
Studying the Structure of Parallel
Algorithms as a Key Element of

High-Performance Computing Education

Vladimir Voevodin, Alexander Antonov(B), and Nina Popova

Lomonosov Moscow State University, Moscow, Russia
{voevodin,asa}@parallel.ru, popova@cs.msu.su

Abstract. Since the computing world has become fully parallel, every
software developer today should be familiar with the notion of “par-
allel algorithm structure.” If in recent years, students have studied a
basic introduction to algorithms; today, parallel algorithm structure must
become a vital part of computer science education. In this work we
present two years of experience teaching a “Supercomputer Modeling
and Technologies” course, and running practical assignments at the Com-
putational Mathematics and Cybernetics faculty of Lomonosov Moscow
State University, aimed at teaching students a methodology for analyzing
parallel algorithm properties.

Keywords: Structure of parallel algorithms
High-performance computing education · Parallel programming
Educational curricula · Computer science curricula
Undergraduate students

1 Introduction

Today, computing technologies are used in all areas of science, industry and eco-
nomics, which imposes strict requirements on higher education systems train-
ing computer science specialists in all countries. One recent example is India’s
“National Supercomputing Mission” [1], during which the government set a 7-
year target for training 20,000 specialists in the area of parallel and distributed
computer technologies. The demand for actively developing education in the
areas of computational sciences, high-performance computing, and mathemat-
ical modeling using supercomputers is evidenced throughout the entire global
educational community [2–5].

The results described in Sects. 4, 5 were obtained in Lomonosov Moscow State
University with the financial support of the Russian Science Foundation (Agreement
№ 14–11–00190). The research is carried out using the equipment of the shared research
facilities of HPC computing resources at Lomonosov Moscow State University sup-
ported by the project RFMEFI62117X0011.

c© Springer Nature Switzerland AG 2019
G. Mencagli et al. (Eds.): Euro-Par 2018 Workshops, LNCS 11339, pp. 199–210, 2019.
https://doi.org/10.1007/978-3-030-10549-5_16

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-10549-5_16&domain=pdf
https://doi.org/10.1007/978-3-030-10549-5_16


200 V. Voevodin et al.

A number of major national and international projects can be noted that
offer recommendations for developing training materials in these areas [6–10].
Interesting results have been discussed at international seminars dedicated to
the issue: EduHPC, EduPAR, Euro-EduPAR [11]. Books have been published
that are entirely dedicated to the best materials and pedagogical practices in the
area of PDC [12]. These activities are fueling growth in the number of educa-
tional courses and programs, with the mathematical modeling industry engaging
specialists from various applied areas. This is further promoted by the emergence
of new areas where high-performance computing is in high demand. The most
recent examples where industries received a development boost thanks to HPC
technologies are deep learning, artificial intelligence, and big data analytics.

This work consists of 5 sections. In Sects. 2 and 3 we give a brief overview
of supercomputer education at the Computational Mathematics and Cyber-
netics faculty of Lomonosov Moscow State University, and describe how the
“Supercomputer Modeling and Technologies” course is organized. Sections 4
and 5 describe two versions of practical assignments that are part of the
course, which allow for two different perspectives on studying the structure of
algorithms. From our point of view, focusing on the study of parallel algorithm
structure in the form presented is a new approach, representing the key con-
tent of this work. Section 6 contains recommendations and conclusions based
on two years of experience from teaching this course and conducting practical
assignments in the form presented.

This approach to studying the structure of parallel algorithms is in line
with existing proposals on the content of educational curricula, e.g., Computer
Science Curricula [13], NSF/IEEE-TCPP Curriculum Initiative on Parallel and
Distributed Computing [14], and can be used at many universities.

2 Supercomputer Education at MSU

Lomonosov Moscow State University provides a good basis for supercomputer
education. MSU’s supercomputer center is currently the most powerful in
Russia. It is centered around the Lomonosov-2 (4.9 Petaflops) and Lomonosov
(1.7 Petaflops) supercomputers and IBM Blue Gene/P (28 Teraflops). The basics
of parallel computations are taught at several faculties within MSU: Compu-
tational Mathematics and Cybernetics, Mechanics and Mathematics, Physics,
Chemistry, Bioengineering and Bioinformatics, and a few others.

CMC faculty is a leading educational center in Russia offering specialist
training that combines applied mathematics, computational technologies and
information science. It has about 2000 full-time students, with about 200 PhD
candidates. Training at the faculty is provided as part of an integrated Master’s
degree program: for their first four years, students study within a Bachelor’s
degree program, followed by two years in one of twenty-two available Master’s
degree programs. This dual-level system offers basic fundamental training for
students during years 1–4, with deeper specialization as a part of the Master’s
degree programs. Studying supercomputer-related disciplines is mandatory for
all students at the faculty.



Studying the Structure of Parallel Algorithms 201

3 The Supercomputer Modeling and Technologies
Discipline

The “Supercomputer Modeling and Technologies” course is the only general
lecture course for all 22 Master’s degree programs at CMC faculty. It is taught
to second-year Master’s degree students with a total of about 240 students taking
the course. All students are expected to have basic knowledge of mathematical
modeling, parallel computing systems and supercomputer architecture, and the
basics of parallel computing.

The discipline totals 7 credits. The course consists of a lecture module, semi-
nars and several practical assignments. Lectures are conducted for two academic
hours a week from September to November. Two hours of seminars are also
conducted each week. The seminars are used to discuss problem definitions and
implementation details, to offer consultations on assignments, and for students
to present reports on the assignments they have completed.

The course lasts for one semester, and two full cycles have been completed
to date in the fall semesters of 2016 and 2017. Teachers from the various depart-
ments at the CMC faculty are invited to take part in delivering lectures, along
with representatives from leading IT companies.

Students are offered three practical assignments as part of the course, of
which two are mandatory. The first assignment requires studying and describ-
ing the structure and properties of parallel algorithms. The second assignment
involves implementing a parallel algorithm to solve a three-dimensional hyper-
bolic equation using MPI and OpenMP. The third assignment is given by the
lecturers in specific subject areas, and students can choose which lecturer’s
assignment they would like to perform. While the second and third assignments
are classical assignments that directed to parallel implementations; the first one
requires additional clarifications and is central to this work: Sects. 4, 5 and 6
of this article describe two options for the first assignment that are aimed at
studying the properties of parallel algorithms.

The first assignment is indeed unusual and non-trivial, so students were
allowed to work in pairs. Any parallel computers could be chosen as the tar-
get computing platform. By default, all students were provided access to MSU’s
supercomputers: Lomonosov [15] and IBM Blue Gene/P. Some students were
granted access to the Lomonosov-2 supercomputer [16], clusters with Intel Xeon
Phi (KNL) and/or NVIDIA P100 processors, clusters with the new “Angara”
interconnect and several others. This enabled comparison of results across differ-
ent processors (multicore/manycore Intel, NVIDIA GPU, IBM PowerPC), and
various communication networks (InfiniBand, proprietary) with different net-
work topologies (fat tree, 3-dimensional torus, flattened butterfly).

The results verification form is an important part of the assignment. The goal
was not just to grade the work, but to make sure that students completed their
assignments at a good level of quality. In fact, the idea was to teach students
to find a proper approach to this kind of assignment. Instead of immediately
grading the work, the tutors formulated their comments; the students would
incorporate the feedback and send the assignment results back for further review.



202 V. Voevodin et al.

This interaction was repeated as necessary, usually limited only by the deadline
for grading course results at the end of the term. This is very different from
the traditional assignment grading process. The purpose is not so much about
making sure the course materials are absorbed correctly. Rather what is most
important is to teach students an effective approach to analyzing algorithm
properties in a proper and high-quality manner. This requires tutors to have a
much higher level of qualification and to dedicate more time to the assessment,
but the final results are comparable in quality with the best teaching practices.

4 Version of the Practical Assignment: Description
of Parallel Algorithm Properties

Assignment: Describe the structure and properties of the chosen algorithm.
While this wording sounds extremely simple, it masks a number of small

but important nuances. It is also important to note that in order to successfully
complete this assignment, students need to use knowledge previously obtained
over various disciplines at the faculty.

4.1 Methodological Comments on the Assignment

What does it mean to describe an algorithm’s structure and properties? This is
not a simple question, as there is no universally recognized standard specifying
which properties of an algorithm are important and exactly how they must be
described. The students were offered the algorithm description structure used by
the AlgoWiki Open Encyclopedia of Algorithm Properties [17,18]. This descrip-
tion structure was developed as a universal one that can be applied to any
algorithm, giving particular emphasis to the properties related to parallelism.

Some sections of the AlgoWiki description were left out of this assignment
due to their complexity (for example, sections describing the data locality or
dynamic characteristics of an algorithm’s implementation). Ultimately, the fol-
lowing structure was recommended for students to use in their descriptions of
the algorithm’s properties:

1. General description of the algorithm.
2. Mathematical description of the algorithm.
3. Computational kernel of the algorithm.
4. Macro structure of the algorithm.
5. Implementation scheme of the serial algorithm.
6. Serial complexity of the algorithm.
7. Information graph.
8. Parallelism resource of the algorithm.
9. Input and output data of the algorithm.

10. Properties of the algorithm.
11. Scalability of the algorithm and its implementation.
12. Existing implementations of the algorithm.
13. References.



Studying the Structure of Parallel Algorithms 203

Notably, a number of examples are available in AlgoWiki for each item, which
helped students to complete the assignment. The first ten items in the description
require studying the algorithm’s theoretical properties, while items 11 and 12
are oriented towards studying the properties of its specific implementations. The
main focus of the assignment was not on the actual algorithm description (this
part could simply be taken from textbooks), but on studying its properties —
primarily the algorithm’s information structure and parallelism resource. These
properties are rarely described in the literature, so this part of the assignment
required conducting independent research.

The central task in describing the algorithm properties would be to build and
analyze an information graph (Item 7 of the above structure) [19,20]. Figure 1
shows the example information graph of the Cooley-Tukey algorithm with input
and output data.

Fig. 1. The information graph of the Cooley-Tukey algorithm for n = 8. Op+ denotes
the addition of two complex numbers, while Op- denotes the subtraction of two complex
numbers followed by multiplying the result by another complex number (a twiddle
factor). The edges correspond to the transmission of data between the vertices.

An information graph is vital for studying algorithm properties, as it contains
all the necessary information about its parallel structure. The skills for working
with an information graph are also very important in practice, as they help
to evaluate an algorithm’s parallel complexity and an application’s parallelism
resource, to understand the algorithm’s bottlenecks and to find different options
for parallel implementation. This is why special attention was paid to information
graph analysis — both when formulating the student assignments and when
checking the completed work.

To prepare a specific description, the students were asked to choose one of
30 preselected algorithms, specifically: Jacobi’s method for the singular value
decomposition, Gram-Schmidt orthogonalization process, fast discrete Fourier



204 V. Voevodin et al.

transform, and others. These algorithms are all certainly different in complexity.
However, the essence of the assignment was not about developing algorithms,
nor even about implementing them, so the complexity of the algorithm itself
didn’t affect the complexity of the assignment so much.

4.2 Organization and Results of the First Practical Assignment

This version of the assignment was completed by 246 Master’s degree students in
2016, during their second year of education. As a result, each of the 30 proposed
algorithms was described by 4–5 groups of 1–2 students each. The students could
use any literature or online sources in their algorithm descriptions, as long as they
were appropriately cited. Moreover, when the assignment was distributed, each
algorithm was accompanied by references to well-known sources that explain the
algorithm. This addressed two issues at once: the students would get a reliable
source of information, and both the student and the tutor would be guaranteed
to have an unequivocal understanding of which specific algorithm was to be
described.

Due to the volume of the work produced, the resulting descriptions were
verified in two independent stages. The first stage involved a purely formal veri-
fication of the descriptions for compliance with the requirements. This included
checking for the presence of all relevant description sections, the clarity of the
formulas, the information content of any drawings used, the inclusion of all
parameters and conditions under which the algorithm properties were studied,
references to sources, etc. The content of the algorithm descriptions was not
checked at this stage, to reduce the requirements for inspector qualifications and
the time needed to perform the verification. The second stage of the verification
required a review of content. The algorithm description was checked for accuracy,
the proper definition and description of its properties, proper formulas and the
accuracy of the results. These checks required much more time and substantially
higher tutor qualifications.

The technical evaluation was successfully supported by useful features of
AlgoWiki, based on MediaWiki technology. The students prepared algorithm
descriptions in their personal spaces and interacted with tutors using a built-in
collaboration mechanism. This facilitated communication student — tutor, in
addition to tracking every stage of the assignment, including any changes made
in the descriptions, tutor comments, date of response to tutor feedback, etc.

The final grades of the 146 groups comprising the 246 students were dis-
tributed as follows: 59 works received a 5 (Excellent) grade; 36 were graded at 4
(Good), 48 received a 3 (Satisfactory) grade, and three works were evaluated as
2 (Unsatisfactory). Thus, the average grade for the assignment was 4.03, which
indicates a generally high level of description quality given the complexity and
novelty of the assignment.

Remarkably, some of the student works were completed with such a high
quality level that they were included in the AlgoWiki Encyclopedia. In some
cases, the students went beyond the assignment formulation, conducting addi-
tional studies of other issues related to parallelism. Moreover, some of the stu-



Studying the Structure of Parallel Algorithms 205

dents became so engaged in studying the selected algorithms that they continued
enhancing their results even after the semester ended.

5 Version of the Practical Assignment: Studying
Algorithm Scalability

Assignment: Studying the scalability of algorithms and their implementations
on various computing platforms when changing the size of the problem and the
number of processors available.

5.1 Methodological Comments on the Assignment

When performing the second version of the assignment as part of the “Supercom-
puter Modeling and Technologies” course, students needed to perform a series
of computational experiments, collect the relevant data, interpret it correctly,
then draw a conclusion on the algorithm’s level of scalability. Additionally, they
needed to determine from the data obtained, which combination of problem size
and the quantity of processors maximized performance.

Graph algorithms were chosen as the subject of study in 2017. Five key
problems were considered: Single Source Shortest Path, Breadth-First Search,
Page Rank, Minimum Spanning Tree, and Strongly Connected Components.

The students could choose one of several available algorithms for each prob-
lem. For example, the options for the “Single Source Shortest Path” problem
were the Bellman-Ford, Dijkstra’s and Delta-Stepping algorithms. Since the
objective of this assignment was not to study parallel programming technologies,
up to 5 different ready-made implementations were offered for each algorithm,
which were to be used in computational experiments on the chosen computer
platform. As a result, each student chose a unique combination within which
scalability [21] was to be examined:

Problem → Algorithm → Implementation → Computing platform.
Computer performance for these algorithms is frequently measured in TEPS

(Traversed Edges Per Second), indicating the number of graph edges the com-
puter can pass (process) in one second using a given implementation of a given
algorithm. This parameter was used in our assignment to assess performance.

Special attention was paid to processing large graphs, which are common
in practical applications: social networks, road maps, chemical compounds and
many other real-life objects are described using graphs with millions and billions
of vertices and edges. At the same time, as the graph size increases, its imple-
mentation performance can drop substantially, as data no longer fit in cache
memory at different levels; hence the interest in carefully measuring the depen-
dence between the size of the problem, number of processors and performance.

Another important issue is that dynamic characteristics of graph algorithms
can change significantly with changes in the structure and properties of the
graphs being processed. For this reason, each student needed to study scalability
for two types of graphs: RMAT and SSCA2. These are synthetic graphs reflecting



206 V. Voevodin et al.

different properties of real-life graphs: RMAT graphs are suitable for modeling
the structure of social networks [22], while SSCA2 graphs are good for describing
a set of interconnected communities [23]. To obtain input RMAT/SSCA2 graphs
of an arbitrary size, students were provided ready-made parallel generators.

As a result, the assignment for each student was formulated as follows: for
each of the two graph types: RMAT and SSCA2, within the chosen combination
“Problem → Algorithm → Implementation → Computing platform,” it was
required to:

– build a chart showing the dependence (MTEPS) on the number of processors
(or threads) used and the graph size;

– find the combination of processor number and graph size that maximizes
performance.

Since the assignment was focused on analyzing large graphs, the maximum
performance point was to be calculated only for those problem sizes where the
graph did not fit entirely within cache memory. Figure 2(a) shows the dependence
experimentally determined by one of the students for the Breadth First Search
algorithm without considering this requirement, where maximum performance
is achieved on a small graph of 212 vertices.

Fig. 2. Particular aspects of the assignment: (a) impact of cache memory on maximum
performance value, (b) value fluctuations in the absence of multiple runs

One has to note the substantial computing resources needed to perform the
assignment properly. The assignment required the programs to be run multi-
ple times: the performance values were to be assessed for different graph sizes
and different processor numbers, for each of the two graph types (RMAT and
SSCA2). Moreover, performance values on nearly every computer would change
from one run to another, so ideally several experiments needed to be conducted
and the maximum value chosen, otherwise the resulting chart would contain
obvious artifacts, like the example shown in Fig. 2(b).



Studying the Structure of Parallel Algorithms 207

To motivate students to conduct a more thorough analysis of the scalability
figures obtained, it is useful to show the results obtained by other students using
other algorithms, other implementations and other computers (an example is
shown in Table 1). When comparing their maximum performance figures to other
results, students begin to ask the question: “Why am I doing worse?” Finding
the answer would require analyzing the entire chain “Problem → Algorithm →
Implementation → Computing platform,” which helps students realize the need
for a comprehensive approach for studying scalability.

Table 1. Comparison of maximum performance for different algorithms solving the
“Single Source Shortest Path” problem using different implementations on different
platforms.

Algorithm Implementation Computing Platform MTEPS GraphType GraphSize

Bellman-Ford RCC for GPU Lomonosov 1309.0 SSCA2 220

Bellman-Ford Ligra Lomonosov-2 1035.0 RMAT 221

Delta Stepping PBGL MPI Cluster/“Angara” 809.5 SSCA2 221

Delta Stepping GAP Lomonosov-2 616.0 RMAT 221

Bellman-Ford RCC for CPU Lomonosov 435.0 SSCA2 221

Bellman-Ford RCC for CPU Lomonosov-2 426.0 RMAT 221

Bellman-Ford Graph500 MPI Lomonosov 350.0 RMAT 220

Dijkstra’s PBGL MPI IBM BlueGene/P 8.9 SSCA2 220

Dijkstra’s PBGL MPI Lomonosov 5.3 SSCA2 221

5.2 Organization and Results of the First Practical Assignment

This version of the first practical assignment was performed in 2017 by 143
groups of Master’s degree students and the grades were distributed as follows:
121 works received a 5 (Excellent) grade; 15 were graded at 4 (Good), 5 received
a 3 (Satisfactory) grade, and two works were evaluated as 2 (Unsatisfactory).
The average grade for scalability description was 4.78. This is much higher than
the average for the 2016 assignment (4.03), which is not surprising: the scalability
study assignment was simpler and more familiar than the task of studying and
describing algorithm properties. In addition, when students described algorithm
properties in 2016, they had to present, among other things, their considera-
tions for algorithm’s scalability, as this was required in the description structure
(Item 11). At the same time, the assignment form chosen in 2017, turned out
successfully in a different way. By combining a simple assignment statement with
the need to interpret the obtained data, we achieve our goal: students begin to
think not just about the scalability analysis methodology and the notions of
weak and strong scalability, but also to learn the techniques for studying par-
allel program scalability in practice. Moreover, when analyzing scalability data,
students recognize the need for the joint (and specifically joint) study of the
various algorithm properties, implementations and computing platforms.



208 V. Voevodin et al.

6 Lessons Learnt from the 2-Year Experience

Let’s look at some important issues that one must keep in mind when using
similar assignments in the future. Some of them we chose to point out to students
at the very beginning, when distributing the assignments; others were faced
during the course of work, causing difficulties for students or tutors.

When describing algorithm properties, it is important to realize that not just
floating point arithmetic matters, but also read-write memory operations which
determine the execution time for many algorithms. In particular, it is necessary
to describe the computational core and sequential complexity of algorithms.

When defining the information structure of an algorithm, it is important to
define a level of details for operations. Otherwise, the students could produce
a linear graph of 3–4 vertices reflecting the sequential stages of the algorithm:
while this isn’t necessarily wrong, it clearly isn’t very informative either.

Some algorithms are based on other, simpler algorithms. In these cases, it was
advisable to use “macro-operations” that corresponded to simpler algorithms,
as they could be more traditional, expressive and clear for describing and under-
standing the structure of the original algorithms.

The information structure of the algorithms could be expressed in different
ways, with no set standards. However, the students were best off using a system
of axes related to the loop nesting structure: in that case, the information graph
reflects the computation structure used in the program and is more intuitive.

Describing an algorithm’s potential parallelism is challenging for the stu-
dents. This is not a habitual notion, and students don’t always immediately
learn to look at the algorithm structure in general. Methodological materials
need to be developed that contain sample descriptions of potential parallelism,
clearly showing what kind of results is expected from the students.

When studying scalability, it is important to draw the students’ attention to
explain all of the feature points on the performance charts: peaks, inflection points,
asymptote starting points, etc. Detailed analysis is not simple, but if peculiarities
consistently repeat between runs, then there must be an explanation.

For self-written programs independently, the students needed to clarify the
testing technology for the program implementing the given algorithm. This is
important, as the results presented will otherwise not be trustworthy.

7 Conclusion

Overall, we consider the two-year track record in teaching the “Supercomputer
Modeling and Technologies” course along with the practical assignments to be
a highly positive experience. A spacious inter-disciplinary approach to problems
under study, supported by specific practical assignments on actual supercom-
puters, creates a solid foundation for using the knowledge gained in further pro-
fessional activities. Indeed, obtaining good results required serious efforts from
both students and professors. But it was worth it! Students must use knowledge
and skills from previous courses, which is a good way to bring them closer to
completing their Master’s degree studies.



Studying the Structure of Parallel Algorithms 209

Practical assignments can easily be adapted to the specific environment of
another faculty by using a different set of algorithms, placing particular emphasis
on studying different algorithm properties, analyzing their own implementations,
studying existing source codes, focusing on the scalability of a specific computing
platform, and many other aspects.

The courses implemented in 2016 and 2017 are considered to be a pilot pro-
gram. Given the positive results achieved, we are planning to modify the topics
covered during the lecture part of the course, including areas such as super-
computer climate modeling, high-performance image processing methods, deep
learning, and big data analytics.

Acknowledgments. We are sincerely grateful to our colleagues form the Faculty of
Computational Mathematics and Cybernetics and the Research Computing Center who
helped us to deliver the lectures and organize the practical assignments—completing
the educational program in this form without their help would simply have been
impossible.

References

1. National Supercomputing Mission. https://www.nsmindia.in/. Accessed 4 May
2018

2. Secretary of Energy Advisory Board. Report of the Task Force on Next Gen-
eration High Performance Computing, U.S. Department of Energy. August
18, 2014. https://www.energy.gov/sites/prod/files/2014/10/f18/SEAB%20HPC
%20Task%20Force%20Final%20Report.pdf. Accessed 4 May 2018

3. Ezell, S.J., Atkinson, R.D.: The Vital Importance of High-Performance Computing
to U.S. Competitiveness. http://www2.itif.org/2016-high-performance-computing.
pdf. Accessed 4 May 2018

4. SIAM Working Group on CSE Education. SIAM: Graduate Education for
Computational Science and Engineering (2014). http://www.siam.org/students/
resources/report.php. Accessed 4 May 2018

5. Chapman, B., et al.: DOE: assessment of workforce development needs in office
of science research disciplines. http://science.energy.gov/∼/media/ascr/ascac/pdf/
charges/ASCAC Workforce Letter Report.pdf. Accessed 4 May 2018

6. Dongarra, J., et al.: Applied Mathematics Research for Exascale Computing,
US - DOE Report, March 2014. https://science.energy.gov/∼/media/ascr/pdf/
research/am/docs/EMWGreport.pdf. Accessed 4 May 2018

7. Future Directions in CSE Education and Research. Report from a Workshop Spon-
sored by the Society for Industrial and Applied Mathematics (SIAM) and the Euro-
pean Exascale Software Initiative (EESI-2). http://wiki.siam.org/siag-cse/images/
siag-cse/f/ff/CSE-report-draft-Mar2015.pdf. Accessed 4 May 2018

8. Voevodin, V., Gergel, V., Popova, N.: Challenges of a systematic approach to
parallel computing and supercomputing education. In: Hunold, S., et al. (eds.)
Euro-Par 2015. LNCS, vol. 9523, pp. 90–101. Springer, Cham (2015). https://doi.
org/10.1007/978-3-319-27308-2 8

9. Supercomputing Education in Russia. Final report on the national project “Super-
computing Education”, Supercomputing Consortium of the Russian Universities
(2012). http://hpc.msu.ru/files/HPC-Education-in-Russia.pdf. Accessed 4 May
2018

https://www.nsmindia.in/
https://www.energy.gov/sites/prod/files/2014/10/f18/SEAB%20HPC%20Task %20Force%20Final%20Report.pdf
https://www.energy.gov/sites/prod/files/2014/10/f18/SEAB%20HPC%20Task %20Force%20Final%20Report.pdf
http://www2.itif.org/2016-high-performance-computing.pdf
http://www2.itif.org/2016-high-performance-computing.pdf
http://www.siam.org/students/resources/report.php
http://www.siam.org/students/resources/report.php
http://science.energy.gov/~/media/ascr/ascac/pdf/charges/ASCAC_Workforce_Letter_Report.pdf
http://science.energy.gov/~/media/ascr/ascac/pdf/charges/ASCAC_Workforce_Letter_Report.pdf
https://science.energy.gov/~/media/ascr/pdf/research/am/docs/EMWGreport.pdf
https://science.energy.gov/~/media/ascr/pdf/research/am/docs/EMWGreport.pdf
http://wiki.siam.org/siag-cse/images/siag-cse/f/ff/CSE-report-draft-Mar2015.pdf
http://wiki.siam.org/siag-cse/images/siag-cse/f/ff/CSE-report-draft-Mar2015.pdf
https://doi.org/10.1007/978-3-319-27308-2_8
https://doi.org/10.1007/978-3-319-27308-2_8
http://hpc.msu.ru/files/HPC-Education-in-Russia.pdf


210 V. Voevodin et al.

10. Voevodin, Vl.V., Gergel, V.P.: Supercomputing education: the third pillar of HPC.
In: Computational Methods and Software Development: New Computational Tech-
nologies, vol. 11, no. 2, pp. 117–122. Moscow State University Press, Moscow (2010)

11. 3rd European Workshop on Parallel and Distributed Computing Education
for Undergraduate Students (Euro-EDUPAR). http://www.cs.man.ac.uk/∼rizos/
euroedupar/. Accessed 4 May 2018

12. Prasad, S.K., Gupta, A., Rosenberg, A.L., Sussman, A., Weems Jr., C.C. (eds.):
Topics in Parallel and Distributed Computing: Introducing Concurrency in Under-
graduate Courses. Morgan Kaufmann, San Francisco (2015)

13. Computer Science Curricula 2013. https://www.acm.org/binaries/content/assets/
education/cs2013 web final.pdf. Accessed 4 May 2018

14. NSF/IEEE-TCPP Curriculum Initiative on Parallel and Distributed Computing.
http://www.cs.gsu.edu/∼tcpp/curriculum. Accessed 4 May 2018

15. Sadovnichy, V., Tikhonravov, A., Voevodin, Vl., and Opanasenko, V.:
“Lomonosov”: supercomputing at Moscow State University. In: Contemporary
High Performance Computing: From Petascale Toward Exascale, pp. 283–307.
Chapman & Hall/CRC Computational Science), CRC Press, Boca Raton (2013)

16. MSU Supercomputers: “Lomonosov-2”. http://hpc.msu.ru/?q=node/159.
Accessed 4 May 2018

17. Open Encyclopedia of Parallel Algorithmic Features. http://algowiki-project.org/
en. Accessed 4 May 2018

18. Antonov, A., Voevodin, V., Dongarra, J.: Algowiki: an open encyclopedia of parallel
algorithmic features. J. Supercomput. Front. Innov. 2(1), 4–18 (2015)

19. Voevodin, V.: Mathematical Foundations of Parallel Computing. Series in Com-
puter Science, vol. 33. World Scientific Publishing Co. (1992)

20. Voevodin, V., Voevodin, Vl.: Parallel Computing. BHV-Petersburg, St. Petersburg
(2002)

21. Antonov, A., Teplov, A.: Generalized approach to scalability analysis of parallel
applications. In: Carretero, J., et al. (eds.) ICA3PP 2016. LNCS, vol. 10049, pp.
291–304. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-49956-7 23

22. Chakrabarti, D., Zhan, Y., Faloutsos, C.: R-MAT: a recursive model for graph
mining. In: Proceedings of 4th International Conference on Data Mining, Brighton,
UK, pp. 442–446 (2004). https://doi.org/10.1137/1.9781611972740.43

23. Bader, D.A., Madduri, K.: Design and implementation of the HPCS graph analysis
benchmark on symmetric multiprocessors. In: Bader, D.A., Parashar, M., Sridhar,
V., Prasanna, V.K. (eds.) HiPC 2005. LNCS, vol. 3769, pp. 465–476. Springer,
Heidelberg (2005). https://doi.org/10.1007/11602569 48

http://www.cs.man.ac.uk/~rizos/euroedupar/
http://www.cs.man.ac.uk/~rizos/euroedupar/
https://www.acm.org/binaries/content/assets/ education/cs2013_web_final.pdf
https://www.acm.org/binaries/content/assets/ education/cs2013_web_final.pdf
http://www.cs.gsu.edu/~tcpp/curriculum
http://hpc.msu.ru/?q=node/159
http://algowiki-project.org/en
http://algowiki-project.org/en
https://doi.org/10.1007/978-3-319-49956-7_23
https://doi.org/10.1137/1.9781611972740.43
https://doi.org/10.1007/11602569_48

	Studying the Structure of Parallel Algorithms as a Key Element of High-Performance Computing Education
	1 Introduction
	2 Supercomputer Education at MSU
	3 The Supercomputer Modeling and Technologies Discipline
	4 Version of the Practical Assignment: Description of Parallel Algorithm Properties
	4.1 Methodological Comments on the Assignment
	4.2 Organization and Results of the First Practical Assignment

	5 Version of the Practical Assignment: Studying Algorithm Scalability
	5.1 Methodological Comments on the Assignment
	5.2 Organization and Results of the First Practical Assignment

	6 Lessons Learnt from the 2-Year Experience
	7 Conclusion
	References




