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Preface

This volume partially comes out a special workshop that was dedicated to discuss
the latest research topics in proactive and adaptive network defense held in Fall
2017. Although network security has been studied for the past two decades resulting
in many different approaches to address various types of attacks and to enhance
network resiliency, proactive and adaptive defense approaches such as moving target
defense and using network deception are still relatively new. There is also a lack
of formal models that can effectively capture the rich dynamics between attackers
and defenders under complex settings such as having multiplayers, with multiple
stages and various levels of engagement, and constrained by partial information
of adversaries or network situation uncertainties. The workshop has identified the
following interesting research challenges that the community is pursuing: defining
fundamental models for proactive network defense, game theory-based network
defense frameworks, learning-based attack and defense interactions, and proactive
network defense for emerging applications (e.g., wireless, mobile, and in-vehicle
system applications).

This volume is designed for better understanding of proactive and dynamic
network defense that has been proposed as an important alternative cyber defense
mechanism toward comprehensive network defense. We present a collection of the
latest fundamental research results toward understanding proactive and dynamic
network defense by top researchers in related areas. This volume includes papers
that offer formal frameworks to define proactive and dynamic network defense and
develop novel models to analyze and evaluate proactive designs and strategies in
computer systems, network systems, cyber-physical systems, and wireless networks.
A wide variety of scientific techniques have been highlighted to study these
problems in the fundamental domain. We sincerely hope that this volume can inspire
researchers to face current research challenges and further explore more solid and
rigorous scientific foundations for proactive and dynamic network defense.

Durham, NC, USA Cliff Wang
Tampa, FL, USA Zhuo Lu
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Chapter 1
Cybersecurity Dynamics: A Foundation
for the Science of Cybersecurity

Shouhuai Xu

Abstract Cybersecurity Dynamics is new concept that aims to achieve the mod-
eling, analysis, quantification, and management of cybersecurity from a holistic
perspective, rather than from a building-blocks perspective. It is centered at
modeling and analyzing the attack-defense interactions in cyberspace, which cause
a “natural” phenomenon—the evolution of the global cybersecurity state. In this
chapter, we systematically introduce and review the Cybersecurity Dynamics
foundation for the Science of Cybersecurity. We review the core concepts, technical
approaches, research axes, and results that have been obtained in this endeavor.
We outline a research roadmap towards the ultimate research goal, and identified
technical barriers that poses challenges to reach the goal.

1.1 Introduction

The fundamental concepts of confidentiality, integrity, and availability have been at
the core of information security research over the past decades. These concepts have
led to the development of many building-block techniques, such as cryptographic
mechanisms, which can be rigorously analyzed in a sound scientific framework.
This motivated us to seek fundamental concepts and frameworks that can guide our
investigation of cybersecurity, which has to be understood from a holistic perspec-
tive (i.e., by treating a network of interest as a whole, rather than investigating their
building-blocks separately).

In the course of our endeavor, the concept of cybersecurity dynamics emerges
[121]. Intuitively, the concept of cybersecurity dynamics reflects the evolution of the
global cybersecurity state of a network, where “evolution” is caused by the inter-
actions between the human parties involved—dubbed attack-defense interactions.

S. Xu (�)
Laboratory for Cybersecurity Dynamics, Department of Computer Science, University of Texas at
San Antonio, San Antonio, TX, USA
e-mail: shxu@cs.utsa.edu

This is a U.S. government work and not under copyright protection in the U.S.;
foreign copyright protection may apply 2019
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2 S. Xu

The human parties involved include attackers who wage attacks against a network,
defenders who employ defense mechanisms to protect a network in question, and
users who may be exploited by the attackers to wage attacks.

The concept of Cybersecurity Dynamics is appealing because of the following.
First, the global cybersecurity state of a network reflects the real-time situation,
which “naturally” evolves over time because of the attack-defense interactions.
Knowing the real-time global cybersecurity state or situation is of high interest
to cyber defense decision-makers, who often need to adjust their defense posture
(including policies, architectures, and mechanisms) to mitigate or minimize the
damage of cyber attacks. Second, the effects of employing new cyber defense pos-
tures are reflected by the resulting global cybersecurity state. This means that we can
compare the effectiveness of one defense posture against another. Third, looking at
the evolution of the global cybersecurity state allows us to build systematic models
with descriptive power (i.e., characterizing what phenomenon can happen under
what circumstances), prescriptive power (i.e., guiding the adjustment to defense
postures to mitigate or minimize the damage of cyber attacks), and predictive
power (i.e., forecasting what will happen with or without making adjustments
to the defense posture). Four, modeling the evolution of the global cybersecurity
state makes security quantification an inherent task, which paves the way for
quantitative decision-making in the course of cyber defense operations. In particular,
the concept of Cybersecurity Dynamics naturally leads to the notion of macroscopic
cybersecurity, with models that will use parameters to describe or represent (among
other things) attacks and defenses.

Our Contributions The present chapter systematically refines and extends an
earlier treatment of the Cybersecurity Dynamics foundation given in [119], while
accommodating the many advancements that have been made during the past few
years. More specifically, we systematically introduce and review the Cybersecurity
Dynamics foundation (or framework), while focusing on three orthogonal, coherent
“axes”: (1) the cybersecurity metrics axis aims to develop a systematic set of metrics
that can adequately describe cybersecurity; (2) the cybersecurity first-principle
modeling and analysis axis aims to establish cybersecurity laws governing the
evolution of the global cybersecurity state; and (3) the cybersecurity data analytics
axis aims to extract model parameters and validate/invalidate models developed in
the first-principle modeling and analysis axis. In particular, we discuss the deep
connections between these three axes. Despite the many efforts and significant
results, there are many outstanding problems that have yet to be tackled. We hope the
present chapter will inspire many more studies to address the many open problems.

Chapter Outline The chapter is organized as follows. Section 1.2 presents an
overview of the Cybersecurity Dynamics foundation. Section 1.3 reviews the
recent advancement in cybersecurity metrics research. Section 1.4 reviews the
recent advancement in cybersecurity first-principle modeling and analysis. Section
1.5 reviews the recent advancement in cybersecurity data analytics. Section 1.6
discusses future research directions, including technical barriers that need to be
tackled. Section 1.7 reviews related prior studies. Section 1.8 concludes the present
chapter.
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1.2 Overview of the Cybersecurity Dynamics Foundation

1.2.1 Terminology

By “network” we mean an arbitrary (cyber, cyber-physical, Internet of Things or
IoT) network of interest that is enabled or interconnected by the TCP/IP technology,
regardless of the underlying communication being wired or wireless. A network
can have an arbitrarily large size (e.g., an enterprise network or even the entire
cyberspace). By “computer” we mean a computer or device (e.g., smartphones, IoT
devices) with a software stack, which typically includes some applications, library
functions, and an operating system.

A network is protected by some defenders, who may or may not be under the
same administrative jurisdiction (e.g., a network of interest consisting of multiple
independently managed enterprise networks). Each network has a number of users,
who are often subject to attacks (e.g., social-engineering attacks). The attacker
attempts to compromise the computers in a network, by exploiting weaknesses in
the network software and hardware as well as weaknesses in the users or defenders
(e.g., making them become insider threats).

In the context of the present chapter, the terms cybersecurity and security are
used interchangeably. In order to model cybersecurity from a holistic perspective
(in contrast to building-block perspectives), we need to have the notion of model
resolution, reflecting the level of abstraction. For example, we can treat a com-
puter or software component as an indivisible unit, dubbed “atoms” of a model.
Throughout the chapter, we will use the term “atom” to indicate the unit from
a modeling point of view. Because each “atom” will be represented as a vertex
or node in a graph-theoretic model, we also call an “atom” a node. When we
treat a computer as a unit or “atom”, we are dealing with a coarse-grained model
because the internal components of the computer are treated as transparent. As a
consequence, compromise of any program in the user space of a computer would
force us to treat the entire computer as compromised. When we treat a software
component (e.g., software program or even program function) as an “atom”, we are
dealing with a fine-grained model because the compromise of one component in a
computer (e.g., application) does not necessarily mean the compromise of another
component in the same computer (e.g., the operating system).

For each “atom” mentioned above, we can define its security state, which
can be either secure but possibly vulnerable to attacks because it contain some
vulnerabilities, or compromised. In the real world, the security state of an “atom”
is dynamic (i.e., changing over time), rather than static, because it can become
compromised (because of some attack actions), then become secure (because of
some defense actions), then become compromised, and so on. This naturally leads to
the view that the security state evolves. We call the security state of an “atom” a local
cybersecurity state because it deals with an individual “atom”; we call the security
state of an entire network the global cybersecurity state, which can be represented
as a vector of the local cybersecurity states of the “atoms”.
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Fig. 1.1 Illustration of the evolution of the global cybersecurity state in a small network of
8 “atoms” at an appropriate model resolution. The “atoms” are represented as nodes (e.g.,
computers, devices, or software components). In the discrete-time model, each “atom” or node
has a cybersecurity state at any point in time, either secure (represented as an empty circle) or
compromised (represented as a filled circle) in this example. Each arrow represents a successful
attack from a compromised node against a secure node, causing the latter to become compromised.
A compromised node may become secure again because of some defense activities. A secure node
may be attacked by multiple compromised nodes at the same time

Figure 1.1 illustrates the evolution of the global cybersecurity state of a network,
reflected by the evolution of the local cybersecurity states of individual “atoms” that
are represented as “nodes” 1, . . . , 8. In this illustration, a node has two possible
states at any point in time, secure (empty circle) or compromised (filled circle).
A secure node may be attacked by one or multiple compromised nodes and then
become compromised; a compromised node may become secure again because of
some defense activities. An arrow indicates a successful attack.

1.2.2 Research Objectives

The evolution of the global cybersecurity state, as illustrated in Fig. 1.1, is a
natural phenomenon in cyberspace. The core research objectives of Cybersecurity
Dynamics are centered at understanding, managing (or controlling), and forecasting
the evolution. Understanding the evolution means we want to gain deep insights into
the laws that govern the evolution. For this purpose, we need to build descriptive
models to analyze how the attack-defense interactions govern the evolution of the
global cybersecurity state. Managing the evolution means that we want to mitigate
or control, if not minimize, the damage so as to benefit the defender. For this
purpose, we need to build prescriptive models that can guide the orchestration of
cyber defense activities in an optimal or cost-effective fashion. Forecasting means
that we want to be able to forecast or predict the evolution so as to facilitate adaptive
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Real-world network (of networks)

Descriptive capabilities: quantitatively
characterizing the evolution of the global security
state under different attack-defense interaction
scenarios

Prescriptive models: orchestrating
cyber defenses to mitigate or
minimize the damages of cyber
attacks

Predictive models: forecasting cyber
threats against and the evolution of
the global security state to provide
predicative situational awareness etc.

abstraction

understanding

Instruction for
orchestrating defense

M
odel &

 param
eters

validation
Predicted
situation

validation

Fig. 1.2 Three core research objectives of Cybersecurity Dynamics: descriptive capabilities,
prescriptive capabilities, and predictive capabilities

and/or proactive cyber defense. For this purpose, we need to build predictive models
that can forecast, among other things, the evolution of the global cybersecurity state
and the incoming threats against a network of interest.

Figure 1.2 highlights the aforementioned three core research objectives and the
relationship between them. Descriptive models are abstracted from the real-world
networks by faithfully representing the attack-defense interactions. These models
will be validated (or invalidated) according to real-world data or experiments.
Predictive models are built on top of the description models and are also validated
(or invalidated) according to real-world data. Prescriptive models are also built on
top of descriptive models, while possibly taking into consideration the situations
predicted or forecasted by the predictive models. The prescriptive models will guide
the orchestration of cyber defense so as to benefit the defender in a cost-effective, if
not optimal, fashion.

1.2.3 Scope

Figure 1.3 highlights the scope of the present chapter, which focuses on discussing
three axes of Cybersecurity Dynamics research: (1) Cybersecurity metrics, which
are driven by applications (e.g., for orchestrating cyber defenses to mitigate or
minimize the damage of cyber attacks) and semantics (e.g., what aspects of
cybersecurity would reflect the competence of cyber defense?). (2) Cybersecurity
first-principle modeling and analysis, which are driven by assumptions. First-
principle models are useful in the absence of real-world data and can be inspired
by the properties exhibited by real-world datasets. (3) Cybersecurity data analytics,
which are driven by real-world data or experiments.
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First-principle modeling and analysis
(assumption-driven)

Metrics
(application- and semantics-driven)

Data analytics
(Data- and experiment-driven)

Fig. 1.3 Scope of the present chapter: three research axes towards achieving the research
objectives of Cybersecurity Dynamics

Cybersecurity metrics (application-
driven definitions of things that
need to be measured)

First-principle cybersecurity
modeling and analysis
(assumption-driven)

Cybersecurity data analytics
(data-and/or experiment
driven)

validation

practical
guidance

Fig. 1.4 Relationship between the three research axes

Figure 1.4 highlights the relationship between the three research axes. The
cybersecurity metrics axis aims to rigorously define metrics to measure and quantify
cybersecurity from a holistic perspective, and therefore provides conceptual guid-
ance to the other two axes because those quantitative models are often centered at
some metrics. Along this axis, significant progress has been made [17, 18, 20, 21,
79, 89, 94, 104].

The cybersecurity first-principle modeling and analysis axis aims to build,
under appropriate assumptions, mathematical models to describe the evolution
of the global cybersecurity state caused by cyber attack-defense interactions. By
“first-principle” we mean the use of as-simple-as-possible models with as-few-
as-possible parameters, while making as-weak-as-possible assumptions; of course,
these models must make sense from a cybersecurity perspective and can be
validated/invalidated (e.g., through the validation/invalidation of the assumptions
they make). This axis aims to establish cybersecurity laws governing the evolution
of the global cybersecurity state. For example, these first-principle models aim to
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derive macroscopic phenomena (or characteristics or properties) from the underly-
ing microscopic attack-defense interactions. This axis supports the cybersecurity
metrics axis by providing insights into the properties of metrics (e.g., do they
converge or oscillate over time), and provides practical guidance to the cybersecurity
data analytics axis (e.g., by showing that some model parameters are necessary
and therefore cannot be replaced with any alternatives). Along this axis, significant
progress has been made [25, 40, 68, 73, 120, 123, 126, 127, 130–132, 147, 148].

The cybersecurity data analytics axis aims to use data- and/or experiment-driven
studies to obtain model parameters and validate/invalidate first-principle models.
This is because first-principle models typically, and legitimately, assume away the
obtaining of model parameters. This axis supports the cybersecurity metrics axis
by providing insights into the properties of metrics (e.g., some metrics are hard
or costly to measure, suggesting the need to define and use alternate metrics), and
helps validate first-principle models (e.g., by showing that an assumption underlying
a first-principle model is not valid). Along this axis, significant progress has been
made [15, 95, 96, 133, 134, 138–140].

1.3 Cybersecurity Metrics

The most outstanding open problem in cybersecurity research is arguably cyberse-
curity metrics [87, 94, 104]. Despite its clear importance, the problem is largely
open as evidenced by the fact that it has been constantly listed as one of the hard
problems [50, 84, 88]. Recently, the problem has received systematic attention [17,
18, 20, 21, 79, 89, 94, 104].

In Cybersecurity Dynamics [94, 119], the following five kinds of cybersecurity
metrics have been proposed to systematically describe the evolution of the global
cybersecurity state [94]: (1) metrics for describing a network including its configu-
rations; (2) metrics for describing systems and human vulnerabilities; (3) metrics for
describing defenses employed to protect networks; (4) metrics for describing cyber
attacks (i.e., threat models); and (5) metrics for describing the global cybersecurity
state or cybersecurity situational awareness.

Specifically, let security_state(t) denote the global cybersecurity state at time t,
C(t) denote a network of interest at time t (including its hardware and software
configurations), L(t) denote the vulnerabilities in the network at time t (including
possibly zero-day vulnerabilities, human factors with uncertainty), D(t) denote the
defense posture at time t (i.e., the defense that are employed at time t to protect the
network), and A(t) denote the attacks that are waged against the network at time t.
The framework aims to obtain families of mathematical functions, denoted by {f },
such that

security_state(t) = f (C(t), L(t),D(t), A(t)). (1.1)
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Equation (1.1), once achieved, has many applications. For example, it allows us
to compare the global cybersecurity of networks deploying two different config-
urations, say C(t) vs. C′(t), or two different defense postures, say D(t) vs. D′(t),
through the difference between the corresponding evolution of security_state(t) and
security_state′(t) over time. As we will discuss later, some concrete f ’s have been
investigated in the cybersecurity first-principle modeling and analysis axis and the
cybersecurity data analytics axis.

In what follows, we discuss how to obtain mathematical representations of
network configurations C(t), vulnerabilities L(t), defense postures D(t), and threats
A(t). These representations naturally lead to quantitative metrics.

1.3.1 Representation of Network Configuration and Metrics

Representation At a high level, configurations can be reflected by an attack-
defense structure, which can be described as a graph G(t)= (V (t), E(t)), where
V (t) is the node or vertex set at time t, and E(t) is the edge or arc set at time
t. A node v∈V (t) represents an “atom” mentioned above (e.g., a computer or
software component). An edge or arc (u, v)∈E(t) means that node u can attack
node v, meaning that the communication from node u to node v may not be
filtered, for example, by host-based intrusion prevention (when u and v belong
to the same computer) or by network-based intrusion prevention (when u and v
represent, or belong to, different computers). Moreover, (u, v)∈E(t) means that the
compromise of node u can cause the compromise of node v. Note that E(t) does not
necessarily represent the physical network topology in general (except perhaps for
sensor networks or IoT networks where nodes can only afford to have short-range
communications); in general, (u, v)∈E(t) represents a communication link or path
in a network. It turns out that filtering unauthorized communication relations (u, v)
�∈ E(t) is an important defense means (see, for example, [17, 18, 126, 148]).

Recently, researchers have started to investigate how to represent networks at
finer granularities [17, 18]. Suppose a network of interest is composed of n(t)
computers or devices at time t. In order to obtain the attack-defense structure
G(t)= (V (t), E(t)), we need to first represent the software stacks on each computer
or device, meaning that we need to model the applications, operating systems,
and possibly library functions. Then, a computer or device, denoted by i, may be
represent by a graph Gi(t)= (Vi(t), Ei(t)), where v∈Vi represents an “atom” (e.g.,
application, operating system, or function), and (u, v)∈Ei(t) means either u can
call v (i.e., caller-callee dependence relation) or u can communicate with v (i.e.,
inter-application communication relation). Another edge set E0(t) may be defined
to represent the authorized inter-computer communications within the network at
time t. Yet another edge E∗ (t) may be defined to represent the authorized inter-
network communication relations between the network and the external networks
(i.e., internal-external communication relations). Note that Ei(t) reflects a host-based
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access control policy (if employed), and E0(t) and E∗ (t) reflect network-wide access
control policies (if employed). As a result, the attack-defense structure G(t)= (V (t),
E(t)) may be derived as follows [17, 18]:

V (t) = V1(t) ∪ . . . ∪ Vn(t)(t) and

E(t) = E1(t) ∪ . . . ∪ En(t)(t) ∪ E0(t) ∪ E∗(t).

Metrics Having obtained the graph-theoretic representation G(t)= (V (t), E(t)),
we may define metrics to characterize G(t). For example, we may use nodes’
degree distribution to characterize the structure of G(t); we may characterize
the evolution of G(t) over time; we may quantify the difference of two defense
policies by comparing the attack-defense structures resulting from their respective
employments.

1.3.2 Representation of Vulnerabilities and Metrics

Representation We propose classifying vulnerabilities into three kinds: software,
hardware, and human vulnerabilities, which are all used in a broad sense.

• We use the term “software vulnerabilities” to describe the vulnerabilities in the
entire software stack, including applications, library functions, and operating
systems. Software vulnerabilities are the root cause of many real-world attacks.
For example, the problem of vulnerability detection is an active research topic
(see, for example, [61, 69, 70]).

• We use the term “hardware vulnerabilities” to describe the vulnerabilities in the
hardware, architecture, and firmware. The number of hardware vulnerabilities is
often much smaller than the number of software vulnerabilities, but the damage
caused by a hardware vulnerability is often severe because of the wide use of
the hardware. Two recent examples of hardware vulnerabilities are Spectre and
Meltdown (see, for example, [62, 113]).

• We use the term “human vulnerabilities” to describe the vulnerabilities of the
users and administrators, such as vulnerabilities to social-engineering attacks
(e.g., phishing) as well as insider threats and the vulnerabilities caused by the
use of weak passwords.

Each vulnerability may be associated with a set of attributes. For example, a
software vulnerability may have the following attributes: (1) the privilege that is
required in order to exploit the vulnerability (e.g., local access vs. remote access);
(2) what is the chance that there is a zero-day vulnerability in a software component?
(3) what is the security consequence of the exploitation of a vulnerability?

Metrics Corresponding to these vulnerabilities, metrics need to be defined to
quantify them. Two approaches have been proposed in the literature to measure
software vulnerabilities, coarse-grained vs. fine-grained.
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• Fine-grained approach: In this approach, vulnerabilities are considered at fine-
grained granularities by separating the vulnerabilities of applications, library
functions, and operating systems [17, 18].

• Coarse-grained approach: In this approach, vulnerabilities are often discussed
at an aggregate level. For example, when treating a computer as an “atom”, we
consider the overall vulnerability of a computer, which can be aggregated from
the vulnerabilities in the applications, library functions, and operating systems.
This approach has been used in numerous cybersecurity first-principle models
(see [126, 148] and the references therein).

Similarly, hardware vulnerabilities may be characterized by, for example, the chance
that a vulnerability can be exploited; human vulnerabilities may be described by the
chance that a user or defender is vulnerable to social-engineering attacks.

1.3.3 Representation of Defenses and Metrics

Representation There are many kinds of defense mechanisms that need to be
represented for modeling purposes, such as firewalls, host-based intrusion preven-
tion/detection systems, and network-based intrusion prevention/detection systems.
Moreover, access control policies also need to be represented. For example, a
tight access control policy would filter or block any unauthorized communication
or function call; in contrast, a loose access control policy would not filter or
block any unauthorized communication or function call, which can happen when
some “atoms” are compromised. For modeling purposes, we classify defenses into
preventive, reactive, proactive, adaptive, and active defenses.

• Preventive defenses aim to prevent attacks from succeeding or even reaching the
target of interest. Mechanisms such as whitelisting, access control, and firewall
are examples of preventive defenses.

• Reactive defenses aim to detect successful attacks and “clean up” their damage.
Mechanisms such as anti-malware tools are examples of reactive defenses.

• Adaptive defenses aim to dynamically adjust the defense posture so as to mitigate
or disrupt ongoing attacks that have been detected by the defender. Examples
include the use of Software-Defined Networking (SDN) technology to change
network configurations, or route network traffic through dynamically employed
network security tools such as firewalls and intrusion prevention/detection
systems. A concrete example for protecting systems with known, but unpatched,
vulnerabilities is shown in [16].

• Proactive defenses aim to dynamically adjust the defense posture so as to mitigate
or disrupt attacks, whose presence is not necessarily known to the defender.
Mechanisms such as Moving Target Defense (MTD) are examples of proactive
defenses.

• Active defenses aim to deploy defense mechanisms (or defenseware) to “patrol”
networks to detect and clean up compromises. In the context of the present
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Chapter, active defenses are not meant to be “hacking back” because the
defenseware are deployed within the boundary of the defender’s network.

Metrics Metrics need to be defined to measure the defense capabilities of a
defender. For a preventive defense mechanism, we need to measure what kinds
of cyber attacks that can or cannot be prevented by it. For a reactive defense
mechanism, its detection capabilities can be measured by the false-positive rate,
false-negative rate, and related metrics; similarly, its “cleaning” capabilities may
not be perfect as well (because there is evidence showing that using multiple anti-
malware tools together is not adequate to clean up malware infecting a computer
[33, 80, 81, 97]). For adaptive defense, its capabilities before and after an adaptation
should be different (e.g., in terms of both attack-prevention and attack-detection
capabilities). For proactive defense, its capabilities can be measured by the extent
to which the compromised nodes can be cleaned by such mechanisms. For active
defense, its capabilities can be measured by what kinds of attacks can be detected
and cleaned up by such mechanisms.

1.3.4 Representation of Attacks and Metrics

Representation There are many kinds of cyber attacks, which can be characterized
from multiple perspectives. From the perspective of attack freshness, which often
reflects the attack evasion capability, we can classify attacks into the following
categories:

• Zero-day attacks: These attacks can be further divided into two sub-categories,
depending on the freshness of the vulnerabilities they exploit.

– Zero-day attacks exploiting zero-day vulnerabilities: These attacks exploit
zero-day vulnerabilities which are not known to anyone but the attacker, the
exploit writer, or the entity that discovered the vulnerability. These attacks are
often difficult to detect, let alone prevent. These attacks can also accommodate
the exploitation of newly compromised employees as insider threats.

– Zero-day attacks exploiting known vulnerabilities: These attacks exploit
known, but unpatched, vulnerabilities, while possibly able to evade any
existing defense systems (e.g., intrusion prevention/detection systems).

• Known attacks: These attacks are recognized by defense systems and therefore
can be blocked before they cause any damage or detected after they penetrate
into computers or devices.

From the perspective of attack behaviors, which often reflect the characteristics
of attackers, we can classify attacks into the following categories:

• Machine-waged attacks: These attacks are largely waged by machines and are
largely automated.
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– Push-based attacks: These attacks actively seek to compromise other comput-
ers or devices [126]. Examples of these attacks are computer malware, which
actively search for vulnerable victims. Social engineering attacks also fall into
this category.

– Pull-based attacks: These attacks passively wait to compromise other comput-
ers or devices [126]. Examples of these attacks are “drive-by download” by
which a malicious web server waits for connections from vulnerable browsers
and then compromises the latter [102].

• Human-waged attacks: These attacks are largely waged by human attackers and
are largely manual.

– Advanced Persistent Threats (APTs): These attacks are often waged by
patient attackers targeting high-value assets. These attacks are often carefully
planned.

– Insider Threats: These attacks are largely waged by compromised users who
are authorized with some privileges. These attackers are often victims of social
engineering attacks, but are aware of their own malicious activities (in contrast
to other victims of social engineering attacks, such as those who are lured to
double-click a malicious email attachment or access a malicious website).

From the perspective of attack objectives, we can classify attacks into the
following categories:

• Attacks against confidentiality: These attacks attempt to compromise the con-
fidentiality of data, either during transmission, which is possible when the
cryptographic protection mechanisms or protocols are flawed, or during storage
in computer memory or disks, which is possible by penetrating into the comput-
ers [22, 39, 41, 91] or using side-channel attacks [63].

• Attacks against integrity: These attacks attempt to compromise the integrity
of data, either during transmission, which is possible when the cryptographic
protection mechanisms or protocols are flawed, or during storage in computer
memory or disks, which is possible (for example) when the storage provider is
malicious (see, e.g., [54, 142–146]).

• Attacks against availability: These attacks attempt to make services unavailable
to their users [48]. These attacks are often waged by many compromised
computers or devices, such as botnets [26, 57, 66, 141].

Faithful threat or attack models are important. For example, both random and
targeted deletions of nodes from computer networks [3] oversimplifies real-world
attacks [109, 114].

Metrics Many kinds of metrics can be defined to measure attack capabilities, such
as (1) the exploits that can be used by the attacker; (2) the agility of the attacker, and
(3) the strategy that can be used by the attacker.
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• Characterizing exploits: An exploit can be described by its attributes, such
as: whether it exploits a zero-day vulnerability or an unpatched but known
vulnerability.

• Characterizing attack agility: This attribute aims to describe how active and
agile the attacker is. For example, one attacker may only reactively update its
exploits after the defender updates its defenses. The first study at modeling and
quantifying the agility of attackers is reported in [79], which presents a metrics
framework for transforming well-defined security metrics (e.g., false-positive
rate and false-negative rates) to measure attacker agility.

• Attack strategies: Examples of attack strategies are Lockheed Martin’s Cyber
Kill Chain [49] and Mandiant’s Attack Life Cycle [77]. A general attack
strategy may include the following phases: reconnaissance, weaponization, initial
compromise, further reconnaissance, privilege escalation, and lateral movement.
At each phase, metrics need to be defined to measure the attack capabilities.

1.3.5 Security State Metrics

For any model resolution (e.g., treating a computer/device as an atom vs. treating a
software component as an atom), the security state of an “atom” can be in one of
multiple states, such as secure vs. compromised, denoted by

security_state(atom, t)

=
{

0 the atom is in the secure state at time t

1 the atom is in the compromised state at time t

Therefore, at any point in time, the global cybersecurity state can be defined as

global_security(t)

= the number of atoms in the compromised state at time t

the total number of atoms at time t
,

while noting that the total number of “atoms” can dynamically evolve. This is
arguably one of the most fundamental metrics and has been the center of numerous
cybersecurity first-principle models [119].

1.4 Cybersecurity First-Principle Modeling and Analysis

At a high level, cybersecurity first-principle modeling aims to design and char-
acterize the various kinds of mathematical functions f illustrated in Eq. (1.1).
Several kinds of f ’s have been proposed to describe different kinds of attack-
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defense interactions and the resulting dynamics [119]: preventive and reactive cyber
defense dynamics [17, 18, 36, 68, 73, 123, 126, 127, 131, 148]; adaptive cyber
defense dynamics [25, 130]; proactive cyber defense dynamics [40]; and active
cyber defense dynamics [132, 147].

1.4.1 Preventive and Reactive Cyber Defense Dynamics

The systematic preventive and reactive cyber defense dynamics model presented
in [67] accommodates arbitrary, but time-independent, attack-defense structures
G= (V, E), push-based attacks (e.g., malware spreading), and pull-based attacks
(e.g., drive-by download). The analytic result presented in [126] gives a sufficient
condition (i.e., a specific parameter regime) under which the dynamics converge to
a unique equilibrium, namely Pr(global_state(t →∞) = 0) = 1, meaning that all
compromises will eventually be cleaned up. However, the properties of the dynamics
in parameter regimes other than the specific regime characterized in [126] are not
known until [148], which proves that the dynamics are globally stable in the entire
parameter universe (i.e., the dynamics always converges to a unique equilibrium).
This result remains true if the model parameters are extended to be node-dependent
(i.e., different nodes v∈V exhibit different cybersecurity characteristics, such
as different host-based intrusion prevention/detection capabilities), and/or edge-
dependent (i.e., different edges e∈E exhibit different cybersecurity characteristics,
such as different network-based intrusion prevention/detection capabilities) [148].
Moreover, the convergence speed is proven [148] to be exponential, except for a
very special parameter regime (within which the dynamics converge polynomially).
Although there is no closed-expression for the unique equilibrium, upper and
lower bounds of the equilibrium can be obtained [126, 148]. Another important
insight, which shows the value of theoretic studies, is that there is a practical
statistical method that can be used to estimate the global cybersecurity state at
equilibrium without knowing the model parameters, thanks to the global stability
of the dynamics [126, 148].

The investigations mentioned above make the independence assumption that
cyber attacks are waged independently of each other, which may not be the case
when attacks are coordinated [118]. This highlights the importance of weakening, if
not eliminating, the independence assumption. Initial results have been reported in
[25, 123, 131]. An important finding is that assuming away the due dependence
can lead to results that are unnecessarily restrictive, if not incorrect. Since the
aforementioned dependence can be caused by multiple cyber attackers, preventive
and reactive cyber defense dynamics have been extended to investigate the effect
of multiple cyber attackers [127], which may even fight against each other. This
leads to an interesting insight: the defender can leverage one attacker, say Alice, to
“defeat” another attacker, say Bob, when the defender can more effectively defend
against Alice than Bob.
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In summary, we have a pretty deep understanding of preventive and reactive
cyber defense dynamics. For example, the effectiveness of preventive and reactive
cyber defenses is limited by a fundamental attack-defense asymmetry: the attack
consequence is automatically amplified by a network effect reflected by the largest
eigenvalue (in modulus) of the attack-defense structure G; in contrast, the defense
effectiveness is not amplified by any network effect. This attack-defense asymmetry
highlights the importance of enforcing strict network access control policy (e.g.,
direct communication between computers is allowed only when missions demand
it), which effectively reduce the largest eigenvalue.

1.4.2 Adaptive Cyber Defense Dynamics

Cyber defense is often adaptive because the defender needs to adapt to the evolution
of cyber attacks. Adaptive cyber defense dynamics have been investigated in [25,
130] while considering arbitrary attack-defense structure G= (V, E). In [130], both
semi-adaptive defenses (i.e., the defender dynamically adjusts the defense, but
not necessarily geared towards the evolution of cyber attacks) and fully-adaptive
defenses (i.e., the defender dynamically adjusts the defense geared towards the
observed evolution of cyber attacks) are investigated. Adaptive control strategies
can be used to force the dynamics to follow a trajectory that benefits the defender
(e.g., forcing the dynamics to converge to a certain equilibrium). In [25], a new
approach is proposed to model adaptive cyber defense dynamics with adaptive cyber
attacks. An interesting finding is that the global cybersecurity state is relatively easy
to quantify when the defense is either highly effectively or highly ineffective.

In summary, both cyber attacks and defenses are often adaptive, but they
are challenging to model and analyze mathematically. For example, the intuitive
concept of adaptation agility needs to be systematically investigated, with an initial
effort presented in [79].

1.4.3 Proactive Cyber Defense Dynamics

Adaptive defenses may rely on the successful detection of attacks. Proactive defense
does not suffer from this restriction because the defender can adjust the defense
regardless of whether there are successful attacks or not. Moving-Target Defense
(MTD) is a popular example of proactive defense. Many MTD techniques have been
proposed (see, e.g., [90] and the numerous references therein) and many aspects of
MTD have been investigated (see, e.g., [23, 51, 76, 83, 103]). However, very few
studies have aimed at systematically quantifying the effectiveness of MTD. In what
follows we outline a systematic use of MTD.
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Fig. 1.5 An example
architecture showing that
MTD can be employed at
different layers, individually
or collectively

As highlighted in Fig. 1.5, MTD can be employed at one or multiple lay-
ers of the software stack. Specifically, MTD can be employed at the operating
system/hypervisor layer by frequently changing the underlying operating sys-
tem/hypervisor environment (e.g., using VM migration). Anonymous communi-
cation can be leveraged to disrupt the attacker’s reconnaissance capabilities by
degrading the attacker’s capability from waging targeted and adaptive attacks to
random attacks [124, 125]. This means that anonymous communication can be
leveraged for MTD to substantially increase the attacker’s reconnaissance effort
by dynamically adjusting, for example, the underlying anonymous communication
infrastructure. At the mission structure layer, “mission structure” may be repre-
sented by a sub-graph GM(t)= (VM(t), EM(t)) of the aforementioned attack-defense
structure G(t)= (V (t), E(t)) with VM(t)⊆V (t) and EM(t)⊆E(t). In order to prevent
the attacker from identifying a target node (e.g., the cyber command-and-control
center), the defender can frequently relocate the target node. At the cryptographic
key management layer, proactive cryptosystems [44], key-insulated cryptosystems
[30–32], or leak-free cryptosystems [28, 29] can be used to tolerate the compromise
of some computers, which hold some short-lived cryptographic key or cryptographic
key shares [27, 124, 125]. Moreover, dynamic re-keying (e.g., [117, 149]) can
be frequently enforced even in the absence of detected compromises because this
can make the compromised cryptographic keys useless or can increase the chance
that the compromise is detected [122]. At the application layer, the defender can
use the following kinds of MTD to slow down the attacker: (1) re-obfuscating the
application programs frequently; (2) dynamically re-shuffle honeypot IP addresses
within a production network to capture new attacks [74].

While it is intuitive that MTD can be employed at each of these five layers,
the main question is: When should the defender employ MTD and at which
layers? Towards answering this question, the first systematic quantification study is
presented in [40], which uses cybersecurity dynamics to quantify the effectiveness
of MTD. However, the investigation treats MTD as a means, rather than a goal.
That is, the effectiveness of MTD is indirectly, rather than directly, measured in
[40]. In summary, proactive cyber defense is one of the very few approaches that
can potentially defend against sophisticated attacks, such as zero-day attacks and
Advanced Persistent Threats (APTs). More research needs to be done in order to
systematically and directly quantify the effectiveness of proactive defense, including
MTD.
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1.4.4 Active Cyber Defense Dynamics

In the context of this chapter, active cyber defense means the use of “defenseware”
(e.g., white worms or “malware killer” programs) to detect and clean up compro-
mised computers. That is, active cyber defense is not about hacking back because
it is employed within the administrative boundary of the network in question. The
systematic modeling study of active cyber defense dynamics is initiated in [132],
which formulates a mathematical model to quantify the effectiveness of active cyber
defense. In active cyber defense dynamics, we need to consider a pair of attack-
defense structures, denoted by GA(t)= (VA(t), EA(t)) and GD(t)= (VD(t), ED(t)).
Note that GA(t) is centered at the attacker’s point of view, and GD(t) is centered
at the defender’s point of view, while noting that it is possible that GA(t)=GD(t).
This leads to the identification of the optimal GD(t) under certain circumstances.
In particular, it is shown [132] that active cyber defense can benefit the defender
substantially by eliminating the aforementioned asymmetry, which is inherent to
preventive and reactive cyber defense dynamics.

In [73], further investigation is conducted to identify optimal strategies for
orchestrating active cyber defense against non-strategic or strategic attackers. In
order to effectively defend against a non-strategic attacker, two flavors of optimal
control strategies are investigated (i.e., infinite-time horizon control vs. fast control),
by showing when the defender should adjust its active defense (including the
extreme case of giving up the use of active defense, and instead using other kinds
of defenses). In order to effectively defend against a strategic attacker, we identify
Nash equilibrium strategies, while considering factors such as whether or not the
attacker is willing to expose its advanced or zero-day attacks (exposure implying
likelihood that these attacks will soon become useless).

In [147], it is shown for the first time that active cyber defense dynamics can
exhibit bifurcation and chaos. Their cybersecurity implications include (1) it is
not feasible or possible to seek to predict active cyber defense dynamics under
certain circumstances, such as those reported in [147]; (2) the defender should
seek to manipulate active cyber defense dynamics to avoid such “unmanageable”
situations. In summary, the defender can use active cyber defense to offset the
asymmetry advantage of the attacker in preventive and reactive cyber defense
dynamics. However, active cyber defense is no panacea, and should be used together
with other kinds of defenses [73]. Additional research needs to be conducted to
deepen our understanding of active cyber defense dynamics.

1.5 Cybersecurity Data Analytics

Like cybersecurity first-principle modeling and analysis, cybersecurity data analyt-
ics is also centered at some well-defined cybersecurity metrics. However, cyberse-
curity data analytics is complementary to the cybersecurity first-principle modeling
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and analysis because the former is data- and experiment-driven (rather than
assumption- or semantics-driven). More specifically, cybersecurity data analytics
aim to achieve a range of objectives, including: (1) obtaining model parameters
used by cybersecurity first-principle models, (2) validating or invalidating the
assumptions made by cybersecurity first-principle models, and (3) helping tackle the
transient behavior of cybersecurity dynamics. The state-of-the-art is that significant
progress has been made in the aforementioned objectives (1) and (3), which are
reviewed below, but not in (2) due to the lack of real-world datasets.

1.5.1 Obtaining Model Parameters

Measuring the Attack-Defense Structure G(t) In cybersecurity first-principle
modeling and analysis, obtaining the attack-defense structure G(t) is typically,
and legitimately, treated as an orthogonal effort because it copes with a different
aspect of the cybersecurity problem. As discussed above, researchers have recently
started to investigate how to represent networks and computers at finer-grained
granularities [17, 18]. Once a modeling resolution is determined, we need to
represent the software stack (including applications and operating systems) of
individual computers, represent individual computers as well as the dependence and
communication relations within individual computers, represent the communication
relations between computers (e.g., which computer or application is authorized to
communicate with which other computer or application in a network), and represent
the communication relation between a network and its external environment
networks.

Measuring Susceptibility of Software Systems Cybersecurity first-principle
models often assume parameters describing the susceptibility of an “atom” (e.g.,
computer or software component). In order to measure this parameter or metric, we
need to measure the vulnerability of the “atom”. From the perspective of software
vulnerability, we need to measure to what extent a software program is vulnerable
and susceptible to exploits. For this purpose, we need to understand and characterize
the capabilities of vulnerability detection capabilities. For example, static analysis
of software source code is one approach to detecting vulnerabilities. This approach
can be further divided into two methods: code similarity-based [61, 69] vs. pattern-
based [14, 34, 38, 70, 71, 85, 107, 136, 137]. The former method is effective in
detecting vulnerabilities caused by certain kinds of code cloning [70]. Pattern-based
methods are not limited to detecting clone-caused vulnerabilities. Pattern-based
detection methods detect vulnerabilities at a coarse granularity, such as at the
level of individual programs [38], individual components [85], individual files
[111], or individual functions [135, 136]. More recent studies focus on fine-grained
vulnerability detection [61, 69–71]. Studies in vulnerability detection represent a
first step towards quantifying the susceptibility of software systems.
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Measuring Defense Capabilities The accurate measurement of defense capabil-
ities is one outstanding open problem. For example, most existing measurements
often assume the availability of the ground truth in question. In the real world,
ground truth is difficult to obtain. Therefore, it is important to investigate to what
extent we can get rid of the ground truth, if possible at all. In the context of
evaluating the detection capabilities of malware detectors, this problem has been
investigated in [13, 33, 56]. In particular, statistical estimators are designed and
evaluated in [33]. Moreover, relative accuracy of malware detectors, rather than
absolute accuracy, can be estimated under much weaker assumptions [13].

Quantifying Attack Capabilities In order to measure the capabilities of pull-
based attacks (e.g., drive-by download), it is necessary to measure the extent at
which malicious websites can evade detection systems. There have been many
proposals for detecting malicious websites (see, e.g., [75, 128]). However, the open
problem is that the attacker, who knows the detection model or the dataset from
which the model is learned, can manipulate the malicious websites to evade the
detection systems in question. The investigation of this problem is initiated in
[129], but there are no satisfactory solutions yet. For example, the proactive training
approach used in [129] can only make the detection accuracy around 70–80%, which
is far from sufficient.

1.5.2 Tackling the Transient Behavior Barrier

Towards ultimately tackling the transient behavior barrier, Fig. 1.6 highlights the
“grey-box” statistical methodology initiated in [138]. The term “grey-box” means
that the methodology first aims to characterize the statistical properties exhibited by
the data (e.g., long-range dependence, extreme value, dependence, burstiness), and
then uses these properties to guide the development of prediction models.

Progress in Coping with Cybersecurity Univariate Time Series A particular
kind of univariate time series, dubbed stochastic cyber attack processes, has been
substantially investigated [15, 95, 134, 138, 140]. These cyber attack processes
describe the number of cyber attacks or incidents against a target of interest
(e.g., a network, a computer, or even a particular port). Specifically, leveraging

Data Properties Prediction
decoding

Long Range Dependence
Extreme value
Dependence
Burstiness

Point value
Distribution

modeling

Fig. 1.6 The “grey-box” statistical methodology for cybersecurity data analytics
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the statistical property known as long-range dependence, which is exhibited by
the stochastic cyber attack processes corresponding to a dataset collected at a
honeypot, the “grey-box” methodology leads to an 80% accuracy in forecasting the
number of attacks coming to a network 1 h ahead of time. By further extending
the model to accommodate the extreme values exhibited by the dataset, the 1-h
ahead forecasting accuracy is improved to 88% [140]. A preliminary analysis of
the spatiotemporal predictability shows that the forecasting upper bound is around
93% [15]. Focusing on the extreme values only, a marked point process model
is developed to forecast the distribution of extreme values with good accuracy
[95]. Another study focuses on the statistical analysis of breach incidents occurring
between 2005 and 2017 [134], which shows that in contrast to previous beliefs, both
the inter-arrival times and the breach sizes of hacking breach incidents should be
described using stochastic processes, rather than probabilistic distributions, because
of the autocorrelations exhibited by the data. These properties can be exploited to
build accurate forecasting models [134]. These results evidently show predictability
in cyberspace, at least from the perspectives that have been explored.

Progress in Coping with Cybersecurity Multivariate Time Series Many cyber-
security datasets can be represented by multivariate time series. The first investiga-
tion of this kind is to characterize and forecast the effectiveness of cyber defense
early-warnings [133]. The idea of early-warning is to filter the cyber attacks, which
are detected at cyber defense instruments (e.g., honeypot [101] or network telescope
[10]) or third parties [74], against a network of interest. A unique research challenge,
when compared with univariate time series, is to cope with the dependence between
the time series, which manifests the dependence barrier [119] from a statistical
perspective. For this purpose, the copula technique [53] turns out to be useful. A
more general investigation of multivariate time series of cyber risks is conducted
in [96]. The idea is to use a Copula-GARCH model to describe the multivariate
dependence between stochastic cyber attack processes. In [96, 133], it is shown that
assuming away the due dependence between stochastic cyber attack processes (i.e.,
the time series) can cause a severe underestimation of cybersecurity risks.

Progress in Coping with Cybersecurity Multivariate Time Series Many cyber-
security datasets can be represented by graph time series. A concrete example is
the reconnaissance behaviors of cyber attackers, which can be represented as a
time series of bipartite graphs [37, 139], which reflects one particular kind of the
aforementioned attack-defense structure G(t)= (V (t), E(t)) over time t. For studying
such time series of graphs, a systematic methodology is presented in [37]. At a
high level, the methodology is to characterize the evolution (i.e., time series) of
the similarity between two adjacent graphs G(t) and G(t+ 1), where the notion of
similarity can have many different definitions (leading to various kinds of analyses).
Using a real-world dataset, it is shown, among other things, that a couple of time
resolutions are sufficient to accommodate and describe the temporal characteristics
of these time series. This finding offers an effective guideline in coping with real-
time data streams of this kind in real-world defense operations.
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1.6 Future Research Directions

In this section we discuss future research directions with respect to the three axes
mentioned above.

1.6.1 Cybersecurity Metrics

Towards ultimately tackling the problem cybersecurity metrics, the following two
outstanding issues need to be resolved as soon as possible.

• Identifying a systematic, ideally complete, set of metrics that must be measured:
Although many metrics have been proposed in the literature [94], the state-of-the-
art is still that we do not know which metrics are essential to define and measure.
This is because most existing metrics are introduced simply because they can be
measured; in contrast, we need to know what metrics must be measured [98]. A
fundamental question is: What kinds of metrics have to be measured in order to
quantify cybersecurity? Therefore, we need to know a systematic set of metrics
that can adequately describe cybersecurity. Better yet, it is important to know
if there is a complete set of metrics, where “complete” means that any metric
of interest can be derived from this set of metrics. Moreover, it is important
to investigate the cost for measuring each of these metrics. This is because if
one metric is costly to measure, we may need to seek easy-to-measure, alternate
metric(s) to replace the hard-to-measure one as long as the former can answer
the same kinds of questions as the latter does.

• Investigating mathematical properties of cybersecurity metrics and the operators
that can be applied to them: As mentioned above, cybersecurity can be char-
acterized at multiple model resolutions, reminiscent of the idea of considering
security at multiple layers of abstractions [65]. Ideally, cybersecurity metrics
at a lower model resolution (i.e., a higher level of abstraction or macroscopic
cybersecurity) should be a mathematical function of the cybersecurity metrics
defined and measured at some higher model resolutions (i.e., lower levels of
abstractions or microscopic cybersecurity). This incurs the issue of aggregating
lower levels of cybersecurity metrics into higher levels metrics [94, 98, 99]. For
this purpose, we need to investigate the mathematical properties that should be
satisfied by cybersecurity metrics, including axiomatic properties.

1.6.2 Cybersecurity First-Principle Modeling and Analysis

The following unique set of technical barriers need to be adequately tackled.

• The scalability barrier [119]: A first-principle, native approach to modeling the
evolution of global cybersecurity state caused by the attack-defense interactions
would be Stochastic Process models, which would incur an exponentially-large
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state space that is not tractable in general. How can this problem be tackled
while preserving information in the model as much as possible? The current
approach is to use mean-field style treatment, which essentially reduces the
number of dimensions from exponentially-many to a number of dimensions that
is proportional to the size of the attack-defense structure G(t).

• The nonlinearity barrier [119]: It has been hypothesized that Cybersecurity
Dynamics models are often highly nonlinear. The lack of real-world data has
hindered the validation or rejection of this hypothesis, while many researchers
believe in the nonlinearity. Coping with nonlinearity is a well known hard
problem in general.

• The dependence barrier [119]: The security states of the “atoms” are not
independent of each other because, for example, some software may have
the same vulnerabilities. It is an outstanding open problem to cope with the
dependence between the security state of the “atoms” (i.e., random variables),
for which initial progress has been made as mentioned above [25, 131].

• The structural dynamics barrier [119]: The attack-defense structure G(t) itself
evolves over time. There have been some studies on accommodating specific
kind of evolutions (see, for example, [40]). However, we need to establish a
mathematical description of general evolution of G(t).

• The transient behavior barrier [119]: Existing first-principle models often ana-
lyze the asymptotic behaviors of Cybersecurity Dynamics as time t→∞ (i.e.,
for sufficiently large t). For cybersecurity purposes, it is perhaps even more
interesting to characterize the evolution of the global cybersecurity state before
the dynamics converge to an equilibrium, if it does at all. This manifests the
importance of cybersecurity data analytics. Despite the progress reviewed above
(e.g., [15, 95, 134, 138, 140]), our understanding of the problem is still at the
infant stage.

• The uncertainty barrier: Cybersecurity first-principle modeling often assumes the
availability of complete information, meaning that the model parameters can be
obtained precisely. This represents a first-step in building analytic models for
baseline understanding. In practice, model parameters may not be known or may
not be precisely measured, which highlights the importance of quantifying the
consequences caused by uncertainties in the models and/or parameters.

• The deception barrier: In the cybersecurity domain, data or information not only
can be missing or noisy, but also can be malicious because the attacker can
intentionally inject or manipulate the measurements in question to mislead the
defenders. This kind of deceptive data/information needs to be rigorously treated.

• The human factor barrier: The degrees that human users or defenders are
vulnerable to social-engineering attacks need to be measured and quantified.
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1.6.3 Cybersecurity Data Analytics

The following research problems need to be adequately resolved as soon as
possible.

• Building a full-fledged statistical methodology to forecast holistic cybersecurity
situational awareness, including the emergence of software zero-day vulnerabili-
ties and attacks exploiting them. Although the studies reviewed above already
showed the feasibility of predicting cybersecurity situational awareness from
certain specific perspectives [15, 95, 96, 133, 134, 138–140], these results only
represent a first step towards the ultimate goal.

• Tackling the dependence barrier as manifested in cybersecurity data analytics.
Cybersecurity data can have extremely high dimensions, while dependence can
be inherent to them. Therefore, we need to investigate forecasting models that
can adequately accommodate the dependence “encoded” in real-world data. The
results mentioned above [96, 133] only address a small tip of the iceberg.

1.7 Related Work

Prior Studies Related to the Cybersecurity Dynamics Foundation The present
chapter systematically refines and extends an earlier treatment of Cybersecurity
Dynamics [119], while accommodating the many advancements during the past few
years. Although there have been investigations on exploring the various aspects (or
characteristics) of the science of cybersecurity [42, 64, 106, 108, 112], to the best of
our knowledge, we are the first to systematically map out a concrete framework as
reviewed in the present chapter.

Prior Studies Related to Cybersecurity Metrics There are several recent surveys
related to cybersecurity metrics [21, 89, 94, 104]. Moreover, the problem has
been rejuvenated by new efforts [17, 18, 20, 21, 79, 89, 94, 104]. We treat
cybersecurity metrics systematically, as highlighted in Eq. (1.1), for describing the
configurations of networks, for describing systems and human vulnerabilities, for
describing defense postures, for describing cyber attacks (i.e., threat models), and
for describing the global cybersecurity state or cybersecurity situational awareness.

Prior Studies Related to Cybersecurity First-Principle Modeling and Analysis
As discussed in [119], cybersecurity first-principle modeling is inspired by multiple
endeavors in several disciplines, including: (1) Biological epidemic models [8, 9, 45,
60, 78]: These models have been adapted to the Internet setting (or cyber epidemic
models) since Kephart and White [58, 59]. Later efforts aim to accommodate general
network structures, including power-law network structures [11, 82, 86, 92, 92, 93]
and arbitrary network structures (e.g., [12, 35, 115, 116]). (2) Interacting particle
systems [72]: These models investigate the collective behaviors of interacting
components and the phenomena that can emerge from these interactions. (3)
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Microfoundation in Economics [47]: This effort aims to make connections between
macroeconomic models to the underlying microeconomic models. However, the
aforementioned technical barriers distinguish cybersecurity first-principle models
from the models in the literature mentioned above. Moreover, it is the Cybersecurity
Dynamics foundation that stresses that the attack-defense structure reflects, among
other things, the access control policies that are enforced in a network, rather
than the physical communication network. Furthermore, the foundation offers a
unique set of cyber defense dynamics as reviewed above: preventive and reactive
cyber defense dynamics, adaptive cyber defense dynamics, proactive cyber defense
dynamics, and active cyber defense dynamics.

It is worth mentioning that cybersecurity first-principle models in the context
of Cybersecurity Dynamics are different from the models in the context of Attack
Graphs (see, for example, [2, 7, 19, 46, 52, 100, 105, 110]). This is because
models in the context of Attack Graphs are combinatorial in nature (e.g., computing
or enumerating attack paths with respect to a target); in contrast, models in the
context of Cybersecurity Dynamics are stochastic processes in nature because
they explicitly model the evolution of the global cybersecurity state over time t.
This explains why these models are, as mentioned above, inspired by Biological
Epidemic Models, Interacting Particle Systems, and Microfoundation in Economics,
and why we can model various kinds of cyber defense dynamics.

Prior Studies Related to Cybersecurity Data Analytics There are numerous
data-driven cybersecurity research activities, which however are often geared
towards some specific events, attacks, or defenses. For example, honeypot-captured
cyber attack data have been used for purposes of visualization [43], clustering
attacks [4–6, 24], and characterizing attack behaviors such as inter-arrival times
[1, 55]. In contrast, cybersecurity data analytics in the context of the present chapter
is meant to become an inherent pillar of the Cybersecurity Dynamics foundation,
by interacting with the other two pillars (i.e., cybersecurity first-principle modeling
and analysis and cybersecurity metrics) as shown in Fig. 1.4.

1.8 Conclusion

We have systematically reviewed the Cybersecurity Dynamics foundation, with
emphasis on the three active research axes or pillars in cybersecurity metrics, cyber-
security first-principle modeling and analysis, and cybersecurity data analytics. We
discussed the progress in each of these axes and future research directions. We hope
that we have clearly and successfully conveyed the following message: This is an
exciting, but challenging, research endeavor that deserves a community wide effort
to explore. We hope that the present chapter will inspire many more studies
towards achieving the ultimate, full-fledged Cybersecurity Dynamics foundation for
advancing the Science of Cybersecurity.
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Chapter 2
Proactive Network Defense with Game
Theory

Sinong Wang and Ness Shroff

Abstract Traditional proactive network defenses deploy security resources in the
network based on probabilistic policies to confuse potential attackers. However, this
strategy can be exploited by stealthy attackers, leading to reduced efficiency and
higher vulnerability. Game theory has been shown to provide a sound mathematical
approach to overcome these deficiencies and determine an optimal defense strategy.
However, existing game theoretic models typically either assume additive utility
functions, or that the attacker can attack only one target. While such assumptions
lead to tractable analyses, they miss key inherent dependencies that exist among
different targets in current complex networks. In this chapter, we generalize the
traditional security game model to the network scenario. We examine such a general
security game from a theoretical perspective and provide a unified theoretical
framework. In particular, we show that each security game is equivalent to a
combinatorial optimization problem over a set system, which consists of defender’s
pure strategy space. The key technique we use is based on projection of a polytope
based transformation, and the ellipsoid method. We also provide several important
applications of our developed framework, and show that for several problem classes,
optimal defense strategies can be developed in polynomial time. Our approach paves
the way for a deeper investigation into using game theoretic techniques for solving
designing security mechanisms in networks, and we conclude by outlining a number
of important future directions that need to be investigated.

2.1 Introduction

Most critical systems use some type of proactive defense through firewalls, rein-
forcing systems through regular software updates, providing police protection of
important locations, etc. However, one of the key problems in proactive network
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defense is how to efficiently allocate limited resources to protect targets in a network
against potential threats. For example, the government may have a limited police
force to operate checkpoints and conduct random patrols over some city blocks, or
have a limited number of coders that restricts how often and for what functionality
new software updates are generated. However, the adversarial aspect in security
domain poses a unique challenge for allocating resources. An intelligent attacker can
observe the defender’s strategy and gather information to schedule more effective
attacks. Therefore, the simple random strategy of “rolling the dice” may be exploited
by the attacker, which greatly reduces the effectiveness of the strategy. This is where
game theory can help devise strategies that are optimal even under intelligent and
stealthy attackers.

2.1.1 Why Game Theory?

Before we describe the importance of applying game theory to the proactive network
defense, let us first look at the following example.

Example 2.1 As shown in Fig. 2.1, there exists a network with multiple nodes
and links. The goal of defender or infrastructure service provider is to transmit
the packets from the node s to node d along different paths. In practice, there
might exists some hackers attempting to intercept the packet and subtract the
confidential contents. To avoid interception from attackers, the defender can
probabilistically choose a different routing path. For example, in the above
network, we have four routing paths that has the possibility to confuse the
attacker. However, the question is is probabilistically mixing the strategy a
secured policy in proactive network defense? In practice, the stealthy attacker
can observe the defender’s probabilistic strategy and predict the defender’s
next move, which may lead to disastrous consequences.

With the development of computational game theory, such resource allocation
problems can be cast in game-theoretic contexts, which provides a sounder math-

Path A Path B

Path C Path D

s

s

s

s

d d

dd

Fig. 2.1 A network with four possible routing paths. The yellow nodes are source and destination
nodes. The grey nodes are intermediate nodes in the routing path
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ematical approach to determine the optimal defense strategy. It allows the analyst
to factor differential risks and values into the model, incorporate game-theoretic
predictions of how the attacker would respond to the security policy, and finally
determine an equilibrium strategy that cannot be exploited by adversaries to obtain a
higher payoff. In the past decade, there has been an explosion of research attempting
to address this approach, which has led to the development of well-known models
of security games.

Moreover, it has become increasingly apparent that security failures in network
and information systems are often caused by a misunderstanding of the incentives of
the entities involved in the system instead of a lack of proper technical mechanisms
[1, 2]. To this end, there exists game theoretical models trying to understanding
this phenomenon using analytical approaches [3–6]. Some other recent works [7–9]
also consider Advanced Persistent Threats (APT) in cyber security. APT attacks
have several distinguishing properties that render traditional defense mechanism
less effective. First, they are often launched by incentive driven entities with specific
targets. Second, they are persistent in achieving the goals, and may involve multiple
stages or continuous operations over a long period of time. Third, they are highly
adaptive and stealthy, which requires the game model capturing the persistent and
stealthy behavior of advanced attacks.

The classic security game is a two-player game played between a defender
and an attacker. The attacker chooses one target to attack; The defender allocates
(randomly) limited resources, subject to various domain constraints, to protect a
set of targets. The attacker (defender) will obtain the benefits (losses) for those
successfully attacked targets and losses (benefits) for those defended targets. The
goal of the defender is to choose a random strategy so as to play optimally
under some solution concepts such as Nash equilibrium and strong Stackelberg
equilibrium. This security game model and its game-theoretic solution is currently
being used by many security agencies including US Coast Guard and Federal Air
Marshals Service(FAMS) [10], Transportation System Administration [11] and even
in the wildlife protection [12]; see book by Tambe [13] for an overview.

2.1.2 Challenges in the Classical Security Game Model

Before we discuss the challenges in the classical security game model, let us first
consider the following example.

Example 2.2 As shown in Fig. 2.2, we have a 20-node network. It is clear that nodes
1, 2, 3 and 4 are the critical battlefields in this network. Suppose that the attacker’s
and defender’s strategies are {1}, {2}, {3}, {1, 2} or {3, 4}, where {v} denotes the
index of the nodes. We adopt the network value proposed by Gueye et al. [14] as
the security measure for different nodes, which calculates the importance of a group
of nodes by subtracting the value of the network by removing these nodes from
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Additive Utility Function
Strategy 1 2 3 4 1,2 3,4
Benefit 39 39 75 75 78 150

Non-additive Utility Function
Strategy 1 2 3 4 1,2 3,4
Benefit 39 39 75 75 238 142

1

2
3 4

@/-

1

2
3 4

1

2
3 4

Additive strategy Non-additive strategy

Fig. 2.2 Example of security game in a 20-nodes network with independent targets assumption
(additive) or dependent target assumption (non-additive)

the value of the original network.1 For example, if we adopt the network value as
a function f ({ni}) = ∑

i n2
i , where ni is number of nodes in the ith component,

the value of the original network is 202= 400. After removing node 3, the network
will be divided into two components: one 18-node network and one isolated node,
the network value is reduced to 182+ 12= 325. Thus the benefit of node 3 is equal
to the decrement 400− 325= 75. Similarly, we can get the benefits of other nodes
as illustrated in the bottom table of Fig. 2.2. In traditional security game models,
they assume that the benefit of strategy {1, 2} and {3, 4} is equal to 39+ 39= 78
and 75+ 75= 150. The mixed strategy equilibrium2 under this case is that defender
choose nodes 1, 2 with probability 0.34 and nodes 3, 4 with probability 0.66. Instead,
if we adopt the true value of nodes {1, 2} and {3, 4} (as illustrated in red of bottom
table), the equilibria is that the defender chooses nodes 1, 2 with probability 0.63
and nodes 3, 4 with probability 0.37. From the point view of the network, the second
one provides a more reliable strategy.

Based on the above example, we have the following observations: first, the
traditional security game models do not consider dependency among the different
targets; second, the attacker can attack at most one target. In particular, the payoff
functions for both players are additive, i.e., the payoff of a group of targets is the
sum of the payoffs of each target separately. This assumption means that the security
agency measures the importance of several targets without considering the synergy
among them. In practice, the attacker can simultaneously attack multiple targets and
there exists some linkage structure among those targets such that attacking one target
will influence the other targets. For example, an attacker attempts to destroy the

1Compared with traditional measures such as degree and betweenness centrality, the network value
provides a more accurate description of the importance of different nodes.
2In this example, we adopt the zero-sum game model and assume the defender can protect the
nodes with probability 1.



2 Proactive Network Defense with Game Theory 37

connectivity of a network and the defender aims to protect it. The strategy for each
players is to choose the nodes of the network (to defend or to attack). If there are two
nodes (node 1 and 2 in previous example) that constitute a bridge of this network,
successfully attacking both of them will split the network into two parts and incur
a huge damage, while attacking any one of them will have no significant impact.
These observations show that proactive network defense introduces new challenges
in computational game theory, and calls for the new theoretical development. The
rest of this chapter mainly focus on how to develop a general game-theoretical path
and algorithmic framework in proactive network defense.

2.2 Non-additive Security Game: A General Formulation
of Network Security Game

Motivated by the previous example, we are now ready to define the non-additive
security game (NASG) [15, 16].

Players and Targets The NASG contains two players (a defender and an attacker),
and n targets. We use [n] � {1, 2, . . . , n} to denote the set of these targets. The
attacker and defender need not be individuals, but could also be the organizations
and groups who adopt a joint strategy. The target can be quite general and
dependent on the application in mind. For example, they could represent links in
the communication networks, roads in the urban networks or cities in the whole
country.

Strategies and Index Function The pure strategy for each player is the subset of
targets and all the pure strategies for each player constitute a collection of subsets
of [n]. We assume that the attacker can attack at most c targets, where c > 1 is a
constant. The attacker’s pure strategy space is a uniform matroid A = {A ⊆
[n]||A| ≤ c} and the number of attacker’s pure strategies is Na � |A |. Similarly, we
use D ∈ 2[n] to denote the defender’s pure strategy space and Nd � |D |. Note that
there exists some resource allocation constraints in practice and such that D is not
always a uniform matroid. For example, if the defender has a budget and its resource
are obtained at some costs, in which the costs are heterogeneous. In this case, the
defender’s feasible pure strategy corresponds to all the possible combinations of the
targets with total cost less than the budget.

Suppose that the order of the pure strategy of the attacker is given by index
function σ (·), which is a one-one mapping: 2[n]→{1, 2, · · · , 2n}. Then, we
define the following index function μ(·) for the pure strategy of the defender as:
μ(U)= σ (Uc) for any U ∈ 2[n]. For simplicity, the index function σ (·) and μ(·) are
defined over all subsets of [n]. The reason behind this definition of the index function
is to simplify the representation of most of the theoretical results. For example, if
n= 2, A = D = 2{1,2}, and the order of the attacker’s pure strategy is σ ({1, 2})= 1,
σ ({2})= 2, σ ({1})= 3 and σ (∅)= 4, then the order for defender’s pure strategy is
μ(∅)= 1, μ({1})= 2, μ({2})= 3 and μ({1, 2})= 4.
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Select a subset of
targets to defend.

Select multiple
targets to attack and
avoid being trapped

by defender
Interdependent

Targets
(Non-additive payoffs)

Attacker
(Limited Budget) (resource allocation

constraint)

Successfully
attacked.

Successfully
defended.

Defender

Fig. 2.3 Network security game with non-additive utility functions and multiple attacker resources

The mixed strategy is the probability distribution over the pure strategy space,
which is employed when the player determines its strategy based on some random
experiment. For example, if the attacker chooses p as its mixed strategy, the
probability that strategy A is chosen is pσ (A). The set of all the mixed strategies
of the attacker and defender can be represented as the simplex ΔNa and ΔNd

, where

ΔNa = {p ∈ R
Na+ |

∑
A∈A

pσ(A) = 1}. (2.1)

A similar definition holds for ΔNd
.

Payoff Structure The benefits and losses are represented by utility functions as
follows. Let set function B(·) : A → R and L(·) : A → R be the attacker’s
benefit and loss functions, respectively. The standard assumption is that the benefit
is always larger than the loss: B(A) > L(A) for all A ∈ A . If the attacker and
defender choose strategy A ∈ A and D ∈ D , the attacker’s and defender’s payoff
is given by B(A\D)+L(A∩D) and −L(A∩D)−B(A\D), respectively.3 In this
payoff structure, one can see that the game is zero-sum such that one player’s benefit
is indeed the loss of the other players. For more complex non-zero sum games,
please refer to [16].

Bilinear-Form Based on the above payoff structure, we can define the benefit
matrices of attacker B : ∀A ∈ A ,D ∈ D ,

Bσ(A),μ(D) = Ba(A\D), (2.2)

3A\D is the standard set difference, defined by A\D={x|x∈A, x �∈D} and is equal to A∩Dc,
where Dc is the complementary set of subset D. An example of NASG is illustrated in (Fig. 2.3).
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and the loss matrices: L: ∀A ∈ A ,D ∈ D ,

Lσ(A),μ(D) = La(A ∩D). (2.3)

Let Ma and Md be the attacker’s and defender’s payoff matrices. It is clear that
Ma=B+L and Md =−B−L. Then the expected payoffs for the attacker and
defender are given by following bilinear form, when they play the mixed strategy
p ∈ ΔNa and q ∈ ΔNd

, by

Ua(p, q) = pT Maq and Ud(p, q) = pT Mdq. (2.4)

Solution Concepts If both players move simultaneously, the standard solution
concept is the Nash equilibrium (NE), in which no single player can obtain a higher
payoff by deviating unilaterally from this strategy. A pair of mixed strategies (p∗ ,
q∗ ) forms a NE if and only if they satisfy the following: ∀p ∈ ΔNa , q ∈ ΔNd

,

Ud(p∗, q∗) ≥ Ud(p∗, q) and Ua(p∗, q∗) ≥ Ua(p, q∗). (2.5)

In some application domain, the defender can build fortifications before the
attack and is thus in the leader’s position from the point view of the game, and
able to move first. In this case, the strong Stackelberg equilibrium (SSE) serves as a
more appropriate solution concept [17, 18], where the defender commits to a mixed
strategy; the attacker observes this strategy and comes up with its best response(s).
Formally, let C(q) = arg maxp∈ΔNa

Ua(p, q) denote the attacker’s best response to
defender’s mixed strategy q. A pair of mixed strategies (p∗ , q∗ ) is a SSE, if and only
if,

q∗ = arg max
q∈ΔNd

Ud(C(q), q) and p∗ = C(q∗). (2.6)

Our goal is to compute the defender’s Nash equilibrium strategies and strong
Stackelberg equilibrium strategies, and we call it the equilibrium computation
problem.

2.3 Curse of Dimensionality and Compact Representation
Technique

The Nash equilibrium is equivalent to the strong Stackelberg equilibrium in the
zero-sum game. Therefore, we only need to focus on the computation of Nash
equilibrium. Invoking the result in the von Neumann’s minimax theorem, computing
the NE of zero-sum game can be formulated as the following minimax problem,

min
q∈ΔNd

max
p∈ΔNa

Ua(p, q) = pT
(
Ba + La

)
q. (2.7)
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One standard solution path is transforming the above problem into the following
linear programming problem.

min
q,u

u

s.t. vT (Ba + La) q ≤ u,∀v ∈ ΔNa ,

q ∈ ΔNd
.

(2.8)

Curse of Dimensionality It is well known that the linear programming problem
can be solved in polynomial time of number of variables and constraints by using
the interior point method. However, the above linear programming problem contains
Nd + 1 number of variables and Na+Nd constraints, which is at least the size of
defender’s pure strategy space. In the worst case, i.e., the defender can protect any
subsets of targets and Na=Θ(2n). Moreover, unlike the traditional security game
[10] that assumes that attacker only attack one target, there exists poly(n) number
of variables and exponential number of constraints. One can use the cutting plane
(ellipsoid method) to get a polynomial time reduction. However, in this problem,
due to multiple attacker resources, it becomes a much more complicated issue, and
calls for the development of a new theoretical path.

The goal of the rest of this subsection is to develop a technique to compactly
and equivalently represent the zero-sum and non-additive security game with only
poly(n) variables. To convey our idea more easily, we begin with an example.

We first use gauss elimination on matrices Ba and La to transform them into
row canonical form, which is to left and right multiply such matrices by elementary
matrices E1, E2 ∈ R

Na×Na and F1, F2 ∈ RNd×Nd .

min
q∈ΔNd

max
p∈ΔNa

pT
(
Ba + La

)
q = min

q∈ΔNd

max
p∈ΔNa

pT E1E−1
1 BaF−1

1 F1q

+ pT E2E−1
2 LaF−1

2 F2q

= min
q∈ΔNd

max
p∈ΔNa

pT E1

[
Ba

r 0
0 0

]
F1q

+ pT E2

[
La

s 0
0 0

]
F2q.

where r and s are the rank of matrices Ba, La, and Ba
r , La

s are the corresponding
non-zero blocks of their row canonical form. If we define the affine transformation:
f1(p) = (pT E1

)T
, f2(p) = (pT E2

)T
, g1(q)= F1q and g2(q)= F2q. Let4

Δa
Na
= {(f1(p), f2(p))|p ∈ ΔNa },

Δd
Nd
= {(g1(q), g2(q))|q ∈ ΔNd

}.

we can obtain the following equivalent optimization problem,
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min
(q̄1,q̄2)∈Δd

Nd

max
(p̄1,p̄2)∈Δa

Na

p̄T
1

[
Ba

r 0
0 0

]
q̄1 + p̄T

2

[
La

s 0
0 0

]
q̄2.

Moreover, considering the fact that only the first r elements in vector p̄1 and
q̄1, and the first s elements in p̄2 and q̄2 have non-zero coefficients in the above
optimization model, we can further simplify the above optimization problem as

min
(q̄1,q̄2)∈Hd

max
(p̄1,p̄2)∈Ha

p̄T
1 Ba

r q̄1 + p̄T
2 La

s q̄2, (2.9)

where the Ha and Hd is obtained by projecting the polytope Δa
Na

and Δd
Nd

to those
coordinates belonging to the non-zero blocks.

The basic observation in the above example is that the number of variables in
the optimization model (2.9) is equal to the sum of rank r+ s of payoff matrices.
Based on the rank inequality that the rank of a matrix is less than its dimension,
we have that r, s ≤ min{Na,Nd}. Since the number of attacker’s pure strategies
is Na=O(nc)= poly(n). Therefore, there exists at most poly(n) variables in the
optimization model (2.9).

The above illustrative derivation provides a possible path to compactly represent
the game. However, there exists a significant technical challenge: the elementary
matrices F1, F2 and their inverse matrices may have an exponential size due to
the exponentially large defender’s pure strategy space. Hence, the key question is
whether we can find both these elementary matrices efficiently? To tackle this
problem, we first show that payoff matrices Ba and La can be decomposed as the
product of the several simple matrices.

Theorem 2.1 (Decomposition of the Payoff Matrix)
The payoff matrix Ma= Ba+ La can be decomposed as

Ma = E(DbJ+ DlK), (2.10)

where Db, Dl ∈ R
Na×Na are the diagonal matrices with

Db
σ(A),σ (A) = Bc(A), Dl

σ (A),σ (A) = Lc(A),∀A ∈ A .

The E ∈ R
Na×Na and J, K ∈ R

Na×Nd are binary matrices:

(continued)

4The notation (·, ·) denotes the concatenation operator of vector.
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Eσ(A),σ (U) = 1{U ⊆ A},∀A,U ∈ A

Jσ(A),μ(D) = 1{A ⊆ Dc},
Kσ(A),μ(D) = 1{A ⊆ D},∀A ∈ A ,D ∈ D .

The common utility is defined as the Möbius transformation [19, 20] of the
benefit and loss function B(U) and L(U) for all U∈ 2[n],

Bc(U) =
∑
V⊆U

(−1)|U\V |Ba(V )

Lc(U) =
∑
V⊆U

(−1)|U\V |La(V ).

(2.11)

As can be seen in Theorem 2.1, we decompose the original exponentially large
payoff matrix Ma into the summation and the product of several simple matrices
including binary matrices E, J, K and two polynomial-sized diagonal matrices
Db and Dl. Moreover, such a decomposition has a closed-form expression and the
elements in those simple matrices can be implicitly represented.

Based on the above decomposition results, we can let the elementary matrices
E1= E2=E, F1= J and F2=K, and the corresponding affine transformation
f (p)= ETp and g1(q)= Jq, g2(q)=Kq to yield two polytopes: Δa

Na
= {f (p)|p ∈

ΔNa } and Δd
Nd
= {(g1(q), g2(q))|q ∈ ΔNd

}. Then we can represent the minimax
problem (2.7) as

min
(q̄1,q̄2)∈Δd

Nd

max
p̄∈Δa

Na

p̄T (Dbq̄1 + Dl q̄2), (2.12)

The following definitions are often used in our next step theoretical development.

Definition 2.1 (Support Set) The support set of the non-additive security game is
defined as

S = {A ∈ A |Bc(A) �= 0 or Lc(A) �= 0}. (2.13)

and the support index set σ (S)={σ (A)|A∈ S}.
Definition 2.2 (Projection Operator) The projection operator πS : RN → R

|S| is

πS((x1, x2, . . . , xN)) = (. . . , xi , . . .)i∈σ(S), (2.14)

and projection of polytope: ΠS(ΔN) � {πS(x)|x ∈ ΔN }.



2 Proactive Network Defense with Game Theory 43

Based on the definition of our support set S and matrices Db, Dl, only the
variables with indices belonging to σ (S) have non-zero coefficients. Therefore,
we can eliminate those variables with zero coefficients in (2.12) and project the
polytopes Δa

Na
and Δd

Nd
into the coordinates with indices belonging to σ (S). The

further simplified model can be expressed as

Compact Minimax Problem

min
(q̄1,q̄2)∈Hd

max
p̄∈Ha

p̄T (D̃bq̄1 + D̃l q̄2),
(2.15)

where5 Ha = ΠS(Δa
Na

), Hd = ΠS(Δd
Nd

), matrix D̃b and D̃l is obtained by

extracting the non-zero columns and rows of matrix Db and Dl.
Since the size of the support set |S|≤Na, and Na= poly(n), we arrive at a compact

representation of the non-additive security game with only poly(n) variables. Note
that in the above compact representation framework, the affine transformation f1 and
f2 are the same as in our compact representation. The following theorem guarantees
the correctness of our compact representation.

Theorem 2.2 (Compact Representation) (p∗ , q∗ ) is a Nash equilibrium of zero-
sum non-additive security game if and only if (πS(f (p∗)), (πS(g1(q∗)), πS(g2(q∗ )))
is the optimal solution of compact minimax problem (2.15).

2.4 Oracle-Based Algorithmic Framework

In the previous section, we develop a compact representation technique such that
one can equivalently represent the original NASG by a minimax problem with a
polynomial number of variables, which can be further solved by the following linear
programming model,

Compact Linear Programming

min u

s.t. vT (D̃bq̄1 + D̃l q̄2) ≤ u,∀v ∈ Ia,

(q̄1, q̄2) ∈ Hd,

(2.16)

where Ia denotes the set of vertices of the convex polytope Ha. The above linear
programming problem has poly(n) number of variables and potentially exponential
number of constraints (due to the membership constraint (q̄1, q̄2) ∈ Hd ). This
motivates us to utilize the ellipsoid method to solve the problem.

5Note that each vector in Δd
Nd

is consists of two parts g1(q) and g2(q). Here the corresponding
low-dimensional point is (πS(g1(q), πS(g2(q)).
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2.4.1 Preliminaries

Let H be a non-empty convex polytope in R
n. Given a vector w ∈ R

n, one wants to
find a solution to maxx ∈HwTx. By “linear optimization over H”, we mean solving
the problem maxx ∈HwTx for any w ∈ R

n. A separation problem for H is that, given
a vector x ∈ R

n, decide if x∈H, and if not, find a hyperplane which separates x
from H. The following results are due to Grötschel et al. [21].

Theorem 2.3 (Separation and Optimization) Let H ∈ R
n be a convex polytope.

There is a poly (n) time algorithm to solve the linear optimization problem over H
if and only of there is a poly (n) time algorithm to solve the separation problem for
H.

Theorem 2.4 (Separation and Convex Decomposition) Let H ∈ R
n be a convex

polytope. If there is a poly (n) time algorithm to solve the separation problem for H,
then there is a poly (n) time algorithm that, given any x∈H, yields (n+ 1) vertices
v1, . . . , vn+1 ∈H and convex coefficients λ1, . . . , λn+1 such that x =∑n+1

i=1 λivi .

2.4.2 Reduction Between NASG and Combinatorial
Optimization

The main result in this subsection is captured in the following theorem.

Theorem 2.5 (NE Computation and Defender Oracle Problem)
There is a poly (n) time algorithm to compute the defender’s Nash equilibrium
(strong Stackelberg equilibrium), if and only if there is a poly (n) time
algorithm to compute the defender oracle problem: for any given vector
w ∈ R

2|S|, determine,

x∗ = arg min
x∈Id

wT x. (2.17)

To obtain above reduction, we adopt the following path: we first show how
the compact problem and the defender oracle problem can be reduced to each
other in poly(n) time; then we exploit the geometric structure of polytope Ha

and Hd to construct two poly(n) time vertex mapping algorithms to obtain the
reduction between the equilibrium computation and the compact problem. This
whole procedure also produces an algorithmic framework to the solve the NASG.

The polynomial time reduction between the defender oracle problem and the
compact linear programming problem can be easily obtained by the ellipsoid
method. The key lies in how to obtain the reduction between the equilibrium
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computation (2.7) and the compact linear programming problem. Actually, there
exist two issues: first, how to transform the input instance of each problem to the
other one in poly(n) time; second, how to map the optimal solution of each problem
to the other in poly(n) time. Since the input of the equilibrium computation problem
are the utility functions {B(U)} and {L(U)} and the input of compact problem are the
common utilities {Bc(U)} and {Lc(U)} (all the elements of matrices Db and Dl are
the common utilities), such transformation can be completed in O(2cnc)= poly(n)
time based on the definition of common utilities.

To resolve the second issue, we first consider how to map the optimal solution
of compact problem to the defender’s optimal mixed strategies. Based on Theorem
2.4, we obtain that if the separation problem of LP (2.16) can be solved in poly(n)
time, we can decompose any feasible point x into a convex combination of at most
(2|S| + 1) vertices of the polytope defined by those constraints. Note that this is
precisely the DOP required for above reduction. Applying this result to the optimal
solution (q∗1, q∗2) of the LP (2.16), we can get a convex decomposition that

(q∗1, q∗2) =
2|S|+1∑
i=1

λi(vi
1, vi

2), (2.18)

where (vi
1, vi

2) ∈ Id . The basic fact is that the defender’s mixed strategy can be
regarded as a convex combination of its pure strategies, each of which corresponds
to a vertex of simplex ΔNd

. If we can map the vertices (vi
1, vi

2) back to the vertices
(pure strategy) of the original game, denoted by h((vi

1, vi
2)), the mixed strategies of

the defender can be expressed as

q∗ =
2|S|+1∑
i=1

λih((vi
1, vi

2)). (2.19)

Thus, the key lies in how to compute h((vi
1, vi

2)) in poly(n) time.
To tackle this problem, we need to investigate the geometric structure of

polytope Hd. First, considering an arbitrary defender’s pure strategy D ∈ D , the
corresponding vertex in ΔNd

is a unit vector eD ∈ R
Nd with only one non-zero

element eD
μ(D) = 1. Based on the definition of the transformation g1(q) and g2(q),

the corresponding point of polytope Hd is

(g1(eD), g2(eD)) = (JeD, KeD) = (Jμ(D), Kμ(D)), (2.20)

where Jμ(D) and Kμ(D)is the μ(D)th column of matrix J and K. Then the corre-
sponding point vD of the projected polytope Hd is

vD = (πS(Jμ(D)), πS(Kμ(D))
)
, (2.21)
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which is the sub-vector of Jμ(D) and Kμ(D). The problem is that the vertex in the
high-dimensional polytope may not project to a vertex of its low-dimensional image.
However, the following lemma will provide a positive result.

Lemma 2.1 (Geometric Structure of Hd)
For any support set [n] ∈ S ∈ A , the vertices of the polytope Hd are the

columns of the sub-matrix of

[
J
K

]
, which is formed by extracting the row

whose index belongs to σ (S).

Since we have a closed-form expression of the matrix J and K, we can construct
a vertex mapping algorithm from low-dimensional vertex to the defender’s pure
strategy. The efficiency and the correctness of Algorithm 1 is justified by following
lemma.

Algorithm 1: Vertex mapping from vertex to pure strategy

input : Vertex (v1, v2) ∈ I d .
output: Defender’s pure strategy D.

T = ∅;
for each i ∈ [n] do

Examine each coordinate of vertex:
if v1,σ ({i}) �= 0 then

T = T ∪ {i};
end

end
D = T c;

Lemma 2.2 (Correctness of Vertex Mapping Algorithm) The vertex mapping
Algorithm 1 runs in O(n) time and maps each vertex of Hd to a unique pure strategy.

Note that our vertex mapping algorithm only examines n instead of all the
coordinates of each vertex of Hd to recover a defender’s pure strategy. The reason
behind this result is that there exists a one-to-one correspondence between each pure
strategy and those n coordinates of each vertex of polytope Hd. Intuitively, those n
coordinates of each vertex of Hd is binary and therefore there exists possibly 2n

possibilities, each of which corresponds to a pure strategy.
The other direction follows from the following argument. Suppose that the

problem of equilibrium computation is solved in poly (n) time and the optimal
defender’s mixed strategy is denoted by q∗ . Invoking a known result in game
theory (Theorem 4 in [22]), the support size, i.e., number of strategies with nonzero
probability, of the Nash equilibrium is less than the rank of the payoff matrix. Since
the rank of payoff matrix Ma is O(nc), the number of non-zero coordinates in q∗ is
at most O(nc)= poly(n) and q∗ can be expressed as
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q∗ =
poly(n)∑

i=1

λiei . (2.22)

Therefore, we can determine the optimal solution of the compact problem in
poly(n) time by constructing the following poly(n) time vertex mapping algorithm
from a pure strategy ei to a vertex of Hd.

Algorithm 2: Vertex mapping from pure strategy to vertex

input : Defender’s Pure Strategy D.
output: Vertex vD ∈ Id

T = ∅;
for each V ∈ A do

if V ⊆ Dc then vD
1,σ (V ) = 1;

else vD
2,σ (V ) = 0;

end
Output vertex vD = (vD

1 , vD
2 );

The intuition behind this result is similar to the previous vertex mapping
algorithm and the correctness of Algorithm 2 is guaranteed by the following lemma.

Lemma 2.3 (Correctness of Vertex Mapping Algorithm)
Vertex mapping Algorithm 2 runs in O(nc) time and maps each defender’s
pure strategy D to a unique vertex of Hd.

Combining all the above results together, we provide a general algorithmic
framework shown next.

Algorithm 3: General algorithmic framework for non-additive security game

1. Utility transformations: Transform the original utility functions {B(U)} and {L(U)} to the
corresponding common utilities {Bc(U)} and {Lc(U)} based on Möbius transformation;

2. Solve the compact problem: Solve the linear program (2.16) to obtain the optimal
compact strategy t∗ by ellipsoid method;

3. Convex decomposition: Decompose optimal compact strategy t∗ into the convex

combination: t∗ =
n+1∑
i=1

λivi by exactly solving the defender oracle problem;

4. Vertex mapping: Map each vertex vi to a defender pure strategy Di by Algorithm 1,
output the defender’s NE strategy:

play pure strategy Di with probability λi , 1 ≤ i ≤ n+ 1;



48 S. Wang and N. Shroff

2.4.3 Applications

In this subsection, we will discuss the applications of our developed algorithmic
framework to several security domain problems.

2.4.3.1 Network Security Game

The network security game [14, 23] is given by the following definitions.

Definition 2.3 A network security game is given by the tuple (G, T, Fa, c), where
G= (V, E) with node set V , edge set E, T is the network value function, Fa is the
failure operator, c is the maximum number of nodes the attacker can choose, while
the defender can protect any target.

The network value function T : G → R is a security measure assessing the
utility of a network, and failure operator Fa : 2G→ 2G is to generate a new network
via a specific failure mode after removing some nodes. For example, Shakarian et
al. [23] adopt the number of connected load nodes as T, and edge cascading failure
model as Fa. We next discuss several classical network security games that can be
solved in polynomial time.

Example 2.3 (Security Game in a Tree Network) In cybersecurity, the sensor
network often exhibits a tree topology. The game is such that the attacker attempts to
invade some nodes to destroy the connectedness of the network and the IT manager
is required to deploy anti-virus software in some nodes. Suppose that the network
G consists of m connected components: V1, V2, . . . , Vm and both players adopt the
following network value functions

T (G) = max
1≤i≤m

|Vi |. (2.23)

In practice, we assume that the attacker can simultaneously invade at most two
nodes, i.e., c= 2. Then, if node i is attacked, the tree G is divided into 2 sub-trees:
Gi1 and Gi2, and the benefit is given by

B({i}) = n−max{|Gi1|, |Gi2|} = min{n− |Gi1|, n− |Gi2|}.

Similarly, if node j is attacked, the tree G is divided into 2 sub-trees: Gj1 and Gj2,
and the benefit is given by

B({j}) = n−max{|Gj1|, |Gj2|} = min{n− |Gj1|, n− |Gj2|}.

Without loss of generality, suppose j∈Gi2, then if nodes i, j are simultaneously
attacked, the tree G is divided into 3 subtrees: Gi1, Gi21 and Gi22, where the latter
two are obtained by dividing Gi2. The corresponding benefit is given by
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B({i,j})= n−max{|Gi1|, |Gi21|, |Gi22|} =min{n− |Gi1|, n− |Gi21|, n− |Gi22|}.

Then one can easily show that the following holds true for any i, j∈ [n],

B({i, j}) ≤ B({i})+ B({j})

and Bc({i, j})≤ 0. Combining this result with Theorem 2.5, one can easily show
that the defender oracle problem is a submodular minimization problem, which can
be solved in polynomial time. Further, we can use Algorithm 1 to determine an
equilibrium strategy in polynomial time.

Example 2.4 (Security Game in a Sparse Network) As can be seen in (Fig. 2.4), the
real world network is extremely sparse and the largest connect component is always
small compared to the network scale, i.e, O(log(n)). In this case, we have the
following result.

Lemma 2.4 A network security game (G, T, Fa, c) can be solved in poly (n) time if
the largest connected component of G is Θ(log(n)).

The basic intuition is that, when the network is extremely sparse such that the
largest connected component of G is Θ(log(n)), the common utility functions
defined in (2.11) will satisfy a separable condition

U =
m⋃

i=1

Ui,∀Ui ⊂ Vi, Ui �= ∅

=⇒ Bc(U) = Cc
a(U) = Cc

d(Uc) = 0.

Then, one can easily show that the defender oracle problem can be separated into
O(n) subproblems, each of which can be solved in polynomial time. Combining this
result with Theorem 2.5, we can solve this network security game in polynomial
time.

Fig. 2.4 Security game in a sparse network and tree network
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2.4.3.2 Security Game with Multiple Attacker Resources

There exists several other important applications of our developed algorithmic
framework.

LAX Airport Checkpoint Placement Problem [24] This problem is one of the
earliest applications of security games. In this setting, the security force has k police
officers that are to be deployed across n (where k < n) checkpoints. Each police
officer can be deployed at any given check point. Therefore, any subset of [n] of
size at most k is a defender pure strategy. Korzhyk et al. [25] extends this game
model into the multiple attacker resources and shows that this problem can still be
solved in poly(n) time by a state transition algorithm [25]. In our framework, the
DOP is the linear optimization over a uniform matroid.

max wT x

s.t.
∑n

i=1 xi ≤ k, x ∈ {0, 1}n.
(2.24)

The above problem can be solved in polynomial time by summing the k largest
elements of vector w. Thus, it verifies previous results.

In the following three cases, the defender’s resources are heterogeneous such that
there exists some practical constrains in the set system ε.

Geographic Constrained Patrolling Problem In the patrolling problem, due to
geographic constraints, the police officer can only patrol the area around the station.
In this case, the resources of different defenders (police) can defend different groups
of targets. In our framework, we can construct a weighted bipartite graph as follows:
(1) two disjoint sets U, V , where U represents all the nodes, and V represents all the
resources; (2) there exists an edge between the node u in U and node v in V if the
resource v can cover node u; (3) associate each edge (u,v) with a weight wu (w is the
vector in the DOP). Then the DOP is a weighted bipartite matching problem, which
can be solved in polynomial time by Hungarian algorithm.

Federal Air Marshal Scheduling Problem [10] In such applications, one air
marshal is assigned to protect several sequential flights with the constraint that any
destination of the previous flight is the departure of the next flight. The objective
is to cover all current flights. In [26], the authors investigate this problem under
single attacker resources and shows the polynomial solvability in some cases and
NP-hardness in other cases. However, attackers may initiate simultaneous attacks
(e.g., the flights of 911) and there still does not exist any efficient algorithm. In
our framework, we can construct the following weighted set cover problem: let the
node set [n] be the universe and all the air marshals constitute the collection S of
subsets of [n]; then associate the weight w to each element of the universe. Then,
the DOP is a weighted set cover problem and our results show that when the attacker
has multiple resources, the problem is generally NP-hard but we can still solve this
problem in some cases. For example, if each air marshal can protect at most two
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flights (a pair of round trip flights), the set system ε indeed encodes the weighted
2-cover, which can be solved in poly(n) time.

Spatio-Temporal Security Game [12,27] In many applications of security games,
an important class is the spatio-temporal security game. This kind of game is used to
model the games played in the spatio-temporal spaces such as planning patrol boats
of the US Coast Guard [12], wildlife protection [27]. The current solution technique
of this game is to discretize the space and time and build 2-D gird, in which the
security force patrol the points. Combining the results in [28], we can show that
spatio-temporal security game with multiple attacker resources are indeed a min-
cost flow problem, which can be solved in poly(n) time.

There exist other applications that can be cast in our framework such as passenger
screening for the Transportation Security Administration [11]. Indeed, based on our
general framework in Algorithm 3, all the results under the single attacker resources
can be directly extended to the scenario of multiple attacker resources.

2.5 Approximated Equilibrium Computation by Low Rank
Decomposition

In the previous section, we have developed a compact representation technique and
algorithmic framework such that one can reduce the problem of determining the
equilibrium point of NASG to a combinatorial optimization problem. However, one
pessimistic result is that the defender oracle problem in general is NP-hard, which
is high-complexity to be solved in practice. A natural question is the following: in
practical network security games, can we still efficiently solve an equilibrium point.
Actually, one crucial observation is that the common utility in realistic networks is
concentrated around zero.

In Fig. 2.5, we examine the distributions of the benefit function and its common
utility function in the following two kinds of network: Erdös-Renyi network G(n, p)
and scale-free network G(n, α), where n is the number of nodes, p is the probability
that any two nodes are connected, α is the parameter of degree distribution of
the scale-free network. Suppose that the network G consists of m connected
components: V1, V2, . . . , Vm and we adopt the following two kinds of network
value functions,

T1(G) = max
1≤i≤m

|Vi |, T2(G) =
m∑

i=1

|Vi |2.

The different form of network value functions have different assessment of the
network. The detailed comparison can be found in [14]. As can be seen in Fig. 2.5,
in both Erdös-Renyi and scale-free networks, although the distribution of the benefit
function is random, the distribution of the common utility function is concentrated
around zero and 90% of them are less than 0.05. In particular, when the number of



52 S. Wang and N. Shroff

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

 

 
PD

F

Normalized Value

 Benefit, T2
 Common utility, T2
 Benefit, T1
 Common utility, T1

Erdos Renyi (n=10,p=0.2)

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

Erdos Renyi (n=10,p=0.6)

PD
F

Normalized Value

 Benefit, T2
 Common utility, T2
 Benefit, T1
 Common utility, T1

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

Erdos Renyi (n=30,p=0.2)

PD
F

Normalized Value

 Benefit, T2
 Common utility, T2
 Benefit, T1
 Common utility, T1

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

Erdos Renyi (n=30,p=0.6)

PD
F

Normalized Value

 Benefit, T2
 Common utility, T2
 Benefit, T1
 Common utility, T1

Fig. 2.5 The distributions of common utility function and benefit function. All their value are
absolute value and normalized in [0, 1]

nodes increases, this phenomenon is amplified such that almost 99% of the common
utility functions are less than 0.05.

Based on the above observation, we can let most of the common utility functions
equal to 0 according to a given threshold εc. Formally, let B̃c(·) denote the
new common utility function generated by Algorithm 2, then the corresponding
approximate benefit function satisfies

|B̃(U)− B(U)| =
∣∣∣∣∣∣
∑

W⊆U

B̃c(W)−
∑

W⊆U

Bc(W)

∣∣∣∣∣∣
≤
∑

W⊆U

∣∣∣B̃c(W)− Bc(W)

∣∣∣ ≤ 2|U |εc.

Since |U|≤ c, the maximum error between the original benefit functions and new
generated benefit functions is less than 2cεc. A classic result of game theory is that,
if the maximum difference between the elements of two payoff matrices is bounded
by ε, the difference of the optimal game values yielded by these two payoff matrices
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Fig. 2.6 Top: the size of support set |S| versus approximation error ε; Bottom: the complexity
term maxi|Ui| versus approximation error ε. Remark that the ε represents the approximation error
of the game value. Note that SF denotes the scale-free network

are bounded by 2ε [22]. Therefore, the approximation error of our game value is
bounded by 2c+1εc.

As shown at the top of Fig. 2.6, for the Erdös Renyi, scale-free and Italian
communication network, the size of support set will be reduced 90% by an
extremely small approximation error 0.05. Moreover, this process also leads to
a separable structure of S, and the resulting complexity of solving the NASG is
poly(n)O(2maxi |Ui |). For example, in the bottom of Fig. 2.6, the complexity term
maxi|Ui| can be greatly reduced to the order of Θ(log(n)) with an approximation
error of 1%, regardless of the size and density of the network, and how many targets
the attacker can choose. More comprehensive numerical results can be found in
[15]. In summary, our approximation framework can reduce the complexity term
maxi|Ui| to order Θ(log(n)) by only 10% approximation error in most networks
including Erdös-Renyi, scale-free network and a 39-nodes Italian communication
network. Therefore, using our theoretical framework, we can approximately and
compactly represent a realistic network security game and solve it in poly(n)
time with high accuracy.
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2.6 Future Research Directions

In this section, we outline several future research directions.

2.6.1 Learning-Based Proactive Network Defense

In our proposed NASG, we suppose that probability distribution of attacker type is
known to the defender and regarded as a prior belief of defense group, and can be
formed by the Bayesian rule. However, in practical settings, some of the information
might be unknown to the defense group. This problem can be investigated by
incorporating a learning framework into our Non-additive Security Game based on
the following two scenarios: (1) full information setting: both the attacker type and
action is known in each time slot t. We need to construct an online learning algorithm
to form the belief of attacker type distribution; (2) partial information setting: only
the attacker action is known in each time slot t. This kind of problem can be cast into
a multi-arm bandits setting. The key challenge here will be in designing algorithms
that provide a small (sublinear) regret.

2.6.2 Game-Theoretical Network Defense with Boundedly
Rational Players

In our proposed NASG, we suppose that all the players are fully rational. However,
in real situations, the players such as civilians will have bounded rationality. To
model this behavior, the quantal response equilibrium is a more appropriate solution
concept. The challenge is that, due to the introduction of the quantal response model,
such an optimization problem has a non-convex fractional objective function, which
is generally hard to solve. The goal lies in how to transform such an problem into a
sequence of convex optimization problem and solve each sub-problem efficiently.

2.6.3 Multi-Scale Proactive Network Defense

In the previous sections, we have already discussed the general model and algo-
rithmic framework of game-theoretical proactive network defense. However, in the
future battlefields, there exists multiple factors that will greatly change the current
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game structure. For example, internet of things make the network structure highly
dynamic. Other key factors includes:

Multi-Party Games In this game there exist multiple players in both the defense
and adversarial groups. In addition, in practice, there may also exist “neutral
players” that could potentially be influenced by the strategies of the attackers
and defenders. These kinds of dependency are sometimes characterized by the
underlying social networks formed among all the players. For example, in the battle
with adversarial group Lashkar-e-Taiba, the players in the defense group would
include the US and Indian Governments, as well as other peaceful nationals. They
share the defense resources and cooperate with each other. In contrast, the players
in the opposing groups include training camps, military bases, and get political
supports from diaspora and foreign states. The players in the neutral group can be
regarded as civilians or the weak peaceful groups in Pakistan.

Multi-Genre Networks In real scenarios, there exists some linkage structure
among different infrastructures due to the effect of the underlying multi-genre
networks. One well-known example is the interdependence network formed by
power grid and communication systems [29]. Due to the dependencies among
different targets, attacking one target will influence other targets. For instance, an
attacker attempts to destroy the connectivity of a network and the defender aims
to protect it. The strategy for both players is to choose the nodes of the network
to either protect or attack. If there are two nodes that constitute a bridge in this
network or inter-dependent network, successfully attacking both of them will split
the network into two parts and incur a huge damage, while attacking any one of
them may have limited impact.

Actually, as shown in Fig. 2.7, we can generalize NASG to Multi-Stage Multi-
Party Bayesian Security Game with considering the interaction between multi-genre
networks, multi-parties and uncertain attacker behavior. It contains a time horizon
T ={1, 2, . . . , t} and runs Multi-Party Bayesian Security Games in each time slot t,
which contains three kinds of players: defenders, attackers and neutrals. Social links
could exist among some of the players in different groups such that the decision
making of different players are dependent on each other. Each player i in the
adversarial group is from a set of possible types θ i (multiple adversary types trying
to infiltrate security). The defender has a belief p[t] of the attacker’s uncertainty,
which is a probability distribution over all the adversarial players’ types. The belief
p[t] is a prior of defender before playing the game in time slot t, and can be formed
by a Bayesian rule and learning the actions of all the agents in the previous time
slots. The objective of the MMBSG is to calculate the mixed strategy (a probability
distribution over each pure strategies) Nash Equilibrium (NE) in each time slot t, and
the key lies in how the solve this game efficiently based on our previously developed
technique.
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Communication network

Power grid

Communication network

Defender (Bayesian
Security Game Engine)

Type 1 Type 2 Type k

Learning-based
belief formation

Time slot  t1 Time slot  t2

Power grid

Fig. 2.7 Overview of our proposed compositional game theory framework consisting of an
interdependent network between power grid and communication network. The attacker has
multiple attacking types. The defender needs a learning-based belief formation regarding attacking
types, and then determine an equilibrium strategy

2.7 Conclusion

In this Chapter, we have aimed to illustrate that game theory can provide a sound
mathematical approach to combat attacks across a wide range of applications.
However, to do this one most go beyond the existing game theoretic models that
typically assume additive utility functions, or that the attacker can attack only
one target. While such assumptions have lead to tractable analyses, they miss
key inherent dependencies that exist among different targets in current complex
networks. In this chapter, we generalize the traditional security game model to
the network scenario capturing network dependencies and the possibilities of a
coordinated multi-resource attacks. We show that each security game is equivalent
to a combinatorial optimization problem over a set system, which consists of
defender’s pure strategy space. The key technique we use is based on projection
of a polytope based transformation, and the ellipsoid method. While in its most
generality, capturing the equilibria under such an intricate model, is computationally
hard, we provide several important classes of real-life problems for which our
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techniques can be used to develop optimal defense mechanisms. Based on our new
mathematical framework, we outline a number of important future directions that
can be investigated. The area of game theory coupled with reinforcement learning
is fertile ground for solving many important security related problems.
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Chapter 3
Entropy-Based Proactive and Reactive
Cyber-Physical Security

Aris Kanellopoulos and Kyriakos G. Vamvoudakis

Abstract This chapter considers the problem of securely operating a cyber-
physical system under different types of attacks, including actuator and sensor
attacks. The proposed defense approach consists of a proactive and a reactive
mechanism. The proactive part leverages the principles of moving target defense,
and introduces a stochastic switching structure that dynamically and continuously
alters the behavior of the system, aiming to neutralize the attacker’s reconnaissance
efforts. An unpredictability metric is proposed that utilizes the entropy induced by a
switching supervisor, in order to maximize efficiency. The reactive part isolates the
potentially compromised system components. A novel integral Bellman-based intru-
sion detection system is used to detect the attacks and take appropriate measures by
collecting data online and without knowledge of the physical interpretation of the
system. Simulation results are presented to showcase the efficacy of the proposed
approach.

3.1 Introduction

Cyber-physical systems (CPS) are complex platforms that consist of a multitude of
heterogeneous physical components, integrated through communication protocols
and operated via the appropriate software which implements the decision making
algorithms [1]. CPS have found application in a variety of technological areas
ranging from autonomous vehicles [2], medical applications [3], and smart grids [4,
5], to military operations. Similar to computer systems, CPS are prone to component
vulnerabilities that pose a threat by leading to malicious exploits. However, the tight
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interconnection of the physical and the information layers, results in an increase of
the complexity of the system, and of the number of attack angles available to an
adversarial agent.

Attacks on systems that leverage the coupling between the physical devices and
the underlying software have been observed in numerous occasions [6]. Perhaps
the most infamous real world CPS attack was due to the development of the
Stuxnet virus, a computer worm that targeted programmable logic controllers [7].
Autonomous vehicles in particular have been shown to be vulnerable to malicious
behaviors [2].

The need for deception stems from the inherent asymmetry created between
the attacker and the defender in network security scenarios. On the one hand, the
defender has to take into account all the subsystems of the network, as well as
every conceivable exploit and fortify the network adequately. However, this task
is extremely difficult, if not impossible when were one considers the existence of
zero-day exploits. On the contrary, the attacker can be successful in compromising
the system by discovering even a single vulnerability. Moreover, it is known that
one of the most important, as well as time-consuming, phases of a cyber-attack
takes place during system reconnaissance [8]. Thus, moving target defense (MTD)
is introduced as a defense paradigm that aims to deceive the attacker by persistently
changing the behavior of the system in an unpredictable way so as to invalidate the
attacker’s perception.

In this chapter, a novel algorithm that combines proactive and reactive security
will be proposed. Instead of attempting to make the system resilient to attacks by
sacrificing usability and optimality, we will assume that a continuously switching
architecture equipped with an intrusion detection system will serve three distinct
roles. Namely, (i) it will shrink the window of opportunity of the attacker by
increasing the cost of estimating the exploits of the system; (ii) even under
successful attacks, the system will be able to return to its healthy state; and (iii)
by keeping compromised subsets of the system offline, the defender will be able to
mitigate the damage that the system has suffered and trace the attacker.

While in this chapter we will focus on proactive defense that employs actuator
and sensor redundancy, the present approach can be extended to leverage the
increasing autonomous capabilities of CPS. The extension of block-chain and
cloud services integrated with CPS only expands the possibilities of formulating
a continuously shifting and impenetrable system of systems [9].

3.1.1 Related Work

The need to develop a security approach for CPS that examines the network as
a whole, rather than utilize algorithms that operate only on the computational
layer, was highlighted in [10]. Decision theory [11] offers mathematically rigorous
tools for behavior analysis, even for large-scale and complex systems. Conse-
quently, techniques have been proposed for security algorithm design through
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decision-theoretic concepts [12–14]. Among the different design approaches, opti-
mal decision theory and game theory [15] have emerged as important frameworks
due to their abilities to satisfy user-defined performances in adversarial environ-
ments.

In a more general game-theoretic context, in [11], network security problems
are formulated as zero-sum games between the operators of the system and the
attacking parties. Game theory is brought together with network security in a
dynamical system setting in [16], where the authors introduce graphical game Nash
equilibria and design optimal policies for interconnected dynamic agents under
attacks. However, those approaches still allow the attacker to take advantage of the
asymmetric nature of network security, since they seek to mitigate, rather than deter
them. The authors in [17], employ trust metrics between the agents of a network.

Solutions to network security that leverage unpredictability and deception have
been examined before, but they remained in the domain of the information
layer [18–20]. More specifically, the authors in [21] utilize a constantly rotating
Internet Protocol version 6 (IPv6) addressing to increase the network’s privacy
and anonymity. In [20], the authors introduce the Open-flow random host mutation
scheme that assigns virtual, unpredictably changing, IPs to the network’s hosts. A
more formalized approach to MTD was introduced in [22], leading to an MTD
entropy hypothesis framework that is generally applicable. The authors in [23]
investigate the idea of MTD through a multilayer zero-sum game, where the action
space of the defender consists of the different system configurations available. The
solution to this game provides a stochastic policy that randomizes among those
configurations in a dynamic fashion. From a control-theoretic perspective, an MTD
approach has been used to enlarge the dimension of the state space in [24].

The authors in [25] fuse all the available sensor information, even if they
are corrupted, and formulate a procedure for robust estimation if less than half
of the sensors are compromised. The concept of redundancy through switching
mechanisms, in order to relax such an assumption, has been leveraged in previous
works. In [26, 27], the intrusion detection subsystem explicitly estimated the attack
input, and switched the system via the principles of passivity-based control.

3.1.2 Structure

The remainder of the paper is structured as follows. Section 3.2, formulates the
problem of securing a CPS from actuator and sensor attacks while also increasing
the attacking surface to enhance uncertainty and unpredictability. In Sect. 3.3,
we focus on proactive and reactive defense against actuator attacks. Section 3.4,
extends the framework of Sect. 3.3, to incorporate a proactive and reactive defense
framework against sensor attacks. Simulation results are shown in Sect. 3.5 and
a discussion regarding the proposed algorithm are discussed in Sect. 3.6. Finally,
Sect. 3.7 concludes and discusses future work.
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3.1.3 Notation

The notation used in this paper is standard. λ̄(A) is the maximum eigenvalue of the
matrix A and λ(A) is its minimum eigenvalue. ‖·‖ denotes the Euclidean norm of a
vector and the Frobenius norm of a matrix. The superscript � is used to denote the
optimal trajectories of a variable. (·)T denotes the transpose of a matrix. ∇x and ∂

∂x

are used interchangeably and denote the partial derivative with respect to a vector x.
The cardinality of a set, i.e., the number of elements contained in the set, is denoted
by card(·). 2A denotes the power set of a set A, i.e., the set containing all the subsets
of A, including the empty set and the A itself. Finally, supp(x) denotes the support
of a vector, i.e., the number of its non-zero elements.

3.2 Problem Formulation

Consider the following nonlinear continuous-time system describing physical and
cyber inter-dependencies,

ẋ(t) = f (x)+ g(x)ua(t), t ≥ 0,

y(t) = ha(x, t),
(3.1)

where x(t) ∈ R
n is the state, ua(t) ∈ R

m is the potentially attacked input of the
system (decision policy), y(t) ∈ R

p is the output, f (x) : Rn → R are the drift
dynamics, which show the evolution of the system’s state in the absence of input,
g(x) : Rn → R

n×m are the input dynamics, which couple the input decision policy
with the system’s evolution, and ha(x, t) : R

n × R
+ → R

p is the potentially
attacked output function, that provides the measurable data in which the operator
has access.

We can rewrite (3.1) as,

ẋ(t) = f (x)+
m∑

i=1

gi(x)ui,

yj (t) = haj (x, t),j ∈ {1, . . . , p},

where gi(x) is a column vector corresponding to the i-th actuator, ui is the value of
the input signal associated with this actuator, and yj is the output given by a specific
sensor haj(x, t).

The potentially compromised input of (3.1) will have the following form,

ua(t) = ρ(t)u(t), (3.2)

where ρ(t)= diag(ρii(t)), ∀i∈{1, . . . , m} is a time varying actuator attack parameter
controlled by an adversary and u(t) ∈ R

m is the non-attacked input.
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The output function of the system can be undermined by a signal ρs(t) as,

ha(x, t) = ρs(t)h(x), (3.3)

where ρs(t) is a diagonal matrix controlled by the attacker and h(x) : Rn → R
p is

the non-attacked output function.

Assumption 3.1 In order to offer a greater degree of freedom for deception purposes
and to mitigate the effect of potential attacks, we will consider systems with
redundant actuating and sensing components.

�
Assumption 3.2 We will assume that the system’s actuators are not compromised
over a time interval τ ∈ [t1, t2] if and only if ρii(t)= 1, ∀i∈{1, . . . , m}, ∀τ . Similarly,
we consider the sensors as secure, if and only if ρs

jj (t) = 1, ∀j∈{1, . . . , p} ∀τ . The
signals (3.2) and (3.3) are assumed to be locally integrable over any closed time
interval [t1, t2], 0≤ t1 < t2. �
Remark 3.1 It should be noted that our formulation will make no assumptions
on the structure, on boundedness and other Lipschitz continuity properties of the
attacker’s signal. Furthermore, attacks of the form (3.2) and (3.3), due to their
time-varying nature, can describe a wide range of attacks, including additive and
multiplicative attacks.

�
Assumption 3.3 We will assume that the attacker is not able to compromise all of
the actuators and sensors at once. Therefore, supp(ρ) < m and supp(ρs) < p.

�
We are thus interested in designing a proactive and a reactive defense mechanism

that will operate well in the absence of attackers, while also detecting and mitigating
real-time attacks.

In order to derive closed-form solutions for the proactive decision and mitigation
policies, as well as for the intrusion detection system, we will henceforth utilize a
linearized form of the system (3.1) as,

ẋ(t) = Ax(t)+ Bua(t), t ≥ 0,

y(t) = Ca(t)x(t),
(3.4)

where A ∈ R
n×n is the plant matrix, B ∈ R

n×m is the input matrix, and Ca(t) ∈
R

p×n is the potentially attacked output matrix.
Accordingly, the actuation and sensing redundancy can be highlighted by

expressing the system in the form,

ẋ = Ax +
m∑

i=1

biui,

yj = caj x,j ∈ {1, . . . , p},
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where bi is a column vector corresponding to the i-th actuator, ui is the value of the
input signal associated with this actuator, and yj is the output given by a specific
sensor caj corresponding to the j-th row of the output matrix Ca(t)= ρs(t)C, where
C is the output matrix in the absence of attacks.

3.3 Defense Against Actuator Attacks

We will initially focus our attention to the case of actuator attacks. Let B denote the
set containing the actuators of (3.4) by the vectors bi, i∈{1, . . . , m}. The power set
of B, denoted as 2B , contains all possible combinations of the actuators acting on
(3.4). Each of these combinations is expressed by the input matrix Bj, j∈{1, . . . , m}
whose columns are the appropriate vectors bi.

The set of the candidate actuating modes Bc is defined as the set of the actuator
combinations that renders the system (3.4) fully controllable, i.e.,

Bc =
{
Bj ∈ 2B : rank(

[
Bj ABj . . . An−1Bj

]
) = n

}
. (3.5)

The system (3.4) assuming full state-feedback, with the actuating mode Bi can
be rewritten as,

ẋ = Ax + Biui, i ∈ {1, . . . , m}, t ≥ 0. (3.6)

Remark 3.2 Note that, we do not require different actuating modes to share
common actuators. Moreover, while a single actuating mechanism might be able
to drive and mitigate a system, two different—less potent—mechanisms might need
to work cooperatively for the same system. All these modes will belong to the set
described in (3.5).

�

3.3.1 Optimal Feedback Policies Design

For each actuating operating mode Bi, i∈{1, . . . , m}, we denote the candidate policy
as ui(t).

We are interested in deriving optimal decision policies for each of these modes.
Towards that, we are interested in solving the following optimization,

V �
i (x(t0)) = min

ui

∫ ∞

t0

ri(x, ui)dτ

≡ min
ui

∫ ∞

t0

(xTQix + uT
i Riui)dτ, ∀x(t0),

(3.7)
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given (3.6), where Qi � 0, Ri � 0, ∀i ∈ {1, . . . , card(Bc)} Intuitively, the
matrices Qi penalize the deviation from the zero state, while the matrices Ri penalize
the energy content of the feedback policies.

Assumption 3.4 We assume that each pair (A,
√

Qi) is detectable.

�
The Hamiltonian associated with (3.6) and (3.7) is,

Hi(x, ui,∇Vi) = ∇V T
i (Ax + Biui)+ xTQix + uT

i Riui, ∀x, ui,

with Vi denoting the value function, not necessarily the optimal.
Applying the stationarity conditions ∂Hi(x,ui ,∇Vi)

∂ui
= 0, yields,

ui = −R−1
i BT

i ∇Vi. (3.8)

The optimal value functions V �
i (·) must satisfy the following HJB equation,

xTQix +∇V �T
i Ax − 1

2
∇V �T

i BiR
−1
i BT

i ∇V �
i = 0. (3.9)

Since all the systems described by (3.6) are linear and the cost given by
(3.7) is quadratic, all the value functions will be quadratic in the state x, i.e.,
V �

i (x) = xTPix. Substituting this expression into (3.9) and the resulting optimal
value function into (3.8), yields the feedback policy with optimal gain Ki,

u�
i (x) = −Kix := −R−1

i BT
i Pix, ∀x,

where Pi� 0 are the solutions to the following Riccati equations,

ATPi + PiA− PiB
T
i R−1

i BT
i Pi +Qi = 0. (3.10)

We introduce K as the set containing all Ki, i∈{1, . . . , m}, with the under-
standing that card(K ) = card(Bc). For ease of exposition, with some abuse of
notation we will consider Ki to mean the optimal policy with this gain as well as its
corresponding index.

Fact 3.1 Due to (3.5) and Assumption 3.4, for each Bi, the solution exists and is
unique. �
Fact 3.2 Each Ki, with input given by (3.8) guarantees that (3.4) has an asymptoti-
cally stable equilibrium point. �
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3.3.2 Switching-Based MTD Framework

We will now develop a framework to facilitate deception of potential attackers based
on the principles of MTD. MTD algorithms aim to change the parameters of the
network in an unpredictable and stochastic fashion therefore increasing the cost of
attack, limiting the exposure of vulnerable components, and deceiving the opponent.
The assumption of redundancy on the actuation and sensor systems is required
to offer the intelligent secure policy the appropriate degree of freedom to alter
parameters, conceal vulnerable components and isolate potentially compromised
ones, without risking the safe operation of the network. The MTD Hypothesis states
that MTD systems are more successful the more unpredictable and chaotic they
are. To define an unpredictability metric to optimize, we will consider the entropy
induced by the proposed dynamic network security algorithm.

3.3.2.1 Maximization of Unpredictability

To formally define the switching law, we need to introduce the probability simplex
p, which denotes the probability that each feedback policy Ki is active.

To incorporate ideas from the framework of MTD, we propose a switching rule
that optimizes over the minimum cost that each feedback policy is able to attain, as
well as an unpredictability term quantified by the information entropy produced by
the switching probability simplex p. This way, we will achieve the desired trade-off
between overall optimality and unpredictability. The use of information entropy is a
standard practice in MTD design [28].

Theorem 3.1 Suppose that (3.4), is driven by N = card(K ) candidate policies
with an associated cost given by (3.7). Then, the probability pi that each policy Ki

is active is given by,

pi = e

(
− Vi

ε
−1−ε log

(
e−1∑N

i=1 e
Vi
ε

))
,

(3.11)

with ε ∈ R
+ denoting the level of unpredictability.

Proof We formulate the following optimization problem,

min
p

(
V�Tp− εH (p)

)

subject to :‖p‖1 = 1 and p � 0,

where V� := [
V �

1 . . . V �
N

]T = [
x(t0)

TP1x(t0) . . . x(t0)
TPNx(t0)

]T
denotes a

column vector containing the value function of each candidate policy, H (p) =
−pTlog(p) is the information entropy produced by the simplex. Furthermore, for
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the decision vector p to constitute a probability simplex we constrain it to the non-
negative orthant (i.e. pi≤ 0 , ∀i∈{1 . . . N}) and we require its l1 norm to satisfy,
‖p‖1 =∑N

i=1 ‖pi‖ = 1.
The entropy of a probability is a concave function [29] and therefore, the cost

index, being a sum of a linear function of the probability and the negative entropy,
is convex. Thus, we can define the Lagrangian of the optimization problem as,

L = V�Tp− εH (p)+ λ(1Tp− 1)+ βββTp
= V�Tp+ εpT log(p)+ λ(1Tp− 1)+ βββTp,

where 1 denotes a vector consisting of ones of appropriate dimensions, and λ, β are
the Karush-Kuhn-Tucker (KKT) multipliers.

The KKT conditions for the problem are,

∇pL = V� + ε1+ ε log(p)+ λ1+ βββ,

and the complementarity conditions for the optimal solution p� are,

βββTp� = 0.

If there exists an i for which pi= 0, then the term log(pi) will be undefined.
Consequently, for the optimization problem to be feasible, one of the following two
conditions need to hold,

• ε log(pi) = 0,∀i ⇒ ε = 0 ⇒ p� = [
0i−1 . . . 1 . . . 0N−i

]T
where the Ki

feedback policy is the one with the overall less cost.
• β = 0.

Consider now the nontrivial case, i.e., β = 0, which yields,

∇pL = V� + ε log(p)+ ε1+ λ1 = 0.

The N equations for each policy are independent, leading to the following system
of equations,

V �
i + ε log(pi)+ ε + λ = 0,∀i ∈ {1, . . . , N}.

Solving now for the optimal probabilities pi, yields,

pi = e

(
− V �

i
ε
− λ

ε
−1

)
,∀i ∈ {1, . . . , N}. (3.12)

Taking into account that,

‖p‖1 = 1 ⇒∑N
i=1 pi = 1 ⇒∑N

i=1 e

(
− V �

i
ε
− λ

ε
−1

)
= 1.
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and solving for λ, yields,

λ = ε log

(
e−1

N∑
i=1

e(− V �
i
ε

)

)
. (3.13)

Substituting (3.13) in (3.12) provides the required result.

3.3.2.2 Switching-Based MTD Scheme

In order to formally define the behavior of the system under the proposed MTD
framework, we shall formulate a switched system consisting of the different
operating modes.

First, we introduce the switching signal σ (t)= i, i ∈ {1, . . . , card(K )}, which
denotes the active policy as a function of time. This way, the system is,

ẋ(t) = Ãσ(t)x(t),

where Ãσ(t) := A − Bσ(t)R
−1
σ(t)B

T
σ(t)Pσ(t) denotes the closed-loop subsystem with

the policy Kσ (t) active.

Remark 3.3 Since the actual switching sequence is different under the designer’s
choice for unpredictability, we will constrain the switching signal to have a
predefined average dwell time. This way, the stability of the overall system will
be independent of the result of the optimization. Intuitively, as was initial shown in
[30], a system with stable subsystems is stable if the switching is slow enough on
an average sense. �
Theorem 3.2 Consider the system (3.4) in the absence of attacks. The switched
system defined by the piecewise continuous switching signal σ (t)= i, i ∈
{1, . . . , card(K )}, with active policy Ki given by (3.8) and continuous flow given
by (3.6) has an asymptotically stable equilibrium point for every switching signal
σ (t) if the average dwell time is bounded by,

τD >
maxq,p∈{1,...,card(K )}

λ̄(Pp)

λ(Pq)

minp∈{1,...,card(K )}
λ(Qp+PpBpR−1

p BT
pPp)

λ(Pp)

,

Proof The proof is given in [31].
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3.3.3 Integral Bellman-Based Intrusion Detection Mechanism

In this subsection, an intrusion detection mechanism is designed to identify
potentially corrupted sets of feedback policies that belong in the set K . The attack
detection signal will rely on the optimality property as well as on data measured
along the—possibly corrupted—trajectories of the system. Based on a sampling
mechanism, we denote the measurements of the state at the sampling instances as
xc(t) and define the functions V̂i (·) := xT

c Pixc, i ∈ {1, . . . , card(K )}. Intuitively,
we obtain a sampled version of the optimal value function along the system’s real,
and potentially compromised, trajectories.

Theorem 3.3 Consider that the system is operating with Ki ∈ K , designed based
on (3.8) and (3.9). Define the detection signal over a predefined time window T > 0,

e(t) = V̂i(xc(t − T ))− V̂i(xc(t))

−
∫ t

t−T

(xT
c Qixc + u�T

i Riu
�
i )dτ.

(3.14)

Then, the system is under attack if and only if e(t) �= 0. The optimality loss due
to the attacks, quantified by ‖e(t)‖, is bounded for any injected signal ρ(t) that is
integrable.

Proof As was proven in [32], Eq. (3.14) is the integral form of the Bellman
equation. For the sampled value of the state at t1= t−T, we have that,

V̂i(t − T ) = xT(t − T )Pix(t − T )

= min
ui

{ ∫ t

t−T

(xTQix + uT
i Riui)dτ + V̂i(t)

}
.

Since Pi� 0 we have,

V̂i (t − T ) = xT(t − T )Pix(t − T )

= min
ui

{ ∫ t

t−T

(xTQix + uT
i Riui)dτ

}+ xT(t)Pix(t).

For the accumulated cost utilizing the optimal input, and the cost utilizing an
arbitrary input ua, it is true that,

∫ t

t−T

(xTQix + u�
i Riu

�
i )dτ = min

ui

{ ∫ t

t−T

(xTQix + uT
i Riui)dτ

}

≤
∫ t

t−T

(xTQix + uT
aRiua)dτ ⇒∫ t

t−T

(xTQix + u�
i Riu

�
i )dτ =

∫ t

t−T

(xTQix + uT
aRiua)dτ − I (ρ).
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Due to Assumption 3.4, the solution is unique. By extension, the optimal cost
over any time interval is also unique. Consequently, the system is not under attack
only when I(ρ)= 0.

Algorithm 1: Proactive/reactive defense mechanism for actuator attacks

1: procedure
2: Given initial state x(t0), and time window T .
3: Find all permutations of actuators (columns of B) and derive the subset of controllable

pairs (A,Bi), denoted by K .
4: for i = 1, . . . , card(K )

5: Compute the optimal feedback gain and Riccati matrices Ki , Pi according to (3.8) and
(3.10).

6: Compute the optimal cost of each feedback policy for the given x(t0).
7: end for
8: Solve for the optimal probabilities p�

i using (3.11).
9: At t = t0, choose the optimal policy for which σ(t0) = arg mini

(
x(t0)

TPix(t0)
)
.

10: while σ(t) = i and t < τD

11: Compute the integral Bellman error detection signal using (3.14).
12: Propagate the system using (3.6).
13: end while
14: Choose the random mode σ(t + τD) = j and go to 9.
15: if ‖ei(tc)‖ > 0
16: Take the i-th feedback policy implementation offline.
17: Switch to the policy with the best performance,

σ(tc) = arg min
i∈K \i

(
x(t0)

TPix(t0)
)

and go to 9.
18: end if
19: end procedure

Fact 3.3 It has been shown, that pi > 0, ∀i ∈ {1, . . . , card(K )}. Consequently, there
exists a t�f such that there ∃τ ∈ [t0, t�f ] with σ (τ )= i ∀i ∈ {1, . . . , card(K )}
and an arbitrary t0 > 0. This means that, since the probability that all policies will
eventually be active, there is some time interval long enough, such that we have
already switched through every available policy. This way we can guarantee that
eventually every compromised policy will have become active and subsequently
isolated. �
Theorem 3.4 Suppose that the (3.4), uses the framework of Algorithm 1. Then the
closed-loop system has an asymptotically stable equilibrium point given that the
attacker has not compromised all the available feedback policies, i.e., K \Kc �= ∅,
where Kc is the subset of those policies that have been compromised by an attacker.
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3.3.3.1 Intrusion Detection Under Actuation Noise

It is possible to extend the results of the previous section to take into account noise
in the actuation mechanism, i.e. in (3.4),

ua(t) = ρ(t)u�(t)+ w(t),

where w(t) is a bounded but otherwise unknown disturbance with ‖w(t)‖ ≤ w̄.

Theorem 3.5 The system (3.4), equipped with the MTD decision scheme described
in Sect.3.3 and the detection mechanism as defined in Theorem 3.3, under the effect
of a disturbance w(t) is compromised if,

‖e(t)‖ ≥ ei,thres(t)

where ei,thres are dynamic thresholds for each feedback mode of the form,

ei,thres(t) = 2‖w̄‖
∫ t

t−T

‖Riu
�
i (τ )‖dτ + λ̄(Ri)‖w̄‖2.

Proof First, we will consider the system in the absence of attacks and formulate the
intrusion detection signal based on the data along the trajectories of the system. In
other words we can write,

e(t) = V̂i(t − T )− V̂i(t) −
∫ t

t−T

(xTQix + uT
aRiua)dτ

= V̂i(t − T )− V̂i(t) −
∫ t

t−T

(
xTQix + (u�

i + w)TRi(u
�
i + w)

)
dτ

= V̂i(t − T )− V̂i(t) −
∫ t

t−T

(xTQix + u�T
i Riu

�
i )dτ

−
∫ t

t−T

(wTRiu
� + u�T

i Riw + wTRiw)dτ.

Leveraging the integral Bellman equality and taking norms, yields,

‖e(t)‖ ≤ 2
∫ t

t−T

‖wTRiu
�
i ‖dτ +

∫ t

t−T

‖wTRiw‖dτ ⇒

‖e(t)‖ ≤ 2‖w̄‖
∫ t

t−T

‖Riu
�
i (τ )‖dτ + λ̄(Ri)‖w̄‖2,

which is the adaptive threshold for the active feedback i.

Remark 3.4 It should be noted that the adaptive threshold can be computed online
utilizing only knowledge of the optimal input signal that the feedback policy sends
to the system (and not the potentially corrupted one). �
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3.4 Defense Against Sensor Attacks

In this section we show how the methods developed can be applied to securely
estimating the state of a system with compromised measurements by employing
sensor redundancy.

3.4.1 Candidate Sensors Sets

Similarly to the proposed framework for the actuators, we introduce the set of all
sensors, denoted by C , and the elements of its power set Ci ∈ 2C , where Ci ∈ Ci is
a combination of the different rows of C.

The set of candidate sensing modes So is defined as the set of the sensor
combinations that renders the system (3.4) fully observable,

So =
{
Cj ∈ 2C : rank

⎛
⎜⎜⎜⎝

⎡
⎢⎢⎢⎣

Cj

CjA
...

CjA
n−1

⎤
⎥⎥⎥⎦

⎞
⎟⎟⎟⎠ = n

}
.

The system utilizing the sensor combination Ci is,

ẋ = Ax + Bu,

yi = Cix.

Remark 3.5 We note the distinction between the set of sensors C and the set of
sensing modes So. The set of sensors contains the different physical components
that measure parts of the system’s behavior. On the other hand, the set of sensing
modes contains those cooperating sensors together with an observer scheme that
reconstruct an estimate of the system state. �

3.4.2 Optimal Observer Design

The observer of (3.4) will be now designed as a dynamic system sharing the same
structural properties,

˙̂x = Ax̂ + Bu+ Būi,

ŷi = Cix̂,
(3.15)
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where x̂, ŷi are the estimates of the state and the output respectively, ūi denotes a
“fictional” input, i.e., a correction term which forces the observer to track the actual
system.

Remark 3.6 The state estimate x̂ is independent of the active sensing mode. On the
other hand, the output ŷi and “fictional” input ūi are not. �

To design the optimal ūi , we define the optimization problem based on the
following cost function ∀t≥ 0,

U�
i (x̂) = min

ūi

∫ ∞

t

[
(ŷi − yi)

TQi(ŷi − yi)+ ūT
i Ri ūi

]
dτ.

Defining the Hamiltonian of the system as,

Hi(x̂, ū�
i , U

�
i ) = (ŷi − yi)

TQi(ŷi − yi)+ ū�T
i Ri ū

�
i

+∇U�T
i (Ax̂ + Bu+ Bū�

i ) = 0.
(3.16)

We can now find the optimal policy from the stationarity conditions
∂Hi(x̂,ū�

i ,U
�
i )

∂ū�
i

= 0. This leads to,

ū�
i = −R−1

i BT∇U�
i (x̂).

Due to the quadratic structure of the cost functional and the linear structure of
the dynamic system, we assume that the value function is quadratic in x̂(t), i.e.,
U�

i (x̂) = x̂TGix̂ , which means that the optimal ‘input’ is,

ū�
i = −R−1

i BTGix̂. (3.17)

In this section, we show how the same techniques introduced and analyzed in the
previous sections can be applied to detect and mitigate sensor attacks.

3.4.3 MTD for Sensor Attacks

Theorem 3.6 The state estimation scheme utilizing optimal observers as described
by (3.15), for every sensing mode in So has an asymptotically stable equilibrium
point under a switching-based MTD mechanism given that the switching signal has
the average dwell time,
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τD >
maxq,p∈{1,...,card(So)}

λ̄(Gp)

λ(Gq)

minp∈{1,...,card(So)}
λ(CT

i QpCi+GpBpR−1
p BT

pGp)

λ(Gp)

.

Proof The proof is given in [31].

Remark 3.7 The optimization problem solved in Sect. 3.3 is identical for the case
of sensor switching. As a result, the probability that a certain sensing mode Si is
active, obeys (3.11). The ideas from Sect. 3.3 directly apply to the sensor problem.
�

3.4.4 Integral Bellman Based Intrusion Detection for Sensor
Attacks

We will now introduce a detection signal based on the online, possibly compro-
mised, estimations of the state, which we will denote x̂c(t). For that reason, we
formulate the function Ûi(t) = x̂T

c Gix̂c.

Theorem 3.7 Consider the system (3.4) operating with the sensor mode Si ∈ S ,
designed based on (3.16) and (3.17). Define the detection signal over a predefined
time window T > 0 as,

es(t) = Ûi(x̂c(t − T ))− Ûi(x̂c(t))−
∫ t

t−T

(
(yi − ŷi )

TQi(yi − ŷi )+ ū�T
i Ri ū

�
i

)
dτ.

Then, the system is under attack if and only if es(t) �= 0. Moreover, the optimality
loss due to attacks, is bounded for any injected signal ρs(t).

3.4.5 Proactive and Reactive Defense for Sensor Attacks

We will now combine the proactive defense mechanism with the intrusion detection
system described above. The pseudo-code for the operation is presented in Algo-
rithm 2.

Remark 3.8 We can combine the algorithmic frameworks presented for both
actuators and sensor attacks. However, the result would be conservative, since the
two problems are coupled. Consequently, we cannot differentiate between integral
Bellman errors caused by an actuator or a sensor attack. �
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Algorithm 2: Proactive/reactive defense mechanism for sensor attacks

1: procedure
2: Given initial state x(t0), system dynamics (3.4) and time window T .
3: Find all permutations of sensors (rows of C) and derive the subset of observable pairs

(A,Ci), denoted So.
4: for i = 1, . . . , card(So)

5: Compute the optimal ‘fictional’ input and value function according to (3.16) and (3.17).
6: Compute the optimal cost of each observation mode for the given x(t0).
7: end for
8: Solve for the optimal probabilities p�

i using (3.11).
9: At t = t0, choose the optimal observer.

10: while σ(t) = i and t < τD

11: Compute the integral Bellman error detection signal using (3.18).
12: Propagate the system using the observer dynamics.
13: end while
14: Choose a random mode σ(t + τD) = j and go to 9.
15: if ‖es(tc)‖ > 0
16: Take the i-th observer offline.
17: Switch to the safe observer with the best performance and go to 9.
18: end if
19: end procedure

3.5 Simulation Results

In this section, we present simulation results to showcase the operation, efficacy,
and shortcomings of the proposed approach.

Since redundancy is standard practice in the defense and aviation industries,
where safety factors often require two to four redundant systems, it is natural to
showcase the efficacy of our results in intelligent transportation systems. Towards
this, we utilize the linearized model of a submarine as described in [33] as well as
the benchmark ADMIRE aircraft [34]. Those systems are equipped with redundant
actuators and sensors, allowing both proactive switching as well as enforced
isolation of the compromised components.

Figure 3.1, shows the states of the underwater vehicle under the MTD switching
mechanism. System operation above the minimum switching time threshold, guar-
antees that the system is stable. Figure 3.2 shows the state of the system under attack
while the combined proactive/reactive framework is operational and Fig. 3.3 the
switching signal. The actuating mode under attack corresponds to switching signal
i= 3, which is also the most optimal. We notice that after the attack is detected, that
mode is taken out of the switching queue.

Next, we highlight the use of the proposed intrusion detection algorithm for
sensor attacks. The objective is to correctly estimate the setpoint of the angle of
attack for the ADMIRE aircraft. Notice that we take into account the presence of
sensor noise, and derive an adaptive intrusion threshold similar to the one examined
in Theorem 3.5. Figure 3.4 shows the true and estimated values of the angle of
attack, while Fig. 3.5, the integral Bellman error.
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Fig. 3.1 Aircraft states under the persistent proactive actuator switching
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Fig. 3.2 The evolution of the state with both proactive and reactive defense
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Fig. 3.3 The evolution of the switching signal with both proactive and reactive defense
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Fig. 3.5 The evolution of the integral Bellman error and adaptive threshold in the presence of
sensor attacks

3.6 Discussion

One of the major advantages that the proposed integral Bellman-based intrusion
detection system offers, is that it can be extended to systems whose dynamics are
unknown. We can achieve this by combining the proposed system with model-free
reinforcement learning algorithms that allow online estimation of the value function
[32]. In Fig. 3.5, we see the simulation results of the aforementioned procedure.

We note that the integral Bellman error becomes zero once the learning process
has ended. Consequently, while it is possible to implement model-free secure
optimal feedback policies, extensive research must be conducted on the capabilities
of the attacker in compromising the learning process itself. This research direction
will investigate a type of adversarial learning for CPS.

It is important for the network security community to derive a systematic way of
evaluating the effect of proactive defense systems. So far, the usual procedure entails
designing the MTD scheme and utilizing simulation results to show the effects on
the attacker as well as to evaluate the overall optimality of the secure system. In this
chapter, we present preliminary results that support the use of proactive security.
Figure 3.6 shows the evolution of the data-driven intrusion detection system. In
Fig. 3.7, we show the optimality loss that occurs when more weight is given to
unpredictability during the entropy optimization. The theoretical bound is derived
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Fig. 3.8 Optimality loss and rate of successful attacks as a function of the entropy

when the active feedback policies follow a uniform distribution. In Fig. 3.8, we show
the simultaneous increase in optimality loss, with the decrease in the percentage
of successful defense penetrations for a given attack policy. It is noticeable that
the rate with which the percentage of successful attacks decreases is greater than
the optimality loss that the system suffers. This is a clear indication that proactive
defense frameworks can indeed support the safe operation of the CPS.

However, those approaches rely on heuristic metrics. To examine the effects of
different security algorithms rigorously, a realistic model of the behavior of the
adversary is needed. In the literature, game-theoretic frameworks have been utilized
in this regard. The infinite intelligence assumption that is central in game-theoretic
results fails to take into account the bounded resources, both physical and cognitive,
upon which the success of MTD rests. To mitigate that, novel models for malicious
agents in networks must be introduced. The resulting non-equilibrium security game
theory would allow the inclusion of deception techniques like MTD.

3.7 Conclusion and Future Work

In this chapter, a defense framework for CPS is developed. In order to increase the
cost of the attack for the malicious agent, the system utilizes a proactive security
mechanism based on the principles of MTD. A formal unpredictability metric is
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introduced and optimized so that the resulting switched system provides the best
compromise between overall optimality and security. Simultaneously, the system’s
performance, quantified via the integral Bellman equation, is evaluated online
and employed to detect intrusions in both the actuators and the sensors. Once an
attack has been detected, the corresponding subsystems are isolated. Consequently,
the CPS integrated with the proposed system can operate if the attacker has not
compromised every available component.

Future work will include a rigorous analysis of the model-free case that was
highlighted in Sect. 3.6. Also, we will examine the effect of attacks during the
learning phase, formulating a continuous-time decision-theoretic equivalent of
adversarial learning. Finally, in order to better evaluate the success of the proposed
MTD algorithm, models of attacker intelligence will have to be introduced in our
network security framework. Those models will be realistic in their reasoning and
cognitive bounds.
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Chapter 4
Security-Aware Incentives Design for
Mobile Device-to-Device Offloading

Jie Xu and Lixing Chen

Abstract Device-to-Device (D2D) computation offloading, or D2D offloading,
exploits spare computing resources of nearby user devices to enhance mobile
computing performance. Its success relies on user participation in costly collab-
orative service provisioning, thus mandating an incentive mechanism that can
compensate for these costs. Although incentive mechanism design has been studied
extensively in the literature, this paper considers a more challenging yet less
investigated problem in which selfish users are also facing interdependent security
risks that depend on the collective behavior of all users. To this end, we build a novel
mathematical framework by combining the power of game theory and epidemic the-
ory to investigate the interplay between user incentives and interdependent security
risks in D2D offloading, thereby enabling the design of security-aware incentive
mechanisms. Our analysis discovers an interesting “less is more” phenomenon:
although giving users more incentives promotes more participation, it may harm
the network operator’s utility. This is because too much participation may foster
persistent security risks and as a result, the effective participation level does not
improve.

4.1 Introduction

More and more mobile applications nowadays demand resources (e.g. processer
power, storage, and energy) that frequently exceed what a single mobile device can
deliver. To meet this challenge, mobile cloud computing (MCC) ([1] and references
therein) offloads computation tasks from mobile devices to the remote cloud
for processing, and more recently, mobile edge computing (MEC) [2, 3] moves
computation and storage capabilities from the central cloud to the network edge
devices such as base stations (BSs). In both MCC and MEC, mobile users access
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computing services on a centralized and fixed server through wireless connection.
However, the ever-growing number of mobile devices and volume of sensory data
pose increasingly heavy traffic burden on the core wireless network. Moreover, edge
servers are also likely to be overloaded due to the increasing computation demand.
To overcome these drawbacks, device-to-device (D2D) communication is exploited
for offloading computation to nearby peer mobile devices, thereby fully unleashing
the potential of their computation power [4–7]. This technique, known as D2D
offloading, not only increases the wireless network capacity but also alleviates the
computation burden from centralized servers.

However, the mobile D2D architecture poses many challenges on computation
offloading and two key challenges are incentives and security: because providing
offloading service incurs extra costs (e.g. computation/transmission energy con-
sumption) to the mobile users acting as servers, incentives must be devised to
encourage selfish users to participate; because D2D offloading relies on ordinary
mobile users whose security protection is much weaker than the centralized server,
D2D offloading is much more vulnerable to security attacks [8]. A commonly
seen security risk in mobile networks is proximity-based infectious attacks [9,
10]. In such attacks, mobile user equipments can get compromised by proximity-
based mobile viruses when they are acting as D2D servers and consequently are
unable to provide service to other users. Moreover, compromised users become
new sources of attacks when they communicate to other users via D2D in the
future, thereby spreading the attack across the entire network. Although incentives
and security are often treated as separate topics in the literature, they are indeed
intricately intertwined in the mobile D2D offloading system. On the one hand, the
outcome of attack depends on users’ collective decisions on the participation in
D2D offloading and hence, the risk is interdependent among all users. Intuitively,
more participation fosters faster and wider spread of the attack and hence may
cause a greater damage to the overall system. On the other hand, the security risk
shapes individual users’ participation incentives. In view of a larger chance of being
compromised, individual users may strategically reduce their participation levels,
thereby degrading the performance of collaborative computation. Although there
is a huge literature on incentive mechanism design, systematic understanding of
participation incentives under interdependent security risks and their impacts on the
network performance is largely missing.

In this chapter, we investigate the interplay between incentives and interdepen-
dent security risks in mobile D2D offloading and design security-aware incentive
mechanisms. To this end, we build a novel analytical framework by combining
the power of game theory [11] and epidemic theory [12]. Since our main focus
is the potential infection risks due to D2D interactions (i.e. traffic exchange), the
developed techniques can also be extended to other mobile D2D systems besides
computation offloading. The main contributions of this work are as follows:

1. We focus on the utility maximization of a wireless network operator who pro-
vides both communication and computation services. The problem is formulated
as a Stackelberg game in which the operator is the leader, who designs the
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incentive mechanism for D2D offloading, and the mobile users are the followers,
who decide their participation levels by playing a non-cooperative game among
themselves in the presence of interdependent security risks.

2. We characterize individual users’ participation incentives under infectious
proximity-based risks with tunable user foresightedness. Users’ participation
strategy is shown to have a threshold structure: a user is willing to provide
wireless D2D offloading service if and only if the risk (i.e. the chance of serving
a compromised requester) is low enough.

3. We analyze the infection propagation dynamics when selfish users are strategi-
cally determining their participation levels. This analysis is in stark contrast with
existing epidemic studies which assume non-strategic users obediently following
prescribed and fixed actions. A key result is a phase transition between persistent
and non-persistent infection, which is substantially different in nature from the
non-strategic user case.

4. We discover an interesting “Less is More” phenomenon: although offering users
a higher reward promotes participation, a too high participation level degrades
the system performance and consequently reduces the operator’s utility. This
is because too much participation fosters persistent infection and hence, the
effective participation level does not improve.

4.2 Related Work

Data and computation offloading is used to address the inherent problems in mobile
computing by using resource providers other than the mobile device itself to host the
execution of mobile applications [13]. Our work focuses on D2D offloading which
uses nearby mobile devices as resource providers [4, 5, 14]. In general, computation
offloading is concerned with what/when/how to offload a user’s workload from its
device to other resource providers (see [15, 16] and references therein). The problem
studied in our work is not contingent on any specific offloading technology. Rather,
we design incentives in the presence of interdependent security risks and hence, our
approach can be used in conjunction with any existing offloading technology.

D2D offloading benefits from the fact that mobile users in close proximity can
establish direct wireless communication link over the licensed spectrum (inband) or
unlicensed spectrum (outband) while bypassing the cellular infrastructure such as
the BSs [17–19]. In practice, D2D communication has been implemented in industry
products such as Qualcomm FlashLinQ [20] and standardized by 3GPP [21].
Enabled by D2D communication, D2D offloading can further alleviate computation
burdens from the edge computing infrastructure [22]. A general consensus in the
literature is that mobile users would have no incentive to participate in D2D service
provisioning unless they receive satisfying rewards from the network operator [23].
Our prior works [24, 25] design virtual currency-based incentive mechanism to
promote wireless D2D relaying. A contract-based incentive mechanism is developed
in [26] to let users self-reveal their preferences. Market models are developed in [23]
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in which Stackelberg games and auctions are used to design incentive mechanisms
for open markets and sealed markets, respectively. However, these existing works
do not consider the interdependent security risks in the D2D interactions.

One of the greatest challenges for D2D offloading is the interdependent security
risk among users. Although offloading in general faces many security and privacy
issues, this work focuses on proximity-based infectious attacks which rely on the
cooperative interaction among users. Extensive research has shown that such attacks
can be easily initiated in wireless mobile networks and cause significant damage [9,
10]. To model such attacks, we utilize the popular Susceptible-Infected-Susceptible
(SIS) model [27–30] from the epidemics research community, which is a standard
stochastic model for virus infections and widely-adopted to investigate computer
virus/worm propagation. Existing works in this regard can be divided into two
categories. The first category adopts a mean-field approximation to study networks
consisting of a large number of individuals [27, 29]. The second category tries to
understand the influence of graph characteristics on epidemic spreading when users
are interacting over a fixed topology [28, 30]. Since mobile users are numerous and
server-requester matching is short-lived and random due to user mobility and task
arrival processes, the mean-field approach provides a good model approximation
for the D2D offloading architecture. However, all these works study non-strategic
users who are following given and fixed actions. The present work significantly
departs from this strand of literature and studies strategic users who choose their
participation levels to maximize their own utility.

Stackelberg game formulations have been proposed in resource allocation prob-
lems in wireless networks and D2D communication systems [31, 32]. For instance,
in [31], the D2D pairs as followers compete selfishly for the available bandwidth in
a non-cooperative game after the BS as the leader establishes a set of “prices” for
the received interference power from the D2D transmission on each subchannel.
Our considered problem is not a resource allocation problem. We study how to
incentivize users to participate in the D2D system and the formulated Stackelberg
game is used to understand users’ incentives under infectious risks and determine
the optimal incentive strategy by the operator.

4.3 System Model

4.3.1 Network Model and Incentive Mechanism

We consider a continuous time system and a wireless network in which mobile user
equipments (UEs) generate computation tasks over time. We adopt a continuum
population model for UEs to capture the large number of UEs in the network.
The network operator provides computation service so that UEs can offload their
data and tasks to the edge/cloud servers. When the edge/cloud server reaches its
computation capacity or the wireless network is congested, the operator will try
to employ D2D offloading, if possible, as a supplement in order to fulfill UEs’
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Fig. 4.1 Snapshot of one of the cells in the network

computation requests. In this case, the task data will be transmitted to nearby UEs
that have spare computing resources via wireless D2D communication (e.g. Wifi-
Direct [33] or LTE-Direct [34]). To facilitate the exposition, we call the UE who
requests the offloading service as the requester and the UE who provides the service
as the server. The considered wireless network is dynamic in two senses. First,
UEs are moving in the network and hence the physical topology of the network is
changing. We consider a generic mobility model that results in strongly mixed user
population. Second, each UE can be a requester when it has demand and can also
be a server when it is idle. As a result, the matchings of requesters and servers are
also changing over time depending on both the physical topology and the demand
arrival process. Note that there could be a lot of concurrent D2D offloading instances
going on at the same time in the network. Figure 4.1 shows a snapshot of part of the
network.

For each task completed via D2D offloading, the operator obtains a benefit due
to the saved wireless bandwidth and computation cost. The expected value of this
benefit is denoted by b0. On the other hand, D2D offloading incurs an extra cost
to the UE acting as the D2D server due to computation and transmission energy
consumption and hence, selfish UEs are reluctant to provide the D2D service unless
proper incentives are provided. Let the expected cost incurred to UE i by completing
one task be ci, which differs across UEs. Although the realized cost depends on
the specific computation task and the instantaneous wireless channel condition, for
the UE’s decision making purpose, we consider only the expected cost. In order
to motivate participation in providing D2D offloading service, the operator offers
reward to the participating UEs, in forms of free data or monetary payments, and
how much reward a UE can receive depends on its participation level.

We use contracts as the incentive mechanism as in [26]. Specifically, each UE i
makes a participation-reward bundle contract (at

i , r(a
t
i )) with the network operator
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at any time t where at
i is the participation level chosen by UE i, and r(at

i ) is the
unit time reward offered by the operator. A contract (at

i , r(a
t
i )) requires that UE i

provides D2D offloading service with a rate up to at
i tasks (from possibly different

requesters) per unit time. The reward r(a) is an increasing function of a. As a
practical scheme, the operator adopts a throttled linear reward function

r(a) =
{

r0a, ∀a ≤ Rmax/r0

Rmax, ∀a > Rmax/r0
(4.1)

where r0 is the unit reward and Rmax is the maximum reward that the operator is
willing to pay. Let M � Rmax/r0. Such a throttled scheme enables easy system
implementation and similar schemes are widely adopted by operators in the real
world.1 Nevertheless, our framework and analysis can also be applied to the reward
scheme without throttling. In practice, contracts have a minimum duration. To
simplify our analysis, we assume that the minimum contract duration is small
enough so that UEs can effectively modify their contracts at any time.

4.3.2 Participation Incentives in the Attack-Free Network

The operator assigns computation tasks to UEs according to their chosen partic-
ipation levels whenever D2D offloading is needed. Due to UE mobility and the
randomness in the task arrival, we model the D2D offloading request arrival assigned
to UE i as a Poisson process with rate at

i (which is a result of UE decision). The unit
time utility function of UE i by choosing a participation level at

i is thus defined as

ui(a
t
i ) = vi(r0a

t
i )− cia

t
i (4.2)

where vi(·) is UE i’s evaluation function of the reward, which differs across UEs.
Clearly, selfish UEs have no incentives to participate at a level greater than M if the
reward is throttled and hence, we will focus on the range at

i ∈ [0,M]. We make the
following assumptions on v(·).
Assumption 1 (1) v′i > 0, v

′ ′
< 0. (2) v(0)= 0, vi(r0M) > ciM. (3) v′i (r0M) <

ci/r0 < v′i (0).

Part (1) is the standard diminishing return assumption. It means that more
reward has a higher value to the UE; however, the marginal value decreases as the
reward increases. Part (2) states that zero participation brings zero utility, namely
ui(0)= 0, and the maximum participation yields at least a positive utility, namely

1For example, ATT has a data reward program [35] in which users earn extra data by downloading
games and apps or shopping in participatory stores with a data transfer capping of 1000 MB per
bill period.
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ui(M) > 0. Part (3) assumes that the optimal participation level lies in (0, M). Because
v′i (0) > ci/r0, u′i (0) = r0v

′
i (0)− ci > 0. Because v′i (r0M) < ci/r0, then u′i (M) =

r0v
′
i (r0M) − ci < 0. This means we must have a solution aAF

i (r0) ∈ (0,M) so
that u′i (aAF

i ) = 0, which is the optimal participation level in the attack free (AF)
network.

We make a further assumption on aAF
i (r0) as follows.

Assumption 2 aAF
i (r0) is increasing in r0.

Assumption 2 states that increasing reward provides UEs with more incentives to
participate as a D2D server. This is a natural assumption and can be easily satisfied
by many evaluation functions. For instance, if vi(x) = √

x, then aAF
i (r0) = r0

4c2
i

which is increasing in r0.

4.3.3 Attack Model

Participating as D2D servers exposes UEs to proximity-based infectious risks
since the task data is sent directly from peer UEs via D2D communication rather
than the trusted operator-owned BSs. We consider an attack whose purpose is
to make the D2D offloading service unusable. Therefore compromised UEs will
not be able to provide D2D offloading service. Moreover, they may become new
sources of attack when they request offloading services from normal UEs in the
future. To model this attack, we adopt the popular Susceptible-Infected-Susceptible
(SIS) epidemic model. At any time t, each UE i is in one of the two states
st
i ∈ {(S)usceptible, (I)nfected}, which indicates whether the UE is normal or

compromised. The UE state is private information and unknown to either the
operator or other UEs in the network. Otherwise, compromised UEs can be easily
excluded. If a normal UE provides D2D offloading service to a compromised
UE, then the normal UE gets infected by the virus with a probability β ∈ [0,
1]. We assume that a compromised server does not infect (or with a negligible
probability infects) a normal requester because detection is much more effective
on the requester side due to the significantly smaller data size of the returned
computation result [2].

Once a UE i is compromised, it has to go through a recovery process. During this
process, UE i cannot provide any D2D offloading service to other UEs. Moreover,
UE i suffers a recovery cost qi per unit time. However, UE i can still make
offloading requests so that the virus can be propagated to other UEs. Nevertheless,
our framework can be easily extended to handle the case where some compromised
UEs are completely down so that they cannot make requests before recovery. We
assume that the recovery process duration is exponentially distributed with mean
1/δ. Recovered UEs re-enter the normal state and may be compromised again in the
future. The UE state transition is illustrated in Fig. 4.2.
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Fig. 4.2 UE state transition

The parameters β and δ describe the intrinsic risk level of the wireless network
and we define the effective infection rate as τ � β/δ. We will treat these risk
parameters as fixed for most part of this chapter. In this way, we focus on the
incentive mechanism design for a network in a given risk environment. Later, we
will discuss how the incentive mechanism and security technologies can be jointly
designed.

4.3.4 Problem Formulation as a Stackelberg Game

The objective of the operator is to design the unit reward r0 in order to maximize its
own utility. The operator’s utility is defined as:

u0(r0) = Et,i[(b0 − r0)1{st
i = S}at

i ] (4.3)

where the expectation is taken over the UE attributes (i.e. the distribution of the
evaluation function vi(·) and D2D offloading cost ci) and time. Clearly we must
have r0 < b0. Otherwise, the operator will not adopt D2D offloading. The incentive
mechanism design problem can be formulated as a Stackelberg game among a
leader and an infinite number of followers (due to the continuum population model).
The operator plays as the leader, which moves first and determines the reward
mechanism r0. The UEs play as the followers, which move next and choose
their participation levels. In the attack-free network, the Stackelberg game can be
represented by the following two-level optimization problem

max
r0

(b0 − r0)Ei[aAF
i (r0)] subject to aAF

i (r0) = arg max
a

ui(a|r0),∀i (4.4)

where Et,i[1{st
i = S}at

i ] is replaced with Ei[aAF
i (r0)] since there is no attack and

hence the UEs are never compromised. This problem is not difficult to solve as
aAF
i (r0) can be easily computed.

The presence of infectious attacks, however, changes both the operator’s objec-
tive function and UEs’ participation incentives. First, because UEs may get compro-
mised and consequently are not able to provide D2D computing service sometimes,
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the utility that the operator can reap from D2D offloading depends on not only the
UEs’ participation decisions but also the network security state (i.e. the fraction of
normal UEs). Therefore, the operator’s utility becomes (b0−r0)Ei[1{st

i = S}a∗i (r0)]
and we call Ei[1{st

i = S}a∗i (r0)] the effective participation level of D2D offloading.
Second, UE i’s incentive to participate in D2D offloading will be determined by
a utility function Ui(ai) that incorporates the potential future infection (which will
be characterized in the next section). What much complicates the problem is the
fact that UEs face interdependent security risks—the security posture of the whole
network depends on not only the participation action of UE i itself but also all
other UEs’ participation since the infection is propagated network-wide. Therefore,
the utility function Ui(ai) should indeed be a function of all UEs’ actions and
hence, we denote it by Ui(ai, a−i) where a−i, by convention, is the action profile
of UEs except i. Formally, the Stackelberg game for the security-aware incentive
mechanism design problem is:

max
r0

(b0 − r0)Ei[1{st
i = S}a∗i (r0)] subject to a∗i (r0) = arg max

a
Ui(ai, a−i |r0),∀i

(4.5)

In the above Stackelberg game, the followers (UEs) not only perform best
response to the leader (i.e. the operator)’s decision, but also play a different yet
coupled game among themselves due to the interdependent security risk. To solve
this game, we will use backward induction to firstly investigate the participation
incentives of UEs under the interdependent security risk and the resulting effective
participation level Ei[1{st

i = S}a∗i (r0)], and then design the optimal reward mecha-
nism.

4.4 Individual Participation Incentives

4.4.1 Foresighted Utility

If a UE is myopic and only cares about the instantaneous utility, then the UE will
simply choose a participation level a∗i = arg maxa[vi(r0a)− cia] which maximizes
the instantaneous utility when it is in the normal state. In such cases, a∗i = aAF .
However, since the infectious attack may cause potential future utility degradation,
the UE will instead be foresighted and care about the foresighted utility [36]. Since
the infection risk depends on the probability that a server UE meets a compromised
requester UE, the fraction of compromised UE in the system at any time t, denoted
by θ t ∈ [0, 1], plays a crucial role in computing the foresighted utility. Assume
that requester-server matching for D2D offloading is uniformly random, then the
probability that server UE i meets a compromised requester UE is exactly θ t. We
thus call θ t the system compromise state at time t. Note that θ t is an outcome of all
UE’s participation decisions. The foresighted utility is defined as follows.



94 J. Xu and L. Chen

Definition 4.1 (Foresighted Utility) Given the system compromise state θ , the
foresighted utility of UE i with discount rate ρ when it takes a participation action
ai is defined as

U(ai , θ)=ρ

∫ ∞
t=0

( ∫ t

τ=0
e−ρτ ui (ai )dτ

︸ ︷︷ ︸
discounted sum utility
before being infected

+ ρ−1e−ρtUI︸ ︷︷ ︸
discounted continuation utility

after being infected

)
θβaie

−θβai t︸ ︷︷ ︸
exponential distribution
due to Poisson arrival

dt

(4.6)

where

UI = ρ

∫ ∞

t=0

(∫ t

τ=0
e−ρτ (−qi)dτ + ρ−1e−ρtU(ai, θ)

)
δe−δt dt (4.7)

We explain the definition of foresighted utility below:

(i) Consider a UE who decides its current contract at time t0. It stays in the normal
state until the next time (say t0+ t) when (1) it interacts with a compromised
UE, (2) the attack by the compromised UE is successful and (3) the UE has
not been compromised during [t0, t0+ t). This is a random process (where t is
the random variable). The probability density function of being compromised
at time t0+ t is θβaie

−θβai t .
(ii) Suppose that UE i is compromised at time t0+ t, then

∫ t

τ=0 e−ρτ ui(ai)dτ

is the discounted sum utility that the UE can receive during the period [t0,
t0+ t] before it is compromised. The term e−ρτ ≤ 1 represents the discounting
mechanism which decreases with τ . A larger discount rate ρ means that the
discounting is greater. The utility discounting mechanism is widely used in
the literature [36, 37] when modeling user foresightedness to capture the fact
that users often value the current utility more than the future utility, and the
exponential function e−ρτ is the standard method for continuous time systems.
It not only offers mathematical tractability (because simply summing up utility
without discounting over an infinite horizon can result in an unbounded utility
value) but also is well-motivated by real-world considerations. For example,
when the utility involves monetary payments, the discount factor is directly
related to the interest rate. Moreover, discounting can also occur if users may
leave the system and receive 0 utility after leaving the system. Assume that a
UE stays in the system following an exponential distribution with mean 1/ρ,
then the probability that it is still in system by time t0+ τ conditional on that
the UE is in the system at time t0 is e−ρτ . Therefore the utility is discounted by
e−ρτ .

(iii) UI is the utility that UE i receives once it gets compromised. During the
recovery phase, UE i suffers a cost − qi and once it is recovered, it receives
again the foresighted utility U(ai, θ ) which is discounted by e−ρt where t the
duration of the recovery phase. Here we assumed bounded rationality: when
computing the foresighted utility, the UE believes that it will choose the same
participation level as before once it is recovered since it expects the system
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Fig. 4.3 Illustration of foresightedness in participation level determination

compromise state to stay the same in the future. In the steady state, this belief
will in fact be correct.

(iv) The constant ρ at the beginning of the right-hand side equations is a normal-
ization term, which is due to

∫∞
t=0 e−ρtdt = ρ−1.

Figure 4.3 illustrates the role of foresightedness plays in determining the
participation level of a UE. By solving (4.6) and (4.7), the foresighted utility can
be simplified to

U(ai, θ) = (ρ + δ)ui(ai)− βθaiq

ρ + δ + βθai

(4.8)

The above form of foresighted utility generalizes the instantaneous utility and the
time-average long-term utility, and can capture a wide spectrum of UE behaviors by
tuning the discount rate ρ. When ρ→∞, the UE cares about only the instantaneous
utility. In this case, U(ai, θ ) reduces to the myopic utility u(ai). When ρ→ 0, the
UE does not discount at all and hence, U(ai, θ ) becomes the time-average utility
δu(ai )−βθaiq

δ+βθai
, which is the same result by performing the stationary analysis of a

continuous-time two-state Markov chain.

4.4.2 Individual Optimal Participation Level

In this subsection, we study the optimal participation level that UE i will choose to
maximize its foresighted utility.

Proposition 4.1 If the system compromise state θ ≥ (r0v
′
i (0)−ci )(ρ+δ)

qiβ
� θ̄i , then

the optimal participation level is a∗i (θ) = 0. Otherwise, the optimal participation
levela∗i (θ)is the unique solution of u′i (ai)(ρ+δβθai)−ui(ai)βθ−βθqi = 0, which
increases as θ decreases.



96 J. Xu and L. Chen

Proof See Appendix.

Proposition 4.1 can be intuitively understood. A larger system compromise state
θ implies a higher risk of getting compromised via D2D offloading and hence, UE
i has smaller participation incentives. In particular, if the system compromise state
exceeds a threshold, then UE i will refrain from participating in D2D offloading. It
is also evident that the operator can provide UEs with more incentives to participate
by increasing the reward r0.

Proposition 4.2 If θ < θ̄i , then a∗i (θ) is increasing in ρ, δ and decreasing in β.

Proof These claims are direct results of the monotonicity of the left-hand side of
(4.20).

Proposition 4.2 states that a higher attack success probability (larger β) and a
slower recovery speed (smaller δ) both decrease UE i’s incentives to participate
(smaller α∗ ). Importantly, Proposition 4.2 also reveals the impact of UE foresight-
edness on the participation incentives: being more foresighted (smaller ρ) decreases
the UE’s participation incentives (smaller α∗ ) because the UE cares more about the
potential utility degradation caused by the attack.

4.5 Interdependent Security Risks

In this section, we study how the infection propagates in the system and the
convergence of the system compromise state. Epidemic processes have been well
investigated in the literature for different systems. Most of this literature assumes
that users are obediently following a prescribed behavior rule. However, selfish
UEs in the considered problem determine their participation levels to maximize
their own foresighted utilities, thereby leading to significantly different results
than conventional epidemic conclusions. To show this difference, we will first
review the classic results of infection propagation in the context of the considered
D2D offloading network. Then we will study the infection propagation processes
for selfish UEs in two scenarios. In the first scenario, UEs observe the system
compromise state at any time and hence make adaptive decisions according to the
observed state. In the second scenario, UEs do not observe the system compromise
state and hence have to conjecture this state based on the equilibrium analysis of a
D2D offloading participation game.

4.5.1 Attack Under Given Participation Actions

The evolution of the system compromise state θ t depends on the strategy adopted by
the UEs, the attack success rate β, the recovery rate δ as well as the initial state of
the system θ0. It is obvious that if the system starts with an initial state θ0= 0 (i.e.
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without initial attacks), then the system will remain in the state of zero compromise
no matter what strategies are adopted by the UEs. Therefore, we will focus on the
non-trivial case that the initial state θ0 > 0.

The network is said to be in the steady state if the system compromise state θ t

becomes time-invariant, denoted by θ∞. The steady state reflects how the infectious
attack evolves in the long-run. Existing works suggest that there exists a critical
threshold τ c for the effective infection rate τ such that if τ < τ c, then the infectious
attack extinguishes on its own even without external interventions, namely θ∞= 0;
otherwise, there is a positive fraction of compromised UEs, namely θ∞ > 0. This
result is formally presented in our problem as follows.

Proposition 4.3 Assume that all UEs adopt the same fixed participation level a.
Then there exists a critical effective infection rate τc = 1

a
, such that if τ ≤ τ c,

θ∞= 0; otherwise, θ∞ = 1− δ
βa

.

Proof See Appendix.

Notice that if β < δ, then for all values of a, we must have τ ≤ τ c and hence, the
infection risk always extinguishes in the long-run.

4.5.2 Attack with Strategic UEs and Observable System
Compromise State

In the considered D2D offloading system, UEs strategically determine their partic-
ipation levels and hence, the infection propagation dynamics may be significantly
different. In this subsection, we assume that UEs can observe the system compro-
mise state θ t at any time. In this case, UEs adaptively change their participation
levels by revising their contracts with the operator according to the observed system
compromise state.

For the analysis simplicity, we assume that all UEs have the same evaluation
function v(·), service provision cost c and recovery cost q. We will investigate the
heterogeneous case in the next subsection and in simulations. The system dynamics
thus can be characterized by the following equation,

dθt = −θ t δdt + (1− θ t )βθ ta∗(θ t )dt (4.9)

where a∗ (θ t) is the best-response participation level given the current system
compromise state θ t according to our analysis in the previous section. In the
above system dynamics equation, the first term θ tδdt is the population mass of
compromised UEs that are recovered in a small time interval dt. The second term
(1− θ t)βθ ta∗ (θ t)dt is the population mass of normal UEs that are compromised in
a small time interval dt. The following proposition characterizes the convergence of
the system dynamics.
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Proposition 4.4 There exists a critical effective infection rate τc = 1
aAF such

that if τ < τ c, then the system compromise state converges to θ∞= 0; otherwise,
θ∞= θ†where θ† > 0 is the unique solution of (1− θ†)a∗ (θ†)= 1/τ .

Proof See Appendix.

Proposition 4.4 shows that when UEs are selfish and strategically deciding their
participation levels, the infectious attack propagation also has a thresholding effect
with regard to the effective infection rate. However, this thresholding effect is
significantly different in nature from when UEs are obeying prescribed participation
actions. In the non-strategic case, the effective infection rate threshold is a function
of the given participation level. In the strategic case, the threshold is a constant.
In particular, the constant is exactly the critical threshold when UEs follow the
individually optimal action aAF in the attack-free network (see Fig. 4.4 for an
illustration).

Let us understand this thresholding effect better. As proved in Proposition 4.1, the
individual optimal participation level under infectious attack risks is always lower
than that in the attack-free network. Therefore, although the participation level is
adapting over time depending on the system compromise state, it will never be
higher than aAF. As a result of Proposition 4.3, if the effective infection rate is less
than 1/aAF, the attack will extinguish on its own. When the effective infection rate
becomes sufficiently large (i.e. τ > 1/aAF), individual UEs always have incentives
to choose a participation level greater than the threshold participation level that
eliminates infection. This is because unilaterally increasing the participation level
does not change the network-wide epidemic dynamics since each individual UE is
infinitesimal in the continuum population model yet increases the benefit that the
individual UE can obtain. Therefore infectious attacks persist.

Fig. 4.4 Critical effective
infection rates in strategic and
non-strategic cases
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4.5.3 Attack with Strategic UEs and Unobservable System
Compromise State

In practice, neither the operator nor UEs observe the system compromise state in
real time. In this case, UEs have to conjecture how the other UEs will participate
in the D2D offloading system and the resulting system compromise state. To handle
this situation, we formulate a population game to understand the D2D participation
incentives under the infectious attacks. To enable tractable analysis, we assume that
there are K types of UEs. This is not a strong assumption since we do not impose
any restriction on the value of K. UEs of the same type k have the same evaluation
function v(k)(·), service provision cost c(k) and recovery cost d(k). Denote the fraction
of type k UEs by wk and we must have

∑K
k=1 wk = 1.

In the D2D offloading participation game, each UE is a player who decides its
participation level. Since UEs do not observe the system compromise state, it is
natural to assume the each UE adopts a constant strategy, namely at

i = ai,∀t . The
Nash equilibrium of the D2D participation game is defined as follows.

Definition 4.2 (Nash Equilibrium) A participation action profile aNE is a Nash
equilibrium if for all i, aNE

i = arg maxai
U(ai, θ

∞(aNE)) where θ∞(aNE) is the
converged system compromise state under aNE.

First, we characterize the converged system compromise state assuming that all
type k UEs choose a fixed participation level a(k).

Proposition 4.5 Given the type-wise participation level vector (a(1), ..., a(K)), there
exists a critical effective infection rate τc = 1∑K

k=1 wka(k)

, such that if τ ≤ τ c, θ∞= 0;

otherwise, θ∞ > 0 is the unique solution of
∑K

k=1
τwka(k)

τθ∞a(k)+1 = 1.

Proof See Appendix.

Proposition 4.5 is actually the extended version of Proposition 4.3, which further
considers heterogeneous UEs. In the homogeneous UE case, the critical infection
rate depends on the homogeneous participation level of UEs. In the heterogeneous
UE case, the critical infection rate depends on the average participation level of UEs.
With Proposition 4.5 in hand, we are able to characterize the Nash equilibrium of
the D2D participation game.

Theorem 4.1 (1) The D2D participation game has a unique NE. (2) The NE is
symmetric within each type, namely aNE

i = aNE
(k) for all UE i with type k. (3)

If τ ≤ 1∑K
k=1 wka

AF
(k)

, then θ∞= 0 and aNE
(k) = aAF

(k) ,∀k. Otherwise, θ∞ > 0 and
∑K

k=1 wka
NE
(k) > τ−1.
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Proof See Appendix.

Corollary 4.1 If UEs are homogeneous, i.e. K= 1, then the D2D computing
participation game has a unique symmetric NE. Moreover, if τ ≤ 1

aAF , then

θ∞= 0 and aNE = aAF; otherwise, θ∞= θ† where θ† has the same value given in
Proposition 4.4.

Theorem 4.1 and Corollary 4.1 show that, even if UEs do not observe θ t in real-
time, the system will converge to the same state when θ t is observed as established
in Proposition 4.4. The latter case indeed can be considered as that UEs are playing
best response dynamics of the population game, which converges to the predicted
NE. Moreover, the thresholding effect still exhibits. If the effective infection rate is
sufficiently small, then the infectious attacks extinguish. Otherwise, the infectious
attacks persist.

4.6 Optimal Reward Mechanism Design

We are now ready to design the optimal reward mechanism. Under the assumption
that there are K types of UEs, the operator’s problem can be written as

max
r0

(b0 − r0)

K∑
k=1

wk(1− θ∞(k))a
∗
(k)(θ

∞) (4.10)

Note that θ∞, θ∞(k) and a∗(k) all depend on the reward mechanism r0 even though the
dependency is not explicitly expressed. Solving the above optimization problem is
difficult because there are no closed-form solutions of θ∞, θ∞(k) and a∗(k) in terms of
r0 since they are complexly coupled as shown in the previous sections. Fortunately,
our analysis shows that there is a structural property that we can exploit to solve this
problem in a much easier way.

Theorem 4.2 The optimal reward mechanism design problem (4.10) under infec-
tious attacks is equivalent to the following constrained reward design problem in
the attack-free network

max
r0

(b0 − r0)

K∑
k=1

wka
AF
(k) (r0) subject to

K∑
k=1

wka
AF
(k) (r0) ≤ τ−1 (4.11)

Proof See Appendix.

Theorem 4.2 converts the reward optimization problem in the presence of
infectious attack risks into an optimization problem in the attack-free network by
simply adding a constraint. Because aAF

(k) (r0) can be easily computed, the converted
optimization problem can be easily solved through numerical methods. In fact, since
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Fig. 4.5 Gap between participation level and effective participation level caused by attacks

aAF
(k) (r0) is increasing in r0, the search space of the optimal r0 can be restricted to

[0, r̄0] where r̄0 makes the constraint binding, i.e.
∑K

k=1 wka
AF
(k) (r̄0) = τ−1.

The intuition of Theorem 4.2 is that the optimal reward mechanism must not
promote too much participation that induce persistent attacks in the network. This is
because too much participation does not improve the effective participation level
due to UEs compromised by the attack (see an illustration in Fig. 4.5). Since
less participation requires a smaller unit reward r0, more utility can be obtained
for the operator by employing a smaller unit reward. We call this the “less is
more” phenomenon in the D2D offloading network under infectious attack risks.
Corollary 4.2 further compares the optimal reward mechanisms with and without
the infectious attack risks.

Corollary 4.2 The optimal reward mechanism r∗ for D2D offloading under infec-
tious attack risks is no more than the optimal reward mechanism rAF* in the
attack-free network.

Proof This is a direct result of Theorem 4.2. If rAF∗ ∈ R2, then r∗ = rAF*. If rAF∗ ∈
R1, then r∗ < rAF*.

Theorem 4.2 also implies that a larger effective infection rate reduces the
operator’s utility.

Corollary 4.3 The optimal utility of the operator is non-increasing in τ .

Proof This is a direct result of Theorem 4.2 since a larger τ imposes a more
stringent constraint in the optimization problem (4.11).

Corollary 4.3 implies that the operator’s utility can be improved by reducing
the effective infection rate τ . This can be done by developing and deploying better
security technologies that either reduce the attack success rate β or improve the
recovery rate δ. Hence, the operator may consider jointly optimize the reward
mechanism r0 and security technology that results in a smaller τ . This is to solve
the following optimization problem,
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max
r0,τ

(b0 − r0)

K∑
k=1

wka
AF
(k) (r0)− J (τ) subject to

K∑
k=1

wka
AF
(k) (r0) ≤ τ−1

(4.12)

where J(τ ) is the technology development cost that achieves an effective infective
rate τ . Typically, J(τ ) is decreasing in τ . It is evident that the optimal solution must
have

∑K
k=1 wka

AF
(k) (r

∗
0 ) = (τ ∗)−1. This is because if

∑K
k=1 wka

AF
(k) (r

∗
0 ) < (τ ∗)−1,

then we can always choose a larger τ̃ > τ ∗ such that J (τ̃ ) < J (τ ∗). This
leads to a higher utility which contradicts the optimality of τ ∗ . Therefore, the joint
optimization problem reduces to an unconstrained problem as follows

max
r0

(b0 − r0)

K∑
k=1

wka
AF
(k) (r0)− J (

1∑K
k=1 wka

AF
(k) (r0)

) (4.13)

This problem can be easily solved using numerical methods.

4.7 Simulations

4.7.1 Simulation Setup

Since our analytical model adopts a continuous time system, we divide time into
small time slots to enable the simulation. Specifically, a unit time in the continuous
time system is divided into 100 slots and we simulate a large number of slots.
We simulate a number N= 100 of mobile UEs moving in a square area of size
100× 100. User mobility follows the random waypoint model. Specifically, when
the UE is moving, it moves at a random speed between 0 and vmax per slot
towards a randomly selected destination. When the UE reaches the destination, it
pauses for a random number of slots between 0 and mmax and then selects a new
destination. The parameters vmax and mmax control the mobility level of the network
and will be varied to study the sensitivity of the random server-requester matching
approximation to the actual UE mobility and server-requester matching.

In every slot, with probability p a UE has computation tasks to offload and hence
becomes a requester. When a UE is not a requester, it is able to provide D2D
offloading service. Therefore, with probability 1− p the UE is a potential server.
The number of tasks of each requester in every slot is randomly selected between
1 and Wmax. We assume requesters have a minimum transmission rate requirement
r tx

min to guarantee the worst-case transmission delay. Suppose UEs operate at a fixed
transmission power ptx

i , then the transmission rate between two UEs i and j is given
by the Shannon capacity:

r tx
ij = W log2

(
1+ ptx

i Hij

σ 2

)
(4.14)



4 Security-Aware Incentives Design for Mobile Device-to-Device Offloading 103

where W is the channel bandwidth, Hij is the channel condition, and σ 2 is the
noise power. Therefore, for a UE j to be a potential server of a requester UE i, it
must satisfy r tx

ij ≥ r tx
min. With fixed channel bandwidth and transmission power,

the transmission rates mainly depend on the channel conditions which are modeled
by free space pathloss with slow fading in the simulation. Specifically, we set
the minimum transmission rate requirement r tx

min = 10 Mps, channel bandwidth
W = 180 kHz, ptx

i = 10 dBm, and noise power σ 2=−174 dBm/Hz. Suppose that
UEs are obedient, then the operator ranks the potential server UEs for each requester
according to the transmission rates and assigns tasks sequentially to the server UEs
with highest transmission rate until all the tasks have been assigned. The probability
η that a potential server UE receives an offloading request in the obedient UE case
can be estimated in simulations. Estimating this probability is very important for
the conversion of the participation level in continuous time into its counterpart in
discrete time. Specifically, a chosen participation level a per unit time in continuous
time is converted to a participation probability a

100(1−p)η
in each slot when the UE

is a potential server in discrete time. With this conversion, in the strategic UE case,
the operator assigns one task to one of the potential server UE with probability

a
100(1−p)η

.

4.7.2 System Dynamics

Figure 4.6 illustrates the system dynamics for non-strategic UEs who follow a pre-
scribed participation strategy. Two types of UEs are considered in this simulation.
Type 1 UEs adopt a participation level a(1)= 3 and Type 2 UEs adopt a participation
level a(2)= 5. The fractions of these two types of users are w(1)= 0.3 and w(2)= 0.7,
respectively. Therefore, the predicted critical effective infection rate τ c= 0.227
according to Proposition 4.5. We fix δ= 1 and show the results for β = 0.2 and
β = 0.4, which correspond to τ = 0.2 and τ = 0.4, respectively. As shown in Fig. 4.6,
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Fig. 4.6 Epidemic dynamics for non-strategic UE
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Fig. 4.7 Epidemic dynamics for strategic UEs

when τ < τ c, the infections extinguish over time. When τ > τ c, infections persist in
the system at a compromise level around 0.42. Because we used a relatively small
finite UE population in the simulation, there are still fluctuations in the results.
However, the predicted dynamics by our analysis is in accordance to the simulation
results and the fluctuations will be less with a larger UE population.

Figure 4.7 illustrates the system dynamics for strategic UEs for the same setting
as above. The difference is that, since UEs are strategic, they will decide their
participation levels by themselves. The user evaluation functions are chosen as
v(1)(x) = √

x and v(2) = 1.5
√

x. The costs for users are the same c= 0.35. The
reward offered by the operator is set as r= 2.2. Therefore, the critical infection
rate is computed to be τ c= 0.12 according to Theorem 4.1. As shown in Fig. 4.7,
infections extinguish over time when τ = 0.1 which is smaller than τ c and persist
when τ = 0.2 which is larger than τ c. Notice that in the non-strategic UE case,
τ = 0.2 will instead make attacks extinguish.

To better understand what is happening behind this epidemic dynamics, we show
the evolution of UE participation levels (weighted average of the two types) in
Fig. 4.8. When the effective infection rate is lower, UEs tend to choose a higher
participation level. Regardless of the exact value of τ , the converged participation
level does not exceed the optimal participation level aAF in the attack-free network
(which does not depend on τ ). When τ = 0.2, the converged value is greater than
the corresponding critical participation level ac (which depends on τ ) and hence, the
attacks persist. When τ = 0.1, the converged value is smaller than the corresponding
critical participation level ac, thereby eliminating the attacks.

4.7.3 Optimal Reward Mechanism

Now we consider the operator’s utility maximization problem. In this set of
simulations, the benefit for the operator is set as b0= 6. Figure 4.9 shows the impact
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Fig. 4.8 Evolution of UE
participation levels
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Fig. 4.9 Impact of reward on system compromise state and the operator’s utility

of the reward on the fraction of compromised UEs in the network as well as the
operator’s utility. As the reward increases, UEs have more incentives to participate
and when the reward increases to a certain point, infections become persistent. As
a result, further increasing the reward r0 decreases the operator’s utility since the
effective participation level of UEs does not improve as shown in Fig. 4.10. This is
the predicted “Less is More” phenomenon. This result is important for the operator
to determine the optimal reward mechanism that is security-aware. Figures 4.11
and 4.12 further show the operator’s utility and the fraction of compromised UEs as
functions of the reward r0 and the effective infection rate τ , which are in accordance
with our analysis.

4.7.4 Performance Comparison

We compare the operator utility achieved by our security-aware design with two
baseline approaches: (1) Fully cooperative: all UEs are assumed to be obedient and
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Fig. 4.10 Impact of reward
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participate in the D2D offloading system in a fully cooperative manner. In this case,
the operator does not need to pay rewards to the UEs. (2) Security-unaware: UEs
are assumed to be self-interested. However, both the UEs and the operator do not
take into account the potential security risk in participating in D2D offloading when
making their decisions. Figure 4.13 illustrates the result by varying b0. As expected,
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Fig. 4.13 Performance
comparison
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the achievable utility is the highest in the fully cooperative case, and the security-
aware design outperforms the security-unaware design. When the unit benefit b0 is
small, the security-aware design and the security-unaware design achieve the same
utility. This is because when b0 is small, the operator is only willing to provide a low
reward r0 to promote D2D offloading, in which case the induced low participation
level of UEs does not cause persistent security risks even when the operator and the
UEs are not security-aware.

4.7.5 Impact of UE Mobility

Finally, we investigate the impact of UE mobility on the accuracy of our model
and analysis by varying the moving speed of UEs. Figures 4.14 and 4.15 show
how the UE participation levels and the fraction of compromised UEs change with
UE mobility, respectively. In our model, we assumed that a UE receives requests
from other UEs uniformly randomly, which is a good approximation when UEs’
mobility is fast. However, when UEs’ mobility is slow, they will more likely have
localized interactions with only a subset of UEs with high probability. For instance,
in practice, people are more likely to appear in the same locations at the same time
with their family, friends and colleagues. As shown in Figs. 4.14 and 4.15, when
UE mobility is fast, our analytical results are very well aligned with the simulation
results. However, when UE mobility is slow, there is an obvious deviation from our
analysis, suggesting that new models are needed to handle low mobility network
scenarios. This is an interesting future work direction.
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Fig. 4.14 Impact of mobility
on the participation levels
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Fig. 4.15 Impact of mobility
on the system compromise
state
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4.8 Conclusions

In this chapter, we investigated the important but much less studied incentive mech-
anism design problem in dynamic networks where users’ incentives and security
risks they face are intricately coupled. We adopted a dynamic non-cooperative game
theoretic approach to understand how user collaboration incentives are influenced by
interdependent security risks such as the infectious attack risks, and how the attack
risks evolve, propagate, persist and extinguish depending on users’ strategic choices.
This understanding allowed us to develop security-aware incentive mechanisms
that are able to combat and mitigate attacks in D2D offloading systems. Our
study leverages the classic epidemic models, but on the other hand, it represents a
significant departure from these models since users are strategically choosing their
actions rather than obediently following certain prescribed rules. Our model and
analysis not only provide new and important insights and guidelines for designing
more efficient and more secure D2D offloading networks but also can be adapted
to solve many other challenging problems in other cooperative networks where
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users face interdependent security risks. Future work includes investigating user
interaction models that are more localized and social network-based, and user
heterogeneity in terms of adopted security technologies.

Appendix

Proof of Proposition 4.1 We omit the UE index i in the subscript of vi(·), ci and qi for
brevity. Given the foresighted utility in (4.8), determining the optimal participation
level boils down to investigating the first-order condition of (4.8). The derivative of
U(ai, θ ) is

U ′(ai, θ) = (ρ + δ)
u′(ai)(ρ + δ + βθai)− u(ai)βθ − βθq

(ρ + δ + βθai)2
(4.15)

For brevity, let f (ai)= u′(ai)(ρ+ δ+βθai)− u(ai)βθ −βθq, which has the same
sign of U′(ai, θ ). First, we have

f ′(ai) = u′′(ai)(ρ + δ + βθai) = r2
0v′′(r0ai)(ρ + δ + βθai) < 0 (4.16)

Therefore, f (ai) is monotonically decreasing. Next, we investigate the signs of f (M)
and f (0).

f (M) = u′(M)(ρ + δ + βθM)− u(M)βθ − βθq < 0 (4.17)

The inequality is because u′(M) < 0 and u(M) > 0 according to Assumption 1(2).
Also,

f (0) = u′(0)(ρ + δ)− u(0)βθ − βθq = (r0v
′(0)− c)(ρ + δ)− βθq (4.18)

Therefore, if θ <
(r0v

′(0)−c)(ρ+δ)
qβ

, then f (0) > 0. Otherwise, f (0)≤ 0. This means

that if θ ≥ (r0v
′(0)−c)(ρ+δ)

qβ
, then the optimal a∗ = 0 and otherwise, there exists an

optimal participation level a∗ > 0, which is the unique solution of

u′(ai)(ρ + δβθai)− u(ai)βθ − βθq = 0 (4.19)

To investigate the monotonicity of a∗i with θ , we rewrite the above equation as
follows

u(ai)+ q

u′(ai)
− ai = ρ + δ

βθ
(4.20)
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Notice that u(ai) does not have ρ, δ, β or θ in its expression according to (4.2). The
first-order derivative of the left-hand side function of ai is

u′(ai)u
′(ai)− (u(ai)+ q)u′′(ai)

(u′(ai))2 − 1 = −(u(ai)+ q)u′′(ai)

(u′(ai))2 > 0 (4.21)

The last inequality is because u(a) > 0, ∀a∈ [0, M] and u′′(a) = r2
0v′′(r0ai) < 0.

Therefore the left-hand side of (4.20) is monotonically increasing in ai. Since the
right-hand-side is decreasing in θ , ai decreases with the increase of θ .

Proof of Proposition 4.3 Consider the compromise state dynamics given a
symmetric strategy a. For any θ , the change in θ in a small interval dt is
dθ =−θδdt+ (1− θ )θβadt= θ ((1− θ )βa− δ)dt. Clearly, if τ > 1

a
� τc, then

for any θ > 1 − δ
βa

� θ∗, dθ < 0 and for θ < θ ∗ , dθ > 0. Therefore, the dynamic
system must converge to θ ∗ . If τ ≤ τ c, then for any θ > 0, dθ < 0. This means that
the dynamic system converges to 0.

Proof of Proposition 4.4 The system dynamics can be rewritten as

dθt = θ t [(1− θ t )βa∗(θ t )− δ]dt (4.22)

We are interested in the sign of dθ t for different values of θ t. Since θ t ≥ 0, what
matters is the sign of f (θ t ) � (1−θ t )βa∗(θ t )−δ. For θ t ≥ θ̄ , a∗ (θ t)= 0 and hence,
f (θ t)=−δ < 0. For θ t < θ̄ , f (θ t) is decreasing in θ t because a∗ (θ t) is decreasing in θ t

according to Proposition 4.1. Now consider the sign of f (0)=βa∗ (0)− δ. According
to (4.19), a∗ (0) is the solution to u′(a)= 0, which is the same as the optimal
participation level in the attack-free case. Specifically, a∗ (0)= aAF. If βaAF− δ < 0,
then f (θ t) < 0 for all θ t. Therefore, the system converges to θ∞= 0. If βaAF− δ≥ 0,
then there exists a unique point θ† ∈ [0, θ̄ ) such that for θ t > θ†, f (θ t) < 0 and for
θ t < θ†, f (θ t) > 0. This means that the system compromise state will converge to θ t.
Moreover, θ t is the solution of (1− θ )βa∗ (θ )− δ= 0.

Proof of Proposition 4.5 Let θ (k) be the fraction of compromised UEs among all
type k UEs. In the steady state, we have the following relation

θ∞(k) =
δ−1

δ−1 + (θ∞βa(k))−1
= τθ∞a(k)

τθ∞a(k) + 1
(4.23)

where the fraction of the compromised UEs among all UEs is θ∞ = ∑k wkθ
∞
(k). It

is clear from the above equation that if θ∞= 0, then θ∞(k) = 0,∀k. Hence, θ∞= 0
is a trivial solution in which a(k), ∀k can be any value. We now study the non-trivial
solution θ∞ > 0. Rearranging the above equation, we have θ∞(k) = (1−θ∞(k))θ

∞τa(k).
Summing up over k and multiplying by wk on both sides, we have

θ∞ =
K∑

k=1

wkθ
∞
(k) = τθ∞

K∑
k=1

wk(1− θ∞(k))a(k) (4.24)
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This leads to

τ

K∑
k=1

wk(1− θ∞(k))a(k) = 1 (4.25)

If τ ≤ τc = 1∑K
k=1 wka(k)

, then clearly there is no non-trivial solution of θ∞(k) of the

above equation. This implies that the only solution is θ∞ = θ∞(k) = 0,∀k, which
proves the first half of this proposition. Next, we show that if τ > τ c, there indeed
exists a unique solution θ∞ > 0. Substituting (4.23) into (4.25) yields

K∑
k=1

τwka(k)

τθ∞a(k) + 1
= 1 (4.26)

Clearly the left-hand side of the above equation LHS(θ∞) is decreasing in θ∞.
Moreover LHS(0) = τ

∑K
k=1 wka(k) > 1, and LHS(1) = τ

∑K
k=1

wka(k)

τa(k)+1 <∑K
k=1 wk = 1. Therefore, there is a unique solution of θ∞∈ (0, 1).
Proof of Theorem 4.1 Consider type k UEs. Each UE chooses the individual

optimal participation level determined by the following equation

u′(k)(ai)(ρ + δβθ∞ai)− u(k)(ai)βθ∞ − βθ∞q(k) = 0 (4.27)

Given the same β, δ, θ∞, there is a unique optimal solution a∗i according to
Proposition 4.1. Therefore, if an equilibrium exists, UEs of the same type must
choose the same participation level. To prove the existence of NE is to prove that
the following function has a fixed point θ∞ based on our analysis in the proof of
Proposition 4.5:

θ∞ = τθ∞
K∑

k=1

wk(1− θ∞(k))a(k)(θ
∞) (4.28)

Note that the difference from (4.24) is that a(k)(θ∞) is a function of θ∞ rather than
a prescribed action.

First, we investigate if θ∞= 0 could be a fixed point. If θ∞= 0, then a∗(k) =
aAF
(k) ,∀k, which is the optimal participation level in the attack-free network. There-

fore, if τ ≤ 1∑K
k=1 wka

AF
(k)

, then θ∞= 0 is a fixed point. Otherwise, θ∞= 0 is not a

fixed point.
Next, we investigate if there is any θ∞ > 0 that can be fixed point. This is to show,

according to (4.28), if there is a solution to

K∑
k=1

wkτa(k)(θ
∞)

τθ∞a(k)(θ∞)+ 1
= 1 (4.29)



112 J. Xu and L. Chen

Denote the left-hand side function by f (θ∞).

f ′(θ∞) =
K∑

k=1

wkτ
a′(k)(θ

∞)− τa2
(k)(θ

∞)

(τθ∞a∗(k)(θ
∞)+ 1)2 < 0 (4.30)

The inequality is because a(k)(θ∞) decreases with θ∞ according to Proposition 4.1.
Moreover, f (1) <

∑K
k=1 wk = 1 and f (0) = τ

∑K
k=1 wka

AF
(k) . Therefore, if τ >

1∑K
k=1 wka

AF
(k)

, then f (0) > 1. This means that there exists a unique positive solution

θ∞.
Proof of Theorem 4.2 We divide the reward mechanism r0 into two categories R1

and R2. Consider any reward mechanism r0, if the resulting
∑K

k=1 a∗(k)(θ
∞) ≥ τ−1,

then r0 ∈ R1. Otherwise r0 ∈ R2.
Now, according to Theorem 4.1, if r0 ∈ R1, then we also have

∑K
k=1 w(k)(1 −

θ∞)a∗(k)(θ
∞) = τ−1, which is a constant that does not depend on the exact

value of r0. Therefore, the optimal r0 in R1 must be the smallest possible r0
in order to maximize the operator’s utility. The smallest r0 is the one such that∑K

k=1 wka
∗
(k)(θ

∞) = τ−1 and θ∞= 0. Since θ∞= 0,
∑K

k=1 wka
∗
(k)(θ

∞) = τ−1

is equivalent to
∑K

k=1 wka
AF
(k) = τ−1. This means that if r0 ∈ R1 is the optimal

solution, it is also a feasible solution of the above constrained optimization problem.
If r0 ∈ R2, then according to Theorem 4.1, we have θ∞= 0. Again, since

θ∞= 0,
∑K

k=1 a∗(k)(θ
∞) < τ−1 is equivalent to

∑K
k=1 wka

AF
(k) < τ−1. This also

proves that if r0 ∈ R2 is the optimal solution, it is also a feasible solution of the
above constrained optimization problem.
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Chapter 5
Enhance Physical Layer Security via
Channel Randomization
with Reconfigurable Antennas

Yanjun Pan, Ming Li, Yantian Hou, Ryan M. Gerdes, and Bedri A. Cetiner

Abstract Secure wireless communication techniques based on physical (PHY)
layer properties are promising alternatives or complements to traditional upper-
layer cryptography-based solutions, due to the capability of achieving message
confidentiality or integrity and authentication protection without pre-shared secrets.
While many theoretical results are available, there are few practical PHY-layer
security schemes, mainly because the requirement of channel advantage between the
legitimate users versus the attacker’s is hard to satisfy in all cases. Recent research
shows that channel randomization, which proactively and dynamically perturbs
the physical channel so as to create an artificial channel advantage, is helpful to
enhance certain PHY-layer security goals such as secrecy. However, a systematic
study of the foundations of such an approach and its applicability is needed. In this
chapter, we first survey the state-of-the-art in PHY-layer security and identify their
main limitations as well as challenges. Then we examine the principles of channel
randomization and explore its application to achieve in-band message integrity
and authentication. Especially, we focus on preventing active signal manipulation
attacks and use reconfigurable antennas to systematically randomize the channel
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such that it is unpredictable to the active attacker. Both theoretical and experimental
results show that it is a feasible and effective approach. Other applications and future
directions are discussed in the end.

5.1 Introduction

Wireless communication technology has been widely deployed for an increasingly
large number of applications such as WiFi and Internet-of-Things. However, the
broadcast nature of the wireless channel poses numerous security challenges,
ranging from eavesdropping sensitive information, malicious jamming the com-
munication to modify critical control messages via signal manipulation. Typically,
the first step toward securing the communications between transceivers is trust
establishment, which includes device authentication and key agreement. The former
is needed to verify the communicating devices’ identities, whereas the latter
establishes a secure (private) channel over a public medium. The prevailing methods
for trust establishment either involve the manual input of a secret (e.g., a password or
a PIN) to each device, or by preloading devices with some default secret. However,
key preloading solutions pose significant scalability, usability, and interoperability
challenges. Many new wireless devices lack the necessary interfaces to enter or
change passwords. Even if those passwords are entered a prior, manufacturers
frequently opt for default secrets that are easily leaked. Alternative solutions relying
on public key cryptosystems require a public key infrastructure, which is not yet
deployed at large scale. In addition, key revocation is very challenging with public
key infrastructures, since frequent reach-back to a central server may not be feasible
due to the intermittent and ad hoc nature of the network connections, especially for
applications relevant to remote military deployment or disaster response.

Thus, an important research objective is to establish secure wireless communi-
cations in the absence of preloaded secrets. Ideally, this should be achieved only
using in-band communications (between devices with a common radio interface),
due to interoperability and usability requirements. In the past, physical (PHY)-layer
security has been proposed as a promising means to protect the security of wireless
communications under the information-theoretic security notion, without any pre-
shared secrets. For instance, many PHY-layer characteristics based key agreement
schemes have been proposed in the literature [24, 33, 49]. However, we emphasize
that existing PHY-layer security approaches mostly aim at achieving confidentiality
(i.e., preventing eavesdropping against a passive adversary) and do not consider
active attacks. Among them, Man-in-the-Middle (MitM) attacks through advanced
signal manipulations such as signal injection and cancellation are especially difficult
to detect and prevent, due to lack of authentication without any pre-shared secrets.
For example, Eberz et al. demonstrated a practical MitM attack against existing
received signal strength based PHY-layer key agreement schemes [14], where an
active attacker inferred the secret key of legitimate parties by intelligently injecting
its own messages. Besides, the more advanced signal cancellation attacks which aim
at completely canceling out the received signal at the receiver’s side have shown
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to be feasible in recent years [16, 17, 22, 39]. We note that signal cancellation
attacks are more powerful than traditional active attacks such as signal injection,
overshadowing, or jamming; however, few effective defenses against them are
known to date.

In this chapter, we examine the principles of channel randomization and explore
its application to achieve in-band message integrity and authentication. Especially,
we focus on preventing active signal manipulations and use reconfigurable antennas
to systematically randomize the channel. The general idea of channel randomization
was recently adopted in the PHY-layer security context to increase the randomness
of the wireless channel for higher secrecy rates. Here we further adapt this
approach to proactively and dynamically perturb the physical channel so as to
create an artificial advantage against the attacker, which can be viewed as one
of the proactive/dynamic defense (or moving target defense) mechanisms. In
general, moving target defense techniques are defense mechanisms via changing
system characteristics to increase uncertainty and complexity for attackers [11]. For
example, IP-hopping [28], in which the transparency is achieved by keeping the
real host’s IP address and associating each host with a virtual random IP address,
was used to change the host’s IP address, thereby increasing the complexity of the
network seen by the attacker. In fact, the basic idea of our channel randomization
approach is to regard the channel state information (CSI) as a partial secret of
the legitimate communicating pairs. By leveraging the state diversity and fast
reconfigurability of reconfigurable antennas, we can proactively randomize CSI
frequently and thwart attackers from accurately estimating or predicting it (and
generating the desired waveform to cancel the legitimate signal).

The rest of this chapter is organized as follows. Section 5.2 presents the
state-of-the-art PHY-layer security schemes. Section 5.3. introduces the system
and attack models, as well as the game-theoretical framework that analyzes the
attacker/defender’s strategies and their optimal utilities. Section 5.4 gives our chan-
nel randomization approach and introduces our method to protect message integrity
in practice. In Sect. 5.5, we present the experimental study and performance analysis
of the system. Section 5.6. concludes the chapter and points out some future research
directions.

5.2 State-of-the-Art Physical Layer Secure Communication
Schemes

In this section, we provide a survey on the existing PHY-layer schemes for
confidentiality, integrity and authentication services in wireless communications.
Various PHY-layer security techniques are reviewed and compared, including
information-theoretic schemes and PHY-layer secret key generation methods for
message confidentiality, followed by out-of-band and in-band approaches for mes-
sage integrity and authentication. The main limitations and challenges for existing
channel randomization approaches are also investigated.
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5.2.1 Message Confidentiality Protection

The exploration of PHY-layer security was pioneered by Wyner’s work on the
wiretap channel [47], where the eavesdropper’s channel is assumed to be a degraded
version of transceivers’. The main idea is to employ the so called channel advantage
to achieve secret and reliable communications between two legitimate transceivers
in the presence of an eavesdropper, as long as their channel is better than the
eavesdropper’s channel. The rate of the secret communications is characterized by
the channel’s secrecy capacity and this result was later extended to a basic Gaussian
channel that better models wireless communication systems [31]. Notably, their
schemes make no assumption on shared keys between transceivers, which makes
it quite attractive for various security purposes such as key agreement. Although
Wyner’s idea has drawn significant attention by the security community (e.g., [13,
30]), it has remained largely impractical due to the requirement of a better channel
for the legitimate receiver than the eavesdropper.

Later, Maurer proposed the idea of common randomness, in which two parties
can both tune to a common radio signal source and extract a secret key from it
[34], provided that such common signal source is not error free for either the
legitimate parties or the adversary. Existing works adopted various types of common
randomness from the radio channel including the received signal strength (RSS)
of a fast-fading reciprocal communication channel [24, 33, 49] and channel state
information (CSI) phase information [46].

Since the natural wireless channel may not contain enough randomness to
satisfy high key generation rates, other works have explored the cooperative/friendly
jamming to increase the randomness or the advantage of the wireless channel.
For example, Anand et al. [3] proposed orthogonal blinding/masked beamforming,
where transmitters protect messages by sending artificial noise into channels
orthogonal to the intended receiver’s channel. Gollakota et al. leveraged cooperative
jamming to prevent unauthorized devices from eavesdropping implantable medical
devices [20] or key exchange process [18]. Since the evaluation of these schemes
focused on the single antenna eavesdropper due to technology constraints, the rapid
advancement of MIMO readily destroys the security of original approaches by
increasing the number of advisories’ antennas. For example, Schulz et al. [40]
showed that as long as the eavesdropper has at least as many antennas as the
transmitter, the artificial noise can be filtered out via training an adaptive filter with
known symbols (e.g. the common protocol headers in WiFi frame). Similarly, the
schemes proposed in [20] and [18] were also proved to be vulnerable under multi-
antenna attackers.

We note that the existing PHY-layer security approaches mostly aim at preventing
eavesdropping against a passive adversary and do not consider active attacks. In the
following, we discuss the message integrity protection and authentication that focus
on defending against active attacks, and consider to what extent the existing works
are able to guarantee these services.
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5.2.2 Message Integrity Protection and Authentication

Except for confidentiality, message integrity protection and authentication are
two fundamental security services in the wireless communication. Some existing
research proposed using out-of-band (OOB) secure auxiliary channels to build
message authentication protocols without pre-shared keys [6, 9, 35]. However, an
OOB channel would require special hardware and non-trivial human interaction,
while its security has been revisited [38]. In addition, whenever keys are stolen or
compromised, re-keying involves significant human efforts as well.

Ideally, we want to provide message integrity protection and authentication
without relying on pre-shared keys or secure channels. Namely that to establish
the veracity of a message and its source using only wireless in-band transmissions.
One approach is to use non-cryptographic authentication. Existing approaches on
non-cryptographic device authentication can be classified into three categories: (1)
Ensuring close device proximity [51], which exploits the channel difference among
multiple antennas when devices are in close proximity. However, such techniques
require advanced hardware which is not available on all wireless devices. (2)
Location distinction, such as temporal link signatures that detect location differences
[26, 44]. These techniques require high bandwidth (> 40MHz), which is not always
available to low-cost, resource-constrained devices. (3) Device identification [8, 15]
which distinguishes devices based on their unique PHY-layer or hardware features.
Unfortunately, both location distinction and device identification techniques require
prior training or frequent retraining, which is not applicable to networks deployed
in uncontrolled environments.

Although the above approaches authenticate a device’s presence, they do not
necessarily protect the integrity of the message transmitted by a device. There have
been a few attempts to achieve in-band message integrity protection [10, 19, 22].
The common underlying idea is to combine ON/OFF keying with unidirectional
error detection code. By using this coding method, bit 1 is encoded into ON_OFF
slots and bit 0 is encoded into OFF_ON slots. To provide message integrity
protection, a data packet is sent first using normal modulation, followed by a
cryptographic hash calculated over the message which is encoded using the ON/OFF
keying approach (the idea is also shown in Fig. 5.1). The security of this approach
is based on the infeasibility of signal cancellation in the wireless channel, which
ensures that only unidirectional bit modification is feasible, i.e. attacker could only
change OFF slot into ON slot but not in the opposite direction. Besides, according

Original hash bits
1

1ON/OFF slots:

Normal
message packet

0 0 0 0 0 0 0
Time

1 1 1 1 11

1 1 0 0 0 ......

......

......

0

Fig. 5.1 The messaging structure of message integrity protection and authentication
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to the second preimage resistance property of Hash functions, it is computationally
infeasible for the attacker to compute a new message with the same Hash result.
Therefore any tampering with the original message will be detected (w.h.p.). The
authentication property is derived based on authentication through presence [10],
in which the received message is authorized if and only if the receivers verify only
one message is received from the intended transmitter and has not been modified.
Anti-signal-cancellation is achieved by setting the signal to be random in each ON
slot, and based on the assumption that attacker could not extract any knowledge
of the source signal and the channel thus it cannot cancel the signal. However, the
validity of the infeasibility of signal cancellation assumption was not thoroughly
investigated, and in fact, signal cancellation is indeed feasible in many application
scenarios [23, 39].

5.2.3 Channel Randomization Based Approaches

Recent studies in wireless communications showed that due to the inherent random-
ness of the wireless channel such as multipath, even small motions of the antenna
can create large variations to the channel [1], which makes channel randomization
a promising technology in creating channel advantage. In [21], Hassanieh et al.
proposed to randomize the channel via rotating multiple antennas at the transmitter
with a fan motor. However, since the fan motor rotates at a constant speed and
the number of antennas equipped at the transmitter is relatively small, it is not
difficult for the attacker to predict the positions of antennas, and furthermore get
sufficient statistical information about the wireless channel to break the scheme. In
contrast, randomizing wireless channel via reconfigurable antennas (RAs) are more
effective due to the swift reconfigurability and state diversity properties of RAs.
[5, 36] adopted RAs to introduce rapid and non-trivial fluctuations to the wireless
channel for secret key generation. Their key generation schemes were still based
on common randomness with RSS, but the fluctuations of the channel were largely
increased by introducing RAs, which led to sufficient independence in RSS profile
and high generation rate. However, their methods rely on conventional reconciliation
for correcting bit-errors, and thus require an authenticated channel.

Besides defending against passive eavesdroppers, channel randomization can
also be used to counter active attacks such as signal manipulation. In our previous
work [23], the wireless channel was randomized by using an electric fan blowing
the aluminum foil strips attached on the transmitter. Though the message integrity
over signal cancellation was protected, the disturbance introduced by a fan is
too tiny to defend against strong signal cancellation attack. Typically, when two
channels which are close to each other are highly correlated [25, 29], the attacker
can cancel out most part of the received signal power via powerful devices with
high probability. Besides, randomizing wireless channel via fan is not a systematic
approach in practice.
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Though channel randomization method has shown to be helpful to enhance
PHY-layer security, this technique is still in its infancy, a systematic study of their
foundations and applicability is needed. In this chapter, we examine the principles
of channel randomization first, followed by exploring its application to prevent
active signal manipulation attacks. Specifically, we use reconfigurable antennas to
systematically randomize the channel such that it is unpredictable to the active
attacker.

5.3 Defending Against Signal Manipulation via Channel
Randomization: Theoretical Foundations

5.3.1 Background and Overview

Signal manipulation is a category of active attacks that include symbol injection,
flipping, overshadowing, signal cancellation, etc. It directly modifies the message
bits at the physical layer such that it is difficult to detect without any high-layer
authentication mechanisms. Among them, signal cancellation is the strongest attack
which can annihilate the signal all together. Previously, it has been shown by Čapkun
et al. [10] that, if signal cancellation over the wireless channel is infeasible, by
combining unidirectional error detection codes with ON/OFF keying modulation,
we can detect arbitrary signal modifications. However, a practical signal cancellation
attack has been demonstrated later by Popper et al. [39], which uses a pair of
directional antennas to relay the source signal such that the phase differs by kπ
from the direct signal received by the receiver. It can completely cancel out the
received signal, regardless of the message content or modulation. Later Ghose et al.
[17] showed the feasibility of signal cancellation not only for one link but also from
one to two devices, but infeasible for more than three devices.

Our goal is to provide in-band message integrity protection and authentication,
while being resistant against signal cancellation attacks. Note that, signal cancella-
tion is also known as “correlated jamming”, since the injected signal is correlated
with the legitimate one rather than random. However, due to such difference with
traditional jamming, their defenses are completely different. Our goal here is to
prevent the legitimate signal from being canceled, while anti-jamming aims at
canceling out the external signal. Besides, the key to signal cancellation defense is
to increase the signal energy detection probability, while a more powerful traditional
jamming signal actually enhances the energy detection probability and helps to
protect message integrity. In traditional anti-jamming, the jamming signal can be
cancelled out by using digital or mechanical beam-forming and auto-configuration
to track the jammer and cancel its jamming signal (for example, Vo et al. [45] and
Yan et al. [48]), which will also lead to cancellation of the legitimate signal in our
case.
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We observe that the key to signal cancellation defense is to prevent an attacker
from generating and injecting the correlated signal in the first place. Since the latter
is dependent on the physical channel, we need to make attacker’s channel different
from the legitimate channel. Therefore, proactively and dynamically randomizing
the channels can help. This must be done in a principled way such that the legitimate
channel is unpredictable to the attacker, while reducing the correlation between the
two channels. To this end, we will exploit reconfigurable antennas to change the
channel with randomly selected antenna states (radiation patterns), while ensuring
de-correlated channels due to heterogeneous antenna gains in different directions.

5.3.2 System Model

In our model, Alice communicates with Bob through a wireless channel. There
are two types of transmission modes. In the first one (normal mode) a message
is transmitted using standard modulation and data rates, such as 802.11 and OFDM.
The second one is called the ON/OFF keying mode, where information bits (like the
hash of a normal message) are all encoded using ON/OFF keying combined with
unidirectional error detection codes (e.g., Manchester coding). In each ON slot, a
normal packet with random content is transmitted, while in OFF slots Alice remains
silent. For this mode, Bob uses energy detection to decode the received signal.
Periodically (e.g., per symbol interval), Bob obtains a received signal strength (RSS)
and compares it with a threshold (α). If the RSS is larger than α for Ns samples then
an ON slot is detected. We assume each transmitted signal x ∈ C is arbitrary. The
channel state information (CSI) h ∈ C between Alice and Bob is modeled under
Rayleigh fading with additive white Gaussian noise n in outdoor environments, and
Rician model in indoor environments.

5.3.3 Threat Model

The attacker’s general goal is to break integrity protection, i.e., modify the message
without being detected. For the normal mode, we assume the adversary can
arbitrarily eavesdrop, inject, modify, replay, and block the message (standard Dolev-
Yao model). For the ON/OFF keying mode, we assume an attacker C who knows the
exact transmitted signal x, and C’s goal is to cancel out the signal received at Bob.
To learn x in real-time, C can place a directional antenna closely to the legitimate
transmitter A. To create and deliver a correlated signal at B, C will utilize x and
her ”knowledge” about the CSI h from A to B. Essentially, C possesses a correlated
version of h denoted as g (correlation coefficient denoted as r ∈ [0, 1]), as shown in
Fig. 5.2.

There are two types of attackers in our model depending on their attack modes.
We always assume the attacker cannot replace A or B, or simply block the
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Estimate ‘h’ as ‘g’
Choose strategy ‘a’

Channel: h

y=(h+ag)x+nx

A B

C

Fig. 5.2 The system model

communication using a Faraday Cage. We do not restrict the number and type of
devices the attacker may have. It can either generate its own signals or process and
relay the signals from A to B.

Type I This type of attacker can obtain up-to-date and correlated estimation g about
A to B’s CSI using information from any of the temporal, spatial and frequency
domains. For example, it could place multiple receivers close to B, and measure the
channel for each transmitted symbol continuously. In the worst case, it obtains the
exact A-B channel for every symbol in the past and uses them to predict the future
CSI. After estimating h as g, the attacker can decide the cancellation strategy a and
send its own signal agx to B.

Type II Note that type I attack model is too theoretical to be used in practice since it
requires the attacker to place multiple receivers to measure the channel and combine
all estimations, which is costly and computationally complex. Actually, the attacker
can easily relay the correlated source signal after processing with one device. Thus,
we propose type II attacker to model a more practical attacker. Instead of estimating
and predicting future CSI, a type II attacker exploits the intrinsic spatial correlation
between channel A-C and A-B, by multiplying the received correlated source signal
from A (gx) with cancellation strategy a and relaying it to the receiver via a stable
channel (or the other way around). Though in practice, the attacker cannot send
its signal to the receiver without any attenuation, the attacker can use powerful
directional antennas to relay the processed signal to the receiver, for which the
channel can be regarded as stable. Note that the type II attacker is more general
than that in [39], since in our model the attacker is capable of processing received
signal before relaying it, whereas in [39] the attacker only relays the signal.

It is worth noticing that both types of attack models above are stronger than
previous works [10, 19, 22, 39], as the attacker can do real-time signal processing
to generate a correlated cancellation signal based on source x and the correlated
CSI. In addition, type II is more practical than type I attacker, since it is easier to
implement in practice.
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5.3.4 Optimal Strategies for Signal Cancellation Attack
and Defense

5.3.4.1 Game Theoretic Framework

In this section, we theoretically analyze the signal cancellation attack for one symbol
in an ON slot. We model the cancellation and anti-cancellation process as a game.
The attacker’s goal is to transmit a signal correlated with x such that the detection
probability Pd of the combined received signal is minimized at B. Therefore we
define the attacker’s utility function as Ua=−Pd. The legitimate pair’s strategy is
to maximize the energy detection probability and their utility function is Ul=Pd.

For the strategy space, let the attacker generate a linear signal [27, 41, 42] that
is agx+ v, in which a is a variable controlled by attacker, g is attacker’s knowledge
about h (an estimated or correlated version), and v is additive white Gaussian noise
with variance σ v. Thus the overall received signal will be:

y = (h+ ag)x + n+ v (5.1)

W.l.o.g., we use the Rician model for A-B channel (Rayleigh model is a special
case), note that we choose these models since they are representative and can
yield closed-form solutions. In this model, the channel h is composed of two
parts: one is the deterministic Line-of-Sight (LoS) component h′, the other is the
random Gaussian distributed fading component h′′. Thus the channel is denoted by
h= h′ + h′′.

We assume the attacker could estimate the LoS part precisely. The estimation g is
further divided into two parts g= g′ + g′′. The attacker’s strategy consists of a tuple
a= [a′, a′′, σ v] corresponding to each component. Its transmit power can be easily
derived based on a, g, the power of x and v, and here we assume it is not bounded.

Under this model, the received signal can be represented by:

y = (h′ + a′g′)x + (h′′ + a′′g′′)x + n+ v (5.2)

5.3.4.2 Optimal Attack Strategy

Because the LoS and NLoS signal components are independent of each other, the
attacker can cancel the two components separately.

A. LoS Component Strategy As the LoS channel component h′ is assumed to be
precisely known, we have g′ = h′. Therefore we can easily derive the optimal attack
strategy for the LoS component:

Theorem 5.1 The optimal LoS component cancellation strategy is:

a′ = −1 (5.3)
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The above indicates that the attacker will reverse the LoS signal’s phase to
completely cancel it out at the receiver side.

B. NLoS Component Strategy Given that the LoS component can be completely
canceled, we analyze the optimal attack strategy for NLoS part. We start from deriv-
ing the distribution of received power of this component under signal cancellation
attack.

According to the type I and II attacker model, the main difference between
them is how they are implemented in practice. Thus we can use the same theory
to analyze them. In the power expression Py = σ 2

x (h′′ + a′′g′′)2 + σ 2
n + σ 2

v , the
component |h′′ + a′′g′′|2 follows Gamma distribution Γ (1, 2σ 2) since (h′′ + a′′g′′)
is a CSCG random variable, where σ 2 = 1

2E[(h′′ +a′′g′′)(h′′ + a′′g′′)]. In addition,
the part σ 2

x |h′′ + a′′g′′|2 also follows Gamma distribution Γ (1, 2σ 2
x σ 2), because

σ x(h′′ + a′′g′′) is a CSCG random variable.

Theorem 5.2 Given detection threshold α, the probability that a symbol within an
ON slot be detected under type I and II attacker’s signal cancellation attack is:

Pd(σ 2) = e
− α−σ2

n−σ2
v

2σ2
x σ2 (5.4)

According to Eq. (5.4), the detection probability is related to the estimated
channel g′′. Thus we will first analyze the effect of the parameter σ 2 on the detection
probability.

Theorem 5.3 The NLoS part’s optimal signal cancellation attack strategy is:

(a′′ = −E[h′′ḡ′′]
σ 2

g

, σ 2
v = 0) (5.5)

The proof is in our previous work [23]. Given the optimal strategy of attacker, we
can use Eq. (5.4) in the Appendix of [23] to derive the minimum variance σ 2

min =
1
2σ 2

h (1 − |rhg|2), where |r
h′′g′′ | is the correlation coefficient. Substitute it into Eq.

(5.4), we get the minimum detection probability:

Pd(σ 2
min) = e

− α−σ2
n−σ2

v

σ2
x σ2

h
(1−|r

h′′g′′ |
2) (5.6)

From Eq. (5.6), we can see that the minimum detection probability decreases
with the increase of attacker’s correlation coefficient |r

h′′g′′ |. Previous works that
either assumed a 0 or 1 correlation coefficient are two extreme cases of our result.
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5.3.4.3 Optimal Defender Strategy

Next, we analyze the legitimate pair’s optimal strategy. In our model, the signal x
is independent of h′′. The only transmitter parameter that has an influence on the
final detection probability is the power σ 2

x . From Eq. (5.6), we can easily see that
the detection probability increases when σ 2

x increases. In reality, the transmitter’s
power is limited, thus it indicates that the transmitter should always choose its
largest power level to defend against signal cancellation attacks.

5.3.4.4 Simulation Results

We used Matlab to simulate the above theoretical analysis in our previous work [23]
and mainly studied the received signal power in the presence of signal cancellation
attack. More specifically, in the NLoS Rayleigh fading channels, we generated two
CSI sequences with a given correlation coefficient rhḡ to simulate the legitimate
channel and attacker’s estimation. The transmitting power was 0dB and the channel
gain was normalized to 1. The signal was modulated using QPSK and the SNR at
the receiver side was set to be 25 dB. The attacker was assumed to know rhḡ and σ 2

g

so as to calculate the optimal attack strategy a. Our main simulation results are: (1)
The power of received signal achieves the minimum when the attacker applies the
proposed optimal attack strategy, which confirms the correctness of our theoretical
analysis. (2) There are three factors that could lead to a higher detection probability
in optimal cancellation attack: a lower correlation coefficient, a higher detection
threshold and a higher transmitting power.

5.4 Channel Randomization Using Reconfigurable Antennas

In this section, we show the crucial criteria in designing our channel randomization
approach, of which the basic idea is to randomly switch among RA’s different
radiation modes every symbol period.

5.4.1 Characteristics of Reconfigurable Antenna

A reconfigurable antenna is an antenna capable of dynamically rearranging its
antenna currents or radiating edges in a controlled and reversible manner [7, 12,
50]. For a p-i-n diode based reconfigurable antenna, by changing its structure
electronically, it can swiftly reconfigure itself in terms of the radiation pattern,
polarization and frequency, or combinations of them. In the aspect of randomizing
the wireless channel, we need to prevent the attacker from predicting future CSI
from historical CSI sequences (for type I attack), as well as reduce the spatial
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correlation of CSI (for type II attack). Thus, ideally a RA is expected to have the
following two properties for security purposes: (1) the RA should have a large and
diverse set of antenna patterns, which provide different gains among different spatial
directions (resulting in small spatial correlation); (2) for a given spatial direction, the
antenna gains across different antenna modes should have high variations (yielding
small temporal correlation).

5.4.2 Antenna Mode Switching Period

For the directional antenna model [4], the CSI is represented as: h = ∑
l∈L

ft (φl, θl) ·
Ll ·fr(φ

′
l , θ

′
l ), where Ll is the path gain of the lth path and f (.) is the antenna-specific

characterization function which models the transmitter and receiver gain of the
direction from which the signal is transmitted and received. Since the antenna gain
of a given direction is different under different antenna modes, we can randomize
the wireless channel via randomly switching the modes of RA. Moreover, according
to a recent study in MIMO [1], the motion of beam steering can change both the LoS
and NLoS components of the wireless channel, which also indicates that using RA
can create high CSI variations.

Except for increasing the randomness of CSI, to achieve message integrity
protection, it is also important to prevent the attacker from predicting future CSI.
Consider the scenario that CSI is changing too slowly (that is, one antenna mode
lasts for several symbol periods), once obtaining one exact CSI, the attacker is able
to cancel out the following symbols that use the same antenna mode. In practice,
the attacker is assumed to take at least one symbol period to estimate CSI [2]. To
prevent the attacker from accurately predicting future CSI through historical CSI
values, the antenna mode of the RA should change at least once in a symbol period.
As it is not necessary to change antenna mode too frequently, we let the switching
period of antenna mode equal to OFDM symbol duration time in our design.

5.4.3 Multiple Symbols for Message Integrity Protection

We can combine our channel randomization approach with existing message
integrity protection schemes as follows. For a general message integrity protection
scheme shown in Fig. 5.1, we only need to activate our channel randomization
approach during ON slots and synchronization phase, since only those messages
need to be protected against cancellation. Considering that the ON slot detection
probability grows if there are multiple symbols [22], we can guarantee the energy
detection probability of an ON slot by incorporating multiple symbols in it. To
do so, we first upper-bound the attacker’s knowledge (correlation) under type I
and II attack. For the type I attack, the idea is to extract the A-B’s CSI by the
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legitimate receiver B through channel probing, and mimic the attacker’s strategy to
quantify the intrinsic time-domain correlation in the channel itself, assuming perfect
estimation of historical CSI by the attacker. For type II attack, we assume that the
attackers can only be located at a certain distance away from the legitimate receiver
(and transmitter), which can be implemented by creating a guard zone in practice,
otherwise, the attacker can be easily detected. Since the correlation coefficient
decreases with the increase of the distance from the attacker to the receiver (this
relationship is shown in our previous work [37]), B can estimate the correlation
of the channel that is closest to itself (which has most related CSI) to mimic the
attacker.

Based on the obtained correlation, we calculate the minimum energy detection
probability for each symbol under signal cancellation attack using our theoretical
framework. Given a target security requirement (signal cancellation probability for
each ON slot is no larger than some threshold), the number of symbols needed
in each ON slot can be derived. Then the transmitter applies this parameter
during its ON/OFF keying to protect message integrity, while the receiver uses
energy detection to recover the source information bits. To enhance efficiency, the
transmitter sends a normal message packet followed by Manchester coding and
ON/OFF keying of the Hash of the message.

Given the bound of attacker’s correlation coefficient, we substitute it along with
others parameters (including σh′′ , σ x, α) into Eq. (5.6). Then we can derive the
detection probability Pd for a single symbol, and the minimum necessary number
of symbols n in each ON slot:

Theorem 5.4 Given the required minimum detection probability in each ON slot
Ps, the minimal number of symbols is:

n = �log1−Ps

1−Pd
� (5.7)

5.5 Experimental Results

5.5.1 Channel Randomness and Correlation

To study the impact of attacker’s positions on channel correlation when the
transmitter is equipped with RA and OA (omnidirectional antenna) respectively, we
conduct a preliminary experiment under 246 typical antenna modes that match our
reflection coefficient constraint. Figure 5.3a presents the 3D view of RA we use. The
reconfigurable parasitic surface consists of 3× 3 square-shaped metallic pixels that
are connected by 12 p-i-n diode switches [32]. Each switch has ON and OFF status,
which brings 4096 possible modes of operation to RA. To show the state diversity of
RA, antenna gain in the plane of φ= 90◦ for four typical modes is depicted in Fig.
5.3b. We set the distance from the transmitter to the receiver (A-B) to be 120 cm, and
change the distance from the attacker to the receiver (C-B). The detailed experiment



5 Enhance Physical Layer Security via Channel Randomization. . . 129

(a)

0

30

60
90

120

150

180

210

240
270

300

330

0

1

2

mode 2
mode 6
mode 122
mode 20

(b)

Fig. 5.3 (a) 3D view of RA. (b) Antenna gain in the plane of φ= 90◦

results can be found in our previous paper [37]. The main insights we obtained are:
(1) In OA scenarios, wherever the attacker is, the correlation coefficient (≈ 0.98)
between A-B and A-C is always quite high, which means the attacker could cancel
out most of the transmitted message by just simply relaying its received signal; (2)
In contrast, when RA is used, A-B and A-C are much more independent (correlation
coefficients are below 0.5 in most cases), which proves that the utilization of RA can
increase the randomness between two wireless channels.

To quantify the randomness increment introduced by antenna modes and multi-
path, we calculate the entropy in terms of antenna gain and CSI. From the results
we obtained, we know that: (1) when RA is used, CSI has greater entropy, which
corresponds to more randomness of the wireless channel in time-domain; (2) the
multipath, noise and other dynamic factors in physical wireless channel lead to
the entropy of CSI greater than that of antenna gain (≈ 6.9) and antenna mode
(log2246≈ 7.9); 3) due to the online nature of signal cancellation attack, to achieve
good cancellation performance, the attacker has to estimate the real and imaginary
parts of CSI with high accuracy in every symbol period, which is hard to achieve.
Thus, even if the CSI distribution has low entropy (e.g., 9 bits), the attacker’s
average estimation error can still be high.

5.5.2 Attack Effectiveness Evaluation

5.5.2.1 Experiment Setting

We set up three USRP N210 devices with SBX daughter boards using LabVIEW
on a table in an indoor lab. We conduct two experiments, where we set the distance
between transmitter and receiver (TX-RX) to be 120 cm and 360 cm in experiment
1 (E1) and experiment 2 (E2) respectively. The attacker is put 25.8 cm away from
the receiver in both experiments so as to make the attacker get close to the legitimate
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receiver and meanwhile not be detected. We implement an OFDM transmitter,
receiver and attacker, where the transmitter sends packets with known symbols in the
2.45 GHz band with bandwidth set to 100 MHz. All three USRPs are connected with
an OctoClock to synchronize their clocks, and eliminate the impact of frequency
and phase offset. The QPSK is used and each OFDM symbol contains 320 QPSK
symbols. Though our OFDM system has 256 sub-channels, for simplicity, we only
estimate the CSI for one of them. The switching time for RA lasts for one OFDM
symbol duration, which is 256 µs. To do so, we connect RA with an Arduino Uno
Rev 3 programmable microcontroller to randomly switch antenna mode within 4096
available modes.

5.5.2.2 Experimental Strategies

We tested two scenarios for both types of attackers: the transmitter is equipped
with OA and RA in scenario 1 and 2 respectively; In both scenarios, the receiver
and attacker are equipped with OA. For type I attacker, to generate the attacker’s
estimated CSI sequence g, we assume the attacker uses a simple autoregression
technique to estimate h. That is, the attacker takes the CSI of h at time tn as the CSI
of g at time tn+1. For the much more practical type II attacker, we implement two
cancellation attack strategies:

strategy 1: the attacker simply relays the received signal;
strategy 2: the attacker processes the received signal with the proposed optimal

attack strategy and then relays it.

5.5.2.3 Evaluation of Cancellation Results

A. Experiment 1 Figure 5.4a, b show the detection probability encountering type
II attacker under both strategies in experiment 1. We can see that: (1) In Fig.
5.4b, when the transmitter is equipped with RA, the detection probability after
cancellation almost stay the same as before, which shows the effectiveness of
channel randomization approach in protecting message integrity; (2) From Fig. 5.4a,
we note that the type II attacker who adopts strategy 1 (which is similar to the
attacker in [39]) even increases the detection probability in RA scenarios.

For type I attack, we first analyze the channel randomness and correlation. We
calculate the auto-correlation coefficient of legitimate CSI sequence and show the
result in Fig. 5.5a. We can observe that: (1) the low auto-correlation coefficient
of CSI under RA (which is about 0.15) indicates that except for reducing the
correlation between two spatial correlated channels, the utilization of RA can also
decrease the correlation within CSI sequence in temporal domain; (2) due to the
stable indoor environment, the CSI sequence is highly correlated in both temporal
and spatial domains when OA is used. Then we implement strategy 2 for type I
attacker and show its cancellation performance in Fig. 5.5b. Comparing Fig. 5.5b
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Fig. 5.4 Type II attack, the detection Probability at the receiver. (a and c) Under strategy 1; (b and
d) under strategy 2 (BC: before cancellation; AC: after cancellation)
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Fig. 5.5 (a) Auto-correlation coefficient of legitimate CSI sequence under OA and RA in
experiment 1; (b) illustrates detection probability encountering type I attacker with strategy 2 in
experiment 1
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with Fig. 5.4b, we can see that the cancellation performance for type I attacker and
type II attacker is similar. However, type II attack is much more practical.

B. Experiment 2 Next, we implement type II attacker for experiment 2, the results
are shown in Fig. 5.4c, d. Comparing (a) with (c) and (b) with (d), we can see
that the cancellation results for OA are similar. However, when RA is used, the
attacker performs better in experiment 2, which indicates the limitation of RA on
randomizing wireless channel. Note that the distance of Attacker-RX is the same
for both experiments, thus the angle between A-C and A-B in experiment 2 is much
smaller than that in experiment 1 due to the increase of the distance between TX and
RX. In this case, the antenna gains in the direction of RX and attacker are almost the
same, which means the attacker can obtain a highly correlated CSI sequence. Hence
we can conclude that when the distance between TX and RX increases, the guard
zone at the receiver should increase proportionally to guarantee the effectiveness of
the channel randomization approach.

5.5.3 System Performance

Considering that the CSI value under some antenna modes of RA can be low, to
ensure normal communications after adopting RA, in this part we use the data
of experiment 1 to analyze the performance of the message integrity scheme we
mentioned in Sect. 5.4.3. More specifically, we first calculate the number of symbols
needed in an ON slot from Theorem 5.4. Then we calculate the bit error rate (BER)
and link throughput of legitimate pairs under normal communication scenarios with
RA and OA respectively. Before presenting the results, we first show the definition
of BER and the calculation of link throughput.

5.5.3.1 BER

To clarify, the BER we mentioned here is referred as the error that receiver cannot
decode the message (that is, the ON slot in the message is canceled to the OFF
slot), changing OFF to ON does not happen because the noise is very small in our
experiments. So only OFF_OFF slots are undecodable, which is an error.

5.5.3.2 Link Throughput

If we only consider using the ON/OFF keying mode to carry data, given the number
of symbols n, the security requirement Ps and the BER p, we can derive the
maximum link throughput between A and B: c = 1−p

2�log1−Ps
1−Pd

�·Δt
. If we consider both

normal mode and the hash ON/OFF encoding, the maximum throughput will be
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c′ = (1−p)·Ldata

Tdata+2L·�log1−Ps
1−Pd

�·Δt
, where Ldata and Tdata are the bit length and transmission

time of a normal data packet respectively, while L is hash length. We can see that the
higher the per-symbol detection probability Pd, the lower the BER and the higher
the throughput.

5.5.3.3 Results

For simplicity, we evaluate the ON/OFF keying mode only. We set the security
requirement for successfully detecting each ON slot to be Ps= 0.9999. Since the
transmitter cannot tell whether there exists the signal cancellation attack or not, to
guarantee detection probability, the transmitter always uses the detection probability
of a single symbol under optimal attack Pd to calculate the number of symbols
needed. Then we calculate the BER and link throughput in normal communications
(without cancellation attack).

The results of the number of symbols, BER and link throughput under RA and
OA scenarios are shown in Table 5.1. We can have several observations: (1) As the
threshold α increases, the energy detection probability in each ON slot decreases,
which leads to an increasing number of needed symbols and a decreasing link
throughput, but the system is more tolerant to noise/interference; (2) The BER is
lower when number of symbols is larger. Note that (1) since the detection threshold
is set based on the noise level. The higher the noise level, the higher the threshold
should we use, which can decrease the false positive rate for OFF slots. But the
tradeoff is that this will decrease the true positive probability (for ON slots) and
also the link throughput eventually; (2) the BER for OA scenarios is not exact,
because a large number of symbols needed in an ON slot leads to enlarged length of
CSI sequences, however, the CSI sequence length in our experiment is 1000, which
is not long enough. The value of BER can be remedied by measuring longer CSI
sequences in the experiment.

Table 5.1 Number of symbols, BER and link throughput under RA and OA scenarios

RA OA
Threshold
(dB)

Number of
symbols BER

Throughput
(kbps)

Number of
symbols BER

Throughput
(kbps)

− 55 1 0.0060 3.9063 12 0 0.3255

− 50 2 0.0020 1.9531 79 0 0.0494

− 45 3 0 1.3021 3065 – –
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5.6 Conclusion and Future Directions

In this chapter, we explored a proactive and dynamical channel randomization
approach to defend against active signal manipulation attacks in the wireless
physical layer. We established a signal cancellation attack and defense framework to
model the attacker’s behavior. Based on the analytical results, we proposed a PHY-
layer message integrity protection scheme which uses reconfigurable antennas for
channel randomization. Comprehensive experiments were carried out to evaluate
the proposed approach under different attack scenarios. Besides defending against
signal manipulations, the proposed channel randomization method can also be used
to enhance other PHY-layer security objectives, or defend against new attacks. For
example, prevent cancellation of the jamming signal by multiple antenna attackers
in friendly jamming [43], or known plaintext [40] and ciphertext only attacks [52]
against artificial-noise based secret communication schemes, such as orthogonal
blinding [3]. For the latter, the key to successful attacks in [40, 52] is the well-
trained adaptive filters which filter out the artificial noise. However, the filter is
trained over multiple symbol duration, during which the legitimate channel is static.
Utilizing our proactive and dynamic channel randomization approach can defeat
these attacks by preventing them from successfully training the filter. We will
explore both the theoretical foundations and practical schemes to achieve such goals,
and fulfill the quest to further understand the applicability and limitations of channel
randomization in PHY-layer security.
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and sophisticated attackers. In light of this, it is clear that defenders need to look
beyond the first lines of defense and invest not only into prevention, but also
into limiting the impact of cyber-breaches. Thus, an effective cyber-defense must
combine proactive defense, which aims to block anticipated attacks, with reactive
defense, which responds to and mitigates perceived attacks (e.g., isolating and
shutting down compromised components). However, planning defensive actions
in anticipation of and in response to strategic attacks is a challenging problem.
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6.1 Introduction

Traditionally, security research has focused on preventing attackers from breaching
the security of a system or network. While researchers are making considerable
advances in this direction, attack techniques are also evolving, which makes
providing security an uphill battle. Indeed, attaining perfect security remains
virtually impossible for practical systems. The number of reported cyber-incidents
is increasing steadily, and the total cost of malicious cyber-activities to the U.S.
economy has recently been estimated to be between $57 and $109 billion [9].
For instance, according to a 2017 industry report, 67% of companies with critical
infrastructure suffered at least one attack in the preceding 12 months; in particular,
91% of power companies have experienced an attack [17].

In light of this, it is clear that defenders cannot focus only on the first lines
of defense, and they must look beyond the prevention of cyber-breaches. Besides
preventing breaches, defenders can also alleviate cyber-security risks by reducing
the expected impact of successful attacks. In practice, there are a number of actions
that defenders may take to limit the impact of a breach, such as quickly isolating and
shutting down compromised hosts or reconfiguring the uncompromised ones. While
these actions cannot prevent an attack, they can mitigate it before it could cause
significant damage. We will refer to such actions collectively as reactive defense
approaches to emphasize that these actions are taken in response to perceived (or
suspected) cyber-attacks.1

An effective cyber-defense must combine this reactive approach with proactive
defense actions. Proactive defense includes actions taken in anticipation of an attack,
such as finding and patching software vulnerabilities before an adversary could
exploit them. Optimal cyber-defense must consider the whole spectrum of available
proactive and reactive actions, and it must implement them in a combination that
minimizes cyber-security risks. However, real defenders typically have a finite
budget, which limits the amount of resources, effort, and time available to them
for implementing cyber-defenses. Consequently, they need to carefully plan what
proactive actions to implement in anticipation of attacks and what reactive actions
to implement under various attack scenarios in order to minimize cyber-risks subject
to their budget constraints.

A key factor in this planning problem is the strategic nature of cyber-security.
The most threatening, sophisticated attacks are very often strategic in the sense
that adversaries tailor their malicious actions to the defenders’ plans. In light of
this, defenses must also be planned strategically: On the one hand, defenders must
anticipate attacks and plan their actions accordingly, assuming that adversaries will
adapt. On the other hand, defenders have to react to observed attacks to mitigate
them (e.g., isolate and re-install compromised hosts), assuming that adversaries have
mounted strategic attacks and are ready for strategic escalation.

1Note that we use the term “reactive defense” to refer to actions taken in response to perceived or
suspected attacks. This is different from planning defenses in response to risks, which is sometimes
referred to using similar terms (e.g., responsive or reactive security).
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Such strategic interactions between defenders and attackers are modeled most
naturally using game theory. Indeed, a number of game-theoretic models have
been proposed for studying the defense of networked systems [32, 38]. However,
prior work has not addressed the overarching problem of proactive and reactive
defenses in sufficient detail. Firstly, a number of research efforts have studied
high-level models of cyber-security, but these papers often consider very abstract
notions of security investments (e.g., allocation of abstract defensive resources to
targets [30]). Further, these models are typically based on two-stage security games,
which consider only proactive actions, but not reactive ones. Secondly, a number
of research efforts have studied the optimal implementation of particular actions
in detail, some even considering continuous conflicts and reactive approaches
(e.g., resetting potentially compromised computational resources [51]). However,
these models typically include only one particular type of action, and it is often
unclear—especially for practitioners—how to combine different types of actions
most effectively.

To bridge this gap, we discuss how to build realistic, high-resolution multi-stage
security games for networked systems, which can form a conceptual foundation for
the optimal implementation of proactive and reactive defenses. We first consider the
most widely used class of security models, called Stackelberg security games, and
argue that these are not well suited for studying reactive defenses. We then discuss
stochastic games, which provide a general mathematical framework for modeling
multi-stage interactions. Based on this framework, we introduce our approach
for modeling the proactive and reactive defense of networked systems against
strategic attacks, focusing on key modeling choices and challenges. Then, we
describe canonical types of proactive (redundancy, diversity, isolation, hardening,
and detection) and reactive (islanding, resetting, and reconfiguration) defenses,
again focusing on key modeling choices and challenges. Finally, we consider the
problem of finding optimal defense strategies in our model, which is generally a
computationally hard problem, and discuss reinforcement learning as a promising
solution approach.

The remainder of this chapter is organized as follows. In Sect. 6.2, we describe
two-stage Stackelberg game model of security. In Sect. 6.3, we discuss stochastic
games for modeling multi-stage interactions in security. In Sect. 6.4, we introduce
our modeling approach for building realistic multi-stage models of security. In Sects.
6.5 and 6.6, we describe canonical approaches for proactive and reactive defenses,
respectively, and we discuss how to model them. In Sect. 6.7, we consider how to
solve realistic multi-stage security games and find optimal defense strategies. In
Sect. 6.8, we provide concluding remarks.

6.2 Stackelberg Game Models of Security

A very natural game theoretic model of security, which has received considerable
attention in recent years, is known as Stackelberg games [30, 50]. A Stackelberg
game involves two stages: in the first stage, the defender chooses a defensive posture
(such as which vulnerabilities to patch, or how to configure the firewall), and in the
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second stage, the attacker chooses the best attack. The crucial feature of this model
is that the attacker is assumed to observe the defensive decision; while in reality this
is a very strong assumption, it is also a sound starting point for analysis, as it makes
a worst-case assumption about the information available to the attacker, in the spirit
of Kerckhoffs’s principle [28].

Formally, let D and A denote the sets of actions available to the defender and
attacker, respectively, with d ∈D and a∈A referring to a particular defense/attack
action. To allow for the possibility that the defender randomizes, we let S be the
strategy set of the defender. Thus, the defender may commit to an action, in which
case S=D, or may be able to commit to a probability distribution over D, in which
case S=Δ(D), where Δ(D) is the set of all probability distributions over D. Next,
we define the utility functions uD(s, a) and uA(s, a) for the defender and attacker,
respectively, where s∈ S is the defender’s strategy.

Suppose that the defender commits to a strategy s∈ S. The attacker’s best
response to s is φ(s) ∈ argmaxa∈AuA(s, a). Correspondingly, the defender then
aims to find a strategy s which maximizes its payoff given the attacker’s best
response function φ(s). In particular, a pair of defender and attacker strategies (s∗ ,
φ∗ (s)) is a Stackelberg equilibrium if φ∗ (s) is an attacker’s best response for each
s, and s∗ ∈ argmaxs∈S uD(s, φ∗(s)). This equilibrium concept raises a subtle but
important issue of tie-breaking for the attacker. A common way to resolve it is to
consider a Strong Stackelberg equilibrium (SSE) in which the attacker breaks ties in
the defender’s favor [50].

Stackelberg game models of security that we described above are clearly
simplistic: in these models, the world has only two stages, with the defender making
the first decision, followed by the attacker. In real security settings, the game
involves many such stages. For example, after the attacker chooses an attack, once
the attack has been observed, the defender can deploy additional mitigations, such
as updating anti-virus software, patching vulnerabilities which have been exploited,
and rebuilding the compromised machines. The attacker, in turn, can subsequently
react to such measures, for example, by exploiting another vulnerability, and so on.
A common and very general framework for capturing such multi-stage interactions
is through the formalism of stochastic games, which we describe next. However,
as we subsequently point out, stochastic games are too general, and fail to capture
much structure exhibited in realistic problems. Consequently, we suggest moving to
less general, high-resolution models of multi-stage interactions, which allow us to
make progress towards applying game theoretic tools to realistic security scenarios.

6.3 Stochastic Games in Security

A stochastic game is a very general mathematical framework for modeling multi-
stage interactions. In the context of security, a two-player stochastic game has
a finite set of states X, finite sets of actions for the defender D and attacker
A, a transition function P da

xx′ = Pr{x′|x, d, a}, and immediate reward functions
uD(d, a; x) and uA(d, a; x) for the defender and attacker, respectively [16, 52].
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The game proceeds in discrete time steps t={0, 1, 2, . . . }, where the state at time
t, denoted by xt, is determined stochastically according to the transition function,
given the previous state xt−1 as well as the previous actions dt−1 and at−1 that were
taken by the players. The state xt along with the actions dt and at taken in that state
then determine the players’ immediate rewards. Let T be the time horizon of the
game; it is finite if the game has a finite horizon, and infinite otherwise. Let the
history of states and player actions through time T be h={x0, d0, a0, . . . , xT , dT ,
aT} Then, we define the realized utility of a player i∈ {D, A} (attacker or defender)
to be

Ũi(h) =
T∑

t=0

γ t · ui(dt , at ; xt ),

where γ ∈ [0, 1] is the discount factor, which weighs distance rewards exponentially
less than current.2 Since history is stochastic, we can define expected utility of
player i∈ {D, A} starting in state x as

Ui(x) = Eh[Ũi(h) | x0 = x].

An important and well-known result in (discounted) stochastic games is that there
always exists an equilibrium in which player strategies depend only on current state
and, in finite horizon games, time. Specifically, let a policy π i of a player i determine
the action this player takes at each time step of the game. In an infinite-horizon
stochastic games, there is an equilibrium pair of policies (πD, πA) such that π i

depends only on state x; in finite-horizon stochastic games, such policies would also
depend on the time step t.

There are two variations of stochastic games which are particularly relevant to
multi-stage interactions in security. One, which is a special case of the stochastic
game formalism above, involves alternating moves by the defender and attacker, in
which the defender moves first. The significance of this model is that it is a natural
extension of the standard two-stage Stackelberg game: indeed, a Stackelberg game
model is just such a game with a horizon T = 1 (so that there are only two time steps,
0 and 1). Clearly, this extension captures in a very general way the intuition that we
started with: the game between a defender and an attacker extends beyond two steps,
with a defender reacting to an observed attack, the attacker subsequently reacting
to the defender, and so on. A simple way to encode such an iterative encounter
in the stochastic game formalism is as follows. Let state x encode which player’s
turn it is to move; we can do this by adding a binary state variable xm ∈ {0, 1},
which deterministically flips in each step. We can let xm= 0 when it’s the defender’s
turn to move, and xm= 1 when the attacker moves. Additionally, let us extend the
action sets of both players to allow them to depend on state. Thus, the defender’s

2We chose the discounted version of the stochastic game here as we view it as the best model of
security interactions, where players are sensitive to time. For example, other things being equal, an
attacker would rather obtain intellectual property data sooner than later.
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set of actions is D(x) and the attacker’s set is A(x); this change has no effect on
the theoretical properties of equilibria in stochastic games that we had noted above.
Thus, whenever xm= 0, A(x)=∅ and, conversely, when xm= 1, D(x)=∅.

Another variation, which is actually (and somewhat surprisingly) qualitatively
different from the conventional stochastic games, is the notion of Stochastic
Stackelberg games (SSGs) [52, 53]. The definition of SSGs is nearly identical
to stochastic games, with one crucial difference: first, the defender commits to
a policy πd, and then the attacker best responds with its own policy πa(πd)—
note that now the attacker’s policy can be different depending on which policy the
defender commits to! It turns out that this difference makes SSGs dramatically more
challenging to analyze and solve, in general [52, 53]. For example, it is no longer
the case that we can restrict attention to policies for both players which only depend
on current state, even when the horizon is infinite [52].

At this point, we have described several very general formalisms which allow
us to capture multi-stage interactions in security. The major concern with these,
however, is that they are too general: indeed, stochastic games are difficult to
solve even when the state space is relatively small. In practice, the number of
variables which determine state can be substantial, and even the representation of
a stochastic game described above becomes intractable. Clearly, in order for us to
significantly advance the art in considering interesting multi-stage interactions, we
need to consider lower-level structure. In the remainder of this chapter, we propose
and illustrate the idea of high-fidelity multi-stage games, that is, games in which
we make use of much more specialized, high-fidelity models of the domain. While
this necessarily loses generality, we argue that such modeling is necessary to reveal
important structure in multi-stage games which can enable us to solve more realistic
problems.

6.4 Towards Realistic Multi-Stage Game Models

We now discuss modeling approaches and assumptions for high-fidelity multi-stage
games for studying the defense of networked systems. While our discussion will
consider networked systems in general, we will use cyber-physical systems (CPS)
as a running example to illustrate the practical applicability of our model. Defending
CPS from cyber-physical attacks is an issue that is both pressing and challenging. As
CPS are becoming more prevalent (e.g., smart grid, Industrial Internet of Things),
the importance of ensuring that they are resilient to cyber-attacks is growing rapidly.
For example, cyber-attacks against critical infrastructures, such as smart water-
distribution and transportation networks, pose a serious threat to public health
and safety. Indeed, real-world attacks have demonstrated that cyber-attacks may
penetrate CPS and cause significant physical damage [2, 37, 44, 49, 56]. On the other
hand, defending a complex and large-scale CPS, such as smart critical infrastructure,
is extremely challenging. These systems often face a variety of threats, contain low-
power and legacy components, have large attack surfaces, and have a number of
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undiscovered software vulnerabilities in their sizable codebases. In light of this,
defending CPS is an ideal application example for security game models.

6.4.1 System Model

We first introduce a basic model of networked systems, which will provide a basis
for the discussion of game-theoretic models. In general, we can model a networked
system as a graph (C, E), where C is a set of components and E is a set of links
between the components. Depending on the granularity of the model, a component
may correspond to a subnetwork, a host, a running process, or just a software
module. A link models a communication channel between two components, which
can be either physical (e.g., wired link) or logical (e.g., VPN). A link may be either
unidirectional or bidirectional, which we can model using either directed arcs (i.e.,
E⊆C×C) or undirected edges (i.e., E ⊆ (C2)). A key factor in network security is
that links are not only used to transmit information, control signals, etc., but they
may also be exploited by an attacker to escalate an attack by compromising the
neighbors of an already compromised component.

CPS Example To illustrate how we can model a networked system as a graph, we
now present a high-level model of networked cyber-physical systems, focusing on
the cyber parts of the systems. Figure 6.1 shows an example of a networked cyber-
physical system, consisting of a variety of physical devices. We let the components
C model such physical devices, which we divide into four component types:

• sensor: components that measure the state of physical processes (e.g., water-
pressure sensors, induction-loop sensors for measuring traffic);

• actuator: components that directly affect physical processes (e.g., valves, pumps,
circuit breakers);

physical process

sensor sensor sensoractuator actuator actuator

PLC PLCRTU RTU

supervisory computer HMI workstation

Fig. 6.1 Example cyber-physical system. Labeled icons represent components; arrows represent
links through which sensor data and control signals can flow
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• processing: components that process and store data and control signals (e.g.,
PLCs, RTUs, supervisory computers);

• interface: components that interact with human users (e.g., HMI workstations)
or other systems, which are not part of the model.

The links E model communication links between these devices, which are used to
transmit sensor data and control signals. The observability and controllability of
the physical processes within the CPS depend not only on the functionality of the
individual components, but also on the structure of the graph (C, E). Depending
on this structure, an attacker may be able cause physical damage or loss by
compromising a subset of the components, and tampering with sensor data or
control signals.

6.4.2 Game-Theoretic Model

We next discuss how to build a stochastic security game based on the above model
of networked systems. We first consider the players’ action sets D and A, and then
their utility functions ui.

We assume alternating moves by the defender and the attacker, the defender
moving first. In each time step, a player may take multiple actions. Slightly abusing
notation, we let D and A denote the sets of actions available to the defender and
attacker, respectively. A policy π i determines the subset of actions to be taken in
each time step.

We divide the defenders’ actions D into two disjoint sets of actions (see
Table 6.1):

• Proactive defense actionsDP: Proactive actions are taken in anticipation of
attacks (e.g., deploying an intrusion detection system). In our model, we assume
that the defender can take these actions only in time step t= 0, which represents
everything that happens before the attacker may mount its attack. We discuss
proactive actions in more detail in Sect. 6.5.

• Reactive defense actionsDR: Reactive actions are taken in response to an
observed attack (e.g., shutting down and re-installing a compromised host). In
our model, we assume that the defender can take these actions only in time steps
t > 0. We discuss reactive actions in more detail in Sect. 6.6.

Meanwhile, an attacker tries to compromise or impair the components of the
system by attacking them.3 We let CC

t ⊆ C and CI
t ⊆ C denote the sets of

components that are compromised or impaired by the attacker at the end of time
step t. Each attack—of which the attacker may mount multiple in a time step—
targets a specific subset K⊆C of components using a specific attack method (e.g.,

3For ease of presentation, we only consider attacks against components, but it would be
straightforward to extend our modeling approach to also consider attacks against links.
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Table 6.1 Defense actions

Type Name Idea Section

Proactive Redundancy Deploying redundant components 6.5.1

Diversity Implementing components using a diverse set of
hardware and software

6.5.2

Isolation Removing links between components 6.5.3

Hardening Making components (or implementation types) more
resilient to attacks

6.5.4

Detection Deploying intrusion detection systems 6.5.5

Reactive Islanding Removing links between components 6.6.1

Resetting Resetting components into known secure states 6.6.2

Reconfiguration Changing the configuration of components 6.6.3

code injection attack or DDoS attack). The set of attack actions A corresponds to
the possible combinations of targeted components and attack methods. Attacks are
non-deterministic in the sense that they do not necessarily succeed in compromising
or impairing all the targeted components K. For example, an attack might require
finding a software vulnerability in a certain implementation or guessing a password,
and the attacker might fail to do so. In general, the success probability of an attack is
an increasing function of the set of components that have already been compromised
or impaired.4 Firstly, the attacker might exploit the implicit trust relations between
components that are connected by links E to easily compromise the neighbors
of an already compromised component. Secondly, the impairment of components
may result in cascading failures, which makes the impairment of other components
easier.

The attacker also incurs a cost for mounting its attacks. The cost of mounting an
attack depends on both the set of targeted components K and the method of attack.
For attack methods that are easily replicated for a large number of components (e.g.,
once a software vulnerability is found, the attacker may easily compromise a large
number of hosts), the cost can be modeled as a submodular function of K, capturing
the diminishing marginal cost of attacking an additional component.

In general, the attacker’s goal is to cause damage or gain some benefit by
compromising or impairing the components of the system, while the defender’s goal
is to minimize its losses due to successful cyber-attacks. These goals are captured
using the players’ utility functions ui, which they aim to maximize through their
action choices. In principle, we can express the defender’s utility as the baseline
utility provided by an operational system minus the losses caused by the attacks and
the costs of implementing defensive actions. Note that since this baseline utility does
not depend on the players’ actions, it may be omitted without affecting the best-

4In practice, the probability may decrease since the defender may notice a large-scale attack and
deploy countermeasures in response. In our model, this effect is captured explicitly through the
defender’s reactive actions.
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response or equilibrium strategies. Similarly, we can express the attacker’s utility
as the attacker’s gain from compromising or impairing the components minus the
costs of mounting its attacks. The form of the loss and gain functions depends on the
specifics of the modeled system. However, in most systems, we can express loss and
gain as functions of the compromised and impaired components CC

t and CI
t ; hence,

we may express a player’s utility ui for time step t as a function ui(dt , at ;CC
t , CI

t ).
In a simple model, we may also assume that the defender’s loss and the attacker’s
gain are always equal. Note that even under this assumption, the game is not
necessarily zero sum since the players also incur costs for their actions.

Finally, while it is impossible to provide generic loss/gain functions that are
applicable to all system, we can provide modeling guidelines. For attacks against
confidentiality, loss/gain may be expressed as a submodular function of the set of
compromised components CC

t since the information gained from compromising
more and more components exhibits a diminishing return due to the possible
overlap between the information contained by a set of components.5 On the other
hand, for attacks against integrity, loss/gain may be expressed as a supermodular
function of the set of compromised components CC

t since when information is
stored redundantly on multiple components, the attack remains undetected only if
all of these components are compromised. Similarly, system functionality that is
provided redundantly by multiple components can be tampered with (or disabled)
only by compromising the majority of the components (or impairing all of them).

CPS Example In many cyber-physical systems, loss can be measured in terms of
physical impact. For example, a cyber-attack against a smart transportation network
may cause disastrous traffic congestion [35, 55].6 Such attacks have been made
possible by the evolution of traffic control from standalone hardware devices into
complex networked systems, which has exposed traffic control to attacks through
wireless interfaces or even remote attacks through the Internet. As demonstrated
by the 2006 incident in Los Angeles, tampering with traffic control can cause
significant losses through congestion [23].

To formulate a multi-stage security game for smart transportation networks, we
may model the physical part of the system using an established traffic model (e.g.,
Daganzo’s well-known cell-transmission model [10, 11]), while we can model the
cyber part of the system using the following components C:

• interface: human-machine interface components, which traffic operators can use
to control traffic lights in the transportation network;

• processing: devices that process and forward traffic control signals;
• actuator: traffic lights with software-based controllers.

5Defender’s may turn this around by using, e.g., secret sharing schemes, which lead to a
supermodular loss/gain functions for confidentiality. This possibility is considered explicitly
among the defender’s proactive actions; here, we consider a baseline case without such schemes.
6In practice, due to hardware-based failsafes, compromising a traffic signal does not allow an
attacker to set the signal into an unsafe configuration that could immediately lead to traffic
accidents [21].
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An attacker may try compromise these components, e.g., by connecting to traffic
lights through local-area wireless networks and exploiting software vulnerabilities.
Indeed, studies have found that many traffic control devices that are deployed in
practice have unpatched known software vulnerabilities [21, 55]. Once an attacker
has compromised some set of the components CC, it can alter the schedules of traffic
lights, thereby causing disastrous traffic congestion. We can quantify the impact of
such an attack as the total increase in travel time experienced by all the drivers.
Assuming a malicious attacker who is interested in maximizing the defender’s loss,
we can measure both the defender’s loss and the attacker’s gain as the impact of the
attack.

6.4.3 Imperfect and Incomplete Information

A key aspect of security games is that generally the players do not possess perfect
and complete information. Firstly, the players might not know what actions their
opponents have taken and, hence, which components are compromised, which
means that they possess imperfect information. While imperfect information can
affect both players, there is often an asymmetry between the players, which may
put the defender at a grave disadvantage. On the one hand, the attacker knows
which components it has attacked and—in most cases—which components it has
compromised. On the other hand, the defender may not immediately learn of
compromises. Indeed, a recent study has found that on average, it takes 191 days to
detect a data breach [45]. Lack of perfect information can prevent the defender from
reacting and implementing countermeasures in time to mitigate an attack, which
enables the attacker to operate covertly in the compromised system, causing damage
and extracting information. In practice, attackers often seek to remain covert for as
long as possible in order to cause more damage or extract more information over
a longer period of time. For example, sophisticated spyware (e.g., used in state-
sponsored cyber-espionage campaigns) often remain covert for extended periods of
time [26]. Even malware that causes physical damage in a cyber-physical system
may remain covert for months, as demonstrated by the Stuxnet worm [27].

To some extent, the attacker might also suffer from imperfect information.
While we typically assume—following Kerckhoffs’s principle—that the attacker
can learn the defender’s strategy, this strategy may be a probability distribution over
possible actions, and the attacker does not learn the specific action if it chosen
truly randomly. Further, the attacker might also not be able to directly observe
which components it has compromised. For example, the defender might secure
a host (e.g., shutdown and re-install) that is not connected to the Internet, which
the attacker has compromised earlier using a worm. In such a scenario, the attacker
will not learn immediately that the component is no longer compromised (or if it
ever were). In light of this, the players’ policies cannot be defined as functions of
the state x. Rather, each players’ policy needs to be defined as a function of their
observations.
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In addition to imperfect information, the players may also suffer from incomplete
information, i.e., not knowing the exact action sets, state transition functions, or
utility functions. Firstly, the defender might not know what actions are available
to an attacker (e.g., specific attack techniques and exploits) or how likely these
actions are to successfully compromise or impair components. Further, the defender
might also not know the attackers’ objectives and what resources they have (e.g.,
script kiddies or nation-state sponsored attackers) [13, 14]. Secondly, the attacker
might not have complete knowledge of the target system. Even though we follow
Kerckhoffs’s principle and assume that the attacker will be able determine the design
of the system, the defender might still be able to deceive the attacker [47]. For
example, the defender might deploy honeypots in the system in order to waste the
attacker’s effort and observe its behavior [43].

6.5 Proactive Defense

Proactive defense includes actions taken by a defender in anticipation of attacks.
Here, we discuss various approaches for the proactive defense of networked systems
in more detail, focusing on how to incorporate them into our game-theoretic model.
Recall from our previous discussion that these actions are taken in time step t= 0
(i.e., before the attacker’s first move).

6.5.1 Redundancy

Redundancy means deploying additional components in the system, which are
not necessary for providing required system functionality or performance [5].
When facing denial-of-service attacks, which impair components, the benefits of
redundancy are clear: in case of an attack, the redundant components may be used
instead of the ones that are unavailable due to the attack. As long as a sufficient set of
components are still available, the system might suffer from decreased performance,
user experience, etc., but retains its functionality.

In practice, redundancy may be implemented, for example, by deploying addi-
tional physical hosts or storing redundant copies of information. In a fine-grained
model, where components correspond to software modules or services, redundancy
can be implemented even for security mechanisms. For example, multi-factor
authentication methods grant a user access to a system only after verifying the user’s
identity using multiple authentication methods [12]. In a cyber-physical system,
redundancy can be implemented by, e.g., deploying multiple sensors for monitoring
the same physical process [1], or deploying multiple controllers and letting actuators
act based on the median control value provided by these controllers.

While the benefits of redundancy are obvious in the case of denial-of-service
attacks, they are much less straightforward in the case of integrity attacks that
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compromise and tamper with components. Since defenders—and the systems under
their control—may not know which components have been compromised, when
redundant components provide contradictory information, they face the challenging
problem of deciding which components to trust. Further, simple redundancy might
even increase risks when it comes to confidentiality. Without redundancy, the
attacker would need to compromise a particular component to gain a particular piece
of information. However, with redundancy, it needs to compromise one out of many
redundant components, which may give the attacker more opportunities to succeed.
Consequently, to protect confidentiality, redundancy may need to combined with,
e.g., secret sharing schemes [25, 46].

We can model redundancy by allowing the defender to choose the set of deployed
components C from a family C of feasible sets. This family C consists of all the
sets that are sufficient for providing required system functionality and performance.
In a simple model, we may assume that a base deployment Cbase is given, and the
defender can choose only supersets C⊇Cbase (i.e., C = {C |C ⊇ Cbase}). By
deploying additional components, the defender incurs some cost. In the case of
hardware, this is the cost of purchasing, installing, and operating devices, which
may be an additive or submodular function of the set of additional devices (i.e.,
fixed cost or diminishing marginal cost model). In the case of services and software
modules, this may be development cost or the computational/communication cost
of running an additional software components.

6.5.2 Diversity

Deploying redundant components may be a futile effort if all of the components
are implemented and configured in the same way since an attacker might be able
to compromise all of them with relatively little effort using a common software
or configuration vulnerability. A defender can prevent this by implementing the
components using a diverse set of hardware and software, for example, by running
redundant web servers on different operating systems. Diversity reduces the impact
of any common vulnerability since only the components that are implemented using
the vulnerable software or hardware will be susceptible to the same exploit. Indeed,
diversity has been recognized as an effective approach for improving network
security, and prior work has studied the optimal assignment of implementation
types to components [42]. On a larger, societal scale, monoculture (i.e., lack of
diversity in software solutions) has been identified as a contributor to systemic
cyber-risks [6, 18].

Similar to redundancy, diversity must be used carefully since it may increase
risks in some cases. If an attacker needs to compromise a certain set of components
to inflict damage, then diversity increases resilience since the probability of finding
a vulnerability in multiple implementations is generally lower than finding one
in a single implementation. However, if the attacker needs to compromise only
one out of many components, then diversity decreases resilience since the more
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implementation types, the higher the probability that at least one of them has a
vulnerability.

We can model diversity by letting the defender assign an implementation type to
each component. More specifically, for each component c∈C, we can assume that
a set of feasible implementations Ic is given, and the defender can select a particular
implementation ic. In practice, the defender typically incurs some cost for introduc-
ing a new implementation type into the system. For example, introducing a new
software may require purchasing licenses and training for personnel. Consequently,
the cost of diversity depends on the set of all the implementation types

⋃
c ∈ C{ic}

that are used in the system.

6.5.3 Isolation

While links serve a useful purpose by providing connectivity between components,
they also enable an attacker to escalate its attack by compromising the neighbors
of a compromised component. A defender can prevent escalation and limit the
impact of compromises by isolating components (or sets of components) from each
other [48]. In practice, techniques for isolation range from sandboxes for software
components to firewalls between networks. To minimize security risks, isolation
may be implemented on a physical level by introducing an “air gap” (i.e., physical
separation) between components. In the context of cyber-physical systems, “air gap”
is typically used to protect safety-critical control systems [15].

We can model isolation by allowing the defender to remove links from the
network. Equivalently, we may allow the defender to choose the set of links E to
retain, under the constraint that this set of links must be chosen from a family
E of feasible sets. This family E consists of all the sets that are sufficient for
providing connectivity that is necessary for the required system functionality and
performance. We may define the family of feasible sets using graph-theoretic
notions; for example, we may require the set of links E to form a strongly connected
graph of components C.

By severing useful links between components, the defender incurs various
costs. For example, decreased connectivity may result in lower performance or
functionality as well as increased usability and operational costs (e.g., information
that could have been sent automatically on a link might have to be transferred
manually using removable drives). Consequently, a defender must carefully choose
which components to isolate from each other. Dividing a networked system into
isolated parts is a challenging graph-theoretic problem, which has been studied in
prior work, e.g., as a computationally-hard graph partitioning problem [4].
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6.5.4 Hardening

Hardening includes techniques for protecting components from being compromised
by an attacker. These techniques may be applied at either the hardware level (e.g.,
using tamper-resistant hardware to prevent attacks based on physical access) or at
the software level (e.g., thorough testing for software vulnerabilities). Typically,
hardware-level techniques are applied to individual components (i.e., protection for
particular devices), while software-level techniques are applied to a set of com-
ponents that are implemented using the same software (i.e., eliminating common
vulnerabilities). Defenders may employ a variety of approaches for eliminating
software vulnerabilities, ranging from following secure-coding principles to hiring
outside experts for penetration testing or crowdsourcing vulnerability discovery
through bug-bounty programs [36, 58].

For hardware-level protection, we can model hardening by allowing the defender
to choose how much to spend on improving the security of each component. For
software-level protection, the defender needs to choose how much to spend on
improving certain implementation types i∈ I, where I=∪c ∈ CIc is the set of all
implementation types in the system. In both cases, hardening either decreases the
probability that an attack succeeds against the hardened components, or it increases
the cost of launching a successful attack against the hardened components. Optimal
security investments have been thoroughly studied in the economics of security
literature [3, 22].

6.5.5 Detection

With respect to information, the defender is at a grave disadvantage compared
to the attacker. Since the defender has imperfect information regarding which
components have been attacked or compromised, it can only guess which actions to
take to mitigate a potential attack most effectively. To decrease this information gap,
defenders can deploy intrusion detection systems. An intrusion detection system
(IDS) monitors a system or network and raises an alarm when it encounters mali-
cious activity, which can then be investigated by system operators. In practice, IDS
come in a wide variety. A host-based IDS is deployed on and monitors a particular
host (e.g., running processes), while a network-based IDS monitors network traffic.
A signature-based IDS searches for known attacks, while an anomaly-based IDS
looks for deviation from normal operation. A variety of intrusion detection systems
have also been proposed for cyber-physical systems [40]

However, practical intrusion detection systems are imperfect. On the one hand,
they may fail to detect an actual attack, which is called a false-negative error. On
the other hand, they may raise an alarm when they encounter suspicious but non-
malicious activity, which is called a false-positive error. Both of these are errors
should be minimized since false negatives prevent the defender from mitigating
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attacks, while false positives waste the limited amount of time and effort available
for investigations. However, there is generally a trade-off between the two errors:
decreasing the rate of false positives results in an increased rate of false negatives,
and vice versa. Therefore, defender must carefully configure each IDS to minimize
losses due to attacks and the costs of investigations at the same time. Finding optimal
configurations for intrusion detection systems is a challenging problem by itself [19,
20, 34].

We can model detection by allowing the defender to place intrusion detection
systems on components or links. We let SC ⊆ C denote the set of components with
detectors, which model host-based IDS, and let SE ⊆ E denote the set of links
with detectors, which model network-based IDS. For each IDS s∈ SC ∪ SE, the
defender must choose a trade-off between false-negative and false-positive errors by
configuring the detector. We can represent the attainable combinations using a trade-
off function Fs : R+ × A → [0, 1], where Fs ( fs, a) is the estimated probability
that attack a is undetected when the false-positive error rate of the detector is fs.
In each timestep, the defender’s beliefs are updated based on which detectors have
raise a true alarm, while the defender incurs cost for all the false alarms raised∑

s∈SC∪SE fs .

6.6 Reactive Defense

Reactive defense includes actions taken by a defender in response to observed
attacks. Here, we discuss approaches for the reactive defense of networked systems
in more detail, focusing on how to incorporate them into our game-theoretic model.
In contrast to proactive defense, these actions are taken in time steps t > 0 (i.e., after
an attack may have been launched).

6.6.1 Islanding

Isolation can be an effective approach for limiting the impact of successful attacks
(Sect. 6.5.3); however, it requires severing links proactively, which results in
permanent usability and performance degradation, even when the defender has
not observed an attack. Here, we consider islanding, which can be thought of
as a reactive variant of isolation that severs links only after detecting an attack.
More specifically, islanding means severing links to components (or to a set of
components) that the defender suspects to be compromised by an attacker.

Islanding clearly has some advantages over isolation, but it can also be favorable
compared to simply shutting down and resetting (e.g., re-installing) components
that are suspected to be compromised. Since the defender possesses imperfect
information regarding which components have been compromised, implementing
any reactive defense is risky in the sense that the actions might not only be costly
but also unnecessary. Shutting down and resetting a component is a drastic measure
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that may result in significant downtime. In a cyber-physical system, such as a power
plant, where components have to sense and control physical processes in real time,
downtime can be prohibitively expensive. On the other hand, islanding allows the
defender to prevent the escalation of a suspected attack without shutting down the
potentially compromised components. If these islanded components can provide
some level of functionality (e.g., an islanded component in a cyber-physical system
may still be able to control a physical process), then islanding can be a less risky
option for the defender.

We can model islanding similar to isolation, by allowing the defender to choose
which links are active in each time step. More formally, in each time step t, the
defender may choose a set of active links Et⊆E. Then, the attacker will only be
able use links Et to escalate its attack in time step t, while the defender incurs cost
due to the performance and usability loss from the unavailability of links E \Et.

6.6.2 Resetting

Even though islanding can contain a security breach by preventing the attacker
from escalating the attack to compromise other components, it cannot eliminate the
breach and secure the system. We now consider actions that return compromised
components into their normal, uncompromised state, to which we refer as resetting.
For components that model physical hosts, resetting typically involves shutting
down and re-installing the hosts, while for software components, re-launching
running processes may be enough to bring them into a secure state as long as they
have not effected any permanent changes to, e.g., configuration files.

By resetting a component, the defender incurs cost due to the effort and time
required to reset the component, as well as the cost of the component being
unavailable while it is being reset. Since the defender does not have perfect
information, it does not know when to reset a component: resetting a component
that has not been compromised results in unnecessary expenses, while not resetting
a compromised one may result in increased losses due to the prolonged impact of the
attack. Consequently, deciding when to reset a potentially compromised component
is a challenging problem. This problem has been studied extensively by prior work
using the FlipIt model [7, 31, 33, 51, 57], and optimal resetting schedules have
been proposed under various conditions. However, integrating these results into a
multi-stage game where a variety of actions are available to the defender is an open
problem, especially considering the structural properties of networked systems.

We can model resetting by allowing the defender to select which components
Rt⊆C to reset in each time step t. Selected components Rt are removed from the sets
of compromised and impaired components CC

t and CI
t , respectively, but they also

become (or remain) unavailable for a certain number of time steps, which models
downtime due to resetting. Further, the defender may incur two types of costs.
Firstly, it incurs the direct cost of resetting the components, which can be modeled
as an additive function of Rt. Secondly, it incurs the cost of lost performance or
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functionality due to the downtime of the selected components, which may depend
on the deployment of the system. For example, if there are redundant components
available, there might not be any performance or functionality loss.

6.6.3 Reconfiguration

In addition to islanding and resetting potentially compromised components, the
defender may also mitigate attacks and limit their impact by changing the behavior
of uncompromised components. In particular, the defender can reconfigure com-
ponents that are still available and under its control in order to reduce the losses
arising from an attack. For example, in a cyber-physical system, a controller may
be reconfigured when some sensors or actuators are compromised or impaired, so
that the new control maintains system stability and prevents system failure in spite
of the attack [8].

We can model reconfiguration actions by letting the defender select in every time
step a configuration for each available component. Formally, in each time step t, the
defender selects for each component c ∈ C \ CI

t a configuration Fc,t. However, the
configurations are applied only to uncompromised components (C \CI

t ) \CC
t (note

that the defender does not necessarily know which components are compromised
and which are under its control). Reconfiguring a component c may have some
cost, such as the effort exerted to effect the change or the loss due to temporary
outage while reconfiguring components, which the defender incurs only if it actually
changes the configuration, i.e., if Fc,t �=Fc,t−1. Further, the selected configurations
may also have an impact on the performance and functionality of the system (e.g.,
in a cyber-physical system, a more stable controller may be less efficient), which
affects the defender’s utility.

6.7 Solving Multi-Stage Security Games

Our goal is to find an optimal defense policy πD, which proscribes what defensive
actions to take in each time step based on the observed state. Unfortunately, this
problem is computationally challenging due to the sizes of the action and state
spaces. Firstly, in each time step, the defender has to choose from a set of actions
whose cardinality is an exponential function of the size of the graph (C, E) that
models the system. For example, consider isolation and islanding actions, which
are chosen from the set of all subsets of links E. Since the number of all subsets is
2|E|, the size of the defender’s action space can be astronomical even for graphs of
modest size.7 Similarly, the number of possible states is also an exponential function

7Some of these subsets may not be feasible, but in general the number of feasible subsets may
grow exponentially.
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of the size of the graph (C, E). For instance, the set of compromised components
CC is a subset of the set of components C; hence, there may be up to 2|C| different
sets of compromised components. Further, the set of possible observations for the
defender, which may include various alerts generated by detectors, could be even
larger.

Considering the sizes of the action and state spaces, it is challenging not only
to find an optimal policy, but even just to represent one. A straightforward policy
representation would specify what actions to take for each possible state, for
example, in the form of a list. Clearly, the size of this list would be prohibitively
large for any practical system. Therefore, there is a need for devising a compact
representation of proactive and reactive action policies.

Even restricted to some compact representation, finding an optimal policy may be
computationally hard. Indeed, prior work has shown that a number of subproblems
(e.g., finding optimal actions of a certain type in a given state) are NP-hard. For
example, finding optimal configurations for intrusion detection systems may be
an NP-hard problem when facing strategic attacks [19, 34]. In light of this, we
must consider efficient algorithms that can find near-optimal actions. To devise such
algorithms, we can take advantage of the structure of our problem. In other words,
instead of resorting to generic meta-heuristics, we can tailor our algorithms to the
rich structure of security states and defensive actions.

We can combine these algorithms with reinforcement learning approaches for
finding near-optimal policies [41]. Many reinforcement learning algorithms, such
as Q-learning [54], work by learning the values of the possible states (e.g., a state in
which more components are compromised may be worth less to the defender than a
state with fewer compromised components). Once these values have been learned,
the best action in a certain state can be chosen based on which action results in the
highest expected value for the following state, considering the probabilities of the
various state transitions for a particular action.

Since exhaustively searching for the best action would not be feasible in our
model, we propose to use an actor-critic method [29], which represents both the
state values and the policy explicitly. Considering the complexity of the state and
action spaces, there is a need to represent the state values and the policy efficiently,
which we may do using (deep) neural networks. This model-free approach can be
combined with efficient, model-specific algorithms for finding a near-optimal action
in a particular state to support the exploration part of reinforcement learning.

However, considerable challenges remain in the application of reinforcement
learning to multi-stage security games. Firstly, the actor-critic method can be used
directly to find a near-optimal policy for one player, which constitutes an approxi-
mate best response, against a given policy of the opponent. Solving the game and
finding a strategic cyber-defense policy, however, requires finding an equilibrium
pair of defender and attacker policies. To find a mixed-strategy equilibrium, we can
apply a double-oracle approach, which starts with a restricted set of strategies (i.e.,
policies), and then iteratively computes a mixed equilibrium over the restricted set
and extends the set with best-response strategies against this equilibrium [39]. The
application of a double-oracle approach may lead to further computational problems
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since computing many best-response strategies (i.e., running reinforcement learning
many times to find policies) can be computationally expensive.

Another challenge arises from the fact that the players in our game have neither
complete nor perfect information. Consequently, reinforcement learning has to
find near-optimal policies for partially observable Markov decision processes. To
achieve good results for partially observable processes, we can extend the actor-
critic method with an internal state, for example, using recurrent neural networks
[24].

6.8 Conclusion

To protect sensitive networked systems, defenders need to deploy complex cyber-
defense solutions, which combine a variety of proactive and reactive techniques
to minimize cyber-risks. Devising complex defense solutions for practical systems
is a daunting task, which must be supported by strong theoretical models and
efficient tools. To address this need, we introduced a modeling framework for
high-resolution multi-stage security games for networked systems. We discussed
a number of canonical proactive and reactive defense approaches, focusing on
modeling choices and challenges. Finally, we considered the computational problem
of finding optimal defense policies.

There remain several open problems in the area of high-resolution multi-
stage security games. While we have laid foundations for theoretical models,
incorporating a spectrum of practical defense methods into this framework requires
further modeling work. Then, models need to be rigorously evaluated using
data regarding past cyber-breaches as well as the architecture, performance, and
functionality of a wide range of practical networked systems. Once these models
have been established, the gap between theory and practice must be bridged by
providing software tools for practitioners that facilitate the application of models to
practical systems. Finally, finding optimal defense policies poses a very challenging
computational problem. We have outlined approaches for addressing this problem,
but developing efficient practical algorithms and tailoring reinforcement learning
methods to multi-stage security games remain open problems.
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Chapter 7
Moving Target Defense for Attack
Mitigation in Multi-Vehicle Systems

Jairo Giraldo and Alvaro A. Cardenas

Abstract Cyber-Physical Systems (CPS) have traditionally been considered more
static with more regular communication patterns when compared to classical
information technology networks. Because the structure of most CPS remains
unchanged during long periods of times, they become vulnerable to adversaries with
the precise knowledge of the system, and who can tailor their attacks based on their
knowledge about the system dynamics, communications, and control.

Moving Target Defense (MTD) has emerged as a key strategy to add uncertainty
about the state and execution of a system in order to prevent attackers from having
predictable effects with their attacks. In the last few years MTD has been used in
different CPS scenarios by adding uncertainties into the physical characteristics of
the system. Most of these applications are used to detect attacks, or to make difficult
for attackers to gather information. In this chapter, we propose an MTD strategy
for multi-vehicle systems that can be used to mitigate the impact caused by cyber-
attacks. We characterize the trade-off between impact mitigation and performance
degradation, and illustrate the viability of our approach in two applications, (1)
vehicular platooning, and (2) UAV formation. Finally, we extend our results to a
more general control systems framework, and we introduce different types of MTD
mechanisms, i.e., at the controller level and at sensors.
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7.1 Introduction

Moving target defense (MTD) has been proposed as a way to make difficult
the reliable exploitation of a system by attackers because it makes the attack
surface dynamic [5]. For instance Dunlop et al. [3] proposed MT6D, an MTD
mechanism for IPv6 which maintains user privacy and protects against targeted
network attacks by repeatedly rotating the addresses of both the sender and receiver.
Similarly, Wang et al. [22] introduced MOTAG, a strategy that defends against
Internet DDoS attacks, by employing a layer of secret random proxy nodes to relay
communications between clients and the protected application servers.

Most applications of MTD have been used for network protection and to secure
applications. However, in the last couple of years the use of MTD techniques
has been extended to protect cyber-physical systems. Several authors have used
MTD approaches for state estimation in the smart grids [2, 16, 20], where the
main idea consists on changing the physical topology of the power grid in order
to reveal false data injection attacks. Weerakkody and Sinopoli [23] proposed the
addition of an external system unknown to the attacker that uses additional sensor
readings to obtain an estimate, making it harder for an adversary to design stealthy
attacks. A similar approach was introduced by Valente and Cárdenas [21], where
external visual challenges (e.g., a screen with extra information) are used to verify
the authenticity of video footage. Closer to our work, Pang et al. [12] considered
DDoS attacks that can shut down control commands; to prevent this attack, they
propose the use of multiple distributed controllers so when a control command is
not received, another controller is selected. On the other hand, Kanellopoulos and
Vamvoudakis [6] propose a proactive MTD mechanism that consists on randomly
switching among multiple controllers to increase the unpredictability of the control
system. The switching probabilities are selected in order to maximize the entropy
produced by the switching strategy while ensuring minimum controller cost. One
of our approaches is similar, but we focus on minimizing the impact of the attack
instead of the entropy. However, in our formulation it is possible to include the
entropy maximization as an additional objective.

In this chapter we show how MTD can be used not only to increase the cost and
difficulty of designing cyber-attacks, but also to mitigate the impact of successful
attacks. We propose the use of random communication topologies for multi-vehicle
systems as a moving target mechanism that can be designed to decrease the negative
impact of the attack. We derive stability conditions for second-order consensus
protocols in the presence of random switching topologies and we identify trade-offs
between the convergence rate and the attack impact. The viability of our approach is
illustrated with two case studies, (1) vehicular platooning, where a group of vehicles
need to remain close enough to exploit the benefits of the platoon (i.e., decreasing
CO2 emissions and fuel consumption) while avoiding collisions, and (2) Unmanned
Aerial Vehicle (UAV) formation, where a group of UAVs need to maintain a
formation that can be used for surveillance or exploration. Finally, we extend
our analysis to a more general framework and introduce novel MTD strategies
that induce random switching between different controllers, or between sensors.
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We formulate optimization problems in order to obtain the optimal probability
distribution that minimizes the impact of the attack.

Preliminaries and Notation
Graph theory: Let G = (V ,E ,A ) represents a graph, where V = {1, 2, . . . , N}
is the set of nodes or vertices, and E {(i, j)|i, j ∈ V } is the set of pairs called
edges. If a pair (i, j) ∈ E , then i, j are adjacent. The adjacency matrix A = [aij ]
is the symmetric (nonsymmetric for directed graphs) matrix N×N, where aij= 1
if (i, j) are adjacent, aij= 0 otherwise. For the ith node, the set of neighbors is
Ni = {j |(i, j) ∈ E }, and the degree of a vertex ds

i is the number of neighbors

that are adjacent to i, i.e., ds
i =

∑N
j=1 aij or, for directed graphs, the number of

neighbors whose direction is heading to node i. A sequence of edges (i1, i2), (i2,
i3), . . . , (ir−1, ir) is called a path from node i1 to node ir. The graph G is said to
be connected if for any i, j ∈ V there is a path from i to j. The degree matrix is
D = diag(d1, d2, . . . , dN), and the Laplacian of G is defined as L = D − A . A
graph is said to be a k-regular graph if all vertices have connectivity equal to k, each
node is connected to k neighbors.

7.2 MTD for Multi-Agent Systems

Multi-agent systems (MAS) are systems that capture a variety of social and dis-
tributed interactions where agents make decisions based only on local information
(See Fig. 7.1). One of the main components of MAS are the communication links,
that indicate whether or not one agent shares information with another. Unfortu-

Fig. 7.1 Examples of multi-agent systems
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nately, MAS are susceptible to adversaries that may gain access to a subset of
communication links and inject false information. For instance, a man-in-the-middle
attack can inject false data about a specific sensor, or in social networks, releasing
false information to a subset of people in a group that interacts to complete a specific
task. In this chapter, we propose MTD strategies to help to mitigate the effects of
false data injection attacks in MAS, with emphasis on multi-vehicle systems.

Second-Order Multi-Vehicle System
Let us consider a system with n agents that update their states using the information
from a set of neighbors. Each agent is represented by a discrete-time second-order
integrator of the form

xi(k + 1) = xi(k)+ vi(k)

vi(k + 1) = vi(k)+ ui(k), for all i ∈ � = {1, 2, . . . , n}. (7.1)

where xi(k) ∈ R and vi(k) ∈ R are the position and velocity of each agent i at time
k, respectively. Typically, a distributed control action ui(k) is designed by consid-
ering information from a set of neighbors. The communication interaction among
agents is modeled by a time-varying directed graph G (k) = (V ,E (k),A (k)),
where each vertex represent an agent, and the set of communication links are
described by E (k), where the link eij (k) ∈ E (k) if node i receives information from
j. Therefore, we consider the consensus protocol adapted from [25] with dynamic
communication interactions described by

ui(k) =− α1

n∑
j=1

aij (k)(xi(k)− xj (k)− δij (k))

− α2

n∑
j=1

aij (k)(vi(k)− vj (k)− γij (k))

(7.2)

where aij(k) are the elements of the time-varying adjacency matrix A (k), α1, α2
are parameters to be designed, and δij(k), γ ij(k) correspond the attack injected in
the information that agent i receives from its neighbor j, for δij(k) �= δji(k), and
γ ij(k) �= γ ji(k).

Attacker Model
We consider an adversary that has knowledge about the system dynamics and
parameters α1, α2, and he knows the fixed communication topology that represents
all possible communications. Let ka, kf denote the initial and final time of the attack.
Thus, the adversary can craft the attack sequences {φ(ka), φ(ka+ 1), . . . , φ(kf )}
and {γ (ka), . . . , u(kf a)}. We assume that an adversary is able to hijack a subset of
communication links and modify the information sent from agent i to agent j. This
model may represent two types of attacks as depicted in Fig. 7.2: Sybil attack, where
an adversary falsifies the identity of an agent and starts sending false information;
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Fig. 7.2 Example of two types of attacks considered in this chapter

and false-data injection attacks, where the attacker intercepts the communications
between two agents and falsify the information that is being transmitted. We do not
assume that a sensor is compromised, but only the communication channel used to
transmit the sensor information to a specific neighbor. For instance, for agents 1, 2,
3, the adversary may compromise the information of y1 sent from 1 to 2, but not the
information of y1 sent from 1 to 3.

7.2.1 Random Communication Topology

The use of random communication topologies for first-order consensus algorithm
are useful to model uncertainties in the system such as link failures or DDoS attacks
[7, 13]. In this work, we propose the use of random topologies as an MTD strategy
that can help to mitigate the impact of adversaries. In particular, we focus on the
second-order consensus algorithm in Eq. (7.2) and we derive sufficient conditions
for stability.

Let us define the total graph (or supergraph) GT = (V ,ET ,AT ) as the fixed
graph that represents all possible communications between agents, where the set
ET collects all the channels that can be established directly among pairs of sensors,
i.e., it is the set of realizable edges. Without an MTD policy, we consider that the
communication topology is represented by a fixed graph Gf , which is a spanning
connected subgraph of GT , such that Ef ⊆ ET .

Now, our MTD strategy can be modeled by the time-varying graph G (k) =
(V ,E (k),A (k)) with fixed vertex set V , and time-varying edge set E (k) ⊂ ET ,
where the edges can vary with time either deterministically or completely random.
The instantaneous Laplacian matrix is then L(k).

Now, let x(k)= [x1(k), x2(k), . . . , xn(k)] , v(k)= [v1(k), . . . , vn(k)] , and
z(k)= [x(k) , v(k) ]. Also, let δi(k) = ∑n

j=1 aij (k)δij (k) and γi(k) =∑n
j=1 aij (k)γij (k) and δ(k)= [δ1(k), . . . , δn] and γ (k)= [γ 1(k), . . . , γ n(k)] .

We can rewrite the system in (7.1) with the consensus protocol in (7.2) in a compact
matrix form as
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Fig. 7.3 The main idea behind the switching topology consists on changing the topology such
that the number of times the compromised information is used decreases while guaranteeing
stability of the system for the attack-free scenario. In this example only 50% of the times the
fake compromised information can be transmitted. However, in the fixed case the attack is always
affecting the communication between two nodes

z(k + 1) =
[

I I

−α1L(k) I − α2L(k)

]
︸ ︷︷ ︸

F(k)

z(k)+
[

0 0
α1In α2In

]
︸ ︷︷ ︸

G

φ(k),

z(k + 1) = F(k)z(k)+Gφ(k), (7.3)

for φ(k)= [δ(k) , γ (k) ] .
The main idea of MTD in multi agent systems is summarized in Fig. 7.3, where

a communication graph with an MTD switching policy can mitigate the impact of
an attack in the communication link by minimizing the amount of time the fake
information is transmitted.

7.2.2 Random Graphs

A random graph G (k) is a graph generated by some random process [13]. Typically,
the set of vertices V is assumed constant throughout time whereas the set of edges
E (k) varies randomly with time. A general way of modeling the randomness of the
edges consists in assuming a probability of connection between two vertices i and j,
such that aij(k)= 1 is a Bernoulli random variable with probability 0≤ pij≤ 1. We
can define the connection probability matrix P ∈ R

n×n with entries
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P ij =
{

pij , i �= j

0, i = j.

Then, a realization G (k) at time k can be seen as a spanning subgraph (not
necessarily connected) of the super graph GT . Due to the random nature of A (k),
the instantaneous Laplacian matrix L(k) is also random. The expected value of
the adjacency matrix E[A (k)] = P and the expected Laplacian matrix is then
L̄ = diag(P 1n)− P .

Erdös-Rényi Model
Erdös and Rényi [4] introduced two models of random graphs that consider two
different ways of modeling the randomness of the edges:

1. The model G (k) = (V , s) refers to a random graph with a fixed vertex set V ,
where at each realization there exists exactly s edges. In other words, at each time
k a graph G (k) is chosen uniformly at random from the collection of graphs that
have n vertices and s edges.

2. The model G (k) = (V , p) refers to a graph with vertex set V where each edge
exists with nonzero probability p, equal for all vertices, such that for all i, j,
pij= p.

We focus on a special case of the second Erdös-Rényi model, where only the
edges that belong to ET have probability p. In other words, E[A (k)] = pAT and
E[L(k)] = L̄ = pLT . We refer to these types of graphs as MER (Modified Erdös-
Rényi) graphs.

7.2.3 Convergence of the Attack-Free Scenario

It is necessary to guarantee that the inclusion of the proposed random MTD
strategy does not affect the convergence to a consensus state. First, as it was
pointed out in [25], convergence to a consensus state of a second-order model
depends on the correct selection of α1, α2 and the connectivity properties of the
communication topology, according to the following theorem adapted from [25] for
fixed communication graphs.

Theorem 7.1 (Collorary 1 [25]) Consider the multi-agent system in (7.3) without
attack and with an undirected and fixed communication topology. Consensus can be
achieved if and only if α2 > α1 > 0 and α1 − 2α2 > −4

μi
for all i.

Now, the following theorem extends Theorem 7.1 and establishes sufficient
conditions for convergence in expectation in the presence of random switching
topologies.

Theorem 7.2 Let GT = (V ,ET ) be the communication graph that describes all
possible communications between n agents, and let AT be its adjacency matrix
with Laplacian matrix LT . Let μ1= 0 < μ2≤ . . . ≤μn be the eigenvalues of LT .
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Suppose that each communication link exists with identical probability p such that
E[AT ] = P = pAT and L̄ = pLT . The consensus state zc = [x c v c ] , for

xc = 1N

⎛
⎝ 1

N

n∑
j=1

xj (0)+ k

N

n∑
j=1

vj (0)

⎞
⎠ ,

vc = 1N

1

N

n∑
j=1

vj (0)

(7.4)

is reached in expectation if α1 = p
μn

and α2 = 1+p
μn

.

Proof Let z̄(k) = E[z(k)] denote the expected state vector, such that the dynamics
in (7.3) without attack can be rewritten as

z̄(k + 1) = F̄ z̄(k)

where

F̄ =
[

I I

−α1L̄ I − α2L̄

]
.

Recall that L̄ is the Laplacian matrix of an undirected graph and that the consensus
state is reached for fixed topologies if α1 > α2 > 0 and α1 − 2α2 > −4

μ̄i
according

to Theorem 7.1, where μ̄i is the ith eigenvalue of L̄ for i= 2, . . . , n. Since LT is
symmetric, we have that μ̄i = pμi . Thus, p

μn
− 2 1+p

μn
> −4

pμn
> −4

pμi
. Multiplying

by pμn, we obtain − p2− 2p+ 4 > 0 which is always true for 0 < p≤ 1. �
Remark 7.1 Convergence in expectation means that the speed v(k) will converge to
a vicinity of vc.

Corollary 7.1 When the random graph is described by an Erdös-Rényi model
with degree s, then the states z(k) will converge surely to zc, i.e., Pr{limk→∞ z(k) =
zc} = 1.

We have shown convergence conditions in expectation that depend on the correct
selection of α1, α2. However, convergence in expectation is not enough to guarantee
asymptotic behavior to a consensus state. Therefore, we introduce the following
definition.

Definition 7.1 (Mean Square Consensus) Under random switching topologies,
the multi-agent system in (7.1) reaches mean square consensus if, for any i �= j,
|xi(k)− xj(k)|→ 0 and |vi(k)− vj(k)|→ 0 hold in mean square sense for any initial
states, such that the consensus state belongs to the vicinity of zc.
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The notion of mean square consensus ensures that z(k) will converge asymptoti-
cally to a consensus state with probability 1, and the consensus state is in the vicinity
of zc.

To find conditions for mean square consensus, we will use the results stated in
the following Theorem adapted from [26] for Markovian switching topologies.

Theorem 7.3 (Theorem 4 in [26]) Assume the switching topology is driven by an
ergodic Markov process (or a Bernoulli process). There exists gains α1, α2, such
that under the linear protocol in (7.2) the multi-agent system in (7.1) reaches mean
square consensus, if and only if the union of the graphs in the topology set of size r,
{G1, G2, . . . , Gr} has a globally reachable node.

Since our edge set is random and changes at each time instant k, we do not
have a fixed set of communication topologies; however, if we can show that after a
finite number of switches, the union of any random graph realizations has a globally
reachable node, we can ensure mean square consensus.

Lemma 7.1 For any MER (and Erdös-Rényi) graph G (k) = (n, p)with p > 0, there
exists a k∗ <∞ such that the union of graph realizations G = G (1) ∪ G (2) ∪ . . . ∪
G (k∗)is connected.

Proof Let E = {E (1) ∪ E (2) ∪ . . . ∪ E (k∗)} be the union of the edge sets with
elements eij . Therefore, eij �= ∅ if, for k= 1, . . . , k∗ , the link eij(k) has existed at
least once. It is easy to see that the union of modified Erdös-Rényi graphs G is also
a modified Erdös-Rényi random graph with the same vertex set and probability p̃ =
Pr[eij �= ∅]. Since the existence of the edge eij (k) ∈ E (k) at an instant k is described
by a Bernoulli random variable with probability p, then the probability that the link
has existed at least once after k∗ realizations is described by the complement of a
binomial distribution, as follows

Pr[eij �= ∅] = 1− Pr[(eij (k) �= ∅) ≤ 1, k∗]
= 1− (1− p)k

∗ − k∗p(1− p)k
∗−1.

(7.5)

where Pr[(eij (k) �= ∅) ≤ 1, k∗] is the probability that eij existed at most once after
k∗ trials.

Notice that

lim
k∗→∞ 1− (1− p)k

∗−1 (1− p + k∗p
) = 1 (7.6)

such that G → GT . However, we need to show that there exists a finite k∗ <∞
such that G is connected with high probability. To this end, recall that for a typical
Erdös-Rényi graph G(k)= (n, p), there exists a threshold p >

log n+c
n

< 1 such

that Pr[G(k) = connected] → e−e−c
[4]. The proof is based on defining a random

variable X0 that counts the number of isolated vertices when all communications
are possible, and finding the probability that P[X0= 0]. Therefore, for the modified
Erdös-Rényi random graph G = (n, p̃), we can apply the same methodology by
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Fig. 7.4 Relationship between the instant k∗ and the probability of an edge being connected
after k∗ iterations p̃. When k∗ increases, the union of random graphs (where each graph may be
disconnected) forms a connected graph

restricting the edge set to ET , and find the specific threshold for which Pr[G =
connected] with high probability. The calculation of that threshold is not an easy
task, but since (7.6) holds, we know it exists. �
Example
Consider the modified ER random graph with n= 10, where GT is a 2-regular graph.
Figure 7.4 illustrates the relationship between k∗ and p̃ for different p. Clearly, as
k∗ increases, so does the probability of connection. Also, we calculated the number
of iterations k∗ until G is connected and we repeated this process 1000 times. The
asterisk indicates the maximum k∗ associated to each probability. Clearly, for each
p there is a finite k∗ that ensures that G is connected.

Now, we are able to state the following theorem.

Theorem 7.4 The system in (7.1) with the consensus algorithm in (7.2) and with
MTD policy described by the modified Erdös-Rényi graph with 0 < p < 1 and total
graph GT reaches mean square consensus if α1, α2 are selected according to
Theorem 7.2, and if GT is connected.

Proof Invoking Theorem 7.3, and since the union of modified Erdös-Rényi graphs
is connected after a finite number of iterations for p > 0 according to Lemma 7.1,
then there exists gains α1, α2 such that the second-order consensus algorithm is
mean square stable and converge to a vicinity of zc. From Theorem 7.2, we have
found α1, α2 that guarantee stability in expectation. Thus, they also are sufficient to
ensure mean square consensus. �
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7.2.3.1 Convergence Rate with MTD

Using the proposed MTD strategy induces a deterioration of the convergence rate
to the consensus state. Therefore, we will use the convergence rate as a measure of
performance in order to identify how p and GT affect the performance of the system.

Definition 7.2 The convergence rate in a consensus algorithm is the rate of
convergence to the steady state value and it can be characterized by the spectral
gap R= 1− ρ(F), where ρ(F ) = max(|λi | : λi �= 1). A convergence rate of 1 is the
fastest possible convergence and 0 implies that the dynamics are not evolving at all.

In order to quantify the convergence rate in the presence of random switching, we
introduce the following lemma adapted from [25].

Lemma 7.2 Let us consider the second-order consensus algorithm described in
(7.3) for fixed communication topology such that L(k)=L with eigenvalues μi and
F(k)=F. The eigenvalues of F are given by

λi1,2 =
−α2μi ±

√
α2

2μ2
i − 4α1μi

2
+ 1

Proof The proof can be found in [25]. �
The degradation caused by using MTD can be calculated by comparing two cases,
consensus with a fixed topology described by Gf , and with a random topology. For
the fixed topology, we consider the special case where all possible communications
are active, such that Gf = GT , as follows.

Lemma 7.3 Let GT be the graph that represents all possible communications and
let us consider the special case where all possible communication links exist, i.e.,
the fixed communication topology without MTD is given by Gf = GT . Applying
the algorithm in (7.3) with fixed topology (i.e., p= 1) the convergence rate is

Rf = 1− ρ(F), for ρ(F ) =
√

1− μ2
μn

.

Proof From Lemma 7.2, we have that for a fixed topology with Laplacian matrix L,
the eigenvalues of F are given by

λi1,2 =
−α2μi ±

√
α2

2μ2
i − 4α1μi

2
+ 1.

When p= 1, from Theorem 7.2 we have that α1 = 2
μn

, α2 = 1
μn

, such that

λi1,2 =
−2 μi

μn
±
√

4
μ2

i

μ2
n
− 4 μi

μn

2
+ 1 = −μi

μn

±
√

μi

μn

(
μi

μn

− 1

)
+ 1.
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Notice that the term inside the square root is always negative, such that the
eigenvalues have a component in the imaginary axis. We then can rewrite the
eigenvalues as

λi1,2 = −μi

μn

+ 1± j

√
μi

μn

(
1− μi

μn

)
.

The magnitude is then

|λi | =
√(

1− μi

μn

)2

+ μi

μn

(
1− μi

μn

)
=
√

1− μi

μn

.

Since all eigenvalues μi are real, ρ(F ) =
√

1− μ2
μn

and Rf = 1− ρ(F). �

Now, the upper bound of the expected convergence rate is derived in the
following theorem.

Theorem 7.5 Suppose that an MTD random mechanism is introduced such that the
communication topology changes randomly over time with probability p. Therefore,
the expected convergence rate R̄MT D < Rf for any 0 < p < 1 is given by

R̄MT D = 1−
√

1− p
μ2

μn

.

Proof Since ρ(F) is a convex function for nonnegative matrices, from the Jensen’s
inequality, we have that

E[ρ(F (k))] ≥ ρ(E[F(k)]) = ρ(F̄ ).

Therefore, R̄MT D = E[RMT D(k)] = 1− E[ρ(F (k))] ≤ 1− ρ(F̄ ).
Now, suppose 0 < p < 1, such that the eigenvalues of F̄ are given by

λ̄i1,2 =
−(1+ p)

μ̄i

μn
±
√

(1+ p)2 μ̄2
i

μ2
n
− 4p

μ̄i

μn

2
+ 1,

where μ̄i are the eigenvalues of L̄. Since LT is symmetric, then μ̄i = pμi .

Following the same steps as before, it is easy to see that |λ̄i | =
√

1− p
μi

μn
and

R̄MT D ≤ 1−
√

1− p
μ2
μn

. Clearly, R̄MT D < Rf since

√
1− p

μ2

μn

>

√
1− μ2

μn

holds for any p < 1, and there is a degradation in the convergence rate. �
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Fig. 7.5 Convergence rate
for different probabilities and
for several GT . Notice that
increasing the communication
capabilities in the network
improves the consensus
performance
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Remark 7.2 Using MTD comes with a degradation in the convergence rate.
Applications that require fast convergence to a consensus or a formation will need
to select an appropriate large enough p.

Figure 7.5 shows the convergence rate for different graphs. Notice that the
convergence rate increases with the connectivity of the communication graph, and
decreases with p. As we will see next, p not only affects the convergence rate, but
also the impact caused by an attacker. As a consequence, the defender needs to select
appropriate p and GT to maintain a good performance while making the system
resilient to attacks.

7.2.4 Attack Impact with Random Switching Topology

We have calculated the convergence rate of the multi-vehicle system with a random
switching communication topology in terms of the probability p. Clearly, to increase
the convergence rate, it is necessary to select a large p. However, we need to quantify
how the effect of a cyber-attack is affected by p in order to obtain a trade-off between
the performance (convergence rate) and the impact of the attack.

Let xc be the desired state or operational point at which the control action drives
the system states. The main objective of an adversary is to deviate the system states
from xc. For instance, an adversary may intent to cause an increase on the pressure
in a chemical reactor or cause that two vehicles crash. Therefore, we can define
I ∈ R+ as the impact that an attack can cause to the system as a function of
x(k)− xc. In this chapter, we define the impact as

I = lim
k→∞‖x(k)− xc‖, (7.7)

which captures effects of the attack even when stability is not compromised.



176 J. Giraldo and A. A. Cardenas

Now, suppose that the communication network in the multi-vehicle system
changes randomly according to the model in (7.3). Let E[z(k)] = z̄, E[L(k)] = L̄,
and E[F(k)] = F̄ , where

F̄ =
[

I I

−α1L̄ I − α2L̄

]
.

Similarly, we can define E[φ(k)] = [E[δ(k)] , E[γ (k)] ] = φ̄ where

E[δi (k)] = p
∑n

j=1
aijα1E[δij (k)]

and

E[γ i (k)] = p
∑n

j=1
aijα2E[γij (k)]

such that

z̄(k + 1) = F̄ z̄+ pGφ(k). (7.8)

Theorem 7.6 Let GT = (V ,ET ). be the communication graph that describes
all possible communications between n agents, with Laplacian matrix LT . Let
μ1= 0 < μ2≤ . . . ≤μn be the eigenvalues ofLT . Consider the system in (7.3) with
a random topology with link connection probability 0 < p < 1 and gains α1, α2
selected according to Theorem 7.2. The impact of the attack is given by

Ī = p

μn

√
n(2p2 + 2p + 1).

Proof The solution of (7.8) in the presence of an attack is given by

z̄(k + 1) = F̄ kz̄(0)+
k−1∑
l=0

F̄ k−l−1pGφ̄(k), (7.9)

In [25] it has been shown that, if α1, α2 are properly selected,

lim
k→∞ F̄ k =

[
1nξ

 1nξ
 k

0 1nξ
 
]

, (7.10)

where ξ = 1n√
n

is the unique nonnegative left eigenvector of L̄ associated with the
eigenvalue 0. In order to quantify the impact of an attack, we focus our attention on
how any attack can affect the vehicles speed. Thus, from (7.3), (7.9) and (7.10) we
have that
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lim
k→∞ F̄ k−l−1pG = p

[
1nξ

 1nξ
 k

0 1nξ
 
] [

0 0
α1In α2In

]
= p

[
α11nξ

 k α21nξ
 k

α11nξ
 α21nξ

 
]

.

Taking only the part related to the vehicle speed for G2= [α1I, α2I] and α1, α2
according to Theorem 7.2, the expected impact can be defined as

Ī = ‖1nξ pG2‖ =
√

np2(α2
1 + α2

2) = p

μn

√
n(2p2 + 2p + 1).

�
Figure 7.6 shows the trade-off between the performance given by the conver-

gence rate and the impact of the attack for different types of graphs. Notice that
small probabilities will decrease the impact of the attack but at the cost of small
convergence rates. On the other hand, the degree of connectivity of GT has a
significant impact on mitigating the effects of the attack. When GT is a full graph, all
communication links are possible, and the system is clearly more resilient than for
any other topology. Thus, the system designer can increase the amount of possible
communication channels in order to select smaller p that will not cause a significant
performance degradation, while guaranteeing good resiliency to attacks. However,
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Fig. 7.6 Convergence rate vs. impact metric for different graphs with n= 10. Clearly, small p leads
to lower vulnerability but at the cost of a decrease in the performance (decrease in the convergence
rate). In particular, increasing the connectivity of the total graph, decreases considerably the impact
of the attack
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having a wide amount of communication channels for each vehicle may require
more expensive equipment and more energy consumption.

7.3 Experiments

In order to illustrate the viability of our analysis, we consider two case studies, (1)
vehicular platooning, and (2) UAVs formation control. In both scenarios, we show
how the proposed random MTD strategy can be used to mitigate the impact of the
attack.

7.3.1 Vehicular Platooning

We consider the problem of vehicular platooning. In particular, platooning offers
many benefits over solo driving such as better reaction times, decrease of CO2
emissions, and lower fuel consumption [18]. The objective of the platoon is
to maintain an adequate distance between vehicles, such that sudden changes
in the leader’s speed (e.g., braking) will not cause any crash in the preceding
vehicles. This is known as the string stability of the platoon and has been widely
studied in the literature [11, 14, 19]. Typically, the Adaptive Cruise Control
(ACC) system controls the distance and/or relative velocity between adjoining
vehicles by measuring (radar/lidar) and reacting to the relative distance and/or
velocity between adjacent vehicles compared to a desired setpoint. More recently,
work has leveraged vehicle-to-vehicle or infrastructure-to-vehicle communication to
inject feed-forward commands. Such Cooperative Adaptive Cruise Control (CACC)
systems improve the string stability of the platoon and allow vehicles to follow
each other with a closer distance than with ACC, thereby improving traffic flow
capacity. CACC gathers information of vehicles further in front according to a
specific communication network topology (Fig. 7.7).

Fig. 7.7 Scheme of a platoon of n vehicles. Each vehicle is equipped with a CACC strategy
using vehicle-to-vehicle communication network. An adversary can gain access to some sensors
or actuator commands transmitted through the network
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The dynamics of each vehicle in the platoon are dictated by (7.13) with a control
strategy of the form

ui(k) = −α1

n∑
j=1

aij (k)
(
xi(k)− xj (k)− dij

)− α2

n∑
j=1

aij (k)
(
vi(k)− vj (k)

)
,

where dij= (j− i)d such that adjacent vehicles always have distance d [1].
In our simulations, we consider a platoon with 10 vehicles, d= 2m, and scenarios

with and without MTD. Figure 7.8 illustrates the intra-vehicular distance xi− xi+1
and the speed of each vehicle. Before the attack, all intra-vehicle distances converge
to d= 2 and to a speed of 72 km/h. Notice that including MTD affects the
convergence time to the consensus state.
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Fig. 7.8 Vehicles distance (xi− xi+1) and speed for the vehicular platooning problem, with desired
d= 2 and final speed of 72 km/h. Vehicles reach the desired distance even with MTD, with a cost
of slower convergence time. After 200 s an attacker compromises some of the communications
received by vehicle 3 and launches a bias attack that fades over time. Without MTD, the attack
causes that vehicles 2 and 3 crash (Top) causing the entire platoon to stop. On the other hand, with
our proposed MTD and p= 0.2, the crash is avoided and the platoon speed slightly increases due
to the attack (bottom)
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Now, suppose that an adversary is able to compromise the information that agent
3 receives from one of its neighbors and injects a bias attack that fades over time.
Without MTD, vehicles 2 and 3 crash after 5 s causing the entire platoon to stop
(Fig. 7.8-Top). On the other hand, with a random MTD with p= 0.2, it is possible
to avoid the crash and mitigate the impact of the attack. Notice that the attack only
causes a slight increase in the speed and some oscillations but the consensus state is
attained after the attack.

7.3.2 Formation Control of UAVs

Formations of UAVs have found use in military and civilian activities such as
surveillance and exploration [8], building construction [24], and disaster manage-
ment [15]. The main idea of these type of formations lies on the possibility that
the group of UAVs moves as a single rigid body while performing a specific task
using distributed and decentralized control strategies, where each UAV exchanges
information only with a small group of agents.

To simply model the dynamics of n UAVs, we use (7.1) to represent the position
and velocity in each axis, X and Y, respectively of each UAV [17], such that

xX,i(k + 1) = xX,i(k)+ vX,i(k)

vX,i(k + 1) = vX,i(k)+ uX,i(k)

xY,i(k + 1) = xY,i(k)+ vY,i(k)

vY,i(k + 1) = vY,i(k)+ uY,i(k),

(7.11)

where xX,i(k), vX,i(k) are the position and speed in the X axis, xY,i(k), vY,i(k) are the
position and speed in the Y axis.

For the formation control of UAVs, we assume that each UAV is able to control
its speed in the X and Y axis separately, using a consensus-based algorithm of the
form

uX,i(k) =− α1

n∑
j=1

aij (k)
(
xX,i(k)− xX,j − dX,ij

)

− α2

n∑
j=1

aij (k)
(
vX,i(k)− vX,j (k)

)

uY,i(k) =− α1

n∑
j=1

aij (k)
(
xY,i(k)− xY,j − dY,ij

)

− α2

n∑
j=1

aij (k)
(
vY,i(k)− vY,j (k)

)
(7.12)
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where dX,ij, dY,ij are the desired distances between each pair of agents that describe
the desired formation. Since dX,ij, dY, ij are fixed and since we assume that the
states in each direction are independent, the stability analysis does not depend on
the desired formation, but only on the selection of α1, α2 and p.

As an example, suppose we have 10 UAVs, each one with X,Y speed controls and
the desired formation is a diamond shape at a height of 5 m. Each UAV possesses
communication capabilities to transmit their XY position and both speeds in a single
package where GT is a 4-regular graph. Figure 7.9 depicts the X−Y trajectories of
the group of UAVs with the proposed MTD with p= 0.2 and without attack. Clearly,
even in the presence of switching topologies, the desired formation is achieved.

Now, we assume an adversary compromises only the communication links that
agent 3 receives from 1 after 200 s, with φX,31= 0.3, γ X,31= 0.2 for the X axis
and φY,31=−0.3γ Y,31=−0.2. The attack causes that the formation changes its
direction by increasing the speed, as depicted in Figs. 7.10 and 7.11. However, the
deviation can be mitigated for small p, at the cost of larger convergence times.

Fig. 7.9 Formation control of 10 UAVs that intend to form a diamond shape formation
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Fig. 7.10 Speed in the X axis of the group of UAVs with and without MTD. Before the attack, the
control action guarantees a consensus in the speed and the desired formation is attained. After 200
s, an adversary compromises the information that agent 3 receives from one if his neighbors

Fig. 7.11 Formation control of 10 UAVs with an MTD strategy for different p= 0.2 (black),
p= 0.5 (blue), and no MTD (red) during 400 s. An attacker compromises one communication
link received by agent 3 and launches a bias attack after 200 s. The group of agents is deviated
from its destination at different speed rates depending on p. Clearly MTD decreases the impact
caused by an attack that aims to deviate the formation
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7.4 Toward Optimal Mitigation

We have shown how random switching of the communication topology in multi-
agent systems can mitigate the deviation caused by cyber-attacks. Now, we want
to extend the proposed strategy to a more general control systems frameworks
where the switching can be performed at a sensor level (or in the communications
between sensors and actuators), or at the controller level (e.g., performed by a
PLC). Besides, we consider heterogeneous switching probabilities such that we
can formulate optimization problems that allow us to find the optimal probability
distribution of the switching strategy that decreases the impact caused by sensor
attacks.

We consider a discrete-time linear time invariant (LTI) system described by

x(k + 1) = Ax(k)+ Bu(k)

y(k) = Cx(k)+ φ(k), (7.13)

where A, B, C are matrices of proper dimensions, and x(k) ∈ R
n, y(k) ∈ R

p, u(k) ∈
R

m are the state, output, and input vectors, respectively. Since the sensor/control
commands can be sent through a communication network, we assume that the
system can be subject to additive sensor attacks φ(k) ∈ R

p.

7.4.1 MTD in the Controller

We now consider the case where uncertainties are added to the system through the
controller actions. The general architecture is illustrated in Fig. 7.12, where the
control action is chosen from a group of appropriate controllers. Our objective
is to design the sequence of control gains that can decrease the state deviation
caused by sensor attacks. A similar MTD approach has been proposed in [6], where
the authors design the random switching strategies that maximizes the entropy or
unpredictability caused by the MTD mechanism.

Suppose we have nc different control modes and let σ(k) ∈ Z+ for σ (k)≤ nc

be the index of the control mode at the kth time instant. Let Σ ={σ (0), σ (1), . . . }
denote the switching sequence or switching logic that orchestrate the different mode
changes between controllers. Thus, we can define the control action as

u(k) = Kσ(k)y(k), (7.14)

where at each time instant k, the control gain is given by Kσ(k) ∈ K, for K =
{K1,K2, . . . , Knc }. Therefore, combining (7.13) and (7.14) we obtain

x(k + 1) = (A+ BKσ(k)C)x(k) = Fσ(k)x(k) (7.15)

where Fσ (k)=A+BKσ (k)C.
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Fig. 7.12 MTD scheme for
switching among different
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The challenge with these type of linear systems lies on guaranteeing stability for
an arbitrary index sequence Σ . Lin et al. [10] summarized some important results
in the stability of the switched system in (7.15). The next theorem adapted from [9]
states the necessary and sufficient condition for asymptotic stability.

Theorem 7.7 The switched system in (7.15) is asymptotically stable under an
arbitrary switching if and only if there exists an arbitrary integer n such that for
all n-tuple Fij ∈ {F1, F2, . . . , Fnc } for j= 1, . . . , n

‖Fi1Fi2 . . . Fin‖ < 1.

The question now is, how can we limit the impact of cyber-attacks by switching
among controllers?

To answer this question, we need to solve two problems: (1) find the set of
controllers K, and (2) find the switching sequence. We propose an approach that
solves both problems as a motivation to show how MTD can decrease the impact
of attacks. To solve the first problem, and since we are trying to limit the impact of
sensor attacks, we assume that the elements of an optimal control gain (e.g., LQR
controller) can be active or inactive, such that not all sensor data is used at each time
instance. For instance, if an optimal control (without switching) is KT = [KT1, KT2,
KT3], we can assume that K1= [0, KT2, KT3], K2= [KT1, 0, KT3], and K3= [KT1,
KT2, 0]. In this way, we do not use all the sensor information at all times. Therefore,
if conditions of Theorem 7.7 are satisfied for the control set, any arbitrary switching
sequence guarantees asymptotic stability. If we consider observer-based controllers,
the same technique can be applied to the estimation gain L.
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For the second problem, we will consider random switching, such that we can
exploit some tools from stochastic systems. Let pj be the probability that control
Kj ∈ K is active where

∑nc

j=1 pj = 1. Suppose that x̄(k) = E[x(k)] denotes the
expected state, such that

x̄(k + 1) = F̄ x̄(k)

where

F̄ = E[Fσ(k)] = A+ BK̄C

and K̄ =∑nc

j=1 pjKj . Therefore, the design of the switching mechanism becomes
the design of an appropriate probability distribution that assigns probabilities to each
controller.

In the presence of a sensor attack, we have

x̄(k + 1) = F̄ x(k)+ BK̄E[φ(k)],

with solution

x̄(k) = F̄ kx̄(0)+
k−1∑
l=1

F̄ k−l−1BK̄E[φ(l)]. (7.16)

Assuming that E[φ(k)] = φ̄ is constant for all k, and combining (7.7) with (7.16)
for xc= 0 and for x̄(k) we can calculate the expected impact

Ī = lim
k→∞‖x̄(k)‖ ≤ ‖(I − F̄ )BK̄‖‖φ̄‖,

such that we can formulate the following nonlinear optimization problem:

Problem 1

min
p1,p2,...,pnc

‖(I − F̄ )−1BK̄C‖

s.t.

(7.17)

nc∑
i=1

pi = 1,

pi ≥ 0, for all i.

(7.18)

The solution of Problem 1 provides the probability distribution of the random
switching strategy that minimizes the effects of an adversary in expectation. This
formulation can be extended to include performance constraints or additional
objectives, such as the entropy metric proposed in [6].
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Remark 7.3 When E[φ(k)] is not constant, we can consider other impact metrics
such as the sensitivity of the H∞ gain.

Example 1
Consider the linear system described by

A =
⎡
⎣0.7 −0.5 0

0.2 0.8 0.3
0.4 0.2 0.7

⎤
⎦ , B =

⎡
⎣1

1
1

⎤
⎦ , C = I, KT = −[0.14, 0.17, 0.16]

where KT is an LQR control. Suppose that an adversary gains access to sensors 1 and
2 and injects a sensor bias attack φ= [1, 1, 0] . We assume that the system possesses
an MTD strategy that selects between a set of controllers K1=−[0, 0.17, 0.6],
K2=−[0.14, 0, 0.16], K3=−[0.14, 0.17, 0]. In total we have 3 possible control
gains that are randomly selected at each time instant. Solving Problem 1, we found
the switching probability distribution p= [0.91, 0.04, 0.05]. Figure 7.13 illustrates
how switching among controllers can help to mitigate the effects of the attack by
decreasing the deviation caused by the adversary. We use ‖x(k)‖ to measure the total
state deviation at each time instant. Notice that MTD comes with a performance cost
by decreasing the convergence rate to the equilibrium, but it decreases the total state
deviation.

0 50 100 150 200
-2

-1

0

1

2

x(
k)

0 50 100 150 200
Iterations ( k )

0

0.5

1

1.5

2

2.5

||x
(k

)|
|

No MTD
Using MTD

Fig. 7.13 States and energy of a linear system with an MTD that switches among three different
control strategies (solid line), and with a fixed LQR control (dashed). Clearly, MTD decreases the
deviation caused by the adversary at the cost of performance degradation
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Fig. 7.14 MTD scheme for
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7.4.2 MTD in Sensors

In this case, the MTD mechanism can arbitrarily break the communication between
a subset of sensors and the controller at any time k, as depicted in Fig. 7.14. For
instance, suppose sensor y2 is compromised. If the probability that the communi-
cation link between y2 and the controller exists is low, then the amount of fake
information received by the controller (or estimator) will decrease and the effects of
that attack in the control command may be mitigated.

Suppose we have m sensors and the communication link between any sensor and
the controller may be active or inactive. Let C = {C1, C2, . . . , Cns } be the desired
set of matrices that combine active or inactive sensors. Let θ(k) ∈ Z+ be the index
of the output modes at the kth time instant. Let Θ ={θ (0), θ (1), . . . } denote the
switching logic that changes among different sensors subsets. The output is then
given by ỹ(k) = Cθ(k)x(k), where Cθ(k) ∈ C . Therefore, the linear system in (7.13)
becomes

x(k + 1) = (A+ BKCθ(k))x(k) = Gθ(k)x(k). (7.19)

Notice that (7.15) and (7.19) are similar, and the asymptotic stability of (7.19) can
be guaranteed if conditions in Theorem 7.7 are satisfied for Gθ(k).

Similar to the case with switching actuators, we will assume that each sensor
is active with probability pi, for i= 1, . . . , m, such that we can define the matrix
P= diag(p1, p2, . . . , pm). To facilitate the analysis, we can define S (k) as the
diagonal matrix with elements sii(k)= 1 if sensor i is active at the instant k, and 0
otherwise. When the system is subject to a sensor attack φ(k), we can rewrite (7.19)
as

x(k + 1) = (A+ BKS(k)C)x(k)+ BKS(k)φ(k),

where C is the output matrix without MTD and S(k)C=Cθ(k). Notice that
E[S(k)]=P, such that C̄ = E[S(k)C] = PC and Ḡ = A + BKC̄. The expected
state dynamics are then given by

x̄(k + 1) = Ḡx̄(k)+ BKP φ̄.
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Now, we can formulate an optimization problem that aims to find P that
minimizes the impact of the attack while preserving performance conditions
F (A,B,C,K,P ) < β (e.g., expected spectral radius ρ(Ḡ)) as follows:

Problem 2

min
p1,p2,...,pns

‖(I − Ḡ)−1BKP ‖

s.t.

F (A,B,C,K,P ) < β

0 ≤ pi ≤ 1, for all i.

(7.20)

Example 2
Suppose A, B are the same from example 1, but now the system has 4 sensors, with
output matrix and control gain given by

C

⎡
⎢⎢⎣

1 0 0
0 1 1
0 0 1
1 1 1

⎤
⎥⎥⎦ , K = −[0.14, 0.17, 0.16, 0.13].

Solving Problem 2 for F = ρ(Ḡ) and β = 0.92 we obtain p= [0.06, 0.11, 0.07,
0.2]. Figure 7.14 illustrates how MTD strategies can decrease the impact caused
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Fig. 7.15 States and energy of a linear system with an MTD with sensor switching and p= [0.06,
0.11, 0.07, 0.2] (solid line), and without MTD (dashed lines). MTD mitigates the deviation caused
by the adversary
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by an adversary that injects an attack in all sensors φ= [1, 1, 1, 1] . Dashed lines
correspond to the case without MTD (Fig. 7.15).

7.5 Conclusions and Future Directions

In this chapter, we have proposed an MTD strategy that randomly switches between
different communication topologies in order to mitigate the deviation caused by an
adversary. We have identified the trade-off between MTD and the convergence rate
such that a system designer can choose adequate parameters that maintain specific
levels of performance. In particular, from our analysis we found out that high
connectivity of the graph GT describing all possible communications and the low
probability p play an important role in making the system more resilient to cyber-
attacks with good convergence rate. We have also introduced two MTD strategies
for more general feedback-control systems and we have proposed optimization
problems that allow us to find the optimal probability distribution for the random
switching mechanism.

There are many research directions that can be derived from the work presented
in this chapter. In future work, we will consider heterogeneous probabilities for
the multi-vehicle problem and find a relationship between the topology GT and the
matrix P. Besides, we will consider more realistic models of multi-vehicle systems
that include collision avoidance control, actuator saturation, and more complex
dynamics. Finally, we will study how our proposed random MTD can affect
anomaly detection mechanisms and design detection strategies that can leverage
the use of MTD for CPS.
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Chapter 8
The Role of Machine Learning and Radio
Reconfigurability in the Quest for
Wireless Security

Francesco Restuccia, Salvatore D’Oro, Liyang Zhang, and Tommaso Melodia

Abstract Wireless networks require fast-acting, effective and efficient security
mechanisms able to tackle unpredictable, dynamic, and stealthy attacks. In recent
years, we have seen the steadfast rise of technologies based on machine learning and
software-defined radios, which provide the necessary tools to address existing and
future security threats without the need of direct human-in-the-loop intervention.
On the other hand, these techniques have been so far used in an ad hoc fashion,
without any tight interaction between the attack detection and mitigation phases. In
this chapter, we propose and discuss a Learning-based Wireless Security (LeWiS)
framework that provides a closed-loop approach to the problem of cross-layer
wireless security. Along with discussing the LeWiS framework, we also survey
recent advances in cross-layer wireless security.

8.1 Introduction

Due to the broadcast nature of radio-frequency (RF) waves, wireless networks
are particularly vulnerable to a plethora of security threats, including jamming,
denial-of-service (DoS), eavesdropping, message falsification/injection, and address
spoofing, just to name a few [106, 110, 113, 115]. These threats, when carried out
stealthily, may disrupt the network’s functionality and seriously compromise users’
security and privacy.

Traditionally, wireless attacks have focused on the disruption of a single layer
on the network protocol stack by concentrating all the adversary efforts on a single
objective. For example, most of the existing jamming techniques focus on disrupting
wireless communications by transmitting high-power RF waves on the physical
medium [84]. Recently, a number of cross-layer wireless attacks [104, 105, 109]
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has been proposed, where activities and objectives entail different layers of the
network protocol stack. The main feature of cross-layer attacks is that they are
carried out by attacking layers different than the targeted one (also called helping
layers). As a consequence, small-scale (and thus, hard-to-detect) attack activities
may lead to dramatic changes on the target layer. Cross-layer threats are further
exacerbated by the fact that many network protocols functionalities such as power
allocation, channel selection, and routing decisions are jointly optimized with a
common objective [23, 51, 64], resulting in layers that are closely coupled with each
other. As long as the helping and target layers are coupled, the attack will lead to the
defender’s responsive change on the target layer. Thus, with carefully-tuned attack
activities and objectives, the defender’s reaction will favor the attacker’s objective.

Cross-layer attacks present unique challenges that cannot be addressed by legacy
security techniques. First, cross-layer attacks leverage small-scale activities in the
helping layer to achieve significant damage in the target layer. This implies that
the attacker can achieve the same goal with relatively small-scale activities, and
therefore remain undetected. On the other hand, existing attack detection methods
often assume that attacks are conducted always in the same manner and always have
the same objective, and that large-scale attacks have to be conducted in order to
achieve substantial results [110]. This is not necessarily true in cross-layer attacks.
Therefore, developing detection and mitigation algorithms able to swiftly detect and
counteract small-scale, dynamic cross-layer attack activities is now more important
than ever.

The main issue with legacy security countermeasures is that they are usually
tailored to address specific threats under specific network circumstances defined a
priori [74]. On the other hand, the reality is that malicious activities are usually
extremely dynamic in nature and thus cannot be fully addressed beforehand. As
wireless attacks become ever more sophisticated, next-generation wireless networks
will need to abandon generalized, one-size-fits-all, bolted-on security and optimiza-
tion mechanisms, and rely on “smart”, dynamic solutions able to harness the synergy
between hardware and software reconfigurability to provide reliable, efficient and
effective cross-platform and cross-layer security solutions. This aspect hinders
significantly the integration and coordination of different wireless networking
technologies to maximize network capacity, reliability, security, and coverage, and
prevent the provision of a true networking-as-a-service vision. For this reason,
software-defined radio techniques to simplify network control and to make it easier
to introduce and deploy new applications and services, and machine learning to
provide adaptability and fast-time reaction to adversarial action.

Recently, machine learning techniques have exhibited unprecedented success in
classification problems in areas such as speech recognition [21], spam detection
[18], computer vision [35], fraud detection [3], and computer networks [5], among
others. One of the main reasons behind machine learning’s popularity is that it
provides a general framework to solve very complex classification problems where
a model of the phenomenon being classified is too complex to derive or too dynamic
to be summarized in mathematical terms [22, 46, 112]. Almost in parallel with
machine learning’s development, the development of algorithms and protocols
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based on software-defined radios [43, 114] has gained tremendous momentum in the
networking research community over the last years [58]. A software-defined radio
is a wireless communication system where components that have been typically
implemented in hardware (e.g. mixers, filters, amplifiers, etc.) are implemented in
software to ensure fast reconfigurability and adaptation to critical channel conditions
(e.g., significant multipath, Doppler effect, or path loss). The main downside of
pure software-based solutions is that they completely trade-off reconfigurability
for efficiency. On the other hand, we have recently seen a tremendous rise of
wireless platforms based on the system-on-chip (SoC) concept [59]. These SoC
platforms allow the design and implementation of customized hardware on the
field-programmable gate array (FPGA) portion of the platform to achieve better
performance [63].

Although existing work has used machine learning and software-defined radios
to design wireless security systems, these approaches have been used in an ad-
hoc manner (i.e., to solve a specific wireless attack). On the contrary, future
wireless networks will need to use context-aware, adaptive security measures able
to sense the environment and swiftly respond to a range of dynamic, unpredictable,
cross-layer attacks. We envision a radically different approach to the design of
wireless security systems that can deploy various defense strategies, depending
on the network’s protection needs, and ability to tolerate and manage the specific
technique’s dynamic configuration.

In this chapter we address the lack of a unifying, systematic approach to cross-
layer wireless security by proposing and discussing a Learning-based Wireless
Security (LeWiS) framework. First, we provide background notions on the enabling
technologies for LeWiS in Sect. 8.2. Then, we discuss a taxonomy of relevant
existing wireless networks in Sect. 8.3. We then provide an overview of the LeWiS
framework in Sect. 8.4, and delve deeper into the learning-based control module of
LeWiS by discussing its detection (Sect. 8.5) and mitigation (Sect. 8.6) modules.
We conclude the chapter in Sect. 8.7.

8.2 Background on Enabling Technologies for LeWiS

In this section, we provide a brief survey of the technologies that are at the basis of
LeWiS, i.e., software-defined radios and networking (Sect. 8.2.1), system-on-chip
technologies (Sect. 8.2.2), and machine learning (Sect. 8.2.3).

8.2.1 Software-Defined Radios and Networking

Software-defined radios are generally defined as devices where frequency band, air
interface protocol and functionality can be upgraded with software updates instead
of a complete hardware replacement. The peculiar characteristic of software-defined
radios is that they are capable of being re-programmed or reconfigured to operate
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with different waveforms and protocols through dynamic loading of new waveforms
and protocols. Furthermore, protocol characteristics at the data-link, network and
transport are completely defined in software and may be changed dynamically at
runtime depending on the system’s needs. This has several advantages, including
the ease of portability of the software to different hardware platforms, which in
turn decreases development and testing costs as well as time-to-market of the radio
technology. The software-defined radio technology uses modules that run on a
generic hardware platform consisting of digital signal processing (DSP) processors
as well as general purpose processors to implement the radio functions to transmit
and receive signals. Usually, software-defined radio implementations are based on
a combination of FPGA/DSP or FPGA-only solutions in alliance with software-
defined physical and data-link layer for reaching the trade-off between parameter
adaptation and performance. For an excellent and recent tutorial on the topic, the
reader is referred to [99].

8.2.2 System-on-Chip (SoC) Technologies

System-on-chips (SoCs) [59] are embedded devices where a general-purpose
processing system resides on the same integrated circuit with a field-programmable
gate array (FPGA). SoCs are one of the leading technologies on the market for
the implementation of digital systems combining software parts with hardware
accelerators. The latest generations of these embedded devices include, among
many other useful resources, powerful embedded hard processors supporting
different operating systems, analog front-ends, specialized hardware blocks for
high-performance computing or crypto-acceleration, and communication interfaces
compatible with the most widely used network protocols.

The programmable logic implemented on the FPGA enables the efficient imple-
mentation of systems that perfectly fit the heterogeneous nature of wireless appli-
cations. This is because both hardware and software components can be configured
according to the needs of different target applications; they are relatively low cost,
low power, and compact, and their flexibility and possibility of code reuse (both
hardware and software) allow the time to market to be reduced. Parallelism is
another significant advantage of FPGAs. The distributed nature of the logic and
interconnect resources in an FPGA fabric, together with the inherent concurrency
of the hardware, allows several blocks operating in parallel (with either the same or
different functionalities) to be implemented on a single chip.

8.2.3 Machine Learning

The pioneer of machine learning, Arthur Samuel, defined it as a “field of study
that gives computers the ability to learn without being explicitly programmed”
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[68]. Machine learning focuses on classification and prediction based on known
properties, and usually consists of two phases: training and testing. Often, the
following steps are performed: (1) identify class attributes (features) and classes
from training data; (2) identify a subset of the attributes necessary for classification
(i.e., dimensionality reduction); (3) learn the model using training data; and (4) use
the trained model to classify the unknown data.

There are three main types of machine learning approaches: unsupervised, semi-
supervised, and supervised. In unsupervised learning problems, the main task
is to find patterns, structures, or knowledge in unlabeled data. When a portion
of the data is labeled during acquisition of the data or by human experts, the
problem is called semi-supervised learning. The addition of labeled data greatly
helps to solve the problem. If the data are completely labeled, the problem is
called supervised learning and generally the task is to find a function or model
that explains the data. The approaches such as curve fitting or machine-learning
methods are used to model the data to the underlying problem; the label is the
problem variable. Recently, machine learning techniques have been used extensively
in areas such as speech recognition [21], spam detection [18], computer vision
[35], fraud detection [3], computer networks [5], and cyber intrusion detection
[9], among others. The reason behind the popularity of machine learning is that
it provides with a general framework to model and solve very complex problems.
Furthermore, machine learning operates “on the fly” without requiring a model of
the environment, the attacker’s behavior, and with (almost) no human intervention.
These characteristics make machine learning the ideal choice to detect stealthy,
dynamic and unpredictable cross-layer wireless security threats.

8.3 Taxonomy of Existing Wireless Network Attacks

In this section, we provide an overview of the relevant wireless network attacks to
date. Although wireless attacks are diverse in nature, it is possible to classify them
into two well-distinct classes. i.e., active and passive attacks. The two classes have
the following features:

• Active attacks: these attacks aim at partially (or completely) altering, corrupting
or destructing ongoing communications. Typical examples of such an attack are
Denial of Service (DoS) attacks such as jamming where the jammer exploits the
broadcast nature of wireless communications to intentionally generate interfering
signals that can potentially block all ongoing communications over one or more
wireless channels. Other classical and highly disrupting attacks are selective
forwarding and reply attacks. The former attack is generally aimed at mesh and
relay-aided networks where a malicious node can selectively drop or forward a
subset of the received packets, thus generating a decrease in the packet delivery
ratio of the network. Instead, replay attacks aim at retransmitting multiple
copies of the same packet. While wired networks can efficiently avoid such an
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attack by means of firewalls, wireless networks are particularly vulnerable to
replay attacks, especially when cloned packets corresponds to user association,
handshakes and ACK packets.1

• Passive attacks: in contrast with active attackers, passive attackers do not interact
with the system actively but, instead, limit their actions to the monitoring of
ongoing communications. A classical example of such an attack is eavesdrop-
ping, where a malicious node, the so-called eavesdropper aims at monitoring
wireless channels to detect ongoing communications. When a communication is
detected, the eavesdropper can either get access to the content of transmitted
packets and compromise the confidentiality of data, or it can monitor RF
transmissions to obtain statistical information on routes, identity of nodes and
their transmission activity.

It is clear that passive attackers are very hard to be detected as they never disclose
their presence or position. Accordingly, to protect the network from passive attacks,
prevention mechanisms such as encryption [56, 100], steganography [24, 25, 55, 57,
79] and access control lists [70] are generally employed. The network is generally
not able to measure the effectiveness of any prevention mechanism. Therefore,
prevention mechanisms are generally proactive and static.

For the above reasons, in this book chapter we focus our attention on active
attacks only. That is, we will delve into those cases where it is possible to detect
the presence of attackers, and it is possible to monitor and estimate the impact of
their attacks on the achievable performance of the network.

8.4 Learning-Based Wireless Security Framework (LeWiS):
An Overview

Figure 8.1 shows a block diagram of LeWiS. The core of LeWiS lies in two different
yet interconnected modules, i.e., the learning-based network stack (LNS) and the
learning-based control module (LCM).

Learning-Based Network Stack (LNS) The main task of the LNS is to adapt
transmissions protocols and radio frequency (RF) configurations to implement
dynamic protocols based on control logic algorithms defined in the LCM. To this
end, the LNS (1) swiftly implements the necessary configuration changes to address
adversarial action; (2) increases network throughput as much as possible; and (3)
eases the definition of protocols with cross-layer optimum behaviors. The LNS
operates on the whole set of existing networking layers, and involves protocols from
PHY to MAC to routing layers and to transport layer.

1For a more detailed discussion on active attacks and their impact on wireless communications we
refer the interested readers to [4, 85, 107], where an exhaustive analysis of active attacks and their
corresponding defence mechanisms is provided.
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Fig. 8.1 Block scheme of the proposed Learning-based Wireless Security (LeWiS) framework

Although the logic of how network parameters are changed will be completely
handled by the LCM, the LNS will be in charge of (1) actuating the commands
received from the LCM; (2) coordinating the different network layers in a reliable
and efficient way; and (3) storing and managing the current network state. Accord-
ingly, the LNS is divided into three distinct but interacting “planes”, each in charge
of coordinating a different group of functionalities. We refer to these as the execution
(where the protocols actually run), control (store network status information and
receive parameters), and interface (provide a set of cross-platform APIs between
the LCM and the LNS).

We now provide an overview of the LNS components and the interactions
between them. We describe each component in a bottom-up fashion.

Execution Plane The execution plane (EP) handles the actual implementation of
the networking algorithms. Specifically, it handles the set of data structures and
algorithms, as well as the signal processing and RF front-end needed for wireless
communication. As such, the EP is cross-layer and cross-domain by design, and
resides on both the hardware (HW) and operating system (OS) portions of the
wireless nodes.

The EP is structured as follows. The raw information bytes coming from the
application (e.g., voice, video, data) are received, and after header formation at the
transport (TSP), network (NET) and link (LNK) layers, the information packet is
transformed into digital waveforms at the physical (PHY) layer and subsequently
transmitted via the RF front-end. According to the commands provided by the
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control plane (CP), the EP chooses from a set of protocols and algorithms at
every layer of the protocol stack. For example, the EP might choose different
PHY schemes (e.g., OFDM, narrowband, spread-spectrum) or MAC schemes (e.g.,
CSMA, TDMA, ALOHA, etc.), according to what instructed by the CP.

The state of protocols at different layers are stored as variables in the CP.
Therefore, any state variable of any protocol at any layer can be reconfigured on-
the-fly through the CP. Protocol parameters (e.g., inter-frame spacing, modulation,
carrier frequency, size of minimum contention window) can be “intrinsically”
accessed by the CP as a result of a decision algorithm, or by the EP according
to specific data acquisitions.

Control Plane The control plane (CP) is responsible for storing the network state
composed by the set of parameters used at the different layers (e.g., modulation,
transmit power, size of minimum CW, neighbouring list, and routing table).
Furthermore, the CP is designed to handle the logic of data processing, which takes
place in the EP. The CP decides the sequence of data processing functionalities
that will be executed in the EP. The CP also controls switching between different
protocols on-the-fly based on the decisions taken by the LeWiS mitigation module.

Interface Plane The interface plane provides a set of application program interface
(API) between the LNS and the LCM. Specifically, the purpose of this layer is to
(1) communicate to the LCM the state of the LNS held by the register and control
plane; and (2) handle the reception of updated network parameters coming from the
LCM. This plane can be implemented purely in software or also in hardware (e.g.,
FPGA), depending on the platform’s needs.

Learning-Based Control Module (LCM) The purpose of the LCM is to imple-
ment the algorithms that will ultimately provide the LNS with appropriate network
parameters at every layer of the protocol stack. The choice of network parameters
will depend on (1) the current environmental conditions; and (2) the current network
state, provided by the LNS. This information is used by the LCM to take appropriate
action in response to various phenomena, ranging from a change in network
objectives (e.g., more throughput is needed at the cost of energy consumption) to
a detection of an ongoing network attack.

The LCM provides decisions based on user-defined machine learning algorithms.
Such “decisions” may be different in nature; they include, for example, modifying a
parameter in a protocol (e.g., transmit power), switching to a different transmission
scheme at the PHY layer (e.g., from OFDM to CDMA), and complex cross-layer
decision making such as joint routing and spectrum allocation, among others. The
output of the LCM is not applied to the LNS directly, but specific APIs are used
in the Interface plane to establish communication between the LCM with the LNS.
Therefore, results of specific machine learning algorithms can be accessed by the
Execution and Control planes of the LNS and adopted in their logic. Thus, the LCM
separates the decision plane from execution of the protocol stack, which enables the
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definition and reconfiguration of the decision logic on-the-fly without influencing
the on-going protocol execution logic. Most importantly, this separation provides
the capability to (1) apply locally control decisions taken at other devices; and (2)
create decisions to be applied at other network devices.

From a logical standpoint, the LCM is composed by a detection and a mitigation
module. The detection module records a series of observed events and use them to
update the a priori distribution of the parameters of the underlying network state.
The resultant a posteriori distribution is fed to the mitigation module, which in turn
decides the strategy to address the ongoing attack. Another task of the LCM is to
sense the environment and acquire as much information as possible regarding the
outside world. This includes carrier sensing, detection of number of nodes, and so
on. This information will be fed to the machine learning algorithms, and if necessary
used for training the models.

The rest of this section will be devoted to describe in details the LeWiS detection
and mitigation modules. By doing so, we will also discuss the relevant state of the
art on the topic of detection and mitigation of wireless attacks.

8.5 LeWiS Detection Module

In this section, we discuss the detection module of LeWiS. First, we introduce the
general structure of the LeWiS detection module. Then, the challenges of detection
are discussed. Next, we review different machine learning techniques that can
be used in the LeWiS detection module. Finally, we discuss different detection
approaches.

The objective of the detection module is to use machine learning techniques to
construct reliable hypotheses on the existence of possible attacks in a network, based
on observed evidences and a-priori knowledge on the attacks. The detection results
are represented in the form of a-posteriori knowledge on the attacks and supplied
to the mitigation module for defense strategy making.

The detection module is made up by three components, an event monitor, a
learning engine, and a learning controller, as is shown in Fig. 8.2. We discuss each
component below.

• Event Monitor. The event monitor observes and records events occurred on
multiple layers that are useful for the detection of the underlying network state.
Although an attack can be identified using the network state changes made by
it, states are not always directly observable. On the other hand, there are always
observable events whose occurrences are a function of the underlying network
state. These event may include a successful (or failed) reception of a bit (or
packet), the result of a channel contention, and the end-to-end delay of a message,
among others. These events may reveal the underlying network state often in a
probabilistic way.

• Learning Engine. The learning engine computes the probability that (1) a certain
attack is taking place (supervised learning techniques), or (2) the belief that
the network is running in a “normal” state (unsupervised learning techniques).
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Fig. 8.2 Components of the detection module

Specifically, it takes the events observed by the event monitor as the input,
generates a “data” point based on the events, which represents the network state.
Then, learning techniques such as K nearest neighbor (KNN), support vector
machine (SVM), or clustering are used upon the data point. In most cases, it
also takes a-priori knowledge in some form as an input. The a-priori knowledge
represents the knowledge on the expected behavior of an attack, and can be
derived by theoretical analysis, or, more importantly, training.

• Learning Controller. The learning controller is mainly in charge of the parameter
settings for the learning engine. Depending on the application and implementa-
tion of a network, it may be prone to different attacks. Meanwhile, depending
on the threat of an attack, it may not always be worthy defending it, considering
the overhead. This is especially important when the number of possible attacks
are high. Therefore, the learning controller should decide which attacks to detect,
and consequently, which layers and events to monitor. The learning controller is
also in charge of feeding the learning engine with the proper a-priori knowledge.

8.5.1 Challenges in Cross-Layer Attack Detection

There are different ways to launch cross-layer attacks. “Sub-attacks” on different
layers with similar consequences may be used in parallel for a better result. For
example, observing that denial-of-service can be achieved using multiple attacks on
different layers, it is argued in [81] that a cross-layer DoS attacks can be launched
by jointly utilizing these sub-attacks. On the other hand, it is also possible for a
sophisticated attacker to launch a more advanced cross-layer attack by exploiting the
cross-layer interactions in the underlying protocols of the network (in the following
contents, we will deliberately refer to this type of attacks as “advanced” cross-layer
attacks when distinguishing is needed). Compared to traditional single-layer attacks,
these advanced cross-layer attacks have several unique challenges:



8 The Role of Machine Learning and Radio Reconfigurability in the Quest for. . . 201

Fig. 8.3 The mechanism of cross-layer attacks

• Stealthiness. The major issue in cross-layer attack detection is overcoming
their stealthiness. To explain this point, let us consider the example shown in
Fig. 8.3. We define as network state a state of network variables, which may
include signal-to-interference-plus-noise ratio (SINR) of a link, the channel
access probability of a node, and the quality of a route, among others. Let us
suppose the network is in a state Si, and that the adversary aims at changing a
certain target layer so that the network enters a new state where the defender
is penalized. To this end, instead of attacking the target layer directly as in a
traditional single-layer attack, in this case the adversary chooses another layer,
i.e., the helping layer, and attacks it with a strategy Ai. This causes the defender
to switch to an intermediate state S′i where the utility of the defender is lowered.
As a response, the defender chooses a strategy Di to switch to a more favorable
state Si+1.

Since the defender jointly optimizes its strategy on multiple layers, strategy
Di changes the target layer of the adversary as well, as long as the attack strategy
Ai is carefully chosen. In other words, with a fine-tuned attack strategy, a cross-
layer attack can create a state in which the defender’s responsive strategy also
benefits the adversary. Therefore, cross-layer attacks have the potential to be
exceptionally stealthy, and how to detect the often small-scale attack activities
becomes the most important challenge.

• Heterogeneity. Cross-layer attacks involve multiple “sub-attacks” on different
layers. Therefore, different cross-layer attacks may behave similarly on a specific
layer, especially on the helping layer. This suggests high heterogeneity in the
form of attacks even if similar attack patterns have been observed.
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Fig. 8.4 Learning engine

The challenge of stealthiness suggests that the network state that distinguishes
an attack is difficult to estimate; and the challenge of heterogeneity suggests that it
is difficult to distinguish different attacks. In the learning engine, these challenges
are addressed by two components, a network state estimator and a classifier, as
shown in Fig. 8.4. The network state estimator estimates the underlying network
state that may be ambiguous to a “normal” state due to small-scale attack activities,
and generates a feature vector representing the current state. The classifier is trained
to classify such a feature vector to a specific attack (misuse detection) or abnormal
(anomaly detection).

8.5.2 Learning Techniques for Attack Detection

Various machine learning techniques can be applied to accomplish the tasks of both
network state estimation and classification.

8.5.2.1 Network State Estimation Techniques

Network state estimator is tasked to estimate the underlying network state, which
is usually not directly observable and may only be changed by the attacker slightly.
It falls to the topic of parameter estimation in machine learning, and maximum
likelihood (ML) estimation and Bayesian estimation are two widely-used methods
[27].

ML Estimation ML estimation aims at finding the candidate hypothesis that
maximizing the likelihood for the observed events to happen. Specifically, suppose
the probability (likelihood) for an event Ek= ek to happen for the underlying
network state S= s is

P{Ek = ek|S = s} = f (ek, s), (8.1)
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where the function f (·) is available by either theoretical analysis or training, then the
ML estimator generates the hypothesis S= s if

s = arg max
s∈S

f (ek, s), (8.2)

where S is the set of all possible values for the network state S.

ML estimation treats the network state as a fixed value and finds the value best fits
the evidences. It does not take into account the a-priori knowledge on the network
state, which is usually available. Therefore, in such cases, it is not as good as
Bayesian estimation, which is based on a-posteriori instead of likelihood. However,
it is relatively less complex, especially when dealing with binary hypotheses. For
example, log likelihood ratio test (LLR) is used for jamming detection [77].

Bayesian Estimation Bayesian estimation, on the other hand, treats the network
state S as a random variable and constructs a-posteriori distribution. It takes into
account the a-priori knowledge on the network state. Besides, as a distribution on
the set of all possible values instead of the likelihood for one single value, Bayesian
estimation provides more information on the network state than ML estimation.
Therefore, for cross-layer attacks creating a network state S′ that is only slightly
different from the “normal” state S, Bayesian estimation is generally a better choice
than ML estimation.

Specifically, with a sequence of independent events {ek}k=1, . . . ,K have happened,
it follows that

P{{Ek}k=1,...,K = {ek}k=1,...,K |S = s} =
K∏

k=1

f (ek, s), (8.3)

which leads to the following a-posteriori distribution

P{S = s|{Ek} = {ek}}

= P{{Ek} = {ek}|S = s}∫
s P{{Ek} = {ek}|S = s} · P{S = s} ds

· P{S = s}, (8.4)

where P{S = s} is some a-priori distribution of S, which represents the “normal”
network state (i.e., without attacks). Note that such quantity is often available—for
example, the distribution of SINR on a link can be derived from the fading model,
the channel access probability for any node in a network running CSMA/CA is
approximately the same, and so on. If accurate knowledge is not available, it is
often possible to know some information on it, such as the functional form, and the
range of its values [27].

The a-posteriori distribution in Eq. (8.4) reveals the possible underlying network
state, so the defender is now aware of the attack activities of the attacker. The
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resultant distribution is fed to a classifier to classify a new data point. For example,
with the signature of a suspected attack, we may have the classifier in the following
general form:

Attacked
C(P{S = s|{Ek} = {ek}}, F) ≶ Cth,

Not attacked
(8.5)

where F represents the signature of the suspected attack, and Cth is a threshold that
is set based on an a-priori training of the system. The detailed form of the classifier
depends on the targeting attack, and the classification techniques. We will discuss
the techniques in the following subsection.

8.5.2.2 Classification Techniques

There is a rich body of classification (or clustering for unsupervised learning)
techniques used in network intrusion detection systems (NIDS). [45] gives an
experimental comparison on such techniques applied to the KDD dataset [41]. KDD
dataset is a famous benchmark dataset for network intrusion detection. It is packet-
based, involving packets generated on network layer and above. The attacks are
mainly single-layer attacks. However, the machine learning techniques still have
the potential to be applied for the classification of cross-layer attacks. We have
listed in Table. 8.1 the most widely-used techniques and the attacks they have been
applied to.

K Nearest Neighbor (KNN) K Nearest Neighbor (KNN) is an instance-based
learning technique, which classifies a data point based on the majority of the classes
of its K nearest neighbors (usually according to the Euclidean distance in the feature
space).

Table 8.1 Learning techniques used in attack detection

Techniques Attacks

Supervised K nearest neighbors (KNN) KDD attacksa [48], flooding [50]

Decision tree KDD attacks [73, 76]

Support vector machine (SVM) Sinking [37]

Artificial neural network KDD attacks [6, 53, 88], DDoS [67]

Ensemble learning KDD attacks [1, 32]

Unsupervised Clustering DDoS [47]

K means KDD attacks [52]

Reinforcement Q-learning Not specified [34, 72]
aWe refer to KDD attacks the set of attacks in KDD dataset, including DoS, user to root (U2R),
remote to local (R2L), and PROBE attacks
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Formally, denoting the set of the K nearest data points as K , then the probability
that a new data point x belongs to a class y is computed as

P{y|x} = 1

K

∑
xi∈K

I (yi = y), (8.6)

where yi is the label of data point xi, and I(yi= y) is an indicator function for the
condition yi= y. The classifier is then assigns class y ∗ according to

y∗ = arg max
y∈Y

P{y|x}, (8.7)

with Y denoting the set of all classes.
KNN is one of the least complex machine learning techniques and thus has the

potential to be applied in wireless networks with low cost devices. It has been
evaluated on wireless sensor networks in [50] for flooding attack and used on the
KDD dataset in [48].

Decision Tree Decision tree is a technique to organize multiple rules in a tree-
like model. Each node in the tree except the leaves corresponds to a test over some
attributes (or features) of a data point. The decision process is directed to different
children based on the test result, until a leaf node is reached, which represents a
decision. Decision tree techniques such as C4.5, random tree, and random forest
have been applied to intrusion detection on the KDD dataset in [73, 76].

Support Vector Machine (SVM) Support Vector Machine is based on the assump-
tion that data points for different classes are separable when represented in a high
dimension feature space. The data points are first mapped to a high-dimensional
feature space. Then, a linear decision function is constructed in the mapped feature
space, resulting in hyperplanes separating two classes of data points.

Specifically, suppose the mapped data points is represented as a vector x, then
the classifier is in the form of

wT x− b ≥ 1 (8.8)

for one class, and

wT x− b ≤ −1 (8.9)

for the other. The weight w should be computed to maximize 2
‖w‖ , i.e., the margin

between the two classes.
In [37], SVM is used for the detection of sinking attack in wireless ad-hoc

networks.
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Fig. 8.5 Artificial neural
network

Artificial Neural Network Artificial neural networks are inspired by biological
neural networks. It is a network of artificial neurons (nodes), as shown in Fig. 8.5.
“signals” are transmitted through connections between the neurons. At each neuron,
the “signal” is processed using a (usually non-linear) function of the weighted sum
of all inputs. Denoting the input as x and the weight as w, the output y is

y = f (wT x), (8.10)

where the function f (·) may take different forms. There are typically multiple layers
of neurons, with the first layer as the input and the last layer the output (the
classification result). The weights in a neural network are trained to produce the
most favorable outputs. It has found applications in detection of various attacks in
[6, 53, 67, 90].

Ensemble Learning Ensemble learning techniques utilize the hypotheses gener-
ated by multiple weak learners to construct a strong one that outperforms each
individual weak learner. There are multiple ways to ensemble weak learners,
such as bagging and boosting [27]. In detection of cross-layer attacks, due to the
heterogeneity in sub-attacks, the best learning techniques in detecting each of them
may vary. Therefore, a good ensemble method may improve the performance of
the detection. An AdaBoost-based learning with decision tree as weak learners is
evaluated on KDD dataset in [32]. In [1] a simple ensemble method of weighted
majority is used.

Clustering Clustering is an unsupervised learning technique that allows the unla-
beled data points form different groups (clusters) automatically based on their
features. Different methods can be used for this purpose. In [47] a hierarchical
clustering method is used to detect DDoS attacks.

K Means K means is a classic clustering method. It first randomly creates K
clusters and then iteratively updates the center of each cluster with new data points
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until convergence. New data points can be assigned to a cluster according to the
distance.

For standard K means, suppose the mean (center) of cluster k at step i is mi
k , then

a data point xj is assigned to cluster

k∗ = arg max
1≤k≤K

‖xj −mi
k‖. (8.11)

With all data points clustered, the new means are computed as

mi+1
k = 1

‖Ci
k‖
∑
j∈Ci

k

xj , (8.12)

with Ci
k denoting the set of data points belonging to cluster k at step i. The update

stops when there is only negligible changes in the means.
In [52] K means is used with KNN for intrusion detection, where K means is

used to form clusters and KNN is used to assign new data points to the clusters.

Q-Learning Instead of aiming at classifying (or clustering) data points, reinforce-
ment learning aims at finding the optimal policy to maximize the reward in a
dynamic system with multiple states. Q-learning is a popular reinforcement learning
technique, which can be implemented using dynamic programming. As a decision
making process, it fits more for the task of attack mitigation (introduced with more
details in Sect. 8.6), but there are still several works in applying Q-learning to attack
detection [34, 72]. The common idea is that the detection and attack form a game,
in which the defender and attacker may adopt different actions (to detect or not to
detect for the defender; to attack or not to attack for the attacker) and get different
rewards. Q-learning can be used to find the optimal policy for each side in this game-
theoretical framework. Note this is a high-level model, and the actions for both sides
are abstract, without detailed detection (or attack) methods involved, therefore, Q-
learning (and reinforcement learning techniques in general) needs to be used with
other detection methods dedicated for the attacks for a good performance.

8.5.2.3 Detection Approaches: Misuse vs Anomaly

We have reviewed different techniques that can be used in attack detection. An
equally important question in detection module design is the detection approach.
There are two approaches in intrusion detection, misuse detection and anomaly
detection [42]. The former aims at identifying a specific attack based on its
signature, while the latter aims ate finding out outliers to “normality”.

The framework established in [106] has adopted the misuse detection approach.
It is argued that the learning engine should be tailored for each target attack
individually. However, there are also scenarios where it is difficult to adopt this
approach. For example, in networks with low cost devices and low security
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requirement, it is neither feasible nor necessary to monitor multiple advanced
cross-layer attacks; in scenarios lacking knowledge on the potential attacks, it is
also difficult to train a model for the unknown attack. In such cases, the anomaly
detection approach seems more promising.

The common idea of anomaly detection is to monitor multi-layers and cluster
the data points into different groups. Only one of the groups is considered normal,
and for data points in other groups, the mitigation module will be called to “revert”
the state back to normal. This step may contribute to the launching of an advanced
cross-layer attack, as shown in step 3 in Fig. 8.3. Therefore, there is a possibility
that anomaly detection fail against advanced cross-layer attacks.

Reference [87] is a typical example of this idea. It is assumed that there are
intrinsic and observable distinction between normal and abnormal behaviors. The
authors propose to select “features” that best distinguish normal and abnormal
behaviors on multiple layers, and use classifiers such as decision tree, Bayesian
Network, and SVM to classify if a data point is normal or not.

It is generally believed that anomaly detection is able to detect not only already-
known attacks but also unknown attacks. However, in [75] it is argued that this
may not hold in practice, due to the unsuitability to use machine learning in outlier
detection, the high cost of errors, the semantic gap between the anomaly detection
results and the insight on defense, among others. Therefore, anomaly detection may
only enjoy the advantage of simplicity and low cost compared to misuse detection.

8.6 LeWiS Mitigation Module

The primary goal of the mitigation module is to efficiently counteract ongoing
attacks by selecting and combining one or more defence strategies among a set of
feasible defence mechanisms. In order to identify effective defence strategies, the
mitigation module needs to address the following core challenges: (1) attacks can
be launched by a potentially large number of adversaries; (2) the adversaries might
be heterogeneous and be able to attack the network from multiple locations of the
network; and (3) their behavior (i.e., their attack strategy, position, and so on) and
number might vary over time.

The above challenges are peculiarly hard to be tackled. Indeed, it has been
shown that attackers can easily hide their location by exploiting the broadcast nature
of RF communications [26, 49], and can also maximize the undetectability and
impact of their attacks by using simple but effective attacks. As an example,pilot
jamming [15, 71] and pilot nulling [15] can be used to attack pilot tones and
partially or completely corrupt synchronization and equalization operations at the
receiver side. Another example is reactive jamming [25, 93], where the jammer uses
energy-detector systems to first detect ongoing communications, and then transmit
interfering signals aimed at disrupting RF transmissions.
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This discussion shows that it is highly difficult (if not impossible) to fully
characterize a network of attackers and deterministically derive the best defense
strategy. Accordingly, not only is LeWiS tasked to learn how to defend the network
from a particular attack, but it has also to adapt to the heterogeneous and ever-
changing environment and attacks. Therefore, our framework LeWiS relies on a
learning-based mitigation module where a-priori knowledge, real-time observations
and supervised control actions are jointly leveraged to continuously adapt to
network attacks and to derive appropriate defence mechanisms for any given
network state and topology.

To provide the network with proper defense mechanisms, LeWiS continuously
relies on the three components described below, and keeps tracking present and
past network states. Also, the detection module notifies the mitigation module with
relevant information on the nature of ongoing attacks. Accordingly, the mitigation
module is capable of automatically computing the most effective defense strategy
to mitigate, and possibly avoid, further attacks.

• A-priori knowledge. It is a set of static pre-loaded defence strategies for a given
subset of attacks. It is used by the mitigation module to counteract ongoing
attacks in the bootstrapping stage of LeWiS, i.e., when no information regarding
the presence of attackers is available. Thus, as soon as an attack is detected,
the mitigation module leverages the a-priori knowledge to identify one or more
suitable defence strategies;

• A-posteriori knowledge: This set of strategies is continuously and autonomously
built, updated and enhanced by LeWiS by evaluating the effectiveness of the
different defence strategies employed in the past. Also, it is used by LeWiS to
update the state of the network and to keep track of ongoing attacks. Indeed, it
must be assumed that the environment and the attacker might change over time.
As an example, a jammer can move from a location to another, of adapt its attack
strategy to target a specific layer of the protocol stack. Therefore, the system must
always monitor the environment to update the state and gather knowledge;

• Supervised Control Actions: The efficiency of the mitigation module can be
improved by introducing human-generated inputs that either add new defence
strategies to the system, or can steer the learning algorithm toward one solution
rather than another. Specifically, it is possible for the network operator to
interact with the decision mechanism by (1) specifying control operatives and
performance metrics (e.g., throughput maximization, delay and energy mini-
mization, minimum QoS guarantees, maximum transmission power, etc . . . ); and
(2) introducing new defence strategies when a novel attack is discovered and
thus cannot yet be detected by LeWiS. These inputs are then used by LeWiS to
identify the best defence strategy that optimizes a given control operative while
satisfying a given set of constraints or requirements.
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8.6.1 Traditional Mitigation Strategies

Given the cross-layer nature of attacks, LeWiS combines different defence strategies
involving multiple layers of the protocol stack. As an example, to overcome reactive
jamming attacks (i.e., the jammer is triggered when the received signal’s power
is above a given triggering threshold), defence strategies might involve the use of
defense strategies at the crossroads of different layer. For example, power control
(i.e., a physical layer strategy) can be used to reduce the strength of the signal
received by the jammer, and channel access control (i.e., a link layer strategy) can
be used to avoid the subset of channels monitored by the jammer [26].

To effectively address the variety of attacks, the mitigation module relies on a
modular approach where atomic and single-layer defence strategies are selected and
then properly combined to address different attacks. For the sake of clarity, in Table
8.2 we provide a brief summary of possible defences at each layer of the protocol
stack.2

Table 8.2 Defence mechanisms and their application in wireless networks

Physical layer Data link layer Network layer
Transport
layer

Application
layer

Power control [26, 30, 89]

Modulation [98]

Coding [62]

Beamforming [29, 102]

Friendly jamming [33]

Artificial noise [62]

Medium access
control (MAC)

[26, 40, 97]

Relaying and
routing

[44, 62] [39, 69]

Authentication [83, 101] [40] [7, 39] [19]

Load balancing [14] [2] [14]

Transport layer
security (TLS)

[66]

Secure socket
layers (SSL)

[66]

Firewall [94]

Encryption [20, 54, 60, 61] [17, 36] [17, 54] [17] [94]

2The provided summary is not intended to be exhaustive, and a more detailed taxonomy of defense
strategies can be found in [13, 96]. Furthermore, the same defence strategy (e.g., authentication,
coding) can be implemented in different ways, and with possibly distinct outcomes, at multiple
layers of the protocol stack.
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The majority of prior work in network security has put its efforts on the design
and implementation of ad hoc defence solutions for a small subset of network attacks
that are targeted at the lower layers of the protocol stack [30, 39, 62]. On one hand,
this deterministic approach produces highly reliable and robust solutions to a subset
of well-defined attacks. On the other hand, it is clear that this paradigm cannot be
equally productive in the case of cross-layer attacks where (1) the presence, position
and attack strategy of the attackers is unavailable; and (2) different attacks can be
combined together to attack multiple layers of the protocol stack.

The technological advancement and the availability of relatively cheap but
powerful reprogrammable devices, such as SDRs and FPGAs, has enabled and
facilitated the development and spread of complex and cross-layer attacks [12, 31,
106]. For this reason, ad hoc defence mechanisms addressing only a small number
of attacks are expected to achieve poor performance—in other words, a single “one-
fits-all” defense strategy is unlikely to be found. Instead, research efforts should
be funneled towards the definition of a system capable of adaptively counteracting
ongoing attacks through the generation of cross-layer strategies obtained by prop-
erly combining single-layer defense mechanisms. This latter research challenge will
be the focus of the next section.

8.6.2 Learning-Aided Mitigation Techniques

To provide a reliable defence framework, information with respect to the attackers
and their attack strategies is indeed required. Although many works in the literature
assume that such an information is available to the defender, such requirement can-
not be always satisfied in a significant number of wireless network scenarios where
only incomplete and possibly erroneous information is available. To overcome the
lack of information, statistical information and learning techniques can be profitably
used to learn the environment, test different defense strategies and subsequently
identify the most effective ones.

Since the system aims at providing a secure and tamper-proof communication, it
is possible to model the mitigation module of LeWiS as an agent whose objective is
to (1) select the most appropriate set of the defense strategies, such that (2) a given
the security level and the performance of the network are simultaneously maximized
over a large time horizon. In this context, the mitigation problem can be modeled
as a Markov Decision Process (MDP) [92]. Specifically, the MDP corresponding to
the mitigation module is shown in Fig. 8.6 and relies the four following fundamental
elements:

• Action Set: it is represented by the set A of all feasible defense strategies. Each
defence strategy a ∈ A is stored as single-layer atomic action that can be
successively combined with other actions, belonging to the same or to different
layers, to counteract cross-layer attacks;
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Agent

Environment

Action
a ∈

Next state
s′ ∈

according to

Reward
(s,a)

Fig. 8.6 Interactions in an MDP

• State Set: it represents the set S of possible states of the network, i.e., the
network. As an example, each state s ∈ S can be used to represent network
performance information such as bit, symbol and packet error rates, spectral
efficiency and noise level. Furthermore, the state of the network also include
information with respect to the type of attack, number of attackers and their
position;

• Reward Function: this is a function R : S × A → R that is used to represent
the performance of the system when the network is in a given state and a given
set of defence strategies are deployed. Typical examples of reward functions
are throughput, data-rate, energy consumption and latency. The aforementioned
metrics are used by the MM of LeWiS to evaluate the effectiveness of current
defense strategies.

• Transition Function: a function used to regulate and describe the transition
between a state to another. This function can be expressed as P : S×A ×S →
[0, 1] and represents the probability Pr{s′|(a, s)} that the network enters state s′
when the action a is taken by the decision maker when the network is in state s.

ML technologies, have been profitably used in the literature to address a variety
of cross-layer optimization problems ranging from rate maximization [16, 108],
channel estimation [28, 86] and resource allocation [5, 80]. Preliminary works on
the application of ML algorithms to address security issues in wireless networks are
already available in the literature [5, 9, 65, 103], however they are generally targeted
at mitigating only a limited subset of attacks, thus not providing effective and
comprehensive solutions to counteract heterogeneous cross-layer attacks in wireless
networks.

Given the potential of ML techniques that make it possible to learn from the
environment and adapt defense strategies accordingly, we envision a cross-layer
and comprehensive defense system where any attack can be mitigated, or possibly
avoided, by wisely tuning the learning parameters of the system.

ML technologies can be generalized in two main classes, namely Dynamic
Programming (DP) and Reinforcement Learning (RL), whose features are as
follows:



8 The Role of Machine Learning and Radio Reconfigurability in the Quest for. . . 213

– Dynamic Programming: this is a model-based approach where the impact of
a given action on the transition from a state to another and the corresponding
obtained reward is a known a-priori [11]. That is, DP requires knowledge of the
reward and transition functions R and P , respectively.

– Reinforcement Learning: this is a model-free approach where the learning
process builds its own knowledge by means of observations and exploration
of previous actions and rewards. That is, RL does not require any a-priori
knowledge of R and P as the information related to the transition from a state
to another and the achieved reward is discovered by the learning process itself
[11].

The two above approaches have been widely and successfully used in the liter-
ature to derive optimal control policies for many networking problems. However,
the above analysis clearly shows that DP require some form of knowledge with
respect to the underlying MDP, a condition that might not be guaranteed in many
network scenarios. On the contrary, RL iteratively constructs and gathers knowledge
by exploring the environment and the action space, thus making it a promising
technology to design a reliable and efficient MM when accurate information on
the attacker is not available.

In the following, we present few examples that show how both DP and RL can
be effectively used to counteract attacks in wireless networks.

8.6.2.1 DP and Its Application to Attack Mitigation

Dynamic programming is a well-established learning approach [8] that makes it
possible to generally derive optimal solutions to a variety of NP-hard problems [95].

To compute efficient mitigation strategies, DP relies on the following well-known
Bellman’s Equation:

Jt (st ) = max
at∈A

Rt (st , at )︸ ︷︷ ︸
Single−slot Reward

+ EP{Jt (st+1)|(st , at )}︸ ︷︷ ︸
Cumulative Expected Reward

(8.13)

As already outlined in the previous section, Eq. (8.13) shows that DP strongly
depends on the state transition probabilities P . Intuitively, the function Jt(st) is
iteratively maximized at each iteration by considering the best action at in the set
A such that the single-slot reward Rt (st , at ) and the cumulative expected future
reward of network is maximized.

Apart from being dependent from the transition function P , another drawback
of DP lies in the so-called curse of dimensionality [8]. That is, to compute optimal
defense strategies, DP generally needs to test a large number of actions (e.g.,
channel assignment, power allocation, encryption, beamforming, etc . . . ), which
eventually results in high computational complexity when the number of actions
is large and heterogeneous. As an example, it has been shown [26] that even a
relatively simple cross-layer defense strategy that merges physical and data-link
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layer defense mechanisms, e.g., power control and channel allocation, generally
results in NP-hard solutions. Specifically, to counteract reactive jamming attacks,
DP requires exponential time to compute an effective defense strategy even if
the continuous transmission power levels are quantized and substituted with their
corresponding discrete variables. To overcome such an issue, a promising approach
is to leverage on the learning engine of DP and exclude inefficient defense strategies
from the action set [26]. As an example, if a given defence strategy is known to be
either nonfunctional or inefficient, e.g., the network is aware that all transmission
power levels above a given triggering threshold always activate the jammer, those
actions can be removed from the action set. Such an approach not only reduces the
complexity of the overall learning algorithm, but it also avoids poor performance
due the deployment of ineffective defense strategies.

8.6.2.2 RL and Its Application to Attack Mitigation

In the context of RL many algorithms have been proposed to derive optimal and
sub-optimal policies for a variety of optimization problems [10, 38, 78]. Those
algorithms have different properties and provide different performance levels in
different network scenarios. For the sake of simplicity, in this chapter we will focus
our attention on two well-known and well-established RL algorithms, namely Q-
Learning and State–action–reward–state–action.

• Q-Learning : this learning approach relies on the well-known Q-function. Let
at and st be the action taken by the agent and the state of the system at time t,
respectively. The Q-function is defined as follows:

Q(st , at ) = (1− αt (st , at ))Q(st , at )+ αt (st , at )

[
Rt + γ max

a∗∈A
Q(st+1, a

∗)
]

(8.14)

where αt(sr, at)∈ [0, 1) is the learning rate of the algorithm associated to the
2-tuple (at, st), and γ ∈ (0, 1) is the discount parameter and st+1 is the observed
state of the network when action at was taken. Intuitively, (8.14) iteratively aims
at maximizing the total discounted reward of the network, which in our case
consists in the maximization of network performance through the mitigation of
network attacks. It is worth mentioning that there are no particular restrictions
on the action selection mechanism to be used in the learning process. Well-
established and widely used action selection mechanisms are random selection,
ε-greedy and softmax algorithms [78]. However, other approaches are available,
and they can be found in [82]. It has been shown [91] that if the reward function
is bounded and

∑+∞
t=1 α2

t (st , at ) <
∑+∞

t=1 αt (sr , at ) = +∞ for all (st , at ) ∈
S ×A , then (8.14) converges towards an optimal value of the Q-function when
t→+∞. That is, if all the 2-tuples (st , at ) ∈ S ×A are visited infinitely often,
the total discounted reward is guaranteed to converge to an optimal value.



8 The Role of Machine Learning and Radio Reconfigurability in the Quest for. . . 215

• State–action–reward–state–action (SARSA) : this learning approach is similar
to Q-learning but differs on how the Q-function is updated at each iteration.
Specifically, SARSA relies on the following iterative equation:

Q(st , at ) = (1− αt (st , at ))Q(st , at )+ αt (st , at ) [Rt + γQ(st+1, at+1)]
(8.15)

where the only difference with the Q-learning approach is that the latter
updates the value of (8.14) by computing the best action such that a∗ =
arg maxa∈A Qt(s, a). Instead, in (8.15) the algorithm utilizes the same action
selection mechanism at each iteration t. That is, while Q-learning uses the optimal
action a∗ to update the value of (8.14), SARSA uses the same selection algorithm,
e.g., ε-greedy, to compute each action at and directly uses it to update the Q-
function in (8.15). In general, SARSA has lower-complexity if compared to
Q-learning, however it often produces only near-optimal improvements at each
iteration of the learning process.

8.7 Conclusions

With such massive presence of interconnected wireless nodes deployed all around
us, there are still exciting yet significant security research challenges that need to be
addressed in the upcoming years. In this chapter, we have provided our perspective
on the issue of cross-layer wireless security, which is based on a unique mixture of
machine learning and software-defined radios. Specifically, we have introduced and
discussed a Learning-based Wireless Security (LeWiS) framework that provides a
closed-loop approach to the problem of cross-layer wireless security by leveraging
machine learning and software-defined radios. We have first provided a brief review
of background notions in Sect. 8.2, followed by an in depth-discussion of the LeWiS
framework and its components. We have categorized and summarized the relevant
state-of-the-art research. We hope that this work will inspire fellow researchers to
investigate topics pertaining to cross-layer wireless security and keep in the race for
a more secure technological world.

Acknowledgements This work is based upon work supported in part by ONR grants 0014-16-1-
2213 and N00014-17-1-2046, ARMY W911NF-17-1-0034, and NSF CNS-1618727.

References

1. A.A. Aburomman, M.B.I. Reaz, A novel svm-knn-pso ensemble method for intrusion
detection system. Appl. Soft Comput. 38, 360–372 (2016)

2. A.A. Ahmed, N.F. Fisal, Secure real-time routing protocol with load distribution in wireless
sensor networks. Secur. Commun. Netw. 4(8), 839–869 (2011)



216 F. Restuccia et al.

3. L. Akoglu, C. Faloutsos, Anomaly, event, and fraud detection in large network datasets, in
Proceeding of the ACM International Conference on Web Search and Data Mining (WSDM)
(2013), pp. 773–774

4. I.F. Akyildiz, X. Wang, A survey on wireless mesh networks. IEEE Commun. Mag. 43(9),
S23–S30 (2005)

5. M.A. Alsheikh, S. Lin, D. Niyato, H.P. Tan, Machine learning in wireless sensor networks:
algorithms, strategies, and applications. IEEE Commun. Surv. Tutorials 16(4), 1996–2018
(2014)

6. R.A.R. Ashfaq, X.Z. Wang, J.Z. Huang, H. Abbas, Y.L. He, Fuzziness based semi-
supervised learning approach for intrusion detection system. Inf. Sci. 378, 484–
497 (2017). https://doi.org/10.1016/j.ins.2016.04.019. http://www.sciencedirect.com/science/
article/pii/S0020025516302547

7. D. Balfanz, D.K. Smetters, P. Stewart, H.C. Wong, Talking to strangers: authentication in
ad-hoc wireless networks, in NDSS (2002)

8. D.P. Bertsekas, Dynamic Programming and Optimal Control, vol. 1 (Athena Scientific,
Belmont, MA, 1995)

9. A.L. Buczak, E. Guven, A survey of data mining and machine learning methods for cyber
security intrusion detection. IEEE Commun. Surv. Tutorials 18(2), 1153–1176 (2016)

10. L. Busoniu, R. Babuska, B. De Schutter, A comprehensive survey of multiagent reinforcement
learning. IEEE Trans. Syst. Man Cybern. C 38(2), 156–172 (2008)
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Chapter 9
Proactive User Authentication Using
WiFi Signals in Dynamic Networks

Hongbo Liu, Yan Wang, Jian Liu, and Yingying Chen

Abstract User authentication is the critical first step of network security to detect
identity-based attacks and prevent subsequent malicious attacks. However, the
increasingly dynamic mobile environments make it harder to always apply the
cryptographic-based methods for user authentication due to their infrastructural
and key management overhead. Exploiting non-cryptographic-based techniques
grounded on physical layer properties to perform user authentication appears
promising. To ensure the security of mobile devices in dynamic networks, we
explore to use fine-grained channel state information (CSI), which is available from
off-the-shelf WiFi devices, to perform proactive user authentication. We propose
a user-authentication framework that has the capability to proactively request CSI
and build the user profile resilient to the presence of the spoofer. Our machine
learning based user-authentication techniques can distinguish two users even when
they possess similar signal fingerprints and detect the existence of the spoofer in
dynamic network environments. Extensive experiments in both office and apartment
environments show that our framework can remove the effect of signal outliers and
achieve higher authentication accuracy compared to existing approaches that use
received signal strength (RSS).
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9.1 Introduction

In recent decades, wireless technologies evolved rapidly, and people can access
network services through the ubiquitous wireless networks almost at everywhere.
However, because the wireless medium is open to any user, it is challenging to
protect wireless networks from adversaries who can eavesdrop or intercept any wire-
less transmission [15]. For example, an adversary can passively monitor a wireless
network to obtain valid device identities and further launch identity-based attacks.
Such attacks could serve as a basis for launching a variety of malicious attacks
across multiple network layers [5]. The adversary can easily perform such identity-
based attacks in WiFi networks. For example, the adversary can spoof an Access
Point (AP) and denial all the services (i.e., rogue AP attack) [29]. Although existing
cryptographic-based authentication techniques (such as WiFi Protected Access and
802.11i) can detect the spoofed data frames, the 802.11 management frames are still
open to attacks [20]. Furthermore, cryptographic-based authentication is becoming
harder to deployed in dynamic mobile environments because of the requirement of
infrastructural and key management overhead [1, 4, 6].

Recently, researchers have developed non-cryptographic-based authentication
methods to complement and enhance the existing cryptography-based schemes [2,
5, 8]. For example, the RF channel based authentication schemes use the unique
characteristics of the Received Signal Strength (RSS) of wireless packets [5] or
the Channel Impulse Response (CIR) of a single frequency [21] to differentiate
users. These schemes are developed based on the intuition that the wireless channel
properties (i.e., RSS and CIR) present unique spatial patterns due to path loss
and multi-path effects. Therefore, an adversary will incur different RSS or CIR
patterns when he resides at a different location from the legitimate user, which
could be utilized to differentiate the legitimate user from adversaries. However, the
effectiveness of the user authentication methods is largely limited since the RSS
and CIR extracted from a single frequency only provide coarse-grained information
about the wireless channel. For instance, the RSS-based authentication can hardly
differentiate two users who have similar RSS signatures even though they may be at
the locations far away from each other [5].

Different from the existing work, we propose to leverage the fine-grained phys-
ical layer information carried by the orthogonal frequency-division multiplexing
(OFDM) signals to perform user authentication. In particular, we find that the
Channel State Information (CSI) derived from the channel response of multiple
OFDM subcarriers [9] has unique spatial patterns with a fine granularity, which
could facilitate accurate user authentication. Compared to the existing channel-
based (i.e., RSS and CIR) approaches, our CSI-based approach can accurately
discriminate the legitimate user from a spoofing attacker even though the signal
fingerprints are similar. In addition, the detailed channel information is available at
per packet level, which ensures much higher granularity than the existing channel-
based approaches in both spatial and temporal domains. In this work, we associate
each user with her wireless device, which is not accessible to other users. Thus,
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every user has a distinct CSI profile corresponding to her device and location. Thus,
our user authentication method could examine the CSI from the associated wireless
device and determine whether it is from a legitimate user or not.

Recently, Jiang et al. [13] devises an authentication system that utilizes a sliding-
window based technique to construct CSI user profiles. The proposed system
assumes that the CSI measurements collected for user profile construction are
benign (i.e., without the presence of an identity-based attacker). However, such
an assumption is not practical as the identity-based attacker could be present
at any time. If the CSI measurements from the attacker are used to build the
user profile, the system will misclass the user profile and falsely authenticate the
attacker. To tackle the practical security issues, we develop effective approaches
to construct the legitimate user profile considering the existence of a spoofer and
perform robust user authentication under various adversarial scenarios, including
the extreme case when only the attacker is active. Toward this end, we develop a
framework that consists of two major components: Attack-resilient Profile Builder
and Profile Matching Authenticator. The Attack-resilient Profile Builder is designed
to accurately construct user profiles for legitimate users even when the identity-
based attackers are present. The Profile Matching Authenticator is developed to
perform robust per-packet user authentication based on real-time CSI measurements
using machine-learning based technologies. Our framework is also among the first
to consider the effect of different modulation and coding scheme rates of CSI and
utilize the knowledge to achieve more accurate user authentication.

Our major contributions are summarized as follows: first, we show that CSI
is feasible to perform robust user authentication even when different users have
similar signal fingerprints and makes the fine-grained user authentication achievable
in practice. Second, we develop a CSI-based user authentication framework that can
effectively build user profiles under the presence of spoofing attacks and achieve
higher authentication accuracy when comparing with the existing channel-based
(e.g., RSS-based) methods. Last but not least, our CSI-based user authentication
framework is validated by extensive experiments in both office and apartment
environments using commodity WiFi devices. The experimental results demonstrate
that our framework is highly robust and effective under various identity-based
attacking scenarios without adding overhead to WiFi devices.

The rest of the chapter is organized as follows. In Sect. 9.2, we put our work
in the context of the related studies. Section 9.3 describes the attack model and
our framework overview, and Sect. 9.4 presents the feasibility of using CSI to
perform user authentication. The proposed Attack-resilient Profile Builder based
on clustering analysis is detailed in Sect. 9.5. Section 9.6 further discuss the Profile
Matching Authenticator grounded on machine learning techniques. We present the
details of our experimental setup and methodology in Sect. 9.7, which also include
the performance evaluation of our CSI-based authentication framework in both
office and apartment environments and different attacking scenarios. Finally, we
conclude our work in Sect. 9.8.
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9.2 Related Work

The traditional approach to provide user authentication is to use cryptographic-
based authentication. For example, Wu et al. [27] have introduced a secure and
efficient key management (SEKM) framework. SEKM builds a Public Key Infras-
tructure (PKI) by applying a secret sharing scheme and an underlying multicast
server group. Wool [26] implements a key management mechanism with periodic
key refresh and host revocation to prevent the compromise of authentication keys.
The application of cryptographic authentication requires reliable key distribution,
management, and maintenance mechanisms, which reduce its usability in a dynamic
mobile wireless environment (i.e., lacks of a fixed key management infrastructure)
or resource-constrained wireless networks (i.e., limited resources on wireless
devices).

Recently non-cryptographic based authentication has drawn considerable atten-
tion [30]. In general, non-cryptographic solutions can be categorized into four
groups: software based, hardware based, biometric and physical-trait based, and
channel-signature based. Software based authentication basically relies on the
unique characteristics of the software programs or protocols running on the devices
[8, 24], whereas hardware based authentication leverages the unique hardware traits
such as channel-invariant radiometric [2, 22] and clock skews [12, 17] to identify
users. Biometric and physical-trait based authentication relies on the behavioral
modalities including on-screen touch and finger movement patterns [7, 19]. And
channel-signature based authentication schemes are proposed to use either Received
Signal Strength (RSS) [5, 14, 28, 29, 31] or Channel Impulse Response (CIR) [21,
25] to identify users. The major advantage of using channel signatures is that it
exploits the naturally available random and location-distinct characteristics of the
wireless channel, which is very hard to falsify, for user authentication.

For the channel based user authentication using RSS, a series of approaches [5,
28, 29] have been proposed to detect identity-based attacks, determine the number
of attackers when multiple adversaries masquerading as the same node identity, and
localize the adversaries. Reciprocal Channel Variation-based Identification (RCVI)
[31] exploits the reciprocity of RSS variance to decide if all packets come from a
single or more than one sender. Ensemble [14] leverages a user’s growing collection
of trusted devices that analyze variations in RSS to determine whether the pairing
devices are in physical proximity to each other. It is important to note that although
RSS is available on the current wireless devices, RSS is known to be sensitive to
the multipath effects and affected by the transmission power level. As a result, a
legitimate user may be mistakenly regarded as the malicious user due to the inherent
RSS variance. Different from RSS which is readily available in the existing wireless
infrastructure, CIR is usually extracted from the specialized devices such as Field-
Programmable Gate Array (FPGA) [25] and Universal Software Radio Peripheral
(USRP) [21], which limit its practical usage in real-world scenarios.

Different from the previous work, we propose to use Channel State Informa-
tion (CSI), a readily available fine-grained channel information from the current
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commercial hardware (i.e., 802.11 a/g/n devices), which represents both amplitude
and phrase for each subcarrier on the 802.11 a/g/n OFDM system. Exploiting CSI
has the potential to achieve much higher granularity (in both spatial and temporal)
for user authentication than applying existing channel based (i.e., RSS and CIR)
authentication methods. The most related work to us is CSITE [13], which utilizes
CSI magnitude measurements averaged over time to generate profiles for legitimate
users. They assume the CSI collected over time is benign and there is no identity-
based spoofing attack present when building the profile. However, in practice the
spoofing attack could present at any time. Thus, the profiles built under such
attacks cannot represent legitimate users and may lead to authenticate malicious
users falsely. In our work, we develop an Attack-resilient Profile Builder, which
has the ability to detect the presence of spoofing attacks when building profiles
for legitimate users. Furthermore, we study the effect of different modulation and
coding scheme rates to CSI to achieve a higher accuracy of user authentication under
both single antenna and multiple antenna cases.

9.3 Attack Model and System Overview

In this section we first introduce the attack model we consider in this work. We then
present the flow of our proposed CSI-based user-authentication framework.

9.3.1 Attack Model

User authentication is a technique of confirming the identity of a user. Based on
the user authentication result, a system can determine whether a user is allowed
to access certain restricted services, such as restricted access of certain web sites
and enterprise data retrieval [23]. User authentication is particularly challenging
in wireless networks as it is very hard, if not impossible, to physically confirm
the truth of a user’s identity due to the open nature of the wireless medium.
In our user-authentication framework, we focus on the identity-based attack, in
which an adversary can collect a legitimate user’s identity and then masquerades
as the legitimate user to pass the user authentication process [5]. The identity-based
attack is very harmful as once passing the user authentication, the adversary can
gain certain access privileges and further launch a variety of malicious attacks.
For example, an adversary could easily obtain the Media Access Control (MAC)
address of a legitimate WiFi device by passively monitoring the wireless traffic and
then impersonate as the legitimate device by changing its MAC address. Another
example is that by masquerading as an authorized wireless access point (AP) or
an authorized client, an attacker could launch a variety of attacks including session
hijacking, denial-of-service (DoS) attacks, or falsely advertise services to wireless
clients [29].
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In this work, we consider the identity-based attack can be present at any time.
That is, different from the previous work, which only considers the presence of such
an attack during the authentication phase, we take the view point that the identity-
based attacks could be present at any time in real-world scenarios even when
building profiles for legitimate users. Once such an attack is present in the network,
the adversary spoofs the legitimate user’s device identity (e.g., WiFi device’s MAC
address) to send out packets. Once the attacker obtains the legitimate user’s device
identity, it can access the network with or without the presence of the legitimate
user. Furthermore, the spoofer can be either static or mobile, whereas the legitimate
device is mostly placed at a fixed position but could be moved from one location
to another (e.g., the user walks from one office room to a meeting room). The
movement of the device can be detected using the existing techniques [3, 16, 18]
(e.g., examining the variance of the wireless signal). In addition, we assume the
attacker does not have the capability to capture and replay the CSI, thus the attacker
cannot alter or jam the signals.

9.3.2 System Overview

Our basic idea is to profile the user by exploiting the readily available fine-grained
CSI extracted from orthogonal frequency-division multiplexing (OFDM) based
wireless networks, such as 802.11 a/g/n networks. CSI reveals the wireless channel
response depicting the amplitudes and phases of every OFDM subcarrier. In general,
CSI measurements from each user present a unique pattern corresponding to the
wireless communication channel. Such CSI patterns can be extracted and utilized
to uniquely identify each user. If the observed wireless packet (from a wireless
device identity) contains a different CSI pattern from the legitimate profile, the
network will raise an alert indicating possible identity-based attack and fails the
user authentication on the specific device identity.

Our proposed user authentication framework, as depicted in Fig. 9.1, consists
of two main components: Attack-resilient Profile Builder and Profile Matching
Authenticator. The network implementing this framework will keep monitoring the
wireless traffic and examining CSI measurements from each packet based on the
device’s identity.

Attack-Resilient Profile Builder The novelty of our profile builder is that it has
the capability to build the actual user profile under the presence of the spoofer when
building the user profile. When building the user profile for a specific user identity
(ID), the presence of the spoofer will cause the CSI measurements collected from
this ID containing the mixture signal information from both the legitimate user and
spoofer. As a result, the profile built under such a scenario is thus undermined by
the spoofer, leading to mistakenly authenticate the spoofer or deny the legitimate
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Fig. 9.1 Overview of the CSI-based user authentication framework

user’s access. Our profile builder employing clustering analysis can separate the
CSI measurements (from the legitimate user) from the ones (from the spoofer) and
determine the presence of the spoofer. It can thus ensure the legitimacy of the user
profile construction.

Furthermore, when the legitimate user moves from current location to another,
e.g., from office to a meeting room, our framework can adaptively rebuild the user’s
profile. This rebuilding procedure can be user triggered or triggered after detecting
the user movement based on existing techniques [3, 16, 18].

Profile Matching Authenticator This component examines the real-time CSI
measurements per packet from a device ID and performs user authentication by
performing user profile matching. It is grounded on the machine-learning based
techniques and raises an alert if the profile matching fails. Our authenticator aims
to achieve fine-grained user authentication as it can work at per packet level—
authenticating each packet of the device ID. It is capable to authenticate different
users even when they possess similar signal fingerprints due to the complex
environment setup in real-life. The authenticator works well under both single
antenna as well as multiple-antennas cases (using data fusion).
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9.4 Feasibility Study of CSI-Based User Authentication

In this section, we first provide the background of CSI measured from OFDM
subcarriers. We then discuss the feasibility of using CSI for user authentication.
We next present our data pre-processing techniques applied to CSI measurements
for more reliable user authentication.

9.4.1 Preliminary

Our authentication framework exploits the CSI measured from OFDM subcarriers,
a reliable and fine-grained description of channel characteristics, for user authen-
tication. OFDM technique has been extensively used in wireless communication
systems to improve the communication performance by utilizing the frequency
diversity of wireless channels. For example, OFDM is used in popular wireless
networks including IEEE 802.11 a/g/n, WiMAX, 4G and Digital Subscriber Line
(DSL). OFDM is a method of encoding data streams on multiple carrier frequencies.
In particular, Data in OFDM is split into multiple streams, which are coded and
modulated respectively into different subcarriers. The frequency of each subcarrier
is designed to be orthogonal to each other, so that the interference during trans-
mission is minimized. For example, for the OFDM employed by the 802.11 a/g/n
physical layer, a relatively wideband channel (or carrier) with 20 or 40 MHz is
partitioned into 54 or 108 subcarriers for data transmission, so that each subcarrier
can be used as a narrowband channel. This inspires us to exploit the channel state
information (CSI) extracted from OFDM subcarriers for user authentication, which
can provide a finer granularity of the channel information and has the potential to
achieve higher accuracy for user authentication in practice. Figure 9.2 depicts the
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amplitude of channel state information across 30 subcarrier groups at three different
positions. For each position, the CSI of 50 packets are measured from an Intel WiFi
5300 card in a laptop [9].

9.4.2 Feasibility Study

To be able to use CSI for user authentication, the measured CSI from different
devices should satisfy the uniqueness requirement. That is, the CSI measured at
different devices resided at different locations should be distinct, while the CSI
collected from different packets emitted by the same device should be similar, if not
identical. We observe in Fig. 9.2 that the amplitude of CSI at different subcarriers
is different due to frequency diversity. Furthermore, the CSI shape from these three
devices at different locations are distinct. This is because the CSI is the reflection
of the complicated wireless channel and is affected by the wireless environment
due to reflection, refraction, shadowing, etc. The CSI decorrelates with location
rapidly. If two users are located at different locations, the profile of CSI should differ
significantly. Additionally, we observe that the CSI of multiple packets from the
same device at a fixed location exhibit the same trend, which indicates that an unique
profile could be built for each user and serves as the basis for user authentication.

Note that compared to the RSS, which only provides overall received power for
each packet, CSI provides fine-grained channel information, i.e., channel responses
on multiple subcarriers. Therefore, instead of deploying multiple landmarks or
monitors to collect multi-dimensional RSS reading for user authentication purpose,
a single monitor can provide multi-dimensional channel state information sufficient
for user authentication. Furthermore, since the widely adopted IEEE 802.11n
standard [11] already defines a mechanism to exchange detailed CSI between a pair
of wireless devices, employing CSI as an unique means for user authentication will
not involve extra communication cost for the prevalent WiFi networks.

Data Preprocessing In our study, we observe that the mean amplitude value of
CSI measurement may shift over time. We call such a mean value shift as temporal
bias, and it will result in inaccurate CSI profile construction for user authentication.
Therefore, our framework develops a data preprocessing strategy to cope with CSI
samples to mitigate the effects caused by such temporal bias.

In particular, we observe a shift on the amplitude of a specific subcarrier due
to the interference presented at either transmitter or receiver. Figure 9.3a plots
the curve of the CSI sample in a packet and many curves are collected over
time. It shows that the amplitude of each subcarrier in CSI samples varies over
time. Our data preprocessing strategy adjusts the mean value of the CSI sample
(from a specific packet) to zero. This helps to reduce the overall variance across
the subcarriers on CSI measurements before performing user authentication. To
illustrate, we denote the raw CSI sample per packet from a particular user u as a
k-dimensional vector Cu, and the preprocessed CSI sample can be obtained as:
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Fig. 9.3 CSI samples before
and after data processing
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variance

Cu = Cu − 11×K

1

K

K∑
k=1

Cu(k), (9.1)

where K is the number of subcarriers within a single CSI sample, and 11×K

is a K-length all-one vector. After applying the data preprocessing strategy, the
updated CSI samples will have smaller variance and reduced amplitude bias on each
subcarrier as shown in Fig. 9.3b. In addition, the wireless devices in the 802.11n
network are usually equipped with multiple-antennas. Thus, the CSI samples
collected from each channel between the transmitting antenna i and receiving
antenna j of two communicating devices will go through the pre-process as shown
in Eq. (9.1), where Cu will be replaced by C

i,j
u .
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9.5 Attack-Resilient User Profile Builder

In this section, we describe the attack-resilient profile builder which employs clus-
tering analysis on CSI measurements to determine whether the network environment
is benign or the spoofer is present when constructing the user profile.

9.5.1 Basic Idea

Since the spoofing attack could be present at any time, we need to determine whether
a spoofer is present when constructing a user profile. Our attack-resilient profile
builder aims to ensure the legitimacy of the user profiles even under a malicious
wireless environment. The relational behind our attack-resilient profile builder is
that the CSI measurements of each device presents unique spatial characteristics: the
CSI has strong spatial correlation with the device’s location. Although the wireless
channel may fluctuate over time, the CSI of wireless packets from one device at
a fixed location should be clustered together in the multi-dimensional signal space
constructed by CSI measurements. For example, the 30 subcarriers obtained in our
experiments can form a 30-dimensional CSI space, and the amplitudes of the CSI
from the 50 packets in Position 1 are clustered together (i.e., has a constant shape) in
CSI space as shown in Fig. 9.2. Furthermore, the CSI measurements of the wireless
packets collected from another device resided at a different location (Position 2)
should form a different cluster in the CSI space. Thus, when the environment is
benign, the CSI measurements from a particular device identity should be clustered
together and form one cluster in the CSI space, while under the spoofing attack, the
spoofer utilizes the same device identity as the legitimate user to transmit packets,
and the CSI readings of the device identity are the mixture readings from both
legitimate user and the spoofer, resulting in more than one CSI cluster.

To determine whether the network environment is benign, Our framework applies
clustering analysis to partition the CSI from one device identity into two clusters.
Under normal conditions without spoofing, the distance between the partitioned two
CSI clusters should be small since there is basically only one cluster from a single
device at a physical location. However, under a spoofing attack, there is more than
one devices at different physical locations claiming the same device identity. As
a result, more than one CSI clusters will be formed in the CSI space. Therefore,
the distance between two partitioned clusters will be large as the cluster centers
are derived from the different CSI clusters associated with different locations in
physical space. Therefore, by examining the distance between the two partitioned
CSI clusters, any presence of the spoofing attack can be determined when building
user profiles. The flow of the Attack-resilient Profile Builder is shown in Fig. 9.4.
Only when there is no spoofing attack present, the profile of the legitimate user will
be built.
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9.5.2 Algorithm Description

9.5.2.1 Modulation and Coding Scheme Study

WiFi devices usually use a fixed range of modulation and coding scheme (MCS)
for data transmission. We find in our experiments that the modulation and coding
scheme occasionally changes to a different one and then switches back due to the
variation of the wireless channel. And the occasionally changed modulation and
coding scheme creates outliers in the CSI measurements. Thus, our framework
first performs outlier filtering based on the modulation and coding scheme used
for packet transmission before conducting clustering analysis. In particular, MCS
is a specification of the high-throughput (HT) physical layer (PHY) parameter in
802.11n standard [11]. It contains the information of the modulation order (e.g.,
BPSK, QPSK, 16-QAM, 64-QAM), the forward error correction (FEC) coding rate,
etc. Each 802.11n packet header (at 2.4GHz band) contains a 16-bit MCS, which
can be extracted together with the CSI sample of each packet.

Figure 9.5a shows the raw CSI measurements for a wireless device with two
clusters formed in our experiments. Under such cases, the MCS rate is changing
according to the channel condition, and we can observe CSI samples resulting
from different MCS rates. For these cases we find the MCS values are greater than
263, different from most of the other testing cases in both the lab and apartment
environments. We thus filter out CSI for the packets with MCS value greater than
263, which corresponds to single spatial stream with transmission rate 60 Mbps
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Fig. 9.5 CSI samples before
and after filtering based on
MCS rate
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[11]. After filtering out the outliers, the CSI coming from the rest of the packets
exhibit the similar shape (i.e., form one cluster in the CSI space) as shown in Fig.
9.5b.

9.5.2.2 Clustering Analysis

We utilize the K-means algorithm to partition the filtered CSI measurements from
the device identity u into two clusters. The K-means algorithm is one of the most
popular iterative descent clustering methods [10]. The squared Euclidean distance
is chosen as the dissimilarity measure. If there are S CSI samples from the device u,
the K-means clustering algorithm partitions S CSI samples into K disjoint subsets
Lk containing Sk sample points so as to minimize the sum-of-squares criterion:

Jmin =
K∑

k=1

∑
Cu,s∈Lk

‖Cu,s − μk‖2, (9.2)
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where Cu,s is a CSI vector representing the CSI value for the sth packet and μk is the
geometric centroid of the sample points for Lk in CSI space. In our cluster analysis,
we choose K= 2. We further choose the distance between two centroids as the test
statistic T for identity-based attack detection,

Dc = ||μk − μk′ || (9.3)

with k, k
′∈{1, 2}.

Under normal conditions in a benign network environment, the distance between
the centroids from the K-means cluster analysis in CSI space should be close to each
other, because there is only one cluster from a single device u at a physical location.
However, when a spoofer is present, there is more than one devices residing at
different physical locations, claiming the same device identity. The distance between
two partitioned CSI clusters thus will be large. Through the analysis above, we show
that the clustering method has the capability of detecting the presence of the spoofer
by applying the threshold τ to the Dc as following:

{
Dc > τ attacker is present;
Dc ≤ τ normal condition.

(9.4)

9.5.2.3 User Profile Building

If the CSI samples are collected in a benign environment, the framework deposits the
pre-processed CSI samples, Cu, as the profile for user u for future profile matching
based authentication. We note that the user profile only requires a small number of
packets, i.e. less than 100 packets.

If the user moves from one location to another (e.g., walks from his office to a
meeting room), the user authentication framework will adaptively rebuild the user’s
profile. Following are possible two ways to update the user’s profile: (1) the user
can actively trigger the profile updating after he moves to a new place; (2) the profile
updating can be triggered by detecting the user movement using existing techniques
operating on wireless signals [3, 16, 18].

9.6 User Authentication Leveraging Profile Matching

In this section, we present our profile matching authenticator which uses machine-
learning based methods for packet-level user authentication.



9 Proactive User Authentication Using WiFi Signals in Dynamic Networks 237
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9.6.1 Basic Idea

The basic idea of our profile matching authenticator is using machine learning to
determine whether the CSI measurement for the incoming packet with the user
identity u matches the profile constructed at the profile builder. If the incoming
CSI sample matches the user profile, the corresponding packet can be authenticated
successfully as from the user u. Otherwise, the user authentication fails. Figure 9.6
illustrates the work flow of our profile matching authenticator. In particular, the
profile matching scheme works at the packet level, which minimizes the latency of
the authentication process. In addition, the packet-level authentication can also be
used to monitor and count the number of packets injected by the attacker.

9.6.2 Approach Description

We next present the profile matching method using the CSI samples from a single
antenna. We then present the profile matching using CSI samples from multiple
antennas to improve the performance of user authentication.
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9.6.2.1 Profile Matching Using a Single Antenna Pair

We perform the profile matching via the support vector machine (SVM) technique,
which is a computationally efficient way of learning good separating hyperplanes in
a high dimensional feature space. The CSI samples are used as features in the SVM
to perform profile matching for each user. We first study the case using a single
antenna pair for profile matching.

In this study, we consider the profile matching as a two-class pattern classification
problem. The CSI sample Cu with user identity u denotes the data to be classified,
where u= 1, · · · , U (with U as total number of legitimate users), and let scalar y
denote its class (y∈{−1, 1}). We use {(Cu,s, yu,s), s= 1, . . . , S} to denote a set of
CSI samples associated with the user identity u. The challenge is how to construct a
decision function f (Cu) that correctly classifies the input CSI data, which could be
different from all the constructed profiles.

If the constructed CSI user profiles are linearly separable, we can represent them
with a linear function in the following form:

f (Cu) = wT Cu + b (9.5)

such that f (Cu,s)≥ 0 for yu,s= 1 and f (Cu,s)≤ 0 for yu,s=−1, where w and b
represent the hyperplane f (Cu)= 0 separating two classes.

We seek to find such a hyperplane that maximizes the separating margins
between the two classes. In particular, this hyperplane can be found by minimizing
the following cost function:

min J (w, ξ) = 1

2
‖w‖2 + �

S∑
s=1

ξu,s (9.6)

subject to the following constraints:

yu,s(w
T Φ(Cu,s)+ b) ≥ 1− ξu,s, ξu,s ≥ 0, s = 1, · · · , S, (9.7)

where Φ(·) is a non linear operator mapping the CSI profile Cu to a higher
dimensional space, Γ indicates the significance of the constraint violations with
respect to the distance between the points and the hyperplane and ξ is a slack
variable vector.

The mapping between the input CSI samples Cu,s′ and user profile
Cu,s is constructed in the form of the kernel function Kernel(·, ·), such as
Kernel(Cu,s, Cu,s′) = ΦT (Cu,s)Φ(Cu,s′). Particularly, we choose a polynomial
kernel as the mapping function and the problem in Eq. (9.6) can be expressed as:

max
αs

{
S∑

s=1

αs − 1

2

S∑
s=1

l∑
s′=1

αu(yu,syu,s′Kernel(Cu,s, Cu,s′))αs′ } (9.8)
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subject to the constraints:

αs ≥ 0,

S∑
s=1

αsyu,s = 0, (9.9)

where αs is the Lagrange multipliers associated with Eq. (9.7). Thus, the profile
matching classifier for input CSI sample Cu,s′ is derived as:

f (Cu,s′) = sign(

S∑
s=1

(αsyu,sKernel(Cu,s′ , Cu,s)+ b)). (9.10)

And the authentication result is determined as:

f (Cu,s′) =
{

1 success

−1 f ailure.
(9.11)

9.6.2.2 Fusion via Multiple Antennas Pairs

When multiple antennas are available, we can further improve the performance of
the user authentication accuracy. For example, we can employ a simple majority
voting process to combine the independent profile matching results from different
antenna pairs. Assume that the input CSI samples with user identity u between
the transmitting antenna i and receiving antenna j are represented as C

i,j

u,s′ , all the
independent results from different antenna pairs consist of the voting set Ω =
{f (C

i,j

u,s′), 1 ≤ i ≤ I, 1 ≤ j ≤ J }, where I and J are the numbers of transmitting
and receiving antennas respectively. Finally, the authentication result is given by:

f ′(Cu,s′) = sign(

I∑
i=1

J∑
j=1

f (C
i,j

u,s′)). (9.12)

If f ′(Cu,s′) = 1, the authentication successes; otherwise it fails.

9.7 Performance Evaluation

In this section, we present the performance evaluation of the proposed CSI-based
user authentication framework in two types of real environments, laboratory and
apartment. We show that the CSI-based authentication framework is resilient to
attacks, and outperforms existing RSS-based authentication methods.
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9.7.1 Experimental Setup

We conduct experiments in a 802.11n WiFi network with two laptops (i.e., Lenovo
T500 and T61) serving as monitors that collect the wireless packets. These two
laptops run Ubuntu 10.04 LTS with the 2.6.36 kernel and are equipped with Intel
WiFi Link 5300 wireless card. Both Intel wireless cards’ drivers we installed
are able to collect CSI information from frames transmitted in HT rate [11]. A
commercial wireless access point, Linksys E2500, is sending out packets that can
be captured by these two monitors. We use the ping command on two laptops to
simulate the authentication packets continuously transmitted over the network. The
packet rate is set to 10 packets/second. For each packet, we extract CSI for 30
subcarrier groups, which are evenly distributed in the 56 subcarriers of a 20 MHz
channel [9]. We also record the RSS value of each packet for comparison.

We conduct experiments in two indoor environments, i.e., a laboratory and an
apartment. The laboratory represents the typical office environment, which has
office cubicle and many furniture that create complex multipath effects in a large
room. The apartment, on the other hand, represents the typical home environment
with small rooms and simple furniture. The size of these two environments are
11m × 12m and 11m × 6m, respectively. The experimental setups in these two
environments are shown in Fig. 9.7. The numbered circles in the figures are the

Monitor Testing location Furniture1

4 5

6

7

81 9

10

11

12

2

3

3m
Two far-away positions with
similar RSS fingerprints,
e.g., 6 & 9 and 8 & 12

(a)

Monitor

Furniture

Testing location1

3

4

5

6

7

8

9

Living room2m
1

2

Kitchen Closet Bathroom

(b)

bedroom bedroom

Fig. 9.7 Experimental setups in (a) laboratory and (b) apartment
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positions used to collect CSI data for evaluating our user authentication framework,
and the two red stars represent two network monitors.

9.7.2 Experimental Methodology

In the experiments, we collect 400 packets at each location, and both CSI and
RSS values of each packet are recorded. When using RSS measurements for user
authentication, we employ the RSS values collected from two network monitors
as the two-dimensional feature vector for clustering and profile matching, while
our proposed CSI-based authentication framework only uses the CSI measurements
from one network monitor to perform user authentication.

To evaluate the performance of our proposed framework, we examine two main
attacking scenarios: (1) In the first attacking scenario, both the legitimate user and
the attacker are present at the same time in the network. (2) In the second attacking
scenario, after the attacker obtains the legitimate user’s identity, only the attacker
is active in the network. In order to obtain the statistical results, we choose all
possible point pairs in both experimental environments and treat one point as the
position of the legitimate user and the other point as the position of the attacker.
We run the proposed framework through all possible combinations of point pairs.
There are a total of 66 pairs for laboratory environment and 36 pairs for apartment
environment. The experimental results are presented in the following sections for
the attack resilient profile builder and profile matching authenticator.

9.7.3 Metrics

In order to evaluate the performance of our proposed user authentication framework,
we define the following two metrics, attack detection ratio and authentication
accuracy.

Attack Detection Ratio (During Profile Building) We define the attack detection
ratio R̄ as the number of correctly detecting the presence of spoofing attacks over the
total number of experiments with spoofing attacks. The spoofing attacks presented
when building the user profile belong to the attacking scenario 1. Given a total
number of P attacking cases the attack detection ratio can be written as:

R̄ = 1

P

P∑
p=1

Hp

s.t. Hp =
{

0 Dc ≤ τ

1 Dc > τ,

(9.13)
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where Dc is the distance between two centroids of clusters formed in the profile
builder, and τ is the threshold used for spoofing attack detection.

Authentication Accuracy (During User Authentication) We define the authen-
tication accuracy Ap as the number of correctly classified packets over the total
number of packets collected in the pth attacking run. The attacks could belong to
either the attacking scenario 1 or 2. We use Nu,p to denote the number of packets
that are sent by a legitimate user u and are correctly determined as from the user u
by our system. Similarly, we use N ′

u,p to denote the number of packets sent by the
adversary using the identity of the legitimate user u and are correctly determined
as not from the user u. We then define the authentication accuracy for the pth
experimental run as:

Ap =
Nu,p +N ′

u,p

Na,p

, (9.14)

where Na,p is the total number of packets received with user identity u, and Nu,p +
N ′

u,p ≤ Na,p.

We further define the average authentication accuracy and worst authentication
accuracy as shown below to evaluate the general and worst-case performance.

• Average authentication accuracy: Given P testing cases, the average authenti-
cation accuracy is given as:

Aavg = 1

P

P∑
p=1

Ap. (9.15)

• Worst authentication accuracy: The worst authentication accuracy chooses Ap

from the attacking case with the smallest number of Nu,p and N ′
u,p:

Aworst = min
p

Ap. (9.16)

9.7.4 Evaluation Results

9.7.4.1 Attack Detection Study During Profile Building

We first compare the effectiveness of our Attack-resilient Profile Builder when
determining the presence of a spoofer (during profile building) using CSI to that
using RSS. We examine the attack detection ratio by varying the threshold τ . As
shown in Fig. 9.8, the results show that the averaged detection ratio for the proposed
CSI based approach achieves 0.92 with the optimal distance threshold 17 dB in Fig.
9.8a, while the maximum detection ratio for the RSS-based method is only 0.4 with
distance threshold 2 dB as shown in Fig. 9.8b. This observation indicates that our
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Fig. 9.8 Attack-resilient profile builder: attack detect ratio versus cluster distance threshold when
a spoofer is present. (a) CSI-based. (b) RSS-based

profile builder can effectively determine whether the network environment is benign
or a spoofer is present when building the user profiles.

9.7.4.2 Authentication Accuracy Study

Discriminating Two Far-Away Users with Similar RSS Fingerprints Due to
the irregularity of wireless signal propagation, two geographical distant users may
share similar RSS signatures. For example, in Fig. 9.7a, two positions 6 and 9
are about 6-7 m away from each other, but their RSS fingerprints obtained from
our same network monitor look similar; positions 8 and 12 present the same
signal phenomenon. This makes RSS-based user authentication schemes suffer
poor performance when two legitimate users (but physically separated) present the
similar signal fingerprints. In particular, we observe that the authentication accuracy
for RSS-based method degrades to only around 0.64 as shown in Fig. 9.9. However,
our proposed CSI-based method could still achieve the authentication accuracy close
to 1. The results confirm that CSI measurements provide fine-grained information
on differentiating users, even when their RSS measurements are similar.

Comparison with RSS-Based Method We next study the overall performance
of our CSI based user authentication method. Figure 9.10 shows the comparison
of the authentication accuracy when using CSI-based and RSS-based methods in
two different environments (i.e., a laboratory and an apartment). We note that the
RSS-based method relies on RSS values collected from two network monitors to
perform user authentication, while our proposed CSI-based authentication frame-
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Fig. 9.9 Performance of the
profile matching
authenticator: authentication
accuracy when two users
possess similar RSS
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Fig. 9.10 User authentication accuracy comparison between CSI-based and RSS-based methods.
(a) Aavg. (b) Aworst

work only uses the CSI measurement from one antenna at one network monitor. We
observe that our proposed CSI-based method outperforms the RSS-based method
in both experimental environments. Specifically, Fig. 9.10a shows that the average
authentication accuracy for CSI-based method is very high (above 0.984), and the
RSS-based method has a lower authentication accuracy (i.e., 0.92). Furthermore,
we show that the worst authentication accuracy for RSS-based method reduces to
around 0.27 and 0.36 in the apartment and laboratory environments respectively,
whereas our CSI-based method maintains the high authentication accuracy over
0.95 as presented in Fig. 9.10b. These observations strongly indicate the robustness
of our CSI-based user authentication framework even when only a single antenna is
used on WiFi devices.
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Fig. 9.11 CSI-based user authentication accuracy when involving single and multiple antennas.
(a) Aavg. (b) Aworst

Impact from Single/Multiple Antennas We further examine the performance
when employing measurements from multiple antennas. We expect that using
measurements from multiple antennas can provide better reliability for user authen-
tication. Figure 9.11 shows that both the average and worst authentication accuracy
exhibit an increasing trend when more antennas are used. In particular, the
authentication accuracy of using single antenna in the apartment and laboratory
environments is over 0.95. When the number of antenna pairs (i.e., a set of trans-
mitting and receiving antennas) increases from 1 to 4, the average authentication
accuracy in laboratory and apartment further improves, and the worst authentication
accuracy improves even more. We also observe that when using 3 antenna pairs in
the laboratory environment the authentication accuracy has a slightly drop when
comparing to that of using 2 antenna pairs. This is because although current
commodity wireless devices are usually equipped with multiple antennas, the main
antennas usually have better quality of signal reception. Therefore, including the
CSI samples from the main antennas (i.e., using 1 or 2 antenna pairs in our
experiments) results in better stability of user authentication.

Impact from User Profile Size Finally, we study how the number of packets (i.e.,
user profile size) employed to build the user profile affects the performance of our
framework. We vary the size of user profile from 1 sample to 200 samples, and
the corresponding average authentication accuracy is shown in Fig. 9.12. When
the size of user profile increases, the authentication accuracy increases and then
maintains at a high level (i.e., over 0.95). We note that even if the profile of each
user contains only 1 CSI sample, the authentication accuracy is still over 0.91. These
results demonstrate that our profile builder is highly effective in our CSI-based user
authentication framework.
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Fig. 9.12 Impact of user
profile size on CSI-based user
authentication accuracy
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9.8 Conclusion

In this work, we explore the feasibility of utilizing channel state information (CSI)
to perform practical user authentication in wireless networks. To achieve accurate
user authentication, we propose a user authentication framework leveraging the fine-
grained channel information revealed in CSI. The proposed framework consists of
two major components, Attack-resilient User Profile Builder and Profile Matching
Authenticator. Specifically, the Attack-resilient Profile Builder builds the profile
for the legitimate user based on clustering analysis, and in the meanwhile it can
intelligently determine whether the network environment is benign without the
presence of the identity-based attack. The Profile Matching Authenticator performs
packet level user authentication grounded on Support Vector Machine (SVM), and
it is also capable to distinguish two users even when they possess the similar signal
fingerprints. The extensive experimental results in both laboratory and apartment
environments demonstrate that the proposed CSI-based approach is highly effective
in contrast to the methods directly applying received signal strength.
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Chapter 10
Multi-Carrier Jamming Mitigation:
A Proactive Game Theoretic Approach

Koorosh Firouzbakht, Guevara Noubir, and Masoud Salehi

Abstract Wireless communications systems are highly vulnerable to jamming.
There is a large body of research demonstrating the potential of smart-jamming that
targets specific mechanisms in a wireless stack. Many proactive mitigation tech-
niques sacrifice performance for guaranteed robustness. In this work, we develop
a proactive mitigation approach for multi-carrier wireless links. The approach is
formulated within the framework of game theory. We show that the interaction
between a multi-carrier multi-rate system (in particular OFDM) and a power-limited
jammer can be formulated as a constrained zero-sum or a bimatrix game. We show
that the Nash equilibrium strategies can be derived analytically and numerically and
we apply them to the special case of IEEE 802.11 OFDM links.

10.1 Introduction

The many desirable characteristics of the Orthogonal Frequency Division Multiplex-
ing systems (OFDM) such as high spectral efficiency, high data rates, robustness
in multipath fading channels and ease of implementation have made OFDM the
primary physical layer solution for most modern wireless communication systems.
Wireless Local Area Networks (WLAN) based on different flavors of the IEEE
802.11 or Wireless Metropolitan Area Networks (WMAN) based on IEEE 802.16
both use OFDM as the main physical layer modulation scheme. Additionally, most
leading cellular technologies such as 4G LTE standard rely on OFDM at the physical
layer.

Nevertheless, it has been shown in the literature that current implementations
of OFDM are vulnerable to a variety of jamming attacks specially due to OFDM
sensitivity to channel estimation and synchronization between the transmitter and
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the receiver [1]. For instance, Clancy and Goergen [2] studies the possibility of
jamming the channel estimation procedure as an efficient type of attack. This work
suggests that targeting the accuracy of channel state information estimation requires
significantly less power than jamming the whole frequency band.

Other work studied jamming attacks that prevents the receiver from ever
acquiring proper synchronization [3]. To achieve this goal, the adversary targets
the symbol timing estimation algorithm, the first step in the synchronization
process. This work suggests that a jammer who exploits the weakness in the timing
estimation algorithm can cause massive errors to all synchronization estimates.

Other work focused on targeting the coding and interleaving scheme [4]. The
authors discovered that in the case of IEEE 802.11ag, the coded bits are interleaved
in a deterministic patterns over the OFDM sub-carriers. They demonstrated that it is
possible for an adversary to block Wi-Fi packets at a cost 2–3 orders of magnitude
lower than full-band jamming.

Game theory has also been used to study jamming games in OFDM systems,
for instance, reference [5] considers jamming in a wireless OFDM network with
transmission costs for both jammer and transmitter. This work uses the general-
sum framework to model the jamming problem. The numerical example in this
work suggests that when the jammer is close to the base station, the jammer should
pay less attention to the subchannels with poor quality and spend more energy on
the subchannels with good quality which in turn, forces the transmitter to use the
resources of the bad quality subchannels.

In this chapter, we study the performance of an adaptive OFDM wireless com-
munication system under power limited jamming using game theoretic approaches.
We show that with modest assumptions, this problem can be formulated into either
the constrained zero-sum, or the constrained bimatrix games. We presents some of
fundamental of these framework here, for a detailed study of these frameworks we
refer the reader to [6] and [7].

10.2 Communications and Adversary Models

In this section, we briefly introduce our system model and discuss the motivation
behind our work. The details of our model will be discussed in the sections that
follows. The transmitter and the receiver are communicating over a wireless noisy
channel that is subjected to an adaptive adversary. The communicating nodes are
using an adaptive Orthogonal Frequency Division Multiplexing (adaptive OFDM)
to communicate. The transmitter adaptively changes the subcarriers’ data rates such
that the overall throughout of the wireless link is maximized.

On the other hand, the jammer, also adaptively, jams the OFDM subchannels
with different jamming powers, in order to degrade the performance of the wireless
link. We assume that the jammer can use arbitrary jamming powers and can jam any
subchannel that he wishes but for practical reasons, he must maintain a maximum
jamming power and energy. Our goal is to model this jamming problem and study
the long term achievable performance of this adaptive OFDM system.
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Fig. 10.1 The transmitter model

10.2.1 Communications Model Under Jamming

Consider an OFDM wireless communication system with K subchannels where the
bandwidth of each subchannel is Δf. The transmitter has an adaptation block which
enables him to jointly change/adapt his channel coding rate and modulation scheme
for each subcarrier (see Fig. 10.1). For convenience, we assume the transmitter uses
time domain channel coding and subchannel bandwidth is sufficiently narrow such
that the frequency response characteristics of the subchannels are ideal.

Without loss of generality, assume the data rates for each subcarrier are chosen
from a set of N distinct data rates, denoted by R, i.e.,

R = {R0 = Rmax, . . . , Ri, . . . , RN−1 = Rmin} (bps) ||R|| = N (10.1)

where Rmin and Rmax denotes the minimum and maximum available data rates for
each subcarrier, respectively. Furthermore, assume the channel frequency response
is such that (in the absence of jamming) Rmax is feasible for all subchannels.1

Obviously, to maximize the throughput of the wireless link (or equivalently, to
maximize the average data rate of OFDM symbols), the maximum achievable
rate, Rmax, must be used for all subcarriers. However, because of jamming, the
subchannels’ capacities are not known in advanced and therefore it is not known
which rates are feasible prior to transmission.

To overcome this problem, the transmitter randomly assigns the data rates to the
subcarriers such that the overall throughput of the wireless link is maximized. Let
the column vector r(n)

K×1 denote the transmitter’s strategy for the nth OFDM symbol,

r(n)
K×1

T = [r1 . . . rk . . . rK ] where rk ∈ R (10.2)

that is, for the nth OFDM symbol, the kth element of r(n) is the data rate at which
the kth subcarrier is to be coded/modulated. For each OFDM symbol, the adaptation

1This assumption is not particularly restrictive since any infeasible data rate can be removed
from R.
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block selects a vector of K data rates where each rate is selected from the set of
available data rates given in (10.1) and passes this vector to the coding/modulation
block (see Fig. 10.1). The coding/modulation block transmits the nth OFDM symbol
according to r(n). From this point forward, all strategy vectors are assumed to be per
OFDM symbol (i.e., for the nth symbol), and for convenience, we drop the (n) from
the vectors.

Because of jamming, reliable recovery of the transmitted data is not guaranteed
for all subchannels therefore, the resulting bit rate per OFDM symbol can be written
as

bit rate/symbol =
K∑

k=1

r̂k where r̂k �
{

rk, if rk ≤ ck

0, if rk ≥ ck

(10.3)

and ck, k= 1, . . . , K denotes the actual channel capacity for the kth subchannel,
which in general, is a function of channel frequency response and the jammer power
spectral density. For sufficiently narrow Δf, we can assume that the jammer’s power
spectral density is flat for all subchannels and therefore, we may express ck as

ck = C(pk, jk,Nk) for k = 1, . . . , K (10.4)

where C(pk, jk, Nk) denotes the channel capacity function of the wireless link and
pk, jk and Nk (all in W/Hz) denote the power spectral densities of the transmitter,
jammer and channel noise for the kth subchannel (all measured at the receiver front
end), respectively.

Let x̂i denote the number of subcarriers coded/modulated with Ri ∈ R, i=
0, . . . , N− 1, obviously we have

N−1∑
i=0

x̂i = K and 0 ≤ x̂i ≤ K (10.5)

now let xi � 1
K

x̂i , i.e., xi denotes the fraction of subcarriers transmitted at rate Ri.
Form (10.5) it follows,

N−1∑
i=0

xi = 1 and 0 ≤ xi ≤ 1 (10.6)

As a result, for sufficiently large K, the following vector can be well approximated
by the following probability vector

xT
1×N = [x0 . . . xi . . . xN−1] for K ! N (10.7)

If we assume that the subchannels have nearly same channel characteristics or
when the effects of nonideal wireless channel (including different channel gains
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for subcarriers etc.) have been compensated by appropriate transmission power
allocation at the receiver then, the probability vector in (10.7) can be used as
an alternative way of representing the transmitter’s strategy. More specifically,
the following two vectors may be used interchangeably, to study the optimal
transmission strategy and average throughput of the adaptive OFDM system under
jamming,2

rT
1×K = [r1 . . . rk . . . rK ] rk ∈ R

or←→ xT
1×N

= [x0 . . . xi . . . xN−1] s.t.

⎧⎪⎪⎨
⎪⎪⎩

0 ≤ xi ≤ 1

N−1∑
i=0

xi = 1

(10.8)

That is, by assuming that the wireless channel impairments have been compensated
by the proper transmission power allocation, all subcarriers experience nearly the
same channel characteristics across the entire frequency band and as a result,
knowing xN×1 which gives the fractions of subcarriers coded/modulated at available
data rates is sufficient to study the performance of the wireless OFDM system under
jamming.

Even though the optimal transmission strategy can be computed in terms of
x, vector r, which contains the actual transmission rates, must be reconstructed
from x in order to code/modulate the input data. Below, we will discuss one
possible approach to construct the transmission rate vector from the probability
vector. First, the transmitter constructs vector x̂N×1 which contains the number
of subcarriers coded/modulated with the available data rates. This can be done by
simply multiplying the probability vector x by K and rounding off the results to the
closest integer such that the sum remains K, i.e.,

x̂T
1×N = round KxT

1×N (10.9)

where round() denotes the rounding to the nearest integer operation (such that the
sum remains K). From vector x̂ the data rate assignment matrix, denoted by PN×K

is constructed. To fill out the elements of P, we simply need to assign ones and zeros
to the elements of P such that,

K∑
k=1

Pik = x̂i for i = 0, . . . , N − 1

N∑
i=1

Pik = 1 for k = 1, . . . , K

(10.10)

2Also see the discussion in Sect. 10.3 for more details.
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Fig. 10.2 The transmitter’s adaptation block

Fig. 10.3 The jammer model

That is, the number of ones in each row of P is equal to the corresponding
component of x̂ and every column contains exactly one 1. For example, one possible
data rate assignment matrix is given in (10.11).

PN×K =

⎡
⎢⎢⎣

111 00 0000 . . .

000 11 0000 . . .

000 00 1111 . . .

. . .

⎤
⎥⎥⎦
← # of 1′s = x̂0

← # of 1′s = x̂1

← # of 1′s = x̂2
(10.11)

A 1 at row i and column k of P, indicates that the kth subcarrier is to be
coded/modulated with the ith data rate, Finally, the rate vector for the nth OFDM
symbol, r(n)

K×1, can be written as

r(n)
1×K

T = RT
1×N randperm(n) PN×K (10.12)

where R is the vector of available data rates (from (10.1)) and randperm(n)PN×K

denotes randomly permuting columns of PN×K for n times. As we discuss in Sect.
10.3, for each OFDM symbol, it is necessary to randomly permute columns of P.
Figure 10.2 shows the transmitter’s adaptation block.

10.2.2 Jammer Adaptivity Model

The jammer has an adaptation block which allows him to jam individual subchan-
nels with (possibly) different jamming powers (see Fig. 10.3). However, for practical
reasons, the jammer’s maximum jamming power per subchannel is limited to Jmax
(W/Hz). Furthermore, we assume the jammer’s energy budget per OFDM symbols
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is limited to Emax (Joules). Finally, we assume Emax is such that the jammer cannot
use Jmax for all subchannels otherwise, the energy constraint would be redundant.

We denote the jammer’s jamming power set by J . Without loss of generality
assume, J is given as follows,

J = {J0 = 0, . . . , Ji, . . . , JM−1 = Jmax} (W/Hz) where ||J || = M

(10.13)

Because of the jammer’s energy constrained, Emax, the jammer’s average power,
denoted by E[J], is constrained to

E[J ] ≤ Emax

Ts

(10.14)

where Ts is the OFDM symbol duration. Let jK×1 denote the jammer’s strategy per
OFDM symbol (equivalently, jamming vector),

jT1×K = [j1 . . . jk . . . jK ] (W/Hz) where jk ∈J (10.15)

that is, the kth subchannel is jammed with jk ∈J (W/Hz). From (10.14) we have,

Ts

K∑
k=1

jk�f = Ts�f

K∑
k=1

jk ≤ Emax (10.16)

⇒
K∑

k=1

jk ≤ Emax

Ts�f
(10.17)

Now let ŷi denote the number of subchannels jammed with Ji ∈J , obviously,
we have

K∑
k=1

jk =
M−1∑
i=0

ŷiJi (10.18)

It is also clear that,

M−1∑
i=0

ŷi = K and 0 ≤ ŷi ≤ K (10.19)

Define yi � 1
K

ŷi , from (10.19), we have
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M−1∑
i=0

yi = 1 and 0 ≤ yi ≤ 1, for i = 0, . . . ,M − 1 (10.20)

Therefore, for sufficiently large K, the following vector can be well approximated
by a probability vector

yT
1×M = [y0 . . . yi . . . yM−1] for K ! M (10.21)

If we write (10.17) in terms of yi, i= 1, . . . , M, we obtain the following constraint
on y.

K∑
k=1

jk = K

M∑
i=1

yiJi ≤ Emax

Ts�f
(10.22)

Therefore, (10.21) can be used as an alternative way of representing the jammer’s
strategy. More specifically, the following two vectors can be used interchangeably
to study the optimal jamming strategy and average performance degradation of the
wireless link3

jT1×K = [j1 . . . jk . . . jK ] , jk ∈J
or←→ yT

1×M = [y0 . . . yi . . . yM−1]

s.t.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 ≤ yi ≤ 1

M−1∑
i=0

yi = 1

M−1∑
i=0

yiJi = yT J ≤ Emax

KTs�f

(10.23)

Even though the optimal jamming strategy can be computed in terms of y, as it
is shown in Fig. 10.3, vector j(n), which contains the actual jamming powers for the
nth OFDM symbol, must be passed to the jamming block in order to allocate the
available jamming power accordingly. The jamming vector can be constructed from
the jamming probability vector in the exact same manner that the rate vector was
constructed. Here we only provide the results and refer the reader to Sect. 10.2.1 for
the details.

j(n)
1×K

T = JT
1×M randperm(n) PM×K (10.24)

3See the discussion in Sect. 10.3 for more details.
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Fig. 10.4 The jammer’s adaptation block

where PM×K denotes the jamming assignment matrix, and is constructed in the exact
same way as (10.11) was constructed, and randperm(n) denotes randomly permuting
columns of P for n times. Figure 10.4 shows the jammer’s adaptation block in detail.

The random permutation block is necessary in the jammer’s adaptation block
to randomize the jamming vector for every OFDM symbol before passing it to the
jamming block. Otherwise, the subchannels will be jammed with a fixed power and
the jamming problem simplifies to a simple water filling problem [8].

10.3 Proactively Optimizing the Average Throughput
of Adaptive OFDM in the Presence of Adaptive
Jammers

We consider the problem of maximizing the average throughput of the wireless link
under jamming by randomly adapting the data rates of the subcarriers.4 Obviously,
in absence of the jammer, the optimal strategy to maximize the average throughput
is to use the maximum data rate for all subcarriers. However, in the presence of the
jammer, the capacities of the subcarriers are not known in advance.

By assigning different data rates to the subcarriers, the transmitter can increase
the possibility that some of the subcarriers overcome the jamming (see Fig.
10.5). Furthermore, data rates assignments must be done randomly, that is, for
every OFDM symbol the data rate assignment pattern must be randomized. This
randomization is necessary since static data rate assignment pattern would make
higher data rates more vulnerable to jamming as these data rates are easier to jam.

Consider a typical wireless OFDM system such as IEEE 802.11, without loss of
generality, assume the set of available data rates in the OFDM system, R is sorted
in a decreasing order, i.e.,

R = {R0 = Rmax, . . . , Ri, . . . , RN−1 = Rmin} bps (10.25)

4This is equivalent to maximizing the average number of data bits per OFDM symbol or the average
data rate per OFDM symbol.
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Fig. 10.5 Adaptive OFDM under jamming

where Ri, i= 0, . . . , N are the available data rates of the OFDM system for the
subcarriers. It can be shown that to jam a rate adaptive wireless system with N rates,
it sufficient to use no more than N+ 1 jamming powers [6]. Therefore, WLOG, we
assume the jammer is using the following jamming set

J = {J0 = 0, . . . , Jj , . . . , JN = Jmax}W/Hz (10.26)

When the wireless channel is nearly flat or, when the jamming is the dominant
cause of the noise at the receiver front end (which is the typical case for most
jamming scenarios), it can be assumed that each rate in R can tolerate up to a certain
level of jamming power which is the same for all subchannels and it is completely
lost otherwise (since every subchannel experiences nearly the same channel or the
jamming is the dominant factor of the noise). As we will see shortly, this assumption
greatly simplifies the analytical results and allows us to express the results in closed
form expressions.

Assume Ri ∈ R, 0≤ i≤N− 1, can be recovered for any jamming power less
than Ji+1, 0≤ i≤N− 1. That is, R0 can only tolerate J0 and no rate can tolerate JN .
Furthermore, let the transmitter’s and the jammer’s strategies be,5

x̂T = [x̂0 . . . x̂i . . . x̂N−1
]

1×N
x̂i : # of subchannels to be sent with Ri

(10.27)

and

5Throughout the rest of this chapter, whenever clear from the context, we refer to the vectors r, x
and x̂ as the transmitter’s strategies interchangeably. In other cases, we explicitly mention which
of the vector are being referred to.
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ŷT = [ŷ0 . . . ŷi . . . ŷN

]
1×(N+1)

ŷi : # of subchannels jammed with Ji

(10.28)

where x̂ and ŷ are defined and constructed as discussed in Sects. 10.2.1 and
10.2.2, respectively. Since the transmitter and the jammer randomize their respective
strategies independently, the partial average throughput from rate R0, and denoted
by T0, becomes

T0 = x̂0

(
ŷ0

K

)
R0 (10.29)

that is because x̂0 is the number of subcarriers coded/modulated with R0 and ŷ0/K

is the probability that a subchannel is jammed with J0. Similarly, the partial average
throughput from data rate Ri is

Ti = x̂i

⎛
⎝ 1

K

i∑
j=0

ŷj

⎞
⎠Ri (10.30)

Therefore, the average throughput per OFDM symbols becomes,

T =
N−1∑
i=0

Ti =
N−1∑
i=0

x̂i

⎛
⎝ 1

K

i∑
j=0

ŷj

⎞
⎠Ri

= K

N−1∑
i=0

i∑
j=0

x̂i

K

ŷj

K
Ri

= K

N−1∑
i=0

i∑
j=0

xiyjRi

= xT KRN×(N+1)y

(10.31)

where, x and y are defined in (10.7) and (10.21), respectively and the matrix
RN×(N+1) is a lower triangular matrix where the nonzero elements of the rows of
R are equal to the data rates, i.e.,

RN×(N+1) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

R0 0 . . . 0
...

. . .
. . . 0

Ri Ri 0 . . .
...

...
. . .

. . .

RN−1 . . . RN−1 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

(10.32)
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therefore, the optimal transmission/jamming and the average throughput of the
wireless link at the equilibrium is the solution of the following maxmin problem,

T (x∗, y∗) = max
x

min
y

xT KRN×(N+1)y s.t.

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

xT 1 = 1

yT 1 = 1

yT J ≤ Emax

KTs�f

(10.33)

where, x∗ and y∗ denote the optimal transmission and jamming strategies, respec-
tively. The maxmin problem in (10.33) can be solve analytically and numerically
(Sect. 10.4).

10.4 Generalized Interactions: Constrained Bimatrix Games

In zero-sum game framework, it is usually assumed that the players have perfect
knowledge of the game and the actions that are available to the other players, and
they use this knowledge to compute their respective optimal strategies. In such a
case, the zero-sum framework fully captures the conflicting goals of the players.
Moreover, the equilibrium solution of the zero-sum game guarantees a minimum
payoff regardless of the other player’s strategy [9]. For a more comprehensive study
of constrained zero-sum games in wireless jamming see [6].

However, in some jamming scenarios, having perfect knowledge of the system
parameters (or available actions) may not be a feasible option or too costly for a
player. In addition, players may have objectives that are not exactly the opposite
of each other, for example, the transmitter may wish to minimize the average error
probability while the jammer wishes to minimize the average throughput of the
system (as opposed to maximizing the average error probability).

In such scenarios, a more appropriate framework to model the communication
system under jamming would be a bimatrix game instead of a zero-sum game.6 In
bimatrix games it is no longer required that the sum of the players’ payoffs to be zero
(or a constant value) [9]. As a result, players can have different objectives and the
respective payoffs can be defined based on the players’ goals and their knowledge
of the game (which in general may be imperfect). Such a formulation, encompasses
a variety of situations from full competition to full cooperation.

Additionally, in standard zero-sum and bimatrix games there are no additional
restrictions on players’ mixed-strategies, i.e., players may choose any probability
distribution over their respective action sets (pure-strategies). However, there exist

6It can be shown that zero-sum games are special cases of the more general bimatrix games.
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Fig. 10.6 Classification of
standard and constrained
games

scenarios where, due to practical reasons, not all mixed-strategies are permitted
and/or feasible.

Such scenarios demand for a more general framework to study them. In
this chapter, we study a linearly constrained bimatrix game to overcome these
limitations. In constrained games, the players’ mixed-strategies not only have to be
a probability distributions but they must satisfy some additional linear constraints
too7 (Fig. 10.6 shows the classification of standard and constrained games). Detailed
study of necessary and sufficient conditions under which the existence of the Nash
equilibrium is guaranteed as well as a systematic approach to find the NE is beyond
the scope of this chapter, but can be found in [7].

10.5 Performance Analysis: The Case of IEEE 802.11 OFDM

In IEEE 802.11, the 20 MHz channel bandwidth is subdivided into 52 subchannel
with a separation of Δf = 20/64= 0.3125 MHz. Of the total 52 subcarriers, 48 carry
data and 4 are pilot subcarriers, however, for convenience, in our analysis we assume
the number of subcarriers is K= 64 and all the subcarriers carry data. The OFDM
symbol interval is Ts= 4 µs (which includes a 0.8 µs cyclic prefix), which results in
the symbol rate Rs= 0.25 MSymbols/s. Table 10.1 shows some of the IEEE 802.11
physical layer parameters including the modulation schemes and code rates used for
the subcarriers. The last column in Table 10.1 shows the resulting data rates for the
subcarriers. Hence, the set of available data rates for the subcarriers is

R = {R0 = 1.125, R1 = 1.0, 0.75, 0.5, 0.375, 0.25, 0.1875, R7 = 0.125}Mbps

(10.34)

7In this paper, we limit out focus to linear constraints on players’ strategy sets and for convenience,
we use the terms constrained games and linearly constrained games interchangeably.
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Table 10.1 IEEE 801.11 modulation schemes and code rates

Modulation Code rate Bits/subcarrier Data rate/subcarrier

BPSK 1/2 1/2 125 Kbps

3/4 3/4 187.5 Kbps

QPSK 1/2 1 250 Kbps

3/4 3/2 375 Kbps

16-QAM 1/2 2 500 Kbps

3/4 3 750 Kbps

64-QAM 2/3 4 1 Mbps

3/4 9/2 1.125 Mbps

Suppose that we have a base station that is communicating with a mobile user and
the total transmission power for the 64 subcarriers is 200 mW. Then transmission
power per subcarrier becomes,

PT = 0.2

64
= 0.0031 W = −25 dBW (10.35)

Furthermore, assume that the combined transmitter/receiver antenna gains and the
losses from other sources result in a LT = 90 dB attenuation in the received signal
power. Then, the power of the received signal per subcarrier is,

(PR)dB = (PT )dB − (LT )dB = −25− 90 = −115 dBW (10.36)

The power spectral density of additive noise at the receiver front end is
N0= 4.1× 10−21 W/Hz. Therefore the signal to noise ratio at the receiver front
end becomes,

SNRdB = (PR)dB − (�f N0)dB ∼= 34 (10.37)

and from (10.37) the capacity of the subcarriers is

CAWGN = �f log (1+ SNR) = 3.52 Mbps (10.38)

Since the capacity of the link is greater than maxi R, all the available data
rates are feasible (when the jammer is not active). Now, suppose that the jammer’s
combined antenna gain and losses from other sources results in a LJ = 60 dB
attenuation in the jamming signal measured at the receivers front end. To make
the channel capacity drop below the data rate (i.e., make the data rates infeasible),
the jammer needs to increase the channel noise at the receiver front end by

PJR,i = �f Ji = PR

2Ri/�f − 1
−�f N0 (W) (10.39)
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where Ri’s are given in (10.34). Hence, the jammer’s transmission power becomes

(PJT ,i)dB = (PJR,i)dB + (LJ )dB (10.40)

If we substitute the numerical values, the jammer’s strategy set becomes

J = {0, 0.0003, 0.0004, 0.0007, 0.0015, 0.0024, 0.0042, 0.0061, 0.0098}
W/subchannel

= {−∞,−35.2,−34.2,−31.4,−28.1,−26.2,−23.8,−22.2,−20.1}
dBW/subchannel

(10.41)

The optimal transmission and jamming strategies and the expected value of the
game at the Nash equilibrium can be derived analytically (and numerically) in the
same manner as was presented in Sect. 10.4. For Instance, it can be shown that the
minimum average jamming power needed to force the lowest rate for the jammer
that is using optimal strategy is

JTH = K�f R7

7∑
i=1

(
R−1

i − R−1
i−1

)
Jj = 0.2133 W = −6.7 dBW (10.42)

whereas the average jamming power that the Barrage noise jammer require to
achieve the same average throughput is

Jbarrage = KPR

2Rmin/K�f − 1
−K�f N0 = 0.39 W = −4.1 dBW (10.43)

This shows a gain of 2.6 dB for the strategic jammer.

10.6 Concluding Remarks

In this chapter, we studied the performance of an adaptive OFDM wireless
communication system under power limited jamming. We showed that with modest
assumptions, this problem can be formulated into the constrained zero-sum or
constrained bimatrix game. We in particular applied this framework to the IEEE
802.11 with OFDM physical layer.
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