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Preface

WALCOM, the Workshop on Algorithms and Computations, made a humble begin-
ning in Dhaka in 2007. The idea was to create an international platform of high quality
that would be easy to attend for researchers from South Asian countries. It has come a
long way since then. This proceedings volume contains papers presented at WALCOM
2019, the 13th International Conference and Workshop on Algorithms and Compu-
tations, held from February 27 to March 2, 2019, at the Indian Institute of Technology,
Guwahati (IIT Guwahati), India. The topics covered included diverse areas such as
computational geometry, combinatorial algorithms, approximation algorithms, graph
algorithms, graph drawing, parallel and distributed algorithms. The conference was
organized by the Department of Mathematics, IIT Guwahati, as a part of the Silver
Jubilee celebration of the Institute.

Initially, WALCOM was held in Bangladesh and India on alternate years. In 2016 it
made the first step outside and was hosted in Nepal. The 2017 edition in Taiwan was a
grand success. After another two rounds in Dhaka, Bangladesh, in 2018 and Guwahati,
India, this year, it is again set to go out to Singapore in 2020. Currently WALCOM
enjoys a high degree of respect from the research community. A large portion of the
credit goes to the eminent scientists in the Steering Committee from Bangladesh,
Germany, India, Japan, Korea, and the UK. The Program Committee for 2019 had 30
distinguished members from 17 different countries such as Australia, Austria,
Bangladesh, Brazil, Canada, France, Germany, Greece, India, Israel, Italy, Japan, The
Netherlands, Oman, South Korea, Taiwan, and the USA.

The growing popularity of WALCOM is reflected in the fact that we had 100
submissions by 240 authors from 21 different countries. Each paper was reviewed by at
least three experts. Finally, 30 papers were selected for presentation at the conference.
Continuing with the tradition of WALCOM, The Best Paper and The Best Student
Paper were awarded. The decision was announced during the conference. We
acknowledge the continued support from Springer in publishing the proceedings in the
prestigious LNCS series. We are happy to announce that like previous years, this year
too, two special issues — one of Journal of Graph Algorithms and Applications and
one of Theoretical Computer Science — are planned for extended and upgraded ver-
sions of selected papers from WALCOM 2019.

The rich tradition of WALCOM was continued by three invited talks by three very
distinguished scientists, namely, Professor Mark de Berg, Department of Computer
Science, TU Eindhoven, The Netherlands, Professor David Peleg, Department of
Computer Science and Applied Mathematics, Weizmann Institute of Science, Israel,
and Professor Saket Saurabh, Theoretical Computer Science Group, Institute of
Mathematical Sciences, India. We are grateful to the speakers for taking time from their
busy schedules and delivering excellent and illuminating lectures. We express our
gratitude to all the members of the Program Committee and the external reviewers for
their in depth reviews. We thank all the authors who submitted their valuable work to



the conference. We are happy to note that we were able to meet all the deadlines
without extensions. Our sincere appreciation to the members of the Steering Committee
for their guidance and advice. Special thanks are due the director and the administration
of IIT Guwahati for hosting the event and all other help. The EasyChair platform made
our life so much simpler. We greatly acknowledge the assistance received from the
Science and Engineering Research Board, Government of India and Capillary Tech-
nologies. It is difficult to get financial support for a conference in theoretical computer
science. Finally, hearty congratulations to the Organizing Committee of WALCOM
2019 for successfully organizing the event.

February 2019 Gautam K. Das
Partha S. Mandal

Krishnendu Mukhopadhyaya
Shin-ichi Nakano
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ETH-Tight Exact Algorithms for Hard
Geometric Problems Using Geometric
Separators (Abstract of Invited Talk)

Mark de Berg

Department of Computer Sciece, TU Eindhoven
M.T.d.Berg@tue.nl

Many well-known optimization problems on graphs, including INDEPENDENT SET,
HAMILTONIAN CYCLE, and the TRAVELING SALESMAN PROBLEM (TSP) are NP-hard. Hence,
we do not expect to have polynomial-time algorithms for solving these problems
exactly. However, we may still be able to solve them in so-called sub-exponential time,
that is, with an algorithm whose running time is of the form 2oðnÞ, where n is the input
size. This turns out to be the case for many problems—including the ones mentioned
above—when the input graph is planar. In particular, INDEPENDENT SET and HAMILTO-

NIAN CYCLE can be solved in 2Oð
ffiffi

n
p Þ time on n-vertex planar graphs. The fact that many

problems on planar graphs admit algorithms with 2Oð
ffiffi

n
p Þ running time has been dubbed

the square-root phenomenon. A main tool behind this phenomenon is the famous
Planar Separator Theorem, which states that for any planar graph G ¼ ðV ;EÞ there is a
subset S � V of Oð ffiffiffi

n
p Þ vertices whose removal splits G into connected components of

size at most 2n=3.
In the first part of my talk I will discuss some recent work [1] that extends these

results to certain classes of (geometric) intersection graphs. The intersection graph
induced by a set V of objects in the plane (or in some higher-dimensional space) is the
graph G ¼ ðV ;EÞ whose vertices correspond to the objects in V and where
E ¼ fðo; o0Þ 2 V � V : o\ o0 6¼ ;g. In other words, there is an edge between two
objects if and only if they intersect each other. Intersection graphs are a generalization
of planar graphs, because any planar graph can be realized as the intersection graph of a
set of disks—actually, even as the intersecting graph of a set of disks with disjoint
interiors. Intersection graphs can have arbitrarily large cliques and so they do not have
small separators. Still, as I will explain in the talk, there is a “clique-based” separator
for intersection graphs of disks (and, more generally, of so-called fat objects) that
makes it possible to solve many problems on such graphs in sub-exponential time.
When the disks (or: fat objects) are similar in size, then this approach even leads to
algorithms with running time 2Oð

ffiffi

n
p Þ, which is ETH-tight: unless the Exponential-Time

Hypothesis fails, there can be no algorithm that solves these problems on unit-disk
graphs in 2oð

ffiffi

n
p Þ time.

This work was supported by the NETWORKS project, funded by the Netherlands Organization
for Scientific Research NWO under project no. 024.002.003.



In the second part of the talk I will focus on EUCLIDEAN TSP, where we want to find a
shortest tour visiting a given set P of n points in the plane (or in some
higher-dimensional space). The celebrated Help-Karp dynamic-programming algo-
rithm solves TSP on general weighted graphs in Oðn22nÞ time, but no sub-exponential
algorithms are known for this case. For the EUCLIDEAN TSP, however, there are algo-
rithms with nOð

ffiffi

n
p Þ ¼ 2Oð

ffiffi

n
p

lognÞ running time. I will explain a recent result [2] which
improves this to 2Oð

ffiffi

n
p Þ, which is ETH-tight. The algorithm is based on a new

“distance-based” separator theorem for point sets.

References

1. de Berg, M., Bodlaender, H.L., Kisfaludi-Bak, S., Marx, D., van der Zanden, T.: A framework
for ETH-tight algorithms and lower bounds in geometric intersection graphs. In: 50th ACM
Symposium on Theory of Computing (STOC 2018), pp. 574–586 (2018)

2. de Berg, M., Bodlaender, H.L., Kisfaludi-Bak, S., Kolay, S.: An ETH-tight exact algorithm
for Euclidean TSP. In: 59th Annual IEEE Symposium on Foundations of Computer Science,
pp. 450–461 (2018)
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Graph Profile Realizations
and Applications to Social Networks

Amotz Bar-Noy1, Keerti Choudhary2, David Peleg2(B), and Dror Rawitz3

1 City University of New York (CUNY), New York City, USA
amotz@sci.brooklyn.cuny.edu

2 Weizmann Institute of Science, Rehovot, Israel
{keerti.choudhary,david.peleg}@weizmann.ac.il

3 Bar Ilan University, Ramat-Gan, Israel
dror.rawitz@biu.ac.il

Abstract. The social standing of individuals in a social network is typ-
ically determined locally according to the individual’s neighborhood or
by a comparison between the individual and its neighbors. In this paper,
we consider various criteria that measure social status and the extent in
which individuals are satisfied with their social status. We study these
criteria from the point of view of network realization: given a satisfac-
tion specification, decide whether there exists a network realizing this
specification.

1 Introduction

Consider a society consisting of a population V of n individuals with id’s V =
{1, . . . , n}, connected by a social network. The status of individuals in such a
society reflects their wealth, power or social influence. This paper focuses on
questions related to possible local status relations of individuals in the network.

We consider two main settings. In the first, the individuals are fully ranked
by their status. For simplicity, we assume that the status of an individual is
represented by its id, namely, i + 1 has a higher status than i. Note that this
ranking is independent of the structure of the social network. In the second
setting, the status of an individual reflects the number of social connections it has
in the network, namely, its degree. Naturally, other settings may be considered,
e.g., one where individuals are grouped into (ranked) social classes, or one where
individuals are grouped into unordered classes, say, ones reflecting opinions or
political affinity.

We are interested in the way individuals view their social status, the criteria
they apply to evaluate their social status, and the extent to which they are
satisfied (or unsatisfied) with their relative social status. Status criteria may be
absolute or relative, namely, dependent on comparisons with the status of other
individuals in the nearby vicinity. Various notions by which an individual may
compare itself with its neighbors were considered in the literature. We may say
that a vertex i is satisfied if its rank or degree satisfies a certain (absolute or
relative) condition.
c© Springer Nature Switzerland AG 2019
G. K. Das et al. (Eds.): WALCOM 2019, LNCS 11355, pp. 3–14, 2019.
https://doi.org/10.1007/978-3-030-10564-8_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-10564-8_1&domain=pdf
https://doi.org/10.1007/978-3-030-10564-8_1


4 A. Bar-Noy et al.

In this context, one may study the relation between the structure of a given
social network and the satisfaction of its members. The straightforward direction
of this study involves looking at some given social networks and analyzing their
satisfaction profile. Our focus here, however, is on the interesting dual problem
where, rather than being given the social network, we are given a satisfaction
specification, namely, a description of the desired pattern of satisfaction, and are
asked whether there is a network realizing this specification, namely, a graph
whose satisfaction profile conforms to the given specification.

In this paper, we introduce this line of study via a number of simple examples,
illustrating different aspects of the problem.

Related Work. Dual problems of the type studied in this paper, sometimes
referred to as graph realization or graph construction problems, were considered
in a variety of contexts. The most well-studied problem of this type is that
of degree sequences, a.k.a. graphic sequences. An n-element integer sequence σ
is graphic if there exists an n-vertex graph whose degree sequence equals σ.
Conditions for a sequence to be graphic and algorithms for deciding if a sequence
is graphic and constructing a realizing graph were studied in [5,8,10–12,15–19],
and some of them turned out to be relevant in the context of social networks,
cf. [3,6,13]. A recent generalization of the problem, named the graphic deviation
problem, concerns finding, for a given sequence σ that is not graphic, the graph
whose degree sequence is closest to that of the given sequence [4]. Sampling
questions on regular graphs were studied, e.g., in [20]. Other types of graph
realizations are, e.g., the neighborhood list problem [1], the related shotgun
assembly problem [14], and a number of other problem discussed in [2].

2 Rank-Based Notions of satisfaction

Let us start with a simple relative rank-based notion of satisfaction.

Example 1: HR>. Under this satisfaction measure, the profile is an n-entry
vector 〈s1, . . . , sn〉, where 0 ≤ si ≤ n−1 for every i, and the requirement is that
each vertex i has exactly si neighbors whose id is smaller than i.1

Observation 1. The specification HR> is realizable if and only if si ≤ i−1 for
every 1 ≤ i ≤ n.

Proof: Let us first suppose that the required condition holds. Then we construct
G by adding, for every vertex 2 ≤ i ≤ n, exactly si edges, connecting it to the
vertices {i − 1, . . . , i − si}. (All the ranks i − x, for 1 ≤ x ≤ si, do exist, since
i − x ≥ i − si ≥ i − i + 1 = 1 by the required condition.)

Conversely, suppose si ≥ i for some 1 ≤ i ≤ n. Then it is impossible to
connect vertex i to si neighbors of rank lower than its own, since there are only
i − 1 < si such vertices altogether.

1 A similar example can be studied where each vertex i has at least si such neighbors.
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Next we turn to local-patriotic notions of satisfaction. The previous example
compared the status of an individual to others in its neighborhood. One may
consider also satisfaction notions based on the quality of one’s neighborhood.
This may be relevant in societies where being connected to the high echelons of
society is of value even when one’s own rank is not particularly high.

Example 2: Hhs(k, ε). Here i is satisfied if at least an ε-fraction of its neighbors
belong to “high society”2, namely, have rank higher than k.

In this context, it makes little sense to consider isolated vertices. In fact,
if isolated vertices are allowed, then the empty graph is a valid realization.
We therefore examine what happens when every vertex must have at least one
neighbor.

Let A = {i | i > k} be the set of “highly ranked” vertices (of rank higher
than k), and let B = V \ A be the remaining vertices. By definition, |A| = n − k
and |B| = k.

We show that if the class of “highly ranked” vertices is not too small, i.e.,
not smaller than Θ(

√
n), then there exists a realization. The next observation

gives the exact bound. Let δ = ε/(1 − ε).

Lemma 1. The specification Hhs(k, ε) is realizable if and only if

n − k − 1 ≥ δ ·
⌈

k

n − k

⌉
. (1)

A B

Proof: We first show that Condition (1) is suffi-
cient. Given n and k, construct a split graph Gn,k as
follows. Connect the vertices of the set A by a clique
and connect each vertex of B as a leaf to one vertex
of A, in an evenly distributed way. We now show
that if Condition (1) holds, then Gn,k is a realizing
graph for the specification Hhs(k, ε).

Let dA
i and dB

i denote the number of neigh-
bors of i in G that belong to the sets A and B,
respectively. It follows that dA

i = 1 and dB
i = 0 for

i ∈ B, and that dA
i = |A| − 1 = n − k − 1 and

dB
i ∈ {�k/(n − k)	 , 
k/(n − k)�} for i ∈ A. Clearly,

every vertex of B is satisfied. A vertex i ∈ A is satisfied if dA
i ≥ ε · dA

i

dA
i +dB

i
, or, if

dA
i ≥ δ ·dB

i . Condition (1) implies that dA
i = n−k−1 ≥ δ · 
k/(n−k)� ≥ δ ·dB

i ,
hence the specification Hhs(k, ε) is realized by Gn,k.

2 One may consider also a non-uniform version of this example, where different vertices
desire different percentiles or different thresholds.
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Next we prove that Condition (1) is necessary, by showing that if a spec-
ification is realizable, then the construction Gn,k realizes it as well. Consider
a realizable specification Hhs(k, ε), and let G be the realizing graph. One may
modify G in three stages as follows. First, add all missing edges between vertices
in A, and remove any edge between two vertices in B, producing a split graph.
Notice that the modification may only increase dA

i for i ∈ A and decrease dB
j

for j ∈ B. Hence, the resulting graph G1 still realizes the specification. Next, for
every j ∈ B, remove all edges from j to A but one. As dB

j = 0 for every j ∈ B, j

remains satisfied. Also, for i ∈ A, dB
i may only decrease and thus i remains sat-

isfied. It follows that the resulting G2 realizes the specification. Finally, balance
the degrees of vertices in A, by evenly distributing the leaves of B among them.
Notice that the resulting graph is Gn,k. Since maxi∈A dB

i may only decrease dur-
ing this stage, this graph still realizes the specification Hhs(k, ε). Note that in
Gn,k, there must exist at least one vertex i ∈ A such that dB

i = 
k/(n−k)�. Also
dA

i = n − k − 1. Since Gn,k realizes the specification Hhs(k, ε), it follows that i
is satisfied, so n − k − 1 = dA

i ≥ δ · dB
i = δ · 
k/(n − k)�, implying Condition (1).

Hence the condition is necessary.

Corollary 1. (1) The condition n−k ≥ √
δ
√

n+1 is sufficient for the realizabil-
ity of specification Hhs(k, ε); (2) The condition n − k ≥ √

δ
√

n − δ is necessary
for the realizability of specification Hhs(k, ε).

Proof: To prove Part (1), suppose n − k ≥ √
δ
√

n + 1 holds. Rearranging and
squaring, we get (n − k − 1)2 ≥ δn, hence also

(n − k − 1)(n − k) ≥ δn.

Rearranging again, we have

n − k − 1 ≥ δ · n

n − k
= δ ·

(
k

n − k
+ 1

)
,

which implies that

n − k − 1 ≥ δ ·
⌈

k

n − k

⌉
.

By Lemma 1, the specification is realizable.
To prove Part (2), suppose the specification is realizable. Therefore, Condi-

tion (1) of Lemma 1 holds, implying that n − k − 1 ≥ δ · k/(n − k). Rewriting
and squaring, we get that

(n − k)2 ≥ (δk/(n − k) + 1)(n − k) = δk + n − k = δn + (1 − δ)(n − k),

or equivalently,
(n − k)2 + (δ − 1)(n − k) ≥ δn.
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Therefore also

(n − k + δ)2 = (n − k)2 + 2δ(n − k) + δ2 ≥ δn.

Taking the square root and rearranging again, we get that n − k ≥ √
δ
√

n − δ,
establishing the claim.

Corollary 2. For constant ε, the specification is realizable if and only if the
number of highly ranked vertices in A satisfies n − k = Ω(

√
n).

In particular, note that δ = 1 for ε = 1/2. Corollary 1 then implies that in
order to ensure that at least half the neighbors of every vertex i are of rank k
or higher, the number of vertices of rank k or higher must be at least

√
n − 1,

and
√

n + 1 such vertices suffice.

3 Degree-Based Notions of satisfaction

The satisfaction notions discussed next refer, e.g., to connections and influence,
and hence rely on the vertex degrees, rather than on their id’s. Our first example
considers an absolute degree-based notion of satisfaction.

Example 3: HD(k). Here, a vertex i is satisfied if
its degree is at least k. As the ranks do not play a
role in the definition of satisfaction, the profile can be
condensed into a pair 〈n, �〉, for n ≥ 2 and 0 ≤ � ≤ n,
specifying that exactly � of the n vertices in the graph
are satisfied.

Analysis: For an n-vertex specification, the range
0 ≤ k ≤ n − 1 and 0 ≤ � ≤ n can be classified into
two categories, the realizable and non-realizable spec-
ifications. Each category can be partitioned further
into a number of sub-ranges as follows (see figure for
a schematic illustration of the partition).

Category A: Realizable specifications.

Case A1: k = 0 and � = n. This case is realizable by the empty graph.
Case A2: k ≥ 1 and � ≤ k − 1.

A possible realization is a split graph consisting
of a clique K� of � vertices and an independent
set I of n − � vertices, where all edges in K� × I
are contained in the edge set. In this case, the
degree of each of the � vertices in K� is n−1 ≥ k
and the degree of each vertex in I is � < k. See
the figure, in which the dotted lines represent
edges.

K�

I
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Case A3: k ≥ 1 and � ≥ k+1. A possible realization is a split graph consisting
of a clique K� of � vertices and an independent set I of n − � vertices, where
none of the edges in K� × I are contained in the edge set. In this case, the
degree of each of the � vertices in K� is � − 1 ≥ k and the degree of each
vertex in I is 0 < k. See the previous figure, omitting the dotted lines.

Case A4: 2 ≤ k = � ≤ n − 2.
A possible realization is a split graph consisting
of a clique K� of � vertices, an independent set
I of n − � − 2 vertices, where none of the edges
in K� × I exist, and two vertices u and v such
that every vertex of K� is connected to exactly
one of u or v, while the degree of u and v is at
least 1. In this case, the degree of each of the �
vertices in K� is � = k, the degree of each vertex
in I is 0, and the degree of both u and v is less
than � = k. See figure (where n = 6 and � = 3).

K�

I

v

u

Category B: Non-realizable specifications. The three easily verified cases are
(B1) k = 0 and � < n, (B2) k = � = 1, and (B3) k = � = n − 1.

We remark that for the measure HD(k) we have also a full characterization
for the special cases where the realizing graph must be connected and when it
is required to be a forest or a tree. These characterizations are omitted for lack
of space, and will be described in the full paper.

Next we consider relative degree-based notions of satisfaction.

Example 4: HDN (k). A vertex i is satisfied if its degree is greater than at least
k of its neighbors. Again, the profile can be represented by a pair 〈n, �〉, for n ≥ 2
and 0 ≤ � ≤ n, specifying that exactly � of the n vertices are satisfied.

Analysis: For k = 0, the only realizable specification is clearly 〈n, n〉.
For k = 1, the specification is realizable for n ∈ {2, 3, 4, 5, 6} if and only if
0 ≤ � ≤ n − 2, and for n ≥ 7 if and only if 0 ≤ � ≤ n − 1 (see [2] for details).
Hereafter, we consider 2 ≤ k ≤ n − 1.

It is easy to verify that for � ≥ n − k + 1, the specification 〈n, �〉 is non-
realizable, since the k lowest degree vertices in the graph must be unsatisfied.

For � ≤ n − k, the specification is realizable by a split graph construction
similar to that of case A2 in the previous Example 3.

Example 5: HDav. Here i is satisfied if its degree is greater than the average
degree of its neighbors. Conversely, i is unsatisfied if its degree is less than the
average degree of its neighbors. A vertex that is neither satisfied nor unsatisfied
is referred to as indifferent. (Note that a vertex without neighbors is considered
indifferent.) In this case, the profile is represented by a triple 〈n, h, s〉, where
h, s and n − h − s, respectively, are the number of satisfied, unsatisfied, and
indifferent vertices.
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Analysis: The specifications
can be classified into two cat-
egories, the realizable specifi-
cations and the non-realizable
ones. Each category can be par-
titioned further into a number of
sub-ranges as follows (see figure
for a schematic illustration of the
partition.)

Category A: Realizable spec-
ifications.

Case A1: 〈n, 0, 0〉: This specification is realizable by a complete graph Kn.
Case A2: 〈n, h, s〉, for h ≥ 1 and s ≥ 2: This case is realizable using a clique

Kn−h−s on n − h − s vertices and a split graph where one side is a clique
Kh and the other is an independent set Is. The edge set of the split graph
contains all possible edges between the two sides.

Case A3: 〈n, h, 1〉, where 2 ≤ h ≤ n−3 is even. This case is realizable as follows.
First construct a clique Kh+2 over the vertices {1, . . . , h + 2}. Remove from
it the matching {(1, 2), (3, 4), . . . , (h − 1, h)} (of h/2 edges), and connect the
vertices {1, 2, . . . , h} to an additional new vertex h+3. Finally, add a separate
clique Kn−3−h on the vertices {h + 4, . . . , n}.

Case A4: 〈n, h, 1〉, where 3 ≤ h ≤ n−5 is odd. This case is realizable as follows.
First construct a clique Kh+4 over the vertices {1, . . . , h+4}. Remove from it a
cycle on the h vertices {1, 2, . . . , h} and the two edges {(h+1, h+2), (h+3, h+
4)} on the remaining four vertices. Connect the cycle vertices to the vertex
h + 5. Finally, add a separate clique Kn−h−5 on the vertices {h + 6, . . . , n}.

Case A5: 〈n, 1, 1〉, where n ≥ 6. This case is realizable using a construction
similar to that of the figure in case A6 of Example 6.

Category B: Non-realizable specifications.

Case B1: 〈n, 0, s〉, for s > 0: If there were a realization, then
∑

i

∑
j∈N(i) dj >∑

i d2i , yielding a contradiction (as these sums are always equal in graphs).
Case B2: 〈n, h, 0〉, for h > 0: If there were a realization, then

∑
i

∑
j∈N(i) dj <∑

i d2i , again yielding a contradiction.
Case B3: 〈n, n − 1, 1〉: We show that there is no realization in this case. Assume,

toward contradiction, that G is a realization with n − 1 satisfied vertices and
one unsatisfied vertex. Let x be the only unsatisfied vertex and denote its
degree by dx. Observe that all the other degrees in the graph are strictly



10 A. Bar-Noy et al.

greater than dx. Moreover, observe that V \ (N(x)∪{x}) = ∅, since otherwise
dx = n−1. Let y be a satisfied vertex whose degree dy is the minimum among
all the vertices in V \ {x}. It must be that y ∈ N(x), because the satisfaction
of y depends on the existence of a neighbor whose degree is strictly less than
its own (and x is the only vertex that can fit this requirement). It also follows
that any vertex in V \ (N(x)∪{x}) has a degree strictly larger than dy. Since
y is satisfied, it follows that d2y >

∑
z∈N(y) dz, or Sy =

∑
z∈N(y)(dy −dz) > 0.

By the choice of y, the only positive contribution to Sy is dy − dx. Now y is
connected to x and can have at most dx−1 neighbors in N(x), since it belongs
to N(x). Therefore, y must have at least dy −dx neighbors in V \(N(x)∪{x}).
Recall that the degree of each of y’s neighbors from V \(N(x)∪{x}) is strictly
larger than dy, hence each one of them contributes at least −1 to Sy, for a
total of at least −(dy − dx). As a result, Sy is non-positive and y cannot be
satisfied.

Case B4: 〈n, 1, 1〉 for n ≤ 5: A direct case analysis reveals that these specifica-
tions are non-realizable.

We suspect that the remaining unclassified cases, namely, 〈n, n − 4, 1〉 for odd
n, 〈n, n − 3, 1〉 for even n, and 〈n, n − 2, 1〉 for any n, are also non-realizable.

The satisfaction profile based on the measure HDav is related to the well-
known friendship paradox, by which in most social networks, most vertices are
unsatisfied, in the sense that their neighbors have more neighbors (on average)
than themselves [7,9].

Note that there are no realizations with n − 1 satisfied vertices, but one
can have n − 1 unsatisfied vertices. This asymmetry may possibly be viewed
as another by-product of the Friendship Paradox, in which high degree vertices
influence the situation more than low degree vertices.

Finally, we consider a homophilic degree-based notion of satisfaction.
Homophily refers to the tendency for people to have (non-negative) ties with
people who are similar to themselves in socially significant ways. In social net-
works (graphs), homphily is usually measured by the similarities among the
degrees. We say that a vertex is close to regularity if its degree is “similar” to
the degrees of its neighbors. In its extreme manifestation, hereafter referred to
as regularity, the degree of a regular vertex must be equal to the degrees of all
of its neighbors3. By definition, if all the vertices are regular then the graph is
a regular graph. Moreover, under most definitions for regularity, all the vertices
of a regular graph are regular.

In a social network, an interesting realization problem may be to explore
constructions that guarantee homophily for a specified number of vertices. This
motivates the following example.

Example 6: HDH . Vertex i is satisfied if it is regular, namely, its degree is the
same as the degrees of all of its neighbors.

3 A more relaxed version requires the vertex degree to be roughly equal to the average
degree of its neighbors. See the previous section.
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Again, the specification 〈n, �〉
requires that exactly � of the n ver-
tices in the graph be regular.

Analysis: We classify the speci-
fications 〈n, �〉 of HDH into three
categories: the specifications realiz-
able by a connected graph, those
that are realizable by a discon-
nected graph (where an isolated
vertex is considered to be regular)
but not by a connected graph, and
the non-realizable specifications.

These categories can be parti-
tioned further into a number of sub-ranges as follows (see above figure for a
schematic illustration of the partition.)

Category A: Specifications 〈n, �〉 realizable by a connected graph.

Case A1: n ≥ 3 and � = 0. The specifications are realizable by a star graph
with n − 1 leaves.

Case A2: n ≥ 1 and � = n. These specifications are realizable by a clique Kn.
Case A3: n ≥ 5 and 1 ≤ � ≤ n−3, where

� = n/2 − 1.
These specifications are realizable as
follows. Start with a clique of size �+2
and a star with root s and n − � − 3
leaves. Erase an arbitrary edge (i, j)
from the clique and connect s to i and
j, as in the figure (where the number
in each vertex is its degree and there
is an x next to the irregular vertices).

Case A4: n ≥ 8, n even, and � = n/2 − 1. The construction of case A3 fails
when � + 1 = n − � − 1, since in this case the degree of the star root s equals
those of the clique vertices, so the above graph satisfies the specification
(n, �+3). However, noting that when n ≥ 8 the original star has n− �−3 ≥ 2
leaves, the above construction can be modified by disconnecting one of the
leaves of the star from the root s and connecting it to one of the other leaves
of the star.

Case A5: n = 6 and � = 2. Here, the 6-vertex path is a realization.
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Case A6: n ≥ 6, n even, and � =
n−2. Construct a 3-regular graph on
n − 2 vertices (note that a 3-regular
n-vertex graph exists for every even
n ≥ 4.) Next, delete one of the edges
of the 3-regular graph and connect its
endpoints to a new vertex. Finally,
connect one additional vertex to the
newly added vertex (see figure).

Category B: Specifications 〈n, �〉 realizable only by a disconnected graph.

Case B1: n = 4 and � = 1. A direct case analysis reveals that this specification
is unrealizable by a connected graph. A disconnected realization consists of a
3-vertex path and an isolated vertex.

Case B2: n ≥ 7, n odd, and � = n − 2.
This case can be realized by an n-
vertex disconnected graph composed
of the 6-vertex graph depicted in the
adjoining figure and a clique on n −
6 vertices. All vertices but the two
rightmost ones in the depicted graph
are regular.

Observation 2: The specification HDH for n ≥ 6, n odd, and � = n − 2, does
not have a realization by a connected graph.

Proof: Consider a connected n-vertex graph G, n ≥ 6, in which exactly n − 2
vertices are regular. Let x and y be the irregular vertices, whose degrees are dx

and dy respectively. Since any irregular vertex must have at least one irregular
neighbor, it follows that (x, y) is an edge in G. Moreover, the edge (x, y) is a
bridge in G, because all the rest of the vertices in the graphs have degree dx or
dy and there is no edge between a vertex of degree dx and a vertex of degree
dy. It follows that dx = dy, since otherwise the entire graph G is regular, in
contradiction to the assumption that G has two irregular vertices.

Omit the edge (x, y) from G to get two disjoint graphs, an nx-vertex graph
Gx and an ny vertex graph Gy. The degree of x in Gx is dx − 1, therefore the
sum of the degrees in Gx is nx · dx − 1. This sum must be even, hence nx is odd.
Similarly ny is odd. As a result, n = nx + ny is an even number.

Category C: Non-realizable specifications 〈n, �〉.

Case C1: n ∈ {1, 2} and � = 0. The specification cannot be realized for n ∈
{1, 2} with � = 0 since any graph of one or two vertices is regular.
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Case C2: n ≥ 2 and � = n − 1. The specification cannot be realized for n ≥ 3
and � = n − 1. To see this, suppose that there exists a realizing graph G,
and w.l.o.g. let n be the irregular vertex. If its degree is dn = 0, then n is
regular too, a contradiction. Therefore, dn = k > 0 and let i1, . . . , ik be its
neighbors. Since each such ij is regular, it must satisfy dij = dn = k. Hence,
the degree of vertex n is equal to the degrees of all of its neighbors, which
makes n regular, a contradiction.

Case C3: n ∈ {3, 4, 5} and � = n − 2. In each of these cases, it can be verified
by direct case analysis that the specification cannot be realized.

Finally, let us remark that for the measure HDH as well we have also a full
characterization for the special case where the realizing graph is required to be
a forest or a tree. This characterization is again deferred to the full paper for
lack of space.
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Abstract. Parameterized complexity is one of the most established
algorithmic paradigms to deal with computationally hard problems. In
the first two decades, the field largely focused on problems arising from
studies of graphs and networks. However, lately the focus has changed
substantially and it has started to permeate into other fields such as
computational geometry, and computational social choice theory. In this
article, we will survey some exciting developments in the emerging field
of parameterized computational geometry through our contributions. We
will focus on designing efficient parameterized algorithms on unit-disk
graphs via new graph decomposition theorems.

1 Introduction

While many interesting graph problems remain NP-complete even when
restricted to geometric graphs such as planar graphs and unit-disk graphs,
the restriction of a problem to geometric graphs is usually considerably more
tractable algorithmically than the problem on general graphs. Over the last
four decades, it has been proved that many graph problems on planar graphs
admit subexponential time algorithms [16,22,29], subexponential time param-
eterized algorithms [1,28,30], linear kernels [2,4,6] and (Efficient) Polynomial
Time Approximation Schemes ((E)PTAS) [3,10,17,18,23,24,27].

It is very natural to repeat the algorithmic successes on planar graphs and
more generally on graphs excluding a fixed graph H as a minor on other geomet-
ric graphs. In last few years, there has been successful attempt in extending the
methods and techniques used for designing efficient algorithms (approximation,
exact or parameterized) on planar graphs to geometric graphs such as unit-disk
graphs and map graphs. In this article we will focus only on unit-disk graphs and
describe various new tools, primarily graph decomposition theorems for unit-disk
graphs and show its applicability in designing efficient parameterized algorithms.

We start by giving two well known methods for designing efficient parameter-
ized algorithms, namely, the theory of bidimensionality [11–13] and Baker style
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vertex/edge decomposition theorems [3] (Sect. 3). In Sect. 4 we extend the ideas
of bidimensionality to unit-disk graphs [21]. However, this method only works
when the problem in question is easily solvable on cliques. So to extend the appli-
cability of these ideas, we define a notion of clique-grid graphs [20] and show its
utility in Sect. 5. In particular we do as follows. If an input n-vertex unit-disk
graph G contains a clique of size poly(k) (such a clique can be found in polyno-
mial time), then we have a trivial Yes-instance or No-instance, depending on
the problem. Otherwise, we show that the unit disk graph G in a Yes-instance
of the problem admits, sometimes after a polynomial time preprocessing, a spe-
cific type of (ω,Δ, τ)-decomposition, where the meaning of ω, Δ and τ is as
follows. The vertex set of G is partitioned into cliques C1, . . . , Cd, each of size
at most ω = kO(1). We also require that after contracting each of the cliques
Ci to a single vertex, the maximum vertex degree Δ of the obtained graph G̃
is O(1), while the treewidth τ of G̃ is O(

√
k). Moreover, the corresponding tree

decomposition of G̃ can be constructed efficiently. We use the tree decomposi-
tion of G̃ to construct a tree decomposition of G by “uncontracting” each of the
contracted cliques Ci. While the width of the obtained tree decomposition of G
can be of order ω · τ = kO(1), we show that each of our parameterized prob-
lems can be solved in time f(Δ) · ωf(Δ)·τ . Here we use dynamic programming
over the constructed tree decomposition of G, however there is a twist from the
usual way of designing such algorithms. This part of the algorithm is problem-
specific—in order to obtain the claimed running time, we have to establish a
very specific property for each of the problems. Finally, in Sect. 6, we give a
Baker style contraction decomposition on unit-disk graphs and show its utility
in designing faster parameterized algorithm for Minimum Bisection. The final
results are based on [19].

2 Preliminaries

In this section we give some important notations. All graphs considered in this
paper are finite, undirected and simple. For the terms which are not explicitly
defined here, we use standard notations from [15]. For a graph G, its vertex set
is denoted by V (G) and its edge set is denoted by E(G). For a vertex v ∈ V (G),
its (open) neighbourhood NG(v) is the set of all vertices adjacent to it and its
closed neighborhood is the set NG(v) ∪ {v}. Given an edge e = xy of a graph
G, the graph G/e is obtained from G by contracting e. That means that the
endpoints x and y are replaced by a new vertex vx,y which is adjacent to the old
neighbors of x and y (except for x and y). A graph H obtained by a sequence
of edge-contractions is said to be a contraction of G. A graph H is a minor of a
graph G if H is the contraction of some subgraph of G. Let G,H be two graphs.
A subgraph G′ of G is said to be a minor-model of H in G if G′ contains H as a
minor. We say that a graph G is H-minor-free when it does not contain H as a
minor. We also say that a graph class G is H-minor-free. A graph class G is said
to be minor-closed/contraction-closed if every minor/contraction of a graph in
G also belongs to G.
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Given a positive integer t, we denote by �t the t × t grid. Formally, for a
positive integer t, a t × t grid �t is a graph with vertex set {(x, y) : x, y ∈
{1, . . . , t}}. Thus �t has exactly t2 vertices. Two different vertices (x, y) and
(x′, y′) are adjacent if and only if |x − x′| + |y − y′| = 1.

Planar Graphs. A drawing of a graph G on the plane is the mapping of each
vertex in V (G) to a point in the plane, and of each edge {u, v} ∈ E(G) to a plane
curve whose extreme points are the points mapped to u and v. An embedding of
a graph G on the plane is a drawing of G on the plane such that any two distinct
plane curves of the drawing can intersect only at their endpoints. A planar graph
is a graph that can be embedded on the plane, and a plane graph is a planar
graph with a fixed embedding.

Unit Disk Graphs. Given a set of geometric objects O, the intersection graph
of O is the graph G with the vertex set V (G) = O and the edge set E(G) =
{{u, v} : u, v ∈ O, u ∩ v �= ∅}. That is, every geometric object is represented
by a vertex, and two vertices are adjacent if and only if the objects that they
represent intersect.

Let P = {p1 = (x1, y1), p2 = (x2, y2), . . . , pn = (xn, yn)} be a set of points
in the (Euclidean) plane. In the unit disk graph (UDG) model, for every i ∈ [n],
we let di denote the disk of radius 1 whose centre is pi. Accordingly, we denote
D = {d1, d2, . . . , dn}. Then, the UDG of D is the intersection graph of D.

Next we define the notion of a tree-decomposition of a graph G.

Definition 1. A tree decomposition of a graph G is a pair T = (T, β), where
T is a tree and β is a function from V (T ) to 2V (G), that satisfies the following
conditions.

–
⋃

x∈V (T ) β(x) = V (G).
– For every edge {u, v} ∈ E(G) there exists x ∈ V (T ) such that {u, v} ⊆ β(x).
– For every vertex v ∈ V (G), if v ∈ β(x) ∩ β(y) for some x, y ∈ V (T ), then

v ∈ β(z) for all z on the unique path between x and y in T .

The width of T is maxx∈V (T ) |β(x)|−1. Each β(x) is called a bag. The treewidth
of G, denoted by tw(G), is the minimum width over all tree decompositions of G.

3 Two Tools on Planar Graphs

In this section we give two well-known methods in designing efficient parameter-
ized algorithms on planar graphs. The first one generally yields a parameterized
subexponential algorithms.

3.1 Grid Theorems and Bidimensionality

Most of the modern results on planar graph use the notion of treewidth in cru-
cial ways. Let Gt be a graph class comprising graphs of treewidth at most t.
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Treewidth is a minor-closed parameter and hence the class Gt comprising graphs
of treewidth at most t is closed under taking minors. From the Graph Minors
theorem it follows that the property of having treewidth at most t can be char-
acterized by a finite set of forbidden minors Forb(Gt). That is, a graph G has
treewidth at most t if and only if it does not contain any graph H ∈ Forb(Gt)
as a minor. These forbidden graphs give us algorithmic handle on problems we
want to solve on planar graphs. But what do graphs of Forb(Gt) look like? We
apparently do not know the answer to this question. However, we would like to
get some “approximate characterization” for graphs having treewidth at most t
that is more tractable. Grids form the desired obstacle for planar graphs. The
following theorem is due to Robertson, Seymour and Thomas; we present here
a version with refined constants due to Gu and Tamaki.

Theorem 1 (Planar excluded grid theorem, [25,32]). Let t be a nonnega-
tive integer. Then every planar graph G of treewidth at least 9t/2 contains �t as
a minor. Furthermore, for every ε > 0 there exists an O(n2) algorithm that, for a
given n-vertex planar graph G and integer t, either outputs a tree decomposition
of G of width at most (9/2 + ε)t, or constructs a minor model of �t in G.

The planar excluded grid theorem (Theorem 1) provides a powerful tool for
designing parametrized subexponential time algorithms on planar graphs. In
all these algorithms we use the win/win approach. We first approximate the
treewidth of a given planar graph. If the treewidth turns out to be small, we
use standard dynamic programing to find a solution. Otherwise, we know that
our graph contains a large grid as a minor, and using this we should be able to
conclude the right answer to the instance.

Let us see an example of this strategy. Let us first look at Planar Vertex

Cover, i.e., for a given planar graph G and parameter k, we need to determine
whether there exists a vertex cover of G of size at most k. We need to answer
the following three simple questions.

(i) How small can be a vertex cover of �t? It is easy to check that �t contains a
matching of size 	t2/2
, and hence every vertex cover of �t is of cardinality
at least 	t2/2
.

(ii) Given a tree decomposition of width t of G, how fast can we solve Vertex

Cover? This can be done in time 2t · tO(1) · n [8].
(iii) Is Vertex Cover minor-closed? In other words, is it true that for every

minor H of graph G, the vertex cover of H does not exceed the vertex cover
of G?

The class of graphs with vertex cover at most k is minor-closed, i.e., a graph
G has a vertex cover of size at most k, then the same holds for every minor of G.
Thus, if G contains �t as a minor for some t ≥

√
2k + 2, then by (i) G has no

vertex cover of size k. By the planar excluded grid theorem, this means that the
treewidth of a planar graph admitting a vertex cover of size k is smaller than
9
2

√
2k + 2.
We summarize the above discussion with the following algorithm. For t =

�
√

2k + 2 and some ε > 0, by making use of the constructive part of Theorem 1
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we either compute in time O(n2) a tree decomposition of G of width at most
( 92+ε)t, or we conclude that G has �t as a minor. In the second case, we infer that
G has no vertex cover of size at most k. However, if a tree decomposition has been
constructed, then by (ii) we can solve the problem in time 2(

9
2+ε)�√

2k+2� ·kO(1) ·
n = 2O(

√
k)·n. The total running time of the algorithm is hence 2O(

√
k)·n+O(n2).

Let us extract the properties of Planar Vertex Cover which were essen-
tial for obtaining a subexponential parameterized algorithm.

(P1) The size of any solution in �t is of order Ω(t2).
(P2) Given a tree decomposition of width t, the problem can be solved in time

2O(t) · nO(1).
(P3) The problem is minor-monotone, i.e., if G has a solution of size at most k,

then every minor of G also has a solution of size at most k.

The above method of designing subexponential parameterized algorithms is
known as bidimensionality and we refer to [11–13] and book chapter in [8] for
further information.

3.2 Shifting Technique and Decomposition Theorems

We now present another technique for obtaining fixed-parameter tractable algo-
rithms for problems on planar graphs using treewidth. The main idea of the
approach originates in the work on approximation schemes on planar graphs,
pioneered in the 1980s by Baker [3]. The methodology is widely used in mod-
ern approximation algorithms, and is called the shifting technique, or simply
Baker’s technique. In this section we present a parameterized counterpart of this
framework.

We will exhibit the method with the Minimum Bisection problem. For a
given n-vertex graph G and integer k, the task is to decide whether there exists
a partition of V (G) into sets A and B, such that 	n/2
 ≤ |A|, |B| ≤ �n/2 and
the number of edges with one endpoint in A and the second in B is at most k. In
other words, we are looking for a balanced partition (A,B) with an (A,B)-cut
of size at most k. Such a partition (A,B) will be called a k-bisection of G. For
this problem we will use the following decomposition theorem.

Lemma 1 ([8]). Let G be a planar graph and k be a nonnegative integer. Then
the edge set of G can be partitioned into k + 1 sets such that after contracting
edges of any of these sets, the resulting graph admits a tree decomposition of
width at most ck, for some constant c > 0. Moreover, such a partition, together
with tree decompositions of width at most ck of respective graphs, can be found
in polynomial time.

We remark here that on planar graph there are forms of Lemma 1, where on the
place of edge contractions, we do edge deletions. Also, there is vertex version,
where we partition the vertex set and the operation is vertex deletion. See [8,
Chap. 7] for further information.
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It will be convenient to work with a slightly more general variant of the
Minimum Bisection problem. In the following, we will assume that G can be
a multigraph, i.e., it can have multiple edges between the same pair of vertices.
Moreover, the graph comes together with a weight function w : V (G) → Z≥0

on vertices, and from a k-bisection (A,B) we will require that 	w(V (G))/2
 ≤
w(A),w(B) ≤ �w(V (G))/2. Of course, by putting unit weights we arrive at
the original problem.

Theorem 2 ([8]). Minimum Bisection on planar graphs can be solved in time
2O(k) · W · nO(1), where W is the maximum weight of a vertex.

Proof. We use Lemma 1 to partition the set of edges of the input planar graph
G into sets S0 ∪ · · · ∪ Sk. Note here that Lemma 1 is formally stated only for
simple graphs, but we may extend it to multigraphs by putting copies of the
same edge always inside the same set Sj .

Suppose that there exists a k-bisection (A,B) of G, and let F be the set of
edges between A and B. Then at least one of the sets Sj is disjoint from F .
Let us contract all the edges of Sj , keeping multiple edges but removing created
loops. Moreover, whenever we contract some edge uv, we define the weight of
the resulting vertex as w(u) + w(v). Let Gj be the obtained multigraph. Since
F is disjoint from Sj , during this contraction we could have just contracted
some parts of G[A] and some parts of G[B]. Therefore, the new multigraph Gj

also admits a k-bisection (A′, B′), where A′, B′ comprise vertices originating in
subsets of A and B, respectively.

On the other hand, if for any Gj we find some k-bisection (A′, B′), then
uncontracting the edges of Sj yields a k-bisection (A,B) of G. These two obser-
vations show that G admits a k-bisection if and only if at least one of the multi-
graphs Gj does. However, Lemma 1 provided us a tree decomposition of each Gj

of width O(k). Hence, we can apply a standard dynamic programming algorithm
to each Gj , and thus solve the input instance (G, k) in time 2O(k) · W · nO(1).
Note here that the maximum weight of a vertex in each Gj is at most nW . ��

4 Bidimensionality on Unit-Disk Graphs

In this section we extend the bidimensionality framework to classes of geometric
graphs, in particular on unit-disk graphs. The key ingredient of the framework
on planar graphs was Planar excluded grid theorem (Theorem 1). We need a
analogue of this result for unit-disk graphs. However, a family of unit-disk graphs
contains arbitrarily large cliques and hence such linear excluded grid theorem
is not possible. We overcome this obstacle by showing that cliques are the only
pathological case. In particular, we show that the treewidth of every unit-disk
graph excluding a clique of constant size as a subgraph and excluding a k × k
grid as a minor, is O(k). Let Gt

U be the class of unit-disk graphs, not containing
clique Kt on t vertices as a subgraph. We refer to such graphs as Kt-free graphs.
In such graphs we have the following result.
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Lemma 2 ([21]). Any unit disk graph G with maximum vertex degree Δ con-
tains a 	 tw(G)

144Δ3 
 × 	 tw(G)
144Δ3 
 grid as a minor.

Lemma 2 is extremely useful for problems where cliques are easy to handle. We
show the utility of Lemma 2 by designing a parameterized subexponential time
algorithms for Vertex Cover.

Theorem 3 ([21]). Vertex Cover admits a parameterized subexponential
time 2O(k0.75 log k)nO(1) algorithm on n-vertex unit disk graphs.

Proof. Given k we set the value c = kε for a value of ε to be fixed later. The
algorithm will pass down the value of c to recursive calls such that c remains fixed
even though k changes. The algorithm proceeds as follows. Given an instance
(G, k), it finds a maximum clique C of G. Recall that we can find a maximum
clique in unit disk graphs in polynomial time [7,31]. If |C| > k + 1, then we
return that G does not have vertex cover of size at most k. Next we check
whether |C| ≤ c.

If |C| ≤ c, then the considered graph is in Gc
U . Using Lemma 2 and the prop-

erties of a vertex cover, we can conclude that tw(G) ≤ O(k0.5+ε). In this case we
apply the known algorithm for Vertex Cover that given a tree decomposition
of width t of a graph G on n vertices, finds a minimum sized vertex cover in
time 2tnO(1) [8]. Hence, in this case the running time of our algorithm will be
2O(k0.5+ε log k)nO(1).

In the case that |C| > c we know that any vertex cover F of G contains almost
all of the vertices in C, in particular, |C \ F | ≤ 1. The algorithm branches on
all 1 + |C| possibilities for X = F ∩ C and recursively solves the problem on
(G−X, k−|X|). If for some guess we have a yes answer, then we return yes, else,
we return no. The running time of this step is guided by the following recurrence
T (k) ≤ |C| ·T (k− (|C|−1))+T (k−|C|). Since |C| ≥ c a simple induction shows
that T (k) ≤ (3c)4k/c which again is upper bounded by 2O( 4k log c

c ) ≤ 2O( k log k
c ).

Substituting kε for c this yields that the total number of branches explored by the
algorithm is upper bounded by 2O(k1−ε log k). Now we choose ε such the number
of branches and the time spent in each branch is the same. Thus we choose an ε
such that 2O(k1−ε log k) = 2O(k0.5+ε). This gives us that ε = 1/4 is asymptotically
best possible. Thus our algorithm runs in time 2O(k0.75 log k)nO(1), concluding the
proof. ��

Again, if we notice, the proof of Theorem 3 does not use any property of
Vertex Cover. Theorem 3 is applicable for all bidimensional problems for
which there is a good branching strategy on cliques. However, for problems such
as Longest Path, given an undirected graph G and a non-negative integer k,
does there exists a path of length at least k, the above approach does not work.
In the next section we give our first decomposition theorem that allows us to do a
dynamic programming algorithm with running time dependence subexponential
on the parameter.
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5 Clique-Grid Decomposition Theorem

In this section, we introduce a family of “grid-like” graphs, called clique-grid
graphs, that is tailored to design subexponential algorithms on unit-disk graphs.
Given a unit disk graph G, we extract the properties of G that we would like to
exploit, and show that they can be captured by an appropriate clique-grid graph.
Let us begin by giving the definition of a clique-grid graph. Roughly speaking,
a graph G is a clique-grid graph if each of its vertices can be embedded into
a single cell of a grid (where multiple vertices can be embedded into the same
cell), ensuring that the subgraph induced by each cell is a clique, and that each
cell can interact (via edges incident to its vertices) only with cells at “distance”
at most 2. Formally,

Definition 2 ([20]). [clique-grid graphs] A graph G is a clique-grid graph if
there exists a function f : V (G) → [t] × [t′], for some t, t′ ∈ N, such that the
following conditions are satisfied.

1. For all (i, j) ∈ [t] × [t′], it holds that f−1(i, j) is a clique.
2. For all {u, v} ∈ E(G), it holds that if f(u) = (i, j) and f(v) = (i′, j′) then

|i − i′| ≤ 2 and |j − j′| ≤ 2.

Such a function f is a representation of G.

We note that a notion similar to clique-grid graph was also used by Ito and
Kadoshita [26]. One can show that unit-disk graphs are clique-grid graph.

Lemma 3 ([20]). Let D be a set of points in the Euclidean plane, and let G
be the unit disk graph of D. Then, a representation f of G can be computed in
polynomial time.

We conclude this section by introducing the definition of an �-NCTD, which
is useful for doing our dynamic programming algorithms.

Definition 3. A tree decomposition T = (T, β) of a clique-grid graph G with
representation f is a nice �-clique tree decomposition, or simply an �-NCTD, if
for the root r of T , it holds that β(r) = ∅, and for each node v ∈ V (T ), it holds
that

– There exist at most � cells, (i1, j1), . . . , (i�, j�), such that β(v) =
⋃�

t=1 f−1(it, jt), and
– The node v is of one of the following types.

• Leaf: v is a leaf in T and β(v) = ∅.
• Forget: v has exactly one child u, and there exists a cell (i, j) ∈ [t] × [t′]
such that f−1(i, j) ⊆ β(u) and β(v) = β(u) \ f−1(i, j).

• Introduce: v has exactly one child u, and there exists a cell (i, j) ∈
[t] × [t′] such that f−1(i, j) ⊆ β(v) and β(v) \ f−1(i, j) = β(u).

• Join: v has exactly two children, u and w, and β(v) = β(u) = β(w).
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We have the following computation result about �-NCTD.

Corollary 1 ([20]). Given a clique-grid graph G that is a unit disk/square
graph, a representation f of G and an integer � ∈ N, in time 2O(�) · nO(1),
one can either correctly conclude that G contains an α� × α� grid as a minor,
or compute a 5�-NCTD of G, where α = 1

100·5993 .

5.1 Feedback Vertex Set

In this section, we show that Feedback Vertex Set admits a subexponential-
time parameterized algorithm. More precisely, we prove the following.

Theorem 4 ([20]). Feedback Vertex Set on unit-disk graphs can be solved
in time 2O(

√
k log k) · nO(1).

First, we prove that there is a 2O(
√

k log k) ·nO(1) time algorithm which either
concludes that there is no feedback vertex set of size k or outputs an O(

√
k)-

NCTD of the input graph.

Lemma 4. Let (G,O, k) be an instance of Feedback Vertex Set on unit
disk graphs. Then, in time 2O(

√
k log k) · nO(1), one can either solve (G,O, k) or

obtain an equivalent instance (G, f, k) of Feedback Vertex Set on clique-
grid graphs together with an O(

√
k)-NCTD of G such that |f−1(L)| ≤ k + 2 for

any cell L.

Proof. First, by using Lemmata 3, we obtain a representation f of G. Notice that
if there is a cell L of f , such that |f−1(L)| ≥ k + 3, then there is no feedback
vertex set of size at most k in G, because f−1(L) is a clique of size at least k +3
in G. Now, by using Corollary 1 with � = 200 · 5993 · (�

√
k + 1) = O(

√
k), we

either correctly conclude that G contains a 2(�
√

k + 1) × 2(�
√

k + 1) grid as a
minor, or compute an O(

√
k)-NCTD of G. If there is a 2(�

√
k+1)×2(�

√
k+1)

grid as a minor, then there are more than k vertex-disjoint cycles in G and hence
(G,O, k) is a No-instance. ��

Because of Lemma 4, to prove Theorem 4, we can focus on Feedback Ver-

tex Set on clique-grid graphs, where the input also contains an O(
√

k)-NCTD.
That is, the input of Feedback Vertex Set on clique-grid graphs is a tuple
(G, f, k, T ) where G is a clique-grid graph with representation f , |f−1(L)| ≤ k+2
for all cells L of f and T = (T, β) is an O(

√
k)-NCTD of G. The following

observation follows from the fact that T = (T, β) is an O(
√

k)-NCTD and
|f−1(L)| ≤ k + 2 for any cell L of f .

Observation 1. For any v ∈ V (T ), |β(v)| = O(k1.5).

Now, using a non-standard dynamic programming algorithm one can show
the following which proves the main result of this section.

Lemma 5 ([20]). Feedback Vertex Set on clique-grid graphs can be solved
in time 2O(

√
k log k) · nO(1).
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6 Contraction Decomposition Theorem

In this section we give a Baker style contraction decomposition theorem (CDT)
for UDG’s. Notice that any clique of size n is a UDG. Thus, it is easy to see that
we can have neither a vertex/edge form of Baker style decomposition theorems
in UDGs. However, we obtain the following form of a CDT in UDGs.

Theorem 5. [Contraction Decomposition Theorem in UDGs, [19]] Let
G be an UDG and let k ∈ N. Then, there exist fixed constants α, β ∈ N (inde-
pendent of G and k) and a family of subset of edges, E1, . . . , Eαk, such that

–
⋃αk

i=1 Ei = E(G),
– each edge e ∈ E(G) belongs to at most β sets among E1, . . . , Eαk, and
– contracting any Ei, 1 ≤ i ≤ αk, induces a graph of treewidth at most O(k2).

Moreover, such a family of subsets of edges, E1, . . . , Eαk, together with tree
decompositions of width at most O(k2) of the respective graphs, can be found
in polynomial time.

Notice that the decomposition theorem given in Theorem 5 is slightly weaker
than a standard CDT in the following sense: an edge can participate in some
constant number of sets rather than just one. In the literature, among other
results, CDTs have been useful to design PTASes for problems that are contrac-
tion closed such as TSP [14], as well as FPT algorithms for cut problems such as
Minimum Bisection [5,8]. We remark that for this purpose, our slightly weaker
form of a CDT suffices; that is, if the standard form of a CDT can be utilized,
so is the weaker form.

In the realm of Parameterized Complexity, a direct application of Theorem 5
already brings us a 2O(k2)nO(1)-time algorithm for Minimum Bisection; though
faster than the known algorithm on general graphs [9], this running time is still
not of the form 2O(k)nO(1). We obtain Theorem 5 as a corollary to a slightly more
general form of a decomposition theorem. We use this decomposition theorem
to design substantially faster FPT algorithm for well-studied cut problems such
as Minimum Bisection, Steiner Cut, s-Way Cut, and Edge Multiway

Cut-Uncut on UDGs in [19].
The most central notion in our proof for Theorem 5 is that of a tree decom-

position whose bags are “chunked into parts”. After presenting its formal defi-
nition, we present an intuitive interpretation of this notion by relating it to our
algorithmic applications.

Definition 4 ([19]). Let G be a graph. A chunked tree decomposition CTD is
a triple (T, β, ζ) that satisfies the following conditions.

1. (T, β) is a tree decomposition of G.
2. ζ is a function that assigns to each node x ∈ V (T ) a partition of β(x).
3. For each node x ∈ V (T ) and for each part U of the partition ζ(x), the graph

G[U ] is connected.
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The chunkiness of (T, β, ζ) is the maximum number of parts in a partition
assigned by ζ, that is, maxx∈V (T ) |ζ(x)|.

To understand the intuition behind this definition, we find it convenient to
view a CTD (T, β, ζ) as follows. Suppose that each bag of the tree decomposition
(T, β) was partitioned into chunks that are (not necessarily maximal) cliques.
Such chunks are (i) hard to break (if the cliques are large enough) by the removal
of only a few edges, but (ii) there can be many such chunks. The first property
makes the resolution of a cut problem easy, while the second one makes it dif-
ficult. To circumvent this issue, we glue some chunks together, and think of a
glued chunk as one unit that cannot be broken. Thus, although a glued chunk
can potentially be easily broken (e.g., think of two large cliques connected by
a single edge), we forbid this operation. Specifically, when the decomposition
is utilized to construct a solution X for a cut problem, no edge having both
endpoints inside a glued chunk should be inserted into X. This intuition gives
rise to the following definition.

Definition 5 ([19]). Let (T, β, ζ) be a CTD of a graph G. For any edge e ∈
E(G), we say that (T, β, ζ) chunks e if it satisfies the following condition.

– For each node x ∈ V (T ) and for each part U of the partition ζ(x), if G[U ] is
not a clique, then at most one endpoint of e belongs to U .

More generally, for any S ⊆ E(G), we say that (T, β, ζ) chunks S if it chunks
every edge in S.

This definition bring us the so called parameteric version of our main decom-
position theorem, formally stated as follows.

Theorem 6. [Linear-Chunkiness Decomposition Theorem in UDGs
(Parameteric Version), [19]] There exists a polynomial-time deterministic
algorithm that, given a UDG G of a point set D and k ∈ N, outputs a collection
C of O(k) CTDs of G with the following properties.

1. Each CTD in the collection has chunkiness O(k).
2. For each subset of edges S ⊆ E(G) of size at most k, there exists at least one

CTD in C that chunks S.

Using Theorem 6 and a non-trivial dynamic programming, we get the follow-
ing algorithm for the Minimum Bisection problem.

Theorem 7 ([19]). Minimum Bisection on UDGs is solvable in time
2O(k)nO(1).

7 Concluding Remarks

In this survey article we described recent methods to design efficient parameter-
ized algorithms for problems on unit-disk graphs. Most of these algorithms were
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based on graph decomposition theorems for unit-disk graphs. Extending these
decomposition theorems to other geometric graph classes is a natural direction
to pursue. Finding new applications to these decompositions theorems in design-
ing approximation algorithms, exact algorithms and parameterized algorithms
is another set of open problems.
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Abstract. Let C be a set of n customers and F be a set of m facilities.
An r-gather clustering of C is a partition of the points in clusters such
that each cluster contains at least r points. The r-gather clustering prob-
lem asks to find an r-gather clustering which minimizes the maximum
distance between any two points in a cluster. An r-gathering of C is an
assignment of each customer c ∈ C to a facility f ∈ F such that each open
facility has zero or at least r customers. The r-gathering problem asks
to find an r-gathering that minimizes the maximum distance between a
customer and its facility. In this work we consider the r-gather cluster-
ing and r-gathering problems when the customers and the facilities are
lying on a “star”. We show that the r-gather clustering problem and the
r-gathering problem with points on a star with d rays can be solved in
O(rn+(r+1)ddr) and O(n+r2m+d2r2(d+logm)+(r+1)d2d(r+d)d)
time respectively.

Keywords: r-Gathering · Clustering · Facility location problem

1 Introduction

Let C be a set of n points. An r-gather clustering of C is a partition of the
points of C in clusters such that each cluster contains at least r points. The cost
of a cluster is the maximum distance between a pair of points in the cluster.
The cost of an r-gather clustering is the maximum cost among the costs of the
clusters. The r-gather clustering problem asks to find an r-gather clustering of
C with minimum cost [2].

Let C be a set of n customers and F be a set of m facilities, d(c, f) be the
distance between c ∈ C and f ∈ F . An r-gathering of C to F is an assignment
A of C to F such that each facility has at least r or zero customers assigned
to it. The cost of an r-gathering is maxc∈C{d(c,A(c))} which is the maximum
distance between a customer and its facility. The r-gathering problem asks to
find an assignment of C to F having the minimum cost [4]. This problem is also
known as the min-max r-gathering problem. The other version of the problem
is known as the min-sum r-gathering problem which asks to find an assignment
c© Springer Nature Switzerland AG 2019
G. K. Das et al. (Eds.): WALCOM 2019, LNCS 11355, pp. 31–42, 2019.
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which minimizes
∑

c∈C d(c,A(c)) [7,9]. In this paper we consider the min-max
r-gathering problem and we use the term r-gathering problem to refer the min-
max version unless specified otherwise.

Both the r-gather clustering and r-gathering problems are NP-complete in
general [2,4]. For r-gather clustering problem a 2-approximation algorithm is
known [2]. For the r-gathering problem a 3-approximation algorithm is known
and it is proved that the problem cannot be approximated within a factor less
than 3 for r > 3 unless P = NP [4]. Recently, both problems are considered in
a setting where all the points are lying on a line. An O(n log n) time algorithm
[3] based on the matrix search method [5], and an O(rn) time algorithm [10]
by reduction to the min-max path problem in a weighted directed graph [6] are
known for the r-gather clustering problem when all the points are on a line. For
the r-gathering problem an O((n + m) log(n + m)) time algorithm [3] based on
the matrix search method [1,5], an O(n + m log2 r + m logm) time algorithm
[8], and an O(n + r2m) time algorithm [10] by reduction to the min-max path
problem in a weighted directed graph [6] are known when all the customers and
facilities are on a line. Recently the r-gather clustering problem is studied on
mobile setting and a 4-approximation distributed algorithm is known [11].

In this paper, we consider both the r-gathering clustering and r-gathering
problem when the points are on a star. Consider a scenario where a number
of streets meet in a junction, and residents live by the streets. We wish to set
up emergency shelters on the streets so that each shelter can serve at least r
residents. The distance between two points are measured along the lines. We
also wish to locate shelters so that evacuation time span can be minimized.
This scenario can be modeled by the r-gather clustering problem where all input
points C are located on a star. In an r-gather clustering of C having the minimum
cost, each emergency shelters is located at the center of each cluster. On the
other hand, if the set F of possible locations of shelters on the star is also given
with the set C of residents and we wish to find an assignment of C to F with
minimizing the evacuation time so that each shelter serve at least r residents,
then the scenario can be modeled by the r-gathering problem where the points
of C and F are located on a star. In this case, an r-gathering corresponds to
an assignment of residents to shelters such that each “open” shelter serves at
least r residents and the r-gathering problem finds the r-gathering minimizing
the evacuation time.

When the points are on a line, each cluster of an optimal r-gather clustering
consists of consecutive points on the line [10]. However, when the points are
on a star, some clusters may not consists of consecutive points in the optimal r-
gather clustering. For example, see Fig. 1. We can observe that at least one cluster
consists of non-consecutive points in any optimal solution. Figure 1 demonstrates
an optimal solution for this scenario.

In this paper we give an O(rn+(r+1)ddr) time algorithm for r-gather clus-
tering problem on a star, and an O(n+r2m+d2r2(d+logm)+(r+1)d2d(r+d)d)
time algorithm for the r-gathering problem on a star, where d is the number of
rays that form the star.
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Fig. 1. An optimal 3-gather clustering on a star.

The rest of the paper is organized as follows. In Sect. 2 we define the problems
and define terms used in the paper. In Sect. 3 we give an algorithm for the r-
gather clustering problem on a star. In Sect. 4 we give an algorithm for the
r-gathering problem on a star. Finally Sect. 5 is a conclusion.

2 Preliminaries

In this section we define two problems and some terms used in this paper.
Let L = {l1, l2, · · · , ld} be a set of d rays where all the rays of L share a

common source point o. We call the set of rays L a star and the common source
point o the center of the star. The degree of a star is the number d of rays
which form the star. The Euclidean distance between two points p, q is denoted
by dE(p, q). We denote by d(p, q) the distance between two points p, q which
is measured along the rays. If p and q are both located on the same ray, then
d(p, q) = dE(p, q). On the other hand, if p and q are located on different rays,
then d(p, q) = dE(p, o) + dE(o, q). A cluster consists of points from two or more
rays is a multi-ray cluster, otherwise a single-ray cluster. Two points p and q are
the end-points of a cluster C if d(p, q) = cost(C). A point p in a cluster C is a far
point of C, denoted by e(C), if d(o, p) ≥ d(o, q) for each q ∈ C.

We now define the first problem. Let C = {c1, c2, · · · , cn} be n points located
on a star. An r-gather clustering of C is a partition of the points of C into clusters
such that each cluster contains at least r points. The cost of a cluster C, denoted
by cost(C), is maxp,q∈C d(p, q). The r-gather clustering problem asks to find an
r-gather clustering such that the maximum cost among the costs of clusters is
minimized, and such a clustering is called an optimal r-gather clustering. The
following result is known [10]. Note that any cluster with 2r or more points can
be divided into clusters so that each of which has at most 2r − 1 points and at
least r points.

Lemma 1 ([10]). There is an optimal r-gather clustering in which each cluster
has at most 2r − 1 points.

Let C = {c1, c2, · · · , cn} be n customers and F = {f1, f2, · · · , fm} be m
possible locations for facilities located on a star. An r-gathering of C to F is an
assignment A of C to F such that each facility has zero or at least r customers.
A facility having one or more customers is called an open facility. We denote
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by F ′ the set of open facilities. A(c) denotes the facility to which a customer
c is assigned in an assignment A. The cost of a facility f , denoted by cost(f),
is max{d(f, ci)|A(ci) = f} if f has one or more customers, and is 0 if f has
no customer. The r-gathering problem asks to find an r-gathering such that the
maximum cost among the costs of facilities is minimized.

3 r-Gather Clustering on a Star

In this section we give an algorithm for r-gather clustering problem on a star.
Let C be a set of points on a star L = {l1, l2, · · · , ld} of d rays with center o.
We consider the set C as a union of d sets C1, C2, · · · , Cd where Ci is the set of
customers on ray li. We have the following lemma.

Lemma 2. There is an optimal r-gather clustering such that, for each Ci, the
set of points in Ci assigned to multi-ray clusters is consecutive points on li includ-
ing the nearest point to o.

Proof. A pair cm, cs in Ci is called a reverse pair if cm is assigned to a multi-ray
cluster, cs is assigned to a single-ray cluster, and d(o, cs) < d(o, cm). Assume
for a contradiction that A is an optimal r-gather clustering with the minimum
number of reverse pairs but the number is not zero. Let cs and cm be a reverse
pair in Ci with maximum d(o, cm). Let Cs and Cm be the clusters containing cs
and cm, respectively. We have two cases.

Case 1: Cs has a point c in Ci with d(o, cm) < d(o, c) (Fig. 2).
Let c′ be the nearest point to o in Cs. Replacing Cs and Cm in the clustering
by Cs \ {c′} ∪ {cm} and Cm \ {cm} ∪ {c′} generates a new r-gather clustering
with less reverse pairs as illustrated in Fig. 2(a). A contradiction. Note that
cost(Cs \ {c′} ∪ {cm}) ≤ cost(Cs) and cost(Cm \ {cm} ∪ {c′}) ≤ cost(Cm) hold.
Case 2: Otherwise. (Thus d(o, c) < d(o, cm) for every point c in Cs.)
The same replacing results in a new r-gather clustering with less reverse pairs
as illustrated in Fig. 2(b). A contradiction. Note that cost(Cs \ {c′} ∪ {cm}) ≤
cost(Cm) and cost(Cm \ {cm} ∪ {c′}) ≤ cost(Cm) hold.

Fig. 2. (a) Illustration of Case 1 and (b) illustration of Case 2 of proof of Lemma 2.
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Lemma 3. If an optimal r-gather clustering has multi-ray clusters, then at most
one multi-ray cluster contains more than r points. ��
Proof. Assume for a contradiction that every optimal r-gather clustering has
two or more multi-ray clusters having more than r points. Let A be an r-gather
clustering with the minimum number of multi-ray clusters having more than r
points. Let Ci and Cj be two multi-ray clusters having more than r points. Let
si, ti be the two endpoints of Ci and sj , tj be the two endpoints of Cj . Without
loss of generality, assume that tj is the closest point to o among the four end-
points. Let C′

j ⊂ Cj be {c ∈ Cj |d(o, c) > d(o, tj)}. Any point c ∈ C′
j must be on

the same ray as sj , otherwise tj would not be an end-point of Cj . We have two
cases.
Case 1: |C′

j | < r.
Let C′′

j be a set of |Cj | − r arbitrary points from Cj \ C′
j . We now derive a new

r-gather clustering A′ by replacing Ci and Cj by Ci ∪ C′′
j and Cj \ C′′

j . Since tj is
the closest point to o among the four end-points si, ti, sj , tj and d(o, c) ≤ d(o, tj)
for any point c ∈ C′′

j , we have d(o, c) ≤ d(o, si) and d(o, c) ≤ d(o, ti). Thus the
cost of Ci ∪C′′

j does not exceed the cost of Ci. Hence the cost of A′ is not greater
than the cost of A. Thus A′ has less multi-ray clusters with more than r points,
a contradiction.
Case 2: Otherwise. Thus |C′

j | ≥ r.
In this case we derive a new r-gather clustering A′ by replacing Ci and Cj by
Ci∪(Cj \C′

j) and C′
j . In this case, C′

j is a single-ray cluster. By a similar argument
of Case 1, the cost of A′ does not exceed the cost of A. Thus A′ has less multi-ray
clusters having more than r points than A, a contradiction.

We now give the following lemma, which is used in the proof of Lemmas 5
and 6.

Lemma 4. If |C| ≥ 2r and there is an optimal r-gather clustering consisting
of only multi-ray clusters, then there is an optimal r-gather clustering with the
multi-ray cluster consisting of the farthest point from o and its r − 1 nearest
points.

Proof. Let p be the farthest point from o and let N be the r − 1 nearest points
of p. Assume for a contradiction that in every optimal solution N ∪ {p} is not a
cluster. We first prove that N ∪{p} is contained in the same cluster. Let A be an
optimal solution with cluster Cp containing p having the maximum number of
points in N . Let q be a point in N assigned to a cluster Cq 	= Cp. Since the number
of points in Cp is at least r, there is a point p′ ∈ Cp not in N . Let q′ be the farthest
point from o in Cq \ {q}. We now derive a new r-gather clustering by replacing
Cp and Cq by Cp \{p′}∪{q} and Cq \{q}∪{p′}. Thus a contradiction. Note that,
cost(Cp\{p′}∪{q}) ≤ cost(Cp) and cost(Cq\{q}∪{p′}) ≤ max{cost(Cp), cost(Cq)},
since d(o, p) ≥ d(o, q′).

We now prove that N ∪{p} form a multi-ray cluster. Assume for a contradic-
tion that in any optimal r-gather clustering N ∪ {p} is not a cluster. Let A′ be
an optimal r-gather clustering with cluster Cp containing p having the minimum
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number of points not in N . Let p′′ be the farthest point in Cp not in the ray lp con-
taining p, and Cs be a cluster in A′ other than Cp. Let s be the farthest point from
o in Cs. We now derive a new r-gathering by replacing Cp and Cs with Cp \ {p′′}
and Cs ∪ {p′′} without increasing cost, a contradiction. Since d(o, s) ≤ d(o, p),
we have d(s, p′′) ≤ d(p, p′′) and thus cost(Cs ∪ {p′′}) ≤ max{cost(Cp), cost(Cs)}.

We now have the following lemma.

Lemma 5. If an optimal r-gather clustering consists of only multi-ray clusters,
then there is an optimal r-gather clustering with at most d−1 multi-ray clusters.

Proof. We give a proof by induction on the number d of rays in the star. Clearly,
the claim holds for d = 2, since in such case only one multi-ray cluster can exist.
Assume that the claim holds for any star with less than d rays. We now prove
that the claim also holds for any star of d rays. Assume for a contradiction that
every optimal solution has at least d multi-ray clusters. Let A be an optimal
r-gather clustering with the minimum number of multi-ray clusters. Let p be
the farthest point from o. By Lemma 4, there is an optimal r-gather clustering
with the cluster Cp containing p and its r − 1 nearest points, denoted by N . Let
lp be the ray containing p. We have two cases.
Case 1: p and N are on ray lp.
In this case there is an optimal r-gather clustering with a single ray cluster
N ∪ {p}, a contradiction.
Case 2: Otherwise. There is a point q in N which is not on lp.
By Lemma 4 there is an optimal r-gathering with {p}∪N , and since N consists
of the r − 1 nearest neighbors of p, all the points on lp are contained in Cp.
Thus the points in C \ Cp are lying on other d − 1 rays except lp. By inductive
hypothesis there is an optimal r-gather clustering of C \ Cp with at most d − 2
multi-ray clusters. Thus the claim holds. ��

Corollary 1. If an optimal r-gahter clustering consists of only multi-ray clus-
ters, then C has at most (d − 2)r + 2r − 1 = dr − 1 points.

We now give an outline of our algorithm which constructs an optimal r-
gathering clustering on a star. We first choose every possible at most dr − 1
candidate points for multi-ray clusters. We find the optimal r-gather clustering
consisting of only multi-ray clusters for each candidate points, by repeatedly
searching for the farthest point from o and its r− 1 nearest point as a multi-ray
cluster of the remaining set of points, by the algorithm Multi-rayClusters.

We now have the following lemma.

Lemma 6. Let A = {C1, C2, C3, · · · , C|A|} be the clusters computed by Algorithm
Multi-rayClusters. If A has only multi-ray clusters, then A is an optimal r-
gather clustering of S.

Proof. The proof of this lemma is immediate from Lemma 4. ��
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Algorithm 1. Multi-rayClusters(C)
Input : A set C of points on a star
Output: An r-gather clustering with only multi-ray clusters
if |C| < r then

return ∅;
endif
i ← 1;
while |C| �= 0 do

if |C| < 2r then
Create new cluster Ci = C;

else
p ← farthest point from o in C;
Ci ← {p, p1, p2, · · · , pr−1} where pi is the i-th nearest point of p in C;

endif
C ← C \ Ci;
i ← i + 1;

end
return {C1, C2, C3, · · · , Ci−1}

We now give an algorithm rGatherClusteringOnStar to construct an opti-
mal r-gather clustering of C on a star. We have the following theorem.

Theorem 1. The algorithm rGatherClusteringOnStar constructs an opti-
mal r-gather clustering of C on star in O(rn + (r + 1)ddr) time.

Proof. We first prove the correctness of the algorithm. By Lemma 2 multi-ray
clusters in an optimal r-gathering are located near o, and by Corollary 1 the
number of customers in the multi-ray clusters is at most dr − 1. The algorithm
rGatherClusteringOnStar considers every possible choice of the set of points
for multi-ray clusters having at most dr− 1 points. The algorithm considers the
solution for each possible choice for multi-ray clusters with the solution obtained
by 1-dimensional algorithm for remaining points on each ray, and choose the
solution having minimum cost. Thus the algorithm produces an optimal r-gather
clustering.

We now prove that the algorithm runs in linear time. We consider points
in each ray are in sorted order according to the distance from o. The d nested
loops iterates

∏d
j=1(nj + 1) times. Thus the number of points involved in all

calls to Multi-rayClusters is at most (r+ 1)ddr, since
∑d

j=1 nj = dr− 1. Within
each nested loop we repeatedly compute multi-ray clusters which takes linear
time in total. We also compute single-ray clusters on each of the d rays. Rather
than computing those single-ray clusters each time in the loop, we compute the
r-gather clustering for points consisting of i farthest points from o, for each i,
and for each ray in O(rn) time total [10]. Thus to compute all the required cases
for single-ray cluster we need total O(rn) time. Thus the time complexity of the
algorithm is O(rn + (r + 1)ddr). ��
If both r and d are constants then this is linear.
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Algorithm 2. rGatherClusteringOnStar(C)
Input : A set C of points on star L = {l1, l2, l3, · · · , ld}
Output: An optimal r-gather clustering of C
if |C| < r then

return ∅;
endif
Best ← ∅;
Let n1, n2, · · · , nd be the number of points of C in each ray l1, l2, · · · , ld;
for i1 ← 0 to n1 do

for i2 ← 0 to n2 do
for i3 ← 0 to n3 do

· · · ;
for id ← 0 to nd do

if i1 + i2 + · · · + id < dr then
S be the set of points consisting of i1, i2, · · · , id closest
points from o for ray l1, l2, · · · , ld;

Rm ← Multi-rayClusters(S);
Ri ← r-gather clustering of remaining points of ray li by 1D
algorithm;

R ← Rm ∪ R1 ∪ R2 ∪ · · · ∪ Rd;
if R is the best r-gather clustering so far then

Best ← R;
endif

endif

end
· · · ;

end
if i1 + i2 ≥ dr then

break;
endif

end
if i1 ≥ dr then

break;
endif

end
return Best;

4 r-Gathering on a Star

In this section we give an algorithm for the r-gathering problem on a star.
Let C be a set of customers and F be a set of facilities on a star L =

{l1, l2, · · · , ld} of d rays with center o. We regard the set C as the union of d
sets C1, C2, · · · , Cd where Ci is the set of customers on ray li. Similarly, F is
the union of F1, F2, · · · , Fd where Fi is the set of facilities on ray li. In any
optimal r-gathering each open facility serves at least r customers. However the
number of customers assigned to an open facility can be more than 2r − 1. In
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such case we regard the set of customers assigned to a facility as the union of
clusters C1, C2, · · · , Ck sharing a facility and each of which satisfies r ≤ |Ci| < 2r.
Thus we can think of the r-gathering problem in a similar way to the r-gather
clustering problem in Sect. 3, and Lemma 1 holds for the clusters of r-gathering.
We denote by A(C) the facility to which the customers in C is assigned in r-
gathering A. We define the cost of a cluster C, denoted by cost(C), in r-gathering
A as maxc∈C{d(c,A(c))}. It is easy to observe that Lemma 2 also holds for
the clusters of r-gatherings. We now prove that Lemma 3 also holds for the
r-gathering problem.

Lemma 7. There is an optimal r-gathering including at most one multi-ray
cluster having more than r customers. ��
Proof. Omitted.

A customer on a ray l ∈ L is the boundary customer of l if it is the farthest
customer on l from o. We now give the following lemma.

Lemma 8. If |C| ≥ 2r and there is an optimal r-gathering A with only multi-
ray clusters, then there is an optimal r-gathering with only multi-ray clusters
satisfying the following (a) and (b). Let f be the farthest open facility from o in
A and l be the ray containing f .
(a) The boundary customer p of l and its r − 1 nearest customers form a multi-
ray cluster, if l has a customer,
(b) All customers are assigned to f and the farthest boundary customer p from
o and its r− 1 nearest customers form a multi-ray cluster, if l has no customer.

Proof. (a) We denote by N the set of the r − 1 nearest customers of p. We
first prove that there is an optimal solution with the customers in N ∪ {p} are
assigned to f . Assume for a contradiction that in any optimal solution N ∪ {p}
are not assigned to f . Let A be an optimal solution with the maximum number
of customers in N ∪ {p} are assigned to f . Let Cp be the multi-ray cluster
assigned to f , and q be a customer in N ∪ {p} but q /∈ Cp. Let q is assigned
to f ′. Since Cp has at least r customers, there is a customer p′ ∈ Cp not in
N ∪ {p} and lying on a ray except l. We now derive a new r-gathering A′ by
reassigning q to f and p′ to f ′. Since d(o, f ′) ≤ d(o, f), we have d(f ′, p′) ≤
d(o, f ′) + d(o, p′) ≤ d(o, f) + d(o, p′) = d(f, p′). Now if q is (1) not on l or (2)
q is on l with d(o, q) ≤ d(o, f) then d(f, q) ≤ d(f, p′). Otherwise, q is on l with
d(o, q) > d(o, f) holds, then we have d(f, q) ≤ d(f, p). Thus the cost of A′ does
not exceed the cost of A, and A′ has more customers in N ∪ {p} assigned to f .
A contradiction. Thus the customers in N ∪ {p} are contained in Cp.

We now prove that N ∪{p} form a multi-ray cluster. Assume for a contradic-
tion that in any optimal r-gathering N ∪p is not a cluster. Let A′ be an optimal
r-gathering with the cluster Cp containing p having the minimum number of
customers not in N ∪ {p}. Since Cp is a multi-ray cluster, Cp has a customer s
not in N ∪ {p} and lying on a ray except l. We can reassign s to some open
facility f ′ 	= f without increasing the cost, since d(o, f ′) ≤ d(o, f), d(s, f ′) does
not exceed d(s, f). A contradiction.
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(b) We first prove that all customers are assigned to f . Assume for a con-
tradiction that there is an open facility f ′ 	= f to which some customers are
assigned. Since f is the farthest open facility from o and there is no customer
on l, we can reassign all customers to f ′ without increasing the cost of the
r-gathering. A contradiction.

The proof of the 2nd part of Lemma 8(b) is similar to the proof of Lemma
8(a). ��

We now prove that Lemma 5 also holds for r-gathering.

Lemma 9. If an optimal r-gathering consists of only multi-ray clusters, then
there is an optimal r-gathering consisting of at most d − 1 multi-ray clusters,
where d is the number of rays containing a customer.

Proof. Omitted. ��
We now give algorithm Multi-rayClusters2. If there is an optimal r-gathering

with only multi-ray clusters, then the algorithm finds such an r-gathering, by
repeatedly removing a cluster ensured by Lemma 8.

Lemma 10. If there is an optimal r-gathering consisting of only multi-ray clus-
ters, then Algorithm Multi-rayClusters2 finds an optimal r-gathering. The
running time of the algorithm is O(2d(r + d)d + (d + logm)d).

Proof. If there is an optimal r-gathering with only multi-ray clusters, then, by
repeatedly removing a cluster ensured by Lemma 8, we can find a sequence
C1, C2, · · · , Ck of multi-ray clusters such that Ci consists of exactly r customers
in C \ (C1 ∪ C2 ∪ · · · Ci−1) except the last cluster Ck with r ≤ |Ck| ≤ 2r − 1.
The algorithm checks every possible sequence of the rays containing the farthest
open facility and chooses the best one as an optimal r-gathering. Note that if a
cluster is a single-ray cluster, then the algorithm skips recursive call, since it try
to find an r-gathering consisting of only multi-ray clusters.

We now estimate the running time of the algorithm.
By Lemma 9 the depth of the recursive calls is at most d−1. Thus, by the tree

structure of the calls, the number of calls is at most d!. The algorithm repeatedly
constructs a multi-ray cluster with exactly r customers by Lemma 8, which takes
O(r+ d) time for each and O(r+ d)d time in total. The cluster is assigned to its
best facility of the cluster. The best facility of a multi-ray cluster is the nearest
facility to the mid-point of the farthest two customers on two different rays in
the cluster. The best facility can be found in O(d+ logm) time for each cluster.
Thus the algorithm runs in O(d!((r + d)d + (d + logm))d) time.

We can improve the running time by modifying the algorithm to save the
solution of each subproblem in a table. The number of distinct subproblems
is the number of the combinations of the lines checked. Thus the number of
distinct subproblem is

∑d−1
j=1

(
d
i

)
= O(2d). Then the runtime is O(2d(r + d)d +

(d + logm)d). ��
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Algorithm 3. Multi-rayClusters2(C,F )
Input : A set C of customers and a set of F of facilities on a star
Output: An r-gathering with only multi-ray clusters
if |C| < r or the number of rays containing customers is at most one then

return ∅;
endif
if |C| < 2r or the number of rays containing customers is two then

Assign C to its best facility; /* Lemma 8(b) */
return {C};

endif
Ans ← ∅;
Best ← ∞;
for each ray li containing a customer do

Ci ← pi and its r − 1 nearest customers in C; /* Lemma 8(a) */
if Ci is a multi-ray cluster then

Assign Ci to its best facility;
A ← {Ci}∪ Multi-rayClusters2(C \ Ci, F );
if cost(A) < Best then

Best ← cost(A);
Ans ← A;

endif

endif

end
return Ans

Theorem 2. An optimal r-gathering of C to F can be computed in O(n+r2m+
d2r2(d + logm) + (r + 1)d2d(r + d)d) time.

Proof. Similar to Theorem 1 we can prove the number of possible choices of the
customers for multi-ray clusters is at most (r+1)ddr. For each choice we compute
an r-gathering with Multi-rayClusters2 and compute r-gatherings of the remain-
ing one-dimensional problems, then combine them to form an r-gathering of C
to F . Then output the best one. This construction of multi-ray clusters needs
O(2d(r + d)d + (d + logm)d) for each. To eliminate redundant computation we
precompute the best facilities of each pair in the dr customers which are candi-
date for the farthest two customers in possible multi-ray clusters. Such precom-
putation takes O(d2r2(d+logm)) time. We can solve all possible one dimensional
r-gathering problem in O(n + r2m) time in total [10] and we store the solutions
in a table. Note that when we solve one dimensional r-gathering problem of ray l,
we may assign a cluster to the nearest facility to o located on other ray, however
one can compute such f quickly. Thus the time complexity of finding an optimal
r-gathering is O(n + r2m + d2r2(d + logm) + (r + 1)d2d(r + d)d). ��
If both r and d are constant, then this is linear.
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5 Conclusion

In this paper we presented an O(rn + (r + 1)ddr) time algorithm to solve rhe
r-gather clustering problem when all points are lying on a star with d rays. We
also gave an O(n + r2m + d2r2(d + logm) + (r + 1)d2d(r + d)d) time algorithm
to solve the r-gathering problem when all customers and facilities are lying on
a star with d rays.
Can we solve the problems more efficiently or can we solve the problems on more
general input like on a tree?
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Abstract. We study the k-center problem in a kinetic setting: given a
set of continuously moving points P in the plane, determine a set of k
(moving) disks that cover P at every time step, such that the disks are
as small as possible at any point in time. Whereas the optimal solution
over time may exhibit discontinuous changes, many practical applica-
tions require the solution to be stable: the disks must move smoothly
over time. Existing results on this problem require the disks to move with
a bounded speed, but this model is very hard to work with. Hence, the
results are limited and offer little theoretical insight. Instead, we study
the topological stability of k-centers. Topological stability was recently
introduced and simply requires the solution to change continuously, but
may do so arbitrarily fast. We prove upper and lower bounds on the ratio
between the radii of an optimal but unstable solution and the radii of a
topologically stable solution—the topological stability ratio—considering
various metrics and various optimization criteria. For k = 2 we provide
tight bounds, and for small k > 2 we can obtain nontrivial lower and
upper bounds. Finally, we provide an algorithm to compute the topolog-
ical stability ratio in polynomial time for constant k.

Keywords: Stability analysis · Time-varying data · Facility location

1 Introduction

The k-center problem or facility location problem asks for a set of k disks that
cover a given set of n points in the plane, such that the radii of the disks are
as small as possible. The problem can be interpreted as placing a set of k facil-
ities (e.g. stores) such that the distance from every point (e.g. client) to the
closest facility is minimized. Since the introduction of the k-center problem by
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Sylvester [20] in 1857, the problem has been widely studied and has found many
applications in practice. Although the k-center problem is NP-hard if k is part
of the input [15], efficient algorithms have been developed for small fixed k.
Using rectilinear distance, the problem can be solved in O(n) time [6,13,19] for
k = 2, 3 and in O(n log n) time [17,18] for k = 4, 5. The problem becomes harder
in Euclidean distance, and the currently best known algorithm for Euclidean
2-centers runs in O(n log2 n(log log n)2) time [3].

In recent decades there has been an increased interest, especially in the com-
putational geometry community, to study problems for which the input points
are moving, including the k-center problem. These problems are typically stud-
ied in the framework of kinetic data structures [1], where the goal is to efficiently
maintain the (optimal) solution to the problem as the points are moving. The
kinetic version of the k-center problem also finds a lot of practical applications
in, for example, mobile networks and robotics.

A number of kinetic data structures have
been developed for maintaining (approxi-
mate) k-centers [4,9–11], but in a kinetic set-
ting another important aspect starts playing
a role: stability. In many practical applica-
tions, e.g., if the disks are represented phys-
ically, or if the disks are used for visualization, the disks should move smoothly
as the points are moving smoothly. As the optimal k-center may exhibit discon-
tinuous changes as points move (see figure), we need to resort to approximations
to guarantee stability.

The natural and most intuitive way to enforce stability is as follows. We
assume that the points are moving at unit speed (at most), and bound the
speed of the disks. Durocher and Kirkpatrick [8] consider this type of stability
for Euclidean 2-centers and show that an approximation ratio of 8/π ≈ 2.55 can
be maintained when the disks can move with speed 8/π + 1. For k-centers with
k > 2, no approximation factor can be guaranteed with disks of any bounded
speed [7]. Similarly, in the black-box KDS model, de Berg et al. [2] show an
approximation ratio of 2.29 for Euclidean 2-centers with maximum speed 4

√
2.

However, this natural approach to stability is typically hard to work with and
difficult to analyze. This is caused by the fact that several aspects are influencing
what can be achieved with solutions that move with bounded speed:

1. How is the quality of the solution influenced by enforcing continuous motion?
2. How “far” apart are combinatorially different optimal (or approximate) solu-

tions, that is, how long does it take to change one solution into another?
3. How often can optimal (or approximate) solutions change their combinatorial

structure?

Ideally we would use a direct approach and design an algorithm that (roughly)
keeps track of the optimal solution and tries to stay as close as possible while
adhering to the speed constraints. However, especially the latter two aspects
make this direct approach hard to analyze. It is therefore no surprise that most
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(if not all) approaches to stable solutions are indirect: defining a different struc-
ture that is stable in nature and that provides an approximation to what we
really want to compute. Although interesting in their own right, such indirect
approaches have several drawbacks: (1) techniques do not easily extend to other
problems, (2) it is hard to perform better (or near-optimal) for instances where
the optimal solution is already fairly stable, and (3) these approaches do not offer
much theoretical insight in how optimal solutions (or, by extension, approximate
solutions) behave as the points are moving. To gain a better theoretical insight
in stability, we need to look at the aspects listed above, ideally in isolation.

Recently, Meulemans et al. [16] introduced a new framework for algorithm
stability. This framework includes the natural approach to stability described
above (called Lipschitz stability in [16]), but it also includes the definition of
topological stability. An algorithm is topologically stable if its output behaves
continuously as the input is changing. The topological stability ratio of a problem
is then defined as the optimal approximation ratio of any algorithm that is
topologically stable. A more formal definition is given below.

Due to the fact that it allows arbitrary speed, topological stability is mostly
interesting from a theoretical point of view: it provides insight into the interplay
between problem instances, solutions, and the optimization function; an insight
that is invaluable for the development of stable algorithms. Nonetheless, topo-
logical stability has practical uses: an example of a very fast and stable change
in a visualization can be found when opening a minimized application in most
operating systems. The transition starts with the application having a very small
size, even as small as a point. The application quickly grows to its intended size
in a very smooth and fluid way, to help the user grasp what is happening.

k-Center Problem. An instance of the k-center problem arises from three
choices to obtain variants of the problem: the number k of covering shapes,
the geometry of the covering shapes and the criterion that measures solution
quality. In this paper, we consider covering shapes in the Euclidean model, where
the covering shapes are disks. The radius of a covering shape is the distance
from its center to its boundary under L2. Furthermore, the quality of a solution
is the maximum radius of its covering shapes, the optimization criterion is to
minimize this maximum radius. To refer to this problem, we use the notation
k-EC-minmax.

Topological Stability. Let us now interpret topological stability, as proposed
in [16], for the k-centers problem. Let I denote the input space of n (stationary)
points in R

2 and Sk the solution space of all configurations of k disks or squares
of varying radii. Let Π denote the k-center problem with minmax criterion f : I×
Sk → R. We call a solution in Sk valid for an instance in I if it covers all points
of the instance. An optimal algorithm OPT maps an instance of I to a solution
in Sk that is valid and minimizes f .

To define instances on moving points and move towards stability, we capture
the continuous motion of points in a topology TI ; an instance of moving points
is then a path π : [0, 1] → I through TI . Similarly, we capture the continuity
of solutions in a topology T k

S , of k disks or squares with continuously moving



46 I. Hoog v.d. et al.

centers and radii. A topologically stable algorithm A maps a path π in TI to a
path in T k

S .1 We use A(π, t) to denote the solution in Sk defined by A for the
points at time t. The stability ratio of the problem Π is now the ratio between
the best stable algorithm and the optimal (possibly nonstable) solution:

ρTS(Π, TI , T k
S ) = inf

A
sup
π∈TI

sup
t∈[0,1]

f(π(t),A(π, t))
f(π(t),OPT(π(t)))

where the infimum is taken over all topologically stable algorithms that give valid
solutions. For a minimization problem ρTS is at least 1; lower values indicate
better stability.

Contributions. In this paper we study the topological stability of the k-center
problem. Although the obtained solutions are arguably not stable, since they can
move with arbitrary speed, we believe that analysis of the topological stability
ratio offers deeper insights into the kinetic k-center problem, and by extension,
the quality of truly stable k-centers.

In Sect. 2, we prove various bounds on the topological stability for this prob-
lem. The ratio is

√
2 for k = 2; for arbitrary k, we prove an upper bound of 2

and a lower bound that converges to 2 as k tends to infinity. For small k, we
show an upper bound strictly below 2 as well. In Sect. 3, we provide an algorithm
to compute the cost of enforcing topological stability for an instance of moving
points in polynomial time for constant k. Some proofs in the upcoming sections
are sketched or omitted, while the details are described in the full version.

2 Bounds on Topological Stability

As illustrated above, some point sets have more than one optimal solution. If we
can transform an optimal solution into another, by growing the covering disks or
squares at most (or at least) a factor r, we immediately obtain an upper bound
(or respectively a lower bound) of r on the topological stability. To analyze topo-
logical stability of k-center, we therefore start with an input instance for which
there is more than one optimal solution, and continuously transform one optimal
solution into another. This transformation allows the centers to move along a
continuous path, while their radii can grow and shrink. At any point during this
transformation, the intermediate solution should cover all points of the input.
The maximum approximation ratio r that we need for such a transformation,
gives a bound on the topological stability of k-center. We can simply consider
the input to be static during the transformation, since for topological stability
the solution can move arbitrarily fast. We start by introducing some tools to
help us model and reason about these transformations.
1 Whereas [16] assumes the black-box model, we allow omniscient algorithms, knowing

the trajectories of the moving points beforehand. That is, the algorithm may use
knowledge of future positions to improve on stability. This gives more power to
stable algorithms, potentially decreasing the ratio. However, our bounds do not use
this and thus are also bounds under the black-box model.
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2-Colored Intersection Graphs. Consider a point set P and two sets of k
convex shapes (disks, squares, ...), such that each set covers all points in P : we
use R to denote the one set (red) and B to denote the other set (blue). We now
define the 2-colored intersection graph GR,B = (V,E): each vertex represents
a shape (V = R ∪ B) and is either red or blue; E contains an edge for each
pair of differently colored, intersecting shapes. A 2-colored intersection graph
always contains equally many red nodes as blue nodes. Both colors in a 2-colored
intersection graph must cover all points: there may be points only in the area of
intersection between a blue and red shape. In the remainder, we use intersection
graph to refer to 2-colored intersection graphs.

Lemma 1. Consider two sets R and B of k convex translates each covering a
point set P . If intersection graph GR,B is a forest, then R can morph onto B
without increasing the shape size, while covering all points in P .

Proof (sketch). We can always find a red leaf by a counting argument, which can
then morph freely onto its blue neighbor. This removes these two nodes from
GR,B ; repeating this argument gives a morph from R onto B. ��

Without loss of generality, we assume here that the disks all have the same
radius. We first need a few results on (static) intersection graphs, to argue later
about topological stability.

Lemma 2. Let R and B to be optimal solutions to a point set P for k-EC-
minmax. Assume the intersection graph GR,B has a 4-cycle with a red degree-2
vertex. To transform R in such a way that GR,B misses one edge of the 4-cycle,
while covering the area initially covered by both sets, it is sufficient to increase
the disk radius of a red disk by a factor

√
2.

Proof (sketch). To morph from R to B, a red disk r1 has to grow to cover the
intersection of an adjacent blue disk b with the other (red) neighbor r2 of b.
This allows r2 to freely morph to the next adjacent blue disk, after which the
intersection graph no longer has the 4-cycle.

Let D be the distance from point in an intersection of r1 with b and the fur-
thest point in an intersection of r2 with an adjacent blue disk. One can conclude
from the triangle inequality that for any pair of optimal solutions R and B that
form a 4-cycle, D is at most

√
2 times the radius of a disk in R or B. ��

Lemma 3. Let R and B to be optimal solutions to a point set P for k-
EC-minmax. Assume the intersection graph GR,B has only degree-2 vertices.
To transform the disks of R onto B, while covering the area initially cov-
ered by both sets, it is sufficient to increase the disk radius by a factor(
1 +

√
1 + 8 cos2( π

2k )
)
/2.

Proof (sketch). To morph from R to B, a red disk r1 has to grow to cover the
intersection of an adjacent blue disk b with the other (red) neighbor r2 of b (see
dashed red disk in figure). We grow r1 to fully cover its initial disk and the
intersection between b and r2. As a result, we now have to consider only r1, b, r2
without concerning ourselves with the other neighbor of r1 or r2.
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We then assume that r1 is the red disk
that has to grow the least of all red disks in
the instance. This allows us to make assump-
tions on the distances d1 and d2 between the
center points of r1 to b and from b to r2
respectively and the angle α between them at
b. In the worst case the instance is symmetric
so that d1 = d2 = d and α = π(k−1)

k . Further-
more, for angle β we show that cos(β) = d/2
and α + 2β = π in the worst case. We can
finally find the radius of the dashed red disk by calculating x using the Law of
Cosines: x2 = d2 + 12 − 2d cos(α + β). ��

Lemma 4. Let R and B to be optimal solutions to a point set P for k-EC-
minmax. Assume the intersection graph GR,B has only degree-2 vertices. To
transform the disks of R onto B, while covering the area initially covered by both
sets, it may be necessary to increase the disk radius by a factor 2 sin(π(k−1)

2k ).

Proof. Consider a point set of 2k points, positioned such that they are the corners
of a regular 2k-gon with unit radius, i.e., equidistantly spread along the boundary
of a unit circle. There are now exactly two optimal solutions (see figure).

To morph from R to B, one of the red disks r1
has to grow to cover the intersection of an adjacent
blue disk b with the other (red) neighbor r2 of b (see
dashed red disk in the figure). Since the points are at
equal distance from each other on a unit circle, they
are the vertices of a regular 2k-gon. The diameter of
the disks in our optimal solution equals the length
of a side of this regular 2k-gon. This means that a
red disk has to grow such that its diameter is equal
to the distance between a vertex of the 2k-gon and a
second-order neighbor. Hence, r1 has to grow to with a factor 2 sin(π(k−1)

2k ). ��
We are now ready to prove bounds on the topological stability of kinetic

k-center. The upcoming sequence of lemmata establishes the following theorem.

Theorem 1. For k-EC-minmax, we obtain the following bounds:

– ρTS(2-EC-minmax, TI , T 2
S ) =

√
2

–
√

3 ≤ ρTS(3-EC-minmax, TI , T 3
S ) ≤

(
1 +

√
7
)
/2

– 2 sin(π(k−1)
2k ) ≤ ρTS(k-EC-minmax, TI , T k

S ) ≤ 2 for k > 3.

Lemma 5. ρTS(k-EC-minmax, TI , T k
S ) ≤ 2 for k ≥ 2.
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Proof. Consider a point in time t where there are two optimal solutions; let R
denote the solution that matches the optimal solution at t−ε and B the solution
at t + ε for arbitrarily small ε > 0. Let C be the maximum radius of the disks
in R and in B. Furthermore, let intersection graph GR,B describe the above
situation. First we make a maximal matching between red and blue vertices
that are adjacent in GR,B , implying a matching between a number of red and
blue disks. The intersection graph of the remaining red and blue disks has no
edges, and we match these red and blue disks in any way.

We find a bound on the topological stability as follows. All the red disks that
are matched to blue disks they already intersect grow to overlap their initial disk
and the matched blue disk. Now the remaining red disks can safely move to the
blue disks they are matched to, and adjust their radii to fully cover the blue
disks. Finally, all red disks shrink to match the size of the blue disk they overlap
to finish the morph (since each blue disk is now fully covered by the red disk
that eventually morphs to be its equal). When all the red disks are overlapping
blue disks, the maximum of their radii is at most 2C, since the radius of each
red disk grows by at most the radius of the blue disk it is matched to. ��

Lemma 6. ρTS(k-EC-minmax, TI , T k
S ) ≥ 2 sin(π(k−1)

2k ) for k ≥ 2.

Proof (sketch). The bound follows from Lemma 4, if we can show that a set of
moving points that actually force this swap to happen. We let points moving on
tangents of the circle defining the 2k points, to arrive at this situation at a time
t, while ensuring that a swap before or after t would be more costly. ��

Lemma 7. ρTS(2-EC-minmax, TI , T 2
S ) =

√
2.

Proof. The lower bound follows directly from Lemma 6 by using k = 2. For the
upper bound, consider a point in time t where there are two optimal solutions;
let R denote the solution that matches the optimal solution at t − ε and B the
solution at t + ε for arbitrarily small ε > 0. If GR,B is a forest, Lemma 1 applies
and we do not need to increase the maximum radius during the morph. If GR,B

contains a cycle, the entire graph must be a 4-cycle. Lemma 2 gives an upper
bound of

√
2 for transforming the intersection graph GR,B to no longer have

this 4-cycle, resulting in a tree. Finally, we can morph R into B without further
increasing the maximum radius using Lemma 1. ��

Lemma 8.
√

3 ≤ ρTS(3-EC-minmax, TI , T 3
S ) ≤

(
1 +

√
7
)
/2.

Proof (sketch). A case distinction can be made on how the intersection graph
looks: If the intersection graph is a forest or there is a 6-cycle, we can respectively
use Lemma 1 or Lemma 3 for the upper and Lemma 4 for the lower bound.
However, in the remaining cases we carefully analyze how cycles can be broken
until Lemma 1 can be applied. ��

The above proof shows the strengths and weaknesses of the earlier lemmata.
While in many cases we can get close to tight bounds, dealing with high degree
vertices in the intersection graph requires additional analysis. Furthermore, in
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general we cannot upper bound the approximation factor needed for stable solu-
tions with bounded speed [7], but Theorem 1 can act as a lower bound for such
bounded speed solutions.

3 Algorithms for k-Center on Moving Points

Topological stability captures the worst-case penalty that arises from making
transitions in a solution continuous. In this section we are interested in the
corresponding algorithmic problems that result in instance optimal penalties:
how efficiently can we compute the (unstable) k-center for an instance with n
moving points, and how efficiently can we compute the stable k-center? When
we combine these two algorithms, we can determine for any instance how large
the penalty is when we want to solve a given instance in a topologically stable
way.

The second algorithm gives us a topologically stable solution to a particular
instance of k-center. This solution can be used in a practical application requiring
stability, for example as a stable visualization of k disks covering the moving
points at all time. Since we are dealing with topological stability, the solution
can sometimes move at arbitrary speeds. However, in many practical cases, we
can alter the solution in a way that bounds the speed of the solution and makes
the quality of the k-center only slightly worse.

3.1 An Unstable Euclidean k-Center Algorithm

Let P be a set of n points moving in the plane, each represented by a constant-
degree algebraic function that maps time to the plane. We denote the point set at
time t as P (t) and we want to find the optimal set of k minimum covering disks
that cover P (t), denoted B∗(t). Observe that we can define B∗ as the Cartesian
product of k triples, pairs, and singletons of distinct points from the set P (t).
Not every triple is always relevant: if the circumcircle of the three points is not
the boundary of the smallest covering disk, then the triple is irrelevant at that
time. This formalization allows us to define what we call candidate k-centers.

Definition 1. Any set of k disks D1, . . . , Dk where each disk is the minimum
covering disk of one, two or three points in P (t) is called a candidate k-center
and is denoted B(t). A candidate k-center is valid if the union of its disks cover
all points of P (t).

This definition allows us to rephrase the goal of the algorithm: for each time
t we want to compute the smallest value C(t), such that there exists a valid
candidate k-center B(t) where C(t) is the cost in the minmax model. We can see
these costs changing over time as curves in a graph that maps time to radii. There
are O(n3) such curves. Using an analysis of the arrangement, lower envelope
computation [12], and static k-center algorithms [5,14], we can show:

Theorem 2. Given a set of n points whose positions in the plane are determined
by constant-degree algebraic functions, the minmax Euclidean k-center problem
can be solved in O(n2k+5) or nO(

√
k) time.
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3.2 A Stable Euclidean k-Center Algorithm

Intuitively, the unstable algorithm finds the lower envelope of all the valid radii
by traversing the arrangement of all valid radii over time. At each time t a
minimal enclosing disk D1 (defined by a set of at most three points) in the set of
optimal disks B∗(t) needs to be replaced with a new disk D2, we “hop” from our
previous curve to the curve corresponding to D2. If we require that the algorithm
is topologically stable these hops have a cost associated with them.

We first show how to model and compute the cost C(t) of a topological
transition between any two k-centers at a fixed time t. We then extend this
approach to work over time. Let t be a moment in time where we want to go from
one k-center B1 to another candidate k-center B2. The transition can happen at
infinite speed but must be continuous. We denote the infinitesimal time frame
around t in which we do the transition as [0, T ]. We extend the concept of a
k-center with a corresponding partition of P over the disks in the k-center:

Definition 2 (Disk set). For each disk Di of a candidate k-center B for P (t)
we define its disk set Pi ⊆ P (t) ∩ Di as the subset of points assigned to Di. A
candidate k-center B with disk sets P1, . . . , Pk is valid if the disk sets partition
P (t). We say B is valid if there exist disk sets P1, . . . , Pk such that B with disk
sets P1, . . . , Pk is valid.

k-centers with disk sets will change in the time interval [0, T ] while the points
P (t) do not move. In essence the time t is equivalent to the whole interval
[0, T ]. For ease of understanding we use t′ to denote any time in the interval
[0, T ]. Observe that our definition for a topologically stable algorithm leads to
an intuitive way of recognizing a stable transition:

Lemma 9. A transition from one candidate k-center B1(t) to another candidate
k-center B2(t) in the time interval [0, T ] is topologically stable if and only if
the change of the disks’ centers and radii is continuous over [0, T ] and at each
time t′ ∈ [0, T ], B(t′) is valid.

Proof. Note that by definition the disks must be transformed continuously and
that all the points in P (t) are covered in [0, T ] precisely when a valid candidate
k-center exists. ��

Now that we can recognize a topologically stable transition, we can reason
about what such a transition looks like:

Lemma 10. Any topologically stable transition from one k-center B1(t) to
another k-center B2(t) in the timespan [0, T ] that minimizes C(t) (the largest
occurring minmax over [0, T ]) can be obtained by a sequence of events where in
each event, occurring at a time t′ ∈ [0, T ], a disk Di ∈ B(t′) adds a point to Pi

and a disk Dj ∈ B(t′) removes a point from Pj. We call this transferring.

Proof. The proof is by construction. Assume that we have a transition from B1(t)
to B2(t) and the transition that minimizes the maximum of all radii contains
simultaneous continuous movement. Let this transition take place in [0, T ].
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To determine C(t) we only need to look at times t′ ∈ [0, T ] where a disk
Di ∈ B adds a new point p to its disk set Pi and another disk Dj removes it
from Pj . Only at t′ must both disks contain p; before t′ disk Dj may be smaller
and after t′ disk Di may be smaller.

We claim that for any optimal simultaneous continuous movement of cost
C(t), we can discretize the movement into a sequence of events with cost no
larger than C(t). We do so recursively: If the movement is continuous then there
exists a t0 ∈ [0, T ] as the first time a disk Di ∈ B adds a point to Pi. At t0, Di

has to contain both Pi and p and must have a certain size d. All the other disks
Dj ∈ B with j = i only have to contain the points in Pj so they have optimal
size if they have not moved from time 0. In other words, it is optimal to first let
Di obtain p in an event and to then continue the transition from [t0, T ]. This
allows us to discretize the simultaneous movement into sequential events. ��

Corollary 1. Any topologically stable transition from one k-center B1(t) to
another k-center B2(t) in the timespan [0, T ] that minimizes C(t) (the largest
occurring minmax over [0, T ]) can be obtained by a sequence of events where in
each event the following happens:

A disk Di ∈ B1(t) that was defined by one, two or three points in P (t) is
now defined by a new set of points in P (t) where the two sets differ in only one
element.

With every event, Pi must be updated with a corresponding insert and/or
delete. We call these events a swap because we intuitively swap out of the at
most three defining elements.

The Cost of a Single Stable Transition. Corollary 1 allows us to model a
stable transition as a sequence of swaps but how do we find the optimal sequence
of swaps? A single minimal covering disk at time t is defined by at most three
unique elements from P (t) so there are at most O(n3) subsets of P (t) that could
define one disk of a k-center. Let these O(n3) sets be the vertices in a graph
G. We create an edge between two vertices vi and vj if we can transition from
one disk to the other with a single swap and that transition is topologically
stable. Each vertex is incident to only a constant number of edges (apart from
degenerate cases) because during a swap the disk Di corresponding to vi can
only add one element to Pi. Moreover, the radius of the disk is maximal on
vertices in G and not on edges. The graph G has O(n3) complexity and takes
O(n4) time to construct.

This graph provides a framework to trace the radius of the transition from
a single disk to another disk. However, we want to transition from one k-center
to another. We use the previous graph to construct a new graph Gk where each
vertex wi represents a set of k disks: a candidate k-center Bi. We again create
an edge between vertices wi and wj if we can go from the candidate k-center
Bi to Bj in a single swap. With a similar argument as above, each vertex is
only connected to O(k) edges. The graph thus has O(n3k) complexity and can
be constructed in O(n3k+1) time. Each vertex wi gets assigned the cost of the
k-center Bi where the cost is ∞ if Bi is invalid.
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Any connected path in this graph from wi to wj without vertices with cost
∞ represents a stable transition from wi to wj by Corollary 1, where the cost
of the path (transition) is the maximum value of the vertices on the path. We
can now find the optimal sequence of swaps to transition from any vertex wi

to wj by finding the cheapest path in this graph in O(n3k log n) time, which is
dominated by the O(n3k+1) time it takes to construct the graph.

Maintaining the Cost of a Flip. For a single point in time we can now
determine the cost of a topologically stable transition from a k-center Bi to Bj

in O(n3k+1) time. If we want to maintain the cost C(t) for all times t, the costs of
the vertices in the graph change over time. If we plot the changes of these costs
over time, the graph consists of monotonously increasing or decreasing segments,
separated by moments in time where two radii of disks are equal. These O(n3k)
events also contain all events where the structure of our graph Gk changes and
all the moments where a vertex in our graph becomes invalid and thus gets
cost ∞. The result of these observations is that we have a O(n3k) size graph,
with O(n3k) relevant changes where with each change we need O(n) time to
restore the graph. This leads to an algorithm which can determine the cost of a
topologically stable movement in O(n6k+1) time.

Theorem 3. Given a set of n points whose positions in the plane are determined
by constant-degree algebraic functions, the stable minmax Euclidean k-center
problem can be solved by an algorithm that runs in O(n6k+1) time.

If we run the unstable and stable algorithms on the moving points, we obtain
two functions that map time to a cost. The maximum over time of the ratio of
the cost is the stability ratio of the instance, obtained in the same running time.

4 Conclusion

We considered the topological stability of the kinetic k-center problem, in which
solutions must change continuously but may do so arbitrarily fast. We proved
nontrivial upper bounds for small values of k and presented a general lower
bound tending towards 2 for large values of k. We also presented algorithms to
compute topologically stable solutions together with the cost of stability for a set
of moving points, that is, the growth factor that we need for that particular set
of moving points at any point in time. A practical application of these algorithms
would be to identify points in time where we could slow down the solution to
explicitly show stable transitions between optimal solutions.

Future Work. It remains open whether a general upper bound strictly below 2
is achievable for k-EC-minmax. We conjecture that this bound is indeed smaller
than 2 for any constant k. For this, we need more insight in how to resolve an
intersection graph with more general structures. Our algorithms to compute the
cost of stability for an instance have high (albeit polynomial) run-time com-
plexity. Can the results for KDS (e.g. [2]) help us speed up these algorithms?
Alternatively, can we approximate the cost of stability more efficiently?
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Lipschitz stability requires a bound on the speed at which a solution may
change [16]. This stability for k > 2 is unbounded, if centers have to move
continuously [7]; A potentially interesting variant of the topology is one where a
disk may shrink to radius 0, at which point it disappears and may reappear at
another location. This alleviates the problem in the example; would it allow us
to bound the Lipschitz stability?
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Abstract. In this paper, we revisit the r-gathering problem. Given sets
C and F of points on the plane and distance d(c, f) for each c ∈ C and
f ∈ F , an r-gathering of C to F is an assignment A of C to open facilities
F ′ ⊆ F such that r or more members of C are assigned to each open
facility. The cost of an r-gathering is maxc∈C d(c, A(c)). The r-gathering
problem computes the r-gathering minimizing the cost. In this paper we
study the r-gathering problem when C and F are on a line and present a
O(|C|+|F |)-time algorithm to solve the problem. Our solution is optimal
since any algorithm needs to read C and F at least once.

1 Introduction

Facility location problems aim at finding an optimal placement of (some) facili-
ties minimizing some cost function defined based on the actual application sce-
nario. More formally, in the well-known basic facility location problem, we are
given (1) a set C of customers, (2) a set F of facilities, (3) an opening cost
op(f) for each f ∈ F , and (4) a connecting cost co(c, f) for each pair of c ∈ C
and f ∈ F , and then we need to open a subset F ′ ⊆ F of facilities and find
an assignment A from C to F ′ so that a designated cost is minimized. Facility
location problems and variants thereof [4,5] have been studied heavily in both
operations research and computational geometry literature.

In this article we study a relatively new but interesting variant which is
referred to as the r-gathering problem. An r-gathering of customers C to facilities
F is an assignment function A : C → F such that (1) A(c) ∈ F , (2) the set of
open facilities is F ′ = {A(c) | c ∈ C}, (3) for each open facility f ∈ F ′, at least r
customers are assigned to it. The cost of an r-gathering is the maximum distance
d(c, f) between c ∈ C and its assigned A(c) ∈ F ′ among all customers c ∈ C,
which is maxc∈C d(c,A(c)). The r-gathering problem aims to find the r-gathering
minimizing the cost. An example of the problem instance in a restricted setting
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Fig. 1. An example with 8 customers and 2 facilities.

where all the customers and the facilities are located on a line is presented in
the example below.

Consider a horizontal line with 8 customers and 2 facilities (Fig. 1). Assume
the set of positions of the customers is C = {c1 = 1, c2 = 2, c3 = 4, c4 =
6, c5 = 7, c6 = 8, c7 = 11, c8 = 12} while the set of positions of the facilities is
F = {f1 = 3, f2 = 10}. Suppose r = 2 (which means every open facility serves
at least 2 customers). Then, the best solution is A(c1) = f1, A(c2) = f1, A(c3) =
f1, A(c4) = f1, A(c5) = f2, A(c6) = f2, A(c7) = f2, A(c8) = f2. The cost can be
calculated as follows:
max{d(c1, f1), d(c2, f1), d(c3, f1), d(c4, f1), d(c5, f2), d(c6, f2), d(c7, f2), d(c8, f2)}
= max{2, 1, 1, 3, 3, 2, 1, 2}
= 3

Besides being combinatorially interesting, like many other variants of the
facility location problem, r-gathering problem has practical applications as well.
The following interesting application has been borrowed from [7]:

Assume that we are planning an evacuation plan for the residents on a
street, F is a set of possible locations for emergency shelters, and d(c, f)
is the time needed for a person c ∈ C to reach a shelter f ∈ F . Then an r-
gathering (when all C and F are on the line) corresponds to an evacuation
assignment such that each open shelter serves r or more people, and the
r-gathering problem finds an evacuation plan minimizing the evacuation
time span.

We first give a brief literature review. In general, when C and F are placed
on some points on a 2-dimensional plane, Armon [3] showed that this problem is
NP-hard and gave a simple 3-approximation algorithm. They also proved that
the problem cannot be approximated within a factor less than 3 for any r ≥ 3
unless P = NP .

To the best of our knowledge, when all C and F are on the line, three works
have been reported in the literature. Akagi et al. [2] presented an O((|C| +
|F |) log(|C|+ |F |))-time algorithm. Subsequently, Han and Nakano [8] developed
an O(|C|+ |F | log2 r+ |F | log |F |)-time algorithm. Very recently, [7] proposed an
O(|C| + r2|F |)-time algorithm.
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When we relax the problem and assume that facilities can be placed on any
points on the 2-dimensional plane, this problem is called the r-gather-clustering
problem [1]. Precisely, given a set C of n points on the plane, an r-gather-
clustering is a partition of the customers in C into clusters such that each cluster
has at least r customers. Define the radius of a cluster to be the minimum
radius of the disk which can cover the customers in the cluster and the facility
is placed at the center of the disk. Then, the cost of an r-gather-clustering is the
maximum radius among the clusters. The r-gather-clustering problem aims to
compute a r-gather-clustering minimizing the cost. This problem is NP-complete
in general. A 2-approximation algorithm was presented in [1]. If C are on the
line, Akagi et al. [2] presented an O(|C| log |C|)-time algorithm. Very recently,
Nakano [7] proposed an O(r|C|) time algorithm to solve the problem by reducing
the problem to the min-max path problem [6] in a weighted directed graph.

In this paper, we study the r-gathering problem when all C and F are on
the line. We assume all points in C and F are sorted according to their position
from left to right following previous literature ([2,7,8]). As stated above, three
solutions have been proposed on this variant ([2,7,8]). However, none of those
runs in linear time. We ask the question whether a linear time solution for this
variant exists. We answer the question affirmatively by giving an O(|C| + |F |)-
time algorithm. Our solution is optimal since any algorithm needs to read the
list of customers and facilities at least once.

To develop our linear time algorithm, we present and prove a number
of important lemmas and make use of a number of intermediate algorithms
with inferior running times. We first present a simple O(|C|2 log |F |)-time solu-
tion (Sect. 2). Then we present (and prove) some interesting lemmas and pro-
pose an improved algorithm that runs in O(|C| log |C| log |F |) time (Sect. 3).
Subsequently, we prove some more lemmas and improve the running time to
O(|F | + |C| log |F |) (Sect. 4). Finally, we exploit an interesting relation to reach
the desired O(|C| + |F |)-time solution (Sect. 5).

2 An O(|F | + |C|2 log |F |)-time Solution

For the sake of notational ease, in what follows, we will use the following descrip-
tion of the problem. Suppose, C = {c1, c2, c3, . . . , cn} and F = {f1, f2, f3, . . . , fm}
are points on the horizontal line and assume that they are sorted (according to
their position) from left to right. The following lemma from [7] will be useful
for us.

Lemma 1 ([7]). There exists an optimal solution in which each facility is
assigned to a cluster of customers which are consecutive in C.

Let ca, ca+1, . . . , cb be a sequence of consecutive points in C. Let Cost(a, b)
be the minimum cost to assign them to a single facility optimally.

Lemma 2. Let ca, ca+1, . . . , cb be a sequence of consecutive points in C. Let the
center of a cluster be the midpoint of the two endpoints of the cluster (ca and cb).
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Algorithm 1. min-cost-r-gathering(C,F,r)
1: PrefixCost(0) ← 0
2: for each i ε [1, r − 1] do
3: PrefixCost(i) ← ∞
4: for each i ε [r, n] do
5: PrefixCost(i) ← ∞
6: for each j ε [0, i − r] do
7: Let Fmid be the nearest facility to the midpoint of [j+1,i] segment.
8: Cost(j + 1, i) ← max(|Ci − Fmid|, |Fmid − Cj+1|).
9: CurrentCost ← max(PrefixCost(j), Cost(j + 1, i)
10: PrefixCost(i) ← min(PrefixCost(i), CurrentCost)

11: return PrefixCost(n)

Then Cost(a, b) will be minimized if the points in it are assigned to the nearest
facility from the center of the cluster.

Proof. Let m be the centre of the cluster, i.e., m = |cb−ca|
2 . Let fx be the optimal

facility. Since Cost(a, b) = max(|fx −ca|, |fx −cb|) = |ca−cb|
2 + |fx −m|, this value

will be minimum when fx is the closest facility to m. The result follows.

Corollary 1. Cost(a, b) can be computed in O(log |F |) time.

Proof. First, set μ = ca+cb
2 . By doing a binary search on (f1, f2, . . . , fm), we

can find fx that is the closest to μ using O(log m) = O(log |F |) time. Then, we
report Cost(a, b) = max(|fx − ca|, |fx − cb|).

Now, we describe an O(|F | + |C|2 log |F |)-time dynamic programming solu-
tion. Let’s define PrefixCost(i) as the minimum cost to serve customers in
{c1, c2, c3, . . . , ci} such that each facility either serves 0 customer or at least r cus-
tomers. By Lemma 1, we can assume the optimal solution partitions {c1, . . . , ci}
into one or more consecutive clusters, where each cluster is served by one facil-
ity. Note that the ith point must be in the rightmost cluster of minimum size
r and maximum size i. In other words, the rightmost cluster is {cj+1, . . . , ci}
where j satisfies 0 ≤ j ≤ i − r. Then, by definition of PrefixCost, we have
PrefixCost(i) = max{PrefixCost(j), Cost(j + 1, i)}. Hence, we have the fol-
lowing recurrence:

PrefixCost(i) =

⎧
⎨

⎩

0 if i = 0
∞ if 1 ≤ i < r

mini−r
j=0 max{PrefixCost(j), Cost(j + 1, i)} otherwise

(1)
Based on the recurrence, PrefixCost(n) can be computed by Algorithm 1.

In the algorithm, the facility Fmid can be found in O(log |F |) time using binary
search (see Corollary 1). Hence, the algorithm runs in O(|F |+ |C|2 log |F |) time.

For the example in Fig. 1, when we run min-cost-r-gathering(C,F, 2), the
corresponding dynamic programming table PrefixCost is shown in Fig. 2.
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Fig. 2. min-cost-r-gathering(C, F, 2) for the example in Fig. 1.

3 An O(|F | + |C| log |C| log |F |)-time Solution

Previous section shows that PrefixCost(i) can be computed by checking
PrefixCost(j) and Cost(j + 1, i) for j ∈ [0, i − r]. This approach requires
us to check O(i) entries. Can we do better? Indeed, here, we observe that
PrefixCost(i) can be computed by checking only a few of these entries. Below,
we first define a turning point sequence, Gi for the ith point and state its different
properties. Then, exploiting these properties, we present an improved algorithm.
We start with the following useful lemma which basically says that the cost of a
cluster will increase if you extend the cluster in either side.

Lemma 3. For any index a, b such that a > 1 and a ≤ b, we have:
(i) Cost(a, b) ≤ Cost(a − 1, b).
(ii) Cost(a, b) ≤ Cost(a, b + 1),

Proof. (i) Cost(a − 1, b) is the minimum cost to optimally assign consecutive
points ca−1, ca, . . . , cb to a single facility. Since, ca, ca+1, . . . , cb is only a subset
of the previous set of points, Cost(a, b) cannot be greater than Cost(a − 1, b).
(ii) Similarly as (i).

Definition 1. For a fixed point i, i ≥ r, we define the turning point sequence
Gi, which is a sequence of points (a0, . . . , ak) as follows:
(1) The 0-th point is a0 = 0 with PrefixCost(a0) = 0;
(2) For j ≥ 1, let aj be the maximum index in [aj−1 + 1, i − r] such that
PrefixCost(aj) is minimum.

Remark 1. For the sake of ease in handling boundary conditions, we define
PrefixCost(ak+1) = ∞.

Lemma 4. Let Gi = (a0, . . . , ak) be a turning point sequence for the ith point
in C, i ≥ r. We have:

(i) ak = i − r
(ii) a0 < a1 < . . . < ak

(iii) PrefixCost(a0) < PrefixCost(a1) < . . . < PrefixCost(ak).

Proof. (i) Assume ak �= i − r. But then according to the definition, ak cannot
be the last point of the sequence and ak+1 must exist. So ak must equal i − r.
(ii) For any 1 ≤ j ≤ k, by definition, aj is in the range [aj−1 + 1, i − r]. So,
aj−1 < aj always holds.
(iii) By contrary, assume PrefixCost(aj) ≤ PrefixCost(aj−1) for some 1 ≤
j ≤ k. By definition, PrefixCost(aj−1) = mini−r

α=aj−2+1 PrefixCost(α) while
PrefixCost(aj) = mini−r

α=aj−1+1 PrefixCost(α). Since aj−1 > aj−2, we have
PrefixCost(aj) ≥ PrefixCost(aj−1). We arrive at a contradiction.
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Now note that, By Lemma 3, we have:

Cost(a0 + 1, i) ≥ Cost(a1 + 1, i) ≥ . . . ≥ Cost(ak + 1, i).

And, by Lemma 4, we have:

PrefixCost(a0) < PrefixCost(a1) < . . . < PrefixCost(ak).

So, we have one sequence that is non-increasing and the other sequence that is
strictly increasing. These properties will be helpful in our subsequent arguments.

Lemma 5. Let Gi, i ≥ r, be a turning point sequence. We have:

PrefixCost(i) = min
j∈Gi

max(PrefixCost(j), Cost(j + 1, i)).

Proof. The proof will be provided in the journal version.

Lemma 6. Suppose Gi = (a0, a1, . . . , ak), i ≥ r, is the turning point
sequence for position i. There exists an index pi ∈ {0, 1, . . . , k} such that
PrefixCost(aj) ≤ Cost(aj + 1, i) for all j ≤ pi; and PrefixCost(aj) >
Cost(aj + 1, i) otherwise. We can find pi using O(log |C| log |F |) time.

Proof. The proof will be provided in the journal version.

Lemma 7. Consider Gi = (a0, a1, . . . , ak), i ≥ r. Let pi be the maximum index
such that PrefixCost(api

) ≤ Cost(api
+ 1, i). Then we have PrefixCost(i) =

min(Cost(api
+ 1, i), P refixCost(api+1)).

Proof. The proof will be provided in the journal version.

Note that pi +1 in above Lemma may be point to an index which is out of bound
of Gi (pi = k). However, due to Remark 1, this does not affect the validity of
the lemma. To apply the above lemmas to compute PrefixCost(i), we need to
obtain the turning point sequence Gi. Below lemma tells us how to construct Gi

from Gi−1.

Lemma 8. Suppose Gi−1 = (a0, a1, . . . , ak = i − 1 − r), i − 1 ≥ r, is the
turning point sequence for position i − 1. Now consider the computation of Gi.
Let h be the maximum index (with ah ∈ Gi−1) such that PrefixCost(ah) <
PrefixCost(i − r). Then we have Gi = (a0, a1, . . . , ah, i − r).

Proof. The proof will be provided in the journal version.

The above lemma implies that the turning point sequence can be maintained as
a stack S so that S[0] = a0, . . . , S[k] = ak. Suppose S stores the turning point
sequence Gi−1. We can modify S to store Gi as follows.

1. While the stack is not empty and the point ah on the top of the stack S
satisfies PrefixCost(ah) ≥ PrefixCost(i − r), pop the point ah from the
stack S;
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Algorithm 2. min-cost-r-gathering1(C,F,r)
1: PrefixCost(0) ← 0
2: for i = 1 to r − 1 do
3: PrefixCost(i) ← ∞
4: Let S be an empty stack
5: for i = r to n do
6: while S is not empty and PrefixCost(Top(S)) ≥ PrefixCost(i − r) do
7: pop the element on top of S

8: push (i − r) at the top of S
9: Find maximum index p such that PrefixCost(S[p]) ≤ Cost(S[p] + 1, i)
10: PrefixCost(i) ← Cost(S[p] + 1, i)
11: if p + 1 ≤ Size(S) then
12: PrefixCost(i) ← min(PrefixCost(i), P refixCost(S[p + 1])

13: return PrefixCost(n)

2. Push (i − r) to the top of the stack S.

Since every point in C can be pushed and popped at most once, all turning
point sequences can be constructed in O(|C|) time. We can now describe the
algorithm. We do the following -

– Set PrefixCost(0) = 0.
– Set PrefixCost(1) = . . . = PrefixCost(r − 1) = ∞.
– Initialize an empty stack S (0 - indexed).
– For i = r to |C|, iteratively build Gi by Lemma 8 and compute PrefixCost(i)

by Lemma 7.

The detail of the pseudocode is in Algorithm 2. The running time of the
algorithm is O(|F | + |C| log |C| log |F |). For the example in Fig. 1, when we
run min-cost-r-gathering1(C,F, 2), the corresponding dynamic programming
table PrefixCost is shown in Fig. 3.

Fig. 3. min-cost-r-gathering1(C, F, 2) for the example in Fig. 1.
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4 An O(|F | + |C| log |F |)-time Solution

In this section we further improve the running time of our algorithm. In particu-
lar, we will show how we can avoid the binary search to compute pi as reported
in Lemma 6. Recall that pi is the maximum index such that PrefixCost(api

) ≤
Cost(api

+ 1, i). In what follows it will be convenient to define xGi
= api

and
yGi

= api+1.

Lemma 9. Suppose Gi−1 = (a0, a1, . . . , i − r − 1), i − 1 ≥ r and following
Lemma 8 we have computed, Gi = (a0, a1, . . . , ah, i − r). Then the followings
hold true:

(i) if PrefixCost(xGi−1) < PrefixCost(i − r), then xGi−1 ∈ Gi and xGi
≥

xGi−1 .
(ii) if PrefixCost(xGi−1) ≥ PrefixCost(i − r), then xGi−1 /∈ Gi. And the

followings hold true.
(a) if PrefixCost(i − r) ≤ Cost(i − r + 1, i) then xGi

= i − r
(b) Otherwise, xGi

= ah.

Proof. The proof will be provided in the journal version.

We now need the following definitions.

Definition 2. Suppose Gi = (a0, a1, . . . , ah, i − r), r ≤ i ≤ n is the turning
sequence for position i and xGi

and yGi
are defined as before. We now define

Opti as follows.

Opti =
{

xGi
if Cost(xGi

+ 1, i) < PrefixCost(yGi
)

yGi
otherwise

We also define Fi(aj) = max(PrefixCost(aj), Cost(aj + 1, i)), aj ∈ Gi.

Now we have the following lemma which will be the basis of further improvement
of our algorithm.

Lemma 10. Suppose Gi = (a0, a1, . . . , ah, i − r), r ≤ i ≤ n is the turning
sequence for position i. Then the followings hold true.

(i) PrefixCost(i) = Fi(Opti).
(ii) Fi(aj−1) ≥ Fi(aj) for aj ≤ Opti and Fi(aj+1) > Fi(aj) for aj ≥ Opti.
(iii) Opti ≥ Opti−1.

Proof. The proof will be provided in the journal version.

We can now describe the new improved algorithm. We do not need any binary
search to find Opti, instead we do the following:

– Set PrefixCost(0) = 0.
– Set PrefixCost(1) = . . . = PrefixCost(r − 1) = ∞.
– Initialize an empty stack S (1 - indexed as opposed 0 - indexed).
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Algorithm 3. min-cost-r-gathering2(C,F,r)
1: PrefixCost(0) ← 0
2: for i = 1 to r − 1 do PrefixCost(i) ← ∞
3: OptIndx ← 1, NextOptIndx ← 2
4: Let S be an empty stack
5:
6: for i = r to n do
7: while S not empty and PrefixCost(Top(S)) ≥ PrefixCost(i − r) do
8: pop the element on top of S

9: push (i − r) at the top of S
10:
11: if OptIndx > Size(S) then
12: OptIndx ← Size(S)
13: NextOptIndx ← OptIndx + 1

14:
15: while true do
16: Opt ← S[OptIndx]
17: F (Opt) ← max(PrefixCost(Opt), Cost(Opt + 1, i)
18: if OptIndx = Size(S) then break

19:
20: NextOpt ← S[NextOptIndx]
21: F (NextOpt) ← max(PrefixCost(NextOpt), Cost(NextOpt + 1, i)
22:
23: if F (Opt) < F (NextOpt) then break

24: OptIndx ← NextOptIndx
25: NextOptIndx ← NextOptIndx + 1

26:
27: PrefixCost(i) ← F (Opt)

28: return PrefixCost(n)

– Initialize OptIndx = 1, NextOptIndx = 2. OptIndx maintains index of Opti
in S and NextOptIndx = OptIndx + 1.

– For i = r to |C|:
� iteratively build Gi by Lemma 8
� if (OptIndx > Size(S)):

OptIndx = Size(S), NextOptIndx = OptIndx + 1.
� While OptIndx< Size(S) and Fi(S[OptIndx])≥ Fi(S[NextOptIndx]):

increment OptIndx and NextOptIndx.
� PrefixCost(i) = Fi(Opt).

The detail of the pseudocode is in Algorithm 3. We need O(log |F |) time to
calculate Cost(a, b) queries, so the running time of the algorithm is O(|F | +
|C| log |F |).
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5 An O(|C| + |F |)-time Solution

Previously we have argued that for a fixed i and an increasing j, optimal facility
always remains the same or shifts to the right. Now we need a more general
result along that line to achieve the final bit of improvement. So we present the
following lemma.

Lemma 11. Let fg be the optimal facility for the consecutive sequence of cus-
tomers [s, . . . , t] and fh be the optimal facility for the consecutive sequence of
customers [u, . . . , v]. If s ≤ u and t ≤ v, then we have g ≤ h.

Proof. The proof will be provided in the journal version.

The rest of the discussion can be understood in the context of Algorithm 3.
We can now design an improved algorithm by answering Cost(a, b) queries in
constant time. This is done as follows using Lemma 11. In Algorithm 3, for each
iteration of i (for loop in Line 6) we need to answer the query Cost(a, i) for some
specific values of a. So in the subsequent iteration (that is i + 1) the relation
between the right limits in consecutive queries as stipulated in Lemma 11 (i.e. s ≤
v) always holds. On the other hand, for a fixed i in the while loop of Line 15 Opt
always increases. So similarly the relation between the left limits in consecutive
queries as stipulated in Lemma 11 (i.e. r ≤ u) always holds. Therefore clearly by
Lemma 11 optimal facility in successive queries either remains the same or shifts
to the right. So we can describe the improvement on Algorithm 3 as follows.

– Keep two variables: OptFacility for OptIndx and NextOptFacility for
NextOptIndx. OptFacility maintains the optimal facility for cluster (Opt +
1, i), while NextOptFacility maintains the optimal facility for cluster
(NextOpt + 1, i). Initialize OptFacility = 1 and NextOptFacility = 1.

– To calculate Fi(Opt) at any iteration, we need to calculate Cost(Opt+1, i). To
do so, we can always shift OptFacility to the right as long as OptFacility < m
and the cost of the cluster Opt + 1, . . . , i decreases.

– Similarly to calculate Fi(NextOpt) at any iteration, we can always shift
NextOptFacility to the right as long as NextOptFacility < m and cost
of the cluster NextOpt + 1, . . . , i decreases.

Since, both OptFacility and NextOptFacility shift only to the right, we can
answer all Cost(a, b) queries in total O(|F |) time. The overall running time of
the algorithm is O(|C| + |F |).

Acknowledgement. First and second authors are partially supported through a grant
from Pubali Bank Ltd.

References

1. Aggarwal, G., et al.: Achieving anonymity via clustering. ACM Trans. Algorithms
6(3), 49:1–49:19 (2010)



66 A. Sarker et al.

2. Akagi, T., Nakano, S.: On r-gatherings on the line. In: Wang, J., Yap, C. (eds.)
FAW 2015. LNCS, vol. 9130, pp. 25–32. Springer, Cham (2015). https://doi.org/10.
1007/978-3-319-19647-3 3

3. Armon, A.: On min-max r-gatherings. Theor. Comput. Sci. 412(7), 573–582 (2011)
4. Drezner, Z.: Facility Location: A Survey of Applications and Methods. Springer,

New York (1995)
5. Drezner, Z., Hamacher, H.W.: Facility Location: Applications and Theory. Springer,

Heidelberg (2001)
6. Gabow, H.N., Tarjan, R.E.: Algorithms for two bottleneck optimization problems.

J. Algorithms 9(3), 411–417 (1988)
7. Nakano, S.: A simple algorithm for r-gatherings on the line. In: Rahman, M.S., Sung,

W.-K., Uehara, R. (eds.) WALCOM 2018. LNCS, vol. 10755, pp. 1–7. Springer,
Cham (2018). https://doi.org/10.1007/978-3-319-75172-6 1

8. Han, Y., Nakano, S.: On r-gatherings on the line. In: Proceedings of FCS 2016, pp.
99–104 (2016)

https://doi.org/10.1007/978-3-319-19647-3_3
https://doi.org/10.1007/978-3-319-19647-3_3
https://doi.org/10.1007/978-3-319-75172-6_1


Computational Geometry



Maximum-Width Empty Square
and Rectangular Annulus

Sang Won Bae1(B), Arpita Baral2, and Priya Ranjan Sinha Mahapatra2

1 Division of Computer Science and Engineering,
Kyonggi University, Suwon, Republic of Korea

swbae@kgu.ac.kr
2 Department of Computer Science and Engineering,

University of Kalyani, Kalyani, India
arpitabaral@gmail.com, priya@klyuniv.ac.in

Abstract. An annulus is, informally, a ring-shaped region, often
described by two concentric circles. The maximum-width empty annulus
problem asks to find an annulus of a certain shape with the maximum
possible width that avoids a given set of n points in the plane. This prob-
lem can also be interpreted as the problem of finding an optimal location
of a ring-shaped obnoxious facility among the input points. In this paper,
we study square and rectangular variants of the maximum-width empty
anuulus problem, and present first nontrivial algorithms. Specifically, our
algorithms run in O(n3) and O(n2 logn) time for computing a maximum-
width empty axis-parallel square and rectangular annulus, respectively.
Both algorithms use only O(n) space.

1 Introduction

The problem of computing a minimum-size geometric object that encloses an
input point set P is one of the central research problems in computational geom-
etry. This type of problem has been extensively studied with direct applications
to location of desirable facilities to customers P , for a variety of different geo-
metric shapes including circles [18], rectangles [21], and annuli [1–3,5,12,17].

On the other hand, in some applications, the facility to be built among P is
considered obnoxious, that is, every member in P wants to be as far away from
it as possible. The problem of locating an obnoxious facility is often interpreted
as the problem of finding a maximum-size empty geometric object among P . For
examples, the center of a largest circle or square that is empty of P corresponds
to an optimal location of a point obnoxious facility that maximizes the Euclidean
or L∞ distance, respectively, from its closest point in P . A largest empty circle or
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square can be found in optimal O(n log n) time using the Voronoi diagram [20],
and the best known algorithm that computes an empty axis-parallel rectan-
gle of maximum area runs in O(n log2 n) time by Aggarwal and Suri [4]. The
widest empty corridor problem, in which one wants to find a widest empty strip
among P of arbitrary orientation, is another interesting problem in this concept.
After Houle and Maciel [14] presented an O(n2)-time algorithm for this prob-
lem, a lot of variants and extensions have been addressed, including the widest
L-shaped corridor problem [7], and the widest 1-corner corridor problem [9].
Note that these problems are equivalent to those of finding an optimal location
of an obnoxious facility whose shape is of a line, a line segment, or a polygonal
chain.

In this paper, along this line of research, we study the maximum-width empty
annulus problem. Informally, an annulus is a ring-shaped region, often described
by two concentric circles. Thus, the maximum-width empty annulus problem is
to find an optimal location of a ring-shaped obnoxious facility among the input
points P . Specifically, we discuss its square and rectangular variants, and present
first nontrivial algorithms. Our algorithms run in O(n3) and O(n2 log n) time
for computing a maximum-width axis-parallel square and rectangular annulus,
respectively, that is empty of a given set P of n points in the plane. Both algo-
rithms use only O(n) space.

There has been a little work on the maximum-width empty annulus problem.
Dı́az-Báñez et al. [10] first studied the problem for circular annulus, and proposed
an O(n3 log n)-time and O(n)-space algorithm to solve it. To our best knowledge,
there was no known correct algorithm in the literature for the maximum-width
empty square or rectangular annulus problem. Mahapatra [16] considered the
maximum-width empty rectangular annulus problem and claimed an incorrect
O(n2)-time algorithm. There is a missing argument in Observation 2 of [16],
which incorrectly claimed that the total number of potential outer rectangles
forming an empty rectangular annulus is n − 1.

Unlike the maximum-width empty annulus problem, the problem of finding a
minimum-width annulus that encloses P has recently attained intensive interests
from researchers. As a classical one, circular annuli have been studied earlier
with applications to the roundness problem [11,19,22], and the currently best
known algorithm runs in O(n3/2+ε) time [2,3]. Computing a minimum-width
axis-parallel square or rectangular annulus that encloses n points P can be done
in O(n log n) or O(n) time, respectively [1,12]. Mukherjee et al. [17] considered
the problem of identifying a rectangular annulus of minimum width that encloses
P in arbitrary orientation, and presented an O(n2 log n)-time algorithm. Bae [5]
studied a minimum-width square annulus in arbitrary orientation and showed
that it can be solved in O(n3 log n) time.

2 Problem Definition and Terminologies

Throughout the paper, we consider a Cartesian coordinate system of the plane
R

2 with the x- and y-axes. For any point p in the plane R2, we denote by x(p) and
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y(p) its x- and y-coordinates. For an axis-parallel rectangle or square, its four
sides are naturally identified by top, bottom, left, and right sides, respectively.

For an axis-parallel square, the intersection point of its two diagonals is called
its center, and its radius is half its side length. An axis-parallel square annulus is
the region between two concentric axis-parallel squares S and S′, where S′ ⊆ S.
We call S and S′ the outer and inner squares, respectively, of the annulus. The
width of a square annulus is defined to be the difference of radii of its outer and
inner squares. See Fig. 1(left) for an illustration.

Fig. 1. A square annulus of width w with outer and inner squares S and S′ having a
common center c (left) and a rectangular annulus with outer and inner rectangles R
and R′ whose top-, bottom-, left-, right-widths are t, b, l, and r, respectively (right).

An axis-parallel rectangular annulus is the region obtained by subtracting
the interior of an axis-parallel rectangle R′ from another axis-parallel rectangle
R such that R′ ⊆ R. We call R and R′ the outer rectangle and inner rectangle of
the annulus, respectively. Consider a rectangular annulus A defined by its outer
and inner rectangles, R and R′. By our definition, note that R and R′ defining
annulus A do not have to be concentric, so that A may not be a symmetric
shape. The top-width of A is the vertical distance between the top sides of R
and R′, and the bottom-width of A is the vertical distance between their bottom
sides. Analogously, the left-width and right-width of A are defined to be the
horizontal distance between the left sides of R and R′ and the right sides of R
and R′, respectively. Then, the width of A is defined to be the minimum of the
four values: the top-width, bottom-width, left-width, and right-width of A. See
Fig. 1(right) for an illustration.

In this paper, we only discuss squares, rectangles, square annuli, and rectan-
gular annuli that are axis-parallel. Hence, we shall drop the term “axis-parallel”,
and any square, rectangle, or annulus we discuss is assumed to be axis-parallel.

Let P be a set of n points in R
2. A square or rectangular annulus A is said

to be empty of P , or just empty when there is no confusion, if the interior of
A does not contain any point in P . Consider any empty square or rectangular
annulus A. Then, A induces a partition of P into two subsets Pout and Pin such
that Pin is the set of points in P lying in the interior or on the boundary of
the inner square or rectangle of A, and Pout = P \ Pin. If both Pout and Pin are
nonempty, then we say that A is valid. In this paper, we address the following
problems:
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MaxWidthEmptySquareAnnulus (MaxESA)
Input : A set of points P in R

2

Output : A valid empty square annulus A of maximum width

MaxWidthEmptyRectangularAnnulus (MaxERA)
Input : A set of points P in R

2

Output : A valid empty rectangular annulus A of maximum width

The constraint that the resulting empty annulus should be valid is essential
to make the problem nontrivial; the same constraint has often been considered in
the problem of computing empty objects of maximum size [7,9,10,15]. Through-
out the paper, we are interested only in valid empty annuli, so we shall drop the
term “valid” unless stated otherwise.

3 Maximum-Width Empty Square Annulus

In this section, we present an algorithm that computes a maximum-width valid
empty square annulus for a given set P of n points.

Consider any empty square annulus A. Keeping the same partition of P by
A, one can enlarge the outer square and shrink the inner square so that some
points of P lie on the boundary of the outer and inner squares. This process
implies the following observation. A side of a rectangle or a square is said to be
at infinity if it is a translated copy of a line segment by a translation vector at
infinity.

Observation 1. There exists a maximum-width empty square annulus such that
one side of its inner square contains a point of P and one of the following holds:
(i) There are a pair of opposite sides of its outer square, each of which contains
a point of P , (ii) there are two adjacent sides of its outer square, each of which
contains a point of P , and the other two sides are at infinity, or (iii) One side
of its outer square contains a point of P and the other three sides are at infinity.

By Observation 1, we now have three different configurations of empty square
annuli to search for. If this is case (iii), then observe that it corresponds to a
maximum-width empty horizontal or vertical strip, which also can be reduced to
the problem of finding the maximum gap in {x(p) | p ∈ P} or in {y(p) | p ∈ P}.
Hence, case (iii) can be handled in O(n) time after sorting P .

On the other hand, if this is case (ii), then the resulting square annulus
corresponds to a maximum-width empty “axis-parallel” L-shaped corridor. It is
known that a maximum-width empty L-shaped corridor over all orientations can
be computed in O(n3) time with O(n3) space by Cheng [7], while we are seeking
only for axis-parallel ones. Here, we give a simple O(n2 log n) time algorithm for
this problem.

Theorem 1. Given n points in the plane, one can compute a widest empty
axis-parallel corridor in O(n2 log n) time using O(n) space.
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Now, we suppose that the solution falls in case (i) of Observation 1, so that
both two opposite sides of its outer square contains a point of P . Without loss of
generality, we assume that each of the top and bottom sides of the outer square
of our target annulus contain a point of P . The other case can be handled in a
symmetric way.

First, as preprocessing, we sort P in the decreasing order of their y-
coordinates, so P = {p1, p2, . . . , pn}, where y(p1) ≥ · · · ≥ y(pn). We also main-
tain the list of points in P sorted in their x-coordinates. Our algorithm runs
repeatedly for all pairs of indices (i, j) with 1 ≤ i < j − 1 < n, and finds a
maximum-width empty square annulus such that the top and bottom sides of
its outer square contain pi and pj , respectively.

From now on, we assume i and j are fixed. Let Pij := {pi+1, . . . , pj−1},
r := (y(pi) − y(pj))/2, and � be the horizontal line with y-coordinate y(�) =
(y(pi)+y(pj))/2. Provided that pi lies on the top side and pj lies on the bottom
side of the outer square, the possible locations of its center is constrained to
be on �. For a possible center c ∈ �, let S(c) be the square centered at c with
radius r. Then, the corresponding inner square S′(c) is determined by center c
and the farthest point among those points in Pij lying in the interior of S(c).
Here, the distance is measured by the L∞ metric. More precisely, the radius of
S′(c) is exactly maxp∈Pij∩S(c) ‖p− c‖∞, where ‖ · ‖∞ denotes the L∞ norm, and
we want to minimize this over the relevant segment C ⊂ � such that S(c) for
c ∈ C contains pi and pj on its top and bottom sides. Note that the length of
segment C ⊂ � is exactly 2r − |x(pi) − x(pj)|.

For the purpose, we define fp(c) for each p ∈ Pij and all c ∈ � to be

fp(c) =

{
‖p − c‖∞ if ‖p − c‖∞ < r

0 otherwise
,

and let F (c) := maxp∈Pij
fp(c) be their upper envelope. Note that our goal is to

minimize the upper envelope F over C ⊂ �.

Fig. 2. Illustration of the graph of function fp for p ∈ P .

Note that x(p) − r < x(c) < x(p) + r, or equivalently, p ∈ S(c) if and only
if ‖p − c‖∞ < r for any p ∈ Pij . As also observed in Bae [5], the function fp

is piecewise linear with at most three pieces over c ∈ � such that p ∈ S(c), and
the three pieces have slopes −1, 0, and 1 in this order. Moreover, the height of
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the part of slope 0 is exactly |y(p) − y(c)| = |y(p) − y(�)| and the extensions of
the two pieces of slope −1 and 1 always cross at the point of x-coordinate x(p)
and height 0. See Fig. 2. These properties of fp can be easily verified from the
behavior of the L∞ norm. By the above observations, one can explicitly compute
F by computing the upper envelope of O(n) line segments in O(n log n) time [13].
Applying this to all possible pairs (i, j) yields an O(n3 log n) time algorithm.

In the following, we show how to improve this to O(n3) time by decomposing
the function fp into two functions gp and hp. For each p ∈ Pij and c ∈ �, define

gp(c) = |x(p) − x(c)| and hp(c) = |y(p) − y(c)| if ‖p − c‖∞ < r,

and gp(c) = hp(c) = 0, otherwise. Also, let G(c) := maxp∈Pij
gp(c) and H(c) :=

maxp∈Pij
hp(c). As ‖p − c‖∞ = max{|x(p) − x(c)|, |y(p) − y(c)|}, it is obvious

that fp(c) = max{gp(c), hp(c)}, and hence F (c) = max{G(c),H(c)}. We now
show that the functions G and H can be explicitly computed in O(n) time.

Lemma 1. The functions G and H can be explicitly computed in O(n) time.

Since the function F is the upper envelope of G and H, we can compute
F in O(n) time using the explicit description of functions G and H. Note that
the three functions F , G, and H are piecewise linear with O(n) breakpoints.
Consequently, we can compute F and find a lowest point of F over C ⊂ � in
O(n) time, and hence a maximum-width empty square annulus of case (i) can
be found in O(n3) time. Finally, we conclude the following theorem.

Theorem 2. Given n points in the plane, a maximum-width empty square annu-
lus can be computed in O(n3) time using O(n) space.

4 Maximum-Width Empty Rectangular Annulus

In this section, we present an algorithm computing a maximum-width empty
rectangular annulus. First we give several basic observations on maximum-width
empty rectangular annuli.

4.1 Configurations of Empty Rectangular Annuli

Consider any empty rectangular annulus A and the partition of P induced by A.
As done for square annuli before, one can enlarge the outer rectangle of A and
shrink its inner rectangle, while keeping the partition of P and not decreasing
the width of A. This results in the following observation.

Observation 2. There exists a maximum-width empty rectangular annulus such
that each side of its outer rectangle either contains a point of P or lies at infinity,
and every side of its inner rectangle contains a point of P .
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Fig. 3. Empty rectangular annuli of maximum width w: (left) Each side of the inner
and outer rectangles contains a point. (right) A maximum-width empty rectangular
annulus that is uniform and also top-anchored.

In Observation 2, note that each side of a rectangle is considered to include
its endpoints. Thus, a point p ∈ P can be contained in two adjacent sides of a
rectangle if p is located at a corner. See Fig. 3(left).

A rectangular annulus A is said to be width-uniform, or simply uniform,
if its top-width, bottom-width, left-width, and right-width are all equal to its
width. In the following observation, we show that we can focus only on uniform
rectangular annuli to solve our problem.

Observation 3. There exists a maximum-width empty rectangular annulus A
that is uniform such that the following property holds: each side of its outer
rectangle either contains a point of P or lies at infinity, and at least one side of
its inner rectangle contains a point of P .

See Fig. 3(right) for an illustration of Observation 3. This observation sug-
gests a specific configuration of annuli for us to solve the problem. First of all, we
do not have to consider non-uniform annuli. Moreover, candidate outer rectan-
gles are defined by at most four points in P . If we fix an outer rectangle R, then
the inner rectangle that maximizes the width is also determined by searching
points in P ∩ R. This already yields an O(n5)-time algorithm for our problem.

Let A be an empty rectangular annulus satisfying the condition described
in Observation 2. We call A top-anchored (or, bottom-anchored, left-anchored,
right-anchored) if both the top sides (or, bottom sides, left sides, right sides,
resp.) of the outer and inner rectangles of A contain a point of P . For example,
Fig. 3(right) shows an empty top-anchored rectangular annulus.

Observation 4. There exists a maximum-width empty rectangular annulus A
that satisfies the condition described in Observation 3 and is either top-anchored,
bottom-anchored, left-anchored, or right-anchored.

Our algorithm will find an empty anchored and uniform rectangular annulus
of maximum width, which is the correct answer to our problem by Observa-
tion 4. In the following, we assume without loss of generality that there exists a
maximum-width empty annulus that is uniform and top-anchored, and describe
our algorithm for this case. The other three cases can be handled analogously.

Let P = {p1, p2, . . . , pn} be the given set of points, sorted in the descending
order of their y-coordinates, that is, y(p1) ≥ y(p2) ≥ · · · ≥ y(pn). Consider
any empty top-anchored rectangular annulus A that satisfies the condition of
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Observation 3. Let pi ∈ P be the point lying on the top side of the outer
rectangle of A. By Observation 3, either the bottom side of the outer rectangle
is at infinity or there is another point pj ∈ P for i < j ≤ n on it. If the bottom
side is at infinity, then we say that a point p∞ at infinity in the (−y)-direction
lies on the bottom side. Thus, in either case, there is pj on the bottom side of
the outer rectangle for i < j ≤ n or j = ∞.

Since A is top-anchored, there is a third point pk ∈ P on the top side of
the inner rectangle of A. Observe that the width of A is determined by the
y-difference of pi and pk, that is, y(pi) − y(pk). Thus, the maximum width for
top-anchored empty rectangular annuli is one among O(n2) values {y(pi)−y(pk) |
1 ≤ i ≤ k ≤ n}.

The problem becomes even simpler if we fix pi on the top side of the outer
rectangle, since the number of possible widths is reduced to n. An outlook of
our algorithm that computes a maximum-width empty top-anchored rectangular
annulus is as follows: (1) For each pi ∈ P , find an empty annulus A∗

i with pi

lying on the top side of its outer rectangle whose width is the maximum among
the set {y(pi) − y(pk) | i < k ≤ n} and then (2) output the one with maximum
width among A∗

i for all i ∈ {1, . . . , n}. In order to compute A∗
i , we try all possible

points pj that bound the bottom side of the outer rectangle.
In the following subsections, we first study the case where two points pi and

pj on the top and bottom sides are fixed, and then move on to the case where
only a point pi on the top side is fixed. More precisely, we discuss a decision
algorithm when two points on the top and bottom sides are fixed, and exploit it
as a sub-procedure to solve the other case.

4.2 Decision When Two Points on Top and Bottom Are Fixed

Suppose that we are given pi and pj with 1 ≤ i + 1 < j ≤ n or j = ∞, and we
consider only empty rectangular anuuli whose outer rectangle contains pi and
pj on its top and bottom sides, respectively.

Here, we consider the following decision problem.

Given: A positive real w > 0
Task : Does there exist an empty rectangular annulus of width at least
w whose outer rectangle contains pi and pj on its top and bottom sides,
respectively?

Let Dij(w) denote the outcome of the above decision problem.

Observation 5. If Dij(w) is TRUE, then Dij(w′) is TRUE for any w′ ≤ w.
On the other hand, if Dij(w) is FALSE, then Dij(w′) is FALSE for any w′ ≥ w.

Let Pij := {pi+1, . . . , pj−1} for i < j ≤ n, and Pi∞ := {pi+1, . . . , pn}. In the
following, we show that the decision problem for a given width w > 0 can be
solved by a combination of certain operations on points Pij , namely, the y-range
x-neighbor query and the range maximum-gap query. Each of the two operations
is described as follows (see Fig. 4):
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Fig. 4. (left) the y-range x-neighbor query for (x, y1, y2) and its answer q1 and q2,
(right) the range maximum-gap query for (x1, x2) and the maximum gap is g.

(i) The y-range x-neighbor query : Given three real numbers (x, y1, y2), this
operation is to find two points q1 and q2 in Pij such that q1 is the rightmost
one among points Pij ∩ [−∞, x] × [y1, y2] and q2 is the leftmost one among
points Pij ∩ [x,∞] × [y1, y2]. Either q1 and q2 may be undefined if there
is no point of Pi,j in the corresponding range. If q1 is undefined, then we
return q1 as a point at infinity such that x(q1) = −∞ and y(q1) = y1; if q2
is undefined, then we return q2 such that x(q2) = ∞ and y(q2) = y1 (Fig. 4).

(ii) The range maximum-gap query (in x-coordinates): Given two real numbers
(x1, x2), find the maximum gap in the set of real numbers {x(p) | x1 ≤
x(p) ≤ x2, p ∈ Pij} ∪ {x1, x2}, where x(p) denotes the x-coordinate of point
p. The maximum gap in a set X of real numbers is the maximum difference
between two consecutive elements when X is sorted. Notice that x1 and x2

are also included in the above set. Here, the output of the range maximum-
gap query is to be the pair of values that define the maximum gap (Fig. 4).

We describe our algorithm for the decision problem as Algorithm 1.
Our decision algorithm, Algorithm 1, evaluates Dij(w) for a given w. As

described in Algorithm 1, the decision is made by four calls of the y-range x-
neighbor queries and the range maximum-gap queries. Thus, its running time
depends on how efficiently we can handle these queries. If the algorithm decides
that Dij(w) is TRUE, then it also returns a corresponding rectangular annulus,
that is, an empty uniform annulus of width w with pi and pj on the top and
bottom sides of the outer rectangle. This can be done by constructing its outer
rectangle since its width w is fixed.

In the following, we show the correctness of our decision algorithm.

Lemma 2. Algorithm 1 correctly computes Dij(w) for any given w > 0 in time
O(T ), where T is an upper bound on time needed to perform a y-range x-neighbor
query or a range maximum-gap query. Moreover, if Dij(w) is TRUE, then an
empty rectangular annulus of width w such that pi and pj lie on the top and
bottom side of its outer rectangle can be found in the same time bound.

Note that the two operations can be easily done in linear time. We now
show how to perform them in logarithmic time with an aid of the following data
structures.

– Let D be the data structure on P described in Chazelle [6] that supports a
segment dragging query for vertical line segments dragged by two horizontal
rays. A segment dragging query is given by a segment and a direction along
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Algorithm 1: Decision algorithm
Input: a width w > 0
Output: Dij(w), and an empty rectangular annulus of width w with pi and pj

lying on the top and bottom sides of its outer rectangle, respectively,
if Dij(w) is TRUE

1 if y(pi) − y(pj) < 2w then
2 Return FALSE.
3 Perform a y-range x-neighbor query for (x(pi), y(pi) − w, y(pi)), and let ql and

qr be the output with x(ql) ≤ x(pi) ≤ x(qr).
4 Perform a y-range x-neighbor query for (x(pj), y(pj), y(pj) + w), and let q′

l and
q′
r be the output with x(q′

l) ≤ x(pj) ≤ x(q′
r).

5 Let pl be the rightmost one in {ql, q′
l} and pr be the leftmost one in {qr, q′

r}.
6 if min{x(pi), x(pj)} < x(pl) < max{x(pi), x(pj)} or

min{x(pi), x(pj)} < x(pr) < max{x(pi), x(pj)} then
7 Return FALSE.
8 Perform a range maximum-gap query for (x(pl),min{x(pi), x(pj)} + w), and let

(l, l′) be the output and gl := l′ − l be the corresponding maximum gap.
9 Perform a range maximum-gap query for (max{x(pi), x(pj)} − w, x(pr)), and let

(r′, r) be the output and gr := r − r′ be the corresponding maximum gap.
10 if gl ≥ w and gr ≥ w then
11 Return TRUE, and the rectangular annulus of width w whose outer

rectangle is defined by the top and bottom sides through pi and pj ,
respectively, and the left and right sides at x = l and x = r, respectively.

12 else
13 Return FALSE.

two rays and is to find the first point in P that is hit by the dragged segment.
This structure can be constructed in O(n log n) time using O(n) storage

– Let Xij be a 1D range tree for the x-coordinates of points in Pij with an
additional field maxgap(v) at each node v, where maxgap(v) denotes the
maximum gap in the canonical subset of v. Note that maxgap(v) = 0 if the
canonical subset of v consists of only one element. The structure Xij can be
constructed using storage O(|Pij |) [8].

Now, suppose that we have already built these two structures D and Xij .
Then, the two operations can be handled in O(log n) time as follows:

(i) For a y-range x-neighbor query for (x, y1, y2), we perform two segment drag-
ging queries on D for a vertical line segment with endpoints (x, y1) and
(x, y2) to both the left and the right directions. These two queries result in
the rightmost point q1 in the range [−∞, x]× [y1, y2] and the leftmost point
q2 in the range [x,∞] × [y1, y2].

(ii) For a range maximum-gap query for (x1, x2), we perform a 1D range search
for the x-range [x1, x2] on Xij again to obtain a collection C of O(log n)
nodes. The maximum gap in the x-coordinates of the points in Pij in the
range [x1, x2] can be found by comparing O(log n) values: maxgap(v) for all
v ∈ C and every gap between two consecutive canonical subset.
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Algorithm 2: Computing A∗
i .

Input: A set P = {p1, . . . , pn} of points sorted by y-coordinates, and a point
pi ∈ P

Output: A∗
i with pi and its width w∗

i

1 Set k to be i + 1, w to be 0, and A to be any annulus of width 0.
2 Build the data structure D for P and initialize X to be Xi,i.
3 for each j = i + 2, . . . , n and j = ∞ do
4 Insert pj−1 if j ≤ n, or pn if j = ∞, into X , so that now X = Xij .
5 while Dij(y(pi) − y(pk)) is TRUE and k ≤ j do
6 Set A to be the corresponding annulus of width y(pi) − y(pk).
7 Set w to be y(pi) − y(pk).
8 Increase k by 1.

9 Return the current A as A∗
i and the current w as w∗

i .

Therefore, we conclude the following:

Lemma 3. Suppose that we already have two tree structures D and Xij. Then,
Algorithm 1 correctly computes Dij(w) for any given w > 0 in time O(log n).

4.3 Optimization When Only a Point on Top Is Fixed

Next, we describe how to find a maximum-width empty top-anchored rectangular
annulus such that pi lies on the top side of the outer rectangle.

Let w∗
i be the width of A∗

i . Observe that w∗
i lies in the set Wi := {y(pi) −

y(pk) | i ≤ k ≤ n}. Instead of solving the optimization problem for each pair
(pi, pj), we can rather solve the optimization problem when only a point pi on
top is fixed. Our algorithm that computes A∗

i and its width w∗
i is presented as

in Algorithm 2.

Lemma 4. Algorithm 2 can be implemented in O(n log n) time and O(n) space
for a fixed pi ∈ P . Also, it correctly computes w∗

i and A∗
i .

4.4 Putting It All Together

We are now ready to describe the overall algorithm to solve the MaxERA prob-
lem. Under the assumption that there exists a maximum-width empty rectangu-
lar annulus A∗ that satisfies the condition of Observation 3 and is top-anchored,
we execute Algorithm 2 for each i = 1, . . . n−1 and choose the one with the max-
imum width as A∗. Its correctness is guaranteed by Lemma 4. The other three
cases where there is a maximum-width empty rectangular annulus that satisfies
the condition of Observation 3 and is either bottom-anchored, left-anchored, or
right-anchored, can be handled in a symmetric way. Thus, the overall algorithm
runs for the four cases and outputs one with the maximum width.

Theorem 3. Given a set P of n points in the plane, a maximum-width rect-
angular annulus that is empty with respect to P can be computed in O(n2 log n)
time and O(n) space.



80 S. W. Bae et al.

References

1. Abellanas, M., Hurtado, F., Icking, C., Ma, L., Palop, B., Ramos, P.: Best fitting
rectangles. In: Proceedings of European Workshop on Computational Geometry
(EuroCG 2003) (2003)

2. Agarwal, P.K., Sharir, M.: Efficient algorithms for geometric optimization. ACM
Comput. Surv. 30(4), 412–458 (1998)

3. Agarwal, P.K., Sharir, M., Toledo, S.: Applications of parametric searching in
geometric optimization. J. Algo. 17(3), 292–318 (1994)

4. Aggarwal, A., Suri, S.: Fast algorithms for computing the largest empty rectangle.
In: Proceedings of the Third Annual Symposium on Computational Geometry
(SoCG 1987), pp. 278–290 (1987)

5. Bae, S.W.: Computing a minimum-width square annulus in arbitrary orientation.
Theoret. Comput. Sci. 718, 2–13 (2018)

6. Chazelle, B.: An algorithm for segment-dragging and its implementation. Algorith-
mica 3(1), 205–221 (1988)

7. Cheng, S.W.: Widest empty L-shaped corridor. Inform. Proc. Lett. 58(6), 277–283
(1996)

8. de Berg, M., Cheong, O., van Kreveld, M., Overmars, M.: Computational Geom-
etry: Algorithms and Applications, 3rd edn. Springer-Verlag TELOS, Heidelberg
(2008). https://doi.org/10.1007/978-3-540-77974-2
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Abstract. In this work we study tilings of regions in the square lat-
tice with L-shaped trominoes. Deciding the existence of a tiling with
L-trominoes for an arbitrary region in general is NP-complete, nonethe-
less, we identify restrictions to the problem where it either remains NP-
complete or has a polynomial time algorithm. First, we characterize the
possibility of when an Aztec rectangle has an L-tromino tiling, and hence
also an Aztec diamond; if an Aztec rectangle has an unknown number of
defects or holes, however, the problem of deciding a tiling is NP-complete.
Then, we study tilings of arbitrary regions where only 180◦ rotations of
L-trominoes are available. For this particular case we show that decid-
ing the existence of a tiling remains NP-complete; yet, if a region does
not contain so-called “forbidden polyominoes” as subregions, then there
exists a polynomial time algorithm for deciding a tiling.

Keywords: Polyomino tilings · Tromino · Efficient tilings
NP-completeness · Aztec rectangle · Aztec diamond · Claw-free graphs

1 Introduction

1.1 Background

A packing puzzle is a solitary game where a player tries to find a way to cover
a given shape using polyominoes, where a polyomino is a set of squares joined
together by their edges. The computational complexity of packing puzzles was
studied by Demaine and Demaine [3] who showed that tiling a shape or region
using polyominoes is NP-complete.

In this work we study tilings of regions in the square lattice with L-shaped
trominoes (a polyomino of three cells) called an L-Tromino or simply tromino
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in this work. A cell in Z
2 is a subset [a, a + 1] × [b, b + 1] and a region is any

finite union of connected cells. At our disposal we have an infinite amount of
trominoes and would like to know if a given region can be covered or tiled with
trominoes.

The problem of tiling with trominoes was first studied by Conway and
Lagarias [2] who presented an algebraic necessary condition for a region in order
to have a tiling. Moore and Robson [8] showed that deciding if a region can
be covered with trominoes is NP-complete. Later Horiyama et al. [5] presented
another proof of NP-completeness by constructing an one-one reduction which
implies that counting the number of tilings with trominoes is #P-complete.
Counting the number of tilings with L-trominoes was also studied by Chin et al.
[1] using generating functions.

1.2 Contributions

In this work we aim at identifying instances of the tiling problem with trominoes
that either have efficient algorithms or it remains NP-complete. As a further
generalization of the problem, we also consider regions with “defects” or holes,
that is, we want to know if there is a tiling with trominoes without covering the
defects. First we study the Aztec rectangle (and hence, also an Aztec diamond)
[4,10] and show that any Aztec rectangle of side lengths a, b can be covered with
trominoes if and only if a(b + 1) + b(a + 1) ≡ 0 (mod 3) (Theorem 1), which
implies the existence of a polynomial time algorithm for finding a tiling in an
Aztec rectangle, and hence, an Aztec diamond. Then we show that for the cases
when a(b + 1) + b(a + 1) ≡ 0 (mod 3) does not hold, if an Aztec Rectangle
has exactly one defect, then it can be covered with trominoes (Theorem 2). In
general, however, deciding the tiling of an Aztec diamond with an unknown
number of defects is NP-complete (Theorem 3).

In the second part of this paper we study a restricted case of the tiling prob-
lem where we only have 180◦ rotations of the trominoes available. Here we show
that the problem remains NP-complete (Theorem 4) by slightly modifying the
one-one reduction from the 1-in-3 Graph Orientation Problem of Horiyama et al.
[5], whereas any Aztec rectangle has no tiling at all (Theorem 5). Nevertheless,
we show that if a region does not contain any of the so-called “forbidden poly-
ominoes” identified in this work, then that region has an efficient algorithm for
deciding a tiling (Theorem 6). This latter result is proved by constructing a
graph representation of the region, called an intersection graph, and identifying
independent sets of certain size. If the intersection graph has a claw, then that
claw will correspond to a forbidden polyomino; if the graph is claw-free, how-
ever, we can use well-known efficient algorithms for finding independent sets,
and hence, a tiling for the region.

Finally we close this paper in Sect. 5 where we study a relation between
L-Trominoes and I-Trominoes. We introduce a technique for decomposing a
region in simple parts that yields an efficient algorithm for finding L-Tromino
covers. This tiling technique is a modification of the proof of Theorem 5 for tiling
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the Horiyama et al. [5] gadgets with I-Trominoes to tiling general regions with
L-Trominoes.

2 Preliminaries

In this work we will use Z to denote the set of integers and [a, b] to denote the
discrete interval {a, a + 1, . . . , b}.

A region R is a finite union of connected cells, where connected means that
any two cells in R share one common edge (this convention is only restricted to
the regions we study in this paper). If a cell is the set of points [a, a+1]×[b, b+1],
we label such cell by (a, b) which we refer to as the cell’s coordinate. Two cells
are adjacent if the Manhattan distance, i.e., the L1-norm, of their coordinates
is 1; thus, two cells in diagonal to each other are not adjacent.

A tromino is a polyomino of 3 cells. In general there are two types of tromi-
noes, the L-tromino and the I-tromino. An L-tromino is a polyomino of 3 cells
with an L shape. An I-tromino is a polyomino of 3 straight cells with the form of
an I. In this work we will mostly be dealing with L-Trominos and we will refer to
them simply as trominoes; I-trominoes will appear later but we will make sure
to clarify to which type of tromino we are referring to.

A defect is a cell that is “marked” in the sense that no tromino can be placed
on top of that cell. A cover or tiling of a region R is a set of trominoes covering
all cells of R that are not defects without overlapping and each tromino is packed
inside R. The size of a cover is the number of tiles in it.

Definition 1. TROMINO is the following problem:
INPUT : a region R with defects.
OUTPUT : “yes” if R has a cover and “no” otherwise.

Moore and Robson [8] proved that TROMINO is NP-complete and Horiyama
et al. [5] proved that #TROMINO, the counting version of TROMINO, is
#P-complete.

In this work we will also consider tilings where only trominoes with 180◦

rotations are used. More precisely, given a region R we want to find a cover where
all trominoes are right-oriented as in Fig. 1(a) or left-oriented as in Fig. 1(b). We
will refer to trominoes where only their 180◦ rotations are considered as 180-
trominoes. A 180-cover of R is a cover with 180-trominoes.

Fig. 1. The 180-TROMINO problem either takes trominoes from the left figure or the
right figure.
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Definition 2. 180-TROMINO is the following problem:
INPUT : a region R with defects.
OUTPUT : “yes” if R has a 180-cover and “no” otherwise.

3 Tiling of the Aztec Rectangle

The Aztec Diamond of order n, denoted AD(n), is the union of lattice squares
[a, a+1]×[b, b+1], with a, b ∈ Z, that lie completely inside the square {(x, y)||x|+
|y| ≤ n + 1} [4]. Figure 2 shows the first four Aztec diamonds. Tilings of the
Aztec diamond with dominoes was initially studied by Elkies et al. [4] and later
by several other people.

The concept of an Aztec diamond can be very easily extended to that of
an Aztec rectangle. We denote by ARa,b the Aztec rectangle which has a unit
squares on the southwestern side and b unit squares on the northwestern side;
in the case when a = b = n we get an Aztec diamond of order n. When dealing
with Aztec rectangle, with no loss of generality, we always assume that a < b. As
an example Fig. 3 shows AR4,10. Domino tilings of Aztec rectangles have been
studied by various mathematicians starting with Mills et al. [6].

In the following subsections we study tilings of the Aztec rectangle using
trominoes with and without defects, and then specialize them to Aztec diamonds.

Fig. 2. Aztec diamonds of order 1, 2, 3 and 4.

3.1 Tilings with No Defects

For any Aztec rectangle ARa,b with no defects, we can completely understand
when there is a tiling. The following theorem gives a characterization.

Theorem 1. ARa,b has a cover if and only if a(b+ 1) + b(a+ 1) ≡ 0 (mod 3).

As a corollary, we get the following for the Aztec diamond.

Corollary 1. AD(n) has a cover if and only if n(n + 1) ≡ 0 (mod 3).

To prove Theorem 1, first we present tilings of particular cases of the Aztec
rectangle in Lemmas 2 and 3. The following lemma is trivial.
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Fig. 3. Aztec rectangle AR4,10.

Fig. 4. A stair also includes all 90◦ rotations.

Lemma 1. An Aztec rectangle, ARa,b contains a(b+1)+ b(a+1) unit squares.
Further, specializing a = b = n we get that an Aztec diamond of order n contains
2n(n + 1) unit squares.

Define a stair as a polyomino made-up only of trominoes with their 180◦

rotations connected as in Fig. 4(a). The same stair can be rotated 90◦ to obtain
another stair. A k-stair is a co-joined set of k stairs, where a stair is joined
to another stair by matching their extremes; for example, in Fig. 4(b) we can
see two stairs where the lowest extreme of the upper stair is matched with the
upper extreme of the lower stair. This idea is easily extended to a set of k stairs
thus giving a k-stair as in Fig. 4(c). A k-stair can also be rotated 90◦ to obtain
another k-stair. The height of a k-stair is the number of steps in it. It is easy to
see that the height of a k-stair is 3k + 2. In addition, a single tromino would be
a 0-stair.

Lemma 2. If 3 | a, b and ARa,b has a cover, then ARa+2,b+2 has a cover.

Proof. If a, b are multiples of 3, then an a/3-stair and an b/3-stair can be used
to tile around ARa,b along the shorter and longer sides respectively, using the
pattern of Fig. 5(a). This tiling increments the order of the Aztec rectangle by
2, thus obtaining a tiling for ARa+2,b+2. ��
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Fig. 5. Tilings of Lemmas 2 and 3.

Lemma 3. If 3 | a + 1, b + 1 and ARa,b has a cover, then ARa+4,b+4 has a
cover.

Proof. To find a tiling for ARa+4,b+4 we use four copies of AD(2) added to
the four corners of ARa,b. Then, to complete the tiling, we use two (a − 2)/3
and (b − 2)/3-stairs one on top of each other along the shorter and longer sides
respectively, to complete the border. The entire construction follows the pattern
of Fig. 5(b). This tiling increments the order of the Aztec rectangle by 4, thus
obtaining a tiling for ARa+4,b+4. ��
The above two Lemmas gives as easy corollaries the corresponding results for
Aztec diamonds (in the spirit of Corollary 1.)

Now, let us prove Theorem 1.
Proof (Proof of Theorem 1). The values for which a(b + 1) + b(a + 1) ≡ 0

(mod 3) holds are a, b = 3k and a, b = 3k − 1 for some k ∈ Z.
Thus, the statement is equivalent to saying that for all positive integers k

there is a tiling of ARa,b where 3 | a, b or 3 | a + 1, b + 1 and that there are no
tilings for ARa,b when 3 | a + 2, b + 2.

We show the second part now, which is easy since if we have ARa,b with
a, b of the form 3k + 2, then the number of lattice squares inside ARa,b is not
divisible by 3 and hence we cannot tile this region with trominoes.

We come to the first cases now. Using Lemmas 2 and 3, this part is clear if
we can show the base induction case to be true.

The base case of Lemma 2 is shown in Fig. 6(a), which is AR3,6. Once we
have a tiling of AR3,6, we can use Lemma 2 to create a tiling of an Aztec
rectangle whose sides are increased by 2. We can also increase AR3,6 by using
the additional pieces shown in Fig. 6(b,c) using them in combinations with any
case of Aztec rectangle satisfying the properties of Lemma 2 to increase either
the longer or the shorter sides, and if all three additional pieces are used then
we can increase both sides of ARa,b.

Similarly, the base case of Lemma 3 is shown in Fig. 7(a), which is AR2,5.
Once we have a tiling of AR2,5, we can use Lemma 3 to create a tiling of an Aztec
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rectangle whose sides are increased by 4. We can also increase ARa,b by using
the additional pieces shown in Fig. 7(b,c,d) using them in combinations with any
case of Aztec rectangle satisfying the properties of Lemma 3 to increase either
the longer or the shorter sides, and if all three additional pieces are used then
we can increase both sides of ARa,b. ��

Fig. 6. Base case of Lemma 2.

Fig. 7. Base case of Lemma 3.

An O(b2) time algorithm is immediately obtained from the proof of
Theorem 1, and also for Aztec diamonds (we omit the details due to lack of
space).

3.2 Tiling with Defects

From Theorem 1 we know that for any positive integers a, b, the Aztec rectangles
with no defects ARa,b such that 3 divides a, b or 3 divides a + 1, b + 1 have a
cover but if 3 divides a + 2, b + 2, then ARa,b does not have a tiling. We show
that if such an Aztec rectangle has exactly one defect, then it can be covered
with trominoes.

Theorem 2. ARa,b with a, b of the form 3k − 2 with one defect has a cover.
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Proof. To tile ARa,b with one defect we use a construct which we call a fringe
appearing in Fig. 8(a). It is easy to check that if a fringe has exactly one defect,
then it can be covered with trominoes.

To construct a tiling for ARa,b with one defect we place a fringe in a way
that includes the defect and the left and right ends of the fringe touches the
boundaries of the Aztec rectangle as in Fig. 8(b). Then we use the tiling pattern
of Fig. 8(b) where we put stairs above and below the fringe. ��

Fig. 8. Tiling of ARa,b with one defect. A fringe can be composed of any number of
order 1 Aztec diamonds AD(1) joined by their upper right and lower left cells. An
reversed fringe is obtained by joining order 1 Aztec diamonds by their upper left and
lower right cells.

As an easy corollary, we obtain the corresponding result for Aztec diamonds.

Corollary 2. For any positive integer k, the Aztec Diamond AD(3k − 2) with
one defect has a cover.

We can consider many different classes of defects, and it is observed that
some of these classes have easy tilings, as an example, we have in Fig. 9(a) an
Aztec rectangle with four defects on its corners. A tiling of this region is shown
in Fig. 9(b). In the combinatorics literature, tilings of regions with defects of
several kinds for Aztec rectangle have been studied (see [10] for the most general
class of boundary defects).

Remark 1. Similar defects can be studied for Aztec Diamonds as well. In fact,
we can delete all cells in a fringe and obtain a tiling.

The proof of Theorem 2 gives an optimal O(b2) time algorithm for finding a
cover for ARa,b with one defect. In general, however, it is computationally hard
to determine if ARa,b with an unknown number of defects has a cover.

Theorem 3. It is NP-complete to decide whether ARa,b with an unbounded
number of defects has a cover.

Proof Sketch. The reduction is from tiling an arbitrary region R with defects.
The idea is to embed R into ARa,b for some sufficiently large n and insert defects
in ARa,b in a way that surrounds R.
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Fig. 9. Tiling of ARa,b with four defects.

4 Tiling with 180-Trominos

In this section we study tilings of arbitrary regions using only 180-trominoes.
With no loss of generality, we will only consider right-oriented 180-trominoes.

4.1 Hardness

It is easy to see that even when restricted to 180-trominoes, deciding the exis-
tence of a tiling of an arbitrary region is still hard.

Theorem 4. 180-TROMINO is NP-complete.

Proof Sketch. The proof uses the same gadgets for the reduction for I-Trominoes
from the 1-in-3 Graph Orientation Problem of Horiyama et al. [5]. Take any
gadget of Horiyama et al. [5] and partition each cell into 4 new cells. Thus, each I-
tromino is transformed in a new 2×6 or 6×2 region (depending on the orientation
of the I-tromino) which can be covered with four 180-trominoes as in Fig. 10. If
a gadget is covered with I-trominoes, then the same gadget, after partitioning
each cell into four new cells, can also be covered with 180-trominoes. To see the
other direction of this implication, we exhaustively examined all possible ways
to cover each 4-cell-divided gadget with L-trominoes, and observed that each
gadget with its original cells can also be covered with I-trominoes (we omit the
details here due to lack of space).

Theorem 4 also implies that the Triangular Trihex Tiling Problem of Conway
and Lagarias [2] is NP-complete.

It is natural to think along these lines about tiling the Aztec rectangle
(and hence, Aztec diamond) with 180-trominoes. However, we show that it is
impossible.

Theorem 5. ARa,b does not have a 180-cover.

Proof. Consider the southwestern side of any Aztec rectangle as in Fig. 11 and
pick any one of the marked cells, say the cell at coordinate (c, d). There are only
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Fig. 10. I-Tromino to L-Tromino transformation using 180-Trominoes.

two ways to cover that cell with a right-oriented tromino. With one tromino we
can cover the cells with coordinates (c, d), (c, d + 1) and (c + 1, d + 1), whereas
with the other tromino we can cover the cells (c, d), (c+1, d) and (c+1, d+1). In
either case the cells at (c, d) and (c+1, d+1) are always covered, and depending
on which tromino is chosen either the cell at (c, d + 1) or (c + 1, d) is covered.
Therefore, if we cover the entire bottom-left side of an Aztec rectangle, there
will always be a cell at (c, d+ 1) or (c+ 1, d) that cannot be covered. Note that
any reversed fringe that is on top of the bottom-left side of any Aztec rectangle
can be covered with 180-trominoes if it has one defect.

Corollary 3. AD(n) does not have a 180-cover.

Fig. 11. Covering of an Aztec rectangle with right-oriented trominoes.

4.2 Efficient Tilings

In this section we identify a sufficient condition for a region to have an efficient
algorithm that decides the existence of a 180-cover.

Theorem 6. If a region R does not contain any of the forbidden polyominoes of
Fig. 12 as a subregion, then there exists a polynomial-time algorithm that decides
whether R has a 180-cover.
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Fig. 12. Forbidden polyominoes. All 180◦ rotations, reflections and shear transforma-
tions are also forbidden polyominoes.

For the remaining of this section we present a proof of Theorem 6. Remember
that, with no loss of generality, we only consider right-oriented trominoes. Given
a region R we construct a graph GR, which we call the region graph of R, as
follows. For each cell (a, b) that is not a defect there is a vertex vab. There is an
edge for each pair of adjacent cells and for each pair vab and v(a+1)(b+1). Note
that this reduction is one-to-one. We present an example in Fig. 13.

Fig. 13. Example of a region graph construction.

From the region graph GR we construct a new graph IR which we call an
intersection graph and is constructed as follows. For each triangle in GR there
is a vertex t and there is an edge between vertices ti and tj if the corresponding
triangles share a vertex in GR; for example, the intersection graph for Fig. 13 is
a triangle, because all triangles in the region graph share at least one vertex.

Lemma 4. For any region R with a fixed number of defects, the maximum num-
ber of 180-trominoes that fit in R equals the size of a maximum independent set
in IR.

Proof. Let k be the maximum number of tiles that fit in R and let S be a
maximum independent set in the intersection graph IR. We claim that |S| = k.

Each triangle in the region graph GR correspond to a position where a 180-
tile can fit. If k is the maximum number tiles that can fit in R, then there exist k
triangles in GR, denoted T , that do not share any common vertex. Each triangle
in T corresponds to a vertex in IR and since none of the triangles in T share a
common vertex, T defines an independent set in IR and k ≤ |S|.

To prove that |S| = k suppose by contradiction that T is not a maximum
independent set of IR, that is, k < |S|. Since S is an independent set in IR, there
are |S| triangles in GR that do not share a common vertex. Thus, we can fit |S|
180-trominos in R, which is a contradiction because k < |S|. ��
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The idea for a proof of Theorem 6 is to construct a polynomial time algorithm
that decides the existence of a 180-cover by deciding if a maximum independent
set in IR equals the number of cells of R divided by 3, which agrees with the
number of trominoes covering R. Deciding the existence of a maximum indepen-
dent set of a given size is a well-known NP-complete problem, nevertheless, it
is known from the works of Minty [7], Sbihi [11] and Nakamura and Tamura [9]
that for claw-free graphs1 finding independent sets can be done in polynomial
time. Hence, if IR is claw-free, then we can use a polynomial time algorithm for
finding independent sets to decide the existence of a 180-cover. If IR has a claw,
however, each claw will give one of the forbidden polyominoes.

In Lemma 5 below we show that 180-TROMINO is polynomial time reducible
to deciding independent sets, which allow us to construct algorithms for
180-TROMINO using known algorithms for deciding independent sets. Then
in Lemma 6 we show that if IR has a claw, then that claw corresponds to a
forbidden polyomino in the region R.

Lemma 5. There is a many-one polynomial-time reduction from
180-TROMINO to the problem of deciding existence of an independent set of
a given size.

Proof. First the reduction constructs the region graph GR and the intersection
graph IR. If the size of the largest independent set equals the number of cells of
R divided by 3, then output “yes” because R has a 180-cover; otherwise output
“no” because R does not have a 180-cover.

Suppose R has a 180-cover. If n is the number of cells in R, then the number
of tiles in the 180-cover is n/3. By Lemma 4, the largest independent set in IR
equals n/3.

Now suppose R does not have a 180-cover. If n is the number of cells in R,
then n/3 is not equal the maximum number of tiles that can fit in R. Thus, by
Lemma 4, it holds that n/3 is not equal the size of the largest independent set
in IR. ��
Lemma 6. If IR has a claw, then R has at least one forbidden polyomino.

Proof Sketch. For any claw in IR there is a vertex of degree 3 and three vertices
of degree 1, and each vertex in IR corresponds to a triangle in the region graph
GR. We refer to the triangle that corresponds to the degree 3 vertex as the
central triangle and each degree 1 triangle is called an adjacent triangle. Thus,
to obtain all forbidden polyominoes, we look at all posible ways to connect
(by the vertices) each adjacent triangle to the central triangle in such a way
that each adjacent triangle only connects to the central triangle in a single
vertex and it is not connected to any other adjacent triangle; otherwise, if an
adjacent triangle connects with two vertices of the central triangle or any two
adjacent vertices connects with one another, then the induced graph does not
corresponds to a claw. By exhaustively enumerating all possibilities, we can

1 A graph is claw-free if it does not have K1,3 (a claw) as an induced subgraph.
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extract all polyominoes that correspond to claws in IR. Then we partition this
set of polyominoes in five equivalence classes, where two polyominoes are in the
same class if and only if one can be obtained from the other by a 180◦ rotation,
a reflection or shear transformation (we omit some details here due to lack of
space).

Lemmas 5 and 6 complete the proof of Theorem 6.

5 I-Trominoes vs L-Trominoes

In Sect. 4 we saw that any gadget of Horiyama et al. [5] can be covered with
I-trominoes if and only if the same gadget, after partitioning each cell into four
new cells, can be covered with L-trominoes. In general, if R is any region and R�

is the region R where each cell is partitioned into four cells, we have that if R
can be covered with I-trominoes, then R� can be covered with L-trominoes. We
do not know, however, if the other way of this implication holds in the general
case. The following theorem partly answers this open problem.

Theorem 7. Let R be a connected region of size n. The region R� has an
L-Tromino cover if and only if 3 divides n.

Proof Sketch. It is clear that if R� has an L-Tromino cover, then 3 divides n.
Now suppose that 3 divides n. Say that a connected region R with n vertices
is detachable if there exist a way to separate R in two connected subregions of
sizes n1 and n2 such that 3 divides n1 and 3 divides n2. We can show that if R
is not detachable, then R� can always be covered with L-Trominoes.

In order to construct a tiling for R� we first decompose R by recursively
detaching it in connected subregions until all subregions obtained this way
are not detachable. Since each subregion is not detachable, we construct an
L-Tromino cover for each subregion and then join them to obtain a cover for
R�. We omit details due to the lack of space.

The proof of Theorem 7 gives an efficient algorithm to find covers for any R�.

6 Concluding Remarks and Open Problems

In this work we studied the computational hardness of tiling arbitrary regions
with L-trominoes. We showed restrictions to the problem that keeps it compu-
tationally intractable and identified concrete instances where an efficient tiling
exists.

We conclude this paper with some open problems that we consider challeng-
ing and that we believe will fuel future research in the subject.

1. Hardness of tiling the Aztec rectangle with a given number of defects. In Sect. 3
we saw that an Aztec rectangle with 0 or 1 defects can be covered with L-
trominoes in polynomial time, whereas in general the problem is NP-complete
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when the Aztec rectangle has an unknown number of defects; with 2+3k, for
every k, an Aztec rectangle cannot be covered because the number of cells is
not divisible by 3. It is open if there exist a polynomial time algorithm for
deciding a tiling for an Aztec rectangle with a given number of defects.

2. Tiling of orthogonally-convex regions. In this work we showed several
instances where a tiling can be found in polynomial time. In general, it is
open if an orthogonally-convex region with no defects can be covered in poly-
nomial time or if it is NP-complete to decide if a tiling exists.
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Abstract. We present the prefix Fréchet similarity as a new measure
for similarity of curves which is e.g. motivated by evacuation analysis
and defined as follows. Given two (polygonal) curves T and T ′, we ask
for two prefix curves of T and T ′ which have a Fréchet distance no larger
than a given distance threshold δ ≥ 0 w.r.t. L1 metric such that the sum
of the prefix curves is maximal. As parameterized Fréchet measures as,
e.g., the prefix Fréchet similarity are highly unstable w.r.t. to the value
of the distance threshold δ, we give an algorithm that computes exactly
the profile of the prefix Fréchet similarity, i.e., the complete functional
relation between δ and the prefix Fréchet similarity of T and T ′. This is
the first efficient algorithm for computing exactly the whole profile of a
parametrized Fréchet distance.

While the running time of our algorithm for computing the profile of
the prefix Fréchet similarity is O (

n3 log n
)
, we provide a lower bound of

Ω(n2) for the running time of each algorithm computing the profile of
the prefix Fréchet similarity, where n denotes the number of segments
on T and T ′. This implies that our running time is at most a near linear
factor away from being optimal.

Keywords: Fréchet distance · Prefix curves · Curve matching

1 Introduction

The data which is generated by tracking moving objects has a long history and
is studied under a large range of various aspects [2,3,10,11]. A promising tool
to measure the similarity between curves is given via the Fréchet distance. The
Fréchet distance asks for a continuous matching between T and T ′ such that
the maximum distance between two matched points from T and T ′ is minimized
over all pairs of monotone walks.

Alt and Godau [1] gave an algorithm which computes the Fréchet distance
between T and T ′ in O (

n2 log(n)
)

time, where n denotes the number of segments
from T and T ′.

One application of measuring the similarity of curves is evacuation analysis.
During an evacuation, entities try to go away from the danger area as fast as
possible. The importance of the entities’ movements decreases with increasing
distance to the danger area because the larger the distance to the danger area is,
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the smaller is the influence of the danger area to the moving entity. This suggests
to compare prefix curves of the entities’ tracked movements, i.e., a subcurve Q
of a tracked movement curve T such that Q and T have the same start point. In
particular, we use L2 to measure in the ambient space lengths of prefix curves
which gives equal weight to both input curves T and T ′. Furthermore, we use
L1 two measure distances in the ambient space between two points on different
input curves which results in a polyhedral free space, see below for a definition.

Another motivation for considering prefix curves is the analysis how the
infrastructure around a public hot spot, e.g., a main railway stations, is used
and could be improved.

Furthermore, the analysis of football trajectories [9], in particular, the detec-
tion of similarities between different goal scenes provides an application for con-
sidering postfix curves which is the reversed problem and thus equivalent to
considering prefix curves.

1.1 Related Work

In their pioneering work, Alt and Godau [1] give an algorithm that computes
the Fréchet distance in O(n2 log n) time by applying parametric search. Buchin
et al. [4] give a O(n2 log2 n) algorithm computing the Fréchet distance while
avoiding applying parametric search.

To decide if two prefix curves of T and T ′ are similar, we ask if they are
within a Fréchet distance of an input threshold δ ≥ 0. Thus, our measure,
abbreviated by Cδ(T, T ′), can be seen as a specialization of the partial Fréchet
similarity which was introduced by Buchin et al. [5]. In the man dog metaphor,
the partial Fréchet similarity is defined as follows. We are searching for a pair of
simultaneous walks on T and T ′ such that the sum of the lengths of subcurves
from T and T ′ in which the needed leash is no larger than a given δ is maximized.
This means that the prefix Fréchet similarity is upper-bounded by the partial
Fréchet similarity. Buchin et al. [5] give an algorithm to compute the partial
Fréchet similarity between two given polygonal curves in O (

n3 log n
)

time. While
Buchin et al. [5] measure distances between points w.r.t. the L1 or L∞ metric,
De Carufel et al. [7] showed that the partial Fréchet similarity w.r.t. Euclidean
distance is not computable exactly over rational numbers. Hence, they gave
an approximation algorithm of time complexity O (

n3/ε log n
ε

)
, where ε is an

approximation parameter verifying the additive approximation error. By setting
δ := 0 and assessing each leash length � not by 0 or 1 but by � − δ = �, we
obtain the integral Fréchet distance, introduced by Buchin [6]. Maheshwari et al.
give the first (1 + ε)-approximation algorithm with pseudo-polynomial runtime
depending on ε, the number of segments of the input curves, and the maximal
ratio of the segments’ lengths [12]. Furthermore, in a previous work [15], we
provide a more flexible version of the partial Fréchet similarity, where leash
lengths are measured w.r.t. an input vector set and an efficient algorithm for
computing it.

Another problem setting which is similar to ours is the partial curve matching
problem introduced by Maheshwari et al. [14]. In particular, this problem setting
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asks for a longest connected subcurve form T that is within a Fréchet distance
of at most δ to the whole curve T ′. Maheshwari et al. [14] gave an algorithm
which solves the partial curve matching problem in O (

n2
)

time.
Furthermore, there are several other Fréchet measures that are parameterized

via an input parameter δ, e.g., the minimum backward Fréchet distance [8] and
Fréchet measures with bounded speed constraints [13].

1.2 Profiles of Parametrized Fréchet Distances

One drawback of many parametrized Fréchet distances is their instability regard-
ing the choice of the input parameter δ. In particular, there are configurations
of T and T ′ such that arbitrary small variations of δ result in arbitrary large
changes of, e.g., the prefix Fréchet similarity or the partial Fréchet similarity,
see Fig. 1. Motivated by that we provide an algorithm that computes the whole
profile of the prefix Fréchet similarity.

Fig. 1. Instability of the prefix Fréchet similarity regarding the choice of δ for δ1 ≈ δ2
and δ1 < δ2: For δ = δ1 the prefix Fréchet similarity is equal to 0 while δ = δ2 implies
that both curves are accepted completely, i.e., the prefix Fréchet similarity is the sum
of the length of both curves. The above example also applies to the partial Fréchet
similarity and the maximum walk Fréchet similarity.

1.3 Our Results

– We define a new Fréchet distance, the prefix Fréchet similarity, with appli-
cations in many practical areas, e.g., evacuation analysis, planning of public
infrastructure, and the analysis of football trajectories.

– We provide a lower bound of Ω(n2) for the running time of every algorithm
computing the profile of the prefix Fréchet similarity, see Sect. 3.

– We give an algorithm that computes the profile of the prefix Fréchet simi-
larity in O (

n3 log n
)

time, see Sect. 4. This is the first efficient algorithm for
computing exactly the whole profile of a parametrized Fréchet distance. Our
lower bound of Ω(n2) implies that our running time is at most a near linear
factor away from being optimal.

2 Preliminaries

A curve is a continuous function T : [0, λ] → R
2 with a uniform parametrization.

We denote by |T | the length of T w.r.t. to the Euclidean norm. A polygonal
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curve T is a piecewise-linear curve, where the complexity n of T is defined as
the number of segments of T . A reparametrization of T : [0, λ] → R

2 is defined
as a continuous and monotone function α : [0, 1] → [0, λ], with α(0) = 0 and
α(1) = λ. A matching of two polygonal curves T and T ′ is defined as a pair
(α, α′) of reparametrizations for T and T ′. The value of a matching (α, α′) is
defined as the maximum distance d1(T (α(t)), T ′(α′(t))), for t ∈ [0, 1], where dp

denotes the Lp metric. Finally, the Fréchet distance F(T, T ′) between T and T ′

is the infimum of all values of possible matchings.

Definition 1. Let T and T ′ be two polygonal curves. A prefix curve P of T :
[0, λ] → R

2 is the restriction of T to an interval [0, μ] ⊆ [0, λ], i.e., a curve
P : [0, μ] → R

2 such that P (t) = T (t) for all t ∈ [0, μ] ⊆ [0, λ]. Given a distance
threshold δ ≥ 0, we define the prefix Fréchet similarity Cδ(T, T ′) of T and T ′

and w.r.t. δ as the maximal sum of the lengths of two prefix curves T and T ′

such that P and P ′ are within a Fréchet distance of at most δ.
The profile P(·) of the prefix Fréchet similarity is defined as the function

mapping δ to Cδ(T, T ′).

This means that |T | + |T ′| is an upper bound for Cδ(T, T ′) and that
Cδ(T, T ′) = |T | + |T ′| is achieved if δ is chosen at least as large as the Fréchet
distance between the entire curves T and T ′. Thus, it suffices to compute P(·)
over the interval [0,F(T, T ′)].

We compute the profile of the prefix Fréchet similarity by considering the
free space diagrams Dδ w.r.t. the distance thresholds δ ≥ 0 which are defined as
follows. The parameter space P ⊂ R

2
≥0 is defined as the axis aligned rectangle

[0, |T |] × [0, |T ′|] ⊂ R
2
≥0. Each parameter point (λ, λ′) ∈ P corresponds to the

two points T (λ) and T ′(λ′). The parameter grid is an (n + 1)-by-(n + 1) grid
overlaying P such that the cell C in the ith column and jth row is the parameter
cell of the ith segment of T ′ and the jth segment of T . This means, the height of
the ith row corresponds to the length if the ithe segment from T and the width
of the jth column corresponds to the length of jth segment from T ′.

We refer to the edges of the parameter grid by parameter edges. Given a
distance threshold δ ≥ 0, the parameter space is refined by distinguishing for
each point p = (λ, λ′) ∈ P whether p is allowed, i.e, d1(T (λ), T ′(λ′)) ≤ δ or not
allowed, i.e., d1(T (λ), T ′(λ′)) > δ. We call the union of all allowed parameter
points from P free space or white space and denote it by Wδ. Furthermore, we
denote the closure of the union of all points that are not allowed by Bδ and
call it the black space. The resulting decomposition of P is called the free space
diagram Dδ of T and T ′.

Furthermore, we call a continuous path π : [0, 1] → P xy-monotone, if and
only, if π(t) ≤xy π(t′) holds for all t ≤ t′ from [0, 1], where a ≤xy b abbreviates
a.x ≤ b.x and a.y ≤ b.y. A segment s is monotone if a ≤xy b or b ≤xy a hold for
all a, b ∈ s. We call a point p ∈ Wδ reachable with leash length δ if there is an
xy-monotone path π ⊂ Wδ with π(0) = (0, 0) and π(1) = p.

Observation 1. Cδ(T, T ′) = d1 ((0, 0), p) holds for a farthest reachable point p.
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Observation 1 implies that computing the profile of the prefix Fréchet sim-
ilarity is equivalent to computing a continuous sequence of shortest path dis-
tances in a continuously deforming free space diagram for continuously varying
δ ∈ [0,F(T, T ′)].

3 A Quadratic Lower Bound for the Profile

In this section, we give a lower bound for the running time of an algorithm
that computes the profile of the prefix Fréchet similarity of two polygonal input
curves.

Fig. 2. The curves A6 and B6 used in the lower bound construction of Theorem 1.
(Color figure online)

Theorem 1. For each n ∈ N, there is a pair of curves An, Bn such that the
complexity of the profile of the prefix Fréchet similarity of An and Bn is Θ(n2)
where n is the total number of segments on An and Bn, see Fig. 2.

Proof. Let n ∈ N be chosen arbitrarily. W.l.o.g. we assume that there is a k ∈ N

such that 4k = n. Otherwise we apply the below construction for �n
4 	4 and

simply attach n − �n
4 	4 segments to An.

First, we give the construction of An and Bn.
We construct An as a sequence of n

2 segments whose lengths alternate
between

√
2 and 1 and whose slopes alternate between 0 and −1, see the blue

curve in Fig. 2.
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Furthermore, we construct Bn as a sequence of n
2 segments whose slopes

alternate between 1 and −1 such that An and Bn have the same starting point,
see the red curve in Fig. 2. We start the construction of Bn with a diagonal
segment pointing in south-western direction and with length 1

n . Next, we attach
a segment pointing in south-eastern direction and with length 1

2n . Then we add
a segment of length 1

n pointing in south-western direction and then a segment of
length 1

n . Next, we add a segment of length 1
n pointing in north-western direction

and a segment of length 1
n and pointing in south-western direction. Finally, we

repeat attaching the four last segments until Bn is made up of n
2 segments.

Next, we argue that the profile of the prefix Fréchet similarity of An and Bn

has a complexity of n2

4 .
For i ∈ {1, . . . , n/4}, let δi be the value such that the 2ith segment of Bn

lies on the boundary of the L1 sphere with radius δi and center in the starting
point of Bn, see Fig. 2. Furthermore, for i ∈ {1, . . . , n/4}, let δi be the value
such that the 2ith segment of An lies on the L1 sphere with radius δi and center
in the starting point of An. Furthermore, we denote the vertices of An and Bn

by a1, . . . , an/2+1 and b1, . . . , bn/2+1. For i, j ∈ {1, . . . , n
4 }, the prefix Fréchet

similarity w.r.t. δi + δj is realized by the prefix curves between a1 and a2i+1

and between b1 and b2j+1 because the length of the entire curve Bn is smaller
than the length of the segment b2jb2j+1. This means that the profile of the prefix
Fréchet similarity has a discontinuity at δi+δj for each choice of i, j ∈ {1, . . . , n

2 }
resulting in n2

4 discontinuities. This concludes the proof.

4 An Algorithm for Computing the Profile

In this section we show how to compute the profile of the prefix Fréchet similarity.

Theorem 2. The profile of the prefix Fréchet Similarity of two given polygonal
curves with n segments has a complexity of O (

n3α(n3)
)
and can be computed

in O (
n3 log(n)

)
time.

In the remainder of this section we give the proof for Theorem 2.
First, we define a discrete set of polynomial points, called score points, see

Definition 2, such that for each δ > 0 there is a score point which is a farthest
reachable point, see Lemma 1.

Each score point p induces for δ ∈ [0,F(T, T ′)] a function p : A → P , called
score curve that is piecewise continuous with A ⊆ [0,F(T, T ′)] and each score
curve p induces a score function Sp : A → R≥0 mapping δ onto its distance to
(0, 0) see Definition 3. We give different approaches for computing different ver-
sions of score curves and corresponding score functions, see Lemmata 2, 3 and 7.
Finally, we compute the profile of the prefix Fréchet similarity, by computing
the upper envelope of the reachable parts of all computed score functions, see
Theorem 2.

We start by giving the definitions of different types of score points and
approaches how to compute the corresponding score curves and score functions.
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A key observation is that the allowed space Wδ ∩ C of a single parameter
cell C ∈ P is formed by the intersection of C with a corresponding piecewise
linear ellipse Eδ [1], see Fig. 3. We often call these ellipses free space ellipses. All
free space ellipses for a fixed parameter cell C but different values of the allowed
leash length have two common axes G and H. As Eδ and C are convex, it follows
that Wδ ∩ C = Eδ ∩ C is convex and this, in turn, yields that the intersection of
Wδ with each side of the boundary of C is convex.

We declare the following notations, see Fig. 3(a). For a parameter cell C we
denote by L, R, U , and B its boundary’s left, right, upper, and bottom side.
Furthermore, we define Lδ := Eδ∩L, Rδ := Eδ∩R, Uδ := Eδ∩U , and Bδ := Eδ∩B.
In addition to this, we define Gδ := G ∩ Eδ ∩ C and Hδ := H ∩ Eδ ∩ C if the
segments corresponding to C do not lie parallel. Note, that each of these convex
intersections could by empty.

Fig. 3. Three different configurations of C and E , distinguishing between the position
of a farthest reachable point p.

Definition 2. Let Lδ, Rδ, Uδ, Bδ, Gδ, and Hδ be defined as above, see Fig. 3.

– Let A ∈ {L,R,U,B}. The end point point of the segment Aδ := A ∩ Wδ

which lies farther away from (0, 0) in L1 norm is the boundary score point
corresponding to A, see Fig. 3(b). The other end point of the segment Aδ :=
A ∩ Wδ is the anchor point corresponding to A.

– Let A ∈ {G,H}. If Aδ := A∩Wδ is monotone, the end point of the segment Aδ

which lies farther away from (0, 0) is the axis score point corresponding to A
if A lies inside the parameter cell C, see Fig. 3(a).

– Let pδ be an anchor point and qδ its maximal horizontal or vertical projection
in positive x- or y-axis direction onto the boundary of the black space such
that pδqδ does not intersect the interior of the black space, see Fig. 3(c). We
call qδ the projected score point resulting from pδ.

The following Lemma is the key ingredient for computing the profile of the
prefix Fréchet similarity.

Lemma 1. The farthest reachable point p ∈ Dδ is a reachable score point.
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Proof. Let δ > 0 be chosen arbitrarily but fixed. Let C be a parameter cell
containing a farthest reachable point p and let t ∈ T , t′ ∈ T ′, and Eδ be the
segments and the ellipse corresponding to C. As p is the end of a longest xy-
monotone path π starting from (0, 0) it follows that p lies on the boundary of
the intersection of Eδ and C. Otherwise, we could extend π to a longer path.
This would be a contradiction to the construction of π as a longest xy-monotone
path.

We distinguish between two cases:

– p lies on the boundary of C: This implies that there is a segment v1v2 ∈
{L,R,U ,B} such that p ∈ v1v2. In this case, p has to be an endpoint of the
segment s. Otherwise, we could push p on s away from (0, 0) while maintaining
reachability because p lies on the boundary of C.

– p lies not on the boundary of C: W.l.o.g. we assume that p does not lie on the
axes uE or dE because otherwise p is an axis score point. This implies that
the distance of p to (0, 0) can be increased by pushing p on the boundary of
Eδ away from (0, 0). For the sake of contradiction, we assume that p is not
a projected score point. This implies that we do not loose reachability of p
while moving p as described above. This is a contradiction and concludes the
proof.

By Observation 1, we know that computing the profile of the prefix Fréchet
similarity requires to consider a continuous deformation of the free space dia-
grams Dδ for δ ∈ [0,F(T, T ′)]. In particular, the allowed space is growing when
the leash length increases. This causes that score points may be continuously
shifted during the deformation of the free space which leads to the definition of
score curves and functions.

Definition 3. Let e be an arbitrarily chosen parameter edge or parameter axis
and δ ≥ 0.

If ∂Wδ ∩ e holds a score point, we define pδ as the unique score point from
∂Wδ ∩ e. The corresponding boundary or axis score curve p : I → P is defined
as p(δ) := pδ where I ⊆ [0,F(T, T ′)].

If ∂Wδ∩e holds an anchor point, we define qδ as the unique anchor point from
∂Wδ ∩ e. The corresponding anchor curve q(δ) : I → P is defined as q(δ) := qδ

where I ⊆ [0,F(T, T ′)].
For each anchor point qδ, let sq be the corresponding projected score point.

The corresponding projected score curve q(δ) : I → P is defined as s(δ) := sδ

where I ⊆ [0,F(T, T ′)].
The score function Sp : I → R≥0 corresponding to a boundary, axis, or

projected score curve is defined as the function mapping δ ≥ 0 onto the distance
between q(δ) and (0, 0) w.r.t. L1.

By Lemmas 2 and 3 we provide algorithms for computing boundary, axis,
and projected score functions.

Lemma 2. We can compute in O (
n2

)
time all boundary and axis score func-

tions. A boundary or axis score function has constant complexity.
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Lemma 3. We can compute in O (
n3

)
time all projected score functions. Each

projected score functions has a complexity of O (n).

Fig. 4. Two curves T, T ′ causing a projected score curve that is not continuous in λ.

Proof. Projecting a boundary score point v to another segment of another free
space ellipse results in a linear function, see Fig. 4. Thus, a projected score curve
p is linear except for values for δ, called jump events, in which p jumps to another
free space ellipse.

W.l.o.g. we assume that v lies on a vertical grid line. Let t be the segment
corresponding to the row in which v lies, see Fig. 4(a)+(b). A jump event occurs
when p has the same position as another boundary score point w that lies also on
a vertical grid line, see Fig. 4(c)+(d). Let v2 and v4 be the vertices corresponding
to the vertical grid lines on that v and w. Furthermore, let c be the intersection
point between the segment t and B(v2, v4) the bisector between v2 and v4. The
situation that v and w lie horizontal is equivalent to the configuration that the
intersection point c exists and that δ is equal to the distance λ between c and
v4 w.r.t. L1.

Justified by the above observations, we compute a superset J of all jump
events by computing all intersection points between the boundaries of bisectors
and segments of the input curves. This can be done in O (

n3
)

time and leads
to O (

n3
)

values which leads to an ordered sequence S of J in O (
n3 log n

)
time.

By doing an increasing sweep through S we can compute all projected score
curves simultaneously in O (

n3
)

time.

Next, we show how to compute these parts of score functions that are induced
by reachable points of the corresponding score curves.

Definition 4. Let p be an arbitrarily chosen score curve. We define the reach-
able part of the score function corresponding to p as the restriction of p to the
union A ⊂ [0,F(T, T ′)] of maximal subsets of the domain of p such that p(δ) is
reachable for all δ ∈ [δ1, δ2].

Note that a maximal interval [δ,F(T, T ′)] ⊂ [0,F(T, T ′)] such that p is reach-
able inside Wδ is closed because a corresponding path in free space is also allowed
to lie on the boundary of Wδ for each δ ≥ 0.

Lemma 4. A boundary or axis score point p can only turn from non-reachable
into reachable.
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Proof. Let δ1 ∈ [0,F(T, T ′)] be a point in time at which p turns from not-
reachable into reachable and let δ2 ≥ δ1.

As δ1 ≤ δ2 it follows Wδ1 ⊆ Wδ2 . Furthermore, as p(δ1) is reachable
inside Wδ1 , there is an xy-monotone path π ⊂ Wδ1 ⊆ Wδ2 between (0, 0) and
p(δ1). Let E1 and E2 be the free space ellipses of C corresponding to δ1 and δ2.
Obviously, we have E1 ⊆ E2. Thus p(δ1) ∈ E1 implies p(δ1) ∈ E2. Since E2 is
convex it follows p(δ1)p(δ2) ⊂ E2. As a witness for reachability of p(δ2) we take
the path π ⊂ Wδ2 concatenated with the segment p(δ1)p(δ2) ⊂ Wδ2 . As π is xy-
monotone and starts from (0, 0), it still remains to show p(δ1) ≤xy p(δ2). Assume
this it not the case. Let H ⊂ C be the segment such that p(δ1), p(δ2) ∈ H. As
H is xy-monotone it follows that p(δ2) lies closer to (0, 0) then p(δ1) which in
turn is element of H ∩ E2. This is a contradiction because p(δ2) is defined as the
farthest point from H ∩ E2 to (0, 0). By the above argument, it follows that δ1
is unique. Furthermore, δ1 is well defined because it is upper-bounded by the
maximal distance between two points on T and T ′.

Let e be a parameter edge and u an arbitrarily chosen point on e. We denote
by δu the minimal leash length such that u is reachable by a leash length of δu.
Furthermore, we denote by ue the point from e such that mine := δue

is minimal.
We call mine the minimal needed leash length of the parameter edge e.

Buchin et al. [4] gave an algorithm that computes simultaneously for all
parameter edges e the point ue and its corresponding minimal leash lengths
mine that is needed for ue’s reachability.

Lemma 5 ([4]). We can compute in O (
n2

)
time for all parameter edges e the

points ue ∈ e and the corresponding minimal needed leash lengths mine simulta-
neously.

The algorithm of Buchin et al. [4] implies directly how to compute the reach-
able parts of all boundary and axis score curves. In particular, let p be an arbi-
trary boundary or axis score curve and e the parameter edge contain p if p is
a boundary score point. If e is an axis score point, let e be the parameter edge
which is the left side of the cell containing p. We define the reachable part of
p as [mine,F(T, T ′)]] where mine is computed for each parameter edge e by a
single application of the algorithm of Lemma 5.

Corollary 1. We can compute simultaneously the reachable parts of all bound-
ary and axis score curves in O(n2) time.

Finally, we provide an algorithm computing the reachable parts of projected
score curves.

Lemma 6. We can compute simultaneously the reachable parts of all projected
score curves in O (

n3 log n
)
time.

Proof. First, we apply the algorithm of Lemma 5 as a single preprocessing step
to compute all minimal leash lengths needed for all parameter edges.
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We show how to compute simultaneously the reachable parts of all horizon-
tal projected score curves lying in the same parameter row R in O (

n2 log n
)

time. Applying this approach to all parameter rows and applying a symmetric
approach to all parameter columns in parallel leads to the required approach.

We call a boundary score curve p or an anchor curve p horizontal if all its
points lie on a horizontal parameter edge. Otherwise, p is vertical.

The reachability of a horizontal projected score point is equal to the reach-
ability of the corresponding vertical anchor point. Thus, we compute the reach-
able parts of all vertical anchor curves in R by processing iteratively through all
parameter cells in R from left to right as follows:

Let C1, . . . , Cn be the parameter cells of R and L1, . . . , Ln and B1, . . . , Bn the
left and bottom sides of C1, . . . , Cn. For each Li with i = 1, . . . , n, we consider
the function λi : Li → R≥0 mapping a point a ∈ Li onto the smallest value
δ ∈ [0,F(T, T ′)] such that a is reachable with a leash length δ. Furthermore, we
define λ�

i (a) := minLi
for all a ∈ Li with a ≥xy uLi

and λ�
i (a) := λi(a) for all

a ∈ Li with a ≤xy uLi
. Finally, we denote by ai and pi the vertical anchor and

the vertical boundary score curves corresponding to Li.
We compute the vertical anchor and vertical boundary score curves ai and pi

of each vertical parameter edge of R by applying the same approach as used in
Lemma 3. For i = 1, . . . , n, we consider the minimal leash length min(Bi) of Bi.

We observe that the allowed space inside each parameter cell is convex
because the L1 metric is convex. Thus, we compute Li+1 as the minimum of
y = minBi

and the upper envelope of λ�
i , ai, and pi. Hence, the reachable part

of ai has a complexity of Θ(n) in the worst case. Furthermore, each iteration
can be done in O (n log n) time which results in a running time of O (

n2 log n
)

for computing the reachable parts of all anchor curves in R.

Combining the approaches of Lemma 2, Lemma 3, Corollary 1 and Lemma 6
leads to an approach for computing the restrictions of all score functions to their
reachable parts.

Lemma 7. There is a O (
n3 log n

)
runtime algorithm computing all score func-

tions restricted to the reachable parts of the corresponding score curves.

Combining Lemmata 1, 2, 3 and 7, yields that the profile of the prefix Fréchet
similarity is the upper envelop of O (

n3
)

segments. Thus the profile of the prefix
Fréchet similarity has a complexity of O (

n3α(n3)
)

and can be computed in
O (

n3 log n
)

time. This concludes the proof of Theorem 2.

5 Conclusion

We introduced the prefix Fréchet similarity with applications in evacuation anal-
ysis, analysis of football trajectories, and planning of public infrastructure. We
gave a O (

n3 log n
)

runtime algorithm for computing the whole profile of the pre-
fix Fréchet similarity which enables the choice of stable values for the distance
threshold δ. Furthermore, we gave a family of pairs of curves whose profile of
the prefix Fréchet similarity has a complexity of Θ(n2). Thus the runtime of our
algorithm is at most a near linear factor away from being optimal.
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Abstract. Simple heuristics often show a remarkable performance in
practice for optimization problems. Worst-case analysis often falls short
of explaining this performance. Because of this, “beyond worst-case anal-
ysis” of algorithms has recently gained a lot of attention, including prob-
abilistic analysis of algorithms.

The instances of many optimization problems are essentially a dis-
crete metric space. Probabilistic analysis for such metric optimization
problems has nevertheless mostly been conducted on instances drawn
from Euclidean space, which provides a structure that is usually heav-
ily exploited in the analysis. However, most instances from practice are
not Euclidean. Little work has been done on metric instances drawn
from other, more realistic, distributions. Some initial results have been
obtained by Bringmann et al. (Algorithmica, 2013), who have used ran-
dom shortest path metrics on complete graphs to analyze heuristics.

The goal of this paper is to generalize these findings to non-complete
graphs, especially Erdős–Rényi random graphs. A random shortest path
metric is constructed by drawing independent random edge weights for
each edge in the graph and setting the distance between every pair of
vertices to the length of a shortest path between them with respect to
the drawn weights. For such instances, we prove that the greedy heuris-
tic for the minimum distance maximum matching problem, the nearest
neighbor and insertion heuristics for the traveling salesman problem,
and a trivial heuristic for the k-median problem all achieve a constant
expected approximation ratio. Additionally, we show a polynomial upper
bound for the expected number of iterations of the 2-opt heuristic for
the traveling salesman problem.

1 Introduction

Large-scale optimization problems, such as the traveling salesman problem
(TSP), show up in many applications. These problems are often computation-
ally intractable. However, in practice often ad-hoc heuristics are successfully used
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that provide solutions that come quite close to optimal solutions. In many cases
these, often simple, heuristics show a remarkable performance, even though the
theoretical results about those heuristics are way more pessimistic.

In order to explain this difference, probabilistic analysis has been widely used
over the last decades. However, the challenge in probabilistic analysis is to come
up with a good probabilistic model: it should reflect realistic instances, but also
be sufficiently simple to make the analysis tractable.

So far, in almost all cases, either Euclidean space has been used to gener-
ate instances of metric optimization problems, or independent, identically dis-
tributed edge lengths have been used (e.g. [1,6]). However, both approaches have
considerable shortcomings to explain the average-case performance of heuristics
on general metric instances: the structure of Euclidean space is heavily used in
the probabilistic analysis, but realistic instances are often not Euclidean. The
independent, identically distributed edge lengths do not even yield a metric in
the first place. In order to overcome these shortcomings, Bringmann et al. [3]
have proposed and analyzed the following model to generate random metric
spaces, which had already been proposed by Karp and Steele in 1985 [12]: given
an undirected complete graph, start by drawing random edge weights for each
edge independently and then define the distance between any two vertices as the
total weight of the shortest path between them, measured with respect to the
random weights.

1.1 Related Work

Bringmann et al. called the model described above random shortest path metrics.
This model is also known as first-passage percolation, introduced by Hammersley
and Welsh as a model for fluid flow through a (random) porous medium [7,9].

For first passage percolation in complete graphs, the expected distance
between two fixed vertices is approximately ln(n)/n and the expected dis-
tance from a fixed vertex to the vertex that is most distant is approximately
2 ln(n)/n [3,10]. Furthermore, it is known that the expected diameter of the
metric is approximately 3 ln(n)/n [8,10]. There are also some known struc-
tural properties of first passage percolation on the Erdős–Rényi random graph.
Bhamidi et al. [2] have shown asymptotics for both the minimal weight of the
path between uniformly chosen vertices in the giant component and for the hop-
count, the number of edges, on this path. Bringmann et al. [3] used this model
on the complete graph to analyze heuristics for matching, TSP, and k-median.

1.2 Our Results

As far as we know, no heuristics have been studied in this model for non-complete
graphs yet. However, we believe that random shortest path metrics on non-
complete graphs will bring us a step further in the direction of realistic input
model.

This paper provides a probabilistic analysis of some simple heuristics in the
model of random shortest path metrics on non-complete graphs. First, we provide



110 S. Klootwijk et al.

some structural properties of generalized random shortest path metrics (Sect. 3),
which can be seen as a generalization of the structural properties found by
Bringmann et al. [3]. Although this generalization might seem straightforward
at first sight, it brings up some new difficulties that need to be overcome. Most
notably, since we do not restrict ourselves to the complete graph, we cannot make
use anymore of its symmetry and regularity. This problem is partially solved by
introducing two graph parameters, which we call the cut parameters of a graph
(Definition 1).

Then, we use these structural insights to perform a probabilistic analysis for
some simple heuristics for combinatorial optimization problems (Sect. 4), where
the results are still depending on the cut parameters of a graph. Finally, we
use these results, to show our main results, namely that these simple heuristics
achieve constant expected approximation ratios for random shortest path metrics
applied to Erdős–Rényi random graphs (Sect. 5).

2 Notation and Model

We use X ∼ P to denote that a random variable X is distributed using a proba-
bility distribution P . Exp(λ) is being used to denote the exponential distribution
with parameter λ. In particular, we use X ∼ ∑n

i=1 Exp(λi) to denote that X
is the sum of n independent exponentially distributed random variables having
parameters λ1, . . . , λn.

For n ∈ N, we use [n] as shorthand notation for {1, . . . , n}. We denote the
nth harmonic number by Hn =

∑n
i=1 1/i. Sometimes we use exp to denote the

exponential function. Finally, if a random variable X is stochastically dominated
by a random variable Y , i.e., we have FX(x) ≥ FY (x) for all x (where X ∼ FX

and Y ∼ FY ), we denote this by X � Y .

Generalized Random Shortest Path Metrics. Given an undirected graph
G = (V,E) on n vertices, we construct the corresponding generalized random
shortest path metric as follows. First, for each edge e ∈ E, we draw a random
edge weight w(e) independently from an exponential distribution1 with param-
eter 1. Second, we define the distances d : V × V → R≥0 ∪ {∞} as follows: for
every u, v ∈ V , d(u, v) denotes the length of the shortest u, v-path with respect
to the drawn edge weights. If no such path exists, we set d(u, v) = ∞. By doing
so, the distance function d satisfies d(v, v) = 0 for all v ∈ V , d(u, v) = d(v, u) for
all u, v ∈ V , and d(u, v) ≤ d(u, s) + d(s, v) for all u, s, v ∈ V . We call the com-
plete graph with distances d obtained from this process a generalized random
shortest path metric. If G = Kn (the complete graph on n vertices), then this
generalized random shortest path metric is equivalent to the random shortest
path metric as defined by Bringmann et al. [3]
1 Exponential distributions are technically easiest to handle due to their memoryless-
ness property. A (continuous, non-negative) probability distribution of a random
variable X is said to be memoryless if and only if P(X > s+ t | X > t) = P(X > s)
for all s, t ≥ 0. [15, p. 294].
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We use the following notation within generalized random shortest path met-
rics: Δmax := maxu,v d(u, v) denotes the diameter of the graph. Note that
Δmax < ∞ if and only if G is connected. BΔ(v) := {u ∈ V | d(u, v) ≤ Δ}
denotes the ‘ball’ of radius Δ around v, i.e., the set containing all vertices at
distance at most Δ from v. τk(v) := min{Δ | |BΔ(v)| ≥ k} denotes the distance
to the kth closest vertex from v (including v itself). Equivalently, one can also
say that τk(v) is equal to the smallest Δ such that the ball of radius Δ around
v contains at least k vertices.

Now, Bτk(v)(v) denotes the set of the k closest vertices to v. During our
analysis, we make use of the size of the cut induced by this set, which we denote
by χk(v) := |δ(Bτk(v)(v))|, where δ(U) denotes the cut induced by U .

Erdős–Rényi Random Graphs. The main results of this work consider ran-
dom shortest path metrics applied to Erdős–Rényi random graphs. An undi-
rected graph G(n, p) := G = (V,E) generated by this model has n vertices
(V = {1, . . . , n}) and between each pair of vertices an edge is included with
probability p, independent of every other pair.

Working with the Erdős–Rényi random graph introduces an extra amount
of stochasticity to the probabilistic analysis, since both the graph and the edge
weights are random. In order to avoid this extra stochasticity as long as possible,
in Sects. 3 and 4 we start our analysis using an arbitrary fixed (deterministic)
graph G. Later on, in Sect. 5 we will consider Erdős–Rényi random graphs again.

3 Structural Properties

In order to analyze the structural properties of generalized random shortest path
metrics, we first introduce the notion of what we call the cut parameters of a
simple graph G.

Definition 1. Let G = (V,E) be a finite simple connected graph. Then we define
the cut parameters of G by

α := min
∅ �=U⊂V

|δ(U)|
μU

and β := max
∅ �=U⊂V

|δ(U)|
μU

,

where μU := |U | · (|V |− |U |) is the maximum number of possible edges in the cut
defined by U .

It follows immediately from this definition that 0 < α ≤ β ≤ 1 for any finite
simple connected graph G. Moreover, for any such graph the following holds for
all ∅ 	= U ⊂ V : α · μU ≤ |δ(U)| ≤ β · μU . We observe that the cut parameters
of the complete graph are given by α = β = 1.

Distribution of τk(v). Now we have a look at the distribution of τk(v). For
this purpose we use an arbitrary fixed undirected connected simple graph G (on
n vertices) and let α and β denote its cut parameters.
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The values of τk(v) are then generated by a birth process as follows. (Amongst
others, a variant of this process for complete graphs has been analyzed by Davis
and Prieditis [5] and Bringmann et al. [3].) For k = 1, we have τk(v) = 0. For
k ≥ 2, we look at all edges (u, x) with u ∈ Bτk−1(v)(v) and x 	∈ Bτk−1(v)(v). By
definition there are χk−1(v) such edges. Moreover the length of these edges is
conditioned to be at least τk−1(v) − d(v, u). Using the memorylessness of the
exponential distribution, we can now see that τk(v) − τk−1(v) is the minimum
of χk−1(v) (standard) exponential variables, or, equivalently, τk(v) − τk−1(v) ∼
Exp(χk−1(v)). We use this result to find bounds for the distribution of τk(v).

Lemma 2. For all k ∈ [n] and v ∈ V we have,

αk(n − k) ≤ χk(v) ≤ βk(n − k).

Lemma 3. For all k ∈ [n] and v ∈ V we have,

k−1∑

i=1

Exp(βi(n − i)) � τk(v) �
k−1∑

i=1

Exp(αi(n − i)).

Exploiting the linearity of expectation, the fact that the expected value of
an exponentially distributed random variable with parameter λ is 1/λ and the
fact that

∑k−1
i=1 1/(i(n− i)) = (Hk−1 +Hn−1 −Hn−k)/n, we obtain the following

corollary.

Corollary 4. For all k ∈ [n] and v ∈ V we have,

Hk−1 + Hn−1 − Hn−k

βn
≤ E(τk(v)) ≤ Hk−1 + Hn−1 − Hn−k

αn
.

From this result, we can derive the following extensions of two known results.
First of all, if we randomly pick two vertices u, v ∈ V , then averaging over k
yields that the expected distance E[d(u, v)] between them is bounded between
Hn−1

β(n−1) ≈ ln(n)/βn and Hn−1
α(n−1) ≈ ln(n)/αn, which is in line with the known result

for complete graphs, where we have E[d(u, v)] ≈ ln(n)/n [3,5,10]. Secondly, for
any vertex v, the longest distance from it to another vertex is τn(v), which in
expectation is bounded between 2Hn−1

βn ≈ 2 ln(n)/βn and 2Hn−1
αn ≈ 2 ln(n)/αn,

which also is in line with the known result for complete graphs, where we have
an expected value of approximately 2 ln(n)/n [3,10].

It is also possible to find bounds for the cumulative distribution function of
τk(v). To do so, we define Fk(x) = P(τk(v) ≤ x) for some fixed vertex v ∈ V .

Lemma 5. [3, Lemma 3.2] Let X ∼ ∑n
i=1 Exp(ci). Then, for any a ≥ 0 we

have P(X ≤ a) = (1 − e−ca)n.

Lemma 6. For all x ≥ 0 and k ∈ [n] we have,

(1 − exp(−α(n − k)x))k−1 ≤ Fk(x) ≤ (1 − exp(−βnx))k−1
.
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We can improve this result slightly.

Lemma 7. For all x ≥ 0 and k ∈ [n] we have,

Fk(x) ≥ (1 − exp(−αnx/4))n
.

Using this improved bound for the cumulative distribution function of τk(v),
we can derive the following tail bound for the diameter Δmax.

Lemma 8. Let Δmax = maxu,v∈V {d(u, v)}. For any fixed c we have P(Δmax >
c ln(n)/αn) ≤ n2−c/4.

Clustering. In this section we show that we can partition the vertices of gen-
eralized random shortest path metrics into a small number of clusters with a
given maximum diameter. Before we prove this main result, we first provide a
tail bound for |BΔ(v)|.
Lemma 9. For n ≥ 5 and for any fixed Δ ≥ 0 we have,

P

(

|BΔ(v)| < min
{

exp(αΔn/5),
n + 1

2

})

≤ exp(−αΔn/5).

We use the result of this lemma to prove our main structural property for
generalized random shortest path metrics.

Theorem 10. For any fixed Δ ≥ 0, if we partition the vertices into clusters,
each of diameter at most 4Δ, then the expected number of clusters needed is
bounded from above by O(1 + n/ exp(αΔn/5)).

4 Analysis of Heuristics

In this section we bound the expected approximation ratios of the greedy heuris-
tic for minimum-distance perfect matching, the nearest neighbor and insertion
heuristics for the traveling salesman problem, and a trivial heuristic for the k-
median problem. For this purpose we still use an arbitrary fixed undirected con-
nected simple graph G (on n vertices) and let α and β denote its cut parameters.
The results in this section will depend on α and β.

Greedy Heuristic for Minimum-Distance Perfect Matching. The mini-
mum-distance perfect matching problem has been widely analyzed throughout
history. We do for instance know that the worst-case running-time for finding a
minimum distance perfect matching is O(n3), which is high when considering a
large number of vertices. Because of this, simple heuristics are often used, with
the greedy heuristic probably being the simplest of them: at each step, add a
pair of unmatched vertices to the matching such that the distance between the
added pair of vertices is minimized. From now on, let GR denote the cost of the
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matching computed by this heuristic and let MM denote the value of an optimal
matching.

The worst-case approximation ratio of this heuristic on metric instances is
known to be O(nlog2(3/2)) [13]. Furthermore, for random shortest path metrics
on complete graphs (for which the cut parameters are given by α = β = 1) the
heuristic has an expected approximation ratio of O(1) [3]. We extend this last
result to general values for α and β and show that the greedy matching heuristic
has an expected approximation ratio of O(β/α).

Theorem 11. E[GR] = O (1/α).

Lemma 12. [11, Theorem 5.1(iii)] Let X ∼ ∑n
i=1 Xi with Xi ∼ Exp(ai) inde-

pendent. Let μ = E[X] =
∑n

i=1(1/ai) and a∗ = mini ai. For any λ ≤ 1,

P(X ≤ λμ) ≤ exp(−a∗μ(λ − 1 − ln(λ))).

Lemma 13. Let Sm denote the sum of the m lightest edge weights in G. For all
φ ≤ (n − 1)/n and c ∈ [0, 2φ2] we have

P

(

Sφn ≤ c

β

)

≤ exp
(

φn

(

1 + ln
(

c

2φ2

)))

.

Furthermore, TSP ≥ MM ≥ Sn/2, where TSP and MM are the total distance of
a shortest TSP tour and a minimum-distance perfect matching, respectively.

Theorem 14. The greedy heuristic for minimum-distance perfect matching has
an expected approximation ratio on generalized random shortest path metrics
given by E

[
GR
MM

]
= O (β/α).

Nearest Neighbor Heuristic for TSP. The nearest-neighbor heuristic is a
greedy approach for the TSP: start with some starting vertex v0 as current vertex
v; at every step, choose the nearest unvisited neighbor u of v as the next vertex
in the tour and move to the next iteration with the new vertex u as current
vertex v; go back to v0 if all vertices are visited. From now on, let NN denote the
cost of the TSP tour computed by this heuristic and let TSP denote the value
of an optimal TSP tour.

The worst-case approximation ratio of this heuristic on metric instances is
known to be O(ln(n)) [14]. Furthermore, for random shortest path metrics on
complete graphs (for which the cut parameters are given by α = β = 1) the
heuristic has an expected approximation ratio of O(1) [3]. We extend this last
result to general values for α and β and show that the nearest-neighbor heuristic
has an expected approximation ratio of O(β/α).

Theorem 15. For generalized random shortest path metrics, we have E[NN] =
O (1/α) and E

[
NN
TSP

]
= O (β/α).
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Insertion Heuristics for TSP. The insertion heuristics are another greedy
approach for the TSP: start with an initial optimal tour on a few vertices chosen
according to some predefined rule R; at every step, choose a vertex according to
the same predefined rule R and insert this vertex in the current tour such that
the total distance increases the least. From now on, let INR denote the cost of
the TSP tour computed by this heuristic (with rule R) and let TSP still denote
the value of an optimal TSP tour.

The worst-case approximation ratio of this heuristic for any rule R on metric
instances is known to be O(ln(n)) [14]. Furthermore, for random shortest path
metrics on complete graphs (for which the cut parameters are given by α = β =
1) the heuristic has an expected approximation ratio of O(1) [3]. We extend this
last result to general values for α and β and show that the insertion heuristic
for any rule R has an expected approximation ratio of O(β/α).

Theorem 16. For generalized random shortest path metrics, we have E[INR] =
O (1/α) and E

[
INR

TSP

]
= O (β/α).

Running Time of 2-opt Heuristic for TSP. The 2-opt heuristic is an often
used local search algorithm for the TSP: start with an initial tour on all vertices
and improve the tour by 2-exchanges until no improvement can be made any-
more. In a 2-exchange, the heuristic takes ‘edges’ {v1, v2} and {v3, v4}, where
v1, v2, v3, v4 are visited in this order in the tour, and replaces them by {v1, v3}
and {v2, v4} to create a shorter tour.

We provide an upper bound for the expected number of iterations that 2-
opt needs. In the worst-case scenario, this number is exponential. However, for
random shortest path metrics on complete graphs (for which the cut parameters
are given by α = β = 1) an upper bound of O(n8 ln3(n)) is known for the
expected number of iterations [3]. We extend this result with a similar proof to
general values for α and β and show an upper bound for the expected number
of iterations of O(n8 ln3(n)β/α).

We first define the improvement obtained from a 2-exchange. If {v1, v2} and
{v3, v4} are replaced by {v1, v3} and {v2, v4}, then the improvement made by
the exchange equals the change in distance ζ = d(v1, v2)+ d(v3, v4)− d(v1, v3)−
d(v2, v4). These four distances correspond to four shortest paths (P12, P34, P13,
P24) in the graph G = (V,E). This implies that we can rewrite ζ as the sum
of the weights on these paths. We obtain ζ =

∑
e∈E γew(e), for some γe ∈

{−2,−1, 0, 1, 2}.
Since we are looking at the improvement obtained by a 2-exchange, we have

ζ > 0. This implies that there exists some e = {u, u′} ∈ E such that γe 	= 0.
Given this edge e, let I ⊆ {P12, P34, P13, P24} be the set of all shortest paths of
the 2-exchange that contain e. Then, for all combinations e and I, let ζe,I

ij be
defined as follows:

– If Pij /∈ I, then ζe,I
ij is the length of the shortest path from vi to vj without

using e.
– If Pij ∈ I, then ζe,I

ij is the minimum of
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• the length of a shortest path from vi to u without using e plus the length
of a shortest path from u′ to vj without using e and

• the length of a shortest path from vi to u′ without using e plus the length
of a shortest path from u to vj without using e.

Define ζe,I = ζe,I
12 + ζe,I

34 − ζe,I
13 − ζe,I

24 .

Lemma 17. For every outcome of the edge weights, there exists an edge e and
a set I such that ζ = ζe,I + γw(e), where γ ∈ {−2,−1, 1, 2} is determined by e
and I.

Lemma 18. Let e and I be given with γ = γe 	= 0. Then P(ζe,I + γw(e) ∈
(0, x]) ≤ x. Moreover, P(ζ ∈ (0, x]) = O(βn2x).

Theorem 19. The expected number of iterations of the 2-opt heuristic until a
local optimum is found is bounded by O(n8 ln3(n)β/α).

Trivial Heuristic for k-Median. The goal of the (metric) k-median problem
is to find a set U ⊆ V of size k such that

∑
v∈V minu∈U d(v, u) is minimized. The

best known approximation algorithm for this problem achieves an approximation
ratio of 2.675 + ε [4].

Here, we consider the k-median problem in the setting of generalized random
shortest path metrics. We analyze a trivial heuristic for the k-median problem:
simply pick k vertices independently of the metric space, e.g., U = {v1, . . . , vk}.
The worst-case approximation ratio of this heuristic is unbounded, even if we
restrict ourselves to metric instances. However, for random shortest path metrics
on complete graphs (for which the cut parameters are given by α = β = 1) the
expected approximation ratio has an upper bound of O(1) and even 1 + o(1) for
k sufficiently small [3]. We extend this result to general values for α and β and
give an upper bound for the expected approximation ratio of O(β/α) for ‘large’
k and β/α + o(β/α) for k sufficiently small.

For our analysis, let U = {v1, . . . , vk} be an arbitrary set of k vertices. Sort
the remaining vertices {vk+1, . . . , vn} in increasing distance from U . For k +1 ≤
i ≤ n, let ρi = d(vi, U) equal the distance from U to the (i−k)-th closest vertex
to U . Let TR denote the cost of the solution generated by the trivial heuristic
and let ME be the cost of an optimal solution to the k-median problem.

Observe that the random variables ρi are generated by a simple growth pro-
cess analogously to the one described in Sect. 3 for τk(v). Using this observation,
we can see that

i−1∑

j=k

Exp(βj(n − j)) � ρi �
i−1∑

j=k

Exp(αj(n − j)),

which in turn implies that cost(U) =
∑n

i=k+1 ρi is stochastically bounded by

n−1∑

i=k

Exp(βi) � cost(U) �
n−1∑

i=k

Exp(αi).
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From this, we can immediately derive bounds for the expected value of the k-
median returned by the trivial heuristic.

Lemma 20. Fix U ⊆ V of size k. Then, we have E[TR] = E[cost(U)] and

1
β

(

ln
(

n − 1
k − 1

)

− 1
)

≤ E[TR] ≤ 1
α

(

ln
(

n − 1
k − 1

)

+ 1
)

.

Before we provide our result for the expected approximation ratio of the
trivial heuristic, we first provide some tail bounds for the distribution of the
optimal k-median ME and the trivial solution TR.

Lemma 21. Fix U ⊆ V of size k. Then the probability density function f of∑n−1
i=k Exp(βi) is given by

f(x) = βk ·
(

n − 1
k

)

· exp(−βkx) · (1 − exp(−βx))n−k−1
.

Lemma 22. Let c > 0 be sufficiently large and let k ≤ c′n for c′ = c′(c) > 0
sufficiently small. Then we have

P
(
ME ≤ (

ln
(

n−1
k

) − ln ln
(

n
k

) − ln(c)
)
/β

)
= n−Ω(c).

Lemma 23. Let k ≤ (1 − ε)n for some constant ε > 0. For every c ∈ [0, 2ε2),
we have

P (ME ≤ c/β) ≤ cΩ(n).

Lemma 24. For any c ≥ 4 we have P (TR > nc) ≤ exp(−nc/4).

Now we have obtained everything needed to provide an upper bound for the
expected approximation ratio of the trivial heuristic.

Theorem 25. Let k ≤ (1−ε)n for some constant ε > 0. For generalized random
shortest path metrics, we have E

[
TR
ME

]
= O (β/α). Moreover, if we have k ≤ c′n

for some fixed c′ ∈ (0, 1) sufficiently small, then we have

E
[
TR
ME

]
= (β/α) ·

(
1 + O

(
ln ln(n/k)
ln(n/k)

))
.

5 Application to the Erdős-Rényi Random Graph Model

So far, we have analyzed random shortest path metrics applied to graphs based
on their cut parameters (Definition 1). In this section, we first use a well-known
result to show that instances of the Erdős–Rényi random graph model have ‘nice’
cut parameters with high probability. We then use this to prove our main results.

Lemma 26. Let G = (V,E) be an instance of the G(n, p) model. For constant
ε ∈ (0, 1) and for any p ≥ c ln(n)/n (as n → ∞), in which c > 9/ε2 is constant,
the cut parameters of G are bounded by (1 − ε)p ≤ α ≤ β ≤ (1 + ε)p with
probability at least 1 − o

(
1/n2

)
.
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Recall that from the result of Corollary 4 we could derive (approximate)
bounds for the expected distance E[d(u, v)] between two arbitrary vertices in a
random shortest path metric. Combining this with the result of the foregoing
lemma, we can see that, for the case of the application to the Erdős–Rényi
random graph model, w.h.p. over the random graph E[d(u, v)] is approximately
bounded between ln(n)/((1 + ε)np) and ln(n)/((1 − ε)np) for any constant ε ∈
(0, 1). This is in line with the known result E[d(u, v)] ≈ ln(n)/np for p sufficiently
large [2].

5.1 Performance of Heuristics

In this section, we provide the main results of this work. We use the results from
Sect. 4 and Lemma 26 to analyze the performance of several heuristics in random
shortest path metrics applied to Erdős–Rényi random graphs.

When a graph G = (V,E) is created by the G(n, p) model, there is a non-
zero probability of G being disconnected. In a corresponding random shortest
path metric this results in d(u, v) = ∞ for any two vertices u, v ∈ V that are
in different components of G. Observe that, if this is the case, then the identity
of indiscernibles, symmetry and triangle inequality still hold. Thus we still have
a metric and we can bound the expected approximation ratio for such graphs
from above by the worst-case approximation ratio for metric instances.

Using this observation, we can prove the following results.

Theorem 27. Let ε ∈ (0, 1) be constant. Let G = (V,E) be a random instance
of the G(n, p) model, for p sufficiently large (p ≥ c ln(n)/n as n → ∞ for a
constant c > 9/ε2 satisfies), and consider the corresponding random shortest
path metric. Then, we have

E

[
GR

MM

]

= O(1).

Theorem 28. Let ε ∈ (0, 1) be constant. Let G = (V,E) be a random instance
of the G(n, p) model, for p sufficiently large (p ≥ c ln(n)/n as n → ∞ for a
constant c > 9/ε2 satisfies), and consider the corresponding random shortest
path metric. Then, we have

E

[
NN

TSP

]

= O(1) and E

[
INR

TSP

]

= O(1).

For the last two results, we need the assumption that G is connected.

Theorem 29. Let ε ∈ (0, 1) be constant. Let G = (V,E) be a random instance
of the G(n, p) model, for p sufficiently large (p ≥ c ln(n)/n as n → ∞ for a
constant c > 9/ε2 satisfies), and consider the corresponding random shortest
path metric. If G is connected, then the expected number of iterations of the
2-opt heuristic for TSP is bounded by O(n8 ln3(n)).
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Theorem 30. Let ε̃ ∈ (0, 1) be constant. Let G = (V,E) be a random instance
of the G(n, p) model, for p sufficiently large (p ≥ c ln(n)/n as n → ∞ for a
constant c > 9/ε̃2 satisfies), and consider the corresponding random shortest
path metric. Let E ′ denotes the event that G is connected. Let k ≤ (1 − ε′)n for
some constant ε′ > 0, then we have E

[
TR
ME

∣
∣ E ′] = O (1). Moreover, if we have

k ≤ c′n for c′ ∈ (0, 1) sufficiently small, then E
[
TR
ME

∣
∣ E ′] = 1 + ε + o(1).

6 Concluding Remarks

We have analyzed heuristics for matching, TSP, and k-median on random short-
est path metrics on Erdős–Rényi random graphs. However, in particular for
constant values of p, these graphs are still dense. Although our results hold for
decreasing p = Ω(ln n/n), we obtain in this way metrics with unbounded dou-
bling dimension. In order to get an even more realistic model for random metric
spaces, it would be desirable to analyze heuristics on random shortest path met-
rics on sparse graphs. Hence, we raise the question to generalize our findings to
sparse random graphs or sparse (deterministic) classes of graphs.
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Abstract. We study the problem to find a partition of a graph G with
maximum social welfare based on social distance between vertices in G,
called MaxSWP. This problem is known to be NP-hard in general. In this
paper, we first give a complete characterization of optimal partitions of
trees with small diameters. Then, by utilizing these results, we show that
MaxSWP can be solved in linear time for trees. Moreover, we show that
MaxSWP is NP-hard even for 4-regular graphs.

Keywords: Graph algorithm · Tree · Graph partition · Social distance

1 Introduction

With the development of Social Networking Services (SNS) such as Twitter,
Facebook, Instagram and so on, it has become much easier than before to obtain
graphs that represent human relationship, and there are many attempts to uti-
lize such graphs for extracting useful information. Among them, grouping peo-
ple according to the graph structures is focused and investigated from many
standpoints. For example, if a community consisting of members with a com-
mon interest is found, advertising or promoting some products might be very
effective for members of the community due to the strong interest.

Here, there are roughly two standpoints how we group communities. One is
context based grouping, and the other is based on link structures. Previous work
on community detection and grouping based on graph structure is summarized
in [5,7,12], for example.

Basically, these studies formulate network structure identification (commu-
nity detection, grouping, and partition) as an optimization problem (some-
times it is not explicitly conscious), and design a fast algorithm to (approxi-
mately) solve the optimization problem. Then, network structures to identify
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are obtained as outputs of the proposed algorithm. Here, network structures to
identify are already abstract, e.g., dense subgraphs; the proposed algorithm can
be used not only for the original purpose but also other purposes. In fact, [13] is
originally about boundary line detection in image data, but the proposed tech-
niques are used for community detentions (e.g., [8]), and it is further used for
the detection of industrial clusters in economic networks [6]. As above, the ver-
satility of “optimization problems” is very useful. However, we may think that
they do not best utilize the features or characteristics of the target network. For
example, the criteria for group partition, image processing, and detecting indus-
trial clusters in economic networks could be different. In other words, we might
expect a better performance by considering an optimization problem specialized
for community detection.

From these, we consider the problem for group partition (or simply say par-
tition) in networks (graphs), taking into account the characteristics of SNS. In
SNS, people communicate and exchange information with also a person who is
not directly acquainted, i.e., followers. That is, in SNS, not only members with
direct connections but also members without direct connections are loosely con-
nected, which enables us to share information widely. Here, “looseness” is related
to the degree of sharing information, and it is natural to define it as the distance
(i.e., the length of a shortest path) between the persons on the network.

Based on such observation, Branzei et al. introduced a new grouping scale
for human relations networks [4]. The definition of the utility in [4] is as follows:
given a partition, the utility of an individual is defined as the sum of reciprocal
distances to other people in the same coalition divided by the size of the coalition.
Based on this, the social welfare of a partition is also defined as the sum of the
utilities of all the members. Unfortunately, finding a partition with maximum
social welfare (MaxSWP) is known to be NP-hard even on graphs with maximum
degree 6 [3].

Also, the characterizations of optimal partitions are known only for trivial
cases such as complete graphs and complete bipartite graphs [4]. Even for trees,
it is not known whether MaxSWP can be solved in polynomial time. One of
the reasons seems to be the objective function of MaxSWP. In a typical graph
optimization problem, the objective function often forms a linear sum of weights,
whereas the one of MaxSWP takes the form of a nonlinear function, which is the
sum of the reciprocal distances.

1.1 Our Contribution

In this paper, we mainly study finding an optimal partition with social distance
of a tree, which is one of the most basic and important structures in graph
algorithm design. In the process of research, we first give a complete charac-
terization of optimal partitions of paths. Although the argument is simple, it
gives an insight about the hardness related to the nonlinearity of the utility
and the social welfare. Next, we give a similar characterization of optimal parti-
tions of trees. In the characterization, we find out sub-trees with small diameters
appeared in optimal partitions of trees. By using the characterization, we design
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a linear-time algorithm for computing an optimal partition of a tree. Finally, we
show that MaxSWP is NP-hard even for 4-regular graphs. This result strengthens
the previous work for graphs with maximum degree 6 [3].

1.2 Related Work

Graph partition is one of the most basic and important problem in computer
science and there are many studies about graph partition in various contexts,
such as image processing and cluster analysis [5–7,12,13].

Graph partition with social distance has been studied in the context of coali-
tion formation games [4]. In coalition formation games, each player has the util-
ity based on the preference for other players in the same coalition. Intuitively, a
player is happy if the utility is high, that is, there are many players he/she prefer
in the same coalition. In the field of coalition formation games, many researchers
study about desirable coalition formations, namely, partitions, in terms of max-
imum social welfare, stability, and core [1,11]. Furthermore, the price of anarchy
(PoA) and the price of stability (PoS) are also well-studied for evaluating agents
systems [2]. The PoA or PoS are more related to this paper because they are
defined as the maximum and minimum ratio between a Nash stable solution and
the best solution, respectively.

In coalition formation games on graphs, there are many utility functions for
agents. For example, in [1,14], the utility of an agent is defined as the sum
of edge-weights between him/her and other agents in the same coalition. The
weight of an edge represents the strength of the relationship between agents.
In social distance games, the utility is defined as the harmonic function of the
distance between agents. This is based on the concept of the closeness centrality,
which is one of classical measures for network analysis [3,4]. As mentioned above,
finding the best partition, that is, a partition with maximum social welfare is
NP-hard even on graphs with maximum degree 6 [3]. On the other hand, there
is a 2-approximation algorithm for finding such a partition [4].

The organization of this paper is as follows. In Sect. 2, we give basic termi-
nologies, notation, and definitions. In Sect. 3, we give a complete characterization
of optimal partitions of paths. In Sect. 4, we propose a linear-time algorithm for
MaxSWP on trees. Finally, we show that MaxSWP is NP-hard even on 4-regular
graphs in Sect. 5. Due to the space limitation, we out the proofs of propositions
lemmas and theorems. The detailed proofs can be found in [9].

2 Preliminaries

2.1 Terminologies

We use standard terminologies on graph theory. Let G = (V (G), E(G)) be a
simple, connected, and undirected graph. For simplicity, we may denote V (G)
and E(G) by V and E, respectively. We also denote the number of vertices
and edges by n and m, respectively. A path from u to v of minimum length is
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called a shortest path, and the length is denoted by distG(u, v). In a graph G, if
there is no path from the vertex u to the vertex v, we define distG(u, v) = ∞.
Let G[C] be the subgraph induced by vertex set C ⊆ V . We sometimes denote
distG[C](u, v) of u, v ∈ C in G[C] by distC(u, v) for simplicity. For graph G, we
denote the diameter of G by diam(G) = maxu,v∈V,u�=v distG(u, v). For a vertex
v, we denote the set of neighbors of v by N(v) = {u | (u, v) ∈ E} ⊆ V . We also
define the degree of v as d(v) = |N(v)|. For G = (V,E), we denote the maximum
degree of G by Δ(G) = maxv∈V d(v). For simplicity, we sometimes denote it by
Δ. For a positive integer n, we define [n] = {1, . . . , n}.

A graph G = (V,E) is called a path graph denoted by Pn if E = {(vi, vi+1) |
1 ≤ i < n}. We also sometimes simply call it a path. Moreover, if E = {(v1, vi) |
2 ≤ i ≤ n}, G is said to be a star and denoted by K1,n−1. A graph G is a tree if
G is connected and it has no cycle. We denote an n-vertex tree by Tn. Moreover,
we denote a tree with the diameter d by T d

n .

2.2 Coalition and Utility

The definitions here are based on [4]. Given a graph G = (V,E) and C ⊆ V , we
define the utility U(v, C) of a vertex v ∈ C as follows:

U(v, C) =
1

|C|
∑

u∈C\{v}

1
distG[C](v, u)

.

By the definition, it satisfies that 0 ≤ U(v, C) ≤ 1. In a graph G = (V,E), a
partition of G is defined as the family of sets of vertices C = {C1, . . . , Ck}, where
C1 ∪ · · · ∪ Ck = V and Ci ∩ Cj = ∅ for i 	= j ∈ [k]. Moreover, C ∈ C is called
a coalition of partition C. In particular, if C = {V }, C is called the grand of G
and V is called the grand coalition. If {v} ∈ C for a vertex v ∈ V , v is said to
be an isolated vertex of partition C. We define the utility of an isolated vertex
as U(v, {v}) = 0. Next, we define the social welfare of a partition C in graph G
as follows. We define the social welfare ϕ(G, C) of partition C in G = (V,E) as
follows:

ϕ(G, C) =
∑

C∈C

∑

v∈C

U(v, C).

If C is the grand of G, that is, C = {V }, we simply denote ϕ(G, {V }) by ϕ(G). We
can observe that ϕ(G, C) is bounded by n − 1. Moreover, we define the average
social welfare ϕ̃(G, C) for partition C in G. The average social welfare of partition
C in G = (V,E) is defined as follows:

ϕ̃(G, C) =
ϕ(G, C)

|V | .

If C is the grand of G, that is, C = {V }, we simply denote ϕ̃(G, {V }) by ϕ̃(G).
Finally, we define a partition C∗ with maximum social welfare in graph G. A
partition C∗ is maximum if it satisfies that ϕ(G, C∗) ≥ ϕ(G, C) for any partition
C in G. We call the problem of finding a partition with maximum social welfare
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MaxSWP. We also call an optimal solution of MaxSWP an optimal partition.
In previous work, it is shown that MaxSWP is NP-hard even for graphs with
maximum degree 6 [3]. On the other hand, it is known that the grand is the
only optimal partition of MaxSWP on complete graphs and complete bipartite
graphs [4].

Proposition 1 ([4].) On complete graphs and complete bipartite graphs, the
grand is the only optimal partition of MaxSWP.

Branzei et al. showed that there exists a partition where the utility of each
vertex v attains at least 1/2 and a polynomial-time algorithm that finds such a
partition for any graph [4].

Proposition 2 ([4].) There is a polynomial-time algorithm that finds a partition
such that each agent utility is at least 1/2 for any graph.

From Proposition 2, it can be easily seen that there exists a partition C that
satisfies ϕ(G, C) ≥ n/2. Thus, the social welfare of an optimal partition for any
graph is also at least n/2.

Corollary 1. Any optimal partition C∗ of graph G satisfies ϕ(G, C∗) ≥ n/2.

Since for any G and C, ϕ(G, C) is bounded by n − 1, the algorithm proposed
by Branzei et al. [4] is a 2-approximation algorithm. In the end of this section,
we give another property of an optimal partition of MaxSWP.

Proposition 3. For each coalition C ∈ C∗ of optimal partition C∗, G[C] is
connected.

3 Optimal Partition of a Path

In this section, we characterize the optimal partition of a path Pn. In a path,
the subgraph induced by a coalition is also a path by Proposition 3. By using
this property and examining the average social welfare of Pn, we can identify the
graph structures of coalitions in the optimal partitions of Pn. In the following,
we first examine average social welfare of Pn. Then we give the optimal partition
of Pn.

Let h(k) =
∑k

i=1 1/i be the harmonic function for some positive integer
k. The social welfare and the average social welfare of Pn can be denoted by
ϕ(Pn) = (2

∑n−1
k=1 h(k))/n and ϕ̃(Pn) = (2

∑n−1
k=1 h(k))/n2, respectively. Then,

we obtain the following lemmas.

Lemma 1. It holds that ϕ̃(P2) < ϕ̃(P3), and ϕ̃(Pn) > ϕ̃(Pn+1) for n ≥ 3.

Lemma 2. For an optimal partition C∗ of a path Pn and a coalition C ∈ C∗,
G[C] is either P2, P3 or P4.

Finally, we give the optimal partition of Pn.
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Theorem 1. The optimal partition of path Pn is

1. C∗ =
{{v3i−2, v3i−1, v3i} | 1 ≤ i ≤ n/3

}
if n ≡ 0 (mod 3),

2. C∗ =
{{v1, v2, v3, v4}, {v3i+2, v3i+3, v3i+4} | 1 ≤ i ≤ (n − 4)/3

}
if n ≡ 1

(mod 3), and
3. C∗ =

{{v1, v2}, {v3i, v3i+1, v3i+2} | 1 ≤ i ≤ (n − 2)/3
}

or
{{v1, v2, v3, v4},

{v5, v6, v7, v8}, {v3i+6, v3i+7, v3i+8} | 1 ≤ i ≤ (n − 8)/3
}
if n ≡ 2 (mod 3).

4 Optimal Partition of a Tree

In Sect. 3, we identified the optimal partition of MaxSWP on a path. In this
section, we consider MaxSWP on trees. Since a tree is more general and compli-
cated than a path and the optimal structure of MaxSWP is quite different from
typical graph optimization problems, MaxSWP is non-trivial even on trees.

To solve MaxSWP, we design an algorithm based on dynamic programming.
However, we do not know which information we keep track of in dynamic pro-
gramming since the optimal structure of MaxSWP is unknown. For this, we
identify the small coalitions in the optimal partition. According to Corollary 1,
if there is a coalition whose social welfare is less than n/2, it is not included in
the optimal partition since the social welfare can be increased by dividing the
coalition. Thus, we only keep track of the subgraph structures of coalitions of
social welfare at least n/2. We can identify such coalitions by calculating the
social welfare of each coalition. By using the subgraph structures of such coali-
tions, we design a linear-time algorithm for MaxSWP on a tree based on dynamic
programming.

4.1 Social Welfare of Trees with Small Diameters

Since the utility of an agent is defined as the harmonic function with respect to
the distance to all others in the same coalition, the diameter of the subgraph
induced by each coalition affects the social welfare. Intuitively, the social welfare
of a subgraph with large diameter is very low in a tree because a tree is quite
sparse. Therefore, we characterize the subgraph structures of coalitions in the
optimal partition in terms of small diameters.

We first consider trees T≤2
n with diameter at most 2. Such graphs are stars

denoted by K1,n−1. Since a star is a complete bipartite graph, it satisfies that
C∗ = {V } by Property 1. Here, we investigate the number of vertices of a star
that maximizes the average social welfare. This gives the upper bound of the
social welfare of T≤2

n = K1,n−1.

Lemma 3. For tree T≤2
n with diameter at most 2, n/2 ≤ ϕ(T≤2

n ) ≤ 9n/16
holds.

Next, we consider trees with diameter 3. Any tree with diameter 3 can be rep-
resented as T 3

n = (V (T 3
n), E(T 3

n)) where V (T 3
n) = {u1, u2, s1, . . . , sk, t1, . . . , t�}

and E(T 3
n) = (u1, u2) ∪ {(u1, si) | 1 ≤ i ≤ k} ∪ {(u2, tj) | 1 ≤ j ≤ �} for any

k, � ≥ 1 (see Fig. 1). Note that n = |V (T 3
n)| = k + � + 2. Then, the following

lemma holds.
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Fig. 1. Diameter 3 tree T 3
n Fig. 2. Diameter 4 tree T 4

n

Lemma 4. For tree T 3
n with diameter 3, if k = 2 and � ≥ 7, k ≥ 7 and � = 2,

k > 3 and � ≥ 3, or k ≥ 3 and � > 3, ϕ(T 3
n) < n/2 holds, and otherwise

ϕ(T 3
n) ≥ n/2.

As with trees with diameter 3, we identify the types of trees with diame-
ter 4 that satisfy ϕ(T 4

n) ≥ n/2. Any tree with diameter 4 can be represented
as T 4

n = (V (T 4
n), E(T 4

n)) where V (T 4
n) = {v, u1, . . . , uk, w1,1, . . . , w1,�1 , . . . ,

wk,1, . . . , wk,�k} for k ≥ 2 and �1, �2 ≥ 1, and E(T 4
n) = {(v, ui) | 1 ≤ i ≤

k} ∪ {(ui, wi,j) | 1 ≤ i ≤ k, 1 ≤ j ≤ �k} (see Fig. 2). For each i, �i rep-
resents the number of leaves of ui. We denote the total number of leaves of
T 4

n by αk =
∑k

i=1 �i and then the number of vertices of T 4
n is represented as

n = |V (T 4
n)| = k + αk + 1. Then, we obtain the following lemma.

Lemma 5. For tree T 4
n with diameter 4, ϕ(T 4

n) ≥ n/2 holds if (k, αk) =
(2, 2), (2, 3), (3, 2), (4, 2), and otherwise ϕ(T 4

n) < n/2 holds.

Finally, we show that the social welfare of the grand coalition of a tree with
diameter at least 5 is less than n/2.

Lemma 6. For tree Tμ
n with diameter μ ≥ 5, ϕ(Tμ

n ) < n/2 holds.

By the above discussion, the optimal partition of a tree does not contain
not only coalitions with large diameters but also particular coalitions with small
diameters. In the following, we further refine the candidates for coalitions in the
optimal partition of a tree.

First, we show that any optimal partition does not contain a coalition that
consists of a tree with diameter 4. Thus, there is no coalition that consists of a
tree with diameter at least 4 in the optimal solution by Lemma 6.

Lemma 7. Any optimal partition of a tree T does not contain a coalition that
consists of a tree T≥4 with diameter at least 4.

Moreover, we prove that the candidates for coalitions in the optimal partition
are only three types.

Lemma 8. Let C∗ be the optimal partition of tree Tn. Then, the subgraph G[C]
induced by C ∈ C∗ is one of the following: (1) a star K1,|C|−1 (see Fig. 3), (2)
a path P4 of length 3 (see Fig. 4), and (3) a tree T 3

5 of size five with diameter 3
(see Fig. 5).
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Fig. 3. K1,|C|−1 Fig. 4. P4 Fig. 5. T 3
5

4.2 Algorithm

In this section, we propose an algorithm that finds an optimal partition of a tree
in linear time. This algorithm is based on dynamic programing with keeping
track of the candidates identified by Lemma 8.

First, we introduce some notations to design our algorithm. Given a tree, we
root it at arbitrary vertex r. We denote a subtree whose root is v ∈ V by Tv and
its partition by Cv. For subtree Tv, we also denote the coalition including v by
Cv ∈ Cv.

By Lemma 8, the subgraph G[C] induced by coalition C ∈ C∗ is K1,|C|−1, P4

or T 3
5 . The algorithm recursively computes a partition of Tv which attains the

maximum social welfare for each v from the leaves of T .
Intuitively, our algorithm constructs coalitions in each step of dynamic pro-

gramming. For example, a vertex u is added a coalition as an isolated vertex in
Tu. In next step, vertex v must be added to the same coalition in Tv since the
optimal solution does not contain an isolated vertex. Here, we keep track of not
only coalition Cv, but also the position of v in the coalition since we compute a
coalition with maximum social welfare by combining sub-coalitions in subtrees
of Tv. For example, if v is positioned at a leaf of K1,f , it is combined with a
coalition that consists of K1,f−1. On the other hand, if v is positioned at the
center vertex of K1,f , it is combined with f coalitions that consist of isolated
vertices. Then we compute each coalition and sub-coalition with maximum social
welfare including a new vertex in next step again. Since the optimal partition
contains only coalitions of K1,|C|−1, P4 and T 3

5 , we keep track of coalition Cv

with the position of v that consists of them.
Let H be a subgraph induced by a coalition with the position of v. Then we

consider the following types of H:

1. H is an isolated vertex of v, denoted by H = ({v}, ∅),
2. H is a star K1,f and

(a) v is the center of K1,f , denoted by H = Kmid
1,f ,

(b) v is a leaf of K1,f , denoted by H = Kleaf
1,f ,

3. H is P4 and
(a) v is a leaf of P4, denoted H = P leaf

4 ,
(b) root v is not a leaf of P4, denoted by H = Pmid

4 ,
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4. H is T 3
5 and

(a) v is s1, denoted by H = T 3
5 (s1),

(b) v is t1 or t2, denoted by H = T 3
5 (t),

(c) v is u1, denoted by H = T 3
5 (u1),

(d) v is u2, denoted by H = T 3
5 (u2).

We can observe that connected proper subgraphs of T 3
5 are subgraphs of P4

and star K1,3. Also connected proper subgraphs of P4 are subgraphs of star K1,2.
Thus, by only keeping track of stars, we can treat P4 and so T 3

5 as seen later.
Let Gv be the set of above subgraphs with the position of v in Tv. For Tv,

we define the recursive formula ρ(v,H) = maxCv�Cv:G[Cv]=H ϕ(Tv, Cv) as the
maximum social welfare of the partition of Tv such that the subgraph induced
by coalition Cv including v is H ∈ Gv. We also define ρ(v) = maxH∈Gv

ρ(v,H)
as the social welfare of the optimal partition of Tv. Then, the social welfare of
the optimal partition of T with root r is denoted by ρ(r) = maxH∈Gr

ρ(r,H).
Let wj be the children of v where 1 ≤ j ≤ d(v) − 1 in Tv. Then, we define the
recursive formulas of ρ(v,H) for H ∈ Gv to compute ρ(r) as follows.

1. H is an isolated vertex ({v}, ∅)
If H = ({v}, ∅), ϕ(H) = 0. Since v separates trees Twj

, ρ(v, ({v}, ∅)) is the
sum of the social welfare of the optimal partition in Twj

. Thus, ρ(v, ({v}, ∅))
is defined as ρ(v, ({v}, ∅)) =

∑d(v)−1
j=1 ρ(wj).

2. H is a star K1,f

(a) H = Kmid
1,f with center v

In this case, we include f children of v in coalition Cv. Note that f chil-
dren are isolated vertices in subtrees of Tv since Cv forms K1,f in Tv. Let
δj = ρ(wj) − ρ(wj , ({wj}, ∅)). Then δj means the difference between the
maximum social welfare in Twj

and the maximum social welfare of the
partition such that wj is an isolated vertex in Twj

. In other words, δj is the
cost to include wj in Cv. Thus, choosing the smallest f children of δj max-
imizes ρ(v,Kmid

1,f (v)) since it consists of the social welfare of Cv, f optimal
partitions of Twj

such that wj is an isolated vertex in Twj
, and d(v)−1−f

optimal partitions of Twj
. Let w1, w2, . . . , wf be such children, where the

indices are sorted in ascending order. Then, ρ(v,Kmid
1,f (v)) is defined as

ρ(v,Kmid
1,f (v)) = ϕ(K1,f ) +

∑f
j=1 ρ(wj , ({wj}, ∅)) +

∑d(v)
j=f+1 ρ(wj).

(b) H = Kleaf
1,f with leaf v

Since Cv forms a star K1,f and v is a leaf of it in Tv, we include vertex v
in a coalition of K1,f−1 with center wk that is a child of v in a subtree Tk.
Thus, we need to choose such child wk that maximize the social welfare of
Tv. In this case, the maximum social welfare of Tv is the sum of the social
welfare of the optimal partition of subtrees Twj

except for Twk
, ϕ(K1,f ),

and the social welfare of the partition of Twk
such that wk is the center

of K1,f−1 of coalition Cwk
minus ϕ(K1,f−1).
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Thus, ρ(v,Kleaf
1,f ) is defined as follows:

ρ(v, Kleaf
1,f ) = max

k∈[d(v)]

{ ∑

j∈[d(v)]\{k}
ρ(wj) + ϕ(K1,f ) + ρ(wk, Kmid

1,f−1(wk)) − ϕ(K1,f−1)
}

= max
k∈[d(v)]

{d(v)∑

j=1

ρ(wj) − ρ(wk) + ϕ(K1,f ) + ρ(wk, Kmid
1,f−1) − ϕ(K1,f−1)

}

=

d(v)∑

j=1

ρ(wj) + ϕ(K1,f ) − ϕ(K1,f−1) + max
k∈[d(v)]

{
ρ(wk, Kmid

1,f−1) − ρ(wk)
}
.

We define ρ(v,H) for the rest of H ∈ Gv in the same way.
3. H is a path P4

(a) H = P leaf
4 with leaf v

A path whose one of leaves is v consists of one P3 = K1,2 and v. Thus we
choose one child of v whose coalition is K1,2 and maximizes ρ(v, P leaf

4 ).

ρ(v, P leaf
4 ) =ϕ(P4) − ϕ(P3) +

d(v)∑

j=1

ρ(wj) + max
k∈[d(v)]

{
ρ(wk, Kleaf

1,2 ) − ρ(wk)
}

.

(b) H = Pmid
4 with non-leaf v

A path whose one of non-leaf vertices is v consists of one P2 = K1,1, v,
and one isolated vertex. Thus we choose two children of v such that each
coalitions that includes them is K1,1 and an isolated vertex, respectively,
and they maximize ρ(v, Pmid

4 ).

ρ(v, Pmid
4 ) =ϕ(P4) − ϕ(P2) +

d(v)∑

j=1

ρ(wj)

+ max
a,b∈[d(v)],a�=b

{
ρ(wa, Kleaf

1,1 ) + ρ(wb, ({wb}, ∅)) − ρ(wa) − ρ(wb)
}
.

4. H is a tree T 3
5

(a) H = T 3
5 (s1) with v = s1

Since v is s1 of T 3
5 in Tv, we combine Kleaf

1,3 whose leaf is a child wj of
v with v. Thus, we choose such a child of v that maximizes ρ(v, T 3

5 (s1)).
Then, ρ(v, T 3

5 (s1)) is defined as follows:

ρ(v, T 3
5 (s1)) = ϕ(T 3

5 ) − ϕ(K1,3) +

d(v)∑

j=1

ρ(wj) + max
k∈[d(v)]

{
ρ(wk, Kleaf

1,3 ) − ρ(wk)
}

.

(b) H = T 3
5 (t) with v = t1 or t2

Since v is t1 or t2 of T 3
5 in Tv, we combine Pmid

4 in a subtree Twj
with

v. Thus, we choose such a child of v that maximizes ρ(v, T 3
5 (t)). Then,

ρ(v, T 3
5 (t)) is defined as follows:

ρ(v, T 3
5 (t)) = ϕ(T 3

5 ) − ϕ(P4) +

d(v)∑

j=1

ρ(wj) + max
k∈[d(v)]

{
ρ(wk, Pmid

4 ) − ρ(wk)
}

.
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Fig. 6. Computing ρ(r0, H) for H = T 3
5 (u1)

(c) H = T 3
5 (u1) with v = u1

Since v is u1 of T 3
5 in Tv, we combine one coalition of K1,1 whose center is

a child of v, one coalition of an isolated vertex, and v to construct coalition
Cv. Thus, we choose two such children of v that maximizes ρ(v, T 3

5 (u1)).
Then, ρ(v, T 3

5 (u1)) is defined as follows:

ρ(v, T 3
5 (u1)) =ϕ(T 3

5 ) − ϕ(P3) +

d(v)∑

j=1

ρ(wj)

+ max
a,b∈[d(v)],a�=b

{
ρ(wa, Kmid

1,2 (wa)) + ρ(wb, ({wb}, ∅)) − ρ(wa) − ρ(wb)
}
.

(d) H = T 3
5 (u2) with v = u2

Since v is u2 of T 3
5 in Tv, we combine one coalition of P2 whose leaf is a

child of v, two coalitions of isolated vertices, and v to construct coalition
Cv. Note that such P2 is a star Kleaf

1,1 . Thus, we choose three such children
of v that maximizes ρ(v, T 3

5 (u2)). Then ρ(v, T 3
5 (u2)) is defined as follows:

ρ(v, T 3
5 (u2)) =ϕ(T 3

5 ) − ϕ(Kleaf
1,1 ) +

d(v)∑

j=1

ρ(wj)

+ max
a,b,c∈[d(v)],a�=b�=c

{
ρ(wa, Kleaf

1,1 ) + ρ(wb, ({wb}, ∅)) + ρ(wc, ({wc}, ∅))

− ρ(wa) − ρ(wb) − ρ(wc)
}
.

Figure 6 shows an example of computing ρ(r0,H) where H = T 3
5 (u1). To

compute ρ(r0,H), we use the ρ’s values of its subtrees. The pattern H = T 3
5 (u1)

contains one subtree with H = Kmid
1,2 and one with H = {{v}, ∅}. The best

combination of these can be computed by the DP procedure (c) explained above.
Finally, we evaluate the running time of our algorithm. In Case 1, we can

compute the recursive formula in time O(d(v)). In Case 2, for case (a), we need
to compute largest ρ(v,Kmid

1,f (v)) among f = 1, 2, . . . , d(v)−1. This can be done
by a binary search with SELECT, since δi is increasing and wi’s utility in K1,f is
decreasing. We can find the optimal f in O(d(v)+d(v)/2+d(v)/4 · · · ) = O(d(v)).
Case (b) is also computable in the same running time. In Case 3, both cases can
be computed in time O(d(v)) by memorizing the best score among its children.
Finally, in Case 4, all the cases can be computed in O(d(v)) by a similar manner
of Case 3. Thus the total running time of this algorithm is

∑
v∈V O(d(v)) = O(n),
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since
∑

v∈V d(v) = 2|E| = 2(n − 1) holds for a tree by the handshaking lemma.
Hence, we obtain the following theorem.

Theorem 2. MaxSWP for a tree can be solved in linear time.

5 Hardness Result of MaxSWP for 4-Regular Graphs

It is mentioned in [3] that MaxSWP is NP-hard for graphs with maximum degree
6, though the proof is omitted in the conference paper. Actually, we can show
a stronger result, that is, MaxSWP is NP-hard even for 4-regular graphs. The
proof is based on a reduction from a restricted variant of 3-SAT problem called
M3XSAT(3L), which is shown to be NP-complete in [10, Lemma 5].

Theorem 3. MaxSWP is NP-hard even for 4-regular graphs.
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Abstract. In this paper, we propose three conclusions for 1 � n maps with
square/diagonal grid patterns. First, for a 1 � n map consisting of all the vertical
creases and all the diagonal creases as well as a mountain-valley assignment, if it
obeys the local flat-foldability, then it can always be globally flat-folded and one
of its flat-folded state can be reached in O(n) time. Second, for a 1 � n map
consisting of only square/diagonal grid pattern, it also can always be globally
flat-folded and one of its flat-foldable state can be reached in O(n) time. We give
theoretical proofs for both of them and propose corresponding algorithms. Then,
we prove the NP-hardness of the problem of determining the global flat-
foldability for a 1 � n map consisting of a square/diagonal grid pattern and a
specific mountain-valley assignment. Also, we show that given an order of the
faces for an m � n map with all the vertical creases and all the diagonal creases
assigned to be mountains or valleys, we can determine its validity in O(mn)
time.

Keywords: Square/diagonal grid patterns � Flat-foldability � NP-hardness

1 Introduction

Given only a piece of paper with a given crease pattern and a mountain-valley
assignment, determining whether this paper can be folded flat or not, is the most
fundamental question in the studies of origami flat-foldability. Although the necessary
and sufficient conditions for the local flat-foldability are precisely defined, a locally flat-
foldable pattern can also be globally flat-unfoldable due to collisions of the parts of the
paper during assembly. For the most general case, this problem was proven to be
strongly NP-hard by Bern and Hayes [1]. Note that some errors were found in their
paper and a correction was given by Akitaya et al. in 2015 [2]. In fact, even when
putting limitations on the assignment of the crease pattern or the shape of the paper, this
problem still seems to be unsolvable in polynomial time; for instance, the known
results include the proof of NP-hardness of box-pleating patterns [2] and square paper
shapes [3].

For flat-foldability, an attractive problem is the map folding problem. In the original
form of this problem, the shape of the paper is a rectangle that can be partitioned into an
m � n regular grid of squares, with the limitation that every non-boundary grid edge
must be folded either as a mountain or as a valley. Unfortunately, finding a general
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solution for this problem is inherently too hard. Therefore, this problem has been
broken up into a series of sub-problems, which in turn brings about a series of
transformations.

The most well-known results for these sub-problems and their transformations are
as follows. Arkin et al. showed that for general 1 � n maps with only vertical creases,
their flat folded state can be computed in O(n) time by applying 1D foldability to them;
in this process, they defined two local operations: crimps and end folds [4]. Demaine
et al. showed that for m � n maps, if this problem can be reduced to a 1D problem with
a sequence of simple folds, NP boils down to P [4]. For 2 � n maps, the folding
problem can be solved in O(n9) time by Morgan’s algorithm based on a “ray diagram
structure” and three constraints for this structure [5]. In his method, a reduction to the
hidden tree problem is used.

For the original case, some related problems popularly studied include the problems
of deciding the validity of a given linear ordering of layers [6], identifying the classes
of unfoldable mountain-valley patterns [7], counting the number of valid mountain-
valley assignments [8], and so on.

Results have also been obtained for some more complex variations on the shapes of
the map and creases. For instance, for an orthogonal polygon with horizontal and
vertical creases, this problem was proven to be NP-complete by making a reduction
from the PARTITION problem [3]. The NP-hardness of the flat-foldability of general
maps with orthogonal creases has also been proven [3].

The maps with not only horizontal and vertical creases but also diagonal creases are
defined as maps with square/diagonal grid patterns. An instance is shown in Fig. 1. For
an m � n map with a square/diagonal grid pattern, Matsukawa et al. showed that when
m, n � 3, there exist flat-unfoldable square/diagonal grid patterns without a specific
mountain-valley assignment [9]. Taking this result as a reference, we aim to determine
the flat-foldability of 1 � n maps of square/diagonal grid patterns with or without
mountain-valley patterns assigned. We propose a approach to prove that a 1 � n map
consisting of all assigned vertical and diagonal creases (n – 1 assigned vertical creases
and 2n assigned diagonal creases) satisfying local flat-foldability can always be flat-
folded (Fig. 2(a)). Also, we prove that a 1 � n map consisting of only a
square/diagonal grid pattern can always be flat-folded (Fig. 2(b)). However, deter-
mining the flat-foldability for a 1 � n map with a square/diagonal grid pattern and a
specific mountain-valley assignment is proven to be NP-complete (Fig. 2(c)). Some
instances of the three different kinds of maps we concerned are illustrated in Fig. 2. In
addition, we present an algorithm for determining the validity of a given linear ordering
of faces of an m � n map consisting of all the vertical creases and all the diagonal
creases in O(mn) time.

Fig. 1. A 2 � 4 map with a square/diagonal grid pattern.
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2 Preliminary

We will use some of the definitions defined in [6]. A connected polygon in a plane is
denoted as a paper, and assumed that its one side is white and the other side is colored.
Suppose there is an embedded planar graph on this paper, which is denoted as a crease
pattern, then an edge of the graph which is not on the boundary of the paper is denoted
as a crease. The regions divided and bounded by some edges of the crease pattern are
denoted as faces, i.e., a face is bounded by a set of creases and possibly by part of the
boundary of the paper. Therefore, a crease is incident to exactly two faces. A crease can
be labeled either as a mountain (the white sides of the two faces incident to the crease
touch each other after the fold, denoted by “m”) or as a valley (the colored sides of the
two faces incident to the crease touch each other after the fold, denoted by “v”). If each
crease in a crease pattern is assigned to be either mountain or valley, the assignment is
called a mountain-valley assignment. An endpoint of a crease not on the boundary of
the paper is denoted as a vertex. An m � n map is a rectangular paper that can be
partitioned into an m � n grid of squares. A general map pattern is a crease pattern
using a subset of the creases partitioning the map into regular unit squares, called a
square grid pattern. Its extension, called a square/diagonal grid pattern, as introduced in
Sect. 1, is a crease pattern using a subset of the creases partitioning the map into regular
unit squares and partitioning each regular square into four regular isosceles right tri-
angles in diagonal directions.

In our research, the folding process is defined as a sequence of functions F = {f1, f2,
…, fa}, this is to take advantage of inverse functions when defining unfolding process.
Conversely, the unfolding process is defined as a sequence of functions U = {u1, u2,…,
ub}, and each uj (1 � j � b) is an inverse function for some fi (1 � i� a), i.e.,
uj ¼ f�1

i . The initial state of paper P is defined as S0 when it is not folded. The state of
the paper after a folding or unfolding process sk is denoted as Sk, i.e., each sk names a
function representing a folding or unfolding process from Sk–1 to Sk, sk 2 F or sk 2 U.

Lemma 1 [10]. The difference between the number of creases labeled mountains and
the number of creases labeled valleys meeting at a non-boundary vertex is 2.

By Lemma 1, for a 1 � n map consisting of all vertical and diagonal creases, if
each non-boundary vertex has its creases labeled as three mountains and a valley or as
three valleys and a mountain, then the map is locally flat-foldable; an instance is shown
in Fig. 2(a). In our paper, we follow the common practice for illustrating mountain-
valley assignments in a crease pattern, i.e., using the red line segments to denote
mountains and using the blue line segments to denote valleys.

Fig. 2. Three different kinds of maps we concerned. (Color figure online)
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3 Flat-Foldability for 1 � n Maps with All Creases

Here, we intend to prove that for a 1 � n map consisting of all the vertical creases and
all the diagonal creases and a mountain-valley assignment, if it obeys local flat-
foldability, then it can always be flat-folded, one of its flat-folded state can be reached
in O(n) time. We also propose an O(n) time algorithm for obtaining a flat-folded state
of such a 1 � n map.

Theorem 1. A 1 � n map consisting of all the vertical creases and all the diagonal
creases as well as a mountain-valley assignment can always be flat-folded if it obeys
local flat-foldability. In this case, it means that each non-boundary vertex is surrounded
with three mountains and a valley or a mountain and three valleys.

Proof. Although there might exist other possible ways to flatly fold a map, we prove
this theorem by using only one folding method, as presented below.

First, let us consider the flat-folded state of only one square, i.e., a 1 � 1
map. There is only one vertex in its center and four labeled creases associated with the
vertex (which divides the square into four triangles). Since the square has a colored side
and a white side, there are eight kinds of valid mountain-valley assignments based on
Lemma 1 (Fig. 3). Then we can tell that there are eight flat-folded states, i.e., eight
different orders of four triangles in the flat-folded states.

Next, let us consider folding a 1 � n map. The folding process is as follows.
Step 1, fold the map (with its longer side in the lateral direction) from the leftmost
square, firstly fold its four diagonal creases, then fold the vertical crease on its right
edge so as to get a strip with a triangular shape of four layers at the leftmost square.
After this step, consider the folded layers and the triangle above them (the leftmost
triangle in the second square) as an integrated part; therefore the map can be considered
as being reduced to a 1 � (n – 1) map; Step 2, use the same operation to fold the
adjacent square on the right side, also fold the diagonal creases; then fold the vertical
crease on the right edge. Repeat the operation of Step 2 until all squares are folded.

With this method, in each step we fold the next unfolded adjacent square which is
on the right side of the lastly folded square. For the already folded k (1 � k �
n) squares, a triangular shape of 4 � k layers can be obtained.

In our folding, for every square, we consider both its own folded state and the
crease located on its right edge. If it is labeled as a mountain, then the folded layers to

Fig. 3. Eight flat-folded states of one square.
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its left are folded below the unfolded part of the strip all together, or otherwise they
would be folded above the unfolded part of the strip all together. A demonstration for a
1 � 5 map is shown in Fig. 4.

By following these folding steps, we can finally obtain the flat-folded state with
each layer being a triangle. Thus, 1 � n maps consisting of all the vertical creases and
all the diagonal creases and a mountain-valley assignment can definitely be flat-folded.

Since we only need to fold each part in a square once, the time complexity of this
folding process is O(n). The algorithm to obtain the flat-folded state is shown below.

Algorithm 1
Input: Map M with a mountain-valley assignment.
Output: The order of the faces of the final flat-folded state of M.
1 Initialize a linked list L to Ф
2 Assign L by deciding the inner order of four faces in the first square
3 For every square in M

Update L according to the crease left to the square
Consider the folded layers and the leftmost triangle in this square as a whole, up-
date L by deciding the order of the triangle layers according to the creases within 
this square

4 Return L

4 Algorithm for Determining the Validity of an Ordering
in m � n Maps with All Creases

With other methods instead of the folding method described in Sect. 3, an m � n map
consisting of all creases and a mountain-valley assignment can also be folded flat into a
triangular shape, whose ordering of layers (in this case referring to all 1/4 square

Fig. 4. A demonstration for folding a 1 � 5 map.
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triangles) is specified differently in the final flat folded state. Therefore, we also want to
consider different valid orderings of layers. From [11], we know that the postage-stamp
folding problem is difficult; hence, a relevant compound problem of enumerating the
number of ways in which an m � n map consisting of all creases can be folded up
would seem to be much harder. However, another relevant problem, i.e., determining
the validity of a given ordering of layers, can be solved in linear time with an extension
of the method described in [6].

We will use definitions of the checkerboard patterns, wings, hinges, and butterflies
similar to the definitions in [6]. For a map with all square and diagonal creases, a
checkerboard pattern is defined for convenience to distinguish the colored-side-up
faces and white-side-up faces in the final folded state, as shown in Fig. 6(a). The colors
of the triangles correspond to the state of the grids (facing which side up) in the final
flat folded state. Since adjacent triangles are forced to face different sides up, in such a
pattern every pair of adjacent triangles have different colors. If in a folded state, a pair
of triangles are incident to a same crease, then this pair of triangles is called a butterfly,
each of the triangles is called a wing, and the crease is defined as a hinge. A pair of
butterflies with a same hinge location in the final state is called a pair of twin butterflies.
Figure 5 gives all possible states of a pair of twin butterflies; (a), (b) are called stacks,
(c), (d) are called nests.

Next, we define the directed network of the crease pattern, based on the fact that in
our pattern, two triangles not adjacent in the initial map may also be adjacent in the
final folded state if they have the property that the grids where they are located share
the same point or edge. Thus, we have to extend the definition in [6] which only
defined the relationship between adjacent squares in the initial map. Our directed
network is defined as follows: first, suppose the leftmost triangle in the uppermost row
is the uppermost layer in the final flat-folded state and facing white side up (Triangle 1
in Fig. 6(a)); next, for adjacent triangles, i.e., a pair of triangles sharing the same edge,
label their order based on whether the crease between them is labeled a mountain or
valley. For the simplicity of describing, we denote each Triangle c by tc. For example,
for Triangle 1 and Triangle 2 in Fig. 6(a), since the crease between them is labeled as a
mountain and Triangle 1 is facing white side up, the order is defined as t1 < t2 (from
top to bottom); similarly, for the four triangles in the grid located in the upper left
corner in Fig. 6(a), the order is defined as t1 < t2 < t3 < t4 (from top to bottom: {t1, t2,
t3, t4}). With this relationship, we can establish a directed network as in Fig. 6(b),
which indicates the relationship between adjacent triangles; finally, we add the edges

Fig. 5. Four states of a pair of butterflies.
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indicating the relationship between two triangles not adjacent but within adjacent grids.
If their order can be determined by the relationship defined by the directed network we
already have, then we add one directed edge between them; otherwise, we add a
bidirectional edge between them. For instance, the newly defined network for Triangle
2 is shown in Fig. 6(c). The final directed network is obtained by adding the newly
defined networks for every triangle to the original one.

Theorem 2. Let P be an m � n map with a mountain-valley assigned square/diagonal
grid pattern G. A linear ordering L of the faces of G is valid if and only if every pair of
twin butterflies in L either stacks or nests, and for the case of m; n � 2, L must satisfy
the directed network (a directed acyclic graph) of G.

Proof. The proof of Theorem 2 is similar to the proof in [6].
First, it is obvious that in a linear ordering, twin butterflies in L either stack or nest,

or otherwise intersections would happen. When either m or n equals 1, it is easy to
reach this conclusion by Theorem 1; for the case that m, n � 2, if the network is not a
directed acyclic graph, then there would exist a layer not relating to other layers in the
ordering. This shows the necessity.

Next, to prove the sufficiency, we only have to prove that it suffices to arrive at a
final flat folded state of pattern G. The method of proof is the same as in [6]. First,
decompose P into distinct triangles, where each triangle is a face of G with both a white
side and a colored side. Then, stack these triangles on only one triangle t according to
the linear ordering L. The checkerboard pattern of G decides either a face is facing the
white side up or facing the colored side up. According to the location of hinges
(matching with the edges of Triangle 1) of the butterflies in P, for each butterfly, join its
two wings (along the hinge of it) such that its hinge lies above an edge of t. Since any
pair of butterflies with the same hinge location either nests or stacks, there will be no
intersection. This process leads to a folded state of P where L is the linear ordering of
the faces of G in the folded state. Therefore, L is a valid linear ordering.

By Theorem 2, we can obtain the conclusion that the running time of this algorithm
is O(mn), which is identical to that of the algorithm presented in [6] since the difference
happens only when checking the kind of butterflies and constructing the initial directed
graph, both of which can be done by a simple traverse in linear time.

Fig. 6. A 2 � 2 grid, its original directed network, and the newly defined network for Triangle
2.
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5 Flat-Foldability for 1 � n Maps with a Square/Diagonal
Grid Pattern

Here, we reach a conclusion for 1 � n maps with only square/diagonal grid patterns
(no specific mountain-valley assignment). An instance of such a map is given in Fig. 1.

Theorem 3. 1 � n maps with only square/diagonal grid patterns can always be folded
flat, and their flat-folded states can be reached in O(n) time.

Proof. In brief, our approach is a process as follows: first, fold the map to an initial
flat-folded state with some creases do not exist; then, unfold the added creases after the
map is flat folded. After the map is flat folded, the creases added before can be unfolded
without changing the fact that the map is flat folded.

To do this, first, by Theorem 1, we already know that for 1 � n maps consisting of
all creases and a mountain-valley assignment, their flat-foldable states can be reached.

Accordingly, for a given crease pattern, we add some creases to make sure that each
region surrounded by creases is a triangle (an 1/4 area of a grid). As long as local flat-
foldability is maintained, the kind of diagonal creases added has no effect on the final
result. For simplicity, we fold this paper strip into an flat state with such an assignment
that if we denote the creases by ci (i 2 N+) following a left-to-right order, and for each
four creases inside a grid, labeled in counterclockwise order, as shown in Fig. 7(b), the
creases in the set {ci | i = 10m, 10m + 4, 10m + 6, m 2 N+} are labeled mountains, and
the other creases are labeled valleys. The key is to keep four triangles in each grid
adjacent to each other in the final flat-folded state (the ordering of the layers in the final
flat-folded state is as follows: the triangles in the first grid, the triangles in the second
grid, …, the triangles in the nth grid). An instance is shown in Fig. 7, where the creases
we added are indicated as the thick line segments.

Next comes the unfolding process, i.e., unfolding the creases we added. First, we
unfold the temporarily added vertical creases in left-to-right order (with the longer side
of the map put in the lateral direction). For each crease ci being unfolded, we perform
the following process: Step 1. Unfold ci; Step 2. Change the label for every vertical
crease cj (j > i) and diagonal crease c2k+1(2k + 1>i, k 2 N+), which are in the adjacent
grids of cj on the same diagonal with the same labels. Note that each change during the
unfolding process follows Lemma 1 (Maekawa’s Theorem). An instance is shown in
Fig. 8, we first unfold crease c10 while changing the labels of the vertical creases c15,

Fig. 7. A given crease pattern, its predefined mountain-valley assignment and the initial flat-
folded state.
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c20, c25 and the diagonal creases c11, c13, c17, c19, c21, c23, c27, and c29 and then unfold
crease c20 while changing the labels of c25, c21, c23, c27, and c29.

When the vertical crease between the kth grid and the (k + 1)th grid is unfolded, the
change in the folded state is that the two triangles in the kth grid and the (k + 1)th grid
adjacent to each other turn to be in a same layer, and the locations of the triangle layers
from the (k + 1)th grid to the nth grid are changed. Intersections would not be produced
because when the unfolding happens, we only have to move layers up or down the axis
without influencing the layering order.

Finally, unfold the temporarily added diagonal creases. We intend to keep the
global order unchanged while unfolding some creases. The process is like this: Step 1.
Unfold the creases in the four corresponding layers of one grid; Step 2. If the order of
the layers after (or before) the unfolded layers has been changed, then change the
original mountain-valley assignment of the crease (only one) after (or before) this
crease to keep the global order unchanged. For example, in Fig. 9, when we unfold
creases c16 and c18 in g4, we change the labels of c22, c24, c25, c26, and c28 so as to keep
the global order; however, when we unfold the creases c26, c27, c28, c29 in g6, no other
assignments have to be changed.

When performing this process, we know that any unfolding operation will not
change the order of the grids (from left to right). Compared with the initial flat-folded
state (with the added creases actually do not exist), the unfolding only changes the

Fig. 8. Change of the state when unfolding the vertical creases c10 and c20.

Fig. 9. Unfolding the diagonal creases.
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layers of some grids from four layers into two layers or one layer. Whatever change
happens within each grid, the order of grids is always maintained. Therefore, all
1 � n square/diagonal grid patterns are flat-foldable.

With this method, we can obtain the final flat-folded state of a square/diagonal
pattern in O(n2) time, since we have to determine the changes for other creases each
time a crease is unfolded. The method introduced here can also be applied to
2 � n square/diagonal grid patterns. In fact, the unfolding process is presented for the
simplicity of our proof. To obtain the final flat-folded state, the real process can be
simplified. We only have to decide the assignment of the creases between every
adjacent pair of layers, based on which the time complexity can be reduced to O(n). An
algorithm for getting the final flat-folded state of a given 1 � n square/diagonal grid
pattern is given below.

Algorithm 2
Input: A 1×n square/diagonal grid pattern P
Output: The final flat-folded state S corresponding to P
1 Initialize S to
2 For each vertical crease vi, do:

Fold the creases in the grid between vi and vi+1. Whether they are labeled as mountains 
or valleys follows the principle of keeping the layering order of the grids consistent 
with the original order of the grids (g1, g2, ). Record the folded state of the strip 
between vi and vi+1 as pi;
Fold vi+1 with an assignment which keeps the layering order of the layers to the right 
of vi+1 unchanged, reassign S by adding pi to an appropriate location in S

3 Return S

6 Complexity of Determining the Flat-Foldability
of a 1 � n Map with a Square/Diagonal Grid Pattern
and a Specific Mountain-Valley Assignment

In this section, we show that determining the flat-foldability for the most general case,
i.e., a 1 � n map with a square/diagonal grid pattern as well as a specific mountain-
valley assignment, is NP-complete.

First though, we will intuitively consider the hardness of this problem. The con-
clusion in [4] indicates that in a one dimensional map (all the creases are vertical
creases), self-intersections happen when the distance between two adjacent creases with
the same label is too short, as in Fig. 10.

Fig. 10. A self-intersection in a one dimensional map.
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A similar case could happen in a 1 � n map with a square/diagonal grid pattern;
however, sometimes diagonal creases influence the distances between the creases,
causing self-intersections. This means that this problem is a combinatorial optimization
problem. Hence, as a general case in combinatorial optimization problems, there is a
great likelihood that this problem is NP-hard.

On the other hand, if a crease pattern and a mountain-valley assignment are given,
we can easily determine the validity of a specific folding process (each sk representing a
folding operation from Sk–1 to Sk by only folding one crease is given) by checking
whether each sk obeys the mountain-valley assignment and whether the folding oper-
ation is permitted according to the state of the layers in Sk–1. We only have to check
each sk once so as to determine the validity of a given folding process, which can be
done in polynomial time. Thus, according to the definition of NP-completeness, this
problem should not be considered as a problem harder than NP-complete problems. In
the next paragraph, we reduce a well-known NP-complete problem, i.e., Partition
Problem to this problem.

In [4], Arkin et al. have shown that determining whether a square crease pattern on
an orthogonal piece of paper can be flat-folded or not is NP-complete. They used a
reduction to Partition Problem by creating a pattern like in Fig. 11. We find that their
pattern can also be used in our proof; hence, we only have to make corners with the
crease shown in Fig. 12, so as to create a pattern as in Fig. 11 and it becomes easy
show that the problem of determining the flat-foldability of a 1 � n map with a
square/diagonal grid pattern and a specific mountain-valley assignment to be NP-
complete. Note that in our proof, L, W1, W2 mod e = 0 (they are illustrated in Fig. 11
and their definitions can be found in [4]) since our operations are executed on a piece of
paper formed by squares.

Fig. 11. The pattern for a reduction to Partition Problem (This figure was reproduced by the
authors with reference to [4].)
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7 Conclusion

We reached three conclusions for 1 � n maps with square/diagonal grid patterns: for a
1 � n map with all vertical and diagonal creases as well as a mountain-valley
assignment, if it obeys local flat-foldability, then it can always be folded flat and one of
its flat-folded state can be reached in O(n) time; for a 1 � n map with only
square/diagonal grid pattern, it also can always be folded flat and one of its flat-foldable
states can be reached in O(n) time. We gave theoretical proofs for both of them and
proposed corresponding algorithms. Next, we proved that determining the flat-
foldability of a 1 � n map with a square/diagonal grid pattern and a specific mountain-
valley assignment is NP-complete. Moreover, we showed that given an order of the
faces of an m � n map with each vertical or diagonal crease assigned to be a mountain
or a valley, we can determine the validity of the order in O(mn) time.

An attractive problem remaining to be solved is determining the flat-foldability of
2 � n maps. Also, related to this problem, it is an interesting question of defining flat-
unfoldable classes for 1 � n square/diagonal grid patterns with specific mountain-
valley assignments.
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Abstract. We present a new model for hybrid planarity that relaxes
existing hybrid representations. A graph G = (V, E) is (k, p)-planar if
V can be partitioned into clusters of size at most k such that G admits
a drawing where: (i) each cluster is associated with a closed, bounded
planar region, called a cluster region; (ii) cluster regions are pairwise
disjoint, (iii) each vertex v ∈ V is identified with at most p distinct points,
called ports, on the boundary of its cluster region; (iv) each inter-cluster
edge (u, v) ∈ E is identified with a Jordan arc connecting a port of u to a
port of v; (v) inter-cluster edges do not cross or intersect cluster regions
except at their endpoints. We first tightly bound the number of edges
in a (k, p)-planar graph with p < k. We then prove that (4, 1)-planarity
testing and (2, 2)-planarity testing are NP-complete problems. Finally,
we prove that neither the class of (2, 2)-planar graphs nor the class of 1-
planar graphs contains the other, indicating that the (k, p)-planar graphs
are a large and novel class.

Keywords: (k, p)-Planarity · Hybrid representations
Clustered graphs

1 Introduction

Visualization of non-planar graphs is one of the most studied graph-drawing
problems in recent years. In this context, an emerging topic is hybrid repre-
sentations (see, e.g., [1,2,5,7,10]). A hybrid representation simplifies the visual
analysis of a non-planar graph by adopting different visualization paradigms
for different portions of the graph. The graph is divided into (typically dense)
subgraphs called clusters which are restricted to limited regions of the plane.
Edges between vertices in the same cluster are called intra-cluster edges, and
edges between vertices in different clusters are called inter-cluster edges. Inter-
cluster edges are represented according to the classical node-link graph drawing
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paradigm, while the clusters and their intra-cluster edges are represented by
adopting alternative paradigms. A hybrid representation thus reduces the num-
ber of inter-cluster edges and the visual complexity of much of the drawing at the
cost of creating cluster regions of high visual complexity. As a result, a hybrid
representation provides an easy to read overview of the graph structure and it
admits a “drill-down” approach when a more detailed analysis of some of its
clusters is needed.

Different representation paradigms for clusters give rise to different types of
hybrid representations. For example, Angelini et al. [1] introduce intersection-
link representations, where clusters are represented as intersection graphs of sets
of rectangles, while Henry et al. [10] introduce NodeTrix representations, where
dense subgraphs are represented as adjacency matrices (see Fig. 1). Batagelj et al.
employ hybrid representations in the (X,Y )-clustering model [2], where Y and
X define the desired topological properties of the clusters and of the graph con-
necting the clusters, respectively. For instance, in a (planar, k-clique)-clustering
of a graph each cluster is a k-clique and the graph obtained by contracting each
cluster into a single node (called the graph of clusters) is planar. Given a graph
G and a hybrid representation paradigm P, the hybrid planarity problem asks
whether G can be represented according to P with no inter-cluster edge cross-
ings. Variants of the problem may or may not assume that the clustering is given
as part of the input.

Fig. 1. (a) A NodeTrix representation of a 3-clique and a corresponding (3, 4) represen-
tation. (b) An intersection-link representation of a 3-clique and a corresponding (3, 2)
representation.

In this paper, we present a general hybrid representation paradigm that
relaxes the described hybrid paradigms. Given a graph G = (V,E), a (k,p)
representation Γ of G is a hybrid representation in which: (i) each cluster of G
contains at most k vertices and is identified with a closed, bounded planar region;
(ii) cluster regions are pairwise disjoint, (iii) each vertex v ∈ V is represented
by at most p distinct points, called ports, on the boundary of its cluster region;
(iv) each inter-cluster edge (u, v) ∈ E is represented by a Jordan arc connecting
a port of u to a port of v. A (k, p) representation is (k, p)-planar if edge curves
do not cross and do not intersect cluster regions except at their endpoints. We
say that a graph G is (k, p)-planar if it can be clustered so that it admits a
(k, p)-planar representation.
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The definition of a (k, p) representation leaves the representation of clusters
and intra-cluster edges intentionally unspecified. It is thus a relaxation of hybrid
representation paradigms where the number of ports used by the inter-cluster
edges depends on the geometry of the cluster regions. For example, in a NodeTrix
representation, the squared boundary of each matrix allows four ports for every
vertex except for the vertex in the first row/column of the matrix and the vertex
in the last row/column of the matrix, which both have only three ports. Hence, a
NodeTrix representation can be regarded as a constrained (k, 4) representation
(four ports for every vertex except for two, the vertices appear in the order
imposed by the matrix); see Fig. 1(a). Similarly, a (k, 2) representation relaxes
an intersection-link representation with clusters represented as isothetic unit
squares with their upper-left corners along a common line with slope 1; see
Fig. 1(b). We also remark that the use of different ports to represent a vertex
can be regarded as an example of vertex splitting [8,9]; however, while in the
papers that use vertex splitting to remove crossings the multiple copies of each
vertex can be placed anywhere in the drawing, in our model they are forced to
lay within the boundary of the same cluster region.

The results of this paper are the following:

– In Sect. 2, we give an upper bound on the edge density of a (k, p)-planar graph
and prove that this bound is tight for p < k.

– In Sect. 3, we observe that the class of (4, 1)-planar graphs coincides with the
class of IC-planar graphs, from which the NP-completeness of testing (4, 1)-
planarity follows. We then prove that testing (2, 2)-planarity is NP-complete.
These results imply that computing the minimum k such that a graph is
(k, p)-planar is NP-hard for both p = 1 and p = 2. Recall that a graph is
1-planar if it admits a drawing where every edge is crossed at most once, and
that an IC-planar graph is a 1-planar graph that admits a drawing where no
two pairs of crossing edges share a vertex.

– The NP-completeness of the (2, 2)-planarity testing problem naturally sug-
gests to further investigate the combinatorial properties of (2, 2)-planar
graphs. In Sect. 4, we ask whether every 1-planar graph admits a (2, 2)-planar
representation (see, e.g. Fig. 6). We prove the existence of 1-planar graphs that
are not (2, 2)-planar and of (2, 2)-planar graphs that are not 1-planar. We also
give a sufficient condition for 1-planar graphs to be (2, 2)-planar.

For reasons of space some proofs have been omitted or sketched, and can be
found in the full version [6]. The corresponding statements are marked with [*].

2 Edge Density of (k, p)-Planar Graphs

In this section we give a tight bound on the number of edges of a (k, p)-planar
graph when p < k. First, given a (k, p)-planar representation Γ , we define a
skeleton of Γ to be a planar drawing ΓS obtained by the following transforma-
tion. We first replace each port in Γ with a vertex. Each cluster region Ri of
Γ is now an empty convex space surrounded by up to kp vertices. We connect
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these vertices in a cycle and triangulate the interior. For our purposes any trian-
gulation is equivalent. The resulting representation is ΓS . Figure 2(b) illustrates
a skeleton of the (2, 2)-planar representation of Fig. 2(a).

Fig. 2. (a) A (2, 2)-planar representation Γ of a graph G; (b) A skeleton ΓS of Γ .

Theorem 1 [*]. Let G be a (k, p)-planar graph with n vertices. G has m ≤
n(p+ 3

k + k
2 − 1

2 )− 6 edges. This bound is tight for any positive integers k, p and
n such that p < k and n = N · k, where N > 2.

Proof. Let Γ be a (k, p)-planar representation of G and let N be the number
of clusters of G. As each cluster contains at most k vertices, G has at most
N · k(k−1)

2 intra-cluster edges.
Let Ri be a cluster region in Γ with pi ports in total. Let ΓS be a skeleton of

Γ , and let nS and mS denote the number of vertices and the number of edges of
ΓS , respectively. When ΓS is created, Ri is replaced with pi vertices and 2pi − 3
edges if pi > 1, or 0 edges if pi = 1. Letting minter be the number of inter-cluster
edges in G and s be the number of clusters in G containing a single vertex, we
have,

mS = minter +
N∑

i=1

(2pi − 3) + s. (1)

In other words, the total number of edges in ΓS is equal to the number of inter-
cluster edges in G plus the number of edges added for each cluster. Note that
mS ≤ 3nS−6, as ΓS is a planar drawing. As

∑N
i=1 pi = nS , rearranging generates

minter + 2nS − 3N + s ≤ 3nS − 6 and thus,

minter ≤ nS + 3N − 6 − s ≤ N(kp + 3) − 6. (2)

As m is equal to the sum of the number of inter-cluster and intra-cluster edges
in G, we have

m ≤ Nk(p +
3
k

+
k

2
− 1

2
) − 6. (3)

If all clusters contain k vertices, then N = n
k and Theorem 1 holds. Refer to

the full version [6] for the proof that m ≤ n(p+ 3
k + k

2 − 1
2 )− 6 in the case where

some clusters contain fewer than k vertices.
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In order to show that the bound is tight for p < k, we describe a (k, p)-planar
representation Γk,p with N = n

k clusters and (kp + 3)N − 6 inter-cluster edges.
Γk,p is possible for any pair of positive integers p and k such that p < k and for
any N > 2. Γk,p has N clusters each with k vertices and thus kp ports. Let R1

and R2 be two cluster regions. We say that R1 and R2 are kp-connected if they
are connected by kp+1 edges as shown in Fig. 3(a). (Note that, since the number
of inter-cluster edges between two k-clusters is at most k2, we can create kp + 1
edges between R1 and R2 only if p < k). More precisely, R1, which we refer to as
the small end of the kp-connection, is connected by means of p + 1 consecutive
ports; the first p ports have k incident edges each, and the last port has an
additional edge. R2, which we refer to as the large end of the kp-connection, is
connected by means of p(k − 1) + 1 consecutive ports, each connected to one or
two edges. Notice that, since we use p(k − 1) + 1 ports for the large end, p + 1
for the small end and two ports can be shared by the two ends, each cluster
region can be the small end of one kp-connection and the large end of another
kp-connection. Thus, we can create a cycle with N clusters as shown in Fig. 3(b).
In the resulting representation there are two faces of degree N : One is the outer
face and the other one is inside the cycle. By triangulating these two faces with
N − 3 edges for each face, we obtain the (k, p)-representation Γk,p. The number
of inter-cluster edges of Γk,p is thus (kp + 1)N + 2N − 6 = (kp + 3)N − 6. �

Fig. 3. (a) A kp-connection of two cluster regions R1 and R2 (k = 5, p = 3). (b) A
cycle of N = 5 clusters; the bold edges highlight the two faces of degree N .

3 Recognition of (k, p)-Planar Graphs

This section considers the problem of testing (k, p)-planarity for the cases in
which p = 1 and p = 2.
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Theorem 2 [*]. (k, 1)-planarity testing can be performed in linear time for k ≤
3, and it is NP-complete for k = 4.

Proof. The first part of Theorem 2 follows from the fact that the class of (k, 1)-
planar graphs coincides with the class of planar graphs for k = 1, 2, 3. The
second part follows from the fact that the (4, 1)-planar graphs coincide with the
IC-planar graphs [14]. Testing IC-planarity is known to be NP-complete [4]. �

Corollary 1. The problem of computing the minimum value of k such that a
graph is (k, 1)-planar is NP-hard.

We now focus on the (2, 2)-planarity testing problem, hereafter referred to as
(2, 2)-Planarity. We show that (2, 2)-Planarity is NP-complete by a reduc-
tion from the NP-complete problem Planar Monotone 3-SAT [3]. We say
that an instance of 3-SAT is monotone if every clause consists solely of positive
literals (a positive clause) or solely of negative literals (a negative clause). A
rectilinear representation of a 3-SAT instance is a planar drawing where each
variable and clause is represented by a rectangle, all the variable rectangles
are drawn along a horizontal line, and vertical segments connect clauses with
their constituent variables. A rectilinear representation is monotone if it corre-
sponds to a monotone instance of planar 3-SAT where positive clauses are drawn
above the variables and negative clauses are drawn below the variables, as shown
in Fig. 4(a). Given a monotone rectilinear representation Φ corresponding to a
boolean formula F , the problem Planar Monotone 3-SAT asks if F has a
satisfying assignment.

Fig. 4. (a) A planar monotone representation of Φ0. (b) The variable cycle of G0 and
false literal boundaries.

We denote by K−
8 the graph created by removing two adjacent edges from

the complete graph K8. In our reduction we make use of the following transfor-
mation. Let v be a vertex of G. we replace v with a copy of K−

8 by identifying v
with the vertex of K−

8 with degree 5. After performing this operation we say that
v is a K-vertex. The following lemma states a useful property of the K-vertices.
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Lemma 1 [*]. Let v be a K-vertex of a graph G and let G′ be the K−
8 subgraph

associated with v. In any (2, 2)-planar representation of G, each vertex of G′ is
clustered with another vertex in G′.

Theorem 3 [*]. (2, 2)-Planarity is NP-complete.

Proof. (2, 2)-Planarity is trivially in NP. We prove the NP-hardness of (2, 2)-
Planarity by reduction from Planar Monotone 3-SAT. Given an instance
Φ of Planar Monotone 3-SAT, we construct a graph G that is a Yes instance
of (2, 2)-Planarity if and only if Φ is a Yes instance of Planar Monotone

3-SAT. For convenience, figures show the construction of the graph G0 corre-
sponding to the Planar Monotone 3-SAT instance Φ0 in Fig. 4(a). In figures,
we represent K-vertices and their associated K−

8 subgraphs with solid dots, while
ordinary vertices are represented with hollow dots.

For each variable vi of F (with i = 1, . . . , n) create in G a K-vertex vi and
connect such K-vertices in a cycle, in the order implied by Φ (refer to Fig. 4(b)).
Split each edge (vi, vi+1) of the cycle with a K-vertex ci,i+1. Split the edge (v1,
vn) with the vertices c0,1 and cn,n+1. Finally, duplicate the edge (c0,1, cn,n+1)
and split the duplicated edges with the K-vertices plus and minus. We refer to
this subgraph as the variable cycle. Given a variable vi, let pi be the number
of positive clauses and qi be the number of negative clauses of F in which vi
appears. For 1 ≤ i ≤ n, connect ci−1,i to ci,i+1 with a path of ordinary vertices
of length equal to max(pi, qi). We refer to these paths as false literal boundaries.

For each clause Cj = (lj,1 ∨ lj,2 ∨ lj,3) in F , create a corresponding clause
gadget in G. Create ordinary vertices lj,1, lj,2, lj,3 and openj , create a K-vertex
closedj , and add an edge between any pair of vertices, as in Fig. 5(a). Observe
that in any (2, 2)-planar representation of a clause gadget, two of the four vertices
lj,1, lj,2, lj,3 and openj must be arranged in one cluster of size 2. This is due to
the fact that by Lemma1, closedj must be clustered within its K−

8 subgraph. If
lj,1, lj,2, lj,3 and openj were all clustered separately, the graph of clusters of G
would contain a K5 minor. Also, any 2-clustering of a clause gadget in which a
literal vertex is clustered with openj is (2, 2)-planar, as shown in Fig. 5(b).

Now, connect the clause gadgets with a tree structure corresponding to the
positions of clause rectangles in Φ. Let Cj be a clause rectangle in Φ with l1,
l2, and l3 corresponding to the vertical segments descending from Cj from left
to right. If Cj is nested between vertical segments corresponding to literals m1

and m2 of another clause rectangle Ck, split the edges (lj,1, lj,3) and (mk,1,mk,2)
with K-vertices and connect the new K-vertices with an edge. If Cj is nested
under no other clause rectangle, split (lj,1, lj,3) with a K-vertex and connect the
new vertex to plus if Cj corresponds to a positive clause and to minus otherwise.
This procedure leads to a configuration consisting of two trees of clause gadgets
connected as in Fig. 5(c). This concludes the construction of G. Refer to [6] for
the proof that G is (2, 2)-planar if and only if Φ has a satisfying assignment. �

Corollary 2. The problem of computing the minimum value of k such that a
graph is (k, 2)-planar is NP-hard.
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Fig. 5. (a) A clause gadget Cj . (b) A (2, 2)-planar representation of the clause gadget
Cj . (c) The graph G0.

4 (2, 2)-Planarity and 1-Planarity

Fig. 6. Removal of a crossing in
a (2, 2) representation.

The NP-completeness of (2, 2)-Planarity sug-
gests further investigation into the combinato-
rial properties of (2, 2)-planar graphs. In this
section, we study the relationship between (2, 2)-
planarity and 1-planarity. This is partly moti-
vated by general interest in 1-planar graphs (see,
e.g., [11]) and partly by the following observation.
Since a 1-planar graph admits a drawing where each edge is crossed by at most
one other edge, it seems reasonable to remove each crossing of the drawing by
clustering two of the vertices that are involved in the crossing as shown in Fig. 6.
An n-vertex 1-planar graph has at most 4n−8 edges [13]. By Theorem 1, a (2, 2)-
planar graph with n vertices has at most 4n − 6 edges, so it is not immediately
clear that there are 1-planar graphs that are not (2, 2)-planar.

As we are going to show, however, there is an infinite family of 1-planar
graphs that are not (2, p)-planar for any value of p ≥ 1. On the positive side, we
demonstrate a large family of 1-planar graphs that are (2, 2)-planar.

Theorem 4. For every h > 2, there exists a 1-planar graph with n = 5 · 2h − 8
vertices and m = 18 · 2h − 36 edges that is not (2, p)-planar, for any p ≥ 1.

Proof. We define a recursive family of 1-plane graphs as follows. Graph H1

consists of a single kite K, which is a 1-plane graph isomorphic to K4 drawn
so that all the vertices are on the boundary of the outer face. Graph Hi, for
i = 2, 3, . . . , has 2i kites in addition to Hi−1; these kites form a cycle in the
outer face of Hi−1, and each kite contains a vertex of the boundary of the outer
face of Hi−1 (note that Hi−1 has 2i vertices on the boundary of the outer face).
See Fig. 7(a) for an example. The kites of Hi \ Hi−1 are called the external
kites of Hi. The embedding of Hi described in the definition will be called
the canonical embedding of Hi. We also consider another possible embedding,



156 E. Di Giacomo et al.

Fig. 7. (a) Definition of Hi. (b)–(c) Canonical and reversed embedding of H3. (d) H3.

called the reversed embedding. Let B be the boundary of the outer face in the
canonical embedding of Hi; in the reversed embedding of Hi the cycle B is the
boundary of an inner face and all the rest of the graph is embedded outside B.
See Fig. 7(b) and Fig. 7(c) for an example. For any h > 2, let Hc

h be a copy of
Hh with a canonical embedding, and let Hr

h be a copy of Hh with a reversed
embedding. The graph obtained by identifying the external kites of Hc

h with
the external kites of Hr

h is denoted as Hh. Figure 7(d) shows the graph H3. By
construction, Hi has ni = 2i+1 − 4 vertices and mi = 12 · 2i − 18 edges. Hence,
Hh has n = 5 · 2h − 8 vertices and m = 18 · 2h − 36 edges.

We show that Hh is not (2, p)-planar for any p ≥ 1. Suppose that Hh has a
(2, p)-planar representation Γ for some p ≥ 1 and let GC be the graph of clusters
of Hh. Since Γ is planar, GC must be planar. GC can be obtained from Hh by
contracting each pair of vertices that is assigned to each cluster region (and
removing multiple edges). Contracting a pair of vertices u and v, the number of
vertices reduces by one and the number of edges reduces by the number of paths
of length at most 2 connecting u and v (for each path we remove one edge). In
Hh, there are at most 4 such paths between any pair of vertices. Hence, if we
contract q pairs of vertices, the number of vertices in GC is n′ = n− q, while the
number of edges is m′ ≥ m − 4q. If GC is planar, m′ ≤ 3n′ − 6 and thus it must
be m − 4q ≤ 3(n − q) − 6, which gives q ≥ m − 3n + 6 = 3 · 2h − 6, i.e. we must
contract at least 3 · 2h − 6 pairs of vertices. Since there are 5 · 2h − 8 vertices, we
can contract at most 5·2h−8

2 pairs. Thus, it must be 3 · 2h − 6 ≤ 5 · 2h−1 − 4, i.e.,
2h−1 ≤ 2, which can be satisfied only for h ≤ 2.

Note that our argument is independent of the 1-planar embedding of Hh. This
implies that the result holds for 1-planar graphs, not just for 1-plane graphs. �

Fig. 8. A (2, 2)-planar
representation of K7.

Theorem 4 motivates further investigation of the rela-
tionship between 1-planar and (2, 2)-planar graphs. Note
that there are infinitely many (2, 2)-planar graphs that
are not 1-planar. For example, observe that every graph
obtained by connecting with an edge a planar graph
and K7 has such a property, because K7 is not 1-planar
(it has more than 4n − 8 = 20 edges) but it is (2, 2)-
planar, as depicted in Fig. 8. In what follows, we describe
a non-trivial family of 1-planar graphs that are also (2, 2)-
planar.
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Let G be a 1-plane graph, and let eu = (u1, u2) and ev = (v1, v2) be a pair of
crossing edges of G. Any pair 〈ui, vj〉, with 1 ≤ i, j ≤ 2, is a representative pair of
the edge crossing defined by eu, ev. An independent set of distinct representatives
(ISDR for short) of G is a set of representative pairs such that there is exactly
one representative pair per crossing and no two representative pairs in the set
have a common vertex. Figure 9(b) shows an ISDR for the graph of Fig. 9(a).

We want to show that if a 1-plane graph G has an ISDR then it is (2, 2)-
planar. The crossing edges graph of G, called ce-graph for short and denoted as
CE(G), is the subgraph of G induced by the crossing pairs of G. G is pseudofore-
stal if CE(G) is a pseudoforest (i.e. it has at most one cycle in each connected
component). For example, the 1-planar graph of Fig. 9(a) is pseudoforestal, as
shown in Fig. 9(c). The pseudoforestal 1-planar graphs include non-trivial sub-
families of 1-planar graphs, such as IC-planar graphs (whose ce-graph has max-
imum degree one), or the 1-planar graphs such that each vertex is shared by at
most two crossing pairs (whose ce-graph has maximum degree two).

Fig. 9. (a) A 1-planar graph G. (b) An ISDR of G. For each pair of crossing edges the
representative pair is indicated with a dashed line connecting the pair. Vertices shared
by different crossing pairs are replicated in each pair. (c) The ce-graph CE(G) of G.

Theorem 5. A pseudoforestal 1-plane graph is (2, 2)-planar.

Proof. We start by proving that a 1-plane graph G contains an ISDR if and only
if G is pseudoforestal. It is known that a graph G can be oriented such that the
maximum in-degree is k if and only if its pseudoarboricity is k (i.e. the edges
of G can be partitioned into k pseudoforests) [12]. Thus, G is pseudoforestal if
and only if CE(G) can be oriented so that the maximum in-degree is one. We
now show that this is a necessary and sufficient condition for the existence of an
ISDR S in G. Assume that an ISDR exists. Let eu = (u1, u2) and ev = (v1, v2)
be two crossing edges and let 〈ui, vj〉 (1 ≤ i, j ≤ 2) be the representative pair of
eu and ev. Direct eu towards ui and ev towards vj . Doing this for each pair of
crossing edges defines an orientation for all edges of CE(G). In this orientation
each vertex of CE(G) has in-degree at most 1, since no two pairs in S share a
vertex. Now suppose that CE(G) has an orientation such that each vertex has
in-degree at most 1. For each pair of directed crossing edges (u1, u2), (v1, v2) in
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CE(G), we add the pair 〈u2, v2〉 to S. Since each vertex v in CE(G) has in-
degree at most 1, v is a vertex of at most one pair in S. Thus, the pairs selected
for different crossing pairs are distinct and no two of them share a vertex.

We now describe how to use an ISDR S of G to construct a (2, 2)-planar
representation of G where each pair in S is represented as a 2-cluster that has
2 copies for each of its vertices. Let Γ be a 1-planar drawing of G that respects
the 1-planar embedding of G. Consider any two crossing edges eu = (u1, u2) and
ev = (v1, v2) and denote by c the point where they cross in Γ . Without loss
of generality, assume that 〈u1, v1〉 is the representative pair of eu and ev (see
Fig. 10 for an illustration). Subdivide the edge eu with a copy v′

1 of v1 placed
between u1 and c along eu; analogously, subdivide the edge ev with a copy u′

1 of
u1. Add a curve λ1 connecting u′

1 to v′
1 and a curve λ2 connecting u1 to v1. By

walking very close to the two edges eu and ev, these two curves can be drawn
without crossing any existing edge and so that the closed curve λ formed by λ1

and λ2 together with the portion of eu from u1 to v′
1 and the portion of ev from

v1 to u′
1 does not contain any vertex of Γ . Curve λ defines the cluster region for

the cluster containing u and v. Replace the edge eu with a curve λu connecting
u2 to u′

1 and the edge ev with a curve λv connecting v2 to v′
1. Again, by walking

very close to the two edges eu and ev, λu and λv can be drawn without crossing
existing edges and without crossing each other. The replacements of eu with
λu and of ev with λv remove the crossing between eu and ev. Repeating the
described procedure for every pair of crossing edges, all crossings are removed.
Since for each pair of crossing edges there is a distinct representative pair and
no two pair share a vertex, the result is a (2, 2)-planar representation of G. �

Fig. 10. (a) Two crossing edges eu and ev; (b) Construction of the cluster region and
replacement of eu and ev; (c) The resulting drawing.

5 Conclusions and Open Problems

We introduced and studied (k, p)-planar graphs. We proved an upper bound on
the number of edges of a (k, p)-planar graph, which is tight for p < k. This nat-
urally motivates the problem of establishing a tight bound for p ≥ k. We proved
that (k, p)-planarity testing is NP-complete for k = 4 and p = 1 and for k = 2
and p = 2. It would be interesting to study the complexity of the problem for
other values of k and p. Also, we investigated the relationship between 1-planar
graphs and (2, 2)-planar graphs. We showed that none of the two families is
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included in the other and described a subfamily that belongs to their intersec-
tion. An interesting research direction is to further investigate the relationship
between 1-planar graphs and (k, p)-planar graphs for values of k larger than 2.
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Abstract. Let G = (V,E) be a planar graph and let V be a partition of
V . We refer to the graphs induced by the vertex sets in V as clusters. Let
DC be an arrangement of disks with a bijection between the disks and the
clusters. Akitaya et al. [2] give an algorithm to test whether (G,V) can be
embedded onto DC with the additional constraint that edges are routed
through a set of pipes between the disks. Based on such an embedding,
we prove that every clustered graph and every disk arrangement without
pipe-disk intersections has a planar straight-line drawing where every
vertex is embedded in the disk corresponding to its cluster. This result
can be seen as an extension of the result by Alam et al. [3] who solely
consider biconnected clusters. Moreover, we prove that it is NP-hard to
decide whether a clustered graph has such a straight-line drawing, if we
permit pipe-disk intersections.

1 Introduction

In practical applications, it often happens that a graph drawing produced by
an algorithm has to be post processed by hand to comply with some particular
requirements. Thus, the user moves vertices and modifies edges in order to fulfill
these requirements. Interacting with large graphs is often time-consuming. It
takes a lot of time to group and move the vertices or process them individually
and to control the overall appearance of the produced drawing. The problem we
study in this paper addresses this scenario. In particular, we assume that a user
wants to modify a drawing of a large planar graph G. Instead we provide her
with an abstraction of this graph. The user modifies the abstraction and thus
providing some constraints on how the drawing of the initial graph should look
like. Then our algorithm propagates the drawing of the abstraction to the initial
graph so that the provided constraints are satisfied.
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Fig. 1. (a) The blue disk arrangement satisfies the conditions (C1, C2) and (P1, P2).
The disks dk, dl and di, dj violate condition (C1). The disks d′

k and di, d
′
j violate (C2).

Note that the edge from disk di to d′
j has to cross the boundary of d′

k twice. (b) The
disks dk, di violate condition (P1) and d′

k and di, dj violate condition (P2).

More formally, we model this scenario in terms of a (flat) clustering of a
graph G = (V,E), i.e., a partition V = {V1, . . . , Vk} of the vertex set V . We refer
to the pair C = (G,V) as a clustered graph and the graphs Gi induced by Vi as
clusters. The set of edges Ei of a cluster Gi are intra-cluster edges and the set of
edges with endpoints in different clusters inter-cluster edges. A disk arrangement
D = {d1, . . . , dk} is a set of pairwise disjoint disks in the plane together with a
bijective mapping μ(Vi) = di between the clusters V and the disks D. We refer
to a disk arrangement D with a bijective mapping μ as a disk arrangement of C,
denoted by DC . A DC-framed drawing of a clustered graph C = (G,V) is a planar
drawing of G where each cluster Gi is drawn within its corresponding disk di.
We study the following problem: given a clustered planar graph C = (G,V), an
embedding ψ of G and a disk arrangement DC of C, does C admit a DC-framed
straight-line drawing homeomorphic to ψ?

Related Work. Feng et al. [11] introduced the notion of clustered graphs and
c-planarity. A graph G together with a recursive partitioning of the vertex set
is considered to be a clustered graph. An embedding of G is c-planar if (i) each
cluster c is drawn within a connected region Rc, (ii) two regions Rc, Rd intersect
if and only if the cluster c contains the cluster d or vice versa, and (iii) every edge
intersects the boundary of a region at most once. They prove that a c-planar
embedding of a connected clustered graph can be computed in O(n2) time. It is
an open question whether this result can be extended to disconnected clustered
graphs. Many special cases of this problem have been considered [8].

Concerning drawings of c-planar clustered graphs, Eades et al. [10] prove that
every c-planar graph has a c-planar straight-line drawing where each cluster is
drawn in a convex region. Angelini et al. [5] strengthen this result by showing that
every c-planar graph has a c-planar straight-line drawing in which every cluster
is drawn in an axis-parallel rectangle. The result of Akitaya et al. [2] implies that
in O(n log n) time one can decide whether an abstract graph with a flat clustering
has an embedding where each vertex lies in a prescribed topological disk and
every edge is routed through a prescribed topological pipe. In general they ask
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whether a simplicial map ϕ of G onto a 2-manifold M is a weak embedding, i.e.,
for every ε > 0, ϕ can be perturbed into an embedding ψε with ||ϕ − ψε|| < ε.

Godau [12] showed that it is NP-hard to decide whether an embedded graph
has a DC-framed straight-line drawing. The proof relies on a disk arrangement
DC of overlapping disks that have either radius zero or a large radius.

Banyassady et al. [6] study whether the intersection graph of unit disks has
a straight-line drawing such that each vertex lies in its disk. They proved that
this problem is NP-hard regardless of whether the embedding of the intersection
graph is prescribed or not. Angelini et al. [4] showed it is NP-hard to decide
whether an abstract graph G and an arrangement of unit disks have a DC-framed
straight-line drawing. They leave the problem of finding a DC-framed straight-
line drawing of G with a fixed embedding as an open question. Alam et al. [3]
prove that it is NP-hard to decide whether an embedded clustered graph has
a c-planar straight-line drawing where every cluster is contained in a prescribed
(thin) rectangle and edges have to pass through a defined part of the boundary
of the rectangle. Further, they prove that all instances with biconnected clusters
always admit a solution. Their result implies that graphs of this class have DC-
framed straight-line drawings.

Ribó [14] shows that every embedded clustered graph where each cluster is
a set of independent vertices has a straight-line drawing such that every cluster
lies in a prescribed disk. In contrast to our setting Ribó allows an edge e to
intersect a disk of a cluster Gi that does not contain an endpoint of e.

Contribution. A pipe pij of two clusters Vi, Vj is the convex hull of the disks di

and dj , i.e., the smallest convex set of points containing di and dj ; see Fig. 1. We
refer to a topological planar drawing of G as an embedding of G. A DC-framed
embedding of G is a DC-framed topological drawing of G with the additional
requirement that (i) each intra-cluster edge entirely lies in its disk (ii) each
inter-cluster edge uv intersects with a pipe pij if and only if u and v are vertices
of the clusters Gi and Gj , respectively, and (iii) each edge crosses the boundary
of a disk at most once. This concept is also known as c-planarity with embedded
pipes [9]. An embedding ψ of G is compatible with DC if ψ is homeomorphic to
a DC-framed embedding of G. The result of Akitaya et al. can be used to decide
whether an embedding ψ of G is compatible with DC .

The following two conditions are necessary, for C to have a DC-framed embed-
ding: (C1) if (Vi × Vj) ∩ E �= ∅ and (Vk × Vl) ∩ E �= ∅ (i, j, k, l pairwise distinct),
then the intersection of the pipes pij and pkl is empty, and (C2) the set pij \ dk

is connected. Thus, in the following we assume that DC satisfies (C1) and (C2).
A planar disk arrangement additionally satisfies the condition that (P1) the
pairwise intersections of all disks are empty, and (P2) (Vi × Vj) ∩ E �= ∅, the
intersection of pij with all disks dk (corresponding to Vk) is empty (i, j, k pair-
wise distinct). A planar disk arrangement can be seen as a thickening of a planar
straight-line drawing of the graph obtained by contracting all clusters.

We prove that every clustered graph (G,V) with planar disk arrangement DC
and an DC-framed embedding ψ has a DC-framed planar straight-line drawing
homeomorphic to ψ. Taking the result of Akitaya et al. [2] into account, our
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Fig. 2. A planar clustered graph C that is not simple.

result can be used to test whether an abstract clustered graph with connected
clusters has a DC-framed straight-line drawing. Cluster Gi in Fig. 1 shows that
in general clusters cannot be augmented to be biconnected, if the embedding is
fixed. Hence, our result is generalization of the result of Alam et al. [3]. In Sect. 3
we show that the problem is NP-hard in the case that the disk arrangements
does not satisfy condition (P2). From now on we refer to a planar straight-line
drawing of G simply as a drawing of G.

2 Drawing on Planar Disk Arrangements

In this Section we prove that every simple clustered graph with a planar
disk arrangement DC and DC-framed embedding has a DC-framed drawing.
An embedded clustered graph C is simple if for every i, j, there is no cluster
Gh(i, j �= h) embedded in the interior of the subgraph induced by Vi ∪ Vj ; see
Fig. 2. Note that this is a necessary condition for the corresponding disk arrange-
ment to be planar. A clustered graph C = (G,V) is connected if each cluster Gi

is connected.
We prove the statement by induction on the number of intra-cluster edges. In

Lemma 1 we show that we can indeed reduce the number of intra-cluster edges
by contracting intra-cluster edges. In Lemma 2, we prove that the statement is
correct if the outer face is a triangle and C is connected. In Theorem 3 we extend
this result to clustered graphs whose clusters are not connected.

Let C = (G,V) with a disk arrangement DC and a DC-framed embedding ψ.
Let uv be an intra-cluster edge of G that is not an edge of a separating triangle.
We obtain a contracted clustered graph C/e of C be removing v from G and
connecting the neighbors of v to u. We obtain a corresponding embedding ψ/e
from ψ by routing the edges vw ∈ E,w �= u close to uv.

Lemma 1. Let C = (G,V) be a connected simple clustered graph with a planar
disk arrangement DC and a DC-framed embedding ψ. Let e be an intra-cluster edge
that is not an edge of a separating triangle. Then C has a DC-framed drawing that is
homeomorphic to ψ if C/e has a DC-framed drawing that is homeomorphic to ψ/e.

Proof. Let e = uv and denote by u0, u1, . . . , uk the neighbors of u and v0, v1, . . . , vl

the neighbors of v in C. Without loss of generality, we assume that u0 = v and
v0 = u. Since e is not an edge of a separating triangle the set I := {u2, . . . , uk−1}∩
{v2, . . . , vl−1} is empty. Denote by u the vertex obtained by the contraction of e.
Let Gi be the cluster of u and v, and let di be the corresponding disk in DC .
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Consider a DC-framed drawing Γ/e of C/e homeomorphic to ψ/e. Then there
is a small disk du ⊂ di around u such that for every point p in du moving u to
p yields a DC-framed drawing that is homeomorphic to ψ/e.

We obtain a straight-line drawing Γ of C from Γ/e as follows. First, we remove
the edges uvi from Γ/e. The edges u1, uk partitions du into two regions ru, rv such
that the intersection of rv with uui is empty for all i ∈ {2, . . . , k − 1}. We place
v in rv and connect it to u and the vertices v1, . . . , vl. Since rv is a subset of du

and I = ∅, we have that the new drawing Γ is planar. Since v is placed in rv, the
edge uv is in between u1 and uk in the rotational order of edges around u. Hence,
Γ is homeomorphic to ψ. Finally, Γ is a DC-framed drawing since, du is entirely
contained in di and thus are u and v. �	
Lemma 2. Let C be a connected simple clustered graph with a triangular outer
face T , a planar disk arrangement DC, and a DC-framed embedding ψ. Moreover,
let ΓT be a DC-framed drawing of T . Then C has a DC-framed drawing that is
homeomorphic to ψ with the outer face drawn as ΓT .

Proof. We prove the theorem by induction on the number of intra-cluster edges.
First, assume that every intra-cluster edge of C is an edge on the boundary of

the outer face. Let Γ be the drawing obtained by placing every interior vertex on
the center point of its corresponding disk and draw the outer face as prescribed
by ΓT . Since DC is a planar disk arrangement and ΓT is convex, the resulting
drawing is planar and thus a DC-framed drawing of C that is homeomorphic to
the embedding ψ.

Let S be a separating triangle of C that splits C into two subgraphs Cin and
Cout so that Cin ∩ Cout = S and the outer face Cout and C coincide. Then by the
induction hypothesis Cout has the DC-framed drawing Γout with the outer face
drawn as ΓT and Cin as a DC-framed drawing Γin with the outer face drawing as
Γout[S], where Γout[S] is the drawing of S in Γout. Then we obtain a DC-framed
drawing of C by merging Γin and Γout.

Consider an intra-cluster edge e that does not lie on the boundary of the
outer face and is not an edge of a separating triangle. Then by the induction
hypothesis, C/e has a DC-framed drawing with the outer face drawn as ΓT . It
follows by Lemma 1 that C has a DC-framed drawing homeomorphic to ψ. �	
Theorem 3. Every simple clustered graph C with a DC-framed embedding ψ has
a DC-framed drawing homeomorphic to ψ.

Proof. We obtain a clustered graph C′ from C by adding a new triangle T to the
graph and assigning each vertex of T to is own cluster. Let ΓT be a drawing of T
that contains all disks in DC in its interior. We obtain a new disk arrangement D′

C
from DC by adding a sufficiently small disk for each vertex of ΓT . The embedding
ψ together with ΓT is a D′

C-framed embedding ψ′ of C′.
According to Feng et al. [11] there is a simple connected clustered graph C′′

that contains C′ as a subgraph whose embedding ψ′′ is DC-framed and contains
ψ′. By Lemma 2 there is a DC-framed drawing Γ ′′ of C′′ homeomorphic to ψ′′

with the outer face drawn as ΓT . The drawing Γ ′′ contains a DC-framed drawing
of C. �	
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Fig. 3. Regulator

3 Drawing on General Disk Arrangements

We study the following problem referred to as DC-framed Drawings of Non-

planar Arrangements. Given a planar clustered graph C = (G,V), a disk
arrangement DC that is not planar, i.e., DC satisfies condition (C1) and (C2)
but not (P1) and (P2), and a DC-framed embedding ψ of G, is there a DC-
framed straight-line drawing Γ that is homeomorphic to ψ and DC? Note that
if the disks DC are allowed to overlap (condition (P1)) and G is the intersection
graph of DC , the problem is known to be NP-hard [6]. Thus, in the following we
require that the disks do not overlap, but there can be disk-pipe intersections,
i.e, DC satisfies conditions (C1), (C1) and (P1) but not (P2). By Alam et al. [3]
it follows that the problem restricted to thin touching rectangles instead of disks
is NP-hard. We strengthen this result and prove that in case that the rectangles
are axis-aligned squares and are not allowed to touch the problem remains NP-
hard. Our illustrations contain blue dotted circles that indicate how the square
in the proof can be replaced by disks.

To prove NP-hardness we reduce from Planar Monotone 3-SAT [7]. For
each literal and clause we construct a clustered graph C with an arrangement of
squares DC of C such that each disk contains exactly one vertex. We refer to these
instances as literal and clause gadgets. In order to transport information from the
literals to the clauses, we construct a copy and inverter gadget. The design of the
gadgets is inspired by Alam et al. [3], but due to the restriction to squares rather
than rectangles, requires a more careful placement of the geometric objects. The
green and red regions in the figures of the gadget correspond to positive and
negative drawings of the literal gadget. The green and red line segments indicate
that for each truth assignment of the variables our gadgets indeed have DC-
framed straight-line drawings. Negative versions of the literal and clause gadget
are obtained by mirroring vertically. Hence, we assume that variables and clauses
are positive. Each gadget covers a set of checkerboard cells. This simplifies the
assembly of the gadgets for the reduction. The full version of the proof can be
found on arXiv [13].

An obstacle of a pipe pij is a disk dk, i, j �= k, that intersects pij . The obstacle
number of a pipe pij is the number of obstacles of pij . Let P = {pij | Vi×Vj∩E �=
∅}. The obstacle number of a disk arrangement DC is maximum obstacle number
of all pipes pij with Vi × Vj ∩ E �= ∅.

Regulator. The regulator gadget restricts the feasible placements of a vertex v
that lies in the interior of a square B; refer to Fig. 3. Let h1, h2 be two half planes
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Fig. 4. Literal gadget

such that the intersection q of their supporting lines lies in B. In a DC-framed
drawing of the regulator gadget the placement of v is restricted by a half plane
h that excludes a placement of v in h1 ∩ h2 but allows for a placement in h1 ∩ B
or h2 ∩ B. We refer to h ∩ B as the regulated region of B.

Literal Gadget. The positive literal gadget is depicted in Fig. 4. The center
block is a unit square C with corners α1, α2, α3, α4 in clockwise order. For each
corner αi of C consider a line li that is tangent to C in αi, i.e, li ∩ C = {αi}.
Let pi be the intersection of lines li−1 and li where l0 = l4; refer to Fig. 4b.
Let R1, . . . , R4 be four pairwise non-intersecting squares that are disjoint from
C such that Ri contains pi in its interior. We add a cycle v1v2v3v4v1 such that
vi ∈ Ri. We refer to the vertex vi as the cycle vertex of the cycle block Ri. For
each i, let ji be a half plane that contains Ri+1 but does not intersect C. We
place a regulator Wi of vi with respect to hi−1 and hi and position it such that
it lies in ji, where hi is the half plane spanned by li with C �⊆ hi.

We now describe the two combinatorially different realizations of the literal
gadgets. Consider R1 and its two adjacent squares R2 and R4. Let Qi be the
regulated region of Ri with respect to Wi. We refer to h2∩h4∩Q1 as the infeasible
region of R1, where hi denotes the complement of hi. The intersection h1 ∩ Q1

is the positive region P1 of R1. The region h4 ∩ Q1 is the negative region N1 of
R1. All these regions are by construction not empty. The positive, negative and
infeasible region of Ri, i �= 1 are defined analogously.

Property 4. If Γ is a DC-framed drawing of a positive (negative) literal gadget,
then no cycle vertex vi lies in the infeasible region of Ri. Moreover, either each
cycle vertex vi lies in the positive region Pi or each vertex vi lies in the negative
region Ni.

Property 5. The positive and negative placements induce a DC-framed drawing
of the literal gadget, respectively.

Copy and Inverter Gadget. The copy gadget in Fig. 5 connects two positive
literal gadgets X and Y such that a drawing of X is positive if and only if the
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Fig. 5. Copy gadget

drawing of Y is positive. The inverter gadget connects a positive literal gadget
X to a negative literal gadget Y such that the drawing of X is positive if and
only if the drawing of Y is negative. The construction of the gadgets uses ideas
similar to the construction of the literal gadget. In contrast to the literal gadget,
we replace the center block by four squares.

Property 6. Let Γ be a DC-framed drawing of two positive (negative) literals
gadgets X and Y connected by a copy gadget. Then the DC-framed of X in Γ
is positive if and only if the DC-framed drawing of Y is positive.

Property 7. The positive (negative) placement of two literals gadgets X,Y
induces a DC-framed drawing of a copy [inverter] gadget that connects X and Y .

Clause Gadget. We construct a clause gadget with respect to three positive
literal gadgets X,Y,Z arranged as depicted in Fig. 7. The negative clause gad-
get, i.e., a clause with three negative literal gadgets, is obtained by mirroring
vertically.

We construct the clause gadget in two steps. First, we place a transition block
TA close to each literal gadget A ∈ {X,Y,Z}. In the second step, we connect the
transition block to a vertex k in a clause block K such that for every placement
of k in K at least one drawing of the literal gadgets has to be positive.

Consider the literal gadget X and let RX be the right-most cycle block of X.
Let hX be a negative half plane of RX , i.e., hX contains the positive region PX

but not the negative region NX , refer to Fig. 6. We now place a transition block
TX such that the intersection TX ∩ hX has small area. Further, let p+X and p−

X

be the positive and negative placements of X, respectively. Let q−
X be a point in

TX ∩hX . Let i be the intersection point of the supporting line lX of hX and the
line segment p−

Xq−
X . We place an obstacle O1

X such that lX is tangent to O1
X in

point i. Finally, we place a transition vertex tX in the interior of TX and route
the edge vXtX through hX ∪ TX ∪ RX , where vX ∈ RX .

Consider a half plane h′
X such that O1

X �⊆ h′
X and NX �⊆ h′

X and such that
the supporting line l′X of h′

X contains p+X and is tangent to O1
X . Let q+X be a

point h′
X ∩ RX . Observe that for q+X and q−

X there is a positive and negative
drawing of X, respectively. Further, if X has a negative drawing, then tX lies in
the region hX ∩ TX . In the following, we refer to hX ∩ TX as the negative region
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Fig. 6. Construction of the transition block.

of TX . The transition blocks of Y and Z are constructed analogously with only
minor changes. The transition block TZ of Z is constructed with respect to the
top-most cycle block. Note that we can choose the points q+A , A ∈ {X,Y,Z}
independent from each other as long as each of them induces a positive drawing
the literal gadget A.

Denote by x-max S the maximum x-coordinate of a point in a bounded set
S ⊂ R

2. Note that x-max DX ∩ hX > x-max TX ∩ hX , refer to Fig. 6. To ensure
that our construction remains correct for disks we add a regulator R with a
respect a half plane g such that x-max DX ∩ hx ∩ g = x-max TX ∩ hx ∩ g and g
contains q+X , q−

X .
Given the placement of the transition block TX , TY and TZ as depicted in

Fig. 7, we construct the clause block K as follows. We choose a point qX,Y . Let
l−X and l−Y be the lines through the points q−

X , qX,Y , and q−
Y , qX,Y , respectively.

Further, consider a line l−Z with q−
Z ∈ l−Z such that the intersection point qA,Z :=

l−Z ∩ l−A , A ∈ {X,Y } lies in between q−
A and qX,Y . Further, let l+X be the line

through q+X , qY,Z , l+Y the line through q+Y , qX,Z , and let l+Z be the line through
q+Z and qX,Y . Let hA be a half plane that does not contain the negative region
NA and whose supporting line contains the intersection iA of l−A and l+A. We
place obstacles O2

A such that O2
A �⊆ hA and the supporting line of hA is tangent

to O2
A in point iA. We place the clause box K such that it contains qX,Y , qY,Z ,

qX,Z and a new vertex k in its interior. We finish the construction by routing
the edges ktA through K ∪ hA ∪ TA, A ∈ {X,Y,Z}, where tA ∈ TA.

By construction we have that for each y ∈ {q−
Y , q+Y } and z ∈ {q−

Z , q+Z } the
points y, z and qY,Z induce a DC-framed drawing. The analog statement for the
points qX,Z and qX,Y is also true. Further, if hX ∩ hY ∩ hZ = ∅, then there is no
DC-framed drawing such that each vertex tA lies on q−

A . Figure 7 shows that there
is an arrangement of the clause block and the obstacles such that hX ∩ hY ∩ hZ

indeed is empty.

Property 8. There is no DC-framed drawing of the clause gadget such that the
drawing of each literal gadget is negative. For all other combinations of positive
and negative drawings of the literal gadgets there is a DC-framed drawing of the
clause gadget.
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Fig. 7. Construction of the clause block.

Reduction. We reduce from a planar monotone 3-SAT instance (U,C); refer
to Fig. 8. We modify its rectilinear representation such that each vertex and
clause rectangle covers sufficiently many cells of a checkerboard and each edge
covers the entire column between its two endpoints. We place positive literal
gadgets in each blue cell of a rectangle corresponding to a variable. We place a
clause gadget in each positive clause rectangle Rc such that it is aligned with
the right-most edge of Rc. The literal gadget X of a variable x is connected
to its corresponding literal gadget X ′ in Rc by a placing a literal gadget in
each blue cell that is covered by the Γ -shape that connects X to X ′; refer to
Fig. 8b. Finally, we place a copy gadget in each orange cell between two literal
gadgets of the same variable. The negative clauses are obtained by mirroring
the modified rectilinear representation vertically and repeating the construction
for the positive clauses. To negate the state of the variable we place the inverter
gadget immediately below a variable (red cells in Fig. 8b).
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Fig. 8. (a) Planar monotone 3-SAT instance (U,C) with a rectilinear representation.
(b) Modified rectilinear representation of (U,C) on a checkerboard.

Correctness. Assume that (U,C) is satisfiable. Depending on whether a vari-
able u is true or false, we place all vertices on a positive placement of a positive
literal gadget and on the negative placement of negative literal gadget of the vari-
able. By Property 5, the placement induces a DC-framed drawing of all literal
gadgets and Property 7 ensures the copy and inverter gadgets have a DC-framed
drawing. Since at least one variable of each clause is true, there is a DC-framed
drawing of each clause gadget by Property 8.

Now consider that the clustered graph C has a DC-framed drawing. Let X
and Y be two positive (negative) literal gadgets connected with a copy gadget.
By Property 6, a drawing of X is positive if and only if the drawing of Y is
positive. Property 6 ensures that the drawing of a positive literal gadget X is
positive if and only if the drawing of the negative literal gadget Y is negative,
in case that both are joined with an inverter gadget. Further, Property 4 states
that each cycle vertex lies either in a positive or a negative region. Thus, the
truth value of a variable u can be consistently determined by any drawing of
a literal gadget of u. By Property 8, the clause gadget K has no DC-framed
drawing such that all drawings of the literal gadgets of K are negative. Thus,
the truth assignment indeed satisfies C.

Theorem 9. The problem DC-framed Drawings of Non-planar

Arrangements with axis-aligned squares is NP-hard even when the clustered
graph C is restricted to vertex degree 5 and the obstacle number of DC is two.

4 Conclusion

We proved that every clustered planar graph with a planar disk arrangement
DC and a DC-framed embedding ψ has a DC-framed straight-line drawing home-
omorphic to ψ. If the requirement of the disk arrangement to satisfy condition
(P2) is dropped, we proved that it is NP-hard to decide whether C has a DC-
framed straight-line drawing. We are not aware whether our problem is known
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to be in NP. We ask whether techniques developed by Abrahamsen et al. [1]
can be used to prove ∃R-hardness of our problem.

Angelini et al. [4] showed that if C is not embedded and all squares have the
same size, it is NP-hard to decide whether C has a DC-framed drawing. They
posed as an open problem whether the same is true for embedded graphs. In
our construction, the squares have constant number of different side lengths and
the side length of the largest square is 32 time longer then the side length of the
smallest rectangle. We conjecture that our construction can be modified to show
that it is indeed NP-hard to decide whether a clustered graph C with a non-
planar arrangement of squares (disk) of unit size and a DC-framed embedding ψ
has a DC-framed drawing that is homeomorphic to ψ. Further, we ask whether
the obstacle number can be reduced to one.
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Abstract. A vertex set U ⊆ V of an undirected graph G = (V, E) is
a resolving set for G, if for every two distinct vertices u, v ∈ V there is
a vertex w ∈ U such that the distance between u and w and the dis-
tance between v and w are different. The Metric Dimension of G is the
size of a smallest resolving set for G. Deciding whether a given graph
G has Metric Dimension at most k for some integer k is well-known
to be NP-complete. A lot of research has been done to understand the
complexity of this problem on restricted graph classes. In this paper, we
decompose a graph into its so called extended biconnected components
and present an efficient algorithm for computing the metric dimension
for a class of graphs having a minimum resolving set with a bounded
number of vertices in every extended biconnected component. Further-
more, we show that the decision problem Metric Dimension remains
NP-complete when the above limitation is extended to usual biconnected
components.

Keywords: Graph algorithm · Complexity · Metric dimension
Resolving set · Biconnected component

1 Introduction

An undirected graph G = (V,E) has metric dimension at most k if there is a
vertex set U ⊆ V such that |U | ≤ k and ∀u, v ∈ V , u �= v, there is a vertex w ∈ U
such that dG(w, u) �= dG(w, v), where dG(u, v) is the distance (the length of a
shortest path in an unweighted graph) between u and v. The metric dimension
of G is the smallest integer k such that G has metric dimension at most k. The
metric dimension was independently introduced by Harary and Melter [10] and
Slater [22]. If for three vertices u, v, w, we have dG(w, u) �= dG(w, v), then we
say that u and v are resolved by vertex w. If every pair of vertices is resolved by
at least one vertex of a vertex set U , then U is a resolving set for G. The metric
dimension of G is the size of a minimum resolving set. Such a smallest resolving
c© Springer Nature Switzerland AG 2019
G. K. Das et al. (Eds.): WALCOM 2019, LNCS 11355, pp. 175–187, 2019.
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set is also called a resolving basis for G. In certain applications, the vertices of a
resolving set are also called resolving vertices, landmark nodes or anchor nodes.
This is a common naming particularly in the theory of sensor networks.

Determining the metric dimension of a graph is a problem that has an impact
on multiple research fields such as chemistry [2], robotics [18], combinatorial
optimization [21] and sensor networks [15]. Deciding whether a given graph G
has metric dimension at most k for a given integer k is known to be NP-complete
for general graphs [9], planar graphs [3], even for those with maximum degree 6
and Gabriel unit disk graphs [15]. Epstein et al. showed the NP-completeness for
split graphs, bipartite graphs, co-bipartite graphs and line graphs of bipartite
graphs [4] and Foucaud et al. for permutation and interval graphs [7,8].

There are several algorithms for computing the metric dimension in polyno-
mial time for special classes of graphs, as for example for trees [2,18], wheels
[14], k-regular bipartite graphs [20], amalgamation of cycles [17], outerplanar
graphs [3], cactus block graphs [16] and chain graphs [6]. The approximability of
the metric dimension has been studied for bounded degree, dense, and general
graphs in [12]. There are many variants of the Metric Dimension problem, see
[1,4,5,7,8,11,13,19].

In this paper, we introduce a concept that allows us to compute the metric
dimension based on a tree structure given by the decomposition of a graph G into
components like bridges, legs, and so-called extended biconnected components. An
extended biconnected component H of G is an induced subgraph of G formed by
a biconnected component H ′ of G extended by paths attached to vertices of the
biconnected component H ′. Each vertex of H ′ has at most one path attached
to it. Each vertex at which a path is attached is a separation vertex in G and
not adjacent to any vertex outside of extended biconnected component H. The
idea of such a decomposition leads to a polynomial time solution for the Metric
Dimension problem restricted to graphs having a minimum resolving set with
a bounded number of vertices in every extended biconnected component. This
result is especially noteworthy, because we also show that the decision problem
Metric Dimension remains NP-complete if the above limitation is extended
to usual biconnected components.

2 Definitions and Basic Terminology

We consider graphs G = (V,E), where V is the set of vertices and E is
the set of edges. We distinguish between undirected graphs with edge sets
E ⊆ {{u, v} | u, v ∈ V, u �= v} and directed graphs with edge sets E ⊆ V × V.
Graph G′ = (V ′, E′) is a subgraph of G = (V,E) if V ′ ⊆ V and E′ ⊆ E. It is
an induced subgraph of G, denoted by G|V ′ , if E′ = E ∩ {{u, v} | u, v ∈ V ′} or
E′ = E∩(V ′×V ′), respectively. A sequence of k+1 vertices (u1, . . . , uk+1), k ≥ 0,
ui ∈ V for i = 1, . . . , k+1, is an undirected path of length k, if {ui, ui+1} ∈ E for
i = 1, . . . , k. The vertices u1 and uk+1 are the end vertices of undirected path p.
The sequence (u1, . . . , uk+1) is a directed path of length k, if (ui, ui+1) ∈ E for
i = 1, . . . , k. Vertex u1 is the start vertex and vertex uk+1 is the end vertex of
the directed path p. A path p is a simple path if all vertices are mutually distinct.
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An undirected graph G is connected if there is a path between every pair of
vertices. The distance dG(u, v) between two vertices u, v in a connected undi-
rected graph G is the smallest integer k such that there is a path of length k
between u and v. A connected component of an undirected graph G is a connected
induced subgraph G′ = (V ′, E′) of G such that there is no connected induced
subgraph G′′ = (V ′′, E′′) of G with V ′ ⊆ V ′′ and |V ′| < |V ′′|. A vertex u ∈ V is a
separation vertex of an undirected graph G if G|V \{u} (the subgraph of G induced
by V \{u}) has more connected components than G. Two paths p1 = (u1, . . . , uk)
and p2 = (v1, . . . , vl) are vertex-disjoint if {u2, . . . , uk−1} ∩ {v2 . . . , vl−1} = ∅. A
graph G = (V,E) with at least three vertices is biconnected, if for every vertex
pair u, v ∈ V , u �= v, there are at least two vertex-disjoint paths between u and
v. A biconnected component G′ = (V ′, E′) of G is an induced biconnected sub-
graph of G such that there is no biconnected induced subgraph G′′ = (V ′′, E′′)
of G with V ′ ⊆ V ′′ and |V ′| < |V ′′|.
Definition 1 (Resolving set). Let G = (V,E) be a connected undirected
graph. A vertex set R ⊆ V is a resolving set for G if for every vertex pair
u, v ∈ V , u �= v, there is a vertex w ∈ R such that dG(u,w) �= dG(v, w). The
set R is a minimum resolving set for G, if there is no resolving set R′ ⊆ V for
G with |R′| < |R|. Graph G = (V,E) has metric dimension k ∈ N if k is the
smallest integer such that there is a resolving set for G of size k.

Definition 2. Let G = (V,E) be a connected undirected graph.

1. (leg, root, leaf, hooked leg, ordinary leg) A path p = (u1, . . . , uk), k ≥ 2,
of G is a leg, if vertex u1 has degree one, the vertices u2, . . . , uk−1 have degree
2, and vertex uk has degree ≥ 3 in G. Vertex uk is called the root of p. Vertex
u1 is called the leaf of p. A leg is called a hooked leg, if the removal of its
root separates G into exactly two connected components, i.e. the edges at root
uk without edge {uk−1, uk} belong to exactly one biconnected component. A
leg is called an ordinary leg, if it is not a hooked leg, i.e. if the removal of its
root separates G into more than two connected components.

2. (bridge) An edge e ∈ E is called a bridge if (V,E \ {e}) is not connected
and if e is not an edge between two vertices of one and the same leg.

3. (extended biconnected component (EBC)) A biconnected component
H = (VH , EH) of G extended by the subgraphs of G induced by the vertices
of the hooked legs with roots in VH is an extended biconnected component
(EBC) of G.

4. (component) Every subgraph induced by the vertices of an ordinary leg,
every subgraph induced by the two vertices of a bridge, and every EBC is
called a component of G.

5. (amalgamation vertex) Separation vertices of G that belong to at least two
components, i.e. separation vertices without the degree two vertices of the legs
and roots of the hooked legs are called amalgamation vertices.
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a9

s0
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Fig. 1. Graph G = (V, E) with ten amalgamation vertices (a0, . . . , a9), two hooked
legs (at roots u0 and u1), 14 ordinary legs (two legs at each of the roots a2, a4, a5, a6,
a7, a8 and a9), one bridge ({a0, a1}) four EBCs and thus 19 components. The set of
vertices that are drawn as squares is a minimum resolving set for G. See Fig. 2 for a
DEBC-tree of G with root a9.

Definition 3 (EBC-tree). Let G = (V,E) be a connected undirected graph.
The EBC-tree T = (VT , ET ) for G is a tree with two types of nodes called c-
nodes (nodes for the components of G) and a-nodes (nodes for the amalgamation
vertices of G). T has a c-node for every component of G. The vertex set of the
corresponding component of G represented by a c-node c is denoted by V(c).

T has an a-node for every amalgamation vertex of G. The amalgamation
vertex represented by a-node a is denoted by ν(a). Let Vc be the set of c-nodes
and Va be the set of a-nodes of T . Then VT = Vc ∪ Va and ET is the set of all
edges {c, a} with c ∈ Vc, a ∈ Va and ν(a) ∈ V(c).

Note that in an EBC-tree all leaves are c-nodes and there is no edge between
two a-nodes and no edge between two c-nodes. All ordinary legs are represented
by leaves, all bridges are represented by inner c-nodes, and all EBCs are repre-
sented by leaves or inner c-nodes.

Definition 4 (DEBC-tree). Let G = (V,E) be a connected undirected graph.

1. For the EBC-tree T = (VT , ET ) for G and a node r ∈ VT let
−→
T := (VT ,

−→
E T )

be the directed EBC-tree (DEBC-tree) with root r that is defined as follows:−→
ET contains exactly one directed edge for every undirected edge of ET such
that for every node u ∈ VT there is a directed path to root r, i.e. all edges are
directed from the leaves towards the root.

2. For a node u ∈ VT , let
−→
T (u) be the subtree of

−→
T induced by all nodes v for

which there is a directed path from v to u in
−→
T . The root of

−→
T (u) is u.

3. For a subtree
−→
T (u) let V ′

T be the set of c-nodes of
−→
T (u) and V(V ′

T ) :=⋃
v∈V ′

T
V(v). Then G[u] := G|V(V ′

T ) is the subgraph of G induced by the ver-
tices of V(V ′

T ).
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G[u] is the induced subgraph of G represented by
−→
T (u). It is not necessary

to refer to the a-nodes of
−→
T (u), because the vertices of G that are represented

by the a-nodes are also represented by the c-nodes since for every a-node a there
is a c-node c such that ν(a) ∈ V(c). Note that the EBC- and DEBC-tree of G for
an arbitrary root can be constructed in linear time with the help of any linear
time algorithm for finding the biconnected components and bridges of G.

Fig. 2. A DEBC-tree
−→
T = (VT ,

−→
E T ) at root a9 for a the graph G from Fig. 1 with 10

amalgamation vertices a0, . . . , a9, two hooked legs (at roots u0 and u1), 14 ordinary
legs (two legs at each of the roots a2, a4, a5, a6, a7, a8 and a9), one bridge ({a0, a1})
four EBCs and thus 19 components. The vertices that are drawn as squares build a

minimum resolving set for G. The vertices of
−→
T (19 c-nodes and 10 a-nodes) are drawn

as blue boxes, the directed edges as black arrows. For a c-node c the blue box for c
contains the subgraph of G induced by V(c) and for an a-node a the blue box for a
contains the vertex ν(a) of G. (Color figure online)

3 Computing the Metric Dimension Based on a Graph
Decomposition

Without loss of generality we will use from now on the following assumptions:

1. G = (V,E) is a connected undirected, but not biconnected graph.
2.

−→
T = (VT ,

−→
E T ) is the DEBC-tree for G with root r.

3. Va is the set of a-nodes of
−→
T and Vc is the set of c-nodes of

−→
T .

4. Root r ∈ Va is an a-node.
5. Root r has at least two children (because G is not biconnected).

Property 1. For every subtree
−→
T (v), v ∈ VT , of

−→
T we compute an information

h(v) satisfying the following properties:
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Fig. 3. The Figure shows graph C6 = (V, E) drawn two times. The set A = {a1, a2} ⊆
V is a resolving set for C6. The vertex a1 is an A-gate with out-vertices v1 and v2 (left
side). The vertex v1 is an A-gate with out-vertex v2 (right side).

1. For every a-node a ∈ Va with children c1, . . . , ck ∈ Vc, k ≥ 1, the information
h(a) can efficiently be computed from h(c1), . . . , h(ck).

2. For every c-node c ∈ Vc with children a1, . . . , ak ∈ Va, k ≥ 0, the information
h(c) can efficiently be computed from h(a1), . . . , h(ak) and G|V(c).

3. The metric dimension of G[r] can efficiently be computed from h(r).

First we will describe the general idea of how to compute the metric dimen-
sion of G. The idea is based on dynamic programming. The properties above
allow an efficient bottom-up processing of

−→
T as follows: We start by comput-

ing h(c) for every leaf c of
−→
T . Since the leaves are c-nodes without children

we only need the subgraph G|V(c) of G. For every inner a-node a with children
c1, . . . , ck ∈ Vc we compute h(a) from h(c1), . . . , h(ck). For this we don’t need
any information about G. For every inner c-node c with children a1, . . . , ak ∈ Va

we compute h(c) from h(a1), . . . , h(ak) and additionally G|V(c). Finally we com-
pute the metric dimension of G from h(r). Before we define h(v) we need a few
more definitions.

Definition 5 (Gate Vertex). Let A ⊆ V be a set of vertices. A vertex v ∈ V
is an A-gate of G, if there is a vertex u ∈ V \ {v}, such that for all w ∈ A the
equation dG(u,w) = dG(u, v) + dG(v, w) holds. Vertex u is called an out-vertex
for A-gate v. See Fig. 3 for an example.

Observation 1. Let A ⊆ V and v ∈ V be an A-gate of G. Then there is an
out-vertex u ∈ V adjacent to v.

Observation 2. Let A ⊆ V , v, u1, u2 ∈ V and v be an A-gate of G. If u1 and
u2 are two out-vertices for A-gate v with the same distance to v, i.e. dG(u1, v) =
dG(u2, v), then both vertices u1 and u2 have the same distance to all vertices of
A. In this case A is not a resolving set for G. Conversely, if A is a resolving set
for G then all out-vertices have a different distance to A-gate v. A closer look
shows that if A is a resolving set for G all out-vertices for A-gate v are on a
shortest path between v and the out-vertex with longest distance to v, see Fig. 3.
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Definition 6 (v-resolving set, non-gate-v-resolving set). Let v ∈ V.

1. A v-resolving set for G is a resolving set R for G with v ∈ R.
2. A minimum v-resolving set for G is a resolving set R for G with v ∈ R such

that there is no v-resolving set R′ for G with |R′| < |R|.
3. A non-gate-v-resolving set for G is a v-resolving set R for G with v ∈ R and

v is not an R-gate in G.
4. A minimum non-gate-v-resolving set for G is a v-resolving set R for G with

v ∈ R and v is not an R-gate in G, such that there is no non-gate-v-resolving
set R′ for G with |R′| < |R|.

vi1

vj1

s
s

vi1

s

vj1

s

not A3-gate

a1

a1'

a2

a2'

a3a3'

a3''

A1-gate
out-vertex for s

G1

G3

G2

G a1'

a1

a3''

a3a3'

a2

a2'

not A2-gate

Fig. 4. A graph G = (V, E) with a separation vertex s ∈ V on the left side and the
graphs G1, G2 and G3 on the right side. The vertices of the resolving sets A1 = {a1, a

′
1}

for G1, A2 = {a2, a
′
2} for G2 and A3 = {a3, a

′
3, a

′′
3} for G3 are drawn as squares. s is

an A1-gate in G1 and an A2-gate in G2, therefore there are two vertices vi1 and vj1
that are not separated by A :=

⋃3
i=1 Ai and A is not a resolving set for G.

Note that a minimum v-resolving set is not necessarily a minimum resolv-
ing set and a minimum non-gate-v-resolving set is not necessarily a minimum
v-resolving set.

Lemma 1. Let v ∈ V . Let R1 ⊆ V a minimum resolving set for G, R2 ⊆ V a
minimum v-resolving set for G, and R3 ⊆ V a minimum non-gate-v-resolving
set for G, then |R2| ≤ |R1| + 1 and |R3| ≤ |R2| + 1.

Lemma 2. Let s ∈ V be a separation vertex and V1, . . . , Vk, k > 1, be the vertex
sets of the connected components of G|V \{s}. Let R be a resolving set for G. Then
there is at most one i ∈ {1, . . . , k} such that Vi ∩ R = ∅.
Lemma 3. Let s ∈ V be a separation vertex and V1, . . . , Vk, k > 1, be the
vertex sets of the connected components of G|V \{s} such that if k = 2 then every
resolving set for G contains at least one vertex from V1 and one vertex from V2.
Let A ⊆ V , Gi := G|Vi∪{s}, and Ai := (A ∩ Vi) ∪ {s}.
1. If A is a resolving set for G then A \ {s} is resolving set for G.
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2. A is a minimum resolving set for G iff for all i ∈ {1, . . . , k}Ai is a minimum
s-resolving set for Gi and there is at most one i ∈ {1, . . . , k} such that s is
an Ai-gate in Gi.

3. If A is a minimum resolving set for G, then A′ := A ∪ {s} is a minimum
s-resolving set for G.

The proofs of the lemmas above can be found in the full version.
Now we define h(v), v ∈ VT , as introduced at the beginning of the section.

Definition 7.

1. Let a ∈ Va be an a-node. We define h(a) := (α, β), where α is the size of a
minimum non-gate-ν(a)-resolving set for G[a] and β is the size of a minimum
ν(a)-resolving set for G[a].

2. Let c ∈ Vc be a c-node with father a ∈ Va in
−→
T . We define h(c) := (α, β),

where α is the size of a minimum non-gate-ν(a)-resolving set for G[c] and β
is the size of a minimum ν(a)-resolving set for G[c].

To get familiar with this definition, we will investigate the smallest possible
values for α and β. For an arbitrary node v ∈ VT with father w ∈ VT we have
h(v) ≤ h(w), i.e. the i-th component of h(v) is less than or equal to the i-th
component of h(w), since G[v] is a subgraph of G[w]. Therefore we will first have
a look at the leaves of

−→
T , which are by definition c-nodes and afterwards at the

fathers of the leaves, which are by definition a-nodes. For a leaf c with father a
the graph G[c] is either an EBC, or an ordinary leg. Let G[c] be an ordinary leg.
Then vertex ν(a) ∈ G[c] resolves all vertices in G[c], so β = 1. Since ν(a) is a
{ν(a)}-gate in G[c] every minimum non-gate-ν(a)-resolving set contains another
arbitrary vertex. Therefore α = 2. Let G[c] be an EBC, then every resolving set
for G[c] contains at least two vertices. Therefore h(c) ≥ (2, 2) (component-wise).

For an a-node a that has only leaves as children the graph G[a] consists of
EBCs and paths, that are connected by the separation vertex ν(a). Note that
if a has exactly one child c the graph G[c] is not an ordinary leg, since this
contradicts the decomposition of G into EBCs, ordinary legs, and bridges. Thus
every minimum ν(a)-resolving set for G[a] contains at least two vertices and the
smallest values α and β for an a-node a are h(a) = (2, 2), that leads to the
following observation:

Observation 3. Let S be a minimum resolving set for G. For any a-node a ∈
V (

−→
T ) the subgraph G[a] contains at least one resolving node, i.e. S∩V (G[a]) �= ∅.
We will now show that this definition satisfies Property 1.

Theorem 4. For every a-node a ∈ Va with children c1, . . . , ck ∈ Vc, k ≥ 1, h(a)
can be computed from h(c1), . . . , h(ck).

Proof. k = 1: If a has exactly one child c then h(a) = h(c1). Since ν(a) ∈ V(c1)
and c1 is the only child of a, we can follow that G[a] = G[c1]. Therefore a
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minimum non-gate-ν(a)-resolving set for G[c1] is also a minimum non-gate-ν(a)-
resolving set for G[a]. The same holds for a minimum ν(a)-resolving set.

k ≥ 2: Let h(ci) = (αi, βi), i ∈ {1, . . . , k}. Then h(a) = (α, β) with α =

(
∑k

i=1 αi) − (k − 1) and β =
{

α, if βi = αi ∀i
α − 1, else .

Let A ⊆ V (G[a]) and Ai = A ∩ V (G[ci]). The following conclusions are
based on the facts of Lemmas 1 and 2. If every Ai, 1 ≤ i ≤ k, is a minimum
non-gate-ν(a)-resolving set for G[ci] then |Ai| = αi and A is a non-gate-ν(a)-
resolving set for G[a], and thus α1 + · · · + αk − (k − 1) ≥ α. Conversely, if A is
a minimum non-gate-ν(a)-resolving set for G[ci] then |A| = α and every Ai is
a non-gate-ν(a)-resolving set for G[ci], and thus α ≥ α1 + · · · + αk − (k − 1).
Note that in both cases ν(a) is in every set Ai but only once in A. A is a ν(a)-
resolving set for G[a] iff at most one of the Ai is a ν(a)-resolving set for G[ci]
and all other Ai are non-gate-ν(a)-resolving sets. If two of sets Ai1 , Ai2 were
ν(a)-resolving sets but not non-gate-ν(a)-resolving sets, then there would be
two vertices u1 ∈ V (G[ci1 ]), u2 ∈ V (G[ci2 ]) such that for every w ∈ A there is a
shortest path to w via ν(a), i.e., A is not a resolving set for G[a] (see Lemma 2).
Therefore, if there is an index i such that βi < αi then β = α − 1, otherwise
β = α.

Theorem 5. For every c-node c ∈ Vc with father a ∈ Va and children
a1, . . . , ak ∈ Va, k ≥ 0, h(c) can be computed from h(a1), . . . , h(ak) and G|V(c).

To proof this theorem, we need the following lemma:

Lemma 4. Let c ∈ Vc be a c-node with father a ∈ Va and children a1, . . . , ak ∈
Va, k ≥ 0. Let R ⊆ V (G[c]) with ν(a) ∈ R. Let Ri := (R ∩ V (G[ai])) ∪ {ν(ai)},
i ∈ {1, . . . , k}, and R∗ := (R∩V(c)))∪{ν(ai) | 1 ≤ i ≤ k}. R is a ν(a)-resolving
set for G[c] iff

1. Ri is a resolving set for G[ai] and
2. R∗ is a ν(a)-resolving set for G|V(c) and
3. For every i ∈ {1, . . . , k} vertex ν(ai) is neither an Ri-gate in G[ai] nor an

R∗-gate in G|V(c).

Proof. See full version.

Proof. of Theorem 5 Graph G[c] is composed by the graph G|V(c) and the
graphs G[ai], i ∈ {1, . . . , k}. We compute h(c) = (α, β) by computing a
minimum-non-gate-ν(a)-resolving set A for G[c] with |A| = α and a minimum
ν(a)-resolving set B for G[c] with |B| = β with the help of Lemma 4.

Let Ai be a minimum-non-gate-ν(ai)-resolving set for G[ai] and Bi be a
minimum-ν(ai)-resolving set for G[ai], i ∈ {1, . . . , k}. To compute sets A and B
and thus α and β we can do the following:

For every subset W ⊆ V(c) that contains vertices ν(a), ν(a1), . . . , ν(ak) and
resolves all pairs u, v ∈ V(c) we determine a resolving set RW for G[c]. RW

contains the vertices in W and for every i ∈ {1, . . . , k} either the vertices in Ai

or in Bi. If vertex ν(ai) is a W -gate in G|V(c) then RW contains the vertices in
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Bi else the vertices in Ai. RW is a ν(a)-resolving set for G[c] (Lemma 4) and by
Lemma 3 we get that R′

W := RW \ {ν(a1), . . . , ν(ak)} is a ν(a)-resolving set for
G[c]. Vertex set R′

W is a smallest ν(a)-resolving set for G[c] with the property
V(c) ∩ R′

W = W for a given W , that contains at least the vertices of W .
Then we have B = min{R′

W | W ⊆ V(c) is a resolving set for G|V(c) with
ν(a), ν(a1), . . . , ν(ak) ∈ W} with β = |B| and A = min{R′

W | W ⊆ V(c) is a
resolving set for G|V(c) with ν(a), ν(a1), . . . , ν(ak) ∈ W andν(a) is not a W -gate
in G[c] } with α = |A|.
Theorem 6. The metric dim. of G[r] can efficiently be computed from h(r).

Proof. See full version.

4 Algorithm and Time Complexity

Let G = (V,E) be a connected undirected graph with |V | = n and |E| = m. To
compute a resolving set for G we first compute the DEBC-tree

−→
T := (VT ,

−→
E T )

for G. This can be done in O(n + m) with the help of any linear-time-algorithm
for finding the biconnected components and bridges of G. Then we compute
h(c) = (αc, βc) for every leaf c with father a in the DEBC-tree

−→
T . We do this

by checking for every subset W ⊆ V (G[c]) if W ′ := W ∪ {ν(a)} is a resolving
set for G[c]. We choose the size of the smallest set W ′ for βc and the size of
the smallest set W ′, such that a is not a W ′-gate in G[c] for α. This takes
O(2n

′ · n′ · (n′ + m′)) time for n′ = |V (G[c])| and m′ = |E(G[c])|, because we
have 2n

′
subset and for each subset we can test in time n′ · (n′ + m′) whether it

is a resolving set. Computing the h-values for the inner nodes of
−→
T can be done

in O(2n · n · (n + m)), see Theorems 4 and 5. Thus the overall running time in
O(2n · n · (n + m)).

Definition 8. An undirected graph G is (minimum) k-EBC-bounded for some
positive integer k, if there is a (minimum) resolving set R for G such that every
EBC of G contains at most k vertices of R. R is called a (minimum) k-EBC-
bounded-resolving set for G. Let Gk and Gmin

k be the class of graphs that are
k-EBC-bounded and minimum-k-EBC-bounded, respectively. A set of graphs B
is (minimum) EBC-bounded, if for every graph G ∈ B there is a number k such
that G is (minimum) k-EBC-bounded.

Corollary 1. The following problems can be solved in polynomial time for any
fixed number k:

1. Given an undirected graph G. Is G ∈ Gk?
2. Given a set of EBC-bounded graphs. Find the smallest number k′ such that

G ∈ Gk′ .
3. Given an undirected graph G ∈ Gk. Compute a minimum k-EBC-bounded-

resolving set for G.
4. Given an undirected graph G ∈ Gmin

k . Compute a minimum resolving set for
G and thus the metric dimension of G.
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To solve these problems we use our algorithm with slight modifications.
Instead of checking every subset W ′ if it is resolving, we do the following: For
the problems 1, 3 and 4 we only test those subsets with at most k vertices. For
the problem 2 we run our algorithm for k = 1 and increase k successively by one
until we get a resolving set. By doing so the running time of our algorithm can
be bounded by O(nk · n · (n + m)). Obviously it holds that G′

k ⊆ Gk. Vice versa
it holds that for all k there is a graph G ∈ G2 such that G /∈ Gmin

k , see Fig. 5.
Moreover, the complexity of the following problems remains open:

1. Given an undirected graph G a fixed positive integer k. Is G ∈ Gmin
k ?

2. Given an undirected graph G ∈ G′. Find the smallest integer k′ such that
G ∈ Gk′ .

ak-1

bk-1

ak

bk

a1

b1

a2

b2

a3

a4

b3

b4
ck-1 c1 c2

xk-1

xk x1 x2
x3

x4

x'k-1

x'k x'1 x'2

x'4

_
2

Fig. 5. Graph Gk with k + 1 EBCs. Gk is in G2 for all k. Every resolving set for
Gk contains one of the vertices xi, x

′
i, 1 ≤ i ≤ k, since there is no other vertex that

can resolve them. The only vertex pairs that still need to be resolved are pairs ai, bi.
It suffices to choose vertices ai as resolving vertices. Then we get a 2-EBC-bounded-
resolving-set with 2 ·k vertices and there is no other 2-EBC-bounded-resolving-set with
less vertices. Nevertheless a minimum resolving set contains less vertices. By choosing
vertices ci instead of ai one gets a minimum resolving set with 3

2
· k vertices. In this

case one of the EBCs contains 1
2
·k resolving vertices and the others contain one vertex.

The following problem still remains NP-complete, see full version.

k-bounded BC Metric Dimension
Given: An undirected graph G = (V,E) and a positive integer r ∈ N

such that there is a minimum resolving set R ⊆ V for G that
contains at most k vertices from each biconnected component.

Question: Is the metric dimension of G at most r?

5 Conclusion

We have shown that Metric Dimension can be solved in polynomial time on
graphs having a minimum resolving set with a bounded number of resolving
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vertices in every EBC. Even more the algorithm can compute an according
set in polynomial time. However, the problem remains NP-complete for graphs
having a minimum resolving set with a bounded number of vertices in every
biconnected component. This shows that the extended biconnected components
cannot simply be downsized further. A next step can be to modify this algorithm
to solve other variants of the Metric Dimension problem. The two open problems
discussed at the end of Sect. 4 are also going to be investigated.
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On the Algorithmic Complexity of Double
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Abstract. Let G = (V, E) be a simple graph. A vertex v ∈ V ve-
dominates every edge uv incident to v, as well as every edge adjacent
to these incident edges. A set D ⊆ V is a double vertex-edge domi-
nating set if every edge of E is ve-dominated by at least two vertices
of D. The double vertex-edge dominating problem is to find a mini-
mum double vertex-edge dominating set of G. In this paper, we show
that minimum double vertex-edge dominating problem is NP-complete
for chordal graphs. A linear time algorithm to find the minimum dou-
ble vertex-edge dominating set for proper interval graphs is proposed.
We also show that the minimum double vertex-edge domination prob-
lem cannot be approximated within (1 − ε) ln |V | for any ε > 0 unless
NP⊆ DTIME(|V |O(log log |V |)). Finally, we prove that the minimum dou-
ble vertex-edge domination problem is APX-complete for graphs with
maximum degree 5.

Keywords: Double vertex-edge domination · Chordal graph
Proper interval graph · NP-complete · APX-complete

1 Introduction

Let G = (V,E) be a simple connected graph. By an open neighborhood of a
vertex v of G we mean the set NG(v) = {u ∈ V (G) : uv ∈ E(G)} and the closed
neighborhood, NG[v] = NG(v)∪{v}. The degree of a vertex v, denoted by dG(v),
is the cardinality of its neighborhood. For a set S ⊆ V , the subgraph of G induced
by S is defined as G[S] = (S,ES), where ES = {xy : xy ∈ E(G), x, y ∈ S}. A
set of vertices S is a clique in G if G[S] is a maximal complete subgraph of G.

A graph G is a chordal graph if every cycle in G of length at least 4 has a
chord. Let F be a nonempty family of sets. A graph G = (V,E) is called an
intersection graph for a finite family F of a nonempty set if there is a one-to-
one correspondence between F and V such that two sets in F have nonempty
intersection if and only if their corresponding vertices in V are adjacent.
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We call F an intersection model of G. For an intersection model F , we use
G(F) to denote the intersection graph for F . If F is a family of intervals on a
real line, then G(F) is called an interval graph for F and F is called an interval
model of G. If F is a family of intervals on a real line such that no interval in
F properly contains another interval in F , then G(F) is called a proper interval
graph for F and F is called a proper interval model of G.

A vertex v ∈ V (G) is a simplicial vertex of G if NG[v] is a clique of G. An
ordering α = (v1, v2, . . . , vn) is a perfect elimination ordering (PEO) of G if vi

is a simplicial vertex of Gi = G[vi, vi+1, . . . , vn] for all i, 1 ≤ i ≤ n. A PEO
α = (v1, v2, . . . , vn) of a chordal graph is a bi-compatible elimination ordering
(BCO) if α−1 = (vn, vn−1, . . . , v1) is also a PEO of G. This implies that vi is
simplicial in G[v1, v2, . . . , vi] as well as in G[vi, vi+1, . . . , vn]. A graph G is chordal
if and only if it has a PEO and proper interval graphs are characterized in terms
of BCO, see [4].

A vertex v ∈ V (G) dominates every vertex in its closed neighborhood. A
set S ⊆ V is a double dominating set, if each vertex in V (G) is dominated
by at least two vertices in S. The double domination number of a graph G,
denoted by γd(G), is the minimum cardinality of a double dominating set of G.
The minimum double domination problem is to find a double dominating set of
minimum cardinality. For more details on double domination, see [2,3].

A vertex v ∈ V (G) vertex-edge dominates every edge uv incident to v, as
well as every edge adjacent to these incident edges. A set S ⊆ V is a vertex-edge
dominating set (or simply, a ve-dominating set) if for every edge e ∈ E, there
exists a vertex v ∈ S such that v ve-dominates e. The vertex-edge domination
number of a graph G, denoted by γve(G), is the minimum cardinality of a ve-
dominating set of G. The minimum vertex-edge domination problem is to find a
vertex-edge dominating set of minimum cardinality. The concept of vertex-edge
domination was introduced by Peters [12] and studied further in [1,7–9].

A variant of vertex-edge domination, namely double vertex-edge domination
was introduced in [6] and is defined as follows: a set S ⊆ V is a double vertex-edge
dominating set (or simply, a double ve-dominating set), abbreviated DVEDS, if
every edge e ∈ E is ve-dominated by at least two vertices of S. The double vertex-
edge domination number of G, denoted by γdve(G), is the minimum cardinality of
a double ve-dominating set of G. The minimum double vertex-edge domination
problem is to find a double vertex-edge dominating set of minimum cardinality.
In [6], it is proved that determining the number γdve(G) for bipartite graphs is
NP-complete.

In this paper, it is proved that the double vertex-edge domination decision
problem is NP-complete for chordal graphs. A linear time algorithm for dou-
ble vertex-edge domination for proper interval graphs is presented. We show
that the MDVED problem cannot be approximated within (1− ε) ln |V | for any
ε > 0 unless NP ⊆ DTIME (|V |O(log log |V |)) and show that double vertex-edge
domination problem is APX-complete for bounded-free graphs.
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2 NP-Completeness Result

In this section, we show that the DVED problem is NP-complete for chordal
graphs by proposing a polynomial reduction from a well known NP-complete
problem, called Exact cover by 3-sets(X3C) which is defined below.
Exact cover by 3-sets (X3C)
INSTANCE: A finite set X with |X| = 3q and a collection C of 3-element sub-
sets of X.
QUESTION: Does C contain an exact cover for X, that is, a sub-collection
C ′ ⊆ C such that for every element in X belongs to exactly one member of C ′?

We define the double vertex-edge domination decision problem.
Double Vertex-edge Domination Decision problem (DVEDD)
INSTANCE: A graph G = (V,E) and a positive integer k ≤ |V |.
QUESTION: Does there exist a DVED-set D in G such that |D| ≤ k?

Theorem 1. The double vertex-edge domination decision problem is NP-comp-
lete for chordal graphs.

Proof. Double ve-domination is a member of NP, since we can check in poly-
nomial time that a set of cardinality at most k is a double ve-dominating set.
Now let us show how to transform any instance of X3C into an instance G of
double ve-domination, so that one of them has a solution if and only if the other
one has a solution. Let X = {x1, x2, . . . , x3q} and C = {C1, C2, . . . , Ct} be an
arbitrary instance of X3C.

Let V (G) = {xi, yi, zi, pi, ti : 1 ≤ i ≤ 3q} ∪ {ci : 1 ≤ i ≤ t}, E(G) = {xicj :
xi ∈ Cj , 1 ≤ i ≤ 3q, 1 ≤ j ≤ t} ∪ {xiyi, yizi, zipi, piti : 1 ≤ i ≤ 3q} ∪ {cicj : 1 ≤
i < j ≤ t; j = 1, 2, . . . , t} and k = 7q.

The construction of the chordal graph G = (V,E) associated with the
instance of X3C, where X = {x1, x2, x3, x4, x5, x6} and
C = {C1 = {x1, x2, x4}, C2 = {x2, x3, x6}, C3 = {x3, x4, x5}, C4 = {x3, x5, x6}}
is shown in Figure 1.

Clearly, G = (V,E) is a chordal graph as α = {t1, t2, . . . , t3q, p1, p2, . . . , p3q,
z1, z2, . . . , z3q, y1, y2, . . . , y3q, x1, x2, . . . , x3q, c1, c2, . . . , cm} is a perfect elimina-
tion ordering of G. Define X = {x1, x2, . . . , x3q}, Y = {y1, y2, . . . , y3q},
Z = {z1, z2, . . . , z3q}, P = {p1, p2, . . . , p3q}, T = {t1, t2, . . . , t3q} and R =
{c1, c2, . . . , ct}.
Claim: C has an exact cover of size q if and only if G has a double vertex-edge
dominating set of size at most 7q.

Assume first that C has an exact cover C ′. Then {cj : Cj ∈ C ′} ∪ Z ∪ P is a
double vertex-edge dominating set of cardinality 7q.

Conversely, suppose that G has a double vertex-edge dominating set, say D,
of cardinality at most 7q. To dominate the edges piti(1 ≤ i ≤ 3q) twice, the set
of vertices Z ∪ P is contained in D. Let D′ = D \ (Z ∪ P ). Then |D′| ≤ q. The
vertex zi dominates the edge yixi(1 ≤ i ≤ 3q) once. To dominate the edges yixi,
the set D′ contains elements of R and X or R and Y . If D′ contains the elements
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of R and Y , then for each y ∈ Y remove y ∈ D′ and add its adjacent vertex x
to D′. Without loss of generality we can assume that D′ contains elements of R
and X. Suppose D′ contains a1 vertices of the set X, a2 vertices of the set R.
Then a1 + a2 ≤ q. The set of vertices in R should dominate 3q − a1 edges yixi.
The vertices in R is adjacent to at most three vertices of set X, a2 ≥ q − a1

3 .
Therefore, q ≥ a1 + a2 ≥ a1 + q + a1

3 = q + 2a1
3 . This is possible only when

a1 = 0. This implies that C ′ = {Cj : cj ∈ D′} is an exact cover if and only if G
has a double vertex-edge dominating set of cardinality at most 7q. ��

2

xxxx

cc cc

x x

yyyyyy

z

p

t

zzzzz

ppppp

tttt
1

1

1

1

1

1

2

2

2

2

2

3

3

3

3

3

3 t4

4

4

4

4

4

5

5

5

5

5

6

6

6

6

6

Fig. 1. Double vertex-edge domination for chordal graphs

3 Algorithm

We now present a linear time algorithm for a subclass of chordal graphs, namely
the Proper Interval graph. Let G be a connected proper interval graph with a
BCO σ = (v1, v2, . . . , vn). Algorithm DVED-PROPER INTERVAL GRAPHS
takes G as a input and returns a minimum double vertex-edge dominating set
of G. Algorithm DVED-PROPER INTERVAL GRAPHS maintains two arrays
D and S for selecting the vertices to the set DV E. If D[v] = 0, then there is an
edge incident to the vertex v, which is not ve-dominated. If D[v] = 1, then there
is an edge incident to the vertex v and is ve-dominated only once. If D[v] = 2,
all the edges incident to v are ve-dominated at least twice. If S[v] = 0, then the
vertex v is not in the set DV E so far constructed, otherwise S[v] = 1.

If the vertex x is assigned a value 0 in the array D, it is denoted by D0[x].
Similarly D1[x] denotes the vertex x with assigned value 1 in the array D. Con-
sider vi0 = vi for any arbitrary i.
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Algorithm 1. DVED-PROPER INTERVAL GRAPHS
Input: A connected proper interval graph G with BCO σ = (v1, v2, . . . , vn) of

G and an array with D[vi] = 0 for all vi where 1 ≤ i ≤ n.
Output: A minimum double vertex-edge dominating set of G.

1 DV E ← ∅;
2 for i = 1 to n − 1 do
3 if D[vi �= 2] then
4 Let NGi(vi) = {vi1 , vi2 , . . . , vir−1 , vir}, where i1 < i2 < . . . < ir−1 < ir;
5 if D[vi] = 0 then
6 if |NGi+1(vi+1)| ≥ 2 then
7 DV E = DV E ∪ {vi+1r−1 , vi+1r}, S[vi+1r−1 ] = S[vi+1r ] = 1;
8 D[x] = 2 for all x ∈ N [vi+1r−1 ] ∩ N [vi+1r ];
9 D[x] = 1 for all

x ∈ (
N [vi+1r−1 ] ∪ N [vi+1r ]

) \ (
N [vi+1r−1 ] ∩ N [vi+1r ]

)
;

10 if |NGi+1(vi+1)| = 1 then
11 DV E = DV E ∪ {vi+1, vi+2},S[vi+1] = S[vi+1] = 1;
12 D[x] = 2 for all x ∈ N [vi+1] ∩ N [vi+2];
13 D[x] = 1 for all x ∈ (N [vi+1] ∪ N [vi+2]) \ (N [vi+1] ∩ N [vi+2]);

14 if |NGi+1(vi+1)| = 0 then
15 DV E = DV E ∪ {vi, vi+1}, S[vi] = S[vi+1] = 1;
16 D[x] = 2 for all x ∈ NGi [vi];

17 if D[vi] = 1 then
18 if |NGi+1(vi+1)| = 0 then
19 if S[vi+1] = 1 then
20 DV E = DV E ∪ {vi}, D0[x] = 1 for all x ∈ N [vi];
21 D1[x] = 2 for all x ∈ N [vi], S[vi] = 1;

22 else
23 DV E = DV E ∪ {vi+1}, D0[x] = 1 for all x ∈ N [vi+1];
24 D1[x] = 2 for all x ∈ N [vi+1], S[vi+1] = 1;

25 else
26 if S[vi+1r ] = 1 then
27 DV E = DV E ∪ {vi+1r−1}, D0[x] = 1 for all x ∈ N [vi+1r−1 ];
28 D1[x] = 2 for all x ∈ N [vi+1r−1 ], S[vi+1r−1 ] = 1;

29 else
30 DV E = DV E ∪ {vi+1r}, D0[x] = 1 for all x ∈ N [vi+1r ];
31 D1[x] = 2 for all x ∈ N [vi+1r ], S[vi+1r ] = 1;

32 return DV E

Theorem 2. For 0 ≤ i ≤ n − 1, the set DV Ei is contained in some minimum
double vertex-edge dominating set of G.

Proof. We prove the result by induction on the number of iterations i of the
algorithm. The base case i = 0 is true as DV E0 = ∅. Assume that the induction
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hypothesis is true for all positive integers less than or equal to i−1. Equivalently,
the set DV Ei−1 is contained in some minimum double vertex-edge dominating
set, say D′ of G. Notice that at the ith iteration of algorithm, the vertex vi

is being processed. If D[vi] = 2, then the algorithm does not select any new
vertex in to the set DV Ei. So DV Ei = DV Ei−1 and hence it is contained in D′.
Now assume that D[vi] 
= 2. Let NGi+1(vi+1) = {vi+11 , vi+12 . . . , vi+1r} where
i + 11 ≤ i + 12 ≤ . . . ≤ i + 1r.
Case 1: D[vi] = 0
Subcase 1: |NGi+1(vi+1)| ≥ 2.

Since D[vi] = 0, there exist an edge incident with vi, which is not ve-
dominated. Let vivik be such an edge. Let vα, vβ ∈ D′ be the vertices that double
ve-dominate the edge vivik . If {vα, vβ} = {vi+1r−1 , vi+1r}, we are through, say
DV Ei ⊂ D′. Let α, β /∈ {i+1r−1, i+1r}. To double ve-dominate the edge vivik ,
vα and vβ are adjacent to vi or vik or without loss of generality, we can assume vα

is adjacent to vi and vβ is adjacent to vik . Suppose vα and vβ are adjacent to vi.
Since vi is a simplicial vertex in G[vi, vi+1, . . . , vn], vα and vβ are adjacent to vik .
The vertex vi+1 is adjacent to vi and hence the vertex vi+1 is adjacent to vα and
vβ . Since vi+1r−1 and vi+1r are adjacent to vi+1, the vertices vi+1r−1 and vi+1r

are adjacent to vα and vβ . The set D′′ = (D′ \ {vα, vβ}) ∪ {vi+1r−1 , vi+1r} is a
minimum double vertex-edge dominating set of G and hence DV Ei is contained
in a minimum double vertex-edge dominating set. Suppose the vertices vα and
vβ are adjacent to vik . Since the vertex vi is adjacent to vi+1 and vik , we get vi+1

is adjacent to vik . Now vi+1r−1 and vi+1r are adjacent to vi+1. Hence vi+1r−1

and vi+1r are adjacent to vik . The set D′′ = (D′ \ {vα, vβ}) ∪ {vi+1r−1 , vi+1r} is
a minimum double vertex-edge dominating set of G. Hence, DV Ei is contained
in a minimum double vertex-edge dominating set of G.
Subcase 2: |NGi+1(vi+1)| = 1.

Since D[vi] = 0 and degree of vi+1 is 2 in Gi, to double ve-dominate the
edge vivi+1, the minimum double vertex-edge dominating set should contain the
vertices vi+1 and vi+2. Hence DV Ei = DV Ei−1 ∪ {vi+1, vi+2} and is contained
in a minimum double vertex-edge dominating set of G.
Subcase 3: |NGi+1(vi+1)| = 0.

Since D[vi] = 0, to double ve-dominate the edge vivi+1, the minimum dou-
ble vertex-edge dominating set should contain the vertices vi and vi+1. Hence
DV Ei = DV Ei−1 ∪ {vi, vi+1} is contained in a minimum double vertex-edge
dominating set of G.
Case 2: D[vi] = 1
Subcase 1: |NGi+1(vi+1)| = 0 and S[vi+1] = 1.

Since D[vi] = 1 and vi+1 belongs to DV Ei−1-set, the edge vivi+1 gets ve-
dominated once. To double ve-dominate the edge vivi+1, the double vertex-edge
dominating set should contain the vertex vi. Hence DV Ei = DV Ei−1 ∪ {vi} is
contained in a minimum double vertex-edge dominating set of G.
Subcase 2: |NGi+1(vi+1)| = 0 and S[vi+1] = 0.

Since D[vi] = 1, the edge vivi+1 gets ve-dominated once. To double ve-
dominate the edge vivi+1, the double vertex-edge dominating set should contain



194 Y. B. Venkatakrishnan and H. Naresh Kumar

the vertex vi+1. Hence DV Ei = DV Ei−1 ∪ {vi+1} is contained in a minimum
double vertex-edge dominating set of G.
Subcase 3: |NGi+1(vi+1)| ≥ 1 and S[vi+1r ] = 1.

Since D[vi] = 1, any edge incident with vi is ve-dominated once, say vivk. If
vk = vi+1, then it is obvious that DV Ei−1∪{vi+1r−1} is contained in a minimum
double vertex-edge dominating set of G. Suppose vk 
= vi+1. Since vi is adjacent
to vi+1 and vk, vi+1 is adjacent to vk. The vertex vi+1 is adjacent to vi+1r−1 and
vi+1r and hence the vertices vi+1r−1 and vi+1r are adjacent to vk. The vertex
vi+1r−1 ve-dominates the edge vivk. Hence DV Ei−1 ∪ {vi+1r−1} is contained in
a minimum double vertex-edge dominating set of G.
Subcase 4: |NGi+1(vi+1)| ≥ 1 and S[vi+1r ] = 0.

Since D[vi] = 1, any edge incident with vi is ve-dominated once, say vivk. If
vk = vi+1, then it is obvious that DV Ei−1 ∪ {vi+1r} is contained in a minimum
double vertex-edge dominating set of G. Suppose vk 
= vi+1. As given in previous
subcase, the minimum double vertex-edge dominating set should contains the
vertex vi+1r .Hence DV Ei−1 ∪{vi+1r} is contained in a minimum double vertex-
edge dominating set of G. ��

Next we show that the algorithm DVED-PROPER INTERVAL GRAPHS
runs in linear time.

The BCO σ = (v1, v2, . . . , vn) of a proper interval graph can be computed in
linear time [10]. Each iteration of the algorithm DVED-PROPER INTERVAL
GRAPHS checks the degree of the vertex vi+1 in the graph Gi+1. Thus the total
time taken is O(n + m).

Theorem 3. For a given connected proper interval graph G with n vertices and
m edges, the algorithm DVED-PROPER INTERVAL GRAPHS takes O(n+m)
time to compute a minimum double vertex-edge dominating set of G.

4 Hardness Result

In this section, we show that there is no approximation algorithm for the mini-
mum double vertex-edge domination problem with approximation factor better
than (1− ε) ln |V |. To prove this, we require the following result by Lewis [8] on
minimum vertex-edge domination problem.

Theorem 4. [8] For a graph G = (V,E), the minimum vertex-edge domination
problem cannot be approximated within (1− ε) ln |V | for any ε > 0 unless NP ⊆
DTIME (|V |O(log log |V |)).

Now we prove the approximation hardness for the double vertex-edge domi-
nation problem.

Theorem 5. For a graph G = (V,E), the minimum double vertex-edge domi-
nation problem cannot be approximated within (1− ε) ln |V | for any ε > 0 unless
NP ⊆ DTIME (|V |O(log log |V |)).
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Proof. We present an approximation preserving reduction from the minimum
vertex-edge domination problem to minimum double vertex-edge domination
problem. This together with the inapproximability bound of the minimum double
vertex-edge domination problem will provide the desired result.

Let G = (V,E), where V (G) = (v1, v2, . . . , vn) be the arbitrary instance of
the minimum vertex-edge domination problem. Now, we construct the graph
G′, an instance of minimum double vertex-edge domination problem as follows:
V (G′) = V (G) ∪ {x, y, z} and E(G′) = E(G) ∪ {vix : 1 ≤ i ≤ n} ∪ {xy, yz}.

Let S∗ denote a minimum vertex-edge dominating set of G. By the construc-
tion of G′, the vertices x, y with the set D double ve-dominates all the edges in
G′. Thus the set S∗ ∪{x, y} is a double vertex-edge dominating set of G′. Hence
the cardinality of a minimum double vertex-edge dominating set of G′ must be
less than or equal to |S∗| + 2.

Now, assume that the minimum double vertex-edge dominating set can be
approximated within a ratio of α where α = (1 − ε)|VG′ | for some fixed ε > 0,
by using some algorithm, say Algorithm DVED, that runs in polynomial time.
For k ≥ 0, be a fixed integer. Consider the following algorithm.

Algorithm 2. Algorithm VEDS
Input: A graph G = (V, E).
Output: A minimum Vertex-edge dominating set S of graph G.

1 if there exist a minimum vertex-edge dominating set S of G of cardinaliy < k
then

2 return S;

else
3 Construct G′;
4 Compute a double vertex-edge dominating set Ddve in G′ using the

Algorithm DVED;
5 Compute S = Ddve \ {x, y, z};
6 return S;

Note that Algorithm VEDS is a polynomial time algorithm and the Algo-
rithm DVED is a polynomial time algorithm. If the cardinality of a minimum
vertex-edge dominating set is at most k, then vertex-edge dominating set can
be computed in polynomial time. Next we analyze the case when the minimum
vertex-edge dominating set is greater than k.

Let S∗ be the minimum vertex-edge dominating set of G and D∗
dve be the

minimum double vertex-edge dominating set of G′. If S is a vertex-edge domi-
nating set of G produced by Algorithm VEDS, then |S| ≤ |Ddve| ≤ α|D∗

dve| ≤
α(|S∗| + 2) < α(1 + 2

k )|S∗|. Therefore, Algorithm VEDS approximates the
minimum vertex-edge dominating set with in the ratio α(1 + 2

k ). Recall that
α = (1 − ε) ln |VG′ | for some fixed ε > 0. Choosing the integer k > 0 large
enough so that 2/k < ε/2, we note that
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α

(
1 +

2
k

)
< (1 − ε)

(
1 +

ε

2

)
ln |VG′ | = (1 − ε′) ln |VG′ | ≈ (1 − ε′) ln |V |.

where ε′ = ε/2 + ε2/2 and |VG′ | = |V | + 3. This proves that the minimum
vertex-edge dominating set problem with in the ratio (1 − ε′) ln |V | for some
fixed ε′ > 0. By Theorem 4, if the minimum vertex-edge domination problem
can be approximated within (1 − ε′) ln |V | for any ε′ > 0, then NP ⊆ DTIME
(|V |O(log log |V |)). Then the minimum double vertex-edge domination problem
can be approximated within (1 − ε) ln |VG′ | for any ε > 0, then NP ⊆ DTIME
(|VG′ |O(log log |VG′ |)). Hence, the minimum double vertex-edge domination prob-
lem cannot be approximated within (1 − ε) ln |VG′ | for any ε > 0 unless NP ⊆
DTIME (|VG′ |O(log log |VG′ |)). ��

5 APX-completeness

To prove the APX-completeness of minimum double vertex-edge domination
problem, we use the concept called L-reduction, see [11]. Given two NP opti-
mization problems π1 and π2 and a polynomial time transformation f from
instances of π1 to instances of π2, we say that f is an L-reduction if there are
positive constants α and β such that for every instance x of π1 the following
holds.

1. optπ2(f(x)) ≤ α.optπ1(f(x)).
2. for every feasible solution y off(x) with objective value mπ2(f(x), y) = c2 we

can in polynomial time find a solution y′ of x with mπ1(x, y′) = c1 such that
|optπ1(x) − c1| ≤ β|optπ2(f(x)) − c2|.
To show the APX-completeness of the minimum double vertex-edge domi-

nation problem, we give an L-reduction from the minimum double domination
problem. Let the minimum double domination problem and minimum double
vertex-edge domination problem are defined as follows.

MIN DD SET-B
Instance: A graph G = (V,E) with degree at most B.
Solution: A double dominating set of G, a subset V ′ ⊂ V such that each vertex
in V (G) is dominated by at least two vertices of V ′.
Measure: Cardinality of dominating set, |V ′|.

MIN DVED SET-B
Instance: A graph G = (V,E) with degree at most B.
Solution: A double vertex-edge dominating set of G, a subset V ′ ⊂ V such that
each edge e ∈ E(G) gets ve-dominated by at least two vertices of V ′.
Measure: Cardinality of vertex-edge dominating set, |V ′|.
Theorem 6. [5] MIN DD SET-4 is APX-complete.

Theorem 7. MIN DVED SET-5 is APX-complete.
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Proof. The minimum double domination problem is APX-complete for graphs
with maximum degree 3. It is enough to establish an L-Reduction f from the
instances of the minimum double domination problem for graphs with maximum
degree 4 to the instances of the minimum double vertex-edge domination for
graphs with maximum degree 5. Given a graph G = (V,E), with degree at most
4, construct a graph G′ with degree at most 5 by adding a vertex, say xi, to
every vertex vi of G.
Claim: G has a double dominating set of cardinality at most k if and only if G′

has a double ve-dominating set of cardinality k.
Proof of Claim: Let D be the minimum double dominating set of G, where
|D| ≤ k. It is easy to see that D is a double vertex-edge dominating set of
G′, since the edges of G′ are double ve-dominated by the vertices of G. Thus,
γdve(G′) ≤ γd(G). Let D′ be the minimum double vertex-edge dominating set
of G′, where |D′| ≤ k. If xi ∈ D′ and vi /∈ D′, then we can define D′′ =
(D′ ∪{vi})\{xi} is still a double ve-dominating set of G′. Suppose if, xi, vi ∈ D,
then define D′′ = (D′ ∪ {vj}) \ {xi} is a double ve-dominating set of G′, where
vj ∈ N(vi) \ {xi}. Thus, without loss of generality D′ contains the vertices of vj

for some j. Clearly, D′ is a double dominating set of G. Assume that there exist
vi ∈ V (G) does not get double dominated by the vertices of D′. Since the edges
in G′ gets double ve-dominated by the vertices in D′, to double ve-dominate the
edge vixi either two neighbors of vi should belongs to D′ or vi ∈ D and a neighbor
of vi should belongs to D, a contradiction. Hence, γd(G) ≤ |D′| = γdve(G′). This
proves our claim.

Let D∗ and S∗ be a minimum double dominating set of G and a minimum
double vertex-edge dominating set of G′, respectively. By claim, we have |S∗| =
|D∗|. Again ||D∗| − γd(G)| ≤ ||S∗| − γdve(G′)|. Therefore, the reduction is an
L-reduction with α = 1 and β = 1. ��
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Abstract. If the degree of every vertex of a connected graph is even,
then the graph has a circuit that contains all of edges, namely an Eulerian
circuit. If the length of a shortest subcycle of an Eulerian circuit of a
given graph is the largest, then the length is called the Eulerian recurrent
length of the graph. For an odd integer n greater than or equal to 3, e(n)
denotes the Eulerian recurrent length of Kn, the complete graph with n
vertices. Values e(n) for all odd integers n with 3 � n � 13 have been
found by verification experiments using computers. If n is 7, 9, 11, or 13,
then e(n) = n − 3 holds, for example. On the other hand, it has been
shown that n − 4 � e(n) � n − 2 holds for any odd integer n greater
than or equal to 15 in previous researches. In this paper, it is proved
that e(n) � n − 3 holds for every odd integer n greater than or equal
to 15. In the core part of the proof of the main theorem, an IP (integer
programming) solver is used as the amount of computation is too large
to be solved by hand.

Keywords: Graph theory · Complete graphs · Eulerian circuits
Shortest subcycles · Computer experiments

1 Introduction

If every Eulerian circuit of an Eulerian graph G has a subcycle of length less
than or equal to k, and there exists an Eulerian circuit that has no subcycle of
length less than k, then k is called the Eulerian recurrent length of G. Here, a
cycle of G, C = v0 → v1 → v2 → · · · → vk → v0, is called a subcycle of a walk
W = w0 → w1 → w2 → · · · → wl, if C is a subsequence of W , that is, there
is a nonnegative integer i such that wi = v0, wi+1 = v1, wi+2 = v2, · · · , wi+k =
vk, wi+k+1 = v0. We use the book [8] for terminology and notation not defined in
this paper. In other words, the Eulerian recurrent length of G is the maximum of
the length of a shortest subcycle of an Eulerian circuit of G. In this paper, e(G)
denotes the Eulerian recurrent length of Eulerian graph G, and, for positive odd
integer n greater than or equal to 3, e(n) denotes the Eulerian recurrent length
of the complete graph Kn consisting of n vertices, namely e(Kn).
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We will prove by contradiction that, e(n) � n − 3 holds for any odd integer
n � 13. In the proof, a contradiction will be derived under the assumption that
there is an Eulerian circuit of Kn such that the length of every subcycle of the
Eulerian circuit is not less than n−2. For that purpose, given an Eulerian circuit
C of Kn, we will define attributes of an edge of Kn described as positive and
negative on C, and also define a notion called a position reversal on C. If we
assume that there is an Eulerian circuit C of Kn such that the length of a shortest
subcycle of C is not less than n − 2, then C must satisfy a rigid condition of
occurrences of vertices around the position reversal (Theorem 1). On the other
hand, it is readily follows that the total number of position reversals is not less
than that of negative edges on any Eulerian circuit of any complete graph with
odd number of vertices (Theorem 2). We will derive a contradiction from those
results (Theorem 4). Using results of so large amount of computation that is
impossible by hand, we will prove the core part of the proof (Theorem 3) of the
main result. In this aspect, the proof is to some extent similar to the proof of
the four color theorem established in the 1970s [2,3]. In recent works, Gonçalves
et al. determined the domination number of all n × m grid graphs by a huge
amount of computation [4]. In this paper, we have obtained an upper bound on
the Eulerian recurrent lengths of complete graphs by solving a particular integer
programming problem with computers. Our approach is thus similar to the one
of Gonçalves et al. However, the optimum solution of the integer programming
problem does not provide any Eulerian recurrent length directly. This part is
different from the approach of Gonçalves et al.

It has been shown as an upper bound on the Eulerian recurrent length of
complete graphs that e(n) � n−2 holds for any odd integer n � 7 [5]. The results
of this paper improve the upper bound. On the other hand, it has been shown as
a lower bound that e(n) � n−4 holds for any odd integer n � 7 [5]. In the proof
of the lower bound, a method to construct an Eulerian circuit of Kn that has no
subcycle of length less than n − 4 was provided. In the method, decomposition
of complete graph Kn with an odd number of vertices into Hamiltonian cycles is
applied. Furthermore, it is clear that e(3) = e(5) = 3, and we have shown that
e(n) = n − 3 holds for each n ∈ {7, 9, 11, 13} by verification experiments using
computers.

Other than the above, the following results related to the paper have been
known. Complete bipartite graphs have high symmetry like complete graphs.
We have provided the exact values of Eulerian recurrent lengths of complete
bipartite graphs. This was shown by explicit construction of Eulerian circuits
C of complete bipartite graphs Km,n with m + n vertices such that the length
of a shortest subcycle of C is identical to the trivial upper bound [5]. We have
shown that the problem of computing the Eulerian recurrent length of a general
undirected graph is NP-complete [6]. Furthermore, we have proved the results
with respect to the hardness of approximating the Eulerian recurrent lengths
under the assumption of P �= NP, including the following statement [7]. For
any Eulerian graph G and any real number ρ � 1, there is no polynomial time
algorithm that computes an approximation e′(G) of e(G), the Eulerian recurrent
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length of G, such that e(G)/e′(G) � ρ always holds. In other words, there is no
polynomial time approximation algorithm with bounded approximation ratio for
solving the Eulerian recurrent length problem under the assumption of P �= NP.

In Sect. 2, we will define terminology, notation, and notions proper to this
paper. In Sect. 3, we will prove that, for any odd integer n greater than or equal
to 13, there is no Eulerian circuit of Kn that has no subcycle of length less than
n − 2, showing that e(n) � n − 3. In Sect. 4, we will state concluding remarks,
including future work.

2 Preliminaries

The expression |S| denotes the number of elements in a finite set S. For an integer
i and a positive integer j, i mod j denotes the unique nonnegative integer k such
that k < j and k ≡ i (mod j).

Let G = (V,E) be an Eulerian graph, and C = v0 → v1 → v2 → · · · →
vm−1 → v0 an Eulerian circuit of G, where m equals |E|, the total number
of edges of G. We will say that a vertex occurs at the occurrence position, or
simply at the position, p on C, if the length of the subwalk of C from the initial
vertex v0 to the occurrence of the vertex is p. Notice that any integer q with
q ≡ p (mod m) indicates the identical position to p on C. Positions on C can,
therefore, be regarded as elements of Z/mZ, the residue class ring modulo m. A
position k is said to be from position i to position j on C, if there are integers
i′, j′, and k′ such that

i′ ≡ i (mod m), j′ ≡ j (mod m), k′ ≡ k (mod m), and
i′ � k′ � j′ < i′ + m.

The length of the subwalk of C from position i to position j is, therefore, (j −
i) mod m by definition. Generally, if symbol C denotes an Eulerian circuit of
G, then C(j) denotes the vertex vj of G at position j on C. Furthermore, for
a position i on C, NC(i) denotes the nearest position to i other than i in the
forward direction on C at which the vertex C(i) occurs. Precisely, the position
NC(i) is i if the vertex C(i) occurs just once, and the only position that satisfies
the following condition otherwise:

Both C(i) = C(k) and i < k < i + m hold, and, for any position j with
i < j < k, C(j) �= C(i) holds.

We can regard function NC as a bijection from and to residue class ring Z/mZ.
The image of a position i on C under the inverse function for N , denoted by
N−1

C (i), is the nearest position to i other than i in the backward direction on C
at which the vertex C(i) occurs. If n is an odd number greater than or equal to
7 and G is the complete graph Kn with n vertices, then, for any position i on
any Eulerian circuit C of G, N−1

C (i), i, and NC(i) are three distinct positions
on C.
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Let e be an edge of an Eulerian graph G that connects the vertex C(i) at
position i and the vertex C(i + 1) at position i + 1 on an Eulerian circuit C of
G. Then, if either

N−1
C (i + 1) < N−1

C (i) and NC(i) < NC(i + 1)

or
N−1

C (i) < N−1
C (i + 1) and NC(i + 1) < NC(i)

holds, the edge e is said to be negative on C, and otherwise, e is said to be
positive on C. Furthermore, if a quadruple (i, j, k, l) of positions on C satisfies
the following condition, then (i, j, k, l) is said to be a position reversal on C:

Expressions i + 1 �≡ j (mod m), k + 1 �≡ l (mod m), NC(i) = l, and
NC(j) = k hold. And position j is from position i to position k on C, and
position k is from position j to position l on C.

Let C be an Eulerian circuit of an Eulerian graph G, and a quadruple
(i, j, k, l) of positions on C a position reversal. Moreover, let v and w be ver-
tices of G. Then, if either v = C(i), w = C(j) or v = C(j), w = C(i) holds,
then (i, j, k, l) is said to be a position reversal with respect to v and w on C.
Furthermore, the first component i and the fourth component l of a position
reversal (i, j, k, l) on C are said to be the head and tail of the position reversal,
respectively. If a position on C is the head or tail of some position reversal on
C, then the position is called a position reversal head or tail on C, respectively.

3 Improvement of the Upper Bound on the Eulerian
Recurrent Lengths of Complete Graphs

In this section, we will prove by contradiction that, for any odd integer n � 13,
the Eulerian recurrent length of Kn, the complete graph with n vertices, is not
greater than n − 3, that is, e(n) � n − 3 holds. In the proof, a contradiction will
be derived under the assumption that there is an Eulerian circuit of Kn such
that the length of every subcycle of the Eulerian circuit is not less than n − 2.
Let C = C(0) → C(1) → C(2) → · · · → C(m−1) → C(0) be an Eulerian circuit
of Kn, where m is n(n − 1)/2, the total number of edges of Kn.

The following two conditions on an Eulerian circuit of Kn are equivalent:

Condition A: The length of every subcycle of C is not less than n − 2,

and

Condition B: For every integer i with 0 � i < m, NC(i) − i � n − 2.

First, we will prove two fundamental lemmas.

Lemma 1. Let n be an integer greater than or equal to 6, and W a walk of
the complete graph Kn with n vertices. Then, W satisfies one of the following
conditions, if the length of W is n + 3:
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(a) There is an edge of Kn that occurs twice on W .
(b) Walk W contains a subwalk W ′ such that the length of W ′ is n − 2, and

there is a vertex of Kn that occurs twice on W ′.

Proof. We describe W as W = v1 → v2 → v3 → · · · → vn+4. Assume that, for
any two integers i and j with 1 < i < j � n + 4, edges vi−1vi and vj−1vj are
different. Furthermore, assume that, for any vertex v of Kn, v does not occur
twice on any walk in the following subwalks of W , each of which is of length
n − 2:

W1 = v1 → v2 → v3 → · · · → vn−1,

W2 = v2 → v3 → v4 → · · · → vn,

W3 = v3 → v4 → v5 → · · · → vn+1,

W4 = v4 → v5 → v6 → · · · → vn+2,

W5 = v5 → v6 → v7 → · · · → vn+3, and
W6 = v6 → v7 → v8 → · · · → vn+4.

In what follows, we will deduce a contradiction under those assumptions.
Without loss of generality, we can regard {1, 2, 3, . . . , n} as the vertex set

of Kn, and can assume that v1 = 1, v2 = 2, v3 = 3, . . . , and vn−1 = n −
1, since it is assumed that there is no vertex that occurs twice or more on
W1. If {6, 7, 8, . . . , n − 1} ∩ {vn, vn+1, vn+2, vn+3, vn+4} �= ∅, then there is a
vertex that occurs twice on W6. We therefore have {vn, vn+1, vn+2, vn+3, vn+4} ⊆
{1, 2, 3, 4, 5, n}. Then, for any permutation (vn, vn+1, vn+2, vn+3, vn+4) of five
elements in {1, 2, 3, 4, 5, n}, we can verify that one of the following conditions
holds:

{{1, 2}, {2, 3}, {3, 4}, {4, 5}}
∩ {{vn, vn+1}, {vn+1, vn+2}, {vn+2, vn+3}, {vn+3, vn+4}} �= ∅,

5 ∈ {vn, vn+1, vn+2, vn+3},

4 ∈ {vn, vn+1, vn+2},

3 ∈ {vn, vn+1}, and
2 = vn.

This contradicts the assumption at the beginning of the proof. �	
Lemma 2. Let n be an odd integer greater than or equal to 7. If an Eulerian
circuit C of the complete graph Kn with n vertices satisfies condition B, then
for any integer i with 0 � i < m, n − 2 � NC(i) − i � n + 3 holds.

Proof. Assume that an Eulerian circuit C of Kn satisfy condition B. By con-
dition B, n − 2 � NC(i) − i clearly holds. In what follows, we will deduce
NC(i) − i � n + 3.

It follows from condition B that, for any subwalk W = C(i+1) → C(i+2) →
· · · → C (NC(i) − 1) of Kn = (V,E), there is no edge that occurs twice or more
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on W , and there is no vertex that occurs twice or more on some subwalk of W
whose length is less than n − 2. Furthermore, since W contains only vertices in
V −{C(i)}, we can regard W as a walk of the complete graph Kn−1 whose vertex
set is V −{C(i)}. By Lemma 1, it follows that the length of W is n−1+2 = n+1
or less. Hence, We have

((NC(i) − 1) − (i + 1)) mod m = (NC(i) − i − 2) mod m � n + 1,

and conclude that

NC(i) − i = (NC(i) − i) mod m � n + 3

holds. �	
By Lemma 2, we can replace condition B on an Eulerian circuit C of a

complete graph Kn with the following condition B′, since those conditions are
equivalent.

Condition B′: For any integer i with 0 � i < m, n−2 � NC(i)− i � n+3.

The following theorem asserts that it is hard for a position reversal on an
Eulerian circuit C of a complete graph Kn to exist, if C satisfies condition B′.

Theorem 1. Let n be an integer greater than or equal to 7. Assume that there
is an Eulerian circuit C of the complete graph Kn = (V,E) with n vertices that
satisfies condition B′. Let m denote n(n−1)/2, the total number of edges of Kn.

Then, for any position reversal head i on C,

NC(i) − i = n + 3, (1)

NC(i + 1) − (i + 1) = n − 2, (2)

and
NC(i + 2) − (i + 2) = n − 1 (3)

all hold, and for any position reversal tail l on C,

l − N−1
C (l) = n + 3, (4)

(l − 1) − N−1
C (l − 1) = n − 2, (5)

and
(l − 2) − N−1

C (l − 2) = n − 1 (6)

all hold.

Proof. If i is the head of a position reversal (i, j,NC(j), NC(i)) on C satisfying
condition B′, then, by condition B′ and the definition of a position reversal, one
of the following four conditions must hold.

(a) NC(i) ≡ i + (n + 2), j ≡ i + 2, and NC(j) ≡ i + n (mod m).
(b) NC(i) ≡ i + (n + 3), j ≡ i + 2, and NC(j) ≡ i + n (mod m).



The Upper Bound on ERL of Complete Graphs by an IP Solver 205

(c) NC(i) ≡ i + (n + 3), j ≡ i + 3, and NC(j) ≡ i + (n + 1) (mod m).
(d) NC(i) ≡ i + (n + 3), j ≡ i + 2, and NC(j) ≡ i + (n + 1) (mod m).

In the case where (a) or (b) above holds, by condition B′ and the fact that
there is no edge that occurs twice or more on C, we have V = {C(i), C(i +
1), C(i + 2), . . . , C(i + n)}, where C(i + 2) = C(i + n). Then, it follows that
whatever vertex in V C(i + n + 1) is, there is an edge that occurs twice or
more on C or condition B′ does not hold. This is a contradiction. If there is
an integer k such that 3 < k � n and C(i + n + 1) = C(i + k) hold, then
condition B′ does not hold. Since C(i + 2) = C(i + n) holds by (a) or (b), if
C(i+n+1) = C(i+2), then condition B′ does not hold. Since C(i) = C(i+n+2)
or C(i) = C(i+n+3) holds by (a) or (b), if C(i+n+1) = C(i), then condition B′

does not hold. Furthermore, since C(i+2) = C(i+n), if C(i+n+1) = C(i+1)
or C(i + n + 1) = C(i + 3), then the edge C(i + n)C(i + n + 1) is identical to
the edge C(i + 1)C(i + 2) or C(i + 2)C(i + 3).

In the case where (c) above holds, by condition B′ and the fact that there
is no edge in C that occurs twice or more on C, we have V = {C(i + 3), C(i +
4), C(i+5), . . . , C(i+n+3)}, where C(i+3) = C(i+n+1). Then, it follows that
whatever vertex in V C(i+2) is, there is an edge that occurs twice or more on C
or condition B′ does not hold. This is a contradiction. If there is an integer k such
that 3 � k < n and C(i + 2) = C(i + k), then condition B′ does not hold. Since
C(i+3) = C(i+n+1) holds by (c), if C(i+2) = C(i+n+1), then condition B′

does not hold. Since C(i) = C(i+n+3) holds by (c), if C(i+2) = C(i+n+3),
then condition B′ does not hold. Furthermore, since C(i + 3) = C(i + n + 1), if
C(i + 2) = C(i + n) or C(i + 2) = C(i + n + 2), then the edge C(i + 2)C(i + 3)
is identical to the edge C(i + n)C(i + n + 1) or C(i + n + 1)C(i + n + 2).

Thus, condition (d) must hold. We therefore conclude that (1) and (3) hold.
By condition B′, C(i+1) must be identical to C(i+n−1), C(i+n), C(i+n+1),
C(i+n+2), C(i+n+3), or C(i+n+4). Since C(i) = C(i+n+3) and C(i+2) =
C(i+n+1), C(i+1) ∈ {C(i+n), C(i+n+1), C(i+n+2), C(i+n+3), C(i+n+4)}
is impossible. If either C(i + 1) = C(i + n) or C(i + 1) = C(i + n + 2) holds,
then the edge C(i + 1)C(i + 2) is identical to the edge C(i + n)C(i + n + 1)
or C(i + n + 1)C(i + n + 2). If C(i + 1) = C(i + n + 4) holds, then the edge
C(i)C(i + 1) is identical to the edge C(i + n + 3)C(i + n + 4). Thus, it follows
that C(i + 1) = C(i + n − 1), and we conclude that (2) holds.

It can be deduced in a similar manner that (4)–(6) all hold, if l is a position
reversal tail on C. The detail is omitted. �	
Theorem 2. Let d be an integer with d � 3, and G an Eulerian graph. Then,
if G is 2d-regular, that is, every degree of G equals to 2d, then, for any Eulerian
circuit C of G, the total number of position reversals on C is not less than that
of negative edges on C.

Proof. Since G is 2d-regular, every vertex of G occurs exactly d times on C.
If there is a negative edge e = vw = C(i)C(i + 1) on C such that there is no
position reversal with respect to v and w on C, then v and w occur alternatively
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and the same number of times on C except at positions i and i + 1 as follows:

C(i + 2) → · · · → v → · · · → w → · · · → v → · · · · · · w → · · · C(i − 1).

This contradicts the assumption that e is a negative edge. �	
We use the following theorem for finite integer sequences to prove Theorem 4,

the main theorem.

Theorem 3. Let X = (x(0), x(1), x(2), . . . , x(10)) and Y = (y(0), y(1), y(2),
. . . , y(10)) be nonnegative integer sequences of length 11 consisting of nonnega-
tive integer components less than or equal to 5. Let M(X,Y ) denote the number
of integers i ∈ {2, 3, 4, 5, 6, 7, 8} such that

either x(i) < x(i + 1) and y(i) < y(i + 1),
or x(i) > x(i + 1) and y(i) > y(i + 1).

(7)

Let M ′(X,Y ) denote the number of integers i ∈ {1, 2, 3, 4, 5, 6, 7} such that con-
dition (7) holds. Let R(X,Y ) denote the number of integers i ∈ {2, 3, 4, 5, 6, 7, 8}
such that y(i) = 5, y(i + 1) = 0, and y(i + 2) = 1. Let R′(X,Y ) denote the
number of integers i ∈ {2, 3, 4, 5, 6, 7, 8} such that x(i) = 5, x(i − 1) = 0, and
x(i − 2) = 1.

Then, if X and Y satisfy the following five conditions, (a), (b), (c), (d1),
and (d2), then

M(X,Y ) + M ′(X,Y ) > R(X,Y ) + R′(X,Y ) (8)

holds.

(a) There is no pair of distinct integers i and j with 0 � i � 10 and 0 � j � 10
such that i − x(i) = j − x(j). And, there is no pair of distinct integers i
and j with 0 � i � 10 and 0 � j � 10 such that i + y(i) = j + y(j).

(b) There is no integer i with 0 � i � 9 such that |(i−x(i))−((i+1)−x(i+1))| =
|x(i+1)−x(i)− 1| = 1. And, there is no integer i with 0 � i � 9 such that
|(i + y(i)) − ((i + 1) + y(i + 1))| = |y(i) − y(i + 1) − 1| = 1.

(c) There is no pair of distinct integers i and j with 0 � i � 10 and 0 � j � 10
such that |(i − x(i)) − (j − x(j))| = |(i + y(i)) − (j + y(j))| = 1.

(d1) For each integer i with 0 � i � 5, there is an integer j with 0 � j � 5 such
that x(i + j) = j.

(d2) For each integer i with 0 � i � 5, there is an integer j with 0 � j � 5 such
that y(i + j) = 5 − j.

Proof. By formulating conditions (a), (b), (c), (d1), and (d2), and conditions
in the definitions of M(X,Y ), M ′(X,Y ), R(X,Y ), and R′(X,Y ) into a set of
linear inequalities, and setting the objective function as M(X,Y ) + M ′(X,Y ) −
R(X,Y ) − R′(X,Y ), we have a minimization integer programming problem. By
solving it with an IP solver, we obtain the inequality (8). �	
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It seems to be impossible for a person to check that inequality (8) holds
for any pair (X,Y ) satisfying (a), (b), (c), (d1), and (d2). At the present time,
by using SCIP [1], we can probably obtain an optimum solution of the integer
programming problem in the proof of Theorem 3 within about ten seconds.

Theorem 4. For any odd integer n greater than or equal to 15, there is no
Eulerian circuit of the complete graph Kn with n vertices such that the length of
a shortest subcycle of the Eulerian circuit equals n − 2.

Proof. Assume that there exists an Eulerian circuit C of Kn with odd n �
15 satisfying Condition B′. Fix a position p on C. Let x(i) denote the integer
(p + i) − N−1

C (p + i) − (n − 2), and y(i) the integer NC(p + i) − (p + i) − (n − 2),
for i ∈ {0, 1, . . . , 10}. Notice that 0 � x(i) � 5 and 0 � y(i) � 5 hold for any
i ∈ {0, 2, . . . , 10}. Then, M(X,Y ) is the number of positions i in {2, 3, . . . , 8}
such that C(p + i)C(p + i + 1) is a negative edge, M ′(X,Y ) is the number of
positions i in {2, 3, . . . , 8} such that C(p + i)C(p + i − 1) is a negative edge,
R(X,Y ) is the number of positions i in {2, 3, . . . , 8} such that p + i is a position
reversal head, and R′(X,Y ) is the number of positions i in {2, 3, . . . , 8} such that
p + i is a position reversal tail. Furthermore, the conditions (a), (b), (c), (d1),
and (d2) in Theorem 3 must hold. Conditions (a), (b), and (c) follow from the
definition of function NC(i). Conditions (d1) and (d2) follow from the following
statements derived from condition B′ and the definition of function NC(i):

If j = NC(i − (n − 2)) − i, then 0 � j � 5 and x(i + j) = j hold. And, if
j = N−1

C (i + (n + 3)) − i, then 0 � j � 5 and y(i + j) = 5 − j hold.

Let M(p), M ′(p), R(p), and R′(p) denote M(X,Y ), M ′(X,Y ), R(X,Y ), and
R′(X,Y ) for position p, respectively. It follows from inequality (8) that M(p) +
M ′(p) > R(p) + R′(p) holds for any position p on C. Let MC denote the total
number of negative edges on C, and RC the total number of position reversals
on C. Since

∑
p (M(p) + M ′(p)) = 14MC and

∑
p (R(p) + R′(p)) = 14RC , we

have MC > RC . This contradicts Theorem 2. �	

4 Concluding Remarks

We have proved that, for any odd integer n greater than or equal to 15, the
Eulerian recurrent length of the complete graph with n vertices is not greater
than n − 3, that is, e(n) � n − 3 holds as in Theorem 4, the main theorem. The
proof of the main theorem depends on Theorem 3, and an IP (Integer Program-
ming) solver is used for the proof of Theorem 3 as the amount of computation
is too large to be solved by hand. It has been shown by verification experiments
with computers that e(n) = n − 3 holds for each n ∈ {7, 9, 11, 13}. On the other
hand, it follows from the result of this paper that n− 4 � e(n) � n− 3 holds for
every odd integer n � 15.

Although we tried to find an Eulerian circuit of K15 whose shortest subcycle
is of length 12 by performing a computer experiment for several days, we could
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not find such an Eulerian circuit. The computer experiment has not completed.
We guess e(15) to be 11. Furthermore, we suppose that the larger n is, the harder
it is for e(n) = n−3 to hold. We are now addressing the problem of proving that,
for any odd integer n greater than or equal to 15, e(n) = n− 4 holds. We expect
that, if we accomplish that, then outputs of a huge amount of computation will
be used in the proof as in this paper.
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15K00018.
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Abstract. In this paper, we consider the feasibility problem of inte-
ger linear systems where each inequality has at most two variables.
Although the problem is known to be weakly NP-complete by Lagarias,
it has many applications and, importantly, a large subclass of it admits
(pseudo-)polynomial algorithms. Indeed, the problem is shown pseudo-
polynomially solvable if every variable has upper and lower bounds by
Hochbaum, Megiddo, Naor, and Tamir. However, determining the com-
plexity of the general case, pseudo-polynomially solvable or strongly NP-
complete, is a longstanding open problem. In this paper, we reveal a new
efficiently solvable subclass of the problem. Namely, for the monotone
case, i.e., when two coefficients of the two variables in each inequality
are opposite signs, we associate a directed graph to any instance, and
present an algorithm that runs in O(n · s · 2O(� log �) +n+m) time, where
s is the length of the input and � is the maximum number of the vertices
in any strongly connected component of the graph. If � is a constant, the
algorithm runs in polynomial time. From the result, it can be observed
that the hardness of the feasibility problem lies on large strongly con-
nected components of the graph.

Keywords: Integer linear system · Integer programming
Two-variable-per-inequality system · Monotone system

1 Introduction

In this paper, we consider the feasibility problem of integer linear systems with
two variables per inequality (TVPI). A TVPI system is formulated as follows.

aixji + bixki
≥ ci (1 ≤ i ≤ m),
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where ai, bi, ci are integers and xji , xki
are distinct variables for i = 1, . . . , m.

We are asked to find an integral vector x satisfying the inequalities. This prob-
lem has been studied extensively since 1980s. It can represent various problems,
including many graph problems, scheduling problems and problems in artificial
intelligence; see, e.g., [2,12,14]. Especially, the optimization problem (i.e., mini-
mizing an objective function subject to a TVPI system) is a generalization of the
minimum weight vertex cover problem and the minimum weight 2-satisfiability
problem; see, e.g., [5].

Shostak [13] suggested that a TVPI system can be represented as a graph
and proved that the fractional feasibility can be checked by examining paths and
cycles in the graph. Here, the fractional feasibility is to determine if there exists
a vector x ∈ Q

n satisfying the inequalities. Hochbaum and Naor [6] improved
the running time to solve the problem using the Fourier-Motzkin elimination
method. For general linear systems, the method does not run in polynomial time,
however, they showed how to implement the method efficiently for TVPI systems.
From these results, if the variables are not restricted to integers, then TVPI
systems can be solved in strongly polynomial time. Whereas the integer linear
system with only two variables is polynomially solvable as shown by Kannan [8]
and Lenstra Jr. [11], the integral feasibility problem of TVPI systems is weakly
NP-complete as shown by Lagarias [10].

A TVPI system is called monotone1 if each inequality is of the form aixji −
bixki

≥ ci, where ai and bi are nonnegative integers. It is observed by Veinott [15]
that the set of all feasible integral solutions of a monotone TVPI system forms a
distributive lattice. However, the feasibility problem of monotone TVPI systems
is still weakly NP-complete as shown by Lagarias [10]. Hochbaum, Megiddo,
Naor, and Tamir [5] showed that for monotone TVPI systems, a feasible solution
can be computed in O(m+n+ ū+mU) time, i.e., pseudo-polynomial time if all
variables are bounded, where n is the number of the variables, m is the number
of the inequalities, ū is the sum of the differences of the upper and lower bounds
of the variables and U is the maximum value of the differences of the upper and
lower bounds. Bar-Yehuda and Rawitz improve the time to O(mU) [1]. However,
the complexity of the problem without bounds on the variables is not known
since the question is raised by Hochbaum and Naor [6] in 1994. Namely, while it
is weakly NP-complete, it is open whether the problem is pseudo-polynomially
solvable or strongly NP-complete.

The purpose of the paper is proposing a fast algorithm to a slightly restricted
subclass of TVPI systems to tackle the open question. We mainly study mono-
tone TVPI systems where each variable has only the nonnegativity constraint
and does not necessarily have an upper bound. However, we note that the non-
negativity constraints can be easily removed. It is known that if a TVPI system
is feasible, then there exists a feasible solution whose bit size is polynomially

1 The word “monotone” is sometimes used to mean that the solution space is mono-
tone, i.e., if a vector x is a solution of a problem, then a vector x′ such that x ≤ x′

is also a solution. However, we follow the standard notation in references for TVPI
systems.
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bounded by the length of the input (e.g., [9]). That is, letting B be a sufficiently
large integer depending on the length of the input, we can assume that there exist
upper and lower bounds such that −B ≤ xi ≤ B for every i without changing the
feasibility of the system. Hence, if we consider a new variable x′

i = xi+B instead
of original variable xi for each i, then we obtain the nonnegativity constraint
and an upper bound 0 ≤ x′

i ≤ 2B for every i.
For monotone TVPI systems with the nonnegativity constraints on the vari-

ables, we associate a directed graph to each instance and propose an algorithm
that runs in O(n · s ·2O(� log �) +n+m) time. Here, s is the length of the input of
the problem and � is the maximum number of the vertices in any strongly con-
nected component of the associated graph. If � is a constant, then the algorithm
runs in polynomial time.

Compared with the O(mU) time algorithm by Bar-Yehuda and Rawitz, our
algorithm has an advantage that the time complexity of our algorithm is inde-
pendent of U . In general, pseudo-polynomial time algorithms run in exponential
time if the variables do not have bounds since the magnitude of a solution might
increase to the exponential size of the length of the input. On the other hand,
the exponential part of the time complexity of our algorithm only depends on �.
Therefore, our algorithm can solve the problem without bounds on the variables
faster if � is small.

From our result, it can be observed that the hardness of the feasibility prob-
lem lies on large strongly connected components of the graph. Therefore, to
provide an efficient algorithm to all instances or to show strong NP-hardness,
we have to deal with large strongly connected components in the graph.

In practice, for example some scheduling problem can be formulated as a
TVPI system (see e.g., [4]). In such a formulation, the arcs in the associ-
ated graph correspond to the following: “some job should be done earlier than
another job.” In this context, we can observe that � might be small depending on
applications.

The rest of the paper is organized as follows. In Sect. 2, we prepare some
terminologies and ideas for explaining our algorithm and state our main theo-
rem. In Sect. 3, we explain our algorithm and analyze the running time of the
algorithm. Then we prove our main theorem. In Sect. 4, we conclude the paper.

2 Preliminary

In this section, we describe our problem discussed in the paper. In Subsect. 2.1,
we give a formulation of integer linear systems with two variables per inequal-
ity (TVPI). Then we introduce monotone TVPI systems and explain their nice
characteristic used in our algorithm. In Subsect. 2.2, we refer the algorithms
given by Lenstra Jr. and Kannan for integer linear systems with fixed number of
variables. We use the Kannan’s algorithm as a subroutine in our algorithm. In
Subsect. 2.3, we reduce our problem to a problem without upper-bound inequal-
ities (which are defined later). In Subsect. 2.4, we explain how to construct a
directed graph from a monotone TVPI system. Our algorithm and its analysis
rely on this directed graph.
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2.1 Monotone TVPI Systems

We here formulate integer linear systems with two variables per inequality
(TVPI). In the system, we are given n variables and m inequalities. For
i = 1, ...,m, the i-th inequality is formulated as follows:

aixji + bixki
≥ ci,

where ai, bi, ci are integers and xji , xjk are distinct variables. The problem is to
find a nonnegative integral vector x satisfying the inequalities.

A TVPI system is called monotone when the two coefficients of the two
variables are opposite signs in every inequality. Without loss of generality, we
can write down the i-th inequality of the monotone TVPI system as follows:

aixji − bixki
≥ ci,

where ai and bi are nonnegative integers, ci is an integer. In the rest of the paper,
we denote by M the set of inequalities of an instance of monotone TVPI systems.
We also denote by M the instance itself. It was observed by Veinott [15] that
the set of all feasible solutions of a monotone TVPI system forms a distributive
lattice. This fact induces that monotone TVPI systems have the following nice
characteristic. A solution x∗ is called a unique minimal solution when for any
other solution x, each component of x∗ is less than or equal to the corresponding
component of x. The following lemma is shown by Veinott [15] (see also [6]).

Lemma 1 ([6,15]). If a monotone TVPI system is feasible, then there exists a
unique minimal solution.

2.2 Polynomial Time Algorithm for Integer Linear Systems
with Fixed Number of Variables

The feasibility problem of general integer linear systems is formulated as follows.
Let n and m be positive integers, A ∈ Z

m×n, and b ∈ Z
m. Then, the problem is

to check whether there exists a vector x ∈ Z
n satisfying the linear system Ax ≥ b.

The vector is called feasible solution, and if there exists one, then the system is
called feasible. In the optimization variant, we are asked to find a feasible vector
x ∈ Z

n minimizing an objective function cT x for a given vector c ∈ Z
n. The

vector is called an optimal solution. Note that this problem is usually called an
integer linear programming problem.

Lenstra Jr. [11] showed that if the number of the variables of the problem is
a fixed constant, then the problem is solvable in polynomial time. That is, he
showed the following theorem:

Theorem 1 ([11]). Given an instance of integer linear programming problem
with n variables and m inequalities, if n is a fixed constant, then the problem
can be solved in polynomial time.
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The algorithm of Lenstra Jr. runs in time 2O(n2) times a polynomial in the
length of the input that contains binary encodings of the numbers, namely, it
runs in weakly polynomial time for fixed n. Note that Kannan [7] improved the
time to O(s ·2O(n log n)), where s is the length of the input. In this paper, we will
not touch the details of these algorithms but use the results in our algorithm. In
particular, we set the vector c of an objective function as the vector whose every
elements are all 1’s. Thus, if we obtain an optimal solution for the objective
function in a monotone TVPI system, then it is a unique minimal solution by
Lemma 1.

2.3 Remove All Upper-Bound Inequalities

Let M be the set of m inequalities given by an instance of monotone TVPI
systems. From the monotonicity, M has the following patterns of inequalities.

1. ai = bi = 0
2. ai > 0, bi > 0
3. ai > 0, bi = 0
4. ai = 0, bi > 0

For pattern 1, the inequality is satisfied if and only if ci ≤ 0. Thus, if there
exists a inequality with pattern 1 such that ci > 0, then M is infeasible.

Pattern 2 is the normal type of inequalities. This type of inequalities bounds
a variable by the other one.

For pattern 3, the inequalities are one-variable inequalities. This type of
inequalities gives lower bounds of variables.

For pattern 4, the inequalities are also one-variable inequalities. Note that
this type of inequalities is transformed to xk ≤ − ci

bi
. If ci ≤ 0, then M might be

feasible. Otherwise, M is infeasible since xk ≥ 0. Thus, this pattern gives upper
bounds of variables. We call an inequality of this type an upper-bound inequality.

Let M2 ⊆ M be the set of m2 upper-bound inequalities and M1 = M \M2 be
the other m1 inequalities. We rearrange the indices of M so that the index set I1
of M1 is {1, 2, ...,m1} and the index set I2 of M2 is {m1+1,m1+2, ...,m1+m2 =
m}. We use the following lemma which was observed by Chandrasekaran and
Subramani [3]:

Lemma 2 ([3]). Let M be the inequalities of a monotone TVPI system and
x∗ be a unique minimal solution of M1. If x∗ satisfies M2, then M is feasible.
Otherwise, M is infeasible.

Proof. Since the former is easy, we only show the latter. Assume that the unique
minimal solution x∗ of M1 does not satisfy M2, that is, there exists an index i ∈
I2 such that −bix

∗
ki

< ci. Moreover, assume that there exists a feasible solution x′

of M . By definition, x′
ki

≥ x∗
ki

holds. Therefore, we have −bix
′
ki

≤ −bix
∗
ki

< ci.
This is a contradiction since x′ satisfies M2 by the feasibility. Therefore, M is
infeasible. ��
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If we construct an algorithm for monotone TVPI systems which returns a
unique minimal solution, then, by Lemma2, we do not have to consider the
whole inequalities M , but only smaller set of inequalities M1. Hereafter, without
loss of generality, we assume that there is no inequality which is pattern 1. It is
possible to check which pattern each inequality has in O(1) time.

2.4 Transform a Monotone TVPI System to a Directed Graph

Given a monotone TVPI system M with n variables, we transform it to a directed
graph G(M). The idea of the transformation is inspired by the work of Shostak
[13] on the fractional feasibility. Let M1 and M2 be the subsets of M defined in
previous subsection. For i = 1, . . . , m1, the i-th inequality (which has pattern 2
or 3) of M1 can be written in the following form:

xji ≥ bi

ai
xki

+
ci

ai
.

We denote by αi and βi the coefficient bi/ai and the intercept ci/ai, respec-
tively. Thus, the inequality is written as

xji ≥ αixki
+ βi.

We then construct a directed graph G = (V,A) associated to M . Define
V := {0, 1, . . . , n}, where each vertex j corresponds to the variable xj of the
monotone TVPI system for j = 1, . . . , n and 0 is an additional vertex. Moreover,
for any i ∈ I1, we add to A an arc from ki to ji with weight (αi, βi). If αi is zero,
βi becomes a lower bound of xji . In this case, we add an arc which has weight
(1, βi) from 0 to ji.

Consider the strongly connected component decomposition of the graph G
constructed above. Assume that each component has at most � vertices. In the
rest of the paper, we show the following theorem.

Theorem 2. If each strongly connected component in the directed graph asso-
ciated to a monotone TVPI system has at most � vertices, then the feasibility
problem is solvable in O(n ·s ·2O(� log �)+n+m) time, where s is the length of the
input. Therefore, if � is a fixed constant, the problem is solvable in polynomial
time.

3 Algorithm to Solve Monotone TVPI Systems

We are given an instance M of monotone TVPI systems such that for i =
1, . . . ,m, the i-th inequality is written as follows:

aixji − bixki
≥ ci,

where ai and bi are nonnegative integers, ci is an integer. We have to find non-
negative integral vector x satisfying the given inequalities. In this section, we



A Fast Algorithm for Unbounded Monotone TVPI Systems 215

Algorithm 1. Solve monotone TVPI systems
1: Partition M into M1 and M2

2: Construct a directed graph G(M1)
3: Decompose G(M1) to the strongly connected components
4: Order the strongly connected components C1, . . . , Cp by topological sort and let

(C1, . . . , Cp) be the order
5: for 1 ≤ k ≤ p do
6: Solve a minimization problem in Ck (using Kannan’s algorithm)
7: if obtain a unique minimal solution x∗

j for j ∈ Ck then
8: continue
9: else

10: return ”infeasible”
11: end if
12: end for
13: if x∗ satisfies M2 then
14: return ”feasible” and halt
15: else
16: return ”infeasible” and halt
17: end if

prove Theorem 2 by giving an algorithm that utilize the directed graph defined
in Subsect. 2.4.

Our algorithm is shown in Algorithm1. In what follows, we explain each line
in detail.

In line 1, we partition the set M of m inequalities into the set M2 of upper-
bound inequalities and the set M1 of the other inequalities as described in
Subsect. 2.3. This line can be done in time O(m), since the type of each inequal-
ity can be checked in time O(1). In lines 2–12, we compute a unique minimal
solution of M1.

In line 2, we construct a directed graph G(M1) from M1. Note that G(M1)
has n + 1 vertices and m1 arcs corresponding to the m1 inequalities in M1. As
described in Subsect. 2.4, there is an arc from xki

to xji with a weight (αi, βi) for
each i, where we recall that the i-th inequality in M1 can be written as follows:

xji ≥ bi

ai
xki

+
ci

ai

= αixki
+ βi

since ai �= 0. (If ai = 0, then such inequality is an upper-bound inequality.).
This line can be done in O(m1 + n) time.

In line 3, we decompose G(M1) to the strongly connected components in time
O(m1 +n). For instance, see Fig. 1. As assumed in statement of Theorem 2, each
component has at most � vertices.

In line 4, we order the strongly connected components by topological sort.
This line can be done in O(m1 + n) time. Let the components be ordered as
(C1, C2, . . . , Cp), where p is the number of the strongly connected components.
For instance, see Fig. 2.
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Fig. 1. A directed graph decomposed to strongly connected components
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Fig. 2. The strongly connected components ordered by topological sort

In lines 5–12, we compute a unique minimal solution of M1 inductively
according to the order of the strongly connected components. Without loss of
generally, we assume that C1 = {0}. In the k-th round, we compute assignments
to the variables in Ck in the unique minimal solution x∗ for k = 1, . . . , p. For
k = 1, we set x0 = 0. For k > 1, assume that the value of x∗

j is obtained for
all xj ∈ Cr for r ≤ k − 1. For Ck, there only exist incoming arcs from Ci with
i < k since C1, . . . , Cp are sorted according to the strongly connected compo-
nent. These arcs imply lower bounds on variables in Ck. Let Lk be the set of
such lower bounds on Ck. Let M (k) be the set of the inequalities in M1 such
that both the vertices ji and ki corresponding to the variables xji and xki

are
contained in Ck. Then we minimize

∑
j∈Ck

xj subject to Lk and M (k), using the
algorithm of Kannan and substitute the optimal solution to x∗

j for j ∈ Ck.
To show the correctness of these lines, we prove the following Lemma.

Lemma 3. Lines 5–12 correctly compute a unique minimal solution of M1 in
O(n · s · 2O(� log �)) time, where s is the length of the input.

Proof. We prove this by induction on k in the algorithm. Note that the strongly
connected components are sorted as (C1, C2, . . . , Cp).

(1) In the case of k = 1, we assign 0 to x0. This is clearly minimal.
(2) In the case of k > 1, assume that until (k − 1)-th strongly connected com-

ponent, we have obtained a unique minimal solution x∗
j′ to (

⋃k−1
r=1 M (r)) ∪

(
⋃k−1

r=1 Lr) for j′ ∈ ⋃k−1
r=1 Cr. Observe that for j ∈ Ck each variable xj

to Mk has to satisfy the lower bounds Lk, since x∗
j′ so far is minimal for

j′ ∈ ⋃k−1
r=1 Cr. Thus, xj ≥ x∗

j must hold for j ∈ Ck, where x∗
j is a unique
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minimal solution to M (k) ∪ Lk. Therefore, x∗
j for j ∈ Ck is also a unique

minimal solution to (
⋃k

r=1 M (r)) ∪ (
⋃k

r=1 Lr). Hence, in each round, the
variables are assigned some values that are less than or equal to the values
in the unique minimal solution to M1. Thus, if we obtain an assignment to
all the variables in line 12, it is the unique minimal solution.

Now, we analyze the running time of the algorithm. Since we compute a
unique minimal solution by minimizing

∑
j∈Ck

xj subject to M (k) ∪ Lk by Kan-
nan’s algorithm in time, each round takes O(s · 2O(� log �)), where s is the length
of the input. Note that k is at most n. Therefore, the overall running time of
lines 5–12 is at most O(n · s · 2O(� log �)). This completes the proof. ��

In lines 13–17, we check whether the unique minimal solution to M1 satisfies
M2 or not. This can be done in O(m2) time. From Lemma 2, if it satisfies M2,
then the problem is feasible, and, otherwise, the problem is infeasible.

The overall running time of the algorithm is O(n ·s ·2O(� log �)+n+m), where
s is the length of the input. Therefore, we have shown Theorem2.

4 Conclusion

In this paper, we present an algorithm for monotone TVPI integer linear systems
without bounds on the variables that runs in polynomial time if the maximum
number � of the vertices in any strongly connected component of the associ-
ated graph is a fixed constant. Note that it is also a fixed-parameter algorithm
parameterized by �. Our algorithm utilize the one by Kannan [11] for solving
integer linear programs with fixed number of variables. From our result, it can
be observed that the hardness of monotone TVPI systems lies on large strongly
connected components of the associated graph. Therefore, to provide an efficient
algorithm to all instances or to show strong NP-hardness, we have to deal with
large strongly connected components in the graph.
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Abstract. In this paper, we introduce and study the multilevel-
planarity testing problem, which is a generalization of upward pla-
narity and level planarity. Let G = (V, E) be a directed graph and
let � : V → P(Z) be a function that assigns a finite set of integers
to each vertex. A multilevel-planar drawing of G is a planar drawing
of G such that the y-coordinate of each vertex v ∈ V is y(v) ∈ �(v), and
each edge is drawn as a strictly y-monotone curve.

We present linear-time algorithms for testing multilevel planarity of
embedded graphs with a single source and of oriented cycles. Comple-
menting these algorithmic results, we show that multilevel-planarity test-
ing is NP-complete even in very restricted cases.

1 Introduction

Testing a given graph for planarity, and, if it is planar, finding a planar embed-
ding, are classic algorithmic problems. However, one is often not interested in
just any planar embedding, but in one that has some additional properties.
Examples of such properties include that a given existing partial drawing should
be extended [3,17] or that some parts of the graph should appear clustered
together [11,18].

There also exist notions of planarity specifically tailored to directed graphs.
An upward-planar drawing is a planar drawing where each edge is drawn as
a strictly y-monotone curve. While testing upward planarity of a graph is an
NP-complete problem in general [15], efficient algorithms are known for single-
source graphs and for embedded graphs [6,7]. One notable constrained version of
upward planarity is that of level planarity. A level graph is a directed graph G =
(V,E) together with a level assignment γ : V → Z that assigns an integer level
to each vertex and satisfies γ(u) < γ(v) for all (u, v) ∈ E. A drawing of G is
level planar if it is upward planar, and we have y(v) = γ(v) for the y-coordinate
of each vertex v ∈ V . Level-planarity testing and embedding is feasible in linear
time [19]. There exist further level-planarity variants on the cylinder and on
the torus [1,4] and there has been considerable research on further-constrained
versions of level planarity. Examples include ordering the vertices on each level
according to so-called constraint trees [2,16], clustered level planarity [2,13],
partial level planarity [8] and ordered level planarity [20].
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Contribution and Outline. In this paper, we introduce and study the multilevel-
planarity testing problem. Let P(Z) denote the power set of integers. The input of
the multilevel-planarity testing problem consists of a directed graph G = (V,E)
together with a function � : V → P(Z), called a multilevel assignment,
which assigns admissible levels, represented as a set of integers, to each ver-
tex. A multilevel-planar drawing of G is a planar drawing of G such that for
the y-coordinate of each vertex v ∈ V it holds that y(v) ∈ �(v), and each edge is
drawn as a strictly y-monotone curve. We start by discussing some preliminar-
ies, including the relationship between multilevel planarity and existing planarity
variants in Sect. 2. Then, we present linear-time algorithms that test multilevel
planarity of embedded single-source graphs and of oriented cycles with multiple
sources in Sects. 3 and 4, respectively. In Sect. 5, we complement these algo-
rithmic results by showing that multilevel-planarity testing is NP-complete for
abstract single-source graphs and for embedded multi-source graphs where it
is |�(v)| ≤ 2 for all v ∈ V . We finish with some concluding remarks in Sect. 6.

2 Preliminaries

This section consists of three parts. First, we introduce basic terminology and
notation. Second, we discuss the relationship between multilevel planarity and
existing planarity variants for directed graphs. Third, we define a normal form
for multilevel assignments, which simplifies the arguments in Sects. 3 and 4.

Basic Terminology. Let G = (V,E) be a directed graph. We use the terms
drawing, planar, (combinatorial) embedding and face as defined by Di Battista
et al. [10]. We say that two drawings are homeomorphic if they respect the
same combinatorial embedding. A multilevel assignment � : V → P(Z) assigns
a finite set of possible integer levels to each vertex. An upward-planar drawing
is multilevel planar if y(v) ∈ �(v) for all v ∈ V . Note that any finite set of
integers can be represented as a finite list of finite integer intervals. We choose
this representation to be able to represent sets of integers that contain large
intervals of numbers more efficiently.

A vertex of a directed graph with no incoming (outgoing) edges is a source
(sink). A directed, acyclic and planar graph with a single source s is an sT -graph.
An sT -graph with a single sink t and an edge (s, t) is an st-graph. In any upward-
planar drawing of an st-graph, the unique source and sink are the lowest and
highest vertices, respectively, and both are incident to the outer face. For a face f
of a planar drawing, an incident vertex v is called source switch (sink switch) if
all edges incident to f and v are outgoing (incoming). Note that a source switch
or sink switch does not need to be a source or sink in G. We will frequently add
incoming edges to sources and outgoing edges to sinks during later constructions,
referring to this as source canceling and sink canceling, respectively. An oriented
path of length k is a sequence of vertices (v1, v2, . . . , vk+1) such that for all 1 ≤
i ≤ k either the edge (vi, vi+1) or the edge (vi+1, vi) exists. A directed path of
length k is a sequence of vertices (v1, v2, . . . , vk+1) such that for all 1 ≤ i ≤ k
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the edge (vi, vi+1) exists. Let u, v ∈ V be two distinct vertices. Vertex u is a
descendant of v in G, if there exists a directed path from v to u. A topological
ordering is a function τ : V → N such that for every v ∈ V and for each
descendant u of v it is τ(v) < τ(u).

Relationship to Existing Planarity Variants. Multilevel-planarity testing is a
generalization of level planarity. To see this, let G = (V,E) be a directed graph
together with a level assignment γ : V → Z. Define �(v) = {γ(v)} for all v ∈ V .
It is readily observed that a drawing Γ of G is level planar with respect to γ if
and only if Γ is multilevel planar with respect to �. Therefore, level planarity
reduces to multilevel planarity in linear time.

Multilevel-planarity testing is also a generalization of upward planarity.
Without loss of generality, the vertices in an upward-planar drawing can be
assigned integer y-coordinates, and there is at least one vertex on each level.
Hence, upward planarity of G can be tested by setting �(v) = [1, |V |] for all v ∈ V
and testing the multilevel planarity of G with respect to �. Therefore, upward
planarity reduces to multilevel planarity in linear time. By then restricting the
multilevel assignment, multilevel planarity can also be seen as a constrained ver-
sion of upward planarity. Garg and Tamassia [15] showed the NP-completeness
of upward-planarity testing, which directly gives the following.

Theorem 1. Multilevel-planarity testing is NP-complete.

Multilevel Assignment Normal Form. A multilevel assignment � has normal form
if for all (u, v) ∈ E it holds that min �(u) < min �(v) and max �(u) < max �(v).
Some proofs are easier to follow for multilevel assignments in normal form. The
following lemma justifies that we may assume without loss of generality that �
has normal form.

Lemma 1. Let G = (V,E) be a directed graph together with a multilevel assign-
ment �. Then there exists a multilevel assignment �′ in normal form such that any
drawing of G is multilevel planar with respect to � if and only if it is multilevel
planar with respect to �′. Moreover, �′ can be computed in linear time.

Proof. The idea is to convert �(v) into �′(v) ⊆ �(v) for all v ∈ V by finding
a lower bound lv and an upper bound uv for the level of v, and then set-
ting �′(v) = �(v) ∩ [lv, uv]. To find the lower bound, iterate over the vertices
in increasing order with respect to some topological ordering τ of G. Because
all edges have to be drawn as strictly y-monotone curves, for each vertex v ∈ V
it must be y(v) > max(w,v)∈E lw. So, set lv = max(min �(v),max(w,v)∈E lw + 1).
Analogously, to find the upper bound, iterate over V in decreasing order with
respect to τ . Again, because edges are drawn as strictly y-monotone curves,
for each vertex v ∈ V it must hold true that y(v) < min(v,w)∈E uw. Therefore,
set uv = min(max �(v),min(v,w)∈E uw − 1). This means that in any multilevel-
planar drawing of G the y-coordinate of v ∈ V is y(v) ∈ �(v) ∩ [lv, uv]. So it
follows that a drawing of G is multilevel planar with respect to � if and only if
it is multilevel planar with respect to �′.
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To see that the running time is linear, note that a topological ordering of G
can be computed in linear time and every vertex and edge is handled at most
twice during the procedure described above. Because every level candidate in �
is removed at most once, the total running time is O(n+

∑
v∈V |�(v)|), i.e., linear

in the size of the input. ��

3 Embedded sT -Graphs

In this section, we characterize multilevel-planar sT -graphs as subgraphs of cer-
tain planar st-graphs. Similar characterizations exist for upward planarity and
level planarity [12,21]. The idea behind our characterization is that for any given
multilevel-planar drawing, we can find a set of edges that can be inserted without
rendering the drawing invalid, and which make the underlying graph an st-graph.
Thus, the graph must have been a subgraph of an st-graph. This technique is
similar to the one found by Bertolazzi et al. [7], and in fact is built on top of it.

To use this characterization for multilevel-planarity testing, we cannot require
a multilevel-planar drawing to be given. We show that if we choose the set of
edges to be inserted carefully, the respective set of edges can be inserted into
any multilevel-planar drawing for a fixed combinatorial embedding. An algo-
rithm constructing such an edge set can therefore be used to test for multilevel
planarity of embedded sT -graphs, resulting in Theorem 2. The algorithm is con-
structive in the sense that it finds a multilevel-planar drawing, if it exists. In
Sect. 5, we show that testing multilevel planarity of sT -graphs without a fixed
combinatorial embedding is NP-hard. Recall that every multilevel-planar draw-
ing is upward planar. We now prove that the vertex with the largest y-coordinate
on the boundary of each face is the same across all homeomorphic drawings.

Lemma 2. Let G = (V,E) be a biconnected sT -graph together with an upward-
planar drawing Γ . For each inner face f of Γ and each vertex v incident to f ,
let ∠Γ,f (v) denote the angle defined by the two edges incident to v and f in Γ .
Then the following properties hold:

1. There is exactly one sink switch tf on the boundary of f with ∠Γ,f (tf ) ≤ π,
namely the vertex with greatest y-coordinate among all vertices incident to f .

2. Let Γ ′ be an upward-planar drawing of G that is homeomorphic to Γ . Then
the vertex tf has the greatest y-coordinate of all vertices incident to f in Γ ′.

Proof. The first property was observed by Bertolazzi et al. [7, p. 138, fact 3]. To
prove the second property, assume that there exists an upward-planar drawing Γ ′

of G and a face f such that in Γ ′, vertex tf does not have the greatest y-
coordinate of all vertices incident to f . Let e1 = (v1, tf ) and e2 = (v2, tf ) be
the edges incident to f and tf . Figure 1 shows exemplary drawings Γ and Γ ′.
Because G has a single source s, there exist directed paths p1 and p2 from s
to v1 and v2, respectively. Then the left-to-right order of the edges e1 and e2
in Γ and Γ ′ is determined by the order of the outgoing edges at the last common
vertex c on p1 and p2. Let t′ 	= tf be the vertex with greatest y-coordinate of all
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vertices incident to f in Γ ′. Then it holds that ∠Γ ′,f (t′) ≤ π and from the first
property it follows that ∠Γ ′,f (tf ) > π. Since Γ and Γ ′ have the same underlying
combinatorial embedding, the clockwise cyclic walk around f is identical in both
drawings. But because ∠Γ,f (tf ) ≤ π and ∠Γ ′,f (tf ) > π, the order of the outgoing
edges of c is different in Γ and Γ ′. Note that c either has an incoming edge or
it is s = c, in which case the edge (s, t) lies to the left, i.e., the cyclic order
of the edges around c is different in Γ and Γ ′. Therefore, Γ and Γ ′ are not
homeomorphic. ��

Note that the result of Lemma 2 also holds for embedded sT -graphs that
are not biconnected. Obviously it holds for any biconnected component. Any
subgraph G′ that does not belong to any biconnected component is an attached
tree inside a face f given by the combinatorial embedding. If f is an inner face,
the unique vertex tf of that face with maximal y-coordinate must be higher than
any vertex of G′ in any upward planar drawing.

Fig. 1. Proof of Lemma 2. Fig. 2. Not all edges are valid for the
augmentation in Lemma 3.

Bertolazzi et al. showed that any sT -graph with an upward-planar embedding
can be extended to an st-graph with an upward-planar embedding that extends
the original embedding [6,7]. More formally, let G = (V,E) be an sT -graph
together with an upward-planar drawing Γ . Then there exists an st-graph Gst =
(V ∪̇ {t}, E ∪̇Est) where t is the unique sink together with an upward-planar
drawing Γst that extends Γ . Moreover, Gst and Γst can be computed in linear
time. Note that in general it is possible for a given Est to choose an upward-
planar drawing Γ of G so that the additional edges in Est cannot be added into Γ
as y-monotone curves. For an example, see Fig. 2, where augmenting with the
red and black edge works only for the drawing shown in (a), whereas augmenting
with the blue and black edge works for both drawings. In Lemma 3 we therefore
show that there is a set Est that can be added into any drawing with the same
combinatorial embedding as Γ . In a way, this is the most general set Est.

Lemma 3. Let G = (V,E) be a directed sT -graph with a fixed combinatorial
embedding. Then there exists an st-graph Gst = (V ∪̇ {t}, E ∪̇Est), where t is
the unique sink, such that for any upward-planar drawing Γ of G there exists an
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upward-planar drawing Γst of Gst that extends Γ . Moreover, Gst can be computed
in linear time.

Proof. Start by finding an initial upward-planar drawing Γinit of G in linear
time using the algorithm due to Bertolazzi et al. [7]. The algorithm also out-
puts a matching st-graph Gst together with an upward-planar drawing Γst that
extends Γinit. Note that any edge e ∈ Est is drawn within some face of Γinit.
Because t is the only sink of Gst, it must have the highest y-coordinate among
all vertices in every upward-planar drawing of Gst. Therefore, changing all edges
in Est drawn within the outer face to have endpoint t ensures that these edges
can be drawn within the outer face of any upward-planar drawing Γ of G as y-
monotone curves while preserving planarity. For any inner face f , Lemma 2
states that there is a unique tf incident to f with greatest y-coordinate in every
upward-planar drawing of G homeomorphic to Γ . So changing all edges in Est

that are drawn within f to have endpoint tf ensures that these edges can be
drawn within f in any upward-planar drawing Γ of G as y-monotone curves while
preserving planarity. By precomputing tf for every face, this procedure handles
every edge in Est in constant time, which gives linear running time overall. ��

We now have a set of edges that can be used to complete G into Gst. If a
multilevel-planar drawing for the given combinatorial embedding of G respect-
ing � exists, then it must also exist for Gst. However, the property of � being in
normal form might not be fulfilled anymore in Gst because of the added edges.
We therefore need to bring � into normal form �′ again. Lemma 1 tells us that
this does not impact multilevel planarity. We conclude that G is multilevel pla-
nar with respect to � if and only if Gst is multilevel planar with respect to �′.
The final property we need is proved by Leipert [21, p. 117, Theorem 5.1], and
described in an article by Jünger and Leipert [19].

Lemma 4. Let G be an st-graph together with a level assignment γ. Then for
any combinatorial embedding of G there exists a drawing of G with that embed-
ding that is level planar with respect to γ.

If �′ is in normal form, �′(v) 	= ∅ is a necessary and sufficient condition
that there exists a level assignment γ : V → Z with γ(v) ∈ �′(v) for all v ∈
V . Setting γ(v) = min �′(v) is one possible such level assignment. Then G is
level planar with respect to γ and therefore multilevel planar with respect to �,
resulting in the characterization of multilevel-planar st-graphs:

Corollary 1. Let G be an st-graph together with a multilevel assignment � in
normal form. Then there exists a multilevel-planar drawing for any combinatorial
embedding of G if and only if �(v) 	= ∅ for all v.

For a constructive multilevel-planarity testing algorithm, we now first take
the edge set computed by the algorithm by Bertolazzi et al. [7] and modify it
using Lemma 3 to complete any sT -graph to an st-graph. Note that for this step,
we need a fixed combinatorial embedding to be given, as is required by Point 2
of Lemma 2. Once arrived at an st-graph, we only need to check the premise of
Corollary 1. This concludes the testing algorithm:
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Theorem 2. Let G be an embedded sT -graph with a multilevel assignment �.
Then it can be decided in linear time whether there exists a multilevel-planar
drawing of G respecting that embedding. If so, such a drawing can be computed
within the same running time.

Our algorithm uses the fact that to augment sT -graphs to st-graphs, only edges
connecting sinks to other vertices need to be inserted. For graphs with multiple
sources and multiple sinks, further edges connecting sources to other vertices
need to be inserted. The interactions that occur then are very complex: In Sect. 5,
we show that deciding multilevel planarity is NP-complete for embedded multi-
source graphs. In the next section, we identify oriented cycles as a class of multi-
source graphs for which multilevel planarity can be efficiently decided.

4 Oriented Cycles

In this section, we present a constructive multilevel-planarity testing algorithm
for oriented cycles, i.e., directed graphs whose underlying undirected graph is
a simple cycle. We start by giving a condition for when an oriented cycle G =
(V,E) together with some level assignment γ admits a level-planar drawing. This
condition yields an algorithm for the multilevel-planar setting.

In this section, γ is always level assignment and � is always a multilevel
assignment. Define max γ = max{γ(v) | v ∈ V } and min γ = min{γ(v) | v ∈ V }.
Further set max � = max{max �(v) | v ∈ V } and min � = min{min �(v) | v ∈ V }.
Let Smin ⊂ V be sources with minimal level, i.e., Smin = {v ∈ V | γ(v) =
min γ}, and let Tmax ⊂ V be the sinks with maximal level. We call sources
in Smin minimal sources, sinks in Tmax are maximal sinks. Two sinks t1, t2 ∈ Tmax

are consecutive if there is an oriented path between t1 and t2 that does not
contain any vertex in Smin. The set Tmax is consecutive if all sinks in Tmax are
pairwise consecutive. We define consecutiveness for sources in Smin analogously.
Because G is a cycle, consecutiveness of Tmax also means that Smin is consecutive.
If both Smin and Tmax are consecutive, we say that γ is separating.

Lemma 5. Let G be an oriented cycle with a level assignment γ. Then G is
level planar with respect to γ if and only if Tmax is consecutive.

Proof. For the “if” part, augment G to a planar st-graph as follows. Let pt be
the oriented path of minimal length that contains all sinks in Tmax and no vertex
in Smin, and let t1, t2 ∈ Tmax denote its endpoints. Let ps be the oriented path
from t2 to t1 so that ps ∪pt = G and ps ∩pt = {t1, t2}. Draw pt from left to right;
see Fig. 3. Below it, draw ps from right to left. Fix some vertex smin ∈ Smin and
add an edge from smin to every source on the path pt. Add a new vertex s to G,
set γ(s) = min γ − 1 and add an edge from s to every source on the path ps.
Thus, s is now the only source. Next, observe that any sink ts on the path ps

is drawn to the left of smin or to the right of smin. Add the edge (ts, t1) or the
edge (ts, t2), respectively. Finally, add a new vertex t to G, set γ(t) = max γ + 1
and add an edge from every sink on the path pt to t. Thus, t is now the only sink.
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All added edges (u, v) satisfy γ(u) < γ(v). Hence, G is now an st-graph with
a level assignment γ and so Lemma 4 gives that G is level planar with respect
to γ.

For the “only if” part, assume that Tmax is not consecutive. Then there are
maximal sinks t1, t2 ∈ Tmax and minimal sources s1, s2 ∈ Smin that appear in
the order s1, t1, s2, t2 around the cycle underlying G. Because the chosen sinks
and sources are highest and lowest vertices, respectively, the four edge-disjoint
paths that connect them must intersect. ��

t

s

t1 t2

smin

pt

ps

Fig. 3. An st-augmentation of an oriented cycle. The gray dashed edges are added for
the st-augmentation. The blue edges belong to path pt and the red edges to path ps.
(Color figure online)

Recall that any multilevel-planar drawing is a level-planar drawing with
respect to some level assignment γ. Lemma 5 gives a necessary and sufficient
condition for γ so that the drawing is level planar. Given a multilevel assign-
ment �, we therefore find an induced separating level assignment γ, or determine
that no such level assignment exists. It must be �(v) 	= ∅ for all v ∈ V ; other-
wise, G admits no multilevel drawing. We find an induced level assignment γ that
keeps the sets Smin and Tmax as small as possible, because such a level assignment
is, intuitively, most likely to be separating. To this end, let S′ ⊂ V denote the
sources of G such that for s′ ∈ S′ we have min �(s′) = min �. Further, let S′′ ⊆ S′

denote the sources of G such that for s′′ ∈ S′′ we have �(s′′) = {min �}. Like-
wise, let T ′ ⊂ V denote the sinks of G such that for each t′ ∈ T ′ it holds
that max �(t′) = max � let T ′′ ⊆ T ′ denote the sinks of G such that for t′′ ∈ T ′′

we have �(t′′) = {max �}.
Suppose S′′ 	= ∅. Observe that due to the multilevel assignment, all sources

in S′′ have to be minimal sources. Therefore, set Smin = S′′. Otherwise, if S′′ = ∅,
pick any source s′ ∈ S′ and set Smin = {s′}. Proceed analogously to find Tmax.
If T ′′ 	= ∅, set Tmax = T ′′. Otherwise, pick any sink t′ ∈ T ′ and set Tmax = {t′}.
Note that if S′′ or T ′′ are not empty there is no choice but to add all sources
or sinks in them to Smin or Tmax. Otherwise Smin or Tmax contains only one
vertex, which guarantees that Tmax is consecutive. Since � is in normal form,
any remaining vertex can be assigned greedily to its minimum possible level
above all its ancestors. Hence, G is multilevel planar with respect to � if and
only if Tmax is consecutive. We conclude the following.
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Theorem 3. Let G be an oriented cycle together with a multilevel assignment �.
Then it can be decided in linear time whether G admits a drawing that is mul-
tilevel planar with respect to �. Furthermore, if such a drawing exists, it can be
computed within the same time.

5 Hardness Results

We now show that multilevel-planarity testing is NP-complete even in very
restricted cases, namely for sT -graphs without a fixed embedding and for embed-
ded multi-source graphs with at most two possible levels for each vertex.

5.1 sT -Graphs with Variable Embedding

In Sect. 3, we showed that testing multilevel planarity of embedded sT -graphs
is feasible in linear time, because for every inner sink there is a unique sink
switch to cancel it with. We now show that dropping the requirement that the
embedding is fixed makes multilevel-planarity testing NP-hard. To this end, we
reduce the scheduling with release times and deadlines (Srtd) problem,
which is strongly NP-complete [14], to multilevel-planarity testing. An instance
of this scheduling problem consists of a set of tasks T = {t1, . . . , tn} with indi-
vidual release times r1, . . . , rn ∈ N, deadlines d1, . . . , dn ∈ N and processing
times p1, . . . , pn ∈ N for each task (we assume 0 	∈ N), where

∑n
i=1 pi is bounded

by a polynomial in n. See Fig. 4 (a) for an example. The question is whether there
is a non-preemptive schedule σ : T → N, such that for each i ∈ {1, . . . , n} we get
(1) σ(ti) ≥ ri, i.e., no task starts before its release time, (2) σ(ti) + pi ≤ di, i.e.,
each task finishes before its deadline, and (3) σ(ti) < σ(tj) =⇒ σ(ti)+pi ≤ σ(tj)
for any j ∈ {1, . . . , n} \ {i}, i.e., no two tasks are executed at the same time.

Fig. 4. A task gadget (b) for each task and one base gadget (c) that provides the
single source are used to turn a Srtd instance (a) into a multilevel-planarity testing
instance (d).

Create for every task ti ∈ T a task gadget Ti that consists of two vertices u, v
together with a directed path Pi = (w1

i , w2
i , . . . , wpi

i ) of length pi−1; see Fig. 4(b).
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For each vertex wj
i on Pi set �(wj

i ) = [ri, di − 1], i.e., all possible points of time
at which this task can be executed. Set �(u) = �(v) = {0}. Join all task gadgets
with a base gadget. The base gadget consists of three vertices s, u, v and two
edges (s, u), (s, v), where u is placed to the left of v; see Fig. 4(c). Set �(s) = {−1}
and, again, set �(u) = �(v) = {0}. Merge all gadgets at their common vertices u
and v; see Fig. 4(d). Because Srtd is strongly NP-complete, the size of the
resulting graph is polynomial in the size of the input. Further, because the task
gadgets may not intersect in a planar drawing and because they are merged at
their common vertices u and v, they are stacked on top of each other, inducing
a valid schedule of the associated tasks. Contrasting linear-time tests of upward
planarity and level planarity for sT -graphs we conclude:

Theorem 4. Let G be an sT -graph together with a multilevel assignment �.
Testing whether G is multilevel planar with respect to � is NP-complete.

Using a very similar reduction one can also show NP-completeness of multilevel-
planarity testing for trees. Full proofs for Theorem 4 and for trees and can be
found in [5].

Fig. 5. A rectilinear embedding of the planar monotone 3-Sat instance (x1 ∨ x2 ∨ x5)∧
(x2 ∨ x3 ∨ x5) ∧ (x3 ∨ x4 ∨ x5) ∧ (¬x1 ∨ ¬x2 ∨ ¬x5) ∧ (¬x3 ∨ ¬x4 ∨ ¬x5).

5.2 Embedded Multi-source Graphs

We show that multilevel-planarity testing for embedded directed graphs is NP-
complete by reducing from planar monotone 3-Sat [9]. An instance I =
(V, C) of this problem is a 3-Sat instance with variables V, clauses C and addi-
tional restrictions. Namely, each clause is monotone, i.e., it is either positive or
negative, meaning that it consists of either only positive or only negative lit-
erals, respectively. The variable-clause graph of I consists of the nodes V ∪ C
connected by an arc if one of the nodes is a variable and the other node is a
clause that uses this variable. The variable-clause graph can be drawn such that
all variables lie on a horizontal straight line, positive and negative clauses are
drawn as horizontal line segments with integer y-coordinates below and above
that line, respectively, and arcs connecting clauses and variables are drawn as
non-intersecting vertical line segments; see Fig. 5. We call this a planar rectilinear
embedding of I.

Let ΓI be a planar rectilinear embedding of I. Transform this into a
multilevel-planarity testing instance by replacing each positive or negative clause
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of I with a positive or negative clause gadget and merging them at common ver-
tices. Figure 6(a) shows the gadget for the positive clause (xa ∨ xb ∨ xc). The
vertices xa, xb and xc are variables in V. We call vertex pi the pendulum. A
variable x ∈ V is set to true (false) if it lies on level 1 (level 0). In a positive
clause gadget pi must lie on level 0, and so it forces one variable to lie on level
1, i.e., be set to true. The gadget for a negative clause (¬xa ∨ ¬xb ∨ ¬xc) works
symmetrically; its pendulum forces one variable to lie on level 0, i.e., be set to
false; see Fig. 6 (b).

Fig. 6. Gadgets for the clauses (xa ∨ xb ∨ xc) (a) and (¬xa ∨ ¬xb ∨ ¬xc) (b).

Theorem 5. Let G = (V,E) be an embedded directed graph together with a
multilevel assignment �. Testing whether G is multilevel planar is NP-complete,
even if it is |�(v)| ≤ 2 for all v ∈ V .

A detailed proof for Theorem 5 and the graph that results from the instance in
Fig. 5 can be found in [5].

6 Conclusion

In this paper we introduced and studied the multilevel-planarity testing problem.
It is a generalization of both upward-planarity testing and level-planarity testing.

We started by giving a linear-time algorithm to decide multilevel planarity
of embedded sT -graphs. The proof of correctness of this algorithm uses insights
from both upward planarity and level planarity. In opposition to this result,
we showed that deciding the multilevel planarity of sT -graphs without a fixed
embedding is NP-complete. This also contrasts the situation for upward planarity
and level planarity, both of which can be decided in linear time for such graphs.

We also gave a linear-time algorithm to decide multilevel planarity of ori-
ented cycles, which is interesting because the existence of multiple sources makes
many related problems NP-complete, e.g., testing upward planarity, partial level
planarity or ordered level planarity. This positive result is contrasted by the
fact that multilevel-planarity testing is NP-complete for oriented trees. Whether
multilevel-planarity testing becomes tractable for trees with a given combinato-
rial embedding remains an open question. We also showed that deciding mul-
tilevel planarity remains NP-complete for embedded multi-source graphs where
each vertex is assigned either to exactly one level, or to one of two adjacent
levels. This result again contrasts the existence of efficient algorithms for test-
ing upward planarity and level planarity of embedded multi-source graphs. The
following table summarizes our results.
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Fixed combinatorial embedding Not embedded

st-Graphs sT -Graphs Arbitrary Cycles sT -Graphs Trees

Upward

Planarity

O(1) [6] O(n) [6] P [6] O(n) [7] O(n) [7] O(1) [10]

Multilevel

Planarity

O(1)

(Corollary 1)

O(n)

(Theorem 2)

NPC

(Theorem 5)

O(n)

(Theorem 3)

NPC

(Theorem 4)

NPC

(Theorem 5)

Level

Planarity

O(1) [19] O(n) [19] ? O(n) [19] O(n) [19] O(n) [19]
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Abstract. Optimization problems consist of either maximizing or min-
imizing an objective function. Instead of looking for a maximum solu-
tion (resp. minimum solution), one can find a minimum maximal solu-
tion (resp. maximum minimal solution). Such “flipping” of the objec-
tive function was done for many classical optimization problems. For
example, Minimum Vertex Cover becomes Maximum Minimal Ver-
tex Cover, Maximum Independent Set becomes Minimum Maximal
Independent Set and so on. In this paper, we propose to study the
weighted version of Maximum Minimal Edge Cover called Upper Edge
Cover, a problem having application in genomic sequence alignment.
It is well-known that Minimum Edge Cover is polynomial-time solv-
able and the “flipped” version is NP-hard, but constant approximable.
We show that the weighted Upper Edge Cover is much more difficult
than Upper Edge Cover because it is not O( 1

n1/2−ε ) approximable,

nor O( 1
Δ1−ε ) in edge-weighted graphs of size n and maximum degree

Δ respectively. Indeed, we give some hardness of approximation results
for some special restricted graph classes such as bipartite graphs, split
graphs and k-trees. We counter-balance these negative results by giving
some positive approximation results in specific graph classes.
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1 Introduction

Considering a MaxMin or MinMax version of a problem by “flipping” the objec-
tive is not a new idea; in fact, such questions have been posed before for many
classical optimisation problems. Some of the most well-known examples include
the Minimum Maximal Independent Set problem [7] (also known as Min-
imum Independent Dominating Set), the Maximum Minimal Vertex
Cover problem [6], the Minimum Maximal Matching problem (also known
as Minimum Independent Edge Dominating Set) [25], and the Maximum
Minimal Dominating Set problem (also called Upper Dominating Set)
[1]. However, to the best of our knowledge, weighted MaxMin and MinMax
versions have not been considered so far, except for Minimum Independent
Dominating Set [10,20], and weighted upper dominating set problem [8].
MaxMin or MinMax versions of classical problems turn out to be much harder
than the originals, especially when one considers complexity and approxima-
tion. For example, Maximum Minimal Vertex Cover does not admit any
n

1
2−ε approximation [6], while Vertex Cover admits a simple 2-approximation.

Minimum Maximal Matching is NP-hard (but 2-approximable) while Max-
imum Matching is polynomial.

The focus of this paper is on edge cover. An edge cover of a graph G = (V,E)
is a subset of edges S ⊆ E which covers all vertices of G. The edge cover number
of G = (V,E) is the minimum size of an edge cover of G. An optimal edge cover
can be computed in polynomial time, even for the weighted version where a
weight is given for each edge and one wants to minimize the sum of the weight
of the edges in the solution (called here the weighted edge cover number). An
edge cover S ⊆ E is minimal (with respect to inclusion) if the deletion of any
subset of edges from S destroys the covering property. Minimal edge cover is
also known in the literature as an enclaveless set [24] or as a nonblocker set [14].

In this paper, we study the computational complexity of the weighted upper
edge cover number, denoted here uec(G,w), that is the solution with maximum
weight among all minimal edge covers. Formally, the associated optimization
problem called the Weighted Upper Edge Cover problem asks to find the
largest weighted minimal edge cover of an edge-weighted graph.

Weighed Upper Edge Cover
Input: A weighted connected graph G = (V, E, w), where w(e) ≥ 0 for all e ∈ E.
Solution: Minimal edge cover S ⊆ E.
Output: Maximize w(S) =

∑
e∈S w(e).

Hence, if S∗ is an optimal solution of Weighed Upper Edge Cover on (G,w),
then w(S∗) = uec(G,w). The unweighted value of the optimal solution is uec(G)
(denoted upper edge cover number). To the best of our knowledge, the complexity
of computing the weighted upper edge cover number has never been studied in
the literature, while a lot of results appear for the unweighed case (corresponding
to w(e) = 1 for all e ∈ E) [3,11,18,22]. The unweighted variant was firstly
investigated in [21], where it is proven that the complexity of computing the
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upper edge cover number is equivalent to solve the dominating set problem
because uec(G) = |V |−γ(G) where γ(G) is the size of minimum dominating set
of graph G. We will consider the implications of this important remark afterwards
in the paper.

We will now define a related problem useful in the following because it is
proved in [21] that S ⊆ E is a minimal edge cover of G = (V,E) iff S is a
spanning star forest of G without trivial stars (i.e. without stars consisting of a
single vertex).

Maximum Weighted Spanning Star Forest problem (MaxWSSF in
short)
Input: An edge-weighted graph (G,w) on n vertices where G = (V,E) and
w(e) ≥ 0 for all e ∈ E.
Solution: Spanning star forest S = {S1, . . . , Sp} ⊆ E.
Output: maximizing w(S) =

∑
e∈S w(e) =

∑p
i=1

∑
e∈Si

w(e).

Given an instance (G,w) of MaxWSSF, optMaxWSSF (G,w) denotes the
value of an optimal spanning star forest. Authors of [22] describe in details how
to apply MaxWSSF model to alignment of multiple genomic sequence, a critical
task in comparative genomics. They also show that this approach is promising
with real data. In this model, taking weights into account is fundamental since
it represents alignment score. Also, their model uses each edge of the spanning
star forest to output the solution. Therefore, having trivial star is probably
undesirable, which enforces the motivation of studying Weighed Upper Edge
Cover.

The unweighted version (corresponding to the case w(e) = 1 for all edges e)
is denoted by MaxSSF. In this case, the optimal value is optMaxSSF (G). For
unweighted graphs without isolated vertices, we have uec(G) = optMaxSSF (G)
since any spanning star forest (with possible trivial stars) can be (polynomially)
converted into a star spanning forest without trivial stars (i.e. a minimal edge
cover) with same size [21]. Hence, these two problems are completely equivalent
even from an approximation point of view.

Concerning edge-weighted graphs, the relationship between Weighed
Upper Edge Cover and MaxWSSF is less obvious. For instance, we only
have the following inequality: optMaxWSSF (G,w) ≥ uec(G,w) because any min-
imal edge cover is a particular spanning star forest. However, the difference
between these two values can be arbitrarily large as indicated in Fig. 1 (in the
graph drawn in Fig. 1.(b), v4 is an isolated vertex when ε goes to Infinity). This
means that isolated vertices play an important role in feasible solutions. Given
a spanning star forest S = {S1, . . . , Sr} of (G,w), we rename vertices such that
there is some p, 0 ≤ p < r such that Si = {vi} are trivial stars for all 1 ≤ i ≤ p
(if p = 0, then there is no trivial stars), and Sj are non-trivial stars whose cj

is the center for all j > p (if Sj is a single edge, both endpoints are considered
as possible centers). We define Triv = {vi : i ≤ p} as the set of isolated ver-
tices of (V,E(S)) where E(S) = ∪r

j>pSj ; moreover, Vl and Vc are respectively
the set of leaves and the set of centers of stars in V \ Triv. Finally, for v ∈ Vl,
ev(S) = c′v ∈ E(S) denotes the edge linking the center c′ to the leaf v.
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Fig. 1. (a) : The weighted graph G = (V, E, w). (b) : Optimal solution of
MaxWSSF(G, w). (c) : Optimal solution of Weighted Upper Edge Cover for G
with value uec(G, w) = 2.

We mainly focus on specific solutions of MaxWSSF called nice spanning
star forests defined as follows:

Definition 1. S is a nice spanning star forest of (G,w) if Triv = {vi : i ≤ p} is
an independent set in G and all edges of G starting at Triv are linked to leaves of
some �-stars of S with � ≥ 2. Moreover, w(uv) ≤ w(ev(S)) for u ∈ Triv, v ∈ Vl.

Property 2. Any spanning star forest of (G,w) can be polynomially converted
into a nice one with at least the same weight.

It is well known that optimization problems are easier to approximate when
the input is a complete weighted graphs satisfying the triangle inequality, like for
example in the traveling salesman problem. Here, we introduce a generalization
of this notion which works to any class of graphs.

Definition 3. An edge weighted graph (G,w) where G = (V,E) satisfies the
cycle inequality, if for every cycle C, we have:

∀e ∈ C, 2w(e) ≤ w(C) =
∑

e′∈C

w(e′)

Clearly, for complete graphs, cycle and triangle inequality notions coincide. Def-
inition 3 is interesting when focusing on classes of graphs like split graphs or k-
trees. In this article, we are also interested in bivaluate weights (resp., trivalued)
corresponding to the case w(e) ∈ {a, b} with 0 ≤ a < b (resp., w(e) ∈ {a, b, c}
where 0 ≤ a < b < c are 3 reals). The particular case a = 0 and b = 1 (called
here binary weights) is interesting by itself because MaxWSSF with binary
weights exactly corresponds to MaxSSF and has been extensively studied in
the literature. Moreover for instance, binary weighted Minimum Independent
Dominating Set for chordal graphs has been studied in [15], where it is shown
that this restriction is polynomial, but bivalued weighted Minimum Indepen-
dent Dominating Set for chordal graphs with a > 0 is NP-hard [10].

Graph Terminology and Definitions: Throughout this paper, we consider
edge-weighed undirected connected graphs G = (V,E) on n = |V | vertices and
m = |E| edges. Each edge e = uv ∈ E between vertices u and v is weighted by
a non-negative weight w(e) ≥ 0; Kn denotes the complete graph on n vertices; a
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bipartite graph (resp., split graph) G = (L ∪ R,E) is a graph where the vertex
set L ∪ R is decomposable into an independent set (resp., a clique) L and an
independent set R. A k-tree is a graph which can be formed by starting from a k-
clique and then repeatedly adding vertices in such a way that each added vertex
has exactly k neighbors completely connected together (this neighborhood is a
k-clique). For instance, 1-trees are trees and 2-trees are maximal series-parallel
graphs. A graph is a partial k-trees (or equivalently with treewidth at most k)
if it is a subgraph of a k-trees. The degree dG(v) of vertex v ∈ V in G is the
number of edges incident to v and Δ(G) is the maximum degree of the graph G.
A star S ⊆ E of a graph G = (V,E) is a tree of G where at most one vertex
has a degree greater than 1, or, equivalently, it is isomorphic to K1,� for some
� ≥ 0. The vertices of degree 1 (except the center when � ≤ 1) are called leaves
of the star while the remaining vertex is called center of the star. A �-star is a
star of � leaves. If � = 0, the star is called trivial and it is reduced to a single
vertex (the center); otherwise, the star is said non-trivial. A spanning star forest
S = {S1, . . . , Sp} ⊆ E of G is a spanning forest into stars, that is, each Si is a
star (possibly trivial), V (Si) ∩ V (Sj) = ∅ and ∪p

i=1V (Si) = V . An independent
set S ⊆ V of a graph G = (V,E) is a subset of vertices pairwise non-adjacent.
The NP-hard problem MaxIS seeks an independent set of maximum size. The
value of an optimal independent set of G is denoted α(G). A matching M ⊆ E
is a subset of pairwise non-adjacent edges. A matching M of G is perfect if all
vertices of G are covered by M . A dominating set for a graph G is a subset D of
V such that every vertex not in D is adjacent to at least one vertex of D. The
domination number γ(G) is the number of vertices in the smallest dominating
set of G.

Related Work: Upper Edge Cover has been investigated intensively dur-
ing the recent years for unweighed graphs, mainly using the terminologies of
spanning star forests or dominating sets. The minimum dominating set prob-
lem (denoted MinDS) seeks the smallest dominating set of G of value γ(G).
As indicated before, we have uec(G) = n − γ(G). Thus, using the complexity
results known on MinDS, we deduce that Upper Edge Cover is NP-hard in
planar graphs of maximum degree 3 [17], chordal graphs [5] (even in undirected
path graphs, the class of vertex intersection graphs of a collection of paths in
a tree), bipartite graphs, split graphs [4] and k-trees with arbitrary k [12], and
it is polynomial in k-trees with fixed k, convex bipartite graphs [13], strongly
chordal graphs [16]. Concerning the approximability, an APX-hardness proof
with explicit inapproximability bound and a combinatorial 0.6-approximation
algorithm is proposed in [22]. Better algorithms with approximation ratio 0.71
and 0.803 are given respectively in [3,11]. For any ε > 0, Upper Edge Cover
is hard to approximate within a factor of 259

260 + ε unless P = NP [22]. It admits
a PTAS in k-trees (with arbitrary k), although Upper Edge Cover remains
APX-complete on c-dense graphs [18] (a graph is called c-dense if it contains
at least cn2

2 edges).
In contrast, for edge weighted graphs with non-negative weights, no result for

Weighed Upper Edge Cover is known, although some results are given for
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Maximum Weighted Spanning Star forest problem: a 0.5-approximation
is given in [22] (which is the best ratio obtained so far) and polynomial-time
algorithms for special classes of graphs such as trees and cactus graphs are
presented in [22,23]. Negative approximation results are presented in [9,11,22].
In particular, MaxWSSF is NP-hard to approximate within 10

11 + ε [9]. Two
generalizations of WSSF, denoted MinExtWSSF and MaxExtWSSF, have
been introduced very recently in [19] where the goal consists in extending some
partial stars into spanning star forests. In this context, a partial feasible solution
is given in advance and the goal is to extend this partial solution. Formally, the
problem is defined as follow:

Extended weighted spanning star forest problem (ExtWSSF in
short)
Input: A weighted graph (G,w) and a packing of stars U = {U1, . . . , Ur} where
G = (V,E) and w(e) ≥ 0 for e ∈ E.
Solution: Spanning star forest S = {S1, . . . , Sp} ⊆ E containing U .
Output: w(S) =

∑
e∈S w(e) =

∑p
i=1

∑
e∈Si

w(e).

In [19], several results have been given for both minimization
(MinExtWSSF) and maximization (MaxExtWSSF) versions of ExtWSSF
(denoted MinExtWSSF and MaxExtWSSF respectively). Dealing with the
minimization version for complete graphs: a dichotomy result of the computa-
tional complexity is presented depending on parameter c of the (extended) c-
relaxed triangle inequality and an FPT algorithm is given. For the maximization
version, a positive approximation of 1/2 and a negative approximation result of
7
8 (even for binary weights) are proposed.

A subset of vertices V ′ is called non-blocking if every vertex in V ′ has at
least one neighbor in V \ V ′. Actually, non-blocking is dual of dominating set
and vice versa. For a given graph G = (V,E) and a positive integer k, the
Non-blocker problem asks if there is a non-blocking set V ′ ⊆ V with |V ′| ≥
k. Hence, for unweighted graphs, optimal value of non-blocking number equals
the upper edge cover number. In [14] Dehne et al. propose a parameterized
perspective of the Non-blocker problem. They give a linear kernel and an
FPT algorithm running in time O∗(2.5154k). They also give faster algorithms
for planar and bipartite graphs.

Contributions: The paper is organized in the following way. We first show
in Sect. 2 that Weighted Upper Edge Cover in complete graphs is equiv-
alent for its approximation to MaxWSSF in general graphs. Then, we study
Weighted Upper Edge Cover for bipartite graphs, split graphs and k-trees
respectively in Sects. 3, 4 and 5. Motivated by the above results mostly negative,
we propose a constant approximation ratio algorithm in Sect. 6 for Weighted
Upper Edge Cover in bounded degree graphs.

Note that all results given in this paper are valid if G is isolated vertex free
instead of connected.
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2 Complete Graphs

In this section, we deal with edge-weighted complete graphs. This case seems to
be the simplest one because the equivalence between Upper Edge Cover and
MaxSSF for the unweighted case proven in [21] remains valid for the weighted
case as proven in the following.

Theorem 4. MaxWSSF in general graphs is equivalent to approximate
Weighted Upper Edge Cover in complete graphs.

From Theorem 4 and from known results on MaxWSSF given in [9,22], we
deduce the following:

Corollary 5. In complete graphs, Weighted Upper Edge Cover is 1/2-
approximable but not approximable within 10

11 + ε unless P=NP.

3 Bipartite Graphs

Let us now focus on bipartite graphs. We prove that, even in bipartite graphs
with binary weights, Weighted Upper Edge Cover is not O(n

1
2−ε) approx-

imable unless P = NP. Also, we show the problem is APX-complete even for
bipartite graphs with fixed maximum degree Δ.

Theorem 6. Weighted Upper Edge Cover in bipartite graphs with binary
weights and cycle inequality is as hard1 as MaxIS in general graphs.

Proof. We propose an approximation preserving APX-reduction from Inde-
pendent Set (denoted MaxIS) to Weighted Upper Edge Cover.

Given a connected graph G = (V,E) with n vertices and m edges where
V = {v1, . . . , vn}, instance of MaxIS, we build a connected bipartite edge-
weighted graph H = (VH , EH , w) as follows (see also Fig. 2):

– For each vi ∈ V , add a P3 with edge set {vivi,1, vi,1vi,2}.
– For each edge e = vivj ∈ E where i < j, add a middle vertex vij on edge e.

– w(e) :=

{
1 if e = vivi,1 for some vi ∈ V

0 otherwise.

Clearly, H is a connected bipartite graph on |VH | = 3n + m vertices and
|EH | = 2(m+n) edges. Moreover, weights are binary and instance satisfies cycle
inequality.

Let S∗ be a maximum independent set of G with size α(G). For each e ∈ E, let
ve ∈ V \S∗ be a vertex which covers e; it is possible since V \S∗ is a vertex cover
of G. Moreover, {ve : e ∈ E} = V \ S∗ since S∗ is a maximum independent set
of G. Clearly, S′ = {vxyve : e = xy ∈ E} ∪ {vi,1vi,2 : vi ∈ V } ∪ {vivi,1 : vi ∈ S∗}
1 The reduction is actually a Strict-reduction and it is a particular A-reduction which

preserves constant approximation.
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Fig. 2. Construction of H from G. The weights are indicated on edges.

covers all vertices of H and since it doesn’t include any P3, then S′ is a minimal
edge cover of H. By construction, w(S′) = |S∗| = α(G). Hence, we deduce:

uec(H,w) ≥ α(G) (1)

Conversely, suppose S′ is a minimal edge cover of H with weight w(S′). Let
us make some simple observations of every minimal edge cover of H. Clearly,
{vi1vi2 : vi ∈ V } is part of every feasible solution because vi2 for vi ∈ V are leaves
of H. Moreover, for each e = vivj ∈ E with i < j, at least one edge between
vivij or vjvij belongs to any minimal edge cover of H. If vivij /∈ S′, it implies
that vjvj,1 /∈ S′ is not a part of the feasible solution because of minimality of S′.
Hence, S = {vi : vivi,1 ∈ S′} is an independent set of G with size |S| = w(S′).
We deduce:

α(G) ≥ uec(H,w) (2)

Using inequalities (1) and (2) we deduce:

α(G) = uec(H,w) (3)

In conclusion, for each minimal edge cover S′ on H, there is an independent
set S of G (computed in polynomial-time) such that |S| ≥ w(S′).

From Theorem 6, we immediately deduce that Weighted Upper Edge
Cover in bipartite graphs is not in APX unless P=NP. However, using several
results [2,17] concerning the APX-completeness of MaxIS in connected graph
G with constant maximum degree Δ(G) ≥ 3 or NP-completeness of MaxIS in
planar graphs, we obtain:

Corollary 7. Weighted Upper Edge Cover in bipartite (resp., planar
bipartite) graphs of maximum degree Δ for any fixed Δ ≥ 4 and binary weights
is APX-complete (resp. NP-complete).

Using the strong inapproximation result for MaxIS given in [26], and because the
reduction given in previous theorem is indeed a gap-reduction, we also deduce:

Corollary 8. For any ε > 0, Weighted Upper Edge Cover in bipartite
graphs of n vertices is not O(n

1
2−ε) approximable unless P = NP, even for

binary weights and cycle inequality.
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We also deduce one inapproximability result depending on the maximum degree.

Corollary 9. For any constant ε > 0, unless NP⊆ZPTIME(npoly log n), it is
hard to approximate Weighted Upper Edge Cover on bipartite graphs of
maximum degree Δ within a factor of Θ

(
1

Δ1−ε

)
.

4 Split Graphs

We will now focus on split graphs. Recall that a graph G = (L ∪ R,E) is a
split graph if the subgraph induced by L and R is a maximum clique and an
independent set respectively.

Theorem 10. Weighted Upper Edge Cover in split graphs with binary
weights and cycle inequality is as hard2 as MaxIS in general graphs.

Corollary 11. Weighted Upper Edge Cover in split 3-subregular graphs
is APX-complete and for any ε > 0, weighted upper edge cover in split
graphs of n vertices is not O(n

1
2−ε) approximable unless P = NP.

5 k-trees

Recall that a k-tree is a graph which results from the following inductive defi-
nition: A Kk+1 is a k-tree. If a graph G is a k-tree, then the addition of a new
vertex which has exactly k neighbors in G such that these k + 1 vertices induce
a Kk+1 forms a k-tree. As a main result in this section we prove Weighted
Upper Edge Cover is APX-complete in k-trees even for trivalued weights.

5.1 Negative Approximation Result

From Corollary 5, we already know that Weighted Upper Edge Cover is
NP-hard to approximate within a ratio strictly better than 10

11 because the class
of all k-trees contains the class of complete graphs. However, this lower bound
needs a non-constant number of distinct values [9]. Here, we strengthen the result
by proving the existence of a lower bound even for 3 distinct weights.

2 The reduction is actually a Strict-reduction and it is a particular A-reduction which
preserves constant approximation.
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Theorem 12. Weighted Upper Edge Cover is APX-hard in the class of
k-trees, even for trivalued weights.

5.2 Positive Approximation Result

Theorem 13. In k-trees, Weighted Upper Edge Cover is k−1
2(k+1) -

approximable.

6 Approximation for Bounded Degree Graphs

In this section, we propose some positive approximation results for graphs of
bounded degree in complement to those given in Corollary 9.

Theorem 14. In general graphs with maximum degree Δ, there is an approx-
imation preserving reduction from Weighted Upper Edge Cover to Max-
ExtWSSF with expansion c(ρ) = 1

Δ · ρ.

Proof. Consider an edge-weighted graph (G,w) of maximum degree Δ(G)
bounded by Δ as an instance of Weighted Upper Edge Cover. We make
an instance (G,w,U) of MaxExtWSSF by putting all pendant edges of G in
the forced edge set U . Property 2 also works in this context since U is the set
of pendant edges. In particular, we deduce optExtWSSF (G,w,U) ≥ uec(G,w)
because U belongs to any minimal edge cover. Let S = {S1, . . . , Sr} ⊆ E be a
nice spanning star forest of (G,w) containing U satisfying:

w(S) ≥ ρ · optExtWSSF (G,w,U) ≥ ρ · uec(G,w) (4)

For each t ∈ Triv, we choose two edges incident to it with maximum weights
et
1 = txt and et

2 = tyt in E \ E(S) (since by construction dG(v) ≥ 2), i.e.,
w(et

1) ≥ w(et
2) ≥ w(tv) for all possible v; let W =

∑
t∈Triv (w(et

1) + w(et
2)) be

this global quantity. Also, recall that Vc and Vl are the set of vertices labeled by
centers and leaves respectively according to S. We build a new vertex weighted
graph G(S) = G′ = (V ′, E′, w′) with maximum degree Δ(G′) ≤ Δ(G) − 1 as
follows:

• V ′ = Vl.
• uv ∈ E′ iff there exists t ∈ Triv with txt = tu and tyt = tv.
• For v ∈ V ′, we set w′(v) = w (ev(S))3.

3 We recall ev(S) is the edge of S linking leaf v to its center.
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Clearly, G′ is a graph with bounded degree Δ−1. We mainly prove that from
any independent set I ⊆ V ′ we can polynomially build an upper edge cover SI

of G satisfying:

w(SI) ≥ w′(I) +

(
W −

∑

t∈Triv

w(et
1)

)
≥ w′(I) (5)

Let I ⊆ V ′ be maximal independent set of G′. This implies V ′ \ I is a vertex
cover of G′. By construction of G′, for every t ∈ Triv, at least one vertex xt or
yt is not in I (say xt in the worst case). Recall ext

(S) is the edge of spanning
star forest incident to xt (since xt ∈ Vl). We will iteratively apply the following
procedure for all t ∈ Triv to build SI :

if the current �-star Sr of S containing ext
(S) satisfies � ≥ 2 (it is true

initially by hypothesis), then delete edge ext
(S) from S, add edge et

1 and update
spanning star forest S. Otherwise, � = 1 and only add et

1. At the end of the
procedure, we get a minimal edge cover SI of G satisfying inequality (5).

Now, apply as solution of I the greedy algorithm of MaxIS for G′ taking,
at each step, one vertex with maximum weight w′ and by removing all the
remaining neighbors of it. It is well known that we have:

w′(I) ≥ w′(V ′)
Δ(G′) + 1

≥ w(S)
Δ(G)

(6)

Hence, using inequalities (4), (5) and (6), we get the expected result.

Using the 0.5-approximation of MaxExtWSSF given in [19], we deduce:

Corollary 15. Weighted Upper Edge Cover is 1
2Δ -approximable in graphs

with bounded degree Δ.

7 Conclusion

In this article we gave positive and negative approximability aspects of
Weighted Upper Edge Cover for special classes of graphs. We considered
different types of weight function w for edges of input graph. Hardness of approx-
imation on complete graphs when w satisfies cycle inequality remains open.
Also for graphs with bounded degree Δ, we have shown that our problem is
1
2Δ -approximable while we proved it can not be better than Θ

(
1
Δ

)
. Finding a

tighter approximation algorithm depending on Δ or on the average degree can
be interesting.
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Abstract. The automaton constrained tree knapsack problem is a vari-
ant of the knapsack problem in which the items are associated with the
vertices of the tree, and we can select a subset of items that is accepted
by a tree automaton. If the capacities or the profits of items are integers,
it can be solved in pseudo-polynomial time by the dynamic programming
algorithm. However, this algorithm has a quadratic pseudo-polynomial
factor in its complexity because of the max-plus convolution. In this
study, we propose a new dynamic programming technique, called heavy-
light recursive dynamic programming, to obtain algorithms having linear
pseudo-polynomial factors in the complexity. Such algorithms can be
used for solving the problems with polynomially small capacities/profits
efficiently, and used for deriving efficient fully polynomial-time approx-
imation schemes. We also consider the k-subtree version problem that
finds k disjoint subtrees and a solution in each subtree that maximizes
total profit under a budget constraint. We show that this problem can
be solved in almost the same complexity as the original problem.

Keywords: Knapsack problem · Dynamic programming
Tree automaton

1 Introduction

1.1 Background and Motivation

The knapsack problem seeks a set of items that maximizes total profit under
a budget constraint. The problem is one of the most fundamental combinato-
rial optimization problems [12] and has many real-world applications such as
scheduling [9], network design [15], and natural language processing [7]. The
problem is NP-hard; however, if the profits or the weights of items are integers,
the problem can be solved using the dynamic programming (DP) that runs in
c© Springer Nature Switzerland AG 2019
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pseudo-polynomial time. This algorithm is the basis for the fully-polynomial
time approximation scheme (FPTAS) of the knapsack problem [9,13].

Here, we consider the automaton constrained tree knapsack problem, which
is defined as follows. Let T = (V (T ), E(T )) be a rooted tree where V (T ) is
the set of vertices and E(T ) is the set of edges, F(A) ⊆ 2V (T ) be a feasible
domain represented by a top-down tree automaton (see Sect. 2.1 for details). We
denote by n = |V (T )| the number of vertices in T . Each u ∈ V (T ) has profit
p(u) ∈ R≥0 and weight w(u) ∈ R≥0. For a vertex subset X ⊆ V (T ), we define
p(X) =

∑
u∈X p(u) and w(X) =

∑
u∈X w(u). Let C ∈ R≥0 be the capacity.

Then, the task is to solve the following optimization problem:

maximize p(X) subject to w(X) ≤ C, X ∈ F(A), (1)

This is a quite general problem since any constraint on a tree specified by a
monadic second-order logic formula is represented by a tree automaton [18]. For
example, the precedence constrained problem [14], the connectivity constrained
problem [8], and the independent set constrained problem [16] are particular
cases of this problem (See Examples 1, 2, and 3).

As in the case of the standard knapsack problem, the automaton constrained
tree knapsack problem can be solved by DP. If the tree automaton has a poly-
nomially bounded diversity of transitions (see Sect. 2.1), the complexity of the
algorithm is O(poly(n)C2) time if the weights are integers, and O(poly(n)P 2)
time if the profits are integers, where P is an upper bound of the optimal value
(see Sect. 2.2). Several existing studies have considered particular cases of the
problem and derived the corresponding realization of this algorithm [8,14,16].

In this study, we focus on the pseudo-polynomial factors C or P in the com-
plexity. The quadratic pseudo-polynomial factors of the standard DP come from
merging solutions to the subtrees, which is implemented by the max-plus (or
min-plus) convolution, whose current best complexity is O(N2 log logN/ log2 N),
where N is the length of the arrays [2]. It is conjectured that the max-plus
convolution requires Ω(N2−δ) time for any δ > 0 [1,2,6]. However, quadratic
pseudo-polynomial factors are sometimes unacceptable. For example, in prac-
tice, we often encounter the case that C is polynomially greater than n (e.g.,
n = 100 and C = 100, 000). In this case, quadratic pseudo-polynomial factors
are not desirable. For another example, when we derive a FPTAS from the DP,
we take P ∝ 1/ε; thus, a smaller degree in P implies a faster algorithm with the
same accuracy. The purpose of this study is to derive algorithms for the problem
that run in O(poly(n)C) or O(poly(n)P ) time.

Thus far, the only studies that have addressed this issue are those on the
precedence constrained knapsack problem. Johnson and Niemi [11] proposed a
technique, called left-right DP, which runs in O(nC) time. Cho and Shaw [4]
proposed a variant of the left-right DP, called depth-first DP, which also runs
in O(nC) time. However, we do not know what kinds of constraints (other than
the precedence constraint) admit algorithms with complexity that is linear in
pseudo-polynomial factors.
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1.2 Our Contribution

In this study, we introduce a new DP technique, called heavy-light recursive
dynamic programming (HLRecDP). This technique is motivated by Chekuri and
Pal’s recursive greedy algorithm for the s-t path constrained monotone submod-
ular maximization problem [3] and its generalization to the logic constrained
monotone submodular maximization problem [10]. It also generalizes the left-
right DP and depth-first DP for precedence constrained problem to the automa-
ton constrained problem. Formally, by using this technique, we obtain the fol-
lowing theorem. From now on, we denote the logarithm of base two by log.

Theorem 1. Let T = (V (T ), E(T )) be a tree with n vertices and A be a non-
deterministic top-down tree automaton with the diversity of transitions δ(n). Let
p ∈ R

V
≥0, w ∈ Z

V
≥0, and C ∈ Z≥0. Then, there is an algorithm for problem (1)

that runs in O(nlog(1+δ(n))C) time. In particular, if δ(n) = O(1), the algorithm
runs in O(poly(n)C) time.1

This theorem gives a sufficient condition for admitting (pseudo-)polynomial time
algorithms with linear pseudo-polynomial factors. By applying this theorem to
the precedence constrained problem, we obtain O(nC) time algorithm that is
equivalent to the existing left-right DP [11] and depth-first DP [4] (Example 2).

We then consider the k-subtree version problem. Let k = O(1) be an integer.
Then, the problem is to find k disjoint subtrees of the given tree and a feasible
solution in each subtree such that the total profit is maximized under the total
budget constraint. For example, the k connected component constrained problem
is the k-subtree version of the precedence constrained problem. By using the
property of the algorithm of Theorem 1 and divide-and-conquer techniques, we
show that this problem can be solved in almost the same time complexity as the
original problem.

Theorem 2. Suppose that A is a prefix-closed top-down tree automaton with the
bounded diversity of transitions, and the automaton constrained tree knapsack
problem with A can be solved in f(n) time by Algorithm 1. Let k = O(1). Then,
there exists an algorithm for the corresponding k-subtree version problem that
runs in the following complexity:

k = 1. O(f(n) log n) if f(n) = O(nC), and O(f(n)) time if f(n) = O(neC) for
some e > 1.

k ≥ 2. O(f(n)(log n)log k) time if f(n) = O(neC) for some e > 1; the hidden
constant is a polynomial in k.

This theorem gives an O(n log nC) time algorithm for the connectivity con-
strained problem, and an O(neC) time algorithm for any e > 1 for the k con-
nected component constrained tree knapsack problem.

1 For simplicity, we only consider the case in which the weights are integers. The same
result is obtained when the profits are integers.
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Organization of the Paper

The paper is organized as follows. In Sect. 2.1, we introduce top-down tree
automata. In Sect. 2.2, we introduce the standard DP using a top-down tree
automaton. In Sect. 3, we prove Theorem 1 by introducing the HLRecDP. In
Sect. 4, we prove Theorem 2 using the divide-conquer technique with HLRecDP.

2 Preliminaries

2.1 Tree Automaton

A non-deterministic top-down tree automaton (“automaton” for short) [5] is a
tuple A = (Q,Σ,Qinit,Δ), where Q is the set of states, Σ is a set of alphabets,
Qinit ⊆ Q is the set of initial states, and Δ is a set of rewriting rules of the form

Q × Σ � (q, σ) �→ (q1, . . . , qd) ∈ Q × · · · × Q. (2)

We assume that the number of states of the automaton is constant, |Q| = O(1).
The automaton is prefix-closed if (q, σ) �→ (q1, . . . , qd) is in Δ then (q, σ) �→
(q1, . . . , qd−1) also in Δ.

The run of the automaton is defined as follows. Let T = (V (T ), E(T )) be a
rooted tree, and σ : V (T ) → Σ be labels on the vertices. The automaton first
assigns an initial state q ∈ Qinit to the root of the tree. Then it processes the
tree from the top (root) to the bottom (leaves). If vertex u ∈ V (T ) has state
q ∈ Q, we choose a rewriting rule (q, σ(u)) �→ (q1, . . . , qd) and assign the states
q1, . . . , qd to the children v1, . . . , vd ∈ V (T ) of u, respectively. Note that, if no
rule is applicable to u and q, the run fails. The automaton accepts a labeled tree
if there is at least one run from the root to the leaves in which the state of the
root is in Qinit.

To represent a substructure of a tree using an automaton, we choose the
alphabet Σ = {0, 1} and identify the subgraph X ⊆ V (T ) as the labels σX :
V (T ) → Σ such that σX(u) = 1 for u ∈ X and σX(u) = 0 for u 
∈ X. Then, the
family of subsets F(A) ⊆ 2V (T ) represented by this automaton is specified by

F(A) = {X ⊆ V (T ) : A accepts T with label σX}. (3)

To evaluate the complexity of DP, we introduce the following quantity δ(n),
called the diversity of transitions.

δ(n) = max
m≤n

|
⋃

“(q,σ) �→(q1,...,qm)”∈Δ

{(q1, . . . , qm)}|. (4)

By definition, δ(n) is monotone in n. Intuitively, δ(n) is the maximum number
of subproblems in DP; see Sect. 2.2 below. There is an automaton with expo-
nentially large diversity of transitions, i.e., δ(n) = Θ(|Q|n), and in such case,
it looks impossible to obtain O(poly(n)) time algorithm. Therefore, we assume
some boundedness of δ(n). Note that, even δ(n) = O(1), we can represent some
interesting examples, such as independent set constraint (Example 1) and prece-
dence constraint (Example 2).
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2.2 Quadratic Pseudo-Polynomial Factor Algorithm

Here, we introduce the standard DP that solves the problem in O(poly(n)C2)
time if the automaton has a polynomially bounded diversity of transitions [8,14,
16]. We regard this as a baseline algorithm for the problem.

Let T = (V (T ), E(T )) be a rooted tree. We denote by Tu the subtree of T
rooted by u ∈ V (T ). The algorithm computes array xu,q of length C+1 for each
u ∈ V (T ) and q ∈ Q, such that

xu,q[c] = max{p(X) : X ⊆ V (Tu), w(X) = c, subtree Tu with labels σX is
accepted by A, where the initial state is q}. (5)

Once the array for the root vertex r ∈ V (T ) is obtained, the optimal value is
computed by maxq∈Qinit,c∈{0,...,C} xr,q[c] in O(|Qinit|C) = O(C) time.

We compute these arrays using the bottom-up DP as follows. For each leaf,
the array is immediately computed in O(δ(0)C) = O(C) time. Consider a ver-
tex u ∈ V (T ) with children v1, . . . , vd ∈ V (T ), such that the arrays xv,q are
computed for all v ∈ {v1, . . . , vd} and q ∈ Q. Then,

xu,q[c] = max{xv1,q1 [c1] + · · · + xvd,qd [cd] + w(u)σ :
(q, σ) �→ (q1, . . . , qd) ∈ Δ, c1 + · · · + cd + w(u)σ = c}. (6)

Here, we identify symbol σ = “0” and “1” as integer 0 and 1, respectively. The
maximization with respect to c1, . . . , cd is evaluated by the max-plus convolution;
thus, it costs about O(nC2) time. For the maximization with respect to (q, σ) →
(q1, . . . , qd) ∈ Δ, we only have to evaluate the formula for distinct (q1, . . . , qd).
Therefore, the complexity of evaluating (5) is O(nδ(n)C2) time, and the total
complexity is O(n2δ(n)C2) = O(poly(n)C2).

3 Heavy-Light Recursive Dynamic Programming

In this section, we present the HLRecDP for obtaining an O(nlog(1+δ(n))C) time
algorithm. In Sect. 3.1, we first propose the recursive dynamic programming
(RecDP) technique for balanced trees. To handle non-balanced trees, in Sect. 3.2,
we combine the heavy-light decomposition to the RecDP.

3.1 Recursive Dynamic Programming for Balanced Trees

Our goal is to compute arrays {xr,q}q∈Qinit for the root r ∈ V (T ) of the tree,
where xr,q is defined in (5). To avoid quadratic pseudo-polynomial factors, we
call the recursive procedure for the children multiple times, instead of merging
subtree solutions.

Formally, we design procedure RecDP(u, q, a), where u ∈ V (T ), q ∈ Q, and
a is an array of size C + 1. It computes array yu,q,a defined by

yu,q,a[c] = max{p(X) + a[c′] : X ⊆ V (Tu), w(X) + c′ = c, subtree Tuwith
labels σX is accepted by A, where the initial state is q}. (7)
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The difference between (5) and (7) is that (7) contains the array parameter a,
which corresponds to the “initial values” of the DP. More intuitively, it returns
an array that is obtained by “adding” items in the subtree Tu optimally to
the current solution represented by a. By calling RecDP(r, q, [0,−∞, . . . ,−∞]),
where r ∈ V (T ) is the root of the tree and q ∈ Qinit, we obtain the desired
solution xr,q.

Here, RecDP(u, q, a) is implemented as follows. If u ∈ V (T ) is a leaf, we
can compute (7) in O(C) time. Consider a vertex u ∈ V (T ) that has children
v1, . . . , vd ∈ V (T ). For each rewriting rule (q, σ) �→ (q1, . . . , qd), we first call
RecDP(v1, q1, a) to obtain array y1 = yv1,q1,a. Then, we call RecDP(v2, q2, y1)
to obtain array y2 = yv2,q2,y1 , i.e., we use the returned array y1 as the initial
values of the DP to the subtree rooted by v2. By iterating this process to the
last child, we obtain array yd = yvd,qd,yd−1 . The solution corresponds to this
rewriting rule is then obtained by

zu,q,a[c] = yd[c − σw(u)] + σp(u), c ∈ {0, . . . , C}. (8)

By taking the entry-wise maximum of the solutions on all of the rewriting rules,
we obtain the solution to RecDP(u, q, a).

The correctness of the above procedure is easily checked. We evaluate the
time complexity. Let f(n) be the complexity of the procedure. Let n1, . . . , nd

be the number of vertices on the subtrees rooted by v1, . . . , vd. Then we have
n1 + · · · + nd = n − 1. Because the algorithm calls the procedure recursively to
each subtree at most δ(n) times, the complexity satisfies2

f(n) ≤ δ(n)(f(n1) + · · · + f(nd)) + O(C). (9)

If the tree is balanced, i.e., nj ≤ n/2 for all j = 1, . . . , d, this already provides
the desired complexity: Without loss of generality, we can assume that f(n) is
convex in n. Then, the maximum of the right-hand side is attained at n1 =
�(n − 1)/2, n2 = �(n − 1)/2�, and n3 = · · · = nd = 0. Therefore,

f(n) ≤ δ(n) (f(�(n − 1)/2) + f(�(n − 1)/2�)) + O(C). (10)

By solving this inequality, we have f(n) = O((2δ(n))log nC) = O(n1+log δ(n)C).

3.2 Heavy-Light Recursive Dynamic Programming

To obtain an O(pseudopoly(n)C) time algorithm for general (i.e., non-balanced)
trees, we have to make the depth of the recursion to O(log n). The HLRecDP
achieves this by using the heavy-light decomposition [17].

First, we introduce the heavy-light decomposition. Let T = (V (T ), E(T ))
be a rooted tree whose edges are directed toward the leaves. An edge (u, v) ∈
E(T ) is a heavy edge if v has more descendants than other children of u do

2 The additive term is naturally O(dC); however, it is separated and included in the
recursive terms.
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(ties are broken arbitrary). An edge is a light edge if it is not a heavy edge3.
v ∈ V (T ) is a heavy child of u ∈ V (T ) if (u, v) is a heavy edge. A light child
is defined similarly. A subtree rooted by a light child is referred to as a light
subtree. The set of heavy edges forms disjoint paths, called heavy paths. The
tree is decomposed into the heavy paths, which is referred to as a heavy-light
decomposition. The heavy-light decomposition is computed in linear time by
depth-first search. The most important property of a heavy-light decomposition
is that for each u ∈ V (T ), the number of descendants of a light child is at most
|V (Tu)|/2.

Recall algorithm RecDP(u, q, a) defined in the previous section. We observe
that all recursive calls of RecDP(v1, q1, a) to the first child has the same initial
array a for different q1. Thus, we can “gather” all recursive calls for the first child
into a single recursive call. The HLRecDP sets the heavy child as the first child
to avoid an excessive number of recursive calls this child.

Formally, we define procedure HLRecDP(u, a). This returns a set of arrays
{yu,q}q∈Q, where yu,q is defined in (7). For v1, . . . , vd ∈ V (T ) and q1, . . . , qd ∈ Q,
we define HLRecDP(v1, . . . , vd, a)q1,...,qd as a shorthand notation of the sequen-
tial evaluation

HLRecDP(vd,HLRecDP(vd−1 · · ·HLRecDP(v1, a)q1 · · · )qd−1)qd . (11)

Now we describe the procedure. Let v1, . . . , vd ∈ V (T ) be the children of u, where
v1 is the heavy child. First, we call HLRecDP(v1, a) and store the resulting
arrays for all q ∈ Q. Then, for each rewriting rule (q, σ) �→ (q1, . . . , qd), we call
HLRecDP(v2, . . . , vd,HLRecDP(v1, x)q1)q2,...,qd and add item u if σ = 1 to
obtain the solution to the rewriting rule. By taking the entry-wise maximum
over the rewriting rules, we obtain the desired solution; see Algorithm 1.

By construction, HLRecDP gives the same solution as RecDP; thus, it cor-
rectly solves the problem. We evaluate the complexity as follows. Let n1, . . . , nd

be the number of vertices on the subtrees rooted by v1, . . . , vd. As same as the
analysis of RecDP, the complexity f(n) of the algorithm satisfies

f(n) ≤ f(n1) + δ(n) (f(n2) + · · · + f(nd)) + O(C). (12)

By the convexity of f(n) and the heavy-light property, i.e., nj ≤ n/2 (j =
2, . . . , d), the maximum of the right-hand side is attained at n1 = �(n − 1)/2,
n2 = �(n − 1)/2�, and n3 = · · · = nd = 0. Thus, we have

f(n) ≤ f(�(n − 1)/2) + δ(n))f(�(n − 1)/2�) + O(C). (13)

By solving this inequality, we have f(n) = O(nlog(1+δ(n))C). ��

3 Our definition of the heavy edge is slightly different to the original one: In [17],
(u, v) is said to be “heavy” if 2 × size(v) > size(u), where size(v) is the number of
descendants of v. Thus, their heavy edge is always our heavy edge, but the converse
is not. In particular, in their definition, any internal vertex has at most one heavy
edge, but in our definition, any internal vertex has exactly one heavy edge.
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Algorithm 1. Heavy-Light Recursive Dynamic Programming
1: procedure HLRecDP(u, a)
2: yu,q[c] = −∞ for all c ∈ {0, . . . , C}, q ∈ Q
3: Let v1, . . . , vd be the children of u, where v1 is the heavy child
4: Call HLRecDP(v1, a) and store the arrays for q ∈ Q
5: for “(q, σ) �→ (q1, . . . , qd)” ∈ Δ do
6: Let z = HLRecDP(v2, . . . , vd,HLRecDP(v1, a)q1)q2,...,qd
7: for c = 0, . . . , C do
8: yu,q[c] ← max{yu,q[c], z[c − σw(u)] + σp(u)}
9: end for

10: end for
11: return {yu,q}q∈Q

12: end procedure

Remark 1. There is a gap of the tractable classes between the standard DP
(Sect. 2.2) and the HLRecDP. The analysis in Sect. 2.2 implies that we can obtain
O(poly(n)C2) time algorithm if δ(n) is polynomially bounded. On the other
hand, the analysis in this section implies that if δ(n) is polynomially bounded
(rather than bounded by a constant), we can only obtain an algorithm with
quasi-polynomial time complexity, i.e., nO(log n)C.

Here, we derive several results for particular cases using our method.

Example 1 (Independent Set Constrained Problem). Let us consider the inde-
pendent set constrained tree knapsack problem whose feasible set contains
no adjacent vertices. This constraint is represented by an automaton A =
(Q,Σ,Qinit,Δ), where Q = Qinit = {s, x} and

(s, 0) �→ (s, . . . , s), (s, 1) �→ (x, . . . , x), (x, 0) �→ (s, . . . , s). (14)

Here, s means the vertex can be selected and x means the vertex cannot be
selected. The diversity of transitions is δ(n) = 2 because the rules for (s, 0)
and (x, 0) have the same right-hand side; therefore, we can solve the indepen-
dent set constrained tree knapsack problem in O(nlog(1+δ(n))C) = O(nlog 3C) =
O(n1.585C) time.

Example 2 (Precedence Constrained Problem). Let us consider the precedence
constrained tree knapsack problem whose feasible set is precedence closed, i.e., if
a vertex is contained in a solution, all the precedences are also contained in the
solution. This constraint is represented by an automaton A = (Q,Σ,Qinit,Δ),
where Q = Qinit = {s, x} and

(s, 0) �→ (x, . . . , x), (s, 1) �→ (s, . . . , s), (x, 0) �→ (x, . . . , x). (15)

Here, state s means the vertex can be selected and state x means the vertex
cannot be selected. Since the diversity of transitions is δ(n) = 2, the algorithm
runs in O(nlog(1+δ(n))C) = O(n1.585C) time.
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This complexity can be improved further. If a vertex has state x, we cannot
select all of the descendants of the vertex; thus we obtain the solution for this
case without calling the procedure recursively. Thus, the required number of
recursive calls is at most one, which is for (s, 1). Therefore, the algorithm runs
in O(nlog(1+1)C) = O(nC) time. Note that this algorithm “coincides” with the
left-right DP [11] and the depth-first DP [4] in the sense that these perform the
same manipulations.

Example 3 (Connectivity Constrained Problem). Let us consider the connec-
tivity constrained tree knapsack problem whose feasible set forms a connected
subgraph of a given tree. This constraint is represented by an automaton
A = (Q,Σ,Qinit,Δ), such that Q = {s, o, x}, Qinit = {s} and

(s, 0) �→ (s, x, . . . , x), (s, 0) �→ (x, s, . . . , x), . . . , (s, 0) �→ (x, x, . . . , s),
(s, 1) �→ (o, o, . . . , o), (o, 0) �→ (x, x, . . . , x), (o, 1) �→ (o, o, . . . , o),
(x, 0) �→ (x, x, . . . , x). (16)

Here, state s means the vertex can be selected, state o means the vertex is now
selecting, and state x means that the vertex cannot be selected. Note that A
is non-deterministic because there are d rules for (s, 0). Thus, the diversity of
transitions is δ(n) = n, which is not bounded by a constant. Thus, the theorem
gives only quasi-polynomial time algorithm.

To improve the performance, we make the similar observation to the prece-
dence constraint (Example 2). Then, the number of recursive calls to each subtree
is at most twice; one is for (s, 0) and the other is for (s, 1) and (o, 1). Therefore,
the algorithm runs in O(nlog(1+2)C) = O(n1.585C) time.

Example 4 (k Connected Component Constrained Problem). Let us consider k
connected component constrained tree knapsack problem whose feasible solution
is k connected components. By using the same technique as the connectivity
constrained problem (Example 3), we obtain nO(log k)C time algorithm for the
problem. Note that, if we handle k as a kind of weight, we can derive O(kneC) =
O(neC) time algorithm for some universal constant e.

4 k-Subtree Version Problems

In this section, we consider the k-subtree version problems and prove Theorem 2.
We introduce two auxiliary problems: The first one is the for-all-subtree problem
that requires to solve the problem on each subtree Tu of T rooted by u ∈ V (T ).
The second one is the for-all-subtree-complement problem that requires to solve
the problem on each subtree-complement T \ Tu of T for all u ∈ V (T ). These
problems can be solved in almost the same time complexity as follows.

Lemma 1. Suppose that the automaton constrained tree knapsack problem with
tree automaton A can be solved in f(n) = O(neC) time by Algorithm 1. Then,
the corresponding for-all-subtree version problem can be solved in O(f(n) log n)
time if e = 1 and O(f(n)) time if e > 1.
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Proof. Let us fix a heavy path u1, . . . , ul that starts from the root of
the tree, i.e., u1 is the root and ul is a leaf. First, we call HLRecDP
(u1, [0,−∞, . . . ,−∞]) to the root u1 of the tree. Then, it recursively calls
HLRecDP(ui, [0,−∞, . . . ,−∞]) to the vertices u2, . . . , ul on the heavy path.
This means that this single call gives the solutions to the subtrees rooted by the
vertices on the heavy path.

After this computation, we call the procedure recursively to the light subtrees
adjacent to the heavy path. The total complexity g(n) satisfies

g(n) ≤ g(n1) + · · · + g(ns) + f(n), (17)

where n1, . . . , ns are the sizes of the subtrees. By definition, n1 + · · · + ns ≤
n − 1. Also, by the heavy-light property, nj ≤ n/2 (j = 1, . . . , s). Therefore, the
maximum of the right-hand side is attained at n1 = �(n−1)/2, n2 = �(n−1)/2�,
and n3 = · · · = ns = 0. Thus,

g(n) ≤ g(�(n − 1)/2) + g(�(n − 1)/2�) + f(n), (18)

By solving this inequality we obtain the desired result. ��
Lemma 2. Suppose that the automaton constrained tree knapsack problem with
tree automaton A can be solved in f(n) = O(neC) time by Algorithm 1. Then,
the corresponding for-all-subtree-complement version problem can be solved in
O(f(n)(log n)2) time if e = 1 and O(f(n) log n) time if e > 1.

Proof. For vertex u ∈ V (T ), we define array xu,q of length C +1 that represents
the solution on T \ Tu, where the parent of u has state q ∈ Q. We compute
the arrays for all the vertices. We define xr,q = [0,−∞, . . . ,−∞] for the root
r ∈ V (T ) and all q ∈ Q. Let us fix a heavy path u1, . . . , ul that starts from the
root of the tree. We compute the arrays for the vertices on the heavy path, and
for the vertices adjacent to the heavy path separately.

Vertices on the heavy path. Suppose that we have {xui−1,q}q∈Q. Let
v1, . . . , vd be children of ui−1, where v1 = ui. For each rewriting rule
(q, σ) �→ (q1, . . . , qd−1) ∈ Δ, which is a rule of length d − 1, which will
match to v2, . . . , vd, the array corresponds to this rule is obtained by call-
ing HLRecDP(v2, . . . , vd, xui−1,q)q1,...,qd−1 and by adding ui if σ = 1. By
taking the entry-wise maximum of the arrays for different rules, we obtain
{xui,q}q∈Q. Since this computation process pays the same computational effort
as HLRecDP(u1, x), the complexity is f(n).

Vertices adjacent to the heavy path. We compute {xv,q}q∈Q for all light
child v adjacent to the heavy path. It is obtained by calling HLRecDP to all
the subtrees except Tv; however, this method involves redundant computations.
We reduce the complexity by storing intermediate results by a segment tree-like
divide-and-conquer technique.

First, we compute arrays yi,j,qi,qj for i = 0, . . . , l − 1, j = i + 1, . . . , l, and
qi, qj ∈ Q. This stores the vector obtained by calling HLRecDP with initial
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array xu1,q for some q to the subtree except the light children of ui+1, . . . , uj ,
where the states of ui and ui are qi and qj , respectively. Initially, we set y0,l,q0,ql =
xu1,q0 for all q0, ql ∈ Q. If we have {yi,j,qi,qj}qi,qj∈Q for i+1 < j, we can compute
{yi,m,qi,qm}qi,qm∈Q where m = �(i + j)/2� by calling HLRecDP to the light
subtrees of um+1, . . . , uj with initial array zi,j,qi,qj . Similarly, we can compute
{ym,j,qm,qr}qm,qr∈Q. The complexity of computing all the arrays is O(f(n) log n)
since HLRecDP is called to subtree Tui

at most O(log n) times.
Next, for each uk (k = 1, . . . , l−1) on the heavy path, we consider the children

v1, . . . , vd of uk, where v1 is the heavy child (i.e., v1 = uk+1). For each rewriting
rule (q, σ) �→ (q1, . . . , qd−1) ∈ Δ, we compute arrays zi,j,q,q1 for i = 1, . . . , d − 1
and j = i+1, . . . , d. This stores the vector obtained by calling HLRecDP with
initial array yk−1,k,q,q1 to the subtrees except vi+1, . . . , vj , and is computed by
the same technique as y. Once the arrays are obtained, we can retrieve xvi,q by
taking the entry-wise maximum of zi−1,i,q,q1 with respect to q1. Thus, the total
complexity of this part is O(f(n) log n).

After this computation, we call the procedure recursively to the light subtrees
adjacent to the heavy path. The total complexity g(n) satisfies

g(n) ≤ g(n1) + · · · + g(ns) + O(f(n) log n), (19)

where n1+· · ·+ns ≤ n−1 and nj ≤ n/2 (j = 1, . . . , s). By solving this inequality
as similar to Lemma 1, we obtain the desired result. ��

Now we provide an outline of the proof of Theorem 2.

Proof (of Theorem 2, outline). We design algorithm Conn(u, k, x) that computes
arrays xu,q,b,l where u ∈ V (T ), q ∈ Q, b ∈ {0, 1}, and l ∈ {0, . . . , k}. The array
represents the solution to the subtree Tu such that the root (= u) has state
q and is included by a subtree if b = 1, and l subtrees are selected. If k = 0,
the solution is [0,−∞, . . . ,−∞]. If k = 1, we can solve the problem by solving
for-all-subtree version problem since the automaton is prefix closed. Thus, in
the following, we consider k ≥ 2. Let g(n, k) be the complexity of the algorithm
for n vertices with parameter k. We derive the recursive relation of g. We fix a
heavy path, and consider light subtrees adjacent to the heavy path.

Case 1: There is a light subtree Tv that contains at least k/2 com-
ponents. In this case, the subtree complement Tu \ Tv contains at most
k/2 components. Thus, we guess such subtree Tv and solve the problem on
Tu \ Tv and Tv separately. We can solve all the subtree complements simulta-
neously by calling the subtree-complement version of Conn(u, k/2, ∗). Also, we
can solve each subtree by calling Conn(v, k, ∗). The complexity of this approach
is g(n1, k) + · · · + g(ns, k) + O(g(n, k/2) log n).

Case 2: Otherwise; i.e., all the light subtrees contain at most k/2 com-
ponents. We call Conn(v, k/2, ∗) for all subtrees v, sequentially. The com-
plexity of this part is given by g(n1, k/2) + · · · + g(ns, k/2) ≤ g(n, k/2).
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The total complexity g(n, k) of the algorithm satisfies

g(n, k) ≤ g(n1, k) + · · · + g(ns, k) + O(g(n, k/2) log n). (20)

By using n1 + · · · ns ≤ n − 1 and nj ≤ n/2 (j = 1, . . . , s), we obtain g(n, k) ≤
h(k)f(n)(log n)log k, where h(k) is a polynomial in k. ��
Example 5 (Connected Component Constrained Problem (again)). By using this
technique, the connectivity constrained problem can be solved in O(n log nC)
time, and the k connected component constrained problem can be solved in
O(n1+eC) time for any e > 0, since (log n)k = O(ne) for any e > 0.

Acknowledgment. We thank the anonymous reviewers for their helpful comments.

References

1. Backurs, A., Indyk, P., Schmidt, L.: Better approximations for tree Sparsity in
nearly-linear time. In: Proceedings of the 28th Annual ACM-SIAM Symposium on
Discrete Algorithms (SODA 2017), pp. 2215–2229 (2017)

2. Bremner, D., et al.: Necklaces, convolutions, and X + Y. In: Azar, Y., Erlebach,
T. (eds.) ESA 2006. LNCS, vol. 4168, pp. 160–171. Springer, Heidelberg (2006).
https://doi.org/10.1007/11841036_17

3. Chekuri, C., Pál, M.: A recursive greedy algorithm for walks in directed graphs. In:
Proceedings of the 46th Annual Symposium on Foundations of Computer Science
(FOCS 2005), vol. 2005, pp. 245–253 (2005)

4. Cho, G., Shaw, D.X.: A depth-first dynamic programming algorithm for the tree
knapsack problem. J. Comput. 9(4), 431–438 (1997)

5. Comon, H., et al.: Tree automata techniques and applications (2007)
6. Cygan, M., Mucha, M., Węgrzycki, K., Włodarczyk, M.: On problems equivalent

to (min,+)-convolution. arXiv:1702.07669 (2017)
7. Hirao, T., Yoshida, Y., Nishino, M., Yasuda, N., Nagata, M.: Single-document

summarization as a tree knapsack problem. In: Proceedings of the 2013 Conference
on Empirical Methods in Natural Language Processing (EMNLP 2013), pp. 1515–
1520 (2013)

8. Hochbaum, D.S., Pathria, A.: Node-optimal connected k-subgraphs. University of
California, Berkeley, Technical report (1994)

9. Ibarra, O., Kim, C.: Fast approximation algorithms for the knapsack and sum of
subset problems. J. ACM 22(4), 463–468 (1975)

10. Ishihata, M., Maehara, T., Rigaux, T.: Algorithmic meta-theorems for monotone
submodular maximization. arXiv:1807.04575 (2018)

11. Johnson, D.S., Niemi, K.: On knapsacks, partitions, and a new dynamic program-
ming technique for trees. Mathe. Oper. Res. 8(1), 1–14 (1983)

12. Kellerer, H., Pferschy, U., Pisinger, D.: Knapsack Problems. Springer, Heidelberg
(2003). https://doi.org/10.1007/978-3-540-24777-7

13. Lawler, E.L.: Fast approximation algorithms for knapsack problems. In: Proceed-
ings of the 18th Annual Symposium on Foundations of Computer Science (FOCS
1977), vol. 4(4), pp. 339–357 (1977)

14. Lukes, J.A.: Efficient algorithm for the partitioning of trees. IBM J. Res. Dev.
18(3), 217–224 (1974)

https://doi.org/10.1007/11841036_17
http://arxiv.org/abs/1702.07669
http://arxiv.org/abs/1807.04575
https://doi.org/10.1007/978-3-540-24777-7


260 S. Kumabe et al.

15. Van der Merwe, D., Hattingh, J.M.: Tree knapsack approaches for local access
network design. Eur. J. Oper. Res. 174(3), 1968–1978 (2006)

16. Pferschy, U., Schauer, J.: The knapsack problem with conflict graphs. J. Graph
Algorithms Appl. 13(2), 233–249 (2009)

17. Sleator, D.D., Tarjan, R.E.: A data structure for dynamic trees. J. Comput. Syst.
Sci. 26(3), 362–391 (1983)

18. Thatcher, J.W., Wright, J.B.: Generalized finite automata theory with an applica-
tion to a decision problem of second-order logic. Mathe. Syst. Theor. 2(1), 57–81
(1968)
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Abstract. We give approximation algorithms for matching two sets of
line segments in constant dimension. We consider several versions of the
problem: Hausdorff distance, bottleneck distance and largest common
point set. We study these similarity measures under several sets of trans-
formations: translations, rotations about a fixed point and rigid motions.
As opposed to previous theoretical work on this problem, we match seg-
ments individually, in other words we regard our two input sets as sets
of segments rather than unions of segments.

Keywords: Geometric algorithms · Approximation algorithms
Pattern matching

1 Introduction

Line segments pattern matching finds applications in several areas of computer
science. For instance, after identifying line features (segments) in two different
frames representing the same objects, we may want to match these edges in
order to analyze the motion of these objects [7]. It also finds applications to
aerial images change detection or updating, or for navigation based on these
images [13]. Another application area is bioinformatics. The interface between
two proteins can be defined as the set of atoms on different proteins that are
within a distance threshold. Hence, an interface can be represented as the set of
line segments connecting two interacting atoms. The problem of comparing two
protein-protein interfaces [10] thus reduces to matching two sets of line segments.

On the theoretical side, several algorithms have been designed for line seg-
ments pattern matching. However, these algorithms consider unions of segments⋃

S and
⋃

S′ instead of sets of segments S and S′: the goal is to find a matching
such that each point on any segment of the first set S is close to a segment on the
other set S′ (See the survey by Alt and Guibas [3]). Figure 1 shows an example
where these two notions of similarity differ substantially.

So our goal in this paper is to match sets of line segments, in the sense that
two segments are matched if their endpoints are close, and then the sets S1
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and S′
1 from Fig. 1 would be considered dissimilar, while S2 and S′

2 would be
a good match. Our main contribution is to show that, under a certain model,
this problem can be solved using approximation algorithms, which are about
as efficient as the currently known algorithms for point-set pattern matching
(within a linear factor if we only look at the dependency on the input size).

Fig. 1. On the left, the union of the dashed segments
⋃

S1 is similar to the union of
the solid segments

⋃
S′
1, in the sense any point on a dashed segment is close to a point

on a solid segment. However, taken individually, no segment in s ∈ S1 is similar to any
segment s′ ∈ S′

1 as they are orthogonal. Our approach ensures that S1 and S′
1 will be

considered dissimilar, whereas S2 and S′
2 (right) are similar as the endpoints match

closely.

1.1 Problem Statements

We are given two sets of line segments S = {s1, . . . , sm} and S′ = {s′
1, . . . , s

′
n} in

R
d such that m � n. Each of these segment si or s′

j is directed, and is given by
its two endpoints pi, qi and p′

i, q
′
i respectively. We denote by �i the length of the

segment si. The restriction to directed segments is only for ease of presentation;
we can handle undirected segments without affecting our time bounds, as we
will explain in the full version of this paper.

Our goal is to find a matching between S and S′ under a set of transforma-
tions F . For instance, when F is the set T of translations in R

d, we may want
to determine whether there exists a translation τ ∈ T such that τ(S) ⊂ S′. In
practice, however, inaccuracies in the data mean that we cannot hope for an
exact match (see for instance the applications mentioned above), so we will try
to find a translation such that each translated segment of S is close to a segment
of S′ (See Fig. 2). We therefore need to introduce a similarity measure for line
segments.

Matching Two Segments. For any two points p, q ∈ R
d, we identify the segment

from p to q with the pair of points (p, q) ∈ R
2d. The distance d(s, s′) between two

segments s = (p, q) and s′ = (p′, q′) is the Euclidean distance between these two
segments regarded as points in R

2d, and thus d(s, s′) =
√

‖p′ − p‖2 + ‖q′ − q‖2.
We say that two segments s and s′ match if d(s, s′) � δ�(s), where �(s) is the
length of the segment s, and δ > 0 is a parameter called tolerance.
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Fig. 2. Matching two sets of segments under translation. On the right, a translated
version of S by a vector τ closely matches a subset of 3 segments of S′.

Fig. 3. Two segments at distance d(s, s′) � δ�(s).

We use this matching criterion for two main reasons. First, for small values of
δ, two matching segments s = pq and s′ = p′q′ are similar in the sense that the
distance between their endpoints is small, their angles are close, and their lengths
are also close. More precisely, we have ‖p−p′‖ � δ�(s), ‖q−q′‖ � δ�(s), the angle
between s and s′ is O(δ), and (1− δ

√
2)�(s) � �(s′) � (1+ δ

√
2)�(s) (See Fig. 3).

Conversely, if the endpoints are close in the sense that d(p, p′) � δ�(s)/
√

2 and
d(q, q′) � δ�(s)/

√
2, then d(s, s′) � δ�(s), and thus the segments match according

to our criterion.
The second reason for using this criterion is that it allows us to use approxi-

mate near neighbor (ANN) data structures to efficiently compute an approximate
nearest segment to a query segment. For instance, using the data structure by
Arya et al. [5], the query time is O((1/ε2d) log n) for a segment in R

d identified
to a point in R

2d. This will help us design efficient approximation algorithms.

Sets of Transformations. We consider different sets F of transformations. In the
static case, we do not apply any transformation to our point sets, in other words,
we only use the identity transformation. The set T is the set of translations of
R

d, so each translation can be represented by a point τ ∈ R
d and it maps any

x ∈ R
d to τ(x) = τ + x. We will also consider rotations about a fixed center O

in R
2. The rotation about O with angle θ is denoted ρθ. Finally, we will consider

the set R of rigid motions in R
2, or more precisely, the set of translations and

rotations. We will ignore reflections, as it suffices to run our algorithm on an
arbitrary reflected copy of S to cover all possible glide reflections.
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Hausdorff Distance. We define the directed Hausdorff distance dH(S, S′) between
S and S′ as the minimum value of δ such that, for all s ∈ S, there exists
s′ ∈ S′ satisfying our matching criterion d(s, s′) � δ�(s). So it can be expressed

as follows: dH(S, S′) = max
s∈S

min
s′∈S′

d(s, s′)
�(s)

. In this paper, we do not consider

the undirected Hausdorff distance, so we will simply say Hausdorff distance.
The Hausdorff distance under the set of transformations F is the minimum of
dH(f(S), S′) over all f ∈ F . Our approximation algorithms compute a (1 + ε)-
approximation of this quantity, for some 0 < ε < 1. More precisely, we find a
transformation fε ∈ F such that dH(fε(S), S′) � (1 + ε)min

f∈F
dH(f(S), S′).

Bottleneck Distance. The bottleneck distance db(S, S′) between S and S′ is anal-
ogous to the Hausdorff distance, except that we require the pairs s, s′ to be
matched in a one-to-one manner. So db(S, S′) � δ if there is a one-to-one map-
ping σ : S → S′ such that d(s, σ(s)) � δ�(s) for all s ∈ S.

Largest Common Subset (LCS). The goal is to find the largest subset C ⊂ S
such that there exists a transformation f ∈ F that matches C to a subset of S′.
So there should be a one-to-one matching between C and a subset of S′, such
that d(s, s′) � δ�(s) for each matching pair (s, s′). We will relax the problem
slightly, and return a matching such that d(s, s′) � (1 + ε)δ�(s) for all matching
pair (s, s′), and has cardinality at least the optimal cardinality for the original
problem.

1.2 Our Results and Approach

We obtained (1 + ε)-approximation algorithms for all these distance measures
under our sets of transformations, when 0 < ε < 1. Our algorithms for Hausdorff
distance (except for the case of 2D rigid motions) are presented in Sect. 2. The
other results are briefly presented in Sect. 3, and more detailed descriptions will
be given in the full version of this paper. The time bounds are given in Table 1.

Table 1. Time bounds of our (1 + ε)-approximation algorithms.

Hausdorff Bottleneck LCS

Static O((m/ε2d + n) log n) O((1/ε2d)n1.5 log n) O((1/ε2d)n1.5 log n)

Translation O((n/εd)(m/ε2d + n) log n) O((1/ε3d)n2.5 log n) O((1/ε3d)mn2.5 log n)

2D rotation O((n/ε)(m/ε4 + n) log n) O((1/ε5)n2.5 log n) O((1/ε5)mn2.5 log n)

2D r. motion O((n2/ε3)(m/ε4 + n) log n) O((1/ε7)n3.5 log n) O((1/ε7)m2n3.5 log n)

Our algorithms first compute a discretization of the set of transformations,
and then solve the problem approximately for each transformation in this set
using known algorithms: The ANN data structure by Arya et al. [5] in the case
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of Hausdorff distance, and a geometric matching algorithm by Efrat et al. [9] for
the bottleneck distance and the LCS problem.

To be more precise, we first compute a constant-factor approximation of
the solution using a coarse discretization. For translations we use the set of
vectors p′

j − p1 where s1 = (p1, q1) is assumed to be the shortest segment in
S. For rotations about a fixed center O, we choose the angles that align pa

with each point p′
j , where sa is the segment with smallest aspect ratio αa =

max(‖pa‖, ‖qa‖)/�a.
Then we compute a (1 + ε)-approximation by refining these discretizations.

In the translation case, we use a uniform grid of O(1/εd) points within a ball of
radius proportional to �1 centered at p′

j −p1. For rotations, we use a set of (1/ε)
equally spaced angles about the angles we chose for obtaining a constant factor
approximation, where the spacing is proportional to 1/αa (See Fig. 4). For rigid
motions, we discretize the space of rigid motion by combining our discretizations
for translations and rotations about a fixed center. The main part of our proof is
a careful analysis showing that it yields a (1+ε)-approximation of the optimum.

Fig. 4. (a) Discretization of the space of translations. We only drew 6 translation
vectors (arrows); for each grid point there is a translation mapping p1 to it. (b) The
angle θj used for a constant factor approximation. (c) Discretization of the set of angles
around θj for obtaining a (1 + ε)-approximation.

1.3 Comparison with Previous Work

As we mentioned earlier, several algorithms are known for matching line seg-
ments, but they consider unions of segments instead of sets of segments. The
survey by Alt and Guibas [3] mentions several such algorithms that consider
unions of objects, instead of sets of objects [2,8]. These algorithms are therefore
adapted for matching polygons, seen as unions of segments and their interior,
but would not be suitable for the example in Fig. 1. Recent related work presents
efficient algorithms for matching polygons or unions of disks, under translations
or rigid motions, using the area of overlap as a similarity measure [1,6,11,14].

Point-set pattern matching under translation and rigid motion has also been
studied extensively. See again the survey by Alt and Guibas [3]. For instance
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Alt et al. [4] gave exact and approximation algorithms for matching point sets
under translations and rigid motions. The translation case was improved by
Efrat et al. [9]. Heffernan and Schirra [12] considered decision versions of point
set matching under translations and rigid motions. Recently, Yon et al. gave
approximation schemes for the largest common point set problem (LCP) under
the same set of transformations [15].

Our approach is based on discretizing the space of translations using grids,
and discretizing the angles of rotations uniformly within appropriate intervals.
These techniques have been used to obtain some of the results that we already
mentioned [1,6,15]. Our technical contribution is to adapt these methods to the
problem of matching sets of line segments, which requires the careful analysis
presented in Sect. 2. One difference with the case of point-set pattern matching
is that our tolerance δ is weighted by the length �(s) of the segment s to be
matched, hence the segment s1 with smallest length, and the segment sa of
smallest aspect ratio play a special role in our algorithms and their analysis.
Another issue is that our segments are identified with points in R

2d, so exact
nearest-neighbor data structures become rather slow, and we need to rely on
approximate versions even for dimension d = 2.

In terms of running time, we cannot directly compare with previous work
because, as far as we know, our problem of matching sets of line segments has
not been studied before, and the algorithms for related problems sometimes
present extra parameters in the running time [12], or consider different types of
objects [6], or are restricted to sets of same cardinality [9,12]. So we will only
compare the dependency on the input size n, ignoring other parameters. Then
our algorithms for Hausdorff distance and bottleneck distance under translation
run in time O(n2) and O(n2.5), respectively. The algorithm by Efrat et al. [9]
for point sets runs in time O(n1.5 log n), but requires the sets to have same car-
dinality, which makes the problem easier as it allows to take advantage of corner
points. The algorithm by Heffernan et al. for point sets runs in O(n1.5 log n) and
has the same restriction. For LCS of point sets under translation, Yon et al. [15]
give an O(n3.5 log n) algorithm, as does ours. Our algorithm for bottleneck dis-
tance under rigid motion takes time O(n3.5 log n) while Heffernan and Schirra’s
algorithm achieves O(n2.5 log n) (still for point sets). So overall, our algorithms
have a running time that is similar to previous work on point set pattern match-
ing, at most within an O(n) factor, and our algorithms apply to line segments
instead of points.

2 Approximating the Hausdorff Distance

In this section, we give algorithms for approximating the Hausdorff distance
between two sets of segments S and S′ in R

d. We defined this distance dH(S, S′)
as the minimum value of δ such that, for all s ∈ S, there exists s′ ∈ S′ satisfying
d(s, s′) � δ�(s).
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2.1 Static Case

We first give an algorithm for the static case, where S is not subjected to any
transformation. Our algorithm starts with recording the segments of S′, regarded
as points in R

2d, in the approximate near neighbor data structure (ANN) by
Arya et al. [5]. It is constructed in O(n log n) time, and allows to report in time
O((1/ε2d) log n) a (1 + ε)-approximate nearest segment in S′. In other words, it
returns a segment Nε(s) ∈ S′ that satisfies d(s,Nε(s)) � (1+ε)mins′∈S′ d(s, s′).

Then we compute Nε(s) for each segment s ∈ S, and we return δε =
maxs∈S d(s,Nε(s))/�(s). By the definition of approximate near neighbors, δε

is a (1 + ε)-approximation of dH(S, S′). It follows that:

Theorem 1. If S and S′ are sets of respectively m and n segments in R
d, we

can find a tolerance δε such that dH(S, S′) � δε � (1 + ε)dH(S, S′) in time
O((m/ε2d + n) log n).

2.2 Hausdorff Distance Under Translation

Now we allow translations of S, and we want to minimize its Hausdorff distance
to S′. We identify each translation with a point τ ∈ R

d. So we denote by τ +s the
copy of s translated by vector τ , and τ + S denotes the set {τ + s1, . . . , τ + sm}.
We denote by τ∗ an optimal translation, in the sense that dH(τ∗ + S, S′) =
minτ∈Rd dH(τ + S, S′). The Hausdorff distance under translation dH(τ∗ + S, S′)
is denoted by δ∗ in this section, and we want to find a translation τε that provides
a (1 + ε)-approximation of δ∗.

When we apply a translation τ to a segment, then the corresponding point
in R

2d is translated by the vector (τ, τ) that has norm
√

2‖τ‖. It implies the
following.

Proposition 1. For any two segments s, s′ and translation τ , we have d(τ +
s, s′) � d(s, s′) +

√
2‖τ‖.

Without loss of generality, we assume that s1 is a shortest segment in S,
that is, �1 = mini �i. The lemma below bounds the variation of the Hausdorff
distance after translating a set of segments.

Lemma 1. For any translation τ , we have dH(τ + S, S′) � dH(S, S′) +√
2‖τ‖/�1.

Proof. Proposition 1 implies that d(τ+si, s
′
j) � d(si, s

′
j)+

√
2‖τ‖ for all i, j. As s1

is a shortest segment in S, it follows that d(τ+si, s
′
j)/�i � d(si, s

′
j)/�i+

√
2‖τ‖/�1

for all i, j. In particular, for any si ∈ S, minj d(τ +si, s
′
j)/�i � minj d(si, s

′
j)/�i+√

2‖τ‖/�1. By definition of dH(S, S′), there is a segment s′ ∈ S′ at distance at
most dH(S, S′)�i from any si, therefore minj d(si, s

′
j) � dH(S, S′)�i and thus

minj d(τ + si, s
′
j)/�i � dH(S, S′) +

√
2‖τ‖/�1. It means that any segment τ + si

has a segment of S′ at distance at most �i(dH(S, S′)+
√

2‖τ‖/�1), in other words
dH(τ + S, S′) � dH(S, S′) +

√
2‖τ‖/�1.
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We now present a 3-approximation algorithm. For all j, let τj be the trans-
lation that maps p1 to p′

j , in other words τj = p′
j − p1. The lemma below shows

that one of these translations yields a (1 +
√

2)-approximation of δ∗.

Lemma 2. Let ĵ = argminj=1,...,ndH(τj + S, S′). Then dH(τĵ + S, S′) � (1 +√
2)δ∗.

Proof. The optimal translation τ∗ matches s1 with a segment s′
k ∈ S′ such that

d(τ∗ + s1, s
′
k) � δ∗�1. It implies that ‖p′

k − p1 − τ∗‖ � δ∗�1, in other words
‖τk − τ∗‖ � δ∗�1. If follows from Lemma 1 that dH(τk + S, S′) � dH(τ∗ +
S, S′) +

√
2‖τk − τ∗‖/�1 � dH(τ∗ + S, S′) +

√
2δ∗ = (1 +

√
2)δ∗.

We obtain a 6/5-approximation of dH(τĵ + S, S′) by running the algorithm
of Theorem 1 for each τj , with ε = 1/5, and returning the best result. As
(1 +

√
2) · 6/5 � 3, it gives us a 3-approximation.

Lemma 3. Given S, S′, we can compute in time O(n(m+n) log n) a translation
τ and a tolerance δ3 such that dH(τ + S, S′) � δ3 � 3δ∗.

We now by provide a (1 + ε)-approximate decision algorithm. We will dis-
cretize the space of translations based on the following discretization of the unit
ball using a uniform grid. Let Bε denote the set of points in the unit ball whose
coordinates are multiples of ε/

√
d. More generally, for any λ > 0, we denote

λBε = {λx | x ∈ Bε}. This set contains O(1/εd) points and can be constructed
in constant time per point:

Proposition 2. We can construct in time O(1/εd) a set Bε of O(1/εd) points
such that for any point p at distance at most 1 from the origin, there is a point
p′ ∈ Bε such that ‖p − p′‖ � ε.

Our (1 + ε)-approximation algorithm first computes the 3-approximation δ3
of δ∗ using Lemma 3, in other words we have δ∗ � δ3 � 3δ∗. For each segment
s′

j , we construct the set of translations T ε
j = p′

j − p1 + δ3�1B
ε/9, and then

T ε =
⋃

j T ε
j (See Fig. 4a). We now prove that one translation τ̂ ∈ T ε gives a

(1 + ε/2)-approximation of the Hausdorff distance under translation.

Lemma 4. There is a translation τ̂ ∈ T ε such that d(τ̂ + S, S′) � (1 + ε/2)δ∗.

Proof. The optimal translation τ∗ maps s1 to a segment s′
k such that d(s1, s′

k) �
δ∗�1. So τ∗+p1 is at distance at most δ∗�1 from p′

k, in other words ‖τ∗+p1−p′
k‖ �

δ∗�1 � δ3�1. So there is a point bε ∈ δ3�1B
ε/9 such that ‖τ∗ + p1 − p′

k − bε‖ �
δ3�1ε/9. We let τ̂ = p′

k − p1 + bε, then τ̂ ∈ T ε
k ⊂ T ε, and ‖τ̂ − τ∗‖ � δ3�1ε/9.

By Lemma 1, it implies that

dH(τ̂ + S, S′) � dH(τ∗ + S, S′) +
√

2δ3�1ε/(9�1)

= δ∗ +
√

2εδ3/9 � δ∗ + 3
√

2εδ∗/9 < (1 + ε/2)δ∗.
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We can now describe our approximation scheme for Hausdorff distance under
translation. We first compute the sample set of translations T ε. It consists of
O(n/εd) translations and can be constructed in O(n/εd) time. For each trans-
lation τ ∈ T ε, we compute in O((m/ε2d + n) log n) a (1 + ε/3)-approximation
δε(τ) of dH(τ +S, S′) using Theorem 1. Let τε be the translation that minimizes
δε(τε). Then we have dH(τε + S, S′) � δε(τε) � δε(τ̂) � (1 + ε/3)dH(τ̂ + S, S′).
By Lemma 4, it implies d(τε + S, S′) � (1 + ε/2)(1 + ε/3)δ∗ � (1 + ε)δ∗. It
completes the proof of the theorem below.

Theorem 2. Let δ∗ = dH(S, S′) be the Hausdorff distance between S and S′

under translation. We can find a translation τε and a tolerance δε such that
dH(τε + S, S′) � δε � (1 + ε)δ∗ in O((n/εd)(m/ε2d + n) log n) time.

2.3 Hausdorff Distance Under Rotation About a Fixed Center in R
2

In this section, we consider rotations about a fixed center in R
2. Without loss

of generality, we assume it to be the origin O. The rotation about O through
an angle θ is denoted by ρθ. The optimal rotation ρ∗ satisfies dH(ρ∗(S), S′) =
min

θ∈[0,2π]
dH(ρθ(S), S′), and we denote by θ∗ its angle. The Hausdorff distance

under rotation dH(ρ∗(S), S′) is denoted by δ∗ in this section, and we want to
find a rotation ρε that provides a (1 + ε)-approximation of δ∗.

Fig. 5. Proof of Lemma 5 and Proposition 3.

The distance from O to a point p ∈ R
2 is denoted by ‖p‖. We will need the

following lemma.

Lemma 5. Let p, p′ ∈ R
2 be two points making an angle θ = ∠pOp′ with the

origin. If θ ∈ [−π, π], then ‖p − p′‖ ≥ ‖p‖ · |θ|/π.

Proof. If |θ| � π/2, then by concavity of sin(·) over [0, π/2], we have sin(|θ|) ≥
2|θ|/π. The distance between p and p′ is at least the distance between p and
its projection onto the line through O and p′ (See Fig. 5a). It follows that ‖p −
p′‖ ≥ ‖p‖ sin(|θ|) ≥ 2‖p‖ · |θ|/π. On the other hand, if π/2 � |θ| � π, then
‖p − p′‖ ≥ ‖p‖, and thus ‖p − p′‖ ≥ ‖p‖ · |θ|/π (See Fig. 5b).
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The aspect ratio of a segment s = (p, q) is α(s) = max(‖p‖, ‖q‖)/�(s). When
we apply the rotation ρθ to s, then p and q move by a distance 2 sin(|θ/2|)‖p‖
and 2 sin(|θ/2|)‖q‖, respectively (See Fig. 5c). Therefore, each endpoint p or q
move by a distance at most 2 sin(|θ/2|)max(‖p‖, ‖q‖) = 2 sin(|θ/2|)�(s)α(s) �
|θ|�(s)α(s), and therefore:

Proposition 3. For any two segments s and s′, and for any angle θ, we have
d(ρθ(s), s′) � d(s, s′) + 2|θ|�(s)α(s).

Let sa = (pa, qa) be the segment in S with largest aspect ratio. So we have
α(sa) = maxs∈S α(s), and we denote �a = �(sa) and αa = α(sa). Without loss
of generality, we assume that ‖pa‖ ≥ ‖qa‖, and thus αa = ‖pa‖/�a.

Lemma 6. dH(ρθ(S), S′) � dH(ρθ′(S), S′) + 2αa|θ − θ′| for any two angles θ
and θ′.

Proof. By Proposition 3, we have for any two segments s ∈ S and s′ ∈ S′

d(ρθ−θ′(ρθ′(s)), s′)
�(s)

� d(ρθ′(s), s′)
�(s)

+ 2|θ − θ′|α(ρθ′(s)).

As ρθ−θ′(ρθ′(s)) = ρθ(s), α(ρθ′(s)) = α(s) and α(s) � αa, it implies

d(ρθ(s), s′)
�(s)

� d(ρθ′(s), s′)
�(s)

+ 2|θ − θ′|α(s) � d(ρθ′(s), s′)
�(s)

+ 2|θ − θ′|αa.

The result follows directly from our definition of the Hausdorff distance between
sets of segments.

We now present an 8-approximation algorithm for δ∗. For all j, let θj denote
the rotation angle such that pa lies on the ray from O to p′

j (See Fig. 4b). If
p′

j = O, then we can choose θ = 0. The lemma below shows that one of these
angles gives a (2π + 1)-approximation.

Lemma 7. Let ĵ = argminj=1,...,ndH(ρθj
(S), S′). Then dH(ρθĵ

(S), S′) � (2π +
1)δ∗.

Proof. The optimal rotation ρ∗ matches sa with a segment s′
j ∈ S′ such that

d(ρ∗(sa), s′
j) � δ∗�a. It implies that ‖ρ∗(pa) − p′

j‖ � δ∗�a. Let θ = θj − θ∗. In
other words, we have θ = ∠ρ∗(pa)Op′

j . By Lemma 5, we have ‖ρ∗(pa) − p′
j)‖ ≥

‖ρ∗(pa)‖ · |θ|/π, and thus δ∗�a ≥ ‖ρ∗(pa)‖ · |θ|/π. As ‖ρ∗(pa)‖ = ‖pa‖, it means
that πδ∗ ≥ |θ|αa. Then Lemma 6 yields dH(ρθj

(S), S′) � dH(ρθ∗(S), S′) +
2|θ|αa � dH(ρθ∗(S), S′) + 2πδ∗ = (2π + 1)δ∗.

We obtain our 8-approximation of δ∗ by applying the algorithm of Theorem 1
with ε = (8/(2π + 1)) − 1 to the pair of sets ρθj

(S), S′ for j = 1, . . . , n, and
returning the best result.

Lemma 8. Given S, S′, we can compute in time O(n(m + n) log n) an angle θ
and a tolerance δ8 such that dH(ρθ(S), S′) � δ8 � 8δ∗.
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We now present our (1 + ε)-approximation algorithm. We begin with com-
puting the 8-approximation δ8 from Lemma 8, and then we discretize the set of
rotation angles. To this end, we observe that the optimal angle θ∗ must be close
to an angle θj .

Lemma 9. There exists j ∈ {1, . . . , n} such that |θ∗ − θj | � πδ8/αa.

Proof. The optimal rotation ρ∗ must bring ρ∗(pa) to a distance at most δ∗�a of
a point p′

j , and thus ‖ρ∗(pa) − p′
j‖ � �aδ∗. As ∠ρ∗(pa)Op′

j = |θj − θ∗|, Lemma 5
implies that ‖ρ∗(pa)‖ · |θ∗ − θj |/π � ‖ρ∗(pa)− p′

j‖. As ‖ρ∗(pa)‖ = ‖pa‖, it yields
‖pa‖ · |θ∗ − θj |/π � δ∗�a. The result follows from the facts that αa = ‖pa‖/�a

and δ∗ � δ8.

For each j ∈ {1, . . . , n}, let Θε
j denote the set of O(1/ε) angles sampled

uniformly in the interval [θj − πδ8/αa, θj + πδ8/αa], that is, Θε
j = {θj +

kC1εδ8/αa | k ∈ Z and |kC1ε| < π}, where C1 is a constant to be deter-
mined. Let Θε =

⋃
j Θε

j be the union of these n sets. By Lemma 9, there is
an angle θ̂ ∈ Θε such that |θ̂ − θ∗| � C1εδ8/αa. It follows from Lemma 6
that dH(ρθ̂(S), S′) � dH(ρθ∗(S), S′) + 2αa|θ̂ − θ∗| � dH(ρθ∗(S), S′) + 2C1εδ8 �
dH(ρθ∗(S), S′) + 16C1εδ

∗ = (1 + 16C1ε)δ∗. Choosing C1 = 1/32, we obtain the
following discretization.

Lemma 10. Given δ8, we can compute in time O(n/ε) a set Θε of O(n/ε)
angles such that one of these angles θ̂ satisfies dH(ρθ̂(S), S′) � (1 + ε/2)δ∗.

For each angle in this set, we run the static algorithm of Theorem 1 using
an approximation factor (1 + ε/3), and keep the best tolerance δε. As ε < 1, we
have (1 + ε/3)(1 + ε/2) < 1 + ε, hence we obtain a (1 + ε)-approximation.

Theorem 3. Given S, S′, we can compute in time O((n/ε)(m/ε4+n) log n) an
angle θ̂ and a tolerance δε such that dH(ρθ̂(S), S′) � δε � (1 + ε)δ∗.

3 Further Results

Due to space limitation, the proof of the result on Hausdorff distance under 2D
rigid motions, bottleneck distance, largest common subset (LCS), and undirected
line segments, are deferred to the full version of this paper. In this section, we
give a brief explanation of these results.

We handle Hausdorff distance under 2D rigid motions by separating the
translation parts and the rotation parts of the rigid motions, and combining our
discretization schemes for translations and for 2D rotations about a fixed center.
Our discretization consists of O(n/ε2) translations, and for each one of them,
O(n/ε) rotation angles, so the total size of our discretization is O(n2/ε3), which
yields an overall running time O((n2/ε3)(m/ε4 + n) log n).
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For bottleneck distance, we use the same discretizations of the space of
transformations as we did for the Hausdorff distance. The only difference
is that, for the static case, we use the geometric matching algorithm by
Efrat et al. [9, Theorem 7.3] which runs in time O((1/ε2d)n1.5 log n) in our
case because segments are regarded as points in R

2d. Remember that out static
algorithm for Hausdorff distance runs in O((m/ε2d + n) log n); as it is used as a
subroutine for all sets of transformation, this difference in running time applies
to the algorithms for translations, rotations and rigid motions.

The algorithms for LCS are similar to the case of bottleneck distance. The
main difference is that now the shortest segment s1 and the segment sa with
smallest aspect ratio are not necessarily part of the largest common subset. So
each segment of S is tried instead of just s1 for candidate translations, i.e. we use
translations p′

j − pi for all pairs i, j instead of just p′
j − p1 for all j. It increases

the running time by a factor m for translations and rigid motions. The same
happens with the angles defined by sa, and the running time for rotations and
rigid motions increases by a factor m.

Undirected line segments are handled by inserting reversed copies of the input
segments in S′, and slightly modifying the algorithm for LCS.
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Abstract. For a given polygon P and a polyhedron Q, the folding prob-
lem asks if Q can be obtained from P by folding it. This simple problem
is quite complicated, and there is no known efficient algorithm that solves
this problem in general. In this paper, we focus on the case that Q is
a box, and the size of Q is not given. That is, input of the box folding
problem is a polygon P , and it asks if P can fold to boxes of certain sizes.
We note that there exist an infinite number of polygons P that can fold
into three boxes of different sizes. In this paper, we give a pseudo poly-
nomial time algorithm that computes all possible ways of folding of P to
boxes.

Keywords: Computational Origami · Computational geometry
Box folding

1 Introduction

In 1525, the German painter Albrecht Dürer published his masterwork on geom-
etry [7], whose title translates as, “On Teaching Measurement with a Compass
and Straightedge for lines, planes, and whole bodies.” In the book, he presented
each polyhedron by drawing a net for it: an unfolding of the surface to a planar
layout. To this day, it remains an important open problem whether every con-
vex polyhedron has a (non-overlapping) net by cut along edges. When we allow
to cut not only along edges, this problem is settled only for tetramonohedron,
which is a kind of tetrahedron: any net of a tetramonohedron is characterized
by a (non-overlapping) tiling [3].

To understand unfolding, it is interesting to look at the inverse: one folding
problem asks what polyhedra can be folded from a given polygonal sheet of
paper. For example, the Latin cross, which is one of eleven nets of a cube, can
form 23 different convex polyhedra (including doubly covered convex polygons)
by 85 distinct ways of folding (and an infinite number of doubly covered concave
polygons). Comprehensive surveys of folding and unfolding can be found in [6].
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Recently, Abel et al. investigated the folding problem of bumpy pyramids [1]: For
a given petal polygon P (convex n-gon B with n triangular petals), it asks if
we can fold to a pyramid (with flat base B) or a convex bumpy pyramid by
folding along a certain triangulation of B. In [1], they gave nontrivial linear time
algorithms for the problem.

Let us elaborate on this and its related results. Alexandrov’s Theorem states
that every metric with the global topology, and local geometry required of a
convex polyhedron is, in fact, the intrinsic metric of some convex polyhedron.
Thus, if P is a net of a convex polyhedron, the shape is uniquely determined.
Alexandrov’s Theorem was stated in 1942, and a constructive proof was given
by Bobenko and Izmestiev in 2008 [4]. A pseudo-polynomial time algorithm
for Alexandrov’s Theorem was given by Kane, Price, and Demaine in 2009 [9].
However, it runs in O(n456.5r1891/ε121) time, where r is the ratio of the largest
and smallest distances between vertices, and ε is the coordinate relative accuracy.
The exponents in the time bound of the result are remarkably huge. As far
as the authors know, the results for the bumpy pyramids are the first efficient
algorithms for Alexandrov’s Theorem for a family of nontrivial convex polyhedra.

Fig. 1. A polygon that can fold into three different boxes of sizes 1 × 1 × 7, 1 × 3 × 3,
and

√
5 × √

5 × √
5 in four different ways [12].

In this paper, for a given polygon P , we consider the box folding problem that
asks if P can fold to a box or not. This problem seems to be natural and simple
from the viewpoint of our life. We first note that this problem is motivated by
counterintuitive polygons. In 1999, Biedl et al. found two polygons that can fold
into two different boxes [6, Fig. 25.53]. Later, Mitani and Uehara proved that
there exist an infinite number of polygons that can fold into two boxes [10], and
Shirakawa and Uehara proved that there exist an infinite number of polygons
that can fold into three boxes [11]. So far, a polygon that can fold into three
different boxes in four different ways has been found by using a supercomputer
(Fig. 1), and it is open that there exists a polygon that can fold into k different
boxes for k > 3 [12].

In the previous research, they did not solve the box folding problem in general
form. The results in [6, Fig. 25.53] and [11] were obtained without a computer.
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In [10], they assume that a polygon P is a polyomino, which is a union of unit
squares sharing on their edges, and they only search the boxes obtained by
folding along the edges of unit squares. In [12], they first obtain the set of all
polyominoes of area 30 that can fold into two boxes of sizes 1×1×7 and 1×3×3
on the similar model in [10]. Then they solved the box folding problem for the
special box of size

√
5×√

5×√
5 on these polyominoes. Namely, it is specialized

to this special size (see [12] for the details).
Recently, Horiyama and Mizunashi solved the box folding problem in more

general case with supporting parameters [8]; the input polygon P is a polyomino,
and the size a× b× c of the box Q is also given. Moreover, the matching of edges
(that gives us the gluing of the corresponding edges) of P is also given. In this
case, the box folding problem can be solved in O((n + m) log n) time, where m
is the maximum number of line segments on an edge of the folded box Q. We
here note that this geometric parameter m is independent from the number of
vertices in P and Q. Even in a simple example in Fig. 2, m can be arbitrarily
large while P and Q have 10 and 8 vertices, respectively.

Fig. 2. A geometric parameter m that the number of line segments on an edge of a
cube Q. In this example, an edge of Q consists of m = 4 line segments, however, it can
be arbitrarily large if the slope of P is more slanted.

In this paper, from both viewpoints of theoretical and practical, we give an
efficient algorithm for the box folding problem in general. That is, the input is
a polygon P with n vertices. Then the output is the set of whole boxes Q folded
from P with distinct ways of folding. The algorithm runs in pseudo-polynomial
time of n, m and some geometric parameters.

Fig. 3. Another polygon that can fold into three different boxes of sizes 1 × 1 × 7,
1 × 3 × 3, and

√
5 × √

5 × √
5 in four different ways not mentioned in [12].
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We show a case study of our algorithm for the nine polyominoes shown in
[12]. In [12], the authors first compute the set of polyominoes that can fold two
boxes of sizes 1 × 1 × 7 and 1 × 3 × 3. There are 1080 polyominoes. Then they
solved the box folding problem for the special box of size

√
5×√

5×√
5 on these

1080 polyominoes. Finally, they found nine polyominoes that can fold into three
different boxes. We apply our algorithm to this set of nine polyominoes as a case
study. Surprisingly, among them, we have another special polyomino that can
fold into three different boxes in four different ways of folding (Fig. 3). We will
discuss the reason why the authors of [12] missed finding it, while we succeed.

2 Preliminaries

In this section, we first state the box folding problem:

Input : A polygon P = (p0, p1, . . . , pn−1, p0)
Output: A set S = {Q0, Q1, . . . , Qk} of boxes that can be folded from P

Note that S can be an empty set. Let x(pi) and y(pi) be the x-coordinate
and y-coordinate of a point pi, respectively. We assume that x(pi) and y(pi)
are rational numbers for each i = 0, . . . , n − 1. Then we have the following
observation:

Observation 1. Assume that each x(pi) and y(pi) in P are described by rational
numbers. Let qmin be the least common denominator of them. Scaling up by qmin,
the box folding problem can be solved for P ′ = (p′

0, p
′
1, . . . , p

′
n−1, p

′
0) such that

each x(p′
i) and y(p′

i) in P ′ are integers in [0, pmaxqmin], where pmax is the largest
numerator.

Therefore, hereafter, we assume that each coordinates x(pi) and ypi
are nonneg-

ative integers without loss of generality. For the polygon P , its diameter D is
defined by maxi,j |pi − pj | = maxi,j

√
(x(pi) − x(pj))2 + (y(pi) − y(pj))2. Here

we introduce another geometric parameter m that indicates the number of line
segments on an edge of Q. This is independent of the number of vertices in P
and Q. In a simple example in Fig. 2, m can be arbitrarily large.

Now, we turn to the definition of a box and its development and net. Let Q
be a convex polyhedron. It is a box if Q consists of three pairs of rectangular
faces. It results that Q has 6 faces, 8 vertices, and 12 edges. At each vertex, its
curvature is 270◦, and at any other point, its curvature is 360◦1. When we cut
Q along a set of polygonal lines, unfold on a plane, and obtain a polygon P , the
set is called a development of Q. We assume that any cut ends at a point with
curvature less than 360◦. Otherwise, it makes a redundant cut on P , which can
be reduced. The development P is called a net of Q if and only if P is a connected
simple polygon without self-overlap or hole. Let T be the set of cut lines on Q
to obtain a net P . Then the following is well known (see [6] for details):

1 We do not give the formal definition of curvature. Intuitively, it indicates the quantity
of paper around the point measured by its angle. See [6] for further details.
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Theorem 2. T forms a spanning tree of the vertices of Q.

In this paper, the following theorem is useful:

Theorem 3. Let Q be a box and P be a net of Q. Then (1) all vertices of Q
appear on the boundary of P , and (2) P has at least two vertices of degree 270◦,
which correspond to two vertices of Q.

Proof. By Theorem 2, the set of cut lines on Q forms a spanning tree T . We note
that each edge of T appears twice on the boundary of P . If a vertex of Q appears
inside of P , P cannot be flat. Therefore, we obtain (1) immediately. When the
vertex v of Q has deg(v) ≥ 2 on T , the vertex will be cut into deg(v) pieces
and spread on the boundary of P . In this case, v appears deg(v) times, and P
has less than 270◦ at these points. Let � be a leaf of T . Then � corresponds to
a vertex of Q; otherwise, the curvature around � is 360◦, and it does not make
a boundary of P . Thus around at �, the curvature is 270◦. Since T has at least
two leaves, we have (2). ��

As shown in [12, Theorem 2], for any positive integer k, there are a series
of boxes Qi of size ai × bi × ci for i = 1, 2, . . . , k such that all distinct Qi have
the same area. However, once an area is given, we have an upper bound of the
number of such boxes:

Observation 4. Let P be a polygon of area A, and it can fold into some boxes.
Then the number of possible edge lengths of boxes is O(A2/ log logA).

Proof. Let a, b, c be the edge lengths of a box Q of area A with a ≤ b ≤ c. Then
we have 2(ab + bc + ca) = A. Since A is an integer by Observation 1, each of
a, b, c can be represented by i

√
j for some positive integers i and j. By a ≤ b ≤ c

and 2(ab+ bc+ ca) = A, we have 6a2 ≤ A, which implies the number of possible
a is O(A) since A is an integer, and a is i

√
j for some positive integers i and

j in general. In fact, the number of divisors of A is O(A1/ log logA). Then the
number of possible b is also O(A1/ log logA) since 2b2 ≤ 2(ab+ bc+ ca) = A. Once
a and b are fixed, c is uniquely determined. Therefore, the number of possible
edge lengths (a, b, c) is O(A2/ log logA). ��

3 Algorithm Description

In this section, we describe our algorithm. The outline of our algorithm is simple:

Input : A polygon P = (p0, p1, . . . , pn−1, p0)
Output: A set S = {Q0, Q1, . . . , Qk} of boxes that can be folded from P
foreach box Q of size a × b × c such that 2(ab + bc + ca) is equal to area
of P do

for i ← 0 to n − 1 do
if curvature at pi is 270◦ then

Check if P is a net of Q such that pi is a vertex of Q;
end

end
end
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That is, the algorithm checks all possible points pi if it makes 270◦. By
Theorem 3, if Q can be folded from P , there are at least two points that fold to
the vertices of Q. Hereafter, we assume that p0 is the vertex of Q without loss
of generality. This time, for the given P and p0, the algorithm checks if P can
be folded into the box Q. This step is a loop for direction of Q as follows:

1. First, fix the direction of Q on P in an arbitrary way. That is, the algorithm
first arbitrarily chooses a direction of Q on P at the vertex p0.

2. Then the algorithm checks if all vertices of Q are on the boundary of P . This
is a necessary condition.

3. If any vertex v of Q is inside of P , the algorithm rotates the direction of
Q clockwise at the center p0 to move v to the boundary of P . Repeat this
rotation until no vertex of Q is inside of P .

4. Check if each vertex of Q makes 270◦ in total.
5. Finally, the algorithm checks these vertices can be glued to fold the box Q.

If they can be glued to the box Q, output it.
6. The algorithm rotates the direction of Q clockwise to find the next position.

If the rotation makes 360◦, the algorithm halts.

Intuitively, the algorithm checks all possible positions of P to fold into Q. There
are two major points to be considered. The first point is how to check if P can
fold to Q at the position and direction. In order to check this point, we will
use a technique named “stamping”. The second point is the number of rotations
of Q. We will show that the number of rotations can be bounded above by a
polynomial of n and some geometric parameters.

Hereafter, we assume that p0 of P coincides with a vertex of Q, and it makes
an angle 270◦. Let v0 = p0 be a vertex of Q and v1, v2, v3 be three vertices of
Q adjacent to v0 on Q by three edges (or crease lines) v0v1, v0v2, and v0v3 in
clockwise. Without loss of generality, we assume that |v0v1| = a. Then we have
two cases that either |v0v2| = b and |v0v3| = c or |v0v3| = b and |v0v2| = c.
The algorithm will check these two cases. Here we suppose that |v0v2| = b and
|v0v3| = c since the other case is symmetry. We describe the details of above two
points and show the analysis of the algorithm.

3.1 Stamping

The algorithm first adjusts p0 of P on v0 of Q with the assumption the line
v0v3 is cut. From this position, it rotates the relative position of Q centered at
v0 = p0 to search a proper direction that satisfies the necessary conditions for
the vertices of P and Q. We will show that the number of these rotations can be
bounded by a polynomial of some geometric parameters. Let denote the angle
of rotation by θ = ∠v3p0p1 at p0 = v0. That is, the algorithm starts from θ = 0◦

and updates θ. When θ ≥ 360◦, it finishes to check.
For a given angle θ, the algorithm has to check whether (1) all vertices of

Q are on the boundary of P , and (2) for each vertex vi of Q, the curvatures
corresponding to the points on the boundary of P sum up to 270◦. In order to
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do that, the algorithm has to follow the corresponding points to the vertices of
Q on P .

The basic idea is called stamping in [2]. In [2], Akiyama rolls a regular tetra-
hedron on a plane as a stamper and obtains a tiling by the stamping. The
key property of the stamping in [2] is that a regular tetrahedron has the same
direction and position when it returns to the original position, no matter what
the route was. Therefore, the cut lines of any net on the surface of a regular
tetrahedron tile plane, or the net tiles plane.

We use a box Q as a stamper on P . In this case, when the stamper Q returns
to the original position, its face and direction change according to the route.
In fact, it is used for designing puzzles, and its complexity is investigated [5].
However, the key properties we use here are that a box Q is orthogonal, and
each coordinate is an integer, which are useful to bound the number of possible
cases. As used in [2], when we roll Q on an edge e of Q on P , this operation
corresponds to develop Q to P . That is, when we draw the cut lines of Q on Q
and stamp it on the plane, it corresponds to develop Q into the net P .

Fig. 4. Tree structure of P : Each face of the box Q is cut into “particles”. Then the
adjacent relationship of the particles induces a tree on P .

We will use the tree structure of P defined as follows (Fig. 4). Each face of
the box Q is cut into “particles” when it is developed to P . In other words, P
is partitioned into particles by the edges of Q (or folding lines of P ). On P , the
particles correspond to the vertices, and two vertices are joined by an edge if and
only if the corresponding particles share an edge of positive length on Q. Then
since P is a simple polygon and all vertices of Q are on the boundary of P , the
resulting graph induces a tree. Essentially, the algorithm performs the breadth
first search on this tree by rolling the box Q on P , and it obtains the partition
of P into the particles by stamping of Q.

A simple example is given in Fig. 5. The stamper Q has six different labels
A, A′, B, B′, C, and C ′. (They are just labels to distinguish with each other,
and we do not mind the direction when it is “stamped” on P .) The stamper
Q starts at the initial position: It is on the face X that contains v0 = p0, and
the corner (90◦) is covered by P without cut. In the case of Fig. 5, the initial
position is either on the polygons labeled A or B since the face C of Q is cut
into two pieces on P .
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Fig. 5. Rolling a box Q on P . When we roll it left and up, we have B and C. When
we roll it up and right, we have C and B′.

We assume that we have the curvature 270◦ at v0 = p0. Therefore, we always
have at least two candidates for the initial position (when θ = 0, we have three
candidates). We choose any one as the initial position. In this case, assume that
we choose the face A with v0 = p0 as an initial position and put Q at the initial
position.

Let denote the intersection of P and the face of Q on P by Q ∩ P . Then, at
the initial position, Q ∩ P gives us the area (⊂ P ) labeled A. When Q is rolled
up and right, Q ∩ P gives us the areas labeled C and B′, respectively. On the
other hand, when Q is rolled (from the initial position) left and up, P ∩ Q gives
us the areas labeled B and C, respectively.

Here, this stamping (or labeling) should be continuous. Precisely, when Q is
rolled on an edge e, the resulting polygons in Q ∩ P obtain their labels only if
they share the edge e with the labeled area before rolling. (In the context of the
tree structure shown in Fig. 4, the labeling is done for a polygon in Q ∩ P only
when it is adjacent to the labeled neighbor.) In the case of Fig. 5, when Q is
rolled left from the initial position, the area labeled by B obtains its label since
it shares an edge with the area labeled by A. On the other hand, the area with
label ∗ does not obtain any label this time.

Intuitively, the stamping sweeps over P from the initial position along P . We
repeat rolling from the initial position until all points in P are included in the
labeled polygons. When all points in P are in the labeled polygons2, we say Q
stamps P . We say that the stamping is feasible if no vertex vi of Q is put inside
of P in the stamping. We will consider if P is a net of Q for the current θ. In
this situation, P may be a net of Q only if P is feasible by Theorem 3.

2 For sake of simplicity, we do not define the labels of points in P on an edge shared
by two rectangles of Q. We also do not define the label of a point p corresponding
to the vertex vi of Q.
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Lemma 1. Assume that Q and θ give us a feasible stamping of P . We also
assume that P is a net of Q. Then, each point in P obtains a unique label
(except on the edges of Q). That is, the stamping gives us a partition of P along
the edges of Q.

Proof. (Outline) To derive a contradiction, we assume that p ∈ P obtains two
labels. Then there are two different sequences S1 and S2 of rolling of Q to stamp
on p. Then they produces a hole in P , which contradicts that P is a simple
polygon. The details are omitted. ��
Lemma 2. Let D be the diameter of P . Then the total number of stampings of
Q on P at the vertex p0 = v0 by the algorithm is O((D/a)6n).

Proof. (Outline) We first note that the algorithm contains two different steps.
First, the algorithm puts Q at the initial position. If the initial position is feasible,
it is okay. However, in general, we have to seek the first feasible position. After
the first step, we have to seek the next feasible position from the current feasible
position.

In the first step at the initial position, when the stamping is not feasible,
the algorithm first finds a vertex of Q inside of P . This is done from the initial
position by stamping by the breadth first search manner. Let v be the first vertex
of Q inside of P . Then the algorithm finds the first boundary of P by rotating
δ for the smallest rotation angle. Precisely, after rotation of angle δ, v is moved
on the boundary of P . This can be done by computing the locus of v as a part
of the circle centered at v0 with radius |vp0|. After the rotation, the algorithm
checks if it has a feasible stamping for the new angle. If it is not feasible by some
vertex of Q inside of P , the algorithm repeats the process until there are no such
vertices of Q inside of P .

In the second step, now all vertices of Q are on the boundary of P (or outside
of P ). By the stamping, the algorithm also knows the correspondence between
the vertices of Q and the vertices on the boundary of P . Therefore, the algorithm
checks whether each vertex of Q has curvature of 270◦ in total. If all vertices
are of curvature 270◦, the algorithm performs the check of gluing in the next
phase. After checking the gluing, the algorithm has to rotate for finding the next
angle of stamping such that no vertex is inside of P after the rotation of, say,
δ′. We will show that the total number of this rotation can be bounded above
by O((D/a)6). The crucial point is that the tree structure on P defined by the
stamping of Q can be changed after the rotation. Thus we consider all possible
vertices that can be produced by the stamping of Q. Essentially, these points
form a grid of combinations of three different lengths a, b, c. We estimate the size
of grid, and obtain the number of rotations in total. The details are omitted. ��

We note that the upper bound O((D/a)6) of the number of rotations is
pessimistic. For example, when a = b = c, it is reduced to O((D/a)2).

We also note that each feasible stamping gives us the whole vertices vi of Q
on the boundary of P . Therefore, we can check if each vertex vi has a curvature
270◦ in total in linear time of n. Therefore, after the first phase, we know that
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P is partitioned into particles of faces of Q with their corresponding labels, and
each vertex vi has a curvature 270◦ in total.

3.2 Check of Gluing

In this phase, we check if we fold to Q by P along the crease lines given in the
first phase3.

Hereafter, we sometimes consider the polygon P = (p0, p1, . . . , pn−1, p0) con-
sists of vectors −−→p0p1,

−−→p1p2, . . . ,
−−−−→pn−1p0 for the sake of simplicity. Then we can deal

with “gluing of two edges” by an operation of vectors. For example, in Fig. 5,
we assume that we glue two edges p0p1 and p0pn−1. Then, we have three cases
after gluing:

(1) |p0p1| > |p0pn−1|: We obtain −−−−→pn−1p1 such that |pn−1p1| = |p0p1| − |p0pn−1|.
(2) |p0p1| < |p0pn−1|: We obtain −−−−→pn−1p1 such that |pn−1p1| = |p0pn−1| − |p0p1|.
(3) |p0p1| = |p0pn−1|: We obtain pn−1 = p1.

We here remind that if P is a net of Q, the set of line segments of cut on Q
forms a spanning tree T (Theorem 2). Moreover, each edge of T appears twice
on the boundary of P . Now we know that v0 = p0 is the corner of Q of size
a × b × c, and which line is v0v1 of length a by θ. Therefore, from this point v0,
we can glue edge by edge and check if Q can be folded from v0 by P . The details
of this part can be found in [8], and it can be done in O((n + m) log n) time.

3.3 Analysis of Algorithm

The correctness of the algorithm follows from the discussion above. Therefore,
we show that the algorithm runs in polynomial time.

Theorem 5. For a given polygon P of n vertices, the algorithm solves the box
folding problem in O(D10(D6n+(n+m) log n)n) time, where D is the diameter
of P and m is the maximum number of line segments in an edge of Q for all
Q ∈ Q, where Q is the set of boxes of the same surface area with P .

Proof. We first consider the main loop. The number of combinations of the size
a × b × c of a box is given by O(A2/ log logA), where A is the area of P . For each
trio (a, b, c) with a ≤ b ≤ c, the main loop checks for each point pi of P of angle
270◦. There are O(n) such angles in the worst case.

For each pi = v0, the algorithm performs the stamping of Q on P . It is not
difficult to see that it can be done in O(M) time, where M is the number of
rectangles tiled over P to cover it.

3 Some readers may consider the first phase is enough. However, we have not yet
checked if some particles of polygons cause overlap on a face of Q. In other words,
we have to check each face is made by particles of polygons by gluing without overlap
or hole.
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Now we turn to the time complexity of the checking of vertices. First, the
algorithm puts a box Q on P so that v0 = p0 and θ = 0. Then it finds the next
feasible stamping if it is not.

The first step is that while there is a vertex of Q inside of P , repeat rotations
until all vertices of Q are on P . Finding the first vertex v inside of P takes
O(Mn) time; the stamping by the breadth first search takes O(M) rollings and
checks if a vertex of the rectangle face is in P takes O(n) time.

Once it finds a position of Q on P such that no vertex is inside of P , the
algorithm computes δ′, which is the maximum angle that needs to move vi not
inside of P for each vi. For each vertex vi, the computation of the corresponding
v′
i on the circle centered at v0 of radius |v0vi| takes O(n) time (along the edges

of P ). The number of vertices of vi on the boundary of P is O(M). Therefore,
this step takes O(Mn) time.

Once we find a feasible stamping, we have to check if P can be glued to Q.
This step takes O((n + m) log n) time, where m is the maximum number of line
segments on an edge of the folded box by using the algorithm in [8].

Thus, the running time of this algorithm is O(A2/ log logA(Mn)(Mn + (n +
m) log n)) time for each phase. By Lemma 2, the total summation of M is
O((D/a)6). Using A2/ log logA = O(D4), it is simply that O(D4(D/a)6((D/a)6n+
(n + m) log n)n) time. Now taking a = 1, we have the theorem. ��

4 Case Study

The authors investigated the case that P is an orthogonal polygon. We can
assume that P is a polyomino made of unit squares by refining, which sim-
plifies the implementation of the algorithm (the details are omitted). In [12],
Xu et al. found nine polyominoes of area 30 that can fold into three boxes of size
1× 1× 7, 1× 3× 3, and

√
5×√

5×√
5. In our case study, n < 60 and each com-

putation takes less than one second. In [12], the authors said that “Interestingly,
one of nine such polygons folds into three different boxes 1 × 1 × 7, 1 × 3 × 3,
and

√
5×√

5×√
5 in four different ways.” The polygon with four different ways

of folding is shown in Fig. 1.
However, their claim is not correct. There is another polyomino that has

the same property as shown in Fig. 3. That is, the precise claim is as follows.
Among polyomino of area 304, there are nine polyominoes that can fold into
three different boxes of these sizes. Among these nine, two polyominoes have
four different ways of folding into three different boxes, and seven polyominoes
have three (unique) different ways of folding into three different boxes.

The reason why the authors of [12] missed finding one is hidden in their
algorithm. Their first algorithm found all polyominoes that folded into two boxes
of sizes 1 × 1 × 7 and 1 × 3 × 3. There are 1080 polyominoes that fold into these
two boxes. This time, they did not consider how many ways of folding into
two boxes. (Or they never thought that there might have been a polyomino

4 The number of polyomino of area 30 is 2368347037571252.
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that could fold into two boxes in three or more different ways.) For these 1080
polyominoes, their second algorithm checked all ways of folding and found nine
polyominoes that fold into the third box of size

√
5×√

5×√
5. Since their second

algorithm produced all ways of folding, as serendipity, they found that there was
a polyomino that folded into the box of size

√
5×√

5×√
5 in two different ways.

This is why they concluded that only one polyomino had 4 different ways.
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Number JP17H06287 and 18H04091.
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Abstract. With the advent of quantum computers, researchers are
exploring if quantum mechanics can be leveraged to solve important
problems in ways that may provide advantages not possible with conven-
tional or classical methods. A previous work by O’Malley and Vesselinov
in 2016 briefly explored using a quantum annealing machine for solving
linear least squares problems for real numbers. They suggested that it is
best suited for binary and sparse versions of the problem. In our work, we
propose a more compact way to represent variables using two’s and one’s
complement on a quantum annealer. We then do an in-depth theoretical
analysis of this approach, showing the conditions for which this method
may be able to outperform the traditional classical methods for solving
general linear least squares problems. Finally, based on our analysis and
observations, we discuss potentially promising areas of further research
where quantum annealing can be especially beneficial.

Keywords: Quantum annealing · Simulated annealing
Quantum computing · Combinatorial optimization
Linear least squares · Numerical methods

1 Introduction

Quantum computing opens up a new paradigm of approaching computational
problems that may be able to provide advantages that classical (i.e. conven-
tional) computation cannot match. A specific subset of quantum computing is
the quantum annealing meta-heuristic, which is aimed at optimization problems.

Quantum annealing is a hardware implementation of exploiting the effects of
quantum mechanics in hopes to get as close to a global minimum of the objec-
tive function [4]. One popular model of an optimization problem that quantum
annealers are based upon is the Ising Model [12]. It can be written as:

F (h, J) =
∑

a

haσa +
∑

a<b

Jabσaσb (1)
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where σa ∈ {−1, 1} represents the qubit (quantum bit) spin and ha and Jab are
the coefficients for the qubit spins and couplers respectively [7]. The quantum
annealer’s job is to return the set of values for σas that would correspond to the
smallest value of F (h, J).

There have been various efforts by different organizations to make non Von
Neumann architecture computers based on the Ising model such as D-wave Sys-
tems [13] and IARPA’s QEO effort [1] that are attempting to make quantum
annealers. Other similar efforts are focussed towards making ‘quantum like’ opti-
mizers for the Ising model, such as Fujitsu’s Digital Annealer chip [3] and NTT’s
photonic quantum neural network [11]. The former is a quantum inspired clas-
sical annealer and the latter uses photonic qubits for doing its optimization. At
the time of writing this document, D-wave computers are the most prominent
Ising model based quantum annealers.

In order to solve a problem on a quantum annealer, the programmers first
have to convert their problem for the Ising model. A lot of work has been done
showing various types of problems running on D-wave machines [2,14,16].

In 2016, O’Malley and Vesselinov [15] briefly explored using the D-wave
Quantum Annealer for the linear least squares problem for binary and real num-
bers. In this paper, we shall study their approach in more detail. Section 2 is
devoted to the necessary background and related work for our results. Section 3 is
a review of the quantum annealing approach where we introduce one’s and two’s
complement encoding for a quantum annealer. Section 4 deals with the runtime
cost analysis and comparison where we define necessary conditions for expect-
ing a speedup. Section 5 is dedicated to theoretical accuracy analysis. Based on
our results, Sect. 6 is a discussion which lays out potentially promising future
work. We finally conclude our paper with Sect. 7. The D-wave 2000Q and the
experiments performed on them are elaborated upon in Appendices A and B
respectively in arXiv:1809.07649.

2 Background and Related Work

2.1 Background

Before we get started, we shall first lay out the terms and concepts we will use
in the rest of the paper.

Quantum Annealing: The Quantum Annealing approach aims to employ
quantum mechanical phenomena to traverse through the energy landscape of the
Ising model to find the ground state configuration of σa variables from Eq. (1).
The σa variables are called as qubits spins in quantum annealing, essentially
being quantum bits.

The process begins with all qubits in equal quantum superposition: where
all qubits are equally weighted to be either −1 or +1. After going through a
quantum-mechanical evolution of the system, given enough time, the resultant
state would be the ground state or the global minimum of the Ising objective
function. During this process, the entanglement between qubits (in the form of

https://arxiv.org/abs/1809.07649
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couplings) along with quantum tunneling effects (to escape being stuck in con-
figurations of local minima) plays a part in the search for the global minimum. A
more detailed description can be found in the book by Tanaka et al. [18]. For our
purposes however, we will focus on the computational aspects related to quantum
annealing: cost of preparing the problem for the annealer, cost of annealing and
the accuracy of the answers. From an accuracy perspective, a quantum annealer
is essentially trying to take samples of a Boltzmann distribution whose energy
is the Ising objective function [2]

P (σ) =
1
Z

e−F (h,J) (2)

where Z = exp
( ∑

{σa}

[ ∑

a

haσa +
∑

a<b

Jabσaσb

])
(3)

Equation (2) tells us that the qubit configuration of the global minimum would
have the highest probability to be sampled. The D-wave 2000Q is one such
quantum annealer made by D-wave Systems. Its description is in the Appendix
A of arXiv:1809.07649.

Quadratic Unconstrained Binary Optimization (QUBO): These are
minimization problems of the type

F ′(v, w) =
∑

a

vaqa +
∑

a<b

wabqaqb (4)

where qa ∈ {0, 1} are the qubit variables returned by the machine after the
minimization and va and wab are the coefficients for the qubits and the cou-
plers respectively [7]. The QUBO model is equivalent to the Ising model by the
following relationship between σa and qa

σa = 2qa − 1 (5)
and F (h, J) = F ′(v, w) + offset (6)

Since the offset value is a constant, the actual minimization is only done upon
F or F ′. We use this model for the rest of the paper.

Linear Least Squares: Given a matrix A ∈ R
m×n, a column vector of variables

x ∈ R
n and a column vector b ∈ R

m (Where m > n). The linear least squares
problem is to find the x that would minimize ‖Ax− b‖ the most. In other words,
it can be described as:

arg min
x

‖Ax − b‖ (7)

Various classical algorithms have been developed over the time in order to solve
this problem. Some of the most prominent ones are (1) Normal Equations by
Cholesky Factorization, (2) QR Factorization and the (3) SVD Method [6].

https://arxiv.org/abs/1809.07649
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2.2 Related Work

The technique of using quantum annealing for solving linear least squares prob-
lems for real numbers was created by O’Malley and Vesselinov [15]. In that work,
they discovered that because the time complexity is in the order of O(mn2) (with
certain assumptions mentioned in Sect. 4.2), which is the same time complex-
ity class as the methods mentioned above, the approach might be best suited
for binary and sparse least squares problem. In a later work, O’Malley et al.
applied binary linear least squares using quantum annealing for the purposes of
nonnegative/binary matrix factorization [16].

The problem of solving linear least squares has been well studied classically.
Like mentioned above, the most prominent methods of solving the problems
are Normal Equations (using Cholesky Factorization), QR Factorization and by
Singular Value Decomposition [6]. But other works in recent years have tried to
get a better time complexity for certain types of matrices, such as the work by
Drineas et al. that presents a randomized algorithm in O(mn log n) for (m >> n)
[9]. The iterative approximation techniques such as Picani and Wainwright’s
work [17] of using sketch Hessian matrices to solve constrained and unconstrained
least squares problems. But since the approach by O’Malley and Vesselinov is a
direct approach to solve least squares, we shall focus on comparisons with the
big 3 direct methods mentioned above.

Finally, it is important to note that algorithms exists in the gate-
based quantum computation model like the one by Wang [21] that runs in
poly(log(N), d, κ, 1/ε) where N is the size of data, d is the number of adjustable
parameters,κ represents the condition number of A and ε is the desired precision.
However, the results of this algorithm are in a quantum superposition state and
not directly available for us to observe.

3 Quantum Annealing for Linear Least Squares

In order to solve Eq. (7), let us begin by writing out Ax − b

Ax − b =

⎛

⎜⎜⎜⎝

A11 A12 ... A1n

A21 A22 ... A2n

...
...

...
...

Am1 Am2 ... Amn

⎞

⎟⎟⎟⎠

⎛

⎜⎜⎜⎝

x1

x2

...
xn

⎞

⎟⎟⎟⎠ −

⎛

⎜⎜⎜⎝

b1
b2
...

bm

⎞

⎟⎟⎟⎠ (8)

Ax − b =

⎛

⎜⎜⎜⎝

A11x1 + A12x2 + ... + A1nxn − b1
A21x1 + A22x2 + ... + A2nxn − b2

...
Am1x1 + Am2x2 + ... + Amnxn − bm

⎞

⎟⎟⎟⎠ (9)

Taking the 2 norm square of the resultant vector of Eq. (9), we get

‖Ax − b‖22 =
m∑

i=1

(|Ai1x1 + Ai2x2 + ... + Ainxn − bi|)2 (10)



Analyzing QA for Lin Least Squares 293

Because we are dealing with real numbers here, (|.|)2 = (.)2

‖Ax − b‖22 =
m∑

i=1

(Ai1x1 + Ai2x2 + ... + Ainxn − bi)2 (11)

Now if we were solving binary least squares [15,16] then each xj would be rep-
resented by the qubit qj . The coefficients in Eq. (4) are found by expanding
Eq. (11) to be

vj =
∑

i

Aij(Aij − 2bi) (12)

wjk = 2
∑

i

AijAik (13)

But for solving the general version of the least squares problem we need to
represent xj , which is a real number, in its equivalent radix 2 approximation by
using multiple qubits. Let Θ be the set of powers of 2 we use to represent every
xj , defined as

Θ = {2l : l ∈ [o, p] ∧ l, o, p ∈ Z} (14)

Here, it is assumed that l represents contiguous values from the interval of [o, p].
The values of o and p are the user defined lower and upper limits of the interval.
In the work by O’Malley and Vesselinov [15], the radix 2 representation of xj is
given by

xj ≈
∑

θ∈Θ

θqjθ (15)

But this would mean that only approximations of positive real numbers can be
done, so we need to introduce another set of qubits q∗

j , to represent negative real
numbers

xj ≈
∑

θ∈Θ

θqjθ +
∑

θ∈Θ

−(θq∗
jθ) (16)

Which means that representing a (fixed point approximation of) real number
that can be either positive or negative would require 2|Θ| number of qubits.

However, we can greatly reduce the amount of qubits to be used in Eq. (16)
by introducing a sign bit qj∅

xj ≈ ϑqj∅ +
∑

θ∈Θ

θqjθ (17)

where ϑ =

{
−2p+1, for two’s complement
−2p+1 + 2o, for one’s complement

(18)

Where p and o are the upper and lower limits of the exponents used for powers
of 2 present in Θ. In other words, Eq. (17) represents an approximation of a real
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number in one’s or two’s complement binary. Combining Eqs. (11) and (17), we
get

‖Ax − b‖22 =
m∑

i=1

(Ai1(ϑq1∅ +
∑

θ∈Θ

θq1θ)

+ Ai2(ϑq2∅ +
∑

θ∈Θ

θq2θ) + ... + Ain(ϑqn∅ +
∑

θ∈Θ

θqnθ) − bi)2
(19)

Which means that the v and w coefficients of the qubits for the general version
of the least squares problem would be

vjs =
∑

i

sAij(sAij − 2bi) (20)

wjskt = 2st
∑

i

AijAik (21)

where s, t ∈ ϑ ∪ Θ

4 Cost Analysis and Comparison

In order to analyze the cost incurred using a quantum annealer to solve a prob-
lem, one good way is by combining together the (1) time required to prepare
the problem (so that it is in the QUBO/Ising model that the machine would
understand) and (2) the runtime of the problem on the machine.

We can calculate the first part of the cost concretely. But the second part of
the cost depends heavily upon user parameters and heuristics to gauge how long
should the machine run and/or how many runs of the problem should be done.
Nonetheless, we can set some conditions that must hold true if any speedup is
to be observed using a quantum annealer for this problem.

4.1 Cost of Preparing the Problem

As mentioned in O’Malley and Vesselinov [15] the complexity class of preparing
a QUBO problem from A,x and b is O(mn2), which is the same as all the
other prominent classical methods to solve linear least squares [6]. However, for
numerical methods, it is also important to analyze the floating point operation
cost as they grow with the data. This is because methods in the same time
complexity class may be comparatively faster or slower.

So starting with Eq. (20), we assume that the values of the set ϑ ∪ Θ are
preprocessed. Matrix A has m rows and n columns, the variable vector x is of
the length n. Let c = |Θ| + 1. To calculate the expression sAij(sAij − 2bi), we
can compute 2bi for m rows first and use the results to help in all the future
computations. After that, we see that it takes 3 flops to process the expression for
1 qubit of the radix 2 representation of a variable, per row. This expression has to
be calculated for n variables each requiring c qubits for the radix 2 representation,
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over m rows. That is: it would take 3cmn operations. On top of that, we need to
sum up the resulting elements over all the m rows, which requires an additional
cmn operations. Hence we have

Total cost of computing vjs = 4cmn + m (22)

Now for the operation costs associated with terms processed in Eq. (21). Let us
consider a particular subset of those terms:

wj1k1 = 2
∑

i

AijAik (23)

By computing Eq. (23) first, we create a template for all the other wjskt variables
and also reduce the computation cost.Each AijAik operation is 1 flop. There are(
n
2

)
pairs of (j, k) for j < k, But we also need to consider pair interactions for

qubits when j = k. Hence we have
(
n
2

)
+ n operations, which comes out to

0.5(n2 + n). Furthermore, these w coefficients are computed for m rows with m
summations, which brings the total up to: m(n2 + n). After this, we need to
multiply 2 to all the resultant 0.5(n2 + n) variables. Making the total cost:

Cost of all wj1k1 = m(n2 + n) + 0.5(n2 + n) (24)

Now we can use wj1k1 for the next step. Without loss in generality, we assume
that ∀s, t ∈ ϑ ∪ Θ, s × t is preprocessed. This would mean that we would have(

c
2

)
+ c qubit to qubit interactions for each pair of variables in x. From the

previous step, we know that we’ll have to do this for
(
n
2

)
+ n variables. Which

means that the final part of the cost for wjskt is 0.25(c2 + c)(n2 + n). Summing
up all the costs, we get the total cost to prepare the entire QUBO problem:

Cost of tot. prep = mn2 + mn(4c + 1) + 0.25(n2 + n)(c2 + c + 2) + m (25)

4.2 Cost of Executing the Problem

Let τ be the cost of executing the QUBO form of a given problem. It can be
expressed as

τ = atr (26)

Where at is the anneal time per run and r is the number of runs or samples.
However, for ease of analysis, we need to interpret τ in a way where we can study
the runtime in terms of the data itself. The nature of the Ising/Qubo problem
is such that we need O(exp(γNα)) time classically to get the ground state with
a probability of 1. As stated in Boxio et al. [4], we don’t yet know what’s going
to be the actual time complexity class under quantum annealing for the Ising
problem, but a safe bet is that it won’t reduce the complexity of the Ising to
a polynomial one, only the values of α and γ would be reduced. But because
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quantum annealing is a metaheuristic for finding the ground state, we needn’t
necessarily run it for O(exp(γNα)). We make the following assumption:

τ∗ = poly(cn) (27)
and deg(poly(cn)) = β (28)

Here, τ∗ represents the combined operations required for annealing as well as
post-processing on the returned samples. The assumption is that τ∗ is a poly-
nomial in cn with β as its degree. From Eq. (19), we know that m (number of
rows of the matrix A) doesn’t play a role in deciding the size of the problem
embedded inside the quantum annealer.

The reason for this assumption is the fact that linear least squares is a convex
optimization problem. Thus, even if we don’t get the global minimum solution,
the hope is to get samples on the convex energy landscape that are close to
the global minimum (Based on the observations in [8]). Using those samples,
and exploiting the convex nature of the energy landscape, the conjecture is that
there exists a polynomial time post-processing technique with β < 3 by which
we can converge to the global minimum very quickly. We shall see in Sect. 4.3
why it is important for β < 3 for any speed improvement over the standard
classical methods. Just as in Dorband’s MQC technique [8] for generalized Ising
landscapes, we hope that such a technique would be able to intelligently use the
resultant samples. The difference being that we have the added advantage of
convexity in our specific problem.

4.3 Cost Comparison with Classical Methods

In the following table, we compare the costs of the most popular classical meth-
ods for finding linear least squares [6] and the quantum annealing approach.

Table 1. Comparison of the classical methods and QA

Method for least squares Operational cost

Normal equations mn2 + n3/3

QR factorization 2mn2 − 2n3/3

SVD 2mn2 + 11n3

Quantum annealing mn2 +mn(4c+ 1) + poly(cn) + 0.25(n2 + n)(c2 + c+ 2) +m

When it comes to theoretical runtime analysis, because c doesn’t necessarily
grow in direct proportion to the number of rows m or columns n, we shall
consider c to be a constant for our analysis.

From Table 1, Let us define CostNE , CostQR, CostSV D and CostQA as the
costs for the methods of finding least squares solution by Normal Equations,
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QR Factorization, Singular Value Decomposition and Quantum Annealing (QA)
respectively.

CostNE = mn2 + n3/3 (29)

CostQR = 2mn2 − 2n3/3 (30)

CostSV D = 2mn2 + 11n3 (31)

CostQA = mn2 + mn(4c + 1) + poly(cn) + 0.25(n2 + n)(c2 + c + 2) + m
(32)

The degree of Eqs. (29)−(32) is 3. Since m > n, we can assess that mn2 > n3

The next thing we need to do is to define a range for β (degree of pol(cn))
in such a way that Eq. (32) will be competitive with the other methods. This is
another assumption upon which a speedup is conditional.

0 < β < 3 (33)

This is done so that we do not have another term of degree 3. Now, we turn our
attention to the terms of the type kmn2 where k is the coefficient, we can see
that the cost of the QA method is lesser than QR Factorization and SVD by a
factor of 2. However, we still have to deal with the cost of the Normal Equations
Method. Let us define ΔCostNE and ΔCostQA as

ΔCostNE = CostNE − mn2 = n3/3 (34)

ΔCostQA = CostQA − mn2 = mn(4c + 1) + poly(cn)

+ 0.25(n2 + n)(c2 + c + 2) + m (35)

The degree of ΔCostNE is 3 while that of ΔCostQA is < 3. For simplicity (and
without loss of generality) we consider mn(4c + 1) and can ignore all the other
similar and lower degree terms. The reason we can do this is because those
terms grow comparatively slower than n3/3, but the relationship between n3/3
and mn(4c + 1) has to be clearly defined. Thus our simplified cost difference for
the QA method is ΔCost∗QA

ΔCost∗QA = (4c + 1)mn (36)

We need to analyze the case where the quantum annealing method is more cost
effective, i.e

ΔCost∗QA < ΔCostNE (37)

or, mn(4c + 1) < n3/3 (38)

For this comparison, we need to define m in terms of n

m = λn (39)
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Using Eq. (39) in Eq. (38), we get

λn2(4c + 1) <
n3

3
(40)

or, λ(4c + 1) <
n

3
(41)

or, λ <
n

3(4c + 1)
(42)

Combining Eq. (42) with the fact that m > n, we get :

1 < λ <
n

3(4c + 1)
(43)

given
n

3(4c + 1)
> 1 (44)

Thus, the Quantum Annealing method being faster than the Normal Equations
method is for when Eqs. (33, 43, 44) holds true and is conditional on the conjec-
tures described in Eqs. (27, 28, 33).

The above condition makes our speed advantage very limited to a small num-
ber of cases. However, it is important to note that the Normal Equations method
is known to be numerically unstable due to the AT A operation involved [6]. The
quantum annealing approach does not seem to have such types of calculations
that would make it numerically unstable to the extent of Normal Equations
method (because of the condition number of A), assuming the precision of qubit
and coupler coefficients is not an issue. Thus for most practical cases, it competes
with the QR Factorization method rather than the Normal Equations method.

5 Accuracy Analysis

Because quantum annealing is a physical metaheuristic, it is important to ana-
lyze the quality of the results obtained from it. The results from our experiments
are in Appendix B of arXiv:1809.07649. We can define the probability of getting
the global minimum configuration of qubits in the QUBO form by using Eqs. (2
and 3)

P (q) =
1
Z ′ e

−F ′(v,w) (45)

where Z ′ = exp
( ∑

{qa}

[ ∑

a

vaqa +
∑

a<b

wabqaqb

])
(46)

Which means that the set of solutions corresponding to the global minimum Q̂
have the highest probability of all the possible solution states. A problem arises
when we need to use more qubits for better precision. This would mean that the
set of approximate solutions Q′, would also increase as a result. The net result
would be that

∑
q̂∈Q̂ P (q̂) <

∑
q′∈Q′ P (q′), which means that as the number of
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qubits used for precision increases, it would be harder to get the best solution
directly from the machine. But like discussed in Sect. 4.2, if the conjecture for a
polynomial time post-processing technique with degree< 3 holds true, we should
be able to get the best possible answer, in a competitive amount of time, by using
the results of a quantum annealer.

Another area of potential problems is the fact that quantum annealing hap-
pens on the actual physical qubits and its connectivity graph (see Appendix A of
arXiv:1809.07649). This means that the energy landscape for the physical qubit
graph is bigger than the one for the logical qubit graph. This problem should
be alleviated to a degree when and if the next generation of quantum annealers
have a more dense connectivity between their physical qubits.

6 Discussion and Future Work

Based on our theoretical and experimental results (see Appendix B of
arXiv:1809.07649), we can see that there are potential advantages as well as
drawbacks to this approach. Our work outlines the need of a polynomial time
post-processing technique for convex problems (with degree< 3),only then will
this approach have any runtime advantage. Whether such a post-processing tech-
nique exists is an interesting open research problem. But based on our work, we
can comment on few areas where quantum annealing may have a potential advan-
tage. We have affirmed the conjecture that machines like the D-wave find good
solutions (that may not be optimal) in a small amount of time [16] (Appendix
B, arXiv:1809.07649).

It may be useful to use quantum annealing for least squares-like problems,
i.e. problems that require us to minimize ‖Ax − b‖, but are time constrained in
nature. Two such problems are: (i) The Sparse Approximate Inverse [10] (SPAI)
type preconditioners used in solving linear equations and (ii) the Anderson accel-
eration method for iterative fixed point methods [20]. Both of these methods
require approximate least squares solutions, but under time constraints. It would
be interesting to see if quantum annealing can be potentially useful there.

Another area of work could be to use quantum annealing within the latest
iterative techniques for least squares approximation itself. Sketch based tech-
niques like the Hessian sketch by Pilanci and Wainwright [17] may be able to
use quantum annealing as a subroutine.

Finally, just like O’Malley and Vesselinov mentioned in their papers [15,16],
quantum annealing also has potential in specific areas like the Binary [19] and
box-constrained integer least squares [5] where classical methods struggle.

7 Concluding Remarks

In this paper, we did an in-depth theoretical analysis of the quantum annealing
approach to solve linear least squares problems. We proposed a one’s complement
and two’s complement representation of the variables in qubits. We then showed
that the actual annealing time does not depend on the number of rows of the

https://arxiv.org/abs/1809.07649
https://arxiv.org/abs/1809.07649
https://arxiv.org/abs/1809.07649
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matrix, just the number of columns/variables and number of qubits required to
represent them. We outlined conditions for which quantum annealing will have
a speed advantage over the prominent classical methods to find least squares.
An accuracy analysis shows how as precision bits are added, it is harder to get
the ‘best’ least square answer, unless any post-processing is applied. Finally, we
outline possible areas of interesting research work that may hold promise.
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development the one’s/two’s complement encoding. Finally, the authors would like
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Abstract. Consensus tree is a phylogenetic tree that summarizes the
branching information of a set of conflicting phylogenetic trees. Comput-
ing consensus tree is a major step in phylogenetic tree reconstruction. It
also finds application in predicting a species tree from a set of gene trees.
Here, we focus our study on one of the most frequently used consensus
tree problem, called greedy consensus tree problem. Given k phylogenetic
trees leaf-labeled by n taxa, previous best known algorithm for construct-
ing a greedy consensus tree of these k trees runs in O(kn1.5 logn) time.
Here, we describe an O(k2n)-time solution. Our method is the fastest
when k = O(

√
n log n).

Existing greedy consensus tree methods may not report the most
resolved greedy consensus tree. Here, we propose a new computational
problem called the maximum greedy consensus tree problem that aims
to find the most resolved greedy consensus tree. We showed that this
problem is NP-hard for k ≥ 3. We also give a polynomial time solution
when k = 2 and an approximation algorithm for k = 3.

1 Introduction

A phylogenetic tree is a rooted, unordered, leaf-labeled tree in which every inter-
nal node has at least two children and all leaves have different labels, representing
the set of taxa. It is used to describe the evolutionary relationship among the
taxa.

Phylogenetic tree of a set of taxa is reconstructed by analyzing their avail-
able data (like their DNA sequences). Using different data sources, conflicting
phylogenetic trees are reconstructed. To summarize the set of conflicting trees,
consensus tree problem is proposed. Precisely, the input is a set of k conflict-
ing phylogenetic trees leaf-labeled by the same set of taxa L, where n = |L|.
The consensus tree is a phylogenetic tree T leaf-labeled by L that summarizes
the branching information of all k conflicting trees. Consensus tree has been
widely used in two applications: reconstructing phylogenetic tree and construct-
ing species tree from a set of gene trees.

The consensus tree problem was first proposed by Adam [1]. After that, many
different consensus tree definitions have been proposed. They include Adam’s
c© Springer Nature Switzerland AG 2019
G. K. Das et al. (Eds.): WALCOM 2019, LNCS 11355, pp. 305–316, 2019.
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http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-10564-8_24&domain=pdf
https://doi.org/10.1007/978-3-030-10564-8_24


306 W.-K. Sung

consensus tree [1], strict consensus tree [17], loose consensus tree [2], majority-
rule consensus tree [12], asymmetric median tree [13], greedy consensus tree [3,6],
R* consensus tree [3], etc. Please refer to the surveys in [3], Chap. 30 in [5],
and Chap. 8.4 in [18] for more details about different consensus trees and their
advantages and disadvantages.

As n and k can be large, efficient algorithms for constructing consensus trees
are required. Recently, a number of break-through results are proposed (e.g.
[8,10,11,15]). Here, we focused our discussion on greedy consensus tree.

The greedy consensus tree problem is proposed by Felsenstein in 1989. It
is formally defined in Sect. 2. Greedy consensus tree is an extension of the
majority-rule consensus tree, and is sometimes called the majority-rule extended
consensus tree. A naive implementation implied by the definition immediately
yields an algorithm of time complexity O(kn3). Jansson et al. [10] gives an
O(kn2)-time algorithm. (This algorithm is implelemented in FACT package
[9].) Gawrychowski et al. [7] recently further improves the running time to
O(kn1.5 log n). Algorithm for constructing greedy consensus tree has imple-
mented in popular phylogenetics software packages like PHYLIP [6], PAUP*[19]
and MrBayes [16].

Fig. 1. Consider a set of 4 trees T = {T1, T2, T3, T4}, each is leaf-labeled by
{a, b, c, d, e}. C(Ti) gives the set of non-trival clusters of Ti for i = 1, 2, 3, 4. Two
non-trival clusters {a, b, c} and {c, d, e} have two occurrences in T . The greedy consen-
sus tree for T is not unique. If we include the non-trival cluster {a, b, c} first, we obtain
the greedy consensus tree R; otherwise, if we include the non-trival cluster {c, d, e}
first, we obtain the greedy consensus tree R′.

Greedy consensus tree is not unique. For the example in Fig. 1, there are
two possible greedy consensus trees for {T1, T2, T3, T4}. We sometimes want to
obtain the most refined greedy consensus tree (i.e. a greedy consensus tree that
has the maximum number of nodes). For the example in Fig. 1, we may prefer
R′ since it has more nodes.

Hence, we propose another computational problem called the maximum
greedy consensus tree problem. For this problem, given a set of phylogenetics
trees T , we aim to find a greedy consensus tree R that maximizes the number
of internal nodes. A naive solution is to enumerate all possible greedy consensus
trees and to identify a tree that maximizes the number of nodes. There is no
better solution in the literature.
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This manuscript has 4 contributions. First, we give an O(k2n)-time algorithm
to build a greedy consensus tree. Our algorithm is faster than all existing meth-
ods when k = O(

√
n log n). Second, we show that the maximum greedy consensus

tree problem is NP-hard for k ≥ 3. Third, we give a polynomial time algorithm
that constructs a maximum greedy consensus tree for two trees {T1, T2}. Fourth,
we give a polynomial time approximation algorithm for constructing maximum
greedy consensus tree of three trees.

This paper is organized as follows. Section 2 gives preliminary. Section 3
describes an O(k2n)-time algorithm for constructing a greedy consensus tree of
T . Section 4 shows that the maximum greedy consensus tree problem is NP-hard
for k ≥ 3. Section 5 gives a polynomial time algorithm for finding a maximum
greedy consensus tree of two trees. Section 6 gives a polynomial time approxi-
mation algorithms for finding a maximum greedy consensus tree of three trees.

2 Preliminary

A phylogenetic tree is a rooted, unordered, leaf-labeled tree in which every inter-
nal node has at least two children and all leaves have different labels. To simplify
the presentation, phylogenetic trees are referred to as “tree” from here on, and
every leaf in a tree is identified with its (unique) label.

Let T be a tree leaf-labeled by L. The set of all nodes in T is denoted by
V (T ). For any u ∈ V (T ), the subtree of T rooted at u is denoted at T [u]. Let
Λ(T [u]) denotes the set of all leaves in T [u]. The set Λ(T [u]) is called a cluster
in T . If u is not a leaf or not a root of T , the set Λ(T [u]) is called a non-trival
cluster in T . Otherwise, Λ(T [u]) is a trival cluster. A trival cluster either equals
L (if u is the root of T ) or is a singleton set containing one taxa in L (if u is a
leaf). We denote C(T ) be the set of all non-trival clusters of T . For example, in
Fig. 1, C(T1) = {{a, b, c}, {d, e}}.

Consider any two clusters C1 and C2, C1 and C2 are compatible if either
C1 ⊆ C2, C1 ⊇ C2 or C1 ∩ C2 = ∅. For example, in Fig. 1, the cluster {d, e}
in T1 is compatible with another cluster {c, d, e} in T4. However, the cluster
{a, b, c} in T1 is not compatible with the cluster {c, d, e} in T4. All clusters in a
tree are pairwise compatible. In fact, a tree T uniquely defines a set of pairwise
compatible clusters C(T ), and vice versa.

Consider a cluster C and a tree T , C is said to be compatible with T if C
is compatible with all clusters in C(T ). Consider two trees T1 and T2, T1 and T2

are said to be compatible if for all clusters C1 in T1, for all clusters C2 in T2,
C1 and C2 are compatible. For example, in Fig. 1, {d, e} is compatible with T2

but {c, d, e} is not compatible with T2. T1 is compatible with T2 but T4 is not
compatible with T2.

Given a set of k trees T = {T1, T2, . . . , Tk}, For any cluster C, denote
countT (C) be the number of times C is compatible with Ti for i = 1, 2, . . . , k.
Precisely, countT (C) = |{Tj | C ∈ C(Tj), j = 1, . . . , k}|. For example, in Fig. 1,
T = {T1, T2, T3, T4}. We have: countT ({a, b, c}) = 2, countT ({d, e}) = 1 and
countT ({c, d}) = 0.
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Now, we formally define the greedy consensus tree problem. Consider a set
T = {T1, T2, . . . , Tk} of k phylogenetics trees leaf-labeled by L where |L| = n. Let
X be a list of clusters that occur in at least one tree in T (i.e. X =

⋃k
i=1 C(Ti)),

sorted in decreasing order of countT (C) for all C ∈ X (clusters with the same
counts are ordered arbitrarily). Construct a set Y of clusters as follows: Initialize
Y = ∅. Then, traverse the list X and for each cluster C encountered in this
order, check if C and C ′ are pairwise compatible for all C ′ ∈ Y; if yes then let
Y = Y ∪ {C}. A greedy consensus tree of T is a tree T such that Λ(T ) = L and
C(T ) = Y.

Note that greedy consensus tree is not unique. The reason is that when two
clusters C and C ′ have the same count, their ordering in the sorted list will affect
the final greedy consensus tree we obtained. Figure 1 gives an example.

Below, we state a few technical lemmas that are useful in our paper.
We first define strict consensus tree. Let T1 and T2 be two trees with Λ(T1) =

Λ(T2) = L. The strict consensus tree, denoted as strict(T1, T2), of T1 and T2 is
a tree T such that C(T ) = C(T1) ∩ C(T2). Note that strict consensus tree always
exists and is unique.

Lemma 1 ([4]). Let T1 and T2 be two trees with Λ(T1) = Λ(T2) = L and
|L| = n. strict(T1, T2) can be computed in O(n) time.

Next, we define asymmetric median tree. Let T = {T1, T2, . . . , Tk}, where
Λ(T1) = . . . = Λ(Tk) = L and |L| = n. The asymmetric median tree of T ,
denoted as median(T ), is a tree T that maximizes

∑k
i=1 |strict(T, Ti)|. Note

that asymmetric median tree always exists, but it is not unique. Below lemma
give a polynomial time algorithm to find median(T1, T2).

Lemma 2 ([15]). Let T1 and T2 be two trees with Λ(T1) = Λ(T2) = L and
|L| = n. median(T1, T2) can be computed in O(n1.5 log3 n) time.

Below lemma gives an approximation solution of median(T ) when k ≥ 3.

Lemma 3 ([14]). Let T = {T1, T2, . . . , Tk}, where Λ(T1) = . . . = Λ(Tk) = L
and |L| = n. Using O(k2n2.5) time, we can find a tree T such that C(T ) ⊆
⋃k

i=1 C(Ti) and the size of T is at least 2
k of the size of the asymmetric median

tree of T .

Next, we define majority-rule consensus tree. Let T = {T1, T2, . . . , Tk}. The
majority-rule consensus tree of T , denoted as majority(T ) is a tree T such that
C(T ) = {C ∈ C(Ti) | countT (C) ≥ 
k/2�+1}. Note that majority-rule consensus
tree always exists and is unique.

Lemma 4 ([10]). Let T = {T1, T2, . . . , Tk} be a set of k trees, each leaf-labeled
by L, n = |L|. majority(T ) can be computed in O(kn) time.

Let T1 and T2 be two trees with Λ(T1) = Λ(T2) = L. One-
Way Compatible(T1, T2) reports the tree formed by all clusters in T1 that
are compatible to T2. Precisely, One-Way Compatible(T1, T2) reports a tree
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T such that C(T ) = {C ∈ C(T1)|C is compatible with T2}. Note that One-
Way Compatible(T1, T2) may not equal One-Way Compatible(T2, T1). Figure 2
gives an example to illustrate one-way compatible. We have the following lemma.

Lemma 5 ([10]). Let T1 and T2 be two trees with Λ(T1) = Λ(T2) = L. One-
Way Compatible(T1, T2) can be computed in O(n) time, where n = |L|.

Fig. 2. T1 and T2 are two incompatible trees (i.e. some clusters in T1 are not compatible
to T2, and vice versa). The rightmost two trees are One-Way Compatible(T1, T2) and
One-Way Compatible(T2, T1), respectively. Observe that these two trees are different.

Let T1 and T2 be two trees with Λ(T1) = Λ(T2) = L. Suppose T1 and T2

are compatible. merge(T1, T2) reports the tree T that contains all clusters in
C(T1) ∪ C(T2). Figure 3 gives an example to illustrate the merge operation. We
have the following lemma.

Lemma 6 ([10]). Let T1 and T2 be two trees with Λ(T1) = Λ(T2) = L. Suppose
T1 and T2 are compatible. merge(T1, T2) can be computed in O(n) time, where
n = |L|.

Fig. 3. T1 and T2 are two compatible trees (i.e. all clusters in T1 are compatible to T2,
and vice versa). T = merge(T1, T2).
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3 O(k2n) Time Algorithm

This section presents an O(k2n)-time algorithm to compute a greedy consensus
tree for T = {T1, . . . , Tk} where Λ(Ti) = L and |L| = n.

Our solution has two phases. Phase 1 computes countT (C), the number of
trees containing the cluster C, for every cluster C ∈

⋃k
i=1 C(Ti). Then, Phase 2

builds a greedy consensus tree of T .
Now, we discuss Phase 1. Phase 1 applies Day’s algorithm (see Lemma 1) to

compute countT (C) for all clusters C in C(Ti), for i = 1, 2, . . . , k.
For a fixed i, we first show how to compute countT (C) for all C ∈ C(Ti).

Initially, we set countT (C) = 0 for all C ∈ C(Ti). The algorithm iterates k steps.
In the t-th step (t ≤ k), for every C ∈ C(Ti), countT (C) is incremented by 1 if C
is in Tt. In other word, countT (C) is incremented by 1 if C ∈ C(Ti)∩C(Tt). After
the t-th step, we have the invariant that countT (C) equals the size of the set
{Tj | 1 ≤ j ≤ t, C ∈ C(Tj)}. Hence, after the k-th step, countT (C) = |{Tj | C ∈
C(Tj), j = 1, . . . , k}|. The t-th step needs to compute C(Ti)∩C(Tt) by Lemma 1,
which takes O(n) time. Hence, all k steps take O(kn) time.

We perform the above steps for all i = 1, . . . , k. Hence, we can count the
occurrences of every cluster in

⋃k
i=1 C(Ti) using O(k2n) time. Figure 4 gives the

detail of this algorithm.

Fig. 4. An O(k2n) time to compute countT (C) for all clusters C ∈ C(Ti), for all
i = 1, . . . , k.

The second phase builds a greedy consensus tree of T . We need a few lemmas.
For any i = 1, . . . , k and any s = 1, . . . , k, let T

(s)
i be the tree formed by the set

of non-trival clusters {C ∈ C(Ti) | countT (C) = s}. Also, let T
(s..k)
i be the tree

formed by the set of non-trival clusters {C ∈ C(Ti) | k ≥ countT (C) ≥ s}.
Let T (s..k) be a greedy consensus tree of T

(s..k)
1 , . . . , T

(s..k)
k . Our aim is to

build T (1..k), which is a greedy consensus tree of T1, . . . , Tk. We have the following
lemma that let us build T (s..k) from T (s+1..k).
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Lemma 7. T (s..k) is a tree formed by (1) all clusters in T (s+1..k) and (2) a
maximal set of clusters in

⋃k
i=1 C(T (s)

i ) that are compatible with T (s+1..k).

Proof. Recall that T (s..k) is a greedy consensus tree of T
(s..k)
1 , . . . , T

(s..k)
k . To

build T (s..k), we include clusters C one by one (if compatible) in decreasing
order of countT (C). After we process all clusters C with countT (C) ≥ s + 1,
we obtain a greedy consensus tree for T

(s+1..k)
1 , . . . , T

(s+1..k)
k , which is T (s+1..k).

Then, we need to include maximal number of clusters C with countT (C) = s that
are compatible with T (s+1..k). This means that we need to include a maximal
set of clusters in

⋃k
i=1 C(T (s)

i ) that are compatible with T (s+1..k). The lemma
follows. �

Lemma 7 gives an idea to build T (1..k). The algorithm first initalizes the tree
T (k+1..k) as a star tree, which has no non-trival cluster. Then, the algorithm
iteratively builds T (s..k) for s from k down to 1. In the s-th iteration, the algo-
rithm builds T (s..k) from T (s+1..k) by including a maximal subset of clusters in
⋃k

i=1 C(T (s)
i ) that are compatible with T (s+1..k). Below lemma shows a way to

find such a maximal subset.

Lemma 8. Given T (s+1..k), T
(s)
1 , . . . , T

(s)
k , below algorithm computes T (s..k) in

O(kn) time.
1: T (s..k) = T (s+1..k);
2: for i = 1 to k do

3: T (s..k) = merge(T (s..k), One-Way Compatible(T (s)
i , T (s..k)));

4: end for

Proof. Recall that T
(s)
i is the tree formed by all non-trival clusters C in Ti with

countT (C) �= s. To build T (s..k), we first initialize T (s..k) = T (s+1..k). Then,
for i = 1, . . . , k, we try to include maximal subset of clusters in C(T (s)

i ) which
are compatible with T (s..k) into T (s..k). The maximal subset of clusters can be
computed by One-Way Compatible(T (s)

i , T (s..k)). To include this maximal subset
into T (s..k), we set T (s..k) = merge(T (s..k), One-Way Compatible(T (s)

i , T (s..k))).
Hence, the algorithm correctly constructs T (s..k).

For running time, by Lemmas 6 and 5, merge(T (s..k), One-Way Compatible
(T (s)

i , T (s..k))) can be computed in O(n) time. Since we need to run this step k
times, the total running time is O(kn). �

The algorithm FastGreedy is presented in Fig. 5. Step 1 runs Count
Cluster(T ) to obtain countT (C) for all clusters C in Ti, for all i = 1, 2, . . . , k.
This step takes O(k2n) time. Then, Steps 2 to 6 builds T

(s)
i for i = 1, . . . , k and

s = 1, . . . , k. This step also takes O(k2n) time. Steps 7 to 14 iteratively build
T (s..k) for s from k down to 1 by Lemma 8. Each iteration takes O(kn) time. We
can build a greedy consensus tree T (1..k) after k iterations, which takes O(k2n)
time in total.
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Fig. 5. An O(k2n)-time algorithm for computing a greedy consensus tree.

4 Maximum Greedy Consensus Tree Problem Is NP-hard
and Difficult to Approximate

This section gives a reduction from the maximum independent set problem to
the maximum greedy consensus tree problem. Based on the reduction, we give
a NP-hardness result and an inapproximability result.

We first define the maximum independent set problem. Given an undirected
graph G = (V,E), an independet set is a subset V ′ ⊆ V such that there is no
edge connecting any two nodes in V ′. A maximal independent set V ′ of G is an
independent set which is not a proper subset of any other independent set of G.
A maximum independent set of G is an independent set of G of maximum size.

Next, we define k-partite graph. An undirected graph G = (V,E) is called a
k-partite graph if V can be partitioned into k subsets, say, {V1, . . . , Vk}, such that
no edge in E connecting two vertices from the same subset. The maximum k-
partite graph independent set problem is the maximum independent set problem
for k-partite graph. The maximum k-partite graph independent set problem is
known to be NP-hard for k ≥ 3 [14].

For every node u ∈ V , we define Eu be the set of edges adjacent to u and Cu

be {u}∪Eu. For i = 1, 2, . . . , k, for all u ∈ Vi, Cu satisfies the following property.

Lemma 9. For i = 1, 2, . . . , k, we have Cu∩Cv = ∅ for any two nodes u, v ∈ Vi.

Proof. For any two nodes u, v ∈ Vi, Cu = {u} ∪ Eu and Cv = {v} ∪ Ev. Since
u �= v, we have Eu ∩ Ev = ∅. Hence, the lemma follows. �
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Here, we show that, for k ≥ 3, the maximum greedy consensus tree problem
for k trees is NP-hard by giving a reduction from the maximum k-partite graph
problem.

Given a k-partite graph G = (V,E) where V is partitioned into k subsets
{V1, . . . , Vk}, we transform G into a set of k trees TG = {T1, . . . , Tk} where each
tree Ti is leaf-labeled by V ∪ E as follows.

For i = 1, 2, . . . , k, Ti is the tree formed by a set of non-trival clusters
Cu = {u} ∪ Eu for all u ∈ Vi.

By Lemma 9, all Ti are valid trees since Cu for all u ∈ Vi are pairwise compatible.
Hence the above transformation is valid. Furthermore, the above transformation
takes O(|E|) time.

Below lemma gives the properties of TG.

Lemma 10. Given an undirected graph G = (V,E), the trees in TG satisfy the
following properties.

(a) The number of leaf labels is |L| = |V | + |E|.
(b) The total number of non-trival clusters in all trees is |V |
(c) For any u ∈ V , u ∈ Cu and v �∈ Cu for v ∈ V − {u}
(d) For any distinct u, v ∈ V , (u, v) ∈ E if and only if Cu ∩ Cv �= ∅.
(e) For any (u, v) ∈ E, Cu and Cv are incompatible.

Proof. For (a), since the set of leaf labels is L = V ∪ E. Hence, the number of
leaf labels is |V |+ |E|. For (b), we have a cluster Cu for every u ∈ V . Hence, the
number of clusters is |V |.

For (c), by definition, for any u ∈ V , Cu only contains one node from V ,
which is u. Hence, property (c) follows.

For if-statement of (d), if (u, v) ∈ E, then e ∈ Cu and c ∈ Cv, hence,
Cu∩Cv �= ∅. For only-if-statement of (d), we shows the contra-positive, if (u, v) �∈
E, the edges attached to u and the edges attach to v are different. This implies
that Cu ∩ Cv = ∅.

For (e), since e = (u, v) ∈ E, we have (1) e ∈ Cu ∩ Cv, (2) u ∈ Cu − Cv and
(3) v ∈ Cv − Cu. This implies Cu and Cv are incompatible. �

Below lemma relates a maximal independent set of G and a greedy consensus
tree of TG.

Lemma 11. For any subset V ′ ⊆ V , let TV ′ be a tree whose set of non-trival
clusters is {Cu | u ∈ V ′}. We have: V ′ is a maximal independent set of G if and
only if TV ′ is a greedy consensus tree of TG.

Proof. (→) By the definition of TG and Lemma 10(c), we have every cluster
appears in exactly one tree in TG. Hence, TV ′ is a greedy consensus tree of TG

if (1) Cu and Cv are compatible for all u, v ∈ V ′ and (2) Cw is not compatible
with TV ′ for w ∈ V − V ′. Below, we show that both (1) and (2) are true.
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For (1), since V ′ is an independent set of G, there is no edge connect u and
v for all u, v ∈ V ′. By Lemma 10(d), Cu ∩ Cv = ∅ for all u, v ∈ V ′. This implies
that Cu and Cv are pairwise compatible for all u, v ∈ V ′.

For (2), since V ′ is a maximal independent set of G, for every w ∈ V − V ′,
there exists some u ∈ V ′ such that (w, u) ∈ E; then, by Lemma 10(e), Cw and
Cu are not compatible.

(←) Since TV ′ is a greedy consensus tree, V ′ is a maximal set such that Cu

and Cv are pairwise compatible for every u, v ∈ V ′. By Lemma 10(c, d), we have
(u, v) �∈ E for every u, v ∈ V ′. Hence, V ′ is an independent set in V ′.

We claim that, V ′ is a maximal independent set of G. By contrary, there
exists some w ∈ V − V ′ such that (w, u) �∈ E for all u ∈ V ′. Lemma 10(c)
implies that Cw and Cu are compatible for all u ∈ V ′. Then, Cu and Cv are
pairwise compatible for every u, v ∈ V ′ ∪{w}. This contradict with the fact that
TV ′ is a greedy consensus tree. We arrived at contradiction. �

By the above lemma, we can show that the maximum greedy consensus tree
problem is NP-hard.

Lemma 12. Consider a set of tress T = {T1, . . . , Tk}. When k ≥ 3, the maxi-
mum greedy consensus tree problem for T is NP-hard.

Proof. Note that the maximum k-partite graph independent set problem is NP-
hard. Since G = (V,E) is an undirected k-partite graph, V can be partitioned
into k subsets {V1, . . . , Vk} such that every edge in E connecting two vertices
from the two different subsets. We can transform G into a set of k trees TG where
each tree in TG is leaf-labeled by V ∪ E. The transformation takes O(|E|) time.

By Lemma 11, we know that V ′ is a maximum independent set of G if and
only if TV ′ is a maximum greedy consensus tree of TG.

Since maximum k-partite independent set problem is NP-hard, we conclude
that the maximum greedy consensus tree problem for k trees is also NP-hard. �

Below lemma gives the inapproximability result.

Lemma 13. If P �= NP , there is no polynomial time algorithm that guarantee
to construct a greedy consensus tree whose size is at least 25/26 of the maximum
greedy consensus tree.

Proof. Will be given in the full paper. �

5 Finding Maximum Greedy Consensus Tree of Two
Trees

Consider two trees T1 and T2, both leaf-labeled by L, n = |L|. Below, we show
that the maximum greedy consensus tree of T1 and T2 is the same as the asym-
metric median tree of T1 and T2.

Lemma 14. The maximum greedy consensus tree of T1 and T2 is the same as
the asymmetric median tree of T1 and T2.
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Proof. Let T be an asymmetric median tree of T1 and T2.
To show that T is also a maximum greedy consensus tree, T needs to satisfy

the following conditions:

(1) T contains all clusters in strict(T1, T2), i.e., Q ⊆ C(T ) where Q = C(T1) ∩
C(T2).

(2) Let S be the set of all clusters that appear in either T1 or T2, i.e., S =
C(T1) ∪ C(T2) − Q. C(T ) − Q is a maximum subset of S such that all clusters
in C(T ) − Q are pairwise compatible.

For (1), we show that Q ⊆ C(T ). By contrary, suppose there exists C ∈ Q that
is not a cluster in C(T ). Since C is a cluster in both T1 and T2, we have C is
compatible with all clusters in C(T ). Then, let T ′ be a tree such that C(T ′) =
{C} ∪ C(T ). We have |strict(T ′, T1)| + |strict(T ′, T2)| = (1 + |strict(T, T1)|) +
(1 + |strict(T, T2)|) > |strict(T, T1)| + |strict(T, T2)|. This means that T is not
an asymmetric median tree of T1 and T2. We arrived at contradiction.

For (2), by contrary, suppose there exists another subset S′ ⊆ S such that
|S′| > |C(T )−Q| and all clusters in S′ are pairwise compatible. Let T ′ be a tree
such that C(T ′) = S′ ∪Q. Then, |strict(T ′, T1)|+ |strict(T ′, T2)| = |S′|+2|Q| >
|C(T ) − Q| + 2|Q| = |strict(T, T1)| + |strict(T, T2)|. This means that T is not an
asymmetric median tree of T1 and T2. We arrived at contradiction.

Hence, the lemma follows. �

By the above lemma, we have:

Lemma 15. The maximum greedy consensus tree of T1 and T2 can be computed
using O(n1.5 log3 n) time.

Proof. By Lemma 14, computing a maximum greedy consensus tree of T1 and
T2 is the same as computing an asymmetric median tree of T1 and T2.

By Lemma 2, we can compute an asymmetric median tree of T1 and T2 using
O(n1.5 log3 n) time. The lemma follows. �

6 Approximation Algorithms for Finding Maximum
Greedy Consensus Tree of Three Trees

As it is NP-hard to reconstruct maximum greedy consensus tree for k trees
where k ≥ 3, this section gives an approximation algorithm for reconstructing
maximumm greedy consensus tree when k = 3. Due to space limit, we just
summarize the result. The detail will be given in full paper.

Lemma 16. Consider three trees T1, T2 and T3 leaf-labeled by L, where n = |L|.
Using O(n1.5 log3 n) time, we can compute a greedy consensus tree for T1, T2, T3

whose size is at least 2
3 of that of a maximum greedy consensus tree for T1, T2, T3.
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Abstract. We are studying the adaptive bitprobe model to store an arbi-
trary subset S of size at most five from a universe of size m and answer
the membership queries of the form “Is x in S?” in two bitprobes. In this
paper, we present a data structure for the aforementioned problem. Our
data structure takes O(m10/11) space. This result improves the non-
explicit result by Garg and Radhakrishnan [6] which takes O(m20/21)
space, and the explicit result by Garg [5] which takes O(m18/19) space
for the aforementioned set and query sizes.

Keywords: Set membership problem · Bitprobe model
Data structures

1 Introduction

In the static membership problem, we are g iven a universe of size m and our
task is to design a data structure that can store arbitrary subset S of size n such
that the membership queries of the form “Is x in S?” can be answered correctly.
We study this problem in the bitprobe model of computation. The complexity of
the static membership problem in this model is measured in terms of the size of
the data structure denoted by s, and the number of bits of the data structure
accessed denoted by t. It is the later of the two properties which lend its name
bitprobe model. In this model all other operations are free. Solutions to the above
mentioned problems in this model are termed as schemes. Each scheme consists
of two parts, one is the storage scheme, and the other is query scheme. Storage
scheme maps an arbitrary subset of cardinality n from a universe of size m
given to be stored to the s bits of the data structure. Query scheme maps every
element belonging to the universe m to the t locations of the data structure and
it decides the membership of the query element by reading those t locations. The
storage and query scheme together gives a (n,m, s, t)-scheme which stores a set
of size at most n from a universe of size m and uses s bits in such a way that
membership query can be answered in t probes. This is a well studied problem
over several decades and it has been discussed in [1,4,6,7,11–14].

A (n,m, s, t)-scheme is said to be adaptive if the location of the probes
depends upon the bit returned by the prior probes. Whereas in a non-adaptive
scheme location of the probes are fixed and it does not depend upon the bit
returned by prior probes.
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Fig. 1. A decision tree for the two adaptive bitprobe model

1.1 Two Adaptive Bitprobe Model

In this section we will discuss a two adaptive bitprobe model in the context of two
adaptive bitprobe scheme. A two adaptive bitprobe scheme in this model consist
of three tables namely T, T0 and T1 as shown in Fig. 1. Furthermore, as discussed
earlier the data structures in this model consist of two schemes a storage scheme
and a query scheme. Storage scheme maps an arbitrary subset given to be stored
to the three tables mentioned earlier. Query scheme decides the membership of
a query element by probing two location of the data structure. Given a query
element, the first probe is made into the table T . The next query depends upon
whether the bit returned by the table T is zero or one. If the bit returned by
the table T is zero it makes next query to the table T0 otherwise to the table
T1. We say that a query element is part of the set if and only if the last query
returns one.

1.2 The Problem Statement

In this paper, we are dealing with the design of explicit adaptive scheme in the
bitprobe model to store an arbitrary subset of size at most five from a universe
of size m and answer the membership query in two adaptive bit probes. In other
words our objective is to design an adaptive (5,m, s, 2)-scheme in the bitprobe
model.

1.3 Previous Results

As we are going to study a two adaptive bitprobe scheme, let us discuss some
existing results in the context of this problem. For the set of size one (n = 1),
there exist a trivial scheme which takes O(m1/2) space. The space requirement
for this scheme matches the lower bound of Ω(m1/2) [4]. For the set of size two
(n = 2), Radhakrishnan et al. [13] came up with a scheme which takes O(m2/3)
space. Radhakrishnan et al. [14] conjectured that this scheme is asymptotically
tight but it has not been resolved yet. For the set of size three (n = 3), Baig and
Kesh [2] came up with a scheme which takes O(m2/3) space. This scheme has
been proved asymptotically tight by Kesh [9].
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Moreover, for the set of size four (n = 4), Baig et al. [10] have given a
scheme which takes O(m5/6) space. This scheme improves upon the non-explicit
(n,m, c · m1− 1

4n+1 , 2)-scheme by Garg and Radhakrishnan [6] for the set of size
four (n = 4). For the given set size their scheme takes O(m16/17) space. Our
scheme also improves upon the explicit (n,m, c · m1− 1

4n−1 , 2)-scheme given by
Garg [5] for the set of size four (n = 4). His scheme takes O(m14/15) space for
the given set size.

In this paper, we have come up with a scheme for the set of size five (n = 5).
Our scheme takes O(m10/11) space. This scheme improves upon the non-explicit
scheme by Garg and Radhakrishnan [6] for the set of size five (n = 5). For
the set of size five (n = 5) their scheme takes O(m20/21) space. Our scheme
also improves upon the explicit scheme given by Garg [5] for the set of size five
(n = 5). His scheme takes O(m18/19) space for the set of size (n = 5).

2 The Approach to the Problem

Fig. 2. Blocks of superblocks placed on
the integral points of a cube

Our scheme has borrowed the idea of
the geometric arrangement of elements
on a three-dimensional cube from Kesh
[8]. Kesh in his paper used the idea of
geometric arrangements of elements on
high dimensional cubes to come up with
(2,m, c · m1/(t−2−1), t)-scheme for t ≥ 2.
We have also used the idea of dividing
the universe into blocks and superblocks
from Radhakrishnan et al. [13]. The com-
bination of the aforesaid ideas was used
by Baig and Kesh [2] to come up with a
tight explicit adaptive scheme for n = 3.
Baig et al. [10] used the similar idea to
map elements on a square grid to come
up with an improved scheme for n = 4. We in this paper use this geometrical
technique to map the blocks of elements from superblocks to the integral point
of a three-dimensional cube of suitable size as shown in Fig. 2.

We divide the universe of size m into blocks and superblocks similar to the
Radhakrishnan et al. [13]. For the (5,m,O(m10/11), 2)-scheme we divide the
universe into blocks of size m1/11, so we will have m10/11 blocks. We then merge
the m9/11 consecutive blocks to form a superblock of size m10/11. So we will have
m1/11 superblocks of size m10/11.
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Fig. 3. A line with slope 1/n in the bot-
tom most layer of the cube

Fig. 4. Figure showing number of lines
drawn between two same slope lines

The Table T
This table consists of one bit of space for each block. Therefore its size is m10/11

bits.

The Table T1

The table T1 is arranged in a three-dimensional cube of side m3/11. So in this
cube, we have m9/11 integral points. Each integral point on or inside the cube
contains a block of size m1/11. So the size of the table T1 is m10/11. Since the
size of each superblock is m10/11, all the blocks belonging to a superblock can
be mapped on or inside the integral point of the cube. All other superblocks can
be thought of as superimposed over each other in the cube. So each point in the
cube or the table T1 is shared by blocks of m1/11 superblocks.

The Table T0

While discussing the structure of the table T1, we saw that each superblock is
mapped on a three-dimensional cube in such a way that all of them are super-
imposed. Now, for the nth superblock, we first draw a family of lines in the
bottom-most layer of the cube in the XY -plane with slope 1/n in such a way
that all the integral points are covered by the lines.

Lemma 1. The number of lines passing through all the integral points of a
square grid with slope 1/n is 2x + (n − 1)(x − 1) − 1, where x is the length
of the square grid.

Proof. As shown in Fig. 4, if the slope of the line M and L is 1/n then between
them there can be only n − 1 lines of slope 1/n passing through integral points
of the grid. So the total number of lines that we can draw with slope 1/n is x
lines from integral points on X-axis, x − 1 lines from the integral points on Y
axis and (n − 1)(x − 1) lines between lines from the integral points on Y -axis.
So we have 2m1/2 + (n − 1)(m1/2 − 1) − 1 lines with slope 1/n.
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Fig. 5. A slice belonging to nth
superblock

Using Lemma 1, we can say that the total
number of lines with slope 1/n in the bot-
tom most layer can be c · nx, where c is a
constant and x is the side of the cube. Now
we cut slices of the cube along these lines
and perpendicular to the XY plane. So the
total number of slices for the nth superblock
will be equal to the number of lines drawn
in the bottom most layer of the cube for the
nth superblock i.e. c · nx. All the slices have
height equal to length of the cube i.e. x. Let
us now calculate the maximum width of a
slice of slope 1/n. Width of the slice formed
by line segment OL as shown in Fig. 3 can
be calculated to be x/n

√
1 + n2. We can see

from Fig. 3 that all other slices with this slope
will have width less than or equal to x/n

√
1 + n2. So a slice belonging to nth

superblock will have length x and width less than equal to x/n
√

1 + n2.
We now draw a family of lines in all the slices of all the superblocks. For the

slices belonging to the nth superblock, we draw lines with slope n2/
√

1 + n2 as
shown in Fig. 5. The lines are drawn in such a way that all the integral points
are covered. Let us now calculate the maximum number of lines drawn on a slice
belonging to the nth superblock. We can see from Fig. 5 that the total number
of lines drawn from Z-axis is equal to x. Also, number of integral points on the
width of the slice is equal to x/n

√
1 + n2/

√
1 + n2 = x/n. So we can draw x

n
lines through those integral points on the width of the slice. Now from Fig. 5, we
can see that the number of lines that can pass between two consecutive integral
points on the width of the slice is n2 − 1. So the total number of lines drawn on
this slice with slope n2/

√
1 + n2 is equal to x + x/n + n2 · x/n i.e. c · nx. We say

that a slice is having slope 1/n if it’s projection on the XY -plane has slope 1/n.
Now let us bound the total number of lines drawn on slices whose projections on
the XY -plane makes slope 1/n. The total number of lines should be less than
the product of the number of lines drawn on a slice of a maximum width of
slope 1/n and the total number of slices of slope 1/n. So the total number of
lines drawn for the nth superblock is less than c1 ·n2x2. We need to sum this for
all the superblocks to get the total number of lines drawn. So the total number
of lines drawn is

m1/11∑

i=1

c1 · i2(m3/11)2 ≤ c · m9/11. (1)

For each line drawn in a slice, we have a block of space in the table T0. So the
total size of the table T0 is c·m10/11 bits. Now we will prove the following lemma.

Lemma 2. No three lines passing through an integral point of the cube lies in
the same plane.
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Proof. From the construction of the table, we can see that all the lines drawn in
the cube for a given superblock are parallel to each other. So the lines which pass
through the same integral point of the cube belongs to the different superblocks.
Let us consider the three arbitrary superblocks to which our lines belong. With-
out loss of generality let us say that the projection of these slices on the XY -plane
makes angle 1/n1, 1/n2 and 1/n3 with the X-axis. Our lines lie completely in
the slices belonging to their superblock. While drawing lines in the slices for the
first, second and third superblock we are going up in Z direction by n2

1, n
2
2 and

n2
3. Hence our lines cannot lie in the same plane.

3 The Adaptive Scheme for Five Elements

In this section we will present our (5,m,O(m10/11), 2)-scheme.

3.1 Our Data Structure

As mentioned earlier our data structure has three tables T, T0 and T1. In the
first table, we have one bit of space for all the blocks. Now, since the block size
as mentioned earlier is m1/11 therefore size of the table T is m/m1/11 = m10/11.
In the table T1, we have space for a superblock which can be seen as a three-
dimensional cube. As the size of superblock is m10/11, so the space of the table T1

is m10/11. We have also mentioned earlier that in the table T1 all the superblocks
are superimposed. The table T0 has one block of space for all the lines drawn in
all the superblocks. From the Eq. 1, we have the total number of lines drawn is
c · m9/11. So the size of the table T0 is equal to cm1/11 · m9/11 = c · m10/11. So
the size of our data structure is O(m10/11).

From the structure of the tables, we may draw the following conclusion. In
general two blocks having elements should not map at the same location in the
table T1 or T0. Otherwise, we may make mistake on the query belonging to these
blocks. Further, if the block having element is mapped in the table T1 or T0 then
no other block should be sent to that table whose position is matched with the
block having an element. So if a block having an element on a line is mapped to
the table T0 then all other blocks lying on that line should be sent to the table
T1. Since for each line we have only one block of space in the table T0. On the
contrary, if the block having an element from a line is sent to the table T1 then
other blocks lying on the line which contains this block can be sent to table T0

or T1. The blocks which are not having any elements given to be stored can be
mapped at the same location in table T1 or T0. Also, in the rest of the paper
whenever we say the line passing through a block or the line having block, we
always mean the line drawn in the superblock to which the block belongs.

3.2 The Query Scheme

Given a query element, we find the block and superblock to which it belongs.
Then as mentioned earlier, we query the first table, if the first table returns zero
we query to the table T0 else we query to the table T1. We say that element is
part of the set to be stored if and only if the last query returns one.
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3.3 The Storage Scheme

In this section we talk about the way bits of the tables are set to store the subset
of size at most five from a universe of size m. We divide the storage scheme into
various cases depending upon the way blocks having elements are distributed
on the line belonging to their superblock. To generate the cases, first of all,
we partition the number five, then we put those many elements into different
superblocks. Further, the positions of the blocks having elements on the line
belonging to their superblocks are considered. While handling cases we see the
intersections of the lines which contains blocks having element given to be stored.
We then decide which block to send to the Table T0 and which to the T1. As in
our data structure, we always send a block to either table T0 or T1 and we store
its bit vector there, so we will always assume that elements which are given to
be stored lies in the different block. Proving the results for elements belonging to
different blocks proves the result when many elements belong to the same block.
Keeping in mind the page limit, here we would be discussing a few simple cases
and few tricky cases. Also, for the sake of completeness, we have added rest of
the cases in the paper [3] in arXiv.

Case 1. If all the elements of S lie in one superblock then we send the blocks
having elements to the table T1 and all the empty blocks to the table T0.

Case 2. If four elements S1 = {n1, n2, n3, n4} lie in one superblock and one
element S2 = {n5} in other superblock then we can have two cases, either
the block containing the element n5 coincides with one of the block containing
element from S1 in the table T1 or it does not coincides. So if the block containing
the element n5 coincides with one of the blocks containing an element from S1

then we send the block having the element n5 to the table T1 and send the block
from which it was coinciding to the table T0. All other blocks of superblock which
contain elements from S1 are sent to the table T1. All other blocks of superblock
which contain the element n5 are sent to the table T0. Rest all the empty blocks
are sent to the table T0.

On other hand if the block containing element n5 do not coincide with any
of the block having element from S1 in the table T1 then we send all the blocks
having elements from S1 and S2 to the table T1 and rest all the empty blocks to
the table T0.

Case 3. If three elements S1 = {n1, n2, n3} lie in one superblock and two ele-
ments S2 = {n4, n5} in other superblock then we store according to following
scheme.

Case 3.1. All the blocks to which elements from S1 belong lies on the same line
of their superblock. From here onwards whenever we say line passing through
a block or blocks lying on a line, we mean the line drawn in the superblock to
which these blocks belongs.

Case 3.1.1. Two blocks to which elements from S2 belong coincides with the
blocks corresponding to the elements from S1 in the table T1. In this case, we
send the blocks having elements from S2 to the table T0. Also, we send empty
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blocks lying on the lines to which elements from S2 belongs to the table T1. We
send all the blocks which contain elements from S1 in the table T1. We send the
rest of the empty blocks to table T0.

Case 3.1.2. Only one block which contains an element from S2 coincides with
the block corresponding to the elements from S1 in the table T1. In this case, we
send all the blocks which contain elements from S1 to the table T1. We send the
coinciding block of the element from S2 to the table T0 and the rest of the blocks
which lies on the line containing this block to the table T1. If after this other
nonempty block having an element from S2 is still unassigned then we send it
to the table T1, and all the empty blocks lying on the line containing this block
to the table T0. Rest all the empty blocks are sent to the table T0.

Case 3.1.3. None of the blocks which contain an element from S2 coincides
with the block which contains an element from S1 in the table T1. In this case,
we send all the nonempty blocks to the table T1 and all the empty blocks to the
table T0.

Case 3.2. Two blocks which contain elements from S1 lies on the same line and
other lies on a different line.

Case 3.2.1. All the blocks which contain an element from S1 lies in the same
slice. From here onward whenever we say blocks belonging to a slice, we mean
the slice drawn in a superblock to which these blocks belongs.

Case 3.2.1.1. All the blocks which contain elements from S2 coincides with
blocks which contain elements from S1 in the table T1. In this case, we send the
blocks which contain elements from S2 to the table T0, and the rest of the blocks
lying on the lines containing these blocks to the table T1. All the blocks which
contain elements from S1 are sent to the table T1. Rest all the empty blocks are
sent to the table T0.

Case 3.2.1.2. Only one block which contains an element from S2 coincides with
the block which contains an element from S1 in the table T1. In this case, we
send the coinciding block which contains an element from S2 to the table T0 and
the rest of the block which lies on the line containing this block to table T1. If
after this assignment other block having the element from S2 is still unassigned
then we send the other block which contains the element from S2 to the table T1

and the rest of the block which lies on the line containing this block to table T0.
Also, we send all the blocks which contain elements from S1 to the table T1. We
send the rest of the blocks which do not contain any elements to the table T0.

Case 3.2.1.3. None of the blocks which contain an element from S2 coincides
with the block which contains an element from S1 in the table T1. This case is
the same as Case 3.1.3.

Case 3.2.2. Two blocks which contain elements from S1 lies in a slice and
another block which contains an element from S1 in another slice.

Case 3.2.2.1. All the blocks which contain elements from S2 coincides with
blocks which contain elements from S1 in the table T1. If the coinciding blocks
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lie in the same slices as that of two blocks which contain elements from S1 then
we send both the coinciding blocks which contain the elements from S2 to the
table T0. Also, we send all the empty blocks lying on the lines which contain
these blocks to table T1. Two blocks which contain the elements from S1 and
lying in the same slice are sent to the table T1. The remaining block which
contains the element is sent to the table T0 and all the empty blocks lying on
the line containing this block to the table T1. Rest all the empty blocks are sent
to the table T0.

Now consider the case in which the coinciding blocks which contains the
elements from S2 lies in the different slices of the superblock which contains
the elements from S1. In this case, we send the two blocks which contain the
elements from S1 lying in a slice to the table T1. Rest of the block which contains
the element from S1 lying in the other slice is sent to the table T0 and the empty
blocks which lie on the line containing this block is sent to the table T1. One of
the blocks which contains an element from S2 and is lying in the slice containing
two elements from S1 is sent to the table T0 and the rest of the blocks on this line
is sent to the table T1. If after this assignment other block having the element
from S2 is still unassigned then we send it to the table T1 and the empty blocks
on the line containing this block to the table T0. Rest all the empty blocks are
sent to the table T0.

Case 3.2.2.2. Only one block which contains an element from S2 coincides with
a block which contains an element from S1 in the table T1. Let us first consider
the case where coinciding block having element form S2 lies in the slice which
contains two blocks having elements from S1. Without loss of generality let us
say that the blocks having elements n1 and n2 lies in the same slice and the
block having the element n4 coincide with the block having the element n1. In
this case, we send the block having the element n4 to the table T0 and all the
blocks on the line containing this block is sent to the table T1.

If the block which contains an element n3 lies on the line which contains the
block having the element n4 then we send the block having n3 to the table T0

and empty blocks of the line which contains block having n3 to the table T1.
Now if the block having the element n5 is still unassigned then we send the block
having the element n5 to the table T0 and empty blocks on the line containing
this block to the table T1. We send the block having the element n2 to the table
T0 and all the blocks which lie on the line containing this block the table T1.
Rest all the empty blocks are sent to the table T0.

Further, let us consider the case where the block which contains the element
n3 does not lie on the line which contains the block having the element n4. In
this case, we send the block having n3 to the table T1, and the empty blocks on
the line containing this block are sent to the table T0. Now again if the block
having the element n5 is still unassigned then we send it to the table T1 and the
empty blocks lying on the line containing this block to the table T0. We send the
blocks having element from S1 to the table T1 and all the empty blocks lying on
the line containing these blocks to the table T0. Rest all the empty blocks are
sent to the table T0.
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Now we are left with the case where coinciding block of S2 having an element
n4 coincides with the block having the element n3. In this case, we send the block
having the element n3 to the table T0 and empty block which lies on the line
containing this block to the table T1. We send the block having the element n4

to the table T1 and empty blocks which lies on the line containing this block to
the table T0.

Now we see the position of the block having the element n5. If the block
having the element n5 lies on the line which contains block having the element
n3 then we send the block having the element n5 to the table T0. Also, we send
the empty blocks of the line which contains block having the element n5 to the
table T1. Now, consider the case where the line containing the block having
the element n5 passes through one of the blocks having the element n1 or n2.
Without loss of generality let us say that the line containing the block having
the element n5 passes through the block having the element n1. In this case, we
send the block having the element n1 to the table T0 and rest all the blocks lying
on this line to the table T1. Rest all the empty blocks are sent to the table T0. If
the line which contains the block having element n5 does not pass through the
block having element n1 or n2, in this case we can send both the blocks having
elements n1 and n2 to the table T1. Rest all the empty blocks are sent to the
table T0.

Now consider the case where block having the element n5 does not lie on the
line which contains block having the element n3. In this case, we send the block
having the element n5 to the table T1 and all the empty blocks lying on the line
containing this block to the table T0. Blocks having elements n1 and n2 are sent
to the table T1 and rest all the empty blocks are sent to the table T0.

Case 3.2.2.3. None of the blocks which contain elements from S2 coincide with
blocks having elements from S1 in the table T1. This case is the same as Case
3.1.3.

Case 3.3. All the blocks which contain elements from S1 lies on the different
line.

Case 3.3.1. Both the blocks having elements n4 and n5 coincides with the blocks
having elements from S1 in the table T1. Without loss of generality let us say
that block having element n1 coincides with the block having the element n4

and the block having the element n2 coincide with the block having the element
n5. In this case, we send the blocks having elements n1, n2 and n3 to the table
T0 and all the empty blocks lying on the lines which contain these blocks to the
table T1. Also, we send the blocks having the element n4 and n5 to the table T1.
Rest all the empty blocks are sent to the table T0.

Case 3.3.2. Only one of the block having element say n4 from S2 coincides
with blocks having element from S1 in the table T1. Without loss of generality
let us say that block having the element n1 coincides with the block having the
element n4. Similar to the last case in this case also we send the blocks having
elements n1, n2 and n3 to the table T0 and all the empty blocks lying on the lines
which contain these blocks to the table T1. We send the block having element
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n4 to the table T1 and the block having element n5 to the table T0. Rest all the
empty blocks are sent to the table T1.

Case 3.3.3. None of the blocks which contain an element from S2 coincides
with the block which contains an element from S1. This case is the same as Case
3.1.3.

Correctness. The correctness of the scheme relies on the fact that blocks having
the elements do not coincide in the table T1 or in the table T0. Also, the blocks
which are not having the elements are not sent to the place where block having
elements are placed.

We summaries the conclusion of this section as follows.

Theorem 1. There is a two probe explicit adaptive scheme which stores an
arbitrary subset of size at most five from a universe of size m and uses O(m10/11)
bits of space.

4 Conclusion

In this paper we have come up with an explicit adaptive (5,m,O(m10/11), 2)-
scheme, which improves upon the non-explicit scheme by Garg and Radhakrish-
nan [6] and the explicit scheme by Garg [5] for the given set and query sizes.
We have borrowed the idea of the geometrical arrangement of elements on the
three-dimensional cube from Kesh [8] and the idea of dividing the universe into
blocks and superblocks from Radhakrishnan et al. [13]. Using these ideas there
are improved schemes for the set of size three, four and five. We believe that
this idea can be further generalized to improve the existing results for arbitrary
subsets of size n.
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Abstract. V -order is a total order on strings that determines an
instance of Unique Maximal Factorization Families (UMFFs), a general-
ization of Lyndon words. The fundamental V -comparison of strings can
be done in linear time and constant space. V -order has been proposed
as an alternative to lexicographic order (lexorder) in the computation of
suffix arrays and in the suffix-sorting induced by the Burrows-Wheeler
transform (BWT). In line with the recent interest in the connection
between suffix arrays and the Lyndon factorization, we in this paper
make a first attempt to obtain similar results for the V -order factoriza-
tion. Indeed, we show that the results describing the connection between
suffix arrays and the Lyndon factorization are matched by analogous
V -order processing. We then apply the V -BWT to implement pattern
matching in V -order after suitably modifying the FM-index.
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1 Introduction

This paper extends current knowledge on applications of a non-lexicographic
global order known as V -order [DD96]. It is an intriguing question, now inves-
tigated for more than 20 years, whether such a counter-intuitive ordering might
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nevertheless yield algorithmic efficiencies, or other theoretical/computational
benefits, compared to lexorder. Here are some applications that have been con-
sidered.

The central problem of efficient V -ordering of strings was first studied
in [DDS11,DDS13], leading to a simple, linear-time, constant-space algorithm
[ADK+16], further improved in [ADM+18]. Other V -order applications include
a variant (V-BWT) of the standard lexicographic Burrows-Wheeler transform,
introduced in [DS14] — instances of enhanced data clustering were demon-
strated. In this context, a linear-time algorithm based on [DDS11,DDS13] for
V -sorting of all the rotations of a string was described, along with linear-time
suffix-sorting based on Ko-Aluru [KA03]. In work closely related to this paper,
[DDS11,DDS13] also describe efficient Lyndon-like factorization of a string into
V -words.

In this paper, we modify ideas given in [MRRS14] that relate the Lyndon
factorization to suffix arrays and the Burrows-Wheeler transform in order to
obtain similar results for the V -order factorization (Sect. 3). We go on to intro-
duce FM-index type functions in V -order and apply them to pattern matching
in V -order (Sect. 4). The differences between lexorder and V -order are intrigu-
ing: while the latter generally appears trickier to work with, on the other hand
computing suffix arrays in V -order is trivial.

2 Preliminaries

We are given a finite totally ordered set of cardinality σ = |Σ|, called the alpha-
bet, whose elements are characters (equivalently letters). A string is a sequence
of zero or more characters over Σ. A string x = x1x2 · · · xn of length |x| = n is
represented by x[1..n], where x[i] ∈ Σ for 1 ≤ i ≤ n. The set of all non-empty
strings over the alphabet Σ is denoted by Σ+. The empty string of zero length is
denoted by ε, with Σ∗ = Σ+ ∪ ε. If x = uwv for strings u,w,v ∈ Σ∗, then u is
a prefix, w a substring or factor, and v a suffix of x. If x = uk (a concatenation
of k copies of u) for some nonempty string u and some integer k > 1, then x
is said to be a repetition; otherwise, x is primitive. For further stringological
definitions, theory and algorithmics see [CHL07,Smy03].

Some of our applications are derived from Lyndon words, which we now
introduce. A string y = y[1 . . . n] is a conjugate (or cyclic rotation) of x =
x[1 . . . n] if y[1 . . . n] = x[i . . . n]x[1 . . . i − 1] for some 1 ≤ i ≤ n (for i = 1, y =
x). A Lyndon word is a primitive word which is minimum in lexicographic order
(lexorder <) over its conjugacy class.

Theorem 1. [CFL58] Any word x can be written uniquely as a non-increasing
product x = u1u2 · · · uk of Lyndon words.

We now define a non-lexicographic order V -order and some of its notable
properties.

Let x = x1x2 · · · xn be a string over Σ. Define h ∈ {1, . . . , n} by h = 1 if
x1 ≤ x2 ≤ · · · ≤ xn; otherwise, by the unique value such that xh−1 > xh ≤
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xh+1 ≤ xh+2 ≤ · · · ≤ xn. Let x∗ = x1x2 · · · xh−1xh+1 · · · xn, where the star *
indicates deletion of the letter xh. Write xs∗ for (...(x∗)∗...)∗ with s ≥ 0 stars.
Let g = max{x1, x2, . . . , xn}, and let k be the number of occurrences of g in x.
Then the sequence x,x∗,x2∗, ... ends gk, ..., g1, g0 = ε. From all strings x over
Σ, we form the star tree, where each string x labels a vertex, and there is a
directed edge upward from x to x∗, with the empty string ε as the root.

Definition 1 (V-Order [DD96]). We define V -order ≺ between distinct
strings x, y. First x ≺ y if in the star tree x is in the path y,y∗,y2∗, . . . , ε. If
x,y are not in a path, there exist smallest s, t such that x(s+1)∗ = y(t+1)∗. Let
s = xs∗ and t = yt∗; then s �= t but |s| = |t| = m say. Let j ∈ [1..m] be the
greatest integer such that s[j] �= t[j]. If s[j] < t[j] in Σ then x ≺ y; otherwise,
y ≺ x. Clearly ≺ is a total order on all strings in Σ∗.

Definition 2 (V-form [DD96,DD03,DDS11,DDS13]).
The V-form of a string x is defined as

Vk(x) = x = x0gx1g · · · xk−1gxk

for strings xi , i = 0, 1, . . . , k, where g is the largest letter in x — thus we suppose
that g occurs exactly k times. For clarity, when more than one string is involved,
we use the notation Lx = g, Cx = k.

Lemma 1. [DD96,DD03,DDS11,DDS13] Suppose we are given distinct strings
x and y with corresponding V -forms as follows:

x = x0Lxx1Lxx2 · · · xj−1Lxxj ,

y = y0Lyy1Lyy2 · · · yk−1Lyyk,

where j = Cx , k = Cy .
Let h ∈ 0..max(j, k) be the least integer such that xh �= yh. Then x ≺ y if,

and only if, one of the following conditions holds:

(C1) Lx < Ly

(C2) Lx = Ly and Cx < Cy

(C3) Lx = Ly , Cx = Cy and xh ≺ yh.

Lemma 2. [DDS11,DDS13] For given strings x and v, if v is a proper subse-
quence of x, then v ≺ x.

This remarkable observation has many consequences, not least the trivial
sorting of suffixes in V -order discussed in Sect. 3.

Theorem 2. [ADK+16] For any strings u, v, x, y: x ≺ y ⇔ uxv ≺ uyv.

According to this result, a comparison of two strings can ignore equal prefixes
(or suffixes) — see Algorithm COMPARE in [ADK+16,ADM+18].
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Lemma 3. [DDS11,DDS13,ADK+16,ADM+18] V -comparison requires linear
time and constant space.

Definition 3 (V-Word [DD03]). A string w over Σ is said to be a V -word if
it is the unique minimum in V -order ≺ in the conjugacy class of w.

Thus, like a Lyndon word, a V -word is necessarily primitive.

Example 1. We can apply Definition 1, equivalently the structure given by
Lemma 1, to conclude that

u = 7173 ≺ 7371 ≺ 1737 ≺ 3717,

so that 7173 is a V -word, while 1737 is a Lyndon word. Similarly, v = 71727174
and w = 818382 are V -words, while conjugates 17271747 and 183828 are Lyndon
words.

Every word w ∈ Σ+ can be uniquely factorized into V -words, w =
w1w2...wm , such that w1 ≥V w2 ≥V · · · ≥V wm . This factorization is called
the V -order factorization. Note that in this definition for any two consecutive
factors, wi ≥V wi+1 implies that wiwi+1 is not a V -word; that is, concatena-
tion of these factors is not possible and hence implies factoring (See [DDS09]).
Also note that wi ≺ wi+1 does not always hold (see Example 2).

Lemma 4. [DDS11,DDS13] Using only linear time and space, a string x can be
factored uniquely into V -words x = x1x2 · · · xm , with x1 ≥V x2 ≥V · · · ≥V xm .

Example 2. For x = 33132421, the Lyndon decomposition is 3 ≥ 3 ≥ 13242 ≥ 1,
while the V -order factorization is 33132 ≥V 421. Similarly, from Example 1, the
string

x = uvw = (7173)(71727174)(818382)

has the unique V -order factorization u ≥V v ≥V w.
The on-line algorithm VF, that computes the V -order factorization of a string

x in linear time and space, is described in detail in [DDS11,DDS13].

Definition 4. [DD03,DDS13,DS14] Suppose that according to some factoriza-
tion F , two strings u,v ∈ Σ+ are expressed in terms of nonempty factors:

u = u1u2 . . . um, v = v1v2 . . . vn.

Then u ≺LEX(F ) v if and only if one of the following holds:

(1) u is a proper prefix of v (that is, ui = vi for 1 ≤ i ≤ m < n); or
(2) for some i ∈ 1..min(m,n), uj = vj for j = 1, 2, . . . , i − 1, and ui ≺ vi.

In other words, u1u2 . . . um ≺LEX(F ) v1v2 . . . vn in lexicographic extension
(lex-extension) order, using not < but ≺.

Since the factorization F that we are interested in here is into V -words (V -
order factorization), therefore instead of ≺LEX(F ) we write ≺LEX(V ). Also, anal-
ogous to the traditional definition of BWT, V -BWT is BWT with respect to
V -order.
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3 Suffix-Sorting and the Burrows-Wheeler Transform

In this section we show how to translate the results of Mantaci et al. [MRRS14]
from lexorder into V -order. Mantaci et al. describe a strategy for obtaining the
suffix array SAx of a string x from its Lyndon factorization LFx . To do the
equivalent calculation in V -order — SAx from the V -order factorization of x
(defined below) — is not however of interest, because sorting the suffixes of x
in V -order is trivial! By virtue of Lemma 2, the V -order of the suffixes is

x[n] ≺ x[n − 1..n] ≺ · · · ≺ x[1..n],

so that SAx [i] = n − i + 1.
Thus, in the V -order version of this problem, we replace the suffixes with

the “extended suffixes” (conjugates of x) employed to determine the V -BWT;
that is,

x[n − i + 1..n] −→ x[n − i + 1..n]x[1..n − i]. (1)

The following example, from [DS14], shows that the ordering of the extended
suffixes is no longer straightforward:

Example 3. For x = 9191919293, consider suffixes 919293 and 91919293, with
919293 ≺ 91919293 by Lemma 2. However, extending these suffixes and applying
Lemma 1 (C3) yields the opposite order:

9191929391 ≺ 9192939191.

Thus we show here how to use the V -order factorization of x to generate the
sorted conjugates of x.

Now we turn to the idea of “compatibility” of sorted suffixes as introduced
in [MRRS14]. Let x = x[1..n] be a string and u = x[i..j], 1 ≤ i ≤ j ≤ n, a
substring of x. Then the sorting of suffixes sp = x[p..j], sq = x[q..j] of u is
compatible with the sorting of the corresponding suffixes x[p..n], x[q..n] of x if
these two (p, q) pairs have the same order. In lexorder compatibility of arbitrarily
chosen u and v does not alway hold [MRRS14], but does hold when they are
substrings of Lyndon factors in the Lyndon factorization of x. However, in V -
order, compatibility holds for every choice of p, q. Moreover, the shorter suffix is
always lesser, thus allowing comparison in terms of indexes:

Lemma 5. Let x ∈ Σ+ and u be a substring of x with s1 a suffix of u. If s2

is a proper suffix of s1 then s2 ≺ s1 with respect to both u and x.

Proof. Immediate from Lemma 2. 
�
As we have seen, Lemma 5 is not sufficient for extended suffixes, but since

each rotation has the same number of maximum g’s, condition (C3) implicitly
applies. However, as a corollary we obtain the following V -order analogy of
Theorem 3.2 given in [MRRS14] for Lyndon decomposition.
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Theorem 3. Let x ∈ Σ+ with V -order factorization x = v1 · · · vk , and let
u = vi · · · vj , for 1 ≤ i ≤ j ≤ k. Then the sorting of the suffixes of u is
compatible with the sorting of the corresponding suffixes of x.

Equipped with this theorem, we can modify the clever incremental suffix-
sorting/BWT strategy of [MRRS14] to construct the extended V -order suffix
array of x = x[1..n]. We first outline the steps:

Step 1: Identify the first factor v1 in the V -order factorization v1 ≥V · · · ≥V vk

of x in linear time [DDS11,DDS13].
Step 2: Compute the lex-extension order suffix array SA(v1) of v1 in linear

time [DS14].
Step 3: Extract BWT(v1) from SA(v1).
Step 4: For factor vi [1..t], 1 < i ≤ k, insert each suffix vi [t],vi [t −

1..t], . . . ,vi [1..t] into the current SA in their V -order – so for i = 2, one
by one the suffixes of v2 are inserted into SA(v1) giving SA(v1v2). Further,
as each vi is processed we can extract BWT(v1 · · · vi): for a suffix x[i..j] the
BWT letter is x[i − 1]; if an end-marker $ is appended to vi then its BWT
letter is $.

Note: After the above steps all the V -word factors will have been incrementally
processed and BWT(x) computed. The method avoids merging the suffix
arrays of both the SA computed to date and that of the current factor being
processed due to the complexity incurred.

We proceed to describe the suffix insertion (Step 4) in more detail. For this
we apply Lemma 3.16 in [DDS13] which states that, unlike Lyndon words, the
order of the set V of V -words is in some cases the same as V -order while in other
cases it is reversed. This leads to two cases for Step 4: firstly, the next factor
to be processed has a larger maximum letter g than the maximum letter in all
the factors processed so far, and secondly the maximum letters are the same.
However, the following example shows that the method doesn’t work in the first
case of distinct maximum letters.

Example 4. Let x = v1 ≥V v2 with v1 = 321 and v2 = 5152. The ordered
conjugates of v1 are: 321 ≺ 132 ≺ 213, but note that the order of these conjugates
is changed after processing v2. We list the ordered conjugates of x = 3215152
below with complete factors shown in square brackets and the conjugates of 321
underlined.

5152[321]
52[321]51
1[5152]32
152[321]5
21[5152]3
321[5152]
2[321]515
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On the other hand, as we have seen, we are constrained to extended suffixes
relating to a conjugacy class where each rotation has the same maximum letter g
and occurring with the same frequency. In particular, condition (C3) ensures that
the order of an existing suffix array is preserved during this iterative processing
of factors. So we go on to deal with the case of the same maximum letters.

Suppose a prefix p of p factors of x has been processed resulting in SA(p)
with an associated set of ordered conjugates, where all conjugates have the same
maximum letter. The task is now to insert the suffixes of factor vp+1 into SA(p).
Applying properties established in [DS14], if g = Lw and k = Cw for a string w,
then in V -order, the first k conjugates of w start with g.

– The technique for calculating the index for inserting each proper suffix of
vp+1 (increasing one letter at a time from right to left) into the extending
suffix array is given with the FM-index in Sect. 4.1.

– Inserting the last improper suffix, vp+1, is straightforward. We establish that
analogously to the lexorder case in [MRRS14] this suffix is least in V -order and
can be entered directly into the suffix array. We have v1 ≥V v2, and assume
that SA(v1) has been computed; since v1 is a V -word it is least in SA(v1).
Then when commencing the processing of v2, v1 must be concatenated with
v2 forming the suffix v1v2. Applying Lemma 2, we have v2 ≺ v1v2 in the
suffix array – this holds iteratively as we continue processing the factors of x.

As expressed in [MRRS14] for the Lyndon case, this technique is suitable
for integration with the on-line V -order factoring algorithm: suffix-sorting can
proceed in tandem as soon as the first V -factor is identified.

4 BWT-type Pattern Matching with V -order

We outline here how to modify the well-known BWT-related backward search
technique so as to implement pattern matching with V -order – we assume that
the given string is a V -word and the V -BWT matrix (sorted conjugates in V -
order) of an input string/text has been computed using the technique in Sect. 3.
The process successively refines the search with respect to a current interval
- all occurrences of the pattern will be located or it will be determined that
the pattern does not occur in the string. We proceed to calculate the indexes of
occurrences of letters in the matrix using modifications to the lexorder FM-index
[FM00].

4.1 Applying FM-index

Following the approach in [MRRS14], we will use the well-known FM-index
functions RANK and C introduced in [FM00], which are defined as follows:
For any character λ ∈ Σ, let C(v, λ) denote the number of letters in the given
string v that are smaller than λ, and let RANK(v, t, λ) denote the number
of occurrences of λ in the prefix of length t of v. These functions will enable
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backward search where a pattern is processed repeatedly from right to left: the
first column of the V -BWT matrix is queried for existence of the current pattern
letter in the given text string.

In order to adapt the FM functions RANK and C, from lexorder applications
to those for V -order, we make the following observations:

Obs 1 Analogous to the lexorder BWT, the i-th occurrence of a letter λ in the
last column L of the V -BWT matrix is the same letter as the i-th occurrence
of λ in the first column F . To see this, consider two rows in the matrix, uλ1

and vλ2, with λ1 = λ2. Since the matrix is based on a V -word, which is a
primitive string, these rows must be distinct, so w.l.o.g. assume uλ1 ≺ vλ2;
the primitive condition, along with all rows being the same length, also implies
u,v �= ε. From the sufficiency in Theorem 2 we have u ≺ v. Next consider
the conjugates λ1u and λ2v in the conjugacy class, that is rows in the matrix.
From the necessity in Theorem 2, we have λ1u ≺ λ2v. Therefore, we cannot
have λ1 before λ2 in L and λ2 before λ1 in F .

Obs 2 The k maximum letters g in the column L occur as the first k letters in
the column F [DS14].

Obs 3 By Obs 1 and the structure of V -order, Definition 1 and Lemma 1, the
first k letters in L which are the suffix letters of the first k rows beginning
g, will occur in F in their alphabet order (but not necessarily adjacent and
therefore a subsequence; also consider g to be least in Σ here) – with one
rotation each of these letters will occur as a prefix of rows in the form λg.

Obs 4 By Obs 2 and lex-extension order Definition 4 together with condition
(C1), using the x0 substring of each row’s V -form, Definition 2, we see that
the V -BWT matrix rows 1..n are partitioned into groups. Traversing the rows
from row k+1 to n, the maximum letter(s) in the x0 prefixes (or first distinct
xi substrings), in each part, that is group, in the partition Π is less than the
maximum letter(s) in those prefixes (substrings) in the neighbouring group.
The set S of k suffix letters in Obs 3 yields up to k groups. Let q be the largest
letter in S, then the r ≥ 0 distinct letters in L which are greater than q but
less than g yield r more groups. However, any other non-maximum letters
in L that are not in S do not yield parts – by Lemma 2, on rotation, these
letters belong to the x0 prefixes of existing groups in Π.

Given a letter λ in L, with L[i] = λ, the goal is to calculate the index of λ
in F . For this we first find the size of each group G using Obs 3 & 4, and then
find the position of λ in the relevant group using Obs 1.

The first group, after those containing g, where we suppose its maximum letter
is w, starts at F [k + 1]. Consider the largest h such that the corresponding sub-
string L[k + 1..h] does not contain a letter larger than w (except g), then the size
of this first group is h − k if h > k, otherwise its size is 1. Subsequently, with the
next group starting at F [h+1], the sizes of all groups are determined in this way.
Note that these sizes of groups will be used in a similar way to the original FM
function C. So for each maximum letter μ (not equal to g) in a group we define
the function V C(μ) to be the total number of rows in all groups with maximum
letter less than μ. We also define a corresponding V C array indexed by Σ.
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Next suppose that some λ has an index i in L which corresponds to a group Gv

with maximum letter v. From the previous step we have determined the interval
I of indices in F and thus in L of Gv. Let � be the number of occurrences of λ in
the interval I of L with index less than i, then using Obs 1 we know that there
are � occurrences of λ in the interval I of F . Additionally, if λ �= v there are V
occurrences of v in L[1..i − 1] added to the rank plus the number of remaining
letters in I with index less than i. This is similar to the original FM function
RANK. Clearly, Obs 1 shows that we can use the FM function RANK(v, t, λ)
almost directly: we define V RANK(v, t, λ) to be the rank of λ in the substring
t of v, where v is the V -BWT, that is L, and the substring is given by I.

For a letter λ = g in L, to calculate its index in F then Obs 1 & 2 apply.
Otherwise, for λ �= g with L index i, its F index is given by: the number k of
maximum letters g plus the array entry V C[μ], where μ is the maximum letter
in the associated group of λ, plus V RANK(L, I, λ).

Procedure BACKWARDSEARCH in Fig. 1 shows that the usual BWT backward
search technique for lexorder also works for V -order following some modifications
to the classic FM functions C and RANK. The inputs to the procedure are the
pattern of length m, the V -BWT of length n and the arrays V C and V RANK.
The backward search proceeds similarly to the Last First function and repeatedly
calculates the interval in F of letters in the pattern which is processed from right
to left.

Fig. 1. Searching for all occurrences of a pattern using backward search.

The output of procedure BACKWARDSEARCH is an interval I = [i, j] containing
all the occurrences of each pattern, possibly as a subsequence. Specifically, I
indexes rows in the V -BWT matrix corresponding to values in the extended
suffix array, which index the starting positions of the pattern in the text. On
termination, if the end j value is less than the start value i, then the pattern
does not occur in the text.

Note that we have considered the case of V -words; the computation of the
V -transform and inverse for an arbitrary input is given in [DS14].
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Abstract. Parallel parameterized complexity theory studies how fixed-
parameter tractable (fpt) problems can be solved in parallel. Previous
theoretical work focused on parallel algorithms that are very fast in prin-
ciple, but did not take into account that when we only have a small
number of processors (between 2 and, say, 1024), it is more important
that the parallel algorithms are work-efficient. In the present paper we
investigate how work-efficient fpt algorithms can be designed. We review
standard methods from fpt theory, like kernelization, search trees, and
interleaving, and prove trade-offs for them between work efficiency and
runtime improvements. This results in a toolbox for developing work-
efficient parallel fpt algorithms.

Keywords: Parallel computation · Fixed-parameter tractability
Work efficiency

1 Introduction

Since its introduction by Downey and Fellows [9] about thirty years ago, param-
eterized complexity theory has been successful at identifying which problems are
fixed-parameter tractable (fpt), but has also had high practical impact. Efforts
to formalize and devise parallel fpt algorithms date back twenty years [6,7], but
a lot of the theoretical research is quite recent [1,2,10]. The findings can be
summarized, very briefly, as follows: It is possible to classify the problems in
FPT according to how well they can be solved in parallel, and we find natural
parameterized problems on all levels – from problems in FPT that are inherently
sequential to problems that can be solved in constant (!) parallel time.

One aspect that the existing research lacks – and which may also explain
the small number of actual implementations – is a fine-grained analysis of the
work done by parallel fpt algorithms, which is defined as the total number of
computational steps done by an algorithm summed over all processing units (in
particular, for a sequential algorithm, its work equals its runtime). Unfortunately,
“the work must be done”: on a machine with p processors, a parallel algorithm
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with W (n) work cannot finish faster than in time W (n)/p on length-n inputs.
Since real-life values of p are small (between 2 and perhaps 1024), a large W (n)
can lead to actual runtimes (“wall clock runtimes”) that are larger than those
of sequential algorithms.

A common pattern in the design and analysis of parallel algorithms is that
as we try to decrease the work W (n) in order to get down the quotient W (n)/p,
the “theoretical” parallel runtime T (n) rises. This pattern is repeated in the fpt
setting: Table 1 shows the work and time needed by different parallel algorithms
for p-vertex-cover. Note that we will never be able to reduce the work of a
parallel algorithm below the work of the fastest sequential algorithm and we call
an algorithm work-optimal if it matches this lower bound.

Table 1. Faster parallel algorithms for p-vertex-cover entail more work. We can
achieve a runtime of O(1) at the cost of the expensive use of color coding [1]. If we
allow O(log n) time, a parallel Buss kernelization in conjunction with a simple brute
force algorithm reduces the work. The next two lines are based on shallow search trees,
discussed in Sect. 3.2, and the work starts to become competitive with sequential algo-
rithms. The last lines show that being work-competitive to the best known sequential
algorithms implies larger and larger runtimes.

Work Parallel time

O(kn + 22k+k) O(1)

O(kn + 2k2 · k2) O(log n)

O(kn + 3kk2) O(log n + log2(k))

O(kn + 2k) O(log n + log4(k))

O(kn + 1.6181k) O(log n + k log(k))

O(kn + 1.4656k) O(log n + k log(k))

O(kn + 1.2738k) O(log n + k4
√
k))

Our Contributions. Many fpt algorithms are based on the search tree technique,
which recursively traverses a search tree whose depth and degree are bounded
by the parameter, resulting in a sequential runtime of the form ck or perhaps
(ck)k for some constant c. Intuitively, search tree algorithms should be easy
to parallelize since the different branches of the search tree can be processed
independently. We show that this intuition is correct and we provide precise
conditions for search tree algorithms under which they can be turned into work-
efficient parallel algorithms. A parallel search tree algorithm still has to process,
and thus construct, all branches of the tree, leading to a parallel runtime that
is proportional to the depth of the search tree, which is normally Θ(k). This
theoretical runtime is typically much smaller than the actual wall-clock time
W (n)/p =

(
ck + O(n)

)
/p >> k. However, we show that in some cases there

is room for improvement and the runtime of Ω(k) can be replaced by O(log k)
without increasing the work. The idea is to modify the search tree such that it
“branches aggressively,” thereby reducing the depth to O(log k).
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A second tool of parameterized complexity theory are kernelizations: map-
pings from input instances to membership-equivalent instances whose size is
bounded by the parameter. Some problems admit more than one kernelization
and we have to determine an execution order of them. In the sequential case
this is quite unambiguous: First apply the fastest kernel, which may however
result in a still rather large instance. Then apply a slower kernel with a smaller
output – the high runtime matters less since it is applied to a smaller input. Such
kernel cascades are also possible in the parallel setting, but here kernelizations
may have incomparable work, runtime, and output size. We provide a general
procedure to combine a set of parallel kernelizations into a work-efficient and
fast kernelization that minimizes the output size.

A third tool is interleaving: Instead of using a kernelization just as a pre-
processing procedure, during a search tree traversal call the kernel algorithm
at each tree node to ensure that the intermediate instances are small. In the
sequential setting this has the desirable effect of turning a runtime of the form
O(kc · ξk + nc) into one of the form O(ξk + nc) [14]. We show that interleaving
is also possible in the parallel setting in a work-efficient manner, including the
mentioned depth-O(log k) search trees that do not arise in the sequential setting.

Related Work. First efforts to formalize parallel fpt algorithms are due to Cesati
and Di Ianni [6], though the definitions were rather ad hoc. Around the same
time, Cai et al. [5] investigated space bounded fpt algorithms – and since loga-
rithmic space is related to parallel computations, these algorithms can be seen
as parallel fpt results. A first experimental analysis of a parallel fpt algorithm
for vertex cover is due to Cheetham et al. [7]. Recent work on a theoretical
framework for parallel fpt has mainly been done by Bannach et al. [1,2] and
Elberfeld et al. [10]. These papers establish hierarchies of parallel parameterized
complexity classes and place well-known problems in them, but do not consider
work-efficiency. Many algorithms in the cited papers are based on the expensive
color-coding technique, which needs work O(n log2 n log c · ck

2 · k4) and results
in unpractical algorithms.

Organization of This Paper. Following the preliminaries, we investigate, in order,
parallel search trees, parallel kernels, and parallel interleaving. Due to lack of
space, some proofs are only included in the technical report version.

2 Preliminaries

A parameterized problem Q is a set Q ⊆ Σ∗ × N, where in an instance (x, k) ∈
Σ∗ ×N the number k is called the parameter. A parameterized problem is fixed-
parameter tractable (in FPT) if there is an algorithm that decides the problem
for all (x, k) ∈ Σ∗ ×N in time f(k) · |x|c. Here, and in the following, f is always
a computable function and c a constant. As model of parallel computation we
use standard prams (rather than circuits), see for instance [12]. For a pram
program, let Tp(n) denote the maximum time the program needs on inputs of
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length n when p processors are available. Let T (n) = infp→∞ Tp(n) and let W (n)
denote the maximum number of computational steps (summed over all non-idle
processors) performed by the algorithm on inputs of length n. It is well-known
that Tp(n) ≤ W (n)/p + T (n) holds when the set of non-idle processors is easily
computable for each step (so a compiler can schedule the to-be-done work for
each step when less processors are available than there is work to be done) [12].
We have Tp(n) ≥ W (n)/p and Tp(n) ≥ T (n). Since for fast parallel algorithms we
have W (n)/p >> T (n), the work of a parallel algorithm is the dominating factor.
We say an algorithm is work-optimal if its work is the best possible among all
algorithms. This definition hinges, to a certain degree, on the fact that there are
clear notions of “minimal work” and “minimal runtime”. In the parameterized
world, however, this is no longer the case: it is not clear which of the terms 3kn,
2kn2, n3 + 2k, and nk is “minimal.” Depending on the values of n and k, any of
the terms may be more desirable than the others. For this reason, we strive for
optimality only with respect to the following notion (throughout the paper, we
assume that functions like W (n, k) or T (n, k) are monotone with respect to both
parameters): An algorithm A is work-competitive to a function f if WA ∈ O(f),
that is, if WA(n, k) ≤ c · f(n, k) for all n ≥ n0 and k ≥ k0 for some constants
c, n0, and k0. An algorithm A is work-competitive to an algorithm B if it is
work-competitive to the function WB .

3 Work-Efficient Parallel Search Tree Algorithms

For a parameterized problem Q and an instance (x, k), a search tree algo-
rithm invokes a branching rule (or branching algorithm) to determine a sequence
(x1, k1), . . . , (xm, km) of new instances such that (x, k) ∈ Q if, and only if, we
have (xi, ki) ∈ Q for at least one i. Crucially, each ki must be smaller than k, that
is, di = k − ki > 0. (Let us also require |xi| ≤ |x| to simplify the presentation,
but this is less crucial.) The search tree algorithm recursively calls itself on these
new instances (unless it can directly decide the instance for “trivial” k or for
“trivial” xi). An example of a search tree algorithm is the branching algorithm
for the vertex cover problem where we “branch on an arbitrary edge”: Map (G, k)
to (G − {u}, k − 1) and (G − {v}, k − 1) for an arbitrary edge {u, v} (we have
d1 = d2 = 1 and m = 2). Another example is the branching rule “branch on the
maximum-degree vertex and either take it into the vertex cover or all of its neigh-
bors,” meaning that we map (G, k) to (G−{u}, k−1) and (G−N(u), k−|N(u)|)
where N(u) is the neighborhood of u. This leads to d1 = 1 and d2 = |N(u)|;
and since we can solve the vertex cover problem directly in graphs of maximum
degree 2, we have d1 = 1 and d2 ≥ 3.

3.1 Simple Parallel Search Trees

As mentioned in the introduction, parallelizing a search tree is more or less triv-
ial, since we can process all resulting branches in parallel. Of course, it may
now become important how well the branching rule can be parallelized, since
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we have to invoke it on each level of the tree. In detail, for a set D of vectors
d = (d1, . . . , dm), a D-branching algorithm B for Q is an algorithm that on
input (x, k) either correctly outputs “(x, k) ∈ Q”, “(x, k) /∈ Q”, or instances
(x1, k−d1), . . . , (xm, k−dm) for some d ∈ D such that (x, k) ∈ Q if, and only if,
(xi, k−di) ∈ Q for some i ∈ {1, . . . , m}. Let SeqSearchTree-B and ParSearchTree-
B denote the sequential and parallel search tree algorithms based on B, respec-
tively. Note that both algorithms traverse the same tree on an input (x, k).
Let sizeB(n, k) and depthB(n, k) denote the maximum number of nodes and the
maximum depths of the search trees traversed by the algorithms on inputs of
length n, respectively.

From a sequential perspective, the objective in the design of search tree
algorithms is to reduce the size of the search tree since this will be the dominating
factor in the runtime. From the parallel perspective, however, we will also be
interested in the depth of the search tree since, intuitively, this depth corresponds
to the parallel time needed by the algorithm.

Theorem 3.1. Let B be a branching algorithm. Then

TSeqSearchTree-B(n, k) = WSeqSearchTree-B(n, k) = O(sizeB(n, k) · WB(n, k)),
TParSearchTree-B(n, k) = O(depthB(n, k) · TB(n, k)),

WParSearchTree-B(n, k) = O(sizeB(n, k) · WB(n, k)).

Of course, a lot is known concerning the size of search trees resulting from D-
branching algorithms: If s(k) = sizeB(n, k) is independent of n, we always have
s(k) ≤ max(d1,...,dm)∈D(s(k − d1) + · · · + s(k − dm) + 1) and it is known [14]
how to compute a number ξD such that s(k) = Θ(ξkD) is a minimal solution of
the inequality. For instance, for the simple branching algorithm for the vertex
cover problem with D = {(1, 1)} we have ξD = 2 and the search tree has size 2k,
while for D = {(1, 3)} from the branch-on-a-degree-3-vertex algorithm1 we have
ξD ≤ 1.4656. Regarding the depth of the search tree, it is clearly upper-bounded
by k/min d for the “worst d ∈ D” since in each recursive call we decrease k by
at least the minimal di in d. In summary, we see that ParSearchTree-B is always
work-competitive to SeqSearchTree-B and TParSearchTree-B(n, k) = k

maxd∈D mini di
·

TB(n, k) and WParSearchTree-B(n, k) = ξkD · WB(n, k).

3.2 Shallow Parallel Search Trees

If we wish to find faster work-optimal parallel search tree algorithms, a closer
look at Theorem 3.1 shows that there are two lines of attack: First, we can try to
decrease TB(n, k) while keeping WB(n, k) optimal. Second, we can try to decrease
the depth of the search trees without increasing their size.

Regarding the first line of attack, there is often “little that we can do” since
TB(n, k) will often already be optimal. For instance, the branching algorithm
1 Of course, we actually branch on a vertex of degree at least 3, meaning that D =

{(1, 3); (1, 4); (1, 5); . . . } holds, but d = (1, 3) clearly leads to the largest and deepest
search trees and it suffices to only consider this “worst d.”.
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“pick an arbitrary edge” can be implemented optimally in parallel time O(1)
assuming an appropriate memory access model; and for the branch-on-a-degree-
3-vertex algorithm, both finding a degree-3 vertex and solving the instance if no
such vertex exists can be done work-optimally in polylogarithmic time.

Regarding the second line, however, new algorithmic ideas are possible and
lead to work-efficient algorithms whose runtime is logarithmic in the parameter
instead of linear. A word of caution, however, before we proceed: We improve run-
times from O(k +logO(1) n) to O(log k +logO(1) n), where the O(log n) is needed
already for many pre- and postprocessing operations on the input. Clearly, the
improvement in the runtime is rather modest since we generally think of k being
something very small. Nevertheless, achieving even this modest speedup opti-
mally is highly nontrivial for many problems.

To get some intuition for the idea, consider once more the vertex cover prob-
lem, but let us now try to find ten arbitrary edges that form a matching. Then
every vertex cover of the input graph must contain at least one endpoint from
each of these ten edges and we get the following new branching rule: Branch to all
1024 possible ways of choosing one vertex from each of the ten edges, each time
reducing the size of sought vertex cover by 10. This corresponds to a branching
vector d′ = (10, 10, . . . , 10) of length 1024; compared to the vector d = (1, 1) if
we branch over a single edge. In the sequential setting this idea only complicates
things since ξd′ = ξd = 2 and this new algorithm produces a search tree of the
same size as before. In contrast, in the parallel setting we make progress as the
depth of the search tree is decreased by a factor of 10, without an increase in
the work being done. Naturally, a factor-10 speedup is just a constant speedup,
but we can extend the idea to move from a runtime of k to log k:

Theorem 3.2. There is an algorithm that solves p-vertex-cover in time
T (n, k) = O(log k · log3 n) and work W (n, k) = O(2kn) on a crcw-pram.

Proof (Sketch). On input (G, k) determine a maximal matching M of G. This
can be done in time O(log3 n) [11]. In case |M | < k/2 or |M | > k we are done,
otherwise branch on all 2|M | ways of choosing endpoints in this matching. ��
Let us try to generalize the ideas underlying the above theorem and its proof.

– Branch structures: The original branching algorithm first found “a substruc-
ture on which to branch.” For example, the vertex cover branching algorithm
normally finds “an arbitrary edge;” the branch-on-degree-at-least-3 algorithm
finds “a high-degree vertex.”

– Conflict-free branch structures: If the original branching algorithm has the
choice among several possible substructures on which it could branch and if
the substructures are disjoint, we can also branch on these structures “in par-
allel.” In Theorem 3.2, “disjoint substructures that are edges” are matchings
and we can branch on them in parallel; for the branch-on-degree-at-least-3
algorithm we can branch in parallel on any star forest.

– A large number of conflict-free branch structures: Lastly, we need to be able
to find a large enough collection of such disjoint substructures quickly and
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work-efficiently. Its size needs to be at least a fraction of the parameter to
ensure that we get a depth that is logarithmic in the parameter.

Since formalizing the above notions can easily lead to rather technical definitions,
we suggest a formalization that is not as general as it could be, but that nicely
captures the essential ideas. We only consider vertex search problems Q on simple
graphs where the objective is to find a parameter-sized subset of the vertices that
has a certain property. Concerning branching rules, we only consider rules that
identify a subset of the vertices and then branch over different ways in which
some of these vertices can be added to the partial solution:

Definition 3.3 (Local branching rule). Let Q be a vertex search problem. A
local branching rule is a partial mapping that gets a tuple as input consisting of
a graph G = (V,E), a parameter k, an already computed partial solution P ⊆ V ,
and a set S ⊆ V \ P on which we would like to branch. If defined, it outputs a
family F of nonempty subsets of S such that for every solution Y ⊇ P for (G, k)
the intersection Y ∩ S is a superset of an element of F .

The local branching rule for the vertex cover algorithm maps the tuple
(G, k, P, {u, v}) with {u, v} ∈ E and u, v /∈ P to {{u}, {v}} and is undefined
otherwise. For the branch-on-degree-at-least-3 rule, if S is the closed neighbor-
hood in G − P of some vertex v of degree 3 in G − P , we map (G, k, P, S) to
{{v}, S\{v}}. Returning to the three ingredients of the proof of Theorem 3.2, the
sets S in the definition of a local branching rule are exactly the sought “branch-
ing structures.” A collection M of such sets is “conflict-free” if all members of
M are pairwise disjoint. In the proof of Theorem 3.2 such an M was simply
a matching in the graph; but given any collection N of sets S, any maximal
set packing M ⊆ N will be conflict-free. Maximal set packings can be obtained
efficiently and quickly in parallel by building a conflict graph over the sets and
computing a maximal independent set [13]. Therefore, in a general setting it suf-
fices to compute a polynomial-size set N of sets S that has a set packing M ⊆ N
whose size at least a fraction of k. Algorithm 1.1 makes these ideas precise.

Definition 3.4. An implementation of a local branching rule consists of three
algorithms decide, choices, and branches with the following properties:

1. On inputs (G, k, P ) for which there is no S such that the local branching rule
is defined for (G, k, P, S), algorithm decide must correctly output “yes” or
“no” depending on whether P is a partial solution.

2. For all other inputs (G, k, P ), the algorithm choices must output a nonempty
set N such the local branching rule is defined on all (G, k, P, S) for S ∈ N .

3. For all (G, k, P, S) for which the local branching rule is defined, branches must
output the corresponding family F of branches.

Theorem 3.5. Given an implementation (decide, choices, branches) for a local
branching rule for some Q, algorithms B1 and B∗ from Algorithm 1.1 satisfy:

1. ParSearchTree-B∗ is work-competitive to SeqSearchTree-B1 if Wdecide(n, k) +
Wchoices(n, k) + Wbranches(n, k) ∈ Ω(n3).
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2. If the size of the maximal set packings M computed by B∗ is always at least
ε(k − |P |), then TParSearchTree-B∗(n, k) = O(log k · (Tdecide(n, k)+Tchoices(n, k)+
Tbranches(n, k) + log4 n)).

Algorithm 1.1. For an implementation (decide, choices, branches), B1 is the resulting
standard branching rule. The new parallel branch algorithm B∗ first computes a set
packing M of the set N of possible branch structures and then branches on all of them
simultaneously. Let s be the maximum size of any X produced in B1 on any input.

1 algorithm B1(G, k, P )

2 if decide(G, k, P ) ∈ {yes,no} then return decide(G, k, P )

3 N ← choices(G, k, P ) // for vertex cover, N is the edge set of G − P

4 S ← an arbitrary element of N // for vertex cover, S = {u, v} for some edge in N

5 for each X ∈ branches(G, k, P, S) par do

6 output in parallel (G, k, P ∪ X)

7

8 algorithm B∗(G, k, P )

9 if decide(G, k, P ) ∈ {yes,no} then return decide(G, k, P ) // Recursion break

10 N ← choices(G, k, P ) // for vertex cover, N is the edge set of G − P

11 M ← a maximal set packing of N among those of size at most (k − |P |)/(s+ 1)

12 {S1, . . . , Sm} ← M // name the elements of M

13 for each X1 ∈ branches(G, k, P, S1), . . ., Xm ∈ branches(G, k, P, Sm) par do

14 output in parallel (G, k, P ∪ X1 ∪ · · · ∪ Xm)

4 Work-Efficient Parallel Kernels

Kernels are self-reductions that map instances to new instances whose size is
bounded in terms of the parameter. Like search trees, they are basic concepts
of fpt theory. Unlike search trees, kernels are often hard to parallelize: They are
typically described in terms of reduction rules, which locally change an input
instance in such a way that it gets a bit smaller without changing problem mem-
bership and such that at least one rule is still applicable as long as the instance
size is not bounded in terms of the parameter. Unfortunately, it is known that
some sets of reduction rules are “inherently sequential,” meaning that computing
the result of applying them exhaustively is complete for sequential polynomial
time [4]. On the other hand, some reduction rules can easily be applied in par-
allel just as well as sequentially, leading to kernelization algorithms running in
polylogarithmic time or even in constant time [3].

While it seems hard to characterize which sets of reduction rules yield parallel
kernels, the situation is more favorable when we consider a sequence of kernels (a
kernel cascade). In the sequential setting, the situation is simple: Given several
kernelizations for the same problem, the asymptotically fastest way to compute
a minimum-size kernel is simply to apply them in sequence starting with the
fastest and ending with the slowest. In the parallel setting, the situation is also
simple when we can parallelize all kernels of a cascade optimally. However, even
when this is not the case, we may still get a fast parallel algorithm and there is an
intriguing dependence on the parallel runtime and the kernel size: Theorem 4.2
states that it suffices to parallelize the kernels in a cascade until the kernel size
equals the desired parallel runtime – while later kernels need not be parallelized.
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4.1 Sequential Kernel Cascades

A kernelization for a parameterized problem Q ⊆ Σ∗ × N is a polynomial-time
computable function K : Σ∗ ×N → Σ∗ ×N such that (a) (x, k) ∈ Q if, and only
if, K(x, k) ∈ Q for the kernel K(x, k) and such that (b) for some computable
function sK we have |K(x, k)| ≤ sK(k) for all x and k. We call the kernelization
polynomial if sK is a polynomial. A kernel algorithm is an algorithm K that
computes a kernelization K.

As indicated earlier, there can be several kernelizations (and, hence, kernel
algorithms) for the same problem and they may differ regarding their runtime
and their kernel sizes. For instance, on input (G, k) the Buss kernelization of
the vertex cover problem removes all vertices of degree larger than k (which
must be in a vertex cover) and then removes all isolated vertices (which are not
needed for a vertex cover). It yields kernels of size sBuss(k) = k2 and can be
computed very quickly. In contrast, the linear program kernelization [8] for the
vertex cover problem solves a linear program in order to compute a kernel of
size 2k, but solving the linear program takes more time. It now makes sense to
first compute a Buss kernel followed by an application of the linear program
kernelization since we then apply a “slow” algorithm only to an already reduced
input size (from originally n to only k2).

In general, let a kernel cascade be a sequence C = (K1, . . . ,Kt) of kernel
algorithms for the same parameterized problem Q sorted in strictly increasing
order of runtime (that is, we require TKi ∈ o(TKi+1) and thereby implicitly rule
out situations where runtimes are incomparable) and strictly decreasing order
of kernel sizes (that is, we require sKi

(k) > sKi+1(k) for all but finitely many k).
The cascaded kernel algorithm KC of a cascade C will, on input (x, k), first apply
K1 to (x, k), then applies K2 to the result, then K3 and so on, and output the
result of the last Kt. Clearly, the following holds:

Observation 4.1 Let C = (K1, . . . ,Kt) be an kernel cascade. Then sKC
= sKt

and the runtime of KC is TKC
(n, k) = TK1(n)+TK2(sK1(k))+TK3(sK2(k))+ · · ·+

TKt(sKt−1(k)). Furthermore, no subsequence C ′ of C with sKC′ = sKt achieves
an asymptotically faster runtime.

4.2 Parallel Kernel Cascades

Faced with the problem that kernels based on reduction rules are often diffi-
cult to parallelize, parallelizing a whole kernel cascade in a work-optimal way
seems even more challenging: Observation 4.1 states that for a given cascade the
asymptotically fastest runtime is achieved by applying all kernels in the cascade
in sequence. Since “work optimal” means, by definition, “parallel work equal
to the fastest sequential runtime,” we also must apply work-optimal parallel
versions of all kernels in the cascade in sequence in the parallel setting.

It turns out that it may not be necessary to parallelize all kernels in a cas-
cade: Suppose we only parallelize the first kernel in a cascade, that is, suppose
we find a work-optimal algorithm for K1 with runtime O(logO(1) n) and then
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apply this parallel algorithm followed by the unchanged sequential kernels K2 to
Kt. The work of the resulting cascade will be identical to the runtime of the orig-
inal sequential cascade (since K1 is work-optimal and nothing else is changed).
The runtime, however, will now be O(logO(1) n) plus some function that depends
only on k (since all later kernels are applied to inputs whose size depends only
on k). Assuming that we consider a runtime of the form O(logO(1) n + f(k))
“acceptable,” we see that we can turn any sequential kernel cascade into a par-
allel one by parallelizing only the first kernel. Of course, there are functions f
that we might not consider “acceptable”; for instance, f might be exponential.
Intuitively, we then need to “parallelize more kernels of the sequence.”

Theorem 4.2. Let C = (K1, . . . ,Kt) be a kernel cascade and for some r ≤ t let
K′
1, . . . ,K

′
r be parallel implementations of K1, . . . ,Kr, that is, for i ∈ {1, . . . , r}

let K′
i be a work-competitive parallel implementation of Ki with runtime TK′

i
∈

O(logO(1) n). Let C ′ = (K′
1, . . . ,K

′
r,Kr+1, . . . ,Kt). Then

1. KC′ is work-competitive to KC and
2. TKC′ (n, k) = logO(1) n + sK′

r
(k)O(1).

As a concluding example, consider once more p-vertex-cover. We men-
tioned already that there is a size-k2 kernel algorithm Buss for this problem,
which is easy to implement in linear sequential time, but also in logarithmic
parallel time and linear work (and, thus, optimally). There is also a size-2k
kernel algorithm LP based on [8] that needs sequential time O(|E|√|V |). For
this kernel, no work-optimal (deterministic) polylogarithmic time implementa-
tion is known (indeed, any parallel implementation is difficult to achieve [4]). By
Observation 4.1, there is a sequential kernel algorithm for the vertex cover prob-
lem that runs in time O

(
n + k2

√
k2

)
= O(n + k3). By Theorem 4.2, there is a

parallel kernel algorithm that is work-competitive and needs time O(log n+k3).

5 Work-Efficient Parallel Interleaving

Interleaving is a method to combine a branching algorithm B and kernel algo-
rithm K to “automatically” reduce the runtime of SeqSearchTree-B: During the
recursion, the algorithm SeqInterleave-B-K applies K at the beginning of each
recursive call (thus, calls to the kernel algorithm are “interleaved” with the
recursive calls, hence the name of the method). Intuitively, at the start of the
recursion, calling a kernel algorithm is superfluous (the input is typically already
kernelized) and only adds to the runtime, but deeper in the recursion it will
ensure that the inputs are kept small. Since the bulk of all calls are “deep inside
the recursion” we can hope that “keeping things small there” has more of a
positive effect than the negative effect caused by the superfluous calls at the
beginning. Niedermeier and Rossmanith have show that this intuition is correct:

Fact 5.1 ([14]) Let K be an arbitrary kernel algorithm that produces kernels of
polynomial size. Let B be a D-branching algorithm running in polynomial time.
Then TSeqInterleave-B-K(n, k) = sizeB(n, k) + nO(1) ≤ ξkD + nO(1).



Towards Work-Efficient Parallel Parameterized Algorithms 351

5.1 Simple Parallel Interleaving

Interleaving also helps to reduce the work of parallel search tree algorithms:
Consider the algorithm ParInterleave-B-K, the version of ParSearchTree-B that
applies K at the beginning of each recursive call. First applying K and then
computing branch instances using B is itself a branching algorithm and, thus,
Theorem 3.1 tells us that TSeqInterleave-B-K(n, k) = WParInterleave-B-K(n, k) holds. This
observation suggests that in order to minimise the work, we have to choose the
most work-efficient kernel algorithm K available to us. However, it turns out that
we have more options in the parallel setting: The work of K is only relevant at the
very beginning, when the input size still depends on n. Later on, all remaining
computations get inputs whose size depends only on the parameter. For these
calls, the work of K is no longer relevant – it is “drowned out” by ξkD. This
suggests the following strategy: We use two kernels, namely an initial kernel
whose job is to quickly and, more importantly, work-efficiently reduce the input
size once (how such kernels can be constructed was exactly what we investigated
in Sect. 4); and then use an interleaving kernel during the actual interleaving,
whose job is just to kernelize the intermediate instances as quickly as possible –
but we need no longer care about the work! Let us write A|B for the sequential
concatenation of algorithms A and B.

Theorem 5.2. Let B be a D-branching algorithm, and let Kinit,Kinterleave be poly-
nomial-sized kernels. Then WKinit|ParInterleave-B-Kinteleave

(n, k) ∈ O(WKinit(n, k) + ξkD).

5.2 Shallow Parallel Interleaving

At the end of Sect. 3 we introduced the idea of shallow search trees as a method
to speedup parallel search tree algorithms. However, shallow search trees are
not necessarily compatible with the interleaving technique: From the parallel
point of view, a “perfect” branching algorithm would branch on input (G, k) in
constant time to m = ξkD simple instances (G1, 1), . . . , (Gm, 1), all of which can
then be processed in parallel. Applying a kernel at this point is “too late”: The
work will be something like m = ξkD times work of the kernel, which is decidedly
not of the form ξkD plus the work of the kernel.

What goes wrong here is, of course, that we parallelize “too much”: we must
ensure that the kernel algorithm gets a chance to kick in while the inputs still
have a large enough size. On inputs of (still) large parameter k, all branches have
to have a parameter of size at least εk (normally, we want a parameter at most
εk). We remark that it does not follow from [14] that interleaving is possible
here since [14] considers only the case where the number of branch instances is
bounded by a constant. For the following theorem, let us write d(x, k) for the
branching vector d used by B on input (x, k) and |d(x, k)| for its length.

Theorem 5.3. Let B be a D-branching algorithm such that for all inputs (x, k),
(a) the work done by B is at most |d(x, k)| · |x|O(1) and (b) the maximum value in
d(x, k) is at most (1−ε)k+O(1). Let K be a polynomially-sized kernel algorithm.
Then WParInterleave-B-K(n, k) = O(WK(n, k) + ξkD).
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Note that the search trees arising from the branching rule B∗ always have
property (b), that is, they never “parallelize too well” since we capped to
size m of M to (k − |P |)/(s + 1) and, thus, k − |P | − |X1| − · · · − |Xm| ≥
k − |P | − s(k − |P |)/(s + 1) = (k − |P |)/(s + 1), meaning that we can set
ε = 1/(s + 1).

6 Conclusion and Outlook

We have extended the field of parallel parameterized algorithms with respect to
work-optimality. This is a first step towards the aim of closing the gap between
theoretical parallel algorithms (which are fast but produce massive work) and
algorithms that work well in practice. To that end we provided a framework that
allows to transform sequential search tree algorithms as well as kernelizations
into parallel algorithms that are work-efficient. Furthermore, we have shown
that combining both techniques via interleaving is still possible in the parallel
setting. There are multiple paths to extend this line of research: It would be
interesting to know if the presented algorithms do, in fact, lead to competitive
parallel implementations. From the theory point of view, a natural next step is
to study which other fpt techniques allow work-optimal implementations.
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Abstract. The Arbitrary Pattern Formation problem asks to
design a distributed algorithm that allows a set of autonomous mobile
robots to form any specific but arbitrary geometric pattern given as
input. The problem has been extensively studied in literature in contin-
uous domains. This paper investigates a discrete version of the problem
where the robots are operating on a two dimensional infinite grid. The
robots are assumed to be autonomous, identical, anonymous and obliv-
ious. They operate in Look-Compute-Move cycles under a fully asyn-
chronous scheduler. The robots do not agree on any common global
coordinate system or chirality. We have shown that a set of robots can
form any arbitrary pattern, if their starting configuration is asymmetric.

Keywords: Distributed algorithm · Autonomous robots
Arbitrary Pattern Formation · Grid · Asynchronous
Look-Compute-Move cycle

1 Introduction

1.1 Motivation

Distributed coordination of autonomous mobile robot systems has attracted con-
siderable research interest in recent years owing to its potential applications in a
wide range of real-world problems. The problem of forming an arbitrary geomet-
ric pattern is a fundamental coordination task for autonomous robot swarms.
The pattern formation problem has been extensively investigated in continuous
domains under different assumptions. In the continuous setting, the robots are
assumed to be able to execute accurate movements in arbitrary directions and
by arbitrarily small amounts. Hence, even in densely crowded situations, the
robots can maneuver avoiding collisions. Certain models also permit the robots
to move along curved trajectories, in particular, circumference of a circle. For
robots with weak mechanical capabilities, it may not be possible to execute such
intricate movements with precision. This motivates us to consider the problem
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in a grid based terrain where the movements of the robots are restricted only
along grid lines and only by a unit distance in each step. Grid type floor layouts
can be easily implemented in real life robot navigation systems using magnets
or optical guidances.

1.2 Earlier Works

The Arbitrary Pattern Formation problem was first studied by Suzuki and
Yamashita [13,14] on the Euclidean plane. In these papers, a complete charac-
terization of the class of formable patterns has been provided for autonomous
and anonymous robots with an unbounded amount of memory. They character-
ized the class of formable patterns by using the notion of symmetricity which
is essentially the order of the cyclic group that acts on the initial configuration.
In [9], Flocchini et al. investigated the solvability of the problem for fully asyn-
chronous and oblivious robots. Initially, the robots are in arbitrary positions,
with the only requirement that no two robots are in the same position. They
showed that if the robots have no common agreement on coordinate system,
they cannot form an arbitrary pattern. If the robots have one-axis agreement,
then any odd number of robots can form an arbitrary pattern, but an even num-
ber of robots cannot, in the worst case. If the robots agree on both X and Y
axes, then any set of robots can form any pattern. They also proved that it is
possible to elect a leader for n ≥ 3 robots if it is possible to form any pattern.
In [7,8], the authors studied the relationship between Arbitrary Pattern

Formation and Leader election among robots in asynchronous scheduler.
They provided algorithms to form an arbitrary pattern starting from any geo-
metric configuration wherein the leader election is possible. More precisely, their
solutions work for four or more robots with chirality and for at least five robots
without chirality. Combined with the result in [9], they deduced that Arbitrary

Pattern Formation and Leader election are equivalent, i.e., it is possible
to solve Arbitrary Pattern Formation for n ≥ 4 with chirality (resp. n ≥ 5
without chirality) if and only if Leader election is solvable. While all the
previous works considered robots with unlimited visibility, Yamauchi et al. [15]
first studied the problem with limited visibility. Randomized pattern formation
algorithms were studied in [3,16]. In [6], Das et al. investigated the problem of
forming a sequence of patterns in a given order. In [4,10], the problem was stud-
ied allowing the pattern to have multiplicities. In [5,10] the so-called Embedded

Pattern Formation problem was studied where the pattern to be formed is
provided as a set of visible points in the plane. Recently in [11], the pattern for-
mation problem was studied on an infinite grid for robots with limited visibility.
The problem was studied in synchronous setting for robots with constant size
memory, and having a common coordinate system. Furthermore, robots were
given a fixed point on the grid so that they can form a connected configuration
containing it. Other specific types of formation problems that have been studied
in the infinite grid set up, are the Gathering problem [12], i.e., the point for-
mation problem and the Mutual Visibility problem [1], where a set of opaque
robots have to form a pattern in which no three robots are collinear.
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2 Model and Definition

2.1 The Model

Robots: The robots are autonomous (there is no central control), homogeneous
(they execute the same distributed algorithm), anonymous (they have no unique
identifiers), identical (they are indistinguishable by their appearance) and obliv-
ious (they have no memory of past configurations and previous actions). The
robots cannot explicitly communicate with each other. The robots have global
visibility which means that they can observe the entire grid and the positions of
all the robots. The robots do not have access to any common global coordinate
system. In particular, they do not have a common notion of direction or chirality.
Each robot has its own local view of the world with respect to its local Cartesian
coordinate system. All the robots are initially positioned on distinct grid points.

Movement: The movement of the robots are restricted only along grid lines
from one grid point to one of its four neighboring grid points. Traditionally
in discrete domains, robot movements are assumed to be instantaneous. For
simplicity of analysis, we also assume the movements to be instantaneous. This
implies that the robots are always seen on grid points, not on edges. However,
our strategy will also work without this assumption (by asking the robots to
wait i.e, do nothing, if they see a robot on a grid edge).

Look-Compute-Move Cycles: The robots, when active, operate according to
the so-called Look-Compute-Move cycle. In each cycle, a previously idle or
inactive robot wakes up and executes the following steps. In the Look phase,
the robot takes the snapshot of the positions of all the robots, represented in
its own local coordinate system. Based on the perceived configuration, the robot
performs computations according to a deterministic algorithm to decide whether
to stay put or to move to an adjacent grid point. Based on the outcome of the
algorithm, the robot either remains stationary or makes an instantaneous move
to an adjacent grid point.

Scheduler: We assume that the robots are controlled by a fully asynchronous
adversarial scheduler (ASYNC ). This implies that the amount of time spent in
Look, Compute, Move and inactive states by different robots is finite but
unbounded and unpredictable. As a result, the robots do not have a common
notion of time and the configuration perceived by a robot during the Look phase
may significantly change before it actually makes a move.

2.2 Basic Geometric Definitions

Consider a team of a finite number of robots placed on the vertices of a simple
undirected connected graph G = (V,E). Define a function f : V −→ N ∪ {0},
where f(v) is the number of robots on the vertex v1. The pair (G, f) is called a

1 Since we have assumed that the robots are initially positioned on distinct grid points
and our algorithm guarantees collisionless movements, f(v) is always either 0 or 1.
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configuration of robots on G, or simply a configuration. Given a configuration of
robots C , let R denote the smallest grid-aligned rectangle that contains all the
robots.

An automorphism of a graph G = (V,E) is a bijection ϕ : V −→ V such
that for all u, v ∈ V , u, v are adjacent if and only if ϕ(u), ϕ(v) are adjacent. The
set of all automorphisms of G forms a group, called the automorphism group of
G and is denoted by Aut(G). The definition of automorphism of graphs can be
extended to robot configurations on graphs. An automorphism of a configuration
(G, f) is an automorphism ϕ of G such that f(v) = f(ϕ(v)) for all v ∈ V . The
set of all automorphisms of (G, f) also forms a group that will be denoted by
Aut(G, f). We shall refer to an automorphism of a configuration as a symmetry.
We shall call a symmetry trivial if ϕ(v) = v, for all v ∈ V with f(v) �= 0. If a
configuration admits no non-trivial symmetries, then it is called an asymmetric
configuration, and otherwise, a symmetric configuration.

An infinite path is the graph P = (Z, E), where E = {(i, i + 1) | i ∈ Z}.
An infinite grid can be defined as the Cartesian product G = P × P . Assume
that the infinite grid G is embedded in the Cartesian plane R

2. It is not difficult
to see that Aut(G) is generated by three types of automorphisms: translations,
reflections and rotations. A translation shifts all the vertices of G by the same
amount. Since a configuration (G, f) has only finite number of robots, it is not
difficult to see that Aut(G, f) has no translations. Reflections are defined by an
axis of reflection. The axis can be horizontal or vertical or diagonal. The angle
of rotation can be of 90 or 180◦, and the center of a rotation can be a vertex, or
the center of an edge, or the center of the unit square.

The solvability of the arbitrary pattern formation problem depends on the
symmetries of the initial configuration of the robots. This paper exclusively con-
siders only asymmetric initial configurations. Some impossibility results regard-
ing symmetric configurations are briefly discussed in Sect. 5.

2.3 The Arbitrary Pattern Formation Problem

A swarm of k robots is arbitrarily deployed on the vertices of the infinite grid. We
assume that the initial configuration Cinit is asymmetric, and no two robots are
in the same position. The goal of the Arbitrary Pattern Formation problem
is to design a distributed algorithm that guides the robots to form an arbitrary
geometric pattern Ctarget. The pattern Ctarget is a set of k (distinct) vertices in
the grid given in an arbitrary Cartesian coordinate system. The pattern Ctarget

is given to all robots in the system as input. Due to absence of a common
global coordinate system, the robots decide that the pattern is formed when their
present configuration becomes ‘similar’ to Ctarget with respect to translations,
rotations, reflections. We say that a pattern formation algorithm is collision-
free, if, at any time t, there are no two robots that occupy the same grid point.
Avoiding collisions is a necessary requirement of the problem under this model.
This is because, if two robots at any point in time, occupy the same grid point,
they can not be deterministically separated thereafter, as they both execute the
same deterministic algorithm.
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3 Pattern Formation on a Finite Grid

In this section, we will discuss a related problem that will be used in the main
algorithm. Consider a set of k robots deployed on an m × n finite grid. Starting
from any arbitrary (symmetric or asymmetric) configuration, they are required
to form a given arbitrary pattern. Unlike our original problem, we assume that
the robots agree on a common global coordinate system. The input Ctarget is
also given in this coordinate system. Hence, the given input corresponds to a
fixed set T of k grid points on the grid and our problem is to place a robot on
each of these grid points. All the other assumptions from our original problem,
stated in Sect. 2.1, are retained.

We shall first consider the case where m = 1, i.e., the grid is just a discretized
line segment. Since the robots have a common global coordinate system, they
agree on left and right. Hence, in the starting configuration, the robots can be
labeled as r1, . . . , rk from left to right. If we can devise a swap-free (the act of
two adjacent robots exchanging their positions is called a swap) and collision-
free movement strategy, then the labels will remain unchanged throughout the
algorithm. Note that, in the asynchronous setting, a collision-free algorithm is
necessarily swap-free. We can also label the grid points in T as t1, . . . , tk from
left to right. Our strategy is to simply ask each ri to go to ti. In order to avoid
collisions, a robot will move to an adjacent grid point only if it is empty. A
pseudocode description of the strategy is given in Algorithm 1.

Algorithm 1: Pattern formation on a 1×n grid
1 Procedure PFonPath()

2 s ∈ {left, right}
3 ri ← me
4 if I am not at ti then
5 if ti is on my s then
6 u ← the adjacent grid point on my s
7 if u is empty then
8 Move to u

Fig. 1. A coiled up path in a finite grid.

Now we consider the general m×n
finite grid. An m×n finite grid can be
seen as a coiled up path as shown in
Fig. 1. To be precise, an m×n grid has
a spanning subgraph isomorphic to the
finite path Pmn. But there are many
such spanning subgraphs. The com-
mon global coordinate system allows
the robots to agree on a particular sub-
graph as shown in Fig. 1. Hence, pat-
tern formation on a finite grid reduces
to pattern formation on a path, which can be solved by algorithm PFonPath().
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4 The Main Algorithm

Consider a configuration C , where R = ABCD is an m × n rectangle with
|AB| = n ≥ m = |AD| (See Fig. 2). Here, the size of a side is defined as the
number of grid points on it. If all robots in C lie on one grid line, then R is just
a line segment. In this case, when we say R = ABCD, it is to be regarded as a
1 × n ‘rectangle’ with A = D, B = C and |AD| = |BC| = 1. Let us first assume
that ABCD is a non-square rectangle with |AB| = n > m = |AD| > 1. We
associate a binary string of length mn to each corner of R. The binary string
associated to a corner A is defined as follows. Scan the grid from A along the
shorter side AD to D and sequentially all grid lines parallel to AD in the same
direction. For each grid point, put a 0 or 1 according to whether it is empty or
occupied. We denote this string by λAD. The three other strings λBC , λCB and
λDA are defined similarly. If ABCD is a square, i.e., m = n, then we have to
associate two strings to each corner. In that case, the two sequences associated
with A will be denoted by λAD and λAB . If any two of these strings are equal,
then it implies that the configuration has a (reflectional or rotational) symmetry.
Hence, if the configuration is asymmetric, then all the strings are distinct and
we can find a unique lexicographically largest string. Assume that λAD is the
lexicographically largest string. Then A will be called the leading corner. Once
we have the unique lexicographically largest string λAD, the robots can agree on
a common coordinate system as follows. The leading corner A is taken as origin
and X-axis =

−−→
AB, Y -axis =

−−→
AD. Unless mentioned otherwise, any asymmetric

configuration C will be expressed in this coordinate system. In the case where
m = 1, λAD and λDA essentially refers to the same string. Hence, in this case,
we have only two binary strings to compare. Again, if they are equal then the
configuration is symmetric. Hence, if the configuration is asymmetric2, then we
shall have a leading corner, say A = D. Then A will be taken as origin and
X-axis =

−−→
AB. But there will be no agreement on the Y -axis. However, as all the

robots lie on the X-axis, the points in C can still be unambiguously expressed
in coordinates.

2 In the m = 1 case, we already have a reflectional symmetry with respect to
←→
AB.

But this is a trivial symmetry, and is to be ignored by our definition of asymmetric
configurations.
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Fig. 2. In this configuration, the lex-
icographically largest string is λAD =
0101000010001000000001011000010100
00000010001000. The head and the tail
are respectively r1 and r2.

Therefore, we see that in an asym-
metric configuration, all the robots can
agree on a common global coordinate
system. By ‘up’ (resp. ‘right’) and
‘down’ (resp. ‘left’), we shall refer to
the positive and negative direction of
Y (resp. X) axis of this coordinate sys-
tem respectively. Also, given any asym-
metric configuration C , the robots cor-
responding to the first and the last 1
in the lexicographically largest string,
will be called the head and the tail
respectively. The remaining robots will
be called interior robots. C ′ and C ′′ will
denote the sets C \{tail} and C \{head,
tail} respectively.

The configuration Ctarget, given to the robots as an input, is expressed in
some arbitrary coordinate system. We can take the smallest enclosing rectangle
of Ctarget, call it Rtarget. Assume that Rtarget is an M × N rectangle, with
N ≥ M . Now associate binary strings to its corners in the same manner as we
did for R. We shall assume that Ctarget is expressed in a coordinate system
where the origin is the leading corner and the positive Y axis is along the side
corresponding to the lexicographically largest string. No generality is lost, as
the robots can always perform such a coordinate transformation on the input.
However, unlike the previous case, we may not have a unique lexicographically
largest string. This is because, the configuration Ctarget can have symmetries. In
that case, for the coordinate transformation, we have to choose one among the
largest strings to define the coordinate system. Notice that any choice leads to the
same set of values. Therefore, in general, we shall assume that the origin of the
coordinate system of Ctarget is one of the leading corners, and the positive Y axis
is along the side corresponding to one of the lexicographically largest strings.
We shall call this coordinate system the canonical coordinate system. Given
Ctarget in the canonical coordinate system, we define htarget, ttarget ∈ Ctarget as
the points, corresponding to the first and the last 1 of the binary string that
starts from the origin and goes along the Y axis respectively. Also, define C ′

target

= Ctarget \ {ttarget} and C ′′
target = C \ {htarget, ttarget}.

We can logically divide the algorithm into seven phases. The starting con-
figuration of the robots can fall into any one of the phases. These phases will
be described in detail in the following subsections. Since the robots are obliv-
ious, in each Look-Compute-Move cycle, it has to infer from the perceived
configuration, which phase it is currently in. It does so by checking if certain
conditions are fulfilled or not. These conditions can be expressed in terms of
Boolean variables listed in Fig. 3.

The main algorithmic difficulty of the problem arises from the restrictions
imposed on the movements of the robots. In the continuous setting the robots can
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Fig. 3. The Boolean variable on the left is true if and only if the condition on the right
is satisfied.

freely move in any direction by arbitrarily small amounts and in some models,
along any curve. Therefore, techniques used in the previous works on continuous
space (e.g., [7–9]) are not immediately portable in the discrete setting. Collision
less movement is a major challenge in the grid model due to movement restric-
tion. To resolve this, the tail expands the initial smallest enclosing rectangle
(in Phase 1 and 3) making enough room for the interior robots to reconfigure
themselves inside the rectangle without colliding. Our main idea is to utilize
the asymmetry of the configuration to reach an agreement on a coordinate sys-
tem, and try to keep the coordinate system invariant during the movements. To
achieve this, in the first three phases, the head is put at the origin and the small-
est enclosing rectangle is large enough so that the interior robots are confined
in an appropriately small finite subgrid. Any movement by the interior robots
restricted inside the finite subgrid keeps the coordinate system unaltered. So in
Phase 4, the interior robots will rearrange themselves inside the finite subgrid to
partially form the given pattern. In the final three phases, the head and the tail
will move to their prescribed positions. Despite the apparent simplicity of the
final three phases, designing movements is somewhat complicated as the coordi-
nate system may change or the agreement in the coordinate system may be lost
in some cases in the final phases.

We briefly describe the algorithm in the following subsection. The readers
are referred to the full version [2] of the paper for a more detailed description of
the algorithm and the proofs of the claims.

4.1 Description of the Algorithm

Phase 1. A robot infers that it is in phase 1, if ¬(C1 ∧ C2) ∧ ¬(C3 ∧ C4) is
true. In this case, the tail will move to the right and all other robots will remain
static. Our aim is to make both C3 and C4 true. It can be proved that after finite
number of moves by the tail, phase 1 completes with ¬(C1 ∧ C2) ∧ (C3 ∧ C4) =
true.
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Phase 2. The algorithm is in phase 2, when either C3 ∧ C4 ∧ ¬C5 ∧ ¬C7 or
¬C2 ∧ C3 ∧ C4 ∧ ¬C5 ∧ C7 is true. Our aim is to take the head to the origin.
Hence, in this phase, the head will move down towards the origin. After finite
number of moves by the head, phase 2 completes with C3 ∧ C4 ∧ C5 ∧ ¬C7 or
¬C2 ∧ C3 ∧ C4 ∧ C5 ∧ C7 true.
Phase 3. The algorithm is in phase 3, if C3 ∧ C4 ∧ C5 ∧ ¬C6 ∧ ¬C7 is true. In
this phase, there are two cases to consider. The robots will check if C8 is true or
false. If C8 is false, the tail will move upwards and the rest will remain static.
Now assume that C8 is true, i.e., C ′ has a non-trivial reflectional symmetry
with respect to a horizontal line L. Again, let the smallest enclosing rectangle
be R = ABCD, with |AD| = m and |AB| = n, n > m. Let λAD be the
lexicographically largest string. Let E be the point of BC where it intersects
with L. Let the smallest enclosing rectangle of C ′ be R′ = AB′C ′D′. There are
two cases to consider: D �= D′ (case 1) and D = D′ (case 2). In case 1, the tail
will move upwards, and in case 2, it will move downwards. It can be proved that
after finite number of moves by the tail, we shall have C3 ∧C4 ∧C5 ∧C6 ∧¬C7 =
true.
Phase 4. If the configuration satisfies C3 ∧C4 ∧C5 ∧C6 ∧¬C7 = true, then the
algorithm is in phase 4. In this phase, the head and the tail will remain static.
Let F be the subgrid of R of size (m − 1) × 	n

2 
 with coinciding bottom-left
corners (See Fig. 4). F can be considered as a finite line segment L as shown
in Fig. 4. The interior robots will execute the protocol PFonPath() on L to
achieve C ′′ = C ′′

target, i.e., C7 = true. After finite number of moves by the
interior robots, Phase 4 completes with C3 ∧ C4 ∧ C5 ∧ C6 ∧ C7 = true.
Phase 5. The algorithm is in phase 5, if ¬C2 ∧C3 ∧C4 ∧C5 ∧C7 is true. In this
phase, the tail will move along the vertical grid line in order to make C2 true.

If we have an asymmetric configuration C which is in phase 5, then depending
on whether C8 is true or false, there are two cases to consider.

Fig. 4. A configuration in phase 4.

Let the smallest enclosing rectangle of C be R = ABCD, with |AD| = m

and |AB| = n, n > m. Let A be the leading corner, and hence X-axis =
−−→
AB and

Y -axis =
−−→
AD. Now, let us plot the points of Ctarget in this coordinate system.

Except htarget and ttarget, all other points of Ctarget are occupied by the robots.
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Let the smallest enclosing rectangle of C ′ be R′ = AB′C ′D′ (See Fig. 5). Hence,
the tail is currently on BC, and all the remaining robots are inside the region
AB′C ′D′.
Case-1. First, assume that C8 is true. Since the head is at A, D′ is also occupied
due to the symmetry. Let C ′′ be the grid point where the grid lines

←−→
D′C ′ and←→

BC intersect. Let C ′′′ be the middle point of BC ′′. C ′′′ is a grid point if |BC ′′|
is odd. If the tail is on BC ′′, then C = C ′′ and D = D′. Note that the tail can
not be on [C ′′′, C ′′], because then we shall have λDA ≥ λAD. Hence, the tail is
on [B,C ′′′) or (C ′′,∞).

In this phase, we want to make C2 true. This means that the tail needs to
go to the grid point on

←−→
BC ′′ that is on the same horizontal line with ttarget.

Let us call this point t̃target. Consider the case where t̃target ∈ [B,C ′′]. In this
case, the upper left corner of the smallest enclosing rectangle of Ctarget is D′,
which is occupied by a robot. Since the input is given in canonical coordinates,
the bottom left corner (origin) of the smallest enclosing rectangle of Ctarget,
i.e., A, must be the leading corner. Therefore, A must be occupied in the final
configuration. Since A is already occupied, it implies that C1 is currently true.
Also note that t̃target /∈ (C ′′′, C ′′], as A is the leading corner in Ctarget. Hence,
t̃target is on [B,C ′′′] or (C ′′,∞).

Case 1A: tail ∈ [B,C ′′′)∈ [B,C ′′′)∈ [B,C ′′′) and t̃target ∈ [B,C ′′′]t̃target ∈ [B,C ′′′]t̃target ∈ [B,C ′′′]
The tail will move towards t̃target. During the movements, the coordinate

system remains invariant. However, if t̃target is at C ′′′, a horizontal symmetry
will be created when it reaches t̃target.

Case 1B: tail ∈ (C′′,∞)∈ (C′′,∞)∈ (C′′,∞) and t̃target ∈ (C′′,∞)t̃target ∈ (C′′,∞)t̃target ∈ (C′′,∞)
The tail will move towards t̃target. Again it is easy to see that the coordinate

system remains invariant during the movements.
Case 1C: tail ∈ (C ′′,∞)∈ (C ′′,∞)∈ (C ′′,∞) and t̃target ∈ [B,C ′′′]t̃target ∈ [B,C ′′′]t̃target ∈ [B,C ′′′]
In this case, the tail will move downwards. When r reaches C ′′, the coordinate

system flips. The new coordinate system has origin at D′, X-axis =
−−−→
D′C ′′ and Y -

axis =
−−→
D′A. In the new coordinate system, r requires to place itself in [C ′′, C ′′′].

Hence, the case is reduced to the situation similar to case 1A. Thus r achieves
C2 = true without going beneath C ′′′.

Case 1D: tail ∈ [B,C ′′′)∈ [B,C ′′′)∈ [B,C ′′′) and t̃target ∈ (C ′′,∞)t̃target ∈ (C ′′,∞)t̃target ∈ (C ′′,∞)
In this case, the tail will move downwards. When r goes beneath B, the

coordinate system flips. The new coordinate system has origin at D′, X-axis
=

−−−→
D′C ′′ and Y -axis =

−−→
D′A. Clearly, the case is reduced to the situation similar

to case 1B.
Case-2. Now assume that C8 is false. It is easy to see that where ever t̃target

is on
←→
BC, the binary string attached to A is lexicographically strictly largest as

the tail moves towards it. Hence, the movement of the tail in phase 5 does not
change the coordinate system. Clearly, after finite number of moves, C2 becomes
true. Then phase 5 is completed with C2 ∧ C3 ∧ C4 ∧ C5 ∧ C7 true.

Therefore, we can conclude that after finite number of steps, phase 5 com-
pletes with C2 ∧ C3 ∧ C4 ∧ C5 ∧ C7 = true.
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Fig. 5. Illustration of case 1 of phase 5.

Phase 6. If we have ¬C1∧C2∧C3∧C4∧C7 = true, then the algorithm is in phase
6. Consider an asymmetric configuration C which is in phase 6. Let ABCD be
the smallest enclosing rectangle, with λAD being the (strictly) largest string.
Let H and T be the position of the head and the tail respectively. H and T
are clearly on AD and BC respectively. Plot the points of Ctarget on the grid
with respect to the current coordinate system (X-axis =

−−→
AB and Y -axis =

−−→
AD).

The smallest enclosing rectangle of these points is AB′C ′D (See Fig. 6). Let H ′

and T ′ be the points htarget and ttarget. Therefore, if the head moves from H
to H ′ and the tail moves from T to T ′, then the given pattern is formed. H ′

and T ′ are clearly on AD and B′C ′ respectively, with T and T ′ being on the
same horizontal line. The aim of this phase is to move the head from H to H ′. It
can be shown that the head can reach H ′ in finite number of moves. Therefore,
phase 6 completes with C1 ∧ C2 ∧ C3 ∧ C4 = true, and hence, ¬C0 ∧ C1 ∧ C2 =
true.

Fig. 6. Illustration of phase 6.

Phase 7. Finally, the algorithm is in phase 7, if we have ¬C0 ∧ C1 ∧ C2 = true.
In this phase, the tail will move horizontally towards T = ttarget. After finite
number of moves by the tail, C0 will become true.

It is not difficult to verify (See the full version [2]) that any configuration
with C0 = false, belongs to one of the seven phases that we have discussed.
Starting from any asymmetric configuration, our algorithm can form any given
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pattern in finite time (See the full version [2] for a phase transition diagram of
our proposed algorithm). Hence, we can conclude the following theorem.

Theorem 1. Arbitrary Pattern Formation is solvable in ASYNC from
any asymmetric initial configuration.

5 Concluding Remarks

We have proved that any arbitrary pattern is formable by a set of asynchronous
robots if the initial configuration is asymmetric. The immediate course of future
research would be to characterize the patterns formable from symmetric configu-
rations. It can be proved that if a configuration C admits symmetry ϕ such that
no robot lies on the axis of reflection or the center of rotation, then any config-
uration formable from C necessarily has the same symmetry ϕ. This is however
not true, if the axis of reflection or the center of rotation contains a robot r. The
symmetry may be broken by asking the robot r to move. However, this is not
straightforward especially in a crowded situation. It would be also interesting to
consider randomized algorithms. Another direction of future research would be
to extend our work for patterns allowing multiplicities.
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Abstract. In this article, we consider the problem of finding in three
dimensions a minimum volume axis-parallel box into which a given set
of unit size disks can be packed under translations. The problem is nei-
ther known to be NP-hard nor to be in NP. We give a constant factor
approximation algorithm based on reduction to finding a shortest Hamil-
tonian path in a weighted graph. As a byproduct, we can show that
there is no finite size container into which all unit disks can be packed
simultaneously.

1 Introduction

Packing a set of geometric objects in a nonoverlapping way into a minimum size
container is an intriguing problem and because of its practical significance it has
been widely investigated. For a survey see [1,9] and the references therein. Even
simple variants like packing a set of rectangles into a rectangular container turn
out to be NP-hard [5]. Whereas that simple problem is in NP, in many cases not
much is known about the true complexity of the problem.

Constant factor approximation algorithms of polynomial running time have
been found for many variants of packing, in particular for finding minimum
size rectangular or convex containers for a set of convex polygons under trans-
lations [2], i.e., the objects may be translated but rotations are not allowed.
Also, approximation algorithms for rigid motions (translations and rotations)
are known in this case, see e.g. [8].

In three dimensions, most previous results are concerned with “regular” pack-
ing problems where objects to be packed are axis-parallel boxes, see e.g. [4,7].

In addition, approximation algorithms for packing rectangular cuboids or
convex polyhedra into minimum volume rectangular cuboid or convex containers
are known if rigid motions are allowed [3].

Whether this is possible for translations only seems to be a much more dif-
ficult problem which remains open. In this paper, we give a positive answer for
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a restricted set of possible objects, namely disks of unit radius and axis-parallel
box containers (see Fig. 1). So far, our approximation factor is forbiddingly high
but it should be of theoretical interest that the problem, which is neither known
to be NP-hard nor to be in NP, can be approximated in polynomial time at all.

Packing disks in 3D is meant in the following sense: We say that two disks
touch if their intersection contains only one point and that two disks intersect if
their intersection consists of more than one point. By nonoverlapping, we mean
that no two disks intersect whereas it is allowed that two disks touch. The main
problem we study in this work is then defined as follows:

Definition 1 (disk-packing). Given a set of unit disks in R
3 by their unit

normal vectors in S
2. The goal is to find

– an axis-parallel box of minimum volume such that all disks can be packed
without overlapping under translation inside the box

– and the actual packing of the disks inside the box.

We assume that no two disks are the same, i.e., no two unit normal vectors
are identical.

For an example see Fig. 1.

Fig. 1. Example for disk-packing

We will reduce approximating this problem with a constant factor to approx-
imating the following problem with a constant factor.

Definition 2 (disk-stabbing). Given a set of nonidentical unit disks by their
normal vectors in three dimensional space and an additional vector defining the
direction of a line. The goal is to find an ordering of the disks with the following
property: If the disks are placed nonoverlappingly with their centers in this order
on the line, the distance from the center of the first disk to the last is minimum,
in which case we call the distance length of the ordering.
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See Figs. 2(a) and (b) for 3D-disk-stabbing and Fig. 3 for 2D-disk-stabbing.

Fig. 2. Example for 3D-disk-stabbing

Fig. 3. Example for 2D-disk-stabbing. Here, the unit disks are unit line segments. Note
the length of the ordering.

This problem then again will be reduced to finding the shortest Hamiltonian
path in a complete weighted graph. To define the weights in the complete graph,
we will use the function defined in the following.

Let a ∈ S2 be a unit length vector in R
3. Define ha(D1,D2) to be the distance

of the centers of the disks D1 and D2 when placed with their centers on a line
parallel to the vector a such that D1 and D2 touch. For a special case, if D1 and
D2 have the same normal vectors, we define ha(D1,D2) = 0. ha(D1,D2) can be
computed easily from the normal vectors of D1 and D2 and it can be shown:

Lemma 1. For any a ∈ S2, ha is a metric on the set of unit disks (modulo
translation).

If D1 and D2 have different normal vectors, it is clear that ha(D1,D2) > 0;
Otherwise, ha(D1,D2) = 0 by definition.

Symmetry also can easily be observed: Assume that D1 and D2 are stabbed
(without loss of generality by the x-axis as stabbing line) in that order so
that they touch. Then a point reflection about the origin will preserve the
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orientation of the disks (invert their normal vectors) and the distance of their
centers, whereas their order on the stabbing line is reversed.

The triangle inequality can be shown by showing that if three disks D1, D2,
and D3 are stabbed in that order so that D1 touches D2 and D2 touches D3

then D3 cannot intersect into D1. This is done by contradiction, assuming that
D1 and D3 intersect in a point x not contained in D2. Considering the triangle
formed by x and the centers of D1 and D3, one can conclude that D2 does not
fit between D1 and D3. The details of the proof of this intuitive fact are quite
technical and we omit it in this extended abstract.

2 Approximation Algorithms

Next, we will show how to reduce the disk-stabbing problem to finding the
shortest Hamiltonian path in a complete weighted graph and obtain a constant
factor approximation in this way. Afterwards we will use this approximation
algorithm to compute a constant factor approximation for disk-packing.

2.1 Disk-Stabbing Approximation

Algorithm 1 computes an approximate solution for the disk-stabbing problem.
The idea is to consider a complete weighted graph, where the vertices correspond
to the disks and the weight of an edge (D1,D2) is ha(D1,D2). A Hamiltonian
path in this graph corresponds to an ordering of the disks.

Input: n unit disks given by their normal vectors, vector a
Output: Ordering of the n disks

1 Generate complete weighted graph G with n vertices:
2 Set the weight of the edge (i, j) to ha(Di, Dj) for all 1 ≤ i, j ≤ n, i �= j;
3 For all 1 ≤ i, j ≤ n with i �= j, approximate shortest Hamiltonian path on the

graph with endpoints i and j with Hoogeveen’s algorithm [6] and determine the
overall shortest path;

4 return the ordering of the overall shortest path;
Algorithm 1: Approximation algorithm for disk-stabbing

Theorem 1. Algorithm 1 computes a 5
3 -approximation for disk-stabbing in poly-

nomial time.

Proof. By Lemma 1 the triangle inequality holds in G. Let O = Di1 ,Di2 , . . . Din

be the optimal ordering for the input instance and OPT the length of O when
stabbed by a line in direction a in order O. Then, there is a path in G from
vertex i1 to in visiting each vertex exactly once, i.e., a Hamiltonian path, of
length OPT. Therefore, the algorithm of Hoogeveen finds a Hamiltonian path
of length at most 5

3OPT and this yields an ordering of length at most 5
3OPT.

Since the algorithm of Hoogeveen runs in polynomial time, Algorithm 1 runs in
polynomial time.

In the next section, we will use Algorithm 1 to approximate disk-packing.
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2.2 Disk-Packing Approximation

The idea for the approximation algorithm for disk-packing is as follows. We
divide the disks into three subsets corresponding to the three axes such that the
disks are almost orthogonal to the assigned axis. Then, we use Algorithm 1 to
compute disk-stabbings of the three sets on the corresponding axes. The result
can be interpreted as three containers, of which one is possibly very wide, one
very high and the third very deep. The other two dimensions are relatively small.
The last step is to divide these three boxes into pieces and arrange those pieces
such that they form one single axis-parallel box. To describe the details of the
algorithm, we use the following definitions.

We define wmax, dmax, hmax to be the maximum extent of any disk in x-,y-,
and z-direction respectively and, thus, the minimum width, depth, and height
any container for the disks must have. Let wbox = s · wmax and dbox = s · dmax

for a constant s > 1 to be defined later. Algorithm 2 gives the details of the idea
described above.

Fig. 4. Example container for, e.g., s = 10.5. The green boxes are the enlarged pieces
obtained by dividing the container-box computed by Algorithm 1 for the disks in X .
Here, they form two layers. The blue boxes contain disks from Y and the orange boxes
contain disks from Z.

To analyze Algorithm 2 we first give a bound on W , D, and H as defined in
Algorithm 2. Observe that the angle between the normal vector of a disk and
the axis it gets stabbed by in Algorithm 2 can be at most ϕ = arccos( 1√

3
).

Lemma 2. It holds that

W ≤ 109 · OPT
dmaxhmax

,D ≤ 109 · OPT
wmaxhmax

,H ≤ 109 · OPT
wmaxdmax

,

where OPT is the volume of an optimal container.
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Input: n unit disks given by their normal vectors
Output: Nonoverlapping packing of the disks into an axis-parallel box

1 Partition the n disks into three sets X ,Y,Z according to the axis their normal
vectors form the smallest angle with;

2 Call Algorithm 1 for the disks in X and vector (1, 0, 0). If Lx is the length of the
returned ordering, this can be interpreted as a packing of the disks in X into an
axis-parallel box of width W = Lx + wmax, depth dmax, and height hmax;

3 Analogously to Step 2 apply Algorithm 1 for the disks in Y and Z giving
lengths Ly and Lz, respectively. This can be seen as packing Y and Z into
boxes of dimensions wmax ×D × hmax and wmax × dmax ×H, respectively, where
D = Ly + dmax and H = Lz + hmax;

4 Divide the box obtained for X into pieces of width wbox − wmax;
5 Assign each disk to the piece its point with smallest x-coordinate lies in;
6 Enlarge each piece from width wbox − wmax to width wbox such that all disks

that are assigned to a piece are completely contained in that piece;
7 Divide the box obtained for Y into pieces of depth dbox analogously to Steps 4

to 6;

8 Divide the box obtained for Z into
⌊

wbox
wmax

⌋ ⌊
dbox
dmax

⌋
pieces of width wmax and

depth dmax;
9 Analogously to Steps 5 and 6, enlarge the height of each piece from step 8 by

hmax;
10 Arrange all pieces into a box of width wbox and depth dbox, so that the pieces

containing disks of X form
⌈⌈

W
wbox−wmax

⌉
/

⌊
dbox
dmax

⌋⌉
layers of height hmax, the

pieces containing disks of Y form
⌈⌈

D
dbox−dmax

⌉
/

⌊
wbox
wmax

⌋⌉
layers of height hmax,

and the pieces containing disks from Z form one layer of height

H/
(⌊

wbox
wmax

⌋ ⌊
dbox
dmax

⌋)
+ hmax (See Figure 4 for an example);

11 return the resulting box with the packed disks;
Algorithm 2: Approximation algorithm for disk-packing

Proof. Consider an optimal container with width WOPT, depth DOPT, and
height HOPT and let X ,Y,Z be the partition of disks into subsets as in
Algorithm 2. Furthermore consider a square grid of grid cells with side length
g on the x-z-plane and lines parallel to the y-axis through the grid cell centers
(see Fig. 5(a) for illustration). Then, each point has distance at most g√

2
to the

closest line. So, in the optimal packing, every disk in Y is stabbed by a line in a
point of distance at most g√

2 sin(π
2 −ϕ) from the disk center if g is small enough,

i.e., cg < 1, where c = 1√
2 sin(π

2 −ϕ) =
√

3
2 . See Fig. 5(b) for illustration.

Therefore, each disk in Y contains a disk of radius 1 − cg stabbed by a line
through its center. So, by placing the

⌈
HOPT

g

⌉ ⌈
WOPT

g

⌉
line segments of length

DOPT that are the intersection of the container and the lines behind each other
so that they touch, we get a solution to the disk-stabbing problem for the disks
in Y but with radius 1 − cg. By stretching this solution by 1/ (1 − cg), we get a
solution for disks of radius 1. Let LOPTY be the length of an optimal solution for
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Fig. 5. Aids for disk-packing.

the disk-stabbing problem for the disks in Y. Then, this length can be at most
the length of our solution, i.e.,

LOPTY ≤
⌈

HOPT

g

⌉ ⌈
WOPT

g

⌉
DOPT · 1

1 − cg
.

By using wmax, hmax ≤ 2 and WOPT ≥ wmax,HOPT ≥ hmax, it follows that

LOPTY ≤ (g + 2)2

g2 (1 − cg)
· OPT
wmaxhmax

. (1)

Since we use Algorithm 1 to compute a disk-stabbing solution for Y, we get by
Theorem 1

D ≤ 5
3

· LOPTY + dmax,

where the extra term dmax comes from the fact that the length of a disk-stabbing
is defined as the distance of the center of the first disk to the center of the last
disk and we are interested in the total depth of the packing. By inequality (1),

Dwmaxhmax ≤
(

5 (g + 2)2

3g2 (1 − cg)
+ 1

)
OPT.

Optimizing for g yields g =
√

1
3

(
27 + 4

√
6
) − 3 (≈ 0.5022) and a factor of

approximately 108.49. The calculations for W and H are analogous. This implies
the lemma.

Now, we are ready to state the main theorem of this article.
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Theorem 2. Algorithm 2 computes a constant factor approximation for disk-
packing in polynomial time.

Proof. The container computed by Algorithm 2 is a box with base area wbox ·dbox

and height
⎡
⎢⎢⎢

⌈
W

wbox−wmax

⌉
⌊

dbox

dmax

⌋
⎤
⎥⎥⎥

hmax +

⎡
⎢⎢⎢

⌈
D

dbox−dmax

⌉
⌊

wbox

wmax

⌋
⎤
⎥⎥⎥

hmax +
H(⌊

wbox

wmax

⌋ ⌊
dbox

dmax

⌋) + hmax

(see step 10 in Algorithm 2). Using Lemma 2, the definition of wbox and dbox (see
the beginning of this section), and wmaxdmaxhmax ≤ OPT the following upper
bound for the volume of the container can established by some rearrangements
and simple estimations:

s2

(
2 · 109

s−1 + 1
s − 1

+
109

(s − 1)2
+ 3

)
OPT.

Optimizing for s gives an approximation factor that is slightly smaller than 593
for s ≈ 5.7334, the real root of 6s3 − 17s2 + 15s − 658.

3 Unbounded Containers Are Necessary

At first glance, the question may seem strange whether all, uncountably many,
unit disks in three-space can be packed into a finite volume container. How-
ever, in dimension two, obviously all unit length line segments can be packed
nonoverlapping into a rectangle of area 2, as Fig. 6 shows (There are even smaller
containers). Observe that no two distinct segments intersect in interior points.

Fig. 6. How to pack all unit length segments into a container of area 2.

However, as a corollary of our previous results we will conclude that there is
no bounded size container into which all unit disks can be packed. More precisely,
we will show that even for a subset of all disks there is no bounded size container
into which all unit disks from that subset can be packed. To do so, we need the
following lemma.
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Fig. 7. Triangle formed by C1, C2, and B.

Lemma 3. Let D1 and D2 be two disks whose normal vectors form an angle ξ
smaller than π

2 . Then their distance ha(D1,D2) when stabbed by a line in direc-
tion a is at least sin ξ for any a ∈ S2.

Proof. Let C1 and C2 be the positions of the two disk centers on the line. Con-
sider the shortest path P from C1 to C2 on the planes σ1 containing D1 and σ2

containing D2. It is easy to see that P contains only one bend on the intersection
line l of σ1 and σ2. We refer to this point by B. Observe that C1 or C2 must
have distance at least 1 to B since otherwise D1 and D2 would intersect in B.
Furthermore, P forms an angle η of at least ξ at B. To see that, suppose C1 is
fixed and C2 can move parallel to l inside σ2. Observe that the smallest angle P
can form in this way is ξ.

Now, we consider the triangle formed by C1, C2, and B. Let without loss of
generality the distance s of C1 to B be at least 1. Then within the plane through
C1, C2, and B we have the situation shown in Fig. 7. Consider the ray in this
plane emanating from B that has an angle of ξ with the line segment C1B which
hits the line segment C1C2 since η ≥ ξ. By the law of sines:

s

sin χ
=

d′

sin ξ

hence
d ≥ d′ =

s · sin ξ

sin χ
≥ sin ξ

where the last inequality holds since s ≥ 1 and sinχ ≤ 1.

Theorem 3. Packing a set of n unit disks requires a container of size Ω(
√

n)
in the worst case.

Proof. In the following, we will show that Ω(
√

n) is a lower bound for the con-
tainer constructed by Algorithm 2 which is within a constant factor of the opti-
mal container. From that the theorem follows immediately.
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We identify every unit disk with its normal vector in the upper half of a
unit sphere S2 centered at the origin. Observe that for every normal vector in
the lower half (negative z-coordinate) of the unit sphere there is a vector in the
upper half corresponding to the same disk.

Consider the projection parallel to the z-axis of a c × c-square partitioned
into a square grid of grid cells with side length ε in the xy-plane centered at
the origin onto the upper half sphere, see Fig. 8. Choose the constant c to be
sufficiently small so that all points contained in the projection correspond to
disks contained in set Z in Algorithm 2. Note that the grid contains n = Ω( 1

ε2 )
points.

For any two grid-points p1, p2 corresponding to disks D1 and D2 it holds that
ha(D1,D2) ≥ sin ξ with a = (0, 0, 1) and ξ is the angle between the two normal
vectors by Lemma 3.

By construction, see Fig. 9, the projected points s1, s2 ∈ S2 have Euclidean
distance 2 · sin(ξ/2) which is at least ε. So we have

ε ≤ 2 sin(ξ/2) ≤ 2 sin ξ

So by Lemma 3, for any two disks D1,D2 corresponding to grid-points in
the c× c-square we have ha(D1,D2) ≥ ε/2. Therefore, no matter in which order
these disks are stabbed they will occupy a segment of length Ω((1/ε2) · ε), i.e.,
Ω(1/ε) of the stabbing line which is Ω(

√
n). From Theorem 2 it follows that this

is also a lower bound for the volume of a container computed by Algorithm 2,
and, since that is within a constant factor of the optimum, of any container for
the set of disks.

Fig. 8. Projecting a grid onto the unit sphere.

From Theorem 3, we obtain immediately

Corollary 1. There is no bounded size container into which all unit disks can
be packed.
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Fig. 9. Two grid points p1, p2 and their projection onto S2 with center o.

4 Other Objects, Open Problems

Observe that our approximation algorithm can be extended to any arbitrary
fixed planar shape S, provided that S can be enclosed by some disk D (i.e.,
is bounded) and contains some disk d (i.e., it has nonempty interior). More
precisely, if we are given finite set of congruent copies of S in three dimensions
we can approximate the smallest axis-parallel box into which it can be packed
by translations.

This can be done by just applying our algorithm to the corresponding set
of copies of D. Since it gives a constant factor approximation of the optimal
packing of the D’s it also gives an approximation of the optimal packing of the
d’s. Observe however, that the approximation factor is multiplied by r3 where
r is the ratio between the radii of D and d. Since the optimal packing of the
S’s provides some packing of the d’s its container must be at least as large from
which we obtain an approximation for the S’s.

Notice however, that the approximation factor obtained this way depends
on the shape of S. For standard shapes such as squares (r =

√
2), equilateral

triangles (r = 2) etc., we can directly compute it from our approximation factor.
It remains an open problem whether an optimal packing of disks of different

radii can be efficiently approximated.
In particular, approximating the packing of arbitrarily oriented boxes or con-

vex polyhedra seems to be much more difficult.
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Abstract. We study a class of geometric covering and packing problems
for bounded closed regions on the plane. We are given a set of axis-parallel
line segments that induce a planar subdivision with bounded (rectilinear)
faces. We are interested in the following problems.
(P1) Stabbing-Subdivision: Stab all closed bounded faces by

selecting a minimum number of points in the plane.
(P2) Independent-Subdivision: Select a maximum size collec-

tion of pairwise non-intersecting closed bounded faces.
(P3) Dominating-Subdivision: Select a minimum size collection

of bounded faces such that every other face has a non-empty inter-
section (i.e., sharing an edge or a vertex) with some selected face.

We show that these problems are NP-hard. We even prove that these
problems are NP-hard when we concentrate only on the rectangular faces
of the subdivision. Further, we provide constant factor approximation
algorithms for the Stabbing-Subdivision problem.

Keywords: Planar subdivision · Set cover · Independent set
Dominating set · NP-hard · PTAS

1 Introduction

The Set Cover and Independent Set problems are two well-studied problems in
many fields. In the Set Cover problem, we are given a set of points and a set of
geometric objects such that their union contains the set of points, and the goal
is to find a minimum cardinality collection of objects that covers all of the given
set of points. In the Independent Set problem, we are given a set of objects and
seek a maximum cardinality subset of objects that are pairwise non-intersecting.
The Dominating Set problem is a variation of the Set Cover problem in which we
are given a set of objects and seek a minimum cardinality subset of objects such
that every object has a non-empty intersection with one of the chosen objects.
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In this paper, we study variations of the Set Cover, Independent Set, and
Dominating Set problems. We are given m axis-parallel line segments that induce
a planar subdivision P with a set F of n bounded rectilinear faces. Further, we
consider each bounded face to be a closed region, i.e. including the boundary.
We formally define these problems as follows.

(P1) Stabbing-Subdivision: Given a planar subdivision having n
bounded faces F , find a minimum cardinality set of points in the plane
such that each face in F is stabbed (intersected) by one of the selected
points.

(P2) Independent-Subdivision: Given a planar subdivision having
n bounded faces F , find a maximum cardinality subset F ′ ⊆ F of faces such
that any pair of faces in F ′ is non-intersecting.

(P3) Dominating-Subdivision: Given a planar subdivision having n
bounded faces F , find a minimum cardinality subset F ′ ⊆ F of faces such
that any face in F \ F ′ has a non-empty intersection with a face in F ′.

A special case of the Stabbing-Subdivision problem has an application
to the art gallery problem [4]. Suppose a rectangular art gallery is given. The
gallery is subdivided into rectangular rooms. The art gallery problem seeks to
find the fewest guards (points) so that every room (face) is protected (stabbed)
by a guard point. This problem is precisely the Stabbing-Subdivision problem
in which the input faces are all rectangular. More generally, we consider the case
of rectilinear rooms (the original input of the Stabbing-Subdivision problem),
not just rectangular rooms, and ask the same question, to find the fewest guards
to protect all of the rectilinear rooms.

In this paper, we sometimes use the term “rectangle” and “rectangular face”
(of a subdivision) interchangeably.

1.1 Previous Work

The Set Cover, Independent Set, and Dominating Set problems are NP-hard for
simple geometric objects such as disks [5], squares [5], rectangles [5], etc. There
is a long line of research of these problems and its various variants and special
cases [1–3,7,10,12–15].

Recently, Korman et al. [9] studied an interesting variation of the Set Cover
problem, the Line-Segment Covering problem. In this problem, they cover all
the cells of an arrangement formed by a set of line segments in the plane using a
minimum number of line segments. They showed that the problem is NP-hard,
even when all segments are axis-aligned. In fact, they also proved that it is NP-
hard to cover all rectangular cells of the arrangement by a minimum number of
axis-parallel line segments.
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In [6], Gaur et al. studied the rectangle stabbing problem. Here given a set
of rectangles, the objective is to stab all rectangles with a minimum number of
axis-parallel lines. They provided a 2-approximation for this problem.

Czyzowicz et al. [4] considered the guarding problem in rectangular art gal-
leries. They showed that if a rectangular art gallery divided into n rectangular
rooms, then �n/2� guards are always sufficient to protect all rooms in that rect-
angular art gallery. They also extend their result in non-rectangular galleries and
3-dimensional art galleries [4].

1.2 Our Results

In this paper, we present the following results.

➥ We first prove that the Stabbing-Subdivision problem is NP-hard when
we stab all the rectangular faces of the subdivision. Next, we show that the
Stabbing-Subdivision problem is NP-hard. Further, we provide a 2.083-
approximation and a PTAS for this problem. (Sect. 2)
➥ We prove that the Independent-Subdivision problem is NP-hard when
we consider only the rectangular faces. Then we prove that the Independent-
Subdivision problem is NP-hard. (Sect. 3)
➥ We prove that the Dominating-Subdivision problem is NP-hard by con-
sidering only the rectangular faces. Next, we prove that the Dominating-
Subdivision problem is NP-hard. (Sect. 4)

2 STABBING-SUBDIVISION

2.1 NP-hardness

We first prove that the Stabbing-Subdivision problem is NP-hard when we
are restricted to stab only rectangular faces of the subdivision. Next, we modify
the construction to show that the Stabbing-Subdivision problem is NP-hard.
We give a reduction from the Rectilinear Planar 3SAT (RP3SAT) Problem.
Lichtenstein [11] proved that the Planar 3SAT problem is NP-complete. Later,
Knuth and Raghunathan [8] showed that every Planar 3SAT problem can be
expressed as an RP3SAT problem. We define the RP3SAT problem as follows.
We are given a 3-SAT formula φ with n variables x1, x2, . . . , xn and m clauses
C1, C2, . . . , Cm where each clause contains exactly 3 literals. For each variable or
clause take a rectangle. The variable rectangles are placed on a horizontal line
such that no two of them intersect. The clause rectangles are placed above and
below this horizontal line such that they form a nested structure. The clause rect-
angles connect to the variable rectangles by vertical lines such that no two lines
intersect. The objective is to decide whether there is a truth assignment to the
variables that satisfies φ. See Fig. 1(a) for an instance of the RP3SAT problem.

Variable gadget: The gadget of xi consists of 8m+4 vertical and 4 horizontal
line segments. See Fig. 1(b) for the construction of the gadget. The 4 segments
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(a) (b)

Fig. 1. (a) An instance of the RP3SAT problem. We only show the clauses which
connect to the variables from above. The solid (resp. dotted) lines represent that the
variable is positively (resp. negatively) present in the corresponding clauses. (b) Struc-
ture of a variable gadget.

v1, v4, h1, and h4 together form a rectangular region R. Next, the 2 vertical
segments v2 and v3 partition R vertically into 3 rectangles R1, R2, and R3.
Further, two horizontal segments h2 and h3 partition R2 horizontally into three
rectangles R4, R5, and R6. Finally, the 4m vertical segments l1, l2, . . . , l4m par-
tition R4 vertically into 4m+1 small rectangles r1, r2, . . . , r4m+1. Similarly, the
4m vertical segments l4m+1, l4m+2, . . . , l8m partition R6 vertically into 4m + 1
small rectangles r4m+2, r4m+3, . . . , r8m+2. Finally we have the total of 8m + 5
rectangles R1, R3, R5, r1, r2, . . . , r8m+2 inside R. Clearly, these rectangles except
R5 form a cycle of size 8m + 4. Observe that any point along the cycle can
stab at most two consecutive regions. Therefore there are two optimal solutions
P i
1 = {p1, p3, . . . , p8m+3} and P i

2 = {p2, p4, . . . , p8m+4} each of size 4m+2 (Note
that these points are not as a part of the input, they are one set of canonical
points.). These two solutions are corresponding to the truth value of xi.

Clause gadget: The gadget for clause Cα consists of a single rectangle rα that
is formed by four line segments. The rectangle rα can be interpreted as the same
rectangle as Cα in the RP3SAT -problem instance.

Interaction: Now we describe how the clause gadgets interact with the variable
gadgets. Observe that the description for the clauses which connect to the vari-
ables from above are independent with the clauses which connect to the variables
from below. Therefore, we only describe the construction for the clauses which
connect to the variables from above. Let Ci

1, C
i
2, . . . , C

i
τ be the left to right order

of the clauses which connect to xi from above. Then we say that Ci
k is the kth

clause for xi. For example, C3, C2, and C4 are the 1st, 2nd, and 3rd clause for
the variable x4 in Fig. 1(a). Let Cα be a clause containing the variable xi, xj , xt.
We say that clause Cα is the k1, k2, and k3

th clause for variable xi, xj , and xt

respectively based on the above ordering. For example, C3 is the 3rd, 1st, and
1st clause for variable x2, x3, and x4 respectively in Fig. 1(a). Let rα be the
rectangle corresponding to Cα. Now we have the following cases.

• If xi appears as a positive literal in Cα, then extend the 3 segments l4k1−3,
l4k1−2, and l4k1−1 vertically upward such that it touches the bottom boundary
of rα. Move p4k1−1 vertically upward to the bottom boundary of rα.
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• If xi appears as a negative literal in Cα, then extend the 3 segments l4k1−2,
l4k1−1, and l4k1 vertically upward such that it touches the bottom boundary
of rα. Move p4k1 vertically upward to the bottom boundary of rα.

Fig. 2. Variable clause interaction.

The similar construction can be done for xj and xt by replacing k1 with k2
and k3 respectively. The whole construction is shown in Fig. 2. Note that, we
break the horizontal segment h1 in the variable gadgets into smaller intervals
and shifted the intervals vertically along with the extension of the vertical lines.
This completes the construction and clearly, it can be done in polynomial time.

Lemma 1. φ is satisfiable if and only if there is a solution to the Stabbing-
Subdivision problem to stab only rectangular faces with n(4m + 2) points.

Proof. Assume that φ is satisfiable i.e., we have a truth assignment of the vari-
ables in φ. Now consider a variable xi. If xi is true, we select the set P i

1, otherwise
we select the set P i

2. Clearly, the n(4m+ 2) selected points corresponding to all
variable gadgets stab all the rectangular faces of the construction.

On the other hand, assume that Stabbing-Subdivision problem has a solu-
tion with n(4m + 2) points. Observe that at least (4m + 2) points are needed
to stab all the faces of a variable gadget. Since the rectangular faces of variable
gadgets are disjoint from each other, exactly (4m + 2) points must be selected
from each variable gadget. Now there are exactly two solutions of size (4m+2),
either P i

1 or P i
2. Therefore, we set variable xi to be true if P i

1 is selected from the
gadget of xi, otherwise we set xi to be false. Note that for each clause Cα the six
faces corresponding to three literals it contains, touches the rectangle rα. Since
rα is stabbed, at least one of the selected points must be chosen in the solution.
Such a point is either in one of the sets P i

1 or P i
2 of the corresponding variable

gadget based on whether the variable is positively or negatively present in that
clause. Hence, the above assignment is a satisfying assignment. ��
Theorem 1. The Stabbing-Subdivision problem is NP-hard for stabbing only
rectangular faces of a subdivision.

The STABBING-SUBDIVISION problem for stabbing all rectilinear
faces: We now prove that it is also NP-hard to stab all (rectilinear) faces of
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a subdivision. To get this result, we modify the NP-hardness result for the rect-
angular faces that is described above. Note that, after embedding the gadgets
on the plane, the subdivision creates three types of faces, (i) variable faces: the
faces interior to a variable gadget (note that all variable faces are rectangu-
lar), (ii) clause faces: rectangular faces associated with clause gadgets, and (iii)
outer faces: faces that are not included to any of (i) or (ii).

Note that, in the proof of the Lemma 1, we assume that the canonical points
(set of 4m + 2 points to stab 8m + 5 rectangles in a variable gadget) are on
the lines h2 and h3 (see Fig. 1(b)). However, in this case, we keep only one
point either on h2 or on h3 (to stab the rectangle R5) and out of the remaining
points that are on h2 we shift them vertically upward to h1 and that are on
h3 we shift them vertically downward to h4. Clearly, any outer face includes
some variable canonical points. With this modification, it is immediate that the
Lemma 1 is true even when we are intended to stab all the faces (rectilinear) of
the subdivision.

2.2 Approximation Algorithms

Factor 2.083 Approximation. We are given m axis-parallel line segments that
induce a planar subdivision P with a set F of n bounded rectilinear faces. To pro-
vide the approximation algorithm, we transform any instance of the Stabbing-
Subdivision problem into an instance of the Set Cover problem where the size
of each set is at most 4. Observe that, there exists an optimal solution to the
Stabbing-Subdivision problem that only contains vertices of P (we can call
them as corner points of F ). Also, any corner point of F can stab at most 4
rectilinear faces in P.

We now create an instance of the Set Cover problem as follows. The set of
elements is the set of all faces and the collection is all sets of faces corresponding
to the corner points of F . Note that each set in the collection is of size at most 4,
since any corner point can stab at most 4 faces. This Set Cover instance admits a
2.083 (H4 i.e., the harmonic series sum of the first 4 terms) factor approximation
[16]. Hence we have the following theorem.

Theorem 2. There exists a 2.083 factor approximation algorithm for
Stabbing-Subdivision problem in a planar subdivision by rectilinear line seg-
ments.

2.3 PTAS via Local Search Algorithm

In this section, we show that a local search framework [14] leads to a PTAS for
the Stabbing-Subdivision problem. We are given a planar subdivision with a
set F of n bounded faces. Note that, we can choose points only from the vertex
set V of the subdivision. Therefore, R = (V, F ) be the given range space. Clearly
V is a feasible solution to the Stabbing-Subdivision problem. We apply the
k-level local search (k is a given parameter) as follows.
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1. Let X be some feasible solution to the Stabbing-Subdivision problem (ini-
tially take X as V ).

2. Do the following:
(a) Search for X ′ ⊆ X and Y such that |Y | ⊆ V , |Y | < |X ′| � k and

(X \ X ′) ∪ Y is a feasible solution.
(b) If such X ′ and Y exist, update X with (X \X ′)∪Y and repeat the above

step. Otherwise, return X and stop.

It is easy to see that the running time of the algorithm is polynomial in n and
k. Further, the local search algorithm always returns a local optimum solution.
A feasible solution X is said to be a local optimum if no X ′ exists in Step 2(a) in
the above algorithm. We show that given any ε > 0, a O(1/ε2)-level local search
returns a hitting set of size at most (1 + ε) times an optimal hitting set for R.

Locality condition ([14]): A range space R = (V, F ) satisfies the locality condition
if for any two disjoint subsets R,B ⊆ V , it is possible to construct a planar
bipartite graph G = (R∪B,E) with all edges going between R and B such that
for any f ∈ F , there exist two vertices u ∈ f ∩ R and v ∈ f ∩ B such that edge
(u, v) ∈ E.

Theorem 3 [14]. Let R = (V, F ) be a range space satisfying the locality con-
dition. Let R ⊆ V be an optimal hitting set for F , and B ⊆ V be the hitting
set returned by a k-level local search. Furthermore, assume R ∩ B = ∅. Then
there exists a planar bipartite graph G = (R ∪ B,E) such that for every subset
B′ ⊆ B of size at most k, |NG(B′)| ≥ |B′| where NG(W ) denotes the set of all
neighbours of the vertices of W in G.

The following lemma implies that given any ε > 0, a k-level local search with
ε =

c√
k

gives a (1 + ε)-approximation for the Stabbing-Subdivision problem.

Lemma 2 [14]. Let G = (R ∪ B,E) be a bipartite planar graph on red and blue
vertex sets R and B, |R| ≥ 2, such that for every subset B′ ⊆ B of size at most
k, where k is a large enough number, |NG(B′)| ≥ |B′|. Then |B| ≤ (1+

c√
k
)|R|,

where c is a constant.

PTAS for the STABBING-SUBDIVISION problem: Let R (red) and B (blue)
be disjoint subsets of the vertices in planar subdivision P where R and B be an
optimum solution and the solution returned by the k-level local search respec-
tively. For simplicity, we assume that R ∩ B = ∅. Otherwise, we can remove the
common elements from each of R and B, and then do a similar analysis. As we
remove the same number of elements from both R and B, the approximation
ratio of the original instance is at most the approximation ratio of the restricted
one. We construct the required graph G on the vertices R ∪ B in the following
way. Since R and B are feasible solutions of the Stabbing-Subdivision problem,
every face f ∈ F must contain at least one red and one blue point. We simply
join exactly one pair of red and blue points by an edge for each face f ∈ F .
Clearly, the edge for a face f ∈ F lies completely inside f . Therefore G becomes
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a planar bipartite graph and hence R satisfies the locality condition. Therefore,
from Theorem 3 and Lemma 2, we say that the Stabbing-Subdivision problem
admits a PTAS.

3 INDEPENDENT-SUBDIVISION

In this section, we prove that the Independent-Subdivision problem is NP-
hard by giving a reduction from the RP3SAT problem. The reduction follows the
same line of the reduction presented in Sect. 2. We construct an instance I of the
Independent-Subdivision problem from an instance φ of the RP3SAT prob-
lem and prove that the construction is correct.

Variable gadget: The variable gadget is similar to the variable gadget that
is described in the Sect. 2. See Fig. 3 for the construction of a variable gad-
get. The difference of this variable gadget from the gadget in the Sect. 2 is
that we partition R4 into 4m − 2 smaller rectangles r1, r2, . . . , r4m−2 and R6

into 4m − 2 smaller rectangles r4m−1, r4m, . . . , r8m−4. Finally, we have the total
of 8m − 1 rectangles R1, R3, R5, r1, r2, . . . , r8m−4 inside R. Notice that, these
rectangles except R5 form a cycle of size 8m − 2. Therefore there are exactly
two optimal solutions Si

1 = {R3, r1, r3, . . . , r4m−3, r4m, r4m+2, . . . , r8m−4} and
Si
2 = {R1, r2, r4, . . . , r4m−2, r4m−1, r4m+1, . . . , r8m−5}, each with size 4m − 1.

These two solutions are corresponding to the truth values of the variable xi.

Fig. 3. Structure of a variable gadget.

Clause gadget: The gadget of the clause Cα includes 9 rectangles r1α, r2α, . . . , r9α
(see green rectangles in Fig. 4. The six rectangles r4α, r5α, . . . , r9α are placed inside
the rectangle of Cα in the RP3SAT -problem instance and the other three rect-
angles r1α, r2α, r3α are corresponding to the three vertical legs between Cα and the
three variables it contains. Note that there is another rectangle present in the
clause gadget bounded by the above 9 rectangles. However, this rectangle has
no effect in the reduction, since picking this rectangle makes other 9 rectangles
invalid (cannot be selected).
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Interaction: Here also we describe the construction for the clauses that connect
to the variables from above, since the construction is similar and independent
from the clauses that connect to the variables from below. Let Cα be a clause
containing the variables xi, xj , xt. Also assume that this is the left to right order
of these variables in which they appear in φ. Using the similar way as before
(Sect. 2), we say that the clause Cα is the k1, k2, and k3

th clause for the variables
xi, xj , and xt respectively.

• If xi appears as a positive literal in the clause Cα, then attach the rectangle
r1α to the rectangle r4k1−3.

• If xi appears as a negative literal in clause Cα, then attach the rectangle r1α
to the rectangle r4k1−2.

The similar construction can be done for xj by replacing r1α and k1 with r2α
and k2 respectively and for xt by replacing r1α and k1 with r3α and k3 respectively.
The whole construction is depicted in Fig. 4. Clearly, the construction can be
done in polynomial time. We now prove the correctness of the construction.

Fig. 4. Variable clause interaction.

Lemma 3. φ is satisfiable if and only if there is a solution of size n(4m−1)+4m
to Independent-Subdivision problem while considering only rectangular faces.

Proof. Assume that φ has a satisfying assignment. For the variable xi, if xi is
true, select the set Si

2, otherwise select the set Si
1. Since each set is of cardinality

(4m − 1), clearly we select n(4m − 1) independent rectangles across all variable
gadgets. Now let Cα be a clause containing variables xi, xj , xt. Since Cα is satis-
fiable at least one of the three rectangles r1α, r2α, r3α is free to choose in a solution.
This implies we can select exactly 4 rectangles from the gadget of Cα. We can
picked 4 rectangles independently from each clause gadget. Hence, in total we
can select n(4m − 1) + 4m rectangles.

On the other hand, assume that the Independent-Subdivision problem
has a solution S with n(4m − 1) + 4m rectangles. Note that for each variable
gadget the size of an optimal independent set is (4m−1), either the set Si

1 or Si
2.

We set the variable xi to be true if Si
2 is selected from the gadget of xi, otherwise
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we set xi to be false. Now we have to show that this assignment is a satisfying
assignment for φ i.e., each clause of φ is satisfied. Since the variable gadgets are
independent, there are at most n(4m − 1) rectangles from the variable gadgets
belongs to S. Also since the size of the solution is n(4m−1)+4m, from each clause
gadget exactly 4 rectangles are is in S. Let Cα be a clause containing variables
xi, xj , xt. As there are 4 independent rectangles from the set {r1α, r2α, . . . , r9α}, so
one must be from the set {r1α, r2α, r3α} that is in the given solution. W.l.o.g. let r1α
be present, then surely xi is a true variable as our assignment. Hence the above
assignment is a satisfying assignment. ��
Theorem 4. The Independent-Subdivision problem is NP-hard by consid-
ering only rectangular faces of a subdivision.

The INDEPENDENT-SUBDIVISION problem for all rectilinear faces: We
now prove that it is also NP-hard to find a maximum independent set of rec-
tilinear faces in a subdivision. After embedding the construction on the plane,
the subdivision creates three types of faces, (i) variable faces: The faces that
are interior to a variable gadget, (ii) clause faces: the faces associated with the
clause gadgets, and (iii) outer faces: any other faces that are not included in any
of (i) or (ii).

Visualize that we are attaching each clause gadget one by one with the vari-
able gadgets. Then each clause gadget creates two additional rectilinear faces,
on both sides of the rectangle corresponding to the middle leg. Note that, each
such face is adjacent with at least 4 clause rectangles and at least 4 variable rect-
angles. Therefore, picking one of these new faces to the optimal solution makes
the solution size strictly less than the original. Therefore, even if we consider all
rectilinear faces, Lemma 3 holds and so Theorem 4.

4 DOMINATING-SUBDIVISION

In this section, we prove that the Dominating-Subdivision problem is NP-
hard. We give a reduction from the RP3SAT problem similar to Sect. 3.

We construct an instance I of the Dominating-Subdivision problem from
an instance φ of the RP3SAT problem and prove that the construction is correct.

Variable gadget: Variable gadgets are similar to the variable gadgets that are
described in Sect. 2. The difference between this variable gadget and that of in
Sect. 2 is as follows. We partition R4 into 3m+1 small rectangles r1, r2, . . . , r3m+1

and R6 into 3m + 1 small rectangles r3m+4, r3m+5, . . . , r6m+4. We partition R1

into two rectangles r6m+6, r6m+5 and R3 into r3m+2, r3m+3. Next we take 2m+2
mutually independent rectangles s1, s2, . . . , s2m+2 inside R5 such that rectangle
si touches the two regions r3i−2 and r3i−1, for 1 ≤ i ≤ 2m + 2. Finally we have
a total of 8m+8 rectangles r1, r2, . . . , r6m+6, s1, s2, . . . , s2m+2 inside R. Figure 5
illustrate the construction of a variable gadget just described.

Lemma 4. There exists exactly two optimal dominating sets of rectangles, Di
1 =

{r1, r4, . . . , r6m+4} and Di
2 = {r2, r5, . . . , r6m+5}, for the gadget of xi.
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Fig. 5. Structure of a variable gadget.

Proof. There is no rectangle that can dominate more than 4 rectangles. Since
there are in total (8m + 8) rectangles, any dominating set cannot have size less
than (2m + 2). Further, both Di

1 and Di
2, each of size (2m + 2), dominate all

the faces of the subdivision and hence they are optimal solutions. Now we show
that there is no other optimal solution.

Clearly, no rectangle of the form r3k or sk where 1 ≤ k ≤ (2m + 2) can be a
part of an optimal solution, since each of them dominates exactly 3 rectangles.
As a result, any optimal solution contains only rectangles of the form r3k−1 or
r3k−2, for 1 ≤ k ≤ (2m + 2). Also, two rectangles, one of the form r3k−1 and
other of the form r3k−2, together cannot be a part of an optimal solution. ��

Clause gadget: The gadget for the clause Cα is a rectangle rα (Fig. 6).

Interaction: Here we describe the construction for the clauses that connect to
the variables from above. A similar construction can be done for the clauses that
connect to the variables from below. As before, we interpret Cα that contains
variables xi, xj , and xt as the k1, k2, and k3

th clause for the variables xi, xj ,
and xt respectively.

• If xi appears as a positive literal in the clause Cα, then we extend the rectangle
r3k1−1 vertically upward such that it touches the rectangle rα.

• If xi appears as a negative literal in the clause Cα, then we extend the rect-
angle r3k1−2 vertically upward such that it touches the rectangle rα.

We make the similar construction for xj and xt by replacing k1 with k2
and k3 respectively. The whole construction is depicted in Fig. 6. Clearly, the
construction can be done in polynomial time. We now prove the correctness.

Lemma 5. φ is satisfiable if and only if there is a solution of size n(2m+2) to
the Dominating-Subdivision problem while considering only rectangular faces.

Proof. Assume that φ is satisfiable i.e., we have a truth assignment to the vari-
ables of φ. For the variable xi, if xi is true we select the set Di

2, otherwise we
select the set Di

1. Clearly, the n(2m+2) selected rectangles corresponding to all
the variable gadgets dominate all the rectangular faces of the subdivision.
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Fig. 6. Variable clause interaction.

On the other hand, assume that the Dominating-Subdivision problem has
a solution with n(2m + 2) rectangles. Observe that at least (2m + 2) rectangles
are needed to dominate all the rectangular faces of a variable gadget. Since the
rectangular faces of variable gadgets are disjoint from each other and the size of
the solution is n(2m+2), from each variable gadget exactly (2m+2) rectangles
must be selected. Therefore, we set variable xi to be true if Di

2 is selected from
the gadget of xi, otherwise we set xi to be false. Note that for each clause Cα

the three rectangles corresponding to the three literals it contains attach to
the rectangle rα. Since rα is dominated, at least one of these three rectangles is
chosen in the solution. Such a rectangle is either in Di

2 or Di
1 of the corresponding

variable gadget based on whether the variable is positively or negatively present
in that clause. Hence, the above assignment is a satisfying assignment. ��
Theorem 5. The Dominating-Subdivision problem is NP-hard when we are
constrained to dominate all the rectangular faces of a subdivision.

The DOMINATING-SUBDIVISION problem for all rectilinear faces: We
only modify the variable gadgets such that it has exactly two distinct optimal

Fig. 7. Modified variable gadget.

solutions and the rest of the con-
struction and the proofs remain the
same. We take 2m + 2 rectangles
b1, b2, . . . , b2m+2. We place the rectan-
gle bi in between the rectangles r3i−2

and r3i−1, for 1 ≤ i ≤ 2m + 2 of
the variable gadget shown in Fig. 5
(see Fig. 7). These additional rectangles
enforce not to choose R5 in an optimal
solution. Now it is easy to verify that
the Lemma 4 remains true for this modified gadget even when we consider all
the bounded faces of the subdivision.
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Abstract. Set cover is a well-studied problem with application in many
fields. A well-known variation of this problem is the Minimum Member-
ship Set Cover problem. In this problem, given a set of points and a set
of objects, the objective is to cover all points while minimizing the maxi-
mum number of objects that contain any one point. A dual of this prob-
lem is the Minimum Membership Hitting Set problem. In this problem,
given a set of points and a set of objects, the objective is to stab all of the
objects while minimizing the maximum number of points that an object
contains. We study both of these variations in a geometric setting with
various types of geometric objects in the plane, including axis-parallel
line segments, axis-parallel strips, rectangles that are anchored on a hor-
izontal line from one side, rectangles that are stabbed by a horizontal
line, and rectangles that are anchored on one of two horizontal lines (i.e.,
each rectangle shares at least one boundary edge (top or bottom) with
one of the input horizontal lines). For each of these problems either we
prove NP-hardness or design a polynomial-time algorithm. More pre-
cisely, we show that it is NP-complete to decide whether there exists a
solution with depth exactly 1 for either the Minimum Membership Set
Cover or the Minimum Membership Hitting Set problem. We also pro-
vide approximation algorithms for some of the problems. In addition,
we study a generalized version of the Minimum Membership Hitting Set
problem.

Keywords: Minimum Membership Set Cover
Minimum Membership Hitting Set · Rectangles · NP-hard · Segments
Strips · Depth of a point

1 Introduction

The set cover problem is one of the fundamental problems in computer sci-
ence and combinatorial optimization. This problem and its many variations play
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an important role in modelling various problems arising in practical scenarios.
One of its variations is the Minimum Membership Set Cover (MMSC) problem,
which is defined in a geometric setting as follows.

Minimum Membership Set Cover (MMSC ): Given a point set P and
a set O of objects (regions), cover all the points in P with a subset O′ ⊆ O
of objects such that the maximum depth of a point is minimized, where the
depth of a point p ∈ P is the number of objects in O′ that contain it. We
say that O′ is a cover of P , and we let d(O′) denote the maximum depth of
any point p ∈ P with respect to O′.

A related problem that is “dual” to the MMSC problem is the
Minimum Membership Hitting Set (MMHS) problem, defined as follows.

Minimum Membership Hitting Set (MMHS): Given a point set P
and a set O of objects (regions) determine a subset P ′ ⊆ P of points stab-
bing (intersecting) all objects O such that the maximum depth of an object
is minimized, where the depth of an object o ∈ O is the number of points
in P ′ that stab it. We say that P ′ is a hitting set of O, and we let d(P ′)
denote the maximum depth of any object o ∈ O with respect to P ′.

In addition to the above two problems, we consider a generalized ver-
sion of the MMHS problem, the Generalized Minimum Membership Hitting
Set (GMMHS) problem, where, instead of a point set and a object set, we are
given two sets R (“red”) and B (“blue”) of objects. The objective is to stab
(intersect) all of the objects in B using a subset R′ ⊆ R such that the maximum
number of red objects in R′ hitting any single object in B is minimized.

1.1 Previous Work

The standard set cover problem is NP-hard. A simple greedy heuristic gives a
O(log n)-factor approximation, and it is NP-hard to compute an approximation
better than logarithmic [11]. The Minimum Membership Set Cover variation
was first introduced by Kuhn et al. [6]. They showed that the problem cannot
be approximated better than O(log n) and gave an approximation factor that
matches this lower bound. Erlebach and van Leeuwen [3] considered the geomet-
ric variation of the problem, proving that for unit squares and unit disks the
problem is NP-hard and there does not exist a polynomial-time factor 2 approx-
imation algorithm, unless P = NP. Further, for unit squares, they provided
a factor 5 approximation for the case in which the optimum objective value is
bounded by a constant. Recently, Nandy et al. [9] reconsidered the same problem
and gave polynomial-time algorithms for both unweighted and weighted intervals
on the real line. Recently, Narayanaswamy et al. [10], considered the problem
of hitting a set of horizontal segments with vertical segments while minimizing
the number of times a vertical segment is hit by the chosen horizontal segments.
They showed that this problem is NP-hard and cannot be approximated better
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than factor 2. Further, if the segments are of unbounded length (i.e., they are
lines), then it can be solved in polynomial time (see also [2] for this algorithm
and some generalizations of this problem).

1.2 Our Contributions: Overview

Minimum Membership Set Cover (MMSC ) problem
We give a polynomial-time algorithm for deciding if there exists a cover with
depth one for the MMSC problem with objects that are rectangles anchored
on a horizontal line. In contrast, we show that if the objects are rectangles
that intersect a horizontal line (versus that are anchored, sharing a side with a
horizontal line), the MMSC problem is NP-hard. We also prove NP-hardness
for the cases of objects that are axis-parallel strips or rectangles anchored on
two horizontal lines.

Minimum Membership Hitting Set (MMHS) problem
We give a polynomial-time algorithm for deciding if there exists a hitting
set with depth one for the MMHS problem with objects that are rectangles
anchored on a horizontal line. In contrast, we show that if the objects are
rectangles that intersect a horizontal line, the MMHS problem is NP-hard.
We also prove NP-hardness for the cases of objects that are axis-parallel strips
or rectangles anchored on two horizontal lines.

Generalized Minimum Membership Hitting Set (GMMHS) problem
We show that GMMHS , with objects R, B given as horizontal/vertical line
segments, is NP-hard; even deciding if a solution exists with depth one is NP-
complete. We also give a 5-approximation algorithm if the optimal objective
function is bounded by a constant.

Equivalence of MMSC and MMHS with Unit Disks/Squares. There is a connec-
tion (equivalence) between the MMSC and MMHS problems where the input
objects are either unit disks or unit squares. Consider the case of unit squares.
Given an instance C = (P, T ) of the MMSC problem, with a set P of points
and a set T of unit squares, we consider a “dual” instance, H, of a MMHS prob-
lem whose regions are specified by the set of unit squares centered on the points
p ∈ P , and whose points are specified as the centerpoints of the squares t ∈ T . We
then note that determining a solution to the MMSC problem C is equivalent to
determining a solution to the MMHS problem H. Thus, we conclude, by apply-
ing the results in [3,9]: The MMHS problem is NP-complete with unit squares
and unit disks and there exists a 5-approximation for the MMHS problem with
unit squares where the optimal objective value is bounded by a constant.

1.3 Definitions and Notations

In a 3SAT problem we are give a CNF formula φ with n variables X =
x1, x2, . . . , xn and m clauses C = {C1, C2, . . . , Cm} where each clause is a dis-
junction of exactly 3 literals, and the objective is to decide whether there is a
truth assignment to variables such that φ is satisfiable. This problem is known
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to be NP-complete [4]. In a planar version of this problem, each variable or
clause represents a vertex and there is an edge between a variable vertex and a
clause vertex if and only if the corresponding clause contains the corresponding
literal. Finally, the resulting bipartite graph is planar. This problem is called the
Planar-3SAT problem and Lichtenstein [7] proved that this problem is also NP-
complete. Later on, Knuth and Raghunathan [5] showed that every Planar-3SAT
problem can be represented using the following rectilinear representation. The
variables are placed on a horizontal line and the clauses containing 3 legs each
connecting those variables either from above or below the horizontal line such
that no two clause legs intersect. This problem is called the Rectilinear-Planar-
3SAT problem and is also NP-complete [5]. A Positive-1-in-3SAT problem is a
3SAT problem, however the objective is different: Here, the objective is to decide
whether there is a truth assignment to the variables such that exactly one lit-
eral per clause is true. Schaefer [12] proved that this problem is NP-complete.
This problem can be represented using the rectilinear representation as defined
above; we refer to it as the Rectilinear-Positive-Planar-1-in-3SAT problem (see
Fig. 1). Surprisingly, Mulzer and Rote [8] proved that it is also NP-complete.

Fig. 1. Representation of a Rectilinear-Positive-Planar-
1-in-3SAT problem.

We now define some ter-
minology. Let Cabove ⊆ C
be the set of clauses in
a PP1in3SAT formula φ
that connect to the vari-
ables from above. Simi-
larly, let Cbelow ⊆ C be
the set of clauses that
connect to the variables
from below. For each
variable xi, 1 ≤ i ≤ n,
we order the clauses in Cabove left to right that connect xi. Let C� ∈ Cabove

be a clause containing the three variables xi, xj , and xk. Then, according to
the ordering defined above, we assume that C� is the �1-, �2-, and �3-th clause
for the variables xi, xj , and xk, respectively. For example, the clause C3 is a
3-rd, 1-st, and 1-st clause for the variables x3, x4, and x5, respectively, in the
PP1in3SAT instance in Fig. 1. We also say that the clause C� connects to xi by
left, to xj by middle, and to xk by right legs.

2 Minimum Membership Set Cover Problem

2.1 Rectangles Anchored on a Horizontal Line

In polynomial time, one can decide if there exists a cover of depth one for the
MMSC problem with rectangles anchored on a horizontal line from one side
(MMSCRAHL), as follows. Let the weight of a rectangle be the number of points
it contains. Now, apply the algorithm of [1] to compute a maximum weight
independent set of rectangles (no two of them share an input point). Then, to
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see if there is a cover of points having depth exactly 1, check if the total weight
of the independent set is equal to the number of input points.

2.2 Axis-Parallel Strips

In this section we prove that the MMSC problem with axis-parallel strips
(MMSCS) is NP-hard. We give a reduction from the Positive-1-in-3SAT
(P1in3SAT) problem (see Sect. 1.3 for the definition). Let φ be a P1in3SAT for-
mula. We generate an instance Z(S, P ) of the MMSCS problem from φ in the
following way, where S is a set of strips and P is a set of points.

Variable Gadget: For variable xi, the gadget consists of one vertical strip vi,
one horizontal strip hi, and a point pi. The point is covered by both vi and hi

(see Fig. 2). Clearly, either vi or hi will cover pi with depth one. We assume that
choosing hi makes xi true, while choosing vi makes xi false.

Overall Structure: We place the variable gadgets (points) along a diagonal
line. For each clause we take a vertical bounded region. The clause gadgets
are placed sequentially one by one to the right of the variable gadgets, and
each gadget is confined to its corresponding region. Between two consecutive
variable horizontal strips there is an empty space, where we place some points
corresponding to the clauses.

Fig. 2. Gadgets of variables xi,
xj , xk, and clause C� and their
interaction.

Clause Gadget: Let C� = (xi ∨ xj ∨ xk)
be a clause. For this clause, we take 5
points p�

i , p
�
j , p

�
k, p�

1, p
�
2 and 4 vertical strips

q�, r�, s�, t� (see Fig. 2). The points p�
i , p�

j ,
and p�

k are corresponding to the variables xi,
xj and xk respectively and are placed inside
the strips hi, hj , and hk respectively. The
other two points p�

1 and p�
2 are placed in any

empty space between the variable horizontal
strips of xi, xj (i.e., between hi and hj) and
xj , xk (i.e., between hj and hk) respectively.
Points {p�

i , p
�
1} are contained in q�. Similarly,

{p�
1, p

�
j}, {p�

j , p
�
2}, and {p�

2, p
�
k} are contained in r�, s�, and t�, respectively. These

5 points and 4 rectangles are strictly contained inside the vertical region of C�

(Fig. 2).

Theorem 1. The MMSCS problem is NP-hard.

Proof. We prove that, φ is satisfiable (i.e., at least one literal is true per clause)
if and only if Z(P, S) has a solution of depth one. Assume that φ has a satisfying
assignment. If xi is true, take hi; otherwise, take vi. Now, for each clause, exactly
one of p�

i , p
�
j , p

�
k is covered by the solution. Hence, the remaining 4 points are

covered by exactly two strips with depth one.
On the other hand, assume that there is a cover of the points with depth

one. Now, for each variable gadget, to cover pi we need one of the two strips hi
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or vi. We set variable xi to be true if hi is in the solution; otherwise, we set xi to
be false. Now consider any clause C�. Since the depth of the solution (indeed a
cover of all points) is one, exactly one of p�

i , p
�
j , p

�
k corresponding to C� is covered

by a variable horizontal strip. We set this variable to be true. Hence, exactly one
literal per clause is true in φ. ��
Corollary 1. The MMSC problem with rectangles anchored on two orthogonal
lines (MMSCRATOL) is NP-hard. (Take a vertical and a horizontal line both at
−∞ to restrict the axis-parallel strips.)

2.3 Rectangles Intersecting a Horizontal Line

In this section we prove that the MMSC problem with rectangles intersect-
ing a horizontal line (MMSCRIHL) is NP-hard. The reduction is from the
PP1in3SAT problem [8]. From an instance φ of the PP1in3SAT problem, we
generate an instance Z, where the rectangles in Z intersect a horizontal line L.

Variable Gadget: The gadget for the variable xi consists of 12m rectangles
{1, 2, . . . , 12m} and 12m − 1 points {p1, p2, . . . , p12m−1} (see Fig. 3(a)). The
points are along the top edge of the rectangles. The 1-st and the 12m-th rect-
angles contain the points p1 and p12m−1, respectively, and the j-th rectangle
contains the pj−1-th and pj-th points, for 2 ≤ j ≤ 12m − 1. We note that
the first 6m rectangles {1, 2, . . . , 6m} are responsible for the clauses in Cabove,
whereas the next 6m rectangles {6m + 1, 6m2, . . . , 12m} are responsible for the
clauses in Cbelow. All of the rectangles are intersecting a horizontal line L. Now,
in order to cover all of the points while minimizing the depth, we have only
two distinct optimal solutions: Either all even-numbered or all odd-numbered
rectangles with depth exactly one. This gives the truth value of the variable xi.

Clause Gadget: We first modify the PP1in3SAT problem in the following way.
Note that the variables of φ are placed on a horizontal line (y = 0). We move the
variables vertically up such that they are placed on a horizontal line y = m + 1
(above the y-values of all the clauses in Cabove) (see Fig. 4). The clauses in Cabove

Fig. 3. (a) A variable gadget. (b) Position of the clause gadgets.
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are placed above L and below the line y = m + 1 while connecting the same set
of variables as before. Note that these clauses now connect the variables from
below. On the contrary, the clauses in Cbelow are placed below L and still connect
to the same set of variables from below.

Let us now consider the set Cabove of clauses. Notice that, in the definition of
the PP1in3SAT problem these clauses can be ordered in increasing y-direction
(see Fig. 1). Here we reverse the order of the clauses (see Fig. 3(b)). Now for each
clause C ∈ Cabove we take a rectangular box whose top boundary is the segment
of C in the modified construction. The bottom boundary of the box touches the
line L. Each box has a thin strip along the top edge of that box, called the tape
of that clause. Similarly, we reverse the order of the clauses in Cbelow and for
each clause C we take a box whose bottom boundary is the segment of C in the
modified construction. The top boundary of the box touches the line L. Now
here the tape is along the bottom boundary of each box.

Let C� = (xi ∨ xj ∨ xk) be a clause in Cabove. We say that xi is a left , xj is a
middle, and xk is a right variable for C�. We take 5 points; point p�

i corresponding
to xi, points p�

j , q
�
j , r

�
j corresponding to xj , and point p�

k corresponding to xk; and
4 rectangles s�

1, s
�
2, s

�
3, s

�
4. The rectangle s�

1 covers the points {p�
i , p

�
j}, s�

2 covers
the points {p�

i , q
�
j}, s�

3 covers the points {p�
j , p

�
k}, and s�

4 covers the points {r�
j , p

�
k}

(see Fig. 4). The rectangles are placed inside the box and the points are placed
inside the tape of C�.

Variable and Clause Interaction: We now describe the placement of the
clause rectangles and points with respect to the variable rectangles. Let 1, 2, . . .
be the left to right order the clauses in Cabove which connects to the variable xi.
In this order, assume that C� be the �1-, �2-, and �3-th clause for the variables
xi, xj , and xk respectively. Then we do the following.

� Since xi is a left variable in C�, place the point p�
i inside the (6�1 − 2)-th

rectangle of the gadget of xi.
� Since xj is a middle variable in C�, place the point p�

j inside the (6�2 − 2)-
th rectangle of the gadget of xj . Also place the point q�

j and r�
j inside the

(6k − 3)-th and (6k − 1)-th rectangles of the gadget of xj .
� Since xk is a right variable in C�, place the point p�

k inside the (6�3 − 2)-th
rectangle of the gadget of xk.

A similar construction can be made for the clauses in Cbelow, but using the
last 6m rectangles in the variables. See Fig. 4.

Theorem 2. The MMSCRIHL problem is NP-hard.

Proof. We prove that exactly one literal is true in every clause of φ if and only
of the MMSCRIHL problem has a cover of depth 1. Assume that there is an
assignment to the variables of φ that satisfies exactly one literal per clause.
For a variable xi, if it is true then select the even indexed rectangles otherwise
select the odd indexed rectangles from the gadget of xi. Let us consider a clause
C� = (xi ∨ xj ∨ xk). Since exactly one literal per clause is true, exactly one of p�

i
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Fig. 4. Interaction with the variable and clause gadgets. We demonstrate the interac-
tion of C3 and C4 with the variables in the P1in3SAT instance in Fig. 1.

or p�
j , or p�

k is covered by a variable rectangle. Clearly, the remaining points in
the clause gadget are covered by the clause rectangles with depth one.

In the reverse direction, assume that the MMSCRIHL problem has a cover of
depth 1. To cover the points in a variable gadget and in order to make their depth
1, there are only two possibilities to select the rectangles. We set the variable
xi to be true if all even indexed rectangles are selected from the gadget of xi,
otherwise set xi to be false. Now consider a clause C� = (xi∨xj ∨xk). Now in C�,
if more than one literal is true then the depth of a point in the gadget of C� will
be more than 1. If the clause is not satisfiable then also either at least one point
is not covered of there will be a point whose depth will be more than one. The
only possibility is exactly one literal per clause is true. Hence, the theorem. ��

2.4 Rectangles Anchored on Two Horizontal Lines

We prove that the MMSC problem with rectangles anchored on two horizontal
lines (MMSCRATHL) is NP-hard by a reduction from PP1in3SAT problem [8].

Variable Gadget: For the variable gadget of xi, we consider 12m points in
two horizontal lines l1 and l2 each contains 6m points. We also consider 12m
rectangles such that each rectangles i covers exactly two points pi and pi+1, for
1 ≤ i ≤ 12m−1 and the rectangles 12m covers points p12m and p1 (see Fig. 5(a)).
Rectangles 1, 2, . . . , 6m are anchored on line l1 and the remaining Rectangles are
anchored on line l2. Now in order to cover all the points while minimizing the
depth, we have only two different optimal solutions. Either all even numbered
or all odd numbered rectangles with depth exactly 1. This gives the truth value
of the variable xi.

Clause Gadget: We first consider the set Cbelow of clauses in φ. These clauses
can be ordered in decreasing y-direction (see Fig. 1). Now for each clause C ∈
Cbelow we take a rectangular box whose top boundary is the segment of C. The
bottom boundary of the box touches the line l1. Each box has a thin strip along
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the top edge of that box, called the tape of that clause. Similarly, we construct
the boxes and tapes for the clauses for Cabove. See Fig. 5(b).

(a) (b)

Fig. 5. (a) A variable gadget. (b) Position of the clause gadgets.

The placement of the clause points and rectangles is similar to the placement
of the clause points and rectangles described in Sect. 2.3. The clause structure
is exactly the same as in Sect. 2.3. For a clause C� = (xi ∨ xj ∨ xk) in Cbelow

with xi, xj , and xk as left , middle, and right variable, we take 5 points; point
p�

i corresponding to xi, points p�
j , q

�
j , r

�
j corresponding to xj , and point p�

k corre-
sponding to xk; and 4 rectangles s�

1, s
�
2, s

�
3, s

�
4. The rectangle s�

1 cover the points
{p�

i , p
�
j}, s�

2 cover the points {p�
i , q

�
j}, s�

3 cover the points {p�
j , p

�
k}, and s�

4 cover
the points {r�

j , p
�
k}. The rectangles are placed inside the box and the points are

placed inside the tape of C�.

Variable and Clause Interaction: The interaction of the variables and the
clauses is similar to that in Sect. 2.3, but now here we consider a clause C ∈
Cbelow. As in the proof of Theorem 2, we conclude:

Theorem 3. The MMSCRATHL problem is NP-hard.

3 Minimum Membership Hitting Set Problem

3.1 Rectangles Anchored on a Horizontal Line

Similar to Sect. 2.1, in polynomial time, one can decide if there exists a hitting
set of depth one for the MMHS problem with rectangles anchored on a horizontal
line from one side (MMHSRAHL), as follows. Define the weight of a point as
the number of rectangles it stabs. Now, apply the algorithm of [1] to compute a
maximum weight set of points (no two of them share a rectangle). Then, to see
if there is a hitting set of rectangles having depth exactly 1, check if the total
weight of the points is equal to the number of rectangles.
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3.2 Axis-Parallel Strips

We prove that the MMHS problem with axis-parallel strips (MMHSS ) is NP-
hard using a reduction from the P1in3SAT problem. We generate an instance
Z(S, P ) of the MMHSS problem from φ, an instance of the P1in3SAT problem.

The gadget for a variable xi includes 2m horizontal strips {1, 2, . . . , 2m − 1}
and 2m points {p1, p2, . . . , p2m}. The j-th strip contains the points pj and pj+1,
for 1 ≤ j ≤ 2m − 1 (see Fig. 6(a)). The points are on a vertical line. However,
we move some of the points to the right to some clause gadgets at later stage.
It is observed that there are exactly two different sets of points, either all even
indexed or all odd indexed, which stab all the strips with depth exactly 1. We
stack the variable gadgets vertically from top to bottom.

The gadget for a clause C� is a vertical strip v�. The clause gadgets are placed
one after another to the right of the points corresponding to the variable gadgets.

For each variable, we order the clauses that contains it. Let C� be a clause
that contains xi, xj , xk, then according to this ordering we say that C� is a �1-th,
�2-th, and �3-th clause for xi, xj , and xk respectively. Now for the clause C� we
move the three points p2�1 , p2�2 , and p2�3 in the vertical orientation from xi, xj ,
and xk respectively to inside v�.

(a) (b)

Fig. 6. (a) Variable gadget. (b) Clause gadget and its interaction with variable gadgets.

Clearly, the number of strips and points is polynomial with respect to the
number of variables and clauses in φ. Hence the construction can be done in
polynomial time. We now prove the following theorem.

Theorem 4. The MMHSS problem is NP-hard.

Proof. We prove that exactly one literal is true in each clause of φ if and only if
Z has a hitting set with depth exactly 1. For variable xi, we choose even indexed
points if xi is true, else choose odd indexed points. This clearly stabs all variable
strips with depth 1. Since exactly one literal is true in each clause of φ, exactly
one point will stab a clause strip. On the other hand assume that there is a
hitting set of points with depth exactly 1. Now stabbing all the variable strips
with depth 1 requires either all even or all odd indexed points. So we set xi to
be true if even indexed points are selected, otherwise, set xi to be false. Since
the depth of the hitting set is 1, exactly one point in a clause strip is selected. ��
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3.3 Rectangle Intersecting a Horizontal Line

We show that the MMHS problem with rectangles intersecting a horizontal line
(MMHSRIHL) is NP-hard using a reduction from the PP1in3SAT problem.

The variable gadget is similar to the variable gadget defined in Sect. 3.2, but
now the strips are vertical and they are intersecting a horizontal line. The clause
gadget is similar to that in Sect. 2.3, but now, for each clause, the rectangular
box of Sect. 2.3 is itself a rectangle. Next, using a process as in Sect. 3.2, we shift
(vertically) points from the variable gadgets to these clause rectangles. Hence,
as in the proof of Theorem 4, we conclude the following.

Theorem 5. The MMHSRIHL problem is NP-hard.

Similar to Theorem 5, we prove that the MMHSRATHL problem is NP-hard.

4 Generalized Minimum Membership Hitting Set

NP-Hardness: We prove that the GMMHS problem of stabbing horizontal unit
segments by vertical unit segments (GMMHSUSeg) is NP-hard. The reduction
is from the PP1in3SAT problem.

Fig. 7. A variable gadget.

Variable Gadget: Each variable gadget consists
of a variable chain and at most 2m clause chains,
each corresponding to a clause leg that connects to
a variable.

Variable Chain: Each variable chain consists of
8m+2 unit horizontal segments {h1, h2, . . . , h8m+2}
positioned like a rectangular fashion (see Fig. 7).
The segments {h1, h2, . . . , h4m} are on a horizon-
tal line and are responsible for connecting the clause chains to the variable chain
from above. Similarly, the segments {h4m+2, h4m+3, . . . , h8m+1} are on another
horizontal line and are responsible for connecting the clause chains to the vari-
able chain from below.

Clause Chains: Let C� be a clause in Cabove that connects the variables xi, xj ,
and xk through left, middle, and right legs respectively. Then for a left or middle,
or right leg, we construct a left or middle, or right chain respectively. The left
and middle chains are depicted in Fig. 8(a) and (b) respectively. The right chain
is similar to the left chain but flipped vertically.

Let us consider a clause C ∈ Cabove that is a �-th clause for the variable xi.
In the variable chain of xi, we shift the h4�−2-th segment slightly left and the
h4�−1-th segment slightly right (see Fig. 8(c)). Place the chain for C above these
two segments such that h′ and h4�−2 are stabbed by a vertical segment and h′′

and h4�−1 are stabbed by another vertical segment. Note that for each variable
at most 2m chains are connected with its variable chain, at most m from either
above or below. The variable chain and at most 2m left, middle, or right chains
together form a big circular like arrangements of segments, called big-cycle. Note
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that, this big-cycle contains an even number of both horizontal and vertical
segments and along the cycle at most 2 consecutive horizontal segments are
stabbed by a vertical segment. We now have the following observation.

Observation 1. For each variable gadget, there are two optimal solutions,
either all red or all blue vertical segments each of size half of the total num-
ber of vertical segments present in a big-cycle.

(a) (b) (c) (d)

Fig. 8. (a) A left chain. (b) A middle chain. (c) Attaching a clause chain to a variable
chain. (d) Clause gadget and connection with the three variable gadgets.

Clause Gadget: Let C� ∈ Cabove be a clause that contains xi, xj , and xk. The
gadget for C� is a single horizontal segment h�. The position of h� with respect
to the three chains corresponding to xi, xj , and xk is shown in Fig. 8(d).

This completes the construction. Note that this construction can be done in
polynomial time with respect to the number of the variables and clauses in φ.
An argument similar to that in the proof of Theorem 4 leads to the following
theorem.

Theorem 6. The GMMHSUSeg problem is NP-hard.

Approximation for the GMMHSUSeg Problem: First we convert this prob-
lem to the MMHS problem with unit squares. Let H and V be given sets of unit
horizontal and vertical segments. For each horizontal segment h ∈ H, take a unit
square th ∈ T such that the bottom boundary of th coincides with h and for each
vertical segment v ∈ V , take the top endpoint, pv ∈ P of v. Clearly, finding a set
V ′ ⊆ V that stabs all the horizontal segments in H while minimizing the number
of times a segment in H is stabbed by segments in V ′ is equivalent to finding a
set of points P ′ ⊆ P that stabs all the unit squares in T while minimizing the
number of points in P ′ that is contained in a unit square in T .

Because the GMMHSUSeg problem is NP-hard, in another way we can say
that the MMHS problem with unit squares is also NP-hard. Since for unit squares
the MMHS and MMSC problems are dual to each other, the result of [3] ensures
the following theorem.
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Theorem 1. There exists a 5-approximation for the GMMHSUSeg problem
where the optimal objective value is bounded by a constant.
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Abstract. Consider a capacitated version of the discrete unit disk cover
problem as follows: consider a set P = {p1, p2, · · · , pn} of n customers
and a set Q = {q1, q2, · · · , qm} of m service centers. A service center can
provide service to at most α(∈ N) number of customers. Each qi ∈ Q
(i = 1, 2, · · · , m) has a preassigned set of customers to which it can
provide service. The objective of the capacitated covering problem is to
provide service to each customer in P by at least one service center in
Q. In this paper, we consider the geometric version of the capacitated
covering problem, where the set of customers and set of service centers
are two point sets in the Euclidean plane. A service center can provide
service to a customer if their Euclidean distance is less than or equal to
1. We call this problem as (α, P, Q)-covering problem. For the (α, P, Q)-
covering problem, we propose an O(αmn(m+n)) time algorithm to check
feasible solution for a given instance. We also prove that the (α, P, Q)-
covering problem is NP-complete for α ≥ 3 and it admits a PTAS.

Keywords: Geometric covering · NP-complete · PTAS

1 Introduction

The geometric set cover problem is one of the extensively studied optimization
problem in computational geometry. In a geometric set cover problem, range
space is defined as S = (X,R), where X is a set of points (finite or infinite) in
R

2 and R is a (finite or infinite) family of subsets of X which is called as ranges.
These ranges are defined by the intersection of X and geometric objects such as
unit disk, unit square, axis parallel rectangles and in general any convex pseudo-
disks. The objective of the geometric set cover problem is to find a minimum
cardinality R′ ⊆ R of ranges such that all points in X are covered, i.e., for all
p ∈ X, there exist r ∈ R′, such that, p ∩ r �= φ. This problem is a special case
of the general set cover problem. Though the general set cover problem is NP-
hard to approximate within a factor of Ω(log n) [10], some geometric set cover
problems admit a PTAS.

Let P = {p1, p2, · · · , pn} be a set of n red points and Q = {q1, q2, · · · , qm}
be a set of m blue points on the Euclidean plane. For a given integer α, a subset
Q′ ⊆ Q is said to be α-cover of P if the point set P can be partitioned into
P1, P2, · · · , P� such that |Pi| ≤ α for each i = 1, 2, · · · , � and there exist points

c© Springer Nature Switzerland AG 2019
G. K. Das et al. (Eds.): WALCOM 2019, LNCS 11355, pp. 407–418, 2019.
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q′
1, q

′
2, · · · , q′

� ∈ Q′ such that each point in Pi is covered by the unit disk centered
at q′

i. In this article, for a given α, a red point set P and a blue point set Q, the
objective is to find minimum cardinality α-cover of P with respect to the point
set Q. We denote it as (α, P,Q)-covering problem.

Our interest in (α, P,Q)-covering problem arose from the coverage problem
in wireless software defined networking (SDN). In SDN, we decouple the control
plane (controls the traffic routing) from the data plane (packet forwarding).
The switches are responsible for data plane and controllers for control plane.
SDN controller gathers information from the switches which falls in the coverage
area of the controller. Depending on the price of installation of a controller,
there is a limitation on the number of switches a controller can communicate
irrespective of the number of switches falls in controller’s range. This constraint
on the number of switches controlled by a controller inspired us to study at the
(α, P,Q)-covering problem.

2 Related Work

The (n, P,Q)-covering problem, known as DUDC problem in the literature, is a
well-studied problem as it has wide application in wireless networks and facil-
ity location problem [8]. The DUDC problem is NP-complete [8]. Brönnimann
and Goodrich [4] proposed the first constant factor algorithm for the DUDC
problem. They made an interesting connection between the DUDC and ε-net.
Exploiting this connection, they proposed an O(1) approximation algorithm in
the 2-dimensional Euclidean space. Briefly, given a range space S = (X,R), an
ε-net is a subset P ⊆ X such that P ∩ R �= φ for all R ∈ R with |R| ≥ εn. They
used the theorem of Haussler and Welz which states that for a range space with
VC dimension d, there exists an ε-net of size O(d

ε log d
ε )[13]. The constant factor

approximation algorithm proposed by Brönnimann and Goodrich depends on
the constant in the size of ε-net.

Subsequently, many results published with different constant factor approx-
imation algorithms using different techniques. In 2004, Călinescu et al. [5] pro-
posed a 108-approximation algorithm which runs in O(m2). Ambuhl et al. [1]
improved the approximation factor to 72 by keeping the running time as O(m2).
Carmi et al. [6] further enhanced the approximation factor to 38 with the run-
ning time of O(m6). Claude et al. [7] improved the result and gave a 22-factor
approximation algorithm with the running time of O(m2n4). Using the idea of
Ambuhl [1] and Claude [7], Das et al. [8], proposed an 18-factor approximation
algorithm, which runs in O(n log n + m log m + mn) time. A year after, Fraser
et al. [11] proposed a 15-factor approximation algorithm using the result of Das
et al. [8]. More recently, Manjanna et al. [2] proposed a (9 + ε)-factor approxi-
mation algorithm, which runs in O(max(m6n,m2(1+6/ε)+1)) time. Based on the
local search algorithm, Mustafa and Ray [15] proposed a PTAS which runs in
O(mnO(ε−2)) time.
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2.1 Our Contribution

In this article, we studied (α, P,Q)-covering problem. We proposed an algorithm
to check the feasibility of a given instance in O(αmn(m + n)) time where m =
|Q|, n = |P |. Using the feasibility algorithm, the optimal solution for (1, P,Q)-
covering problem can be obtained. We proved the problem is NP-complete for
α ≥ 3 and proposed a PTAS for the problem.

2.2 Organization

The remainder of the paper is organized as follows. In Sect. 3, we propose an
algorithm to check the feasibility of (α, P,Q)-covering problem. In Sect. 4, we
prove the decision version of (α, P,Q)-covering problem is NP-complete for α ≥
3. In Sect. 5, we propose a PTAS for the problem.

3 Feasibility Test

In this section, we discuss a polynomial time algorithm to check whether there
exists an α-cover of the red point set P with respect to blue point set Q.

The feasibility checking algorithm is based on the maximum matching algo-
rithm in a bipartite graph. Here, we construct the bipartite graph from any
arbitrary instance of (α, P,Q)-covering problem which leads us to check the fea-
sibility in polynomial time. Given a set P = {p1, p2, . . . , pn} of n red points, a set
Q = {q1, q2, . . . , qm} of m blue points and an integer α, we construct a bipartite
graph G = (V1 ∪ V2, E), where V1 = {vij | 1 ≤ i ≤ m and 1 ≤ j ≤ α} is a set
of vertices corresponding to set of points in Q such that for each point qi ∈ Q
we considered α vertices in V1, namely, vij(j = 1, 2, · · · , α) and V2 is the set of
vertices corresponding to the points in P and E = {e = (vij , v�) | vij ∈ V1 and
v� ∈ V2, and unit disk centered at qi covers p�} (see Fig. 1). The total number
of vertices in the bipartite graph is |V | = |V1| + |V2| = αm + n and the max-
imum possible number of edges |E| = αmn. The construction of the bipartite
graph takes O(αmn) time. The procedure to check the feasibility is described in
Algorithm 1.

Lemma 1. Algorithm 1 computes correctly in O(αmn(m + n)) time.

Proof. Observe that if the cardinality of the maximum matching is n, then there
exists an edge from each vertex of V2 to one of the vertex of V1. That means
each point of P is covered by at least one disk. As α copies of each point of Q
taken in V1, it ensures that each point in P is covered with given disks without
violating the capacity constraint.

The time complexity of the algorithm depends upon computing maximum
matching in the bipartite graph G = (V1∪V2, E), which takes O(α2m2n+αmn2)
time [14]. Therefore, the overall time complexity of algorithm is O(αmn(m+n)).
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Algorithm 1. Feasibility Test(α, P,Q)
Input : A set P of n red points, a set Q of m blue points and an integer α.
Output: True and a subset Q′ ∈ Q if there exists an α-cover otherwise False.

1: Construct a bipartite graph G = (V1 ∪ V2, E) as described above.
2: Compute maximum matching in G and store the result in MaxMatching [14].
3: Store all the maximum matching edges in M ′.
4: for each edge e = (u, v) ∈ M ′ do
5: Set N ← u ∈ V1

6: end for
7: Set A ← points corresponding to each vertex in N .
8: if MaxMatching == n then
9: Report True and A.
10: else
11: Report False.
12: end if

Fig. 1. (a) An instance of (α, P, Q)-covering problem, (b) Construction of bipartite
graph for α = 2, here vertex vij represent jth copy of disk i.

4 Hardness of the (α, P, Q)-covering Problem

In this section, we show that the (3, P,Q)-covering problem is NP-complete.
Using the NP-complete proof for (3, P,Q)-covering problem, we can conclude
(α, P,Q)-covering is NP-complete for α ≥ 4 also. The (3, P,Q)-covering problem
is in NP since for a given certificate, we can verify it in polynomial time (see
Algorithm 1). To complete the prove, next we prove (3, P,Q)-covering problem
is NP-hard by showing a special case (3, P, P )-covering is NP-hard.

The vertex cover problem on planar graph of degree at most 3 is known to
be NP-complete [12]. To prove NP-hardness of (α, P, P )-covering problem, we
provide polynomial time reduction from the decision version of the vertex cover
(VC) problem on planar graph of degree at most 3 to the decision version of
(α, P, P )-covering problem.
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Decision version of the VC problem on planar graph (Vc-Pla)
Instance: An undirected planar graph G = (V,E) with maximum degree 3 and

a positive integer k.
Question: Does there exist a vertex cover V ′(⊆ V ) of G such that |V ′| ≤ k?

Decision version of (α, P, P )-covering problem
Instance: A set P of n points, an integer α, and a positive integer k.
Question: Does there exist an α-cover P ′(⊆ P ) of P such that |P ′| ≤ k?

Lemma 2 ([17]). Consider a planar graph G = (V,E) with maximum degree 4.
The graph G can be embedded on the plane such that its vertices are at integer
coordinates and its edges are line segments of the form x = i or y = j, for
integers i and j.

The embedding in Lemma 2 can be done in linear time with at most two
bends along each edge [3]. See Fig. 2(b) for an example.

Lemma 3. Any planar graph G = (V,E) with maximum degree 3 and |E| ≥ 2
can be embeded on the Euclidean plane with each of its vertices is at (3i, 3j) and
edges as a sequence of line segments on the lines x = 3i or y = 3j for integers i
and j.

Proof. Follows from Lemma 2.

Let G = (V,E) be an instance of Vc-Pla with |E| ≥ 2. An instance of
(3, P, P )-covering problem can be constructed from G in polynomial-time as
follows:

We construct an instance of (α, P, P ) in four steps.

Step 1: Embedding
The instance of G is embedded in the plane using the algorithms proposed
in [3].

In this embedding, each edge is a sequence of connected line segment(s). The
length of line segments used in embedding is of length three units. If � is the
number of line segments in the embedding, then 3� is the sum of the length of the
line segments. We name node points to the points in the embedding correspond
to each vertex of G.

Step 2: Adding extra points to the embedding
In the embedding, we add a point at each coordinate (3i, 3j) along every path
between two nodes other than the node points. We call these points as bend
points. The line segments in the embedding are classified into two catagories,
called as proper and improper. The proper line segments are the line segments
which none of the end points are node points. All the line segments other than
proper line segments are named as improper line segments.

For each edge (pi, pj) of length 3 units (here pi, pj are node points) we add
two points at distances 0.72 and 1.22 units from pi and pj , respectively (thus
adding four points in total, see the edge (p1, p2) in Fig. 2(c)).
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Fig. 2. (a) A planar graph G of maximum degree 3, (b) its embedding G′ on a grid of
cell size 3 × 3, (c) adding of extra points to G′, (d) obtained instance of the (α, P, P )-
covering problem.

For each edge of length greater than 3 units, we also add points as follows:
for each improper line segment we add three points at distances 0.75, 1.5, and
2.25 units from the end point corresponding to a node point in G, and for each
proper line segment we add two points at distances 1 and 2 units from its end
points, i.e., bend points ( see the edge (p2, p3) in Fig. 2(c)). We name the points
added in this step along with the bend points as joint points.

Step 3: Adding extra line segments and points
For each node point pi add a line segment of length 0.70 units (on the lines
x = 3i or y = 3j for some integers i or j), without coinciding with the already
drawn line segments. Adding these line segments on the x = 3i or y = 3j lines
is always possible without losing the planarity of the graph G, as the maximum
degree of G is 3. Now, add one point (say xi) on these line segments at distance
0.70 units from point pi and add another point (say yi) at distance 0.32 units
from xi touching the line at distance 0.99 units from pi and add a line segment
from xi to yi (see the support point added with respect to (p1) in Fig. 4(c)).
As per the construction of yi, the distance of yi from all the points excluding
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Fig. 3. Set of cross points are in the solution.

xi is greater than one unit. The points added in this step are named as support
points.

Let N , J , and S be the set of node points, joint points, and support points
respectively. Let N = {pi | vi ∈ V }, J = {q1, q2, . . . , q3�+1}, and S = {xi, yi |
vi ∈ V }.

Step 4: Construction of P
Let P = N ∪ J ∪ S. Observe that, |N | = |V |(= n), |J | = 3� + 1, where � is the
total number of line segments in the embedding, and |S| = 2|V |(= 2n). Hence,
|P | = 3(n + �) + 1. Therefore, P can be constructed in polynomial-time.

Theorem 1. (α, P, P )-covering problem is NP-complete.

Proof. For any given set P ′ ⊆ P and a positive integer k, we can verify whether
P ′ is an α-cover of P such that |P ′| ≤ k in polynomial-time (see Algorithm
1). We prove the hardness of (3, P, P )-covering problem by reducing Vc-Pla

to it. Let G = (V,E) be an instance of Vc-Pla. Construct an instance P of
(3, P, P )-covering problem as discussed above. We now prove the following claim.

Claim. G has a vertex cover of size at most k if and only if P has an α-cover of
size at most k + � + n.

Necessity: Let D ⊆ V be a vertex cover of G such that |D| ≤ k. Let N ′ = {pi ∈
P | vi ∈ D}, i.e., N ′ is the set of points in P that correspond to the vertices
in D. From each support point associated with a point belongs to N , we select
the nearest support point (xi) in the solution. Let this set is S′. From each set
of points corresponding to a line segment in the embedding we choose 1 point
as follows: Initially J ′ = ∅. As D is a vertex cover, every edge in G has at least
one of its end vertices in D. Let (vi, vj) be an edge in G and vi ∈ D (the tie can
be broken arbitrarily if both vi and vj are in D). Note that, the edge (vi, vj) is
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Fig. 4. (a) Placement of joint points where �′ > 1, (b) placement of joint points where
�′ = 1, (c) placement of support points to G′.

represented as a sequence of line segments in the embedding. Start traversing the
points (of (vi, vj)) from pi, where pi corresponds to vi, and add every third point
to J ′ encountered in the traversal without including pj (see (p3, p4) in Fig. 3. The
cross points are part of J ′ while traversing from p3). Apply the above process to
each edge in G. Observe that the cardinality of J ′ is � as we choose 1 point from
each set of points on a segment in the embedding. Let P ′ = N ′ ∪ J ′ ∪ S′. Now,
we argue that P ′ is a 3-cover of P . Each pi ∈ N is covered by xi in S′. If pi ∈ N ′

(i.e., the corresponding point vi ∈ D in G), then it covers all its neighbor points
in J and all the other points in J is covered by atleast one point qj ∈ J ′. The
existence of qj is guaranteed by the way we constructed J ′. If pi /∈ N ′, then
note that pi is covered by one of the points in S. Therefore, every point in P is
covered by at least 1 point in P ′ and no points cover more than 3 points. Thus,
P ′ is a 3-cover of P and |P ′| = |N ′| + |J ′| + |S′| ≤ k + � + n.
Sufficiency: Let P ′ ⊆ P be a 3-cover of size at most k + � + n. We prove that
G has a vertex cover of size at most k with the aid of the following claims.
Claim(i): At least one of the support points corresponding to each node point
belongs to P ′.
Proof of Claim (i): The claim follows from the fact that support point yi

corresponding to node pi is covered only by the support points xi and/or yi.
Claim(ii): The points corresponding to each segment in G′ in the embedding
must contribute at least 1 point to P ′, i.e., |J ∩ P ′| ≥ �, where � is the total
number of segments in the embedding.
Proof of Claim (ii): If �′ is the number of segments between pi and pj , then
the total number of points between pi and pj is 3�′ +3 including pi and pj . Now
if both pi and pj are in P ′, then pi and pj can cover its neighbor points. So, in
the worst case (3�′ + 3 − 4) = 3�′ − 1 number of points has to cover. It needs at
least

⌈
3�′−1

3

⌉
= �′ number of points. Thus, the claim follows.

Claim(iii): If pi and pj correspond to end vertices of an edge (vi, vj) in G, and
both pi, pj are not in P ′, then there must be at least �′ + 1 points in P ′ from
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the points corresponding to segment(s) representing the edge (vi, vj), where �′

is the number of segments representing the edge (vi, vj) in the embedding.
Proof of Claim (iii): Let (vi, vj) be an edge in G such that pi and pj are not in
P ′. By Claim (ii) |J ∩ P ′| ≥ �. Hence, the points corresponding to each segment
between pi and pj representing the edge (vi, vj) contributes at least �′ points in
P ′. We argue that if both pi and pj are not in P ′, then the number of points in
P ′ from the points corresponding to each segment representing the edge (vi, vj)
is at least �′ + 1.

As per our construction of points from the graph G′, if there exist �′ segments
between points pi and pj then we consider exactly 3�′ + 1 points between them.
Observe that one point can cover at most 3 points. So, to cover 3�′ +1 points at
least

⌈
3�′+1

3

⌉
= �′ + 1 points are required.

We shall show that, by removing and/or replacing some points in P ′, a set
of k points from N can be chosen such that the corresponding vertices in G is
a vertex cover. The vertices in S′ account for n points in P ′ (due to Claim (i)).
Let P ′ = P ′ \ S′ and D = {vi ∈ V | pi ∈ P ′ ∩ N}. If any edge (vi, vj) in G has
none of its end vertices in D, then we do the following: consider the sequence of
points corresponding to segments representing the edge (vi, vj) in the embedding.
Since, both pi and pj are not in P ′, there must exist a segment having two of
its points in P ′ (due to Claim (iii)). Consider the points corresponding to that
segment having two points in P ′. Delete any one of the point on the segment
and introduce pi (or pj). Update D and repeat the process till every edge has
at least one of its end vertices in D (due to Claim (ii)). D is a vertex cover
in G with |D| ≤ k. Therefore, (α, P, P )-covering problem is NP-hard. We have
already shown that it is in NP. Therefore, (α, P, P )-covering is NP-complete. 
�

5 A PTAS

We apply the local search algorithm to find an α-cover of the red point set
P with respect to the blue point set Q for a given integer α. We prove that
the local search algorithm produces a PTAS (see Algorithm 2 for the detailed
pseudocode).

Algorithm 2. Local Search(α, P,Q)
Input: A red point set P of size n, a blue point set Q of size m and an integer α.
Output: An α-cover subset Q′ ⊆ Q.

1: Q′ ← Q. (Assume the given instance has a feasible solution.)
2: while there exist B ⊆ Q′ of size at most k and B′ ⊆ Q of size at most k − 1

such that (Q′ \ B) ∪ B′ is a feasible solution for (α, P, Q)-cover problem, i.e., call
Feasibility Test (α, P, Q′).

3: set Q′ ← (Q′ \ B) ∪ B′.
4: endwhile
5: Report Q′.
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Lemma 4. The time complexity of the Algorithm 2 is O(αm2k+1n(m + n)).

Proof. The number of local improvement steps is bounded by the number of
blue points. Hence, there is a scope of at most m local-improvement steps.
In each step, it is required to verify at most

(
m
k

)(
m

k−1

) ≤ m2k−1 different
local improvements. The time to check if certain local improvement is possi-
ble takes O(αmn(m+n)) time. So, the overall time complexity of the algorithm
is O(αm2k+1n(m + n)). 
�
A subset Q′ ⊆ Q is called k-locally optimal if it is not possible to perform
local improvement step. Now, we prove that Algorithm 2 produces (1+ ε)-factor
approximation result.

Locality Condition: Let Qopt ⊆ Q be an optimal solution of the (α, P,Q)
covering problem and Q′ ⊆ Q be an α-covering set returned by the local search
algorithm. It is possible to construct a planar bipartite graph G = (Q′ ∪Qopt, E)
such that for each p ∈ P , there exists two vertices u ∈ Qopt and v ∈ Q′ sharing
an edge (u, v) ∈ E. Note that u ∈ Qopt and v ∈ Q′ sharing an edge if their
Euclidean distance is less than or equal to 1.

The locality condition for the range space consisting of points and disks is
established in [16]. The locality condition for (α, P,Q)-covering problem can
be established with the aid of same kind of arguments as in [16]. We define
neighborhood of the vertices in the graph G, i.e., NG(u) is the set of neighbors
of u in the planar bipartite graph and neighborhood function for the subset Y
of the vertices of graph G, NG(Y ) =

⋃
u∈Y NG(u).

Lemma 5. Let Qopt ⊆ Q be an optimal solution and Q′ ⊆ Q be returned by
Algorithm 2. Assume Qopt ∩ Q′ = φ and if there exists a planar bipartite graph
G = (Q′ ∪Qopt, E), then for every subset Q′′ ⊆ Q′ of size almost k, |NG(Q′′)| ≥
|Q′′|.
Proof. Let G = (Q′ ∪ Qopt, E) be a bipartite graph. Since both Q′ and Qopt are
α-cover sets for the point set P , then for each point p ∈ P there exist a point
q′ ∈ Q′ and qopt ∈ Qopt such that the Euclidean distance between (i) p and q′

and (ii) p and qopt are less than or equal to 1.

Claim: For any Q′′ ⊆ Q′, (Q′ \ Q′′) ∪ NG(Q′′) is a feasible α-cover.

Proof of the claim: If there is a point pi ∈ P which is covered by the unit
disk centered at a point in Q′′, then one of the neighbors in NG(Q′′) also covers
the point pi because of the locality condition. Therefore, NG(Q′′) covers all the
points which are covered by Q′′. So, (Q′ \ Q′′) ∪ NG(Q′′) is a feasible α-cover.

The above claim implies that if Q′′ ⊆ Q′ is a set of at most k unit disks, then
|NG(Q′′)| ≥ |Q′′|, otherwise there is a scope of local improvement step. 
�
Without loss of generality, we can always assume that Qopt ∩ Q′ = φ. If not,
let I = Qopt ∩ Q′, Q∗ = Q \ I, Q∗

opt = Qopt \ I, Q′′′ = Q′ \ I and let P ′ be
the set of points which are not covered by the disks centered at I. Q∗

opt and Q′′′

are disjoint. Also Q∗
opt is an α-cover of minimum size for the point set P ′. Now

assume Qopt = Q∗
opt, Q′ = Q′′′ and P = P ′.
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Theorem 2. [9] For any planar graph G = (V,E) of n vertices, there is a set
X ⊆ V of size at most c1n√

r
, such that V \ X can be partitioned into n/r sets

V1, V2 . . . Vn/r satisfying

i. Vi ≤ c2r
ii. N(Vi) ∩ Vj = φ for i �= j, and
iii. |N(Vi) ∩ X| ≤ c3

√
r

where c1, c2, c3 > 0 and N(.) defines the neighborhood function.

Lemma 6. |Q′| ≤ (1 + c/
√

k)|Qopt| for some constant c.

Proof. Lemma 6 follows from Lemma 5 and planar separator theorem of Feder-
ickson [9].

If we assume r = k/c2 in Theorem 2, then |Vi| ≤ k. Let Q′
i = Q′ ∩ Vi and

Qopti = Qopt ∩ Vi.
From Lemma 5, |Q′

i| ≤ |Qopti |+ |N(Vi)∩X|, for all i. Otherwise, Q′ ∩N ′(Vi)
can be replaced by Qopti , which contradicts the fact that Q′ is a k-locally optimal
subset. Now,

|Q′| ≤ |X| +
∑

i

|Q′
i|

≤ |X| +
∑

i

|Qopti | +
∑

i

|N(Vi) ∩ X| (See above discussion)

≤ c1n√
r

+ |Qopt| +
n

r
c3

√
r (See Theorem 2)

≤ c1n√
r

+ |Qopt| +
n√
r
c3

≤ |Qopt| + c
n√
r

≤ |Qopt| + c
|Qopt| + |Q′|√

r
= (1 + c/

√
k)|Qopt|

Thus, |Q′| ≤ (1 + c/
√

k)|Qopt|, where c is a constant. 
�
Theorem 3. Algorithm 2 produces (1 + ε)-factor approximation result in
O(αm2k+1n(m + n)) time.

Proof. The time complexity result follows from the Lemma 4. And the approxi-
mation result of the theorem follows from the Lemma 6 by putting k = O(ε−2).


�
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