
From Mathematical Model to Parallel
Execution to Performance Improvement:
Introducing Students to a Workflow for

Scientific Computing

Franziska Kasielke1(B) and Ronny Tschüter2

1 Faculty of Computer Science, Technische Universität Dresden, 01062 Dresden,
Germany

{franziska.kasielke,ronny.tschueter}@tu-dresden.de
2 Center for Information Services and High Performance Computing,

Technische Universität Dresden, 01062 Dresden, Germany

Abstract. Current courses in parallel and distributed computing
(PDC) often focus on programming models and techniques. However,
PDC is embedded in a scientific workflow that incorporates more than
programming skills. The workflow spans from mathematical model-
ing to programming, data interpretation, and performance analysis.
Especially the last task is covered insufficiently in educational courses.
Often scientists from different fields of knowledge, each with individual
expertise, collaborate to perform these tasks. In this work, the general
design and the implementation of an exercise within the course “Super-
computers and their programming” at Technische Universität Dresden,
Faculty of Computer Science is presented. In the exercise, the students
pass through a complete workflow for scientific computing. The students
gain or improve their knowledge about: (i) mathematical modeling of sys-
tems, (ii) transferring the mathematical model to a (parallel) program,
(iii) visualization and interpretation of the experiment results, and (iv)
performance analysis and improvements. The exercise exactly aims at
bridging the gap between the individual tasks of a scientific workflow
and equip students with wide knowledge.

Keywords: Workflow for scientific computing · Teaching
Parallel programming · Performance analysis · Heat transfer

1 Introduction

Besides theory and experiment, simulation is the third pillar of science [8]. The
increasing numerical complexity of simulation models results in a high compu-
tational effort. Furthermore, the memory demands of scientific simulations often
exceed the amount of memory accessible by a single process. These factors ren-
der sequential execution infeasible. Parallel and distributed computing (PDC)

c© Springer Nature Switzerland AG 2019
G. Mencagli et al. (Eds.): Euro-Par 2018 Workshops, LNCS 11339, pp. 211–221, 2019.
https://doi.org/10.1007/978-3-030-10549-5_17

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-10549-5_17&domain=pdf
https://doi.org/10.1007/978-3-030-10549-5_17

212 F. Kasielke and R. Tschüter

enables fine-granular and large-scale simulations on highly parallel computer
systems. As a consequence, PDC acts as a central service for computational sci-
ence and has to be an integral part of educating future scientists. However, the
task of training students in PDC is more than just teaching programming skills.
Developers of parallel scientific applications need a profound knowledge about:

– Mathematical modeling to express the problem by, e.g., algebraic operators,
differential operators, and/or functions,

– Computer science (CS) and computer engineering (CE) to transfer the math-
ematical model into statements of a programming language, and

– Visualization and interpretation of experiment results to gain knowledge out
of raw data.

Additionally, performance analysis and improvements of scientific applications
are important aspects. Despite these aspects being an integral part of the daily
work of scientists, they are often missed in education. Scientific applications need
to be tuned in order to leverage the full potential of computer systems, as well
as to scale parallel applications to a larger amount of processes.

In summary, in order to successfully implement scientific applications a work-
flow for scientific computing has to cover all aspects: mathematical modeling,
programming, working with HPC systems, data visualization and interpretation,
as well as performance analysis and improvement [4].

In this work, a lecture and, especially, an associated exercise at Technische
Universität Dresden is presented. Both lecture and exercise introduce students to
the workflow for scientific computing. In addition, current feedback revealed that
students experience a lack of practical programming exercises in their courses.
Therefore, the exercise also aims to improve their programming skills. The spe-
cific contributions of this work comprise:

– The general design and goals of the course “Supercomputers and their pro-
gramming” and, especially, one of the associated exercises at Technische Uni-
versität Dresden,

– The implementation of the exercise in order to address current limitations/
drawbacks in the education of students,

– Bridging the gap between domain scientists and computer experts by
• Introducing students to a complete workflow of implementing scientific

applications,
• Emphasize on both mathematical modeling as well as programming skills,

and
– Reporting on experiences gained during the course and exercises.

The remainder of this work is organized as follows: In Sect. 2, design aspects
of the course and one of the associated exercises are described in detail. The
implementation of these aspects within the exercise is presented in Sect. 3. The
feedback from current students and tutors is summarized in Sect. 4. Additionally,
an outlook on future enhancements is given.

From Mathematical Model to Parallel Execution 213

2 Design of the Exercise: Workflow for Scientific
Computing

The course “Supercomputers and their programming” at Technische Univer-
sität Dresden, Faculty of Computer Science, is characterized by a heteroge-
neous audience. This course addresses undergraduate and graduate students of
computer science, information systems engineering, mathematics, computational
science and engineering, as well as natural and engineering sciences. The focus
is on strategies and methods for parallel processing including common program-
ming models, architecture and networking concepts, and required algorithmic
components of parallel and distributed computing. Furthermore, the course is
influenced by experiences of the interdisciplinary application area at the Center
for Information Services and High Performance Computing (ZIH). At Technis-
che Universität Dresden, the academic year consists of a summer and a winter
semesters. Each semester includes a teaching period of 15 weeks. Both, the lec-
ture and the associated exercise, take place once a week with a duration of 90 min
each.

Since the students attending the course come from different fields of science,
their existing knowledge varies widely. Either the students have comprehen-
sive expertise in (parallel) programming and only basic to none expertise in
numerical modeling of scientific applications, or vice versa. An exercise compris-
ing two sessions was created to bridge this gap. The idea of this exercise is to
convey expertise in both areas: numerical modeling of scientific applications as
well as parallel programming including performance analysis and improvement.
Based on the example of a heat transfer simulation, the students practically
pass through a complete, albeit simplified, workflow for scientific computing.
Considering the entire workflow for scientific computing represents the unique
characteristic of this exercise.

In the following subsections, the design of the exercise is described in more
detail: the mathematical model, the parallel implementation and execution, as
well as visualization and performance analysis aspects. The implementation of
these aspects within the exercise is explained in Sect. 3.

2.1 Mathematical Model

For convenience and without loss of generality, in the exercise the heat transfer
simulation in a two-dimensional space is considered. The propagation of thermal
energy in a given two-dimensional space is described by the following parabolic
partial differential equation:

∂

∂t
u(x, y, t) = a ·

(
∂2

∂x2
u(x, y, t) +

∂2

∂y2
u(x, y, t)

)
, (1)

where a denotes the thermal diffusivity. A visualization of the heat distribution
in a two-dimensional space with a source of heat at the center of the region is
shown in Fig. 1.

214 F. Kasielke and R. Tschüter

(a) Initial state of the simulation (b) Intermediate state of the simulation

Fig. 1. Heat distribution in a two-dimensional space, heat source at the center

The finite difference method is used to obtain the numerical solution of Eq. 1.
The continuous partial differential equation is approximated with a discrete
equation. The heat distribution u is determined on a grid Ω = {(xi, yj , tk)},
with xi := i · Δx (i = 1, . . . , nx), yj := j · Δy (j = 1, . . . , ny), and tk := k · Δt
(k = 1, . . . , nt), where Δx, Δy, and Δt denote the increments in x-, y-, and t-
direction. The heat distribution in a given cell (xi, yj) of the grid at a given time
step tk is denoted as u(xi, yj , tk) := u|ki,j . Approximating the time derivative
by the forward differencing scheme and the space derivatives by the 2nd order
central differencing scheme yields:

u|t+1
i,j − u|ti,j

Δt
= a ·

(
u|ti+1,j − 2u|ti,j + u|ti−1,j

Δx2
+

u|ti,j+1 − 2u|ti,j + u|ti,j−1

Δy2

)
. (2)

The solution of Eq. 2 requires the specification of boundary conditions. Well-
known representatives are Dirichlet and Neumann boundary conditions. The
Dirichlet boundary condition specifies the value by a function, whereas the Neu-
mann boundary condition specifies the value by the normal derivative of the
function. Periodic boundary conditions represent a special case. For the sake of
simplicity, periodic boundary conditions are assumed, given by:

u|t0,j = u|tnx,j , u|tnx+1,j = u|t1,j (∀j = 1, . . . , ny),

u|ti,0 = u|ti,ny
, u|ti,ny+1 = u|ti,1 (∀i = 1, . . . , nx). (3)

2.2 Parallel Implementation and Execution on HPC Resources

The implementation of the heat distribution (Eq. 2) with periodic boundary
conditions uses two two-dimensional grids of the size nx ×ny. One is the present
grid, the other one is the temporary grid. For calculation of the heat distribution
at the boundaries according to Eq. 3, these grids are expanded at the boundaries
resulting in a grid size of (nx + 2) × (ny + 2).

The heat distribution is computed for all inner cells in the present grid for
one time step, the results are saved in the temporary grid. After completing
the calculations of one time step, the boundary cells are updated with the new
values (according to Eq. 3). The present and the temporary grid are swapped

From Mathematical Model to Parallel Execution 215

in order to prepare computations of the next time step. A visualization of this
computing scheme is shown in Fig. 2.

present grid temporary grid

u|ti,j + Δt · a ·
(

u|ti+1,j−2u|ti,j+u|ti−1,j
Δx2 +

u|ti,j+1−2u|ti,j+u|ti,j−1
Δy2

)

Legend:

boundary cells

inner cells

Fig. 2. Computing the heat distribution at one time step using the present (left-hand
side) and the temporary (right-hand side) grid

The heat distribution is parallelized using the Message Passing Interface
(MPI) [6]. MPI is widely used and proved its performance on a wide range of
hardware platforms. It is assumed that the available processes P1, . . . , Pk can be
arranged in a two-dimensional cartesian grid. The computational grid is evenly
partitioned over the process grid. The partitioning of the computational grid
over four processes is shown in Fig. 3.

P0 P1

P2 P3

Fig. 3. Partitioning of the computational grid over four processes

Each process works on its own parts of the present and temporary grid. Com-
munication is necessary for computing the heat distribution at the boundaries
of the partial present grid. Therefore, the grids of the processes are extended
by halo cells at the boundaries. The required data transfers of a process Pi

(i ∈ 1, . . . , k) including the neighborhood relations are shown in Fig. 4.
After finishing the simulation, the overall energy of the system is computed

by gathering and adding the final values of all inner grid cells. A loss of energy

216 F. Kasielke and R. Tschüter

Pn

Pj Pi Pm

Pk

(a) Neighborhood relationships of
process Pi

to Pj

to Pm

to Pn

to Pk

from Pj

from Pm

from Pn

from Pk

(b) Data transfers of process Pi

Fig. 4. Neighborhood relations and corresponding data transfers of process Pi

in the system between the start and the end of the simulation detects failures in
the implementation.

The parallel implementation of the heat distribution is executed on Taurus.
This Bull HPC system at Technische Universität Dresden, Germany, consists of
2, 085 nodes with a total theoretical peak performance of 2, 087 TFLOP/s.

2.3 Visualization and Interpretation of the Simulation Results

The numerical solution of the heat distribution is written to a file periodically.
A simple visualization tool is offered in the exercise. The correct distribution
of the heat energy in the computational domain over time can be determined
intuitively. The tool is described in more detail in Subsect. 3.3.

2.4 Performance Analysis and Improvements

Performance analysis is an essential step in the workflow for scientific computing.
Due to the increasing numerical complexity of the underlying simulation models
scientific applications show a high demand on compute resources. Performance
analysis and corresponding improvements of the applications can help to reduce
execution times or increase applications’ scalability. This enables time critical
use case scenarios like weather forecasts. Additionally, if the simulation requires
less time it often directly translates into reduced cost in terms of energy. In the
exercise, students use established tools (e.g., Score-P [5], Cube [2], Vampir [3])
for the performance analysis of the parallel heat distribution application.

3 Implementation of the Exercise: Workflow for Scientific
Computing

In this section, the implementation of an exercise within the course is high-
lighted. Within this exercise students learn the basic concepts of PDC, e.g.,

From Mathematical Model to Parallel Execution 217

domain decomposition, communication, and synchronization between process-
ing elements. Another important aspect of this exercise is teaching students to
build upon existing libraries and tools instead of starting from scratch. Addi-
tionally, students are introduced to the concepts of working with HPC systems.

3.1 Mathematical Model

The exercise starts with a brief introduction to the numerical solution of the
heat distribution. In a slide set, the mathematical model (as shown in Sect. 2.1)
is presented to the students. Typically, students with a science background are
more familiar with these aspects than CS/CE students.

3.2 Parallel Implementation and Execution on HPC Resources

In the exercise, the students implement a heat distribution simulation in the C
programming language and use MPI in order to parallelize the application. Due
to time constraints, the students would not be able to implement the application
from scratch. Therefore, they receive a source code skeleton from the tutors. This
skeleton already contains the basic program structure (see Listing 1.1). However,
essential parts of the source code (e.g., domain decomposition, data transfer
between processes) are left blank and marked to be implemented by the students.
The programming exercises start with fairly simple tasks, such as, initializing
the MPI environment (MPI Init), determining the number of all MPI processes
(MPI Comm size) or the global MPI rank (MPI Comm rank). More challenging
tasks include parallel I/O (MPI File open, MPI File set view, MPI File read,
MPI File write, MPI File close) to read/write data from/to files. In order to
distribute data over participating processes, the students create cartesian topolo-
gies and associated MPI communicators (MPI Dims create, MPI Cart create).
The implementation of the halo update after each iteration requires the determi-
nation of the neighbor ranks in the cartesian communicator (MPI Cart shift)
and subsequent data exchanges with the appropriate neighbor ranks (MPI Isend,
MPI Recv, MPI Wait). In addition, the update of the vertical halo cells makes
use of derived datatypes (MPI Type vector, MPI Type commit, MPI Type free).
Finally, a collective operation (MPI Reduce) computes the overall energy of the
system.

For some students, this exercise is the first opportunity to work on HPC
systems. Using HPC systems differs fundamentally from the experience students
gained by working on their local machines.

First, HPC systems typically provide a wide range of software components
(e.g., libraries, compilers, tools). Often multiple versions of software components
are available. Therefore, the students are introduced to the idea and usage of
environment modules. In the exercise, students use the LMOD module system
to select the compiler and MPI runtime.

Second, in contrast to a local system, multiple users share the compute
resources of a HPC machine. Therefore, a job scheduling system allocates

218 F. Kasielke and R. Tschüter

Listing 1.1. Pseudo code illustrating the algorithm of the heat distribution simulation

/* initialize grid from file */

loadGridFromFile ();

/* initialize temporary grid */

initializeTempGrid ();

/* heat distribution calculation phase */

for (count = 0; count < max_steps; count ++) {

/* save intermediate result to file */

if (count % 20) {

saveGridToFile ();

}

heatCalculation ();

}

/* save result to file */

saveGridToFile ();

resources for each application run (job) initiated by the user. Taurus is oper-
ated with the Slurm job scheduling system. The students write their own job
script to request appropriate compute resources (e.g., select compute nodes from
partitions equipped with Haswell CPUs). Afterwards, the students learn how to
submit, cancel, and monitor their jobs.

3.3 Visualization and Interpretation of the Simulation Results

As shown in Listing 1.1, every 20 iterations the heat simulation writes its inter-
mediate results to a file. At the end of the application run, also the final heat
distribution is written to this file. Consequently, the result file contains a series of
snapshots. Each snapshot represents an individual state of the heat distribution
at a specific simulation time step. In this exercise, the students use a prepared
bash script to generate a movie showing the heat flow over time. The bash script
opens the result file. Within the main loop of the bash script an individual snap-
shot is read and converted to a PNG image using Gnuplot. Two of these PNG
images are illustrated in Fig. 5. Finally, the bash script calls ffmpeg to create an
MP4 video based on the series of PNG images.

3.4 Performance Analysis and Improvements

Tasks with respect to performance analysis and improvements complement the
overview of the workflow for scientific computing. The goal is to monitor the
application and observe its runtime behavior. Therefore, the students recompile
the application with the Score-P [5] measurement infrastructure. For the pre-
sented example, Score-P automatically enables compiler instrumentation for user

From Mathematical Model to Parallel Execution 219

(a) Initial state (b) State after 118 iterations

Fig. 5. Visualization of the result data generated by the heat distribution simulation
code

Fig. 6. Trace visualization of the time interval of 20 iterations in the heat simulation,
at the end of this interval the application starts writing intermediate results to a file

functions within the source code and intercepts calls to the MPI library. As a
consequence, calls to MPI and user functions trigger the measurement system at
application runtime. Whenever triggered, the measurement system collects per-
formance data (e.g., timestamp, function name, hardware performance counter)
and stores the information as a profile (aggregated data) or trace (log of indi-
vidual events). Guided by the tutors, the students use established tools, e.g.,
Cube [2] and Vampir [3], to visualize and analyze this performance data. The
visualization of a trace in the Vampir analysis tool is shown in Fig. 6. The stu-
dents learn how to interpret profiles and traces, correlate performance patterns
with source code, and gain knowledge about the application behavior. Based on
this knowledge, students and tutors discuss about ideas to improve the perfor-
mance of the application. For example, the performance analysis of the initial
application reveals that most of the runtime is spent in MPI. On the one hand,
this performance issue stems from inefficient usage of MPI routines (e.g., the

220 F. Kasielke and R. Tschüter

result file is opened and closed for each snapshot). On the other hand, the ratio
between communication and computation can be improved. After the discussion,
the students can modify the source code in order to resolve performance prob-
lems or investigate the effects of different file systems on the I/O performance of
the application. Comparing the performance data collected during the run of the
initial and modified application directly reveals the effectiveness of the changes.

4 Conclusion and Future Work

In this work, the idea behind an exercise in the course “Supercomputers and their
programming” is presented. In this exercise, the students from computer science,
information systems engineering, mathematics, computational science and engi-
neering, as well as natural and engineering sciences are practically introduced
to a complete workflow for scientific computing. While working on a simpli-
fied example, the students familiarize with the general idea of the workflow for
scientific computing. This workflow can be applied to other problems of compu-
tational science as well. The students learn to work with mathematical models,
transfer these models into statements of programming languages, use HPC sys-
tems, visualize and interpret result data generated by simulation runs, as well
as analyze and improve the performance of scientific applications.

In the course “Supercomputers and their programming” the students are
introduced to theoretical background in the field of parallel and distributed com-
puting. The exercise described in this work supplements the gained knowledge
from the course with practical experiences. With completion of the exercise the
students are well prepared for their future scientific work. The exercise presents
a holistic training for students and is often the first practical experience with
a complete workflow for scientific computing. This workflow represents a gen-
eral methodology and can be applied to other scientific problems as well. The
feedback from the students is very positive. In contrast to common curriculums,
the course covers not only theoretical knowledge. Moreover, in this exercise the
students have to implement, execute, and analyze a parallel program on a HPC
system. The students highly appreciate the chance to gain skills or improve their
expertise in parallel programming. Furthermore, the tutors noticed that the exer-
cise encourages the cooperation between students from different courses of study.
The students benefit from each others expertise and complement their knowl-
edge. Furthermore, the tutors also benefit from the close cooperation with the
students. First contacts are established for acquiring student workers or thesis
topics.

While the feedback of the exercise is very positive, there are options to
enhance the practical session. For example, the parallel implementation can
be extended to shared-memory parallelism by an hybrid MPI+OpenMP ver-
sion. Multi-core architectures with shared memory are omnipresent. Although,
OpenMP [7] is theoretically introduced in the lecture, it is currently not part of
the exercises. A practical implementation of the shared memory paradigm would
complement the course. The visualization approach presented in the exercise can

From Mathematical Model to Parallel Execution 221

be improved as well. Students would benefit from replacing the self-implemented
visualization approach by established frameworks (e.g., VisIt [1]) and their file
formats.

References

1. Childs, H., et al.: VisIt: An end-user tool for visualizing and analyzing very large
data. In: High Performance Visualization-Enabling Extreme-Scale Scientific Insight,
pp. 357–372 (2012)

2. Geimer, M., Saviankou, P., Strube, A., Szebenyi, Z., Wolf, F., Wylie, B.J.N.: Further
improving the scalability of the scalasca toolset. In: Jónasson, K. (ed.) PARA 2010.
LNCS, vol. 7134, pp. 463–473. Springer, Heidelberg (2012). https://doi.org/10.1007/
978-3-642-28145-7 45

3. Knüpfer, A., et al.: The Vampir performance analysis tool-set. In: Resch, M., Keller,
R., Himmler, V., Krammer, B., Schulz, A. (eds.) Tools for High Performance Com-
puting, pp. 139–155. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-
540-68564-7 9

4. Koumoutsakos, P., Chatzi, E., Krzhizhanovskaya, V.V., Lees, M., Dongarra, J.,
Sloot, P.M.A.: The art of computational science, bridging gaps - forming alloys.
Preface for ICCS 2017. Procedia Comput. Sci. 108, 1–6 (2017)

5. Mey, D., et al.: Score-P: a unified performance measurement system for petascale
applications. In: Bischof, C., Hegering, H.G., Nagel, W.E., Wittum, G. (eds.) Com-
petence in High Performance Computing. Springer, Heidelberg (2012). https://doi.
org/10.1007/978-3-642-24025-6 8

6. MPI Forum: Message Passing Interface (MPI), May 2018. http://mpi-forum.org/
7. OpenMP: The OpenMP API specification for parallel programming, May 2018.

http://openmp.org/
8. Riedel, M., Streit, A., Wolf, F., Lippert, T., Kranzlmüller, D.: Classification of

different approaches for e-science applications in next generation computing infras-
tructures. In: 2008 IEEE Fourth International Conference on eScience, pp. 198–205
(2008). https://doi.org/10.1109/eScience.2008.56

https://doi.org/10.1007/978-3-642-28145-7_45
https://doi.org/10.1007/978-3-642-28145-7_45
https://doi.org/10.1007/978-3-540-68564-7_9
https://doi.org/10.1007/978-3-540-68564-7_9
https://doi.org/10.1007/978-3-642-24025-6_8
https://doi.org/10.1007/978-3-642-24025-6_8
http://mpi-forum.org/
http://openmp.org/
https://doi.org/10.1109/eScience.2008.56

	From Mathematical Model to Parallel Execution to Performance Improvement: Introducing Students to a Workflow for Scientific Computing
	1 Introduction
	2 Design of the Exercise: Workflow for Scientific Computing
	2.1 Mathematical Model
	2.2 Parallel Implementation and Execution on HPC Resources
	2.3 Visualization and Interpretation of the Simulation Results
	2.4 Performance Analysis and Improvements

	3 Implementation of the Exercise: Workflow for Scientific Computing
	3.1 Mathematical Model
	3.2 Parallel Implementation and Execution on HPC Resources
	3.3 Visualization and Interpretation of the Simulation Results
	3.4 Performance Analysis and Improvements

	4 Conclusion and Future Work
	References

