
Integrating Parallel Computing in the
Curriculum of the University Politehnica

of Bucharest

Mihai Carabaş, Adriana Drăghici, Grigore Lupescu, Cosmin-Gabriel Samoilă,
and Emil-Ioan Sluşanschi(B)

University Politehnica of Bucharest, 313 Splaiul Independenţei, Bucharest, Romania
{mihai.carabas,adriana.draghici,cosmin.samoila,emil.slusanschi}@cs.pub.ro,

grigore.lupescu@gmail.com

Abstract. The continuous shift of hardware computing architectures,
from single to many-core processors, as well as the blurring of the hard-
ware - software interface, has made the introduction of parallel and dis-
tributed computing topics in the undergraduate curriculum an essential
requirement for any quality computer science program. The University
Politehnica of Bucharest offers a unique approach, employing a hetero-
geneous hardware and software teaching and computing infrastructure,
to its over 450 students enrolled in undergraduate studies of Computer
Science and Electrical Engineering. In this study we present two of the
most important lectures covering PDC topics at the UPB.

Keywords: Parallel programming · Python
Performance optimization · GPU computing · PDC
Undergraduate education

1 Introduction

Given the current evolution of the IT industry, Parallel and Distributed Comput-
ing is seen as an essential topic for any IT professional. University “Politehnica”
of Bucharest is one of the oldest and most prestigious engineering school in
Romania. Over the last 20 years, the Computer Science and Engineering Depart-
ment has conferred a special importance to the PDC curricula. The importance
of parallel and distributed systems as well as a distinction between parallel ver-
sus distributed systems is discussed in [20,23], and the approach offered by the
UPB is consistent with the view presented therein, since our curriculum already
contains different courses for distributed and parallel systems. Most courses con-
taining PDC issues are taught in the first three years of CS and touch a wide
audience of around 400–500 students per year. Similar lectures are being offered
around the world by various CS groups in Tennessee [19], Cadiz [24], or Cluj-
Napoca [22].

This paper is structured as follows. In Sect. 2 we outline the PDC curriculum
in the UPB undergraduate CS and EE programs. In turn, Sect. 3 presents the
c© Springer Nature Switzerland AG 2019
G. Mencagli et al. (Eds.): Euro-Par 2018 Workshops, LNCS 11339, pp. 222–234, 2019.
https://doi.org/10.1007/978-3-030-10549-5_18

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-10549-5_18&domain=pdf
https://doi.org/10.1007/978-3-030-10549-5_18

Integrating Parallel Computing in the Curriculum of the UPB 223

practical activities in two of the lectures concerned with PDC. Section 4 presents
the student progress evaluation process, whereas Sect. 5 outlines the interest and
involvement of the IT industry in Romania and abroad towards the PDC issues
being taught to our undergraduate students. In Sect. 6 we enumerate the lessons
learned through the years while offering the PDC curriculum, and we conclude in
7 with some conclusions and an outline of possible improvements to our present
approach.

2 Parallel and Distributed Computing Curriculum

In the bachelor program of the UPB, we can find three main lectures where
Parallel and Distributed Computing issues are presented to the students, namely
the Parallel and Distributed Algorithms (PDA), Computer Systems Architecture
(CSA), and Parallel Processing Architectures (PPA). In this paper we will focus
on the Computer Systems Architecture and Parallel Processing Architectures
lectures as introduced in Sects. 2.1 and 2.2 respectively. Section 2.3 briefly goes
through other PDC graduate courses, not covered thoroughly in this paper. The
number of students taking the PDA and CSA lectures ranges from 350 to 450
each year – these two lectures being compulsory for all students enrolled at the
Computer Science and Engineering Department. The PPA lecture gathers from
130 to 150 students, in the Advanced Computer Architectures specialization of
our bachelor Computer Science Program.

2.1 Computer Systems Architecture

The Computer Systems Architecture lecture is presented in the sixth semester of
bachelor study. This lecture presents the fundamentals of design and structure
of numerical computing systems. The main topics covered include:

– Processor Memory Switches descriptions of computing systems.
– Various taxonomies of computing systems.
– Fundamentals of SIMD and MIMD design, architectures, and applications.
– Hierarchical and non-hierarchical switches.
– Switches for inter-processor and processor-memory communication.
– Inter-cluster and intra-cluster communication protocols.
– The roof-line model.
– Advanced CPU and GP-GPU computing architectures.
– Debugging and performance evaluation and analysis of computer programs.
– Profiling and tracing computer codes on modern processing platforms.
– Parallel correctness challenges.
– Benchmarking computing systems.
– Analysis of top 500 systems architectures over the years.

The practical activities over the course of the entire semester deal with
three different topics, namely concurrent programming in Python, serial code
optimization, profiling and OpenCL programming in C. The lecture as well as
the practical activities are being update continuously. More details are given in
Sect. 3.

224 M. Carabaş et al.

2.2 Parallel Processing Architectures

The PPA lecture is given in the ninth semester of bachelor study. The main
objective of this lecture is the assimilation of fundamental concepts concerning
parallel processing architectures design, programming and configuration. Dur-
ing this lecture students learn to analyze parallel processing models, as well as
synchronization issues in complex parallel and distributed systems. During the
lecture, the following topics are discussed:

– The evolution of parallel processing systems.
– The concepts of concurrency and parallelism.
– Indicators for evaluating parallel structures.
– Parallel systems classifications.
– General characteristics of parallel processing systems.
– Mathematical models of parallel computation.
– Relationships between parallel architectures and parallel algorithms.
– Parallel computation limits and levels of parallelism.
– Synchronization in parallel and distributed systems.
– Parallel system architectures with practical examples.

In this lecture, the practical activities are split between two phases: the first
six weeks of the semester in which students learn and practice advanced issues
on OpenMP, MPI, and PThreads programming, while the remaining eight weeks
of the semester are spent working in teams of two or three on software projects
in which they are attempting to parallelize given serial computer programs.

2.3 Graduate Lectures on PDC

The graduate lectures gather from 25 to 40 students, in the Advanced Computer
Architectures [1] and Parallel and Distributed Processing Systems specializa-
tions [10] of our bachelor Computer Science Program.

Parallel Programming is a lecture outlining a series of programming
paradigms in the context of modern parallel computer architectures. It offers
an overview of parallel programming models considering issues such as produc-
tivity, performance, and portability and presenting a number of models for com-
munication, synchronization, memory consistency and runtime systems. Various
parallel programming paradigms with shared- and distributed-memory, parallel
global address shared space, and other atypical paradigms are presented.

High Performance Scientific Computing presents state-of-the-art paral-
lel computing architectures in the context of modern parallel programming
paradigms. Topics include mathematical modeling, numerical methods and data
structures employed in HPC, from systems of differential equations, automatic
differentiation, optimization problems, solving systems of nonlinear equations,
to basic linear algebra and chaotic systems. The lecture also tackles scientific
applications requiring HPC systems with examples from research and industry.

Integrating Parallel Computing in the Curriculum of the UPB 225

3 Practical Activities

3.1 Computer Systems Architecture

The CSA practical activities follow the structure of most of the courses in our
faculty’s curriculum for the first six semesters, consisting of weekly two-hour labs
and three or four homework assignments every two or three weeks. Through the
years such a structure received positive feedback from students and proved very
efficient in the development of their technical skills and on their understanding
and application of the subjects presented during lectures. In terms of organiza-
tion, our activities bring something new to the students: they are split into three,
formerly four, distinct topics and technologies, the homeworks require not just
coding but also analysis and performance evaluation and they offer the students
a chance to enrich their presentation skills.

Python Optimizations Cell

1 2 3 4 5 6 7 8 9 10 11 12 13 14

Presentations

Python Optimizations Cell PresentationsGPU

Python Optimizations Cell PresentationsGPU

Python OptimizationsPresentations GPU

2007 - 2009

2010 - 2015

2018

2016 - 2017

Week:

Presentations Presentations

Fig. 1. CSA Practical activities through the years.

The topics taught during CSA’s lab activities cover concurrency and multi-
threaded programming (in Python), optimizations and profiling (in C), paral-
lelization of computationally intensive programs, using Cell, OpenCL [21], or
CUDA [16]. We adapted this structure based on technological evolution, as
shown in Fig. 1. For conciseness, throughout this article we will refer to these
parts of the CSA’s activities using the technology/language used for them.

The last two weeks of the semester were dedicated to presentation sessions,
in which students chose a topic related to the course or the lab and presented it
in 10 min. The presentations were extremely varied and up to date to the newest
trends in high performance computing, parallelism and concurrency and even
embedded systems (e.g. a cluster build out of Raspberry Pi boards). This year,
we replaced these presentations with ones in which they present their homeworks,
a decision we discuss in Sect. 6.

The main reason we chose Python was the desire to present concurrency con-
cepts in multi-thread programming in a widely used language. Due to its quick
learning curve, a simple threading API and the fact that we are focusing on cor-
rectness of concurrent programs and not on parallelization performance, Python
is the right choice for our needs. The concepts learned during the lab exercises
and from the homework assignment can be easily applied to other languages too.

226 M. Carabaş et al.

During the weeks dedicated to concurrent programming students learn Python’s
basic syntax and data structures, how to create and manage threads and how
to protect the access to shared resources using locks and semaphores, events,
conditions and synchronized queues.

The first of the three labs dedicated to program optimization offers an intro-
duction into Intel and AMD general purpose CPU architectures, with exercises
meant to detect the actual size of the line of cache and of the LLC – Last Level
Cache – of the processors in the lab. The second lab is treating a number of
serial optimizations of the well-known matrix multiply kernel, on CPUs, from
improving access to vectors, to loop order optimization and block-matrix opti-
mizations. This section concludes with a lab on performance optimization using
dedicated software tools such as Valgrind, perf and Intel Parallel Studio. There-
fore, students learn about the specifics of CPU architectures, serial optimization
techniques, and how to identify performance bottlenecks using specialized tools.

We have chosen the OpenCL programming paradigm as it is a natural tran-
sition from the previous IBM Cell architectures we used to teach. Similar to
the IBM CELL framework there is a clear distinction between device GPU (as
the SPE for IBM Cell) and the host CPU (as the PPE for IBM Cell). From the
execution point of view the host is responsible for managing the device hardware
similar to the PPE that managed the SPEs. Likewise the OpenCL kernels need
to be compiled for the specific target device and sent out by the HOST which
highlights how a true heterogeneous system works in the back-end. Although
OpenCL programming is a difficult topic, it is worth learning since it offers
students a deeper understanding of the advantages and limitations of most co-
processing architectures, like GPUs, FPGAs, ASICs, etc.

While CUDA is the de-facto standard when it comes to the HPC indus-
try, OpenCL provides a better understanding of the underlying interactions
in components of a heterogeneous system. Since we also touch upon the sys-
tems programming side, we consider OpenCL is better suited in Academia than
CUDA. OpenCL was designed to support any number of devices (e.g. CPU,
GPU, FGPA, ASIC) from any vendor, while CUDA is a closed ecosystem tar-
geting only NVIDIA GPU hardware. Thus, our students learn how to query for
platforms and devices of different vendors, how to allocate and manage buffers as
well as how to perform cross compilation of kernels. They also understand that
the software stack induces latency and can significantly impact performance.
The transition from OpenCL to CUDA is easy, since for beginners CUDA repre-
sents a simplification of the OpenCL API. We offer three OpenCL labs: the first
focuses on the host side interactions with the device (queries, buffer allocation,
kernel enqueue), and the next two focus more on the underlying architecture of
a GPU and how to design an efficient kernel program.

3.2 Parallel Processing Architectures

The PPA labs consist of two different parts, namely a hands-on section of labs
and a team project. The hands-on section tackles advanced issues concerning
PThreads, OpenMP [15], MPI programming [18], and concludes with a profiling

Integrating Parallel Computing in the Curriculum of the UPB 227

and parallel debugging lab. The team project is focused on deploying, under our
team’s supervision, shared as well as distributed memory programming tech-
niques on serial applications chosen by the students. The projects conclude with
presentations in front of the class outlining the benefits and drawbacks of each
particular programming approach, as well as the influence of the underlying
machine and system architecture on the performance of the chosen application.

4 Student Assessment and Evaluation

4.1 Lab Activity and Homeworks

During the two-hour lab activities of the Computer Systems Architecture
lab students get the chance to practice their coding and apply the concepts
learned during the lectures or from the lab’s wiki page [3]. The exercises also
challenge them to look for performance issues, optimizations and also understand
the architectures their code runs on. During each lab, the teaching assistants
present and explain the main concepts in the first 15–30 min and then help the
students with their tasks (individual explanations, debugging, discussions about
their results).

We use the wiki as support for labs and homeworks. On each lab’s page we
offer an overview of the topic, examples, links to additional resources and tasks.
Most of the labs also provide a code skeleton the students can build upon. Only
the lab about the profiling tools has less coding and its flow is tutorial-like, with
students having precise instructions on what to create, click, and run.

The first concurrency lab focuses on exercising Python syntax and its chal-
lenge is teaching the fundamentals of a new language in just two hours. There-
fore, we varied the difficulty and the amount of tasks through the years. We first
offered many short tasks that covered a lot of concepts but the students’ feedback
showed us that it is more important to provide the tasks a story and not require
the use of that many language features, so the current exercises simulate a coffee
machine. The second concurrency lab starts with a simple exercise that requires
the creation of threads that concurrently modify a list, and then requires the
implementation of well-known concurrency problems, like producer-consumer or
dining philosophers. In the third lab students work with events, conditions and
barrier objects to implement a gossiping algorithm and a master-slave scenario.

The Cell labs provided code skeleton that the students adapted and the
tasks covered all the topics presented on the wiki: creation and management of
SPE threads, vectorization, data transfers using DMA, double buffering, mail-
boxes and caches. The exercises were compiled and run on our cluster. Students
understood the concepts but their performance during the labs was hindered by
C programming aspects such as data alignment. Therefore, we have included in
the optimization labs some tasks for allocations and pointer casts.

The purpose of the OpenCL GPU/CPU labs is to understand the main dif-
ferences between programming on a CPU and on a GPU. For a typical lab,
students have a skeleton code on which they will have to fill in the gaps for the
proper execution to take place. The labs gradually go from a high level view of

228 M. Carabaş et al.

Fig. 2. Number of submitted CSA homeworks (H1, H2, H3 and H4) in the last five
years. In 2016 and 2017 the students had to choose between H3 (Cell) and H4 (GPU),
they were not required to do both.

the OpenCL stack to the low level details of kernel programming on a certain
architecture.

The common themes of the Computer Systems Architecture homework
assignments are the following: threads that concurrently access each other’s
data in order to apply an algorithm for the Concurrency track, implementing a
BLAS [2] operation in several ways (basic, optimized, basic compiled with flags)
and comparing the performance against the library’s implementation for the
Optimization track, parallelization of a serial algorithm in OpenCL. The Cell
homeworks revolved around image and video processing and required the use
of DMA transfers. The students also had to perform optimizations using vector
operations and double buffering. With the exception of the concurrency home-
work, the students have to provide relevant graphs and explanations about their
solution’s performance. For the Python track, we encourage students not only to
write correct concurrent code, but also respect a coding style and document it.
To ease the evaluation and to help them, their homeworks are also tested with
Pylint [11], a Python code analysis tool. As an incentive, we offer bonus points
to homeworks exhibiting high Pylint scores.

We are addressing a large number of students each semester, which makes
it overwhelming to evaluate more than 500 homeworks per semester only for
one course, as presented in Fig. 2. Moreover, the fact that the CSA homeworks
require running the solutions on various architectures and also measuring their
performance, makes it more difficult to integrate with VMChecker, an automatic
grading system. We use VMChecker only for OpenCL GPU assignments, while
for the rest we provide public tests and scripts that automate the runs, so that
students can test their solutions before submitting them on the course’s platform.
Over-subscription of cluster queues by students is one disadvantage to using
VMChecker for the GPU assignments, since it requires constant monitoring so

Integrating Parallel Computing in the Curriculum of the UPB 229

that the system remained responsive (i.e. queues not full). The end result is
faster grading but the trade-off comes from deploying and managing the system.

For the Parallel Processing Architectures projects, students are divided
in groups of two or three and decide on the project’s topic, usually the paral-
lelization of CPU-intensive applications written mostly in C or C++. Then each
week we decide together with the students on the tasks they have to do until
the subsequent week. The parallelization paradigms they use include PThreads,
OpenMP and MPI, and usually, each member of the team is in charge of one
parallelization strategy. At the end of the semester, each team presents before
the entire class the results, outlining the lessons learned, the benefits as well
as the drawbacks of each programming paradigm in the context of their partic-
ular software application. The projects are done in teams, however grading is
individual, to ensure fairness and accountability of our student’s effort.

4.2 Computing Infrastructure

Computing infrastructure is one of the key elements in applying theoretical
aspects shown in lectures, especially in computer architecture and parallel pro-
gramming. For our courses we need a variety of platforms (e.g. x86 CPUs, embed-
ded ARM CPUs, specialized PowerPC CPUs, or GPUs) for students to be able
to compare them and a high number of units (CPUs/GPUs) in order to assess
the performance of parallel implementations. Therefore, we rely on the Comput-
ing Cluster of our department, where all the HPC resources are aggregated, as
summarized in Table 1.

Table 1. The CS computing cluster.

Nodes Node type CPU GPU RAM

32 IBM HS21 Intel Xeon E5405 – 16GB

28 IBM HS22 Intel Xeon E5630 – 32GB

16 IBM LS22 AMD Opteron 2435 – 16GB

4 IBM QS22 Cell BE Broadband – 8GB

8 IBM PS703 IBM Power7 - 32GB

4 IBM iDataPlex dx360M3 Intel Xeon X5650 8 NVidia Tesla M2070 32GB

3 HPE ProLiant BL460c Intel Xeon E5-2670 7 NVidia Tesla K40m 128GB

The storage infrastructure of the CS Cluster is currently composed of multiple
systems with different capacities, such as: an IBM Storage Fibre Channel DS3950
with 30 TB, a Dell PowerVault with 120 TB, and a HPE MSA P2000 with 6 TB
of storage space. On these storage servers we installed, over time, multiple file
system solutions for distributed and parallel computing systems. Among others,
we explored NFS, Lustre FS, and GlusterFS. Lustre FS did not scale because of
the significant configuration and restart times. GlusterFS was a good solution,
however once we reached 30 million files, the system slowed down significantly.

230 M. Carabaş et al.

The current NFS solution employs 10 Gbps links, with fast disks which offer
good scaling for about 20 TB of data and multiple millions of user files.

Network connectivity within the cluster is ensured by 56 Gbps Infiniband
links connecting computational nodes to the centralized storage; normal Gigabit
Ethernet links for network and storage connectivity; and 10 Gigabit Ethernet
links for network, storage and Internet connectivity. Currently the uplink uses
2x10 Gbps Ethernet links.

The hardware infrastructure described previously is complemented by the
use of the Moodle [7] open-source learning system. Our Moodle implementa-
tion integrates students database information with automatic accounts creation,
course creation based on the CS curricular structure, and course enrollment
for students based on their contracts. Moodle fulfills most of our needs with:
storage for resources (documents, slides), interactivity with students via forums
and feedbacks and assignments upload and grading. For the collaborative design
and deployment of lab materials we use a Dokuwiki [4] instance on the same
server. During the Dokuwiki integration with our Moodle system and our stu-
dent database, our team also contributed back to upstream with different fea-
tures that would help others implement a similar system. In the near future
we plan to integrate automatic programming assignment verification using the
VMchecker [14] tool.

Cluster management is currently achieved using Open Grid Scheduler [9], and
will shortly be migrated to Torque [13]. We offer our students and users inter-
active, as well as non-interactive (i.e. batch-mode) use of our systems. Having a
significant number of compute nodes as well as a big number of end-users places a
high demand on our software stack (e.g. compilers, libraries, applications, tools).
Thus, the management of different software versions is done by employing the
module feature. It basically sets/unsets environment variables depending on the
desired version of software being selected. Best performance for all our packages
is obtained by compiling most of the stack directly from sources and creating
our own RPMs for each cluster node architecture.

4.3 Final Examination and Feedback

The final examinations for both CSA and PPA typically consist of two different
parts: a theoretical section of 50 min, where students are required to answer to
10 questions from the entire lecture; and a practical section of 45 min in which
students have to solve a practical assignment linked to the lab activity. The total
scores of the lab activity, homeworks, theoretical and practical examination are
then added together to give the final grade for each lecture participant. During
the last two weeks of the semester, students offer their feedback to our team - of
course the information is available for us only after the end of the examination
period. Student feedback is a constant source of improvement of our activity,
and a good indication of the interest towards PDC subjects in our Department.
Over the last years, we have thus constantly striven to offer our students access
to the most advanced processor and parallel systems architectures.

Integrating Parallel Computing in the Curriculum of the UPB 231

5 Industry Involvement

Between the eighth and ninth semesters of their bachelor program, students
are required to spend at least twelve weeks in internships or summer-schools
on topics related to their chosen field of study. Over the years, a number of
summer-schools have been organized in our Department, on topics ranging from
High Performance Computing, Embedded Systems, Security, Mobile Develop-
ment, Artificial Intelligence, GPU programming, Machine learning to Computer
Vision and 3D-Graphics technologies. The industry has also diversified its intern-
ship offer to students, with topics on Business software development, Cloud
programming, Artificial Intelligence, Embedded Systems, IoT, Mobile, Gaming,
Networking, Telecommunications. To this end, the “Stagii pe Bune” [12] and
“Junio.ro” [6] platforms were jointly developed by people from our Department
and from the IT industry. More recently, students apply to internships abroad.
Participation in Google, Facebook, and Microsoft internship programs is con-
stantly growing. Some examples of companies, typical programming require-
ments, and representative technologies covered by their internships are given in
Table 2.

Table 2. Internship listings.

Company Requirements Technologies

NXP C/C++, Python, OpenCL,
knowledge of microprocessors
architecture

Automotive, IoT

Intel C/C++, Python, Bash,
Profiling skills

Microarchitecture Design and
Optimizations

BitDefender Algorithms, C/C++ Big Data Analysis, System
Programming

Adobe Algorithms, C/C++ Big Data Tehnologies,
Application Design

Each year our team is considering the requirements and feedback received
from the industry when redesigning or adapting our curricula for the next year.
This process is smoothed by our integration of a significant number of teaching
assistants (TAs) directly from industry professionals. Thus our students can
learn where different types of problems presented at our laboratories occur in
the daily life of an IT engineer. Another advantage of having input directly
from an industry that is evolving so fast is having an objective view of how our
teaching materials helps our students fulfill their job requirements.

6 Lessons Learned

Through the years our team has adapted to the feedback received from students
in previous generations. For example, we introduced specific sections in the prac-

232 M. Carabaş et al.

tical exercises of the labs based on common mistakes or challenging parts of the
student assignments. To illustrate this point: we observed misunderstandings on
how the threads run, a tendency for busy waiting and a wrong usage of events.
We therefore provided more explanations and examples in the lab’s wiki and
offered exercises based on code skeletons, that showed incorrect approaches and
asked students to improve them.

To encourage students to submit more homeworks, we developed a system
of soft deadlines for two or three weeks after they are published, and only then
impose a final hard deadline. Nonetheless, we observed that most students start
working on homeworks in the last few days before the soft deadline, which had
a significant impact on our hardware resources. Therefore, a few years ago we
introduced a further incentive for submitting homeworks early – in the form of
bonus points – an approach which proved quite successful.

To better assess the students’ understanding of their homework and also
tackle the plagiarism problem, we introduced this year the requirement for home-
work presentations in front of the class. To improve the uniformity of the TA’s
evaluation, we created homework evaluation guidelines, as well as typical errors
and questions which should be posed to students during their evaluation. Over
the years we have used automatic grading systems along with MOSS [8] and
Etector [5] code plagiarism detection systems.

At the end of each semester, our entire team takes part in a debrief where we
discuss all the problems we encountered during the lecture, practical activities
and homework assignments. Possible improvements, owners and solutions are
offered, and each point is then taken under consideration at the setup meeting
of our group in the next academic year.

7 Conclusions and Outlook

7.1 Conclusions

The team at the Computer Science and Engineering Department of the UPB
is striving to improve the presentation of PDC concepts in its undergraduate
curricula. In the lectures, students are taught general architecture and design
aspects of PDC, while in the practical activities they explore various software
approaches best suited to illustrate those general concepts. Assignments and
homeworks are then meant to check that the relevant desired skills have been
learned by our students. In this article, we outline the content of the lectures,
the student evaluation process, as well as the lessons learned over time, and the
improvements we introduced in our content and approach. The IT industry is
exhibiting a particular interest in our graduates, and their PDC skills are highly
appreciated. This is also due to the fact that we have continued to evolve our
Materials and Methods constantly, as new technologies emerge. At the same time
however, we aim for our students to have a fundamental understanding of how
parallel and distributed processing architectures work, from both the hardware
and software perspective. As new architectures emerge continuously, driven now

Integrating Parallel Computing in the Curriculum of the UPB 233

by emerging domains such as AI or IoT, the essential building blocks remain the
same – and PDC is one of those blocks.

7.2 Outlook

We are constantly adapting our curriculum as the industry evolves. One inter-
esting direction are cross-API intermediate languages such as SPIR which pro-
vide the underlying runtime for several APIs, such as OpenCL, Vulkan, SyCL,
OpenMP, or OpenACC. Moreover, we are considering the addition of a section
exemplifying the interaction of OpenCL with popular data analytics and machine
learning frameworks such as Anaconda, by using the PyOpenCL [17] wrapper,
thus linking together the CSA labs on Python and OpenCL.

Acknowledgements. The authors would like to thank Professor Nicolae Tăpuş,
Alexandru Herişanu, Răzvan Dobre, Vlad Spoială, Dan Dragomir, Alexandru Olteanu,
and Voichiţa Iancu for their valuable contributions to the CSA and PPA curriculum.
This work is partially supported by project Sovarex, ID: 10PS/2017.

References

1. ACA master program. https://cs.pub.ro/index.php/education/courses/68-mas/
aca?layout=. Accessed 14 May 2018

2. BLAS Basic Linear Algebra Subprograms. http://www.netlib.org/blas/. Accessed
14 May 2018

3. CSA wiki. http://cs.curs.pub.ro/wiki/asc/. Accessed 8 May 2018
4. Dokuwiki homepage. https://www.dokuwiki.org/dokuwiki. Accessed 14 May 2018
5. ETector homepage. http://www.etector.org/show.cgi. Accessed 14 May 2018
6. Junio homepage. https://junio.ro. Accessed 27 Apr 2018
7. Moodle homepage. https://moodle.org. Accessed 14 May 2018
8. Moss - for a Measure Of Software Similarity. https://theory.stanford.edu/∼aiken/

moss/. Accessed 14 May 2018
9. Open Grid Scheduler. http://gridscheduler.sourceforge.net/. Accessed 14 May 2018

10. PDPS master program. https://cs.pub.ro/index.php/education/courses/70-mas/
pdps?layout=. Accessed 14 May 2018

11. Pylint homepage. https://www.pylint.org/. Accessed 25 Apr 2018
12. Stagii pe bune homepage. https://stagiipebune.ro. Accessed 27 Apr 2018
13. Torque Resource Manager. http://www.adaptivecomputing.com/products/open-

source/torque/. Accessed 14 May 2018
14. VMChecker. https://github.com/rosedu/vmchecker. Accessed 25 Apr 2018
15. Chandra, R., Dagum, L., Kohr, D., Maydan, D., McDonald, J., Menon, R.: Parallel

Programming in OpenMP. MK Inc., San Francisco (2001)
16. Cook, S.: CUDA Programming: A Developer’s Guide to Parallel Computing with

GPUs, 1st edn. MK Inc., San Francisco (2013)
17. Pierro, M.D.: Portable parallel programs with Python and OpenCL. Comput. Sci.

Eng. 16, 34–40 (2014)
18. Message Passing Interface Forum. MPI: A message-passing interface standard.

Technical report, Knoxville, TN, USA (1994)

https://cs.pub.ro/index.php/education/courses/68-mas/aca?layout=
https://cs.pub.ro/index.php/education/courses/68-mas/aca?layout=
http://www.netlib.org/blas/
http://cs.curs.pub.ro/wiki/asc/
https://www.dokuwiki.org/dokuwiki
http://www.etector.org/show.cgi
https://junio.ro
https://moodle.org
https://theory.stanford.edu/~aiken/moss/
https://theory.stanford.edu/~aiken/moss/
http://gridscheduler.sourceforge.net/
https://cs.pub.ro/index.php/education/courses/70-mas/pdps?layout=
https://cs.pub.ro/index.php/education/courses/70-mas/pdps?layout=
https://www.pylint.org/
https://stagiipebune.ro
http://www.adaptivecomputing.com/products/open-source/torque/
http://www.adaptivecomputing.com/products/open-source/torque/
https://github.com/rosedu/vmchecker

234 M. Carabaş et al.

19. Ghafoor, S., Brown, D.W., Rogers, M.: Integrating parallel computing in intro-
ductory programming classes: an experience and lessons learned. In: Heras, D.B.,
Bougé, L. (eds.) Euro-Par 2017. LNCS, vol. 10659, pp. 216–226. Springer, Cham
(2018). https://doi.org/10.1007/978-3-319-75178-8 18

20. Paprzycki, M., Wasniowski, R., Zalewski, J.: Parallel and distributed computing
education: a software engineering approach. In: Ibrahim, R.L. (ed.) CSEE 1995.
LNCS, vol. 895, pp. 187–204. Springer, Heidelberg (1995). https://doi.org/10.1007/
3-540-58951-1 104

21. Munshi, A., Gaster, B., Mattson, T.G., Fung, J., Ginsburg, D.: OpenCL Program-
ming Guide, 1st edn. Addison-Wesley Professional, Upper Saddle River (2011)

22. Niculescu, V., Bufnea, D.: Experience with teaching PDC topics into Babeş-Bolyai
University’s CS courses. In: Heras, D.B., Bougé, L. (eds.) Euro-Par 2017. LNCS,
vol. 10659, pp. 240–251. Springer, Cham (2018). https://doi.org/10.1007/978-3-
319-75178-8 20

23. Raynal, M.: Parallel computing vs. distributed computing: a great confusion? (posi-
tion paper). In: Hunold, S., et al. (eds.) Euro-Par 2015. LNCS, vol. 9523, pp. 41–53.
Springer, Cham (2015). https://doi.org/10.1007/978-3-319-27308-2 4

24. Tomeu-Hardasmal, A.J., Salguero, A.G., Capel, M.I.: Integration of ICT in con-
current and parallel programming lectures. In: Hunold, S., et al. (eds.) Euro-Par
2015. LNCS, vol. 9523, pp. 114–124. Springer, Cham (2015). https://doi.org/10.
1007/978-3-319-27308-2 10

https://doi.org/10.1007/978-3-319-75178-8_18
https://doi.org/10.1007/3-540-58951-1_104
https://doi.org/10.1007/3-540-58951-1_104
https://doi.org/10.1007/978-3-319-75178-8_20
https://doi.org/10.1007/978-3-319-75178-8_20
https://doi.org/10.1007/978-3-319-27308-2_4
https://doi.org/10.1007/978-3-319-27308-2_10
https://doi.org/10.1007/978-3-319-27308-2_10

	Integrating Parallel Computing in the Curriculum of the University Politehnica of Bucharest
	1 Introduction
	2 Parallel and Distributed Computing Curriculum
	2.1 Computer Systems Architecture
	2.2 Parallel Processing Architectures
	2.3 Graduate Lectures on PDC

	3 Practical Activities
	3.1 Computer Systems Architecture
	3.2 Parallel Processing Architectures

	4 Student Assessment and Evaluation
	4.1 Lab Activity and Homeworks
	4.2 Computing Infrastructure
	4.3 Final Examination and Feedback

	5 Industry Involvement
	6 Lessons Learned
	7 Conclusions and Outlook
	7.1 Conclusions
	7.2 Outlook

	References

