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Abstract. The V100 GPU is the newest server-grade GPU produced
by NVIDIA and introduces a number of new hardware and API fea-
tures. This paper details the results of benchmarking the V100 GPU and
demonstrates that it is a significant generational improvement, increas-
ing memory bandwidth, cache bandwidth, and reducing latency. A major
new addition is the Tensor core units, which have been marketed as
deep learning acceleration features that enable the computation of a
4× 4× 4 half precision matrix-multiply-accumulate operation in a single
clock cycle. This paper confirms that the Tensor cores offer considerable
performance gains for half precision general matrix multiplication; how-
ever, programming them requires fine control of the memory hierarchy
that is typically unnecessary for other applications.

1 Introduction

To fit within the anticipated power budgets for future supercomputing archi-
tectures, it is possible that clusters targeting exascale and beyond will be com-
prised of diverse heterogeneous architectures, including both CPUs and acceler-
ator devices such as GPUs. Server-grade processors are constantly evolving in
terms of core counts, vector widths, and memory architectures, in response to
the needs of modern applications. Given the increasing complexity of heteroge-
neous devices, it is becoming more difficult to develop and optimise scientific
applications that can exploit available supercomputing resources. The core aim
of this paper is to uncover key architectural changes of the NVIDIA V100 GPU
compared to its predecessors, and discuss the implications on performance.

Renewed investment in the machine learning space means that many areas of
architecture design are focusing on the technological improvements that can also
benefit low precision, approximate computation. A recent example of technolog-
ical innovation targeting machine learning is the inclusion of Tensor cores in the
new NVIDIA Volta V100 GPUs, a principal focus of this research. Two of the
largest supercomputers in the world, Sierra and Summit [1], use dual-socketed
POWER9 CPUs and NVIDIA Volta GPUs, supporting a peak performance of
72 and 122 PetaFLOP/s respectively. Through the use of micro-benchmarks and
applications this paper will demonstrate that the V100 GPUs are a significant
improvement over previous generations, offering impressive performance for cur-
rent scientific workloads.
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2 Contributions

The following contributions are presented in the research:

– Benchmarking and analysis of many characteristics of the V100 GPUs com-
pared to the previous generation of server-grade GPUs (Table 1).

– Analysis and evaluation of the Tensor cores, through the optimisation of a
general matrix multiplication benchmark.

– A discussion regarding the applicability of Tensor cores to HPC.

3 Background

NVIDIA GPUs are throughput computing devices that support execution of
thousands of parallel threads on lightweight processing elements called Streaming
Multiprocessors (SMs). The GPU schedules multiple 32-wide units of execution,
named warps, on the SMs.

Table 1. Hardware details of NVIDIA Tesla P100 and V100 devices

Device Tesla P100 Tesla V100

SMs 56 80

FP32 cores/SM 64 64

FP64 cores/SM 32 32

Tensor cores/SM - 8

GPU clock 1.189 GHz 1.245 GHz

Shared memory/SM 64 KB 96 KB

L2 cache size 4096 KB 6144 KB

The NVIDIA P100 GPU, presented in Fig. 1a, is the most powerful GPU in
widespread use at the time of writing. The GPU introduces hardware double
precision atomic instructions, and high bandwidth memory quoted to offer a
theoretical 732 GB/s at peak. The NVIDIA V100 GPU (Fig. 1b) is the newest
hardware from NVIDIA and introduces a number of features including:

– Tensor cores - Deep-learning focused cores that perform fast matrix-
multiply-accumulate (MMA) operations.

– Individual program counters per thread - Numerous changes to syn-
chronisation have been enabled as a consequence, including intra and inter
GPU synchronisation that was not previously possible.

– Increased memory bandwidth - The high bandwidth memory (HBM2)
has been optimised for a higher theoretical peak memory bandwidth.
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(a) P100 Warp Schedulers (b) V100 Warp Schedulers

Fig. 1. Balance of warp schedulers within each SM of P100 and V100 GPUs.

3.1 NVIDIA Volta GPU Tensor Cores

The available literature is not clear on the exact mechanisms that are used to
fulfil a 16 × 16 × 16 matrix multiplication using Tensor cores. In an NVIDIA
V100 GPU, the SMs contain 8 Tensor cores, with each supporting a 4 × 4 × 4
matrix-multiply-accumulate (A * B + C = D, or A * B + C = C ) operation
per clock cycle.

The matrix multiplication step is performed in half precision, while the accu-
mulation can be performed in either half or single precision. Although each of
the SMs possesses 8 of the 4 × 4 × 4 Tensor core units, the PTX ISA cur-
rently only supports warp-level operations of size 16 × 16 × 16, 32 × 8 × 16,
and 8 × 32 × 16 [10], exposed through the Warp Matrix-Multiply-Accumulate
(WMMA) interface. This reduces the number of use cases for Tensor cores, as
access to the individual 4× 4× 4 units could allow for thread-level optimisation
of routines, with the small blocking factor being far more useful to the general
case.

4 Benchmarking

In this section we will benchmark the P100 and V100 GPUs to compare for
generational improvements. All benchmarks are compiled with CUDA 9.0.

4.1 FLOP/s

Considering the NVIDIA V100 GPU with core clock speeds of 1.245 GHz, we
can calculate the maximum FLOP/s achievable through single precision Fused-
Multiply-Adds (FMAs): 2 FLOPs × 64 threads × 80 SMs × 1.245GHz =
12.7 TFLOP/s. Further to this, each of the 8 Tensor cores processes a 4× 4× 4
MMA operation in a single cycle, performing 64 FMAs: 8 Tensor Cores ×
128 FLOPs × 80 SMs × 1.245GHz = 102 TFLOP/s for a mixed half and
single precision operation. We observed a maximum of 25 TFLOP/s in half pre-
cision with FMAs, and 99 TFLOP/s using the MMA instructions.
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4.2 Memory Bandwidth

Fig. 2. NVIDIA GPU memory
bandwidth.

The peak global memory bandwidth has been
increased between the P100 and V100 by
1.23x; further, the achievable proportion of
peak increases from roughly 80% on the P100
to around 93% on the V100. This is an impor-
tant optimisation for many scientific work-
loads [7]. The number of warps in a thread-
block required to saturate memory bandwidth
has increased on the V100 to 4 warps from 3
warps on the P100 in single precision, or 8
warps from 5 warps in half precision (Fig. 2).

4.3 Cache Bandwidth

The P100 GPU showed significant improvements to cache bandwidth over its
predecessors [12] and through benchmarking we observed that the V100 contin-
ues this trend of increased memory bandwidth at the L1 cache level. To measure
and compare the cache memory bandwidths between the P100 and the V100 we
used the method outlined in [3], that is, we ran the STREAM Triad benchmark
[9] multiple times over the same data-set to ensure cache-residency. The bench-
mark increasingly allocates more memory per CPU core or CUDA thread-block,
which shows the bandwidth of each level of cache as the array saturates the
available capacity, eventually spilling accesses into main memory.

Fig. 3. Aggregate memory bandwidth as data per processing element doubles.

Figure 3 shows the aggregate bandwidth for several modern HPC proces-
sors. The L1 cache performance of the V100 GPU is 2.57x higher than the L1
cache performance of the P100, partly due to the increased number of SMs in
the V100 increasing the aggregate result. However, when observing the memory
bandwidth per SM, rather than the aggregate, the performance increase is 1.86x,
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suggesting there has been significant improvements made to the L1 cache. This
performance increase has come from a change in hardware design as the Volta
architecture features a unified shared memory/L1/texture cache, whereas the
Pascal architecture has separate L1/texture and shared memory caches.

Figure 3 also compares the cache bandwidth to CPU architectures, 56 core
Skylake, and 44 core Broadwell. The Xeon Skylake architecture outperforms
the previous generation of CPUs (Broadwell) by roughly 1.7x, mainly due to
the increase in vector width from 256-bit to 512-bit. The GPUs lag behind the
CPU architectures in terms of unmanaged L1 cache performance; however, the
shared-memory performance of the V100 and P100 architectures were observed
to be 11.0 TB/s and 6.3 TB/s respectively, hence are comparable to the cache
bandwidth of current CPU architectures.

4.4 Latency

Figure 4 shows the memory access latency of both the P100 and V100 GPUs
alongside the performance of the Skylake CPU.

Fig. 4. Latency of memory accesses as array size is doubled.

For all levels of the memory hierarchy lower per-cycle latency is observed
for the CPUs, compared to the GPUs. Further, the clock speed of the NVIDIA
GPUs is around 3x lower than the CPU when executing on a single core without
AVX, meaning that the CPUs move data significantly faster through the memory
hierarchy. The GPU manages many more active threads and in-flight memory
access requests than the CPU, in order to amortise the high latency for individual
accesses. In spite of this, there has been a significant generational improvement
in the L1 cache latency, as a consequence of the L1 and shared memories being
combined in the new architecture.
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4.5 Tensor Core Analysis

Fig. 5. Performance of MMA ker-
nel as number of warps per thread
block is increased.

Throughout the paper we will refer to tiles,
which represents a complete 16 × 16 × 16
matrix-multiply-accumulation. Each of the 80
SMs in the V100 GPU contain 8 Tensor cores,
where pairs of cores are situated on each of the
4 warp schedulers in an SM (Fig. 1b). Each of
the cores is capable of performing a single sub-
tile 4 × 4 × 4 MMA instruction per cycle; so
to perform an entire MMA for a 16 × 16 × 16
tile, a total of 64 individual sub-tile MMAs
are required. As a consequence, when a warp
requests a 16× 16× 16 MMA, there will be at
least a 32 cycle latency for the two cores on a
warp scheduler to fulfil the entire request.

In Fig. 5, we show the performance of increasing the number of warps resident
on the GPU, for a benchmark kernel that performs a matrix multiplication
without moving any data from global or shared memory. The performance scales
linearly as the number of warps resident on each SM is increased from 1 to 4,
and at 5 warps the performance plateaus. The results show that optimal MMA
throughput is achieved when 8 warps are active on an SM.

4.6 Application Performance

Fig. 6. Speedup observed for applications
taken from the arch project.

The results of executing three opti-
mised test applications written in
CUDA can be seen in Fig. 6; flow
is a 2D explicit hydrodynamics
application, hot is a 2D implicit
heat diffusion solver that uses the
Conjugate Gradient method, and
neutral is a 2D Monte Carlo neu-
tral particle transport solver [7,8].

The applications are intended
to represent the performance pro-
files of important HPC applica-
tions, and the results show a signif-
icant uplift in performance between
the generations of hardware. The
performance differences observed for both flow and hot track the memory band-
width improvements of the architecture, as expected. The neutral application
suffers from issues with memory latency due to poor reuse, and the performance
observed on the V100 GPU is indicative of improved memory latency hiding
in the new architecture, as well as improvements to compute throughput and
memory bandwidth.
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4.7 cuBLAS Performance

Fig. 7. cuBLAS Performance for increasing
matrix sizes.

Figure 7 presents the achieved FLOP/s
for the varying precision cuBLAS
routines, as the matrix size is
increased. The half and single pre-
cision routines improve in perfor-
mance, and asymptote upon reach-
ing 81922. In contrast, for the Ten-
sor core implementation we observe
a sudden drop in performance once
the matrix size exceeds 81922.

We compared the performance of
calculating a single 163842 Tensor
core MMA versus an equivalent cal-
culation using 4 MMAs where the
sub-matrices were 16384 wide on the k-th dimension and 8192 on the adjoining
dimension. We observed a 1.35x improvement in performance, demonstrating
that, in the short term, blocking cuBLAS for matrix sizes above 213 is necessary
even when the whole matrix is resident in high bandwidth memory.

5 Tensor Core Accelerated MMA

In a real application, the Tensor cores will more than likely be leveraged through
the cuBLAS and cuDNN interfaces; however, an aim of this research is to uncover
the current state of direct programming of the cores, and so we present the efforts
taken to develop an optimised matrix multiplication as a canonical example.

5.1 Parallelisation and Decomposition for Tensor Cores

Fig. 8. Decompose 128× 128 sub-
matrices into 16 × 16 tiles.

Our parallelisation strategy was influenced
by the NVIDIA CUDA matrix multiplication
sample, using 128 × 128 sub-matrices, con-
taining 64 16 × 16 × 16 MMA tiles, enabling
coalescence and saturation of shared memory.
We chose a block size of 256 threads, where
8 warps co-operate in performing the instruc-
tions to complete the blocked 128×128 MMA.

The WMMA API is a significant depar-
ture from the conventional CUDA APIs, as
the developer is expected to program opera-
tions at the warp level, rather than the thread level. As such, each CUDA block
is responsible for performing 64 16×16×16 MMAs per sub-matrix along the k-th
dimension, with each warp performing a single MMA at a time. Prior to per-
forming the MMA operation, tiles are loaded from shared memory into WMMA
fragments, which are groups of 16 × 16 registers, declared as in Listing 1.1.
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Listing 1.1. WMMA fragments (nvcuda::wmma excluded for brevity).

fragment <matrix_a , 16, 16, 16, half , row_major > a;

fragment <accumulator , 16, 16, 16, float > c;

Our initial implementation allocated each of the warps within a CUDA block
all 8 of the tiles in a row of the sub-matrix C. Each warp can fetch a single 16×16
fragment of A and multiply that by a whole row of B, achieving perfect reuse of
A but no reuse of B. The result is that every warp is required to load the entirety
of B from shared memory for every processed sub-matrix, with warps storing the
results in an array of fragments for each tile in each row of the sub-matrix C.

Listing 1.2. WMMA load A and perform MMA sync.

load_matrix_sync (a, &Ashared[Aidx], shared_tile_lda);

mma_sync(c[cidx], a, b[bidx], c[cidx]);

In the main computational loop of the matrix multiplication, the A and B
fragments were loaded and the MMA operation performed using the API calls
in Listing 1.2.

5.2 Tiling and Register Optimisation

The scheme described in the previous section is inefficient in its management
of fragments, introducing more shared memory requests than were actually
required. It was possible to adjust the partitioning to increase the reuse of B
and reduce shared memory accesses in favour of increasing register utilisation.

Fig. 9. The calculation of the first element of C, by multiplying the first element of A
with the first chunk row of B, and then repeating the calculation for the first element
of the second row of A.

Figure 9 depicts an optimisation where each warp is given a chunk of C,
shaded orange, meaning the warp is only responsible for loading half of sub-
matrix B per sub-matrix C. The result of this optimisation was a roughly 1.17x
speedup for N = 163842.
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5.3 Vector Loads

The matrix multiplication CUDA sample for the WMMA API adapted all reads
from global memory to 128-bit wide loads; as such, each of the threads was
responsible for reading 8 of the 16-bit floating-point numbers at once from global
memory, and populating shared memory with them. As such, each warp reads 2
rows of a 128 × 128 sub-matrix.

Fig. 10. Memory bandwidth of vector loads
from global memory (16 to 128-bits) for one
warp resident on each SM.

Figure 10 shows that the memory
bandwidth utilisation of a single warp
resident on an SM greatly increases
as the global load width is increased.
This trend is true even if we have a
single warp per warp scheduler on an
SM, for 4 per SM on Volta, where the
achieved memory bandwidth is 3.8x
higher for 128-bit loads than scalar
16-bit loads.

Through benchmarking we deter-
mined that, when the number of
blocks issued for a particular ker-
nel significantly over-subscribed the
number of available SMs and warp
schedulers, a single warp per block could saturate memory bandwidth using
128-bit vector loads, with half precision computation. For 64-bit vector loads,
two warps were required to saturate memory bandwidth.

5.4 Shared Memory Optimisation

The shared memory on a V100 GPU, as with previous compute capabilities,
is organised into 32 32-bit banks, which allow a warp to read 64 half precision
values in a single cycle, two from each bank. If two threads access elements in
the same bank, the latency of the resulting memory operation will increase to
two cycles, a two-way bank conflict.

In Fig. 8, we show a section of a sub-matrix, where each individual tile stored
in shared memory is read using a single WMMA API call. We can see in Fig. 11
that the individual banks, the orange bars, can contain 64 half precision elements,
and so are distributed across an entire row of the half sub-matrix, or twice per
row of the full sub-matrix. The banks line up perfectly so that the beginning of
each row of the tile coincides with the beginning of the shared memory banks.
As such, the 16 16-bit elements of each row of a tile reside within the same
8 32-bit banks of shared memory, meaning that, if a tile is allocated contiguously,
warp-level accesses to that tile inherently lead to banks conflicts.

The exact manner in which the WMMA API moves data into fragments is
not known; however, it is expected that the API uses all threads in a half-warp
to access a number of rows in the tile. In theory, each thread could access 2
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Fig. 11. A representation of the distribution of elements of the sub-matrix stored in
the banks shared memory.

elements of each row of the tile, so the 16 threads would access 2 rows of the tile
at once, resulting in a two-way bank conflict.

Padding, known as a skew factor, can be added to the leading dimension of
the sub-matrix to avoid the data lining up. It is clear that a skew of 16 elements
(16-bit elements of the sub-matrix) results in banks 0–7 containing row 0 of the
tile, and banks 8–15 containing row 1, and so on. This ensures that rows 0–3
can be read in a single cycle by a single warp.

Fig. 12. Tuning skew factor for shared
memory accesses where the sub-matrix
size is 128 × 128, and the tile size is
16 × 16 × 16.

Given that the V100 allows the user
to allocate up to 96 KB of shared mem-
ory per SM, and both A and B are 32 KB,
there is enough space to pad both of the
arrays in shared memory. In support of
the analytic choice of 16, we demonstrate
empirically that it is the best skew in
Fig. 12.

While the preceding analysis appears
specific to the optimisation of general
matrix multiplications, or our particular
choice of block size, it is important to
recognise the generality of this particular
issue. We anticipate that, in the majority
of use cases, the utilisation of Tensor cores will require memory to be read in
from global memory and reused within the available shared memory; as such,
the fact that the tiles of the sub-matrices are 16 × 16 is expected to result in
bank conflicts in general usage.

It is important that programmers are aware that bank conflicts are not fixed
by the WMMA API. The 2.5x difference in performance observed between the
0 skew and 16 skew cases in Fig. 12 demonstrates that avoiding bank conflicts is
an important part of programming with Tensor cores. Furthermore, due to the
dramatic jump in computational throughput introduced by the Tensor cores, it
is likely that tuning the use of shared memory, and potentially optimising for all
levels of cache, will be essential for maximum performance.
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6 Future Work

We expect that the majority of future research articles will focus on machine
learning use cases for the Tensor cores, but we are hopeful that researchers will
continue to investigate the potential for using them within HPC. As some of
the largest pre-exascale supercomputers include V100 GPUs, it is important
to discover use-cases or adaptations to existing algorithms that could leverage
the Tensor cores. It will be important future work to understand the implica-
tion of attempting to include the WMMA API calls into code that is otherwise
thread-level, as the shift in paradigm may make expressing some algorithms more
challenging.

7 Related Work

An NVIDIA PARALLEL FORALL blog by Appleyard et al. [2] presents details
about the Tensor hardware and API, and evaluates the performance of Ten-
sor core accelerated routines in cuBLAS and cuDNN. The article by Harris [4]
discussed mixed precision programming introduced in CUDA 8.0, providing tech-
nical details and demonstrating performance improvements for a number of use
cases and libraries.

Through micro-benchmarking, Jia et al. [5] uncovered many of the architec-
tural details of the Volta architecture such as the memory bandwidth/latency,
warp scheduling policy, and instruction latencies. Markidis et al. [6] evaluated
the Tensor core units in terms of programmability, performance, and precision,
finding similar performance to the results presented here and exploring in detail
the consequences of the loss in precision.

Reguly et al. [11] benchmarked the POWER8 GPUs in comparison to other
hardware for a number of applications and benchmarks. Trott [12] performed
an evaluation of the P100 GPU soon after release, and demonstrated that there
were significant improvements in cache bandwidths and atomic performance.

8 Conclusion

The NVIDIA V100 GPU has been proven to be a significant improvement over
its recent predecessor, the P100 GPU, introducing many new programmabil-
ity improvements and offering exceptionally high memory bandwidth. Through
benchmarking we observed that these memory bandwidth improvements have
come at all levels of the memory hierarchy, but most notably the L1 cache,
which offers considerably higher performance than the P100. We also observed
gains in performance provided by the Tensor cores but that performance is now
strongly coupled to the performance of the GPU memory hierarchy.

The Tensor cores can shift the balance of computational power within the
devices to such an extent that it will be essential to carefully consider all levels of
cache to successfully exploit the devices for computationally-bound algorithms.
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This has important consequences for the future of HPC on those devices, as a sig-
nificant amount of research is being conducted into the adaptation of algorithms
into compute bound variations to support future scaling.

The organisation of the WMMA API to issue instructions at the warp rather
than the thread level means that the individual 4 × 4 × 4 Tensor cores cannot
be directly programmed, and the developer will only have access to 16× 16× 16
MMA instructions. In spite of this, the Tensor cores allow for a huge increase in
compute performance when executing specific deep learning workloads, whilst
other architectural changes bring benefits to HPC workloads.
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