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Abstract. Set cover is a well-studied problem with application in many
fields. A well-known variation of this problem is the Minimum Member-
ship Set Cover problem. In this problem, given a set of points and a set
of objects, the objective is to cover all points while minimizing the maxi-
mum number of objects that contain any one point. A dual of this prob-
lem is the Minimum Membership Hitting Set problem. In this problem,
given a set of points and a set of objects, the objective is to stab all of the
objects while minimizing the maximum number of points that an object
contains. We study both of these variations in a geometric setting with
various types of geometric objects in the plane, including axis-parallel
line segments, axis-parallel strips, rectangles that are anchored on a hor-
izontal line from one side, rectangles that are stabbed by a horizontal
line, and rectangles that are anchored on one of two horizontal lines (i.e.,
each rectangle shares at least one boundary edge (top or bottom) with
one of the input horizontal lines). For each of these problems either we
prove NP-hardness or design a polynomial-time algorithm. More pre-
cisely, we show that it is NP-complete to decide whether there exists a
solution with depth exactly 1 for either the Minimum Membership Set
Cover or the Minimum Membership Hitting Set problem. We also pro-
vide approximation algorithms for some of the problems. In addition,
we study a generalized version of the Minimum Membership Hitting Set
problem.
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1 Introduction

The set cover problem is one of the fundamental problems in computer sci-
ence and combinatorial optimization. This problem and its many variations play
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an important role in modelling various problems arising in practical scenarios.
One of its variations is the Minimum Membership Set Cover (MMSC) problem,
which is defined in a geometric setting as follows.

Minimum Membership Set Cover (MMSC ): Given a point set P and
a set O of objects (regions), cover all the points in P with a subset O′ ⊆ O
of objects such that the maximum depth of a point is minimized, where the
depth of a point p ∈ P is the number of objects in O′ that contain it. We
say that O′ is a cover of P , and we let d(O′) denote the maximum depth of
any point p ∈ P with respect to O′.

A related problem that is “dual” to the MMSC problem is the
Minimum Membership Hitting Set (MMHS) problem, defined as follows.

Minimum Membership Hitting Set (MMHS): Given a point set P
and a set O of objects (regions) determine a subset P ′ ⊆ P of points stab-
bing (intersecting) all objects O such that the maximum depth of an object
is minimized, where the depth of an object o ∈ O is the number of points
in P ′ that stab it. We say that P ′ is a hitting set of O, and we let d(P ′)
denote the maximum depth of any object o ∈ O with respect to P ′.

In addition to the above two problems, we consider a generalized ver-
sion of the MMHS problem, the Generalized Minimum Membership Hitting
Set (GMMHS) problem, where, instead of a point set and a object set, we are
given two sets R (“red”) and B (“blue”) of objects. The objective is to stab
(intersect) all of the objects in B using a subset R′ ⊆ R such that the maximum
number of red objects in R′ hitting any single object in B is minimized.

1.1 Previous Work

The standard set cover problem is NP-hard. A simple greedy heuristic gives a
O(log n)-factor approximation, and it is NP-hard to compute an approximation
better than logarithmic [11]. The Minimum Membership Set Cover variation
was first introduced by Kuhn et al. [6]. They showed that the problem cannot
be approximated better than O(log n) and gave an approximation factor that
matches this lower bound. Erlebach and van Leeuwen [3] considered the geomet-
ric variation of the problem, proving that for unit squares and unit disks the
problem is NP-hard and there does not exist a polynomial-time factor 2 approx-
imation algorithm, unless P = NP. Further, for unit squares, they provided
a factor 5 approximation for the case in which the optimum objective value is
bounded by a constant. Recently, Nandy et al. [9] reconsidered the same problem
and gave polynomial-time algorithms for both unweighted and weighted intervals
on the real line. Recently, Narayanaswamy et al. [10], considered the problem
of hitting a set of horizontal segments with vertical segments while minimizing
the number of times a vertical segment is hit by the chosen horizontal segments.
They showed that this problem is NP-hard and cannot be approximated better
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than factor 2. Further, if the segments are of unbounded length (i.e., they are
lines), then it can be solved in polynomial time (see also [2] for this algorithm
and some generalizations of this problem).

1.2 Our Contributions: Overview

Minimum Membership Set Cover (MMSC ) problem
We give a polynomial-time algorithm for deciding if there exists a cover with
depth one for the MMSC problem with objects that are rectangles anchored
on a horizontal line. In contrast, we show that if the objects are rectangles
that intersect a horizontal line (versus that are anchored, sharing a side with a
horizontal line), the MMSC problem is NP-hard. We also prove NP-hardness
for the cases of objects that are axis-parallel strips or rectangles anchored on
two horizontal lines.

Minimum Membership Hitting Set (MMHS) problem
We give a polynomial-time algorithm for deciding if there exists a hitting
set with depth one for the MMHS problem with objects that are rectangles
anchored on a horizontal line. In contrast, we show that if the objects are
rectangles that intersect a horizontal line, the MMHS problem is NP-hard.
We also prove NP-hardness for the cases of objects that are axis-parallel strips
or rectangles anchored on two horizontal lines.

Generalized Minimum Membership Hitting Set (GMMHS) problem
We show that GMMHS , with objects R, B given as horizontal/vertical line
segments, is NP-hard; even deciding if a solution exists with depth one is NP-
complete. We also give a 5-approximation algorithm if the optimal objective
function is bounded by a constant.

Equivalence of MMSC and MMHS with Unit Disks/Squares. There is a connec-
tion (equivalence) between the MMSC and MMHS problems where the input
objects are either unit disks or unit squares. Consider the case of unit squares.
Given an instance C = (P, T ) of the MMSC problem, with a set P of points
and a set T of unit squares, we consider a “dual” instance, H, of a MMHS prob-
lem whose regions are specified by the set of unit squares centered on the points
p ∈ P , and whose points are specified as the centerpoints of the squares t ∈ T . We
then note that determining a solution to the MMSC problem C is equivalent to
determining a solution to the MMHS problem H. Thus, we conclude, by apply-
ing the results in [3,9]: The MMHS problem is NP-complete with unit squares
and unit disks and there exists a 5-approximation for the MMHS problem with
unit squares where the optimal objective value is bounded by a constant.

1.3 Definitions and Notations

In a 3SAT problem we are give a CNF formula φ with n variables X =
x1, x2, . . . , xn and m clauses C = {C1, C2, . . . , Cm} where each clause is a dis-
junction of exactly 3 literals, and the objective is to decide whether there is a
truth assignment to variables such that φ is satisfiable. This problem is known
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to be NP-complete [4]. In a planar version of this problem, each variable or
clause represents a vertex and there is an edge between a variable vertex and a
clause vertex if and only if the corresponding clause contains the corresponding
literal. Finally, the resulting bipartite graph is planar. This problem is called the
Planar-3SAT problem and Lichtenstein [7] proved that this problem is also NP-
complete. Later on, Knuth and Raghunathan [5] showed that every Planar-3SAT
problem can be represented using the following rectilinear representation. The
variables are placed on a horizontal line and the clauses containing 3 legs each
connecting those variables either from above or below the horizontal line such
that no two clause legs intersect. This problem is called the Rectilinear-Planar-
3SAT problem and is also NP-complete [5]. A Positive-1-in-3SAT problem is a
3SAT problem, however the objective is different: Here, the objective is to decide
whether there is a truth assignment to the variables such that exactly one lit-
eral per clause is true. Schaefer [12] proved that this problem is NP-complete.
This problem can be represented using the rectilinear representation as defined
above; we refer to it as the Rectilinear-Positive-Planar-1-in-3SAT problem (see
Fig. 1). Surprisingly, Mulzer and Rote [8] proved that it is also NP-complete.

Fig. 1. Representation of a Rectilinear-Positive-Planar-
1-in-3SAT problem.

We now define some ter-
minology. Let Cabove ⊆ C
be the set of clauses in
a PP1in3SAT formula φ
that connect to the vari-
ables from above. Simi-
larly, let Cbelow ⊆ C be
the set of clauses that
connect to the variables
from below. For each
variable xi, 1 ≤ i ≤ n,
we order the clauses in Cabove left to right that connect xi. Let C� ∈ Cabove

be a clause containing the three variables xi, xj , and xk. Then, according to
the ordering defined above, we assume that C� is the �1-, �2-, and �3-th clause
for the variables xi, xj , and xk, respectively. For example, the clause C3 is a
3-rd, 1-st, and 1-st clause for the variables x3, x4, and x5, respectively, in the
PP1in3SAT instance in Fig. 1. We also say that the clause C� connects to xi by
left, to xj by middle, and to xk by right legs.

2 Minimum Membership Set Cover Problem

2.1 Rectangles Anchored on a Horizontal Line

In polynomial time, one can decide if there exists a cover of depth one for the
MMSC problem with rectangles anchored on a horizontal line from one side
(MMSCRAHL), as follows. Let the weight of a rectangle be the number of points
it contains. Now, apply the algorithm of [1] to compute a maximum weight
independent set of rectangles (no two of them share an input point). Then, to
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see if there is a cover of points having depth exactly 1, check if the total weight
of the independent set is equal to the number of input points.

2.2 Axis-Parallel Strips

In this section we prove that the MMSC problem with axis-parallel strips
(MMSCS) is NP-hard. We give a reduction from the Positive-1-in-3SAT
(P1in3SAT) problem (see Sect. 1.3 for the definition). Let φ be a P1in3SAT for-
mula. We generate an instance Z(S, P ) of the MMSCS problem from φ in the
following way, where S is a set of strips and P is a set of points.

Variable Gadget: For variable xi, the gadget consists of one vertical strip vi,
one horizontal strip hi, and a point pi. The point is covered by both vi and hi

(see Fig. 2). Clearly, either vi or hi will cover pi with depth one. We assume that
choosing hi makes xi true, while choosing vi makes xi false.

Overall Structure: We place the variable gadgets (points) along a diagonal
line. For each clause we take a vertical bounded region. The clause gadgets
are placed sequentially one by one to the right of the variable gadgets, and
each gadget is confined to its corresponding region. Between two consecutive
variable horizontal strips there is an empty space, where we place some points
corresponding to the clauses.

Fig. 2. Gadgets of variables xi,
xj , xk, and clause C� and their
interaction.

Clause Gadget: Let C� = (xi ∨ xj ∨ xk)
be a clause. For this clause, we take 5
points p�

i , p
�
j , p

�
k, p�

1, p
�
2 and 4 vertical strips

q�, r�, s�, t� (see Fig. 2). The points p�
i , p�

j ,
and p�

k are corresponding to the variables xi,
xj and xk respectively and are placed inside
the strips hi, hj , and hk respectively. The
other two points p�

1 and p�
2 are placed in any

empty space between the variable horizontal
strips of xi, xj (i.e., between hi and hj) and
xj , xk (i.e., between hj and hk) respectively.
Points {p�

i , p
�
1} are contained in q�. Similarly,

{p�
1, p

�
j}, {p�

j , p
�
2}, and {p�

2, p
�
k} are contained in r�, s�, and t�, respectively. These

5 points and 4 rectangles are strictly contained inside the vertical region of C�

(Fig. 2).

Theorem 1. The MMSCS problem is NP-hard.

Proof. We prove that, φ is satisfiable (i.e., at least one literal is true per clause)
if and only if Z(P, S) has a solution of depth one. Assume that φ has a satisfying
assignment. If xi is true, take hi; otherwise, take vi. Now, for each clause, exactly
one of p�

i , p
�
j , p

�
k is covered by the solution. Hence, the remaining 4 points are

covered by exactly two strips with depth one.
On the other hand, assume that there is a cover of the points with depth

one. Now, for each variable gadget, to cover pi we need one of the two strips hi
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or vi. We set variable xi to be true if hi is in the solution; otherwise, we set xi to
be false. Now consider any clause C�. Since the depth of the solution (indeed a
cover of all points) is one, exactly one of p�

i , p
�
j , p

�
k corresponding to C� is covered

by a variable horizontal strip. We set this variable to be true. Hence, exactly one
literal per clause is true in φ. ��
Corollary 1. The MMSC problem with rectangles anchored on two orthogonal
lines (MMSCRATOL) is NP-hard. (Take a vertical and a horizontal line both at
−∞ to restrict the axis-parallel strips.)

2.3 Rectangles Intersecting a Horizontal Line

In this section we prove that the MMSC problem with rectangles intersect-
ing a horizontal line (MMSCRIHL) is NP-hard. The reduction is from the
PP1in3SAT problem [8]. From an instance φ of the PP1in3SAT problem, we
generate an instance Z, where the rectangles in Z intersect a horizontal line L.

Variable Gadget: The gadget for the variable xi consists of 12m rectangles
{1, 2, . . . , 12m} and 12m − 1 points {p1, p2, . . . , p12m−1} (see Fig. 3(a)). The
points are along the top edge of the rectangles. The 1-st and the 12m-th rect-
angles contain the points p1 and p12m−1, respectively, and the j-th rectangle
contains the pj−1-th and pj-th points, for 2 ≤ j ≤ 12m − 1. We note that
the first 6m rectangles {1, 2, . . . , 6m} are responsible for the clauses in Cabove,
whereas the next 6m rectangles {6m + 1, 6m2, . . . , 12m} are responsible for the
clauses in Cbelow. All of the rectangles are intersecting a horizontal line L. Now,
in order to cover all of the points while minimizing the depth, we have only
two distinct optimal solutions: Either all even-numbered or all odd-numbered
rectangles with depth exactly one. This gives the truth value of the variable xi.

Clause Gadget: We first modify the PP1in3SAT problem in the following way.
Note that the variables of φ are placed on a horizontal line (y = 0). We move the
variables vertically up such that they are placed on a horizontal line y = m + 1
(above the y-values of all the clauses in Cabove) (see Fig. 4). The clauses in Cabove

Fig. 3. (a) A variable gadget. (b) Position of the clause gadgets.
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are placed above L and below the line y = m + 1 while connecting the same set
of variables as before. Note that these clauses now connect the variables from
below. On the contrary, the clauses in Cbelow are placed below L and still connect
to the same set of variables from below.

Let us now consider the set Cabove of clauses. Notice that, in the definition of
the PP1in3SAT problem these clauses can be ordered in increasing y-direction
(see Fig. 1). Here we reverse the order of the clauses (see Fig. 3(b)). Now for each
clause C ∈ Cabove we take a rectangular box whose top boundary is the segment
of C in the modified construction. The bottom boundary of the box touches the
line L. Each box has a thin strip along the top edge of that box, called the tape
of that clause. Similarly, we reverse the order of the clauses in Cbelow and for
each clause C we take a box whose bottom boundary is the segment of C in the
modified construction. The top boundary of the box touches the line L. Now
here the tape is along the bottom boundary of each box.

Let C� = (xi ∨ xj ∨ xk) be a clause in Cabove. We say that xi is a left , xj is a
middle, and xk is a right variable for C�. We take 5 points; point p�

i corresponding
to xi, points p�

j , q
�
j , r

�
j corresponding to xj , and point p�

k corresponding to xk; and
4 rectangles s�

1, s
�
2, s

�
3, s

�
4. The rectangle s�

1 covers the points {p�
i , p

�
j}, s�

2 covers
the points {p�

i , q
�
j}, s�

3 covers the points {p�
j , p

�
k}, and s�

4 covers the points {r�
j , p

�
k}

(see Fig. 4). The rectangles are placed inside the box and the points are placed
inside the tape of C�.

Variable and Clause Interaction: We now describe the placement of the
clause rectangles and points with respect to the variable rectangles. Let 1, 2, . . .
be the left to right order the clauses in Cabove which connects to the variable xi.
In this order, assume that C� be the �1-, �2-, and �3-th clause for the variables
xi, xj , and xk respectively. Then we do the following.

� Since xi is a left variable in C�, place the point p�
i inside the (6�1 − 2)-th

rectangle of the gadget of xi.
� Since xj is a middle variable in C�, place the point p�

j inside the (6�2 − 2)-
th rectangle of the gadget of xj . Also place the point q�

j and r�
j inside the

(6k − 3)-th and (6k − 1)-th rectangles of the gadget of xj .
� Since xk is a right variable in C�, place the point p�

k inside the (6�3 − 2)-th
rectangle of the gadget of xk.

A similar construction can be made for the clauses in Cbelow, but using the
last 6m rectangles in the variables. See Fig. 4.

Theorem 2. The MMSCRIHL problem is NP-hard.

Proof. We prove that exactly one literal is true in every clause of φ if and only
of the MMSCRIHL problem has a cover of depth 1. Assume that there is an
assignment to the variables of φ that satisfies exactly one literal per clause.
For a variable xi, if it is true then select the even indexed rectangles otherwise
select the odd indexed rectangles from the gadget of xi. Let us consider a clause
C� = (xi ∨ xj ∨ xk). Since exactly one literal per clause is true, exactly one of p�

i
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Fig. 4. Interaction with the variable and clause gadgets. We demonstrate the interac-
tion of C3 and C4 with the variables in the P1in3SAT instance in Fig. 1.

or p�
j , or p�

k is covered by a variable rectangle. Clearly, the remaining points in
the clause gadget are covered by the clause rectangles with depth one.

In the reverse direction, assume that the MMSCRIHL problem has a cover of
depth 1. To cover the points in a variable gadget and in order to make their depth
1, there are only two possibilities to select the rectangles. We set the variable
xi to be true if all even indexed rectangles are selected from the gadget of xi,
otherwise set xi to be false. Now consider a clause C� = (xi∨xj ∨xk). Now in C�,
if more than one literal is true then the depth of a point in the gadget of C� will
be more than 1. If the clause is not satisfiable then also either at least one point
is not covered of there will be a point whose depth will be more than one. The
only possibility is exactly one literal per clause is true. Hence, the theorem. ��

2.4 Rectangles Anchored on Two Horizontal Lines

We prove that the MMSC problem with rectangles anchored on two horizontal
lines (MMSCRATHL) is NP-hard by a reduction from PP1in3SAT problem [8].

Variable Gadget: For the variable gadget of xi, we consider 12m points in
two horizontal lines l1 and l2 each contains 6m points. We also consider 12m
rectangles such that each rectangles i covers exactly two points pi and pi+1, for
1 ≤ i ≤ 12m−1 and the rectangles 12m covers points p12m and p1 (see Fig. 5(a)).
Rectangles 1, 2, . . . , 6m are anchored on line l1 and the remaining Rectangles are
anchored on line l2. Now in order to cover all the points while minimizing the
depth, we have only two different optimal solutions. Either all even numbered
or all odd numbered rectangles with depth exactly 1. This gives the truth value
of the variable xi.

Clause Gadget: We first consider the set Cbelow of clauses in φ. These clauses
can be ordered in decreasing y-direction (see Fig. 1). Now for each clause C ∈
Cbelow we take a rectangular box whose top boundary is the segment of C. The
bottom boundary of the box touches the line l1. Each box has a thin strip along
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the top edge of that box, called the tape of that clause. Similarly, we construct
the boxes and tapes for the clauses for Cabove. See Fig. 5(b).

(a) (b)

Fig. 5. (a) A variable gadget. (b) Position of the clause gadgets.

The placement of the clause points and rectangles is similar to the placement
of the clause points and rectangles described in Sect. 2.3. The clause structure
is exactly the same as in Sect. 2.3. For a clause C� = (xi ∨ xj ∨ xk) in Cbelow

with xi, xj , and xk as left , middle, and right variable, we take 5 points; point
p�

i corresponding to xi, points p�
j , q

�
j , r

�
j corresponding to xj , and point p�

k corre-
sponding to xk; and 4 rectangles s�

1, s
�
2, s

�
3, s

�
4. The rectangle s�

1 cover the points
{p�

i , p
�
j}, s�

2 cover the points {p�
i , q

�
j}, s�

3 cover the points {p�
j , p

�
k}, and s�

4 cover
the points {r�

j , p
�
k}. The rectangles are placed inside the box and the points are

placed inside the tape of C�.

Variable and Clause Interaction: The interaction of the variables and the
clauses is similar to that in Sect. 2.3, but now here we consider a clause C ∈
Cbelow. As in the proof of Theorem 2, we conclude:

Theorem 3. The MMSCRATHL problem is NP-hard.

3 Minimum Membership Hitting Set Problem

3.1 Rectangles Anchored on a Horizontal Line

Similar to Sect. 2.1, in polynomial time, one can decide if there exists a hitting
set of depth one for the MMHS problem with rectangles anchored on a horizontal
line from one side (MMHSRAHL), as follows. Define the weight of a point as
the number of rectangles it stabs. Now, apply the algorithm of [1] to compute a
maximum weight set of points (no two of them share a rectangle). Then, to see
if there is a hitting set of rectangles having depth exactly 1, check if the total
weight of the points is equal to the number of rectangles.
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3.2 Axis-Parallel Strips

We prove that the MMHS problem with axis-parallel strips (MMHSS ) is NP-
hard using a reduction from the P1in3SAT problem. We generate an instance
Z(S, P ) of the MMHSS problem from φ, an instance of the P1in3SAT problem.

The gadget for a variable xi includes 2m horizontal strips {1, 2, . . . , 2m − 1}
and 2m points {p1, p2, . . . , p2m}. The j-th strip contains the points pj and pj+1,
for 1 ≤ j ≤ 2m − 1 (see Fig. 6(a)). The points are on a vertical line. However,
we move some of the points to the right to some clause gadgets at later stage.
It is observed that there are exactly two different sets of points, either all even
indexed or all odd indexed, which stab all the strips with depth exactly 1. We
stack the variable gadgets vertically from top to bottom.

The gadget for a clause C� is a vertical strip v�. The clause gadgets are placed
one after another to the right of the points corresponding to the variable gadgets.

For each variable, we order the clauses that contains it. Let C� be a clause
that contains xi, xj , xk, then according to this ordering we say that C� is a �1-th,
�2-th, and �3-th clause for xi, xj , and xk respectively. Now for the clause C� we
move the three points p2�1 , p2�2 , and p2�3 in the vertical orientation from xi, xj ,
and xk respectively to inside v�.

(a) (b)

Fig. 6. (a) Variable gadget. (b) Clause gadget and its interaction with variable gadgets.

Clearly, the number of strips and points is polynomial with respect to the
number of variables and clauses in φ. Hence the construction can be done in
polynomial time. We now prove the following theorem.

Theorem 4. The MMHSS problem is NP-hard.

Proof. We prove that exactly one literal is true in each clause of φ if and only if
Z has a hitting set with depth exactly 1. For variable xi, we choose even indexed
points if xi is true, else choose odd indexed points. This clearly stabs all variable
strips with depth 1. Since exactly one literal is true in each clause of φ, exactly
one point will stab a clause strip. On the other hand assume that there is a
hitting set of points with depth exactly 1. Now stabbing all the variable strips
with depth 1 requires either all even or all odd indexed points. So we set xi to
be true if even indexed points are selected, otherwise, set xi to be false. Since
the depth of the hitting set is 1, exactly one point in a clause strip is selected. ��
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3.3 Rectangle Intersecting a Horizontal Line

We show that the MMHS problem with rectangles intersecting a horizontal line
(MMHSRIHL) is NP-hard using a reduction from the PP1in3SAT problem.

The variable gadget is similar to the variable gadget defined in Sect. 3.2, but
now the strips are vertical and they are intersecting a horizontal line. The clause
gadget is similar to that in Sect. 2.3, but now, for each clause, the rectangular
box of Sect. 2.3 is itself a rectangle. Next, using a process as in Sect. 3.2, we shift
(vertically) points from the variable gadgets to these clause rectangles. Hence,
as in the proof of Theorem 4, we conclude the following.

Theorem 5. The MMHSRIHL problem is NP-hard.

Similar to Theorem 5, we prove that the MMHSRATHL problem is NP-hard.

4 Generalized Minimum Membership Hitting Set

NP-Hardness: We prove that the GMMHS problem of stabbing horizontal unit
segments by vertical unit segments (GMMHSUSeg) is NP-hard. The reduction
is from the PP1in3SAT problem.

Fig. 7. A variable gadget.

Variable Gadget: Each variable gadget consists
of a variable chain and at most 2m clause chains,
each corresponding to a clause leg that connects to
a variable.

Variable Chain: Each variable chain consists of
8m+2 unit horizontal segments {h1, h2, . . . , h8m+2}
positioned like a rectangular fashion (see Fig. 7).
The segments {h1, h2, . . . , h4m} are on a horizon-
tal line and are responsible for connecting the clause chains to the variable chain
from above. Similarly, the segments {h4m+2, h4m+3, . . . , h8m+1} are on another
horizontal line and are responsible for connecting the clause chains to the vari-
able chain from below.

Clause Chains: Let C� be a clause in Cabove that connects the variables xi, xj ,
and xk through left, middle, and right legs respectively. Then for a left or middle,
or right leg, we construct a left or middle, or right chain respectively. The left
and middle chains are depicted in Fig. 8(a) and (b) respectively. The right chain
is similar to the left chain but flipped vertically.

Let us consider a clause C ∈ Cabove that is a �-th clause for the variable xi.
In the variable chain of xi, we shift the h4�−2-th segment slightly left and the
h4�−1-th segment slightly right (see Fig. 8(c)). Place the chain for C above these
two segments such that h′ and h4�−2 are stabbed by a vertical segment and h′′

and h4�−1 are stabbed by another vertical segment. Note that for each variable
at most 2m chains are connected with its variable chain, at most m from either
above or below. The variable chain and at most 2m left, middle, or right chains
together form a big circular like arrangements of segments, called big-cycle. Note
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that, this big-cycle contains an even number of both horizontal and vertical
segments and along the cycle at most 2 consecutive horizontal segments are
stabbed by a vertical segment. We now have the following observation.

Observation 1. For each variable gadget, there are two optimal solutions,
either all red or all blue vertical segments each of size half of the total num-
ber of vertical segments present in a big-cycle.

(a) (b) (c) (d)

Fig. 8. (a) A left chain. (b) A middle chain. (c) Attaching a clause chain to a variable
chain. (d) Clause gadget and connection with the three variable gadgets.

Clause Gadget: Let C� ∈ Cabove be a clause that contains xi, xj , and xk. The
gadget for C� is a single horizontal segment h�. The position of h� with respect
to the three chains corresponding to xi, xj , and xk is shown in Fig. 8(d).

This completes the construction. Note that this construction can be done in
polynomial time with respect to the number of the variables and clauses in φ.
An argument similar to that in the proof of Theorem 4 leads to the following
theorem.

Theorem 6. The GMMHSUSeg problem is NP-hard.

Approximation for the GMMHSUSeg Problem: First we convert this prob-
lem to the MMHS problem with unit squares. Let H and V be given sets of unit
horizontal and vertical segments. For each horizontal segment h ∈ H, take a unit
square th ∈ T such that the bottom boundary of th coincides with h and for each
vertical segment v ∈ V , take the top endpoint, pv ∈ P of v. Clearly, finding a set
V ′ ⊆ V that stabs all the horizontal segments in H while minimizing the number
of times a segment in H is stabbed by segments in V ′ is equivalent to finding a
set of points P ′ ⊆ P that stabs all the unit squares in T while minimizing the
number of points in P ′ that is contained in a unit square in T .

Because the GMMHSUSeg problem is NP-hard, in another way we can say
that the MMHS problem with unit squares is also NP-hard. Since for unit squares
the MMHS and MMSC problems are dual to each other, the result of [3] ensures
the following theorem.
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Theorem 1. There exists a 5-approximation for the GMMHSUSeg problem
where the optimal objective value is bounded by a constant.
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