the system. To understand
that, we have to look at the duration of the jobs.

Figure 7 shows the distribution of job duration and distinguishes grid jobs
from batch jobs. In the studied log, 84% of the submitted jobs are in the long
or mc long queues whose limits are set to two days of CPU time. 4% are “long
lasting” jobs that can consume for up to 7 days of CPU time, while the remaining
12% correspond to “huge” jobs which are limited to three days of CPU time.

52 F. Azevedo et al.

As nearly 58% of the studied workload is composed of jobs that run for less
than an hour, we created more intervals for these very short jobs. We observe
two major peaks at more than 600,000 jobs in the less than a minute interval
for batch jobs and in the five to fifteen minutes for grid jobs. For grid jobs, the
explanation of this large amount of very short jobs pertains to the use of pilot
jobs to create a steady resource pool. When a pilot starts but realizes that it
has no jobs to execute, it ends itself after a short time, i.e., up to 15 min. For
batch jobs, failed jobs accounts for nearly 30% of the jobs that end in less than
a minute. Other potential causes need to be investigated but the bulk of these
very short jobs was submitted by only five identified users groups.

 0

 100

 200

 300

 400

 500

 600

 700

<1m 1−5m 5−15m 15−30m 30m−1h 1−2h 2−4h 4−12h 12−24h 1−2d 2−3d 3−5d >5d
Job duration

N
um

be
r o

f j
ob

s
(x

 1
,0

00
) Batch

Grid

Fig. 7. Distribution of the number of jobs according to their run time from March 29,
2018 to June 12, 2018.

At the other end of the range of job duration, we can see that about 52,000
jobs (0.67%) have a duration greater than two days, which is the upper bound
of the long queue. However, more than 41,000 of these jobs were submitted in
the long queue. The reason is that these jobs do not fully use the CPU and can
then run beyond the limit of 48 h of CPU time up to 58 h, which is the upper
bound of this queue with regard to execution time. However, the vast majority
of the jobs that were submitted to the huge and longlasting queues last for less
than a day. This indicates that groups with an access to these reserved queues
submitted jobs that should have gone in the regular long queue.

This analysis pleads for a redefinition of the scheduling queues, and the pools
of resources they can access to better take the characteristics of the workload
into account. For instance, a classical rule is to assign to a queue a number of
resources that is inversely proportional to the duration of the jobs submitted in
this queue [7]. The rationale is that the system can afford to concurrently execute
a large number of short jobs, as they will release the resources soon. Conversely,
the number of long running jobs has to be controlled to prevent large delays for
shorter jobs caused by the lack of available resources. The importance of the
configuration of the queues on the quality of the produced schedules has been
outlined in [6,7]. However, such a work still has to be done at CC-IN2P3 and will

Reducing the Human-in-the-Loop Component 53

require to measure and balance the effects of adding more queues to the system
with regard to the respect of the fair sharing of the resources, hence the respect of
the pledges made by the user groups. Having a precise estimation of the duration
of a job at submission time is key to the success of such a redefinition of the
scheduling queues.

Figure 8 shows that the estimations of the CPU time consumption associated
to the jobs, when specified, are far from accurate. For batch jobs, many different
estimations are provided by users, most of them being either straightforward
(e.g., 12, 24, or 48 h) or arbitrary (e.g., 20,000 s or 47 h) values. For grid jobs
the situation is even worse. The small set soft of CPU time requests shown by
the steps in the grey line of the right panel of Fig. 8 are automatically added
by one component of the grid middleware stack and correspond to the limits of
the queues. These requests are thus not related to the profiles of the jobs at all.
Improving these estimations will imply to better tune the configuration of the
grid middleware component and to better inform and form the users about the
consequences of the provided estimations on the scheduling of their jobs.

Batch Grid

0%

25%

50%

75%

100%

0 12 24 48 72 96 120 144 168 192 0 12 24 48 72 96 120 144 168 192
CPU Time (in hours)

Pe
rc

en
ta

ge
 o

f j
ob

s

Used
Requested

Fig. 8. Cumulative distribution functions (CDF) of actual and estimated job CPU
times for batch and grid jobs.

We end this characterization of this 10-week workload executed at CC-IN2P3
by considering the distribution of the CPU utilization with regard to the dura-
tion of the jobs. Figure 9 shows that jobs running in less than 24 h represent an
important part of the system utilization which is not reflected in the configu-
ration of queues. This also confirms the impact of multi-core jobs which only
account for 10% of the submissions but 40% of the CPU consumption.

3 Reducing the Human-in-the-Loop Component

In this section, we motivate and explain the modifications made to the configura-
tion of the job and resource management system during the year 2017. However,
this experience report does not include any quantification of the benefits of these
modifications. The main objective was to reduce the burden put on operators by

54 F. Azevedo et al.

 0

 100

 200

 300

 400

 500

<1h 1−2h 2−4h 4−12h 12−24h 1−2d 2−3d 3−5d >5d
Job duration

U
se

d
C

P
U

 in
 b

ill
io

ns
 H

S
06

.h

Multicore
Sequential

Fig. 9. Distribution of the CPU usage by job run time.

improving the decisions made by the batch scheduling system, hence automating
some of their daily interventions. Such interventions were not tracked before the
modifications. The evaluation of the gain would thus have been subjective and
difficult to quantify.

3.1 From Physical to Logical Resource Partitioning

Despite the efforts made while purchasing new hardware to keep the computing
infrastructure as homogeneous as possible, nodes used to differ a lot in terms of
CPU power and amount of memory from one model to another. A direct conse-
quence of this heterogeneity was that some nodes were more suited than others
to the execution of the 8-core jobs that require more memory. As mentioned
in the previous section, almost all of these jobs are submitted by the two main
experiments (in terms of resource allocation and consumption) running at the
CC-IN2P3. They are thus considered of the highest priority.

Before March 2017, the computing infrastructure was physically partitioned
in three host groups as shown in Fig. 10. One was dedicated to sequential jobs
(125 nodes), another to multi-core jobs (245 nodes), and the third and largest
one (330 nodes) accepted the execution of both sequential and multi-core jobs.

The primary motivation of such a partitioning was to guarantee that the high
priority multi-core jobs can start without having to wait for the completion of
several sequential jobs. A secondary motivation was to keep the capacity to allow
sequential jobs to run on these nodes dedicated to multi-core jobs when they
become idle. The major physics collaborations such as ATLAS or CMS usually
execute an important part of their computations during planned campaigns.
They are also able to coordinate the use of multiple computing centers at a
continental scale to distribute the load. Then, there can be variations in the
job submission pattern, and periods of lower load could be exploited by other
user groups. However, this management of distinct resource pools had a high
operational cost. For instance, if a decrease in the submission of multi-core jobs
by the ATLAS experiment was detected by the operators, they first had to check
with the dedicated support to determine if this behavior was expected and know
the duration of the lower load period. Then, nodes were manually reassigned

Reducing the Human-in-the-Loop Component 55

0

250

500

750

1000

Jan 2017 Apr 2017 Jul 2017 Oct 2017 Jan 2018

N
um

be
r o

f N
od

es

Host Groups
Sequential

Multi−Core

Sequential or Multi−Core

Fig. 10. Transition from a physical to a logical node partitioning in 2017. The variation
of the number of nodes from May to July corresponds to the period between the
reception of new nodes and the decommission of old hardware.

to the mutualized host group to keep them utilized. A safety margin was kept
in case the submission rate of ATLAS starts to increase earlier than excepted.
This safety margin could be exploited by other groups running multi-core jobs
such as CMS, but as the estimated end of the low load period got closer, more
stringent limitations had to be manually applied to these groups.

With the end of Moore’s Law, the node heterogeneity tends to disappear.
New processors have more cores but there are no important clock rate deltas
from one generation to another anymore. The historical physical partitioning
of the resources is thus no longer justified. To simplify the management of the
computing infrastructure, it has been replaced by a logical partitioning. In other
words, the existing host groups have been merged, as shown by Fig. 10, and the
distinction between sequential and multi-core jobs is now handled by the queues
presented in Table 2. This change is almost transparent for the users (who are
not supposed to specify a queue) as the job scheduler can automatically assign
multi-core jobs to one of the mc * queues. However, this is an important change
from the operational point of view. Indeed, operators no longer have to manually
specify the boundaries of the resource pools based on experience and rough
estimations of the foreseen evolution of the submission patterns. This burden is
now transferred to the job scheduling system which has been designed to adapt
its decisions according to the respective filling of the queues.

3.2 Simplification of the Access Rule and Quota Mechanisms

The origin of the definition of resources and the application of quotas on these
resources goes back to the use of the BQS job and resource management sys-
tem. The term “resource” first encompassed job related parameters such as the
required operating system, the needed amount of memory, the maximum CPU
time, or the queue in which to place the job. This definition was rapidly extended
to cover the different services offered by the CC-IN2P3 that a job could need.

A motivating example for such a definition of resources and quotas is the
case of a job that need to fetch data from a distributed storage system S1, store
the produced results on another storage system S2, and also needs to access a

56 F. Azevedo et al.

relational database D during its execution. Such a job can succeed if and only if
all of the three dependencies on external services S1, S2, and D can be satisfied.
Specifying the needed resources at submission time allows the job scheduler to
delay a job if one or more services are not available (e.g., because of an incident
or a temporary saturation) to prevent an unavoidable failure of the job.

This mechanism has then evolved into a two-level quota mechanism. The first
level defines global limits on the number of concurrent jobs that can access a
given resource without regard to the submitter. Such limits allow to prevent the
different storage subsystems or database services to be overloaded, ensure that
the number of license tokens for a commercial software is not exceeded, or define
physical pools with different versions of the operating system when an upgrade
in underway. The second level specifies quotas for {resource, group} couples. The
rationale is to be able to block or limit the access of a given group to a specific
service more easily. For instance, if a group has filled its allocated disk space on
a storage subsystem, jobs that could write more data will be rejected until more
space has been granted or cleaning has been made. This also allows operators to
easily drain the use of a resource for maintenance operations or incident recovery
by blocking all the jobs that expressed a dependency on that resource.

Over the years, this appealing way to ensure a fine regulation of the job
submission and to optimize the utilization of the computing and storage infras-
tructures became a very complex set of rules, thresholds, and locks to control
the maximum number of jobs per user, group, machine, or service. The multipli-
cation of resource definitions, hence the accumulation of limits for a given user
group not only slows down the scheduling rounds as the job scheduler has to
check everything, but also makes it sometimes difficult to understand why some
jobs cannot enter the system. For instance, a restrictive limit may have been
applied at some point, and for a good reason, to a certain {resource, group}
couple and not been reconsidered afterwards. Then, sometimes months later,
users complain that their jobs do not run for what they consider as no good
reason, because of this persisting but forgotten limit.

At the end of 2016 the decision has been made to simplify the access rule and
quota mechanisms. The main objective was to reduce the number of declared
resources to only keep a minimal set of essential requirements that jobs have to
express. The CC-IN2P3 being a production center, such changes have to be done
carefully to prevent any major disruption of the activity. The chosen solution
was to progressively relax the quota associated to a {resource, group} when it
becomes a bottleneck while ensuring that the associated resource can cope with
the increase. Figure 11 illustrates this action. Eventually, when the limit is high
enough, it obviously becomes meaningless and can thus be safely removed. This
was especially done for quotas related to the storage subsystem.

A similar method has been applied to the maximum number of jobs of a
group that can run simultaneously. Such RQS were defined as a way to enforce
the fair-share and to be able to rapidly react to an unwanted overconsumption
of the resources by a given group. However, this kind of limit was especially
harmful to small user groups whose computing needs correspond to short bursts

Reducing the Human-in-the-Loop Component 57

Fig. 11. Relaxation of a per-group RQS on a storage subsystem. The black line indi-
cates the maximum number of slots (i.e., virtual cores) currently available to the group.
The grey part corresponds to the number of used slots.

of a large number of jobs every once in a while, for instance just before a deadline
for the submission of an article. In such a case, users had to open an issue on
the user support ticketing system to explain that they would like to see more
of their jobs running. Then, the operation team would grant this exception by
manually relaxing the quota and/or boosting the priority of jobs.

After a few months of operation, we can conclude that letting the job sched-
uler deal with submission bursts without any human intervention is a success.
The concerned groups reduced their time to solution without harming other
groups. This also reduces the load of both the operation and support teams who
have less tickets to handle. However, some limits have to be kept for certain
groups whose jobs have a specific greedy behavior or are highly sensitive to the
accessibility of the storage subsystems.

3.3 Extending the Fair-Share History Window

The last important modification made to the configuration of the job scheduler is
related to the implementation of the fair sharing of resources. The basic principle
of a fair-share allocation is, for each user/group, to assign a priority to jobs that
is inversely proportional to the usage of the resources by this user/group over a
sliding time frame. The rationale is very simple: if a group already computed a
lot, it has to make room for another that did not. Then, this group will compute
less (and see its priority increase) while the other computes more (and its priority
decreases). A key configuration parameter of such an algorithm is the size of the
time frame over which to compute the resource usage.

Until the end of 2016, the size of this history window was set to 24 h. As for
many other parameters, this value was motivated by the predominance of the
LHC-related jobs in the workload and the commitment to fulfill the pledges for
these experiments made by the CC-IN2P3. Such a short time window was one
of the levers to ensure a good reactivity of the system when the largest groups,
i.e., ATLAS or CMS, started to submit jobs after a period of inactivity. These
jobs got the highest possible priority and were scheduled immediately.

The main drawback of this strategy is that the jobs submitted by groups
with much lower priorities suffered from large delays. From the point of view of

58 F. Azevedo et al.

the users belonging to these groups, the fair-share was felt as particularly unfair.
To circumvent this issue, the operation team developed several mechanisms to
ensure that smaller groups were not disadvantaged. For instance, they develop
a script that ensured a minimal number of running jobs per user by modifying
the priorities of some jobs to force the system to schedule them earlier. Another
technique was to specify additional resource definitions (as explained in the pre-
vious section) dedicated to these groups. Adding a requirement on this “special”
resource at submission time allowed the jobs to bypass the fair-share mechanism
completely and start almost immediately.

The proposed solution to ensure a fair sharing of the resources for all the
user groups, be they small or big consumers, without having to bypass or modify
the decisions made by the job scheduler was to increase the time frame used to
determine the priorities. To prevent any harmful disruption of the production
due to this change, we decided to progressively and empirically increase this
value. It was first set to 15 days in January 2017, then to 30 days in March,
and finally to 90 days in June 2017. After each modification, the operation team
monitored its impact on the production. While benefits for small groups and
no loss of the quality of service for the largest groups were observed, the time
frame was increased. A more principled process based on the particular setting of
the CC-IN2P3 would obviously have to be found. However, this would require a
parametric impact study combined to a thorough evaluation through simulation
before being deployed in production that is part of our future work.

The second modification made to the priority determination mechanism is
related to the metric used to measure the resource utilization. Historically, the
priorities were based on the used CPU time because the pledges made by the
experiments are expressed as a CPU consumption. This metric is thus used to
determine if the computing infrastructure can satisfy all the pledges and for the
accounting of the resource usage. However, it may also favor inefficient jobs,
i.e., jobs that are unable to fully exploit the CPU. Let’s consider two groups
that submit one job of the same duration each, one using 100% of the CPU
capacity and the other only 50%. Because of the chosen metric, the latter is
seen as consuming less resources than the former over the same time period and
will end up with a higher priority. Then the subsequent inefficient jobs from the
second group will be scheduled earlier even though they “waste” CPU time.

The historical way to address this issue was to add a new quota to limit
the number of inefficient jobs running, hence adding more complexity to the
scheduling. A simpler solution, adopted in September 2017, was to change the
metric from used CPU time to actual run time. This simple modification solved
the issue of inefficient jobs without adding an extra complexity to the system.
For the other jobs the change is transparent.

4 Conclusion and Future Work

The IN2P3 Computing Center is the largest French academic High Throughput
Computing center. Its primary mission is to answer the computing and stor-
age needs of the major international scientific collaborations in the domains of

Reducing the Human-in-the-Loop Component 59

high-energy and astroparticle physics. To manage the execution of millions of
individual jobs every month on nearly 35,000 cores, the CC-IN2P3 relied for years
on an in-house batch scheduling system, a complex set of admission rules, and
quotas on hardware and software resources. However, the ever increasing sizes of
both the infrastructure and workload made the existing system too cumbersome
to maintain and put a heavy load on the operation team.

In this experience report, we presented the specificity of the CC-IN2P3, char-
acterized the large HTC workload executed on its resources, and show how com-
plex its operation has become. Then we detailed the work engaged at the end
of 2016 to transfer some of the actions done by operators to the job schedul-
ing system with the objective to minimize the “human-in-the-loop” component
in scheduling decisions. The proposed modifications that were recently imple-
mented shows preliminary but promising results. However, the work presented
in this paper is only the beginning of a long-term activity to change the operation
procedures applied to the computing infrastructure of the CC-IN2P3.

Our future work thus includes several directions that we plan to follow. First,
we will continue the analysis of the workload to further characterize the jobs and
identify leads for improvement. One of the main objective will be to work on
a better estimation of the execution time of the jobs. Ideally, we would like
to encourage users to provide better estimations of the walltime at submission
time as it is classically done on HPC systems. This should both help the job and
resource management system to schedule jobs and the operation team to refine
the definition of queues. Second, we plan to resort to simulation to assess the
impact of potential modifications of the configurations of queues and quotas as
proposed in [6,7]. Several tools are available to perform such a simulation study,
like Alea [8] or Batsim [2]. The main obstacle is that the “Human-in-the-loop”
component that we started to reduce makes it difficult to use logs obtained from
the job scheduler and replay them under a different configuration. Indeed, the
scheduling decisions taken solely by the job and resource management system
may have been altered by operators, without being reflected in the logs. This may
lead to interpretation biases. Further reducing these human interventions is thus
an essential step in the optimization of the configuration of the job scheduling
system. Third, we plan to gather user feedback in a few months to measure the
impact of the proposed modifications as perceived by the users. This will give
us a complementary point of view on the benefits of this work and may outline
new and unforeseen modifications to make. Finally, we would like to give access
to contextualized logs to the job scheduling research community. As mentioned
before, this requires more work to reduce the human interventions and to be
able to indicate in the logs when operators modified the decisions taken by the
system. We believe that the large HTC workload processed at the CC-IN2P3
has specific characteristics, detailed in Sect. 2.3 which are very different of what
can be found in the Parallel Workloads Archive for instance. This will constitute
a new source of interesting problems to solve for the research community, whose
feedback would benefit to the operation of the CC-IN2P3.

60 F. Azevedo et al.

Acknowledgements. The authors would like to thank the members of the Operation
and Applications teams of the CC-IN2P3 for their help in the preparation of this
experience report.

References

1. Chapin, S.J., et al.: Benchmarks and standards for the evaluation of parallel job
schedulers. In: Feitelson, D.G., Rudolph, L. (eds.) JSSPP 1999. LNCS, vol. 1659,
pp. 67–90. Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-47954-6 4

2. Dutot, P.-F., Mercier, M., Poquet, M., Richard, O.: Batsim: a realistic language-
independent resources and jobs management systems simulator. In: Desai, N.,
Cirne, W. (eds.) JSSPP 2015-2016. LNCS, vol. 10353, pp. 178–197. Springer, Cham
(2017). https://doi.org/10.1007/978-3-319-61756-5 10

3. Feitelson, D., Tsafrir, D., Krakov, D.: Experience with using the parallel workloads
archive. J. Parallel Distrib. Comput. 74(10), 2967–2982 (2014)

4. Jackson, D., Snell, Q., Clement, M.: Core algorithms of the Maui scheduler. In:
Feitelson, D.G., Rudolph, L. (eds.) JSSPP 2001. LNCS, vol. 2221, pp. 87–102.
Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-45540-X 6

5. Kay, J., Lauder, P.: A fair share scheduler. Commun. ACM 31(1), 44–55 (1988)
6. Klusáček, D., Tóth, Š.: On interactions among scheduling policies: finding efficient

queue setup using high-resolution simulations. In: Silva, F., Dutra, I., Santos Costa,
V. (eds.) Euro-Par 2014. LNCS, vol. 8632, pp. 138–149. Springer, Cham (2014).
https://doi.org/10.1007/978-3-319-09873-9 12

7. Klusáček, D., Tóth, Š., Podolńıková, G.: Real-life experience with major reconfig-
uration of job scheduling system. In: Desai, N., Cirne, W. (eds.) JSSPP 2015-2016.
LNCS, vol. 10353, pp. 83–101. Springer, Cham (2017). https://doi.org/10.1007/
978-3-319-61756-5 5

8. Klusáček, D., Tóth, V., Podolńıková, G.: Complex Job Scheduling Simulations
with Alea 4. In: Proceedings of the 9th EAI International Conference on Simulation
Tools and Techniques (Simutools 2016), pp. 124–129. ICST, Prague (2016)

9. Michelotto, M., et al.: A comparison of HEP code with SPEC 1 benchmarks on
multi-core worker nodes. J. Phys. Conf. Ser. 219(5), 052009 (2010)

10. The ATLAS Collaboration: Observation of a new particle in the search for the
standard model Higgs Boson with the ATLAS detector at the LHC. Phys. Lett. B
716(1), 1–29 (2012). https://doi.org/10.1016/j.physletb.2012.08.020

11. The CMS Collaboration: Observation of a New Boson at a Mass of 125 GeV with
the CMS experiment at the LHC. Phys. Lett. B 716(1), 30–61 (2012). https://doi.
org/10.1016/j.physletb.2012.08.021

12. The IN2P3/CNRS Computing Center. http://cc.in2p3.fr/en/
13. The LIGO Scientific Collaboration and Virgo Collaboration: Observation of grav-

itational waves from a binary black hole merger. Phys. Rev. Lett. 116, 061102
(2016). https://doi.org/10.1103/PhysRevLett.116.061102

14. Univa Corporation: Grid Engine. http://www.univa.com/products/

https://doi.org/10.1007/3-540-47954-6_4
https://doi.org/10.1007/978-3-319-61756-5_10
https://doi.org/10.1007/3-540-45540-X_6
https://doi.org/10.1007/978-3-319-09873-9_12
https://doi.org/10.1007/978-3-319-61756-5_5
https://doi.org/10.1007/978-3-319-61756-5_5
https://doi.org/10.1016/j.physletb.2012.08.020
https://doi.org/10.1016/j.physletb.2012.08.021
https://doi.org/10.1016/j.physletb.2012.08.021
http://cc.in2p3.fr/en/
https://doi.org/10.1103/PhysRevLett.116.061102
http://www.univa.com/products/

Using Pilot Systems to Execute Many
Task Workloads on Supercomputers

Andre Merzky1, Matteo Turilli1, Manuel Maldonado1, Mark Santcroos1,
and Shantenu Jha1,2(B)

1 RADICAL Laboratory, Electrical and Computer Engineering, Rutgers University,
Piscataway, NJ, USA

shantenu.jha@rutgers.edu
2 Brookhaven National Laboratory, Upton, NY, USA

Abstract. High performance computing systems have historically been
designed to support applications comprised of mostly monolithic, single-
job workloads. Pilot systems decouple workload specification, resource
selection, and task execution via job placeholders and late-binding. Pilot
systems help to satisfy the resource requirements of workloads com-
prised of multiple tasks. RADICAL-Pilot (RP) is a modular and exten-
sible Python-based pilot system. In this paper we describe RP’s design,
architecture and implementation, and characterize its performance. RP
is capable of spawning more than 100 tasks/second and supports the
steady-state execution of up to 16K concurrent tasks. RP can be used
stand-alone, as well as integrated with other application-level tools as a
runtime system.

Keywords: Pilot system · Placeholder job · Multilevel scheduling
HPC workflow

1 Introduction

Traditionally, advances in high-performance scientific computing have focused
on the scale, performance and optimization of a workload with a large but sin-
gle task, and less on workloads comprised of multiple tasks. High-performance
workflows and scalable computation of ensemble workloads are becoming increas-
ingly important and are highly relevant to exploit post-Moore parallelism. As a
result, the number and type of applications that can be formulated as workflows
or ensembles is vast and span many scientific domains.

Applications with workloads comprised of multiple tasks impose sophisti-
cated execution and advanced resource management requirements [1]. High-
performance computing (HPC) systems have been designed to support applica-
tions comprised of mostly monolithic, single-job workloads. For example, HPC
systems have been designed and operated to maximize overall system utilization,
which typically entails static resource partitioning across jobs and users. Thus,
there is a tension between the resource requirements of workloads comprised of
c© Springer Nature Switzerland AG 2019
D. Klusáček et al. (Eds.): JSSPP 2018, LNCS 11332, pp. 61–82, 2019.
https://doi.org/10.1007/978-3-030-10632-4_4

http://crossmark.crossref.org/dialog/?doi=10.1007/>978-3-030-10632-4_4&domain=pdf
https://doi.org/10.1007/978-3-030-10632-4_4

62 A. Merzky et al.

many tasks, and the capabilities of the traditional HPC resource management
as well as their usage policies. This tension motivates middleware that can effi-
ciently manage the ability to support the resource requirements of many task
workloads without compromising traditional capabilities of HPC systems.

Enter pilot systems. The authors in Ref. [2] defined the properties of the Pilot
paradigm, and its relevance in the execution of workloads comprised of multiple
tasks. A defining element of the Pilot paradigm is the execution of a workload
via multi-entity and multi-stage scheduling on resource placeholders. Systems
implementing the Pilot paradigm submit job placeholders (i.e., pilots) to the
scheduler of resources. Once active, each pilot accepts and executes tasks directly
submitted to it by the application. In this way, pilot systems decouple workload
specification, resource selection, and task execution via job placeholders and
late-binding.

Pilot systems address two apparently contradictory requirements: accessing
HPC resources via their centralized schedulers, and letting applications indepen-
dently schedule tasks on the acquired portion of resources. Thus, pilot systems
provide a simple solution to the rigid resource management model historically
found in HPC systems. Not surprisingly, many workflow management systems
use pilot systems. Surprisingly, in spite of the acceptance and uptake of pilot
systems, to the best of our knowledge, there are no general purpose implementa-
tions capable of working in production with multiple HPC resources, including
leadership class machines.

In this paper, we discuss the design, architecture and implementation of
RADICAL-Pilot (RP) (Sect. 3). RP is a pilot system that fully implements the
concepts and capabilities of the Pilot paradigm. The implementation of RP dif-
fers from other pilot systems mostly in terms of API, portability, and introspec-
tion. Implemented in Python, RP is a self-contained pilot system which can be
used to provide a runtime system for workloads comprised of multiple tasks. In
Sect. 4, we discuss how RP provides pilot capabilities on Cray systems such as
BlueWaters and Titan. We experimentally characterize RP at multiple levels
in Sect. 5: we study the performance of individual components of RP, followed
by the integrated performance of its Agent. We then investigate the resource
utilization and performance of both the native and enhanced scheduling algo-
rithms.

The absolute performance of the enhanced scheduler is less important than
the ability to enhance performance of the scheduler via extensions and cus-
tomized scheduling algorithms. This reiterates the core contribution of this
paper: a careful description of the design and implementation of RP, highlighting
its use of multi-level and multi-entity scheduling.

2 Related Work

Traditionally, HPC systems such as Crays have been designed to best support
monolithic workloads. However, the workload of many important scientific appli-
cations is constructed out of spatially and temporally heterogeneous tasks that

Using Pilot Systems to Execute Many Task Workloads on Supercomputers 63

are often dynamically inter-related, where those tasks require compute, mem-
ory and communication capabilities exceeding what single node machine can
provide, and where the overall workload requirements are comparable to or
exceeding those of classic HPC workloads [3–5]. These workloads can benefit
from being executed at scale on supercomputers (e.g., BlueWaters and Titan,
both Cray systems), but a tension exists among the workloads’ resource utiliza-
tion requirements like rapidly and repeatedly acquiring a certain amount of cores
over time, the capabilities of the HPC system software, and their usage policies.
Pilot systems have the potential to relieve this tension but their adoption for
this class of HPC systems present several challenges that, so far, have not been
fully addressed.

Since 1995, more than twenty pilot systems have been developed [2]. Most of
these systems are tailored to specific workloads, resources, interfaces, or devel-
opment models. Most pilot systems have been implemented to optimize the
throughput of single-core (or single-node), short-lived, uncoupled tasks [2]. Some
notable examples are: HTCondor with Glidein on OSG [6], one of the most widely
used pilot systems for the execution of mostly single-core workloads; the pilot
systems developed for the LHC communities which execute millions of jobs a
week [7] and are specialized in supporting LHC workloads on specific resources
like those of WLCG; the light-weight execution framework called Falkon, which
represents an early stand-alone pilot system for HPC environment [8]; and Coast-
ers, developed mostly to support the Swift workflow system [9].

One of the major challenges in developing a general-purpose pilot system,
capable of executing multi-task workloads on supercomputers, is supporting mul-
tiple task launch methods, each with a specific set of limitations. For example,
Cluster Compatibility Mode (CCM) [10] is designed to provide services anal-
ogous to those of Beowulf clusters but is not generally available on all Cray
installations and, when present, access to it varies per system. The Application
Level Placement Scheduler (ALPS) [11] system, provides launch functionality
for running executables on compute nodes but limits the number of concurrent
applications a user can run by default. The Open Run-Time Environment [12],
a component of the OpenMPI MPI implementation, supports distributed high-
performance computing applications operating in a heterogeneous environment
but the degree of adoption and support varies across Cray systems.

Tools have been developed to support spatially and/or temporally heteroge-
neous tasks on Crays but many of these tools are built on top of CCM, ALPS,
or use single MPI allocations. As such, they are not able to support task het-
erogeneity or reach the necessary level of execution concurrency. For example,
TaskFarmer [13], a tool developed at LBNL, enables the user to execute a list
of system commands from a task file, allowing single-core or single-node tasks
to be run within a single mpirun allocation. Wraprun [14], a utility developed
at ORNL, enables independent execution of multiple MPI applications under
a single aprun call. QDO [15], a lightweight high-throughput queuing system
for workflows that have many small tasks has to use the resource batch system
for job submission. MySGE [16], another tool developed at LBNL that allows

64 A. Merzky et al.

users to create a private Sun GridEngine cluster on large parallel systems, but
is only available on NERSC resources. Python Task Farm (PTF) [17], a utility
for running serial Python programs as multiple independent copies of a program
over many cores, is available only on ARCHER (at EPCC).

The Pilot paradigm has proven sufficiently useful that resource management
systems have begun to include pilot capabilities either as separate tooling, or
as part of their implementation. For example, Flux [18] is described as a next-
generation Scalable Resource and Job Management Software (RJMS) for HPC
centers that focuses on a new paradigm of resource and job management. Within
this new paradigm, Flux allows resource allocation to be dynamic (i.e., dynamic
workloads), a key design principle of the Pilot paradigm [2]. This results in
jobs having the ability to scale up to a maximum requested resources (e.g., CPU
cores, GPUs, etc.) during execution, or to execute workloads (i.e., workloads with
different resource requirements) on a single “dynamic” allocation. Unfortunately,
Flux is limited only to the HPC resources that use it as their RJMS. Further,
as of the writing of this paper, Flux is still on an Alpha release.

3 RADICAL-Pilot

RADICAL-Pilot (RP) is a scalable and interoperable pilot system that imple-
ments the Pilot abstraction to support the execution of diverse workloads. We
describe the design and architecture of RP, and characterize the performance of
RP’s task execution components. These components are engineered for efficient
resource utilization while maintaining the full generality of the Pilot abstrac-
tion. RP supports several Cray machines, including BlueWaters (NCSA), Titan
(ORNL), and ARCHER (EPSRC), and a whole range of other platforms.

3.1 Overall Architecture

RP is a runtime system designed to execute heterogeneous and dynamic work-
loads on multiple and diverse resources. RP’s architecture and execution model
are shown in Fig. 1: workloads and pilots are described via the Pilot-API and
passed (1) to the RP runtime system, which submits the pilots, launches the
pilots’ Agent, and executes the tasks of the workload on one or more Agents.
RP represents pilots as aggregates of resources, independent from the architec-
ture and topology of the target machines, and workloads as a set of units to be
executed on the resources of the pilot. Both pilots and units are stateful entities,
each with a well-defined state model and life cycle. Their states and state transi-
tions are managed via the three modules of the RP architecture: PilotManager,
UnitManager, and Agent.

The PilotManager submits pilots to resources via the RADICAL-SAGA
API (2). The SAGA API [19] implements an adapter for each type of supported
resource, exposing uniform methods for job and data management. The Unit-
Manager schedules units to pilots’ Agent for execution. A MongoDB database is
used to communicate the scheduled workload (4) between the UnitManager and

Using Pilot Systems to Execute Many Task Workloads on Supercomputers 65

Fig. 1. RADICAL-Pilot Architecture and execution model.

one or more Agent. For this reason, the database instance needs to be accessible
both from the user’s workstation and the target resources, via ssh tunnels that
RP creates at runtime, where needed and when possible. Each Agent bootstraps
on a remote resource, pulls units from the MongoDB instance, and manages
their execution on the cores held by the pilot (5).

The modules of RP are distributed between the user workstation and the
target resources. The PilotManager and UnitManager are executed on the user
workstation while each Agent runs on the target resources. RP requires Linux or
OS X with Python 2.7 on the workstation but the Agent can execute different
types of units on resources with diverse architectures and software environments.

3.2 Programming Model

Fig. 2. Pilot API. Declaration of Pilot-
Manager and UnitManager within a
session.

RP is engineered as a Python library
that enables the declarative defini-
tion of resource requirements, and
of workloads to execute on them.
RP exposes a pilot-specific appli-
cation programming interface called
Pilot-API and enables programming
of application-specific relationships
between resources and workload in
generic Python. In the following code
snippets, we walk the reader through a
minimal but complete example of run-
ning a workload on BlueWaters using RP.

In Fig. 2, we show the code used to declare the respective managers for pilots
and units, whose lifetime is managed by a session object. As such, closing a
session destroys all its managers.

66 A. Merzky et al.

Fig. 3. Pilot API. (a) Declaration of a pilot, its subsequent submission to the Pilot-
Manager and the association to a UnitManager. (b) Declaration and submission of
compute units (CU).

In Fig. 3(a), we declare a pilot (rp.ComputePilotDescription()) by speci-
fying the resource on which it should be instantiated, how many cores it should
use, its runtime and, optionally, to what queue it should be submitted and
to what project it should be charged. Once submitted via the PilotManager
(pmgr.submit pilots()), the pilot is asynchronously queued to the batch sys-
tem of the indicated resource. Finally, the pilot is associated with a UnitManager
(umgr.add pilots()) to enable the execution of units on that pilot.

Finally, in Fig. 3(b) we declare a workload by creating a set of compute units
(cuds) that specify what payload should be run (/bin/date). Once created, the
compute units are submitted to the UnitManager (umgr.submit units()) which
schedules the unit to a pilot. The UnitManager can perform early binding (sched-
ule to any known pilot) or late binding (delay scheduling until pilots become
active). In either case, once that pilot does become active, it pulls the scheduled
units for execution. The umgr.wait units() call blocks until all the units have
run to completion. Upon its return, the session is closed (session.close())
indicating that the workload execution has completed.

3.3 State and Execution Models

The lifespan of pilots has 4 states distributed among the PilotManager, resource,
and pilot instance (Fig. 4a). Pilots are instantiated in the state NEW by the Pilot-
Manager, wait in a queue to be launched, and transition to PM LAUNCH when
submitted to a Resource Manager (RM) via the SAGA API. Pilots wait in the
queue of the RM and, once scheduled, become P ACTIVE. They remain in this
state until the end of their lifetime, when they transition to DONE.

The unit state model has 9 states distributed across the UnitManager,
MongoDB instance, and Agent (Fig. 4b). Instantiated in the state NEW by the

Using Pilot Systems to Execute Many Task Workloads on Supercomputers 67

SAGA API

LauncherQueue

PM_LAUNCH

NEW DONE User
W

Pilot
Manager

ResourceRM Queue

P_ACTIVE

Pilot

(a) (b)

Fig. 4. (a) Architecture of RP Client and pilot state model. (b) Architecture of RP
Agent and unit state model.

UnitManager, every unit is scheduled on an Agent (UM SCHEDULING) via a queue
on a MongoDB instance. The unit is then scheduled on the required num-
ber of cores held by the Agent’s pilot (A SCHEDULING), and finally executed
(A EXECUTING).

When required by a unit, input data are staged in by the UnitManager
and Agent (UM STAGING IN, A STAGING IN), and output data are staged out
(A STAGING OUT, U STAGING OUT) to a specified destination, e.g., local/shared
filesystem or user workstation. Both input and output staging are optional,
depending on the requirements of the units. The actual file transfers are enacted
via local OS commands or RADICAL-SAGA, supporting (gsi)-scp, (gsi)-(s)ftp,
and Globus Online.

The state transitions of Fig. 4 are sequential, and every transition can fail
or be canceled by the PilotManager or UnitManager. All state transitions are
managed by the PilotManager, UnitManager, and Agent components. The only
special case is the transition of the pilots to the state P ACTIVE which is deter-
mined by the resource’s RM and managed by the PilotManager.

3.4 Agent Architecture

Depending on the resource architecture, the Agent’s Stager, Scheduler, and Exe-
cuter components (Fig. 4(b)) can be placed on cluster head nodes, machine ori-
ented mini-server (MOM) nodes, compute nodes, virtual machines, or any combi-
nation thereof. Multiple Stager and Executer components can coexist in a single
Agent, placed on any service node or compute node of the pilot’s resource assign-
ment. ZeroMQ communication bridges connect the Agent components, creating
a network to support the transition of units through components. Every unit
goes through the states of Input Staging, Scheduling, Execution & Output Stag-
ing. This paper investigates different implementations of launch methods, which
are part of the Executer component, responsible for defining and managing the
task execution process.

68 A. Merzky et al.

4 Enabling RP on Cray Systems

As described in [20], we developed four ways of interfacing RP with the Cray
system software to enable execution of distributed applications on Cray systems.

4.1 Application Level Placement Scheduler (ALPS)

The ALPS software suite provides launch functionality for running executables
on compute nodes of a Cray system, by interfacing with the aprun command.
ALPS is the native way to run applications on a Cray from the batch scheduling
system. By default, ALPS limits the user to run up to 1000 applications concur-
rently within one batch job but in the pilot use-case, these applications may run
only for a very short time. This strains ALPS and the MOM node, effectively
limiting the throughput of concurrent executions to around 100 applications.
Further, ALPS does not allow the user to easily run more than one task on a
single compute node, making it difficult, if not impossible, to run workloads with
tasks requiring single or small amount of cores and workloads with heterogeneous
task size.

4.2 Cluster Compatibility Mode (CCM)

Crays are massively parallel processing (MPP) machines and the Cray Com-
pute Node OS does not provide the full set of Linux services typically found on
Beowulf clusters. CCM is a software suite designed to reduce this gap by pro-
viding services analogous to those of Beowulf clusters when required by applica-
tions. Nonetheless, CCM is not generally available on all Cray installations and,
when present, access to CCM varies per system, requiring special flags to the
job description or submitting to a special queue.

RP hides the CCM deployment differences from the application by operat-
ing the Agent either externally or internally to the CCM cluster created when
submitting a job to the Cray machine. When the Agent runs outside the CCM
cluster, it uses ccmrun to start tasks. However, this approach still relies on ALPS,
inheriting all the limitations described above. When the Agent runs within the
CCM cluster, only the initial startup of the Agent relies on ALPS. After that,
all task launching is done within the cluster, e.g., by using SSH or MPIRUN,
without further interaction with ALPS.

4.3 Open Run-Time Environment (OpenRTE/ORTE)

The Open Run-Time Environment is a spin-off from the Open-MPI project and
is a critical component of the OpenMPI MPI implementation. It was developed
to support distributed high-performance computing applications operating in a
heterogeneous environment. The system transparently provides support for inter-
process communication, resource discovery and allocation, and process launch
across a variety of platforms. ORTE provides a mechanism similar to the Pilot

Using Pilot Systems to Execute Many Task Workloads on Supercomputers 69

concept—it allows the user to create a dynamic virtual machine (DVM) that
spans multiple nodes. In regular OpenMPI usage the lifetime of the DVM is
that of the application, but the DVM can also be made persistent, and we rely
on this particular feature for RP. RP supports two different modes for inter-
acting with the ORTE DVM: via orte-submit CLI calls, and via ORTE library
calls. Currently we can not run applications that are linked against the Cray
MPI libraries, but once Cray moves to PMIx [21] that issue is resolved.

Figure 5 shows the layout of the RP agent, the ORTE Head Node Process
(HNP) that manages the DVM on the MOM Node, and the ORTE Daemons
that run on the Compute Nodes.

Resource

Login
Node

MongoDB

MOM
Node

SAGA-API

Compute
Node

Agentqsub

ORTE HNP

ORTE Daemon
Compute

NodeORTE Daemon

Fig. 5. Architecture overview of RP with
ORTE backend.

Command Line Interface (CLI):
Recently, ORTE has been extended
with tools to expose the creation of
the persistent DVM (orte-dvm) and
the launching of tasks onto that DVM
(orte-submit). The setup of the DVM
requires a single ALPS interaction,
after which all the tasks are exe-
cuted independent of ALPS. As RP
is a Python application and ORTE is
implemented in C, we interface the two
systems using the ORTE CLI. While
this enabled concurrent task execution
and sharing nodes among tasks, we did
run into new bottlenecks. The interac-
tion with the filesystem becomes a limiting factor for task execution as every
task requires the execution of orte-submit. We also experience network socket
race conditions and system resource limits above 16000 concurrent tasks, as
every task requires an orte-submit instance that communicates independently
with the orte-dvm. RP has the ability to spread the execution management of
tasks over multiple compute nodes, addressing the problem of having a large
centralized process footprint for maintaining state about each running process
this way.

C Foreign Function Interface for Python (CFFI): CFFI [22] provides a
convenient and reliable way to call compiled C code from Python using interface
declarations written in C. This mode of operation is similar to the CLI mode,
but differs in the way RP interfaces with ORTE: RP launches each task using
a library call instead of the orte-submit tool. This also allows the re-use of
network socket, thus further decreasing the per-call overhead. The incentive for
developing this approach was to overcome the limits and overheads imposed by
the CLI approach. We called the resulting launch method “ORTE-LIB”.

70 A. Merzky et al.

5 Experiments

We characterize the performance of the RP Agent by performing experiments
to benchmark individual components and integrated experiments on the Agent
as a whole. The results of experiments on individual components, referred to
as microbenchmarks, characterize the performance of a component in isola-
tion, while integrated experiments characterize the performance of a pipeline
of components, taking into account the communication and coordination over-
heads of their orchestration. Experiments were performed on two Cray systems:
BlueWaters at NCSA, and Titan at ORNL.

We use two metrics to characterize the performance of individual compo-
nents: throughput and concurrency. As seen in Sect. 3, the RP Agent is designed
as a pipeline of distinct components with multiple instances. For each instance
of a component, throughput measures the rate at which units are managed, con-
currency the volume of concurrently managed units. We measure the throughput
of a component as the number of units it handles per second, concurrency as the
number of units it handles at a given point in time.

We use two different metrics to characterize the integrated performance of
the RP Agent: total time to execution of the given workload (TTX) and resource
utilization (RU). TTX is a measure of how fast a set of tasks can be executed
by the RP Agent. It includes the time taken by the RP Agent to manage and
spawn the units for execution and the time taken by the units to execute. RU is
a measure of the percentage of available core-time spent executing the workload
and/or the RP Agent. TTX and RU are relevant for HPC resources, which
traditionally have been designed to execute large parallel jobs and maximize
overall utilization.

Depending on the type of experiment, the number of units, number or cores
per unit, duration of the unit, number of instances of a component, and number
of cores of a pilot are configurable parameters. By varying the values of these
parameters, we measure the amount of units that are in a specific state as a
function of time, or the time duration spent in a specific state. For example, we
measure the number of units in state A SCHEDULING and A EXECUTING at every
point in time in the RP Agent Scheduler component and derive the throughput
of that component.

To capture all of the measurements mentioned above, RP is instrumented
with a profiling facility to record timestamps of its operations. As the execution
of a given workload proceeds (as described in Sect. 3.3), each state transition is
recoded as an event. These events are written to disk for postmortem analysis
via dedicated utility methods. RP’s profiler is designed to be non-invasive and
to have minimal effect on the runtime. We measured the temporal overhead of
the profiler with a dedicated benchmark: For the same workload executed on
the same resources, the overall running time of the Agent was (144.7 ± 19.2 s)
with profiling, and (157.1 ± 8.3 s) without. Note how the standard deviation of
the two measurements overlap, making the difference between the two execution
times statistically insignificant.

Using Pilot Systems to Execute Many Task Workloads on Supercomputers 71

The execution of workloads with multiple tasks on a pilot has a varying
degree of concurrency, depending on the total number of cores required by the
tasks and available on the pilot. When the pilot has fewer available cores than
what is required by the workload, a group of tasks are executed sequentially. We
call this group of tasks a ‘generation’. The number of generations of a workload
execution affects the theoretical minimum TTX of that execution. For example,
given a workload with 128 single-core, 10 minutes-long tasks and a pilot with 64
cores, the execution of that workload will require 2 generations. The theoretical
minimum TTX of 2 generations × 10min = 20min, assuming 100% RU of the
pilot’s cores and no RP Agent overhead.

It is fundamental to understand that the executable of a unit is irrelevant
to the set of experiments performed here: whether a unit runs sleep, stress,
an emulator (e.g., Synapse), a simulation kernel (e.g. Gromacs) or any other
executable has no effect on the measure of the throughput and concurrency of
the RP Agent components, or on TTX and RU. This follows from the design
and separation of scheduling, launching and execution of a process. The RP
Agent schedules and launches a unit and, once launched, the unit executes its
code. While the unit is executing, the Executer component of RP Agent will not
interact with the unit. What code the unit is executing is completely irrelevant
to the Executer and therefore to RP as a whole.

5.1 Microbenchmark Experiments

Microbenchmarks measure the performance of individual RP components in iso-
lation. In a microbenchmark experiment, RP launches a pilot on a resource with
a single unit scheduled onto the Agent. When the unit enters the component
under investigation, it is cloned a specified number of times—10000 for exper-
iments in this paper. The components operate on the clones, experiencing real
loading while being stressed in isolation and independent of other components.

Microbenchmark experiments are designed to isolate a component by elim-
inating communication, coordination and concurrency with other components.
In this way, the benchmarked component does not compete for shared system
resources and communication channels, and remains immune from bottlenecks in
other components. Thus, the microbenchmark measures the performance upper
bound of a component implementation, as achieved in isolation from all types
of overhead as a consequence of interaction with other components.

We perform microbenchmark experiments for the Scheduler and Executer
components of RP Agent, the two components that most affect the overall per-
formance of the RP Agent (see Fig. 4). For the Executer, we test two launch
methods: ORTE-CLI, and ORTE-LIB. Note that these methods are not used
by the executable of the units, but instead by the RP component to launch
the executable. In turn, the executable could be single/multi-thread/process or
use MPI itself. Depending on the launch methods, we run microbenchmarks
load-balancing among 2, 4 and 8 Executer instances, executed on 1, 2, 4, and 8
compute nodes.

We perform microbenchmark experiments on BlueWaters as the repre-
sentative Cray system. As noted before, the executable of the units has no

72 A. Merzky et al.

bearing on the microbenchmarks. Microbenchmarking of the Scheduler compo-
nent require no execution, while Executer benchmarking requires actual execu-
tion of the units. We use the sleep command to avoid any irrelevant complication
deriving from setting up specific execution environments.

A full set of microbenchmarks would span a large parameter space, making
it unfeasible to present the full set of experimental results. We focus on results
which expose performance and scaling differences among the RP Agent compo-
nents. This enables a better characterization of the overall performance of the
Agent.

Agent Scheduler Performance. Currently, RP can instantiate exactly one
Scheduler component per Agent. The Scheduler is compute and communication
bound: the scheduling algorithm searches repeatedly through the list of managed
cores, while core assignment and deassignment are handled in separate, message-
driven threads.

Figure 6(a) shows the performance of the Scheduler component in assigning
cores to one generation of single-core units, for four pilot sizes. We see that the
throughput is dependent on the pilot size, and that the throughput rate declines
as more units are scheduled. This is explained by the chosen scheduling algorithm
and its implementation: the fewer free cores remain, the more work needs to be
done by the scheduling algorithm to find a suitable set of cores for the next units.
This behavior is a consequence of using one scheduler to handle workloads with
both homogeneous and heterogeneous units (single/multi-core, mpi, cpu/gpu,
etc.). In Sect. 5.3, we show how a special-purpose scheduler drastically improves
performance.

00:00:15 00:00:30 00:00:45 00:01:15 00:01:30

Time (s)

0

50

100

150

200

250

300

350

400

Sc
he

du
lin

g
R
at
e
(U

ni
t/
s)

1024
2048
4096
8192

(a)

00:01 00:02 00:03 00:04

Time (s)

0

20

40

60

80

100

Sc
he

du
lin

g
R
at
e
(U

ni
t/
s)

1024
2048
4096
8192

(b)

Fig. 6. RP Agent Scheduler component throughput as function of time. 1 generation
of single-core units on 4 pilot sizes. (a) allocating cores to a unit; (b) both allocating
cores to a unit and deallocating those cores from the units (steady state).

Using Pilot Systems to Execute Many Task Workloads on Supercomputers 73

Figure 6(b) shows the same workload of the previous microbenchmark exper-
iment, but the measurements also include the operations of unscheduling units
and freeing cores (i.e., steady state scheduler). We do not observe the slope of
Fig. 6(a) because both the scheduling and unscheduling operations contend the
lock on the Scheduler data structure. This considerably reduces the performance
of the Scheduler when compared to only allocating cores to the units.

Unit Execution Performance. RP can instantiate multiple Executer compo-
nent instances per Agent. The Executor’s performance is bound by the launch
methods used to spawn the units for execution. Currently, RP supports four
launch methods on Cray (ALPS, CCM, ORTE-CLI, and ORTE-LIB). Only the
two ORTE-based methods enable single/multi-core units within and across com-
pute nodes to run, at scales comparable to the size of BlueWaters and Titan.

Figure 7 (top) shows the scaling behavior of the ORTE-CLI launch method.
Throughput scales with the number of Executer components, with each compo-
nent running on a dedicated compute node. Data for experiments with increas-
ing instances per node are not presented, as no performance improvements were
observed. This suggests that the current performance of the Executer component
using ORTE-CLI has an upper-bound due to interaction with the OS.

While ORTE-CLI did not scale with multiple instances of an Executer com-
ponent on a single compute-node, Fig. 7 (bottom) shows that with the ORTE-
LIB launch method, performance scales with up to 4 instances per node. Adding
more instances does not increase the performance further. This suggests that 4
Executer components on 1 compute node and the ORTE-LIB launch method
reach the performance upper-bound of the ORTE layer.

00:01 00:02 00:03 00:04 00:05 00:06 00:07

Time (s)

0

20

40

60

80

100

E
xe
cu

ti
ng

R
at
e
(U

ni
t/
s)

1
2
4
8

(a)

00:00:30 00:01:30

Time (s)

0

100

200

300

400

500

600

700

800

900

E
xe
cu

ti
ng

R
at
e
(U

ni
t/
s)

1
2
4
8

(b)

Fig. 7. Throughput of 1–8 RP Agent Executer components with 2 launch mechanisms.
(a) ORTE-CLI, 1–8 Executer components, each run on 1 compute node. (b) ORTE-
LIB, 1–8 instances, all run on the same MOM node.

74 A. Merzky et al.

Figure 8 shows the scaling of the ORTE-LIB launch method for different
pilot sizes. We launch 1024, 2048, 4096 and 8192 single-core units on pilots with
1024, 2048, 4096 and 8192 cores. Throughput is stable over time but jittery
with a mean (std. dev) of 48.2 (10.2), 42.6 (7.1), 39.1 (9.8) unit/s. The jitter is
explained by the interaction with many external system components which, in
their totality, introduce significant noise.

00:01 00:02 00:03 00:04

Time (s)

0

10

20

30

40

50

60

70

E
xe
cu

ti
ng

R
at
e
(U

ni
t/
s)

1024
2048
4096
8192

Fig. 8. Throughput of 1 RP Agent Executer component with ORTE-LIB launch
method; 1024, 2048, 4096 and 8192 cores/units.

The best performance of ORTE-CLI is lower than the performance of the
Scheduler for a pilot with up to 1024 cores, as seen in Fig. 6. This indicates that
ORTE-CLI creates a bottleneck at the launching stage in the Agent’s Executer.
In absolute terms, the performance of ORTE-LIB is lower than the scheduling
component’s when the pilot size is less than 8192 cores, and comparable (or at
times higher) at pilot sizes over 8192 cores. Similar to the Scheduler component,
the performance decreases with increased pilot size, from an average rate of
around 48 units/s for the 1024 pilot size to an average rate of around 33 units/s
for larger pilots.

5.2 Agent Integrated Performance

To characterize the RP Agent performance as a whole, we employ workloads
with varying unit durations executed on pilots of different sizes. The size of each
unit is set to 1 core, allowing experiments to measure the performance of RP
with maximum pilot cores/unit ratio. Workloads with multi-core units lower the
overall stress on the components of the Agents and their communication and
coordination protocols, resulting in better performance.

Using Pilot Systems to Execute Many Task Workloads on Supercomputers 75

Microbenchmarks are not sufficient to characterize the Agent performance
as a whole for three reasons: (i) by definition, the microbenchmarks in section
“Unit Execution Performance” and section “Agent Scheduler Performance” can-
not measure the performance cost of communication among components; (ii) the
concurrent operation of multiple components introduces competition for shared
system resources (e.g., competing for filesystem access); and (iii) the Agent per-
formance can be limited by components or system resources outside of the Agent
(e.g., RP client manager components, or network latency between the Agent and
MongoDB).

Accordingly, the set of integration experiments discussed in this subsection
investigates the contributions of communication and concurrency to the Agent
performance. To offset external overheads, we design the experiments so that
the Agent operates independent of the performance of the PilotManager and
UnitManager components (Fig. 4): we introduce a startup barrier in the Agent to
ensure that the Agent receives sufficient work to fully utilize the pilot’s resources.
In this way, the Agent starts to process units only when the complete workload
has arrived at the Agent.

On Blue Waters, we measure time-dependent concurrency achieved by the
RP Agent for pilots with 2048, 4096, 8192, and 16384 cores. For each pilot
size, the workload is comprised of 3 generations of single-core units, resulting
in workloads with 6144, 12288, 24576, and 49152 units. For each workload, the
duration of each unit is 64, 128 and 256 s, long enough for all the units of the
first generation to start before the first unit is completed. In this way, the first
generation can always reach maximum concurrency, saturating the number of
cores available on the pilot.

Figure 9 shows the maximal concurrency for each pilot size, where all cores
are simultaneous used to execute units. The initial slope up to that maximum
concurrency is determined by the performance of the scheduler, which, as shown
in Fig. 6(a), is dependent on the pilot size. For example, with the 8192-core pilot
we see that 8192 units are started in about 100 s. This is comparable to what
is shown in figure Fig. 6(a), where 8192 units are scheduled in about 90 s, with
a throughput which starts out at 150 units/s and later stabilizes at about 50
units/s.

Figure 9 shows also that once the first generation of units begins to finish
execution, the scheduler enters a different mode of operation where scheduling
and unscheduling threads compete (see discussion of Fig. 6(b)). This decreases
the overall throughput of the Agent which is no longer able to maintain full
concurrency. This effect is independent of pilot size and number of units.

Comparing ORTE to ALPS and CCM. One of the limitations of
ALPS/APRUN is that we can only run one unit per node. SSH based launch
methods in CCM-mode on BlueWaters are also limited, due to connection limits
when executing more than 8 concurrent units per node. ORTE does not have
that limitation. In order to keep the runs comparable, i.e., to execute the same
configurations for all experiments, we configure the workload used to use 32 cores
per unit, so that each unit consumes a full node. This workload can be executed
with all RP launch methods.

76 A. Merzky et al.

0 200 400 600 800 1000

Time (s)

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

#
C
on

cu
rr
en
t
U
ni
ts

2048
4096
8192
16384

Fig. 9. Unit concurrency as a function of pilot size and unit duration.

On Blue Waters, we run 10 workloads ranging from 3 to 768 units, where
each unit consumes a full compute node (32 cores) and executes on pilots ranging
form 32 cores (1 node) to 8192 cores (256 nodes) respectively. We run the same
set of 10 workloads for each launch method and compare the actual Time to
Execution (TTX) against the theoretically optimal TTX (i.e., the time taken by
all the units to execute without any RP overhead).

Figure 10 shows that there is a large trend difference between ORTE-
CLI/ORTE-LIB and ALPS/CCM. As the scale increases, the difference between

50 100 150 200 250

Nodes

190

195

200

205

210

215

220

225

230

235

T
im

e
to

C
om

pl
et
io
n
(s
)

CCM

ORTE CLI

ORTE LIB

ALPS

Optimal

Fig. 10. Time to Execution (TTX) as a function of number of units, size of pilot and
Executer launch method.

Using Pilot Systems to Execute Many Task Workloads on Supercomputers 77

ALPS/CCM to ORTE increases, with ORTE being closer to the theoretically
optimal TTX and ALPS/CCM increasing somewhat linearly after around 50
nodes.

5.3 Resource Utilization and Overheads at Scale

Currently, the ORTE launch method is the one supporting the largest runs with
RP on Cray machines, allowing to execute workloads with 16384 multi-core units
on more than 130000 cores. We run two experiments to characterize the weak
and strong scaling behavior of RP and its overheads up to this scale. In the
weak scaling experiment, we execute workloads with a constant ratio between
units and cores. In the strong scaling experiment, we execute one workload on a
progressively larger amount of cores. In this way, the strong scaling experiment
executes the workload with between 2 and 32 generations.

Weak and strong scaling experiments execute workloads with 32 cores, 15 min
long MPI tasks. We perform both experiments on Titan for two main reasons: (i)
Titan is very similar to BlueWaters in terms of architecture and scale; and (ii)
these experiments required around 25 million core-hours, at the time available
only on Titan.

Figure 11 shows both the weak (first 8 bars) and strong (last 3 bars) scaling
experiments. We measure resource utilization as percentage of the available core-
time spent executing the workload (Workload Execution, central portion of the
stacked bar), RP code (RP Overhead, lower portion of the stacked bar), or idling
(RP Idle, top portion of the stacked bar). Runs measuring weak scaling with
between 32/1024 and 128/4096 tasks/cores have a relatively constant percentage
of core-time utilization but this percentage decreases with the growing of the
number of tasks/cores. As a result, we observe that RP Agent does not weak
scale with pilot larger than 8192 cores.

Runs measuring strong scaling show values of RP overhead and idling
inversely proportional to the number of generations: the more generations,
the less overhead and idling. This is explained by noting that, when tasks of
one generation terminate, those of the following generation immediately starts

32
1056

64
2080

128
4128

256
8224

512
16416

1024
32800

2048
65568

4096
131104

16384
65568

16384
32800

16384
16416

Number of Tasks/Cores

0

50

100

U
til
iz
at
io
n

(%
of

to
ta
lr
es
ou
rc
es
)

RP Overhead Workload Execution RP Idle

Fig. 11. Resource utilization of RADICAL-Pilot.

78 A. Merzky et al.

executing. This eliminates the idling of cores for all generations but the last one.
We presume that the increase of RP overhead depends, at least to some extent,
on the proportional relation between the communication required to coordinate
an execution and the size of the pilot used.

Reducing RP Overhead. We explore the decrease in resource utilization
measured in the weak scaling experiment (Fig. 11, first 8 bars) by looking at
the results of the microbenchmark shown in Fig. 6, and focusing on the relation
between scheduling performance and size of the pilot used for the execution.

As described in Sect. 5.1, the larger the pilot, the larger is the resource pool
managed by the scheduler. Currently, the scheduler is implemented to repeatedly
search a Python data structure for available cores. This approach is effective for
a general purpose scheduler that needs to handle many types of workload—e.g.,
homogeneous/heterogeneous, MPI/OpenMP/Scalar, or single-node/multi-node.
However, for homogeneous workloads, a more efficient single-purpose scheduler
can be implemented.

Leveraging the flexibility and extensibility of RP (as also used for the Exe-
cuter and its multiple launch methods), we implemented a scheduler algorithm
which specifically handles homogeneous, multi-node tasks of workloads used in
weak and strong scaling experiments. The behavior of this special purpose sched-
uler is shown in Fig. 12 the scheduler manages each task in constant time, at a
much lower time per task compared to the general-purpose scheduler.

When the special purpose scheduler encounters the first unit to schedule, it
immediately divides the total set of cores into partitions which are all of the same
size as the number of cores required by the first unit. In this way, the scheduling
algorithm is reduced to the procedure of assigning equally-sized partitions to the
units as they arrive. Crucially, this avoid the need for any search on a (Python)
data structure representing the cores managed by the pilot. Instead, partition
lookup and assignment can be performed in constant time.

It should be noted that there still remain limitations for when the second
generations of units gets scheduled, i.e., when the scheduling and unscheduling
processes compete. Nonetheless, the throughput of this scheduler is consistently
higher than for the general-purpose scheduler: the lock contention reduces due

0 1000 2000 3000 4000
Number of Tasks

0

200

400

T
im

e
(s
)

RP Standard Scheduler
RP Special Purpose Scheduler

Fig. 12. Scheduling overheads: Standard and special purpose schedulers.

Using Pilot Systems to Execute Many Task Workloads on Supercomputers 79

to the reduced time for which the scheduler algorithm needs to lock the data
structures. Full details on the homogeneous bag of task scheduler and more
detailed measurements are discussed in [23].

5.4 Discussion

Microbenchmark experiments provide insight on how the Agent’s Scheduler and
Executer components perform for different Agent configurations and pilot sizes
(Sect. 5.1). These experiments provide an upper-bound of the throughput (i.e.,
units handled per second) of each of the two components and show which com-
ponent could be the rate-determining factor in the overall agent integrated per-
formance scales. Microbenchmark experiments for the Agent’s Scheduler com-
ponent show that the scheduling throughput is dependent on the pilot size, and
that the throughput rate declines as more units are scheduled. Further, we show
that when the component is doing both the scheduling and unscheduling opera-
tions (i.e., scheduler reaches steady state) the scheduler’s throughput is primarily
dependent on the pilot size as seen in Fig. 6(b), viz., as the pilot size increases,
the scheduler’s throughput decreases.

The microbenchmark experiments with the Executer component show that
its throughput decreases when the pilot size and unit counts increase in the
same proportion, similar to what was observed for the Scheduler component. For
both ORTE-CLI and ORTE-LIB Executer launch methods we show increased
throughput when an increasing number of concurrent executers are used. ORTE-
LIB allows multiple executers on the MOM node, while ORTE-CLI requires
a compute node for each executer. As described in Sect. 4.3, this is explained
by observing that an execution through ORTE-LIB is only a library call that
causes a network call and doesn’t strain the system on which it is running.
Conversely, each execution call done through ORTE-CLI requires interactions
with the filesystem and network resources to communicate with the orte-dvm.
Thus an agent using ORTE-CLI reaches the resource limits of BlueWaters and
Titan with workloads that consists of very large numbers of concurrent tasks or
when running multiple components on the same MOM node.

Section 5.2 describes experiments that characterize the integrated perfor-
mance of RP Agent. We show that the maximal concurrency achievable for
multiple pilot sizes, where all cores are simultaneously used to execute units, is
approximately 16000 units. We also compare the performance of the ALPS, CCM
and ORTE Executer launch methods and found that ORTE-LIB and ORTE-
CLI launch methods out-perform ALPS and CCM for the performance metric of
TTX. We also show that the performance of ORTE-CLI and ORTE-LIB launch
methods are comparable when the number of units is between 3 and 768 units,
but this is likely to change with a higher number of units, where configurations
with multiple executers and the lower impact of ORTE-LIB on resource utiliza-
tion would make the ORTE-LIB launch method perform better than ORTE-CLI.
Further, we note that the performance of CCM on BlueWaters is low compared
to other launch methods available on non-Cray HPC systems like Stampede [24].

80 A. Merzky et al.

Finally, we measured the resource utilization of RP Agent at highest scale
currently supported, both in terms of number of units concurrently executed and
number of cores of a single pilot. We moved from a single-core units to units of
32-cores, and we ran weak scaling experiments with workloads ranging from 32 to
4096 units on pilot sizes ranging from 32 to 131104 cores respectively, and strong
scaling experiments with workloads of 16384 units on pilot sizes ranging from
16416 to 65568 cores (Sect. 5.3). Our experiments show that resource utilization
of the RP Agent for the weak scaling experiments with pilot sizes between of
1024 and 4096 cores have a relatively constant percentage of core-time utilization,
but this percentage significantly decreases with pilots larger than 8192 cores. We
attributed RP Agent’s poor weak scaling property with pilot sizes over 8192 cores
to the performance of the Agent Scheduler component.

We addressed the decrease in resource utilization measured in the weak scal-
ing experiment and showed the flexibility and extensibility or RP, by imple-
menting a special-purpose scheduler, specific to the experimental workload—
i.e., homogeneous, multi-node tasks. We then showed that the overhead added
by the special-purpose scheduler significantly decreases compared to the one of
the special-purpose scheduler used for the experiment.

6 Conclusion

Prima facie, a system implementing the Pilot abstraction [2,25] provides the
conceptual and functional capabilities needed to support the scalable execu-
tion of many task workloads. The impact of an abstraction is limited to its
best implementation. Whereas there are several existent pilot systems, they are
either geared towards specific functionality or platforms. This paper describes
the architecture and implementation of RP (Sect. 3.1), and characterizes the
performance of its Agent module on Cray platforms (Sect. 5).

In molecular sciences, there is a demonstrated need [26] to be able to support
up to 105 MPI tasks as part of a single “ensemble simulation”. Similar scales
are anticipated across multiple domains. Several parts of RP will need to be
re-engineered to efficiently execute workloads at this scale. Most of the benefits
will come from improving the Agent, as discussed in Sect. 3.1 and consistent
with results shown in Sect. 5. To this end, we are planning to: (i) develop a set
of specialized, lock-free schedulers; (ii) partition the pilot resources and operate
multiple agents in parallel on these partitions; (iii) explore new launch methods;
and (iv) aggregate units depending on their application provenance and duration
to optimize Scheduler and Executor throughput.

The focus of this paper has been on the direct execution of workloads on
HPC machines, but RP also serves as the runtime system for a range of other
tools and libraries [27–30], many already used in production. The requirements
of these tools and libraries will also motivate future research and development.

Software and Data
RP is available for immediate use on many platforms [31]. RP source is accom-
panied with extensive documentation and an active developer-user community.

Using Pilot Systems to Execute Many Task Workloads on Supercomputers 81

Source code, raw data and analysis scripts to reproduce experiments can be
found at:

– RADICAL-Pilot: https://github.com/radical-cybertools/radical.pilot

– RADICAL-Analytics: https://github.com/radical-cybertools/radical.analytics

– Data and scripts: https://github.com/radical-experiments/jsspp18

Acknowledgments. This work is supported by NSF “CAREER” ACI-1253644, NSF
ACI-1440677 “RADICAL-Cybertools” and DOE Award DE-SC0016280. We acknowl-
edge access to computational facilities: XSEDE resources (TG-MCB090174) and Blue
Waters (NSF-1713749).

References

1. Hwang, E., Kim, S., Yoo, T.K., Kim, J.S., Hwang, S., Choi, Y.R.: Resource alloca-
tion policies for loosely coupled applications in heterogeneous computing systems.
IEEE Trans. Parallel Distrib. Syst. 27(8), 2349–2362 (2016)

2. Turilli, M., Santcroos, M., Jha, S.: A comprehensive perspective on Pilot-Jobs.
ACM Comput. Surv. (2017, accepted, in press). http://arxiv.org/abs/1508.04180

3. Preto, J., Clementi, C.: Fast recovery of free energy landscapes via diffusion-
map-directed molecular dynamics. Phys. Chem. Chem. Phys. 16(36), 19181–19191
(2014)

4. Cheatham III, T.E., Roe, D.R.: The impact of heterogeneous computing on work-
flows for biomolecular simulation and analysis. Comput. Sci. Eng. 17(2), 30–39
(2015)

5. Sugita, Y., Okamoto, Y.: Replica-exchange molecular dynamics method for protein
folding. Chem. Phys. Lett. 314(1), 141–151 (1999)

6. Pordes, R., et al.: The open science grid. J. Phys. Conf. Ser. 78(1), 012057 (2007)
7. Maeno, T., et al.: Evolution of the ATLAS PanDA workload management system

for exascale computational science. J. Phys. Conf. Ser. 513(3), 032062 (2014).
Proceedings of the 20th International Conference on Computing in High Energy
and Nuclear Physics (CHEP 2013)

8. Raicu, I., Zhao, Y., Dumitrescu, C., Foster, I., Wilde, M.: Falkon: a Fast and
Light-weight tasK executiON framework. In: Proceedings of the 8th ACM/IEEE
Conference on Supercomputing, p. 43. ACM (2007)

9. Wilde, M., Hategan, M., Wozniak, J.M., Clifford, B., Katz, D.S., Foster, I.: Swift: a
language for distributed parallel scripting. Parallel Comput. 37(9), 633–652 (2011)

10. CCM. http://bit.ly/cray ccm. Accessed Jan 2018
11. Karo, M., Lagerstrom, R., Kohnke, M., Albing, C.: The application level placement

scheduler (2006)
12. Castain, R.H., Squyres, J.M.: Creating a transparent, distributed, and resilient

computing environment: the OpenRTE project. J. Supercomput. 42(1), 107–123
(2007)

13. TaskFarmer. http://bit.ly/taskfarmer
14. Wraprun. https://www.olcf.ornl.gov/kb articles/wraprun/
15. QDO. http://bit.ly/nersc qdo
16. Canon, R.S., Ramakrishnan, L., Srinivasan, J.: My Cray can do that? Supporting

diverse workloads on the Cray XE-6. In: Cray User Group (2012)

https://github.com/radical-cybertools/radical.pilot
https://github.com/radical-cybertools/radical.analytics
https://github.com/radical-experiments/jsspp18
http://arxiv.org/abs/1508.04180
http://bit.ly/cray_ccm
http://bit.ly/taskfarmer
https://www.olcf.ornl.gov/kb_articles/wraprun/
http://bit.ly/nersc_qdo

82 A. Merzky et al.

17. Python Task Farm. http://www.archer.ac.uk/documentation/user-guide/batch.
php#sec-5.7

18. Ahn, D.H., Garlick, J., Grondona, M., Lipari, D., Springmeyer, B., Schulz, M.:
Flux: a next-generation resource management framework for large HPC centers. In:
2014 43rd International Conference on Parallel Processing Workshops (ICCPW),
pp. 9–17. IEEE (2014)

19. Merzky, A., Weidner, O., Jha, S.: SAGA: a standardized access layer to hetero-
geneous distributed computing infrastructure. Software-X (2015). https://doi.org/
10.1016/j.softx.2015.03.001

20. Santcroos, M., Castain, R., Merzky, A., Bethune, I., Jha, S.: Executing dynamic
heterogeneous workloads on blue waters with radical-pilot. In: Cray User Group
2016 (2016)

21. PMIx web site. https://www.open-mpi.org/projects/pmix/
22. CFFI Documentation. http://cffi.readthedocs.org
23. Merzky, A., Turilli, M., Maldonado, M., Jha, S.: Design and performance charac-

terization of RADICAL-pilot on titan. arXiv preprint arXiv:1801.01843 (2018)
24. Merzky, A., Santcroos, M., Turilli, M., Jha, S.: Executing dynamic and heteroge-

neous workloads on super computers (2016, under review). http://arxiv.org/abs/
1512.08194

25. Luckow, A., Santcroos, M., Merzky, A., Weidner, O., Mantha, P., Jha, S.: P*: a
model of pilot-abstractions. In: IEEE 8th International Conference on e-Science,
pp. 1–10 (2012). https://doi.org/10.1109/eScience.2012.6404423

26. Jha, S., Kasson, P.M.: High-level software frameworks to surmount the challenge
of 100x scaling for biomolecul ar simulation science. White Paper submitted to
NIH-NSF Request for Information (2015). https://doi.org/10.5281/zenodo.44377

27. Balasubramanian, V., Treikalis, A., Weidner, O., Jha, S.: Ensemble toolkit: scalable
and flexible execution of ensembles of tasks. In: 2016 45th International Conference
on Parallel Processing (ICPP), vol. 00, pp. 458–463, August 2016

28. Treikalis, A., Merzky, A., Chen, H., Lee, T.S., York, D.M., Jha, S.: RepEx: a flexible
framework for scalable replica exchange molecular dynamics simulations. In: 2016
45th International Conference on Parallel Processing (ICPP), August 2016

29. Balasubramanian, V., et al.: Harnessing the power of many: extensible toolkit for
scalable ensemble applications (2017). https://arxiv.org/abs/1710.08491

30. Balasubramanian, V., et al.: ExTASY: scalable and flexible coupling of MD simu-
lations and advanced sampling techniques. In: 2016 IEEE 12th International Con-
ference on e-Science (e-Science), pp. 361–370, October 2016

31. RADICAL-Pilot. https://github.com/radical-cybertools/radical.pilot

http://www.archer.ac.uk/documentation/user-guide/batch.php#sec-5.7
http://www.archer.ac.uk/documentation/user-guide/batch.php#sec-5.7
https://doi.org/10.1016/j.softx.2015.03.001
https://doi.org/10.1016/j.softx.2015.03.001
https://www.open-mpi.org/projects/pmix/
http://cffi.readthedocs.org
http://arxiv.org/abs/1801.01843
http://arxiv.org/abs/1512.08194
http://arxiv.org/abs/1512.08194
https://doi.org/10.1109/eScience.2012.6404423
https://doi.org/10.5281/zenodo.44377
https://arxiv.org/abs/1710.08491
https://github.com/radical-cybertools/radical.pilot

Adaptive Simultaneous Multi-tenancy
for GPUs

Ramin Bashizade(B), Yuxuan Li, and Alvin R. Lebeck

Department of Computer Science, Duke University, Durham, NC, USA
{ramin,alvy}@cs.duke.edu, yuxuanlala@gmail.com

Abstract. Graphics Processing Units (GPUs) are energy-efficient mas-
sively parallel accelerators that are increasingly deployed in multi-tenant
environments such as data-centers for general-purpose computing as well
as graphics applications. Using GPUs in multi-tenant setups requires an
efficient and low-overhead method for sharing the device among multiple
users that improves system throughput while adapting to the changes
in workload. This requires mechanisms to control the resources allo-
cated to each kernel, and an efficient policy to make decisions about this
allocation.

In this paper, we propose adaptive simultaneous multi-tenancy to
address these issues. Adaptive simultaneous multi-tenancy allows for
sharing the GPU among multiple kernels, as opposed to single kernel
multi-tenancy that only runs one kernel on the GPU at any given time
and static simultaneous multi-tenancy that does not adapt to events
in the system. Our proposed system dynamically adjusts the kernels’
parameters at run-time when a new kernel arrives or a running ker-
nel ends. Evaluations using our prototype implementation show that,
compared to sequentially executing the kernels, system throughput is
improved by an average of 9.8% (and up to 22.4%) for combinations of
kernels that include at least one low-utilization kernel.

1 Introduction

Graphics Processing Units (GPUs) are massively parallel accelerators that were
originally intended to execute graphics applications, but their high through-
put and energy-efficiency motivates their use by broader application domains.
Numerous cloud service providers offer GPUs as part of their solutions [2,9,15].
In such environments a large number of kernels with different memory access
and compute behaviors request running on GPUs. Running only one kernel on
the GPU in these environments underutilizes resources, since a single kernel
cannot utilize all the resources on the device most of the time [21]. Therefore,
always dedicating the entire GPU to only one customer (or single kernel) is not
cost-efficient either for the service provider or for the customer. One example
to address this issue is Amazon Web Services’ plan to provide fractional GPUs
(Elastic GPUs [2]) for applications that have high compute, storage or memory
needs that still could benefit from additional GPU resources. Another example
c© Springer Nature Switzerland AG 2019
D. Klusáček et al. (Eds.): JSSPP 2018, LNCS 11332, pp. 83–106, 2019.
https://doi.org/10.1007/978-3-030-10632-4_5

http://crossmark.crossref.org/dialog/?doi=10.1007/>978-3-030-10632-4_5&domain=pdf
https://doi.org/10.1007/978-3-030-10632-4_5

84 R. Bashizade et al.

is the NVIDIA Volta architecture’s support for statically dividing the GPU into
multiple smaller virtual GPUs [20].

Sequential execution of kernels on GPUs in multi-tenant environments, such
as data-centers, leads to long wait times and reduces system throughput. Over-
coming this limitation requires a method for sharing the device among multiple
users that is efficient and adaptive to the events in the system (i.e., arrival
and departure of kernels.) NVIDIA GPUs support simultaneous execution of
multiple kernels and memory operations in a single application via Hyper-Q
technology [17]. In addition, the CUDA Multi-Process Service (MPS) [18] facil-
itates concurrent execution of kernels and memory operations from different
applications. However, the first-come-first-served (FCFS) and left-over resource
allocation policies make concurrent execution on existing GPUs inefficient. The
reason is that the FCFS policy creates a head-of-line blocking situation where
the running kernel blocks other kernels until it has all its thread blocks mapped
to Streaming Multi-processors (SMs). Additionally, simply allocating the left-
over resources of the running kernel to the waiting kernels might not be the
optimal solution, since such a policy ignores the different requirements of the
kernels and only depends on the order in which the kernels arrive at the GPU.
The Volta architecture tries to overcome this head-of-line blocking by adding
the capability to statically divide the GPU into smaller virtual GPUs, but the
above problems apply to each virtual GPU.

An effective and low-overhead scheme for sharing the GPU among multiple
kernels should address both the resource underutilization and the adaptiveness
issues. This requires overcoming the head-of-line blocking problem in thread
block scheduling on the GPU to address the adaptiveness problem, and hav-
ing a simple yet effective policy for resource allocation to tackle the underuti-
lization issue. Previous work attempted to support multi-tenancy on the GPU
either by a software-based approach [6,30] or by adding the necessary hard-
ware support [22,27]. These works solely support preemption to make the sys-
tem responsive, i.e., to force low-priority kernels to yield control of the GPU
to high-priority kernels, and hence, do not alleviate the resource underutiliza-
tion problem. A different class of work addresses multi-tasking on the GPU by
modifying the hardware [1,12,14,23,28,31] or artificially fusing the kernels from
different applications together [10,14,21,29]. In the hardware-based work, the
resource allocation policy is fixed and cannot be changed. Furthermore, most
of the necessary hardware support is not present in existing GPUs. Software-
based approaches that rely on merging applications together are impractical in
real world scenarios since it requires merging every possible combination of ker-
nels beforehand. Our work does not suffer from these shortcomings since we use
a low-overhead software approach to solve the GPU multi-tenancy problem at
run-time.

These challenges inspired us to design a system that realizes multi-tenancy
for commodity GPUs. In this paper, we propose adaptive simultaneous multi-
tenancy for GPUs. Our system dynamically adjusts the resources allocated to
kernels based on the requirements of all kernels requesting execution on the GPU

Adaptive Simultaneous Multi-tenancy for GPUs 85

at run-time. We achieve this by adopting a cooperative approach between appli-
cations and a host-side service, supported via minimal application modifications
and a lightweight API. Our approach focuses on a single server, as the problem
of assigning work to specific servers in data-centers is addressed elsewhere [24].
Therefore, we assume that the work assigned to this machine is optimized by
the higher level scheduler.

In our proposed system, we manage the resources allocated to each kernel,
and control the mapping of kernels’ thread blocks to SMs. Naively applying
resource allocation policies can lead to unintended mappings of thread blocks to
SMs and result in further underutilization of resources. To avoid this, we build
on the concept of persistent threads [11] with a few modifications to implement
our desired mapping policy on the GPU. Our work differs from previous work
that uses persistent threads to support preemption [6,30] in that we show how
to control the assignment of thread blocks to SMs and use it to have control over
resource allocation to kernels. Moreover, support for preemption comes almost
for free when we adopt this approach.

To realize adaptive simultaneous multi-tenancy, we implement a host-side
service with which applications communicate to obtain launch parameters for
their kernels. The service monitors the kernels running on the GPU and makes
decisions for launch parameters based on the adopted allocation policy. In this
work, we use offline profiling of kernels and implement a greedy policy using
this data with the goal of minimizing the maximum execution time among all
running kernels, or in other words, maximizing system throughput (STP). We
show that using our design, STP is improved by an average of 9.8% (and up to
22.4%) for combinations of kernels that include at least one low-utilization kernel,
with respect to the sequential execution of the kernels. Compared to a system
in which persistent threads transformation is applied to the kernels, the average
STP improvement for these kernel combinations is 4.3%. We do not compare our
system with other software-based multi-tenant systems [6,30], since the target of
those systems is to improve the turnaround time of high-priority kernels whereas
our goal in this work is to improve the throughput of the whole system. Improving
STP, assuming Service Level Agreements (SLAs) are not violated, translates
into less energy consumption of the data-center by allowing for reduction in the
number of servers for the same amount of work, or in higher scalability by doing
more work with the same number of servers, both of which are crucial factors in
determining the Total Cost of Ownership (TCO) [4].

We make the following contributions in this paper:

– We identify the need for sharing the GPU among multiple kernels by char-
acterizing the behavior of a set of benchmark kernels. Our observations show
that running only one kernel at a time leads to underutilization of differ-
ent types of resources on the GPU. On the other hand, simply running two
kernels together without considering resource utilization does not realize the
potential STP gains.

86 R. Bashizade et al.

– We use the concept of persistent threads to control the resources allocated to
each kernel at run-time. This allows us to solve the head-of-line blocking at
the GPU block scheduler1.

– We design and implement an adaptive simultaneous multi-tenant prototype
system that runs on current GPUs. Adaptive simultaneous multi-tenancy is
a generalization of single-kernel multi-tenancy [6,30], and static simultane-
ous multi-tenancy supported by the NVIDIA Volta architecture, in which the
GPU is shared by multiple kernels at the same time based on the requirements
of all kernels. Our system is composed of a host-side service that makes deci-
sions regarding the allocation of resources to kernels and preemption/relaunch
of running kernels, and an application-side API that encapsulates the com-
munications with the service in a few function calls.

– We evaluate the proposed system for a set of benchmark kernels using a full
prototype on real GPUs and show the effectiveness of our approach in terms
of improving STP.

The rest of this paper is organized as follows. A brief background about GPU
execution model as well as motivation for our work are presented in Sect. 2.
Section 3 elaborates our proposed system. Evaluation methodology and experi-
mental results are discussed in Sect. 4. Section 5 covers the related work. Finally,
Sect. 6 concludes the paper.

2 Background and Motivation

2.1 GPU Execution Model

GPUs are massively parallel accelerators that are composed of thousands of
simple cores. A large number of cores together with cache, shared memory2, reg-
ister files, and some other components form streaming multi-processors (SMs).
All SMs share a last level cache. Figure 1a and b show the architecture of and
SM and the GPU.

Figure 1c illustrates the structure of a kernel. GPU kernels comprise a large
number of threads that execute the same instructions on different data, hence the
name Single-Instruction-Multiple-Thread (SIMT). These threads are grouped
together to form thread blocks, and a set of thread blocks is called a grid. All
thread blocks in a grid have the same dimensions, and all threads of the same
thread block can only run on a single SM. A thread block is a logical notion
that helps the programmers reason about their code. However, a limited number
of thread blocks can fit on the device at the same time. We separate these
concepts and refer to the physical thread blocks actually running on the GPU as
concurrent thread arrays (CTAs). Note that in some other works thread blocks
and CTAs are used interchangeably.
1 The recently announced NVIDIA Volta architecture solves the head-of-line blocking

at the GPU block scheduler by dividing the GPU into smaller virtual GPUs, but it
lacks the flexibility provided by persistent threads.

2 Scratchpad memory in NVIDIA terminology is called shared memory.

Adaptive Simultaneous Multi-tenancy for GPUs 87

Fig. 1. (a) SM components, (b) GPU components, and (c) kernel structure.

When there are enough resources on an SM to host a waiting thread block, the
block scheduler dispatches that thread block to the available SM for execution.
If there are more than one SM with enough resources, the mapping happens in
a round-robin fashion. In each SM then, warp scheduler dispatches ready warps
to execute instructions. A warp is the smallest group of threads that execute
in lockstep to reduce the overhead of instruction fetch and control flow. The
programmer has no control over the size of a warp. Once a thread block is
mapped to an SM, it continues execution until it finishes. In other words, there
is no mechanism for preemption or yielding resources (the Pascal [19] and Volta
[20] architectures perform context switching, but the programmer does not have
control over the operation).

Fig. 2. Spatial utilization of different
resources in SMs for the benchmark
kernels.

Fig. 3. Issue slot utilization for the
benchmark kernels.

2.2 Resource Requirements

Figure 2 shows the amount of SM resources occupied by the benchmark kernels.
The data are obtained from the system described in Sect. 4.1 using NVIDIA
profiler and the details of the benchmarks are discussed in Sect. 4.2. This figure

88 R. Bashizade et al.

does not show how often each of these resources are used, but demonstrates
how much of each type is occupied by kernels when run in isolation. In order to
distinguish utilization of resources over time, we refer to this metric as spatial
resource utilization. There is a limiting resource for every kernel, i.e., the kernels
exhaust one or two types of resources while there are more of the other types
left unused. This creates opportunities to simultaneously accommodate more
kernels with complementary requirements to maximize the throughput of the
system. For instance, MD5Hash kernel needs more than 70% of the registers
on the device, but uses no shared memory. It can be combined with lavaMD
kernel which needs more than 90% of the shared memory to improve the spatial
resource utilization of the GPU. Taking advantage of this opportunity requires a
method that shares each SM among multiple kernels, because sharing the GPU
among multiple kernels while each SM is dedicated to a single kernel does not
alleviate the SM resource underutilization.

2.3 Issue Slot Utilization

A different metric for utilization is Issue Slot Utilization (ISU). ISU refers to the
percentage of issue slots that issued at least one instruction. It is an indication
of how busy the kernel keeps the device. Figure 3 shows ISU for the benchmark
kernels. The contrast between ISU and spatial resource utilization is visible in
Figs. 2 and 3. Figure 2 suggested that MD5Hash and lavaMD are good candidates
to be combined together for throughput improvement, whereas Fig. 3 shows that
both kernels keep the device busy more that 70% of the time. Thus, although
the resource requirements of the two kernels are complementary, there are not
many stall cycles during the execution of each of them that the other kernel
can take advantage of. Based on the ISU values, lavaMD and tpacf are better
candidates to run together, because despite their similar resource requirements,
they have complementary ISUs. On the other hand, without complementary
resource requirement, it is impossible to fit both kernels on the GPU. Therefore,
an efficient solution is needed to tune the resources allocated to each kernel such
that the requirements for both metrics are met.

2.4 Non-overlapping Execution

CUDA MPS [18] combines multiple CUDA contexts into one to allow for simul-
taneous execution of multiple kernels from different applications on the GPU.
However, our observations show that the block scheduling algorithm on the GPU
does not properly take advantage of this capability. This issue is covered in prior
work too [6]. When multiple applications want to launch kernels on the GPU,
their thread blocks are queued in the order they have arrived at the device. As
the resources become available by completion of older thread blocks, newer ones
are assigned to SMs. This FCFS policy leads to a head-of-line blocking situation
where more resource-consuming kernels that arrived earlier block the execution
of less resource-consuming kernels, even though there might be enough resources
to accommodate thread blocks of the smaller kernels. To address this issue, we

Adaptive Simultaneous Multi-tenancy for GPUs 89

use persistent threads [11] to restrict the number of CTAs of each kernel on the
device, thus constraining the resources it uses.

To summarize, the challenges to sharing a GPU among multiple kernels are
(i) managing the resources allocated to each kernel such that the GPU can
accommodate all the kernels at the same time, (ii) allocating resources to kernels
in order to create complementary utilizations, (iii) addressing the head-of-line
blocking at the GPU block scheduler caused by the FCFS policy on the GPU,
and (iv) doing all of these at run-time in an adaptive fashion.

3 Adaptive Simultaneous Multi-tenancy

Our proposed solution to the challenges mentioned in Sect. 2 is adaptive simul-
taneous multi-tenancy. This concept is a generalization of single-kernel multi-
tenancy proposed in previous work [6,30], and static simultaneous multi-tenancy
supported by the NVIDIA Volta architecture [20]. The idea is to adaptively
tune the resources allocated to each kernel to accommodate more kernels on
the GPU while supporting kernel preemption to enhance the throughput of the
multi-tenant system. To this end, we propose kernel code transformations and
an application API to add flexibility to kernels, and employ a host-side ser-
vice that monitors the kernels running on the GPU to make decisions regarding
resource allocation which are then communicated to applications. In the rest of
this section, we explain the details of our design.

Fig. 4. Overview of the proposed adaptive simultaneous multi-tenant system.

3.1 Overview

Our proposed system is composed of a host-side service that manages resources
allocated to each kernel and determines when kernel adaptation needs to occur,
and an API for programmers to utilize the service. Figure 4 shows the overview
of the adaptive simultaneous multi-tenant system. On arrival of a new kernel or
departure of a running one, the service takes the following actions: (i) it asks the
applications for the number of thread blocks their kernels have executed, used

90 R. Bashizade et al.

in estimation of the remaining execution time. The remaining execution times
are used in combination with profiling data in the allocation policy to maximize
STP (addressing the challenge in Sect. 2.3); (ii) it computes new parameters for
the kernels that are going to run on the GPU. The parameters, which in this
work is the number of CTAs but could be extended to different types of resources
such as the number registers or the amount of shared memory, must not cause
the resources required by the kernels to exceed the available resources on the
GPU (addressing challenges in Sects. 2.2 and 2.4); (iii) it communicates the new
parameters to the applications.

On the application side, the kernel launch is wrapped inside a function that
communicates with the host-side service. We provide an API for the common
actions that need to be taken when an application wants to launch a kernel.
Ideally these function calls would be included in the CUDA libraries so that
the programmer does not have to add anything to their code, but for now they
need to be included in the application code manually or via a source-to-source
transformation.

In short, the applications that want to run kernels on the GPU have to con-
tact the host-side service using the provided API. The service controls when
and which applications should preempt/relaunch kernels and the kernel launch
parameters. The kernel launch parameters are passed via the API to the ker-
nel wrapper function that launches the kernel. MPS intercepts kernel calls and
merges them in a single context to run on the GPU concurrently. The fact that
all concurrent kernels share a virtual address space creates security concerns in
a multi-tenant environment. This issue is addressed in the Volta architecture by
supporting separation of virtual address spaces for kernels that run on different
SMs. Since we share SMs among multiple kernels, this capability does not elim-
inate the security limitation of our work. However, adding a software address
translation layer [25] can isolate the address spaces of different applications with
minimal overhead when required.

3.2 Host-Side Service

Applications communicate to the service via the API (Sect. 3.3) at two occasions:
(i) launching a kernel, and (ii) starting the execution of the last thread block. The
reason that we notify the service at this point, and not once the kernel is finished,
is that after the last thread block begins execution no changes can be made to
the number of CTAs of the kernel. Therefore, by sending the notification before
the kernel finishes, we can overlap the communications with and the parameter
computation at the host-side service with the execution of the last round of
thread blocks of the kernel, effectively hiding the latency of these operations
without affecting the number of kernel’s CTAs.

The service receives messages on a shared message queue in a loop. When-
ever it sees a message in this queue, it keeps reading until the queue is empty to
aggregate the effects of back-to-back messages from different applications on the
system in a single step. After reading all the messages in the queue, the service

Adaptive Simultaneous Multi-tenancy for GPUs 91

opens two dedicated message queues for communications with each client appli-
cation that has a kernel to run. These queues are used for sending preemption
commands and launch parameters, and receiving the progress of the kernel.

When the service is notified by an application of a new event, i.e., a new
kernel is arriving or an existing kernel began the execution of its last thread
block, it queries other applications for kernel progress via dedicated message
queues. Previous work [30] used elapsed time for this purpose, and thus, there
was no need to query the application. Nevertheless, this metric is not suitable
for our purpose. Elapsed time can be used to measure the progress when only
one kernel runs on the GPU at a time, whereas in our proposed system multiple
kernels share the device simultaneously and therefore, do not make progress with
the same rate as they do when they run in isolation. To overcome this issue, we
use the number of executed thread blocks as an indicator of kernel progress.

The service then waits for the response from all applications, as those data
are necessary for making allocation decisions. We use asynchronous memory
copy operations to overlap these queries with kernel execution. Having the
number of executed thread blocks and kernels profiling data, we then estimate
the remaining execution time of the kernels (Sect. 3.6). Once this operation is
done, the parameters for each kernel are sent to the corresponding application
via the dedicated message queues and the application makes the appropriate
adjustments.

3.3 Application Side

On the application side, we initialize the shared and dedicated message queues,
obtain launch parameters for the kernel, wait for notifications from the service
for preemption and new launches, and release the resources on completion of the
kernel. Table 1 summarizes the application API to support these actions.

init(): On a kernel launch, the application host code initializes the necessary
variables. These include shared and dedicated message queues, necessary mem-
ory allocations for communications between the host and the GPU, and streams
for asynchronous memory operations and kernel launches. The dedicated mes-
sage queues are created based on the process ID of the application to ensure
uniqueness. There are also pointers to kernel input arguments (kernel args) that
are used when launching a new instance of the kernel.

obtainParameters(): Once initialization is complete, the host code obtains
parameters for the kernel it wants to launch from the host-side service. To this
end, it sends a message composed of the kernel name (kernel name, to retrieve its
corresponding profiling data at the host-side service), the names of the dedicated
message queues (created using process ID, to open connections to the queues at
the service), total number of thread blocks the kernel wants to run (total blocks,
to be used for remaining execution time estimation), dimensions of a thread
block (block dim, to be used for resource usage calculation), and indication that
this message is a request for a new kernel (as opposed to notification for the
beginning of the execution of the last thread block of an existing kernel). After
the message is sent, the host code waits to receive a response from the service.

92 R. Bashizade et al.

Once the response arrives, the kernel is launched and two threads are created:
one for listening to the host-side service for new launch parameters, and the other
for monitoring the progress of the kernel. The first thread uses the stream for
memory operations to asynchronously read the number of executed thread blocks
from the device and to write to the memory location holding the preemption
variable (max blocks in Fig. 5).

Once a new message with launch parameters comes from the service, there
are three possible scenarios: (i) the new number of CTAs is less than what the
kernel is currently running with, (ii) new and old numbers of CTAs are equal
(i.e., no actions required), or (iii) the new number is greater than the old number
of CTAs. In the first case, the thread preempts the proper number of CTAs to
match the new parameter by writing to the preemption variable (described in
the following section). In the last case, the thread launches a new instance of the
kernel on a new stream to run in parallel with the current instance. The second
thread is responsible for sending notification to the service once the last thread
block of the kernel has started execution.

release(): Finally, when the kernel finishes, the host code deallocates all the
resources used for these communications.

Table 1. Application API.

Function Description

init(kernel args) Initializes the necessary variables for
communications with the service and launching
new instances of the kernel

obtainParameters(kernel name,
total blocks, block dim)

Contacts the service with kernel’s information
and obtains the number of CTAs to launch the
kernel. Also upon receiving the response,
creates threads for listening to the service and
monitoring kernel progress

release() Releases the allocated resources

3.4 Kernel Code Transformation

To have control over the number of CTAs and consequently, the resources allo-
cated to the kernel, we use persistent threads [11]. The concept of persistent
threads refers to limiting the number of threads to a value that the GPU can
run simultaneously. In addition to control over resources, using persistent threads
provides support for preemption at thread-level granularity. Preempting kernels
only at thread completion mitigates the need for handling any remaining work
due to the preemption.

Using a persistent thread transformation, we override the blockIdx variable
in CUDA which refers to the logical thread block index. Figure 5 shows the

Adaptive Simultaneous Multi-tenancy for GPUs 93

required transformation to the kernel code to implement persistent threads. It
also includes the support for preemption and control over the assignment of
CTAs to SMs.

Fig. 5. The kernel transformation required for supporting persistent threads and pre-
emption.

3.5 Profiling and Pruning the Parameter Space

We use offline profiling of kernels in isolation to help estimate the remaining
execution time of kernels in a multi-tenant environment, which is used in our
allocation policy (Sect. 3.6); we want to minimize the maximum remaining exe-
cution time of the kernels to maximize STP. Once the transformation in Sect. 3.4
is applied to the kernel, we can use the number of CTAs as the control knob for
the amount of resources allocated to it. After these data have been obtained (we
will discuss the results of our profiling in Sect. 4.3), we sort the configuration
points based on the number of CTAs and then prune the space such that the
execution times of the remaining set of configurations monotonically decrease.
Once the pruning is done, we store the remaining set of configurations in an
array in the host-side service to be later retrieved by the allocation algorithm.
Equation (1) shows how we use the profiling data for estimation of the remaining
execution time of the kernel in a multi-tenant environment:

T c
m = T c

i × TBt − TBe

TBt
(1)

In (1), T c
m is the remaining execution time of the kernel in multi-tenant

environment when it is running with c CTAs, T c
i is its execution time in isolation

94 R. Bashizade et al.

when it has c CTAs, TBt is the total number of its thread blocks, and TBe is
the number of thread blocks it has executed so far.

3.6 Sharing Policy

Our policy is a greedy method, in which the service starts at the point where
all kernels have minimum resources, i.e., one CTA per kernel (line 2 in Algo-
rithm1.) The algorithm then descendingly sorts the kernels based on their esti-
mated remaining execution times and initializes a variable, marked, to indicate
the kernels whose resource allocation is determined (lines 3–4). It then iteratively
advances to the next configuration point for the first unmarked kernel (lines 6–7)
until all the kernels are marked. If this kernel currently has all the resources it
can use, it is marked (line 15) and the loop proceeds to the next iteration. Note
that due to sorting the kernels, this operation minimizes the maximum remain-
ing execution time among all kernels. If the new configuration fits the device,
i.e., the resources required for it do not exceed those available on the GPU, the
kernels are re-sorted and the loop proceeds to the next iteration (lines 8–9).
Otherwise, the operation is rolled back and the kernel is marked (lines 11–12).
It continues until no kernel can have more resources allocated to it. Note that
these steps take place only in the host-side service and the final result is com-
municated to the applications, i.e., the incremental resource allocation is only
in computation, we do not incrementally add to the CTAs a kernel runs with.
Algorithm 1 shows the pseudo-code for this policy. If no feasible configuration
exists, we simply launch all kernels with one CTA. In this case, kernels will be
queued at the block scheduler on the GPU and will start execution once resources
become available. The complexity of this algorithm is linear with respect to the

Algorithm 1. Greedy resource allocation algorithm
1: procedure AllocateResources(KernelsList)
2: Allocate the minimum resources to each kernel
3: Descendingly sort kernels based on their estimated remaining execution times
4: marked ← 0
5: while marked ≤ KernelsList.size() do
6: if KernelsList [marked].nextConfig() then
7: KernelsList [marked].advanceToNextConfig()
8: if New configurations fit the device then
9: Re-sort the KernelsList from marked onwards

10: else
11: KernelsList [marked].rollBackToPrevConfig()
12: marked++

13: end if
14: else
15: marked++

16: end if
17: end while
18: end procedure

Adaptive Simultaneous Multi-tenancy for GPUs 95

number of configurations of all kernels, i.e., O(
∑

k∈K

Ck) where Ck is the number

of configurations for kernel k and K is the set of all kernels that want to run on
the GPU.

It must be noted that any other policy can be easily plugged into our proposed
system without affecting any of the parts related to the mechanisms necessary
for supporting simultaneous multi-tenancy. The only requirement is that the
policy needs to take a list of the kernels and their profiling data as the input
and determine configurations for each kernel.

3.7 Example Scenario

An example scenario of two applications running kernels on the GPU concur-
rently is presented in Fig. 6. At step 1 , Application #1 contacts the host-side
service requesting to run kernel A on the GPU. The service runs the resource
allocation algorithm and responds to Application #1 to run kernel A with five
CTAs per SM, and consequently Application #1 launches A with the specified
number of CTAs.

Then at step 2 , Application #2 sends a message to the host-side service
and requests to run kernel B on the device. The service queries Application #1
about the progress of kernel A at step 3 , and Application #1 responds with
the number of thread blocks that A has executed. Based on that information,
the service runs the allocation algorithm and sends new launch parameters, i.e.,
three CTAs for each of A and B, to Applications #1 and #2 at step 4 . At this
step, Application #1 compares the new number of CTAs with what A is running
with currently. Since the new number is smaller than the old one, preemption has
to happen. Therefore, Application #1 writes the new value to the max blocks
location mentioned in Sect. 3.4. At the next iteration of the internal loop of A,
the last two CTAs at each SM will preempt and make room for CTAs of kernel
B. In parallel with this operation, Application #2 launches B with three CTAs
per SM. Thread blocks of B will wait at the block scheduler on the GPU until
resources become available to start execution.

Once kernel B grabs its last thread block at step 5 , Application #2 noti-
fies the host-side service. This triggers running the allocation algorithm again.
The service sends new number of CTAs to Application #1, and since the new
number is greater than the old one, new CTAs have to be launched. At step 6 ,
Application #1 does so in a separate stream (CTAs inside the dotted rectangle),
in order for them to run in parallel with the previous instance of the kernel.
Kernel A grabs its last thread block at step 7 and Application #1 notifies the
service of this event. Finally, Application #1 is finished and the GPU is empty.

3.8 Limitations

A limitation of our work is that the host-side service logically shares a single
SM among all kernels, and then extrapolates that configuration to all other

96 R. Bashizade et al.

Fig. 6. An example scenario of two applications running kernels on the GPU simulta-
neously.

Adaptive Simultaneous Multi-tenancy for GPUs 97

SMs, although there might be kernels that benefit from having the entire SM to
themselves due to their intensive usage of cache. We plan to address this issue in
our future work. One way to alleviate this shortcoming is to launch placeholder
kernels from the host-side service to occupy a subset of SMs and force the GPU
block scheduler to assign thread blocks to the free SMs. The overhead associated
with this approach is expected to be minimal, since the placeholder kernels are
only required for the short period of time between arriving a kernel launch
request at the host-side service and the launch of the kernel at the GPU.

There are other limitations imposed by the choice of platform. One is due to
the use of MPS in our system. NVIDIA GPUs do not support dynamic paral-
lelism [13] while running MPS. Therefore, our system does not support running
the kernels that use this feature. The other, perhaps more important limitation,
is that NVIDIA GPUs prior to the Volta [20] do not support running kernels
with separate virtual address spaces, which creates security concerns. As dis-
cussed earlier in the paper, adding a software address translation layer [25] can
solve this problem by isolating the address spaces of different applications.

4 Evaluation

In this section, we first describe the platform for our experiments. Then we
discuss the characteristics of the benchmark kernels we used. After that, the
effect of the transformation in Sect. 3.4 on the performance of the benchmark
kernels is evaluated. Finally, we present results for multi-kernel evaluations.

4.1 Platform

The machine we used for the experiments has an Intel Xeon E5-2640 CPU, and
the experiments are conducted on an NVIDIA Tesla K40c GPU. The OS is
Ubuntu 16.04, and NVIDIA driver version 375.26 and CUDA 8.0 were used to
compile and run benchmarks. Table 2 shows the specifications of the GPU card
accounted for while making decisions about feasibility of kernel configurations
in the host-side service.

Table 2. NVIDIA Tesla K40c specifications.

Resource Value

Threads per SM 2048

Registers per SM 65536

Shared Memory per SM 48 KB

Warps per SM 64

Thread Blocks per SM 16

98 R. Bashizade et al.

4.2 Benchmark Kernels

Our goal was to have a mixture of kernels from various areas with different
behaviors and requirements. To this end, we picked seven benchmark kernels,
binomialOptions, FDTD3d, lavaMD, MD5hash, nbody, particlefilter, and tpacf,
from CUDA SDK samples [16], Rodinia [5], SHOC [7], and Parboil [26] bench-
mark suites, for our evaluations. Figure 7 shows the behavior of these benchmarks
that are representative of a variety of kernels. The values on the axes are from a
scale of 0–10 and are obtained from NVIDIA profiler. The figure shows that some
kernels are compute-intensive (MD5Hash, lavaMD), some demonstrate intensive
use of memory and cache (FDTD3d), and some have a mixture of requirements
(binomialOptions, nbody, particlefilter, tpacf).

Table 3 summarizes the characteristics of these benchmark kernels, after
undergoing the transformations to support adaptive simultaneous multi-tenancy
explained in Sect. 3.4. The abbreviations in front of kernels’ names are used in
multi-kernel evaluation figures.

Fig. 7. Utilization of various resource types in (a) binomialOptions, (b) FDTD3d, (c)
lavaMD, (d) MD5Hash, (e) nbody, (f) particlefilter, and (g) tpacf kernels.

4.3 Single Kernel Performance

Figure 8a shows the normalized execution time of the transformed kernels with
respect to the original code. As the figure illustrates, applying the transformation
to the kernels has a negligible impact of 1.7% on the average performance of all
kernels. However, it increases the register and shared memory usage of the kernels
due to introducing additional variables. The register usage is increased by 23%,
as shown in Fig. 8b. Increasing the number of registers per thread might result in

Adaptive Simultaneous Multi-tenancy for GPUs 99

Table 3. Benchmark kernels characteristics.

Kernel Thread

blocks

Threads

/ Block

Registers

/ Thread

Shared

memory/

Block (B)

Execution

time (ms)

ISU

binomialOptions (BO) [16] 1024 128 28 524 5.476 73.6

FDTD3d (FD) [16] 288 512 58 3848 8.821 27.5

lavaMD (LM) [5] 512 128 64 7208 8.958 87.3

MD5Hash (MD) [7] 25432 384 30 8 71.475 97.4

nbody (NB) [16] 128 256 49 8208 39.155 89.1

particlefilter (PF) [5] 512 128 16 8 43.105 48.6

tpacf (TP) [26] 201 256 49 13320 11.23 34.8

fewer CTAs fitting on the GPU. Nevertheless, as shown in Fig. 9, increasing the
number of CTAs has marginal gain and after some point, the performance does
not improve dramatically by increasing the number of CTAs. Anyway, a possible
solution for reducing the register overhead of the proposed code transformations
is to restrict the compiler to compile kernels with fewer registers. This incurs
some performance overhead to kernels, but based on our observations accepting
a 2% performance overhead results in the elimination of register usage overhead.
The reason that we did not take this into consideration is that the same could be
applied to the original kernels for register reduction. Thus, we picked the best-
performing register configuration for both original and transformed kernels. We
did not include the shared memory usage figures, because all kernels need a fixed
eight bytes additional shared memory to store the logical block index and CTA
IDs in SMs required for the persistent threads transformation.

Fig. 8. (a) Performance and (b) register usage of benchmark kernels under persistent
threads transformation.

As stated in Sect. 3.4, applying persistent threads transformation to kernels
allows to control the allocated resources by running them with the desired num-
ber of CTAs. Figure 9 shows the performance of transformed kernels for varying
numbers of CTAs per SM. We use these data as input for our greedy allocation
algorithm. Most of the time, there is a direct trade-off between the numbers

100 R. Bashizade et al.

Fig. 9. Performance of (a) binomialOptions, (b) FDTD3d, (c) lavaMD, (d) MD5Hash,
(e) nbody, (f) particlefilter, and (g) tpacf kernels with different numbers of CTAs.

of CTAs of a kernel and its performance. However, there are some exceptions
for binomialOptions and nbody that are distinguished with red dotted circles.
We omit these points from the decision-making process in the allocation algo-
rithm, since they do not offer any beneficial trade-off. In other words, there
exists another point in the space that uses less resources but delivers higher
performance.

4.4 Multi-kernel Performance

In this section, we report two metrics that are common for measuring the per-
formance of multi-program workloads [8]: (i) system throughput (STP), and (ii)
average normalized turnaround time (ANTT) for kernels. We use the time it
takes for all kernels to finish, i.e., the completion time of the last kernel that
finishes minus the start time of the first kernel that begins, as an indication for
STP. ANTT is the ratio of the time it takes for a kernel to finish in a multi-
tenant environment and the time it takes for the same kernel to finish in isolation.
Unfortunately, we cannot report ISU for multi-kernel experiments since NVIDIA
profiler does not report it when MPS is running.

We also report results for two systems: (i) a system in which there is no host-
side service, but persistent thread transformation is applied to kernels (PT), and
(ii) our proposed adaptive simultaneous multi-tenant system (SiM).

We repeated our experiments five times for every ordering of the kernels (e.g.,
for combination of BO+FD, five times when BO arrived at the service first, five
times when FD was the first, and for SiM only, five times when both arrived at
almost the same time such that their effects were aggregated), and report the
average of the results.

Adaptive Simultaneous Multi-tenancy for GPUs 101

Fig. 10. Normalized STP under differ-
ent combinations of kernels including
at least one kernel with low ISU.

Fig. 11. Normalized STP under differ-
ent combinations of kernels with high
ISUs.

Kernels with Low ISU. We refer to kernels with an ISU of less than 50% as
low ISU kernels. During the execution of such kernels, execution units are idles
for more than half of the cycles due to various reasons, including synchronization,
data request, execution dependency, busy pipeline, etc. It is expected that co-
scheduling these kernels with another kernel results in higher STP, since the
idle cycles can be taken advantage of. Figure 10 demonstrates the normalized
STP for kernel combinations that include at least one kernel with low ISU. On
average, PT improves STP by 5.3% with respect to the sequential execution of
kernels. This improvement is due to the alleviation of the head-of-line blocking
at the GPU block scheduler explained in Sect. 2.4. Nevertheless, addressing this
issue alone is not sufficient to realize the potential STP improvement created by
the underutilization of resources. To this end, by tuning the resources allocated
to each kernel, SiM increases STP by 9.8%.

Not all kernel pairs experience similar improvements in STP. The higher the
ISU of one of the kernels is, the less opportunities there are for STP improvement.
This is evident in FD+MD and MD+TP pairs, because MD kernel has an ISU of
97.4%. This basically means that MD alone can utilize the device very well. There
are other factors that impact the achieved STP improvement as well, such as the
resource requirement of the kernels, the execution time of a single thread block
of the kernels, and non-optimal allocation of resources by our greedy algorithm.
The first one shows itself in high STPs achieved when running BO+TP and
FD+TP pairs, since these kernels utilize different units on the device. The other
two, however, explain the low STP improvement for LM+TP. In this kernel pair,
whenever LM arrives first, there is no room for TP to run any thread blocks until
the first round of thread blocks of LM are completed and preemption can take
place. This takes long enough to offset a large enough fraction of the improvement
achieved by the co-run of the rest of the thread blocks of the two kernels to
cause lower improvements than simply running the two kernels with persistent
thread transformation. In addition, the launch parameters determined by the
greedy algorithm for the two kernels do not result in the best possible output.
This highlights the need for a more accurate and sophisticated allocation policy,
which is part of our future work.

The gains in STP come at the expense of 49.2% increase in ANTT. We
must note that improving STP and keeping ANTT low are at odds with each

102 R. Bashizade et al.

other, and the goal of our allocation policy is to maximize STP. If ANTT is
an important factor in the system, other allocation algorithms can replace our
greedy algorithm without affecting other parts of the system. Besides, we did not
define priorities for kernels in our work. The works that target improving ANTT,
do so for high priority kernels since it is impossible to improve this metric for
all kernels in the system.

Kernels with High ISU. The STP improvement is not significant when all the
kernels running on the GPU can utilize it well enough when executed in isolation.
Figure 11 shows the normalized STP for pairs of kernels that both have high ISUs
(i.e., greater that 50%). In these cases, the overheads of preemption and multiple
launches, as well as cache thrashing, result in a negligible STP improvement of
0.3% in SiM. PT even imposes a 0.5% overhead on STP. The other downside of
running high-ISU kernels together is a large increase in ANTT (78.7%).

These observations mean that adaptive simultaneous multi-tenancy is more
effective when individual kernels are not highly optimized to have high ISUs.
The positive side is that this also means that without putting extra effort for
optimizing kernels, a higher STP can be achieved by merely running multiple
kernels together.

5 Related Work

5.1 Persistent Threads

Gupta et al. studied the different use cases of persistent threads for a single kernel
[11]. Recently, in independent works, Chen et al. [6] and Wu et al. [30] proposed
taking advantage of persistent threads for supporting preemption. EffiSha [6]
only supports execution of one kernel at any given time on the GPU. FLEP [30],
on the other hand, has limited support for executing two kernels on the GPU
at the same time, only in the case that one of the kernels is small enough to
entirely fit on the GPU. Supporting preemption in these works helps favoring
the high priority kernels over the low priority ones, but it does not solve the
underutilization of resources on the device.

5.2 Software-Based Multi-tasking on GPUs

Pai et al. proposed Elastic Kernels [21] and showed that sharing the GPU
among multiple kernels improves utilization. They artificially fuse multiple ker-
nels together to form a super-kernel in a single GPU context. There are other
works that adopt a similar approach [10,14,29]. This allows for concurrent execu-
tion of kernels, but such a scenario is impractical in the real world, since merging
the kernels from different clients into a single kernel at run-time is impossible.
We avoid this limitation by using a host-side service and taking advantage of
MPS. Furthermore, the focus of this paper and [21] is on different parts of the
solution. We propose a system to solve the problem of multi-tenancy while [21]
proposes various policies that can be employed in our host-side service.

Adaptive Simultaneous Multi-tenancy for GPUs 103

Preemptive Kernel Model [3] proposed by Basaran and Kang slices the kernel
into smaller grids which in turn allows for sharing the GPU among multiple
kernels. Several other works also rely on kernel slicing [12,32]. This approach
incurs the overhead of multiple launches that cannot be avoided even if we do
not need to preempt the kernel at all. By taking advantage of persistent threads
model, our approach eliminates the unnecessary launch overhead introduced by
kernel slicing.

5.3 Hardware-Based Multi-tasking on GPUs

The NVIDIA Volta architecture supports static simultaneous multi-tenancy [20].
In other words, it is possible to divide the GPU into multiple smaller virtual
GPUs. There are also works that introduce hardware extensions to support pre-
emption or multi-programming. Tanasic et al. [27] proposed context switching
and draining by supporting preemption in hardware. Park et al. [22] extended
this work by identifying idempotent kernels to faster preempt the running kernel
by flushing the SMs.

Adriaens et al proposed spatial multi-tasking [1]. In this approach, each SM
is entirely allocated to one kernel. Wang et al. propose partial context switching
(PCS) [28], which is similar to our approach in that it only preempts a portion
of SMs. Nevertheless, they use different allocation policies and hardware support
is necessary for its implementation. Xu et al. [31] propose a software-hardware
mechanism that similarly shares an SM among multiple kernels. Park et al. pro-
pose GPU Maestro [23] that based on performance predictions switches between
spatial multi-tasking and PCS at run-time.

These works address the issues regarding supporting multi-tenancy on GPUs,
but because of the required hardware modifications are not applicable to the
existing devices. Our goal in this paper is to design a system that can take
advantage of commodity GPUs.

6 Conclusion

In this paper, we identify the challenges of using GPUs in a multi-tenant environ-
ment. We propose adaptive simultaneous multi-tenancy for GPUs to overcome
these challenges. Our approach comprises a host-side service that makes deci-
sions about the kernel launch parameters and when the kernels should preempt.
We also provide an API to facilitate using the system for programmers and
allowing kernels to dynamically adapt resource usage at runtime and require
minimal kernel modifications. Evaluation of our prototype system on NVIDIA
K40c GPUs show that, on average, system throughput is improved by 9.8% for
combinations of kernels that include at least one low-utilization kernel. This
improvement is achieved at the cost of 49.2% increase in average normalized
turn around time. Combinations of high-utilization kernels do not benefit from
our system. Our observations indicate that using adaptive simultaneous multi-
tenancy allows programmers to avoid highly optimizing their kernels to have
high ISUs by providing higher STP for concurrent execution of low-utilization
kernels.

104 R. Bashizade et al.

As future work, we plan to investigate the effectiveness of more sophisticated
mapping mechanisms and allocation policies to support asymmetric mapping of
thread blocks to SMs. This way, cache-intensive kernels can benefit from having
the entire L1 cache to themselves. We also plan to exploit various scheduling
algorithms for dispatching thread blocks to SMs, to improve locality and reduce
destructive interference in L2 cache.

Acknowledgments. This work is supported in part by the National Science Founda-
tion (CCF-1335443) and equipment donations from NVIDIA.

References

1. Adriaens, J.T., Compton, K., Kim, N.S., Schulte, M.J.: The case for GPGPU spa-
tial multitasking. In: Proceedings of the 2012 IEEE 18th International Symposium
on High-Performance Computer Architecture. HPCA 2012, pp. 1–12. IEEE Com-
puter Society, Washington, DC (2012). http://dx.doi.org/10.1109/HPCA.2012.
6168946

2. Amazon Web Services: Elastic GPUS (2017). https://aws.amazon.com/ec2/
Elastic-GPUs/

3. Basaran, C., Kang, K.D.: Supporting preemptive task executions and memory
copies in GPGPUS. In: Proceedings of the 2012 24th Euromicro Conference on
Real-Time Systems. ECRTS 2012, pp. 287–296. IEEE Computer Society, Wash-
ington, DC (2012). http://dx.doi.org/10.1109/ECRTS.2012.15

4. Chase, J.S., Anderson, D.C., Thakar, P.N., Vahdat, A.M., Doyle, R.P.: Manag-
ing energy and server resources in hosting centers. In: Proceedings of the Eigh-
teenth ACM Symposium on Operating Systems Principles. SOSP 2001, pp. 103–
116. ACM, New York (2001). http://doi.acm.org/10.1145/502034.502045

5. Che, S., Sheaffer, J.W., Boyer, M., Szafaryn, L.G., Wang, L., Skadron, K.: A charac-
terization of the Rodinia benchmark suite with comparison to contemporary cmp
workloads. In: Proceedings of the IEEE International Symposium on Workload
Characterization (IISWC 2010), pp. 1–11. IISWC 2010. IEEE Computer Society,
Washington, DC (2010). http://dx.doi.org/10.1109/IISWC.2010.5650274

6. Chen, G., Zhao, Y., Shen, X., Zhou, H.: Effisha: a software framework for enabling
effficient preemptive scheduling of GPU. In: Proceedings of the 22Nd ACM SIG-
PLAN Symposium on Principles and Practice of Parallel Programming, pp. 3–
16. PPoPP 2017, ACM, New York (2017). http://doi.acm.org/10.1145/3018743.
3018748

7. Danalis, A., et al.: The scalable heterogeneous computing (shoc) benchmark suite.
In: Proceedings of the 3rd Workshop on General-Purpose Computation on Graph-
ics Processing Units, pp. 63–74. GPGPU-3, ACM, New York (2010). http://doi.
acm.org/10.1145/1735688.1735702

8. Eyerman, S., Eeckhout, L.: System-level performance metrics for multiprogram
workloads. IEEE Micro 28(3), 42–53 (2008)

9. Google: Google cloud platforms (2017). https://cloud.google.com/gpu/
10. Gregg, C., Dorn, J., Hazelwood, K., Skadron, K.: Fine-grained Resource Sharing

for Concurrent GPGPU Kernels. In: Proceedings of the 4th USENIX Conference
on Hot Topics in Parallelism. HotPar 2012, p. 10. USENIX Association, Berkeley,
(2012). http://dl.acm.org/citation.cfm?id=2342788.2342798

http://dx.doi.org/10.1109/HPCA.2012.6168946
http://dx.doi.org/10.1109/HPCA.2012.6168946
https://aws.amazon.com/ec2/Elastic-GPUs/
https://aws.amazon.com/ec2/Elastic-GPUs/
http://dx.doi.org/10.1109/ECRTS.2012.15
http://doi.acm.org/10.1145/502034.502045
http://dx.doi.org/10.1109/IISWC.2010.5650274
http://doi.acm.org/10.1145/3018743.3018748
http://doi.acm.org/10.1145/3018743.3018748
http://doi.acm.org/10.1145/1735688.1735702
http://doi.acm.org/10.1145/1735688.1735702
https://cloud.google.com/gpu/
http://dl.acm.org/citation.cfm?id=2342788.2342798

Adaptive Simultaneous Multi-tenancy for GPUs 105

11. Gupta, K., Stuart, J.A., Owens, J.D.: A study of persistent threads style GPU pro-
gramming for GPGPU workloads. In: 2012 Innovative Parallel Computing (InPar),
pp. 1–14, May 2012

12. Jiao, Q., Lu, M., Huynh, H.P., Mitra, T.: Improving GPGPU energy-efficiency
through concurrent kernel execution and DVFs. In: Proceedings of the 13th Annual
IEEE/ACM International Symposium on Code Generation and Optimization.
CGO 2015, pp. 1–11. IEEE Computer Society, Washington, DC (2015). http://
dl.acm.org/citation.cfm?id=2738600.2738602

13. Jones, S.: Introduction to dynamic parallelism. In: Nvidia GPU Technology
Conference. NVIDIA (2012). http://developer.download.nvidia.com/GTC/PDF/
GTC2012/PresentationPDF/S0338-GTC2012-CUDA-Programming-Model.pdf

14. Liang, Y., Huynh, H.P., Rupnow, K., Goh, R.S.M., Chen, D.: Efficient gpu spatial-
temporal multitasking. IEEE Trans. Parall. Distrib. Syst. 26(3), 748–760 (2015)

15. Microsoft: Microsoft azure (2016). https://azure.microsoft.com/en-us/blog/azure-
n-series-general-availability-on-december-1/

16. Nvidia: CUDA programming guide (2008). https://docs.nvidia.com/cuda/cuda-c-
programming-guide/

17. Nvidia: Next generation CUDA computer architecture Kepler GK110 (2012)
18. NVIDIA: Multi-process service (2015). https://docs.nvidia.com/deploy/pdf/

CUDA Multi Process Service Overview.pdf
19. NVIDIA: Pascal architecture whitepaper, June 2015. http://www.nvidia.com/

object/pascal-architecture-whitepaper.html
20. NVIDIA: Volta architecture whitepaper, June 2015. http://www.nvidia.com/

object/volta-architecture-whitepaper.html
21. Pai, S., Thazhuthaveetil, M.J., Govindarajan, R.: Improving GPGPU concurrency

with elastic kernels. In: Proceedings of the Eighteenth International Conference
on Architectural Support for Programming Languages and Operating Systems,
pp. 407–418. ASPLOS 2013, ACM, New York (2013). http://doi.acm.org/10.1145/
2451116.2451160

22. Park, J.J.K., Park, Y., Mahlke, S.: Chimera: collaborative preemption for multi-
tasking on a shared GPU. In: Proceedings of the Twentieth International Confer-
ence on Architectural Support for Programming Languages and Operating Sys-
tems. ASPLOS 2015, pp. 593–606. ACM, New York (2015). http://doi.acm.org/
10.1145/2694344.2694346

23. Park, J.J.K., Park, Y., Mahlke, S.: Dynamic resource management for efficient uti-
lization of multitasking GPUs. In: Proceedings of the Twenty-Second International
Conference on Architectural Support for Programming Languages and Operating
Systems. ASPLOS 2017, pp. 527–540. ACM, New York (2017). http://doi.acm.
org/10.1145/3037697.3037707

24. Randles, M., Lamb, D., Taleb-Bendiab, A.: A comparative study into distributed
load balancing algorithms for cloud computing. In: 2010 IEEE 24th International
Conference on Advanced Information Networking and Applications Workshops,
pp. 551–556, April 2010

25. Shahar, S., Bergman, S., Silberstein, M.: Activepointers: a case for software address
translation on GPUs. In: Proceedings of the 43rd International Symposium on
Computer Architecture. ISCA 2016, pp. 596–608. IEEE Press, Piscataway (2016).
https://doi.org/10.1109/ISCA.2016.58

26. Stratton, J.A., et al.: Parboil: a revised benchmark suite for scientific and commer-
cial throughput computing. Technical report (2012). https://scholar.google.com/
scholar?oi=bibs&hl=en&cluster=14097255143770688510

http://dl.acm.org/citation.cfm?id=2738600.2738602
http://dl.acm.org/citation.cfm?id=2738600.2738602
http://developer.download.nvidia.com/GTC/PDF/GTC2012/PresentationPDF/S0338-GTC2012-CUDA-Programming-Model.pdf
http://developer.download.nvidia.com/GTC/PDF/GTC2012/PresentationPDF/S0338-GTC2012-CUDA-Programming-Model.pdf
https://azure.microsoft.com/en-us/blog/azure-n-series-general-availability-on-december-1/
https://azure.microsoft.com/en-us/blog/azure-n-series-general-availability-on-december-1/
https://docs.nvidia.com/cuda/cuda-c-programming-guide/
https://docs.nvidia.com/cuda/cuda-c-programming-guide/
https://docs.nvidia.com/deploy/pdf/CUDA_Multi_Process_Service_Overview.pdf
https://docs.nvidia.com/deploy/pdf/CUDA_Multi_Process_Service_Overview.pdf
http://www.nvidia.com/object/pascal-architecture-whitepaper.html
http://www.nvidia.com/object/pascal-architecture-whitepaper.html
http://www.nvidia.com/object/volta-architecture-whitepaper.html
http://www.nvidia.com/object/volta-architecture-whitepaper.html
http://doi.acm.org/10.1145/2451116.2451160
http://doi.acm.org/10.1145/2451116.2451160
http://doi.acm.org/10.1145/2694344.2694346
http://doi.acm.org/10.1145/2694344.2694346
http://doi.acm.org/10.1145/3037697.3037707
http://doi.acm.org/10.1145/3037697.3037707
https://doi.org/10.1109/ISCA.2016.58
https://scholar.google.com/scholar?oi=bibs&hl=en&cluster=14097255143770688510
https://scholar.google.com/scholar?oi=bibs&hl=en&cluster=14097255143770688510

106 R. Bashizade et al.

27. Tanasic, I., Gelado, I., Cabezas, J., Ramirez, A., Navarro, N., Valero, M.: Enabling
preemptive multiprogramming on GPUs. In: Proceeding of the 41st Annual Inter-
national Symposium on Computer Architecuture, pp. 193–204. ISCA 2014, IEEE
Press, Piscataway (2014). http://dl.acm.org/citation.cfm?id=2665671.2665702

28. Wang, Z., Yang, J., Melhem, R., Childers, B., Zhang, Y., Guo, M.: Simultaneous
multikernel GPU: Multi-tasking throughput processors via fine-grained sharing. In:
2016 IEEE International Symposium on High Performance Computer Architecture
(HPCA), pp. 358–369, March 2016

29. Wu, B., Chen, G., Li, D., Shen, X., Vetter, J.: Enabling and exploiting flexible task
assignment on GPU through SM-centric program transformations. In: Proceedings
of the 29th ACM on International Conference on Supercomputing. ICS 2015, pp.
119–130. ACM, New York (2015). http://doi.acm.org/10.1145/2751205.2751213

30. Wu, B., Liu, X., Zhou, X., Jiang, C.: Flep: enabling flexible and efficient preemp-
tion on GPUs. In: Proceedings of the Twenty-Second International Conference
on Architectural Support for Programming Languages and Operating Systems,
pp. 483–496. ASPLOS 2017, ACM, New York (2017). http://doi.acm.org/10.1145/
3037697.3037742

31. Xu, Q., Jeon, H., Kim, K., Ro, W.W., Annavaram, M.: Warped-slicer: Efficient
intra-SM slicing through dynamic resource partitioning for GPU multiprogram-
ming. In: 2016 ACM/IEEE 43rd Annual International Symposium on Computer
Architecture (ISCA), pp. 230–242, June 2016

32. Zhong, J., He, B.: Kernelet: high-throughput gpu kernel executions with dynamic
slicing and scheduling. IEEE Trans. Parallel Distrib. Syst. 25(6), 1522–1532 (2014).
https://doi.org/10.1109/TPDS.2013.257

http://dl.acm.org/citation.cfm?id=2665671.2665702
http://doi.acm.org/10.1145/2751205.2751213
http://doi.acm.org/10.1145/3037697.3037742
http://doi.acm.org/10.1145/3037697.3037742
https://doi.org/10.1109/TPDS.2013.257

Stochastic Programming Approach
for Resource Selection Under

Demand Uncertainty

Tanveer Hossain Bhuiyan1, Mahantesh Halappanavar2(B), Ryan D. Friese2,
Hugh Medal1, Luis de la Torre3, Arun Sathanur2, and Nathan R. Tallent2

1 Mississippi State University, Starkville, USA
tb2038@msstate.edu,hmedal@ise.msstate.edu

2 Pacific Northwest National Laboratory, Richland, USA
{Mahantesh.Halappanavar,Ryan.Friese,

Arun.Sathanur,Nathan.Tallent}@pnnl.gov
3 Washington State University, Pullman, USA

luis.delatorre@wsu.edu

Abstract. Cost-efficient selection and scheduling of a subset of geo-
graphically distributed resources to meet the demands of a scientific
workflow is a challenging problem. The problem is exacerbated by uncer-
tainties in demand and availability of resources. In this paper, we present
a stochastic optimization based framework for robust decision making
in the selection of distributed resources over a planning horizon under
demand uncertainty. We present a novel two-stage stochastic program-
ming model for resource selection, and implement an L-shaped decompo-
sition algorithm to solve this model. A Sample Average Approximation
algorithm is integrated to enable stochastic optimization to solve prob-
lems with a large number of scenarios. Using the metric of stochastic
solution, we demonstrate up to 30% cost reduction relative to solutions
without explicit consideration of demand uncertainty for a 24-month
problem. We also demonstrate up to 54% cost reduction relative to a pre-
viously developed solution for a 36-month problem. We further argue that
the composition of resources selected is superior to solutions computed
without explicit consideration of uncertainties. Given the importance of
resource selection and scheduling of complex scientific workflows, espe-
cially in the context of commercial cloud computing, we believe that our
novel stochastic programming framework will benefit many researchers
as well as users of distributed computing resources.

1 Introduction

Scheduling of large-scale scientific workflows on geographically distributed
resources is a challenging problem. Optimal selection of a subset of available
resources to meet the projected demand is usually the first step in scheduling.
Given a wide range of resources, from dedicated high-performance clusters to

c© Springer Nature Switzerland AG 2019
D. Klusáček et al. (Eds.): JSSPP 2018, LNCS 11332, pp. 107–126, 2019.
https://doi.org/10.1007/978-3-030-10632-4_6

http://crossmark.crossref.org/dialog/?doi=10.1007/>978-3-030-10632-4_6&domain=pdf
https://doi.org/10.1007/978-3-030-10632-4_6

108 T. H. Bhuiyan et al.

commercial cloud computing platforms, that are available to a scientific work-
flow, cost-efficient selection of resources is a challenging problem. Further, uncer-
tainties not only in demand but also in the availability of resources exacerbates
the problem. To address this problem, we present a stochastic programming
based approach in this paper. Our goal is to compute cost-efficient selection of
resources under demand uncertainties. We build on our prior work [6], where
we introduced the problem of resource selection under demand uncertainties.
Here, we develop a stochastic programming based framework that significantly
improves the quality of solutions.

Our study is motivated by complex workflows from the Belle II experiments,
a high energy physics experiment to probe the interactions of fundamental con-
stituents of our universe [9]. Computing and storage resources to support the
Belle II experiments span several continents with users across the globe. Data
is generated both from the Belle II detector and Monte Carlo simulations, and
is expected to reach 350 peta bytes (a peta byte is 1015 bytes) by the end of
the experiment in 2022. Complex workflows run across multiple computing and
storage resources distributed worldwide. Multiple research and commercial cloud
computing resources are also used. With a wide variety of user jobs and resource
types, the Belle II experiment is an ideal case study to develop efficient solutions
for scheduling of complex workflows.

Inspired by a resource selection problem in electric power grids, we model our
problem as a unit commitment problem, where the goal is to meet a forecasted
demand with a subset of resources at a minimum cost [8]. We describe the prob-
lem in Sect. 2. We then introduce the notion of uncertainties in demand, where
the forecasted demand varies due to several factors. This formulation enables
us to propose a two-stage mixed-integer stochastic program as an efficient solu-
tion technique. We detail the mathematical formulation in Sect. 3. Intuitively,
stochastic programming is a mathematical programming technique for modeling
optimization problems that involve uncertainties [3]. Stochastic programming
can exploit the fact that probability distributions governing the data are known
or can be estimated. For workflows with demand uncertainties, our goal is to
develop a large set of scenarios of the forecasted demand, drawn from known
probability distributions. Stochastic programming will compute solutions that
are feasible for all scenarios and maximizes the expectation of an objective func-
tion. In the two-stage model, we make a resource selection decision in the first
stage, after which each realization of the demand (a scenario) is considered that
affects the outcome of the first-stage decision. A penalty is added for any unsat-
isfied demand from the second-stage, and the first-stage problem is adjusted
accordingly. We employ the Sample Average Approximation (SAA) method as
a sampling strategy to improve computational complexity, and use an L-shaped
decomposition algorithm within the SAA procedure to solve the mixed-integer
stochastic programming problem. We detail this approach in Sect. 4.

Using a carefully designed synthetic workflow inspired from the Belle II exper-
iment, we present experimental evaluation of the proposed solution in Sect. 6.
We demonstrate the superior quality of the proposed solution not only with

Stochastic Programming Approach for Resource Selection 109

respect to the previously developed method, but also with optimal solutions
that are computed without explicit consideration of demand uncertainties. We
demonstrate up to 30% cost reduction relative to solutions without explicit con-
sideration of uncertainty for a 24-month use case, and up to 54% cost reduction
relative to a Genetic Algorithm based solution for a 36-month use case. We fur-
ther argue that the proposed solution method leads to resource compositions
that are superior and robust to price fluctuations. To the best of our knowledge,
this is the first detailed work on employing stochastic programming approach
for scheduling of complex workflows with demand uncertainties.

We make the following contributions in this paper:

• Develop a novel two-stage stochastic programming model for the allocation
of distributed resources over a long range planning horizon with demand
uncertainties to minimize the total expected cost.

• Implement and evaluate a stochastic optimization algorithm (L-shaped
decomposition algorithm) to efficiently solve the proposed optimization prob-
lem.

• Integrate Sample Average Approximation method with the L-shaped decom-
position algorithm to solve problems with continuous distribution of demand
uncertainties with a large number of scenarios.

• Present numerical results to demonstrate the benefit of considering uncer-
tainty in resource selection relative to a deterministic approach considering
only the base demands (without uncertainty) in decision making.

• Present numerical results to demonstrate the robustness of the solution
computed using a stochastic optimization approach relative to existing
approaches.

2 Problem Description

Given a set of diverse computing resources with varying costs of usage, the
objective is to compute the most cost-efficient subset of resources to meet the
forecasted demand. This problem is analogous to the unit commitment problem
in the context of electric power grid [19]. Unit commitment is a resource utiliza-
tion problem where the objective is to select a subset of power generators at a
minimum cost to satisfy a given demand that varies over time. Different power
generators have different start-up and operation costs. Mathematically, the unit
commitment problem can be formulated as shown in Eq. 1, where, f is the total
cost of the system for N power generators chosen to satisfy the demand over the
planning horizon T . Variables Sj and Cj are the start-up and operating cost for
each generator j respectively, to generate Pj units of power. The binary variable
xjt represents whether the generator j is on or off at time period t. The system
also specifies a reserved demand, Rt, for every time period that is satisfied by
the spinning reserve (spare capacity), rt.

110 T. H. Bhuiyan et al.

min f =
T∑

t=1

N∑

j=1

(Sjxjt + CjPjt) (1a)

s.t.

N∑

j=1

Pjt ≥ Dt ∀t = 1, .., T (1b)

N∑

j=1

rjt ≥ Rt ∀t = 1, .., T. (1c)

In this paper, we introduce a similar resource utilization problem in the
context of large-scale workflows, where we need to allocate geographically dis-
tributed computing resources to satisfy the demand over a planning horizon.
The selection problem is pronounced in the context of cloud computing where
different types of resources are available with varying cost structures. For exam-
ple, Amazon EC2 offers several types of resources with different fixed (sub-
scription) and usage (operating) costs (detailed in Sect. 5). Using a computing
resource incurs two types of costs: A subscription cost and an operating cost. A
resource can only be used within a given period that it has been subscribed for.
There are three broad types of machine usage policies: Total-upfront, partial-
upfront (hybrid), and on-demand. In total-upfront, a machine is subscribed or
paid upfront for a contiguous block of time without an operating cost for its
use. In partial-upfront, a machine is also subscribed for several contiguous time
periods, but incur an operating cost for using the machine during those periods.
On-demand machines do not require any subscription cost, but incur higher oper-
ating costs when used. We also assume a penalty cost for any unmet demand
for a given period that can be considered as spot pricing in the cloud computing
literature.

Our objective is to compute the minimum-cost allocation of resources to sat-
isfy forecasted demands under uncertainty. The demand fluctuates significantly
over a planing horizon relative to the forecasted baseline. Demand fluctuations
are addressed in unit commitment through reserves, rt. However, estimating and
maintaining spare capacity at every time period is an expensive solution. We
therefore develop a stochastic programming approach to address this problem.
We will describe our approach in the following section.

3 Two-Stage Stochastic Programming Model

We formulate the resource selection problem under demand uncertainty as a two-
stage mixed-integer stochastic programming model. In order to address uncer-
tainties in demand, which can arise from several factors such as errors in plan-
ning and unforeseen circumstances, we construct specific demand scenarios by
sampling from a continuous distribution of base demands over the horizon with
estimated probability distribution functions (Sect. 4.1).

Each scenario represents a particular demand curve spanning the entire hori-
zon. In the first stage of the two-stage programming model, subscription deci-
sions are made before realizing the uncertainty. In other words, the machines are

Stochastic Programming Approach for Resource Selection 111

subscribed at the beginning of the planning horizon when the actual demand for
each period is unknown to the decision maker. In contrast to the first-stage prob-
lem, the second-stage problem considers the uncertainties, where the decisions
are made as to whether to use or not to use a machine that has already been
subscribed for a given period of time. Feedback from the second-stage problem
is used to improve the decision making in the first-stage problem. Our objec-
tive is to minimize the total subscription cost as well as the expected operating
costs while satisfying the demand under uncertainties over the planning horizon,
where ω is the set of random scenarios. We detail the mathematical formulation
in this section. Notations used in this paper are summarized in Table 1.

min f(x) =
T∑

t=1

N∑

j=1

Sjxjt + E[Q(x, ω)] (2a)

s.t.

min{T,t+(u1−1)}∑

t′=t

xjt′ ≤ 1 ∀j ∈ JNS1,∀t = 1, .., T (2b)

min{T,t+(u2−1)}∑

t′=t

xjt′ ≤ 1 ∀j ∈ JNS2,∀t = 1, .., T (2c)

xjt ∈ {0, 1} ∀j ∈ J,∀t = 1, .., T (2d)

Q(x̂, ω) = min

T∑

t=1

N∑

j=1

Cjp
ω
jt +

T∑

t=1

λlωt (3a)

s.t.

N∑

j=1

Pj(pω
jt) + lωt ≥ dω

t ∀t = 1, .., T (3b)

Pω
jt ≤ x̂jt ∀j ∈ JOND,∀t = 1, ..., T (3c)

Pω
jt ≤

t∑

t′=max{1,t−(u1−1)}
x̂jt′ ∀j ∈ JNS1,∀t = 1, .., T (3d)

Pω
jt ≤

t∑

t′=max{1,t−(u2−1)}
x̂jt′ ∀j ∈ JNS2,∀t = 1, .., T (3e)

0 ≤ Pω
jt ≤ 1 ∀j ∈ J,∀t = 1, .., T (3f)

The two-stage stochastic programming problem is formulated as follows. The
objective function, Eq. 2a, of the first-stage model is to subscribe (select) a
set of machines for the entire planning horizon, such that the total subscrip-
tion cost and the expected total operating cost are simultaneously minimized
across all the scenarios. Constraints 2b and 2c ensure that if a machine is sub-
scribed at a period t for p number of periods, the subscription costs are incurred
only once. Constraint 2d models the binary nature of the subscription decision

112 T. H. Bhuiyan et al.

Table 1. A summary of the notations used in this paper.

Notation Description

Sets

J Set of machines, j ∈ J

JOND On-demand machines

JNS1 12month-subscription machines

JNS2 36month-subscription machines

Parameters

u No. of periods for which machine j is subscribed

N No. of machines

dω
t Demand at period t in scenario ω ∈ Ω

Sj Subscription cost for machine j

Cj Operating cost of machine j for a single period

T Total planning horizon

λ Penalty cost for unsatisfied demand

Pj Computing power of machine j

Variables

xjt 1 if machine j is subscribed at period t, 0 otherwise

pω
jt Fraction of period t machine j is used in scenario ω

lωt Computing power shortage in period t in scenario ω

variables. The second-stage model stands for each realization of a randomly
sampled demand scenario.

The objective function, Eq. 3a, of the second-stage model minimizes the total
operating cost over all periods for a given scenario. A penalty is added to the
objective function for any unsatisfied demand. The objective function has two
components. The first component computes the total operating cost of machines
over the planning horizon T , and the second component computes the total
penalty cost for unmet demand across T . Constraint 3b represents the demand
to be satisfied for each time period. A variable is introduced to satisfy the short-
age in demand. Constraint 3c imposes the subscription requirement to use on-
demand machines. In order to use a total-upfront or partial-upfront machine
j for period t, that period should be within the range of periods p for which
the machine has been subscribed in the first-stage model. This requirement is
satisfied for machines with 12 months and 36 months subscription periods in Con-
straints 3d and 3e, respectively. Constraint 3f represents the bounds for usage of
machines. We present an approach to efficiently solve the two-stage stochastic
programming model in Sect. 4.

Stochastic Programming Approach for Resource Selection 113

4 Solution Approaches

We now present our solution to the two-stage stochastic programming model
described in Sect. 3. A particular challenge in the solution of this problem arises
due to the difficulty in computing the expected operating cost in the first-stage
objective function, 2a. For a given first-stage solution, we need to compute the
expected operating cost over all the realizations of the uncertain demand. If
we consider the distribution of the uncertain demand to be continuous for each
period, the computation of the expected operating cost requires taking multiple
integrals, which will be computationally challenging [18]. On the other hand, if
we consider the demand distribution to be discrete, we will have a large number
of scenarios (realizations) to consider. For example, consider a 36-month prob-
lem. If the demand for each period has 10 different discrete values, the total
number of possible scenarios to be considered will be 1036. Thus, the challenge
will be to compute a large number of scenarios, and consequently, solve a large
number of linear programming problems corresponding to these scenarios which
is computationally infeasible.

To reduce the computational complexity in solving the two-stage stochastic
program with infinitely many scenarios, we implement a sampling strategy called
the Sample Average Approximation (SAA) [15,20]. SAA enables the solution of
stochastic allocation problem with continuous distributions for demand uncer-
tainties. We integrate SAA with the L-shaped decomposition algorithm [1,21]
to solve the two-stage problem efficiently. This approach is motivated by the suc-
cess of our own work [2] and of other researchers [18] to solve similar problems
in different domains. We briefly describe the integrated approach in this section.

4.1 Sample Average Approximation

We use Sample Average Approximation (SAA) to deal with the difficulty in
computing the expectation in the objective function 2a. SAA approximates the
expected cost component, E[Q(x, ω)], of the objective function by a sample
average function, 1

|Ω|
∑|Ω|

s=1 Q(x, ωs). SAA generates a set of random samples
(ω1, ω2, ..., ω|Ω|) of size |Ω|, where Ω is the set of scenarios (realizations) indexed
by ω. Thus, the original problem in Eq. 2 is approximated as:

minx∈X f̂(x) :=
T∑

t=1

N∑

j=1

Sjxjt +
1

|Ω|
|Ω|∑

s=1

Q(x, ωs). (4)

We denote the optimal solution and optimal objective value of the approxi-
mation problem (Eq. 4) by x̂ and V , respectively. Here, x̂ and V are stochastic as
they are computed based on random samples. As described by Kleywegt et al.,
the values for x̂ and V get closer to the optimal values and the objective value of
the original problem, with a probability of approximately one, as the sample size
increases [13]. Thus, with a moderately large sample size, SAA scheme provides
relatively good solutions to the original problem.

114 T. H. Bhuiyan et al.

Key steps of the SAA algorithm are as follows:

1. Set iteration count to zero; SAALB to zero; SAAUB to ∞; and, the optimality
gap to α. Generate M independent samples of size | Ω | and solve the SAA
problem (Eq. 4) for each sample. For sample n, let x̂n and V n represent the
optimal solution and the optimal objective value respectively.

2. Compute the average of the optimal objective values over all samples, V̄ ,
which provides a statistical lower bound of the optimal objective value of the
original problem. The average V̄ and its associated variance σ2

V̄
are computed

as follows:

V̄ := 1
M

∑M
n=1(V

n)

σ2
V̄

:= 1
(M−1)M

∑M
n=1(V

n − V̄)2

Update variable SAALB = V̄ .
3. Select a feasible solution x̄ of the true problem from the solutions computed

in Step 1. Generate an independent reference sample of size |ΩR|, much larger
than the sample size used in computing the solutions x̂n. Using this reference
sample and one of the feasible solutions, estimate the objective function value
of the true problem as follows:

f̂(x̄) :=
∑T

t=1

∑N
j=1 Sj x̄jt + 1

|ΩR|
∑|ΩR|

s=1 Q(x̄, ωs)

Update the variable SAAUB = f̂(x̄). Usually, x̄ chosen from x̂n results in
the smallest value for f̂(x̄). Variance of the estimate, f̂(x̄), can be computed
using Eq. 5.

4. If (SAAUB − SAALB) ≤ α then go to next step. Else, go to Step 1.
5. Compute an estimate of the optimality gap and the associated variance as

follows:

Gap := SAAUB − SAALB

σ2
gap = σ2(x̄) + σ2

V̄
.

σ2(x̄) :=
1

(|ΩR| −1) |ΩR| +
∑|ΩR|

s=1

(∑T

t=1

∑N

j=1
Sj x̄jt + Q(x̄, ωs) − f̂(x̄)

)
(5)

LB = min
T∑

t=1

N∑

j=1

Sjxjt + θ (6a)

s.t.

min{T,t+(u1−1)}∑

t
′
=t

x
jt

′ ≤ 1 ∀j ∈ JNS1, ∀t ∈ T (6b)

min{T,t+(u2−1)}∑

t
′
=t

x
jt

′ ≤ 1 ∀j ∈ JNS2, ∀t = 1, .., T (6c)

θ ≥
T∑

t=1

ak
t +

T∑

t=1

∑

j∈JOND

bk
jtxjt (6d)

Stochastic Programming Approach for Resource Selection 115

+

T∑

t=1

∑

j∈JNS1

ck
jt

⎛

⎝
t∑

t=max{1,t−(u1−1)}
xjt

⎞

⎠ (6e)

+

T∑

t=1

∑

j∈JNS2

dk
jt

⎛

⎝
t∑

t=max{1,t−(u2−1)}
xjt

⎞

⎠ (6f)

Q(x̂k, ω) = min
T∑

t=1

N∑

j=1

CjP ω
jt +

T∑

t=1

λlωt (7a)

s.t.
N∑

j=1

Pj(P
ω
jt) + lωt ≥ dω

t ∀t = 1, .., T (π) (7b)

P ω
jt ≤ x̂k

jt ∀j ∈ JOND, ∀t = 1, ..., T (μ) (7c)

P ω
jt ≤

t∑

t
′
=max{1,t−(u1−1)}

x̂k
jt

′ ∀j ∈ JNS1, ∀t = 1, .., T (γ) (7d)

P ω
jt ≤

t∑

t
′
=max{1,t−(u2−1)}

x̂k
jt

′ ∀j ∈ JNS2, ∀t = 1, .., T (ρ) (7e)

0 ≤ P ω
jt ≤ 1 ∀j ∈ J, ∀t = 1, .., T (7f)

4.2 L-Shaped Decomposition Algorithm

We detail the L-shaped decomposition algorithm that we used in the SAA algo-
rithm. In the SAA algorithm, we solve the sample average problem (Eq. 4) for
each sample, which is a two-stage stochastic programming problem with a finite
number of scenarios. We use the L-shaped decomposition algorithm to solve the
sample average problem for each sample. The algorithm can be described as
follows:

1. Let LB = 0, UB = ∞, iteration counter k = 0, and optimality gap be
ε. Solve the following lower bound formulation (Master problem) to get the
lower bound of the algorithm as given by Eq. 6, where x̂k is the optimal
solution of the Master problem at iteration k.

2. Given x̂k, solve the second-stage problem for each scenario ω, described by
Eq. 7. The dual variables corresponding to the constraints are represented by
symbols: π, μ, γ, and ρ.

3. Use the objective values of all the second-stage problems to compute the total
objective function value at iteration k, as follows:

f(x̂k) =
∑T

t=1

∑N
j=1 Sj x̂

k
jt + 1

|Ω|
∑

ω∈Ω Q(x̂k, ω).

If f(x̂k) < UB, update the upper bound UB = f(x̂k), and store the solution
x̂ = x̂k.

4. If (UB − LB) < ε, then stop, and return x̂ as the optimal solution and UB
as the optimal objective value. Otherwise, go to Step 5.

116 T. H. Bhuiyan et al.

5. Use optimal dual solutions of each second-stage problems corresponding to
scenarios, ω = 1, 2, 3, ..., | Ω |, from Step 2 to compute the coefficients of
optimality constraints. Aggregate the coefficients of the optimality constraints
from all the scenarios to compute the coefficients of the aggregated optimality
constraint (cut) as follows:

ak+1
t = 1

|Ω|
∑

ω∈Ω π̂ω
t dω

t

bk+1
jt = 1

|Ω|
∑

ω∈Ω μ̂ω
jt

ck+1
jt = 1

|Ω|
∑

ω∈Ω γ̂ω
jt

dk+1
jt = 1

|Ω|
∑

ω∈Ω ρ̂ω
jt.

Now, construct the new optimality cut with these coefficients and add the
cut to the Master problem. Update k = k + 1 and go to Step 1.

We empirically evaluated the efficacy of the integrated SAA and L-shaped
decomposition approach using two synthetic datasets that were inspired from
the Belle II experiment and real-world data from cloud computing platforms. We
provide the details in Sect. 6. We describe the genetic algorithms based approach
next.

4.3 A Genetic Algorithms Based Approach

Genetic Algorithms (GA) are common evolutionary optimization techniques that
are used to solve problems containing large and complex search spaces. GAs
emulate the process of natural selection to produce better solutions as time pro-
gresses. GAs consist of a set of candidate solutions called a population. Each
solution within the population is called a chromosome. Chromosomes can be
compared with one another by evaluating their fitness, i.e., how well they opti-
mize a given objective. Individual decision variables within a chromosome are
called genes. During the execution of a GA, various genetic operations (e.g.,
mutation of individual genes, swapping genes between chromosomes) are per-
formed to enable progress through the search space.

A GA based approach for cost-efficient selection and scheduling of resources
with demand uncertainty was introduced in [6]. This method implements a multi-
objective Genetic algorithm based on NSGA-II [5]. In this approach, genes repre-
sent individual months within the planning horizon, and will specify the amount
of each resource type allocated for that month. Chromosome are represented as
P ×Q matrices, where P and Q represent the number of months and the number
of resource types available, respectively. If the resources determined by a chromo-
some are unable to meet the specified demand, additional on-demand resources
are subscribed to fill the gap. To speed up evaluation of the search space, parallel
execution of the GA is achieved using a modified island model. We refer you to
Friese et al., for further details [6]. The primary reason to consider this algo-
rithm in the paper is to provide a baseline evaluation of the two-stage stochastic
programming approach.

Stochastic Programming Approach for Resource Selection 117

5 Experimental Setup

Computation and data storage of Belle II experiments span a geographically
distributed set of resources across several continents. The experiments can be
classified into three main activities: (i) processing of raw data from the Belle II
detector, (ii) Monte Carlo simulations of physical phenomena, and (iii) physics
analysis of experimental and simulation data. While the computational demand
for Monte Carlo campaigns is fairly stable, the demand for user analysis tends
to be chaotic leading to uncertainties in computational and storage demands.
Inspired from this setting, we use a representative setup for demand and supply
in our experiments that are detailed in this section.

Fig. 1. Base demand curves for 24months (top) and 36 months (bottom) with uniform
and Gaussian distributions.

Numerical experiments are conducted for 24-month and 36-month planning
horizons. Additionally, for each planning horizon, we study two probability distri-
butions – uniform and Gaussian. For each distribution, we construct five unique
base demand curves. Figure 1 illustrates base demand curves for uniform and
Gaussian distributions over a 24-month (left) and 36-month (right) planning
horizons. Each base demand curve is used to construct random demand sce-
narios. Specifically, for each month in the base curve, a uniform distribution,

118 T. H. Bhuiyan et al.

U(db − a, db + b), is sampled to realize the actual demand for the correspond-
ing month in a given scenario. We conduct experiments to evaluate scenarios
that were constructed using two different levels of variation: smaller variation,
U(db−7.5, db+15), and larger variation, U(db−15, db+20). All experiments are
carried out for 10 SAA samples, where each sample consists of 80 scenarios. The
size of the reference sample is set to 1000 scenarios. Our experimental results
will show that these parameters of SAA can obtain good quality solutions and
can provide better approximation of the true problem.

We use representative computation and cost models of cloud computing
resources based on Amazon EC2, as shown in Table 2. ECU, Period, S, and
C respectively denote computing power, subscription period, subscription cost
(in dollars), and usage cost per month for each machine. We only list a subset of
machine types for illustrative purposes. A full list is provided in [6]. Please note
that the prices in the table may not reflect current Amazon EC2 prices. In our
experiments, we assume that we can purchase/utilize no more than 10 units of
a resource for any given month. We implement the integrated Sample Average
Approximation and the L-shaped decomposition algorithm in Python 2.7 with
Gurobi optimizer [7] that is used to solve the mixed-integer programming master
problem and the linear programming second-stage problems. The experiments
are run on a laptop with Intel core i7 2.80 GHz processor and 8 GB RAM. We
compare the results of our stochastic optimization methodology with a genetic
algorithms based approach (Sect. 4.3). A fundamental difference between the
two approaches is that the GA based approach is deterministic, in that it does
not consider demand uncertainty during the fitness evaluation of the chromo-
somes [6]. However, the GA independently evaluates all the demand scenarios
as part of the SAA framework. The solution that minimizes cost across all the
scenarios is chosen as the best resource allocation strategy.

Table 2. A subset of Amazon EC2 resources used in our experiments

Index Machine type ECU Period S C

1 On-demand 0.2 1 0 19.04

3 Hybrid 0.2 12 102 4.38

4 Subscription 0.2 12 151 0

18 On-demand 13 12 0 126.29

19 Hybrid 13 12 648 54.02

20 Subscription 13 12 1271 0

33 On-demand 124.5 12 0 1264.36

34 Hybrid 124.5 12 6482 540.2

35 Subscription 124.5 12 12706 0

Stochastic Programming Approach for Resource Selection 119

6 Experimental Results

We now present the results and observations from our experiments. We will first
analyze the solutions computed by the two-stage stochastic programming app-
roach by studying the convergence, variation and composition of the solutions.
We will then assess the quality of solutions relative to deterministic solutions
that do not include demand uncertainty. We will finally look at the quality with
respect to the solutions computed by the Genetic Algorithms based approach.

6.1 Stochastic Programming Based Solutions

Convergence: Each sample in the Sample Average Approximation (SAA) prob-
lem is solved using the L-shaped decomposition algorithm. Performance of L-
shaped algorithm is therefore critical for the overall performance. We analyze the
convergence behavior of the L-shaped algorithm. Figure 2 illustrates convergence
of the upper and lower bounds of the algorithm over iterations for a sample with
24-month horizon. As the samples are randomly generated, the optimal cost at
which the algorithm converges for different samples vary within a small range
which is evident from Table 3 where the variances associated with the optimal
costs are In general, we observe that the upper bound of the algorithm decreases
over iterations as the Master problem produces better solutions at each itera-
tion until convergence. Similarly, the lower bound increases as the optimality
constraints force the Master problem to purchase the best possible machines to
satisfy demands. The algorithm converges when no better machine configura-
tions are available to reduce the total cost. At which point, the upper and lower
bounds of the algorithm converge to the same value.

Fig. 2. Convergence of the L-shaped algorithm fora sample with 24-month horizon.

Composition: With explicit consideration of demand uncertainties, the pro-
posed solutions compute optimal machine subscriptions that are robust against
random demand scenarios. The solutions also indicate the optimal subscription
time for each selected resource since we assume that the resources can be used

120 T. H. Bhuiyan et al.

partially for a given period. Thus, the composition of the solution – different
machines selected in the optimal solution – is an important factor. Intuitively,
a cost-effective decision is to subscribe total-upfront or partial-upfront (hybrid)
machines at the beginning of the planning horizon and then use them to the
maximum extent at each time period to meet the demand. Smaller portions
of unmet demand can be satisfied by on-demand machines. In Fig. 3, we illus-
trate the machine composition for a 24-month planning horizon where the base
demands follow a Gaussian distribution. We observe that a large portion of the
demand is satisfied by partial-upfront (hybrid) resources, and the rest of the
demands are satisfied by on-demand resources.

Fig. 3. Composition of the solution for a problem with 24-month horizon. The orange
shaded region shows possible variation of demand from the base curve shown in red.
Each bar represents machine type composition for a given month. Hybrid (partial up-
front) machines shown in blue are purchased during Period 1, and used in subsequent
periods. On-demand purchases are shown with hatched blue bars. (Color figure online)

Variance: Since SAA approximates the true problem by a set of scenarios, the
total cost computed by our approach is only an approximation of the true cost
(Sect. 4.1). Therefore, we now present data on the variance of the estimates,
σ2

gap, from their true values. Intuitively, the lower the variance, the better is the
approximation of the SAA-based solution. In Table 3, we present the optimal
cost and the associated variance for a case with 24-month planning horizon. The
base demands follow both Uniform and Gaussian distributions, and with smaller
and larger variation (Sect. 5). The optimal cost is the total cost corresponding to
the optimal solution, where the total cost consists of the total subscription cost
and the expected operating cost over all the scenarios. We observe that the vari-
ance is small, which indicates that our approach provides high quality estimates
of the true problem. We also observe that the variance increases as the uncer-
tainty increases. For example, variance is larger for larger variation runs, and
for Gaussian distributions. Consequently, the solutions include subscription of
machines with larger computing power to satisfy penalties from large variations
in demand, which in turn, increases the total cost.

Stochastic Programming Approach for Resource Selection 121

Table 3. Variance of the approximate solutions for a 24-month case

Smaller variation Larger variation

Uniform distribution

Optimal cost Variance Optimal cost Variance

12337.20 32.04 12640.97 150.24

12216.32 29.30 12587.71 143.50

12398.36 24.45 12836.32 159.98

12343.92 23.45 12786.89 153.57

12543.82 27.01 13055.08 113.92

Gaussian distribution

16942.72 23.88 17222.81 111.41

16635.05 35.41 17056.74 146.53

15968.80 33.07 16265.13 155.53

16612.91 30.42 17046.62 135.45

17111.34 27.85 17367.92 108.90

6.2 Value of Stochastic Solution

An important research question of our work is: How much benefit do we really get
from considering demand uncertainty? To quantify the answer, we use a metric
known as the value of stochastic solution (VSS). VSS measures the difference
between the optimal cost resulting from a solution considering uncertainty and
the optimal cost resulting from applying the expected value problem (EVP) to
uncertain scenarios. Mathematically, V SS = EV C−SPC

SPC . Here, EV C represents
the total cost from applying the solution of EV P on the random scenarios,
whereas SPC represents the total cost resulting from the stochastic program-
ming solution. EVP is a deterministic problem where the expected value of the
random demands over all the scenarios are used. If the solution of the EVP is
applied to an uncertain environment, it is likely that the resulting cost will be
larger than the cost from applying a stochastic programming solution. Due to
explicit consideration of uncertainty, the stochastic programming based solution
is robust to uncertain demands. The larger the value of VSS, the larger is the
cost of ignoring uncertainty for a problem that is actually uncertain.

In Table 4, we present VSS values for five different problems with a 24-month
horizon with base demand curves generated from a Gaussian distribution. We
observe that the total cost from using the deterministic solution in an uncertain
environment is larger than the cost resulting from a stochastic programming
solution. We also observe that VSS increases as the range of uncertainty in
demand increases. With large uncertainties, EVP gets erroneous and leads to
purchase decisions with larger number of underutilized machines, or reliance on
on-demand (spot pricing) with higher penalty costs. The VSS values obtained
for the problem instances with based demand curves generated from a Uniform
distribution also demonstrates the similar behavior as discussed above.

122 T. H. Bhuiyan et al.

Table 4. Value of stochastic solution for 24-months with Gaussian demand curves

Smaller variation Larger variation

SPC EVC VSS (%) SPC EVC VSS (%)

16942.72 19992.45 18.02 17222.81 22326.62 29.63

16635.05 19562.82 17.60 17056.74 22148.01 29.85

15968.80 18518.86 15.97 16265.13 20196.25 24.17

16612.91 19486.94 17.29 17046.62 22013.15 29.14

17111.34 19986.04 16.80 17367.92 22170.15 27.65

6.3 Comparison with a GA-Based Approach

As the last part of our evaluation, we compare the quality of our approach with
respect to a genetic algorithm (GA) based approach of Friese et al. [6] We sum-
marize the results in Table 5 for a problem with 36-month planning horizon and
base demand curves with Gaussian distribution. We observe that the stochastic
programming based approach significantly outperforms the GA based approach
by up to 54%. Since GA is a heuristic, there are no guarantees for the quality
of solutions. Further, the GA-based approach addresses uncertainties indirectly
from solving all the scenarios independently and picking the best solution. In
contrast, our approach improves the Master solution by systematically consider-
ing each scenario. We also observe that the total cost of the solution computed

Table 5. Comparison with the GA based approach for 36-months with Gaussian
demand curves The cost reduction (%) is the percentage reduction in the total cost
provided by the solution from SAA integrated L-shaped approach compared to the GA
based approach

Smaller variation

Total cost (SAA+L-sh) Total cost (GA) Cost reduction (%)

20390.94 31773.69 35.82

19947.72 34206.53 41.68

20529.12 30624.64 32.97

20225.67 27842.28 27.36

20120.93 34748.06 42.09

Larger variation

Total cost (SAA+L-sh) Total cost (GA) Cost reduction (%)

20834.15 34157.65 39.00

20624.69 35600.94 42.07

20835.65 41864.19 50.23

20546.52 44433.39 53.76

20443.74 33946.73 39.78

Stochastic Programming Approach for Resource Selection 123

by GA gets larger with larger variation in the data. We are currently exploring
methods to improve the overall quality of the GA-based approach.

7 Related Work

Our work is motivated by a general lack of rigorous optimization approaches for
workflow scheduling with uncertainties. Towards this end, we introduced demand
uncertainty in computing the cost-efficient resource allocation of distributed
resources for execution of high energy physics workflows. Our work is closely
related to resource allocation problem in cloud computing. Much of the existing
literature in cloud computing ignores uncertainty in resource allocation prob-
lems [10,22]. While a few studies consider uncertainty in demand for cloud com-
puting resources, the uncertainties modeled are from a service provider’s perspec-
tive. For example, fuzzy optimization is used by Johannes et al., for resource allo-
cation with uncertainty in demand to provide better service to consumers [12].
Similarly, Kusic et al., consider uncertainty in workloads in an optimization
framework to provide resources to customers [14]. Resource allocation problems
in cloud computing are also explored by several other researchers [16,17,23].

In this paper, we build on our previous work, where we introduced a cost-
efficient resource selection framework with demand uncertainties using Sample
Average Approximation and Genetic Algorithms [6]. We provide a detailed com-
parison with this approach in Sect. 6. Our work is also inspired from the Unit
Commitment problem in electric power grids [8]. Stochastic programming is
widely used to provide resource allocation decisions under uncertainty in many
areas including unit commitment problems [24], power generation and transmis-
sion line expansion problem [11], and cyber security [2]. Stochastic programming
has also been utilized in cloud computing resource management problems [4], in
which VM’s are reserved or purchased on demand for a given time period, reser-
vations that span more than a single time-period are not considered. However,
stochastic programming has not been widely applied for cost-efficient resource
selection problems from a user’s perspective, and in the context of scientific
workflows. To the best of our knowledge, this is the first work to develop a two-
stage stochastic programming model and stochastic optimization algorithm for
selection of geographically distributed resources under demand uncertainty for
efficient execution of complex scientific workflows.

8 Conclusions and Future Work

Efficient utilization of geographically distributed resources in the context of large
scientific workflows is a challenging problem. We presented a novel stochastic pro-
gramming based approach for cost-efficient selection of resources under demand
uncertainties. By integrating a sampling strategy, Sample Average Approxima-
tion with the L-shaped decomposition algorithm, we developed a solution for
continuous distribution of the uncertain parameters for demand, capable of solv-
ing problems with a large number of scenarios. Using two case studies and two

124 T. H. Bhuiyan et al.

probability distribution functions, we demonstrated the efficacy of the proposed
solution. We also demonstrated superior performance relative to a previously
developed method using genetic algorithms.

In order to scale the proposed solution approaches to real-world problems,
computational complexity needs to be addressed in a systematic manner. Solv-
ing a large number of mixed integer problems can be computationally infeasible.
One approach can be to approximate this problem by using Lagrange relaxation,
which leads to the solution of a large number of small problems. Another app-
roach is to integrate the ideas from this work to develop efficient heuristics to
seed the genetic algorithm (GA) based method. Both these methods are part of
our ongoing and future work.

In addition to uncertainties in demand, the focus of this work, there are
uncertainties in the availability of resources. Further, network and file system
congestion lead to uncertainties in system performance. Therefore, the proposed
approaches need to be augmented to include these uncertainties without increas-
ing the computational complexity due to the number of scenarios that need to
be considered. Systematic analysis of historical demand and supply data can
lead to accurate understanding of probability distribution functions, and in turn
benefit SAA-based methods. We are collecting a large amount of historical data
from the execution of Belle II jobs towards this end.

To the best of our knowledge, this is the first stochastic programming based
approach to address the resource allocation problem with demand uncertainties
for large-scale scientific workflows. We believe that our work will inspire the
development of scheduling methods with explicit consideration of uncertainties
– an important problem in distributed computing.

Acknowledgements. This work was supported by the Integrated End-to-end Per-
formance Prediction and Diagnosis for Extreme Scientific Workflows (IPPD) Project.
IPPD is funded by the U.S. Department of Energy Awards FWP-66406 and DE-
SC0012630 at the Pacific Northwest National Laboratory. The work of Luis de la Torre
was supported in part by the U.S. Department of Energy, Office of Science, Office of
Workforce Development for Teachers and Scientists (WDTS) under the Visiting Fac-
ulty Program (VFP).

References

1. Benders, J.F.: Partitioning procedures for solving mixed-variables programming
problems. Numerische mathematik 4(1), 238–252 (1962)

2. Bhuiyan, T.H., Nandi, A.K., Medal, H., Halappanavar, M.: Minimizing expected
maximum risk from cyber-attacks with probabilistic attack success. In: 2016 IEEE
Symposium on Technologies for Homeland Security (HST), pp. 1–6. IEEE (2016)

3. Birge, J.R., Louveaux, F.: Introduction to Stochastic Programming, 2nd edn.
Springer Publishing Company, New York (2011). https://doi.org/10.1007/978-1-
4614-0237-4

4. Chaisiri, S., Lee, B.S., Niyato, D.: Optimization of resource provisioning cost in
cloud computing. IEEE Trans. Serv. Comput. 5(2), 164–177 (2012)

https://doi.org/10.1007/978-1-4614-0237-4
https://doi.org/10.1007/978-1-4614-0237-4

Stochastic Programming Approach for Resource Selection 125

5. Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: A fast and elitist multiobjective
genetic algorithm: Nsga-ii. IEEE Trans. Evol. Comput. 6(2), 182–197 (2002)

6. Friese, R.D., Halappanavar, M., Sathanur, A.V., Schram, M., Kerbyson, D.J., de
la Torre, L.: Towards efficient resource allocation for distributed workflows under
demand uncertainties. In: Klusáček, D., Cirne, W., Desai, N. (eds.) JSSPP 2017.
LNCS, vol. 10773, pp. 103–121. Springer, Cham (2018). https://doi.org/10.1007/
978-3-319-77398-8 6

7. Gurobi, O.: Gurobi optimizer reference manual (2015). http://www.gurobi.com
8. Halappanavar, M., Schram, M., de la Torre, L., Barker, K., Tallent, N.R., Kerbyson,

D.J.: Towards efficient scheduling of data intensive high energy physics workflows.
In: Proceedings of the 10th Workshop on Workflows in Support of Large-Scale
Science, WORKS 2015, pp. 3:1–3:9. ACM, New York, USA (2015)

9. Hara, T.: Belle II: Computing and network requirements. In: Proceedings of the
Asia-Pacific Advanced Network, pp. 115–122 (2014)

10. Huang, Z.C., He, C., Gu, L., Wu, J.F.: On-demand service in grid: architecture,
design and implementation. In: 2005 Proceedings of 11th International Conference
on Parallel and Distributed Systems, vol. 2, pp. 674–678. IEEE (2005)

11. Jirutitijaroen, P., Singh, C.: Reliability constrained multi-area adequacy planning
using stochastic programming with sample-average approximations. IEEE Trans.
Power Syst. 23(2), 504–513 (2008)

12. Johannes, A., Borhan, N., Liu, C., Ranjan, R., Chen, J.: A user demand uncertainty
based approach for cloud resource management. In: 2013 IEEE 16th International
Conference on Computational Science and Engineering (CSE), pp. 566–571. IEEE
(2013)

13. Kleywegt, A.J., Shapiro, A., Homem-de Mello, T.: The sample average approxima-
tion method for stochastic discrete optimization. SIAM J. Optim. 12(2), 479–502
(2002)

14. Kusic, D., Kandasamy, N.: Risk-aware limited lookahead control for dynamic
resource provisioning in enterprise computing systems. Cluster Comput. 10(4),
395–408 (2007)

15. Mak, W.K., Morton, D.P., Wood, R.K.: Monte carlo bounding techniques for
determining solution quality in stochastic programs. Oper. Res. Lett. 24(1), 47–56
(1999)

16. Medernach, E., Sanlaville, E.: Fair resource allocation for different scenarios of
demands. Eur. J. Oper. Res. 218(2), 339–350 (2012)

17. Rodriguez, M.A., Buyya, R.: Deadline based resource provisioningand scheduling
algorithm for scientific workflows on clouds. IEEE Trans. Cloud Comput. 2(2),
222–235 (2014)

18. Santoso, T., Ahmed, S., Goetschalckx, M., Shapiro, A.: A stochastic programming
approach for supply chain network design under uncertainty. Eur. J. Oper. Res.
167(1), 96–115 (2005)

19. Saravanan, B., Das, S., Sikri, S., Kothari, D.: A solution to the unit commitment
problem-a review. Front. Energy 7(2), 223 (2013)

20. Shapiro, A., Homem-de Mello, T.: A simulation-based approach to two-stage
stochastic programming with recourse. Math. Program. 81(3), 301–325 (1998)

21. Van Slyke, R.M., Wets, R.: L-shaped linear programs with applications to optimal
control and stochastic programming. SIAM J. Appl. Math. 17(4), 638–663 (1969)

22. Yang, J., Qiu, J., Li, Y.: A profile-based approach to just-in-time scalability for
cloud applications. In: 2009 IEEE International Conference on Cloud Computing,
CLOUD 2009, pp. 9–16. IEEE (2009)

https://doi.org/10.1007/978-3-319-77398-8_6
https://doi.org/10.1007/978-3-319-77398-8_6
http://www.gurobi.com

126 T. H. Bhuiyan et al.

23. Zhang, Q., Zhu, Q., Boutaba, R.: Dynamic resource allocation for spot markets in
cloud computing environments. In: 2011 Fourth IEEE International Conference on
Utility and Cloud Computing (UCC), pp. 178–185. IEEE (2011)

24. Zheng, Q.P., Wang, J., Pardalos, P.M., Guan, Y.: A decomposition approach to the
two-stage stochastic unit commitment problem. Annal. Oper. Res. 210(1), 387–410
(2013)

Approaching Actor-Level Resource
Control for Akka

Ahmed Abdelmoamen1(B), Dezhong Wang2, and Nadeem Jamali2

1 Department of Computer Science, Prairie View A&M University,
Prairie View, TX, USA
amahmed@pvamu.edu

2 Department of Computer Science, University of Saskatchewan,
Saskatoon, SK, Canada

dew320@mail.usask.ca, jamali@cs.usask.ca

Abstract. Although there are models and prototype implementations
for controlling resource use in Actor systems, they are difficult to imple-
ment for production implementations of Actors such as Akka. This is
because the messaging and scheduling infrastructures of runtime systems
are increasingly complex and significantly different from one system to
another. This paper presents our efforts in implementing resource control
support for Actor systems implemented using the Akka library. Particu-
larly, given the lack of support in Akka for direct scheduling of actors, we
compare two different ways of approximating actor-level control support.
The first implementation expects messages to actors to provide estimates
of resources likely to be consumed for processing them; these estimates
are then relied upon to make scheduling decisions. In the second imple-
mentation, resource use of scheduled actors is tracked, and compared
against allocations to decide when they should be scheduled next. We
present experimental results on the performance cost of these resource
control mechanisms, as well as their impact on resource utilization.

Keywords: Resource control · Scala · Akka · Actors

1 Introduction

It is becoming increasingly important to control resources in parallel and dis-
tributed systems. Consider, for example, a multi-tenant system where the same
instance of the system can host services for multiple clients simultaneously. This
requires the ability to separate the tenants in the resource space. There is grow-
ing demand for cloud services to control and deliver resources at a fine grain.

One way to support the functional needs of such systems is by implementing
them using Actors [1]. Actors are autonomous concurrently executing active
objects. Actors communicate using asynchronous messages. The model mandates
globally unique names for actors, and these names cannot be guessed, making
it possible for multiple instances of a service (e.g., tenants) to coexist in the

c© Springer Nature Switzerland AG 2019
D. Klusáček et al. (Eds.): JSSPP 2018, LNCS 11332, pp. 127–146, 2019.
https://doi.org/10.1007/978-3-030-10632-4_7

http://crossmark.crossref.org/dialog/?doi=10.1007/>978-3-030-10632-4_7&domain=pdf
https://doi.org/10.1007/978-3-030-10632-4_7

128 A. Abdelmoamen et al.

same namespace without interfering with each other. However, managing the
resource competition between actors requires additional support for resource
coordination, as provided by the CyberOrgs model [2].

There is a growing number of implementations of Actors, including produc-
tion languages such as Scala [3] which supports actors through its Akka library
[4]. Although resource control has been implemented for efficient prototype
implementations of Actors [5], none of the production languages currently sup-
port it. The specific mechanisms making up these solutions do not easily transfer
between languages because of significant differences in their message-handling
and scheduling infrastructures. In other words, the opportunities afforded for
the required fine-grained scheduling are very specific to each language.

This paper presents our implementation of such support as an extension1

for Scala/Akka. Particularly, we compare two different ways of supporting
resource control for Actor systems in Akka. The first implementation relies on
programmer-provided estimates of resources required to process messages; these
estimates are then relied upon to make scheduling decisions. The estimates could
be obtained analytically or experimentally, manually or automatically. In the
second implementation, the system tracks the resource use by actors to process
messages; these measurements are then compared against allocations to decide
when they should be scheduled next.

The rest of the paper is organized as follows: Sect. 2 presents related work.
Section 3 presents the designs and prototype implementations of the two resource
control approach we have developed for Akka. Section 4 experimentally estab-
lishes the performance cost of using these approaches, as well as their impact on
resource utilization. Finally, Sect. 5 concludes the paper.

2 Related Work

There has been growing interest in resource control from various perspectives.
One model for coordinating resources in Actor systems is CyberOrgs [6],

which creates resource encapsulations called cyberorgs in which actors can exe-
cute as long as there are resources. Resources can be traded between cyberorgs.
New cyberorgs can be spawned and existing cyberorgs can assimilate into others.

Where early implementations of CyberOrgs controlled resources for actors by
controlling how long their threads are scheduled for, more efficient production
languages implementing Actors do not dedicate threads to actors. [5] develops
a way of controlling resources for actor systems by manipulating the order in
which actor messages are delivered for processing.

Selectors [7] extend the Actor model to simplify writing of synchronization
and coordination patterns by controlling the order in which messages are pro-
cessed. Selectors have multiple mailboxes, which allow specifying which mail-
boxes can deliver the next message, and which must buffer it.

1 Available online: https://github.com/ama883/ActorGroup-Akka-Resource-Control-
Lib.

https://github.com/ama883/ActorGroup-Akka-Resource-Control-Lib
https://github.com/ama883/ActorGroup-Akka-Resource-Control-Lib

Approaching Actor-Level Resource Control for Akka 129

The programming of resource-efficient concurrent applications is discussed in
[8] where a C++ Actor framework, CAF, is introduced which aims to provide a
scalable environment for building resource-efficient applications and distributed
systems based on the Actor Model. CAF provides a way for programmers to
monitor the performance of their distributed systems on the runtime through
interactive shells, which gives insights about the runtime characteristics of them.
CAF also grants programmers a convenient access to aggregated information
about resource usage on each node where distributed systems are deployed.

Resource control is also an essential requirement in multi-tenancy where the
same instance of the service can serve the needs of multiple clients simultane-
ously. A requirement for such a system is the ability to manage the resource
competition between the tenants. Amusa [9] is a middleware for efficient access
control management of multi-tenant Software-as-a-service (SaaS) applications.
Amusa enables the service provider to easily constrain the tenants in terms of
the hosting server’s resources. It allows both the service provider and its tenants’
users to express their access rules on the SaaS application level, combines these
rules securely and enforces them at run-time.

In multimedia, MASTER [10] provides a set of toolkits to support cross-
platform application streaming that is able to utilize elastic resources in the
cloud. Application providers can use MASTER to stream their resource-intensive
applications from public clouds to remote users using various types of devices.
Particularly, providers can deploy their applications in a server located in the
cloud, which can be operated to provide multiple streaming sessions simultane-
ously. This can significantly improve resource utilization of the server. MASTER
also provides control over resource acquisition and requests dispatching by lever-
aging request the arrival patterns and the streaming session lengths.

In cloud computing, Apollo [11] is a task scheduling framework, which has
been deployed to schedule jobs in cloud-scale production clusters at Microsoft.
Apollo considers future resource availability on all the servers when taking each
scheduling decision. Resource monitoring in Apollo is done using a Resource
Monitor (RM) component in each cluster. RM aggregates load information from
across the cluster continuously and provides a global view of the cluster status
to make informed scheduling decisions.

Some commercial solutions have also been proposed for resource use monitor-
ing of concurrent systems such as Kamon [12] and Sematext [13] which provide
custom made methods of monitoring resources used by groups of actors. How-
ever, these solutions do not provide a way to control resource use. Google also
launched the Namespaces API [14] in the Google app engine to support multite-
nancy in both Java and Python. Using the Namespaces API, data can be easily
partitioned across tenants simply by specifying a unique namespace string for
each tenant.

3 Design and Implementation

To support resource control in an actor system, we need to control the amount of
resource used by each actor computation in the system. The most direct way to

130 A. Abdelmoamen et al.

do so is by controlling the scheduling of the actors’ threads [6]. However, efficient
production languages such as Scala/Akka do not use one thread per actor; it is
orders of magnitude more efficient to have a pool of threads, where each thread
executes multiple actors [15]. One possibility could be to have a related group
of actors be executed by a thread, and then schedule the threads as required.
The performance would then depend on the number of these groups hosted in
the system.

A different approach to controlling resources for actors is by manipulating
the order in which actor messages are delivered for processing [5]. Although the
level of control afforded by this approach is not as precise as what could be
possible in a one-thread-per-actor implementation, it offers sufficient control for
important classes of applications [5]. In this paper, we apply a similar approach
to actor systems implemented in Akka. The main challenge we faced was the
very different messaging and scheduling infrastructure in Akka’s runtime system,
requiring new algorithms to be developed.

We create resource encapsulations for related groups of actors, called actor-
groups. Each of the actors encapsulated in an actorgroup is called as a managed
actor. A managed actor must be registered in an actorgroup in order to con-
sume its allocated resources. We manage the resource usage of an actorgroup by
controlling the flow of messages sent to its managed actors.

The resource we control in this work is CPU time, counted in 1-millisecond
ticks. Ticks are consumed by managed actors to execute computations triggered
by the arrival of messages. Allocations are made to actorgroups within recurring
time intervals. If a tick available to an actorgroup in an interval is not consumed,
it expires [2]. Allocations to actorgroups are in the form of (ticks-per-interval,
number-of-intervals) pairs, and are intended to be applied immediately. Ticks
allocated to (and consequently owned by) an actorgroup are shared among its
managed actors. An actorgroup is marked as inactive after its assigned ticks are
consumed by its managed actors.

We compare two ways of supporting resource control for Actor systems imple-
mented using Akka, one assuming that there is a way for programmers to esti-
mate the amount of computation required for processing each message, and
the other without such an assumption. We first describe the system compo-
nents shared between the two approaches, and then discuss the two approaches
separately.

3.1 Shared Components

Message Dispatcher. In Akka, a message dispatcher is considered the core engine
for the runtime system because it controls the processor cycles given to actors.
The dispatcher has access to the global message queue, actors’ mailboxes,2 and
the pool of threads which executes the actors. One of the necessary configuration
settings to Akka message dispatcher is throughput, which defines the number

2 Mailbox is the dispatching unit in Akka, which contains one or more messages that
can be processed in sequence during an interval.

Approaching Actor-Level Resource Control for Akka 131

of messages delivered to an actor at one time. For example, if the throughput is
set to m, and the number of messages queued up in the global message queue
for an actor is n, if m < n, m messages are delivered to the actor in one shot,
and the remaining messages wait for the next turn.

ActorGroup Manager. The ActorGroup Manager is responsible for book-keeping
about ticks consumed by managed actors as a result of delivery of messages. A
new actorgroup interested in receiving resources registers itself with the Actor-
Group Manager. Once the registration request is received, the ActorGroup Man-
ager instantly adds the actorgroup to its resource scheduling, and the actorgroup
begins receiving ticks from the next interval on. Although the current implemen-
tation does not have the ability to reserve resources not beginning immediately,
a new request can be made at runtime for an actorgroup, overriding previous
allocations.

ActorGroup Runnable. When a message is sent to an actor, the dispatcher first
places it in the global message queue. When it is that actor’s turn to be executed,
the dispatcher queries the ActorGroup Manager about whether the receiving
actor is schedulable, by checking whether its owner actorgroup is still active
(i.e., still owns ticks in the current interval). If the receiving actor is schedulable,
its mailbox is wrapped into an idle thread from the thread pool to create an
ActorGroup Runnable. The dispatcher then moves the right number of messages
for that actor – as determined by the throughput setting – from the global
queue to the actor’s mailbox, and finally tells the runnable to execute the actor
for those messages.

3.2 The Two Implementations

Next, we discuss the differing aspects of the two implementations.

Pre-estimated Execution Time Implementation. This implementation
relies on programmer-provided estimations of ticks required to process messages.
These requirements could be estimated analytically or experimentally. We enable
the providing of these estimates by defining a new type of actor message which
encapsulates expected execution time for a message along with an Akka actor
message.

The number of messages delivered to actors’ mailboxes is controlled using
mechanisms which work within the constraints of Akka’s message dispatcher. In
particular, we add two new components to Akka’s infrastructure. We add a gate-
keeper to the message dispatcher (see Fig. 1) to decide whether to deliver or post-
pone the delivery of messages for an actor according to the number of ticks remain-
ing in its actorgroup’s allocation for the current interval. We also add an observer
to an actor’s mailbox to observe the number of ticks consumed by it. Addition-
ally, we add book-keeping to keep track of actorgroups, their hosted actors, and
their resource allocations. To allow an actorgroup to maximally utilize its allo-
cated ticks for an interval, we replace Akka’s default FIFO actor mailbox queues

132 A. Abdelmoamen et al.

Fig. 1. System architecture

with first-fit queues. Particularly, in each interval, we begin by delivering messages
in FIFO order until a message is encountered which cannot be delivered because
not enough allocation remains for the interval; only at that time, the next message
which can be delivered within the allocation’s constraints is delivered next. This is
done as long as time remains in that allocation. Because the too-large message is
at the front of the queue for the next interval, and therefore guaranteed execution
then, there is no risk of starvation. Although this changes the messages’ order of
delivery, Actor semantics [1] explicitly allow it.

Figure 2 illustrates how the extension modifies the life cycle of a message. Par-
ticularly, note the observer in the actor mailbox and the gatekeeper just below
that; the rest of the figure essentially shows Akka’s default message dispatching.
Once a thread has been given messages for an actor to execute, for each message
(beginning with the top message in the first-fit queue), the gatekeeper examines
the ticks required for executing it, compares it with the ticks remaining in the
actor’s actorgroup’s allocation for the interval, and executes the actor for the
message only if permissible. The observer reports back the actual number of ticks
consumed in processing the message, which are then deducted from the actor-
group’s allocation for that interval. If the ticks required for the message exceed
the actorgroup’s remaining allocations for the interval, the thread is returned to
the pool, and the actor mailbox (representing the actor’s future computations)
is placed on a queue of mailboxes waiting for the next interval.

Approaching Actor-Level Resource Control for Akka 133

gatekeeper

Message Queue

Message Dispatcher
thread pool

msg 1

…
..

Actor Mailbox

deque
operation

observer pe
rm

it

Receiver
Actor

tell de
qu

e

en
qu

e

1 42

3

5

Sender
Actor

msg 2

msg n

wrap

run

6

Fig. 2. The modified life cycle of message dispatching in the pre-estimated execution
time implementation

Figure 3 shows a code snippet illustrating how an actorgroup would be cre-
ated and allocated processing time in terms of ticks per interval and number
of intervals. As mentioned before, our solution is implemented as an exten-
sion to Akka where an ActorGroupExtension object is used to initialize a new
ActorGroup object through the createActorGroup method. First, a number of
configuration variables are set: interval size is set to 1,000 ms; tick size is set to
1 ms which gives us 1,000 ticks per second; the throughput is set to 1.

Two ActorGroup objects are initialized: the first actorgroup, group1, is
assigned 100 ticks per interval for 10 intervals; while the second group, group2,
is assigned 300 ticks per interval for 10 intervals. In this example, we define
two types of managed actors: lightActor and heavyActor. lightActor exe-
cutes light-weight computations which would take less execution time than the
heavyActor does. Two instances of lightActor and heavyActor are registered
to group1 and group2, respectively. The ActorGroupMessage class is used for
creating messages in which the programmer also specifies the number of ticks
needed for processing the message. Then ten messages are sent to the four actors
in sequence. The system schedules the delivery of these messages according to
the allocations of the actorgroups to which the target actors belongs.

Post-measured Execution Time. In this implementation, the system mea-
sures the actual time taken by managed actors to process messages. To do this,
the ActorGroup Runnable adds two hooks, before and after the original message
processing respectively, in order to calculate the number of ticks consumed and
report the result to the ActorGroup Manager. After a message is processed, the
runnable reports the number of ticks consumed in processing it, to the Actor-
Group Manager. The ActorGroup Manager then deducts these ticks from the
receiving actor’s owner actorgroup’s allocation for the interval.

One limitation of this implementation is that the ticks required for a message
may exceed the actorgroup’s remaining allocations for an interval. This leads

134 A. Abdelmoamen et al.

// i n i t i a l i z e two ActorGroup in s t ance s
var group1 : ActorGroup = ActorGroupExtension (actorSystem) .

createActorGroup (”group1” , 100 , TimeUnit .MILLISECONDS, 10)
var group2 : ActorGroup = ActorGroupExtension (actorSystem) .

createActorGroup (”group2” , 300 , TimeUnit .MILLISECONDS, 20)

group1 . i n s e r tAc to r (l i gh tAc to r1) // add l i g h tAc t o r 1 to group1
group1 . i n s e r tAc to r (l i gh tAc to r2) // add l i g h tAc t o r 2 to group1

group2 . i n s e r tAc to r (heavyActor1) // add heavyActor1 to group2
group2 . i n s e r tAc to r (heavyActor2) // add heavyActor2 to group2

val r = s c a l a . u t i l .Random // genera te random va lue s

/ send 10 messages wi th d i f f e r e n t expec ted execu t i on t imes to
both the l i g h t and heavy ac to r s /

for { i <− 1 to 10} {
l i gh tActo r1 ! new ActorGroupMessage (i , r . next Int (20) ,
TimeUnit .MILLISECONDS)

l i gh tActo r2 ! new ActorGroupMessage (i , r . next Int (20) ,
TimeUnit .MILLISECONDS)

heavyActor1 ! new ActorGroupMessage (i , r . next Int (50) ,
TimeUnit .MILLISECONDS)

heavyActor2 ! new ActorGroupMessage (i , r . next Int (50) ,
TimeUnit .MILLISECONDS)

}

Fig. 3. A usage example for the pre-estimated execution time implementation

to a delay in the start times of subsequent intervals. To offset this delay over
time, the system does two things. First, it does not schedule the actorgroups
exceeding their allocations until after passage of the number of intervals over
which those ticks should have been received. Second, it reduces the sizes of
subsequent intervals by the number of ticks allocated to the badly behaving
(and now unscheduled) actorgroups. A similar approach can also be implemented
for the pre-estimated implementation if the programmer provides inaccurate
estimations of the ticks required to process messages.

Figure 4 illustrates how the extension modifies the life cycle of a message in
the post-measured execution time implementation. Figure 4 is very similar to the
one for the pre-estimated execution time Implementation (Fig. 2), except that
there is no need for the gatekeeper because this implementation allows messages
to be delivered if their receiving actorgroups are still active at the delivery time.

Approaching Actor-Level Resource Control for Akka 135

Message Queue

Message Dispatcher
thread pool

msg 1

…
.. Actor Mailbox

observer

Receiver
Actor

tell de
qu

e

en
qu

e

1 42

3

5

Sender
Actor

msg 2

msg n

wrap

run

Fig. 4. The modified life cycle of message dispatching in the post-measured execution
time implementation

A usage example of the post-measured execution time implementation is
presented in Fig. 5. This code snippet is very similar to the one for the pre-
estimated execution time implementation (Fig. 3), except that there is no need
for the ActorGroupMessage class because the run-time system measures the
actual time taken by managed actors to process messages.

// i n i t i a l i z e two ActorGroup in s t ance s
var group1 : ActorGroup = ActorGroupExtension (actorSystem) .

createActorGroup (”group1” , 100 , TimeUnit .MILLISECONDS, 10)
var group2 : ActorGroup = ActorGroupExtension (actorSystem) .

createActorGroup (”group2” , 300 , TimeUnit .MILLISECONDS, 20)

group1 . i n s e r tAc to r (l i gh tAc to r1) // add l i g h tAc t o r 1 to group1
group1 . i n s e r tAc to r (l i gh tAc to r2) // add l i g h tAc t o r 2 to group1

group2 . i n s e r tAc to r (heavyActor1) // add heavyActor1 to group2
group2 . i n s e r tAc to r (group2) // add heavyActor2 to group2

/ send 10 messages to the l i g h t and heavy ac to r s /
for { i <− 1 to 10} {

l i gh tActo r1 ! i
l i gh tActo r2 ! i
heavyActor1 ! i
heavyActor2 ! i

}

Fig. 5. A usage example for the post-measured execution time implementation

136 A. Abdelmoamen et al.

4 Evaluation

We primarily set out to experimentally determine how our two implementations
of a resource control extension compare in terms of performance with each other
and with just using Akka without any resource control. For each of these, we
measured the time taken per message processed, beyond what was required for
processing the message (i.e., carrying out the actual computation). Additionally,
for the pre-estimated-execution-time implementation, we measured the system
idle time resulting from using the approach. For the post-measured implemen-
tation, we studied the impact of badly behaving actor on the quality of control
exercised by our extension.

4.1 Experimental Setup

Our experiments were carried out on a machine with a 2.6 GHz quad-core Intel
i7 processor and 8 GB of RAM, and running Windows 7. We used Scala version
2.11.8 with Akka version 2.4.10 running on JVM 1.8. We set the minimum and
the maximum number of active threads in the pool, called parallelism-min and
parallelism-max, to 8 and 64, respectively. The parallelism-factor is set to 8. The
parallelism-factor is used to determine the thread pool size (i.e., the core number
of threads) at start-up, using the formula: ceil (available processor’s cores x
parallelism-factor). The resulting size is then bounded by the parallelism-min
and parallelism-max values. However, if a new task is submitted to the pool and
there are fewer threads than the maximum pool size, an additional thread will be
created as long as the maximum pool size is not exceeded. The parallelism-min,
parallelism-max and parallelism-factor settings for each pool of threads provide a
way to dynamically size these pools based on the number of CPU cores available.

We generated a set of artificial message loads to simulate the sending of mes-
sages to different actors hosted in multiple actorgroups. To simulate real(istic)
applications, the time required for processing these messages, and the number
of actors per actorgroup is distributed over a normal distribution function. For
example, we picked random values with a mean of 10 ms to represent the pro-
cessing time of a message. We also picked the number of managed actors per
actorgroup using the same method.

For all our experiments, we set the interval size to 1,000 ms. To avoid adding
the registration delay to our measurements, we started our measurements at the
beginning of the first interval after all actorgroups had been registered. For each
experiment, the 1,000 ms interval size is evenly divided between the actorgroups
used in the experiment. In other words, the time allocation to each actorgroup
in an experiment equals to 1,000 ms divided by the number of actorgroups in
that experiment.

Each experiment was carried out 10 times.

4.2 Overheads

There are three potential sources of significant overhead in our resource control
extension. They are related to three types of context switches taking place in the

Approaching Actor-Level Resource Control for Akka 137

0

5

10

15

20

25

30

35

40

45

0.01 0.1 1 10 100 1000

O
ve

rh
ea

ds
 (%

)

Message Processing Time (ms)

Akka Pre-Estimated Impl Post-Measured Impl

Fig. 6. The effect of changing the message time on the per-message overhead percent-
age: exponential scale

system: message-to-message, actor-to-actor, and thread-to-thread. We carried
out a set of experiments to determine the impact of each.

In order to isolate the impact of each parameter on the performance of our
two approaches for resource control, wherever possible, we varied one parameter
while setting all other parameters to values for which our approaches performed
close to Akka (without resource control). These values were determined by trial-
and-error.

Message-to-Message Context Switching. We ran a set of experiments
to determine the impact of message-to-message context switches, which hap-
pen when one message’s execution completes and the next message’s execution
begins. We used 100 actorgroups, each hosting 1 actor; 100 messages were sent to
each actor. The throughput parameter was set to 100. Figures 6 and 7 show how
the message processing time impacted the added overheads for the default Akka,
pre-estimated execution time implementation and post-measured execution time
implementation. Figure 6 shows that the curves diverge significantly between
10 ms and 100 ms message processing times. Figure 7 shows this on a linear
scale between these two points, where the divergence begins to happen around
50 ms, meaning that the added control of our approaches comes at negligible

138 A. Abdelmoamen et al.

0

5

10

15

20

25

30

35

40

45

10 20 30 40 50 60 70 80 90 100

O
ve

rh
ea

ds
 (%

)

Message Processing Time (ms)

Akka Pre-Estimated Impl Post-Measured Impl

Fig. 7. The effect of changing the message time on the per-message overhead percent-
age: linear scale

cost for coarser-grained tasks, with message execution times above 50 ms. For
tasks smaller than that, neither native Akka nor Akka with our extensions has
affordable overheads. Also, note that the overheads for the pre-estimated imple-
mentation are slightly higher than those for the post-measure one; we believe
this to be because of the additional per-message check for whether the actor-
group has sufficient ticks in the current interval to deliver the message to its
target actor.

Actor-to-Actor Context Switching. There are two potential sources of over-
head in actor-to-actor context switches. First, the throughput setting, determin-
ing the number of messages an actor can process together at a time. Second, syn-
chronization required for book-keeping about the hosting actorgroup’s remaining
resources.

We carried out a set of experiments to see the effect of changing the
throughput parameter on performance. We used 100 actorgroups each con-
taining 1 managed actor; 100 messages were sent to each actor. Each message
required 100 ms to be processed.

Figure 8 shows the results. Although the overhead stays roughly between 14%
and 15% for Akka without resource control, it ranges from about 17% to 24%

Approaching Actor-Level Resource Control for Akka 139

0.00

5.00

10.00

15.00

20.00

25.00

1 10 20 30 40 50 60 70 80 90 100

O
ve

rh
ea

ds
 (%

)

Dispatcher Throughput

Akka Pre-Estimated Impl Post-Measured Impl

Fig. 8. The effect of changing the dispatcher throughput config on the per-message
overhead percentage

for the pre-estimated implementation, and from about 14% to 21% for post-
measured. This represents an additional 0–3% overhead for the 100 throughput
case, and an additional 6–9% additional overhead for the 1 throughput case, where
an actor only processes one message at a time. These results suggest that it will be
important to have high throughput values – and correspondingly a larger number
of available messages for actors to process – to keep this overhead low.

The other potential source of overhead is the synchronized access to the
variable current-number-of-ticks tracking the number of ticks remaining in
the actorgroup’s allocation in the current interval. There is a separate variable
for each actorgroup. Because this variable needs to be read before allowing a
message to be delivered to an actor, and needs to be revised every time one
of the concurrently executing actors finishes processing messages, access to the
variable needs to be synchronized.

We ran two sets of experiments, one to determine the impact of increasing the
number of actors hosted by an actor group, and another to determine the impact
of increasing the number of actorgroups while keeping actors-per-actorgroup
constant.

For the first set of experiments, we used one actorgroup, and sent 10 mes-
sages to each actor hosted by it. A message required 100 ms to be processed.
throughput was set to 10. Figure 9 shows the effect of changing the number of

140 A. Abdelmoamen et al.

0

2

4

6

8

10

12

14

16

18

20

1 10 100 1,000 10,000 100,000

O
ve

rh
ea

ds
 (%

)

Number of actors per Actorgroup

Akka Pre-Estimated Impl Post-Measured Impl

Fig. 9. The effect of number of actors per actorgroup on the per-message overhead
percentage

actors per actorgroup on the added overheads. There is between about 1.4% and
2.1% additional overhead on top of Akka’s own overhead over the wide range
between 1 actor per actorgroup and 100,000 actors per actorgroup. It turns out
that this overhead is explained by the suboptimal value of 10 we used for the
throughput – instead of 100; a higher throughput would not have been mean-
ingful because only 10 messages were sent to any actor. We ran an experiment
to measure the additional overhead of our solutions on top of Akka’s when the
throughput is set to 100, and the number of messages is set to 100 as well. This
additional overhead of our solutions on top of Akka’s was found to be between
about 1.3% and 1.9%, accounting for a large part of the 1.4% and 2.1% gap
observed in Fig. 9. In other words, the number of actors per actorgroup is not a
significant contributor to added overhead of our approaches.

For the second set of experiments, each actorgroup hosted 1 actor, and 100
messages were sent to each actor. A message required 100 ms for being processed.
throughput was set to 100. Figure 10 shows the results. Where the per-message
overhead of using Akka without resource control support stays constant around
15% with respect to the number of actorgroups, although it is between 15% and
16% for our two approaches for 1,000 or more actorgroups, it begins rising logarith-
mically (as suggested by linear increase over exponential scale) to between 23%
and 24% for a single actorgroup. This suggests that our approach performs best

Approaching Actor-Level Resource Control for Akka 141

0

5

10

15

20

25

1 10 100 1,000 10,000

O
ve

rh
ea

ds
 (%

)

Number of Actorgroups

Akka Pre-Estimated Impl Post-Measured Impl

Fig. 10. The effect of the number of actorgroups on the per-message overhead percent-
age

for larger numbers of actorgroups. For fewer actorgroups, resource control comes
at a cost which increases logarithmically as the number of actorgroups decreases.

Thread-to-Thread Context Switching. The primary factor which affects
the thread-to-thread type of context switching is the number of threads active
in the system. The JVM scheduler decides the share of CPU cycles given to each
active thread in the pool; then the scheduler switches from executing one thread
to the next in the thread queue. We carried out a set of experiments to see the
effect of changing the number of active threads in the pool on performance.

For this set of experiments, we used 100 actorgroups each of which contains
1 managed actor. 100 messages were sent to each actor, each requiring 100 ms to
process. throughput was set to 100. In order to precisely control the number of
active threads, we set the parallelism-min and parallelism-max parameters
to the same value.

Figure 11 shows the effect of changing the number of active threads on over-
heads. There appears to be relatively little impact of the number of threads
on overhead for all cases for thread pool sizes greater than 8; for lower sizes,
there is a logarithmic increase (suggested by linear increase on the exponential
scale). There is virtually a constant performance difference between Akka (with-
out resource control) and the post-measured implementation (of about 4%) and

142 A. Abdelmoamen et al.

0.00

5.00

10.00

15.00

20.00

25.00

1 2 4 8 16 32 64 128 256

O
ve

rh
ea

ds
 (%

)

Thread Pool Size

Akka Pre-Estimated Impl Post-Measured Impl

Fig. 11. Effect of changing thread pool size on per-message overhead

the pre-estimated implementation (of about 5% to 6%). 2.4% and 3.3%, respec-
tively, of this overhead is accounted for by our use of 100 actorgroups for the
experiment (see Fig. 10).

The higher overheads observed for the resource control extensions are because
of the (known to be) suboptimal settings we used for throughput, message pro-
cessing time, and the number of actorgroups.

4.3 Idle Time for Pre-estimated Execution Time Implementation

In the pre-estimated execution-time implementation, if the remaining allocation
for an actorgroup is insufficient to process any messages in the first-fit queue,
the system remains idle until the beginning of the next interval.

We carried out a set of experiments to determine the percentage of idle time
per interval as message processing time varies between 10 and 100. We used 10
actorgroups each hosting only 1 actor. 100 messages were sent to each actor.
throughput was set to 100, meaning that all messages were always immediately
delivered to each actor. As shown in Fig. 12, as the message processing time
increases, the chance of having fully-utilized intervals decreases, and accordingly
the percentage of idle time per interval increases. Most notably, we found that
the percentage of idle time per interval stabilizes at 4.9% beyond 90 ms message
processing time. This needs to be viewed in the context that an interval is of
1,000 ms duration, and if each actorgroup has a share of 100 ms on average,

Approaching Actor-Level Resource Control for Akka 143

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

10 20 30 40 50 60 70 80 90 100

Id
le

 T
im

e
Pe

r I
nt

er
va

l
(%

)

Message Processing Time (ms)

Percentage of Idle Time Per Interval

Fig. 12. Percentage of idle time per interval in pre-estimated execution-time imple-
mentation

roughly half the times, the 10th actorgroup will not be served in the interval
because serving it would exceed the 1,000 ms limit for the interval. This would
lead to an average of 50 ms of idle time, which is 5% of 1,000 ms. This happens
because the granularity of allocation (i.e., each actorgroup’s share) is 10% of the
time interval. In other words, the maximum idle time can be expected to be half
of the granularity of allocation.

4.4 Quality of Control

We finally examined the level of quality of control achieved by the post-measured
execution-time implementation in the face of actorgroups using ticks in excess
of their allocations. Recall that we reduce the size of the interval when an actor-
group uses excess resource in an interval. The degree of this downsizing becomes
a convenient measure of the impact of badly behaving actorgroups.

We simulated the bad behavior by running a number of badly behaving
actorgroups with their over-allocation times distributed over a long-tail Poisson
distribution function. Specifically, we used 100 actorgroups, each hosting 1 actor.
1 message is sent to each actor at the beginning of each interval, each requiring
an average of 10 ms processing time, so that each actorgroup has a share of 10 ms

144 A. Abdelmoamen et al.

0.00

20.00

40.00

60.00

80.00

100.00

120.00

140.00

160.00

1.
00

1.
50

2.
00

2.
50

3.
00

3.
50

4.
00

4.
50

5.
00

5.
50

6.
00

6.
50

7.
00

7.
50

8.
00

8.
50

9.
00

9.
50

10
.0

0

In
te

rv
al

 D
ow

ns
iz

in
g

 (%
)

Time Line (second)

10 ms Overtime 50 ms Overtime

100 ms Overtime 150 ms Overtime

Fig. 13. The level of quality of control in the measured-execution-time implementation

per interval, given that the interval size, as always, was set to 1,000 ms. The over-
uses we experimented with were averaged at 10 ms, 50 ms, 100 ms and 150 ms
overtime per message. We restrict that over-uses to only 10% of the number
of actorgroups in our experiment. This is translated to a cumulative of 100 ms,
500 ms, 1,000 ms and 1,500 ms overtime per interval. throughput was set to 10.
Then we measured the percentage of interval downsizing to assess the impact of
this bad behavior.

Figure 13 shows the results. The percentage of interval downsizing decreases
over time, and eventually stabilized for all four cases. This means that our exten-
sion can bound the effect of that continuous bad behavior over time.

5 Conclusions and Future Work

In this paper, we presented an approach to support resource control for Actor
systems in Akka. Particularly, we described our design and implementation of
two different Akka extensions which work within the constraints of Akka’s mes-
saging and scheduling infrastructure, to control resources for groups of actors.

We carried out several sets of experiments in order to establish sources of
overheads, paying particular attention to three types of context switches hap-

Approaching Actor-Level Resource Control for Akka 145

pening in the system. The results showed that the overhead depends on various
granularity characteristics of the systems, most notably the sizes of the compu-
tations resulting from individual messages, the opportunity to process a large
number of messages at a time, and the sizes of the actor groups being provided
resources.

In additional sets of experiments, we looked at the impact of message process-
ing times in the pre-estimated execution-time approach on resource utilization
of the system. The resulting idle time was found to be related to the granularity
of resource allocation. We also looked at the impact of badly behaving actor
(i.e., actors using excessive resource) in the post-measured implementation on
the quality of control exercised by the system. Particularly, we looked into a way
of compensating for poor behavior by lowering allocation of resources to such
processes in subsequent intervals until control is restored. We found that our
extension can bound the effect of the bad behavior over time.

We are looking into opportunities for generalizing our approach. Multiple
coordinating actorgroup managers can be implemented to support distributed
computation clusters. We also plan to add support for advance reservation of
resources. Finally, we want to further strengthen our evaluation using case stud-
ies involving real applications.

Acknowledgment. This research was undertaken thanks in part to funding from the
Canada First Research Excellence Fund.

References

1. Agha, G.: ACTORS: A Model of Concurrent Computation in Distributed Systems.
MIT Press, Cambridge (1986)

2. Jamali, N., Zhao, X.: Hierarchical resource usage coordination for large-scale multi-
agent systems. In: Ishida, T., Gasser, L., Nakashima, H. (eds.) MMAS 2004. LNCS
(LNAI), vol. 3446, pp. 40–54. Springer, Heidelberg (2005). https://doi.org/10.
1007/11512073 4

3. The scala programming language (2017). http://www.scala-lang.org
4. Akka programming language (2017). http://www.akka.io
5. Zhao, X., Jamali, N.: Supporting deadline constrained distributed computations

on grids. In: Proceedings of the 2011 ACM 12th International Conference on Grid
Computing, ser. GRID 2011, pp. 165–172 (2011)

6. Jamali, N., Zhao, X.: A scalable approach to multi-agent resource acquisition and
control. In: Proceedings of the International Conference on Autonomous Agents
and Multiagent Systems, ser. AAMAS 2005, pp. 868–875 (2005)

7. Imam, S.M., Sarkar, V.: Selectors: Actors with multiple guarded mailboxes. In:
Proceedings of the 4th International Workshop on Programming Based on Actors
Agents, pp. 1–14 (2014)

8. Charousset, D., Hiesgen, R., Schmidt, T.C.: CAF - The c++ actor framework for
scalable and resource-efficient applications. In: Proceedings of the 4th International
Workshop on Programming Based on Actors Agents, ser. AGERE! 2014@SPLASH,
pp. 15–28. ACM, New York (2014)

https://doi.org/10.1007/11512073_4
https://doi.org/10.1007/11512073_4
http://www.scala-lang.org
http://www.akka.io

146 A. Abdelmoamen et al.

9. Decat, M., Bogaerts, J., Lagaisse, B., Joosen, W.: Amusa: middleware for efficient
access control management of multi-tenant SaaS applications. In: Proceedings of
the 30th Annual ACM Symposium on Applied Computing, ser. SAC 2015, pp.
2141–2148 (2015)

10. Li, Y., Deng, Y., Seet, R., Tang, X., Cai, W.: MASTER: multi-platform appli-
cation streaming toolkits for elastic resources. In: Proceedings of the 23rd ACM
International Conference on Multimedia, ser. MM 2015, pp. 805–806 (2015)

11. Boutin, E., et al.: Apollo: scalable and coordinated scheduling for cloud-scale com-
puting. In: Proceedings of the 11th USENIX Symposium on Operating Systems
Design and Implementation (OSDI), pp. 285–300 (2014)

12. Kamon: A tool for monitoring reactive applications (2017). http://kamon.io
13. Sematext SPM: A tool for performance monitoring (2017). https://sematext.com/

spm
14. Google namespaces API (2017). https://cloud.google.com/appengine/docs/

standard/java/multitenancy/
15. Karmani, R.K., Shali, A., Agha, G.: Actor frameworks for the JVM platform:

a comparative analysis. In: Proceedings of the 7th International Conference on
Principles and Practice of Programming in Java, ser. PPPJ 2009, pp. 11–20 (2009)

http://kamon.io
https://sematext.com/spm
https://sematext.com/spm
https://cloud.google.com/appengine/docs/standard/java/multitenancy/
https://cloud.google.com/appengine/docs/standard/java/multitenancy/

Author Index

Abdelmoamen, Ahmed 127
Azevedo, Frédéric 39

Bashizade, Ramin 83
Berghoff, Marco 1
Bhuiyan, Tanveer Hossain 107

Chlumský, Václav 15

de la Torre, Luis 107

Friese, Ryan D. 107

Gombert, Luc 39

Halappanavar, Mahantesh 107

Jamali, Nadeem 127
Jha, Shantenu 61

Klusáček, Dalibor 15

Lebeck, Alvin R. 83
Li, Yuxuan 83

Maldonado, Manuel 61
Medal, Hugh 107
Merzky, Andre 61

Santcroos, Mark 61
Sathanur, Arun 107
Soysal, Mehmet 1
Streit, Achim 1
Suter, Frédéric 39

Tallent, Nathan R. 107
Turilli, Matteo 61

Wang, Dezhong 127

	Preface
	Organization
	Contents
	Analysis of Job Metadata for Enhanced Wall Time Prediction
	1 Introduction
	2 Related Work
	2.1 Predicting Job Walltimes
	2.2 Machine Learning

	3 Methods
	3.1 Job Metadata
	3.2 Metrics

	4 Results
	5 Conclusion and Future Work
	References

	Evaluating the Impact of Soft Walltimes on Job Scheduling Performance
	1 Introduction
	1.1 Walltime Estimates
	1.2 Soft Walltimes in PBS Professional
	1.3 Paper Contribution and Structure

	2 Related Works
	3 Runtime Prediction Techniques
	4 Experimental Evaluation
	4.1 Workload Log Characteristics
	4.2 Simulation Methodology
	4.3 Overall Results
	4.4 Detailed Performance Analysis Using Heatmaps
	4.5 Discussion

	5 Conclusion and Future Work
	References

	Reducing the Human-in-the-Loop Component of the Scheduling of Large HTC Workloads
	1 Introduction
	2 Scheduling Large HTC Workloads at CC-IN2P3
	2.1 Organization and Management of the Computing Infrastructure
	2.2 Resource Allocation Procedure
	2.3 Characterization of the Workload

	3 Reducing the Human-in-the-Loop Component
	3.1 From Physical to Logical Resource Partitioning
	3.2 Simplification of the Access Rule and Quota Mechanisms
	3.3 Extending the Fair-Share History Window

	4 Conclusion and Future Work
	References

	Using Pilot Systems to Execute Many Task Workloads on Supercomputers
	1 Introduction
	2 Related Work
	3 RADICAL-Pilot
	3.1 Overall Architecture
	3.2 Programming Model
	3.3 State and Execution Models
	3.4 Agent Architecture

	4 Enabling RP on Cray Systems
	4.1 Application Level Placement Scheduler (ALPS)
	4.2 Cluster Compatibility Mode (CCM)
	4.3 Open Run-Time Environment (OpenRTE/ORTE)

	5 Experiments
	5.1 Microbenchmark Experiments
	5.2 Agent Integrated Performance
	5.3 Resource Utilization and Overheads at Scale
	5.4 Discussion

	6 Conclusion
	References

	Adaptive Simultaneous Multi-tenancy for GPUs
	1 Introduction
	2 Background and Motivation
	2.1 GPU Execution Model
	2.2 Resource Requirements
	2.3 Issue Slot Utilization
	2.4 Non-overlapping Execution

	3 Adaptive Simultaneous Multi-tenancy
	3.1 Overview
	3.2 Host-Side Service
	3.3 Application Side
	3.4 Kernel Code Transformation
	3.5 Profiling and Pruning the Parameter Space
	3.6 Sharing Policy
	3.7 Example Scenario
	3.8 Limitations

	4 Evaluation
	4.1 Platform
	4.2 Benchmark Kernels
	4.3 Single Kernel Performance
	4.4 Multi-kernel Performance

	5 Related Work
	5.1 Persistent Threads
	5.2 Software-Based Multi-tasking on GPUs
	5.3 Hardware-Based Multi-tasking on GPUs

	6 Conclusion
	References

	Stochastic Programming Approach for Resource Selection Under Demand Uncertainty
	1 Introduction
	2 Problem Description
	3 Two-Stage Stochastic Programming Model
	4 Solution Approaches
	4.1 Sample Average Approximation
	4.2 L-Shaped Decomposition Algorithm
	4.3 A Genetic Algorithms Based Approach

	5 Experimental Setup
	6 Experimental Results
	6.1 Stochastic Programming Based Solutions
	6.2 Value of Stochastic Solution
	6.3 Comparison with a GA-Based Approach

	7 Related Work
	8 Conclusions and Future Work
	References

	Approaching Actor-Level Resource Control for Akka
	1 Introduction
	2 Related Work
	3 Design and Implementation
	3.1 Shared Components
	3.2 The Two Implementations

	4 Evaluation
	4.1 Experimental Setup
	4.2 Overheads
	4.3 Idle Time for Pre-estimated Execution Time Implementation
	4.4 Quality of Control

	5 Conclusions and Future Work
	References

	Author Index

