
Chapter 8
The Role of Machine Learning and Radio
Reconfigurability in the Quest for
Wireless Security
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Abstract Wireless networks require fast-acting, effective and efficient security
mechanisms able to tackle unpredictable, dynamic, and stealthy attacks. In recent
years, we have seen the steadfast rise of technologies based on machine learning and
software-defined radios, which provide the necessary tools to address existing and
future security threats without the need of direct human-in-the-loop intervention.
On the other hand, these techniques have been so far used in an ad hoc fashion,
without any tight interaction between the attack detection and mitigation phases. In
this chapter, we propose and discuss a Learning-based Wireless Security (LeWiS)
framework that provides a closed-loop approach to the problem of cross-layer
wireless security. Along with discussing the LeWiS framework, we also survey
recent advances in cross-layer wireless security.

8.1 Introduction

Due to the broadcast nature of radio-frequency (RF) waves, wireless networks
are particularly vulnerable to a plethora of security threats, including jamming,
denial-of-service (DoS), eavesdropping, message falsification/injection, and address
spoofing, just to name a few [106, 110, 113, 115]. These threats, when carried out
stealthily, may disrupt the network’s functionality and seriously compromise users’
security and privacy.

Traditionally, wireless attacks have focused on the disruption of a single layer
on the network protocol stack by concentrating all the adversary efforts on a single
objective. For example, most of the existing jamming techniques focus on disrupting
wireless communications by transmitting high-power RF waves on the physical
medium [84]. Recently, a number of cross-layer wireless attacks [104, 105, 109]
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has been proposed, where activities and objectives entail different layers of the
network protocol stack. The main feature of cross-layer attacks is that they are
carried out by attacking layers different than the targeted one (also called helping
layers). As a consequence, small-scale (and thus, hard-to-detect) attack activities
may lead to dramatic changes on the target layer. Cross-layer threats are further
exacerbated by the fact that many network protocols functionalities such as power
allocation, channel selection, and routing decisions are jointly optimized with a
common objective [23, 51, 64], resulting in layers that are closely coupled with each
other. As long as the helping and target layers are coupled, the attack will lead to the
defender’s responsive change on the target layer. Thus, with carefully-tuned attack
activities and objectives, the defender’s reaction will favor the attacker’s objective.

Cross-layer attacks present unique challenges that cannot be addressed by legacy
security techniques. First, cross-layer attacks leverage small-scale activities in the
helping layer to achieve significant damage in the target layer. This implies that
the attacker can achieve the same goal with relatively small-scale activities, and
therefore remain undetected. On the other hand, existing attack detection methods
often assume that attacks are conducted always in the same manner and always have
the same objective, and that large-scale attacks have to be conducted in order to
achieve substantial results [110]. This is not necessarily true in cross-layer attacks.
Therefore, developing detection and mitigation algorithms able to swiftly detect and
counteract small-scale, dynamic cross-layer attack activities is now more important
than ever.

The main issue with legacy security countermeasures is that they are usually
tailored to address specific threats under specific network circumstances defined a
priori [74]. On the other hand, the reality is that malicious activities are usually
extremely dynamic in nature and thus cannot be fully addressed beforehand. As
wireless attacks become ever more sophisticated, next-generation wireless networks
will need to abandon generalized, one-size-fits-all, bolted-on security and optimiza-
tion mechanisms, and rely on “smart”, dynamic solutions able to harness the synergy
between hardware and software reconfigurability to provide reliable, efficient and
effective cross-platform and cross-layer security solutions. This aspect hinders
significantly the integration and coordination of different wireless networking
technologies to maximize network capacity, reliability, security, and coverage, and
prevent the provision of a true networking-as-a-service vision. For this reason,
software-defined radio techniques to simplify network control and to make it easier
to introduce and deploy new applications and services, and machine learning to
provide adaptability and fast-time reaction to adversarial action.

Recently, machine learning techniques have exhibited unprecedented success in
classification problems in areas such as speech recognition [21], spam detection
[18], computer vision [35], fraud detection [3], and computer networks [5], among
others. One of the main reasons behind machine learning’s popularity is that it
provides a general framework to solve very complex classification problems where
a model of the phenomenon being classified is too complex to derive or too dynamic
to be summarized in mathematical terms [22, 46, 112]. Almost in parallel with
machine learning’s development, the development of algorithms and protocols
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based on software-defined radios [43, 114] has gained tremendous momentum in the
networking research community over the last years [58]. A software-defined radio
is a wireless communication system where components that have been typically
implemented in hardware (e.g. mixers, filters, amplifiers, etc.) are implemented in
software to ensure fast reconfigurability and adaptation to critical channel conditions
(e.g., significant multipath, Doppler effect, or path loss). The main downside of
pure software-based solutions is that they completely trade-off reconfigurability
for efficiency. On the other hand, we have recently seen a tremendous rise of
wireless platforms based on the system-on-chip (SoC) concept [59]. These SoC
platforms allow the design and implementation of customized hardware on the
field-programmable gate array (FPGA) portion of the platform to achieve better
performance [63].

Although existing work has used machine learning and software-defined radios
to design wireless security systems, these approaches have been used in an ad-
hoc manner (i.e., to solve a specific wireless attack). On the contrary, future
wireless networks will need to use context-aware, adaptive security measures able
to sense the environment and swiftly respond to a range of dynamic, unpredictable,
cross-layer attacks. We envision a radically different approach to the design of
wireless security systems that can deploy various defense strategies, depending
on the network’s protection needs, and ability to tolerate and manage the specific
technique’s dynamic configuration.

In this chapter we address the lack of a unifying, systematic approach to cross-
layer wireless security by proposing and discussing a Learning-based Wireless
Security (LeWiS) framework. First, we provide background notions on the enabling
technologies for LeWiS in Sect. 8.2. Then, we discuss a taxonomy of relevant
existing wireless networks in Sect. 8.3. We then provide an overview of the LeWiS
framework in Sect. 8.4, and delve deeper into the learning-based control module of
LeWiS by discussing its detection (Sect. 8.5) and mitigation (Sect. 8.6) modules.
We conclude the chapter in Sect. 8.7.

8.2 Background on Enabling Technologies for LeWiS

In this section, we provide a brief survey of the technologies that are at the basis of
LeWiS, i.e., software-defined radios and networking (Sect. 8.2.1), system-on-chip
technologies (Sect. 8.2.2), and machine learning (Sect. 8.2.3).

8.2.1 Software-Defined Radios and Networking

Software-defined radios are generally defined as devices where frequency band, air
interface protocol and functionality can be upgraded with software updates instead
of a complete hardware replacement. The peculiar characteristic of software-defined
radios is that they are capable of being re-programmed or reconfigured to operate
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with different waveforms and protocols through dynamic loading of new waveforms
and protocols. Furthermore, protocol characteristics at the data-link, network and
transport are completely defined in software and may be changed dynamically at
runtime depending on the system’s needs. This has several advantages, including
the ease of portability of the software to different hardware platforms, which in
turn decreases development and testing costs as well as time-to-market of the radio
technology. The software-defined radio technology uses modules that run on a
generic hardware platform consisting of digital signal processing (DSP) processors
as well as general purpose processors to implement the radio functions to transmit
and receive signals. Usually, software-defined radio implementations are based on
a combination of FPGA/DSP or FPGA-only solutions in alliance with software-
defined physical and data-link layer for reaching the trade-off between parameter
adaptation and performance. For an excellent and recent tutorial on the topic, the
reader is referred to [99].

8.2.2 System-on-Chip (SoC) Technologies

System-on-chips (SoCs) [59] are embedded devices where a general-purpose
processing system resides on the same integrated circuit with a field-programmable
gate array (FPGA). SoCs are one of the leading technologies on the market for
the implementation of digital systems combining software parts with hardware
accelerators. The latest generations of these embedded devices include, among
many other useful resources, powerful embedded hard processors supporting
different operating systems, analog front-ends, specialized hardware blocks for
high-performance computing or crypto-acceleration, and communication interfaces
compatible with the most widely used network protocols.

The programmable logic implemented on the FPGA enables the efficient imple-
mentation of systems that perfectly fit the heterogeneous nature of wireless appli-
cations. This is because both hardware and software components can be configured
according to the needs of different target applications; they are relatively low cost,
low power, and compact, and their flexibility and possibility of code reuse (both
hardware and software) allow the time to market to be reduced. Parallelism is
another significant advantage of FPGAs. The distributed nature of the logic and
interconnect resources in an FPGA fabric, together with the inherent concurrency
of the hardware, allows several blocks operating in parallel (with either the same or
different functionalities) to be implemented on a single chip.

8.2.3 Machine Learning

The pioneer of machine learning, Arthur Samuel, defined it as a “field of study
that gives computers the ability to learn without being explicitly programmed”
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[68]. Machine learning focuses on classification and prediction based on known
properties, and usually consists of two phases: training and testing. Often, the
following steps are performed: (1) identify class attributes (features) and classes
from training data; (2) identify a subset of the attributes necessary for classification
(i.e., dimensionality reduction); (3) learn the model using training data; and (4) use
the trained model to classify the unknown data.

There are three main types of machine learning approaches: unsupervised, semi-
supervised, and supervised. In unsupervised learning problems, the main task
is to find patterns, structures, or knowledge in unlabeled data. When a portion
of the data is labeled during acquisition of the data or by human experts, the
problem is called semi-supervised learning. The addition of labeled data greatly
helps to solve the problem. If the data are completely labeled, the problem is
called supervised learning and generally the task is to find a function or model
that explains the data. The approaches such as curve fitting or machine-learning
methods are used to model the data to the underlying problem; the label is the
problem variable. Recently, machine learning techniques have been used extensively
in areas such as speech recognition [21], spam detection [18], computer vision
[35], fraud detection [3], computer networks [5], and cyber intrusion detection
[9], among others. The reason behind the popularity of machine learning is that
it provides with a general framework to model and solve very complex problems.
Furthermore, machine learning operates “on the fly” without requiring a model of
the environment, the attacker’s behavior, and with (almost) no human intervention.
These characteristics make machine learning the ideal choice to detect stealthy,
dynamic and unpredictable cross-layer wireless security threats.

8.3 Taxonomy of Existing Wireless Network Attacks

In this section, we provide an overview of the relevant wireless network attacks to
date. Although wireless attacks are diverse in nature, it is possible to classify them
into two well-distinct classes. i.e., active and passive attacks. The two classes have
the following features:

• Active attacks: these attacks aim at partially (or completely) altering, corrupting
or destructing ongoing communications. Typical examples of such an attack are
Denial of Service (DoS) attacks such as jamming where the jammer exploits the
broadcast nature of wireless communications to intentionally generate interfering
signals that can potentially block all ongoing communications over one or more
wireless channels. Other classical and highly disrupting attacks are selective
forwarding and reply attacks. The former attack is generally aimed at mesh and
relay-aided networks where a malicious node can selectively drop or forward a
subset of the received packets, thus generating a decrease in the packet delivery
ratio of the network. Instead, replay attacks aim at retransmitting multiple
copies of the same packet. While wired networks can efficiently avoid such an
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attack by means of firewalls, wireless networks are particularly vulnerable to
replay attacks, especially when cloned packets corresponds to user association,
handshakes and ACK packets.1

• Passive attacks: in contrast with active attackers, passive attackers do not interact
with the system actively but, instead, limit their actions to the monitoring of
ongoing communications. A classical example of such an attack is eavesdrop-
ping, where a malicious node, the so-called eavesdropper aims at monitoring
wireless channels to detect ongoing communications. When a communication is
detected, the eavesdropper can either get access to the content of transmitted
packets and compromise the confidentiality of data, or it can monitor RF
transmissions to obtain statistical information on routes, identity of nodes and
their transmission activity.

It is clear that passive attackers are very hard to be detected as they never disclose
their presence or position. Accordingly, to protect the network from passive attacks,
prevention mechanisms such as encryption [56, 100], steganography [24, 25, 55, 57,
79] and access control lists [70] are generally employed. The network is generally
not able to measure the effectiveness of any prevention mechanism. Therefore,
prevention mechanisms are generally proactive and static.

For the above reasons, in this book chapter we focus our attention on active
attacks only. That is, we will delve into those cases where it is possible to detect
the presence of attackers, and it is possible to monitor and estimate the impact of
their attacks on the achievable performance of the network.

8.4 Learning-Based Wireless Security Framework (LeWiS):
An Overview

Figure 8.1 shows a block diagram of LeWiS. The core of LeWiS lies in two different
yet interconnected modules, i.e., the learning-based network stack (LNS) and the
learning-based control module (LCM).

Learning-Based Network Stack (LNS) The main task of the LNS is to adapt
transmissions protocols and radio frequency (RF) configurations to implement
dynamic protocols based on control logic algorithms defined in the LCM. To this
end, the LNS (1) swiftly implements the necessary configuration changes to address
adversarial action; (2) increases network throughput as much as possible; and (3)
eases the definition of protocols with cross-layer optimum behaviors. The LNS
operates on the whole set of existing networking layers, and involves protocols from
PHY to MAC to routing layers and to transport layer.

1For a more detailed discussion on active attacks and their impact on wireless communications we
refer the interested readers to [4, 85, 107], where an exhaustive analysis of active attacks and their
corresponding defence mechanisms is provided.
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Fig. 8.1 Block scheme of the proposed Learning-based Wireless Security (LeWiS) framework

Although the logic of how network parameters are changed will be completely
handled by the LCM, the LNS will be in charge of (1) actuating the commands
received from the LCM; (2) coordinating the different network layers in a reliable
and efficient way; and (3) storing and managing the current network state. Accord-
ingly, the LNS is divided into three distinct but interacting “planes”, each in charge
of coordinating a different group of functionalities. We refer to these as the execution
(where the protocols actually run), control (store network status information and
receive parameters), and interface (provide a set of cross-platform APIs between
the LCM and the LNS).

We now provide an overview of the LNS components and the interactions
between them. We describe each component in a bottom-up fashion.

Execution Plane The execution plane (EP) handles the actual implementation of
the networking algorithms. Specifically, it handles the set of data structures and
algorithms, as well as the signal processing and RF front-end needed for wireless
communication. As such, the EP is cross-layer and cross-domain by design, and
resides on both the hardware (HW) and operating system (OS) portions of the
wireless nodes.

The EP is structured as follows. The raw information bytes coming from the
application (e.g., voice, video, data) are received, and after header formation at the
transport (TSP), network (NET) and link (LNK) layers, the information packet is
transformed into digital waveforms at the physical (PHY) layer and subsequently
transmitted via the RF front-end. According to the commands provided by the
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control plane (CP), the EP chooses from a set of protocols and algorithms at
every layer of the protocol stack. For example, the EP might choose different
PHY schemes (e.g., OFDM, narrowband, spread-spectrum) or MAC schemes (e.g.,
CSMA, TDMA, ALOHA, etc.), according to what instructed by the CP.

The state of protocols at different layers are stored as variables in the CP.
Therefore, any state variable of any protocol at any layer can be reconfigured on-
the-fly through the CP. Protocol parameters (e.g., inter-frame spacing, modulation,
carrier frequency, size of minimum contention window) can be “intrinsically”
accessed by the CP as a result of a decision algorithm, or by the EP according
to specific data acquisitions.

Control Plane The control plane (CP) is responsible for storing the network state
composed by the set of parameters used at the different layers (e.g., modulation,
transmit power, size of minimum CW, neighbouring list, and routing table).
Furthermore, the CP is designed to handle the logic of data processing, which takes
place in the EP. The CP decides the sequence of data processing functionalities
that will be executed in the EP. The CP also controls switching between different
protocols on-the-fly based on the decisions taken by the LeWiS mitigation module.

Interface Plane The interface plane provides a set of application program interface
(API) between the LNS and the LCM. Specifically, the purpose of this layer is to
(1) communicate to the LCM the state of the LNS held by the register and control
plane; and (2) handle the reception of updated network parameters coming from the
LCM. This plane can be implemented purely in software or also in hardware (e.g.,
FPGA), depending on the platform’s needs.

Learning-Based Control Module (LCM) The purpose of the LCM is to imple-
ment the algorithms that will ultimately provide the LNS with appropriate network
parameters at every layer of the protocol stack. The choice of network parameters
will depend on (1) the current environmental conditions; and (2) the current network
state, provided by the LNS. This information is used by the LCM to take appropriate
action in response to various phenomena, ranging from a change in network
objectives (e.g., more throughput is needed at the cost of energy consumption) to
a detection of an ongoing network attack.

The LCM provides decisions based on user-defined machine learning algorithms.
Such “decisions” may be different in nature; they include, for example, modifying a
parameter in a protocol (e.g., transmit power), switching to a different transmission
scheme at the PHY layer (e.g., from OFDM to CDMA), and complex cross-layer
decision making such as joint routing and spectrum allocation, among others. The
output of the LCM is not applied to the LNS directly, but specific APIs are used
in the Interface plane to establish communication between the LCM with the LNS.
Therefore, results of specific machine learning algorithms can be accessed by the
Execution and Control planes of the LNS and adopted in their logic. Thus, the LCM
separates the decision plane from execution of the protocol stack, which enables the
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definition and reconfiguration of the decision logic on-the-fly without influencing
the on-going protocol execution logic. Most importantly, this separation provides
the capability to (1) apply locally control decisions taken at other devices; and (2)
create decisions to be applied at other network devices.

From a logical standpoint, the LCM is composed by a detection and a mitigation
module. The detection module records a series of observed events and use them to
update the a priori distribution of the parameters of the underlying network state.
The resultant a posteriori distribution is fed to the mitigation module, which in turn
decides the strategy to address the ongoing attack. Another task of the LCM is to
sense the environment and acquire as much information as possible regarding the
outside world. This includes carrier sensing, detection of number of nodes, and so
on. This information will be fed to the machine learning algorithms, and if necessary
used for training the models.

The rest of this section will be devoted to describe in details the LeWiS detection
and mitigation modules. By doing so, we will also discuss the relevant state of the
art on the topic of detection and mitigation of wireless attacks.

8.5 LeWiS Detection Module

In this section, we discuss the detection module of LeWiS. First, we introduce the
general structure of the LeWiS detection module. Then, the challenges of detection
are discussed. Next, we review different machine learning techniques that can
be used in the LeWiS detection module. Finally, we discuss different detection
approaches.

The objective of the detection module is to use machine learning techniques to
construct reliable hypotheses on the existence of possible attacks in a network, based
on observed evidences and a-priori knowledge on the attacks. The detection results
are represented in the form of a-posteriori knowledge on the attacks and supplied
to the mitigation module for defense strategy making.

The detection module is made up by three components, an event monitor, a
learning engine, and a learning controller, as is shown in Fig. 8.2. We discuss each
component below.

• Event Monitor. The event monitor observes and records events occurred on
multiple layers that are useful for the detection of the underlying network state.
Although an attack can be identified using the network state changes made by
it, states are not always directly observable. On the other hand, there are always
observable events whose occurrences are a function of the underlying network
state. These event may include a successful (or failed) reception of a bit (or
packet), the result of a channel contention, and the end-to-end delay of a message,
among others. These events may reveal the underlying network state often in a
probabilistic way.

• Learning Engine. The learning engine computes the probability that (1) a certain
attack is taking place (supervised learning techniques), or (2) the belief that
the network is running in a “normal” state (unsupervised learning techniques).
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Fig. 8.2 Components of the detection module

Specifically, it takes the events observed by the event monitor as the input,
generates a “data” point based on the events, which represents the network state.
Then, learning techniques such as K nearest neighbor (KNN), support vector
machine (SVM), or clustering are used upon the data point. In most cases, it
also takes a-priori knowledge in some form as an input. The a-priori knowledge
represents the knowledge on the expected behavior of an attack, and can be
derived by theoretical analysis, or, more importantly, training.

• Learning Controller. The learning controller is mainly in charge of the parameter
settings for the learning engine. Depending on the application and implementa-
tion of a network, it may be prone to different attacks. Meanwhile, depending
on the threat of an attack, it may not always be worthy defending it, considering
the overhead. This is especially important when the number of possible attacks
are high. Therefore, the learning controller should decide which attacks to detect,
and consequently, which layers and events to monitor. The learning controller is
also in charge of feeding the learning engine with the proper a-priori knowledge.

8.5.1 Challenges in Cross-Layer Attack Detection

There are different ways to launch cross-layer attacks. “Sub-attacks” on different
layers with similar consequences may be used in parallel for a better result. For
example, observing that denial-of-service can be achieved using multiple attacks on
different layers, it is argued in [81] that a cross-layer DoS attacks can be launched
by jointly utilizing these sub-attacks. On the other hand, it is also possible for a
sophisticated attacker to launch a more advanced cross-layer attack by exploiting the
cross-layer interactions in the underlying protocols of the network (in the following
contents, we will deliberately refer to this type of attacks as “advanced” cross-layer
attacks when distinguishing is needed). Compared to traditional single-layer attacks,
these advanced cross-layer attacks have several unique challenges:
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Fig. 8.3 The mechanism of cross-layer attacks

• Stealthiness. The major issue in cross-layer attack detection is overcoming
their stealthiness. To explain this point, let us consider the example shown in
Fig. 8.3. We define as network state a state of network variables, which may
include signal-to-interference-plus-noise ratio (SINR) of a link, the channel
access probability of a node, and the quality of a route, among others. Let us
suppose the network is in a state Si, and that the adversary aims at changing a
certain target layer so that the network enters a new state where the defender
is penalized. To this end, instead of attacking the target layer directly as in a
traditional single-layer attack, in this case the adversary chooses another layer,
i.e., the helping layer, and attacks it with a strategy Ai. This causes the defender
to switch to an intermediate state S′

i where the utility of the defender is lowered.
As a response, the defender chooses a strategy Di to switch to a more favorable
state Si+1.

Since the defender jointly optimizes its strategy on multiple layers, strategy
Di changes the target layer of the adversary as well, as long as the attack strategy
Ai is carefully chosen. In other words, with a fine-tuned attack strategy, a cross-
layer attack can create a state in which the defender’s responsive strategy also
benefits the adversary. Therefore, cross-layer attacks have the potential to be
exceptionally stealthy, and how to detect the often small-scale attack activities
becomes the most important challenge.

• Heterogeneity. Cross-layer attacks involve multiple “sub-attacks” on different
layers. Therefore, different cross-layer attacks may behave similarly on a specific
layer, especially on the helping layer. This suggests high heterogeneity in the
form of attacks even if similar attack patterns have been observed.
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Fig. 8.4 Learning engine

The challenge of stealthiness suggests that the network state that distinguishes
an attack is difficult to estimate; and the challenge of heterogeneity suggests that it
is difficult to distinguish different attacks. In the learning engine, these challenges
are addressed by two components, a network state estimator and a classifier, as
shown in Fig. 8.4. The network state estimator estimates the underlying network
state that may be ambiguous to a “normal” state due to small-scale attack activities,
and generates a feature vector representing the current state. The classifier is trained
to classify such a feature vector to a specific attack (misuse detection) or abnormal
(anomaly detection).

8.5.2 Learning Techniques for Attack Detection

Various machine learning techniques can be applied to accomplish the tasks of both
network state estimation and classification.

8.5.2.1 Network State Estimation Techniques

Network state estimator is tasked to estimate the underlying network state, which
is usually not directly observable and may only be changed by the attacker slightly.
It falls to the topic of parameter estimation in machine learning, and maximum
likelihood (ML) estimation and Bayesian estimation are two widely-used methods
[27].

ML Estimation ML estimation aims at finding the candidate hypothesis that
maximizing the likelihood for the observed events to happen. Specifically, suppose
the probability (likelihood) for an event Ek = ek to happen for the underlying
network state S = s is

P{Ek = ek|S = s} = f (ek, s), (8.1)
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where the function f (·) is available by either theoretical analysis or training, then the
ML estimator generates the hypothesis S = s if

s = arg max
s∈S

f (ek, s), (8.2)

where S is the set of all possible values for the network state S.

ML estimation treats the network state as a fixed value and finds the value best fits
the evidences. It does not take into account the a-priori knowledge on the network
state, which is usually available. Therefore, in such cases, it is not as good as
Bayesian estimation, which is based on a-posteriori instead of likelihood. However,
it is relatively less complex, especially when dealing with binary hypotheses. For
example, log likelihood ratio test (LLR) is used for jamming detection [77].

Bayesian Estimation Bayesian estimation, on the other hand, treats the network
state S as a random variable and constructs a-posteriori distribution. It takes into
account the a-priori knowledge on the network state. Besides, as a distribution on
the set of all possible values instead of the likelihood for one single value, Bayesian
estimation provides more information on the network state than ML estimation.
Therefore, for cross-layer attacks creating a network state S′ that is only slightly
different from the “normal” state S, Bayesian estimation is generally a better choice
than ML estimation.

Specifically, with a sequence of independent events {ek}k=1, . . . ,K have happened,
it follows that

P{{Ek}k=1,...,K = {ek}k=1,...,K |S = s} =
K∏

k=1

f (ek, s), (8.3)

which leads to the following a-posteriori distribution

P{S = s|{Ek} = {ek}}

= P{{Ek} = {ek}|S = s}∫
s P{{Ek} = {ek}|S = s} · P{S = s} ds

· P{S = s}, (8.4)

where P{S = s} is some a-priori distribution of S, which represents the “normal”
network state (i.e., without attacks). Note that such quantity is often available—for
example, the distribution of SINR on a link can be derived from the fading model,
the channel access probability for any node in a network running CSMA/CA is
approximately the same, and so on. If accurate knowledge is not available, it is
often possible to know some information on it, such as the functional form, and the
range of its values [27].

The a-posteriori distribution in Eq. (8.4) reveals the possible underlying network
state, so the defender is now aware of the attack activities of the attacker. The
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resultant distribution is fed to a classifier to classify a new data point. For example,
with the signature of a suspected attack, we may have the classifier in the following
general form:

Attacked
C(P{S = s|{Ek} = {ek}}, F) ≶ Cth,

Not attacked
(8.5)

where F represents the signature of the suspected attack, and Cth is a threshold that
is set based on an a-priori training of the system. The detailed form of the classifier
depends on the targeting attack, and the classification techniques. We will discuss
the techniques in the following subsection.

8.5.2.2 Classification Techniques

There is a rich body of classification (or clustering for unsupervised learning)
techniques used in network intrusion detection systems (NIDS). [45] gives an
experimental comparison on such techniques applied to the KDD dataset [41]. KDD
dataset is a famous benchmark dataset for network intrusion detection. It is packet-
based, involving packets generated on network layer and above. The attacks are
mainly single-layer attacks. However, the machine learning techniques still have
the potential to be applied for the classification of cross-layer attacks. We have
listed in Table. 8.1 the most widely-used techniques and the attacks they have been
applied to.

K Nearest Neighbor (KNN) K Nearest Neighbor (KNN) is an instance-based
learning technique, which classifies a data point based on the majority of the classes
of its K nearest neighbors (usually according to the Euclidean distance in the feature
space).

Table 8.1 Learning techniques used in attack detection

Techniques Attacks

Supervised K nearest neighbors (KNN) KDD attacksa [48], flooding [50]

Decision tree KDD attacks [73, 76]

Support vector machine (SVM) Sinking [37]

Artificial neural network KDD attacks [6, 53, 88], DDoS [67]

Ensemble learning KDD attacks [1, 32]

Unsupervised Clustering DDoS [47]

K means KDD attacks [52]

Reinforcement Q-learning Not specified [34, 72]
aWe refer to KDD attacks the set of attacks in KDD dataset, including DoS, user to root (U2R),
remote to local (R2L), and PROBE attacks
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Formally, denoting the set of the K nearest data points as K , then the probability
that a new data point x belongs to a class y is computed as

P{y|x} = 1

K

∑

xi∈K
I (yi = y), (8.6)

where yi is the label of data point xi, and I(yi = y) is an indicator function for the
condition yi = y. The classifier is then assigns class y ∗ according to

y∗ = arg max
y∈Y

P{y|x}, (8.7)

with Y denoting the set of all classes.
KNN is one of the least complex machine learning techniques and thus has the

potential to be applied in wireless networks with low cost devices. It has been
evaluated on wireless sensor networks in [50] for flooding attack and used on the
KDD dataset in [48].

Decision Tree Decision tree is a technique to organize multiple rules in a tree-
like model. Each node in the tree except the leaves corresponds to a test over some
attributes (or features) of a data point. The decision process is directed to different
children based on the test result, until a leaf node is reached, which represents a
decision. Decision tree techniques such as C4.5, random tree, and random forest
have been applied to intrusion detection on the KDD dataset in [73, 76].

Support Vector Machine (SVM) Support Vector Machine is based on the assump-
tion that data points for different classes are separable when represented in a high
dimension feature space. The data points are first mapped to a high-dimensional
feature space. Then, a linear decision function is constructed in the mapped feature
space, resulting in hyperplanes separating two classes of data points.

Specifically, suppose the mapped data points is represented as a vector x, then
the classifier is in the form of

wT x − b ≥ 1 (8.8)

for one class, and

wT x − b ≤ −1 (8.9)

for the other. The weight w should be computed to maximize 2
‖w‖ , i.e., the margin

between the two classes.
In [37], SVM is used for the detection of sinking attack in wireless ad-hoc

networks.
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Fig. 8.5 Artificial neural
network

Artificial Neural Network Artificial neural networks are inspired by biological
neural networks. It is a network of artificial neurons (nodes), as shown in Fig. 8.5.
“signals” are transmitted through connections between the neurons. At each neuron,
the “signal” is processed using a (usually non-linear) function of the weighted sum
of all inputs. Denoting the input as x and the weight as w, the output y is

y = f (wT x), (8.10)

where the function f (·) may take different forms. There are typically multiple layers
of neurons, with the first layer as the input and the last layer the output (the
classification result). The weights in a neural network are trained to produce the
most favorable outputs. It has found applications in detection of various attacks in
[6, 53, 67, 90].

Ensemble Learning Ensemble learning techniques utilize the hypotheses gener-
ated by multiple weak learners to construct a strong one that outperforms each
individual weak learner. There are multiple ways to ensemble weak learners,
such as bagging and boosting [27]. In detection of cross-layer attacks, due to the
heterogeneity in sub-attacks, the best learning techniques in detecting each of them
may vary. Therefore, a good ensemble method may improve the performance of
the detection. An AdaBoost-based learning with decision tree as weak learners is
evaluated on KDD dataset in [32]. In [1] a simple ensemble method of weighted
majority is used.

Clustering Clustering is an unsupervised learning technique that allows the unla-
beled data points form different groups (clusters) automatically based on their
features. Different methods can be used for this purpose. In [47] a hierarchical
clustering method is used to detect DDoS attacks.

K Means K means is a classic clustering method. It first randomly creates K
clusters and then iteratively updates the center of each cluster with new data points
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until convergence. New data points can be assigned to a cluster according to the
distance.

For standard K means, suppose the mean (center) of cluster k at step i is mi
k , then

a data point xj is assigned to cluster

k∗ = arg max
1≤k≤K

‖xj − mi
k‖. (8.11)

With all data points clustered, the new means are computed as

mi+1
k = 1

‖Ci
k‖

∑

j∈Ci
k

xj , (8.12)

with Ci
k denoting the set of data points belonging to cluster k at step i. The update

stops when there is only negligible changes in the means.
In [52] K means is used with KNN for intrusion detection, where K means is

used to form clusters and KNN is used to assign new data points to the clusters.

Q-Learning Instead of aiming at classifying (or clustering) data points, reinforce-
ment learning aims at finding the optimal policy to maximize the reward in a
dynamic system with multiple states. Q-learning is a popular reinforcement learning
technique, which can be implemented using dynamic programming. As a decision
making process, it fits more for the task of attack mitigation (introduced with more
details in Sect. 8.6), but there are still several works in applying Q-learning to attack
detection [34, 72]. The common idea is that the detection and attack form a game,
in which the defender and attacker may adopt different actions (to detect or not to
detect for the defender; to attack or not to attack for the attacker) and get different
rewards. Q-learning can be used to find the optimal policy for each side in this game-
theoretical framework. Note this is a high-level model, and the actions for both sides
are abstract, without detailed detection (or attack) methods involved, therefore, Q-
learning (and reinforcement learning techniques in general) needs to be used with
other detection methods dedicated for the attacks for a good performance.

8.5.2.3 Detection Approaches: Misuse vs Anomaly

We have reviewed different techniques that can be used in attack detection. An
equally important question in detection module design is the detection approach.
There are two approaches in intrusion detection, misuse detection and anomaly
detection [42]. The former aims at identifying a specific attack based on its
signature, while the latter aims ate finding out outliers to “normality”.

The framework established in [106] has adopted the misuse detection approach.
It is argued that the learning engine should be tailored for each target attack
individually. However, there are also scenarios where it is difficult to adopt this
approach. For example, in networks with low cost devices and low security
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requirement, it is neither feasible nor necessary to monitor multiple advanced
cross-layer attacks; in scenarios lacking knowledge on the potential attacks, it is
also difficult to train a model for the unknown attack. In such cases, the anomaly
detection approach seems more promising.

The common idea of anomaly detection is to monitor multi-layers and cluster
the data points into different groups. Only one of the groups is considered normal,
and for data points in other groups, the mitigation module will be called to “revert”
the state back to normal. This step may contribute to the launching of an advanced
cross-layer attack, as shown in step 3 in Fig. 8.3. Therefore, there is a possibility
that anomaly detection fail against advanced cross-layer attacks.

Reference [87] is a typical example of this idea. It is assumed that there are
intrinsic and observable distinction between normal and abnormal behaviors. The
authors propose to select “features” that best distinguish normal and abnormal
behaviors on multiple layers, and use classifiers such as decision tree, Bayesian
Network, and SVM to classify if a data point is normal or not.

It is generally believed that anomaly detection is able to detect not only already-
known attacks but also unknown attacks. However, in [75] it is argued that this
may not hold in practice, due to the unsuitability to use machine learning in outlier
detection, the high cost of errors, the semantic gap between the anomaly detection
results and the insight on defense, among others. Therefore, anomaly detection may
only enjoy the advantage of simplicity and low cost compared to misuse detection.

8.6 LeWiS Mitigation Module

The primary goal of the mitigation module is to efficiently counteract ongoing
attacks by selecting and combining one or more defence strategies among a set of
feasible defence mechanisms. In order to identify effective defence strategies, the
mitigation module needs to address the following core challenges: (1) attacks can
be launched by a potentially large number of adversaries; (2) the adversaries might
be heterogeneous and be able to attack the network from multiple locations of the
network; and (3) their behavior (i.e., their attack strategy, position, and so on) and
number might vary over time.

The above challenges are peculiarly hard to be tackled. Indeed, it has been
shown that attackers can easily hide their location by exploiting the broadcast nature
of RF communications [26, 49], and can also maximize the undetectability and
impact of their attacks by using simple but effective attacks. As an example,pilot
jamming [15, 71] and pilot nulling [15] can be used to attack pilot tones and
partially or completely corrupt synchronization and equalization operations at the
receiver side. Another example is reactive jamming [25, 93], where the jammer uses
energy-detector systems to first detect ongoing communications, and then transmit
interfering signals aimed at disrupting RF transmissions.
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This discussion shows that it is highly difficult (if not impossible) to fully
characterize a network of attackers and deterministically derive the best defense
strategy. Accordingly, not only is LeWiS tasked to learn how to defend the network
from a particular attack, but it has also to adapt to the heterogeneous and ever-
changing environment and attacks. Therefore, our framework LeWiS relies on a
learning-based mitigation module where a-priori knowledge, real-time observations
and supervised control actions are jointly leveraged to continuously adapt to
network attacks and to derive appropriate defence mechanisms for any given
network state and topology.

To provide the network with proper defense mechanisms, LeWiS continuously
relies on the three components described below, and keeps tracking present and
past network states. Also, the detection module notifies the mitigation module with
relevant information on the nature of ongoing attacks. Accordingly, the mitigation
module is capable of automatically computing the most effective defense strategy
to mitigate, and possibly avoid, further attacks.

• A-priori knowledge. It is a set of static pre-loaded defence strategies for a given
subset of attacks. It is used by the mitigation module to counteract ongoing
attacks in the bootstrapping stage of LeWiS, i.e., when no information regarding
the presence of attackers is available. Thus, as soon as an attack is detected,
the mitigation module leverages the a-priori knowledge to identify one or more
suitable defence strategies;

• A-posteriori knowledge: This set of strategies is continuously and autonomously
built, updated and enhanced by LeWiS by evaluating the effectiveness of the
different defence strategies employed in the past. Also, it is used by LeWiS to
update the state of the network and to keep track of ongoing attacks. Indeed, it
must be assumed that the environment and the attacker might change over time.
As an example, a jammer can move from a location to another, of adapt its attack
strategy to target a specific layer of the protocol stack. Therefore, the system must
always monitor the environment to update the state and gather knowledge;

• Supervised Control Actions: The efficiency of the mitigation module can be
improved by introducing human-generated inputs that either add new defence
strategies to the system, or can steer the learning algorithm toward one solution
rather than another. Specifically, it is possible for the network operator to
interact with the decision mechanism by (1) specifying control operatives and
performance metrics (e.g., throughput maximization, delay and energy mini-
mization, minimum QoS guarantees, maximum transmission power, etc . . . ); and
(2) introducing new defence strategies when a novel attack is discovered and
thus cannot yet be detected by LeWiS. These inputs are then used by LeWiS to
identify the best defence strategy that optimizes a given control operative while
satisfying a given set of constraints or requirements.
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8.6.1 Traditional Mitigation Strategies

Given the cross-layer nature of attacks, LeWiS combines different defence strategies
involving multiple layers of the protocol stack. As an example, to overcome reactive
jamming attacks (i.e., the jammer is triggered when the received signal’s power
is above a given triggering threshold), defence strategies might involve the use of
defense strategies at the crossroads of different layer. For example, power control
(i.e., a physical layer strategy) can be used to reduce the strength of the signal
received by the jammer, and channel access control (i.e., a link layer strategy) can
be used to avoid the subset of channels monitored by the jammer [26].

To effectively address the variety of attacks, the mitigation module relies on a
modular approach where atomic and single-layer defence strategies are selected and
then properly combined to address different attacks. For the sake of clarity, in Table
8.2 we provide a brief summary of possible defences at each layer of the protocol
stack.2

Table 8.2 Defence mechanisms and their application in wireless networks

Physical layer Data link layer Network layer
Transport
layer

Application
layer

Power control [26, 30, 89]

Modulation [98]

Coding [62]

Beamforming [29, 102]

Friendly jamming [33]

Artificial noise [62]

Medium access
control (MAC)

[26, 40, 97]

Relaying and
routing

[44, 62] [39, 69]

Authentication [83, 101] [40] [7, 39] [19]

Load balancing [14] [2] [14]

Transport layer
security (TLS)

[66]

Secure socket
layers (SSL)

[66]

Firewall [94]

Encryption [20, 54, 60, 61] [17, 36] [17, 54] [17] [94]

2The provided summary is not intended to be exhaustive, and a more detailed taxonomy of defense
strategies can be found in [13, 96]. Furthermore, the same defence strategy (e.g., authentication,
coding) can be implemented in different ways, and with possibly distinct outcomes, at multiple
layers of the protocol stack.
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The majority of prior work in network security has put its efforts on the design
and implementation of ad hoc defence solutions for a small subset of network attacks
that are targeted at the lower layers of the protocol stack [30, 39, 62]. On one hand,
this deterministic approach produces highly reliable and robust solutions to a subset
of well-defined attacks. On the other hand, it is clear that this paradigm cannot be
equally productive in the case of cross-layer attacks where (1) the presence, position
and attack strategy of the attackers is unavailable; and (2) different attacks can be
combined together to attack multiple layers of the protocol stack.

The technological advancement and the availability of relatively cheap but
powerful reprogrammable devices, such as SDRs and FPGAs, has enabled and
facilitated the development and spread of complex and cross-layer attacks [12, 31,
106]. For this reason, ad hoc defence mechanisms addressing only a small number
of attacks are expected to achieve poor performance—in other words, a single “one-
fits-all” defense strategy is unlikely to be found. Instead, research efforts should
be funneled towards the definition of a system capable of adaptively counteracting
ongoing attacks through the generation of cross-layer strategies obtained by prop-
erly combining single-layer defense mechanisms. This latter research challenge will
be the focus of the next section.

8.6.2 Learning-Aided Mitigation Techniques

To provide a reliable defence framework, information with respect to the attackers
and their attack strategies is indeed required. Although many works in the literature
assume that such an information is available to the defender, such requirement can-
not be always satisfied in a significant number of wireless network scenarios where
only incomplete and possibly erroneous information is available. To overcome the
lack of information, statistical information and learning techniques can be profitably
used to learn the environment, test different defense strategies and subsequently
identify the most effective ones.

Since the system aims at providing a secure and tamper-proof communication, it
is possible to model the mitigation module of LeWiS as an agent whose objective is
to (1) select the most appropriate set of the defense strategies, such that (2) a given
the security level and the performance of the network are simultaneously maximized
over a large time horizon. In this context, the mitigation problem can be modeled
as a Markov Decision Process (MDP) [92]. Specifically, the MDP corresponding to
the mitigation module is shown in Fig. 8.6 and relies the four following fundamental
elements:

• Action Set: it is represented by the set A of all feasible defense strategies. Each
defence strategy a ∈ A is stored as single-layer atomic action that can be
successively combined with other actions, belonging to the same or to different
layers, to counteract cross-layer attacks;
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Agent

Environment

Action
a ∈

Next state
s′ ∈

according to

Reward
(s,a)

Fig. 8.6 Interactions in an MDP

• State Set: it represents the set S of possible states of the network, i.e., the
network. As an example, each state s ∈ S can be used to represent network
performance information such as bit, symbol and packet error rates, spectral
efficiency and noise level. Furthermore, the state of the network also include
information with respect to the type of attack, number of attackers and their
position;

• Reward Function: this is a function R : S × A → R that is used to represent
the performance of the system when the network is in a given state and a given
set of defence strategies are deployed. Typical examples of reward functions
are throughput, data-rate, energy consumption and latency. The aforementioned
metrics are used by the MM of LeWiS to evaluate the effectiveness of current
defense strategies.

• Transition Function: a function used to regulate and describe the transition
between a state to another. This function can be expressed as P : S ×A ×S →
[0, 1] and represents the probability Pr{s′|(a, s)} that the network enters state s′
when the action a is taken by the decision maker when the network is in state s.

ML technologies, have been profitably used in the literature to address a variety
of cross-layer optimization problems ranging from rate maximization [16, 108],
channel estimation [28, 86] and resource allocation [5, 80]. Preliminary works on
the application of ML algorithms to address security issues in wireless networks are
already available in the literature [5, 9, 65, 103], however they are generally targeted
at mitigating only a limited subset of attacks, thus not providing effective and
comprehensive solutions to counteract heterogeneous cross-layer attacks in wireless
networks.

Given the potential of ML techniques that make it possible to learn from the
environment and adapt defense strategies accordingly, we envision a cross-layer
and comprehensive defense system where any attack can be mitigated, or possibly
avoided, by wisely tuning the learning parameters of the system.

ML technologies can be generalized in two main classes, namely Dynamic
Programming (DP) and Reinforcement Learning (RL), whose features are as
follows:
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– Dynamic Programming: this is a model-based approach where the impact of
a given action on the transition from a state to another and the corresponding
obtained reward is a known a-priori [11]. That is, DP requires knowledge of the
reward and transition functions R and P , respectively.

– Reinforcement Learning: this is a model-free approach where the learning
process builds its own knowledge by means of observations and exploration
of previous actions and rewards. That is, RL does not require any a-priori
knowledge of R and P as the information related to the transition from a state
to another and the achieved reward is discovered by the learning process itself
[11].

The two above approaches have been widely and successfully used in the liter-
ature to derive optimal control policies for many networking problems. However,
the above analysis clearly shows that DP require some form of knowledge with
respect to the underlying MDP, a condition that might not be guaranteed in many
network scenarios. On the contrary, RL iteratively constructs and gathers knowledge
by exploring the environment and the action space, thus making it a promising
technology to design a reliable and efficient MM when accurate information on
the attacker is not available.

In the following, we present few examples that show how both DP and RL can
be effectively used to counteract attacks in wireless networks.

8.6.2.1 DP and Its Application to Attack Mitigation

Dynamic programming is a well-established learning approach [8] that makes it
possible to generally derive optimal solutions to a variety of NP-hard problems [95].

To compute efficient mitigation strategies, DP relies on the following well-known
Bellman’s Equation:

Jt (st ) = max
at∈A

Rt (st , at )︸ ︷︷ ︸
Single−slot Reward

+ EP{Jt (st+1)|(st , at )}︸ ︷︷ ︸
Cumulative Expected Reward

(8.13)

As already outlined in the previous section, Eq. (8.13) shows that DP strongly
depends on the state transition probabilities P . Intuitively, the function Jt(st) is
iteratively maximized at each iteration by considering the best action at in the set
A such that the single-slot reward Rt (st , at ) and the cumulative expected future
reward of network is maximized.

Apart from being dependent from the transition function P , another drawback
of DP lies in the so-called curse of dimensionality [8]. That is, to compute optimal
defense strategies, DP generally needs to test a large number of actions (e.g.,
channel assignment, power allocation, encryption, beamforming, etc . . . ), which
eventually results in high computational complexity when the number of actions
is large and heterogeneous. As an example, it has been shown [26] that even a
relatively simple cross-layer defense strategy that merges physical and data-link
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layer defense mechanisms, e.g., power control and channel allocation, generally
results in NP-hard solutions. Specifically, to counteract reactive jamming attacks,
DP requires exponential time to compute an effective defense strategy even if
the continuous transmission power levels are quantized and substituted with their
corresponding discrete variables. To overcome such an issue, a promising approach
is to leverage on the learning engine of DP and exclude inefficient defense strategies
from the action set [26]. As an example, if a given defence strategy is known to be
either nonfunctional or inefficient, e.g., the network is aware that all transmission
power levels above a given triggering threshold always activate the jammer, those
actions can be removed from the action set. Such an approach not only reduces the
complexity of the overall learning algorithm, but it also avoids poor performance
due the deployment of ineffective defense strategies.

8.6.2.2 RL and Its Application to Attack Mitigation

In the context of RL many algorithms have been proposed to derive optimal and
sub-optimal policies for a variety of optimization problems [10, 38, 78]. Those
algorithms have different properties and provide different performance levels in
different network scenarios. For the sake of simplicity, in this chapter we will focus
our attention on two well-known and well-established RL algorithms, namely Q-
Learning and State–action–reward–state–action.

• Q-Learning : this learning approach relies on the well-known Q-function. Let
at and st be the action taken by the agent and the state of the system at time t,
respectively. The Q-function is defined as follows:

Q(st , at ) = (1 − αt (st , at ))Q(st , at ) + αt (st , at )

[
Rt + γ max

a∗∈A
Q(st+1, a

∗)
]

(8.14)

where αt(sr, at) ∈ [0, 1) is the learning rate of the algorithm associated to the
2-tuple (at, st), and γ ∈ (0, 1) is the discount parameter and st+1 is the observed
state of the network when action at was taken. Intuitively, (8.14) iteratively aims
at maximizing the total discounted reward of the network, which in our case
consists in the maximization of network performance through the mitigation of
network attacks. It is worth mentioning that there are no particular restrictions
on the action selection mechanism to be used in the learning process. Well-
established and widely used action selection mechanisms are random selection,
ε-greedy and softmax algorithms [78]. However, other approaches are available,
and they can be found in [82]. It has been shown [91] that if the reward function
is bounded and

∑+∞
t=1 α2

t (st , at ) <
∑+∞

t=1 αt (sr , at ) = +∞ for all (st , at ) ∈
S ×A , then (8.14) converges towards an optimal value of the Q-function when
t → +∞. That is, if all the 2-tuples (st , at ) ∈ S ×A are visited infinitely often,
the total discounted reward is guaranteed to converge to an optimal value.
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• State–action–reward–state–action (SARSA) : this learning approach is similar
to Q-learning but differs on how the Q-function is updated at each iteration.
Specifically, SARSA relies on the following iterative equation:

Q(st , at ) = (1 − αt (st , at ))Q(st , at ) + αt (st , at ) [Rt + γQ(st+1, at+1)]
(8.15)

where the only difference with the Q-learning approach is that the latter
updates the value of (8.14) by computing the best action such that a∗ =
arg maxa∈A Qt(s, a). Instead, in (8.15) the algorithm utilizes the same action
selection mechanism at each iteration t. That is, while Q-learning uses the optimal
action a∗ to update the value of (8.14), SARSA uses the same selection algorithm,
e.g., ε-greedy, to compute each action at and directly uses it to update the Q-
function in (8.15). In general, SARSA has lower-complexity if compared to
Q-learning, however it often produces only near-optimal improvements at each
iteration of the learning process.

8.7 Conclusions

With such massive presence of interconnected wireless nodes deployed all around
us, there are still exciting yet significant security research challenges that need to be
addressed in the upcoming years. In this chapter, we have provided our perspective
on the issue of cross-layer wireless security, which is based on a unique mixture of
machine learning and software-defined radios. Specifically, we have introduced and
discussed a Learning-based Wireless Security (LeWiS) framework that provides a
closed-loop approach to the problem of cross-layer wireless security by leveraging
machine learning and software-defined radios. We have first provided a brief review
of background notions in Sect. 8.2, followed by an in depth-discussion of the LeWiS
framework and its components. We have categorized and summarized the relevant
state-of-the-art research. We hope that this work will inspire fellow researchers to
investigate topics pertaining to cross-layer wireless security and keep in the race for
a more secure technological world.
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