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Abstract. The automaton constrained tree knapsack problem is a vari-
ant of the knapsack problem in which the items are associated with the
vertices of the tree, and we can select a subset of items that is accepted
by a tree automaton. If the capacities or the profits of items are integers,
it can be solved in pseudo-polynomial time by the dynamic programming
algorithm. However, this algorithm has a quadratic pseudo-polynomial
factor in its complexity because of the max-plus convolution. In this
study, we propose a new dynamic programming technique, called heavy-
light recursive dynamic programming, to obtain algorithms having linear
pseudo-polynomial factors in the complexity. Such algorithms can be
used for solving the problems with polynomially small capacities/profits
efficiently, and used for deriving efficient fully polynomial-time approx-
imation schemes. We also consider the k-subtree version problem that
finds k disjoint subtrees and a solution in each subtree that maximizes
total profit under a budget constraint. We show that this problem can
be solved in almost the same complexity as the original problem.

Keywords: Knapsack problem · Dynamic programming
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1 Introduction

1.1 Background and Motivation

The knapsack problem seeks a set of items that maximizes total profit under
a budget constraint. The problem is one of the most fundamental combinato-
rial optimization problems [12] and has many real-world applications such as
scheduling [9], network design [15], and natural language processing [7]. The
problem is NP-hard; however, if the profits or the weights of items are integers,
the problem can be solved using the dynamic programming (DP) that runs in
c© Springer Nature Switzerland AG 2019
G. K. Das et al. (Eds.): WALCOM 2019, LNCS 11355, pp. 248–260, 2019.
https://doi.org/10.1007/978-3-030-10564-8_20

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-10564-8_20&domain=pdf
https://doi.org/10.1007/978-3-030-10564-8_20


Constrained Tree Knapsack Problem 249

pseudo-polynomial time. This algorithm is the basis for the fully-polynomial
time approximation scheme (FPTAS) of the knapsack problem [9,13].

Here, we consider the automaton constrained tree knapsack problem, which
is defined as follows. Let T = (V (T ), E(T )) be a rooted tree where V (T ) is
the set of vertices and E(T ) is the set of edges, F(A) ⊆ 2V (T ) be a feasible
domain represented by a top-down tree automaton (see Sect. 2.1 for details). We
denote by n = |V (T )| the number of vertices in T . Each u ∈ V (T ) has profit
p(u) ∈ R≥0 and weight w(u) ∈ R≥0. For a vertex subset X ⊆ V (T ), we define
p(X) =

∑
u∈X p(u) and w(X) =

∑
u∈X w(u). Let C ∈ R≥0 be the capacity.

Then, the task is to solve the following optimization problem:

maximize p(X) subject to w(X) ≤ C, X ∈ F(A), (1)

This is a quite general problem since any constraint on a tree specified by a
monadic second-order logic formula is represented by a tree automaton [18]. For
example, the precedence constrained problem [14], the connectivity constrained
problem [8], and the independent set constrained problem [16] are particular
cases of this problem (See Examples 1, 2, and 3).

As in the case of the standard knapsack problem, the automaton constrained
tree knapsack problem can be solved by DP. If the tree automaton has a poly-
nomially bounded diversity of transitions (see Sect. 2.1), the complexity of the
algorithm is O(poly(n)C2) time if the weights are integers, and O(poly(n)P 2)
time if the profits are integers, where P is an upper bound of the optimal value
(see Sect. 2.2). Several existing studies have considered particular cases of the
problem and derived the corresponding realization of this algorithm [8,14,16].

In this study, we focus on the pseudo-polynomial factors C or P in the com-
plexity. The quadratic pseudo-polynomial factors of the standard DP come from
merging solutions to the subtrees, which is implemented by the max-plus (or
min-plus) convolution, whose current best complexity is O(N2 log logN/ log2 N),
where N is the length of the arrays [2]. It is conjectured that the max-plus
convolution requires Ω(N2−δ) time for any δ > 0 [1,2,6]. However, quadratic
pseudo-polynomial factors are sometimes unacceptable. For example, in prac-
tice, we often encounter the case that C is polynomially greater than n (e.g.,
n = 100 and C = 100, 000). In this case, quadratic pseudo-polynomial factors
are not desirable. For another example, when we derive a FPTAS from the DP,
we take P ∝ 1/ε; thus, a smaller degree in P implies a faster algorithm with the
same accuracy. The purpose of this study is to derive algorithms for the problem
that run in O(poly(n)C) or O(poly(n)P ) time.

Thus far, the only studies that have addressed this issue are those on the
precedence constrained knapsack problem. Johnson and Niemi [11] proposed a
technique, called left-right DP, which runs in O(nC) time. Cho and Shaw [4]
proposed a variant of the left-right DP, called depth-first DP, which also runs
in O(nC) time. However, we do not know what kinds of constraints (other than
the precedence constraint) admit algorithms with complexity that is linear in
pseudo-polynomial factors.
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1.2 Our Contribution

In this study, we introduce a new DP technique, called heavy-light recursive
dynamic programming (HLRecDP). This technique is motivated by Chekuri and
Pal’s recursive greedy algorithm for the s-t path constrained monotone submod-
ular maximization problem [3] and its generalization to the logic constrained
monotone submodular maximization problem [10]. It also generalizes the left-
right DP and depth-first DP for precedence constrained problem to the automa-
ton constrained problem. Formally, by using this technique, we obtain the fol-
lowing theorem. From now on, we denote the logarithm of base two by log.

Theorem 1. Let T = (V (T ), E(T )) be a tree with n vertices and A be a non-
deterministic top-down tree automaton with the diversity of transitions δ(n). Let
p ∈ R

V
≥0, w ∈ Z

V
≥0, and C ∈ Z≥0. Then, there is an algorithm for problem (1)

that runs in O(nlog(1+δ(n))C) time. In particular, if δ(n) = O(1), the algorithm
runs in O(poly(n)C) time.1

This theorem gives a sufficient condition for admitting (pseudo-)polynomial time
algorithms with linear pseudo-polynomial factors. By applying this theorem to
the precedence constrained problem, we obtain O(nC) time algorithm that is
equivalent to the existing left-right DP [11] and depth-first DP [4] (Example 2).

We then consider the k-subtree version problem. Let k = O(1) be an integer.
Then, the problem is to find k disjoint subtrees of the given tree and a feasible
solution in each subtree such that the total profit is maximized under the total
budget constraint. For example, the k connected component constrained problem
is the k-subtree version of the precedence constrained problem. By using the
property of the algorithm of Theorem 1 and divide-and-conquer techniques, we
show that this problem can be solved in almost the same time complexity as the
original problem.

Theorem 2. Suppose that A is a prefix-closed top-down tree automaton with the
bounded diversity of transitions, and the automaton constrained tree knapsack
problem with A can be solved in f(n) time by Algorithm 1. Let k = O(1). Then,
there exists an algorithm for the corresponding k-subtree version problem that
runs in the following complexity:

k = 1. O(f(n) log n) if f(n) = O(nC), and O(f(n)) time if f(n) = O(neC) for
some e > 1.

k ≥ 2. O(f(n)(log n)log k) time if f(n) = O(neC) for some e > 1; the hidden
constant is a polynomial in k.

This theorem gives an O(n log nC) time algorithm for the connectivity con-
strained problem, and an O(neC) time algorithm for any e > 1 for the k con-
nected component constrained tree knapsack problem.

1 For simplicity, we only consider the case in which the weights are integers. The same
result is obtained when the profits are integers.
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Organization of the Paper

The paper is organized as follows. In Sect. 2.1, we introduce top-down tree
automata. In Sect. 2.2, we introduce the standard DP using a top-down tree
automaton. In Sect. 3, we prove Theorem 1 by introducing the HLRecDP. In
Sect. 4, we prove Theorem 2 using the divide-conquer technique with HLRecDP.

2 Preliminaries

2.1 Tree Automaton

A non-deterministic top-down tree automaton (“automaton” for short) [5] is a
tuple A = (Q,Σ,Qinit,Δ), where Q is the set of states, Σ is a set of alphabets,
Qinit ⊆ Q is the set of initial states, and Δ is a set of rewriting rules of the form

Q × Σ � (q, σ) �→ (q1, . . . , qd) ∈ Q × · · · × Q. (2)

We assume that the number of states of the automaton is constant, |Q| = O(1).
The automaton is prefix-closed if (q, σ) �→ (q1, . . . , qd) is in Δ then (q, σ) �→
(q1, . . . , qd−1) also in Δ.

The run of the automaton is defined as follows. Let T = (V (T ), E(T )) be a
rooted tree, and σ : V (T ) → Σ be labels on the vertices. The automaton first
assigns an initial state q ∈ Qinit to the root of the tree. Then it processes the
tree from the top (root) to the bottom (leaves). If vertex u ∈ V (T ) has state
q ∈ Q, we choose a rewriting rule (q, σ(u)) �→ (q1, . . . , qd) and assign the states
q1, . . . , qd to the children v1, . . . , vd ∈ V (T ) of u, respectively. Note that, if no
rule is applicable to u and q, the run fails. The automaton accepts a labeled tree
if there is at least one run from the root to the leaves in which the state of the
root is in Qinit.

To represent a substructure of a tree using an automaton, we choose the
alphabet Σ = {0, 1} and identify the subgraph X ⊆ V (T ) as the labels σX :
V (T ) → Σ such that σX(u) = 1 for u ∈ X and σX(u) = 0 for u 
∈ X. Then, the
family of subsets F(A) ⊆ 2V (T ) represented by this automaton is specified by

F(A) = {X ⊆ V (T ) : A accepts T with label σX}. (3)

To evaluate the complexity of DP, we introduce the following quantity δ(n),
called the diversity of transitions.

δ(n) = max
m≤n

|
⋃

“(q,σ) �→(q1,...,qm)”∈Δ

{(q1, . . . , qm)}|. (4)

By definition, δ(n) is monotone in n. Intuitively, δ(n) is the maximum number
of subproblems in DP; see Sect. 2.2 below. There is an automaton with expo-
nentially large diversity of transitions, i.e., δ(n) = Θ(|Q|n), and in such case,
it looks impossible to obtain O(poly(n)) time algorithm. Therefore, we assume
some boundedness of δ(n). Note that, even δ(n) = O(1), we can represent some
interesting examples, such as independent set constraint (Example 1) and prece-
dence constraint (Example 2).
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2.2 Quadratic Pseudo-Polynomial Factor Algorithm

Here, we introduce the standard DP that solves the problem in O(poly(n)C2)
time if the automaton has a polynomially bounded diversity of transitions [8,14,
16]. We regard this as a baseline algorithm for the problem.

Let T = (V (T ), E(T )) be a rooted tree. We denote by Tu the subtree of T
rooted by u ∈ V (T ). The algorithm computes array xu,q of length C+1 for each
u ∈ V (T ) and q ∈ Q, such that

xu,q[c] = max{p(X) : X ⊆ V (Tu), w(X) = c, subtree Tu with labels σX is
accepted by A, where the initial state is q}. (5)

Once the array for the root vertex r ∈ V (T ) is obtained, the optimal value is
computed by maxq∈Qinit,c∈{0,...,C} xr,q[c] in O(|Qinit|C) = O(C) time.

We compute these arrays using the bottom-up DP as follows. For each leaf,
the array is immediately computed in O(δ(0)C) = O(C) time. Consider a ver-
tex u ∈ V (T ) with children v1, . . . , vd ∈ V (T ), such that the arrays xv,q are
computed for all v ∈ {v1, . . . , vd} and q ∈ Q. Then,

xu,q[c] = max{xv1,q1 [c1] + · · · + xvd,qd [cd] + w(u)σ :
(q, σ) �→ (q1, . . . , qd) ∈ Δ, c1 + · · · + cd + w(u)σ = c}. (6)

Here, we identify symbol σ = “0” and “1” as integer 0 and 1, respectively. The
maximization with respect to c1, . . . , cd is evaluated by the max-plus convolution;
thus, it costs about O(nC2) time. For the maximization with respect to (q, σ) →
(q1, . . . , qd) ∈ Δ, we only have to evaluate the formula for distinct (q1, . . . , qd).
Therefore, the complexity of evaluating (5) is O(nδ(n)C2) time, and the total
complexity is O(n2δ(n)C2) = O(poly(n)C2).

3 Heavy-Light Recursive Dynamic Programming

In this section, we present the HLRecDP for obtaining an O(nlog(1+δ(n))C) time
algorithm. In Sect. 3.1, we first propose the recursive dynamic programming
(RecDP) technique for balanced trees. To handle non-balanced trees, in Sect. 3.2,
we combine the heavy-light decomposition to the RecDP.

3.1 Recursive Dynamic Programming for Balanced Trees

Our goal is to compute arrays {xr,q}q∈Qinit for the root r ∈ V (T ) of the tree,
where xr,q is defined in (5). To avoid quadratic pseudo-polynomial factors, we
call the recursive procedure for the children multiple times, instead of merging
subtree solutions.

Formally, we design procedure RecDP(u, q, a), where u ∈ V (T ), q ∈ Q, and
a is an array of size C + 1. It computes array yu,q,a defined by

yu,q,a[c] = max{p(X) + a[c′] : X ⊆ V (Tu), w(X) + c′ = c, subtree Tuwith
labels σX is accepted by A, where the initial state is q}. (7)
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The difference between (5) and (7) is that (7) contains the array parameter a,
which corresponds to the “initial values” of the DP. More intuitively, it returns
an array that is obtained by “adding” items in the subtree Tu optimally to
the current solution represented by a. By calling RecDP(r, q, [0,−∞, . . . ,−∞]),
where r ∈ V (T ) is the root of the tree and q ∈ Qinit, we obtain the desired
solution xr,q.

Here, RecDP(u, q, a) is implemented as follows. If u ∈ V (T ) is a leaf, we
can compute (7) in O(C) time. Consider a vertex u ∈ V (T ) that has children
v1, . . . , vd ∈ V (T ). For each rewriting rule (q, σ) �→ (q1, . . . , qd), we first call
RecDP(v1, q1, a) to obtain array y1 = yv1,q1,a. Then, we call RecDP(v2, q2, y1)
to obtain array y2 = yv2,q2,y1 , i.e., we use the returned array y1 as the initial
values of the DP to the subtree rooted by v2. By iterating this process to the
last child, we obtain array yd = yvd,qd,yd−1 . The solution corresponds to this
rewriting rule is then obtained by

zu,q,a[c] = yd[c − σw(u)] + σp(u), c ∈ {0, . . . , C}. (8)

By taking the entry-wise maximum of the solutions on all of the rewriting rules,
we obtain the solution to RecDP(u, q, a).

The correctness of the above procedure is easily checked. We evaluate the
time complexity. Let f(n) be the complexity of the procedure. Let n1, . . . , nd

be the number of vertices on the subtrees rooted by v1, . . . , vd. Then we have
n1 + · · · + nd = n − 1. Because the algorithm calls the procedure recursively to
each subtree at most δ(n) times, the complexity satisfies2

f(n) ≤ δ(n)(f(n1) + · · · + f(nd)) + O(C). (9)

If the tree is balanced, i.e., nj ≤ n/2 for all j = 1, . . . , d, this already provides
the desired complexity: Without loss of generality, we can assume that f(n) is
convex in n. Then, the maximum of the right-hand side is attained at n1 =
�(n − 1)/2, n2 = �(n − 1)/2�, and n3 = · · · = nd = 0. Therefore,

f(n) ≤ δ(n) (f(�(n − 1)/2) + f(�(n − 1)/2�)) + O(C). (10)

By solving this inequality, we have f(n) = O((2δ(n))log nC) = O(n1+log δ(n)C).

3.2 Heavy-Light Recursive Dynamic Programming

To obtain an O(pseudopoly(n)C) time algorithm for general (i.e., non-balanced)
trees, we have to make the depth of the recursion to O(log n). The HLRecDP
achieves this by using the heavy-light decomposition [17].

First, we introduce the heavy-light decomposition. Let T = (V (T ), E(T ))
be a rooted tree whose edges are directed toward the leaves. An edge (u, v) ∈
E(T ) is a heavy edge if v has more descendants than other children of u do

2 The additive term is naturally O(dC); however, it is separated and included in the
recursive terms.
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(ties are broken arbitrary). An edge is a light edge if it is not a heavy edge3.
v ∈ V (T ) is a heavy child of u ∈ V (T ) if (u, v) is a heavy edge. A light child
is defined similarly. A subtree rooted by a light child is referred to as a light
subtree. The set of heavy edges forms disjoint paths, called heavy paths. The
tree is decomposed into the heavy paths, which is referred to as a heavy-light
decomposition. The heavy-light decomposition is computed in linear time by
depth-first search. The most important property of a heavy-light decomposition
is that for each u ∈ V (T ), the number of descendants of a light child is at most
|V (Tu)|/2.

Recall algorithm RecDP(u, q, a) defined in the previous section. We observe
that all recursive calls of RecDP(v1, q1, a) to the first child has the same initial
array a for different q1. Thus, we can “gather” all recursive calls for the first child
into a single recursive call. The HLRecDP sets the heavy child as the first child
to avoid an excessive number of recursive calls this child.

Formally, we define procedure HLRecDP(u, a). This returns a set of arrays
{yu,q}q∈Q, where yu,q is defined in (7). For v1, . . . , vd ∈ V (T ) and q1, . . . , qd ∈ Q,
we define HLRecDP(v1, . . . , vd, a)q1,...,qd as a shorthand notation of the sequen-
tial evaluation

HLRecDP(vd,HLRecDP(vd−1 · · ·HLRecDP(v1, a)q1 · · · )qd−1)qd . (11)

Now we describe the procedure. Let v1, . . . , vd ∈ V (T ) be the children of u, where
v1 is the heavy child. First, we call HLRecDP(v1, a) and store the resulting
arrays for all q ∈ Q. Then, for each rewriting rule (q, σ) �→ (q1, . . . , qd), we call
HLRecDP(v2, . . . , vd,HLRecDP(v1, x)q1)q2,...,qd and add item u if σ = 1 to
obtain the solution to the rewriting rule. By taking the entry-wise maximum
over the rewriting rules, we obtain the desired solution; see Algorithm 1.

By construction, HLRecDP gives the same solution as RecDP; thus, it cor-
rectly solves the problem. We evaluate the complexity as follows. Let n1, . . . , nd

be the number of vertices on the subtrees rooted by v1, . . . , vd. As same as the
analysis of RecDP, the complexity f(n) of the algorithm satisfies

f(n) ≤ f(n1) + δ(n) (f(n2) + · · · + f(nd)) + O(C). (12)

By the convexity of f(n) and the heavy-light property, i.e., nj ≤ n/2 (j =
2, . . . , d), the maximum of the right-hand side is attained at n1 = �(n − 1)/2,
n2 = �(n − 1)/2�, and n3 = · · · = nd = 0. Thus, we have

f(n) ≤ f(�(n − 1)/2) + δ(n))f(�(n − 1)/2�) + O(C). (13)

By solving this inequality, we have f(n) = O(nlog(1+δ(n))C). ��

3 Our definition of the heavy edge is slightly different to the original one: In [17],
(u, v) is said to be “heavy” if 2 × size(v) > size(u), where size(v) is the number of
descendants of v. Thus, their heavy edge is always our heavy edge, but the converse
is not. In particular, in their definition, any internal vertex has at most one heavy
edge, but in our definition, any internal vertex has exactly one heavy edge.
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Algorithm 1. Heavy-Light Recursive Dynamic Programming
1: procedure HLRecDP(u, a)
2: yu,q[c] = −∞ for all c ∈ {0, . . . , C}, q ∈ Q
3: Let v1, . . . , vd be the children of u, where v1 is the heavy child
4: Call HLRecDP(v1, a) and store the arrays for q ∈ Q
5: for “(q, σ) �→ (q1, . . . , qd)” ∈ Δ do
6: Let z = HLRecDP(v2, . . . , vd,HLRecDP(v1, a)q1)q2,...,qd
7: for c = 0, . . . , C do
8: yu,q[c] ← max{yu,q[c], z[c − σw(u)] + σp(u)}
9: end for

10: end for
11: return {yu,q}q∈Q

12: end procedure

Remark 1. There is a gap of the tractable classes between the standard DP
(Sect. 2.2) and the HLRecDP. The analysis in Sect. 2.2 implies that we can obtain
O(poly(n)C2) time algorithm if δ(n) is polynomially bounded. On the other
hand, the analysis in this section implies that if δ(n) is polynomially bounded
(rather than bounded by a constant), we can only obtain an algorithm with
quasi-polynomial time complexity, i.e., nO(log n)C.

Here, we derive several results for particular cases using our method.

Example 1 (Independent Set Constrained Problem). Let us consider the inde-
pendent set constrained tree knapsack problem whose feasible set contains
no adjacent vertices. This constraint is represented by an automaton A =
(Q,Σ,Qinit,Δ), where Q = Qinit = {s, x} and

(s, 0) �→ (s, . . . , s), (s, 1) �→ (x, . . . , x), (x, 0) �→ (s, . . . , s). (14)

Here, s means the vertex can be selected and x means the vertex cannot be
selected. The diversity of transitions is δ(n) = 2 because the rules for (s, 0)
and (x, 0) have the same right-hand side; therefore, we can solve the indepen-
dent set constrained tree knapsack problem in O(nlog(1+δ(n))C) = O(nlog 3C) =
O(n1.585C) time.

Example 2 (Precedence Constrained Problem). Let us consider the precedence
constrained tree knapsack problem whose feasible set is precedence closed, i.e., if
a vertex is contained in a solution, all the precedences are also contained in the
solution. This constraint is represented by an automaton A = (Q,Σ,Qinit,Δ),
where Q = Qinit = {s, x} and

(s, 0) �→ (x, . . . , x), (s, 1) �→ (s, . . . , s), (x, 0) �→ (x, . . . , x). (15)

Here, state s means the vertex can be selected and state x means the vertex
cannot be selected. Since the diversity of transitions is δ(n) = 2, the algorithm
runs in O(nlog(1+δ(n))C) = O(n1.585C) time.
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This complexity can be improved further. If a vertex has state x, we cannot
select all of the descendants of the vertex; thus we obtain the solution for this
case without calling the procedure recursively. Thus, the required number of
recursive calls is at most one, which is for (s, 1). Therefore, the algorithm runs
in O(nlog(1+1)C) = O(nC) time. Note that this algorithm “coincides” with the
left-right DP [11] and the depth-first DP [4] in the sense that these perform the
same manipulations.

Example 3 (Connectivity Constrained Problem). Let us consider the connec-
tivity constrained tree knapsack problem whose feasible set forms a connected
subgraph of a given tree. This constraint is represented by an automaton
A = (Q,Σ,Qinit,Δ), such that Q = {s, o, x}, Qinit = {s} and

(s, 0) �→ (s, x, . . . , x), (s, 0) �→ (x, s, . . . , x), . . . , (s, 0) �→ (x, x, . . . , s),
(s, 1) �→ (o, o, . . . , o), (o, 0) �→ (x, x, . . . , x), (o, 1) �→ (o, o, . . . , o),
(x, 0) �→ (x, x, . . . , x). (16)

Here, state s means the vertex can be selected, state o means the vertex is now
selecting, and state x means that the vertex cannot be selected. Note that A
is non-deterministic because there are d rules for (s, 0). Thus, the diversity of
transitions is δ(n) = n, which is not bounded by a constant. Thus, the theorem
gives only quasi-polynomial time algorithm.

To improve the performance, we make the similar observation to the prece-
dence constraint (Example 2). Then, the number of recursive calls to each subtree
is at most twice; one is for (s, 0) and the other is for (s, 1) and (o, 1). Therefore,
the algorithm runs in O(nlog(1+2)C) = O(n1.585C) time.

Example 4 (k Connected Component Constrained Problem). Let us consider k
connected component constrained tree knapsack problem whose feasible solution
is k connected components. By using the same technique as the connectivity
constrained problem (Example 3), we obtain nO(log k)C time algorithm for the
problem. Note that, if we handle k as a kind of weight, we can derive O(kneC) =
O(neC) time algorithm for some universal constant e.

4 k-Subtree Version Problems

In this section, we consider the k-subtree version problems and prove Theorem 2.
We introduce two auxiliary problems: The first one is the for-all-subtree problem
that requires to solve the problem on each subtree Tu of T rooted by u ∈ V (T ).
The second one is the for-all-subtree-complement problem that requires to solve
the problem on each subtree-complement T \ Tu of T for all u ∈ V (T ). These
problems can be solved in almost the same time complexity as follows.

Lemma 1. Suppose that the automaton constrained tree knapsack problem with
tree automaton A can be solved in f(n) = O(neC) time by Algorithm 1. Then,
the corresponding for-all-subtree version problem can be solved in O(f(n) log n)
time if e = 1 and O(f(n)) time if e > 1.
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Proof. Let us fix a heavy path u1, . . . , ul that starts from the root of
the tree, i.e., u1 is the root and ul is a leaf. First, we call HLRecDP
(u1, [0,−∞, . . . ,−∞]) to the root u1 of the tree. Then, it recursively calls
HLRecDP(ui, [0,−∞, . . . ,−∞]) to the vertices u2, . . . , ul on the heavy path.
This means that this single call gives the solutions to the subtrees rooted by the
vertices on the heavy path.

After this computation, we call the procedure recursively to the light subtrees
adjacent to the heavy path. The total complexity g(n) satisfies

g(n) ≤ g(n1) + · · · + g(ns) + f(n), (17)

where n1, . . . , ns are the sizes of the subtrees. By definition, n1 + · · · + ns ≤
n − 1. Also, by the heavy-light property, nj ≤ n/2 (j = 1, . . . , s). Therefore, the
maximum of the right-hand side is attained at n1 = �(n−1)/2, n2 = �(n−1)/2�,
and n3 = · · · = ns = 0. Thus,

g(n) ≤ g(�(n − 1)/2) + g(�(n − 1)/2�) + f(n), (18)

By solving this inequality we obtain the desired result. ��
Lemma 2. Suppose that the automaton constrained tree knapsack problem with
tree automaton A can be solved in f(n) = O(neC) time by Algorithm 1. Then,
the corresponding for-all-subtree-complement version problem can be solved in
O(f(n)(log n)2) time if e = 1 and O(f(n) log n) time if e > 1.

Proof. For vertex u ∈ V (T ), we define array xu,q of length C +1 that represents
the solution on T \ Tu, where the parent of u has state q ∈ Q. We compute
the arrays for all the vertices. We define xr,q = [0,−∞, . . . ,−∞] for the root
r ∈ V (T ) and all q ∈ Q. Let us fix a heavy path u1, . . . , ul that starts from the
root of the tree. We compute the arrays for the vertices on the heavy path, and
for the vertices adjacent to the heavy path separately.

Vertices on the heavy path. Suppose that we have {xui−1,q}q∈Q. Let
v1, . . . , vd be children of ui−1, where v1 = ui. For each rewriting rule
(q, σ) �→ (q1, . . . , qd−1) ∈ Δ, which is a rule of length d − 1, which will
match to v2, . . . , vd, the array corresponds to this rule is obtained by call-
ing HLRecDP(v2, . . . , vd, xui−1,q)q1,...,qd−1 and by adding ui if σ = 1. By
taking the entry-wise maximum of the arrays for different rules, we obtain
{xui,q}q∈Q. Since this computation process pays the same computational effort
as HLRecDP(u1, x), the complexity is f(n).

Vertices adjacent to the heavy path. We compute {xv,q}q∈Q for all light
child v adjacent to the heavy path. It is obtained by calling HLRecDP to all
the subtrees except Tv; however, this method involves redundant computations.
We reduce the complexity by storing intermediate results by a segment tree-like
divide-and-conquer technique.

First, we compute arrays yi,j,qi,qj for i = 0, . . . , l − 1, j = i + 1, . . . , l, and
qi, qj ∈ Q. This stores the vector obtained by calling HLRecDP with initial
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array xu1,q for some q to the subtree except the light children of ui+1, . . . , uj ,
where the states of ui and ui are qi and qj , respectively. Initially, we set y0,l,q0,ql =
xu1,q0 for all q0, ql ∈ Q. If we have {yi,j,qi,qj}qi,qj∈Q for i+1 < j, we can compute
{yi,m,qi,qm}qi,qm∈Q where m = �(i + j)/2� by calling HLRecDP to the light
subtrees of um+1, . . . , uj with initial array zi,j,qi,qj . Similarly, we can compute
{ym,j,qm,qr}qm,qr∈Q. The complexity of computing all the arrays is O(f(n) log n)
since HLRecDP is called to subtree Tui

at most O(log n) times.
Next, for each uk (k = 1, . . . , l−1) on the heavy path, we consider the children

v1, . . . , vd of uk, where v1 is the heavy child (i.e., v1 = uk+1). For each rewriting
rule (q, σ) �→ (q1, . . . , qd−1) ∈ Δ, we compute arrays zi,j,q,q1 for i = 1, . . . , d − 1
and j = i+1, . . . , d. This stores the vector obtained by calling HLRecDP with
initial array yk−1,k,q,q1 to the subtrees except vi+1, . . . , vj , and is computed by
the same technique as y. Once the arrays are obtained, we can retrieve xvi,q by
taking the entry-wise maximum of zi−1,i,q,q1 with respect to q1. Thus, the total
complexity of this part is O(f(n) log n).

After this computation, we call the procedure recursively to the light subtrees
adjacent to the heavy path. The total complexity g(n) satisfies

g(n) ≤ g(n1) + · · · + g(ns) + O(f(n) log n), (19)

where n1+· · ·+ns ≤ n−1 and nj ≤ n/2 (j = 1, . . . , s). By solving this inequality
as similar to Lemma 1, we obtain the desired result. ��

Now we provide an outline of the proof of Theorem 2.

Proof (of Theorem 2, outline). We design algorithm Conn(u, k, x) that computes
arrays xu,q,b,l where u ∈ V (T ), q ∈ Q, b ∈ {0, 1}, and l ∈ {0, . . . , k}. The array
represents the solution to the subtree Tu such that the root (= u) has state
q and is included by a subtree if b = 1, and l subtrees are selected. If k = 0,
the solution is [0,−∞, . . . ,−∞]. If k = 1, we can solve the problem by solving
for-all-subtree version problem since the automaton is prefix closed. Thus, in
the following, we consider k ≥ 2. Let g(n, k) be the complexity of the algorithm
for n vertices with parameter k. We derive the recursive relation of g. We fix a
heavy path, and consider light subtrees adjacent to the heavy path.

Case 1: There is a light subtree Tv that contains at least k/2 com-
ponents. In this case, the subtree complement Tu \ Tv contains at most
k/2 components. Thus, we guess such subtree Tv and solve the problem on
Tu \ Tv and Tv separately. We can solve all the subtree complements simulta-
neously by calling the subtree-complement version of Conn(u, k/2, ∗). Also, we
can solve each subtree by calling Conn(v, k, ∗). The complexity of this approach
is g(n1, k) + · · · + g(ns, k) + O(g(n, k/2) log n).

Case 2: Otherwise; i.e., all the light subtrees contain at most k/2 com-
ponents. We call Conn(v, k/2, ∗) for all subtrees v, sequentially. The com-
plexity of this part is given by g(n1, k/2) + · · · + g(ns, k/2) ≤ g(n, k/2).



Constrained Tree Knapsack Problem 259

The total complexity g(n, k) of the algorithm satisfies

g(n, k) ≤ g(n1, k) + · · · + g(ns, k) + O(g(n, k/2) log n). (20)

By using n1 + · · · ns ≤ n − 1 and nj ≤ n/2 (j = 1, . . . , s), we obtain g(n, k) ≤
h(k)f(n)(log n)log k, where h(k) is a polynomial in k. ��
Example 5 (Connected Component Constrained Problem (again)). By using this
technique, the connectivity constrained problem can be solved in O(n log nC)
time, and the k connected component constrained problem can be solved in
O(n1+eC) time for any e > 0, since (log n)k = O(ne) for any e > 0.
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