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Preface

Euro-Par is an annual, international conference in Europe, covering all aspects of
parallel and distributed processing. These range from theory to practice, from small to
the largest parallel and distributed systems and infrastructures, from fundamental
computational problems to full-fledged applications, from architecture, compiler,
language and interface design and implementation to tools, support infrastructures, and
application performance aspects. The Euro-Par conference itself is complemented by a
workshop program, where workshops dedicated to more specialized themes, to
cross-cutting issues, and to upcoming trends and paradigms can be easily and
conveniently organized with little administrative overhead.

This year, 12 workshop proposals were submitted, and after a careful revision
process, which was led by the workshop co-chairs, all of them were accepted.

The workshops took place on the two days before the Euro-Par conference and the
program included the following 12 workshops:

1. Workshop on Autonomic Solutions for Parallel and Distributed Data Stream
Processing (AUTO-DASP)

2. Workshop on Container-Based Systems for Big Data, Distributed, and Parallel
Computing (CBDP)

3. Workshop on Data Locality (COLOC)
4. Workshop on Parallel and Distributed Computing Education for Undergraduate

Students (EURO-EDUPAR)
5. Workshop on Fog-to-Cloud Distributed Processing (F2C-DP)
6. Workshop on Future Perspective of Decentralized Applications (FPDAPP)
7. Workshop on Algorithms, Models, and Tools for Parallel Computing on Hetero-

geneous Platforms (HETEROPAR)
8. Workshop on Large-Scale Distributed Virtual Environments (LSDVE)
9. Workshop on Advances in High-Performance Bioinformatics, Systems Biology

(MED-HPC)
10. Workshop on Parallel and Distributed Computing for Life Sciences: Algorithms,

Methodologies, and Tools (PDCLIFES)
11. Workshop on Reengineering for Parallelism in Heterogeneous Parallel Platforms

(REPARA)
12. Workshop on Resiliency in High Performance Computing with Clouds, Grids, and

Clusters (RESILIENCE)

All workshops together received a total of 109 submissions from 40 different countries.
Each workshop had an independent ProgramCommittee, which was in charge of selecting
the papers. The workshop papers received more than three reviews per paper on average
(361 reviews in total). Out of the 109 submissions, 65 papers were selected to be presented
at the workshops. One of the accepted papers was not included in the final proceedings
because the authors decided to withdraw it. Thus, the acceptance rate was 58%.



The success of the Euro-Par workshops depends on the work of many individuals
and organizations. We therefore thank all workshop organizers and reviewers for the
time and effort that they invested. We would also like to express our gratitude to the
members of the Organizing Committee and the local staff, especially the volunteer PhD
students, who helped us. Sincere thanks are due to Springer for their help in publishing
the proceedings.

Lastly, we thank all participants, panelists, and keynote speakers of the Euro-Par
workshops for their contribution to a productive meeting. It was a pleasure to organize
and host the Euro-Par workshops 2018 in Turin.

September 2018 Gabriele Mencagli
Dora B. Heras
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Auto-DaSP - Workshop on Autonomic
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Workshop Description

Auto-DaSP is a forum for researchers and practitioners working on parallel and
autonomic solutions for Data Stream Processing applications, frameworks, and pro-
gramming support tools. The data streaming domain belongs to the Big Data ecosys-
tem, where the so-called data velocity, i.e., the rate at which data arrive at the system
for processing, represents one of the most challenging aspects to be addressed in the
design of applications and frameworks. High-volume data streams can be efficiently
handled through the adoption of novel high-performance solutions targeting today’s
commodity parallel hardware. However, despite the large computing power offered by
the affordable hardware available nowadays, high-performance data streaming solu-
tions need to be equipped with smart logics in order to adapt the framework/application
configuration to rapidly changing execution conditions and workloads. This turns out
in mechanisms and strategies to adapt the queries and operators placement policies,
intra-operator parallelism degree, scheduling strategies, load shedding rate and so forth,
and fosters novel interdisciplinary approaches that exploit Control Theory and Artificial
Intelligence methods. The workshop calls the attention of the data stream processing
and the distributed and parallel computing research communities in order to stimulate
integrated approaches between these two disciplines.

The second edition of the International Workshop on Autonomic Solutions for
Parallel and Distributed Data Stream Processing (Auto-DaSP 2018) was held in Turin,
Italy. For the second time, this workshop was organized in conjunction with the Euro-
Par annual series of international conferences. The format of the workshop included a
keynote followed by technical presentations. The workshop was attended by around 20
people on average.

This year we received 8 submissions for reviews, from authors belonging to 7
distinct countries. After an accurate and thorough peer-review process, we selected 5
papers for presentation at the workshop. The review process focused on the quality of
the papers, their scientific novelty and applicability to existing Data Stream Processing
problems and frameworks. The acceptance of the papers was the result of the
reviewers’ discussion and agreement. All the high quality papers were accepted, and
the acceptance rate was 62%. The accepted articles represent an interesting mix of
techniques to solve recurrent as well as new problems in Data Stream Processing, such
as efficient handling of data streams, distributing DSP tasks that involve machine
learning steps, management of fault tolerance and its impact on performance, archi-
tectures and strategies to support runtime elasticity and address latency constraints.

The workshop program was completed by the invited talk titled “The Long Road
Towards Elastic Distributed Stream Processing” given by Leonardo Querzoni from
Sapienza University of Rome, Italy.
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Abstract. Parallel and distributed solutions are essential for clustering data
streams due to the large volumes of data. This paper first examines a direct
adaptation of a recently developed prototype-based algorithm into three existing
parallel frameworks. Based on the evaluation of performance, the paper then
presents a customised pipeline framework that combines incremental and two-
phase learning into a balanced approach that dynamically allocates the available
processing resources. This new framework is evaluated on a collection of
synthetic datasets. The experimental results reveal that the framework not only
produces correct final clusters on the one hand, but also significantly improves
the clustering efficiency.

Keywords: Big data � Data stream clustering algorithms
Distributed and parallel frameworks

1 Introduction

Recent advances in information and networking technologies and their applications in
almost every sector of life have led to a rapid growth of the massive amount of data
known as Big Data [1]. One of the most important characteristics of big data is its
velocity, which means that data may arrive and require processing at different speeds.
While for some applications, the arrival and processing of data can be performed in an
offline batch processing style, others require continuous and real-time analysis of
collections of incoming data (known as data chunks) ([2–4]). Data stream clustering is
defined as a grouping of data in light of frequently arriving new data chunks for
understanding the underlying group patterns that may change over time [5].

It is the sheer volume of data arriving at high and variable speeds of accumulation
that deems normal clustering algorithms inefficient and incapable of dealing with the
demand [6]. Therefore, distributed and parallel algorithms are the ultimate solution for
analysing big data streams in reality, which is evident in the more recent research work
([4, 7, 8]). Distributed and parallel solutions offer several benefits such as reduction of
the overall response time, improved scalability of solutions and suitability for appli-
cations of distributed nature such as sensor networks, social media, Internet of Things
(IoT), etc. [9].

Multi-core processor commodity computers are widely used nowadays. At a higher
but affordable price, a computer can have up to 72 core processors. As the computer
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hardware technology advances, cheaper and more core processors will become avail-
able. The question then is how to utilise the available processing resources on board of
a local machine. In this paper, we argue that algorithms for data stream clustering
should be first implemented on a multi-core parallel processing framework by making
the best use of the available processors in a local machine before running the algo-
rithms in a distributed network of computers.

This paper is therefore concerned with how to parallelise most recent techniques for
clustering data streams. In general, the paper promotes a two-phase parallel approach
for incrementally clustering data streams (TPICDS) where processors will incremen-
tally maintain local clustering models in parallel at the online phase, and local cluster
models can be merged into a global cluster model at the offline phase. In particular, the
paper investigates the parallelisation of a recent algorithm EINCKM [10] in the
TPICDS framework because of the algorithm’s modular structure and performance
over other existing algorithms. The work consists of two parts. In the first part, the
paper investigates how the EINCKM algorithm adapts three typical parallelisms in
existence. Based on a performance evaluation of the adapted parallelisms inside the
algorithm, the paper further proposes a parallel pipeline with optimised and dynamic
allocations of processing resources. Experimental results show that the proposed
solution not only produces correct final clusters, but also significantly improves the
efficiency.

The rest of this paper is organised as follows. Section 2 explains the related work
on distributed and parallel data stream clustering algorithms in the literature, and
propose the TPICDS approach at the end. Section 3 explains the EINCKM algorithm
adaptation of the existing parallelisms. Section 4 presents the proposed optimised and
dynamic parallel pipelines. Section 5 concludes the work and outlines possible future
directions of this research.

2 Related Work

2.1 Computational Approaches

Two approaches for mining data streams are in existence: incremental and two-phase
learning. With the incremental methods (e.g. STREAM [11]), a global model of
clusters is iteratively developed to reflect current modifications made by incoming data
chunks. The two-phase approach (e.g. CluStream [12]) divides the clustering process
into two phases, i.e. an online phase where the data records are summarised into small
intermediate micro-clusters, and an offline phase where the micro-clusters are pro-
cessed into final clusters at a query point [13]. While the incremental algorithms always
provide an accumulated view of global clusters at the arrival point of an incoming data
chunk at the expense of continuous clustering, the two-phase algorithms provide such a
view of clusters at the point of the query without constantly finding final clusters.
Therefore, it can be argued that incremental algorithms are more suited for real-time
response systems [4].
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2.2 Data Stream Clustering Algorithm EINCKM

EINCKM is a prototype-based algorithm for clustering data streams and identifying
outlier objects [10]. Taking the incremental learning approach, the algorithm divides
the clustering process into three sequential steps: Build Clusters, Merge, and Prune.
Build Clusters uses the K-Means method to find the clusters in the input data chunk.
Merge integrates the newly formed clusters with existing ones. Prune detects outliers
and checks the concept drift using a fading function. The algorithm applies a heuristic-
based method to estimate the number of clusters, a radius-based technique to merge
overlapped clusters, and a variance-based mechanism to prune outliers. The algorithm
is modular and adaptable to further improvements. However, the algorithm is a
sequential algorithm where the three key operations must be performed in order. It is,
therefore, useful to explore how to parallelise the algorithm.

2.3 Distributed and Parallel Frameworks

Depending on how the input data is organised, two categories of distributed and
parallel data stream clustering algorithms exist: object-based where the data record is a
complete data object and attribute-based where each data item is an attribute value.
Each category may take either incremental or two-phase learning approach.

For the incremental learning of object-based clusters, the central site receives the
input data streams, divides it into chunks and sends them to the remote sites. Upon
receiving the local clustering models from the remote sites, the central site produces the
final output clusters. Bandyopadhyay et al. have used this approach for clustering data
streams in a peer-to-peer environment [14]. Gao et al. showed an enhanced Apache
Storm framework for clustering social media data, by adding another process between
the central site and the participant remote sites for synchronising changes to the local
models to avoid a bottleneck in communications [15]. Incremental learning of clusters
from attribute streams is similar. The only differences are that each remote site receives
an input attribute stream directly without the central site to distribute the data and that
upon receiving the local cluster models, the central site integrates the local attribute
models into a global object-based cluster model. Rodrigues et al. used this approach in
the ODAC algorithm to cluster attribute streams [16]. The incremental learning is
simple, easy to implement and efficient. However, extensive communication with the
central site can result in bottlenecks. Besides, integrating all attribute clusters with a
central site becomes infeasible when the dimensionality of data streams are high.

In the two-phase learning of object-based clusters, the local models are saved in a
local buffer memory on each remote site, and are sent to the central site when there is a
query from the user or there are significant changes in the local models [17, 18].
However, heavy computation is needed with the central site to obtain the final output
clusters due to the large number of micro-clusters. Guerrieri and Montresor presented
an improvement by making the remote sites communicate to reduce the number of
micro-clusters [19]. Karunaratne et al. also made an improvement using Apache Storm
where the remote sites save their local clustering models in a globally shared memory
so that the designated second central site processes the local clusters into the final
clusters [19]. The two-phase learning of clusters from attribute streams is similar to
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incremental learning by using buffers for local models. Gama et al. adopted this
approach in the DGClust algorithm to cluster data streams in sensor networks [20]. The
algorithm reduces data dimensions and hence communications needed.

2.4 The Proposed TPICDS Framework

The proposed framework TPICDS combines the two computational approaches in the
two-phase hybrid system. At the online phase, the first central site receives the data
streams, divides it into chunks, and sends then to the remote sites. Each remote site
receives its own data chunk, creates and maintains its own local cluster models in the
incremental fashion. At the offline phase, the second central site receives the local
models from the remote sites and presents the final global clusters (see Fig. 1). Our
research aims to embed the EINCKM algorithm within the proposed framework where
the second central site uses the same merge strategy to form the global clustering
model.

3 Adapting EINCKM to the Existing Parallelisms

In this section, we first briefly summarise three typical parallel frameworks that already
exist. We then describe how the EINCKM algorithm can intuitively adapt to each
framework. We then evaluate the performance of each adaptation empirically using
synthesised datasets.

3.1 Existing Parallel Frameworks

Three typical parallel frameworks exist. The replication, hereby known as embar-
rassingly parallel or basic parallelism (BP), simply makes multiple copies of the entire
algorithm and then runs each copy on each processor [21]. Each processor must
complete all operations of the algorithm before receiving next new data inputs. The
framework has the pros of being simple, and directly employs the principle of divide
and conquer by sharing the processing of input data by the available processors. We
use this framework as a basic benchmark for performance evaluations later.

Fig. 1. Proposed TPICDS framework
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The parallel pipeline (PP) is an improvement of the basic parallelism to streamline
several processors in a pipeline [22], which works as follows. A present processor
receives the output of a previous processor as its input, processes the data, generates the
output, and passes it on to the next processor. Each processor has a certain degree of
independence so that when the next processor processes its output, the present pro-
cessor takes and processes its next data input. This framework not only divides the
workload among different processors but also further improve the degree of parallelism
within a sequential pipeline.

MapReduce parallel pipeline (MRPP) is a further modification of PP [23]. First,
data stored in memory are divided into partitions, and each partition is sent to a
different processor (Mapping). Each processor processes the data within the partition
and the processed outputs are then hashed to fewer processors on another layer to
further process them (Reducing). The hashing can be determined by the relevance of
the outputs.

3.2 Algorithm Adaptation

All adaptations of the algorithm to the existing frameworks mentioned above require
dividing the available processing resources into central and remote sites (in this con-
text, a site is a single core processor on the same computer). The adaptation of the
algorithm to the basic parallelism is straightforward: each remote site finds the clusters
from the incoming chunk, merges them with its own existing clusters, prunes them, and
saves the resulting clusters into its own local buffer memory.

The adaptation of the algorithm to the PP framework is done as follows. We first
divide all the available remote sites into groups of three sites, and then arrange the three
sites into a pipeline. We then designate the first of the three sites for the Build Clusters
function, the second for the Merge function, and the third for the Prune function. When
the Build Cluster site finishes the current chunk, it sends the clusters to the Merge site.
When the Merge site merges the clusters from the chunk with the existing ones, the
Build Cluster site starts discovering clusters from the next chunk. When the Merge site
finishes its task of merging clusters, it sends the results to the Prune site, and then starts
working on the new clusters from the Build Cluster site. The Prune site works in a
similar fashion.

For the adaptation of the MRPP framework, the first central site in TPICDS per-
forms the mapping operation. The remote sites for the Build Cluster function is
modified to include a further function for the hashing, i.e. assigning similar local
clusters to a specific Merge site. More precisely, a Build Cluster site checks the closest
cluster’s centroids and send them to the same merger site, and a Merge site receives
clusters from different Build Cluster sites to build a regional model of clustering. After
that, the Prune site conducts the pruning of regional models and sends them to the
second central site in TPICDS. The difference between the PP adaptation and the
MRPP adaptation is that the Merge site in the PP framework receives clusters only
from the Build Cluster site within the same pipeline, whereas the Merge site in the
MRPP merges clusters from more than one Build Cluster site in different pipelines.
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3.3 Empirical Evaluation

In order to evaluate empirically the performance of each adaptation, we created two
collections of synthetic datasets, DS1 and DS2. Each collection include six datasets of
different sizes, i.e. 100,000, 200,000, 500,000, 1,000,000, 1,500,000 and 2,000,000
data points of two dimensions. To simulate various sizes, shapes and numbers of
clusters, we used Gaussian distributions to randomly generate spherical shape clusters
with different means, variances and number of members. DS1 and DS2 respectively
have four and thirty clusters. We acknowledge the limitations of synthesised datasets in
expressing the characteristics of data in reality, but synthesised datasets do allow us to
check the correctness of clustering by comparing the resulting clusters to known
clusters.

A computer with 12 2.8 GHz core processors and 16 GB memory under Microsoft
Windows7 was used to conduct the experiment. MATLAB 2017a was used to
implement the adapted algorithms and program the experiment scripts. For each
experiment, we randomly selected data points from the dataset to form data chunks of
1000 data points. The random selection simulates the situation where there is no control
on the order of the arriving data points. To minimise the random effect of the selected
data points to the performance of the algorithms for a specific experiment, we repeated
each experiment 100 times, and then take the average of the speeds of execution in
seconds. The processors on the machine are configured as follows. For the BP
framework, we allocate three processors each of which has the entire EINCKM
algorithm. For the PP and MRPP frameworks, we allocate three processors (one for
Build Cluster, one for Merge, and one for Prune) to form one parallel stream. We
allocate two processors serving as the two central sites in TPICDS. Figure 2 shows the
performance of the adapted EINCKM algorithms in terms of execution time.

Among the adapted algorithms, the BP adaptation is slower than the PP and
MRPP. The two pipeline adaptations show consistent faster speeds due to the addi-
tional parallelism gained from the pipeline frameworks. However, the MRPP adapta-
tion consumes more time than the PP adaptation in mapping and hashing similar local
clusters to a merger. The PP adaptation, however, may still have potential delays
because the processor configuration on each pipeline was fixed, and some processors
within the pipeline may have to wait for the outputs from other processors. Therefore,
optimised and dynamic allocations of processors to the needed steps should be the right
way to further exploit the parallelism.

Fig. 2. Adapted algorithms performance in execution time
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4 Optimised and Dynamic Parallel Pipeline Frameworks

4.1 An Optimised Parallel Pipeline Framework

The idea behind optimised parallel pipeline (OPP) framework is to decide how many
processors should be statically allocated for each step of the EINCKM algorithm by
analysing the time complexity of the algorithm. The time complexity of the entire
algorithm is estimated by the sum of the time complexity for each of the three key
functions [10]. Let R represent the number of chunks, N the total number of data points
in a chunk plus the outliers, K the number of clusters, I the number of iterations until
the clusters converge, T the number of clusters of the previous iteration, n the maxi-
mum number of data points in a new/existing cluster, k the number of clusters from a
new chunk, and S the number of output clusters of merge function. The time com-

plexity is O NKIð Þ for the Build Cluster function, O Tnþ knð Þ2
� �

for the Merge

function, and O Snð Þ for the Prune function. The expressions indicate that the Merge
function takes the longest amount of time in the worst case. This is followed by the
Prune function. The Build Cluster function needs relatively the minimum amount of
time because the values for N, K and I are normally small. In order to confirm the
results of the theoretical analysis, we tested each function separately on synthesised
data chunks of different sizes. Figure 3 illustrates the execution time for each function
at different chunk sizes for DS1 and DS2 datasets. The test results confirm the theo-
retical analysis results.

According to this understanding, we configure the 12-core machine in the following
way: two processors for the Build Cluster function, four processors for the Merge
function, and three processors for the Prune function (see Sect. 4.3 for performance test
results), plus two processors serving as the two central sites.

4.2 Dynamic Parallel Pipeline Framework

The worst-case measure of time complexity does not always reflect the reality.
Dynamic scheduling of resources based on actual execution of each individual step
makes more sense in deciding how many processors should be allocated to resolve the

(a) DS1                                                                         (b) DS2

Fig. 3. Comparison of execution time among the key functions of EINCKM
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bottleneck at the time. Therefore, a dynamic parallel pipeline (DPP) framework is
proposed. In this framework, a minimum number of processors are initially allocated as
the baseline processors for performing the clustering task. One central processor is then
designated to the role of scheduler by monitoring occupancy rates of the buffers being
used by the existing processors. A number of spare processors are held in reserve.
A spare processor can be assigned to join the baseline processors for a specific function
by the scheduler according to the need for additional assistance as indicated by the
level of free buffer memory.

We encountered two immediate problems: (a) how to select the right number of
baseline processors, and (b) how to decide if there is a need for allocating additional
resources. To solve the first problem, we allocate by default one processor for each of
the three key functions of the algorithm. To solve the second problem, we monitor the
size of the buffers, decide where the possible bottleneck may occur and then take a
decision to add/move a processor one at a time. For each iteration, the scheduler checks
the use of two buffers (Bf1 and Bf2). If the buffer use, i.e. use of the storage space of
the buffer, is below a minimum threshold (Min_Thr), the buffer is about to become
empty and hence more processors are needed by the function that outputs into the
buffer. If the buffer usage is above a maximum threshold (Max_Thr), it means that the
buffer is about to become full and more processors are needed for the function that
inputs from the buffer. Figure 4 shows four decision rules for the two possible situa-
tions: (a) there are processors in the reserve (assigning a processor), and (b) there are no
processors in the reserve (moving a processor).

Fig. 4. Dynamic parallel pipeline framework
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4.3 Experimental Results and Discussion

We used the two collections of datasets to test the performance of the OPP and the DPP
frameworks. The results in Fig. 5 show that both OPP and DPP are consistently faster
than the PP framework, confirming that optimised and dynamic allocations of pro-
cessing resources are better than the even distribution of the resources among the
processing steps. At the same time, the DPP framework performs better than the OPP
one because the statically allocated processors in OPP does not reflect the dynamic
reality.

One issue that affects the performance of the DPP framework is the setting of the
two thresholds for the buffer use. For the tests presented in Fig. 5, we set
Min_Thr = 20% and Max_Thr = 80%. Setting the range between the two thresholds
too low means too many scheduling activities for additional resources. Setting the
range too big means increasing the risk of the buffers being empty or full causing time
delay in the process. Other factors such as the speed of data arrival and buffer sizes also
play a role. A proper sensitivity study regarding the thresholds and the search for
optimal thresholds certainly require further research.

We also compare the DPP version of the EINCKM algorithm against the BP
versions of three typical existing algorithms of the same category, i.e. STREAM,
Adapt.KM [24], and Inc.KM [25]. The results show faster execution time by the
EINCKM algorithm than that by the Adapt.KM and the Inc.KM algorithms due to the
dynamic allocations of processing resources to the right place in the EINCKM algo-
rithm. The EINCKM algorithm speed is close to that, but slower than that of the
STREAM algorithm (see Fig. 6). This is mainly because the STREAM algorithm does
not consider the concept drift issue and nor identify outliers as the EINCKM does.

Regarding the correctness of the output clusters, we confirm that all the five ver-
sions of parallel EINCKM algorithm produce correct global clusters after the whole
datasets are processed. We have evidence to demonstrate the correctness of the final
global cluster models by comparing the output clusters by the algorithms against the
ground truth clusters in terms of the correctness metrics such as purity, entropy, and the
sum of square errors measurements. However, because of the constraints of the limited
space, we are unable to present the evidence here.

Fig. 5. The ratio between ideal time and the measured parallel frameworks
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Next generation of online real-time systems required big data platforms to process a
huge amount of continuously arriving data under computational constraints [26]. This
kind of systems raises new issues regarding the current big data infrastructures. One of
the main issues is that most current platforms are not intentionally built to consider real-
time performance issues. Another main issue is the lack of clear computational models
for processing big data that could be supported by the current frameworks [8]. Recent
attempts to address these issues include a study of analysing patterns in data stream
processing and associating the patterns with performance requirements [4], and an
effort in improving the computational model for distributed stream processing and
formalising the model through extensions to the Storm framework for real-time
application [27]. Our proposed parallel frameworks can be considered as another
attempt to address the infrastructure issue for real-time applications at least on the local
individual machine level. The strengths and limitations of the proposed framework
have not been, but can only be realistically evaluated within the context of a large-scale
distributed processing environment.

5 Conclusion and Future Work

This paper made two main contributions: (a) adapting a newly developed data stream
clustering algorithm EINCKM to existing parallel frameworks, and (b) developing
static and dynamic allocation schemes for utilising available processors, both within a
two-phase learning approach (TPICDS). The adaptation is made easier because the
algorithm has a modular structure, making it easy to adapt pipeline frameworks. The
evidence shows that the static and dynamic allocations of processing resources is more
efficient than simple adaptations.

The understandings we take from our work are of two folds. Firstly, there is a room
to utilising as much as possible the available resources within a single computer before
we bring in a group of computers to share the workload distributedly. Secondly, the
two learning approaches for data stream clustering are artificially separated. The paper
shows that a hybrid way of merging them in a parallel pipeline is possible.

Future work includes an immediate sensitivity analysis for the buffer thresholds and
more extensive testing of the proposed dynamic parallel pipeline version of the
EINCKM algorithm, and further improvements to dynamic allocation of resources by

Fig. 6. Comparison between algorithms
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using more sophisticated techniques including machine learning techniques. Reclaim of
processors into the reserve should also be considered when the speed of incoming data
arrival slows down and there is no need to use a large number of processors to share out
a small amount of workload. Another important work is the integration and testing of
the dynamic parallel pipeline on a single computer with a distributed network
environment.
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Abstract. Data streaming engines process data on the fly in contrast to
databases that first, store the data and then, they process it. In order to
process the increasing amount of data produced every day, data stream-
ing engines run on top of a distributed system. In this setting failures will
likely happen. Current distributed data streaming engines like Apache
Flink provide fault tolerance. In this paper we evaluate the impact on
performance of fault tolerance mechanisms of Flink during regular oper-
ation (when there are no failures) on a distributed system and the impact
on performance when there are failures. We use the Intel HiBench for
conducting the evaluation.

Keywords: Data streaming · Fault tolerance · Evaluation · HiBench

1 Introduction

Data streaming has become a popular data processing model in the last decade
with the increase of the amount of data that is produced every second that
must be processed on the fly. Typical examples of streaming applications include
quick detection of price changes in the stock market, credit card fraud detection,
detection of attacks by inspecting network traffic among others. Data streaming
engines run on top of distributed systems in order to process the high volumes of
data produced every second (from thousands to millions of events per second).
Distributed streaming engines like StreamCloud [8], Borealis [4] and Flink [1]
have incorporated fault-tolerance mechanisms in order to ensure the availabil-
ity of the system when a failure happens. Fault-tolerance mechanisms resort to
checkpointing the state of the data streaming application and the data streams
in order to be replayed when the system recovers after the failure, ensuring that
all the data is processed. In this paper, we evaluate the performance overhead
that the fault-tolerance mechanisms introduce during regular operation running
the Intel HiBench benchmark [10] with Flink on top of a distributed system.
We also evaluate the time the system needs to resume regular processing and
the impact on performance till the system returns to regular operation (the
c© Springer Nature Switzerland AG 2019
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system processes all the queued records during the failure). These performance
evaluation is important for practitioners in order to dimension the system when
fault-tolerance mechanisms are present and understand the behavior of the sys-
tem when it recovers.

The rest of the paper is organized as follows. First we present an introduction
to Flink (Sect. 2) then, the fault-tolerance mechanisms of Flink are described
(Sect. 3). Section 4 presents the performance evaluation. Finally conclusions are
presented in Sect. 5.

2 Flink Architecture

Apache Flink is an open-source distributed and fault-tolerant stream processing
framework. A Flink program transforms the incoming data streams and return-
ing results through sinks that can write them to different destinations. The
transformations are also known as operators and the set of operators linked by
the incoming and outgoing data streams form a topology that logically is a DAG
(directed acyclic graph).

Flink provides several built-in operators which can be classified as stateless
or stateful. Stateless operators do not keep any state. They simply transform the
incoming data. Examples of stateless operators are map, filter and union. State-
ful operators keep events in memory (windows) apply a function and produce
an output (time windows) or a number of records are received (record based
windows). Examples of stateful operators are fold, aggregates, join.

At the core of the Flink architecture there are two components that are
JobManager and TaskManager. The JobManager is the master of a Flink clus-
ter. More than one JobManager can be started in a Flink cluster to provide
high availability. The JobManager is not directly involved in data processing, it
is in charge of coordinating the distributed execution. The TaskManager runs
topologies (or part of them) and manages the data exchange using streams.

Figure 1 shows how a client application (Flink Program) runs on a Flink
cluster made by one JobManager and two TaskManagers. Each TaskManager
(process) has its own Memory and Network Manager and can be configured
with several task slots. On one hand, task slots are used to split and isolate
TaskManager dedicated memory for different topologies. On the other hand,
they fix the maximum number of concurrent sub-task (part of a topology) that
can be running on a given TaskManager. In Fig. 1, TaskManagers are config-
ured with three task slots, it means that three sub-tasks from three different
topologies can be executed by the TaskManager. It is worth noting that Flink
allows the deployment of different sub-tasks of a given topology to share the
same task slot. The JobManager keeps track of the registered topologies and
their corresponding dataflow graph. It also schedules the tasks and decides on
which TaskManager they are executed. On the client side, a Flink program is
used to build an optimized dataflow graph from the topology and deploy it on
the Flink cluster sending it to the JobManager.
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Fig. 1. Apache Flink runtime [7].

3 Fault Tolerance

Fault tolerance in Flink [6] is based on durable data sources and state check-
pointing. A durable data source is able to replay records from a specified point
in time in the past. Typically, a durable data source reads records from a persis-
tent messaging system, such as Apache Kafka [3] or RabbitMQ [12], so in case a
failure happens Flink can go back in time and re-read the input streams. Flink
uses state checkpointing to save the state of topologies into a persistent storage.
This state is recovered in case of failures. The persistent state must be accessible
by all JobManagers and TaskManagers running in the Flink cluster in order to
recover the state after a failure, hence a distributed filesystem, such as Hadoop
Distributed File System [2], can be used for this purpose. This approach is sim-
ilar to the one in [11]. Flink allows users to set different parameters to tune the
checkpointing duration like the time between two consecutive checkpoints, the
maximum time to wait for a checkpoint to be completed, the number of stored
checkpoints.

A snapshot of an operator is taken when a special tuple, called barrier, is
received from all its input streams. Then, the operator sends the barrier in all its
outgoing streams. The JobManager injects the barriers in the streams at the data
sources in order to take a distributed consistent snapshot. When a sink receives
barrier n from all its incoming streams, it informs the snapshot coordinator.
When the snapshot coordinator (the JobManager) receives this message from
all the sinks in the topology, the n-th snapshot is completed. The snapshot can
be taken synchronously or asynchronously. The former has an impact on the
performance. If the snapshot is taken asynchronously, the state is copied as a
background process and the operator immediately sends the barrier in its output
streams. Once the state is copied, the operator informs the snapshot coordinator.
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A snapshot is considered complete when the coordinator is informed by all sinks
that they have received the corresponding barriers and stateful operators have
completed their backup. At this point, the state at the sources corresponding to
that snapshot will never be needed again.

When a failure happens, and the JobManager detects that one of the
TaskManagers is not available, the affected topology is undeployed and a new
deployment is scheduled on the available task slots. The JobManager cannot
re-deploy the topology if there are not enough task slots left, in this case the
topology is suspended until new TaskManagers join the Flink cluster making
available their task slots. After a redeployment, the latest completed snapshot is
selected (n). The state for checkpoint n is read from persistent storage and the
streams are resent from the n offset.

Flink ensures at least once semantics. That is some tuples may be processed
more than once. That is, records sent after the latest completed snapshot might
be processed more than once.

Flink has recently introduced end-to-end exactly once semantics, where each
incoming event affects the final result exactly once. For this purpose Flink uses
a two-phase commit protocol that together with new special sink components,
durable data source and checkpoint is able to ensure that there are no duplicate
results in case of failures happen [5].

4 Evaluation

The goal of the performance evaluation is to evaluate the overhead that the
fault-tolerance introduces in a regular processing and the cost of recovery. For
this purpose the HiBench big data benchmark is used [9] and deployed in a
cluster.

4.1 Benchmark

The Hibench provides a set of topologies already implemented for Apache Flink
among them we picked the one that has window operators (Fixwindow) in order
to test the performance of window operations in streaming frameworks. The
benchmark creates records representing the visits of users to a web server. Each
record has a total of 200 bytes and among the other fields it includes a timestamp
taken at record creation time and the IP address of the client. Figure 2 depicts
the graph representing the Fixwindow topology. The Kafka source source oper-
ator fetches records from the remote Kafka server. The Map operator projects
Timestamp and IP fields of records from the input stream to the output stream
ones. KeyBy partitions the stream using the IP field. Window stores events from
each partition for a given amount of time. Reduce counts the elements in the
window and emits one record with the IP, oldest Timestamp among the records
in the window, and the number of elements in the window. The second Map
operator adds a Timestamp to the record and writes it into Kafka.
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The benchmark evaluates the latency of the operation calculating for each
output record the difference in time between the Timestamp added in Flink by
the latest Map in the topology and the Timestamp added by the benchmark at
record creation time.

Fig. 2. HiBench fixwindow topology.

4.2 Setup

The evaluation was performed in a cluster with six homogeneous nodes. Each
node is equipped with 2 CPU sockets with Intel XEON E5-2620 v3 with 6 cores
(12 virtual cores), a total of 24 virtual cores, 128 GB RAM divided into 8 slots.
Each slot contains a 16 GB RAM card. Each node is equipped with a directly
attached SSD Intel SD3510 480 GB. All of them connected by a 1Gbit Ethernet.
The software running on the nodes is: Intel HiBench 7.0, Flink 1.4.2, Kafka 2.10-
0.8.2.2, Hadoop 2.6.5 and Zookeeper 3.4.8. Figure 3 shows where this software is
running. Node1 runs the HiBench benchmark. We used from 2 to 5 instances of
the benchmark to increase the load. Node2 runs HDFS to store Flink checkpoints
and the HiBench data seed and Zookeeper for coordinating the Kafka cluster and
the JobManager of Flink. Node3 and Node4 run 6 Kafka Brokers each. Node5
and Node6 run 12 JobManagers each. JobManagers are configured with 2 task
slots (for a total availability of 48 task slots) and 8 GB of memory.

The experiments are run with different configurations and loads summarized
in the Table 1. Varying the number of HiBench instances generates loads from
200,000 records per second up to 500,000 records per second. We ran experi-
ments with and without Flink checkpointing mechanism in order to measure the
overhead of the checkpointing mechanism during regular operation. Checkpoints
are taken every second and stored in HDFS. Later, failures are injected in both
configurations and the time for recovery is measured.

Table 1. Experiments configurations.

Input load (r/sec) Window size Checkpointing Fault injection

200k−500k 50 Records No No

200k−500k 30 to 50 Records HDFS No

200k−500k 30 to 50 Records HDFS Yes

200k−500k 50 Records HDFS + RocksDB No

200k−500k 50 Records HDFS + RocksDB Yes
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Fig. 3. Evaluation setup.

4.3 Performance Evaluation Results

For all experiments we show measure both latency (on the left axis) and through-
put (on the right axis). The latency represents the difference in time between the
timestamp of the newest record that falls in a window and the timestamp taken
when the result record of the window is generated; it is measured in milliseconds
and we report the mean value per second. The throughput shows the number of
result records created per second, that is the number of windows that are trig-
gered per second. The x-axis shows the time evolution during an experiment.
Second 0 in the x-axis corresponds to the first output received from Flink. First,
we run experiments without the checkpointing mechanism. Figure 4 reports the
results of these experiments with four different loads.

In all cases, Flink is able to process the load with a very low latency that
is always smaller than 200 ms. The maximum throughput is around 40K, 70K,
80K and 100K records per second for the increasing load. This maximum is
reached twice with a load of 200K records per second (Fig. 4a), three times with
300K (Fig. 4b) and four times with 400K and 500K per second (Figs. 4c and
d). These peaks happen because the load is increased by adding more HiBench
instances but, the key space remains the same causing the same windows (there
is a window per key) to be triggered more times. As the load increases, windows
are filled at a faster pace.

Figure 5 shows the experiments with the checkpointing mechanism enabled
in Flink and the same workloads. Comparing Figs. 4a and 5a we observe that the
latency of the window processing with the checkpointing mechanism enabled is
almost equal to the baseline case. This happens because Flink stores the snapshot
of the state asynchronously and if the load is not too high it is able to perform
both operations without a noticeable penalty on the latency. However, as the load
increases, the latency increases up to 1 second with a load of 300K (Fig. 5b) and
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(a) Input load: 200,000 records/second (b) Input load: 300,000 records/second

(c) Input load: 400,000 records/second (d) Input load: 500,000 records/second

Fig. 4. Experiments results with checkpointing disabled.

up to 2 s when the load increases to 400k and 500k records per second (Fig. 5c
and d). This happens because there are more concurrent windows to checkpoint
and taking and storing the snapshot consumes CPU cycles that cannot be used
to process the input load and therefore, the processing time of records increases.

Figure 6 shows the CPU utilization per core in one of the two nodes used
for running Flink in the experiments with 200k and 500k record per second
checkpointing the state to HDFS. It can be observed that with 200K the CPU
usage is on average 40% while with a load of 500K the system is almost saturated
with 70% CPU usage on average.

Figure 7 presents the results of the experiments with failures in order to
measure impact of failures when the system recovers. The fault is injected by
killing one of the TaskManagers running the topology 90 s after the first outputs
are produced. Flink takes around 90 s to detect the failure and resume processing
that is, detect the failure of the TaskManager, undeploy the topology, redeploy
the topology on the available task-slots, load the state and restart the normal
processing. During that period there is no throughput (Figs. 7a, b and c). Then,
the latency is very high in all setups: up to 1 min with a load of 200 records per
second and reaching up to 2 min with the other configurations. This happens
because the data needs to be resent from the source and there are a lot of
data that are waiting to be processed while the system recovers. These data are
processed in 60 s with a load of 200K records (after second 210 latency is below
200 ms), 150 s with a load of 300K records, 170 s for a load of 400K. The system
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(a) Input load: 200,000 records/second (b) Input load: 300,000 records/second

(c) Input load: 400,000 records/second (d) Input load: 500,000 records/second

Fig. 5. Performance with checkpointing on HDFS

(a) Input load: 200,000 records/second (b) Input load: 500,000 records/second

Fig. 6. CPU utilization on one of the Flink nodes

is not able to return to regular latencies after 260 s with a load of 500K records,
showing latencies higher than 20 s during that period.

Figure 8 reports the CPU usage per core in the two nodes running Flink
when the input load rate is 500,000 record per second. Both nodes have a CPU
consumption similar to the one of Fig. 6b (checkpoint enabled without faults) at
the beginning of the experiment before the failure. When the failure happens,
CPU usage goes to 0 and after the recovery both nodes are completely saturated
processing the pending load.
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(a) Input load: 200,000 records/second (b) Input load: 300,000 records/second

(c) Input load: 400,000 records/second (d) Input load: 500,000 records/second

Fig. 7. Performance with checkpointing on HDFS and fault injection

To study the impact of the state size to be checkpointed on the latency, we
run a set of experiments, with the checkpointing, with different window size 30,
40 and 50 records. The window size represents the state to be checkpointed.
Figure 9 shows the latency graphs with the four loads.

The latency for different window sizes is similar for low loads (200K records
per second). As the load increases, the latency increases first for the larger win-
dows (with 300K records) and then for all the window sizes with a high load
(500K records per second). As expected the window size has an impact on the
time to retrieve and store the checkpoint and therefore in the regular latency.

Table 2 reports the latency percentiles (75% and 95%) for each of the exper-
iments with different window size. For the window size of 50 records we also
report the latency percentiles when there is no checkpointing. The 75% per-
centile is smaller than 200 ms in any configuration when the input load is either
200,000 or 300,000 records per second. When the load is 400,000 records per
second, the latency (75% percentile) when the state is 40 or 50 records reaches
up to 768 ms in the case of 50-records window. With the highest workload, the
75% percentile latency is between 3 and 10 times higher than the case with no
checkpointing depending on the state size. The 95% percentile shows latency
values much greater than the 75% percentile due to the peaks in the latency
that happen when there are many windows triggered at the same time. The
impact of the window size on latency is clearly shown with the largest window
comparing the latencies with and without checkpointing. The latency is at least
double when chekpointing is enabled.
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(a) Flink node 1 (b) Flink node 2

Fig. 8. CPU usage on Flink nodes with failures

(a) Input load: 200,000 records/second (b) Input load: 300,000 records/second

(c) Input load: 400,000 records/second (d) Input load: 500,000 records/second

Fig. 9. Latency varying the window size

Table 2. Latency. Percentiles 75% and 95%

Input Load
(r/sec)

Window
size 30

Window
size 40

Window
size 50

Window size 50
no chekpointing

200k 25−113 ms 32−281 ms 34−286 ms 73−158 ms

300k 60−279 ms 125−855 ms 172−947 ms 89−215 ms

400k 127−622 ms 391−2062 ms 768−4186 ms 108−282 ms

500k 681−2499 ms 885−3194 ms 1922−4982 ms 212−1060 ms
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5 Conclusions

This paper describes and evaluate the fault tolerance mechanisms available in
Apache Flink, the current de facto standard for streaming processing engines.
The paper focuses on the overhead of these mechanisms on the latency and
throughput through a comprehensive set of experiments. The analysis of the
results shows that when the fault tolerance mechanisms are enabled, the latency
can grow up the 10 times the baseline values. In presence of failures the system
is able to recover quite quickly if it has enough available resources to process the
peak on the input load after that the failure happens. As future work, we are
interested in evaluating the performance of the system in presence of multiple
topologies deployed at same time and the overhead of the exactly once end-to-
end protocols.
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Abstract. Stream processing applications became a representative
workload in current computing systems. A significant part of these
applications demands parallelism to increase performance. However,
programmers are often facing a trade-off between coding productivity
and performance when introducing parallelism. SPar was created for
balancing this trade-off to the application programmers by using the
C++11 attributes’ annotation mechanism. In SPar and other program-
ming frameworks for stream processing applications, the manual defi-
nition of the number of replicas to be used for the stream operators
is a challenge. In addition to that, low latency is required by several
stream processing applications. We noted that explicit latency require-
ments are poorly considered on the state-of-the-art parallel programming
frameworks. Since there is a direct relationship between the number of
replicas and the latency of the application, in this work we propose an
autonomic and adaptive strategy to choose the proper number of replicas
in SPar to address latency constraints. We experimentally evaluated our
implemented strategy and demonstrated its effectiveness on a real-world
application, demonstrating that our adaptive strategy can provide higher
abstraction levels while automatically managing the latency.

Keywords: Autonomic computing · Stream processing
Parallel programming · Adaptive degree of parallelism

1 Introduction

Stream processing applications gained even more attention in the recent com-
puting age due to the increasing use of techniques to collect data from different
sources (e.g., sensors, cameras, radars). These applications are characterized by
a continuous flow of data and high variance of input data rates [2,3]. In addi-
tion to that, due to the growing of data generation, parallel programming can
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be used in stream processing applications as an option for increasing perfor-
mance. A set of programming frameworks and libraries were developed to allow
the stream parallelism exploitation on multi-core systems. Examples are Intel
Thread Building Blocks (TBB) [14], FastFlow [1,7], and StreamIt [17]. Despite
the coding abstraction introduced by these programming frameworks, they are
still not abstract enough for application programmers, which are the ones focused
on developing the stream processing application [10] and which may not be par-
allel programming experts.

To raise the abstraction level on stream parallel applications, the SPar [9]
DSL (domain-specific language) was designed for parallelizing stream process-
ing application in a simpler and more productive way than the state-of-the-art
alternatives [10]. SPar maintains the sequential structure of C++ codes and
programmers identify regions that can run in parallel. The programmer can
annotate these regions by using C++11 attributes, and the SPar compiler will
parse such annotations and generate the associated parallel code. Some regions
can be executed concurrently by a number of entities called replicas. In SPar,
as well as in other state-of-the-art frameworks, the number of concurrent enti-
ties (i.e., the degree of parallelism) is static and must be manually set by the
programmer. Choosing a proper number of replicas is a complex task, since the
best choice depends both on the arrival rate of the data but also on the perfor-
mance requirements for the specific application. For example, while having more
replicas can improve the throughput, it could also increase the latency required
to process the stream items. Unfortunately at moment being, SPar and other
state-of-the-art frameworks (TBB, FastFlow, and StreamIt) do not provide any
automatic and latency-aware strategy for selecting the most appropriate number
of replicas.

In this work, we propose a strategy to automatically set, without any user
intervention, the number of replicas to be used in parallel applications with
SPar. The optimal number of replicas will be selected according to the latency
requirements of the application. The main contributions of this work are:

– An extension of the SPar DSL [9,10] with a new parallelism abstraction. This
abstraction is achieved by a strategy to automatically adapt the number of
replicas in SPar that is fully abstracted from the application programmer. The
adaptation mechanism is designed based on a feedback loop, through which
a specific latency Quality of Service (QoS) is provided. The application is
monitored at run-time and the adaptation strategy periodically takes actions
to optimize the number of replicas, considering the latency of stream items.
Consequently, the adaptation strategy concerns stream processing applica-
tions sensitive to latency.

– An experimental evaluation of the effectiveness of the strategy running on a
stream processing application.

The remainder of this paper is organized as follows: the next section presents
the scenario of this study. The need for low latency in stream processing appli-
cations is emphasized in Sect. 3. Section 4 presents the strategy that manages
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the latency by adapting the number of replicas. In Sect. 5 we present our exper-
imental evaluation. Then, the related work is discussed in Sect. 6. Eventually, in
Sect. 7 we draw the conclusion and discuss some possible future directions for
this work.

2 An Overview of SPar

SPar1 is a DSL for stream parallelism that offers high-level C++11 attributes
to enable automatic parallelization by means of source code annotations. The
parallel code is generated by SPar compiler through source-to-source transfor-
mations [9]. SPar relies on the FastFlow runtime, a high-level and pattern-based
parallel programming library [1,7]. SPar’s compiler generates parallel code using
FastFlow library through source-to-source transformations. SPar also allows code
parallelism by simply adding annotations in the original sequential code. By
doing so, SPar relieves the programmers from the effort in dealing with advanced
concepts such as scheduling, load balancing and parallelism strategies. Since SPar
is based on the C++ standard interface, application programmers do not need
to learn a new language for parallelizing their code, and can just focus on the
functional parts of their applications.

SPar provides five attributes, which we describe in the following to exploit
key aspects of stream parallelism (Listing 1.1 presents a use case example).
The ToStream attribute represents the beginning of a stream region with the
production of the stream elements. Inside the ToStream section, it is possible to
add a number of Stages, which represents different and subsequent phases of the
computation over the stream elements. The data needed by each stage can be
indicated by using the Input attribute. Similarly, by using the Output attribute,
the programmer can specify the variables representing the data produced by the
stage.
1 [ [ spar : :ToStream ] ] while (1 ) {
2 i = read i tem ( ) ;
3 [ [ spar : : Stage , spar : : Input ( i ) , spar : :Output( i ) , spar : : Replicate (n) ] ]
4 {
5 i = f i l t e r i n g ( i ) ;
6 }
7 [ [ spar : : Stage , spar : : Input ( i ) ] ] {
8 wr i t e i t em ( i ) ;
9 }

10 }
Listing 1.1. SPar example.

Each stage can be executed by multiple threads. To define how many threads
(replicas) should be used for a stage, the Replicate attribute can be used. As
SPar currently supports stateless stream operators, each replica is independent
from the others and they can operate in parallel without any need of synchro-
nization among them. During the source-to-source compilation process, some
flags can be specified to customize the behaviour of the generated code. For

1 SPar home page: https://gmap.pucrs.br/spar.

https://gmap.pucrs.br/spar
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Fig. 1. Farm - communication queues inside SPar runtime.

example, to change the way in which the elements are scheduled to the replicas
or to preserve the order of the stream elements among different stages [9].

In Listing 1.1, we show a trivial example of a sequential code enhanced by
means of SPar annotations. This application generates the stream, applies a
function over each stream element, and then outputs the results. In Fig. 1, we
can visualize the association between the different parts of the code and the
execution unit, which will be executed in parallel.

In this specific example, n replicas are activated (which corresponds to B.1
to B.n in Fig. 1), each of which receive data from the previous stage and sends
produced results to the subsequent stage. Communications between stages occur
through shared queues. By default, SPar schedules the stream items to the work-
ers with a round-robin policy. However, other scheduling strategies can be used
and this behaviour can be customized during the source-to-source compilation
process. For example, to improve load balancing, it is possible to schedule stream
items in an on-demand fashion so that an element is scheduled to a specific
worker when it is not already processing another element.

3 The Impact of Parallelism on Latency

In this section we describe the relationship between the number of replicas and
the performance in a stream processing application. We consider the Lane Detec-
tion application [11], a video processing application used to identify road lanes
in videos recorded, for example, by self-driving vehicles. This application has
a similar structure to that shown in Fig. 1 (3 stages) where one stage is repli-
cated by a number of times. In the experiments, we used as input a video file
(5.25 MB - 640× 360 pixels) to simulate a typical execution of a video stream-
ing application. We execute this application on a multi-core machine composed
by 12 cores with 2-way Simultaneous MultiThreading (SMT) for a total of 24
hardware threads.

Firstly, we show in Fig. 2(a) the throughput of the application (i.e. how many
stream elements per second are processed) for different number of replicas. The
number of replicas is statically chosen and never modified during the execution.
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Fig. 2. Lane detection characterization.

These results prove that the use of SMT is beneficial for the throughput of this
kind of application since the best throughput is obtained by using 22 replicas.

As shown in Fig. 2(b), increasing the number of replicas may have detrimen-
tal effects on the latency of the application. It is worth noting that a significant
increase in the latency (as well as a decrease in the throughput) can be observed
when more than 10 replicas are used. Moreover, it is possible to note a signif-
icant increase in the oscillation of the latency when using more replicas. These
effects are caused by the contention between stages running on two SMT cores
corresponding to a same physical core.

There can be seen a correlation between throughput and latency. Achieving a
high throughput using many replicas tends to increase the latency. On the other
hand, using too few replicas decreases the throughput and latency. Consequently,
a balance between the two performance goals is required. The challenge is that
a high throughput is commonly pursued, and at the same time low latency may
also be necessary. In this work, the goal is to manage latency in replicated stages.

4 Autonomous Degree of Parallelism

In the previous section we have seen how the number of replicas affects the
latency of stream items. Responding in real-time according to latency constraints
and the actual rates cannot be done manually by the programmer. As a conse-
quence, we are abstracting from programmers the aspects related to the number
of replicas and latency for latency sensitive applications.

We implemented a strategy in the SPar’s runtime that monitors and manages
the latency of stream items by adjusting the number of replicas. Figure 3 shows
the architecture we use to adapt the number of replicas considering the moni-
tored latency of stream items. This adaptive mechanism is based on a feedback
loop [13] that at each control step, monitors the application and takes decision
so to optimize the execution of the application at the next step. By doing so, it
is possible to be reactive to select the best number of replicas even in presence
of workload fluctuations, which is common in data streaming applications. The
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Fig. 3. Latency - Regulator and Monitor.

implemented strategy works on a single replicated stage. However, this strategy
can also work in more complex compositions formed by several replicated stages,
and each stage can use the adaptive mechanisms under a global strategy. Also,
SPar replicates stateless stages, in case of an internal state, it would need to be
handled by other means.

A monitor routine is attached to the last stage of the application. It mon-
itors the latency of each stream element and calculates the average latency of
the elements processed in each iteration of the feedback loop. The latency cal-
culated by the monitor is read by a regulator connected to the first stage of the
application. The regulator, by using the information collected by the monitor,
decides which actions to take at the next step of the feedback loop in order to
enforce the latency required by the user.

In Algorithm 1 we show the regulator used in this work. It calls the monitor
for the current latency and when it is higher than the target one, the number
of replicas is reduced. On the other hand, the regulator increases the number of
replicas if the latency is significantly lower than the constraint. The part that
dynamically regulates the parallelism was implemented using low-level calls to
the FastFlow runtime library for changing the status of the replicas (active,
suspended). The regulator changes the number of replicas at run-time without
restarting the application. In order to avoid oscillation in the number of replicas,
a threshold value is used so that the number of replicas is not increased when the
latency is lower but close to the constraint. This strategy of the regulator tries
to maximize throughput while the latency constraint is met, pursuing a balance
between throughput and latency requirements.

By considering the example in Fig. 3, if executed on a machine with N cores,
we would activate at most N−2 replicas. Indeed, as we shown in Fig. 2(b), when
the replicas share the computing resources with other stages of the application,
this could lead to detrimental effects for both latency and throughput of the
application. The regulator we shown in Algorithm 1 assumes that at most one
stage is replicated. If more stages are replicated, the strategy should find the best
number of replicas for each of them. We will consider this scenario in our future
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Algorithm 1. Parallelism Regulator
1: procedure Regulator( )
2: while true do
3: Sleep(timeInterval) � Wait until the next iteration
4: if Latency > Constraint then � Latency is too high
5: SuspendReplica()
6: else if Latency < Constraint − Threshold then
7: WakeUpReplica()

work. Moreover, the implemented strategy works on stateless computations. In
case of a stateful scenario, the internal state would need to be handled manually.

An important part of the configuration is the scaling factor (SF), which is
how many threads/replicas are added or remove when adjusting the degree of
parallelism. In the literature, the most common SF value is 1 threads/replicas.
Our implementation is tested with SF of 1 and 2, thus in lines 5 and 7 of
Algorithm 1, 1 or 2 replicas can be suspended or awaken on each iteration.

Another relevant aspect is how often the algorithm should consider the pos-
sibility of adding/removing replicas. The most common approach is time-driven
that, at fixed time intervals, it decides if changing the number of active replicas.
The choice of the time interval is critical and depends from the application. In
general, a shorter time interval allows to react quickly to changes in the applica-
tion. In [4,8,15], the authors used time intervals ranges from 0.1 to 5 s. For our
scenario, we consider 1 s as the default time interval. We experimentally saw that
this configuration avoids too many changes in the number of replicas, but also
maintain a correct level of sensitivity to application fluctuations. The impact on
latency caused by the different choices of the time interval is left to be evaluated
in the future.

5 Results

Stream processing applications may run only pursuing the maximum through-
put without considering the latency. However, it is not suitable for those latency
sensitive applications that need to rapidly return their results. At the same time,
using a minimal number of replicas for reducing the latency tends to result in
a low throughput as well as inefficient usage of computational resources. There-
fore, our regulator tries to improve the throughput by increasing the number
of replicas when the latency is below the constraint. We tested our strategy for
latency with the same application and input used in Sect. 3. In this experiments,
the scaling factor (SF) of the parallelism regulator was 1 or 2, meaning that on
each reconfiguration one or two replicas can be activated or suspended. Also,
we used a control step of 1 s, which is a time interval sensitive enough to react
without compromising the overall execution. Another aspect tested is related to
the thresholds of the latency constraint presented in Sect. 4. In our scenario, the
best thresholds were 10% and 20%.
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Fig. 4. Threshold 10% - Latency constraint of 180ms (Left) and replicas used (Right).

In Fig. 4, we show on the left side the throughput and latency of the appli-
cation, while on the right side we plot the number of replicas used during the
execution. In this experiment, we set a latency constraint of 180 ms with a 10%
threshold. As we can see from the Fig. 4, the number of replicas is reduced when
the latency increases, and the number of replicas is changed several times due to
oscillations in the input video. Comparing the configurations, we observed that
SF of 2 reacts faster to changes and increases the throughput at the price of
more latency violations.
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Fig. 5. Threshold 20% - Latency constraint of 180ms (Left) and replicas used (Right).

In Fig. 5 is presented an experiment with the same latency constraint but
using a threshold of 20%. In this experiment, fewer latency violations occurred
because the threshold of 20% is more conservative, which avoids adding more
replicas when the latency is close to the constraint. Comparing thresholds 10%
and 20%, we noted that the effectiveness of threshold 20% in managing the
latency did not decrease the application throughput significantly. Moreover, SF
of 1 is more stable by avoiding to overreact in the face of latency oscillations
caused by the application workload fluctuations.

An experiment tolerating higher latency (200 ms) is shown in Figs. 6 and 7.
Despite the different constraint, the performance trend from the configurations is
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Fig. 6. Threshold 10% - Latency constraint of 200 ms (Left) and replicas used (Right).

similar. The threshold of 10% resulted in too many re-configurations that caused
latency violation by using too many replicas. Thanks to fewer latency violations,
SF of 1 was most suited than SF of 2. Considering the SF of 1, that yielded the
best trade-off between latency and throughput, the results revealed a similar
throughput regarding the thresholds 10% and 20%. Using the threshold of 20%,
it only violated the latency constraint in the last seconds of the execution. This
event is not caused by the adaptive mechanism but by the application, and it
also occurred with a static number of replicas as seen in Fig. 2(b). Consequently,
the adaptive mechanism was unable to respond because the latency violations
occurred right before the application termination.
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Fig. 7. Threshold 20% - Latency constraint of 200ms (Left) and Replicas used (Right).

Considering these results, we can highlight that latency-sensitive stream pro-
cessing applications with fluctuations perform better using SF of 1 and higher
thresholds. In fact, an acceptable performance depends on the constraints and on
the user requirements. Often in stream processing applications, a high through-
put does not mean that users will actually have a better experience [6]. Con-
sequently, it is important to support custom configurations (e.g., throughput,
latency) and to adapt the application at run-time while maintaining high-level
parallelism abstractions.
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6 Related Work

In this section, we present and contextualize the related studies that present
efforts for autonomous properties in the stream processing scenario. De Sensi
et al. [5,6] propose Nornir, a simple programming interface and runtime support
for dynamically and automatically control the resources allocated to the appli-
cation according to the user needs. Nornir enables the application to change
number of cores, clock frequency and placement of threads during run-time. It
also aims to satisfy bounds regarding power consumption and throughput, even
in presence of changes in the input rate, in the application phases, or external
interference. Nornir is validated using simulations and real-world benchmarks
from the PARSEC suite. In SPar, we do not focus on power-aware computing.
With respect to Nornir, we provide the possibility to express latency constraints
by adapting the number of replicas.

De Matteis et al. [4] present elastic properties for data stream processing
regarding performance (latency) and energy efficiency (number of cores and fre-
quency). Elasticity support is stated as a solution for an efficient usage according
to QoS requirements and so reducing the operating cost. The proposed model
was implemented in the FastFlow runtime, which is a framework for stream pro-
cessing targeting shared-memory multi-core architectures and also used by our
target SPar runtime. In this work, the authors use a controller thread to monitor
the application and to change the number of replicas and the clock frequency of
the CPUs when needed.

In Gedik et al. [8], the authors show aspects related to parallelism in pipeline
stages and they presented the motivation and challenges for elastic degree of
parallelism during run-time. They proposed an elastic auto-parallelization solu-
tion, which adjusts the number of replicas aiming to achieve high throughput
without wasting computational resources. Elasticity is implemented by requiring
the programmer to define a threshold and a congestion index in order to decide
whether to add or not more replicas.

Heinze et al. [12] emphasizes the complexity involved in determining the right
point to increase or decrease the degree of parallelism. The authors investigated
issues and requirements related to elasticity in the data stream for auto-scaling
(scaling in or out) and they manage latency in a distributed system by keeping
the system utilization in a range (min, max).

Selva et al. [16] show an approach related to the adaptation in run-time for
streaming languages. The StreamIt language is extended to allow the program-
mer to specify the desired throughput and the runtime controls the execution.
Moreover, it was implemented an application and system monitor that checks the
throughput and system bottleneck, respectively. Using the implemented strategy,
the system can adapt the execution based on previous observations.

Our research differs from existing works because we provide autonomous
degree of parallelism and latency-aware management for the SPar DSL, shown
in Sect. 2. De Sensi et al. [6] and De Matteis et al. [4] used the FastFlow frame-
work to implement autonomic management of energy consumption on parallel
applications. Besides providing a new strategy for implementing the latency-
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aware degree of parallelism, we integrated our strategy in the SPar’s runtime
system, adding therefore a new parallelism abstraction for its users.

We have a different scenario and target architecture compared to Gedik et al.
[8] and Heinze et al. [12] because they focused on distributed systems while SPar
targets multi-core environments. While Selva et al. [16] optimize the placement
and throughput in StreamIt, we abstract parallelism complexities and focus on
latency constraints for the SPar DSL. Moreover, the available solutions do not
focus on parallelism abstractions and can be complicated to be used even for
experts in parallel programming.

There is a demand to relieve end-users from the need to set a degree of paral-
lelism and to enable their applications to run transparently without the manual
intervention. We aim to free programmers from defining the degree of parallelism
by implementing a strategy that supports an adaptive degree of parallelism in
any application sensitive to latency parallelized by using SPar.

7 Conclusion

In this study, we extended SPar with a new parallelism abstraction. This was
accomplished by implementing a strategy that adapts, without any program-
mer intervention, the number of replicas in order to have a latency lower than
that specified by the application programmer. This is particularly useful for
stream processing applications, which are characterized by fluctuations in the
input rates. Our strategy monitors the execution and adapts the degree of par-
allelism. The manual, complex, and time-consuming definition of the degree of
parallelism is no longer required in SPar. Experimental results demonstrated
the effectiveness of our solutions when adjusting the number of replicas at run-
time. Although the result trends are expected to occur in different scenarios, the
presented results are limited to the tested application and environment.

In this study we proposed a strategy to control applications where only one
stage is replicated. In the future, we plan to extend this work to consider applica-
tions with a more complex structure. Moreover, we aim to evaluate our latency-
aware approach in other latency sensitive applications, specially those running
for long time periods. Eventually, we will improve the adaptive strategy, for
example, by using proactive rather than reactive approaches, to minimize the
number of times the number of replicas is changed at run-time.
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Abstract. A critical challenge for data stream processing at the edge
of the network is the consistency of the machine learning models in dis-
tributed worker nodes. Especially in the case of non-stationary streams,
which exhibit high degree of data set shift, mismanagement of models
poses the risks of suboptimal accuracy due to staleness and ignored data.
In this work, we analyze model consistency challenges of distributed
online machine learning scenario and present preliminary solutions for
synchronizing model updates. Additionally, we propose metrics for mea-
suring the level and speed of data set shift.

Keywords: Edge computing · Data analytics · Consistency · Staleness

1 Introduction

Traditional way of data production and consumption is being revolutionized by
new generation Internet based services such as smart cities, buildings, grids,
factories and many other applications of Internet of Things. In this ongoing
paradigm shift, not only volume of data explodes, but also it is generated in dis-
tributed fashion and consumed in real-time. Accordingly, the way such data is
processed and analyzed is also subject to change [17,28]. Many applications
require near real-time reaction based on streaming data. Such applications,
including intelligent traffic management, spam or fraud detection, transactive
energy control and computational advertising, require fast response to the events
detected in distributed streams. Hence, traditional batch processing, where data
is aggregated in a central processing facility (e.g. massive cloud data center), is
no longer feasible for such applications due to the high cost of data transmission
[26]. This cost includes both network delay and bandwidth usage.

Edge computing paradigm, which aims to bring processing power of cloud
to the closer proximity to where data is being generated or used, intrinsically
matches above-described requirements. One realization of this approach is so-
called Cloudlets [27] that are located in business promises such as restaurants
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or public offices, much like wireless access points today, and serve as a local
cloud to nearby clients. Another possibility is to utilize micro data centers that
contain multiple servers and provide computational capabilities at the edge of
the network [10]. Regardless of the implementation choices, edge computing will
benefit near real-time data stream processing (DSP) tasks in two distinct ways:
(i) it replaces sensor-to-cloud round trips and consequent network latency; (ii)
it saves significant bandwidth capacity by confining majority of data transmis-
sion to the local area network. Distributing DSP tasks that involve machine
learning (ML) steps, however, is not straightforward. One particular issue is to
maintain a consistent ML model that can be updated as data streams evolve.
Our aim in this work is to better understand the model consistency challenges
with distributed online machine learning (DOML) scenario and provide initial
ideas for potential solutions. To that end, we provide background information on
the DOML paradigm and non-stationarity along with a motivational scenario
in Sect. 2. We introduce a novel inference accuracy optimizing mechanism for
synchronizing model updates, which we call consistency of the fittest, in Sect. 3.
Furthermore, in Sect. 4, we propose three metrics for measuring the level of non-
stationarity and in the subsequent Sect. 5, present preliminary numerical results.
Finally, we discuss related work in Sect. 6 and conclude the paper in Sect. 7. To
the best of our knowledge, this study is the first to address ML model consis-
tency challenges within edge computing context and also the first attempt to
quantitatively measure the extent of non-stationarity in ML models.

2 Background

2.1 Distributed Online Machine Learning

When real time decision making and high velocity data streams are involved,
DOML is a viable alternative to centralized data processing/ML techniques. In
this scenario, data originating from geographically distributed sources (e.g. IoT
sensors, client computers, streaming media publishers, etc.) are processed at
a nearby edge computing node. Here, both inference and online training steps
are executed in each node. The former is about deriving conclusions (e.g. clas-
sification, prediction) from a ML model, whereas the latter is the continuous
process of improving and adapting that model. Figure 1 demonstrates such dis-
tributed architecture where DS are data streams and EN are edge nodes. Based
on input data (i) to the current ML model at each EN, actions (ii) are determined
and sent back to the distributed actuators (e.g. traffic control signals, in-home
smart devices). One issue in this scenario is that each EN has access to only a
local fragment (DS) of all generated data, hence local model (iii) trained with
that fragment is suboptimal. A centralized parameter server is typically imple-
mented in order to easily combine and synchronize new information learned
by distributed ENs as a global ML model [13]. This model can be hosted at a
cloud data center (DC) and updated in iterative fashion based on contributions
from ENs. Stale models at ENs should be replaced with the current global model
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Fig. 1. DOML architecture. Fig. 2. Example scenario where two of the
four edge nodes (in blue) are straggling.
(Color figure online)

(iv) so that they are more accurate in their inference and they build upon a
global checkpoint avoiding multiple branches of models.

2.2 Non-stationarity

Data set shift (or concept drift) is defined as the discrepancy between training
and test data of a ML model [25]. It can be observed in the joint distribution
of inputs or outputs due to non-stationarity of the environment. In many real
world applications, assumptions made in learning phase may become invalid over
time. For instance, frauds or spammers may change their methods, which inval-
idates detection algorithms or in a financial forecasting model, external events
such as mergers and acquisitions may change the learned dependencies between
stock prices. However, each application has its own characteristics and rate of
evolution. Data horizon is defined as the urgency of including new evidence and
updating the model, whereas, data obsolescence is the velocity that old data
becomes irrelevant to the model [23]. We address these concepts more formally in
Sect. 4. Two well-known solutions for learning data coming from non-stationary
processes are to periodically retrain the model and to incrementally update it.
We consider the latter in DOML due to high computation overhead of the for-
mer. Use of a static model in an application area with short data horizon and
rapid data obsolescence is impractical since inference accuracy will decrease over
time. Moreover, in the case of DOML, it is also not efficient to update global
model with each new data due to high communication cost. Hence, we con-
sider a scenario similar to previous work [3,17], where local models at each edge
node are updated online, whereas, global model is periodically synchronized via
a central node. We propose dynamic periodicity of ML model synchronization
for DOML, where quorum size and staleness bound are controlled to maximize
expected model accuracy. We also define metrics to measure data horizon and
obsolescence to analyze in which application areas proposed technique is the
most beneficial. Accuracy is used to represent ML model performance in this
paper, however, any other metric such as precision, recall or f-measure is viable.
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2.3 Motivational Scenario: Transactive Energy Control

Digital transformation of the electricity grid results in so-called smart grids [8,
9], which provide many capabilities such as distributed generation, pervasive
control, load management, self-healing, emission control, etc. Also enabled by
smart grids, transactive energy control is defined as a system of economic and
control mechanisms that allows the dynamic balance of supply and demand across
the entire electrical infrastructure using value as a key operational parameter
[20]. A NIST report [19] estimates that digitization and modernization of the
power grid until 2030, will bring cost benefits that are the three to five times
the required investment. In this endeavor, ML has many areas of application
such as clustering users and producers into power profiles, detecting theft of
electricity, understanding user behaviour, predicting supply and demand, etc.
High volume and frequency of data generated by smart meters and sensors,
their country-wide dispersion, and cruciality of fast decisions make smart grids
challenging for traditional data processing, but an ideal application area for
DOML. In conjunction with edge computing, DOML can address scalability
issues by alleviating network load meanwhile reducing response time through
data processing in high-bandwidth and low-latency proximity. In that sense,
DOML is very promising for enabling massive scale smart grids.

Let us consider energy supply and demand forecasting as an example task
in this scenario. Accurate and real-time predictions are crucial for optimizing
the generation and distribution of electricity, which is considered as a perishable
good since it cannot be stored on a wide scale. Some example optimization sce-
narios include, coping with short-term spikes in demand, dynamically controlling
voltage based on geographical demand to reduce losses, or increasing the utiliza-
tion of generators. ML algorithms such as logistic regression, neural networks
(e.g. LSTM), and support vector machines (SVM) can be adapted to forecast
time-series data and all have successful applications in the literature [15,30,31].
Data originating from generators or consumers in close proximity can be col-
lected in edge nodes as denoted with (i) in Fig. 1, and forecasts can be made
locally to give quick responses (ii). Non-stationarity is a particular challenge in
this area, which may stem from structural changes such as joining/leaving pro-
ducers, forming/dissolving links in grid network, and technological advances or
quantitative changes such as evolving consumption habits, unexpected events,
and seasonality. Trained ML model that is used in forecasting local supply and
demand at each edge node, has to be updated frequently with global knowledge
from the centralized parameter server in order to avoid staleness and consequent
accuracy drop. However, it is not trivial to collect all updates from edge nodes
(iii) and decide when local forecast models have to be updated (iv). Both too
late and too early updates may cause inaccurate prediction of supply or demand,
and consequently inadequate or excessive electricity generation.
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3 Consistency of the Fittest

3.1 Problem Definition

We focus on the decision problem of when to synchronize local models at edge
nodes in DOML, so that they are informed about global knowledge which is
learned collectively by others. Iterations at edge nodes may finish at different
times due to heterogeneity of edge resources and volatility of streaming data,
leaving us with decision which (or how many) responses to wait for at each
iteration, before updating global model and sending it to edge nodes. Too long
synchronization period (e.g. waiting until all nodes respond) may cause subop-
timal inference performance because edge nodes are obliged to the stale model
for a longer time. Too short period, on the other hand, has the disadvantage of
losing updates from straggler nodes as well as additional communication cost.
Moreover, optimal period differs both over time and between applications due
to changes in environment such as streaming rate, selection and capacity of edge
nodes, unexpected events and failures, etc. Existing quorum- and bound-based
approaches (described in Sect. 6) overlook such environmental dynamicity.

3.2 Dynamic Periodicity of Synchronization

The main idea behind the proposed technique is to push global model to the edge
nodes when either all responses are received or waiting for the future responses
is expected to result in lower average inference performance statistically based
on previous outcomes. Consider a small-scale example with four nodes in Fig. 2.
Here, at the beginning of the time period t0, edge nodes n1 and n2 have already
completed their iteration and sent their model updates to the parameter server,
however, n3 and n4 are late. Stale model already distributed to nodes (MS) have
current accuracy As whereas incorporating currently received information results
in a model (M0) with accuracy A0. First possibility is to push M0 immediately
to distributed nodes so that they will avoid staleness of MS (assuming As <
A0). However, this would mean updates from remaining nodes will be ignored
for this iteration and they will restart online training from M0. The second
option is to wait until n4 responds (as it is predicted to be earlier than n3),
update the model with its contribution to M1 with accuracy A1, and then push
that model. In that case, resulting model can be more accurate (A0 < A1),
but MS has to be tolerated until the end of time period t0. Moreover, As and
A1 may also decrease over time due to staleness of models. Here, the decision
should be made by considering expected magnitude of contribution by n4 as
well as expected length of t0. A similar trade-off applies for n3, as well. More
formally, we are looking for the future response i among k stragglers such that
average accuracy given in objective function in (1) is maximized. Here, τi is the
waiting time for response i, and ε is the time period in consideration for accuracy
(e.g. time until next iteration ends). The optimization problem, considering its
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small size in terms of parameters, can be efficiently solved via linear program
solvers.

maximize
i

Asτi + Ai (ε − τi)
ε

where τi =
i−1∑

j=0

tj

subject to i ∈ Z, 0 ≤ i ≤ k.

(1)

maximize
i

∫ τi

0

As(x) dx +
∫ ε

τi

Ai(x) dx

where τi =
i−1∑

j=0

tj

subject to i ∈ Z, 0 ≤ i ≤ k.

(2)

For simplicity, As and Ai are assumed to be constant in (1), however they
are functions of time. A more realistic objective function with this consideration
is given in (2). Here, ε in denominator is also replaced since it does not affect the
objective being a constant. Multiple accuracy functions and response times need
to be calculated or predicted so that aforementioned objective function can be
evaluated. We propose efficient mechanisms for these in the rest of this section.

Characteristic Function. We first learn a characteristic function, C(x), for
the accuracy drop of a static model over time. We then utilize the same function
for all predicted accuracy values to emulate the impact of staleness on them. In
order to obtain C(x), we test the same model at different time steps, log average
accuracy value of all edge nodes at each step, and fit a curve to these values.
Based on our evaluation with multiple ML tasks on real world streaming data
sets, we assume that C(x) follows a sigmoidal function. However, any other curve
can be fitted if it better describes data. We propose a four parameter logistic
regression that is given by (3). Here, y is the performance value (e.g. accuracy,
precision, recall, f-measure, percentage error etc.) of the ML model and x is the
time of measurement. Four parameters, a, b, c, and d correspond to lower limit
of y, upper limit of y, time of inflection, and the slope of the curve at time c,
respectively. We normalize the range of the characteristic function to [0, 1] so it
can be used with different models by simply multiplying with initial accuracy as
in (4). Characteristic function is specific to the application area as well as ML
algorithm used, thus curve fitting should be repeated when one of these changes.

y = a +
b − a

1 +
(

x
c

)d
(3)

A(x) = C(x)A (4)

Ri =
Ai − Ai−1

Ai−1
(5)



46 A. Aral and I. Brandic

Initial Accuracy. Second part of the problem is to predict initial accuracy of
the model (Ai) that includes updates from prospective response i along with
all preceding. Ai corresponds to the performance of Mi with test data that
is collected immediately after its training data. Since Ms and M0 are already
available, their accuracy (As and A0) can be directly computed with the test
data collected from all edge nodes. For predicting Ai≥1, however, we resort to
time series prediction. Time series data is collected at each response, i, by logging
accuracy of current model, Ai−1; and accuracy of current model updated with the
response, (Ai). We then calculate the magnitude of contribution as improvement
rate, Ri as given in (5). Through historical trends of R for each node, time
series forecasting algorithms such as autoregressive integrated moving average
(ARIMA) [4] can estimate the next value, Ri+1. Given estimated Ri+1 and Ai,
it is possible to calculate prospective accuracy value Ai+1 before response i + 1
is received by solving (5) for Ai and replacing i with i + 1.

Response Time. We model response characteristics of each edge node as a
time series where observed response times are the data points. A time series
forecasting algorithm can be used to estimate next response time from which
elapsed time is subtracted to obtain time-to-response. We employ support vector
machine regression algorithm, which demonstrates good accuracy in the similar
task of forecasting time-to-failure of edge computing servers [1].

4 Metrics for Non-stationarity

Consistency of the fittest technique is fairly generic with regard to applicable ML
algorithms. It is compatible with any algorithm as long as (i) training is online;
(ii) ML model is updatable with submodels; and (iii) its performance is mea-
surable through accuracy or error rate. Majority of online regression, clustering,
and classification algorithms meet these criteria and we employ some of the most
prevalent ones such as SVM, Bayesian networks, and naive Bayes, in our evalua-
tion (Sect. 5). However, impact of the proposed technique would be proportional
to the non-stationarity of the data stream. Furthermore, edge computing brings
new communication challenges to model consistency that greatly increases the
significance of measuring the extent of non-stationarity, with respect to central-
ized or high-bandwidth environments. To the best of our knowledge, there is
no other work as of today that handles data set shift in high granularity and
proposes metrics for data horizon or obsolescence. Hence in this section, we
introduce four metrics for that purpose.

Slope of the Characteristic Function (SCF) is the decrease rate of the ML
model performance represented with the slope of the characteristic function at
the point of inflection. This corresponds to the absolute value of d in (3) and
can be used to evaluate both data horizon and obsolescence.
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Time of Inflection (TOI) is the time it takes to observe significant drop in
the performance of a static model. More formally, it is the point in the charac-
teristic function such that the second derivative is equal to zero, i.e. x such that
C ′′(x) = 0. This corresponds to c in (3) and can also be used to evaluate both
concepts.

Contribution of Updates (COU) is the magnitude of contribution observed
in the performance when the model is updated with the most recent data. We
measure it as the average percentage increase in accuracy (or decrease in error)
of the ML model divided by elapsed time since previous update. This metric can
be used to measure data horizon.

Depreciation by Stale Data (DSD) is the sensitivity of the ML model to the
freshness of data. To measure DSD, we gradually add older data to the training
set and observe its accuracy. It is calculated as the average rate of deterioration
(or slope) per addition. This metric can be used to measure data obsolescence.

5 Numerical Results

In line with the motivational scenario described in Sect. 2.3, we train a SVM
regression model for the demand forecasting in electricity market of New South
Wales, Australia. We utilize Elec2 data set described in [12]. Our training set
consists of 100 half-hourly data points and we forecast five subsequent data
points. After initial training, we run the model to predict demands that are
increasingly toward the future and calculate accuracy at each step. Accuracy
function used in this experiment is %100−Symmetric Mean Absolute Percentage
Error (SMAPE), which is defined in (6). SMAPE is chosen for having an upper
and lower bound on the values it can get, in contrast to other widely used error
metrics such as mean absolute percentage error (MAPE) and mean squared error
(MSE). Here, pt and at are the predicted and actual values at time step t.

Accuracy = %100 − %100
n

n∑

t=1

|pt − at|
|pt| + |at| (6)

Figure 3 demonstrates that the accuracy of a static model drops following
a sigmoidal characteristic function, C(x), due to staleness. However, updating
the model via retraining at time step 10, delays the accuracy drop. Hence, it is
possible to maintain an accurate model through repeated updates. This exper-
iment also shows that C(x) is still valid after the model is updated. Note that,
we present unnormalized C(x) to facilitate comparison to accuracy values. Only
for this experiment, we use model retraining as SVM is not an updatable model.

As an additional scenario, we consider availability prediction of massively
distributed client computers for service reliability. We utilize failure traces [14]
from the SETI@home volunteer computing project to train a Dynamic Bayesian
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Fig. 4. Prediction error in SETI@home

data set as the DBN model stales.

Network (DBN) model for failure dependencies between nodes and predict avail-
ability rates through this model. To demonstrate the use of approach with dif-
ferent performance metrics, we use Root Mean Squared Error (RMSE) as in (7),
which is one of the most widely used quality measures for estimators. As shown
in Fig. 4, a sigmoidal characteristic function also fits to the increasing error rate.
Figure demonstrates the impact of two model updates at time steps 1000 and
2000 against a static model. Initial model maintains the same performance for
significantly longer time (around 250 time steps or two days) in comparison to
the electricity price forecasting scenario (around 30 time steps or 15 min). This
suggests less stationarity, more general ML model, or both.

We report calculated metrics for the first two scenarios in Table 1a. It also
includes five variation of the first scenario with 10 to 50 forecast data points.
Results from the second scenario at the bottom row are not directly comparable
with others due to the use of a different ML model and they are intended for
informative purposes only. COU and DSD are in percentage and TOI unit is
the number of time steps. SCF has no unit by definition of slope. As expected,
extending the forecast horizon results in steeper (SCF) and earlier (TOI) accu-
racy drop. Moreover, models become slightly more sensitive to stale data (DSD),

Table 1. Non-stationarity metric values (a) and their intercorrelation (b). TOI unit is
number of time steps, whereas COU and DSD are in percentage. SCF is unitless.

DS ML (#P) SCF TOI COU DSD
[12] SVM (10) 6.702 91.682 8.244 22.49
[12] SVM (15) 7.408 84.037 3.302 23.71
[12] SVM (20) 8.264 78.034 10.32 24.81
[12] SVM (40) 8.394 67.497 5.636 23.54
[12] SVM (50) 10.97 37.941 3.738 25.38
[14] DBN 14.27 363.83 32.00 2.430

(a)

SCF
TOI -0.9879 TOI
COU -0.3849 0.4654 COU
DSD 0.8571 -0.7731 -0.1505 DSD
#P 0.8212 -0.9489 -0.4506 0.6325

(b)
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whereas no trend in COU is detected. In Table 1b, on the other hand, the
correlation between the pairs of metrics are given. There exists strong (pos-
itive and negative) correlation between SCF, TOI, and DSD. SCF and TOI
are also strongly correlated with the number of forecast data points (indicated
by #P).

RMSE =

√√√√ 1
n

n∑

t=1

(pt − at)
2 (7)

F1 =
2 · TP

2 · TP + FN + FP
(8)

Finally in Figs. 5 and 6, we present average results of 10 repetitions from our
DOML simulation. To that end, we randomly split Elec2 to five sets to repre-
sent distributed data streams. We train and update five naive Bayes classifiers,
which instead represent ML models at edge nodes. The classification is for the
prediction whether the electricity price will go up or down based on demand,
supply, time of the day, etc. In Fig. 5, we report F1 scores given by (8), in the
case that there is no synchronization and each edge node maintains its own ML
model. In Fig. 6, on the other hand, scores of global models are presented. It
is clear that use of a parameter server and a global model not only increases
classification accuracy (by 13% on average) but also smooths the fluctuations
arising from local non-stationary. However, a static global model stales over time
and loses its accuracy. We also provide results from two dynamic models that
combine local models from three (random) and five (all) edge nodes, respectively.
Updating the model significantly increases accuracy (by 3.3% with 5 nodes) even
when some nodes are not considered (by 2.1% with 3 nodes).
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Fig. 5. Classification scores in the case
that each edge node is trained separately.
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Fig. 6. Classification scores in the case
that a global model is maintained.
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6 Related Work

To cope with memory and bandwidth boundedness of traditional stream process-
ing algorithms, several distributed stream processing engines including Apache
Storm, Samza, Flink, and Spark Streaming, are proposed. They provide dis-
tributed, scalable, and fault-tolerant ways to handle streaming data flow. How-
ever, none of these explicitly deal with the problem of data set shift. When
processing is distributed and occurs at the source (i.e. horizontal parallelism),
a centralized parameter server [13,17] is typically implemented in order to eas-
ily combine and synchronize new information learned by distributed nodes as a
global model, and to avoid multiple stale models. The unique issue in the geo-
distributed case is that arrival times of updates from local nodes may exhibit
high variation. State-of-the-Art staleness management techniques can be cate-
gorized as quorum and bound based ones. The works in the former category
[11,29], allow to continue synchronization as long as certain number of updates
is reached, whereas the latter approaches [7,13,16,28] allow asynchronous execu-
tion unless the level of staleness is over the predefined bound. Apache SAMOA
(Scalable Advanced Massive Online Analysis) framework is proposed [21] to act
as an abstraction for the aforementioned distributed stream processors and it
provides rudimentary snapshot-based model consistency. However, none of these
techniques are capable of providing the dynamicity in model update times and
adaptability to data set shift that are necessitated by high volatility of DOML.

An overview of ML techniques and adaptability mechanisms under data set
shift is studied in [32]. The focus is on traditional, centralized ML models,
hence consistency issues stemming from distributed learning are not considered.
Another work [22] investigates data set drift issues in classification algorithms.
They propose the terminology, which we incorporate in this paper, and survey
the types and common causes of data set shift as well as methods to detect its
occurrence. In the context of edge computing, there exists architectures for DSP
that support autonomous stateful migration [5,6,24]. However, management of
model consistency across multiple nodes is not yet studied to the best of our
knowledge. In [18], a data storage management mechanism to cope with limited
capacity of edge nodes is proposed. It evaluates the sensitivity of time series
forecasting algorithms (but not ML techniques as in this work) to the amount
of input data and address the trade-off between storage space and forecast accu-
racy. Other works on DSP within the edge computing context can be found in
a recent comprehensive survey [2].

7 Conclusion

We present a novel technique for efficiently scheduling machine learning model
updates from a global parameter server to many distributed edge nodes. Pro-
posed algorithms can be integrated into consistency management modules of
DOML tools to outsource implementation challenges. This also applies to data
collection from the pervasive edge nodes, which is required by the proposed
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non-stationarity metrics. Our preliminary evaluation results for both schedulers
and metrics are highly promising. In the future, we plan to implement the algo-
rithms as an extension to the prospective Apache SAMOA framework. Another
side of the consistency problem left as future work, is how to distribute load
to nearby edge nodes so that iterations complete in intended times without too
much deviation between nodes. Factors to consider in this regard are resource
capacity and transient unavailability of edge nodes as well as streaming rate of
data. Depending on the environment, it may be necessary to redistribute load
after each iteration based on previous outcomes.
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Abstract. Data Stream Processing (DSP) applications should be capa-
ble to efficiently process high-velocity continuous data streams by elas-
tically scaling the parallelism degree of their operators so to deal with
high variability in the workload. Moreover, to efficiently use computing
resources, modern DSP frameworks should seamlessly support infrastruc-
ture elasticity, which allows to exploit resources available on-demand in
geo-distributed Cloud and Fog systems. In this paper we propose E2DF,
a framework to autonomously control the multi-level elasticity of DSP
applications and the underlying computing infrastructure. E2DF revolves
around a hierarchical approach, with two control layers that work at dif-
ferent granularity and time scale. At the lower level, fully decentralized
Operator and Region managers control the reconfiguration of distributed
DSP operators and resources. At the higher level, centralized managers
oversee the overall application and infrastructure adaptation. We have
integrated the proposed solution into Apache Storm, relying on a pre-
vious extension we developed, and conducted an experimental evalua-
tion. It shows that, even with simple control policies, E2DF can improve
resource utilization without application performance degradation.

Keywords: Data Stream Processing · Elasticity · Hierarchical control

1 Introduction

Exploiting on-the-fly computation, Data Stream Processing (DSP) applications
can elaborate unbounded data flows so to extract high-value information as soon
as new data are available. A DSP application is represented as a directed (acyclic)
graph, with data sources, operators, and final consumers as vertices, and streams
as edges. Importantly, these applications are usually long running and often
subject to strict latency requirements that should be met in face of variable and
high data volumes to process. To deal with operator overloading, a commonly
adopted stream processing optimization is data parallelism, which consists in
scaling-out or scaling-in the number of parallel instances for the operators, so
that each instance can process a subset of the incoming data flow in parallel [7].
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To execute the application, its operators are deployed on computing
resources, which host the operator instances. We consider the emerging environ-
ment, where distributed Cloud and Fog computing resources can be acquired and
released on demand. Specifically, Fog computing enriches powerful but distant
Cloud data centers with micro-data centers located at the network periphery,
closer to the users/devices that produce and consume data. Therefore, the abun-
dant presence of geo-distributed computing nodes can be exploited so to decen-
tralize the application execution as well, thus reducing the application latency
and the movement of high data volume. In this environment, DSP frameworks
should be able to scale their applications, by changing the operators parallelism
(application elasticity), as well as to accordingly provision computing resources
(infrastructure elasticity) [1]. While the application elasticity allows to better
distribute computing capacity among DSP operators, the infrastructure elastic-
ity allows to avoid resource wastage while guaranteeing that enough computing
capacity is available when needed.

In this paper, we present Multi-level Elastic and Distributed DSP Frame-
work (E2DF), which extends our hierarchical architecture for application-level
elasticity [2] so to introduce infrastructure management capabilities. In E2DF,
the application control system and the infrastructure control system are orga-
nized according to the Monitor, Analyze, Plan and Execute (MAPE) architec-
tural pattern for self-adaptive systems. Differently from existing works [10,12]
that consider multi-level elasticity in a clustered environment, our solution is
designed for a geo-distributed operating environment. To manage a high number
of geo-distributed nodes in a scalable manner, our infrastructure and application
control systems are realized through a two-level hierarchical pattern.

Our main contributions are as follows:

– we present the infrastructure control system of E2DF. It relies on a high-level
MAPE-based Infrastructure Manager that coordinates the run-time adapta-
tion of subordinated MAPE-based Region Managers, which locally control
the elasticity of computing resources within a single micro-data center;

– we present simple control strategies for each component of E2DF, namely a
local policy for the Region Managers, and a global policy for the Infrastructure
Manager;

– we implement and evaluate E2DF on top of our extension [2,4] of Apache
Storm. Our results are promising and show the effectiveness of the proposed
E2DF framework, which allows to reduce the amount of used computing
resources, while keeping an acceptable level of application performance.

This paper is organized as follows. We review related work in Sect. 2. In
Sect. 3, we present the hierarchical distributed architecture of E2DF for the
autonomous control of application and infrastructure elasticity. In Sect. 4, we
present simple control policies for each component of E2DF. In Sect. 5, we eval-
uate the ability of E2DF to dynamically manage applications and computing
resources. We conclude in Sect. 6.
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2 Related Work

Run-time adaptation of DSP applications has attracted attention in recent
years [1], mainly focusing on the application elasticity and the adaptation poli-
cies and mechanisms that support it. Some works, e.g., [6,8], exploit best-effort
threshold-based policies based on the utilization of either the system nodes or
the operator instances. Other works, e.g., [3,9,11,16], use more complex cen-
tralized policies to plan the scaling decisions. Heinze et al. [9] estimate latency
spikes caused by operator reallocations through a model and use it to define
a heuristic placement algorithm. Lohrmann et al. [11] propose a scaling strat-
egy that enforces latency constraints by relying on a predictive queueing theory
model. Stela [16] relies on throughput-based metric to identify the operators
that need scaling. In [3] we formulate a centralized optimization problem for
the run-time elasticity management of DSP applications that takes into account
reconfiguration costs.

Current open-source DSP frameworks (e.g., Flink, Heron, Samza, Storm,
Spark Streaming) manage the DSP application distribution, execution, and
adaptation. However, as regards the application elasticity, most of them (except
Heron and Spark Streaming) only support the manual scaling of operators, which
can lead to sub-optimal application performance and operating costs. Dhalion,
a framework on top of Heron, provides application elasticity by scaling out/in
operators so to satisfy their throughput; Spark Streaming supports elastic scaling
of the number of executors. As regards the infrastructure elasticity, the above
frameworks can take advantage of the elasticity support of Cloud infrastruc-
tures [5]. However, in most cases the reconfiguration is enacted by restarting
the DSP application, thus causing downtime and possible state loss. Moreover,
elasticity decisions at the two different levels are, when available, independent
and uncoordinated, which could led to sub-optimal adaptation.

Only few solutions explicitly consider the reconfiguration of DSP applica-
tions in Fog and Cloud geo-distributed environments. SpanEdge [14] uses Cloud
and Fog data centers and follows a master-worker architecture implemented in
Storm, but it does not support operator migrations. Firework [17] provides only
elasticity of computing resources. Decentralized solutions for the elasticity of
DSP applications do not suffer as their centralized counterpart from network
latencies in geo-distributed environments. Among them, Mencagli [13] presents
a game-theoretic strategy where the control logic is distributed on each operator.
In [2] we propose a hierarchical distributed architecture for the autonomous con-
trol of elastic DSP applications and present distributed self-adaptation policies
also based on reinforcement learning; in this paper, we extend that architecture
to support elasticity also at the infrastructure level.

The works most closely related to our own have been presented in [10,12],
which consider multi-level elasticity both at the application and infrastructure
level. Liu et al. [10] propose a stepwise profiling framework that evaluates the
efficiency of possible configurations of parallelism. Similarly to us, their goal is
to avoid resource wastage; however, they do not propose auto-scaling policies.
Lombardi et al. [12] consider at the same time the elasticity at the operator
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and resource levels, where scaling actions can be executed either in a reactive
or proactive fashion, and implement their proposal in Storm. Differently from
us, all these works are designed for a traditional clustered system and therefore
could suffer from scalability issues in a geo-distributed environment. The E2DF
framework we propose is a first step towards coordinated multi-level elasticity
in geo-distributed Cloud and Fog systems.

3 System Architecture

The MAPE loop represents a well-know architectural pattern to organize the
autonomous control of a software system, where four components (Monitor,
Analyze, Plan, and Execute) are responsible for the primary functions of self-
adaptation. When the controlled system is geo-distributed, as in Fog computing,
a centralized MAPE loop, where analysis and planning are carried on by a single
component, may suffer from scalability issues. As described in [15], different pat-
terns to decentralize the MAPE components have been used in practice. Among
them, the hierarchical control pattern is of particular interest. It revolves around
the idea of a layered architecture, where each layer works at a different level of
abstraction. In this pattern, multiple MAPE control loops work with time scales
and concerns separation. Lower levels operate on a shorter time scale and deal
with local adaptation. Exploiting a broader view on the system, higher levels
steer the overall adaptation by providing guidelines to the lower levels.

Fig. 1. System architecture

Multi-level Elastic and Distributed DSP Framework (E2DF) includes two
management systems that are organized according to a two-level hierarchical pat-
tern: the Application Control System, which adapts the DSP operators deploy-
ment, and the Infrastructure Control System, which realizes resource elasticity.
Figure 1a illustrates the conceptual architecture of E2DF, highlighting the hier-
archy of the multiple MAPE loops and the system components in charge of
the MAPE loop phases. The Infrastructure Control System includes a central-
ized Infrastructure Manager (IM), which cooperates with multiple decentralized
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Region Managers (RM). Similarly, the Application Control System comprises
a centralized Application Manager (AM) and decentralized Operator Managers
(OM). Besides controlling the applications and computing resources in E2DF,
the IM and AM can interact to adapt their behavior at run-time. Specifically, the
IM can expose different views of the computing resources upon which the AM can
run the application. In such a way, the IM can dynamically partition resources
among applications. Differently from the approaches where the infrastructure
is adapted without considering the application needs, the IM-AM interaction
enables to realize cross-level optimizations. For example, when the IM detects
that computing resources are underutilized, it can propose the AM to consoli-
date the managed applications on a reduced number of resources. Similarly, the
AM can prevent the IM from terminating underutilized nodes when the latter
execute critical DSP operators.

Infrastructure Control System. The Region Manager (RM) realizes the lower
level MAPE loop of the Infrastructure Control System. It is a distributed entity
that oversees resource elasticity within a single region (i.e., data center, micro-
data center). To this end, it monitors the computing nodes used by E2DF within
the region through the Resource Monitor. Then, through the Local Reconfigura-
tion Manager, it analyzes the monitored data and determines if new resources
should be acquired or leased ones should be released. When the RM determines
that some adaptation should occur, it issues an adaptation request to the higher
layer.

At the higher level, the Infrastructure Manager (IM) coordinates the resource
adaptation among the different computing regions through a global MAPE
loop. By means of the Infrastructure Monitor it collects aggregated monitoring
data from the different available regions. Then, through the Global Reconfigura-
tion Manager, it analyzes the monitored data and the reconfiguration requests
received by the multiple RMs, and decides which reconfigurations should be
granted. For example, the Global Reconfiguration Manager can decide that it
is more convenient to acquire resources from a specific region, so it will inhibit
scaling operations proposed for other regions. According to its internal policy,
the Global Reconfiguration Manager can interact with the AM and adapt its
behavior accordingly. For example, it may suggest the AM to consolidate the
managed DSP operators on fewer computing nodes (the AM can accordingly
accept or deny the request). Using the Global Actuator, the IM communicates
its reconfiguration decisions to each RM, which can, finally, scale the computing
infrastructure by means of the their local Reconfiguration Actuators.

Application Control System. The Application Control System manages
the run-time adaptation of a DSP application. Similarly to the Infrastructure
Control System, it implements a hierarchical MAPE loop where an Applica-
tion Manager oversees subordinate Operator Managers. At the lower level, the
Operator Manager (OM) controls the reconfiguration of a single DSP operator
and proposes reconfiguration requests to the higher level. At the higher level,
the Application Manager (AM) is the centralized entity that coordinates the
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adaptation request aiming to obtain good overall DSP application performance.
We refer the reader to [2] for further details.

Integration of E2DF in Storm. We have implemented the proposed E2DF
architecture in EDF [2], our extension of Apache Storm. EDF, by relying on
Distributed Storm [4], enhances the official Storm release by introducing an
infrastructure-level and application-level monitoring system and by supporting
run-time stateful operator scaling and migration (i.e., it enables the application
elasticity while preserving its integrity). Due to space limitations, we omit a
detailed description of EDF and Distributed Storm and refer the reader to [2,4].
As represented in Fig. 1b, we introduce the E2DF components into the Storm
architecture. More precisely, the AM, IM, and OM are implemented within exist-
ing Storm components, whereas the RM constitutes a new component to be
deployed in every region along with Storm Supervisors.

The IM runs within Nimbus, i.e., Storm’s master node. As soon as it is cre-
ated, it runs its MAPE control loop and waits for requests by the RMs and AMs.
The RMs are statically defined, one per region; each RM executes its local policy
and operates autonomously with one another. To acquire and release resources,
the Reconfiguration Actuator of the RM can be implemented to manage virtual
machines or software containers. In our current implementation, it uses software
containers, managed through Docker. In such a way, each Storm worker node
runs within a container that can be quickly spawn and terminated at run-time.
The RM first retrieves monitoring information about CPU utilization of the
computing resources used by Distributed Storm within the region. Then, it uses
the local policy to determine whether a resource scaling operation should be per-
formed, and possibly forwards the request to the IM. Should the reconfiguration
be performed, the Reconfiguration Actuator of the RM scales the computing
resources using the Docker APIs.

When a new application is submitted to Storm, Nimbus creates one AM
and multiple OMs (one per operator). While the AM runs in Nimbus, the OMs
are assigned to the available worker nodes by the Storm scheduler. As soon as
the AM is created, it determines the initial application placement on the set of
worker nodes. At run-time, Nimbus executes periodically the AM, which analyzes
the monitored application response time, acquired from Distributed Storm, and
collects the reconfiguration requests coming from the decentralized OMs. Then,
the global policy is executed so to coordinate and grant the reconfiguration
actions. To enact the deployment changes, the Global Actuator of the AM relies
on the rebalance command of Storm and on the stateful migration mechanisms
of Distributed Storm, which allow to preserve the operators internal state while
reconfiguring. Each OM collects information about the managed operator (e.g.,
resource usage) and relies on its local policy to identify beneficial reconfigurations
and to propose them to the AM. Should a reconfiguration be performed, the OM
Reconfiguration Actuator adapts the operator deployment (e.g., by changing its
replication degree), while preserving the operator internal state.
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4 Multi-level Elasticity Policy

The proposed two-layered architecture identifies different macro-components
(i.e., AM-OM, IM-RM) that cooperate to adapt the deployment of DSP applica-
tions and infrastructures at run-time. The E2DF architecture is general enough
to not limit the specific internal policies and goals for these components. By
properly selecting the internal policy for each component, the proposed solu-
tion can address the needs of different execution contexts, thus encompassing
applications with different requirements, infrastructures with different kind of
computing resources, and different user preferences. For example, the planning
components can be either activated periodically or on event-basis, can rely on
optimization problem formulation or heuristics that minimize the application
response time, maximize its availability, or a combination thereof.

Since the control components (i.e., AM, OM, IM, RM) work at different
abstraction layers, we need two-layered control policies as well. Specifically, we
will consider local policies, associated with RM and OM, which are concerned
with low-level adaptation actions and exploit a fine grained view on a subset of
the controlled entities (i.e., the replicas of a single operator and the computing
resources in a given region, respectively). The local policy does not directly enact
planned adaptation actions, which instead are communicated to the higher level
components, i.e., AM and IM. These components are each equipped with a global
policy that works at the granularity of the whole application/infrastructure. On
the basis of the overall monitored performance and the application performance
requirements (e.g., coming from a SLA), the global policies identify the most
effective reconfigurations proposed by the decentralized agents, providing an
implicit coordination mechanism among the independent local policies.

As a proof-of-concept of the proposed architecture, we present simple heuris-
tic elasticity policies whose overall adaptation goal is to preserve the application
performance in face of varying workloads, avoiding computing resources wastage.

4.1 Infrastructure Control Policy

The Infrastructure Control System manages the computing resources (e.g., con-
tainers, VM) allocated for the execution of DSP applications. As a proof-of-
concept policy, we consider a simple threshold-based approach, which is the
most commonly used one in Cloud auto-scaling systems [5]. The local policy
executed by the RM in each region r considers: (i) Cn, the capacity of each
node n, defined as the maximum number of application operators’ instances it
can host (e.g., proportional to the number of CPU cores); (ii) An, the number
of operators instances currently assigned to each node; and (iii) Un, the CPU
utilization of each node.1 For each region r, we consider a target capacity Cr,
which should always be available for deploying new operator replicas. Hence, we
require that

∑
n∈Nodes(r) (Cn − An) ≥ Cr. Whenever this constraint is violated,

1 The policy can be easily extended to consider other load metrics (e.g., related to
memory or network bandwidth utilization).
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the RM proposes to add one or more computing resources to satisfy the capacity
requirement. For simplicity, we assume that, if the RM can pick different kinds
of resources, it will choose the one with minimum capacity Cn, in order to have
a fine-grained control over the resource allocation. On the other hand, when the
available capacity in the region exceeds the minimum required amount, the RM
searches for computing resources to turn off. Specifically, the RM searches for
nodes that do not host application operators’ instances, and, if any, issues a
request to the IM for terminating them.

Moreover, the local policy searches for nodes that host one or more appli-
cation operators’ instances, but seem to be under-loaded. Specifically, the RM
looks for nodes whose CPU utilization does not exceed a predefined threshold
Ūlow,r (i.e., Un ≤ Ūlow,r). The replicas running on those nodes might be easily
migrated elsewhere, in order to consolidate the active computing nodes. The RM
issues a request to the IM for freeing and terminating these nodes.

Finally, the local policy communicates to the IM its proposed actions. The
IM global policy can accept/reject adaptation requests based on functional and
non-functional requirements. For the sake of simplicity, to evaluate the proposed
framework, we rely on a simple global policy, which accepts all the actions pro-
posed by the RM, except for those requiring the termination of a computing
resource currently occupied by one or more DSP applications, which require
special attention. When the RM proposes to turn off such a node, the IM will
in turn issue a request to the involved AMs for migrating their operators to dif-
ferent nodes. The IM also removes the node from the list of available resources,
to avoid that other operators are assigned to it by any AM. After a configurable
time interval, if the AM has not moved away the operators from the under-loaded
node, the scale-in procedure is canceled and the node considered available again.

4.2 Application Control Policy

Relying on a local policy executed by the OMs, and on a global policy executed
by the AM, the Application Control System manages the DSP applications elas-
ticity and placement. The OM local policy implements the Analyze and Plan
phases of the decentralized MAPE loop, which controls the execution of a single
DSP operator. Running on a decentralized component, this policy has only a
local view of the system, which consists of the status (i.e., resource utilization)
of each operator replica and of a restricted suitable set of computing nodes (i.e.,
located in the same region). By analyzing this information, the policy can plan a
reconfiguration of the operator deployment, by changing the number of its repli-
cas. We adopt a simple threshold-based policy for planning scaling actions [2].
Let us denote by Sα the resource utilization of replica α, which measures the frac-
tion of CPU time used by α. When the utilization of α exceeds a usage threshold
Ss-out ∈ [0, 1] (i.e., Sα > Ss-out), the OM proposes to add a new replica. The new
replica is allocated on the least utilized computing resource within the same
region of the other operator replicas. Conversely, the OM proposes a scale-in
operation, which removes one of the running n replicas, when the sum of their
utilization divided by n − 1 is significantly below the usage threshold, i.e., when
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∑n
α=1 Sα/(n − 1) < cSs-out, being c < 1. The replica to be removed is randomly

chosen between the two replicas with the highest utilization. Similarly to the
RM local policy, the OM proposes reconfiguration actions to the high-level AM,
which can accept or reject them, based on its global policy.

The AM determines the initial application deployment. To this end, it uses
a placement policy that assigns the operators on an initial number of Rinit com-
puting nodes, aiming to balance the number of operator per node. To perform
run-time adaptation, the AM adopts a global policy that implements the Analyze
and Plan steps of the centralized MAPE loop. Its main goal is to coordinate the
actions of the decentralized OMs, so to satisfy the DSP application performance
requirements, while minimizing the allocated resources (or their cost). In particu-
lar, it monitors the application response time and analyzes its behavior, possibly
by comparing it against a user-defined target performance. It can leverage this
information to decide whether, e.g., a higher parallelism could be beneficial for
the application, or the resource usage costs should be reduced. To this end, the
policy determines which reconfiguration plans, proposed by the decentralized
OMs, should be accepted. For the sake of simplicity, in this work we consider a
very simple global policy, which only rejects reconfigurations when they try to
acquire an already used resource (e.g., just assigned to another operator). More
sophisticated approaches (e.g., based on a token bucket to limit the number of
performed reconfigurations) can be proposed as well [2].

5 Evaluation

We evaluate the ability of E2DF to realize the multi-level elasticity. To more
easily investigate the proposed architecture, we equip E2DF with the proposed
proof-of-concept policies, and consider a single deployment region, where Storm
worker nodes are allocated as Docker containers. Each container allows the
worker node to run on a single CPU core, for no more than 50% of the time.
Each worker node has capacity Cn = 1, thus can host a single operator instance.
The Docker containers are executed on a single host machine, equipped with an
Intel i7-4710HQ CPU and 16 GB of RAM.

As a reference application, we consider a simple Word Count topology,
defined as a sequence of a source and 3 operators. The datasource emits random
sentences at a variable rate; the split emits a tuple for each word in the received
sentences; the counter traces how many times each word has appeared; the final
consumer publishes statistics to a RabbitMQ queue. Specifically, as shown in
Fig. 2a, the source emits data at a rate that grows from 5 to 550 tuples/s and
then decreases back to the initial value.

To show the potentialities of E2DF, we evaluate three different execution
scenarios. In the baseline one, neither the infrastructure nor the application
parallelism is adapted at run-time. We provisioned both the infrastructure and
the application so to handle the peak load; we run 16 worker nodes and 15 total
operator replicas for the reference application (namely, 2 replicas for split, 6 for
counter and 6 for consumer). As a second scenario, we consider the case where
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the worker nodes are statically provisioned, but the operators parallelism can
be adapted at run-time (i.e., only application-level elasticity). Finally, in the
third scenario, we evaluate E2DF with all the self-adaptation features enabled,
exploiting infrastructure-level elasticity as well. For the experiments, we let the
IM and RM run once per minute, and the AM and OM twice per minute. For
the RM policy, we set Cr = Rinit = 5, and Ūlow,r = 0.1. As regards the OM
policy, we set Ss−out = 0.7, and c = 0.75.
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Fig. 2. Application latency and allocated resources with different self-adaptation capa-
bilities (b−d), when the application is subject to a linearly growing and decreasing
input rate (a).

Results. Figure 2 reports the application latency, the application parallelism,
and the number of active worker nodes throughout our experiments. Figure 2b
illustrates the baseline scenario, when both the worker nodes and the operator
replicas are statically provisioned. In this case, the average application latency
throughout the experiment is 11.4 ms. Such a configuration is likely to waste
resources by using the same computational power in face of different levels of
incoming load. Our second experiment confirms this observation: indeed, the
Application Control System, starting with a single replica per operator, adapts
the number of operator replicas used by the DSP application at run-time (see
Fig. 2c). Application elasticity allows to use, on average, 55% less replicas during
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the experiment, with only limited performance degradation: the average appli-
cation latency in this setting is 19.3 ms.2 Nonetheless, in this experiment we
are likely to still over-provision the infrastructure resources, keeping 16 active
worker nodes all the time.

The third scenario allows to evaluate the benefits of exploiting the full self-
adapting capabilities of E2DF, i.e., when it can adapt the application and the
infrastructure. The application performance is almost identical to that observed
in the previous experiment, while the number of active worker nodes (and so
the resource usage cost, in a real scenario) is reduced on average by 24%. As
shown in Fig. 2d, the number of running worker nodes is readily adjusted as the
application acquires or releases worker slots. These results demonstrate that our
simple policies are effective in limiting the resource wastage, at the same time
avoiding significant performance degradation.

6 Conclusions

In this paper, we presented Multi-level Elastic and Distributed DSP Framework
(E2DF), a hierarchical approach for controlling DSP application elasticity and
infrastructure elasticity. Designed according to the decentralized MAPE control
pattern, our solution relies on a two layered approach with separation of concerns
and time scale between layers. At the lower level, distributed components control
the adaptation of DSP operators and computing resources within a deployment
region. At the higher level, a per-application manager oversees and coordinates
the DSP application adaptation, while a global IM supervises the management of
computing resources across different regions. We prototyped the proposed solu-
tion within Distributed Storm and proposed proof-of-concept policies to evaluate
the benefits of the proposed hierarchical and distributed architecture. The results
show that our simple yet effective policies allow to significantly reduce resource
wastage with respect to statically provisioned applications and infrastructures.

As future work, we will further investigate the presented hierarchical app-
roach. We plan to design more complex decentralized policies, considering differ-
ent (stringent and possibly conflicting) optimization objectives, and a larger set
of constraints (e.g., related to network bandwidth). We will also investigate the
interaction between the application-level and infrastructure-level elasticity. In
particular, we will study the multi-agent optimization problem that arises from
the interaction of the ACS and ICS, recurring to techniques specifically targeted
to this class of systems (e.g., Multi-Agent Reinforcement Learning).

2 We can observe evident spikes in the measured application latency after each recon-
figuration; they are due to the pause-and-resume stateful reconfiguration protocol
adopted by Distributed Storm. Therefore, we compute our statistics excluding the
first 2 min after each reconfiguration.
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Abstract. This paper presents a new resource allocation framework
based on SLA (Service Level Agreements) classes for cloud computing
environments. Our framework is proposed in the context of containers
with two qualitative and two quantitative SLAs classes to meet the needs
of users. The two qualitative classes represent the satisfaction time crite-
rion, and the reputation criterion. Moreover, the two quantitative classes
represent the criterion over the number of resources that must be allo-
cated to execute a container and the redundancy (number of replicas)
criterion. The novelty of our work is based on the possibility to adapt,
dynamically, the scheduling and the resources allocation of containers
according to the different qualitative and quantitative SLA classes and
the activities peaks of the nodes in the cloud. This dynamic adapta-
tion allows our framework a flexibility for efficient global scheduling of
all submitted containers and for efficient management, on the fly, of
the resources allocation. The key idea is to make the specification on
resources demand less rigid and to ask the system to decide on the pre-
cise number of resources to allocate to a container. Our framework is
implemented in C++ and it is evaluated using Docker containers inside
the Grid’5000 testbed. Experimental results show that our framework
gives expected results for our scenario and provides with good perfor-
mance regarding the balance between objectives.

Keywords: Scheduling and resource management
Optimization · Performance measurement and modelling
New economic model · Cloud computing
Containers to support high performance computing
and industrial workloads

1 Introduction

Nowadays, different forms of cloud computational resources exist such as virtual
machines (VMs), containers, or bare-metal resources, having each their own
characteristics. Container technology is relatively new in production systems
c© Springer Nature Switzerland AG 2019
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but it is not a new concept. Container is a light-weight OS-level virtualization
technique that allows to run an application and its dependencies in a resource-
isolated process.

This paper presents a new opportunistic scheduling and resource allocation
system based on an economic model related to different classes for SLAs (Service
Level Agreements). The objective is to address the problems of companies that
manage a private infrastructure of machines i.e. a cloud platform, and would like
to optimize the scheduling of several containers submitted online by users. Each
container is executed using a set of computing resources.

To specify the user desired SLAs classes, we propose to modelled each class
by 3 services. This choice is motivated by our experience with the Fonds Unique
Interministériel (FUI) Wolphin project [6]. It is based on the observation that
hosting solutions do not allow manufacturers or cloud providers to offer to their
users a fair or accurate invoice, i.e. a precise invoice with respect to the waiting
time, the nodes reputation, consumption of resources and the number of repli-
cas. The AlterWay company, coordinator of the Wolphin project, noticed that
the project must respond to the following usages with regard to the deployed
services: (i) Premium service is designed to users who want to get a ‘high quality’
service; (ii) Advanced service is designed to users who want to get an ‘average
quality’ service; and (iii) Best effort service is designed to users who want to get
a ‘low/less quality’ service.

In this work, we decompose the scheduling and allocation problems into 4
steps, namely selection of a container in a queue, selection of candidate nodes,
computation of resources and allocation on a node. One can view the scheduler
has a program that repeats forever these 4 steps. The third step is new, compared
to the existing state-of-art research because, to the best of our knowledge, none
of the existing cloud scheduler computes, dynamically, the number of resources
allocated to a container. This is the first contribution of the paper. The user do
not request for a fixed number of resources. The second contribution is related
to the new economic model sustained by the 4 SLA classes regrouped in 2 qual-
itative and 2 quantitative SLA classes. The third contribution of the paper is
the experiments that we conduct with Docker containers. We have implemented
a new scheduler, based on the Docker API, for the creation of containers and
we execute traces representative from the High Performance Computing (HPC)
world and traces representative of Web hosting companies.

The organization of the paper is as follows. Section 2 presents some related
works. Section 3 describes our framework architecture. Section 4 presents our
qualitative and quantitative SLA classes. Section 5 describes how the SLA classes
are used by our framework. Section 6 introduces exhaustive emulation that allows
the validation of our proposed framework. A last, a conclusion and some future
works are given in Sect. 7.

2 Related Work

In the literature, all problems of resources allocation or resources management
refer to the same class of scheduling problems. They consist generally in associ-
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ating a user’s request to one or several computing cores. Most of these problems
are NP -hard [13].

In the context of containers scheduling on cloud computing, there exists
several studies, as those presented in [10,14,16]. However, to the best of our
knowledge, all frameworks schedule containers according to a fixed configuration
in term of computing resources. From an industrial point of view, we may cite,
as examples, the schedulers inside Google Kubernetes [16], Docker Swarm [10]
and Apache Mesos [14].

Google Kubernetes [16] is a scheduler framework which represents an orches-
tration system for containers based on pods concept. Pods are a group of one
or more containers. They are always co-located and co-scheduled and run in
a shared context. Moreover, they will be run on the same physical or virtual
machine. The principle of Kubernetes scheduling can be summarized in two
steps. First, filter all machines to remove machines that do not meet certain
requirements of the pod. Second, classify the remaining machines using priori-
ties to find the best fit to execute a pod.

Docker Swarm [10] is an important container scheduler framework developed
by Docker. Docker is the technology used by the FUI Wolphin project [6] which
is the support of our work. The Swarm manager is responsible for scheduling the
containers on the agents or nodes. Swarm also has two steps to finally selecting
the node that will execute the container. First, it uses filters to select suitable
nodes to execute the container. Then, it uses, according to a ranking strategy,
the most suitable one. Actually, Swarm has three ranking strategies: (i) Spread
strategy which executes a container on the node having the least number of
containers, (ii) Bin packing strategy, in contrast with spread, chooses the node
with the most packed containers on it, and (iii) Random strategy which chooses
a node randomly.

The field of Virtual Machines (VMs) scheduling may also serve as a reference
for containers scheduling. Various approximation approaches are applied in the
work of Tang et al. [12]. Authors propose an algorithm that can produce high-
quality solutions for hard placement problems with thousands of machines and
thousands of VMs within 30 seconds. This approximation algorithm strives to
maximize the total satisfied application demand, to minimize the number of
application starts and stops, and to balance the load across machines.

Targeting the energy efficiency and SLA compliance, Borgetto et al. [2]
present an integrated management framework for governing Cloud Computing
infrastructures based on three management actions, namely, VM migration and
reconfiguration, and power management on physical machines. By incorporating
an autonomic management loop, optimized using a wide variety of heuristics
ranging from rules over random methods, the authors demonstrated that the
proposed approach can save energy up to 61.6% while keeping SLA violations
acceptably low.

In contrast to these related and above-mentioned studies, our proposed
framework combines scheduling and allocation strategies with qualitative and
quantitative SLA classes. The SLA classes are proposed to answer the needs of
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different users. The benefit of our framework consists to use the different SLA
classes to: (i) select the first container that must be executed; (ii) decide the
cloud node that must execute the selected container; (iii) compute dynamically
the number of resources allocated to the considered container and (iv) decide the
number of replicas for a container and choose nodes which execute the considered
container and it’s redundancy replicas.

A preliminary work has been published in [9]. In this paper, we consider the
following improvements: (i) we consider 4 SLA classes instead of 2 SLA classes to
have an economic model with several classes; (ii) the general scheduling schema
is composed of 4 steps instead of 3 to satisfied all the SLA classes; and (iii)
experiments are emulation on Grid’5000 testbed, with Docker containers, instead
of simulations. In other words, this work introduces a more general and realistic
framework compared to [9].

3 Architecture

The goal of our framework is to give answers to the problem stated as follows:
in cloud computing environment, how to use a set of qualitative and quantitative
SLA classes to optimize the global scheduling of containers submitted online by
users?

Fig. 1. Framework’s architecture

Figure 1 depicts the architecture of our framework. Each time a new container
is submitted online, the user must firstly select its services in the qualitative and
quantitative SLA classes. Then, the new submitted container is inserted in the
containers’ queue. After that, our framework, schedules and allocates resources
to each container according to its configuration in term of SLA classes. Finally,
the submitted container is executed in the most appropriate cloud node.

4 Qualitative and Quantitative SLA Classes

As said before, our framework is based on SLA classes to configure each new
submitted container. Our SLA classes are regrouped in two qualitative and two
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quantitative classes. Each class is proposed with 3 services: Premium, Advanced
and Best effort.

The two qualitative classes address: (i) the satisfaction time criterion, that
means, the user waiting time before the execution of the user container; and
(ii) the reputation criterion, that means the node choice of the user to execute
his container. Moreover, the two quantitative classes address: (i) the number of
resources criterion, that means the number of resources must be allocated to
execute a container; and (ii) the redundancy criterion which set the number of
time that a container is executed to ensure fault tolerance.

In our context, to satisfy the user needs according to its SLAs classes, we
propose to represent each service by one priority value as following: (i) Premium
service: priority value = 3; (ii) Advanced service: priority value = 2; and (iii) Best
effort service: priority value = 1. As we have 4 SLA classes (2 qualitative and
2 quantitative), each container is represented by 4 priorities values, each value
represent the assignment of the service in one SLA class. For the first qualitative
SLA class (satisfaction time), the modeling of our 3 services is motivated by the
fact that users are regrouped in 3 categories:

– Premium service: It is designed for users who wish to find a solution as soon
as possible without considering the price of the operation,

– Advanced service: It is designed for users that have a limited financial budget
but still wish to have a solution in the smallest reasonable execution time,

– Best effort service: It is designed to users who have no time constraints, but
want to pay for the minimum possible price.

For the second qualitative SLA class (reputation), our modeling based on 3
services is motivated by the fact that nodes are different according to the cloud
infrastructure. Generally the differences between nodes is based on reputation
criterion as: (i) security of sites; (ii) reliability of hardware; and (iii) reliability
of network. In this context, users are also regrouped in 3 categories:

– Premium service: It is designed for users which execute their containers in
nodes with high reputation;

– Advanced service: It is designed for users which execute their containers in
nodes with an average reputation;

– Best effort service: It is designed to users who have no constraints about the
reputation of the cloud nodes. The goal is to has a low cost price.

For the first quantitative SLA class (number of resources), the modeling of
our 3 services is motivated by the fact that the need of resources for each user
is different. Generally users are regrouped in 3 categories:

– Premium service: It is designed to users with long service that needs many
computing cores.

– Advanced service: It is designed to users with short service that need some
computing cores.

– Best effort service: It is designed to users with micro service that do not need
many computing cores. Its service life is less than the frequency of metrics’
collection.
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For the second quantitative SLA class (redundancy replicas), the modeling
of our 3 services is motivated by the fact that users are regrouped also in 3
categories according of the number of redundancy replicas of containers:

– Premium service: It is designed for users who execute their containers with a
big number of redundancy replicas in different nodes to be sure that at the
end of the execution, they get a solution;

– Advanced service: It is designed for users who execute their containers with
average number of redundancy replicas in different nodes;

– Best effort service: It is designed to users who execute their containers without
constraint about the number of replicas.

5 Scheduling and Resources Allocation Based on SLA
Classes

As many other scheduling system proposed in the literature, we sketch to use
a containers’ queue to store all submitted containers. To schedule and allocate
resources to containers, our framework goes through four phases according to
the qualitative and quantitative SLA classes:

1. Container scheduling: It is based on a combination between qualitative and
quantitative classes. To select the first container which must be executed
we propose to use the PROMETHEE II (Preference Ranking Organization
METHod for Enrichment Evaluations) algorithm;

2. Container reputation: It is based on the qualitative reputation class, to select
a set of nodes that can execute the container and its redundancy replicas;

3. Container allocation: It is based on the quantitative number of resources class,
to set dynamically the number of resources must be allocated to the selected
container;

4. Container ‘redundancy replicas’: It is based on the quantitative ‘redundancy
replicas’ class, to set the number of replicas for a container. This phase is
also used to assign a container and its replicas to cloud nodes using the bin
packing heuristic.

5.1 Container Scheduling

To select the first container which must be executed we propose to use, in this
paper and for convenience, the PROMETHEE II algorithm [11] because it is a
multi-criteria decision algorithm. It is also possible to use for example a CPLEX
solver [4] in order to solve the decision problem, or any other techniques. In
our context, if the selected container (cx) can not be executed because of a lack
of resources for example, the container cx wait in the container’s queue and
a new container is selected by the PROMETHEE II algorithm. Remind that
PROMETHEE II is an algorithm which permits the building of an outranking
between different alternatives [11]. It is used in this step because it is known to
provide with a ‘good’ compromise between qualitative and quantitative criteria
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and it is mathematically well founded. Indeed, the PROMETHEE II has been
used with success to solve many problems [1]. It is based on a comparison, pair by
pair, of possible decisions (containers) along the qualitative criteria (satisfaction
time and reputation) and the quantitative criteria (number of resources and
redundancy replicas). More details about the use of PROMETHEE II algorithm
in our context is presented in [9]. PROMETHEE II algorithm has a complexity
of O(q.n log(n)) [3] (where q represents the number of criteria and n the number
of possible decisions (alternatives)).

5.2 Container Reputation

This step is used by our framework to select nodes that must execute a container
and its copies according to the container service. Indeed, our framework classifies
statically all nodes which form the cloud infrastructure in 3 categories: (i) High
reputation nodes; (ii) Average reputation nodes; and (iii) Low reputation nodes.

Then, each service in the qualitative reputation class uses nodes category,
as following: (i) Premium service uses the high reputation nodes category; (ii)
Advanced service uses the average reputation nodes category; and (iii) Best effort
service uses the low reputation nodes category.

5.3 Container Allocation

Our framework uses the quantitative number of resources class to set, for each
container, the number of resources. In this step, we propose to use the same idea
as the introductory work presented previously in [9], which is applied for any kind
of nodes in the cloud (heterogeneous and not heterogeneous nodes). The principle
is to set, for each container, a range on resources demand instead of specifying a
fixed quantity of resources. It means that each service in the quantitative number
of resources class has a number of resources bounded between the min and max
parameters. The bound of cores for each service is proposed to be sure that each
container, with low service in the number of resources class, cannot be executed
with more cores than a container with a high service in the number of resources
class.

To compute the bound of cores, we propose first to set N as the number
of resources of the smallest machine of the infrastructure. N is set in this way
to be sure that in any situation, the container is executed on one cloud node.
After setting N , each service in the SLA quantitative number of resources class
calculates the min and max number of resources. As we have 3 services, we
propose to manage 3 intervals with the same distance as follows:

– Best effort class : Min number of resources = 1; and Max number of resources
= 1

3 × N ,
– Advanced class : Min number of resources = Max number of resources of the

Best effort service + 1; and Max number of resources = 2
3 × N ,

– Premium class : Min number of resources = Max number of resources of the
Advanced service + 1; and Max number of resources = N .
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After bounding the number of resources for each service in the quantitative
number of resources class, we use a function that set, dynamically, the number
of resources for a container (cx) at time t using: (i) bounds cores (min and max
cores) in each service; (ii) number of containers saved in the containers’ queue
at time t with the same reputation service as the container cx; and (iii) number
of free cores available in all the candidates nodes that can execute the container
cx at time t.

Let ri be the number of resources that must be allocated to container ci with
quantitative number of resources priority pi. We suppose that the containers’
queue has n containers (c1, c2, · · · , cn) with the same reputation service as ci.
Lest set (p1, p2, · · · , pn) the quantitative number of resources priorities associated
to the previous n containers saved in the queue and wc the number of waiting
cores in all candidates nodes that can execute ci (with the same reputation
service as ci). Then ri is computed as presented in the formula 1.

ri =
pi ∗ wc
n∑

j=0

pj

(1)

The formula 1 computes, at each time t, a fair partitioning of all waiting
cores between containers according to their quantitative number of resources
services. Next, the system checks if ri > Max cores (Maxcores) of its quantitative
number of resources service, then ri = Maxcores, else if ri < (Mincores) of its
quantitative number of resources service, ri = Mincores.

For example, let us consider an infrastructure composed of 3 nodes with the
Premium service in the reputation class, and 9 waiting cores in node1, 6 waiting
cores in node2 and 6 waiting cores in node3. The total number of waiting cores
is 21. Let us also use the following three containers which have Premium service
in the reputation class and have the following configuration:

– Container c1: Premium service on the quantitative number of resources class
(priority = 3), Min cores = 7 and Max cores = 9;

– Container c2: Advanced service on the quantitative number of resources class
(priority = 2), Min cores = 4 and Max cores = 6;

– Container c3: Best effort service on the quantitative number of resources class
(priority = 1), Min cores = 1 and Max cores = 3.

The number of resources is set as following:

– Container c1 : r1 = 3∗21
3+2+1 = 10. As 10 > 9 (max cores for Premium service),

we set r1 = 9. Then, the number of waiting cores will be equal to (9-9)+6+6
= 12. Now, in the queue, only 2 containers are saved: c2 and c3.

– Container c2 : r2 = 2∗12
2+1 = 8. As 8 > 6 (max cores for Advanced service), we

set r2 = 6. Then, the number of waiting cores will be equal to 0+(6-6)+6=6.
Now, in the queue there is only the container c3.

– Container c3 : r3 = 1∗6
1 = 6.
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5.4 Container Replicas

In our framework each container and its replicas are executed in different nodes of
the same reputation category nodes. That means, we cannot execute a container
and it’s redundancy replicas in the same cloud node. To compute the number of
redundancy replicas for each container, our framework sets an empirical value for
each service in the quantitative redundancy replicas class. The unique constraint
is that the highest service has the biggest value for the number of replicas. For
example, we may have the following setting:

– Premium service, our framework sets 3 redundancy replicas for each container;
– Advanced service, our framework sets 2 redundancy replicas for each con-

tainer;
– Best effort service, our framework sets 1 redundancy replica for each container.

We propose to add in our framework the redundancy replicas class to manage
some fault tolerance issues. For example, if one cloud node (nodex) is stopped
for different reasons, all containers who are executing on nodex are also stopped.
In this case, if the user chooses a high service in the redundancy replicas class,
he will be granted that another copy of his container is running in another node.
In reality, the usual practical assumption is that there is very low likelihood that
all nodes will stop at the same time.

In our system, we guarantee that each container or its redundancy replicas are
executed in fifferent nodes. To assign a container to a cloud node, our framework
applies the well known bin packing principle which is a combinatorial NP-hard
problem [5]. The principle of the bin packing heuristic consists, for each new
container ci, to assign it to the node nj which has the less available free resources.
This means that we select the node (not yet visited) that has the smallest number
of idle cores and that can execute the container ci.

The goal of using this heuristic is to minimize the number of active nodes to
reduce the cost of exploiting the infrastructure.

5.5 Complexity Analysis

Based on above mentioned arguments, the overall time complexity of our app-
roach is the complexity of the 4 steps: O(q.n log(n)), NP-hard problem, O(n)
and O(n) respectively and for n being the node number of the architecture.

6 Experimental Evaluation

In this section, we introduce emulation result of our framework to check if
it meets our expectations. For the emulation, we have used the Docker con-
tainer technology inside the Grid5000 platform [7], an experimental large-scale
testbed for distributed computing in France. For our experimental evaluation,
we reserved an infrastructure composed of 480 computing cores distributed in
15 nodes (Intel Xeon CPU). The 15 nodes are split as following: (i) 5 nodes form
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high reputation category; (ii) 5 nodes form average reputation category; and (iii)
5 nodes form low reputation category.

In this experimental evaluation, each container is submitted by one of the
following three users, each user has a particular services in the SLA classes:

– Premium user: Premium service for all qualitative and quantitative SLA
classes;

– Advanced user: Advanced service for all qualitative and quantitative SLA
classes;

– Best effort user: Best effort service for all qualitative and quantitative SLA
classes.

Each container runs a unique simple parallel application which load comput-
ing cores. The number of cores occupied by each container is set automatically
by our framework as presented in Subsect. 5.3. However, each container has also
a Sequential Life Time (SLT) set when the container is submitted and it is equal
to 5 min. Then, according to the number of cores allocated for each container
(N), the Parallel Life Time (PLT) which represent the real executing time of
the container is computed as being PLT = SLT

N .
Moreover, in this series of emulation, we introduce the performance of our

framework according to the submitting containers type. In this context, we pro-
pose two types of experiments: (i) containers submitted at the same time; and
(ii) containers submitted online. The first one stresses the behavior of our frame-
work. The second one represents a “normal” operating mode.

Fig. 2. Submission of 90 Docker con-
tainers at the same time

Fig. 3. Submission of 90 Docker con-
tainer online with a fixed frequency

6.1 Containers Submitted at the Same Time

Figure 2 shows the order of execution of 90 containers submitted at the same
time by 3 users, each user submits 30 containers. As a result, it is clear that
our framework starts by the execution, firstly, of containers submitted by the
Premium user, then containers submitted by the Advanced user. Finally, our
framework executes containers submitted by the Best effort user. This result
confirms that our framework respects the priorities of containers. We note also
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that when our framework cannot execute a container which has a high service
priority, as the container submitted by the Premium user, for lack of resources,
our framework executes another container, for a user who has a lower service
request in order to optimize the global scheduling of all containers. The goal is
not to stop the scheduling process when a container is not executed and to wait.

6.2 Containers Submitted Online

Figure 3 shows the order of execution of 90 containers submitted online with a
fixed frequency. Each 3 s 3 containers are submitted by 3 different users. That
means, each 3 s, each user submits one container. Figure 4 shows the order of
execution of 90 containers submitted according to the Google Cluster Data
traces [15] patterns. The Google traces information (May 2011), are related to
the submission frequency time of requests on cluster of about 12.5k machines. In
our case, the 90 containers are submitted using the same submission frequency
time as the first 90 requests submitted in Google traces. The 90 containers are
distributed as follows: (i) 2 containers submitted by Premium user and (ii) 88
containers submitted by Advanced user. In a complementary way, Fig. 5 shows
the order of execution of 90 containers submitted according to the real-world
trace files of an international company called Prezi [17]. These traces represent
the submission frequency time of the web oriented applications. In our case, the
90 containers are submitted using the same submission frequency time as the
first 90 web oriented applications submitted in Prezi traces. The 90 containers
are distributed as follows: (i) 10 containers submitted by Premium user, (ii)
13 containers submitted by Advanced user and (iii) 67 containers submitted by
Best effort user. According to Figs. 3, 4 and 5, we note that there is an overlap
between the execution of containers. This expected overlap is due to the fact
that containers are submitted online by different users.

6.3 Comparison Between the Average Number of Cores Allocated
for Each User

To the best of our knowledge, there is no framework which configures dynami-
cally the number of cores that must be allocated to each container. This explains
that it is impossible to compare the performance obtained using our framework
with another state-of-art framework. However, in Table 1 we shows a compari-
son between the average number of cores assigned to each user. As a result, we
note that our framework assigns, for each submission type, more cores to the
user with highest services. We note also that the user with the low service gets
always the smallest number of cores.
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Fig. 4. Submission of 90 Docker con-
tainers according to Google traces
frequency

Fig. 5. Submission of 90 Docker
container according to Prezi traces
frequency

Table 1. Comparison between the average number of cores allocated for each user

Submitting type Average number of cores allocated for each user

Premium user Advanced user Best effort user

Submission at the same
time

27.1 15.26 6.16

Submission online with a
fixed frequency

27.63 15.26 5.33

Submission online
according to Google traces

32 13.7 -

Submission online
according to Prezi traces

30.4 17.15 3.98

7 Conclusion

We have presented, in this paper, a new framework adapted for cloud comput-
ing environments in the context of containers technologies. The novelty of our
framework relies on SLA classes to optimize the global scheduling and the allo-
cation of resources for containers. Our solution proposes to users two qualitative
and two quantitative SLAs classes with three services for each class (Premium,
Advanced and Best effort). In our framework, the number of resources are com-
puted, dynamically, according to the quantitative number of resources class.

As a first perspective, we propose to compute the number of resources by
taking into consideration the submitted container history. It is challenging to
efficiently decide when and how to reconfigure the cloud in order to dynamically
adapt to the changes. Such a challenge has been identified as a MAPE-K (Mon-
itoring, Analysis, Planning, Execution, and Knowledge) control loop by IBM,
deeply investigated in [8], resulting in the concept of autonomic computing that
could be used in our case.

We may also wonder if the approach is flexible enough in the context of
multiple cloud providers. This question poses the problem of the adoption of our
economic model. We also propose, as a perspective, to add to our framework
a consolidation heuristic which allows to set dynamically the number of active
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cloud nodes in the infrastructure. This means that, according to the global load
of nodes, the framework decides the number of active nodes to reduce the energy
consumption.
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Abstract. Container-based Network Functions Virtualization (NFV) and multi-
site/multi-cluster service orchestration are a critical topic in the field of ICT
infrastructure. Academia, Industry and Open Source projects are actively
working on the technology. With the trends, Open Baton, an implementation of
the ETSI NFV MANO Reference Architecture, started efforts to orchestrate
network services over multiple Docker Swarm clusters. To achieve that, Open
Baton would require an additional feature to configure an overlay networking
over multiple swarm clusters, since Docker Swarm does not support multi-
cluster service. In this paper, we discuss our design and implementation of the
Multi-Swarm Networking Helper in Open Baton, which configures an L2
overlay networking over multiple Docker Swarm clusters by leveraging on a
third-party Docker networking driver.

Keywords: Multi-cluster networking � Container networking
Service orchestration with NFV MANO

1 Introduction

Container-based NFV (Network Functions Virtualization) is a topic of interest in the
field of ICT infrastructure. NFV researches previously focused on bare-metal-based
PNF (Physical Network Functions) to address performance issues in VM (Virtual
Machine)-based VNF (Virtual Network Functions). However, PNF occupies much
hardware resources, and it is difficult to isolate multiple of them in a single box.
Therefore, an NFV research line started to focus on Containerized Network Function
(CNF), because of advantages of this technology, such as scalability, agility and
resource efficiency, delivering a performance equivalent or near to the performance
observed when using bare-metal.

Network service orchestration is another popular topic in NFV domain. According
to the definition of the European Telecommunications Standard Institute (ETSI), net-
work service orchestration is lifecycle management (deployment, update and remove)
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of a network service, a composition of network functions such as firewall and load
balancer, over resource cluster(s) [1]. Single-cluster service orchestration based on
Virtual Machines matured with the efforts of researchers and open source communities,
a natural step forward is to extend it to multi-site/multi-cluster service orchestration
based on containers, which is currently an active research topic.

In this paper, we demonstrate an Open Baton NFV MANO (MANagement and
Orchestration) framework [2] to orchestrate CNF-based multi-cluster service over
Docker Swarm. We extended the Open Baton Docker Swarm VIM/VNFM, under
development at Fraunhofer FOKUS, to allow it to orchestrate multi-cluster services
over Docker Swarm clusters. In our scenario, the CNFs of a given service should work
on an L2 overlay network regardless of the type of the service (single-cluster or multi-
cluster). However, the default networking of Docker Swarm has not enough features to
support multi-cluster services. Therefore, it is required an additional networking feature
for Open Baton to allow the configuration of multi-Swarm Networking, as an overlay
network created over multiple Docker Swarm clusters.

In this paper, we present the Multi-Swarm Networking Helper, an additional feature
compliant to Open Baton MANO Framework. The feature configures multi-Swarm
networking by leveraging on the Weave Net driver, a third-party Docker networking
plugin, during the deployment phase of a network service in Open Baton. We then
evaluate the functional aspects of the implementation in a real multi-site testbed.

2 Backgrounds and State-of-the-Art

Since the introduction of the concept of container-based NFV, A research line claims
that container is more appropriate than a virtual machine for deploying network
functions. [3, 4] showed CNF has higher performances concerning resource utilization,
agility, and scalability compared to VNF. With the advantage of CNF, the authors of
[4] suggested Glasgow Network Function that is a container-based NFV platform
targeted for orchestrating Linux Container (LXC)-based CNFs over resource-
constrained edge boxes. Even though Glasgow Network Function made great pro-
gress on CNF orchestration, the design was hard to be aligned with OpenBaton. At the
same time, researchers are also focusing on multi-site VNF orchestration. [5–7] insisted
that previous NFV studies not show proper solutions to support multi-domain/multi-
site VNFs orchestration. The authors suggested their own multi-domain VNFs
orchestration framework. However, the works are not appropriate to be applied for
CNF orchestration, because the designs do not consider addressing different charac-
teristics of CNF orchestration. The multi-site/multi-cluster orchestration of CNFs
combining two domains has still challenged regarding implementation.

OpenStack project, a popular open source cloud operating system, has developed
its subprojects, Tacker and Tricircle, for supporting multi-site VNF orchestration.
OpenStack Tacker acting as NFVO as well as VNFM orchestrates VNFs over multiple
OpenStack clusters. In the other hands, OpenStack Tricircle can configure service
(tenant)-level L2/L3 overlay networks over multi-site OpenStack clusters. Combining
two projects could orchestrate VNF-based multi-site services, but it has not supported
container-based service orchestration yet. A proposal about Kubernetes VIM plugin is
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actively being discussed for OpenStack Tacker to be able to orchestrate multi-site
services consisting of CNFs as well as VNFs. Meanwhile, Docker Swarm and
Kubernetes approach a different way to coordination of multi-site clusters. They fed-
erate multiple clusters at the level of Identity and API, but container networking over
multiple clusters is not focused.

With trends on containerized NFV, the Open Baton community developed
Docker VIM (Virtual Infrastructure Manager), and VNFM (Virtual Network Function
Manager) to support Docker container-based infrastructures. Open Baton is an open
source NFV MANO framework developed and supported by Fraunhofer FOKUS. It is
a reference implementation of ETSI MANO specification [8]. However, Docker
VIM/VNFM should manage each of Docker-enabled boxes independently. It increases
the management complexity of the resources and makes Open Baton user need to be
aware of too much detail of the underlay resources for deploying a service. To resolve
this issue, Open Baton could leverage on a container orchestration tool taking care of
multiple boxes. For that purpose, we selected Docker Swarm among many tools
including Kubernetes and Fleet, because Docker Swarm is very easy to install and use,
also, we could alleviate our efforts on applying research developed with Docker into
Docker Swarm. For that purpose, a version of a VIM and VNFM were developed to
support Docker Swarm Clusters and expose them as a Point-of-Presence (PoP) in Open
Baton. However, Open Baton’s current version of the Docker Swarm VIM/VNFM
does not support communication between two containers, part of the same deployment,
in different clusters due to the lack of multi-cluster support in the default network driver
of Docker Swarm. Especially, overlay networks configured by the default driver are
isolated from the outside of a cluster.

One typical approach to enable containers in different sites to communicate with
each other is to include multi-site boxes into a container cluster. Then the container
orchestration tool could natively configure overlay networks across multi-sites. How-
ever, this approach has limitations for supporting use cases that require managing
multiple clusters separately, for example, individual operation of each site or applying
different policies to sites. Besides, adding multi-site worker boxes into a Docker Swarm
cluster could degrade performance, resulting from manager-worker communication
across multi-sites. Adding cluster managers, in contrast, results in performance
reduction due to the consensus algorithm for synchronizing states among managers.
Thus, this approach has limitations of scalability and performance in large-scale and
widely distributed multi-site infrastructure. Therefore, OpenBaton’s current version of
Docker Swarm VIM/VNFM needs to be extended to support interconnection between
containers running in multiple Swarm Clusters.

3 Requirements and Design

To explain our proposal, described in Sect. 1, we assume an example scenario that
depends on multi-cluster service orchestration. This scenario consists of multiple
Docker Swarm clusters registered to Open Baton as PoPs. Open Baton user selects one
network service descriptor, which specifies the configuration and behavior of the virtual
network functions of a service, through the Open Baton NFVO Dashboard. Then, the
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user can select the clusters for each VNFs in the belonging to the network service. If the
user selects the same cluster for all VNFs, then the service is a single-cluster service. If
not, the service is a multi-cluster service. NFVO starts the deployment process
according to the descriptor and the user’s selection. In case of single-cluster, Open
Baton creates an overlay network with the default networking driver of Docker Swarm.
However, for multi-cluster service, Open Baton utilizes the Multi-Swarm Networking
Helper to configure a Multi-Swarm Networking. After creating the network, Open
Baton deploys the VNFs.

To realize the use case with the Multi-Swarm Networking Helper, Open Baton
must consider the following:

• For a multi-cluster service, Open Baton utilizes Multi-Swarm Networking Helper to
configure Multi-Swarm Networking.

• For a single-cluster service, Open Baton configures default Docker Swarm
networking.

• Regardless of service types, all VNFs in a network service should work on an L2
overlay network.

• Do not modify common NFVO procedures for network service orchestration.
• Multi-Swarm Networking does not introduce any additional parameters in the

Network Service Descriptor and VNF Descriptor.

Before considering Open Baton, we had to find a way for Docker Swarm to enable
an overlay network over multiple clusters. We considered three approaches: (1) to
configure a relay container in each cluster. In this approach, all containers need to send
packets destined to other clusters to the relay container working in the same cluster.
The relay container can pass the packets to another relay container in the destination
cluster; (2) to configure a Linux networking stack including Linux Bridge and internal
firewall to inter-connect boxes in different clusters, whenever a container and a network
is changed (creation, deletion, update). This approach requires the configuration of a
forwarding table, neighbors table and a VXLAN tunnel on the Linux Bridge inside the
network namespaces of the overlay networks; (3) to use the Weave Net driver that is
one of the third-party network plugins for Docker Swarm. Weave Net driver manages
an internal router in each box, and the router maintains networking information in the
box such as the network list and attached containers. Those routers in the same cluster
make peer relationships with each other and exchange the information. Then the driver
configures an L2 overlay networking over the cluster according to the exchanged
information. In this approach, we extend the scope of Weave Net router from a single
cluster to multi-clusters by making peer relationships among Swarm manager boxes
located in different clusters.

Among the candidates, we select to leverage on the Weave Net third-party driver.
The third party driver could reduce the number of interaction between NFVO and
Docker Swarm Boxes compared to other approaches. The driver required the addition
of new steps to allow setting up the peers within Open Baton VIM/VNFM. After that,
the driver automatically configures an overlay network over multi-clusters. In contrast,
other approaches demand the NFVO to keep monitoring networking-related events in
Swarm clusters, and directly configures Linux networking stack in all boxes whenever
events occur. If the NFVO handles detailed configuration of all boxes, then advantages
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by leveraging Docker Swarm as cluster resource orchestrator are decreased. For this
reason, we decided to use the Weave Net driver approach, which is more suitable for
our solution.

Implementing the approach into Open Baton has different issues. One of the main
issues is duplicated IP addresses of containers in different clusters owing to default
IPAM (IP Address Management) of Docker Swarm. Each Swarm cluster has a default
IPAM. However, the IPAM does not know the IP addresses used in other clusters.
Therefore, containers in different clusters may have the same IP address. To avoid this
problem, Open Baton should divide L2 subnet into smaller IP allocation ranges and
assign different range to each participating cluster to accommodate a multi-cluster
service and reduce unassigned IP ranges, while creating an overlay network. Also,
another design issue is to select the MANO component where we implement the feature
for identifying multi-cluster services and calculating IP allocation ranges. The feature
requires to find the number of clusters participating in the given service. We used the
Docker Swarm VNFM rather than the NFVO and the Docker Swarm VIM. The NFVO
seems the most proper element since it can randomly generate an IP subnet for a
network while knowing the number of clusters. Therefore, the NFVO can easily cal-
culate IP allocation ranges and pass these ranges to the VIM/VNFM when creating a
network. However, it violates the requirement not to modify common NFVO proce-
dures for the network service orchestration. By the way, the VIM does not receive any
clues about the service being orchestrated by the NFVO, other than about the resources
necessary to deploy a VNF. Thus, it cannot ask the number of clusters used by a
network service to the NFVO. In contrast, VNFM can find a service identifier from the
given VNF, so it can query the NFVO to get information about the network service. In
this context, we introduce Multi-Swarm Networking Helper doing all additional steps
including service classification, network service descriptor query to NFVOm calcula-
tion of IP allocation ranges, and creating multi-Swarm networks with the third-party
driver. VNFM can create both single-cluster and multi-cluster services with the help of
Multi-Swarm Networking Helper.

The designed procedure using Open Baton for deploying a network service is
shown in Fig. 1. Open Baton user selects a network service and the clusters for each
VNFs, and then the NFVO starts the procedure for creating the network service.
The NFVO requests the VIM to create an overlay network, the VIM, then skips this
step, the reason is that the VIM does not know if the network belongs to a single-cluster
network service or a multi-cluster one. For each VNF in the service, the NFVO sends a
request with the VNF descriptor to the VNFM to deploy it. The VNFM then contacts
the Multi-Swarm Networking Helper. The Helper extracts the service identifier from
the given VNF descriptor and takes the network service record (NSR) that contains
information of the service by sending a request to NFVO. The Helper classifies whether
the service is deployed in single-cluster or multi-clusters, based on the cluster lists
included in the received NSR. If the service is a single-cluster service, then the VNFM
creates a network using the default networking driver and the containerized VNF in the
target cluster. If not, the Helper divides a subnet into multiple IP allocation ranges
based on the number of clusters and returns one of the ranges to the VNFM. VNFM
creates a network with the subnet using the assigned range with the Weave Net third-
party driver. The Helper configures an internal router for making peers with the other
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clusters listed in the NSR. After those configurations, multi-Swarm networking
becomes available, so VNFM creates the containerized VNF on the network. With this
design, Open Baton satisfies the requirements previously established.

However, our design currently has limitations. We only consider the deployment
procedure of service orchestration. We assume that multiple services do not share one
overlay network, and all boxes in Docker Swarm clusters has pre-installed Weave Net
third-party driver. Also, clusters configured with other software such as OpenStack
cannot utilize it, because the design depends on Docker Swarm and Weave Net third-
party driver.

4 Implementation and Verification

In this section, we describe the implementation of the Multi-Swarm Networking Helper
in Open Baton based on the design proposed, and also verify its functionality on our
testbed. For implementation and functional validation, we prepared a small-sized multi-
site testbed consisted of two sites within the K-ONE (Korea OpenNetworking
Everywhere) Playground. K-ONE Playground is a miniaturized multi-site Edge-Cloud
testbed in South Korea. It consists of five sites, each of them comprising a K-Cluster
that is a cluster consisted of multiple resource boxes. Those K-Clusters are inter-
connected through L3 WAN supporting 1 Gbps networking provided by KREONET
research network [9].

Fig. 1. Procedural design of deploying multi-cluster service with open baton MANO framework
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Figure 2 shows the configuration of our testbed. Open Baton is deployed on an
OpenStack VM (KVM) in K-Post box of GIST K-Cluster. We use a Docker image of
Open Baton version 5.0 for deploying the NFVO. Docker VIM and VNFM work in the
K-Post box, and they register to the NFVO via RabbitMQ. We used two K-Cube boxes
from GIST (Gwangju, South Korea) K-Cluster and another two boxes from Korea
University (Seoul, South Korea) K-Cluster. We configured the Docker Swarm clusters
in two different sites and registered the clusters in Open Baton. Next, we installed
Weave Net third-party driver to all boxes along with the Multi-Swarm-Agents in the
Swarm Manager boxes. The Multi-Swarm-Agent acts as an intermediator between
MANO and the third-party driver in the Swarm Manager box. The agent provides a
REST APIs to Open Baton and configures the internal routers according to received
requests. As a result, we ended up with Docker Swarm clusters in two different sites,
being network services orchestrated upon them by Open Baton with Multi-Swarm
Networking Helper.

In this testbed, we verify the functionality of Multi-Swarm Networking Helper by
showing a simple scenario. We deploy a network service consisted of two container-
ized VNFs configured to be deployed in different clusters via Open Baton NFVO
dashboard. For each CNFs, we used a customized Docker image of Ubuntu OS with
networking test tools. Then, Open Baton NFV MANO with Multi-Swarm Networking
Helper automatically configures an L2 overlay networking over two sites, so two CNFs
can do L2-based networking each other.

Fig. 2. The configuration of Multi-Swarm Networking testbed
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Figure 3 shows the result of the functional validation. From a service perspective,
two CNFs in different clusters have IP addresses of the same subnet and can directly
communicate with each other through the L2 network. In what concerns Docker
Swarm, two clusters had the networks created with Weave Net third-party driver. The
networks, despite being on the same subnet, they are using different IP allocation
ranges. For intra-cluster networking, internal routers in a cluster exchange networking
information just after the network creation, and the third-party driver configures
VXLAN-based overlay network over the boxes of the cluster accordingly. For multi-
Swarm networking, the Multi-Swarm Networking Helper makes peer relationships
between routers in the Swarm manager boxes of the different clusters. The peered
routers exchange information and spread it to Swarm worker boxes. All routers know
the next hop router for packets destined to containers in different clusters. After the
exchange, the driver creates VXLAN tunnels among routers in the Swarm manager
boxes. As a result, an L2 overlay network extends to multiple Swarm clusters. Con-
sequently, Open Baton NFV MANO can orchestrate multi-cluster services with Multi-
Swarm Networking Helper and Weave Net third-party driver. Furthermore, CNFs of
network services always work in the same way regardless of their location in underlay
clusters.

Fig. 3. Verification of multi-cluster service orchestrated by Open Baton MANO with Multi-
Swarm Networking Helper
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We perform an additional experiment for measuring TCP bandwidth and latency in
different cases of multi-site networking to verify the performance. To measure TCP
performance, we use Qperf (version 0.4.11)1 that is a benchmark tool designed for
TCP/UDP as well as RDMA and other protocols. We consider six test cases of mea-
suring TCP performance: (1) typical TCP/IP networking between bare metal boxes in
different sites, as a reference point for other cases. (2) TCP/IP networking between two
containers without clustering. (3) overlay networking with the default driver and single
cluster over two sites. (4) overlay networking with Weave Net driver and single cluster
over two sites. (5) multi-Swarm networking configured by multi-Swarm networking
helper, and containers in manager boxes of two clusters in two sites. (6) multi-Swarm
networking, and containers in worker boxes of two clusters in two sites.

Figure 4 shows the result of the performance measurement. Comparing the case 2
and 3 shows that overlay networking in Docker Swarm cluster decrease networking
performance, due to network namespaces, virtual switches, internal firewall rules and
virtual extensible LAN (VxLAN) tunnels additionally configured in each clustered box.
Meanwhile, default driver and the third-party driver working under the same config-
uration have the equivalent performance as shown in the case 3 and 4. Multi-cluster
service, in the case 5 and 6, shows TCP networking performance can be slightly
changed according to locations of containers. As we explained in the feature verifi-
cation, all packets destined to other clusters are sent to the manager box, and its internal
router routes them to another manager box in the destination cluster. So, the additional
hops are added to a networking path crossing the clusters. The results show that the

Fig. 4. TCP networking performance in different cases of multi-site container networking

1 https://github.com/linux-rdma/qperf.
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additional two hops decrease approximately 20 Mbit/sec of TCP bandwidth and
increase 0.1 ms of TCP latency. However, the amount of the decrease tends to be
stationary, because the number of additional hops is at most two and the hops are
between boxes in a cluster. Thus, we anticipate the overhead of multi-Swarm net-
working accounts for a relatively small portion of the performance degradation in large-
scale infrastructures, where sites are widely distributed, and inter-site traffic is massive.
Consequently, we insist on our solution, multi-Swarm networking orchestrated by
OpenBaton MANO framework, has reasonable networking performance to support
multi-cluster services.

5 Conclusion and Outlook

In this paper, we described a new approach to enable an overlay networking over
multiple Swarm clusters with Weave Net third-party Docker networking driver to allow
communication between containers. We also discussed the design and implementation
of Multi-Swarm Networking Helper in Open Baton, automating the configuration of
Multi-Swarm networking. We verified that Open Baton was able to deploy multi-
cluster services with the support of our solution, and multi-Swarm networking has
reasonable networking performance for multi-cluster services.

However, we only covered multi-cluster service deployment that is one part of the
orchestration process. Therefore, we will improve Multi-Swarm Networking Helper to
support all aspect of orchestration for Multi-Cluster services. Besides, we plan to
implement a VIM and VNFM for Kubernetes that is the de-facto container orches-
tration engine in the market. After that, we will work on deploying CNFs over
heterogeneous container-based clusters.
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Abstract. Containers emerged as cloud resource offerings. While the
advantages of containers, such as easing the application deployment,
orchestration and adaptation, work well for stateless applications, the
feasibility of containerization of stateful applications, such as database
management system (DBMS), still remains unclear due to potential per-
formance overhead. The myriad of container operation models and stor-
age backends even raises the complexity of operating a containerized
DBMS. Here, we present an extensible evaluation methodology to iden-
tify performance overhead of a containerized DBMS by combining three
operational models and two storage backends. For each combination a
memory-bound and disk-bound workload is applied. The results show a
clear performance overhead for containerized DBMS on top of virtual
machines (VMs) compared to physical resources. Further, a container-
ized DBMS on top of VMs with different storage backends results in a
tolerable performance overhead. Building upon these baseline results, we
derive a set of open evaluation challenges for containerized DBMSs.

Keywords: Container · YCSB · Benchmarking · DBMS · MongoDB

1 Introduction

The raise of containers, containerization, and container orchestration [3] has a
great influence on the structure of distributed applications, and greatly eased
the operation of such systems by finally leveraging the realisation of continuous
deployment. Support for containers is offered beside traditional virtual machine
offerings by Amazon Elastic Container Service1 and OpenStack Magnum2.

Much of the success of containers is a consequence of the fact that they
enable a quick installation of pre-packaged software components, which is a pre-
requisite for handing overload (scale out), bug fixing (software upgrade), and

1 https://aws.amazon.com/ecs/.
2 https://wiki.openstack.org/wiki/Magnum.

c© Springer Nature Switzerland AG 2019
G. Mencagli et al. (Eds.): Euro-Par 2018 Workshops, LNCS 11339, pp. 93–105, 2019.
https://doi.org/10.1007/978-3-030-10549-5_8
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replacing failed components (fault tolerance). All of these concepts work fine
for mostly stateless components such as load balancers, web and application
servers, message queues, and also caches. Yet, despite recent attention in the
field [2,14], it is currently unclear to what extent containerization is suited for
and beneficial to the operation of stateful applications. Database management
systems (DBMS) are an important representative of this type of applications
and a crucial part of Big Data and IoT applications.

While the containerization of DBMS particularly eases the usage of features
of modern DBMS such as horizontal scalability or high availability, at least two
challenges remain: (a) The general runtime overhead of containerized DBMS
is unknown. (b) The container eco-system offers a myriad of different storage
backends and their impacts on performance are also unclear.

Only with an answer to these baseline questions, it is beneficial to think
about more sophisticated questions such as placement of state and data migra-
tion. This paper is an initial step to identify further research and engineering
challenges with respect to containerized DBMS. Our contributions are as follows:
(i) We introduce three different operational models for DBMS ranging from bare
metal to containers in virtual machines. (ii) We analyse the landscape of storage
backends for containers and their pros and cons. (iii) For three operational mod-
els and two storage backends we evaluate the performance for the well known
MongoDB3 DBMS under various workloads. In contrast to related work, our
main focus is not on a performance comparison between containerized and vir-
tualised execution. (iv) Based on the outcome of the evaluation, we propose open
challenges for modelling and evaluating DBMS performance.

The remainder of this document is structured as follows: Sect. 2 discusses the
containerization of stateful applications. Section 3 defines the evaluation method-
ology, while Section 4 presents the evaluation environment. Section 5 discusses
the results and derives open evaluation challenges for containerized DBMS.
Section 6 presents related work, and Sect. 7 concludes.

2 Challenges for Containerization of Stateful Applications

Containerization in the context of cloud computing is besides hardware virtual-
ization for virtual machines (VMs) so called operating-system (OS) virtualiza-
tion for containers. In hardware virtualization a hypervisor manages the resource
allocation and operating state of virtual machines. OS-Virtualization uses oper-
ating system features to create lightweight isolated environments, known as
containers. Container engines allocate resources and access to e.g. network-
ing and storage, the popular Docker4 engine. Orchestrators manage VMs or
containers across hypervisors or container engines [1,3,15]. These virtualization
approaches provide the different operational models depicted in Fig. 1(a) where
each operation model combines the benefits and drawbacks of the respective
virtualization approaches: Hardware virtualization securely isolates with fixed
3 https://www.mongodb.com/de.
4 https://www.docker.com.

https://www.mongodb.com/de
https://www.docker.com
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Fig. 1. Containerization of stateful applications

hardware-oriented offers; OS virtualization provides less strong isolation with
soft hardware limits [12].

In multi-tier applications, stateful components require to store data tem-
porarily or even durably, i.e. by instantiating (distributed) DBMS or stateful
caches. Figure 1(b) lists potential storage backends for VMs and containers,
which leads to challenging decisions when deploying stateful containers, espe-
cially in large-scale set-ups. Challenges in this field include (i) performance
aspects such as throughput and latency, (ii) support for scalability, i.e. consid-
ering parallel read/write access, and (iii) failure strategies and recovery mecha-
nisms. Since VMs and containers isolate customers to share infrastructure, per-
formance interferences may occur whenever resources (e.g. storage) are utilised,
which are not directly under control of the container engine and the underlying
kernel.

The focus of our work evaluates the performance aspect of containerized
DBMS with respect to different storage backends for containerized DBMS on
physical hardware over DBMS in VMs to containerized DBMS on top of VMs.
The performance and runtime overhead of these approaches are evaluated in the
following.

3 Evaluation Methodology

In this section, we define an extensible evaluation methodology for the iden-
tification of potential performance overhead of common operation models for
containerized DBMS. In the following, the methodology is defined on a concep-
tual level, while Sect. 4 describes the technical implementation.
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3.1 System Architecture

In order to provide a concise analysis of the potential performance overhead of
containerized DBMS in the cloud, we define an extensible system architecture,
which comprises three common operational models for DBMS, highlighted in
the grey boxes in Fig. 1(a). Each operational model is defined by its virtualisa-
tion, i.e. OS virtualisation for container, hypervisor for VMs or container on top
of VMs. Further, we apply two storage backends for the containerized DBMS,
namely local for using the container filesystem and host for using the hosting
resource filesystem as depicted in Fig. 1(b). For the VM-based DBMS, we apply
the local filesystem provided by the hypervisor. The resulting resource configu-
rations are depicted in Table 1. While remote storage is also a common storage
configurations for containerized DBMS, it is omitted in this work to reduce the
interference factor of the network and will be targeted in future evaluations. In
addition, we do not use any container-specific network virtualisation as the focus
relies on compute, memory and storage.

Table 1. Operational models and storage backends

ID Operational model [physical
(P), container (C), VM ]

Storage backend [local (L),
host (H), remote (R)]

P-C-L Physical + container Local

P-C-H Physical + container Host

VM-L VM local

VM-C-L VM + container Local

VM-C-H VM + container Host

3.2 Workload and DBMS

In favour of emulating container-centric workloads, we define a write-heavy (w-h)
workload, emulating the storage of sensor data and a read-heavy (r-h) workload,
emulating a social media application with mostly reads and barely update oper-
ations. Both workloads are defined in a memory-bound version, i.e. the whole
data set fits into memory and a disk-bound version, i.e. the data is larger than
the available memory. As workload generator, we select the Yahoo Cloud Serving
Benchmark (YCSB) [4], which is widely used in performance studies on NoSQL
DBMSs. YCSB offers web-based workloads based on create, read, update and
delete (CRUD) operations, enabling the emulation of container-centric work-
loads [10].

As exemplary containerized DBMS, we select document-oriented MongoDB
for our evaluation as it is a NoSQL DBMS5. MongoDB emphasizes its operation
on virtualised resources6. Records are stored as documents within collections.
5 https://db-engines.com/de/ranking.
6 https://www.mongodb.com/containers-and-orchestration-explained.

https://db-engines.com/de/ranking
https://www.mongodb.com/containers-and-orchestration-explained
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While MongoDB supports a distributed architecture, we select a single node
setup for our evaluation to reduce potential interference factors such as network
jitter or MongoDB specific data distribution algorithms. Yet, our methodol-
ogy can easily be extended for a distributed setup and also MongoDB can be
exchanged with any desired DBMS.

3.3 Metrics

For each evaluation scenario the following metrics are collected to analyse the
results: throughput in operations per seconds and latency per operation type in
µs. Each evaluation scenario is repeated ten times to ensure significant results
and for the all metrics the minimum, maximum, average and standard devia-
tion are provided. In addition, system metrics (CPU, RAM, I/O, network) are
monitored during each evaluation scenario for MongoDB and the YCSB to pro-
vide reliable results by ensuring that none of the system resources creates a
bottleneck.

3.4 Evaluation Execution

Our methodology comprises the memory-bound (mb) and disk-bound (db) eval-
uation scenarios. Each scenario starts with the w-h workload, followed by the
r-h workload. Each workload is executed against the resource combinations of
operational models and storage backends presented in Table 1. Hence, the exe-
cution (E) of the memory-bound and disk-bound scenarios can be expressed as
scenario:E(mb(wh,r-h)), e.g. P-C-L:E(mb(wh,r-h)) and P-C-L:E(db(w-h,r-h)).
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Fig. 2. Evaluation environment
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4 Evaluation Environment

Based on the introduced evaluation methodology in Sect. 3, the following
presents its implementation for a private, OpenStack-based cloud7 (version Pike)
with full and isolated access to all physical and virtual resources. In order to
reduce potential resource interference and to guarantee reproducible results, we
use the availability zones feature of OpenStack to dedicate one physical host for
spawning the required VMs and containers. The resulting evaluation environ-
ment for the specified evaluation scenarios is depicted in Fig. 2. In the following,
the implementation details for the resources, MongoDB and YCSB are presented.

Table 2. Evaluation scenario resources

Resource Virtualisation OS Cores RAM FS Storage

Physical host - CoreOS 1632 16a 64GB Ext4 512GBb

MongoDB container Docker 18.04 Ubuntu 16.04 4 4GB overlay2 40GB

MongoDB VM KVM, QEMU 1.5.3 Ubuntu 16.04 4 4GB Ext4 40GB

YCSB VM KVM, QEMU 1.5.3 Ubuntu 16.04 4 2GB Ext4 10GB
a 2x Intel Xeon E5-2630 v3 8-Core Haswell 2.4Ghz
b 2x 256GB SSD of type SAMSUNG MZ7WD240HAFV-00003

4.1 Resources

As depicted in Fig. 2, all containers and VMs are located on the same physical
host, which has enough resources for running the YCSB VM and the DBMSs
without resource interference (i.e. no overbooking). Further, this set-up only
uses the host-internal network interfaces and avoids the overhead of the Open-
Stack network service. Accordingly, all containers are configured to use the host
network interface via --network host. The available resources of the respective
physical host, container and VMs are described in Table 2. In order to ensure
comparable results, the container resources on the physical host (i.e. P-C-L and
P-C-H) are limited to 4 cores and 4 GB RAM. The containers on CoreOS use
the kernel version 4.14.19-coreos while the VM and container inside the VMs
use the kernel version 4.4.0-127-generic.

4.2 MongoDB and YCSB

The evaluation scenarios are based on a vanilla deployment of MongoDB and
the YCSB to ensure a baseline performance evaluation of MongoDB container-
ization. The relevant configurations for MongoDB and the YCSB are listed in
Table 3. Further, the YCSB operation distribution for the w-h workload are
100% write operations and for the r-h workload 95% read operations and 5%
update operations. Table 3 also highlights overall collection size of each workload

7 https://www.openstack.org/.

https://www.openstack.org/


The Impact of the Storage Tier 99

Table 3. YCSB VM details

MongoDB configuration Value YCSB configuration Value

Version 3.6.3 (CE) Version 0.12a

Services 1×mongod Record size 1 KB

Storage engine WiredTiger # of records (memory-bound) 2.000.000

Replication off # of records (disk-bound) 10.000.000

# of operations 10.000.000

# of threads 20

Distribution Zipfian
a https://github.com/brianfrankcooper/YCSB/releases/tag/0.12.0

version as the number of records for the memory-bound version results in a 2
GB MongoDB collection, while the disk-bound version results in a 10 GB Mon-
goDB collection. The MongDB binding of YCSB is configured with the write
concern option8 w = 1 and j = false, i.e. write operations are acknowledged
by MongoDB after they are put into memory.

4.3 Portability and Reproducibility

The execution of each scenario is fully automated by utilizing ready to deploy
artifacts, which are together with the results publicly available9; their release as
open research data is currently under way. For the Docker images we make use
of the Docker native capabilities of building images based on Dockerfiles. The
VM images are generated by Packer10. Packer processes a Packerfile, which is
similar to a Dockerfile, but uses a multitude of different virtualization providers
to generate and store the image. In our case we are using OpenStack Glance11.
This approach enables fellow researchers to reproduce, validate and extend our
scenarios by changing the cloud provider or benchmark a different DBMS.

5 Results and Discussion

In the following, we present and discuss the results of the memory- and disk-
bound evaluation scenarios (cf. 1) based on defined metrics in Sect. 3.3.

5.1 Evaluation Results

The throughput results are depicted in Fig. 3 and latency results in the Fig. 4.
Each plot represents the results of the respective scenario, i.e. memory-bound

8 https://docs.mongodb.com/manual/reference/write-concern/.
9 https://github.com/omi-uulm/Containerized-DBMS-Evaluation.

10 https://packer.io.
11 https://docs.openstack.org/glance/pike/.

https://github.com/brianfrankcooper/YCSB/releases/tag/0.12.0
https://docs.mongodb.com/manual/reference/write-concern/
https://github.com/omi-uulm/Containerized-DBMS-Evaluation
https://packer.io
https://docs.openstack.org/glance/pike/
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or disk-bound and the respective workload, i.e. w-h or r-h. For the latency plots
of the r-h workloads, the first bar of each operational model always represents
the read latency while the second bar represents the update latency. As remark,
the results reflect the best case operational models as the DBMS and the YCSB
are operated on the same, isolated physical host (cf. Sect. 4.1).

Fig. 3. Throughput results

The results shows a significant throughput and latency overhead for operat-
ing a DBMS on top of VMs instead of using physical hardware. These results
confirm previous performance studies of memory-bound workloads for former
Docker versions [5]. A novel insight is shown by the results for the DBMS oper-
ated in a container on VM the (VM-C-L,VM-C-H) as the performance only
decreases slightly compared to DBMS directly operated on VMs (VM-L), e.g.
VM-C-H achieves 6% less throughput than VM-L for the w-h workload and
13% for r-h of the disk-bound scenario. Hence, if VMs are the only available
resource, operating the DBMS in container on top of the VMs can be beneficial
to exploit container orchestrators or the soft resource limits to operate additional
containerized applications next to the DBMS on the same VM [12].

The second insight of the results is the performance overhead of the inter-
nal Overlay2 filesystem of Docker. The container on physical hardware with
the Overlay2 filesystem (P-C-L) shows significantly less throughput and higher
latencies compared to the container using the host filesystem (P-C-H). This
finding most clearly applies for the r-h workload of the disk-bound scenario
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(cf. Figs. 3(d) and 4(d)). The Overlay2 overhead is also present on container
running on VMs (VM-C-H) but to a lower extent.

Fig. 4. Latency results

5.2 Open Evaluation Challenges

The results of our baseline evaluation, show that containers are suitable to oper-
ate DBMS, even on top of VMs. Yet, the operational models reveal significant
performance deviations, also dependent on the memory- or disk-bound scenarios.
Hence, the selection of the operational model in conjunction with the storage
backend is a crucial decision for the DBMS operator, which has to be driven by
the available operational models, the targeted performance and the demand of
optional orchestration features.

Based on our methodology and the presented baseline results, we derive a set
of open evaluation challenges, which have to be addressed to drive the selection
process of the operational model for containerized DBMS: (i) The performance
of the presented operational models needs to be evaluated based on public cloud
offerings by considering additional hypervisors and containers with respect to
memory- and disk-bound DBMS workloads. (ii) The presented storage back-
ends require a dedicated evaluation with respect to different local and remote
container storage drivers. This also comprises local and remote block storage of
the host resource. (iii) As the DBMS performance deviation of the operational
models VM-L, VM-C-L, and VM-C-H are in a tolerable margin, the advantages
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of VM-C-L and VM-C-H have to be analysed with respect to orchestration and
the co-location with suitable applications. (iv) The presented methodology needs
to be extended for additional DBMS to evaluate their containerization feasibility
and container orchestration features with respect to the scalability and elastic-
ity of distributed DBMS [11]. Further, container orchestration features for high
availability and migration of containerized DBMS need to be evaluated in the
context of the presented operational models and storage backends.

6 Related Work

With the increasing usage of containers besides VMs in cloud offerings, different
comparative analysis of their performance overhead and resource isolation capa-
bilities have been conducted. Moreover, the containerization of DBMS moved
into the focus, especially in combination with container orchestrators.

6.1 Performance Overhead and Resource Isolation

The performance overhead of VMs in contrast to Docker containers running
on physical hardware is evaluated by [5]. SysBench12 is used to compare the
throughput of MySQL running on VMs against containerized MySQL. The
results show that VMs cause a higher performance overhead as Docker contain-
ers for disk-intensive workloads. Further, the usage of the Docker AUFS storage
driver causes a higher performance overhead as the usage of Docker volumes.

A related performance comparison of KVM VMs, Docker and LXC containers
and a lightweight VM approach based on OSv13 is provided by [7]. The evaluation
is based on different resource-specific micro-benchmarks and the results accord
to [5] for the lower performance of VMs for disk-intensive workloads.

An analysis and evaluation of the Docker storage drivers with respect to
filesystem performance is presented by [13]. The results demonstrate that the
choice of the storage driver can influence the filesystem performance significantly
where the Btrfs storage driver achieves the best performance but less stability
as the other storage drivers.

The comparative analysis of the resource isolation capabilities of VMs and
containers is provided by [8,12,16]. While [12] apply resource-specific micro-
benchmarks, [8,16] use DBMS and respective DBMS workloads to evaluate the
resource capabilities. All of these evaluation indicate a stronger resource isolation
of VMs, especially for disk-bound workloads.

While existing performance evaluations focus either on micro-benchmarks or
apply DBMS only for the evaluation of the resource isolation, our evaluation
provides an evaluation across multiple operational model and storage backends.
In addition, the operation of container on top of VMs is emphasized by [12] but
so far no performance evaluation has considered this operational model.

12 https://github.com/akopytov/sysbench.
13 http://osv.io/.

https://github.com/akopytov/sysbench
http://osv.io/
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6.2 Containerization of DBMS

The containerization of DBMS in combination with container orchestrators
provides multiple adaptation actions to automate the operation of NoSQL
DBMSs [2]. Hereby, the orchestration features of Kubernetes are enhanced with
distributed DBMS-specific adaptation rules for proactive and low-cost adap-
tations to avoid the transfer of data between nodes. While container orches-
trators typically manage the disk storage internally, modifying the persistent
storage within container orchestrators is difficult and hinders their adoption
for DBMS [6]. Therefore, [6] present a persistent storage abstraction layer for
container orchestrators, which eases the usage of containerized DBMS across
different container orchestrators. Yet, the usage of container orchestrators and
their internal handling of persistent storage can introduce additional perfor-
mance overhead for DBMS. Hence, [14] analyse the performance overhead of
using remote storage for containerized DBMS within Kubernetes.

While the usage of containerized DBMS with container orchestrators eases
the automation of DBMS operation, there is potential performance overhead
added by the different handling of the persistent storage of the container orches-
trator. While, [14] provide a fist step into analysing this overhead for remote
storage, we provide a baseline evaluation for container local and host storage
backends. In addition, we apply a memory- and disk-bound workload to identify
the suitability of container for the respective DBMS workloads.

7 Conclusion and Future Work

The evolvement of container leads to a variety of new operational models for dis-
tributed applications in the cloud. While containers work fine for stateless appli-
cations, stateful applications such as database management systems (DBMS)
are receiving increasing attention recently. As DBMS add the persistence aspect
to the operational model, storage backends for containers are evolving. Yet,
the performance impact of these new operational and storage backends remains
unclear for containerized DBMS. Hence, we analyse current operational and
storage backends in the context of containerized DBMS. and derive a baseline
evaluation methodology for a comparative evaluation of operational models and
storage backends. Hereby, we define a memory- and a disk-bound scenario, which
is applied on three operational models (container on physical hardware, virtual
machines (VMs) and container on VMs) in combination with two storage back-
ends (container filesystem and host filesystem), resulting in 20 evaluation config-
urations. The evaluation is executed in a private OpenStack with a containerized
MongoDB. The results show a significant performance overhead of container run-
ning on VMs in contrast to container running on physical hardware. Yet, running
container on VMs with different storage backends only causes a tolerable per-
formance impact in contrast to running the DBMS directly on the VM. Further,
the usage of the container internal filesystem causes a significant performance
overhead compared to using the host filesystem.
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Based on these baseline results, we conduct that container are suitable to
operate DBMS but additional evaluations are required to get a clear under-
standing of potential performance bottlenecks. Therefore, we derive a set of
open evaluation challenges, which will be addressed in future work: (i) evaluating
additional operational models implementations; (ii) evaluating additional stor-
age backends; (iii) consolidation of containerized DBMS and processing appli-
cations on top of VMs and (iv) the feasibility of DBMS containerization and
orchestration for different DBMS. These challenges will be addressed within [9].
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Abstract. The dynamic provisioning of virtual machines (VMs) sup-
ported by many cloud computing infrastructures eases the scalability of
software applications. Unfortunately, VMs are relatively slow to boot and
public cloud providers do not allow users to vary their resources (verti-
cal scalability) dynamically. To tackle both problems, a few years ago we
presented a solution that combines the management of VMs with the use
of containers specifically targeted to the efficient runtime management
of the resources provisioned to Web applications. This paper borrows
from this solution and addresses the problem of provisioning resources
to big data, Spark applications at runtime. Spark does not allow for
the runtime scalability of the resources associated with its executors,
but resources must be provisioned statically. To tackle this problem,
the paper describes a container-based version of Spark that supports
the dynamic resizing of the memory and CPU cores associated with the
different executors. The evaluation demonstrates the feasibility of the
approach and identifies the trade-offs involved.

Keywords: Containers · Big data · Spark · Resource allocation

1 Introduction

The virtualization and softwarization of computing resources fostered by cloud
computing has made the on-demand allocation/deallocation of computing means
extremely easy. One can smoothly provision virtual machines (VMs) dynamically
to cope with different workloads and meet stated qualities of service and/or cost
constraints [7]. Many approaches [10,15] use different techniques to foresee and
modify the number of allocated VMs properly and smartly, but unfortunately,
Mao et al. [11] demonstrate that a VM on a public cloud infrastructure takes
on average six minutes to boot. This is a too long delay when one thinks of the
dynamic provisioning of resources to modern applications: for example, if the
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workload increases, users do not want to wait for six minutes before being able
to interact with the system properly. Instead of booting new VMs, one could
alternatively think of adding resources to running VMs, but this is not possible
since VMs usually come in fixed configurations and the resources associated with
them (vertical scalability) cannot be changed. To overcome these two problems,
that is, the latency of newly provisioned resources and the resizing of running
ones, we proposed a solution [4] that pairs VMs and containers [16] for the
fast and fine-grained allocation of resources to web applications. The idea is to
deploy containerized web applications in a cluster of VMs, where each container
is equipped with a lightweight control-theoretical planner to quickly (i.e., in a
few seconds) provision and scale (vertically) the resources associated with it.

Starting from these ideas, this paper addresses a different, but similar prob-
lem: the dynamic provisioning of resources for big data applications. These appli-
cations are batch applications executed on top of special-purpose frameworks,
which slice input data and carry out the computation on each slice by means of
parallel processes executed on a distributed cluster of (virtual) machines. Specif-
ically, we address Spark [19] applications, since Spark is the most widely used
framework for big data applications: it is more flexible than Hadoop [2] and can
support more complex computations. It uses a master-slave architecture, and
multiple distributed executors—Java processes dedicated to data processing—
are deployed onto the cluster. The response time of these applications is defined
as the time they take to process the entire set of inputs; resources are usually
estimated to meet deadlines, that is, thresholds on response times [18].

Spark does not allow one to specify deadlines and allocates resources (i.e.,
CPU cores and memory) to executors statically at the beginning of the exe-
cution; by default it always uses all available resources. This means that the
resources that are allocated to applications must be planned carefully since run-
time deviations are not allowed. The only dynamism managed by Spark refers to
switching off preallocated executors if they remain idle for a user-defined amount
of time, and on again if some tasks have to wait for too long (and idle executors
are available), respectively. In addition, the resources provisioned to executors
(e.g. CPU cores) cannot be changed. The scalability is only horizontal and based
on simple time-outs, and on the availability of preallocated executors.

In contrast, this paper discusses and evaluates the feasibility of adding
vertical scalability to Spark executors. It presents xSpark1, a container-based
extended version of Spark that allows for the fine-grained allocation of resources
(CPU cores and memory) to applications, and that also supports the vertical
scalability of executors (containers).

The rest of the paper is organized as follows. Section 2 surveys what industry
tools offer in terms of dynamic resource allocation and introduces some related
work. Section 3 motivates the need for vertical scalability and the use of con-
tainers as enabling technology. Section 4 describes the architecture of xSpark
and how it supports the dynamic allocation (vertical scalability) of both CPU

1 This paper extends [5] with an in-depth description of the technical details of xSpark
that enable the vertical scalability of resources.
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cores and memory. Section 5 presents the assessments we carried out and Sect. 6
concludes the paper.

2 Related Work

Spark only provides limited functionality to adjust the resources allocated
to applications. By default, and at each execution, Spark always uses all
the resources in the cluster. This means that when applications are run-
ning, and a new application is submitted for execution, it must wait since all
resources are already taken. Alternatively, at submission time, Spark offers three
parameters for allocating a smaller amount of resources to a specific appli-
cation, leaving resources available to other subsequent application. Parameter
total-executor-cores sets an upper bound to the total amount of CPU cores
that an application can use, while parameter num-executors sets the number of
executors. Therefore, the ratio between these two parameters gives the average
number of cores allocated to each executor. Finally, parameter executor-memory
sets the memory allocated to each executor.

The memory and cores allocated to executors cannot be changed
at runtime since the vertical scalability of executors is not sup-
ported by Spark. However, Spark offers a dynamic resource allocation
mode—governed by parameter spark.dynamicAllocation.enabled—to scale
the number of executors at runtime. At submission time, parameter
spark.dynamicAllocation.initialExecutors is used to set the initial
amount of executors (instead of parameter num-executors) and parameters
spark.dynamicAllocation.min|maxExecutors set the allowed range. To scale
the number of executors Spark uses a simple heuristic based on utilization: if an
executor remains idle for a predefined amount of time, it is decommissioned. If
idle executors exist and a task remains pending for too long, a new executor is
commissioned using a backlog algorithm: the first time Spark allocates an execu-
tor, if another request is triggered shortly (yet another parameter) the number
of allocated executors is doubled, and so on. These time-outs are set statically
and cannot vary at runtime.

As for additional resource management solutions, Spark can be paired with
external resource managers—such as Mesos [8] and YARN [17]. Mesos sends
resource offers (push-based scheduler) to its clients and manages both CPU cores
and memory, while YARN waits for resource requests (pull-based scheduling)
and only considers memory (each executor is bound to a single core). They both
support containers to launch executors, but they do not offer any form of vertical
scalability. Mesos also provides an optional fine-grained mode, where each task
is containerized, but the runtime overhead is heavy, and this is why the use of
this feature is deprecated in Spark 2.0.

xSpark offers two major improvements with respect to both Spark alone and
Spark equipped with Mesos or YARN. First, it supports dynamic resource pro-
visioning with respect to deadlines. This is not possible with existing industrial
tools that only scale resources according to the utilization of the system. Second,
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it supports the vertical scalability of executors with respect to both CPU cores,
by means of containers, and memory, through the use of off-heap memory. This
allows one to be precise and fast when scaling resources and also to minimize
the overhead needed for creating/destroying executors. As for Mesos and YARN,
xSpark is complementary to them: it is built on top Spark alone and we plan to
extend our control capabilities to Mesos and YARN in the future.

Even if they do not target Spark specifically, it is also worth mention-
ing few works that exploit containers to provide the vertical scalability of
resources [3,14]. Lakew et al. [9] rely on Linux containers to build fast and
fine-grained controllers for the management of multiple resources. They exploit
vertical scalability to meet performance indicators while optimizing resources
for both interactive and non-interactive applications. Barna et al. [6] propose
a methodology to build autonomic systems for containerized multi-tier appli-
cations. They exploit layered queuing networks to create self-tuning controllers
for applications composed of heterogeneous components such as web services,
databases, and big data elements. These solutions could be used to manage the
resources allocated to a complete Spark instantiation, but they cannot manage
the resources allocated to the different applications since they have no visibility
of them. xSpark can do that since besides working on dynamic resource man-
agement, we have also changed the architecture and processing model behind
Spark to work at a lower granularity level.

3 Vertical Scalability with Containers

The advent of cloud computing infrastructures has significantly simplified the
runtime management of computing resources, and solutions from both indus-
try [1] and academia [13,15] have proliferated. These solutions use virtual
machines (VMs) to change the amount of CPU cores and memory allocated to
applications and fulfill set quality requirements. Public cloud providers however
only provision virtual machines with a fixed amount of memory and CPU cores.
VMs can simply be created or deleted, and thus only the horizontal scalability
of resources is supported. Vertical scalability, that is, the capability of modifying
the amount of resources associated with a VM while it is in operation, is limited
by the fact that users have no access to the hypervisor.

Another limitation of VM-based resource management is that it is too slow.
According to Mao et al. [11], cloud providers require some 6 min to launch a
new VM. Since new resources cannot be allocated faster than that, this delay
imposes stringent limitations on how frequently allocated resources can change,
and thus on how quickly these systems can meet user expectations.

These problems can be solved by adopting containers [12] as means to man-
age resources since they can be launched faster than VMs and can support
both horizontal and vertical scalability. Containers can be booted in few sec-
onds (depending on the application type) and scaled vertically in hundreds of
milliseconds [16]. Resource managers can then be as fast as their actuators and
adopt control periods that are less than a second: this is the case of the control-
theoretical solution presented in Sect. 4.
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In addition, VMs are usually dedicated to only one process at a time since
the simultaneous execution of independent application components cannot be
easily managed, and unexpected resource contention may arise. With containers
instead, a single machine can be used more efficiently to deploy multiple parts
of the same application—or of different applications—since each container is
provisioned individually and is isolated from the others.

Containers alone are not sufficient to making Spark executors scale vertically.
xSpark exploits Docker containers to achieve vertical scalability and embeds
then into Spark to scale the number of CPU cores allocated to executors at
runtime. However, memory allocation is limited by the Java Virtual Machine
(JVM), which sets a static upper bound to allocated memory at startup time,
and this value cannot be changed without restarting the virtual machine itself.
For this reason we extended Spark to allow for the dynamic resizing of off-heap
memory, as discussed in Sect. 4.3. xSpark exploits vertical scalability to control
the execution time of Spark applications in order to allocate resources efficiently
and fulfill user deadlines. A similar result could be achieved through horizontal
scalability, but with less efficiency since vertical scalability is faster and works
at a finer level.

4 xSpark

xSpark2 extends Spark and uses containers (i.e., Docker) to support a more flex-
ible and advanced management of resources. xSpark enriches command submit
with an additional parameter deadline to specify the required execution time.
Since the goal of xSpark is to minimize the use of resources without violating
deadlines, xSpark interprets this input as a constraint on execution: finishing
before the deadline would mean that fewer resources could have been used, while
violating it means that too few resources are provisioned (or are available).

This section describes xSpark atop virtual machines, but our tool can also
be deployed on bare-metal to favor performance over flexibility.

4.1 Hierarchical Architecture

Figure 1 shows the master/slave architecture of xSpark: white boxes represent
the existing components we modified, gray boxes are container-related compo-
nents, and dark-gray boxes correspond to new, control-related components.

The Master Node hosts a Stage Scheduler, a Task Scheduler, and a heuristic-
based Application Level Controller for each running application (Fig. 1 assumes
the existence of two applications). Spark logically splits applications into stages3,
a key entity for xSpark. In fact, xSpark has modified component Stage Scheduler
to intercept the beginning and end of each stage and uses the heuristic embedded
in Application Level Controller to compute an execution deadline for each stage.
2 The source code of xSpark is available at https://github.com/deib-polimi/xSpark.
3 A Spark stage is a set of pipelined operations that do not require shuffling data

among nodes.

https://github.com/deib-polimi/xSpark
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Fig. 1. High-level architecture of xSpark.

The heuristic considers the remaining amount of time, with respect to the global
deadline set at application level, and some performance data collected through
a profiling phase. Since xSpark needs to know the internals of each stage, this
preliminary activity is used to create the actual execution flow (direct acyclic
graph) of each stage and some performance metrics (e.g., the duration of each
stage, number of input/output records).

After estimating execution deadlines, the actual execution of an application’s
stages start in the different worker nodes. Since stages can be composed of diverse
operations, we advocate that resource allocation should be controlled at stage
level (and not at application level). Therefore, xSpark executors are dedicated to
single stages, while Spark executors can execute the tasks of any stage. This way,
the resources (dynamically) provisioned to a given executor can only impact the
performance of the stage associated with it, and xSpark can even obtain a finer-
grained control of the execution of the different stages, and thus of the whole
application. This allows xSpark to control stages individually and to equally
distribute computation and data over the whole set of nodes.

As described in Sect. 4.2, executors are wrapped in containers and individu-
ally controlled by a control-theoretical planner (Container Level Controller).
The planner uses CPU quotas to provide computing resources to make the
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execution times of stages last as close to estimated deadlines as possible. Note
that the planners bound to the executors dedicated to the same stage do not
need to be synchronized since they are configured to fulfill the same deadline
and the workload (i.e., the tasks to be processed) is equally split among them.
The planners exploit a feedback loop that monitors the progress of the executors
(i.e., number of completed tasks over the total) and allocates processing power
(i.e., CPU quotas) accordingly.

Finally, resource contention within a Worker Node could occur because dif-
ferent executors bound to specific applications/stages are deployed onto the same
machine. For this reason, xSpark uses a Worker Level Controller that gathers
all the core allocation requests from the control-theoretical planners and, if their
sum is greater than available cores, scales them down according to different
configurable strategies, such as Earliest Deadline First or proportionally.

4.2 CPU Cores

Vertical scalability is the key feature provided by xSpark: it enables continu-
ous control over executing applications by managing allocated resources without
restarting/deallocating containers, thus reducing the associated overhead. While
memory is either sufficient, and any increase would produce no benefit, or insuf-
ficient, provisioned computing resources, given the high degree of parallelism
embodied in Spark applications, can significantly impact execution time: the
more CPU cores one allocates, the faster the application should execute.

Spark deploys executors onto Worker Nodes (virtual/physical machines) and
uses Java Virtual Machines to execute them. The allocation of CPU cores is static
and managed by a simple, internal, pool of threads. xSpark instead deploys each
executor in a container by using Docker to allow xSpark to dynamically change
the computing resources provisioned to an executor without interfering with the
other executors running on the same node.

Docker provides three ways to allocate CPU cores dynamically: reservations,
shares, and quotas. All these methods are extremely fast (few hundreds of mil-
liseconds [16]), but they heavily differ in terms of granularity and reliability.
Reservations allocate specific cores to containers. For example, given a machine
with 8 cores, container1 can be pinned to the first 5 cores, while container2 to
the remaining 3 cores and cannot use any of the cores allocated to container1 if
not used. CPU reservation is deterministic since each container can only use the
cores allotted to it while granularity is limited to full cores.

With shares, each container uses at least a number of cores that is pro-
portional to its shares but if there is no contention, and additional cores are
available, a single container can even exploit all available cores. For example,
if container1 has 70 shares and container2 30 shares, in case of resource con-
tention container2 uses some 70% of the cores of the machine while container1
just 30%. However, if container2 only needed 20% of available cores, container1
could use the remaining 80%. Thus, shares are not always deterministic, since
the actual number of used cores depends on both set shares and the number of
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cores used by each container. The solution is extremely fine-grained since it can
allocate fractions of cores.

Quotas provide the most powerful way of provisioning cores to containers
and guarantees both determinism and appropriate granularity. Each container
is associated with a period and a quota, where the latter represents the percentage
of CPU time allocated to the container within the period. Setting a quota larger
than the period means that the container should use more than one core at a
time, but the sum of all quotas must always be less than set period times the
number of available cores. For example, given a single-core CPU and a period of
100 ms, if container1 is given a quota of 30 ms and container2 a quota of 70ms,
then 70% of the CPU time is reserved for container2 and 30% for container1.
This mechanism is thus deterministic and very fine-grained.

xSpark associates each executor (container) with a control-theoretical plan-
ner that computes the amount of CPU cores needed at each control period. Since
the faster, finer-grained, and more deterministic actuation capabilities are, the
more precise these planners can be, xSpark uses quotas as allocation mechanism
and associates all containers with the same period.

4.3 Memory

One of the main problems when executing a Spark job is how to determine the
amount of memory to allocate to each executor. Spark allows one to specify this
value statically by using parameter spark.executor.memory, which changes the
size of the heap memory of all executors. When the heap memory of an executor
gets saturated, the process crashes and the JVM is restarted.

When executing multiple applications, if their number is known, one can
simply equally partition available memory to the applications, that is, h = M

|A| ,
where A is the set of running applications, h is the amount of heap memory
allocated to an application a ∈ A, and M is the total memory available. Unfor-
tunately, the number of applications to execute and when to execute them are
often not known a priori, and thus the amount of memory associated with each
executor inevitably impacts the maximum number of applications that can be
run in parallel. This were not a problem if the heap memory could be scalable
vertically, but unfortunately JVM’s do not allow one to resize it at runtime: a
given configuration can only be changed by restarting the JVM. Note that Spark
postpones the launch of an application if requested memory cannot be provided.

To solve this problem, xSpark uses off-heap memory to add flexibility and
be able to change memory boundaries dynamically. Although on-heap memory
offers better performance, Spark can use off-heap memory to both support exe-
cution and store data. Objects stored in off-heap memory are managed directly
by the operating system, are not part of the process heap, and are not garbage
collected. As said, accessing off-heap data is slightly slower than on-heap data,
but it is faster than reading and writing from/to disk (see Sect. 5).

Since Spark does not provide any means to resize the memory used by off-
heap objects at runtime, xSpark offers a Memory Controller, which is deployed
on the Master Node. Each executor is associated with a fixed quantity of on-heap
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memory plus a quota of off-heap memory that can then be adjusted at runtime.
This quota is decremented when a new application is submitted for execution
and is incremented when an application terminates.

5 Evaluation

This section describes the experiments we conducted to evaluate the solutions we
conceived for the dynamic allocation of both CPU cores and off-heap memory.
The assessment is based on the following three questions: (Q1) is the vertical
scalability of cores appropriate for controlling the response time of Spark appli-
cations? (Q2) what can we achieve by vertically scaling resources? (Q3) how does
the use of off-heap memory impact the performance of xSpark when compared
against the use of on-heap memory?

5.1 Vertical Scalability of CPUs

To answer Q1 we used two applications taken from the SparkPerf4 benchmark
suite: sort-by-key and aggr-by-key. These applications perform simple aggrega-
tion and sorting operations over a randomly generated dataset. We executed
them on a single AWS EC2 m4.4xlarge VMs with 8 CPUs5 and 64 GB of mem-
ory. We executed each application with 8 different configurations, and repeated
each experiment three times, for a total of 24 executions. We started by allocating
1 core to each application. Then, we randomly changed the number of allocated
cores every second by using a uniform distribution in the range between 1 and 3
to get an expected average value of 2 cores. As for the other experiments, we kept
changing the number of allocated cores every second, and we kept increasing the
expected value from 2 to 8 cores.

Figure 2 shows the results of our experiments; the blue dotted line renders
the duration of the execution and refers to the left-hand y-axis, while the red
crossed line corresponds to the speedup (over one core) and refers to the right-
hand y-axis. The charts witness that vertically scaling the number of CPU cores
assigned to an executor strongly impacts the response time of Spark applications
with a close to linear speed-up.

To answer Q2 we studied how xSpark exploits vertical scalability to con-
trol the execution time of applications. To do that we tried to control the
two aforementioned applications and a more complex one called PageRank, a
graph-based algorithm that was taken from another benchmark suite called
SparkBench6. We executed the three applications with different deadlines and
datasets and we obtained an error as low as 1%, where the error was computed as
(deadline− actualDuration)/deadline. An error equals to 0 means that xSpark
was able to allocate the minimum amount of CPU cores and fulfill the deadline.

4 Available at https://github.com/databricks/spark-perf.
5 8 cores without hyperthreading or 16 virtual cores if enabled.
6 Available at https://github.com/CODAIT/spark-bench.

https://github.com/databricks/spark-perf
https://github.com/CODAIT/spark-bench
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(b) aggr-by-key

Fig. 2. CPU allocation over application duration (dots represent execution times while
crosses refer to speedups).

To better visualize how xSpark works Fig. 3 shows the details of a controlled
executor while processing PageRank. Note that during its life-cycle an execu-
tor can execute different stages in a row (in this case 9 stages). In this chart,
the black and gray lines, which refer to the left-hand y-axis, show the actual
stage completion percentage (i.e., number of tasks completed over the total) and
the imposed one, that is the set-point of the control theoretical planners. The
blue line, which refers to the right-hand y-axis, shows the core allocated to the
executor. The E-labeled green vertical lines represent stage ends (actual stage
durations), while the red dashed vertical lines represent stage deadlines (the
last one correspond to the application deadline). The fast and fine-grained ver-
tical scalability provided by containers allows xSpark to make all the executors
(closely) follow the prescribed progress rates for each stage and thus terminate
the execution very close to the foreseen deadline (Table 1).

Fig. 3. Controlling PageRank.
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Table 1. Off-heap impact.

App On-heap Off-heap CPUTime Delay

aggr-by-key 100% 0% 5166 -

50% 50% 5502 6%

10% 90% 6289 21%

PageRank 100% 0% 2013 -

50% 50% 2051 2%

10% 90% 2150 7%

5.2 Vertical Scalability of Off-Heap Memory

To answer Q3 we compared the performance of aggr-by-key and PageRank when
only using on-heap memory or on-heap and off-heap memory. To carry out these
experiments we used Standard D14 v2 VMs provided by Microsoft Azure, each
of them had 16 CPUs, 112 GB of memory. The applications were executed with
three distributions of on-heap and off-heap memory with fixed core allocation: all
on-heap (100/0), balanced on-heap and off-heap (50/50) and almost all off-heap
(10/90). To evaluate the differences among the different memory configurations,
we rely on metric CpuTime, that is, the execution time times the number of used
cores: needless to say, the higher this value is, the worse it is. Moreover, aggr-by-
key was configured to use off-heap memory only for processing, while PageRank
was instructed to use off-heap memory for both processing and storing data.

In the case of aggr-by-key, when decreasing the on-heap memory allocated
to executors, up to 90%, CpuTime increased by 21% (from 5166 to 6289). This
significant difference is caused by disk swapping since cached datasets were per-
sisted onto disk. In contrast, when running PageRank, which used off-heap mem-
ory also for storing data, the impact of disk swapping was dramatically reduced
(CpuTime only increases by 7%). This is in many cases a negligible performance
reduction given that the use of off-heap memory allows xSpark to vertically scale
the memory allocated to executors and foster the parallelism among applications.

6 Conclusions

This paper introduces xSpark, our extension to Spark that supports the vertical
scalability of the resources allocated to executors. xSpark exploits containers to
provide the dynamic, fast, and fine-grained allocation of cores to containers, and
off-heap memory to allow for resizing the memory associated with executors.
Our preliminary assessment shows that xSpark can control the execution time
of Spark applications precisely and that the use of off-heap memory has limited
impact on the execution time of applications.
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Abstract. Non-blocking collectives have been proposed so as to allow
communications to be overlapped with computation in order to amortize
the cost of MPI collective operations. To obtain a good overlap ratio,
communications and computation have to run in parallel. To achieve
this, different hardware and software techniques exists. Dedicated some
cores to run progress threads is one of them. However, some CPUs pro-
vide Simultaneous Multi-Threading, which is the ability for a core to
have multiple hardware threads running simultaneously, sharing the same
arithmetic units. Our idea is to use them to run progress threads to avoid
dedicated cores allocation. We have run benchmarks on Haswell proces-
sors, using its Hyper-Threading capability, and get good results for both
performance and overlap only when inter-node communications are used
by MPI processes. However, we also show that enabling Simultaneous
Multi-Threading for intra-communications leads to bad performances
due to cache effects.

1 Introduction

MPI is the standard interface for communications in HPC applications. It is
used by applications for inter-node (i.e. network) and intra-node (processes on
the same node) communications. The cost of communications is one of the main
obstacles to get a good speedup for parallel applications. To amortize the cost of
MPI communications, application programmers try to overlap communications
with computation by using non-blocking communication primitives, and let them
progress in background while keeping the CPU busy with computation.

Initially the non-blocking communications were only available for point-to-
point communications. The extension of the non-blocking communications to
collective operations (i.e. primitives that involve more than two nodes, such as
broadcast, reduce, scatter, gather, ...) is an addition of the latest major MPI ver-
sion [11]. It opens the door to computation/communication overlap for collective
operations too. However, collective communications are more CPU-hungry than
c© Springer Nature Switzerland AG 2019
G. Mencagli et al. (Eds.): Euro-Par 2018 Workshops, LNCS 11339, pp. 123–133, 2019.
https://doi.org/10.1007/978-3-030-10549-5_10
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point-to-point communications, as they have to handle the collective algorithms,
and even some computations for reduction collectives. Therefore, it is harder to
make them progress in background.

Most processors nowadays include Simultaneous Multi-Threading [4] (SMT,
commercially known as Hyper-Threading on Intel processors), which is the abil-
ity for a core to have multiple hardware threads running simultaneously, sharing
the same arithmetic units. A lot of scientific applications don’t use all hardware
threads, leaving them idle. Thus it seems like a natural idea to use these idle
hardware threads to make communication progress. Since communication typi-
cally doesn’t use arithmetic units, it is expected that placing progress threads
on hardware threads will bring background progression for free. We distinguish
the case of network (inter-node) communication, where the progression thread
merely execute the algorithm for the collective operation, the rendez-vous pro-
tocol, programs DMA on the NIC, but overall doesn’t burn a lot of CPU cycles;
and the case of shared-memory (intra-node) communication, where the transfer
is essentially a memcpy, which may be heavier on the CPU.

This paper focuses on what happens when placing MPI non-blocking collec-
tive progress threads on hardware threads. We show that using SMT for network
communications leads to good results for both performance and progression.
We also show that using SMT for intra-node (shared memory) communications
leads to bad performances due to cache effects.

The rest of the paper is organized as follows. Section 2 presents related work
about computation/communication overlap in general, and for collective commu-
nication in particular. Section 3 describes how communication progression works
inside the MPC framework. Section 4 presents progress threads placement for
inter-node and intra-node communications and results on Haswell processors,
using Hyper-Threading. Then, Sect. 5 explains how intra-node communications
can interfere on the computation when Hyper-Threading are used to make com-
munication progression, before concluding in Sect. 6.

2 Related Works

The topic of communication progression has already been studied for some
aspects in the literature. Several strategies do exist for background progres-
sion of point-to-point communications, such as offloading the communication to
hardware [13,15] and let the hardware do the progression; use of a thread [5] or
process [8] dedicated to communication progression; opportunistic scheduling of
communication tasks [3,14].

MPI non-blocking collective communications are more difficult to make
progress in the background, since not only the data transfer but the collec-
tive algorithm too needs to progress, which makes it harder to rely on hardware.
There is specific work [2] for hardware-assisted progression on Blue Gene, or
offloading shared memory collectives to a kernel module [9] (although authors
only address performance of blocking collectives, not progression of non-blocking
collectives). The reference NBC implementation [7] relies on a progress thread,
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with some tricks [6] to improve overlap on InfiniBand, but without any study
about the impact of progress thread placement.

Hyper-Threading usage for non-blocking operations progression has already
been studied in [10], with the use of MONITOR/MWAIT instructions on progress
threads in order to avoid resource contention with the computational thread on
the same physical core using another Hyper-Thread on process based MPI (net-
work communication on intra node). However, MONITOR/MWAIT being privileged
instructions usable only from kernel, this approach may not be used broadly
on production clusters. Moreover, these instructions are inherently slow, which
reserve them for coarse grain cases. Our approach is different because we rely only
on bare Hyper-Threading accessible from user-space, and study different place-
ments for both process based MPI (intra-node communications on network) and
thread based MPI (intra-node communication with memcpy).

3 Non-blocking Collective Progression Inside the MPC
Framework

The MPC [12] framework provides implementations for several parallel program-
ming languages, such as MPI, OpenMP or POSIX threads. MPC provides two
flavors for MPI: a process-based implementation and a thread-based implementa-
tion. Moreover, MPC also provides its own user thread scheduler. This scheduler
handles the threads of all programming languages implemented in MPC, or build
on top of the POSIX threads implementation provided by MPC, and allows to
bypass the system scheduler.

MPC uses a tuned version of libNBC [7] to implement MPI 3 Non-Blocking
Collectives. One progress thread is created for each MPI process. Thus, with the
thread-based version of MPI, the MPC scheduler has the knowledge of all MPI
processes and all progress threads present on a node. This knowledge allows
to easily implement different placement algorithms for all these threads. The
default behavior is for MPI “thread” to be bound with a scatter policy, and
their corresponding progress threads to be bound to the closest idle cores (or to
the same core if no idle cores are available).

In this implementation, a MPI non-blocking collective is decomposed in MPI
point-to-point non-blocking calls fulfilling the collective algorithm. When a MPI
non-blocking collective is called, each MPI process creates a schedule containing
requests for the point-to point non-blocking calls corresponding to its part of the
collective algorithm, and attach it to its associated progress thread. Thus, the
progress threads handle the communication described by the schedules while
MPI processes continue to execute computation. However, MPC has a non-
preemptive scheduler, thus it is not able to make communication progress on
the same core as the application with a seamless interleaved scheduling. A solu-
tion is to dedicate some cores to communication progression. In this paper we
investigate the use of hardware threads instead of full cores for communication
progression.
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4 Progress Threads Placement for MPI Communications
on Hyper-Threads

In this Section, we benchmark various placement schemes for placement of
progress threads, using SMT or not, for network communications and shared-
memory communications.

We will use Haswell processors featuring Hyper-Threading, the incarnation
of Simultaneous Multi-Threading in Intel processors. It consists in allowing exe-
cution of two different threads (or more depending on the architecture) at the
same time on a single core. Generally, applications do not use Hyper-Threading
to perform more computation because it leads to Floating-Point Unit (FPU)
contention. However, progress threads do not need the FPU to make commu-
nication progression, or scarcely for floating-point reduction operations. Thus,
progress thread placement using Hyper-Threading seems to be a good idea.

After describing our experimental setup, we present results and observations
on the use of Hyper-Threading to perform communications for the two distinct
cases: pure network communications, and pure intra-node communications.

4.1 Benchmark

We implemented our own micro-benchmarking tool to evaluate the performance
of different progress threads placement. This tool performs a non-blocking collec-
tive communication overlapped with a matrix-matrix multiply. It works similarly
to the Intel MPI Benchmarks [1] except that the problem size is fixed, allowing
us to have the same computation workload for the different progress threads
placement. We arbitrary set the buffer size to 2 MB and sized the computation
workload to reach perfect overlap when we have progress threads dedicated cores.

We ran our benchmark on a many-core architectures: an Intel Xeon E5-2698
v3 @2.30 GHz with 32 cores per node, and 128 GB of RAM (Haswell).

While our placement policy for MPI processes stays the same (scatter policy),
we test three different progress threads placement configurations:

– “dedicated-core”: each progress thread is bound on another dedicated core.
We use twice more cores than both the other cases.

– “no-smt-bind”: the progress threads are bound on the MPI process core and
Hyper-Threading is disabled.

– “smt”: each progress thread is bound on its MPI process core but on another
Hyper-Thread.

For each configuration, we measure the time of the computation (tcpu), the
communication time (tcomm) and the total execution time (tovrl), all times mea-
sured when overlapping communication with computation. We get tovrl close
to the maximum of tcpu and tcomm in case of good overlap; it is closer to the
sum in case operations get serialized. Please note that tcomm and tcpu may vary
depending on threads placement if computation slows down communication or
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Fig. 1. Result of dedicated-core, no-smt-bind, smt-default and smt-sleep for Ialltoall
operation with constant-size buffer of 2 MB on 8 nodes with 8 MPI processes.

if computation slows down communication when both are run at the same time.
We use the same overlap definition as the Intel MPI Benchmarks [1]:

overlap ratio = 100 ∗ max(0,min(1, (tcomm + tcpu − tovrl)
min(tcomm, tcpu))

4.2 Inter-node Communications on Hyper-Threads

To study the impact of using hyper-threads only for inter-node communications,
we ran our benchmark on 8 Haswell nodes, with only one MPI process per
node. This is a usual configuration when MPI is combined with a threaded
programming model (e.g. OpenMP) handling intra-node communications.

The results for inter-node communications are depicted in Fig. 1. The best
results are obtained for the “dedicated core” placement, with an overlap ratio
of 96% for an execution time of 3.0 ms. This is the expected behavior since a
dedicated core for each progress thread makes the communication progress run
smoothly in background, leading to an almost perfect overlap. However, this
configuration uses twice as many cores as the other cases.

For the “no-smt-bind” placement, no overlap happens and the execution time
doubles (5.8 ms). This is the expected behavior since MPC being non-preemptive,
computation and communication end up serialized if computation thread and
progress thread are placed on the same core. We observe that communications
need some CPU resources to progress, not necessarily for the network itself,
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but at least to execute the algorithm of the collective and for the rendez-vous
protocol for large messages.

The “smt” placement with default settings leads to an overlap ratio of 94%
for an execution time of 4.6 ms. While the overlap ratio is good, we also observe
that the tcpu increases significantly. This is due to our MPI implementation.
When Hyper-Threading is enabled, MPC creates an OS thread per logical core
(Hyper-Thread). By default, this thread is populated with an idle user thread,
spending its time busy waiting for work. As nothing is planned for this thread,
it will permanently hinder the CPU with its busy waiting, thus slowing down
the computation done on the other hardware thread sharing the same core.

To assess this behavior, we inserted a usleep call (2µs) to diminish the
impact of this busy waiting in the idle thread.

With this version, called smt-sleep in Fig. 1, we observe an improvement of
tovrl by a factor of 1.42 over the default MPC configuration (no-smt-bind) and
an overlap ratio of 98%. In this version, tcpu is only marginally impacted, which
shows this tuning successfully mitigates contention between communication and
communication. Since the idle thread is sleeping most of the time, the computa-
tion thread is indeed not hindered and the computation time is back to normal.
However, when progression happens, the sleep calls reduce progression perfor-
mance and the communication time is higher. Hence, it is possible to find a trade
off to get best of both worlds.

As a summary, placing progress thread on hyper-threads improves both exe-
cution time performance and overlap ratio for network inter-node communica-
tions. It alleviates the need for dedicated cores for communication progression.

4.3 Intra-node Communications on Hyper-Threads

The common way to achieve intra-node communications is to copy a buffer
from the source to the destination. For process based MPI implementation, such
as Open MPI, MPICH, MVAPICH, Intel MPI or NewMadeleine, this can be
performed using a shared memory segment across all the processes in the node.
This technique allows MPI ranks to copy the buffer directly in the shared memory
segment.

In the MPC framework, with the thread-based flavor, all MPI ranks are
threads. This implies that the whole memory is shared in the same address
space. Copies of buffers can be performed directly with a single memcpy call.

We ran our benchmark on one single Haswell node, with one MPI rank per
core. We test two different thread placement configurations: the “no-smt-bind
and the“smt” placement described in the Sect. 4.1. For each configurations, we
measure the computation time (tcpu), the communication time (tcomm) and the
total execution time (tovrl) when overlapping communications with computation.

The results are depicted in Fig. 2. For both “no-smt-bind” and “smt” place-
ment, we observe that tovrl = tcpu + tcomm, which means no overlap happens.
We also observe a 44% increase of the total time tovrl when placing progress
threads on hyper-threads, due to the huge increase of computation time. This is
a completely different behavior than with inter-node communication.
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Fig. 2. Result of no-smt-bind and smt for Ialltoall operation with constant-size
buffer of 2 MB on 1 nodes with 32 MPI processes.

From this observation, it is clear that placing progress threads on hyper-
threads has a huge impact on computation performance when communications
take place in shared memory. We investigate this issue in the Sect. 5.

5 Cache Effects with Hyper-threading

In this Section, we investigate how a communication thread on a hyper-thread
negatively impacts the computation performance on the same core. We focus on
cache effects caused by multiple hardware threads on the same core competing
for cache lines, an effect known as cache thrashing.

We implemented a micro-benchmark to confirm our assumptions that cache
effects occur when Hyper-Threading is used to perform the progression of intra-
node communications. The benchmark runs a 1024×1024 matrix multiplication
in a thread bound to a single core; we call it the computation thread. Another
thread is created to simulate the progression of intra-node communications by
performing a memcpy call in a loop; we call it the memcpy thread. We focus on
the impact of this thread on the computation thread.

We test three different threads placement configurations:

– “cache-not-shared”: the computation thread is bound on a single core and the
memcpy thread is bound on another socket. Threads do not share any cache.

– “no-smt-bind”: the computation thread is bound on a single core and the
memcpy thread is bound on the same core. Hyper-Threading is disabled.
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– “smt” the computation thread is bound on a single core and the memcpy
thread is bound on the same core but on the other Hyper-Thread.

For each configuration, we run our tests with three buffer sizes for the memcpy
thread, 4 KB, 128 KB and 2 MB on a dual socket Haswell processor, with 16 cores
per socket and 2 Hyper-Thread per core.

Fig. 3. Result of Time dgemm for no-smt-bind and smt configurations for 4 KB, 128 KB
and 2 MB on a 32 core Haswell processor.

We measure the time of the computation for these three different threads
placements with different buffer sizes. We observe in Fig. 3 that for all buffer
sizes, we obtain a 9 s execution time with the “cache-not-shared” placement.
This time doubles when we use the “no-smt-bind”. The reason is that the first
two placements do not compete for the caches. In the first case, the two threads
are not located on the same socket. In the second case, the two threads are
located on the same core, but without Hyper-Threading, execution is interleaved.
Hence, when the computation thread runs, the memcpy thread is paused, and,
after context switching between these threads, the memcpy thread runs while
the computation thread is paused. If data may be removed from the caches after
context switching, no competition for the cache occurs while a thread is running
between context switches. However, for the “no-smt-bind” placement, the two
threads share the same core without Hyper-Threading. Thus, all the workload
from both threads are running on the same resources. Since we fixed the memcpy
thread to run as long as the computation thread, it doubles the workload per core,
hence also doubling the execution time.
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For the “smt” placement, the memcpy thread is bound to the same core as
the computation thread but on another Hyper-Thread. We observe a different
behavior. Execution time is slower when the buffer size increases whereas the
execution time remains constant between buffer sizes for the other placements.
The computation is slower when the memcpy thread manipulates a larger amount
of data: it is a typical symptom of cache thrashing.

Fig. 4. Result of cache L1 miss for cache-not-shared, no-smt-bind and smt configura-
tions for 4 KB, 128KB and 2 MB on a 32 core Haswell processor.

To assess this hypothesis, we use the Performance Application Programming
Interface (PAPI) [16] to collect the L1 cache misses. We see in the Fig. 4 that the
number of cache misses is constant between both “no-smt-bind” and “cache-not-
shared” placements. This is expected because the computation thread and the
memcpy thread do not share the caches for the “cache-not-shared” placement.
For the “no-smt-bind” placement, these threads are scheduled one after the other
and no additional cache misses occurs.

For the “smt” placement, we observe additional cache misses compare to the
two previous placements. This is due to Hyper-Threading being enabled. Both
threads are executed on the same core simultaneously sharing the caches. Both of
them needs to fetch their cache lines to execute their jobs. Contention happens
and leads to additional cache misses because the memcpy thread evicts cache
lines of the computation thread.

It is now common to use non-temporal memory operations for shared memory
operations in MPI libraries. The non-temporal memory copy, introduced with
SSE2 instruction set, do not store in cache data sent to memory (i.e. it forces
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a write around cache policy). However, only the write operation bypasses the
cache, not the read. Benchmarks with non-temporal memory copy exhibits the
same results as with regular memory copy.

These results demonstrate that using Hyper-Threading for communication
progression in shared-memory causes a flood of cache misses, which severely
degrades the performance of computation on the same core.

6 Conclusion and Future Work

Overlapping communications with computation is the key to amortize the cost of
communications, especially for collective communications which are heavier than
point-to-point communications. Approaches for progression relying on a progress
thread per MPI rank may suffer from competition between communication and
computation.

In this paper, we have studied the placement of progress threads for MPI non-
blocking collective on hyper-threads and compared it against dedicated cores.
We have brought a comprehensive benchmark and full performance analysis of
using hyper-threads for communication progression on Haswell processor.

We have tested several progress thread placements and obtained an overlap
ratio of 98% of network communications when placing progress threads on hyper-
threads. We have shown that this scheme leads to performance degradation for
shared memory communication, and highlighted its cause in cache thrashing.

As a consequence of this work, the optimal placement for a network com-
munication and a shared-memory communication is not the same, which is not
achievable through the use of a single progress thread making progress for all
communications. As future works, we plan to have communication progression
rely on tasks rather than on a thread, which will allow for a greater flexibility
in placement.
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Abstract. The enhanced capabilities of large scale parallel and dis-
tributed platforms produce a continuously increasing amount of data
which have to be stored, exchanged and used by various tasks allocated
on different nodes of the system. The management of such a huge com-
munication demand is crucial for reaching the best possible performance
of the system. Meanwhile, we have to deal with more interferences as
the trend is to use a single all-purpose interconnection network what-
ever the interconnect (tree-based hierarchies or topology-based heter-
archies). There are two different types of communications, namely, the
flows induced by data exchanges during the computations, and the flows
related to Input/Output operations. We propose in this paper a general
model for interference-aware scheduling, where explicit communications
are replaced by external topological constraints. Specifically, the inter-
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straints reduce implicitly the data movements by restricting the set of
possible allocations for each task. This methodology has been proved
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1 Introduction

In High Performance Computing (HPC), the demand for computation power is
steadily increasing [27]. To meet up the challenge of always more performances,
while being constrained by ever growing energy costs, the architecture of super-
computers also grows in complexity at the whole machine scale. This complexity
arises from various factors: firstly, the size of the machines (supercomputers now
integrates millions of cores); secondly, the heterogeneity of the resources (various
architectures of computing nodes, mixed workloads of computing and analyt-
ics, nodes dedicated to I/O, etc.); and lastly, the interconnection topology. The
architectural evolutions of the interconnection networks at the whole machine
scale pose two main challenges that are described as follows. First, the commu-
nity proposed several types of topologies including hierarchies and heterarchies
(which are based on structural well-suited topologies), the trend today is to cre-
ate mixed solutions of tree-like machines with local structured toplogies [22];
and second, the interconnection network is usually unique within the machine
(which means that the network is shared for various mixed data flows). Sharing
such a single multi-purpose interconnection network begets complex interactions
(e.g., network contention) between running applications. These interactions have
a strong impact on the performances of the applications [4,15], and hamper the
understanding of the system by the users [11]. As the volume of processed data
increases, so does the impact of the network.

We propose in this work a generic framework for interference-aware schedul-
ing. More precisely, we identify two main types of interleaved flows: the flows
induced by data exchanges for computations, and the flows related to I/O.
Rather than explicitly taking into account these network flows, we address the
issue of harmful or inefficient interactions by constraining the shape of the allo-
cations. Such an approach aims at taking into account the complexity of the new
HPC platforms in a qualitative way that is more likely to scale properly. The
scheduling problem is then defined as an optimization problem with the plat-
form (nodes and topology) and the jobs’ description as input. The objective is to
minimize the maximum completion time, maximize the throughput or optimize
any other relevant objective while enforcing constraints on the allocations.

The purpose of this paper is to describe the methodology for interference-
aware scheduling. The design of an algorithm and the corresponding simula-
tions/experiments are another side of this subject. We are currently studying
efficient solutions for assessing this methodology, but this paper does not focus
on this point.

2 General Problem Setting

Modelization. A platform is of a set V of m nodes divided in two sets: mC nodes
dedicated to computations VC, and mI/O nodes that are entry points to a high
performance file system VI/O. The nodes are indexed by i ∈ 0, . . . ,m − 1.
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This numbering provides an arbitrary ordering of the nodes. We distinguish
two interesting distributions of the nodes:

1. coupled I/O, where some compute nodes are also entry points for the I/O oper-
ations (i.e., VI/O ⊆ VC = V);

2. separate I/O, when there is no overlap between compute and I/O nodes (i.e.,
VI/O ∩ VC = ∅).

We also distinguish two ways of interacting with the I/O nodes, namely, shared
I/O when any number of jobs can access an I/O node at any time, and exclusive
I/O when an I/O node is exclusively allocated to a job for the job’s lifespan.
We further annotate node symbols with �I/O (�C, resp.) if there is a need to
distinguish I/O nodes (compute nodes, resp.).

The nodes communicate thanks to an interconnection network with a given
topology (i.e., the connected graph of the interconnection) or by a hierarchi-
cal topology (tree-like interconnection). The localization of every node within
the topology is known. We define the distance that intrinsically derives from a
topology as follows:

Definition 1 (Distance). The distance dist (i, i′) between two nodes i and i′

(either compute or I/O) is defined as the minimum number of hops to go from i to
i′. For hierarchical topologies, the distance is defined as the number of traversed
levels (switches) to go from i to i′.

Batch schedulers are a critical part of the software stack managing super-
computers: their goal is to efficiently allocate resources (nodes from V in our
case) to the jobs submitted by the users of the platform. The jobs are queued in
a set J of n jobs. Each job j requires a number of compute nodes qCj and some

I/O nodes q
I/O
j . The I/O nodes requirements can either be a number of nodes

(unpinned I/O), or a dedicated subset of VI/O (pinned I/O). The number of
allocated nodes is fixed (i.e., the job is rigid [17]). We denote by V(j) the nodes
allocated to the job j. Each job j requires a certain time pj to be processed, and
it is independent of every other jobs. Once a job starts executing, it runs until
completion (i.e., it cannot be preempted). Finally, any compute node is able to
process at most one job at any time.

Before presenting the constraints we consider in this work, we need to pre-
cisely define the network flows we target. We distinguish two types of flows,
directly deriving from the fact that we are dealing with two kinds of nodes.

Definition 2 (Communication types). We distinguish two types of commu-
nications (see Fig. 1):

compute communications are the communications induced by data exchanges
for computations. Such communications occur between two compute nodes
allocated to the same application.

I/O communications are the communications induced by data exchanges
between compute nodes and I/O nodes. Such communications occur when
compute nodes read input data, checkpoint the state of the application, or
save output results.
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Fig. 1. Figuration of the two distinguished types of communications. Note that some
communications stay within the allocation, while others do not. White nodes represent
compute nodes, and black nodes represent I/O nodes.

As stated in the introduction, we do not aim at finely modeling the context
of execution. We propose here to model the platform in such a way that network
interactions are implicitly taken into account. We enrich the scheduling problem
with alien geometric constraints on the allocations deriving from the platform
topology or the application structure.

Most scheduler implementations are naive, in the sense that they allocate
resources greedily. This is known to impact performances [15], and is the core
difference between parallel machine scheduling and packing problems. Constrain-
ing the allocations to enhance performance is however no new idea. For example,
Lucarelli et al. studied the impact of enforcing contiguity or locality constraints
in backfilling scheduling [23]. They showed that enforcing these constraints can
be done at a small computational cost, and has minimum negative impact on
usual metrics such as makespan (i.e., maximum completion time), flow-time (i.e.,
absolute time spent in the system), or stretch (i.e., time spent in the system rel-
ative to each job size). One may refer to [9,14] for a detailed definition of classic
optimization objectives in scheduling.

We go further with this model as we target heterogeneous machines, and
distinguish network flows. We seek the following properties for the constraints:

– It captures part of the execution context : enforcing the constraint should help
minimize nocuous effects arising from the execution context.

– It derives from minimal reliable data: constraints on the allocations are
enforced ahead of the scheduling decisions. As a result, the proposed con-
straints only use the topology of the interconnection network and the size of
the allocation as input data.

– It is cheap to compute: enumerating the list of allocations respecting some
constraints cannot be a performance bottleneck for the scheduler.
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We study in more detail in the two following sections how to consider these
constraints for structured topologies and for hierarchical topologies.

3 Intrinsic Constraints for Structured Topologies

For the sake of clarity, we consider here a 2D-torus (the same constraints also
hold for other regular topologies like higher-dimensional torus or hypercubes).

Avoiding Compute-Communication Interactions. Considering this classification
of network flows, we first expose three constraints targeting compute communi-
cations.

Definition 3 (Connectivity). An allocation π is said to be connected iff there
exists a subset Vπ of VI/O such that

(
π ∩ VC

) ∪ Vπ is connected in the graph-
theory sense. Vπ may be empty.

The connectivity constraint ensures, for a given allocation, that there exists a
path without interference between any pair of compute nodes of the allocation.
This however, with regard to the interconnection topology, can either require
support for dynamic routing or demand to the application to implement its own
routing policy. Moreover, it may lead to islets of isolated compute nodes. Hence,
although satisfactory from the graph theoretical point of view, the connectiv-
ity constraint is not sufficient to ensure that compute communication do not
interfere. We propose the convexity constraint with the goal of overcoming these
limits.

Definition 4 (Convexity). An allocation is said to be convex iff it is impos-
sible for compute communications from any other potential allocation to share
an interconnect link with respect to the underlying routing algorithm.

By taking into account the effective routing policy, and by forbidding any poten-
tial sharing, the convexity constraint does forbid interactions.

Note that the convexity constraint dominates the connectivity constraint, as
stated in the following Proposition.
Proposition 1. Given any topology, any convex allocation is connected (Fig. 2).

Definition 5 (Contiguity [6,23]). An allocation is said to be contiguous if and
only if the nodes of the allocation form a contiguous range with respect to the
nodes’ ordering.

One has to note that the contiguity constraint is intrinsically unidimensional as
it relies on the nodes’ ordering. For topologies such as trees, lines or rings the
ordering is natural. On higher dimension topologies, no natural ordering exists,
and an arbitrary mapping is needed. An usual strategy to order nodes is to
use space-filling curves (e.g., Z-order curve [24], Hilbert curve [20], etc.) as they
enforce a strong spatial locality. Albing proposes various orderings that may be
more suited for HPC use cases, and a method to evaluate them [3]. Contiguity is
an interesting relaxation of convexity as it offers good spatial locality properties
for a reasonable computing cost. It is however unable to ensure that no jobs
could interact.
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Fig. 2. Example of a convex allocation (dotted orange contour), and a non-convex,
but connected allocation (dashed blue contour). The underlying topology is a 2D-
torus, with dimension-order routing. White nodes represent compute nodes, and black
nodes represent I/O nodes. (Color figure online)

Avoiding I/O-Communication Interactions. The constraints exposed so far are
well suited to take into account the compute communications, but not the I/O
communications. Indeed, the compute communications may occur between any
pair of compute nodes within an allocation: we usually describe this pattern
as all-to-all communications. I/O communications, on the other hand, generate
traffic towards few identified nodes in an all-to-one or one-to-all pattern. Hence,
we propose the locality constraint, whose goal is to limit the impact of the I/O
flows to the periphery of the job allocations (see Fig. 3). We must emphasize
that the locality constraint proposed here is not related to the locality constraint
previously described by Lucarelli et al. [23].

Definition 6 (Locality). A given allocation for a job j is said to be local iff it
is connected, and every I/O nodes from VI/O(j) are adjacent to compute nodes
from VC(j), with respect to the underlying topology. In other words, VI/O(j) is
a subset of the closed neighborhood of VC(j).

Interestingly, the locality constraint enforces a bound on the number of con-
current jobs that can target a given I/O node.

Proposition 2. Given any topology, any I/O node i, at any time, the number
of local jobs targeting i cannot exceed the number of adjacent compute nodes of i.

As a consequence, if the I/O nodes can be shared, the number of concurrent
jobs targeting a given I/O node is bounded by the degree of this I/O node. This
identity obviously also holds for exclusive I/O, but has limited interest in this
case.
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Fig. 3. Given an allocation (dotted orange contour) for a job j, the allocation is local iff
j uses a subset of the I/O nodes marked with the orange dot. Foreign compute nodes
potentially impacted by I/O communications of j are depicted in gray: these nodes
can only be in the neighborhood of the allocation thanks to the locality constraint.
The underlying topology is a 2D-torus, with dimension-order routing. White nodes
represent compute nodes, and black nodes represent I/O nodes.

4 Intrinsic Constraints for Hierarchical Topologies

Hierarchical platforms are composed of computing nodes and communication
switches. The interconnect is a tree where the leaves are the computing nodes,
and the internal nodes correspond to the switches. A group of leaves connected by
the same switch is a cluster. The communications inside a cluster are negligible
while external communications require to cross all the switches along the unique
path from a node to another. Figure 4 depicts a model of hierarchical platform.

Fig. 4. Example of a hierarchical topology. White nodes represent compute nodes,
and black nodes represent internal nodes (switches).

Avoiding Compute-Communication Interactions. In tree-like topologies the three
constraints introduced for torus topologies should be revisited. Specifically, the
convexity constraint is not relevant for hierarchical topologies since it implies
that the internal nodes (switches) should be exclusively used by a single appli-
cation, which significantly affects the platform utilization. On the other hand,
the contiguity constraint can be naturally applied, by considering an arbitrary
order of the children of any internal node and then numbering the leaves from
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left to right. Finally, the definition of connectivity constraint does not directly
apply to hierarchical topologies.

The main characteristic of the hierarchical topologies is that there is no
reason to distinguish among nodes that are connected under a common switch.
However, the distance among two nodes of the same allocation is very important.
In what follows, we define two new constraints that are better suited to tree-like
topologies.

Definition 7 (Proximity). A given allocation π for a job j satisfies the prox-
imity constraint iff the quantity maxi,i′∈π dist(i, i′) is minimized.

In other words, the maximum distance among any two computing nodes
assigned to the job j should be minimum. Hence, the allocation affects the
minimum number of levels of the tree (see Figs. 5b and c).

Definition 8 (Compacity). A given allocation π for a job j is called compact
iff the quantity

∑
i,i′∈π dist(i, i′) is minimized.

Intuitively, the compacity constraint intents not only to use the minimum
number of levels in the tree, but also to consider two qualitative properties of
the allocation (see Fig. 5c). First, compacity implies that an allocation spans as
few clusters as possible. Second, if a cluster is used, the compacity constraint
aims at maximizing the number of nodes allocated within this cluster.

Avoiding I/O-Communication Interactions. In the previous presentation of hier-
archical topologies, the I/O nodes have been implicitly placed at the switch
levels, as it is common in many existing architectures [1]. Let notice that our
analysis also holds where the I/O nodes are located at the leaves level as it is
the case in some architectures like in the interconnect of the private cloud [25].

5 Related Work

Tackling the nocuous interactions arising from the context of execution—or,
more specifically, network contention—can be seen as a scheduling problem with
uncertainties. Within this framework, there exist two main approaches to abate
the uncertainty: by either preventing some uncertainties from happening (proac-
tive approach), or by mitigating the uncertainties impact (reactive approach) [5].
We start reviewing some related works in the prevention/mitigation of interac-
tions before discussing monitoring techniques.

Interactions Prevention. Some steps have been taken towards integrating more
knowledge about the communication patterns of applications into the batch
scheduler. For example, Georgiou et al. studied the integration of TreeMatch
into SLURM [19]. Given the communication matrix of an application, the sched-
uler minimizes the load of the network links by smartly mapping the application’s
processes on the resources. This approach however is limited to tree-like topolo-
gies, and does not consider the temporality of communications. Targeting the
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Fig. 5. Figuration of the constraints on a hierarchical topology. The depicted alloca-
tions contain five compute nodes (i.e., qj = 5). White nodes represent compute nodes,
and black nodes represent internal nodes (switches).

mesh/torus topologies, the works of Tuncer et al. [29] and Pascual et al. [26] are
noteworthy. Another way to prevent interactions is to force the scheduler to use
only certain allocation shapes with good properties: this strategy has been imple-
mented in the Blue Waters scheduler [15]. The administrators of Blue Waters
let the scheduler pick a shape among 460 precomputed cuboids.

Yet, the works proposed above only target compute communications. HPC
applications usually rely on highly tuned libraries such as MPI-IO, parallel
netCDF or HDF5 to perform their I/O. Tessier et al. propose to integrate topol-
ogy awareness into these libraries [28]. They show that performing data aggrega-
tion while considering the topology allow to diminish the bandwidth required to
perform I/O. The CLARISSE approach proposes to coordinate the data staging
steps while considering the full I/O stack [21].

Interactions Mitigation. Given a set of applications, Gainaru et al. propose to
schedule I/O flows of concurrent applications [18]. Their work aim at mitigating
I/O congestion within the interconnection once applications have been allocated
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computation resources. To achieve such a goal, their algorithm relies on past I/O
patterns of the applications to either maximize the global system utilization, or
minimize the maximum slowdown induced by sharing bandwidth. Deeper in the
I/O stack, at the I/O node level, the I/O flows can be reorganized to better
match the characteristics of the storage devices [8].

Application/Platform Instrumentation. The approaches discussed above require
the knowledge of the application communication patterns (either compute or
I/O communications). A lot of effort has been put into developing tools to bet-
ter understand the behavior of HPC applications. Characterizing I/O patterns
is key as it allows the developers to identify performance bottlenecks, and allows
the system administrator to better configure the platforms. Some tools, such
as Darshan [10], instrument the most used I/O libraries, and record every I/O-
related function call. The gathered logs provide valuable data for postmortem
analysis. Taking a complementary path, Omnisc’IO aims at predicting I/O per-
formances during execution [13]. The predictions rely on a formal grammar to
model the I/O behavior of the instrumented application.

These instrumentation efforts allow for a better use of the scarce communica-
tion resources. However, as they are application-centric, they fail to capture inter-
application interactions. Monitoring of the platform is a way of getting insight
on the inter-application interactions [2,16]. For example, the OVIS/LDMS sys-
tem deployed on Blue Waters collect 194 metrics on every 27648 nodes every
minute [2]. Among the metrics of interest are the network counters: the number
of stalls is a good indicator of congestion [12].

6 Conclusion and Future Work

The goal of this paper was to propose a methodology for handling data commu-
nications in modern parallel platforms for both structured topology and hierar-
chical interconnects. Our proposal was to identify relevant constraints that can
easily be integrated into an optimization problem. We have successfully applied
this methodology for a specific topology (line/ring of processors) [7].

Defining constraints that work well for any kind of topologies has been trou-
blesome. This raises the question to know if a topology-agnostic heuristic can
be designed at a reasonable cost with decent performances. If not, it would be
interesting to classify the topologies, and propose class-specific constraints and
heuristics. We are currently working on the design of a generic heuristic that can
address several topologies.

The proposed constraints are strongly expected to have a positive impact on
the performances as they implicitly emphasize data locality. We however did not
verify through experiments that these constraints indeed have a positive impact
on the network usage. The benefits from these experiments will be twofold: first,
validate the proposed constraints; second, provide a feedback to design better
suited constraints.
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Abstract. Work-stealing schedulers are common in shared memory
environments. However, large scale distributed memory usage has been
limited to specific ad-hoc implementations preventing a broader adop-
tion. In this paper we introduce a new scalable work-stealing algorithm
for distributed memory systems as well as our implementation as the
TITUS DLB library. It is based on Kleinberg’s small-world graph. It
allows to control the communication patterns and associated runtime
overheads while providing efficient heuristics for victim selection and
results routing. To validate our approach, we present the DLB Bench
benchmark which emulates arbitrary workload distribution and imbal-
ance characteristics. Finally, we compare TITUS DLB to the ad-hoc
solution developed for the YALES2 computational fluid dynamics and
combustion solver. We achieve up to 54% performance gain over thou-
sands of cores.

1 Introduction

In high-end HPC machines, the current architecture trend is to dramatically
increase the number of cores. Managing large scale concurrency is a challenge
for many HPC applications and runtimes, which eventually hit a scalability wall.

Load balancing systems optimize workload distribution and resource usage
to improve the scalability of unbalanced applications.

Work-stealing, as presented in [7,8], is an asynchronous distributed decen-
tralized dynamic load balancing algorithm.

In order to implement scalable work-stealing for large scale distributed mem-
ory systems, we take into account an overlooked limitation of the classical victim
selection strategy: random victim selection may trigger the connexion of all pos-
sible pairs of processes, and the expected memory and time overhead limits
scalability.
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In this paper, we introduce the TITUS DLB library: a new scalable approach
to the work-stealing algorithm for dynamic load-balancing targeting large scale
computations on distributed memory systems.

We control runtime overheads by constraining the communication pattern
of the work-stealing algorithm to a scalable, low diameter, family of overlay
networks: the Kleinberg’s small-world sparse neighboring graph class. This over-
lay network provides short paths, allowing for efficient scheduling. Moreover,
to return the data resulting from the execution of relocated computation, we
propose a scalable results routing strategy.

Using a synthetic benchmark which emulates arbitrary workload characteris-
tics and distribution, we study the efficiency of our scheduler in various configu-
rations up to 3584 cores. We also evaluate the performance of our implementation
compared to a hierarchical work-sharing approach in use in the ill-balanced com-
putation of detailed chemistry from the YALES2 computational fluid dynamic
and combustion application and achieve up to 54% speedup at 3584 cores.

2 Context and Objectives

We address load balancing using a relocatable tasks representation of a given
computation.

Tasks are indivisible self-contained units of sequential work. They consume
exclusive input data and produce results data. Relocating a task requires relo-
cating its input data. Each task is spawned by its owner process initially holding
the required input data. We do not address tasks dependencies. A task is com-
pleted when the produced results have been stored in its owner’s memory. The
execution time of each task is presumed to be irregular and unpredictable.

Parallel work resolution is completed as soon as the global set of tasks has
been executed and the termination detection algorithm has converged.

We are interested in minimizing the parallel resolution time. We measure the
time spent between the beginning of parallel work and the termination detection
on each process. The maximum of these measured times is the parallel resolu-
tion time. Assuming homogeneous processor capabilities, we deduce the parallel
efficiency against an hypothetical resolution time with perfect scheduling and
zero overhead, i.e. the average work per process.

Blumofe et al. [5] introduce the work first principle: they observe that the
available parallelism in parallel programs is vastly superior to the parallelism
exploited for its execution, i.e. scheduling efficiency is driven by the work schedul-
ing overhead, rather than that of the critical path scheduling overhead. As a first
step towards an efficient and scalable distributed task scheduling algorithm for
such applications, we address the problem of scheduling a set of tasks available
for computation. All tasks are spawned before parallel resolution begins, and the
critical path of the scheduled computation is the resolution time of the longest
task to solve, which is assumed to be a small fraction of the average work per
process.

The presented implementation of our algorithm does not yet support the
benchmarks generally adopted for dynamic task scheduling (see Sect. 6.1), and
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focuses on the elaboration of a scalable communication pattern for this specific
problem.

2.1 Context

Work-stealing approaches define two process states: processes who own work
are workers, while the others are thieves. Thieves attempt to acquire work from
workers using a work stealing protocol.

Following the work first principle [8], we attempt to minimize the amount
of time spent by workers on non-working activities, and move the scheduling
overhead to thieves. Work stealing protocols have been proposed which rely on
RDMA to access task data and operate load balancing without affecting the
execution of tasks on the worker’s end [7,15].

In [22], Woodall et al. outline an important limitation of RDMA capable
hardware: the first communication between two processes (the connection) incurs
a much longer response time than the subsequent communications as well as
some memory overhead. Amortizing this pair connexion overhead is a necessity
for the elaboration of a scalable distributed algorithm.

We use an overlay network to constrain the communication pattern of our
scheduler in order to control and amortize the overhead of RDMA connexion.
As in [14,17,20], work-stealing is local to a thief’s neighborhood as work spreads
among thieves through the edges of the overlay network.

2.2 Work-Stealing Algorithm Description

A worker is a process that locally holds work. A worker manages two sets of
local tasks: tasks are executed from the private set and thieves acquire tasks
from the shared set. When one of these sets is empty, the worker re-balances
them. Processes do not hold any information about tasks spawned by other
processes nor about the global set of tasks.

A thief is a process that holds no work. Termination detection is performed
before each theft attempt. The thief then selects a victim, as discussed in Sect. 4
and performs the work stealing protocol. When an attempt succeeds, the theft
policy selects a number of tasks from the remote set of tasks to relocate.

In the studied context, the termination detection protocol is a non-blocking
barrier: when a process detects that all its owned tasks have completed, local
completion is reached and the barrier is entered. If local completion has been
reached, the process checks the advancement of the termination detection barrier
before each theft.

3 Related Work

Static load balancing approaches compute a balancing strategy before computa-
tion. These approaches do not apply to unpredictable workloads, and are subject
to system noise at scale.
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Dynamic load balancing redistribute workload during computation [8,20]. It
is a well studied topic and an important part of task-based runtime systems,
which can use both workload-specific and platform-specific information to pro-
vide portable scheduling performance.

Maintaining a centralized knowledge of the load has a limited scalability
and entails an uneven usage of network leading to contention [2]. Hierarchical
approaches [2,14] alleviate this issue by distributing the load balancing respon-
sibility across a hierarchy of master processes. By contrast, work-stealing is a
decentralized scheduling algorithm which principles are theoretically sound and
have been well studied for shared memory execution models [8,21]. Cilk [8],
X-Kaapi [9], and Intel TBB [13] are a few examples which all feature work-
stealing.

Many approaches for distributed memory systems using work-stealing have
been proposed [7,15,17,20]. They perform very well at spreading work across
a large distributed memory system, but do not address pair initialization over-
heads. They rely on hybrid programming using threads, alleviating the issue, or
have been tested with limited scalability or on very specific use cases such as
the GRAPH500 BFS [3] or UTS [18] in which tasks do not produce individual
results.

Charm++ [1] supports a variety of dynamic scheduling policies, and allows
for the composition of tuned ad-hoc solutions, making each solution designed
with specific heuristic for a given application.

ADLB [14] or YALES2 introduce a hierarchy of basic working actors (threads
and/or processes) and scheduling decision makers. Such hierarchical work-
sharing is the most efficient approach in use in large scale HPC applications
today. However, these approaches approaches may yield uneven resource usage,
over-synchronization (jitter on the higher level of the hierarchy impacts overall
performance), and require careful tuning and adaptation at large scale [14].

In this paper, we present a general-purpose non-hierarchical scalable app-
roach to load-balancing that spreads the scheduling overhead and related net-
work usage among the distributed system. Our algorithm uses a scalable overlay
network to constrain the victim selection with interesting properties discussed
in Sect. 4.

4 Work-Stealing on Smallworld Graph

In this section we discuss how Kleinberg’s small-world graphs [11] are a good
candidate for our constrained work-stealing algorithm.

They are built on top of a regular spanning lattice, e.g. a two-dimensional
grid, that defines D(u, v) as the lattice distance between any two nodes (u, v) in
the system. Random edges are added to the spanning lattice and called shortcuts,
resulting in interestingly low diameter graphs. Figure 1a shows an example of
such graph.

Graph generation time and memory overhead is O(d ∗ |V |) as long as d <<
|V |. The graph representation can be scattered across processes, resulting in
memory overhead of O(d) per process.
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Using such a graph G = {V,E} to constrain victim selection in a work
stealing protocol allows to connect a large number of nodes using a low and
constant number of connections for each process: the degree d of the graph.

J. Kleinberg shows that G has a small diameter, δ = O(logd(|V |)), with high
probability. In other terms, it exists with high probability a path of length at
most logd(|V |) between any pair of nodes. Intuitively, this property allows work
to spread efficiently in the graph.

4.1 Work Spreading

Work Reachability Criterion. Consider a worker u and a thief v at a distance
Δ. The minimum number of thefts required for the worker’s tasks to reach the
thief is Δ. Assuming that a proportion p of the remote tasks are stolen at each
successful theft, the minimum number of available tasks on u for at least one
task to reach v is O(pΔ).

(a) (b)

Fig. 1. (a) Example of small world graph and the generated route from node 0 to node
18 (b) Illustration of work fragmentation and results coarsening

In particular, if one worker owns all the tasks W , ensuring that all processes
may participate in the computation requires that the amount of parallel tasks is
at least WpΔ > 1 ⇔ Δ < logp−1 W .

To cope with workloads polynomial in the size of the system, W = O(|V |α)
with α > 1, a suitable overlay network must have low diameter Δ = O(log |V |)
which is satisfied.

Resilience to Jitter. The work-stealing algorithm allows spreading work
through disjoint path in parallel without synchronization. J. Kleinberg shows
that multiple short paths exist in such a small-world graph [12]. As such, while
an homogeneous random source of jitter impacts the efficiency of a number of
thefts, it is unlikely to globally slow down the work spreading process.
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Data Locality. Kleinberg’s graphs are randomly generated graphs built on top
of a notion of distance which can be mapped to the actual hardware network
topology. They are more heavily clustered than simple random graphs because
of a bias toward short-length connections in the system, providing optimal route
length for a simple routing strategy presented in section.

Perarnau and Sato [19] observe that given latency estimates, using a similar
bias when selecting a victim for a theft promotes low-latency thefts and obtain
significant performance gains.

In the experiments presented in Sect. 5, the small-world graph is built on top
of the 1-dimension lattice formed by the MPI rank numbering. Assuming that
the rank numbering, often based on hwloc [6], takes into account the physical
distance in the network, a higher distance in terms of this lattice distance is
likely to correspond to an equivalent or higher communication latency.

4.2 Results Routing and Coarsening

At each routing step the message is forwarded to the closest neighbor - in terms of
lattice distance - to its destination [11]. J. Kleinberg shows that routes are found
shortest when the probability for two nodes u, v to be connected by a shortcut is
proportional to D(u, v)−p, with p the dimension of the lattice. Figure 1a shows
an example of routing. We measured that our implementation of this strategy
finds routes through a 10000 nodes 64-regular random small-world graph with
an average of 2.87 jumps, with maximum length of 6, over a million of random
source-destination tuples.

After each theft, work is fragmented in two chunks. After computing, each
chunk’s resulting data has to be routed back to their owner. This effect is rep-
resented graphically in Fig. 1b. In order to mitigate congestion due to the sheer
amount of routed chunks, we leverage the following routing properties:

– Whenever any two sets of resulting data belonging to the same owner are
routed to the same node, they will be routed through the same nodes for the
remainder of their routes.

– As sets of results from the same owner get closer to their destination, the
probability to be routed to the same nodes increase.

Our results routing protocol aggregates buffered results chunks by next hop
in route. As a consequence, the number of communications is asymptotically
smaller than the number of chunks to route (i.e. the number of successful theft
performed to balance load).

4.3 Memory and Communication Management

We use GASPI [10], an explicit Partitioned Global Address Space - PGAS -
approach: accesses to remote memory locations are issued through traditional
communication function calls. GASPI communication phases can occur in a tra-
ditional MPI program. It offers fine grained one-sided communication and a
notification mechanism, allowing a truly asynchronous implementation.
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Each process allocates dedicated memory segments which can be remotely
accessed through read, write, atomic, and collective operations. A worker’s set
of shared tasks is stored in the TASK segment. A TMP segment receives task
resulting data as they are computed. The RESULTS segment receives results
chunks as they are routed and implements a simple lock-based remote memory
reservation protocol. Metadata are stored on each segment in order to implement
the related functionalities.

The set of private tasks is stored in a private memory buffer. Tasks are
executed last-to-first, and balancing the sets of private and shared tasks is a
local memory copy. Accessing the TASK segment of a given process requires
obtaining a lock through a remote atomic compare and swap operation. If such
a lock attempt succeeds, the thief performs two remote read operations. The
first read operation acquires metadata information. Then, using this information
the remote set of shared tasks is copied to the local TASK segment. The lock
ownership on the remote TASK segment is then transfered to the victim. Workers
check the state of the TASK segment between the execution of tasks, if a theft
occurred and the lock ownership has been transfered, the set of shared tasks is
empty and all data have been copied. half the set of local private tasks is then
moved to the TASK segment, metadata are updated, and the lock is released.
In Sect. 6.1, we provide hints for refining this strategy.

5 Use Cases and Experiments

We ran experiments on the Myria cluster at CRIANN, a Tier-2 computing center.
Each compute node has 28 Intel Broadwell Xeon cores. Nodes are connected with
Intel Omni-Path. We run on a maximum of 3584 cores on 128 compute nodes.

Pair Initialization Connection. In the presented experiments, we generate
small world graphs with an average degree of 4log2(|V |). It is an arbitrary choice
- among those which satisfy d << |V | - which implications at scale should be
investigated further. We establish all connections allowed by the small-world
overlay network and measure a 18 s of pair connection time at 3584 cores. This
does not represent a significant overhead for typical HPC applications. This pair
connection time is excluded from the presented performance.

5.1 DLB Bench: A Synthetic Proto-Benchmark

We introduce DLB bench, a dynamic load balancing benchmark that allows us
to assess the performance of our scheduler against arbitrarily challenging initial
work distribution. In this paper, we spread 70% of the tasks among 10% of
processes (Fig. 2) following a gaussian distribution.

Due to our small-world overlay network, some processes are not connected
to any work owner and most resulting data have to be routed to a small and
clustered set of ranks.

Table 1 presents the various workload profiles considered in this study.
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Fig. 2. DLB Bench: workload distribution

Table 1. DLB Bench: workload profiles

Average work
per process

Average
problem size
per process

Tasks per
process

Shared task
segment size

Cycle/byte

10 s 4, 16, 32 MB 2 k, 8 k, 16 k 2, 8, 16MB 750, 3 k, 6 k

5 s 2, 8, 16,
32 MB

1 k, 4 k, 8 k
16 k

1, 4, 8, 16MB 375, 1.5 k, 3 k,
6 k

1 s 1, 4, 8, 16 MB 500, 2 k, 4 k,
8 k

0.5, 2, 4, 8 MB 150, 600, 1.2 k,
2.4 k

Workloads and Efficiency. Table 1 presents the workloads simulated using
DLB Bench. It is a weak-scaling experiment: overall problem size and overall
work duration scales with the number of cores. Per process values are given
and are referred to using average work (W/n) and problem size per process
(S/n). We measure the efficiency of our load-balancer for each of the 11 selected
workload profiles up to 3584 cores, and present the performance of the median
execution - in terms of parallel efficiency - out of 5 repetitions. We did not
observe significant performance variability for workload profiles where work per
process is 5 and 10 s.

Figure 3 presents the parallel efficiency for the simulated workload charac-
teristics of Table 1.

Down to 5 s of average work per core, our load balancing strategy generally
shows high efficiency. As expected, a performance loss appears with low arith-
metic intensity problems due to data transfer time overhead. When scheduling
1 s of average parallel work, the scheduling overhead becomes significant. To
achieve more than 75% parallel efficiency on the studied workloads up to 3584
processes, we observe that the presented implementation requires both more than
1 s of execution time and a minimum of about 400 cycles per byte arithmetic
intensity. Further investigation, which we do not present in details due to lack
of space, suggest that these figures can be improves by suggestions presented in
Sect. 6.1.
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Fig. 3. DLB Bench weak scaling efficiency

5.2 YALES2 Multi-physics Solver

YALES2 is a scalable multi-physics solver for HPC developed at CORIA. The
code features many different solvers, collaborations with several academic labo-
ratories and industrial partners, and it is used to solve large scale HPC problems
in industrial companies such as SAFRAN, SOLVAY or ADWEN. It aims at mod-
eling reactive flows in complex burners from primary atomization of the liquid
fuel up to pollutant production. Detailed chemistry, in which tens of species are
transported and react with each other, has gained a lot of interest due to the
enabling available computational power. However, combustion is a localized and
dynamic phenomenon that occurs in thin reaction zones at the sub-millimeter
scale. Integrating the stiff chemical reactions requires few data and incurs high
arithmetic intensity in the reaction zones, entailing an unbalanced workload.

YALES2 features a scalable ad-hoc task-based hierarchical work-sharing
scheduler. Processes are attributed to a group using workload estimation based
on previous iterations in order to provide approximated inter-group load bal-
ancing. However, the quality of this approximation drops at high number of
cores and for very dynamic use-cases where reaction zones prediction is hard.
At group level, processes operate a round-robin master/slave scheduling pol-
icy: masters distribute their work to their group and pass on the master token.
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Table 2. Preccinsta: Workload profiles at 3584 cores

Mesh
size

Average work
per core range
over 10
iterations

Problem size
per core

Tasks
per core

Shared tasks
segment size

Average
cycle/byte

14M 0.15–0.23 s 0.28 MB 655 448 KB 1484

110M 0.47–0.65 s 2.2 MB 5171 448 KB 550

Despite its high scalability, it does not satisfy the work-first principle [8]: workers
pro-actively distribute their work among processes in their group and commu-
nication volume scales proportionally to the amount of work for any workload
profile and imbalance.

We interfaced our approach in place of this built-in load-balancer, allowing
us to test and evaluate our strategy in a real-life application at large scale, and
demonstrate its efficiency empirically.

Workload. Figure 4 presents a typical workload distribution of an iteration
of the studied experiment. Compared to the DLB Bench workload presented
in Fig. 2, work is less imbalanced, and initial task owners are distributed more
evenly across the system. While the number of tasks spawned on each process
is roughly the same and all the tasks carry the same amount of input data, the
source of the imbalance is the unpredictability of each task’s execution time.

Table 2 shows the main characteristics of scheduled workload. There is little
variation in the amount of work and relative imbalance from one iteration to
another.

Experimental Results. Figure 5 presents the performance of TITUS DLB
compared to the original load balancing strategy implemented in Yales2. Starting
with a 14 million elements mesh, we refine the mesh in order to obtain a 110
millions elements test case. The total amount of work scales with the number
of elements. Using these two use cases, we perform a strong scaling experiment
up to 3584 cores. We run the first 10 time step iterations of the simulation, and
measure the time spent in the chemistry simulation phase. In order to exclude
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pair initialization time for the original scheduler, we exclude the first iteration
from these results. We compute parallel efficiency and speedup over the original
scheduler from the sum of these times for the other 9 iterations.
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Fig. 5. Compared strong scaling performances of TITUS DLB against Yales2’s built-in
dynamic scheduler for two mesh sizes

In all tested configurations, TITUS DLB outperforms the original dynamic
scheduler significantly, and up to 54% at 3584 core. The best efficiency achieved
by the built-in dynamic scheduler on 3584 cores is 65% on the 110 M element
case. TITUS DLB achieves 88% efficiency, speeding up execution by 39%.

6 Conclusion

We propose a dynamic load-balancing strategy for large scale computations
which we successfully demonstrate on a coupled chemistry and CFD simulation.

The small-world based communication pattern we introduce allows an effi-
cient implementation of the work-stealing algorithm for large scale distributed
computations.
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The TITUS DLB Library and DLB Bench are released under open-source
LGPL3.0 license at https://github.com/EXAPARS/TITUS.

6.1 Future Work

We are interested in developing an analytical model to provide a theoretical
analysis of the presented approach.

We intend to extend the scope of the presented approach by allowing tasks
to be spawned dynamically, providing support for a wider variety of problems,
such as dynamic tasks decomposition and fork-join parallelism, allowing us to
compare the performance of the proposed approach to existing dynamic task
scheduling strategies through usually adopted benchmarks such as UTC and
BFS.

The development of DLB Bench gives us the opportunity to study and com-
pare the performance of existing approaches in various configurations, which
may be included in future publications.

Moreover, we plan to optimize our implementation to use shared-memory
communication for intra-node communications and explore various algorithmic
improvement. Some shared work-queue and associated work stealing protocol
may provide lock-free algorithms as well as not require the victim to take action
in between thefts. Small-world generation and victim selection strategies may
take more finely data locality into account in the form of expected or average
latency. Lock-free memory allocators can be found in the literature [16], which
may be adapted to our results returning strategy, further alleviating contention
at scale. Finally, in [4], Berenbrink et al. show that a number of theft policies
are viable in the classical work-stealing scheme, which may be explored in this
context.
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Abstract. The number of cores in HPC systems and servers increased a
lot for the last few years. In order to also increase the available memory
bandwidth and capacity, most systems became NUMA (Non-Uniform
Memory Access) meaning each processor has its own memory and can
share it. Although the access to the remote memory is transparent for
the developer, it comes with a lower bandwidth and a higher latency.
It might heavily impact the performance of the application if it hap-
pens too often. Handling this memory locality in multi-threaded appli-
cations is a challenging task. In order to help the developer, we developed
NUMAPROF, a memory profiling tool pinpointing the local and remote
memory accesses onto the source code with the same approach as MALT,
a memory allocation profiling tool. The paper offers a full review of the
capacity of NUMAPROF on mainstream HPC workloads. In addition
to the dedicated interface, the tool also provides hints about unpinned
memory accesses (unpinned thread or unpinned page) which can help the
developer find portion of codes not safely handling the NUMA binding.
The tool also provides dedicated metrics to track access to MCDRAM
of the Intel Xeon Phi codenamed Knight’s Landing. To operate, the tool
instruments the application by using Pin, a parallel binary instrumen-
tation framework from Intel. NUMAPROF also has the particularity of
using the OS memory mapping without relying on hardware counters or
OS simulation. It permits understanding what really happened on the
system without requiring dedicated hardware support.

Keywords: NUMA · Memory · Profiler · Instrumentation · Pin
Access · Remote · MCDRAM · KNL

1 Introduction

In the late 2000s, the number of cores in servers and HPC systems increased a
lot, with commonly at least two CPUs per server. There is now up to 72 cores in
one CPU if we consider the up-to-date Intel R© Xeon PhiTM codenamed Knight’s
Landing (KNL). In order to avoid hitting the memory wall [17], most of the
current architectures became NUMA (Non-Uniform Memory Access) meaning
c© Springer Nature Switzerland AG 2019
G. Mencagli et al. (Eds.): Euro-Par 2018 Workshops, LNCS 11339, pp. 159–170, 2019.
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that each processor has its own memory. This way we can easily increase the
memory bandwidth of the system to feed the cores. This architecture now applies
inside the socket itself like for the Intel KNL which can be configured to run as
up to 4 NUMA domains or looking at some AMD R© processors (e.g. RyzenTM

1950X).
Nowadays, all the commonly available NUMA architectures are ccNUMA

(Cache Coherent NUMA) meaning that the synchronization between the NUMA
domains is automatically handled by the architecture without requiring any
intervention from the developer. This is certainly one of the reasons for the wide
adoption of this kind of architecture as all existing programs can run out of the
box on them. Even if it is simple to make an application running on NUMA
machines, it is hard to extract the full performance of the machine because of
the data remote access costs.

There are now some studies about using OpenMP on multiple NUMA
domains [15], some are also explicitly tuning the OpenMP runtime for this usage
[5]. Using multi-threaded applications over NUMA domains fully rely on the
developer to well place the data in memory to efficiently exploit the architec-
ture and ideally limit the remote memory accesses. Strictly avoiding them is not
always a good thing; it is sometimes better to spread the data over multiple
NUMA domains to get more memory bandwidth. This is where the knowledge
of the developer is needed and the automation becomes limited.

As we will show in the next section, on most of the operating systems, the
semantic to set up the memory placement is by default implicit. It relies on
the first touch policy which can lead to many mistakes. Without any profiling
tools, the developer must rely on his confidence and on global timings measure-
ment to believe that he made the placement right. This is where we present the
NUMAPROF tool. It provides a profiling backend associated with a graphical
interface annotating the source code with various metrics. Such a tool can also
be useful for developers working on NUMA-aware runtimes like MPC [10].

Section 2 will first look on the related work by listing the available NUMA
profiling tools. Section 3 will contrast our contribution. As our tool mainly targets
the Linux operating system we will describe the available API in Sect. 4. Section 5
will provide the technical details about NUMAPROF. We will lastly provide
an analysis example by using NUMAPROF on an application and show some
findings.

2 Related Work

Some NUMA profiling tools already exist and we can find several papers on this
topic. We first found NUMATOP [19] which is the “simplest” one. It is an appli-
cation similar to top which counts the number of local and remote accesses of all
running applications and displays the result into the terminal. The tool relies on
hardware counters to determine the local and remote accesses. It is interesting
for looking for the processes placement when running multiple applications on
the same node and check their binding. As a limitation, it does not provide any
details on the source of the remote accesses inside the application.
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SNPERF [11] provides charts with memory accesses on each NUMA domain
over time within a given process. It relies on hardware counters of the Origin
2000TM architecture. This is useful to check if the memory bandwidth is balanced
over the nodes. This tool is not available on the web and is hardware dependent
on an uncommon architecture.

Memphis [9] is a tool making deep instrumentation using AMD OpteronTM

hardware counters. It uses event sampling to report the domain access count
onto source code lines. For this property, it looks like what we want. But it is
now unavailable and its code is dependent on a specific old hardware. From the
paper it also looks not providing a graphical interface to exploit the profiles it
generates.

For another approach, there is MemProf [7] which, this time, focuses on
access patterns. The tool tracks each thread memory access flow by using a ker-
nel module and tracking threads binding to detect specific bad patterns in the
application. Again, it relies on specific hardware feature from AMD R©: Instruc-
tion Based Sampling (IBS) [6].

One can think about a tool based on Valgrind [13] and we can find such a tool:
NUMAgrind [18]. This time, the tool is based on an architecture simulation, so,
not relying on specific hardware counters. It simulates all the cache details and
also the page affinity. This approach is interesting because it allows simulating
any kind of architecture with the drawback of neglecting the effective operating
system memory mappings. Last, it relies on Valgrind which does not allow to
run threads in parallel, making the overhead really big for a large number of
cores. This is an issue to simulate something on the KNL, for example. The tool
is not available any more on the Internet.

Still looking for hardware simulation we can also find SIMT [14] which fully
simulates the architecture details. This tool simulates the interconnect protocol
and can be used for architecture design but can also give some hints about
applications on those architectures.

Lastly, we found HPCToolkit [8] which is really close to what we want to
provide with NUMAPROF and is also open source. It uses hardware counters
and events sampling to track the application. It then provides a nice reporting
by annotating the source code and the call stacks in a graphical interface. Inter-
estingly, it provides all the usage information of a variable in one go: allocation
site, first touch site and all access site. It also provides a summary of the access
pattern over threads so the developer can look at how the memory accesses are
distributed and might find some reordering or packing to improve data locality.
This is something we do not have in NUMAPROF. Due to its usage of hardware
counters it has a low overhead but becomes dependent on specific hardware. It
has the advantage of providing a kind of cost estimation due to the sampling
approach which is something we do not yet have in NUMAPROF. The NUMA
part of the tool described in the paper is not available in the public release.

Really close to our approach for the backend implementation we also found
Tabarnac [4] which also instrument the memory accesses. It then generate a
static web page as output with limited charts.
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We finally took inspiration and codes from MALT [16], a malloc tracker, for
its web-based interface providing global metrics and source annotation. Web GUI
are interesting as it can be easily forwarded via the ssh-port forward, avoiding
the latency of rendering when forwarding a full X application. It also helps
to quickly implement the interface and open possibility to work with multiple
people connected onto the same interface.

3 Contribution

Looking on the available tool we notice a few things. Many of them rely on
dedicated hardware counters which make them quickly outdated and not being
able to be used on up-to-date architectures. This way, they also, most of the
time, rely on sampling which might miss some details of the code.

On the other side we have tools working on hardware emulation which is
nice as allowing simulation of any kind of hardware on our workstation. But it
has the disadvantage to miss the real memory mapping built by the operating
system we run on. Also a lot of them are not yet/anymore available.

Last, all the listed tools, except HPCToolkit and Tabarnac (non interactive),
provide raw text output which might be hard to interpret. To be useful, the tool
needs to come up with an attractive graphical interface annotating the source
code with the extracted metrics.

In order to overcome these issues, we want to build NUMAPROF following
those rules:

– We do not rely on hardware counters.
– We keep track of the real mapping of the operating system.
– We must run in parallel.
– We provide a graphical interface to look on the profile annotating the code

lines.
– We want to make it Open-Source to be available to the community, available

at [3].

With NUMAPROF we allow checking what the operating system does for the
mapping. This can be useful to validate codes but also runtimes which are sup-
posed to help handling multithreading. Being independent on hardware counters
ensure a better support over time by not being dependent on a specific archi-
tecture. On this aspect we also provide dedicated efforts on handling the huge
pages semantic when considering the first touch measurements which is explicitly
handled by none of the listed tools.

Although we could have used Valgrind to make the binary instrumentation, it
would lead to large overhead when running on nodes like the Intel KNL handling
up to 288 threads. Hence, we proceed by using Pin [12]. This tool does an on-
the-fly binary instrumentation providing services very similar to Valgrind but
with multi-threading support and being a little bit faster. It is also easy to use,
just as Valgrind, wrapping the command line we want to run and making an on
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the fly instrumentation. NUMAPROF instruments all the memory accesses and
check the NUMA distance of each access to build the profile.

In addition to the local and remote metric, the tool also adds a new metric:
unpinned. This permit to track cases where the running thread is not bound to a
specific domain and making “random” accesses generating “random” placement
of the memory. Compared to other tools we also searched to provide information
on the source lines making the first touch. Hence, we pinpoint the source of the
remote accesses. Lastly, we also provide access counter on memory allocation
site to detect which allocated chunks lead to incorrect accesses.

The tool also provide dedicated metrics to handle the case of the MCDRAM
from Intel Knight-Landing helping profiling on this architecture.

Our tool currently does not provide caches simulation so we report raw
accesses not considering cache effects. This might be done in a second step to get
more meaningful metrics when considering spin locks which in practice stay in
the cache not generating effective remote accesses (eg. in the OpenMP runtime).

4 NUMA Linux API

This section will describe the Linux NUMA API to understand what we want
to observe and which operations we need to intercept to track the NUMA state
of the application.

We first remember that most operating systems allocate a virtual segment
when an application makes a big allocation. It then fills it, on the fly, with
physical pages when the application starts to really access it. This is called the
first touch policy. Operating systems like Linux decide during this first access
which NUMA page to map, by default by looking at the current thread location.
This way the operating system tries to automatically fit the data accesses by
considering the memory usage will later be done in the same way. This approach
is nice but leads in some ways to problems because it is implicit and many non-
expert developers might not know what they are really doing. We will show that
our tool is specifically tuned to track those problems.

Hopefully, the user can change the first touch policy of a segment by using
the membind system call. It setups a strict binding (MPOL_BIND) of a segment
to a specific NUMA domain or forces page interleaving (MPOL_INTERLEAVE). It
can lastly set a preferred domain (MPOL_PREFERRED) which will be chosen and
neglected if there is no free pages any more on this domain. This membind call is
specific to Linux. In last resort, the user can also provide a detailed mapping by
using the move_pages system call providing the mapping for each page of the
targeted segment.

By default, the threads are spawned randomly on a core and can move
depending on decisions from the operating system scheduler. But, as the memory
is linked to the process, the OS has no knowledge of the link between data and
threads. When a thread moves to another NUMA domain, there is no informa-
tion permitting to also move the related data. The only available real solution
is to bind the threads on a specific core, to place the data accordingly and keep
this state for the whole execution.
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This thread mapping can be handled via the sched_setaffinity system
call which is also not POSIX. This call takes a mask as parameters to allow
the thread to run on the given cores (or CPU threads if using hyper-threading).
This mapping is automatically done when the user sets the OMP_PROC_BIND
environment variable for OpenMP.

The user can also handle the thread and memory binding by selecting its
behaviour through the command wrapper numactl.

Again, we see with this interface that nothing links the threads to the data
so the placement policy is implicit meaning that nothing prevents the user from
mistakes and nothing can notify the user if he does the thing wrong. This is where
tools like NUMAPROF can be useful. Also, all the aforementioned interfaces are
Linux dependent so our tool will target only this operating system.

5 Implementation Details

This section will give details about the NUMAPROF implementation going from
the backend up to the graphical interface.

5.1 Metrics

As many other tools, NUMAPROF provides the local/remote access metric. But
it also track the unpinned accesses, meaning the thread is not bound to a specific
NUMA domain and can move on other nodes. It also tracks if a page has been
first-touched by such a thread, meaning the page is “randomly” placed on the
machine generating later random accesses.

NUMAPROF also finds the code location where the page placement was
made, which happened at the first touch. Lastly, it counts the access metrics on
the allocation site, meaning we can quickly know which allocated segments are
concerned by remote memory accesses.

To summarize, we provide the listed metric for each access call site and
allocation site:

first-touch. Counts the number of first touch on the given location.
unpinned first-touch. Counts the number of unpinned first touch on the given

location.
local. Counts the local memory accesses when the thread is on the same NUMA

domain as the page.
remote. Counts the remote memory accesses when the thread is on a different

NUMA domain than the page.
unpinned-page. Counts the cases of a thread bound to a NUMA domain but

the page is not.
unpinned-thread. Counts the cases of a thread not bound accessing a bound

page.
unpinned-both. Counts the cases of a non-bound thread accessing a non bound

page.
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MCDRAM. Counts accesses to local MCDRAM memory. MCDRAM is con-
sidered when the accessed NUMA domain has no cores.

MCDRAM has two sub-counters which are local and remote to consider the
case of the KNL which can be configured with 4 NUMA domains each having
its local MCDRAM.

5.2 Thread Tracking

In order to build our metrics we first need to track the thread placement. For
this, we need to check the thread location at spawning time. Thanks to Pin we
can intercept the spawning of a thread and place our handler on it. From there
we extract the thread binding by using the sched_getaffinity system call.
From the cores/threads affinity, we extract the NUMA affinity of the thread and
keep track of this state. A thread which can move onto more than one NUMA
domain will be considered as unpinned. If the thread is not bound, we pursue
without needing to check on every access where he is running to determine the
local or remote memory access. We just track its memory accesses as unpinned.

We lastly need to track the thread movement if there are changes during the
run. In the Linux OS this can happen on the call of sched_setaffinity which
we intercept thanks to Pin. We do not manage a possible change from outside
the process. But, in this case there is nothing to do except to provide a function
to be called by the user.

Threads can also set up a memory policy (set_mempolicy) possibly assigning
a remote memory domain to the process. We intercept this policy and consider
the thread bound if it is restricted to one domain.

All the thread movement (which are rare) will be logged in the profile so
the user can check if it matches his expectation. This is also a new feature from
NUMAPROF compared to existing tools.

5.3 Memory Access Tracking

As said, thanks to Pin, we probe all the memory accesses and check if they are
remote or local. We already know where the thread is, thanks to the tracking
described in the previous section. We now need to know where the page is. On
Linux this can be done by using the move_pages system call which is normally
used to move the pages. If we do not provide a mapping in parameters, the call
returns the current location of the pages. Notice we can request a list of pages
in one call.

To limit the overhead we cannot make a system call for every memory access
so we need to cache the information. As a workaround, we build a shadow page
table rebuilding the same structure used in the kernel. Then we can easily detect
the first access (first touch) and use the cached value on next accesses. We do
not remove entries in this table so we can use it in a lock-free manner having to
take locks only when we add new entries in the tree. This permit to maintain
scalability.
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The page table entries are allocated when intercepting calls to mmap. To track
the state of the pages we also need to track calls to munmap (resp. mremap) to
flag the related pages as released (resp. to move them). While flagging the page
as free, we do not remove the tree structures if empty to keep the algorithm read
lock-free.

We also implemented a dedicated support for huge pages. At first touch we
request the binding with move_pages for all the pages of the given huge page. If
all the pages are available on the same NUMA domain, we consider it is a huge
page, so, accounting the first touch only once for the huge page.

One last thing, to improve the performance of the tool we do not probe the
local stack memory accesses, as we know they are local. This provides in practice
a speedup of a factor 2, greatly reducing the high overhead of the tool.

5.4 Instruction and Allocation Counters

We report the metrics globally, per thread, per call site (instruction) and per
allocation site. For the call site, we maintain an std::map indexed by the instruc-
tion memory address. This structure is not lock-free so we need to take locks on
every access. In order to make the profiler scalable we cache the entries of this
tree into each thread. In this way, each thread can quickly update the counters
in the cache and then sometimes (when there are too many entries in the cache)
flush it into the global tree by taking locks.

For the allocations we again need a way to quickly find in a lock-free man-
ner the pointer to the counters. For this, we extend the shadow page table by
making an entry for every eight addressed bytes. This pointer is used to point
the corresponding allocation site. We used the same approach as the instruction
with a cache in the thread to store local copies of the counters and then flush
the cache when it becomes too big. This limits the number of atomic operations.
Notice we can up to double the memory consumption by using this approach. To
limit this effect we use two storage methods. For allocation fully using a page,
we use only one pointer and allocate the list of eight bytes entries only if the
page contains small allocations.

To maintain this page table pointers we need to track the call to malloc,
free, calloc, realloc...

5.5 Scalability

One can check the scalability of the tool on the Hydro [2] application running
on an Intel KNL. The Fig. 1 shows that the tool scales up to 64 threads with
an overhead of a factor 27x. There is then a slight increase with an overhead of
60x on 256 threads. In any case this is far better than what we observe with the
Valgrind’s memcheck tool due to the serialization of the threads.

5.6 Graphical Interface

NUMAPROF takes back the idea from MALT by providing a dynamic web-
based interface. It provides global metrics summarizing the application like the
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Fig. 1. NUMAPROF and Valgrind overhead on HydroC code on KNL.

global local/remote/unpinned metrics and an access matrix. The access matrix
is provided to quickly check if the memory accesses are on the diagonal or form
a line pointing intensive accesses to one NUMA domain. Second, the interface
provides the per thread metrics to quickly see how the first touch and accesses
are balanced. It also provides the pinning log and access matrix for each thread.
Finally, and most important feature, the GUI provides annotation of the source
code to project the counters onto the source lines as shown in Fig. 2. This is the
core part of the tool.

6 Use Case Example: Hydro

We tested the tool onto some applications: AMG2013, HACC, Cloverleaf and
it mostly shows that those applications were well optimized making only local
memory accesses. On huge pages they showed some remote accesses when the
array splitting not to match with 2 MB limits of huge pages but we observed by
testing that this does not impact too much the application performance.

We then tested the Hydro [2] application (commit d1303337624) which is less
tuned. On this application NUMAPROF observed interesting things. Firstly, in
August 2017 we observed that when running the application on an Intel KNL
was not allocating memory on the MCDRAM (in FLAT mode) when it should.
Searching deeper on the issues pointed a bug form the kernel which ignored
the MPOL_PREFERRED semantic when the huge pages are enabled. This bug was
known by Red Hat [1] and has been fixed end of 2017. Moving to the right policy
makes the application going down from 42.8 s to 28.0 s.
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Fig. 2. NUMAPROF graphical interface, source code annotation.

Starting the real analysis, we first looked at the access matrix from Fig. 3
showing a wrong placement of some segments. The test is done on an Intel
KNL with MCDRAM activated which explains the two vertical lanes, the sec-
ond one being MCDRAM accesses. We see that there are issues with the blocs
allocated into the main memory but also a mis-distribution of the blocks into
the MCDRAM shown by the vertical lines meaning all the threads accessed data
on the same NUMA domain.

Fig. 3. HydroC access matrix before and after optimisation.

Looking at the annotated sources, we can search for remote memory accesses
and more precisely on the related allocation call sites. We first found the alloca-
tion of the ThreadBuffers in the Domain::setTiles function which is not done
in parallel. It maps all the allocated memory onto the first NUMA domain. This
can be fixed by adding a pragma omp parallel section in place of the loop.
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Second, we noticed remote memory accesses onto the Tile objects. Here there
is a missing feature of NUMAPROF, we would like to have the call stack. Any-
way, reading back the code leads to the call of Tile::godunov() which is called
from Domain::computeTimeStep() in a loop indexed by i. If we look a little bit
at the beginning of the loop, we now see that the index i is modified via the
m_mortonIdx array. This is not done at the allocation time meaning the allo-
cation and access orders mismatched. We can fix this by using the same index
indirection in the allocation loop where we make the new Tile.

This slightly improves the access matrix making it more diagonal as shown by
Fig. 3. This also translates onto performance by lowering the runtime to 22.9 s.
This is a time reduction of 18% achieved without knowing the code in advance
and by working for half an hour.

The tool still reports remote memory accesses. Most of them come from a
spin lock into the OpenMP runtime. The rest mostly comes from access to global
floating point constants which are stored in the data section of the binary. In
other words, it is a false negative as those constant and spin locks will be in
practice stored into the cache if accessed in a loop.

7 Conclusion

We showed the need to NUMA profiling tools and didn’t find our wish in the
existing ones. Hence, NUMAPROF was built in a simple way on top of the Pin
instrumenter which quickly provided a useful tool coming with a nice web-based
graphical interface. The source annotation and global metrics like access matrix
had been useful to optimize the Hydro application gaining 18% of performance
in half an hour without knowing the code before. Notice that the overhead of
the tool was 60x on 256 threads.

Of course there is still a lot of work to be done. We mainly consider adding
a cache simulator not to report too many memory access which are stored in
the cache and do not slow down the application. Also we still have margins to
improve the performance of the tool to reduce the overhead by mostly improving
the internal caching mechanism and maybe packing the access and flushing them
in groups. The tool is flexible enough that adding support of more memory levels
like the 3D Xpoint should be easy.

This methodology is not limited to x86 architecture. It can be applied to
other architectures by adding support of DynamoRIO [20], which is similar to
Pin. As a complement one can also consider using Valgrind.

The tool is available under open source license at http://memtt.github.io/.
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Abstract. HPC applications and libraries have frequently moved par-
allel data from one distribution scheme to another, for reasons of perfor-
mance. In modern times, a resurgence of interest in this data redistribu-
tion problem has emerged due to the need to relocate data distributed
across one Producer grid onto a different distribution scheme across a
Consumer grid. In this paper, we study the efficient algorithms to per-
form redistribution, and show how the best methods from the literature
are still dependent on the number of processors in both grids. We describe
a new algorithm ASPEN that exploits more cyclic patterns and relations
in the distribution, is not dependent on the total number of processors
and is thus well suited for use in a workflow management systems. We
describe a preliminary implementation of the algorithm within such a
workflow system and show performance results that indicate a signifi-
cant performance benefit in data redistribution generation.

Keywords: Data distribution · Redistribution · Data placement
Data locality · Memory layout · Communication pattern
Parallel programming · Distributed memory

1 Introduction

Explicit data movement libraries and tools are used in HPC applications, cou-
pled models, ensembles and workflows, to communicate data between distinct
applications through various means. In many HPC workflows, a simulation run-
ning on M nodes (the Producer Grid or Producer) writes a large amount of data
to another job running on a (possibly) distinct set of resources (the Consumer
Grid or Consumer). Although this data movement pattern is far from new, it
has become a common concern in modern times due to the prevalence of data-
intensive workflows, coupled climate/environment applications and combined
workflows of HPC with Data Analytics or AI. Many approaches exist to provide
data movement between programs including in-situ frameworks, job couplers,
in-memory databases and file-system approaches. In this paper we describe a
c© Springer Nature Switzerland AG 2019
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library for communication of data between jobs over the interconnect fabric.
Moving data over the interconnect, direct from DRAM has the benefit that
many fewer data copies are incurred, but has the significant hurdle of needing to
explicitly manage the parallel data movement in order to move the data. This
problem of explicit data redistribution management is the focus of this paper.

A good deal of work (reviewed in Sect. 3) has explored the cost and bene-
fits of explicit data redistribution, typically to a different distribution scheme
within the same processor grid. While sharing many qualities with the classical
data redistribution problem, so called Producer-Consumer redistribution or M:N
node redistribution exhibits significant additional complications arising from the
fact that the two grids reside in different jobs and lack awareness of the other’s
characteristics including distribution scheme. Cray has developed a library called
the Universal Data Junction (UDJ)1 that provides the missing information and
allows distinct jobs in distinct grids to package, send and receive parallel (dis-
tributed) data over the high-performance interconnect as well as other resources
that may be preferred.

In this work, we focus on the algorithmic machinery that is required in order
to allow a Producer and a Consumer Grid to communicate the correct data, at
minimal expense in a scalable fashion. The reason to place so much emphasis
on the cost of redistribution is that the operations cannot easily be offloaded
or performed asynchronously and thus incur direct overhead on the simulation
code, which is often intolerable. In Sect. 3 we show that classical algorithms and
those in the literature display running times that are proportional to the number
of remote processors from the perspective of either the Producer (i.e. remote
means Consumer) or the Consumer (i.e. remote means Producer) grid. In the
Exascale era, it is expected that simulation jobs may run on millions of compute
cores. Hence, this dependence on remote grid size is intolerable. In Sect. 4 we
describe a new approach that exploits three types of periodicity in cyclic data
distributions, resulting in a lower complexity redistribution algorithm and one
that does not depend on remote grid sizes. In Sect. 5 we show the results of
our new approach versus the classical algorithm and some of the most used and
well-regarded algorithms published in the literature.

2 Background

We define the regular redistribution problem in the same way as [1] using
updated producer-consumer terminology: given a d-dimensional array A on a
set of Producer resources (processors and memory) Rproducer that uses some
distribution scheme Dproducer we wish to move all the data to another set of
resources Rconsumer using some other distribution scheme Dconsumer. Dproducer

and Dconsumer represent arbitrary array element mappings across each dimen-
sion of the array.

The global array indices of A are given by G1, . . . , Gd. The set of distribution
schemes of primary interest are BLOCK, CYCLIC, 1-d BLOCK CYCLIC and
1 https://gitlab.com/cerl/universal-data-junction.

https://gitlab.com/cerl/universal-data-junction
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k-d BLOCK-CYCLIC. Since BLOCK, CYCLIC and 1-d CYCLIC are special
cases of k-d BLOCK-CYCLIC, we study only the latter in this paper. Like [1,7]
we use a Local Data Descriptor approach, but we choose to ignore this repre-
sentation since it is an implementation feature not relevant to the algorithmic
descriptions. Local data sizes of A on rank p are given by Lp

1, L
p
2, . . . , L

p
d. Pro-

cessors compose a d-dimensional processor grid p1 ×· · ·×pd where pi(1 ≤ i ≤ d)
gives the number of processors in the grid dimension i. We will discuss two such
processor grids G producer and G consumer where the resources are assumed to be
distinct though this is not necessary. We define the mapping G2L(p, d) as the
function that maps global indices to the local indices for processor p in dimension
d, and the inverse relation L2G(p, d) mapping local indices to global indices.

The non-triviality of redistribution of cyclic data can be illustrated by the
graphic example of Fig. 1. A 2-d array is divided into 2-d partitions using some
block sizes b11, b

1
2. The blocks of this partitioning are distributed using a 2d block-

cyclic distribution scheme across a producer grid of size 4 × 4. We denote the
block ownership by labelling the blocks by processor owner, round-robin style
along each dimension (Fig. 1a). We wish to redistribute the same 2-d data across
a different consumer grid of size 3 × 3 using different block sizes b21, b

2
2 labelled

similarly (Fig. 1b). For any process pair (p, c) where p is in the producer grid and
c is the consumer grid, we can overlay the global data owned by each processor
to begin to ascertain shared indices, e.g., producer process (0, 0) (Fig. 1b) and
consumer process (0, 0) (Fig. 1c) superimposed in Fig. 1d. The intersection of the
superimposed data in Fig. 1e represents the global indices that these two pro-
cessors must directly exchange over the network (i.e., producer (0, 0) must send
these indices and consumer (0, 0) must receive these indices). The d-dimensional
situation is a direct extension of the illustrated 2-dimensional case.

Fig. 1. Example of non-triviality of data index calculations for trivial distribution
across 4 × 4 producer and 3 × 3 consumer grids

3 Related Work

The question of parallel data redistribution has been addressed many times, both
statically and dynamically as this question was central when dealing with the
imposed data distributions of early distributed memory programming models
such as High Performance Fortran (HPF) [4].



174 C. Foyer et al.

Extensive analysis has been performed on both the nature of block-cyclic
distribution, and its relevance to distributed memory relations as it stands as
a generalisation of both block distribution and cyclic distribution. Multiple
improvements have been proposed taking advantage of certain characteristics
of this kind of data distribution [1,2,6,7]. These solutions also focused on the
message scheduling part of array redistribution, which is out of scope for this
paper. Petitet and Dongarra [5] described techniques for redistribution taking
into account the severe alignment restrictions induced by the architecture, as
well as further treatment of the scheduling.

Thakur et al. compared different solutions and presented solutions both spe-
cific and general varying the size of the blocks but restricted to fixed size process
grids [8,9]. The presented techniques rely either on computing the source and
destination for each element of the array outside of where it was possible to use
improvements due to any common factors between the two block-cyclic sizes.
Hsu et al. [3] also described some optimisations for specific cases where the two
block-cyclic distributions have a common factor, but with irregular number of
processors. In their more generic approach [2] the authors provide a thorough
proof of the algorithm. Our version, although very close in the principle, is based
on LDD usage and does not enforce the sizes to be relatively prime numbers,
allowing simpler generation of the final scalar product.

4 Data Redistribution Algorithms

From the literature, the redistribution problem has been expressed as: given
two possibly different regular distributions of data over two grids P and C with
distributions DP and DC , for each pair of processes (p ∈ P, c ∈ C) find the
intersecting elements in Dp ∩ Dc. The general idea when addressing the redis-
tribution problem is to compute the intersecting blocks of data between the
ranks. Each block is characterized by its starting index, its length, its dimen-
sion and its destination. As stated in [7], a multidimensional distribution can
be expressed as a cross-product of multiple one-dimensional distributions. Using
this approach, the general solution for a multidimensional approach is presented
in Sect. 4.1, while Sects. 4.2, 4.3 and 4.4 focus more specifically on the required
block comparisons.

4.1 General Problem

Algorithm 1 presents the outer loop over the dimensions needed to generate
the block sets describing how to scatter the local data. In this algorithm,
ComputeIntersection refers to any of the algorithms presented in Sects. 4.2,
4.3 and 4.4. The version described here considers the computation of the com-
plete redistribution. It is however possible to pass to Algorithms 2 or 3 the
remote process coordinates in order to compute the unique intersection with the
local process. As the full description of the intersecting blocks is created with
a crossproduct, any empty returned blockd would allow the algorithm to finish
early in this case.
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Algorithm 1. Base algorithm for redistribution
/* Each rank performs the following for each dimension d */

input : Producer Grid P , Consumer Grid C, Producer Distribution DP ,
Consumer Distribution DC

output: Set of blocksd

1 for d ← 1 to ndims(Data) do
2 blocksd ← ComputeIntersection(P d, Cd, Dd

P , D
d
C);

3 end

Algorithm 2. Classical Redistribution Algorithm
/* Each rank performs the following for each dimension d */

input : Producer Grid P d, Consumer Grid Cd, Producer Distribution Dd
P ,

Consumer Distribution Dd
C

output: Intrank consists of tuples (remoteRank, start, end)
1 Nlocal ← Number of local blocks owned by this rank;

2 for remote ← 1 to |Cd| do
3 Nremote ← Number of local blocks on remote rank;
4 for localBlockId ← 1 to Nlocal do

5 localBlock ← getBlock(Dd
P , localBlockId);

6 for remoteBlockId ← 1 to Nremote do

7 remoteBlock ← getBlock(Dd
C , remoteBlockId);

8 Left ← max(localBlock.start, remoteBlock.start) ;
9 Right ← min(localBlock.end, remoteBlock.end) ;

10 if Left < Right then
11 Intrank ← Intrank ∪ (remote, Left, Right) ;
12 end

13 end

14 end

15 end

4.2 Classical Algorithm

This algorithm presents the näıve way of computing the intersection, by taking
each block of the given local distribution and looking for an overlap by com-
paring its boundaries with those of each block of the remote distribution. This
comparison is performed for each process of the remote grid.

The total number of operations is given by

OpsClassical = D · L · R · N local · Nremote (1)

where N local represents the number of local blocks and L represents the number
of processes in the local grid dimension, respectively remote blocks and remote
grid dimensions are Nremote and R.
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Algorithm 3. FALLS Redistribution Algorithm
/* Each rank performs the following for each dimension d */

input : Producer Grid P d, Consumer Grid Cd, Producer Distribution Dd
P ,

Consumer Distribution Dd
C

output: Intrank consists of tuples (remoteRank,start,end)
1 Slocal ← local stride between blocks;
2 Sremote ← remote stride between blocks;
3 S ← lcm(Slocal, Sremote);
4 Nlocal ← Number of local blocks owned by this rank;

5 for remote ← 1 to |Cd| do
6 Nremote ← Number of local blocks on remote rank;
7 for localBlockId ← 1 to max(Nlocal,

S
Slocal

) do

8 localBlock ← getBlock(Dd
P , localBlockId);

9 firstIndex ← max(0, � localBlock.start−remoteOffset−remoteBlocksize
Sremote

�);
10 lastIndex ←

min(1 + localBlock.start+localBlocksize−remoteOffset
Sremote

, Nremote,
S

Sremote
);

11 for remoteBlockId ← firstIndex to lastIndex do

12 remoteBlock ← getBlock(Dd
C , remoteBlockId);

13 Left ← max(localBlock.start, remoteBlock.start);
14 Right ← min(localBlock.end, remoteBlock.end);
15 if Left < Right then

16 for disp ← 0 to |Datad|
S

do
17 start ← Left + disp × S;
18 end ← Right + disp × S;
19 Intrank ← Intrank ∪ (remote, start, end);

20 end

21 end

22 end

23 end

24 end

4.3 FALLS Algorithm

This algorithm is the best version found in the literature for M:N node redis-
tribution. The same idea is expressed in [1,7], and summarized in Algorithm 3.
Although comparing boundaries block-by-block, these articles present a huge
improvement over the classical algorithm in terms the number of block compar-
isons required.

The bounds are reduced by using the fact that the intersection of two block
cyclic distributions can be expressed as the union of some set of block cyclic
distributions, each origin being the beginning of the intersection, each block
length being the length of the intersecting block and the distance between blocks2

is equal to the lower common multiple of the two original strides. The result is
that it is only necessary to compare blocks within one stride S. In other words,
2 Later referred to simply as stride.
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for each element x in the found intersection then x + n(S) is also inside the
intersection, where n is all integers for which x+ n(S) remains smaller than the
extent of the full array. Additionally, it is only necessary to compare the blocks
in the onwards direction and those already checked can be ignored.

Compared to the classical algorithm, the reduction of the bounds reduces
drastically the number of blocks to be considered when evaluating the intersec-
tion for big grids of data. The total number of operations is given by

OpsFALLS = D · L · R · N̂ local · N̂remote (2)

where the N̂ local and N̂remote represent the reduced number of local blocks
due to searching only with one S. In theory then, Eq. 2 resembles Eq. 1 but in
practice, N̂ and N typically differ greatly with N̂ � N .

4.4 ASPEN Algorithm Description

To improve redistribution performance, we develop a scheme that can exploit
further qualities of the periodic nature of the distributed data, and the known
relationships between adjacent blocks. We call the approach Adjacent Shifting
of PEriodic Node data or ASPEN. To illustrate the approach we first describe
the two remaining weaknesses of the existing algorithms.

Periodicity of Remote Block Data. In the Algorithms 2 and 3 each local
block’s position in the global scheme is compared against multiple remote blocks
(all remote blocks in the case of Algorithm 2 and many fewer than all remote
blocks in the case of 3). In fact, the need to perform more than one comparison
ignores periodic qualities of the data distribution since the constant stride should
enable a direct periodic comparison. Consider the code in Algorithm 3 lines 11–
14. This code searches over the loop of remote blocks (Algorithm 3 line 11)
to generate all remote RemoteBlockIDs, then inside that loop remoteBlock
is extracted using getBlock(Dd

C , remoteBlockId) (Algorithm 3 line 12). Left
and Right are then both generated using various extents of localBlock and
remoteBlock (Algorithm 3 lines 13 and line 14). We can avoid this logic if we
generate a periodic offset as follows

offset ← localBlock.start mod remoteBlocksize

Offset can be seen visually in Fig. 2 and appears in Algorithm 4 line 8.
The offset can be used to indirectly obtain the same information, with-

out doing explicit comparisons to individual remote blocks, by checking the
inequality

localBlock.start − offset + remoteBlocksize ≤ localBlock.end (3)

If condition Eq. 3 is true, then this particular local and remote block com-
parison overlaps on the left-hand side of the local block. This can be understood
by seeing that the blue box of Fig. 2 would be non-empty when Eq. 3 holds.
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Algorithm 4. ASPEN Redistribution Algorithm
/* Each rank performs the following for each dimension d */

input : Producer Grid P d, Consumer Grid Cd, Producer Distribution Dd
P ,

Consumer Distribution Dd
C

output: Intrank consists of tuples (remoteRank,start,end)
1 Slocal ← local stride between blocks;
2 Sremote ← remote stride between blocks;
3 S ← lcm(Slocal, Sremote);
4 Nlocal ← Number of local blocks owned by this rank;
5 for localBlockId ← 1 to max(Nlocal,

S
Slocal

) do

/* GTL is a global to local index conversion function. */

6 localBlock ← getBlock(Dd
P , localBlockId);

7 remote ← localBlock.start
remoteBlocksize

mod |Cd|;
8 offset ← localBlock.start mod remoteBlocksize;
9 Left ← localBlock.start;

10 if localBlock.start − offset + remoteBlocksize ≤ localBlock.end then

11 Right ← min(localBlock.start − offset + remoteBlocksize, |Datad|);
12 diff ← Right − Left;

13 for ps ← Left to |Datad| by S do
14 start ← G2L(ps);

15 end ← G2L(min(ps + diff, |Datad|));
16 Intrank ← Intrank ∪ (remote, start, end);

17 end
18 Left ← Right;

19 remote ← (remote + 1) mod |Cd|;
20 end

21 for Left to min(localBlock.end, |Datad|) by remoteBlocksize do

22 Right ← min(Left + remoteBlocksize, localBlock.end, |Datad|);
23 diff ← Right − Left;

24 for ps ← Left to |Datad| by S do
25 start ← G2L(ps);

26 end ← G2L(min(ps + diff, |Datad|));
27 Intrank ← Intrank ∪ (remote, start, end);

28 end

29 remote ← (remote + 1) mod |Cd|;
30 end

31 Right ← min(localBlock.end, |Datad|);
32 if Left ≤ Right then
33 diff ← Right − Left;

34 for ps ← Left to |Datad| by S do
35 start ← G2L(ps);

36 end ← G2L(min(ps + diff, |Datad|));
37 Intrank ← Intrank ∪ (remote, start, end);

38 end

39 end

40 end
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Fig. 2. Illustration of Adjacent shifting and periodic relations. offset is a periodic dif-
ference that will mean a local-remote comparison is valid for this local block when
offset is greater than a threshold. The leftmost part of local data maps to proces-
sor RemoteProc. Adjacent data on the local processor can be known to then map
to RemoteProc+1 (and repeated for any further adjacent blocks); R represents the
Remote grid dimension. (Color figure online)

When it holds, remoteBlocksize − offset elements will be shared with proces-
sor remote. This is how ASPEN exploits the periodic nature of remote data to
avoid looking at all remote blocks.

Properties of adjacent Sub-blocks. In the case that condition Eq. 3 holds,
some number of elements are shared with processor remote. Instead of resetting
knowledge with respect to the rest of the local block, ASPEN exploits the fact
that if a set of global indices gl, . . . ., gr of length less than localBlockSize map
to processor remote, and if some set of global indices {gr+1, . . . ., gr+p} with p+
(r− l) ≤ localxBlockSize then localProc will also share indices with processor
(remoteProc+1) mod |Cd|. Similarly, if several blocks of size remoteBlockSize
fit into the localBlock, then each full block will map to the next processor in
the remote grid. This approach is how ASPEN assigns contiguous local sub-
blocks to adjacent processors in the remote grid (adjacency shifting). Hence the
loop over remote processors in Algorithm 2 line 6 and Algorithm 3 line 11, does
not appear in 4. The number of operations in Algorithm 4 is given by

OpsASPEN = D · L · N̂ local (4)

Comparing this to Eq. 2, we see a factor of R·N̂remote reduction in operations.
The missing R term in particular will affect scalability since each grid will not
require distinct calculations for each process element in the size of the remote
grid. Theoretically then, we expect ASPEN to scale significantly better with
larger Producer or Consumer grids involved in redistribution.
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5 Results

The followings tests were run on Cray XC30 systems, each node featuring two
Intel Xeon Haswell E5–2698 with 16 cores each (2.30 GHz). The benchmark
was made of MPI applications computing independently the complete redistri-
bution from one 2D grid of processes to another 2D grid, varying dimensions,
shape and size of each grid. The data was a fixed size 2D square grid of ten
thousand by ten thousand elements. Because this benchmark aimed at evaluat-
ing the redistribution performance, the computation were only executed on the
indices and no actual communication of data occurred.

Each case of block-cyclic to block-cyclic distribution was run many times for
all 4 methods: the näıve, the implementation of the algorithm presented in [1],
the FALLS algorithm, the ScaLAPACK redistribution computation algorithm,
and the ASPEN version3. The correctness of computed intersection was checked
by comparing with the näıve approach results, and on later work in the Universal
Data Junction library unit tests.

The main loop as show in Algorithm 1 was timed. In order to limit the
impact of system related issues, all memory needed for the creation of inter-
section description sectors were pre-allocated before any measure of timing was
taken. Nevertheless, outliers may appear because of cache misses.

The process grids were made of 2 to 32 processes per grid, and the block-cyclic
sizes were one of 1024 by 1024, 256 by 256, 30 by 50 or 654 by 321. The objective
was to highlight performance behaviour in regular-to-irregular redistributions,
and the impact of partial blocks on the performance.

ASPEN showed to be very robust over disturbance induced by irregularity in
structures. The main factor of influence over the execution time are the number
of remote processes per rank. As shown in Fig. 3, while the number of blocks is
scaled by a factor ≈ 8.5 and ≈ 5 in each dimension, timings scaled linearly for

Fig. 3. Data redistributions for different blocksize and different grid sizes

3 For all methods except classical, changing total data size does not affect the
performance.
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Fig. 4. Data redistributions for different blocksize and different grid sizes

ASPEN, which is not dependent on the remote number of blocks nor on remote
grid dimension while for all other algorithms scale with the square (or worse) of
grid length.

The results shown in Fig. 4 suggest a strong influence on performance by the
number of remote processes. Since the R term can become significant even with
small grids, we see the time begin to rise even for modest grid exchanges. With
ASPEN, the R term is absent and this effect is limited. With large grid sizes,
we expect to see this effect becoming critically significant.

6 Conclusion and Further Work

We have demonstrated that the ASPEN algorithm can generate redistributions
more efficiently (both theoretically and in practice) when moving cyclic data
across distinct processor grids. As there is a growing requirement to perform
such redistributions across larger grids, the ASPEN algorithm is likely to be
impactful. The total cost of moving data across jobs will depend on many fac-
tors, such as cost of generating the redistribution, cost of buffering data and
message latencies. Subsequent work will study all of these factors by describing
the ASPEN algorithmic framework integrated into the Universal Data Junction
library, which will be used to send complex distributed data across production
HPC jobs. We will investigate and implement ASPEN for redistribution of data
using Gaussian grids and in complex workflow situations such as many-Producer,
many-Consumer.
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Abstract. To alleviate development of FPGA-based accelerator func-
tion units for software engineers, the OpenPOWER Accelerator Work
Group has recently introduced the CAPI Storage, Network, and Analyt-
ics Programming (SNAP) framework. However, we found that software
engineers are still overwhelmed with many aspects of the novel hardware
development framework. This paper provides background and instruc-
tions for mastering the first steps of hardware development using the
CAPI SNAP framework. The insights reported in this paper are based
on the experiences of software engineering students with little to no prior
knowledge about hardware development.

Keywords: FPGA · Programming environment · Tutorial

1 Introduction

Embracing heterogeneous computing, hardware vendors are seeking new
approaches for augmenting general purpose Central Processing Units (CPUs)
with accelerator hardware to satisfy the ever-growing demand for compute capac-
ity. Field-Programmable Gate Arrays (FPGAs) can be used in many applica-
tion scenarios while being orders of magnitude more power-efficient compared
to Graphics Processing Units (GPUs) [1]. With the Zynq SoCs, Xilinx has suc-
cessfully demonstrated the consolidation of FPGA-based programmable logic
with ARM-based CPU cores [17]. Following this trend of tightly coupling pro-
grammable logic accelerators with CPUs, IBM has introduced the Coherent
Accelerator Processor Interface (CAPI) [12], making hardware accelerators such
as FPGAs first-class citizens by integrating them into the processors coherent
memory hierarchy.

Unfortunately, the benefits of FPGAs come at the cost of high development
efforts, as it is very time consuming and difficult for software engineers to imple-
ment FPGA-based Accelerator Functional Units (AFUs). To optimize hardware
c© Springer Nature Switzerland AG 2019
G. Mencagli et al. (Eds.): Euro-Par 2018 Workshops, LNCS 11339, pp. 187–198, 2019.
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designs, detailed knowledge about the targeted FPGA is required. Furthermore,
additional effort is necessary to establish communication channels with the host
application, as well as for interfacing with peripheral hardware available on the
FPGA extension card. To alleviate these issues, the OpenPOWER Accelerator
Work Group has recently introduced the CAPI Storage, Network, and Analytics
Programming (SNAP) framework. On the side of the host application, it enables
simple integration of AFUs by providing a ready-to-use job infrastructure. Com-
plementing the hardware side, the framework provides libraries for accessing
hardware components such as DRAM, NVMe flash storage and network inter-
faces. Covering both the software and hardware side of FPGA development, as
well as the ensuing build process, the CAPI SNAP framework enables developers
to focus their efforts on implementing their AFUs using Vivado HLS C/C++.

However, even with all these support mechanisms in place, we found that
even graduate students in software engineering are still overwhelmed by many
aspects of the novel framework, including the initial setup of the development
environment, simulation of AFUs, as well as deployment on actual hardware.
To help breaking down the remaining barriers for software engineers, this paper
provides guidance for mastering the first steps of hardware development using
the CAPI SNAP framework. The instructions reported in this paper are based
on the insights of graduate students in software engineering, collected over the
course of multiple student projects, with the participants having little to no prior
knowledge about hardware development. The instructions apply to on-premise
setups as well as to the SuperVessel Cloud for OpenPower [2] service.

Hereinafter, this paper is structured as follows: Enabling tight integration of
accelerators, Sect. 2 introduces the basic concepts of CAPI. Section 3 provides an
overview of the major traits of the CAPI SNAP framework. Afterwards, Sect. 4
reports best practices for getting started with the framework. Finally, Sect. 5
discusses related work, before an outlook is provided in Sect. 6.

2 Understanding CAPI

The Coherent Accelerator Processor Interface (CAPI) is an interface standard
introduced with the IBM POWER8 architecture [12]. It enables accelerators to
partake in the processors coherent view on the memory hierarchy. Prior to CAPI,
accelerator resources had to be mapped to specific IO memory areas, where data
had to be copied to and from explicitly. CAPI-enabled accelerators can access
the same virtual address space as its controlling process, drastically curtailing
the overhead for interacting with accelerators [13]. In its initial version, CAPI is
layered on top of PCIe 3.0. In the upcoming POWER9 architecture, CAPI will
be extended to support custom I/O facilities in addition to PCIe 4.0.

2.1 Architecture

CAPI involves several components on the host CPU as well as on the acceler-
ator side. The FPGA side is comprised of Accelerator Function Units (AFUs),
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implementing the application logic, as well as the Power Service Layer (PSL),
which is a fixed design provided by IBM for supported FPGA cards [5].

The PSL communicates with the host part of the CAPI hardware, the Coher-
ent Accelerator Processor Proxy (CAPP) via PCIe. The CAPP is part of the
POWER CPU and from the point of view of the memory subsystem, it has the
same status as a processor core. The software side of CAPI consists of a driver
in the linux kernel, exposing installed CAPI accelerator cards as cxl devices. To
encapsulate the interaction with raw cxl devices, the libcxl provides a user-land C
API with the same functionality. Given sufficient privileges, any user application
can interact with the AFUs on a cxl device by linking against libcxl.

2.2 Development

AFUs have to be expressed in low-level hardware description languages such
as VHDL or Verilog, differing significantly from imperative languages like C in
that most statements have concurrent semantics. The interface between PSL
and AFU facilitates efficient communication, however its complexity imposes
high efforts on AFU developers. Demonstrating the degree of complexity, Fig. 1
illustrates the state machine of a simple AFU for adding of two numbers stored
in host memory. The AFU-PSL interface consists of five semi-independent sets
of signals:

– The Job-Interface is controlled by the PSL and indicates job control and reset
commands issued by the host.

– The MMIO-Interface exposes a register view of the AFU to the host, which
can map this view into its virtual memory to control and monitor the AFU.

– The Command-Interface is controlled by the AFU, which can issue a variety
of read or write commands with different side effects on the cache hierarchy.

– The Response-Interface and Buffer-Interface are controlled by the PSL and
are used to complete pending commands (e.g. read and write).

For further details on implementing AFUs directly on top of CAPI, please
refer to the tutorial “Tinkering with CAPI” by Keneth Wilke [14].

3 The CAPI SNAP Framework in a Nutshell

While CAPI provides the technical foundations for tightly coupling accelerators
with CPUs (see Sect. 2), the technology is hard to adopt for software engineers.
With the goal of making it as easy as possible for software engineers to leverage
CAPI-enabled FPGA hardware acceleration, the CAPI Storage, Network, and
Analytics Programming (SNAP) framework [10,11] has been introduced recently.
The framework assists developers in various aspects explicated hereinafter. Also
the acceleration paradigms supported by the framework are discussed.
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Fig. 1. The state diagram of a simple adder AFU demonstrates the complexity of
developing AFUs directly on top of CAPI.

3.1 Core Features

High-Level Language Support. Having to implement application logic using
low-level hardware description languages such as VHDL or Verilog, and switching
from procedural to state-based thinking is very challenging for most software
engineers. CAPI SNAP lowers the hurdles significantly by providing high-level
language support based on HLS C/C++.

Job Interface. Calling an action using CAPI requires a lot of complexity in the
calling application in order maintain all required communication channels. The
framework provides a simple API for interacting with AFUs, allowing actions
to be issued by creating a job based on a filled parameter struct, e.g. via the
blocking call snap action sync execute job(action, &job, timeout).

Hardware Abstraction. All FPGA extension cards supported by CAPI SNAP
offer peripheral hardware components such as DRAM, NVMe storage or network
interfaces. Without the framework, developers would have to implement interface
logic and data movers for leveraging the peripheral components, also requiring
data movers for interacting with host memory. As illustrated in Fig. 2, the CAPI
SNAP framework hides a lot of this complexity by providing simple interfaces,
abstracting away the specific details of both peripheral components and the
specifics of the FPGA chip itself.

Automated Build Process. Using the Xilinx Vivado Design Suite [16] as a
foundation, the development workflow for CAPI SNAP based AFUs is comprised
of many stages, including software development, hardware development, hard-
ware simulation as well as hardware deployment. As visualized in Fig. 3, each
stage requires its own complex set of tools — originating from various sources
(Vivado, CAPI SNAP and CAPI) — in order to create functional builds. Orches-
trating all of these tools properly is a very complex task, which is being taken
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adapted from [6].
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Fig. 3. CAPI SNAP automates the complex build process by orchestrating a wide
range of tools originating from various sources.

care of by the CAPI SNAP framework, freeing up many resources on the devel-
opers end.

3.2 Acceleration Paradigms

In addition to the well-established Offload paradigm commonly used in the field
of GPU computing (see Fig. 4a), the availability of peripheral components on the
FPGA card enables the CAPI SNAP framework to support a variety of acceler-
ation methods. The Egress and Ingress methods (see Fig. 4b and c, respectively)
can be applied in scenarios where data streams leaving or entering the system
(e.g. via network or persistent storage) need to be processed on-the-fly. Use
cases for these methods include transparent encryption or compression, as well
as media-processing tasks. The Funnel method (see Fig. 4d) is eligible in sce-
narios where the input bandwidth of all external sources exceeds the ingestion
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Fig. 4. Due to the availability of peripheral components on the FPGA card, CAPI
SNAP supports various acceleration paradigms next to traditional offloading.

capabilities of the host. Potential use cases include filter or aggregation tasks on
incoming sensor data, as well as database-like operations such as joins, intersec-
tions, and merges on large datasets residing on external storage.

4 Getting Started with CAPI SNAP

This section provides an overview of the most important steps for getting started
with CAPI SNAP, covering the basic setup of the development environment,
setup and execution of a simulation model for testing purposes, the setup of a
test bench for validation, as well as deployment and invocation of AFUs on real
hardware.

4.1 Basic Setup

Setting up a development environment for CAPI SNAP involves several compo-
nents, including the Vivado Design Suite, the Power Service Layer Checkpoint,
the Power Service Layer Simulation Engine, and last but not least the CAPI
SNAP Framework itself. In the following, the setup process of all these compo-
nents is documented.

Vivado Design Suite. The Xilinx Vivado Design Suite [16] provides the foun-
dation for the CAPI SNAP framework. Being the centerpiece, the Vivado IDE is
used to synthesize and layout actions, for providing High Level Synthesis (HLS)
C/C++ support, as well as for simulating designs without the actual hardware
using xsim (Vivado Simulator).

Power Service Layer Checkpoint. On the FPGA, the Power Service Layer
(PSL) manages the communication with the host (see Subsect. 2.1). This includes
translating memory addresses, handling interrupts and virtualizing AFUs if nec-
essary. Since the PSL component needs to be part of the FPGA bitstream, IBM
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provides the PSL for download as a pre-routed checkpoint (.dcp) file [5]. Care
should be taken to pick the correct checkpoint file for the FPGA card at hands,
since each card requires a different checkpoint file.

Power Service Layer Simulation Engine. In order to augment the Vivado
Simulator xsim with CAPI-like behavior, the Power Service Layer Simulation
Engine (PSLSE) is required additionally, which is is freely available for down-
load [4]. The PSLSE implements the PSL in software and connects the (locally
hosted) simulation server with the desired action. The host application then
communicates with the (locally hosted) PSLSE server instead of actual hard-
ware. Since hardware synthesis is a very time-consuming process, simulation is
usually preferred over hardware deployment for quick testing purposes during
development.

CAPI SNAP Framework. After having downloaded the CAPI SNAP frame-
work from [11], the Vivado environment must be established by sourcing the
settings64.sh script and exporting the location of a valid license file. To ensure
that every terminal session has a Vivado environment, the lines in Listing 1.1
might be added to the local shell initialization script (e.g. �/.bashrc).
1 source /opt/Xilinx/Vivado/2016.4/settings64.sh
2 export XILINXD_LICENSE_FILE=<path to Xilinx license>

Listing 1.1. Setup of the Vivado environment in a new terminal session.

The SNAP build process requires the locations of several dependencies. These
should be specified in the snap env.sh script in the SNAP root directory. The
setup is finally completed by executing make snap config in the CAPI SNAP
root directory. This opens an interactive menu to specify the build configuration.
After saving the choices and leaving the menu, SNAP shows a summary of the
chosen configuration similar to Listing 1.2.
1 =======================================================
2 == SNAP SETUP ==
3 =======================================================
4 =====Checking Xilinx Vivado:===========================
5 Path to vivado is set to: /opt/Xilinx/Vivado/2016.4/bin/vivado
6 Vivado version is set to: Vivado v2016.4 (64-bit)
7 =====CARD variables====================================
8 FPGACARD is set to: "FGT"
9 FPGACHIP is set to: "xcku060-ffva1156-2-e"

10 PSL_DCP is set to: "/tmp/cards/FGT/b_route_design.dcp"
11 =====SNAP PATH variables===============================
12 SNAP_ROOT is set to: "/tmp/snap"
13 ACTION_ROOT is set to: "/tmp/snap/actions/hdl_example"
14 =====SNAP simulation variables=========================
15 SIMULATOR is set to: "xsim"
16 =====SNAP function variables===========================
17 NUM_OF_ACTIONS is set to: "1"
18 SDRAM_USED is set to: "FALSE"
19 NVME_USED is set to: "FALSE"
20 ILA_DEBUG is set to: "FALSE"
21 FACTORY_IMAGE is set to: "FALSE"

Listing 1.2. Output yielded from the execution of make snap config.
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Depending on which card is used, the variable FPGACARD has to be set corre-
spondingly. At the time of writing, valid options for FPGACARD are N250S, ADKU3,
and S121B for the Nallatech 250S, the Alpha Data KU3, and the Semptian NSA-
121 FPGA-cards, respectively. The variables SNAP ROOT and SIMULATOR are set
automatically, making xsim the default simulator. However, ACTION ROOT and
the CAPI SNAP function variables (SDRAM USED, NVME USED) have to be set
based on the action that should be build. Per default, the example hdl example
is build, requiring neither access to DRAM nor NVMe storage.

4.2 Simulating an Action

Simulation is a powerful tool during the development phase, as it enables devel-
opers to test the correct communication between AFUs and the host application
by tracing the flow of binary signals. Simulation speed itself is much slower than
the execution on real hardware. Therefore the simulation model does not include
the PSL nor any part of the host side hardware. Nevertheless these components
are essential for a host application to access the AFU under test. This issue can
be sidestepped by using the PSLSE server. The PSLSE implements a higher level
and thus faster model of the internal CAPI components. It provides a modified
version of the libcxl, which uses the PSLSE server to access the virtual device
instead of real CAPI hardware. The simulated PSL merely acts as a proxy, whose
behavior on the signal level is controlled by the PSLSE server.

After CAPI SNAP has been configured, a simulation model of the user design
can be built by running make model from the SNAP ROOT directory. In this step,
all framework components and the user design are compiled into a simulation
model as well as a simulator configuration. The setup of the PSLSE server and
its connection to the simulator is automated by the sim make target.

Executing make sim creates an interactive terminal session with the environ-
ment correctly set up to run applications on the simulated hardware. Before the
action can be tested, it needs to be initialized as part of the discovery process
implemented by the snap maint tool. Afterwards the actual host application can
interact with the simulated hardware action.

Leaving this session also stops the underlying simulation environment. Dur-
ing the simulation, traces of all signals are recorded in a wave database. After-
wards, the detailed operation of the hardware action can be explored by viewing
the recorded traces with the xsim --gui hardware/sim/xsim/latest/top.wdb
command.

4.3 Debugging in the Test Bench

Simulation is only rarely feasible for debugging AFUs implemented in HLS
C/C++: The HLS code will be converted into VHDL/Verilog blocks that are
quite hard to match to the HLS code. To facilitate debugging and validation
of HLS code, setting up a test bench in Vivado enables developers to validate
the correct behavior of their code by executing HLS code like a regular C/C++
program in a software debugger.
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In order to enable software-based execution in the test bench, a main function
needs to be added to the HLS code as explicated in Listing 1.3. To avoid the
synthesis of the main function in later development steps, the function should
be enclosed by the preprocessor conditional #ifdef NO SYNTH ... #endif.
1 #ifdef NO_SYNTH
2 int main()
3 {
4 bf_halfBlock_t left = 0xda7a, right = 0xb10c;
5 printf("encrypt(0x%08x, 0x%08x) -> ", left, right);
6 bf_encrypt(left, right);
7 printf("0x%08x, 0x%08x\n", left, right);
8 }
9 #endif

Listing 1.3. In order to use CPU-based execution in the work bench, the HLS code
needs to be augmented with a main function.

Before the test bench can be executed, the tested HLS source file needs to be
added as a simulation source by right clicking Test Bench in the project explorer
and selecting Add Files. Furthermore, the SNAP specific CFLAGS documented in
Listing 1.4 must be set up by opening the Project/Project Settings dialog and
editing the CFLAGS of the HLS source file in the Simulation tab. Afterwards, the
execution can be started by pressing the Run C Simulation icon in the toolbar.
After the execution has started, the Debug view will be entered, where the usual
functionality of a C/C++ debugger is available.
1 -DNO_SYNTH -I./include -I../../software/include -I./<action_directory>/include

Listing 1.4. CFLAGS necessary for the work bench setup.

4.4 Running on Hardware

Once the AFU has been successfully tested in the test bench and the simulator,
it can be deployed to the FPGA hardware. For that purpose, the command
make image needs to be executed from the SNAP ROOT directory in order to
synthesize bitstream images. Synthesizing the bitstream image is a compute-
intensive process and can take any time from several minutes up to a couple
of hours, depending on the complexity of the action at hands. Once the build
process has successfully finished, the resulting bitstream files can be found in
the hardware/build/Image folder. The file ending in *.bit can be flashed to
the FPGA using a JTAG programmer; the *.bin file is intended to be flashed
using the capi-flash-script.

Programming via JTAG Programmer. For a new FPGA card straight
from the factory, the operating system will not detect it as a CAPI-enabled
device, since the pre-installed image on the factory partition of the FPGA doesn’t
support CAPI. Hence, a suitable image needs to be flashed onto the user partition
using an external JTAG programmer. While this process is slightly cumbersome,
it usually has to be performed only once in the lifetime of the FPGA card.
Afterwards, new bitstreams can be flashed from the host system.
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On the machine connected to the JTAG programmer, a light-weight version
of Vivado including the hardware server tool hw server is sufficient. Once the
Vivado Hardware Manager has successfully connected to the FPGA, the activity
LEDs on the programmer should turn on.

If the FPGA card has not been detected as a CAPI device yet, the user parti-
tion of the FPGA will be cleared upon each power cycle of the POWER machine.
Hence, for initialization purposes, a bitstream image needs to be flashed after
the system has been powered on, but before the operating system performs the
PCIe walk. The timespan in between the power cycle and booting the operating
system kernel should be sufficient to finish the programming process before the
host operating system has completed the boot process. Once this procedure has
been completed, the FPGA should be appear under /dev/cxl.

Programming from the Host Machine. Once the FPGA is detected as
a CAPI-device appearing under /dev/cxl, the capi-flash-script utility can
be used to flash new bitstreams directly from the host. The tool is part of the
capi-utils, which are available on GitHub [3].

5 Related Work

There are several technologies for leveraging FPGA compute resources in appli-
cations using high-level programming languages. The approaches can be loosely
or tightly coupled. Intel offers a tightly coupled integration with The Open Pro-
grammable Acceleration Engine (OPAE) [9]. In many aspects, the approach is
similar to IBM CAPI SNAP. It consists of libraries and kernel drivers offering
resource management and abstraction of the underlying FPGA technology to
the application developer. The OPAE C-Library [7] (libopae-c) is used by the
applications to communicate with the FPGA. The building blocks on the FPGA
device are comprised of a static part, the FPGA Management Engine (FME) and
as many slots with accelerated function units (AFUs) as the device supports [9].
The AFUs an be partially reconfigured during runtime. One slot and one AFU
form a function which can either be physical or virtual. The kernel driver sup-
ports SR-IOV so that virtual functions can be assigned to virtual machines [18].
The OPAE and CAPI SNAP are similar but also differ in several aspects, f.e.
in OPAE there is no Job Management, the interface to the AFUs is given via a
freely defined 256 KB Registers which have to be mapped into the address space
of the host process to communicate.

There are also other approaches for leveraging FPGA accelerators using high-
level programming languages. With SDAccel [15] Xilinx offers a development
environment to execute C, C++ and OpenCL Kernels on FPGA Hardware. The
Intel FPGA SDK for OpenCL [8] offers a similar development environment. Due
to the lack of coherent host memory access, both technologies offer a more loosely
coupled integration of the FPGA resources.
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6 Outlook

To alleviate the complexity of developing FPGA-based accelerator functions
for software engineers, the OpenPOWER Accelerator Work Group has recently
introduced the CAPI Storage, Network, and Analytics Programming (SNAP)
framework. Over the course of multiple graduate student projects, we have
observed that the high level of abstraction provided by CAPI SNAP in conjunc-
tion with HLS, the framework enabled students to implement common algo-
rithms in hardware and evaluate these accelerator-based resources within one
semester. However, even though CAPI SNAP is well documented and comes
with many examples, we have noticed that graduate students in software engi-
neering found themselves challenged with certain details of the novel hardware
development framework. At the same time, we also found that the framework
helped students to improve their understanding of hardware development, as
CAPI SNAP allowed them to concentrate on implementing application logic
using a hardware description language without having to consider the complex-
ity of any interface and management logic. In this paper, we consolidated these
insights into a getting started guide, providing the background knowledge and
the first instructions necessary for breaking down the remaining barriers for
software engineers.

With the CAPI SNAP framework being a relatively young technology com-
pared to well-established frameworks for heterogeneous computing, we think that
it offers great potential for bridging the gap between hardware development and
software engineering, allowing software engineers to tap into the extended solu-
tion space offered by the more flexible resources that FPGAs can offer. For users
without access to IBM POWER systems and CAPI-supported FPGA cards, we
recommend using the SuperVessel Cloud for OpenPower [2] service, which offers
cloud-based access to CAPI-enabled resources for academic researchers. Also, we
would like to stress that the active community behind CAPI SNAP has been very
open-minded and forthcoming regarding feedback we provided. In general, the
community-character is a welcome change to the closed, vendor-specific nature
of other ecosystems met in the field of GPU-computing.

Since the limited space of a paper does not offer the ideal venue for a
detailed hands-on guide, this paper is augmented with an extended online tuto-
rial, which is available at https://www.dcl.hpi.uni-potsdam.de/capi-snap. The
extended online tutorial covers several aspects of the CAPI SNAP framework,
including setup, configuration and debugging in greater detail. Furthermore, it
provides an additional section that documents the process of developing a new
HLS-based AFU step-by-step, using the blowfish encryption algorithm as an
exemplary workload.
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Abstract. Since the computing world has become fully parallel, every
software developer today should be familiar with the notion of “par-
allel algorithm structure.” If in recent years, students have studied a
basic introduction to algorithms; today, parallel algorithm structure must
become a vital part of computer science education. In this work we
present two years of experience teaching a “Supercomputer Modeling
and Technologies” course, and running practical assignments at the Com-
putational Mathematics and Cybernetics faculty of Lomonosov Moscow
State University, aimed at teaching students a methodology for analyzing
parallel algorithm properties.
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1 Introduction

Today, computing technologies are used in all areas of science, industry and eco-
nomics, which imposes strict requirements on higher education systems train-
ing computer science specialists in all countries. One recent example is India’s
“National Supercomputing Mission” [1], during which the government set a 7-
year target for training 20,000 specialists in the area of parallel and distributed
computer technologies. The demand for actively developing education in the
areas of computational sciences, high-performance computing, and mathemat-
ical modeling using supercomputers is evidenced throughout the entire global
educational community [2–5].

The results described in Sects. 4, 5 were obtained in Lomonosov Moscow State
University with the financial support of the Russian Science Foundation (Agreement
№ 14–11–00190). The research is carried out using the equipment of the shared research
facilities of HPC computing resources at Lomonosov Moscow State University sup-
ported by the project RFMEFI62117X0011.
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A number of major national and international projects can be noted that
offer recommendations for developing training materials in these areas [6–10].
Interesting results have been discussed at international seminars dedicated to
the issue: EduHPC, EduPAR, Euro-EduPAR [11]. Books have been published
that are entirely dedicated to the best materials and pedagogical practices in the
area of PDC [12]. These activities are fueling growth in the number of educa-
tional courses and programs, with the mathematical modeling industry engaging
specialists from various applied areas. This is further promoted by the emergence
of new areas where high-performance computing is in high demand. The most
recent examples where industries received a development boost thanks to HPC
technologies are deep learning, artificial intelligence, and big data analytics.

This work consists of 5 sections. In Sects. 2 and 3 we give a brief overview
of supercomputer education at the Computational Mathematics and Cyber-
netics faculty of Lomonosov Moscow State University, and describe how the
“Supercomputer Modeling and Technologies” course is organized. Sections 4
and 5 describe two versions of practical assignments that are part of the
course, which allow for two different perspectives on studying the structure of
algorithms. From our point of view, focusing on the study of parallel algorithm
structure in the form presented is a new approach, representing the key con-
tent of this work. Section 6 contains recommendations and conclusions based
on two years of experience from teaching this course and conducting practical
assignments in the form presented.

This approach to studying the structure of parallel algorithms is in line
with existing proposals on the content of educational curricula, e.g., Computer
Science Curricula [13], NSF/IEEE-TCPP Curriculum Initiative on Parallel and
Distributed Computing [14], and can be used at many universities.

2 Supercomputer Education at MSU

Lomonosov Moscow State University provides a good basis for supercomputer
education. MSU’s supercomputer center is currently the most powerful in
Russia. It is centered around the Lomonosov-2 (4.9 Petaflops) and Lomonosov
(1.7 Petaflops) supercomputers and IBM Blue Gene/P (28 Teraflops). The basics
of parallel computations are taught at several faculties within MSU: Compu-
tational Mathematics and Cybernetics, Mechanics and Mathematics, Physics,
Chemistry, Bioengineering and Bioinformatics, and a few others.

CMC faculty is a leading educational center in Russia offering specialist
training that combines applied mathematics, computational technologies and
information science. It has about 2000 full-time students, with about 200 PhD
candidates. Training at the faculty is provided as part of an integrated Master’s
degree program: for their first four years, students study within a Bachelor’s
degree program, followed by two years in one of twenty-two available Master’s
degree programs. This dual-level system offers basic fundamental training for
students during years 1–4, with deeper specialization as a part of the Master’s
degree programs. Studying supercomputer-related disciplines is mandatory for
all students at the faculty.
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3 The Supercomputer Modeling and Technologies
Discipline

The “Supercomputer Modeling and Technologies” course is the only general
lecture course for all 22 Master’s degree programs at CMC faculty. It is taught
to second-year Master’s degree students with a total of about 240 students taking
the course. All students are expected to have basic knowledge of mathematical
modeling, parallel computing systems and supercomputer architecture, and the
basics of parallel computing.

The discipline totals 7 credits. The course consists of a lecture module, semi-
nars and several practical assignments. Lectures are conducted for two academic
hours a week from September to November. Two hours of seminars are also
conducted each week. The seminars are used to discuss problem definitions and
implementation details, to offer consultations on assignments, and for students
to present reports on the assignments they have completed.

The course lasts for one semester, and two full cycles have been completed
to date in the fall semesters of 2016 and 2017. Teachers from the various depart-
ments at the CMC faculty are invited to take part in delivering lectures, along
with representatives from leading IT companies.

Students are offered three practical assignments as part of the course, of
which two are mandatory. The first assignment requires studying and describ-
ing the structure and properties of parallel algorithms. The second assignment
involves implementing a parallel algorithm to solve a three-dimensional hyper-
bolic equation using MPI and OpenMP. The third assignment is given by the
lecturers in specific subject areas, and students can choose which lecturer’s
assignment they would like to perform. While the second and third assignments
are classical assignments that directed to parallel implementations; the first one
requires additional clarifications and is central to this work: Sects. 4, 5 and 6
of this article describe two options for the first assignment that are aimed at
studying the properties of parallel algorithms.

The first assignment is indeed unusual and non-trivial, so students were
allowed to work in pairs. Any parallel computers could be chosen as the tar-
get computing platform. By default, all students were provided access to MSU’s
supercomputers: Lomonosov [15] and IBM Blue Gene/P. Some students were
granted access to the Lomonosov-2 supercomputer [16], clusters with Intel Xeon
Phi (KNL) and/or NVIDIA P100 processors, clusters with the new “Angara”
interconnect and several others. This enabled comparison of results across differ-
ent processors (multicore/manycore Intel, NVIDIA GPU, IBM PowerPC), and
various communication networks (InfiniBand, proprietary) with different net-
work topologies (fat tree, 3-dimensional torus, flattened butterfly).

The results verification form is an important part of the assignment. The goal
was not just to grade the work, but to make sure that students completed their
assignments at a good level of quality. In fact, the idea was to teach students
to find a proper approach to this kind of assignment. Instead of immediately
grading the work, the tutors formulated their comments; the students would
incorporate the feedback and send the assignment results back for further review.
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This interaction was repeated as necessary, usually limited only by the deadline
for grading course results at the end of the term. This is very different from
the traditional assignment grading process. The purpose is not so much about
making sure the course materials are absorbed correctly. Rather what is most
important is to teach students an effective approach to analyzing algorithm
properties in a proper and high-quality manner. This requires tutors to have a
much higher level of qualification and to dedicate more time to the assessment,
but the final results are comparable in quality with the best teaching practices.

4 Version of the Practical Assignment: Description
of Parallel Algorithm Properties

Assignment: Describe the structure and properties of the chosen algorithm.
While this wording sounds extremely simple, it masks a number of small

but important nuances. It is also important to note that in order to successfully
complete this assignment, students need to use knowledge previously obtained
over various disciplines at the faculty.

4.1 Methodological Comments on the Assignment

What does it mean to describe an algorithm’s structure and properties? This is
not a simple question, as there is no universally recognized standard specifying
which properties of an algorithm are important and exactly how they must be
described. The students were offered the algorithm description structure used by
the AlgoWiki Open Encyclopedia of Algorithm Properties [17,18]. This descrip-
tion structure was developed as a universal one that can be applied to any
algorithm, giving particular emphasis to the properties related to parallelism.

Some sections of the AlgoWiki description were left out of this assignment
due to their complexity (for example, sections describing the data locality or
dynamic characteristics of an algorithm’s implementation). Ultimately, the fol-
lowing structure was recommended for students to use in their descriptions of
the algorithm’s properties:

1. General description of the algorithm.
2. Mathematical description of the algorithm.
3. Computational kernel of the algorithm.
4. Macro structure of the algorithm.
5. Implementation scheme of the serial algorithm.
6. Serial complexity of the algorithm.
7. Information graph.
8. Parallelism resource of the algorithm.
9. Input and output data of the algorithm.

10. Properties of the algorithm.
11. Scalability of the algorithm and its implementation.
12. Existing implementations of the algorithm.
13. References.
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Notably, a number of examples are available in AlgoWiki for each item, which
helped students to complete the assignment. The first ten items in the description
require studying the algorithm’s theoretical properties, while items 11 and 12
are oriented towards studying the properties of its specific implementations. The
main focus of the assignment was not on the actual algorithm description (this
part could simply be taken from textbooks), but on studying its properties —
primarily the algorithm’s information structure and parallelism resource. These
properties are rarely described in the literature, so this part of the assignment
required conducting independent research.

The central task in describing the algorithm properties would be to build and
analyze an information graph (Item 7 of the above structure) [19,20]. Figure 1
shows the example information graph of the Cooley-Tukey algorithm with input
and output data.

Fig. 1. The information graph of the Cooley-Tukey algorithm for n = 8. Op+ denotes
the addition of two complex numbers, while Op- denotes the subtraction of two complex
numbers followed by multiplying the result by another complex number (a twiddle
factor). The edges correspond to the transmission of data between the vertices.

An information graph is vital for studying algorithm properties, as it contains
all the necessary information about its parallel structure. The skills for working
with an information graph are also very important in practice, as they help
to evaluate an algorithm’s parallel complexity and an application’s parallelism
resource, to understand the algorithm’s bottlenecks and to find different options
for parallel implementation. This is why special attention was paid to information
graph analysis — both when formulating the student assignments and when
checking the completed work.

To prepare a specific description, the students were asked to choose one of
30 preselected algorithms, specifically: Jacobi’s method for the singular value
decomposition, Gram-Schmidt orthogonalization process, fast discrete Fourier
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transform, and others. These algorithms are all certainly different in complexity.
However, the essence of the assignment was not about developing algorithms,
nor even about implementing them, so the complexity of the algorithm itself
didn’t affect the complexity of the assignment so much.

4.2 Organization and Results of the First Practical Assignment

This version of the assignment was completed by 246 Master’s degree students in
2016, during their second year of education. As a result, each of the 30 proposed
algorithms was described by 4–5 groups of 1–2 students each. The students could
use any literature or online sources in their algorithm descriptions, as long as they
were appropriately cited. Moreover, when the assignment was distributed, each
algorithm was accompanied by references to well-known sources that explain the
algorithm. This addressed two issues at once: the students would get a reliable
source of information, and both the student and the tutor would be guaranteed
to have an unequivocal understanding of which specific algorithm was to be
described.

Due to the volume of the work produced, the resulting descriptions were
verified in two independent stages. The first stage involved a purely formal veri-
fication of the descriptions for compliance with the requirements. This included
checking for the presence of all relevant description sections, the clarity of the
formulas, the information content of any drawings used, the inclusion of all
parameters and conditions under which the algorithm properties were studied,
references to sources, etc. The content of the algorithm descriptions was not
checked at this stage, to reduce the requirements for inspector qualifications and
the time needed to perform the verification. The second stage of the verification
required a review of content. The algorithm description was checked for accuracy,
the proper definition and description of its properties, proper formulas and the
accuracy of the results. These checks required much more time and substantially
higher tutor qualifications.

The technical evaluation was successfully supported by useful features of
AlgoWiki, based on MediaWiki technology. The students prepared algorithm
descriptions in their personal spaces and interacted with tutors using a built-in
collaboration mechanism. This facilitated communication student — tutor, in
addition to tracking every stage of the assignment, including any changes made
in the descriptions, tutor comments, date of response to tutor feedback, etc.

The final grades of the 146 groups comprising the 246 students were dis-
tributed as follows: 59 works received a 5 (Excellent) grade; 36 were graded at 4
(Good), 48 received a 3 (Satisfactory) grade, and three works were evaluated as
2 (Unsatisfactory). Thus, the average grade for the assignment was 4.03, which
indicates a generally high level of description quality given the complexity and
novelty of the assignment.

Remarkably, some of the student works were completed with such a high
quality level that they were included in the AlgoWiki Encyclopedia. In some
cases, the students went beyond the assignment formulation, conducting addi-
tional studies of other issues related to parallelism. Moreover, some of the stu-
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dents became so engaged in studying the selected algorithms that they continued
enhancing their results even after the semester ended.

5 Version of the Practical Assignment: Studying
Algorithm Scalability

Assignment: Studying the scalability of algorithms and their implementations
on various computing platforms when changing the size of the problem and the
number of processors available.

5.1 Methodological Comments on the Assignment

When performing the second version of the assignment as part of the “Supercom-
puter Modeling and Technologies” course, students needed to perform a series
of computational experiments, collect the relevant data, interpret it correctly,
then draw a conclusion on the algorithm’s level of scalability. Additionally, they
needed to determine from the data obtained, which combination of problem size
and the quantity of processors maximized performance.

Graph algorithms were chosen as the subject of study in 2017. Five key
problems were considered: Single Source Shortest Path, Breadth-First Search,
Page Rank, Minimum Spanning Tree, and Strongly Connected Components.

The students could choose one of several available algorithms for each prob-
lem. For example, the options for the “Single Source Shortest Path” problem
were the Bellman-Ford, Dijkstra’s and Delta-Stepping algorithms. Since the
objective of this assignment was not to study parallel programming technologies,
up to 5 different ready-made implementations were offered for each algorithm,
which were to be used in computational experiments on the chosen computer
platform. As a result, each student chose a unique combination within which
scalability [21] was to be examined:

Problem → Algorithm → Implementation → Computing platform.
Computer performance for these algorithms is frequently measured in TEPS

(Traversed Edges Per Second), indicating the number of graph edges the com-
puter can pass (process) in one second using a given implementation of a given
algorithm. This parameter was used in our assignment to assess performance.

Special attention was paid to processing large graphs, which are common
in practical applications: social networks, road maps, chemical compounds and
many other real-life objects are described using graphs with millions and billions
of vertices and edges. At the same time, as the graph size increases, its imple-
mentation performance can drop substantially, as data no longer fit in cache
memory at different levels; hence the interest in carefully measuring the depen-
dence between the size of the problem, number of processors and performance.

Another important issue is that dynamic characteristics of graph algorithms
can change significantly with changes in the structure and properties of the
graphs being processed. For this reason, each student needed to study scalability
for two types of graphs: RMAT and SSCA2. These are synthetic graphs reflecting
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different properties of real-life graphs: RMAT graphs are suitable for modeling
the structure of social networks [22], while SSCA2 graphs are good for describing
a set of interconnected communities [23]. To obtain input RMAT/SSCA2 graphs
of an arbitrary size, students were provided ready-made parallel generators.

As a result, the assignment for each student was formulated as follows: for
each of the two graph types: RMAT and SSCA2, within the chosen combination
“Problem → Algorithm → Implementation → Computing platform,” it was
required to:

– build a chart showing the dependence (MTEPS) on the number of processors
(or threads) used and the graph size;

– find the combination of processor number and graph size that maximizes
performance.

Since the assignment was focused on analyzing large graphs, the maximum
performance point was to be calculated only for those problem sizes where the
graph did not fit entirely within cache memory. Figure 2(a) shows the dependence
experimentally determined by one of the students for the Breadth First Search
algorithm without considering this requirement, where maximum performance
is achieved on a small graph of 212 vertices.

Fig. 2. Particular aspects of the assignment: (a) impact of cache memory on maximum
performance value, (b) value fluctuations in the absence of multiple runs

One has to note the substantial computing resources needed to perform the
assignment properly. The assignment required the programs to be run multi-
ple times: the performance values were to be assessed for different graph sizes
and different processor numbers, for each of the two graph types (RMAT and
SSCA2). Moreover, performance values on nearly every computer would change
from one run to another, so ideally several experiments needed to be conducted
and the maximum value chosen, otherwise the resulting chart would contain
obvious artifacts, like the example shown in Fig. 2(b).
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To motivate students to conduct a more thorough analysis of the scalability
figures obtained, it is useful to show the results obtained by other students using
other algorithms, other implementations and other computers (an example is
shown in Table 1). When comparing their maximum performance figures to other
results, students begin to ask the question: “Why am I doing worse?” Finding
the answer would require analyzing the entire chain “Problem → Algorithm →
Implementation → Computing platform,” which helps students realize the need
for a comprehensive approach for studying scalability.

Table 1. Comparison of maximum performance for different algorithms solving the
“Single Source Shortest Path” problem using different implementations on different
platforms.

Algorithm Implementation Computing Platform MTEPS GraphType GraphSize

Bellman-Ford RCC for GPU Lomonosov 1309.0 SSCA2 220

Bellman-Ford Ligra Lomonosov-2 1035.0 RMAT 221

Delta Stepping PBGL MPI Cluster/“Angara” 809.5 SSCA2 221

Delta Stepping GAP Lomonosov-2 616.0 RMAT 221

Bellman-Ford RCC for CPU Lomonosov 435.0 SSCA2 221

Bellman-Ford RCC for CPU Lomonosov-2 426.0 RMAT 221

Bellman-Ford Graph500 MPI Lomonosov 350.0 RMAT 220

Dijkstra’s PBGL MPI IBM BlueGene/P 8.9 SSCA2 220

Dijkstra’s PBGL MPI Lomonosov 5.3 SSCA2 221

5.2 Organization and Results of the First Practical Assignment

This version of the first practical assignment was performed in 2017 by 143
groups of Master’s degree students and the grades were distributed as follows:
121 works received a 5 (Excellent) grade; 15 were graded at 4 (Good), 5 received
a 3 (Satisfactory) grade, and two works were evaluated as 2 (Unsatisfactory).
The average grade for scalability description was 4.78. This is much higher than
the average for the 2016 assignment (4.03), which is not surprising: the scalability
study assignment was simpler and more familiar than the task of studying and
describing algorithm properties. In addition, when students described algorithm
properties in 2016, they had to present, among other things, their considera-
tions for algorithm’s scalability, as this was required in the description structure
(Item 11). At the same time, the assignment form chosen in 2017, turned out
successfully in a different way. By combining a simple assignment statement with
the need to interpret the obtained data, we achieve our goal: students begin to
think not just about the scalability analysis methodology and the notions of
weak and strong scalability, but also to learn the techniques for studying par-
allel program scalability in practice. Moreover, when analyzing scalability data,
students recognize the need for the joint (and specifically joint) study of the
various algorithm properties, implementations and computing platforms.
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6 Lessons Learnt from the 2-Year Experience

Let’s look at some important issues that one must keep in mind when using
similar assignments in the future. Some of them we chose to point out to students
at the very beginning, when distributing the assignments; others were faced
during the course of work, causing difficulties for students or tutors.

When describing algorithm properties, it is important to realize that not just
floating point arithmetic matters, but also read-write memory operations which
determine the execution time for many algorithms. In particular, it is necessary
to describe the computational core and sequential complexity of algorithms.

When defining the information structure of an algorithm, it is important to
define a level of details for operations. Otherwise, the students could produce
a linear graph of 3–4 vertices reflecting the sequential stages of the algorithm:
while this isn’t necessarily wrong, it clearly isn’t very informative either.

Some algorithms are based on other, simpler algorithms. In these cases, it was
advisable to use “macro-operations” that corresponded to simpler algorithms,
as they could be more traditional, expressive and clear for describing and under-
standing the structure of the original algorithms.

The information structure of the algorithms could be expressed in different
ways, with no set standards. However, the students were best off using a system
of axes related to the loop nesting structure: in that case, the information graph
reflects the computation structure used in the program and is more intuitive.

Describing an algorithm’s potential parallelism is challenging for the stu-
dents. This is not a habitual notion, and students don’t always immediately
learn to look at the algorithm structure in general. Methodological materials
need to be developed that contain sample descriptions of potential parallelism,
clearly showing what kind of results is expected from the students.

When studying scalability, it is important to draw the students’ attention to
explain all of the feature points on the performance charts: peaks, inflection points,
asymptote starting points, etc. Detailed analysis is not simple, but if peculiarities
consistently repeat between runs, then there must be an explanation.

For self-written programs independently, the students needed to clarify the
testing technology for the program implementing the given algorithm. This is
important, as the results presented will otherwise not be trustworthy.

7 Conclusion

Overall, we consider the two-year track record in teaching the “Supercomputer
Modeling and Technologies” course along with the practical assignments to be
a highly positive experience. A spacious inter-disciplinary approach to problems
under study, supported by specific practical assignments on actual supercom-
puters, creates a solid foundation for using the knowledge gained in further pro-
fessional activities. Indeed, obtaining good results required serious efforts from
both students and professors. But it was worth it! Students must use knowledge
and skills from previous courses, which is a good way to bring them closer to
completing their Master’s degree studies.
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Practical assignments can easily be adapted to the specific environment of
another faculty by using a different set of algorithms, placing particular emphasis
on studying different algorithm properties, analyzing their own implementations,
studying existing source codes, focusing on the scalability of a specific computing
platform, and many other aspects.

The courses implemented in 2016 and 2017 are considered to be a pilot pro-
gram. Given the positive results achieved, we are planning to modify the topics
covered during the lecture part of the course, including areas such as super-
computer climate modeling, high-performance image processing methods, deep
learning, and big data analytics.

Acknowledgments. We are sincerely grateful to our colleagues form the Faculty of
Computational Mathematics and Cybernetics and the Research Computing Center who
helped us to deliver the lectures and organize the practical assignments—completing
the educational program in this form without their help would simply have been
impossible.
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Abstract. Current courses in parallel and distributed computing
(PDC) often focus on programming models and techniques. However,
PDC is embedded in a scientific workflow that incorporates more than
programming skills. The workflow spans from mathematical model-
ing to programming, data interpretation, and performance analysis.
Especially the last task is covered insufficiently in educational courses.
Often scientists from different fields of knowledge, each with individual
expertise, collaborate to perform these tasks. In this work, the general
design and the implementation of an exercise within the course “Super-
computers and their programming” at Technische Universität Dresden,
Faculty of Computer Science is presented. In the exercise, the students
pass through a complete workflow for scientific computing. The students
gain or improve their knowledge about: (i) mathematical modeling of sys-
tems, (ii) transferring the mathematical model to a (parallel) program,
(iii) visualization and interpretation of the experiment results, and (iv)
performance analysis and improvements. The exercise exactly aims at
bridging the gap between the individual tasks of a scientific workflow
and equip students with wide knowledge.

Keywords: Workflow for scientific computing · Teaching
Parallel programming · Performance analysis · Heat transfer

1 Introduction

Besides theory and experiment, simulation is the third pillar of science [8]. The
increasing numerical complexity of simulation models results in a high compu-
tational effort. Furthermore, the memory demands of scientific simulations often
exceed the amount of memory accessible by a single process. These factors ren-
der sequential execution infeasible. Parallel and distributed computing (PDC)
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enables fine-granular and large-scale simulations on highly parallel computer
systems. As a consequence, PDC acts as a central service for computational sci-
ence and has to be an integral part of educating future scientists. However, the
task of training students in PDC is more than just teaching programming skills.
Developers of parallel scientific applications need a profound knowledge about:

– Mathematical modeling to express the problem by, e.g., algebraic operators,
differential operators, and/or functions,

– Computer science (CS) and computer engineering (CE) to transfer the math-
ematical model into statements of a programming language, and

– Visualization and interpretation of experiment results to gain knowledge out
of raw data.

Additionally, performance analysis and improvements of scientific applications
are important aspects. Despite these aspects being an integral part of the daily
work of scientists, they are often missed in education. Scientific applications need
to be tuned in order to leverage the full potential of computer systems, as well
as to scale parallel applications to a larger amount of processes.

In summary, in order to successfully implement scientific applications a work-
flow for scientific computing has to cover all aspects: mathematical modeling,
programming, working with HPC systems, data visualization and interpretation,
as well as performance analysis and improvement [4].

In this work, a lecture and, especially, an associated exercise at Technische
Universität Dresden is presented. Both lecture and exercise introduce students to
the workflow for scientific computing. In addition, current feedback revealed that
students experience a lack of practical programming exercises in their courses.
Therefore, the exercise also aims to improve their programming skills. The spe-
cific contributions of this work comprise:

– The general design and goals of the course “Supercomputers and their pro-
gramming” and, especially, one of the associated exercises at Technische Uni-
versität Dresden,

– The implementation of the exercise in order to address current limitations/
drawbacks in the education of students,

– Bridging the gap between domain scientists and computer experts by
• Introducing students to a complete workflow of implementing scientific

applications,
• Emphasize on both mathematical modeling as well as programming skills,

and
– Reporting on experiences gained during the course and exercises.

The remainder of this work is organized as follows: In Sect. 2, design aspects
of the course and one of the associated exercises are described in detail. The
implementation of these aspects within the exercise is presented in Sect. 3. The
feedback from current students and tutors is summarized in Sect. 4. Additionally,
an outlook on future enhancements is given.
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2 Design of the Exercise: Workflow for Scientific
Computing

The course “Supercomputers and their programming” at Technische Univer-
sität Dresden, Faculty of Computer Science, is characterized by a heteroge-
neous audience. This course addresses undergraduate and graduate students of
computer science, information systems engineering, mathematics, computational
science and engineering, as well as natural and engineering sciences. The focus
is on strategies and methods for parallel processing including common program-
ming models, architecture and networking concepts, and required algorithmic
components of parallel and distributed computing. Furthermore, the course is
influenced by experiences of the interdisciplinary application area at the Center
for Information Services and High Performance Computing (ZIH). At Technis-
che Universität Dresden, the academic year consists of a summer and a winter
semesters. Each semester includes a teaching period of 15 weeks. Both, the lec-
ture and the associated exercise, take place once a week with a duration of 90 min
each.

Since the students attending the course come from different fields of science,
their existing knowledge varies widely. Either the students have comprehen-
sive expertise in (parallel) programming and only basic to none expertise in
numerical modeling of scientific applications, or vice versa. An exercise compris-
ing two sessions was created to bridge this gap. The idea of this exercise is to
convey expertise in both areas: numerical modeling of scientific applications as
well as parallel programming including performance analysis and improvement.
Based on the example of a heat transfer simulation, the students practically
pass through a complete, albeit simplified, workflow for scientific computing.
Considering the entire workflow for scientific computing represents the unique
characteristic of this exercise.

In the following subsections, the design of the exercise is described in more
detail: the mathematical model, the parallel implementation and execution, as
well as visualization and performance analysis aspects. The implementation of
these aspects within the exercise is explained in Sect. 3.

2.1 Mathematical Model

For convenience and without loss of generality, in the exercise the heat transfer
simulation in a two-dimensional space is considered. The propagation of thermal
energy in a given two-dimensional space is described by the following parabolic
partial differential equation:

∂

∂t
u(x, y, t) = a ·

(
∂2

∂x2
u(x, y, t) +

∂2

∂y2
u(x, y, t)

)
, (1)

where a denotes the thermal diffusivity. A visualization of the heat distribution
in a two-dimensional space with a source of heat at the center of the region is
shown in Fig. 1.
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(a) Initial state of the simulation (b) Intermediate state of the simulation

Fig. 1. Heat distribution in a two-dimensional space, heat source at the center

The finite difference method is used to obtain the numerical solution of Eq. 1.
The continuous partial differential equation is approximated with a discrete
equation. The heat distribution u is determined on a grid Ω = {(xi, yj , tk)},
with xi := i · Δx (i = 1, . . . , nx), yj := j · Δy (j = 1, . . . , ny), and tk := k · Δt
(k = 1, . . . , nt), where Δx, Δy, and Δt denote the increments in x-, y-, and t-
direction. The heat distribution in a given cell (xi, yj) of the grid at a given time
step tk is denoted as u(xi, yj , tk) := u|ki,j . Approximating the time derivative
by the forward differencing scheme and the space derivatives by the 2nd order
central differencing scheme yields:

u|t+1
i,j − u|ti,j

Δt
= a ·

(
u|ti+1,j − 2u|ti,j + u|ti−1,j

Δx2
+

u|ti,j+1 − 2u|ti,j + u|ti,j−1

Δy2

)
. (2)

The solution of Eq. 2 requires the specification of boundary conditions. Well-
known representatives are Dirichlet and Neumann boundary conditions. The
Dirichlet boundary condition specifies the value by a function, whereas the Neu-
mann boundary condition specifies the value by the normal derivative of the
function. Periodic boundary conditions represent a special case. For the sake of
simplicity, periodic boundary conditions are assumed, given by:

u|t0,j = u|tnx,j , u|tnx+1,j = u|t1,j (∀j = 1, . . . , ny),

u|ti,0 = u|ti,ny
, u|ti,ny+1 = u|ti,1 (∀i = 1, . . . , nx). (3)

2.2 Parallel Implementation and Execution on HPC Resources

The implementation of the heat distribution (Eq. 2) with periodic boundary
conditions uses two two-dimensional grids of the size nx ×ny. One is the present
grid, the other one is the temporary grid. For calculation of the heat distribution
at the boundaries according to Eq. 3, these grids are expanded at the boundaries
resulting in a grid size of (nx + 2) × (ny + 2).

The heat distribution is computed for all inner cells in the present grid for
one time step, the results are saved in the temporary grid. After completing
the calculations of one time step, the boundary cells are updated with the new
values (according to Eq. 3). The present and the temporary grid are swapped



From Mathematical Model to Parallel Execution 215

in order to prepare computations of the next time step. A visualization of this
computing scheme is shown in Fig. 2.

present grid temporary grid

u|ti,j + Δt · a ·
(

u|ti+1,j−2u|ti,j+u|ti−1,j
Δx2 +

u|ti,j+1−2u|ti,j+u|ti,j−1
Δy2

)

Legend:

boundary cells

inner cells

Fig. 2. Computing the heat distribution at one time step using the present (left-hand
side) and the temporary (right-hand side) grid

The heat distribution is parallelized using the Message Passing Interface
(MPI) [6]. MPI is widely used and proved its performance on a wide range of
hardware platforms. It is assumed that the available processes P1, . . . , Pk can be
arranged in a two-dimensional cartesian grid. The computational grid is evenly
partitioned over the process grid. The partitioning of the computational grid
over four processes is shown in Fig. 3.

P0 P1

P2 P3

Fig. 3. Partitioning of the computational grid over four processes

Each process works on its own parts of the present and temporary grid. Com-
munication is necessary for computing the heat distribution at the boundaries
of the partial present grid. Therefore, the grids of the processes are extended
by halo cells at the boundaries. The required data transfers of a process Pi

(i ∈ 1, . . . , k) including the neighborhood relations are shown in Fig. 4.
After finishing the simulation, the overall energy of the system is computed

by gathering and adding the final values of all inner grid cells. A loss of energy
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Pn

Pj Pi Pm

Pk

(a) Neighborhood relationships of
process Pi

to Pj

to Pm

to Pn

to Pk

from Pj

from Pm

from Pn

from Pk

(b) Data transfers of process Pi

Fig. 4. Neighborhood relations and corresponding data transfers of process Pi

in the system between the start and the end of the simulation detects failures in
the implementation.

The parallel implementation of the heat distribution is executed on Taurus.
This Bull HPC system at Technische Universität Dresden, Germany, consists of
2, 085 nodes with a total theoretical peak performance of 2, 087 TFLOP/s.

2.3 Visualization and Interpretation of the Simulation Results

The numerical solution of the heat distribution is written to a file periodically.
A simple visualization tool is offered in the exercise. The correct distribution
of the heat energy in the computational domain over time can be determined
intuitively. The tool is described in more detail in Subsect. 3.3.

2.4 Performance Analysis and Improvements

Performance analysis is an essential step in the workflow for scientific computing.
Due to the increasing numerical complexity of the underlying simulation models
scientific applications show a high demand on compute resources. Performance
analysis and corresponding improvements of the applications can help to reduce
execution times or increase applications’ scalability. This enables time critical
use case scenarios like weather forecasts. Additionally, if the simulation requires
less time it often directly translates into reduced cost in terms of energy. In the
exercise, students use established tools (e.g., Score-P [5], Cube [2], Vampir [3])
for the performance analysis of the parallel heat distribution application.

3 Implementation of the Exercise: Workflow for Scientific
Computing

In this section, the implementation of an exercise within the course is high-
lighted. Within this exercise students learn the basic concepts of PDC, e.g.,
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domain decomposition, communication, and synchronization between process-
ing elements. Another important aspect of this exercise is teaching students to
build upon existing libraries and tools instead of starting from scratch. Addi-
tionally, students are introduced to the concepts of working with HPC systems.

3.1 Mathematical Model

The exercise starts with a brief introduction to the numerical solution of the
heat distribution. In a slide set, the mathematical model (as shown in Sect. 2.1)
is presented to the students. Typically, students with a science background are
more familiar with these aspects than CS/CE students.

3.2 Parallel Implementation and Execution on HPC Resources

In the exercise, the students implement a heat distribution simulation in the C
programming language and use MPI in order to parallelize the application. Due
to time constraints, the students would not be able to implement the application
from scratch. Therefore, they receive a source code skeleton from the tutors. This
skeleton already contains the basic program structure (see Listing 1.1). However,
essential parts of the source code (e.g., domain decomposition, data transfer
between processes) are left blank and marked to be implemented by the students.
The programming exercises start with fairly simple tasks, such as, initializing
the MPI environment (MPI Init), determining the number of all MPI processes
(MPI Comm size) or the global MPI rank (MPI Comm rank). More challenging
tasks include parallel I/O (MPI File open, MPI File set view, MPI File read,
MPI File write, MPI File close) to read/write data from/to files. In order to
distribute data over participating processes, the students create cartesian topolo-
gies and associated MPI communicators (MPI Dims create, MPI Cart create).
The implementation of the halo update after each iteration requires the determi-
nation of the neighbor ranks in the cartesian communicator (MPI Cart shift)
and subsequent data exchanges with the appropriate neighbor ranks (MPI Isend,
MPI Recv, MPI Wait). In addition, the update of the vertical halo cells makes
use of derived datatypes (MPI Type vector, MPI Type commit, MPI Type free).
Finally, a collective operation (MPI Reduce) computes the overall energy of the
system.

For some students, this exercise is the first opportunity to work on HPC
systems. Using HPC systems differs fundamentally from the experience students
gained by working on their local machines.

First, HPC systems typically provide a wide range of software components
(e.g., libraries, compilers, tools). Often multiple versions of software components
are available. Therefore, the students are introduced to the idea and usage of
environment modules. In the exercise, students use the LMOD module system
to select the compiler and MPI runtime.

Second, in contrast to a local system, multiple users share the compute
resources of a HPC machine. Therefore, a job scheduling system allocates
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Listing 1.1. Pseudo code illustrating the algorithm of the heat distribution simulation

/* initialize grid from file */

loadGridFromFile ();

/* initialize temporary grid */

initializeTempGrid ();

/* heat distribution calculation phase */

for ( count = 0; count < max_steps; count ++ ) {

/* save intermediate result to file */

if ( count % 20 ) {

saveGridToFile ();

}

heatCalculation ();

}

/* save result to file */

saveGridToFile ();

resources for each application run (job) initiated by the user. Taurus is oper-
ated with the Slurm job scheduling system. The students write their own job
script to request appropriate compute resources (e.g., select compute nodes from
partitions equipped with Haswell CPUs). Afterwards, the students learn how to
submit, cancel, and monitor their jobs.

3.3 Visualization and Interpretation of the Simulation Results

As shown in Listing 1.1, every 20 iterations the heat simulation writes its inter-
mediate results to a file. At the end of the application run, also the final heat
distribution is written to this file. Consequently, the result file contains a series of
snapshots. Each snapshot represents an individual state of the heat distribution
at a specific simulation time step. In this exercise, the students use a prepared
bash script to generate a movie showing the heat flow over time. The bash script
opens the result file. Within the main loop of the bash script an individual snap-
shot is read and converted to a PNG image using Gnuplot. Two of these PNG
images are illustrated in Fig. 5. Finally, the bash script calls ffmpeg to create an
MP4 video based on the series of PNG images.

3.4 Performance Analysis and Improvements

Tasks with respect to performance analysis and improvements complement the
overview of the workflow for scientific computing. The goal is to monitor the
application and observe its runtime behavior. Therefore, the students recompile
the application with the Score-P [5] measurement infrastructure. For the pre-
sented example, Score-P automatically enables compiler instrumentation for user
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(a) Initial state (b) State after 118 iterations

Fig. 5. Visualization of the result data generated by the heat distribution simulation
code

Fig. 6. Trace visualization of the time interval of 20 iterations in the heat simulation,
at the end of this interval the application starts writing intermediate results to a file

functions within the source code and intercepts calls to the MPI library. As a
consequence, calls to MPI and user functions trigger the measurement system at
application runtime. Whenever triggered, the measurement system collects per-
formance data (e.g., timestamp, function name, hardware performance counter)
and stores the information as a profile (aggregated data) or trace (log of indi-
vidual events). Guided by the tutors, the students use established tools, e.g.,
Cube [2] and Vampir [3], to visualize and analyze this performance data. The
visualization of a trace in the Vampir analysis tool is shown in Fig. 6. The stu-
dents learn how to interpret profiles and traces, correlate performance patterns
with source code, and gain knowledge about the application behavior. Based on
this knowledge, students and tutors discuss about ideas to improve the perfor-
mance of the application. For example, the performance analysis of the initial
application reveals that most of the runtime is spent in MPI. On the one hand,
this performance issue stems from inefficient usage of MPI routines (e.g., the
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result file is opened and closed for each snapshot). On the other hand, the ratio
between communication and computation can be improved. After the discussion,
the students can modify the source code in order to resolve performance prob-
lems or investigate the effects of different file systems on the I/O performance of
the application. Comparing the performance data collected during the run of the
initial and modified application directly reveals the effectiveness of the changes.

4 Conclusion and Future Work

In this work, the idea behind an exercise in the course “Supercomputers and their
programming” is presented. In this exercise, the students from computer science,
information systems engineering, mathematics, computational science and engi-
neering, as well as natural and engineering sciences are practically introduced
to a complete workflow for scientific computing. While working on a simpli-
fied example, the students familiarize with the general idea of the workflow for
scientific computing. This workflow can be applied to other problems of compu-
tational science as well. The students learn to work with mathematical models,
transfer these models into statements of programming languages, use HPC sys-
tems, visualize and interpret result data generated by simulation runs, as well
as analyze and improve the performance of scientific applications.

In the course “Supercomputers and their programming” the students are
introduced to theoretical background in the field of parallel and distributed com-
puting. The exercise described in this work supplements the gained knowledge
from the course with practical experiences. With completion of the exercise the
students are well prepared for their future scientific work. The exercise presents
a holistic training for students and is often the first practical experience with
a complete workflow for scientific computing. This workflow represents a gen-
eral methodology and can be applied to other scientific problems as well. The
feedback from the students is very positive. In contrast to common curriculums,
the course covers not only theoretical knowledge. Moreover, in this exercise the
students have to implement, execute, and analyze a parallel program on a HPC
system. The students highly appreciate the chance to gain skills or improve their
expertise in parallel programming. Furthermore, the tutors noticed that the exer-
cise encourages the cooperation between students from different courses of study.
The students benefit from each others expertise and complement their knowl-
edge. Furthermore, the tutors also benefit from the close cooperation with the
students. First contacts are established for acquiring student workers or thesis
topics.

While the feedback of the exercise is very positive, there are options to
enhance the practical session. For example, the parallel implementation can
be extended to shared-memory parallelism by an hybrid MPI+OpenMP ver-
sion. Multi-core architectures with shared memory are omnipresent. Although,
OpenMP [7] is theoretically introduced in the lecture, it is currently not part of
the exercises. A practical implementation of the shared memory paradigm would
complement the course. The visualization approach presented in the exercise can
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be improved as well. Students would benefit from replacing the self-implemented
visualization approach by established frameworks (e.g., VisIt [1]) and their file
formats.
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Abstract. The continuous shift of hardware computing architectures,
from single to many-core processors, as well as the blurring of the hard-
ware - software interface, has made the introduction of parallel and dis-
tributed computing topics in the undergraduate curriculum an essential
requirement for any quality computer science program. The University
Politehnica of Bucharest offers a unique approach, employing a hetero-
geneous hardware and software teaching and computing infrastructure,
to its over 450 students enrolled in undergraduate studies of Computer
Science and Electrical Engineering. In this study we present two of the
most important lectures covering PDC topics at the UPB.
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1 Introduction

Given the current evolution of the IT industry, Parallel and Distributed Comput-
ing is seen as an essential topic for any IT professional. University “Politehnica”
of Bucharest is one of the oldest and most prestigious engineering school in
Romania. Over the last 20 years, the Computer Science and Engineering Depart-
ment has conferred a special importance to the PDC curricula. The importance
of parallel and distributed systems as well as a distinction between parallel ver-
sus distributed systems is discussed in [20,23], and the approach offered by the
UPB is consistent with the view presented therein, since our curriculum already
contains different courses for distributed and parallel systems. Most courses con-
taining PDC issues are taught in the first three years of CS and touch a wide
audience of around 400–500 students per year. Similar lectures are being offered
around the world by various CS groups in Tennessee [19], Cadiz [24], or Cluj-
Napoca [22].

This paper is structured as follows. In Sect. 2 we outline the PDC curriculum
in the UPB undergraduate CS and EE programs. In turn, Sect. 3 presents the
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practical activities in two of the lectures concerned with PDC. Section 4 presents
the student progress evaluation process, whereas Sect. 5 outlines the interest and
involvement of the IT industry in Romania and abroad towards the PDC issues
being taught to our undergraduate students. In Sect. 6 we enumerate the lessons
learned through the years while offering the PDC curriculum, and we conclude in
7 with some conclusions and an outline of possible improvements to our present
approach.

2 Parallel and Distributed Computing Curriculum

In the bachelor program of the UPB, we can find three main lectures where
Parallel and Distributed Computing issues are presented to the students, namely
the Parallel and Distributed Algorithms (PDA), Computer Systems Architecture
(CSA), and Parallel Processing Architectures (PPA). In this paper we will focus
on the Computer Systems Architecture and Parallel Processing Architectures
lectures as introduced in Sects. 2.1 and 2.2 respectively. Section 2.3 briefly goes
through other PDC graduate courses, not covered thoroughly in this paper. The
number of students taking the PDA and CSA lectures ranges from 350 to 450
each year – these two lectures being compulsory for all students enrolled at the
Computer Science and Engineering Department. The PPA lecture gathers from
130 to 150 students, in the Advanced Computer Architectures specialization of
our bachelor Computer Science Program.

2.1 Computer Systems Architecture

The Computer Systems Architecture lecture is presented in the sixth semester of
bachelor study. This lecture presents the fundamentals of design and structure
of numerical computing systems. The main topics covered include:

– Processor Memory Switches descriptions of computing systems.
– Various taxonomies of computing systems.
– Fundamentals of SIMD and MIMD design, architectures, and applications.
– Hierarchical and non-hierarchical switches.
– Switches for inter-processor and processor-memory communication.
– Inter-cluster and intra-cluster communication protocols.
– The roof-line model.
– Advanced CPU and GP-GPU computing architectures.
– Debugging and performance evaluation and analysis of computer programs.
– Profiling and tracing computer codes on modern processing platforms.
– Parallel correctness challenges.
– Benchmarking computing systems.
– Analysis of top 500 systems architectures over the years.

The practical activities over the course of the entire semester deal with
three different topics, namely concurrent programming in Python, serial code
optimization, profiling and OpenCL programming in C. The lecture as well as
the practical activities are being update continuously. More details are given in
Sect. 3.
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2.2 Parallel Processing Architectures

The PPA lecture is given in the ninth semester of bachelor study. The main
objective of this lecture is the assimilation of fundamental concepts concerning
parallel processing architectures design, programming and configuration. Dur-
ing this lecture students learn to analyze parallel processing models, as well as
synchronization issues in complex parallel and distributed systems. During the
lecture, the following topics are discussed:

– The evolution of parallel processing systems.
– The concepts of concurrency and parallelism.
– Indicators for evaluating parallel structures.
– Parallel systems classifications.
– General characteristics of parallel processing systems.
– Mathematical models of parallel computation.
– Relationships between parallel architectures and parallel algorithms.
– Parallel computation limits and levels of parallelism.
– Synchronization in parallel and distributed systems.
– Parallel system architectures with practical examples.

In this lecture, the practical activities are split between two phases: the first
six weeks of the semester in which students learn and practice advanced issues
on OpenMP, MPI, and PThreads programming, while the remaining eight weeks
of the semester are spent working in teams of two or three on software projects
in which they are attempting to parallelize given serial computer programs.

2.3 Graduate Lectures on PDC

The graduate lectures gather from 25 to 40 students, in the Advanced Computer
Architectures [1] and Parallel and Distributed Processing Systems specializa-
tions [10] of our bachelor Computer Science Program.

Parallel Programming is a lecture outlining a series of programming
paradigms in the context of modern parallel computer architectures. It offers
an overview of parallel programming models considering issues such as produc-
tivity, performance, and portability and presenting a number of models for com-
munication, synchronization, memory consistency and runtime systems. Various
parallel programming paradigms with shared- and distributed-memory, parallel
global address shared space, and other atypical paradigms are presented.

High Performance Scientific Computing presents state-of-the-art paral-
lel computing architectures in the context of modern parallel programming
paradigms. Topics include mathematical modeling, numerical methods and data
structures employed in HPC, from systems of differential equations, automatic
differentiation, optimization problems, solving systems of nonlinear equations,
to basic linear algebra and chaotic systems. The lecture also tackles scientific
applications requiring HPC systems with examples from research and industry.
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3 Practical Activities

3.1 Computer Systems Architecture

The CSA practical activities follow the structure of most of the courses in our
faculty’s curriculum for the first six semesters, consisting of weekly two-hour labs
and three or four homework assignments every two or three weeks. Through the
years such a structure received positive feedback from students and proved very
efficient in the development of their technical skills and on their understanding
and application of the subjects presented during lectures. In terms of organiza-
tion, our activities bring something new to the students: they are split into three,
formerly four, distinct topics and technologies, the homeworks require not just
coding but also analysis and performance evaluation and they offer the students
a chance to enrich their presentation skills.

Python Optimizations Cell

1        2          3          4          5          6          7          8          9        10         11         12         13        14

Presentations

Python Optimizations Cell PresentationsGPU

Python Optimizations Cell PresentationsGPU

Python OptimizationsPresentations GPU

2007 - 2009

2010 - 2015

2018

2016 - 2017

Week:

Presentations Presentations

Fig. 1. CSA Practical activities through the years.

The topics taught during CSA’s lab activities cover concurrency and multi-
threaded programming (in Python), optimizations and profiling (in C), paral-
lelization of computationally intensive programs, using Cell, OpenCL [21], or
CUDA [16]. We adapted this structure based on technological evolution, as
shown in Fig. 1. For conciseness, throughout this article we will refer to these
parts of the CSA’s activities using the technology/language used for them.

The last two weeks of the semester were dedicated to presentation sessions,
in which students chose a topic related to the course or the lab and presented it
in 10 min. The presentations were extremely varied and up to date to the newest
trends in high performance computing, parallelism and concurrency and even
embedded systems (e.g. a cluster build out of Raspberry Pi boards). This year,
we replaced these presentations with ones in which they present their homeworks,
a decision we discuss in Sect. 6.

The main reason we chose Python was the desire to present concurrency con-
cepts in multi-thread programming in a widely used language. Due to its quick
learning curve, a simple threading API and the fact that we are focusing on cor-
rectness of concurrent programs and not on parallelization performance, Python
is the right choice for our needs. The concepts learned during the lab exercises
and from the homework assignment can be easily applied to other languages too.
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During the weeks dedicated to concurrent programming students learn Python’s
basic syntax and data structures, how to create and manage threads and how
to protect the access to shared resources using locks and semaphores, events,
conditions and synchronized queues.

The first of the three labs dedicated to program optimization offers an intro-
duction into Intel and AMD general purpose CPU architectures, with exercises
meant to detect the actual size of the line of cache and of the LLC – Last Level
Cache – of the processors in the lab. The second lab is treating a number of
serial optimizations of the well-known matrix multiply kernel, on CPUs, from
improving access to vectors, to loop order optimization and block-matrix opti-
mizations. This section concludes with a lab on performance optimization using
dedicated software tools such as Valgrind, perf and Intel Parallel Studio. There-
fore, students learn about the specifics of CPU architectures, serial optimization
techniques, and how to identify performance bottlenecks using specialized tools.

We have chosen the OpenCL programming paradigm as it is a natural tran-
sition from the previous IBM Cell architectures we used to teach. Similar to
the IBM CELL framework there is a clear distinction between device GPU (as
the SPE for IBM Cell) and the host CPU (as the PPE for IBM Cell). From the
execution point of view the host is responsible for managing the device hardware
similar to the PPE that managed the SPEs. Likewise the OpenCL kernels need
to be compiled for the specific target device and sent out by the HOST which
highlights how a true heterogeneous system works in the back-end. Although
OpenCL programming is a difficult topic, it is worth learning since it offers
students a deeper understanding of the advantages and limitations of most co-
processing architectures, like GPUs, FPGAs, ASICs, etc.

While CUDA is the de-facto standard when it comes to the HPC indus-
try, OpenCL provides a better understanding of the underlying interactions
in components of a heterogeneous system. Since we also touch upon the sys-
tems programming side, we consider OpenCL is better suited in Academia than
CUDA. OpenCL was designed to support any number of devices (e.g. CPU,
GPU, FGPA, ASIC) from any vendor, while CUDA is a closed ecosystem tar-
geting only NVIDIA GPU hardware. Thus, our students learn how to query for
platforms and devices of different vendors, how to allocate and manage buffers as
well as how to perform cross compilation of kernels. They also understand that
the software stack induces latency and can significantly impact performance.
The transition from OpenCL to CUDA is easy, since for beginners CUDA repre-
sents a simplification of the OpenCL API. We offer three OpenCL labs: the first
focuses on the host side interactions with the device (queries, buffer allocation,
kernel enqueue), and the next two focus more on the underlying architecture of
a GPU and how to design an efficient kernel program.

3.2 Parallel Processing Architectures

The PPA labs consist of two different parts, namely a hands-on section of labs
and a team project. The hands-on section tackles advanced issues concerning
PThreads, OpenMP [15], MPI programming [18], and concludes with a profiling



Integrating Parallel Computing in the Curriculum of the UPB 227

and parallel debugging lab. The team project is focused on deploying, under our
team’s supervision, shared as well as distributed memory programming tech-
niques on serial applications chosen by the students. The projects conclude with
presentations in front of the class outlining the benefits and drawbacks of each
particular programming approach, as well as the influence of the underlying
machine and system architecture on the performance of the chosen application.

4 Student Assessment and Evaluation

4.1 Lab Activity and Homeworks

During the two-hour lab activities of the Computer Systems Architecture
lab students get the chance to practice their coding and apply the concepts
learned during the lectures or from the lab’s wiki page [3]. The exercises also
challenge them to look for performance issues, optimizations and also understand
the architectures their code runs on. During each lab, the teaching assistants
present and explain the main concepts in the first 15–30 min and then help the
students with their tasks (individual explanations, debugging, discussions about
their results).

We use the wiki as support for labs and homeworks. On each lab’s page we
offer an overview of the topic, examples, links to additional resources and tasks.
Most of the labs also provide a code skeleton the students can build upon. Only
the lab about the profiling tools has less coding and its flow is tutorial-like, with
students having precise instructions on what to create, click, and run.

The first concurrency lab focuses on exercising Python syntax and its chal-
lenge is teaching the fundamentals of a new language in just two hours. There-
fore, we varied the difficulty and the amount of tasks through the years. We first
offered many short tasks that covered a lot of concepts but the students’ feedback
showed us that it is more important to provide the tasks a story and not require
the use of that many language features, so the current exercises simulate a coffee
machine. The second concurrency lab starts with a simple exercise that requires
the creation of threads that concurrently modify a list, and then requires the
implementation of well-known concurrency problems, like producer-consumer or
dining philosophers. In the third lab students work with events, conditions and
barrier objects to implement a gossiping algorithm and a master-slave scenario.

The Cell labs provided code skeleton that the students adapted and the
tasks covered all the topics presented on the wiki: creation and management of
SPE threads, vectorization, data transfers using DMA, double buffering, mail-
boxes and caches. The exercises were compiled and run on our cluster. Students
understood the concepts but their performance during the labs was hindered by
C programming aspects such as data alignment. Therefore, we have included in
the optimization labs some tasks for allocations and pointer casts.

The purpose of the OpenCL GPU/CPU labs is to understand the main dif-
ferences between programming on a CPU and on a GPU. For a typical lab,
students have a skeleton code on which they will have to fill in the gaps for the
proper execution to take place. The labs gradually go from a high level view of
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Fig. 2. Number of submitted CSA homeworks (H1, H2, H3 and H4) in the last five
years. In 2016 and 2017 the students had to choose between H3 (Cell) and H4 (GPU),
they were not required to do both.

the OpenCL stack to the low level details of kernel programming on a certain
architecture.

The common themes of the Computer Systems Architecture homework
assignments are the following: threads that concurrently access each other’s
data in order to apply an algorithm for the Concurrency track, implementing a
BLAS [2] operation in several ways (basic, optimized, basic compiled with flags)
and comparing the performance against the library’s implementation for the
Optimization track, parallelization of a serial algorithm in OpenCL. The Cell
homeworks revolved around image and video processing and required the use
of DMA transfers. The students also had to perform optimizations using vector
operations and double buffering. With the exception of the concurrency home-
work, the students have to provide relevant graphs and explanations about their
solution’s performance. For the Python track, we encourage students not only to
write correct concurrent code, but also respect a coding style and document it.
To ease the evaluation and to help them, their homeworks are also tested with
Pylint [11], a Python code analysis tool. As an incentive, we offer bonus points
to homeworks exhibiting high Pylint scores.

We are addressing a large number of students each semester, which makes
it overwhelming to evaluate more than 500 homeworks per semester only for
one course, as presented in Fig. 2. Moreover, the fact that the CSA homeworks
require running the solutions on various architectures and also measuring their
performance, makes it more difficult to integrate with VMChecker, an automatic
grading system. We use VMChecker only for OpenCL GPU assignments, while
for the rest we provide public tests and scripts that automate the runs, so that
students can test their solutions before submitting them on the course’s platform.
Over-subscription of cluster queues by students is one disadvantage to using
VMChecker for the GPU assignments, since it requires constant monitoring so
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that the system remained responsive (i.e. queues not full). The end result is
faster grading but the trade-off comes from deploying and managing the system.

For the Parallel Processing Architectures projects, students are divided
in groups of two or three and decide on the project’s topic, usually the paral-
lelization of CPU-intensive applications written mostly in C or C++. Then each
week we decide together with the students on the tasks they have to do until
the subsequent week. The parallelization paradigms they use include PThreads,
OpenMP and MPI, and usually, each member of the team is in charge of one
parallelization strategy. At the end of the semester, each team presents before
the entire class the results, outlining the lessons learned, the benefits as well
as the drawbacks of each programming paradigm in the context of their partic-
ular software application. The projects are done in teams, however grading is
individual, to ensure fairness and accountability of our student’s effort.

4.2 Computing Infrastructure

Computing infrastructure is one of the key elements in applying theoretical
aspects shown in lectures, especially in computer architecture and parallel pro-
gramming. For our courses we need a variety of platforms (e.g. x86 CPUs, embed-
ded ARM CPUs, specialized PowerPC CPUs, or GPUs) for students to be able
to compare them and a high number of units (CPUs/GPUs) in order to assess
the performance of parallel implementations. Therefore, we rely on the Comput-
ing Cluster of our department, where all the HPC resources are aggregated, as
summarized in Table 1.

Table 1. The CS computing cluster.

Nodes Node type CPU GPU RAM

32 IBM HS21 Intel Xeon E5405 – 16GB

28 IBM HS22 Intel Xeon E5630 – 32GB

16 IBM LS22 AMD Opteron 2435 – 16GB

4 IBM QS22 Cell BE Broadband – 8GB

8 IBM PS703 IBM Power7 - 32GB

4 IBM iDataPlex dx360M3 Intel Xeon X5650 8 NVidia Tesla M2070 32GB

3 HPE ProLiant BL460c Intel Xeon E5-2670 7 NVidia Tesla K40m 128GB

The storage infrastructure of the CS Cluster is currently composed of multiple
systems with different capacities, such as: an IBM Storage Fibre Channel DS3950
with 30 TB, a Dell PowerVault with 120 TB, and a HPE MSA P2000 with 6 TB
of storage space. On these storage servers we installed, over time, multiple file
system solutions for distributed and parallel computing systems. Among others,
we explored NFS, Lustre FS, and GlusterFS. Lustre FS did not scale because of
the significant configuration and restart times. GlusterFS was a good solution,
however once we reached 30 million files, the system slowed down significantly.
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The current NFS solution employs 10 Gbps links, with fast disks which offer
good scaling for about 20 TB of data and multiple millions of user files.

Network connectivity within the cluster is ensured by 56 Gbps Infiniband
links connecting computational nodes to the centralized storage; normal Gigabit
Ethernet links for network and storage connectivity; and 10 Gigabit Ethernet
links for network, storage and Internet connectivity. Currently the uplink uses
2x10 Gbps Ethernet links.

The hardware infrastructure described previously is complemented by the
use of the Moodle [7] open-source learning system. Our Moodle implementa-
tion integrates students database information with automatic accounts creation,
course creation based on the CS curricular structure, and course enrollment
for students based on their contracts. Moodle fulfills most of our needs with:
storage for resources (documents, slides), interactivity with students via forums
and feedbacks and assignments upload and grading. For the collaborative design
and deployment of lab materials we use a Dokuwiki [4] instance on the same
server. During the Dokuwiki integration with our Moodle system and our stu-
dent database, our team also contributed back to upstream with different fea-
tures that would help others implement a similar system. In the near future
we plan to integrate automatic programming assignment verification using the
VMchecker [14] tool.

Cluster management is currently achieved using Open Grid Scheduler [9], and
will shortly be migrated to Torque [13]. We offer our students and users inter-
active, as well as non-interactive (i.e. batch-mode) use of our systems. Having a
significant number of compute nodes as well as a big number of end-users places a
high demand on our software stack (e.g. compilers, libraries, applications, tools).
Thus, the management of different software versions is done by employing the
module feature. It basically sets/unsets environment variables depending on the
desired version of software being selected. Best performance for all our packages
is obtained by compiling most of the stack directly from sources and creating
our own RPMs for each cluster node architecture.

4.3 Final Examination and Feedback

The final examinations for both CSA and PPA typically consist of two different
parts: a theoretical section of 50 min, where students are required to answer to
10 questions from the entire lecture; and a practical section of 45 min in which
students have to solve a practical assignment linked to the lab activity. The total
scores of the lab activity, homeworks, theoretical and practical examination are
then added together to give the final grade for each lecture participant. During
the last two weeks of the semester, students offer their feedback to our team - of
course the information is available for us only after the end of the examination
period. Student feedback is a constant source of improvement of our activity,
and a good indication of the interest towards PDC subjects in our Department.
Over the last years, we have thus constantly striven to offer our students access
to the most advanced processor and parallel systems architectures.



Integrating Parallel Computing in the Curriculum of the UPB 231

5 Industry Involvement

Between the eighth and ninth semesters of their bachelor program, students
are required to spend at least twelve weeks in internships or summer-schools
on topics related to their chosen field of study. Over the years, a number of
summer-schools have been organized in our Department, on topics ranging from
High Performance Computing, Embedded Systems, Security, Mobile Develop-
ment, Artificial Intelligence, GPU programming, Machine learning to Computer
Vision and 3D-Graphics technologies. The industry has also diversified its intern-
ship offer to students, with topics on Business software development, Cloud
programming, Artificial Intelligence, Embedded Systems, IoT, Mobile, Gaming,
Networking, Telecommunications. To this end, the “Stagii pe Bune” [12] and
“Junio.ro” [6] platforms were jointly developed by people from our Department
and from the IT industry. More recently, students apply to internships abroad.
Participation in Google, Facebook, and Microsoft internship programs is con-
stantly growing. Some examples of companies, typical programming require-
ments, and representative technologies covered by their internships are given in
Table 2.

Table 2. Internship listings.

Company Requirements Technologies

NXP C/C++, Python, OpenCL,
knowledge of microprocessors
architecture

Automotive, IoT

Intel C/C++, Python, Bash,
Profiling skills

Microarchitecture Design and
Optimizations

BitDefender Algorithms, C/C++ Big Data Analysis, System
Programming

Adobe Algorithms, C/C++ Big Data Tehnologies,
Application Design

Each year our team is considering the requirements and feedback received
from the industry when redesigning or adapting our curricula for the next year.
This process is smoothed by our integration of a significant number of teaching
assistants (TAs) directly from industry professionals. Thus our students can
learn where different types of problems presented at our laboratories occur in
the daily life of an IT engineer. Another advantage of having input directly
from an industry that is evolving so fast is having an objective view of how our
teaching materials helps our students fulfill their job requirements.

6 Lessons Learned

Through the years our team has adapted to the feedback received from students
in previous generations. For example, we introduced specific sections in the prac-
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tical exercises of the labs based on common mistakes or challenging parts of the
student assignments. To illustrate this point: we observed misunderstandings on
how the threads run, a tendency for busy waiting and a wrong usage of events.
We therefore provided more explanations and examples in the lab’s wiki and
offered exercises based on code skeletons, that showed incorrect approaches and
asked students to improve them.

To encourage students to submit more homeworks, we developed a system
of soft deadlines for two or three weeks after they are published, and only then
impose a final hard deadline. Nonetheless, we observed that most students start
working on homeworks in the last few days before the soft deadline, which had
a significant impact on our hardware resources. Therefore, a few years ago we
introduced a further incentive for submitting homeworks early – in the form of
bonus points – an approach which proved quite successful.

To better assess the students’ understanding of their homework and also
tackle the plagiarism problem, we introduced this year the requirement for home-
work presentations in front of the class. To improve the uniformity of the TA’s
evaluation, we created homework evaluation guidelines, as well as typical errors
and questions which should be posed to students during their evaluation. Over
the years we have used automatic grading systems along with MOSS [8] and
Etector [5] code plagiarism detection systems.

At the end of each semester, our entire team takes part in a debrief where we
discuss all the problems we encountered during the lecture, practical activities
and homework assignments. Possible improvements, owners and solutions are
offered, and each point is then taken under consideration at the setup meeting
of our group in the next academic year.

7 Conclusions and Outlook

7.1 Conclusions

The team at the Computer Science and Engineering Department of the UPB
is striving to improve the presentation of PDC concepts in its undergraduate
curricula. In the lectures, students are taught general architecture and design
aspects of PDC, while in the practical activities they explore various software
approaches best suited to illustrate those general concepts. Assignments and
homeworks are then meant to check that the relevant desired skills have been
learned by our students. In this article, we outline the content of the lectures,
the student evaluation process, as well as the lessons learned over time, and the
improvements we introduced in our content and approach. The IT industry is
exhibiting a particular interest in our graduates, and their PDC skills are highly
appreciated. This is also due to the fact that we have continued to evolve our
Materials and Methods constantly, as new technologies emerge. At the same time
however, we aim for our students to have a fundamental understanding of how
parallel and distributed processing architectures work, from both the hardware
and software perspective. As new architectures emerge continuously, driven now
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by emerging domains such as AI or IoT, the essential building blocks remain the
same – and PDC is one of those blocks.

7.2 Outlook

We are constantly adapting our curriculum as the industry evolves. One inter-
esting direction are cross-API intermediate languages such as SPIR which pro-
vide the underlying runtime for several APIs, such as OpenCL, Vulkan, SyCL,
OpenMP, or OpenACC. Moreover, we are considering the addition of a section
exemplifying the interaction of OpenCL with popular data analytics and machine
learning frameworks such as Anaconda, by using the PyOpenCL [17] wrapper,
thus linking together the CSA labs on Python and OpenCL.
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Alexandru Herişanu, Răzvan Dobre, Vlad Spoială, Dan Dragomir, Alexandru Olteanu,
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located from the edge to the cloud, empowering the development of innovative ser-
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distributed services execution towards the edge. Analyzing the way existing pro-
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Abstract. The EC H2020 mF2C Project is working to the development
of a software framework that enables the orchestration of resources and
communication at fog level, as an extension of cloud computing and
interacting with the IoT. In order to show the project functionalities
and added-values three real world use cases have been chosen. This paper
introduces one of the mF2C use cases: Smart Fog Hub Service (SFHS)
use case, in the context of an airport, with the objective of proving that
the adoption of the fog-to-cloud approach brings relevant benefits in
terms of performance and optimization of resource usage, thus giving an
objective evidence of the impact of the mF2C framework.

Keywords: Cloud computing · Fog computing · Fog-to-cloud
Distributed systems · IoT · Proximity marketing · 3G
4G/LTE · Wi-Fi

1 Introduction

By 2020 the installed base of the Internet of Things (IoT) devices is forecasted to
grow to almost 31 Billion worldwide, with an annual economic impact of $3.9T
to $11.1T by 2025 [4]. The forecast scenario includes diverse settings and use
cases including factories, cities, retail environments, and healthcare. At the same
time, 50% of IoT spending will be driven by discrete manufacturing, transporta-
tion, logistics, and utilities where predictions say that IoT will have the most
transformative effect on industries that are not technology-based today. The
most critical success factor of all these use cases depend on secure, scalable and
reliable end-to-end integration solutions that encompass on-premise, platforms
[1], legacy and cloud systems. While consumer applications will attract the most
attention and create significant value, Business-to-Business (B2B) applications
will generate nearly 70% of potential value enabled by IoT [3]. Also, in the air-
port industry an increase in the number of passengers is foreseen, where more
than 4 billion passengers will concentrate in the airports with an average of two
connected devices for each passenger [2]. Current technology infrastructures and
c© Springer Nature Switzerland AG 2019
G. Mencagli et al. (Eds.): Euro-Par 2018 Workshops, LNCS 11339, pp. 239–250, 2019.
https://doi.org/10.1007/978-3-030-10549-5_19
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architectures have not been designed to process in real time the great amount of
information data that is being made available from such a number of devices with
a so high concentration. As one of the first technical response to such technolog-
ical challenges fog computing is emerging as an architectural model that places
itself between the cloud and the IoT, in the Cloud-to-Things Continuum. In this
paper we present a service implemented following the fog-to-cloud approach of
the mF2C project, that acts as a smart hub to provide real time information
in public environments. A prototype is being implemented in the context of an
airport testbed that collects data from the passengers and provides informa-
tion to enable proximity marketing (shops, restaurants, etc.) as well as analytics
computed in the cloud. This setting could be reused in other public domains
like train stations, shopping centers, etc. This paper describes the design pos-
sible scenarios, the networking particular elements of this use case, and some
tests on different design scenarios that have been run. The results of these tests
demonstrate that the capabilities and performance obtained by the mF2C adop-
tion overcome the other possible choices, fulfilling the real-time requirement,
enabling the distribution of processing of data, reducing traffic load and latency
between cloud and hub. This paper is structured as follows. Section 2, introduces
the mF2C Smart Fog Hub in an airport use case. Section 3 describes the com-
parison of the potential technical solutions, and Sect. 4 describes the experimen-
tal results and related benefits coming from the fog-to-cloud approach. Finally,
Sect. 5 concludes the paper.

2 Fog Hub in Airport Use Case

The EC Horizon 2020 program in 2016 has funded a new research initiative
(mF2C)1 bringing together relevant industry and academic players in the cloud
arena, aimed at designing an open, secure, decentralized, multi-stakeholder man-
agement framework for F2C (Fog-to-Cloud) computing, including novel pro-
gramming models, privacy and security, data storage techniques, service cre-
ation, brokerage solutions, SLA policies, and resource orchestration methods
[7,8]. There is an increasing demand on evaluating and identifying new mar-
ket sectors and opportunities, and interest at the IoT evolution as a potential
arena where current commercial cloud services offering could be enriched and
differentiated. In this perspective a relevant focus in setting up hubs in public
environments (e.g. airports, train stations, hospitals, malls and related parking
areas) is suggested, capable of tracking the presence of people and other objects
in the field, and developing added value services for proximity marketing, pre-
diction of path/behavior of consumers, and taking real time decisions. This kind
of environments can be implemented with a recommendation system, in order
to produce a new and personalized pleasant experience for end-users.

The foreseen hub can be easily considered as a fog environment that embeds
cloud connectivity to either process large amount of data or request extra-
data, perhaps data coming from other fogs located in near sites (e.g. airport,
1 http://www.mf2c-project.eu.

http://www.mf2c-project.eu
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train/main bus/ harbor station), and that could interact sharing data and cus-
tomer behavior gathered to improve the effectiveness of marketing proposals,
given that the identity of objects/customers is protected.

This scenario has been named as the Smart Fog-Hub Service (SFHS). The
use case is experimental and extends the concept of a “cloud hub” to a new
concept of “fog hub”, driven by real market needs [9].

The system is under development in the Engineering Labs, and will be moved
to the Cagliari Elmas Airport in 2019. In the final configuration the fog elements
will be positioned in the field in order to create a grid for Wi-Fi coverage.

The field (Fig. 1) includes check-in area, security control area, lounges and
departure gates. Check-in and departure gates host several shops and other
frequented places like bars and restaurants2.

Fig. 1. Use case scenario in the airport.

According to the current architecture specifications, the system has the fol-
lowing elements, as depicted in Fig. 3:

– A cloud layer, based on a OpenStack3 instance, wired connected with the
fog layers, that provides scalable computing power for machine learning algo-
rithms used for the recommendation system.

– A first fog layer, which acts as aggregator, based on a NuvlaBox mini4,
equipped with 8 GB RAM, that provides real-time computing and storage
resources to the edge elements.

2 http://www.cagliariairport.it.
3 https://www.openstack.org.
4 http://www.sixsq.com/products/nuvlabox/.

http://www.cagliariairport.it
https://www.openstack.org
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– A second fog layer, which acts as access node, based on six RaspberryPi35

with 1 GB RAM, that provide session management and fast response to the
edge devices.

– Android smartphones at the edge, connected to the access node with Wi-Fi,
and using an Android app to interact with the system; in this phase they are
used as data generator.

A core element of the system architecture is constituted by the mF2C framework,
able to manage and coordinate the orchestration of all existing and potentially
available resources, from the edge up to the cloud, when executing a service,
according to the service requirements and user needs. This is structured in a
hierarchical architecture (Fig. 2), where resources are grouped into layers, and an
mF2C agent entity deploys the management functionalities in every component
within the system. In practical scenarios there are different layers, from layer
0 at cloud, to layer N as closest to the edge, where the mF2C agent runs in
all devices capable of supporting it, and participating in the mF2C system. In
case of devices not able to run the agent, the related information is collected,
processed and distributed by the software agent connecting them to the system.
The clustering strategy and leadership election policy is still under development,
but includes elements like spatial distance and data connectivity. Additional
features of the mF2C system architecture are:

– A fog area (or cluster) is the set of nodes managed by a leader, with election
of a backup node, to be used in case of leader failure,

– Only one node acts as a leader in each fog area, and only one backup, which
substitute the leader in case of failure or loose of connection,

– Only IoT devices can be connected to any of the agents in the mF2C system

Fig. 2. mF2C architecture for IT-1.

5 https://www.raspberrypi.org/products/raspberry-pi-3-model-b/.

https://www.raspberrypi.org/products/raspberry-pi-3-model-b/
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The whole set of management and control functionalities of the agent is split
into two main blocks, the Platform Manager (PM), and the Agent Controller
(AC). The PM provides high-level functionalities, and manages the inter-agent
communications, with the capacity to take decisions with a more global view.
Agent Controller (AC) has a local scope, dealing with local resources and ser-
vices. At run time, when a service is requested to any of the mF2C agents, the
PM is responsible for deciding if this task can be executed in that agent, or
forwarded down to any of the agents in the area if the agent is a leader or up to
the higher hierarchical layer. If the task is forwarded, the communication is also
done through the PMs of the agents. The request is passed to the AC only when
an agent can execute the forwarded task, using the agent’s local resources.

In the use case, an mF2C agent software runs in all cloud and fog ele-
ments and provides management and control functionalities. An Android app
is installed in the smartphone and implements security and privacy features to
preserve managed data both at rest and in transit, with a security level com-
parable to the ones adopted by the mF2C agent. In particular, the Distributed
Execution Runtime (DER) in the mF2C agent is responsible for optimizing ser-
vices/tasks execution on the available resources. This component is based on the
COMPSs [5] framework and orchestrates the execution of the requests coming
from the mobile app, to optimally exploit the available computing resources. The
tasks generated by the execution of the applications are distributed, in parallel,
on the resources selected by other components of the mF2C platform. DataClay
in the mF2C agent performs the system data management.

At application level the following business processes have been identified and
under development:

– App installation and device registration.
– Position calculation, check for Points of Interest (PoI) & notification.
– Position data sync in fog & cloud.
– Airport events notification (flight call, but also invitation to move closer to

the gate).
– Recommendations generation based on user similarities (and recalculations

with data caching).
– Reporting (real-time and history) with the dashboard.
– Configuration of Points of Interest (PoI) and promotions (in case of shops).
– Filtering and calculating data in position data streams.

The overall idea is to track and engage all people and objects in the field
and use a Collaborative Filtering6 based recommender system to get the best
possible customer experience, with suggestion on the best way to use available
services, e.g. suggest the moment for shorter waiting times in Security Control to
departing people, to move close to the gate or notify the final call, or recommend
relevant proposals and offerings in shops close to the user. All these suggestions
can be refined according to behavior and choices done by passengers.

6 http://recommender-systems.org/collaborative-filtering/.

http://recommender-systems.org/collaborative-filtering/
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Fig. 3. Use case 3 system architecture.

The recommender system will play a major role for the personalization of
the traveler’s experience, machine learning based features like users similarity
will be used to suggest items that other users liked but the current user has
not interacted with yet. A particular care has been provided for the privacy and
security of personal data: the recommender system uses algorithms that works
perfectly without any personal information.

3 Architecture Evaluation

Given the nature of the chosen use case and the business processes listed above,
some characteristics emerge in terms of processing demand:

– Real-time requirements for position calculation and check for PoIs nearby.
– Massive calculation in the case of machine learning algorithms for Collabo-

rative Filtering.

While the processing demand from the machine learning can be offloaded
using the Fog-to-Cloud approach to ask for more computing power when needed
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and keep the latest data, the real-time requirements for position tracking and
engaging (with notifications) need to be managed immediately, starting from the
smartphone owned by the users.

The typical loop is the following:

– Calculate PoIs in proximity, given object position (x, y)
– Notify the user in case of PoIs nearby

This is a small processing that every object runs every few seconds with
immediate response, but that requires much higher processing capacity as the
number of devices in the field grows.

Since the smartphone is the selected device, the possible scenarios of imple-
mentation are:

1. Wi-Fi connectivity and mF2C support.
2. 3G connectivity and direct connection to a public cloud.

The first case corresponds to the architecture shown in the previous section,
with Wi-Fi connection between the smartphone and RaspberryPi3 devices, with
wired connections between the other layers. In this scenario the only network
link that requires attention is the Wi-Fi, that will be used in open space; further
copper or fiber connections can be ignored. In the other case the smartphone
uses 3G networking to connect directly to the public cloud that hosts the rel-
evant services. Here 3G connectivity is the most critical link, while intra cloud
communications could be ignored.

Both communication means try to satisfy the growing expectation of ubiq-
uitous connectivity for a broad range of services. At the same time, wireless
transmission means are highly variable in terms of bandwidth, latency, battery
usage.

The following are the main features of Wi-Fi communications with respect
to the proximity processing:

– IEEE 802.11g /n /ac standards are quite adequate to support the real-time
requirement and sustain the fast growing number of devices to be managed
in the field;

– The newest standards based on 5 Ghz frequency and MIMO (multiple input
multiple output) features enable wider bandwidth and faster response times

– Slow start events like first hop do not affect the overall speed of the commu-
nication channel;

– The Wi-Fi protocol is the preferred communication protocol for indoor com-
munication and adequate for the proximity processing request;

– Wi-Fi connections are more battery efficient than 3G/4G.

Table 1 summarizes the main features of Wi-Fi current technology.
The following are the main features of 3G/4G radio communications 7 with

respect to the proximity processing:
7 Ilya Grigorik, High Performance Browser Networking, O’Reilly, 2013.
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Table 1. Wi-Fi release history and main features

802.11

protocol

Freq

(Ghz)

Bandwidth

(Mhz)

Data rate (Mbit/s) Max

MIMO

streams

Median

Latency

- (msec)

b 2.4 20 1, 2, 5,5, 11 1 6,22

g 2.4 20 6, 9, 12, 18, 24, 36, 48, 54 1 6,22

n 2.4 20 7,2, 14,4, 21,7, 28,9, 43,3, 57, 8, 65, 72, 2 4 6,22

n 5.0 40 15, 30, 45, 60, 90, 120, 135, 150 4 0,90

ac 5.0 20, 40, 80, 160 Up to 866,7 8 0,90

– Intermittent network access, like polling, is a performance waste on mobile
networks, as it uses the packet based communication mean in the worst way;

– Real time analytics like proximity processing demand high battery usage
against all battery optimizations implemented in 3G/4G;

– Intermittent network access carries a large latency cost due to the Radio
Resource Control (RRC) state transitions

– In case of an HTTP request like in our scenario, also the DNS, TCP, TLS
and HTTP protocols can increase the overall latency in the communication;

– TCP implementation on top of 3G shows poor performances due to the 3-
way handshaking nature of TCP and related slow start, in practice it triples
response times, compared with native TCP implementation;

– 3G and 4G/LTE, in order to make the best use of bandwidth, have a kernel
that waits for data (buffer more requests) to have bigger packets instead of
sending smaller packets immediately

Table 2 summarizes the latency of a single HTTP request on 3G/4G network:

Table 2. Latency overhead of a HTTP request

3G 4G/LTE

RRC Control plane 200–2500 ms 50–100 ms

DNS lookup 200 ms 100 ms

TCP handshake 200 ms 100 ms

TLS handshake 200–400 ms 100–200 ms

HTTP request 200 ms 100 ms

Total latency overhead 200–3500 ms 100–600 ms

From the data presented above Wi-Fi seems to be much better than 3G,
only the latest 4G promise to compete with Wi-Fi over peak throughput and
latency, use battery in a more efficient way and be more adequate in indoor
environments.
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4 Experimental Results and Benefits from mF2C

All information reported seems to determine that the Wi-Fi network connection,
together with the fog-to-cloud approach, brings the best performance, thus being
the preferred solution for the Smart Fog Hub in the Airport for the proximity
calculations.

In order to validate this assumption an experimental benchmarking has been
defined with a client-server sample with the following characteristics:

– The client simply calls a request with a position (x, y) asking for the list of
available Points of Interest within 5 m,

– The server receives the request, calculates the available PoIs and return a
JSON array with them.

This client-server sample has been run in the following environments:

– (Client) XIAOMI REDMI NOTE2 smartphone with Android 5.0.2, and app
Rest Api Client for HTTP requests

– (Server - 1. option) RaspberryPi3 with ARM Cortex A53 64-bit cpu and 1 GB
Ram

– (Server - 2. option) VM running in a Public cloud on OVH-Paris, with 4 cpu
and 4 GB Ram, with minimum load. The average ping from the RaspberryPi3
to the VM is about 35 ms.

A VM running a service that provides the PoIs search has been prepared and
deployed on both server targets. The available Wi-Fi connectivity is based on
802.11g at 2.4 Ghz.

The following scenarios have been prepared for tests:

(A) Smartphone connects with Wi-Fi to RaspberryPi3, the “Rest Api” app calls
the service locally.

(B) Smartphone connects with Wi-Fi to RaspberryPi3, the “Rest Api” app calls
the service in the public cloud.

(C) Smartphone connects with 3G to the public cloud and the “’Rest Api” app
calls the service.

(D) Smartphone connects with 4G/LTE to the public cloud and the “Rest Api”
app calls the service.

In every test run a sequence of calls has been performed with a delay of 5 s
between consecutive calls.

Test results have confirmed the statements of the previous chapter: the mF2C
(A) with Wi-Fi connectivity approach over-performed 3G and 4G/LTE network
communications. Figures 4 and 5 present the test environment and summary of
response times collected.

The (A) scenario, currently used for the mF2C project, performed the best,
with a pretty stable and fast response. Times are in line with the real-time
requirement, but they could be improved with the use of 5.0 Ghz frequencies and
latest version that offer both a much wider frequency range and is still largely
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Fig. 4. Test environment in the different approaches.

interference free in most environments. The (B) scenario returned good values,
since it benefited from the four-cpu configuration and the minimum cpu load, but
with a high latency between the RaspberryPi3 and the Public cloud. Times are
2X compared with the (A) scenario, but still within the real-time requirement.
The (C) scenario scored the worst, with a median response time near 3 s, which
does not fulfil the real-time proximity requirement. The (D) scenario scored the
third, just within the limits of the real-time requirement. The sampling showed
a very stable response time, coming both from the low cpu load of the cloud
and low traffic on the 4G/LTE channel. Times are 3.5X compared with the (A)
scenario.

As final evaluation both theoretical aspects and experimental results confirm
that Wi-Fi must be preferred to radio communications like 3G or 4G/LTE, as
it fulfills completely the real-time requirement. As second aspect the fog-to-
cloud approach of the (A) scenario presents the best performance, thus it would
clearly highlight the benefits of the adoption of the fog support. The ability to
move close to the edge the computation makes the difference: even if with a
smaller computing element like a RaspberryPi3 the overall performance is fully
respondent to the requirement and leaves room for additional load that could
come from the adoption of augmented reality features.

It is remarkable to notice the benefits coming from the distributed processing
supported by the COMPSs and DER runtime support embedded into the mF2C
agent, that enables the optimization of computing, moving and balancing the
load at different levels of the fog hierarchy. Another benefit coming from the
mF2C support is related to the distributed data management: DataClay [6]
mechanisms such as replication guarantee that nodes requesting some data will
have a way to access it, even if the originating node is not available at a given
time. At the same time these replicas can follow different synchronization policies
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Fig. 5. Comparison of response times with different approaches.

depending on the particular data, while avoiding single points of failure. All
the mentioned benefits of orchestration, distribution and optimization in the
resource usage would not be possible with the direct link of the edge devices to
a centralized cloud-based architecture.

5 Conclusions

The relevant increase in the number of IoT devices is going to generate a huge
amount of data. While consumer market will attract most attention, B2B appli-
cations will generate more revenues. But the successful development of business
depends on critical factors like security, reliability and fast response of proposed
solutions. So the arise of the fog computing concept as an architectural model
that makes the glue between the cloud and the IoT, extends cloud computing
and services to IoT objects to the ends of the network.

The experimental use case on Smart Fog Hub Service (SFHS) has been
described, detailing the main business needs and the objectives of using prox-
imity marketing and a personalized customer centric approach based on the
use of Collaborative Filtering and a recommendation system. Both the system
and application architecture defined for iteration-1 have been presented, with
a detailed vision of the mF2C framework, its hierarchical architecture, resource
clustering in layers and agent splitting into PM and AC blocks. Then some crit-
ical requirements of the use case have been analyzed in depth, particularly the
real-time calculation of object positions and check for Points of Interests nearby.
For this reason two different approaches have been defined, one with the fog-to-
cloud support, the other with direct cloud connection. At the same time different
wireless communications means have been evaluated with their characteristics.

Finally, a benchmark has been defined for the experimental evaluation of dif-
ferent scenarios, where results have confirmed that the mF2C approach together
with Wi-Fi network connection brings the best performance, compared with
other approaches based on direct cloud connection and 3G/4G usage.
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Abstract. Devices and sensors generate streams of data across a diver-
sity of locations and protocols. That data usually reaches a central plat-
form that is used to store and process the streams. Processing can be done
in real time, with transformations and enrichment happening on-the-fly,
but it can also happen after data is stored and organized in repositories.
In the former case, stream processing technologies are required to oper-
ate on the data; in the latter batch analytics and queries are of common
use.

This paper introduces a runtime to dynamically construct data
stream processing topologies based on user-supplied code. These dynamic
topologies are built on-the-fly using a data subscription model defined by
the applications that consume data. Each user-defined processing unit
is called a Service Object. Every Service Object consumes input data
streams and may produce output streams that others can consume. The
subscription-based programing model enables multiple users to deploy
their own data-processing services. The runtime does the dynamic for-
warding of data and execution of Service Objects from different users.
Data streams can originate in real-world devices or they can be the out-
puts of Service Objects.

The runtime leverages Apache STORM for parallel data processing,
that combined with dynamic user-code injection provides multi-tenant
stream processing topologies. In this work we describe the runtime, its
features and implementation details, as well as we include a performance
evaluation of some of its core components.

Keywords: Big Data · Analytics · Stream processing
Real-time data processing · Programming models
Internet of Things · IoT

1 Introduction

In the last years, Big Data and Internet of Things (IoT) platforms are clearly
converging in terms of technologies, problems and approaches. IoT ecosystems
generate a vast amount of data that needs to be stored and processed, becoming
a Big Data problem. Devices and sensors generate streams of data across a
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diversity of locations and protocols that in the end reach a central platform
that is used to store and process it. Processing can be done in real time, with
transformations and enrichment happening on-the-fly, but it can also happen
after data is stored and organized in repositories.

This situation implies an increasing demand for advanced data streams man-
agement and processing platforms. Such platforms require multiple protocols
support for extended connectivity with the objects. But also need to exhibit
uniform internal data organization and advanced data processing capabilities to
fulfill the demands of the application and services that consume these streams
of data.

To provide answer to this growing demand, ServIoTicy1 is a state-of-the-art
platform for hosting real-time data stream workloads in the Cloud. It provides
multi-tenant data stream processing capabilities, a REST API, data analytics,
advanced queries and multi-protocol support in a combination of advanced data-
centric services. The main focus of ServIoTicy is to provide a rich set of features
to store and process data through its REST API, allowing objects, services
and humans to access the information produced by the devices connected to
the platform. ServIoTicy allows for a real time processing of device-generated
data, and enables for simple creation of data transformation pipelines using
user generated logic. Unlike traditional service composition approaches, usually
focused on addressing the problems of functional composition of existing services,
one of the goals of the ServIoTicy is to focus on data processing scalability. Other
components that can be connected to ServIoTicy provide added capabilities to
automatically create compositions of high-level services using existing tools [13].

The core of the ServIoTicy runtime relies on a novel programming model
that allows users to dynamically construct data stream processing topologies
based on user-supplied code. These topologies are built on-the-fly according to a
data subscription model defined by the applications that consume data. Once a
stream subscriber finishes its work, it is freed from the platform until it is needed
again. Each user-defined processing unit is called a Service Object (SO). Every
Service Object consumes input data streams and may produce output streams
that others can consume. Data streams can originate in real-world devices or
they can be outputs of Service Objects deployed in the platform.

Advanced streaming and analytics platforms such as ServIoTicy are com-
plex pieces of software that integrate a large set of components under the hood.
They hide their complexity behind simple REST APIs and multi-protocol chan-
nels. ServIoTicy leverages Apache STORM runtime for parallel data processing,
auto-scaling and operation placement, that combined with dynamic user-code
injection provides multi-tenant stream processing topologies.

This paper provides insights on the performance properties of ServIoTicy as
an starting point for the construction of advanced cloud provisioning strategies
and algorithms. The work presented here focuses on the processing topologies
built in ServIoTicy, although some details about other platform components are
also provided.

1 servioticy.com.

http://www.servioticy.com
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The source code of ServIoTicy is freely available as an open source project2

in GitHub. The platform is also available for single node testing as a vagrant
box, downloadable from a github repository3.

The main contributions of this paper are:

– A technique for user-code injection on a data stream processing runtime that
allows for multi-tenant stream processing on-the-fly. This runtime is the core
of the ServIoTicy platform.

– An insight on the performance of the code-injection technique, including
response time end-to-end in a processing pipeline and across stages.

The next sections of the paper are organized as follows: Sect. 2 introduces a
set of abstractions defined in ServIoTicy for managing data associated to objects;
Sect. 3 describes in detail the stream processing runtime of ServIoTicy; Sect. 4
presents the evaluation methodology and the experiment included in the paper;
Finally, Sect. 5 goes through the related work and Sect. 6 provides some conclu-
sions and future lines of work.

2 Abstractions Used in ServIoTicy

Several abstractions are used in ServIoTicy to embrace the different entities
involved in the existence of IoT ecosystems.

– Web Object: Web Objects are physical objects sitting on the edge of ServI-
oTicy and capable of keeping for example HTTP-based bi-directional commu-
nications, such that the object will be able to both send data to the platform
and receive activation requests and notifications.

– Service Object: Service Objects are standard internal ServIoTicy representa-
tions of Web Objects. This entity serves mainly for data management pur-
poses and has a well-defined and closed API. That API is needed in order to
streamline and standardize internal access to Service Objects, which can in
turn represent a variety of very different Web Objects providing very different
capabilities.

– Sensor Update: Sensor Updates are the unit of data sent by a Web Object
to its Service Object. It contains the different synchronously sensed values
and a timestamp that is maintained all over the pipelines. A subscription or
a query to a Service Object will get the data in this format.

3 Data Processing Pipelines

Service Objects store their associated data in abstractions called streams. The
unit of data that can be observed for one stream is called a Sensor Update (SU).
Applications can subscribe to or query data associated to any stream. Streams
can be of two different types:
2 https://github.com/servioticy.
3 https://github.com/servioticy/servioticy-vagrant.

https://github.com/servioticy
https://github.com/servioticy/servioticy-vagrant
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– Simple data streams store data generated in the physical world by a sensing
device, assuming that a device with N sensors will generate N streams of
data that will be grouped in a Service Object abstraction that represents the
device.

– Composite data streams represent transformations (aggregate, merge, filter
or join, among other possibilities) performed on other data sources (either by
devices located in the physical world or by Service Objects existing in the
ServIoTicy platform). They can be thought about as a virtual (non-physical)
sensor of the SO.

From an API perspective there is no difference between a simple stream and
a composite stream, as they both support queries and subscriptions. Therefore,
the inputs of composite stream can be streams or other composite streams. These
chained transformations of SUs are called Data Processing Pipelines.

3.1 Data Structures
The structure of a Sensor Update that corresponds to a given stream is basi-
cally composed of a series of Channels associated to the dimensions of the data
represented by the stream (e.g. a geo-location stream may contain two chan-
nels representing the latitude and the longitude correspondingly), and a times-
tamp reported by the data source as the time at which the Sensor Update was
generated.

The composite stream structure is similar to the structure of a SU. It contains
channels, and each channel contains a so-called ‘current-value’ field that repre-
sents the output value that the composite stream will emit after ingesting a new
SU, assuming that the output is not filtered. In a SO document, the content of a
‘current-value’ field is a string with a JavaScript variable assignment using any
mix of basic operator and functions from the Math object, String object, Array
object, as well as shorthand conditional expressions (a = b ? true: false). The
result of the assignment to ‘current-value’ will always be numeric, a Boolean,
a string or an array of the previous types. It will be stored and emitted to its
subscribers.

3.2 Stages of the Processing Pipeline
Once a SU reaches a composite stream as one of its inputs, it goes through a
number of stages in order to transform it into a new output SU. This process of
ingesting a SU and processing it until a new SU is produced can be summarized
as the following set of stages:

1. Subscriber dispatching: A sensor update gets into the processing pipeline,
along with its origin information. This stage looks for the subscribers of its
origin and if they are composite streams, they are requested and sent to the
next stage with the SU.

2. Data Fetching: The composite stream may need access to the data stored by
other streams that are inputs involved in the data transformation. In each
stage, the sources needed by the stream are queried and their data made
available for the rest of the stages, altogether with the original SU. References
to fields on the Sensor Updates are made using JSONPaths.
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3. Transformation & filtering: Data transformation is performed by taking all
the SUs extracted from all the data sources, and operating on their associated
data using JavaScript algebraic operations and its Math object functions,
String object operations, Array object operations, and boolean operations,
to finally obtain a single value for the new SU to emit. Also, before and after
the transformation SUs are discarded if a defined filter assertion is false, and
no further stages would follow.

4. Store, trigger actions and emit: Finally, the generated SU gets stored and
emitted to the stream subscribers. Additionally, in this final stage, actions to
be sent back to SOs are triggered. Such actions will end up being sensor actu-
ations that will be driven through the WOs that embed the actual physical
objects.

In ServIoTicy, basic physical object actuation is driven through SOs. When
a SO gets an action invoked through the SO actions API, the action is initiated
on the corresponding WO, that will act as a proxy for the physical actuator. If
a user needs to be able to manually request the execution of a composite action
(involving multiple SOs), it is necessary to create a SO that includes the desired
action and references to the individual SOs representing each of the physical
objects to be actuated, so that the composite action can be properly triggered.

3.3 Design Principles
The data processing pipelines introduced in this work are intended to be scalable
in accordance with other works found in the literature [15]. In particular, the
key design principles considered for the data processing pipelines were:

– Event-driven: A new SU calculation is triggered in a stream when it receives
a SU.

– Lock-free: A stream that needs of several different SUs to generate a new one
will not lock until all of them are received. It makes use of the received SU,
and queries the last SUs from the other needed streams.

– Real-time data processing oriented: Each new SU is processed individually
without waiting for a batch.

The approach followed by ServIoTicy is an asynchronous model for which
only one of the sources needs to issue a sensor update to trigger the processing
of the composite stream. It enforces a high rate of updates and avoids locking
the generation of new updates because one sensor is idle. This situation would
lock an entire pipeline.

3.4 Time, Data Consistency and Efficiency
A composite stream can take as inputs the most recent SU from any stream
declared in the platform, either from its own Service Object or from any other
Service Object. In the context of a particular data stream, that receives SUs as
inputs and stores data associated to its outputs in the platform, some restrictions
need to be in place to keep chronological consistency of the data being produced
by a given composite stream.
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More formally, let S be a composite stream that takes as inputs the SUs
generated by N streams. Let suti

i be the most recent SU associated to the ith

stream that is a data source for S, where 0 ≤ i < N , and let be ti the associated
timestamp to suti

i . Also, let suts
s be the most recent SU associated to the stream

S. Notice that it is possible that ∃i such that i = s if S consumes its own
previously generated data to produce new outputs.

Then we can define SU t
s,in = {sut0

0 , sut1
1 , . . . , su

tn−1
n−1 } as the set of N inputs

that S will use to produce one new output SU t
s,out with timestamp t. This output

will be defined as a function SU t
s,out = f(SU t

s,in) that is user-defined.
Given these definitions, ServIoTicy needs to guarantee that the function f is

calculated (and an output SU t
s,out emitted) only once for the same set of input

values, and that at least one of the SUs in SU t
s,in needs to be updated (with

a more recent timestamp) to trigger the computation again. Furthermore, it is
necessary that the set SU t

s,in satisfies that ∃suti
i ∈ SU t

s,in such that ti > t to
initiate the computation of f to emit SU t

s,out.
This restriction can be enforced by checking all the elements of SU t

s,in every-
time that an element of the set is updated. But this approach can result in
performing large amounts of costful operations just to decide that the condi-
tions were not satisfied and that no new output needs to be emitted.

To mitigate this problem, ServIoTicy relaxes the previously stated restriction
to the form tj > t where 0 ≤ j < N and su

tj
j is the actual element in SU t

s,in

that triggered the computation. This relaxation is possible because if an element
exist in the set other than the one triggering the computation that has a more
recent timestamp than t, then this it is very unlikely that this element has
been computed before in time, because then t would have to be as recent as its
timestamp. Otherwise, if the element with more recent timestamp has not yet
triggered the computation, then it means that the SU has been stored for the
source stream and it must be awaiting in a queue its time to be processed, and
therefore it will trigger the computation soon.

3.5 Execution Trees of the Data Processing Pipelines
The structure of a pipeline created using the ServIoTicy subscription model is
by definition a directed graph. In practice, though, it behaves more like a set of
trees. The reasoning behind this statement is discussed in this section.

When an update reaches a stream, if it is newer than the last generated
update, the computation will be triggered. But if the received update is as new as
the last generated update, the computation will be discarded. Consider a stream
that has several inputs and they originally come from the exact same entry
stream to the pipeline (source). When one of the inputs receives an update, at
some point all the other inputs will receive an update with the same timestamp
and the subsequent computations will always be discarded. Only the first update
to reach the stream will trigger the computation.

From this reasoning it can be deduced that the set of paths of the triggered
computations from a single source will always end up looking like a tree. For
example Fig. 1(a) represents the graph of a valid pipeline. The computations
that would be generated from the subscriptions d→c and h→e are discarded for
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the explained reasons. Therefore the execution graphs look like in Fig. 1(b), and
updates from d to c and from h to e will only be queried.

(a) Pipeline digraph (b) Execution trees

Fig. 1. Relation between a pipeline and its execution trees

Another interesting property of a pipeline is the novelty of its generated data,
and it is useful for evaluating the quality of a stream. A stream generates novel
data when it has an input with a source that no other input of the same stream
has. The further a stream is in a path from the last new source addition, the less
novel its generated SUs are. For example in Fig. 1(a), c, g, h and e are 1 level
more novel than f and d. See that e gets data sourced on b from two inputs,
but theres also another input sourced on a. On the other hand f and d are one
vertex away from the most novel source. At the levels of data novelty of this
example, getting data from f or d is not a problem. The problem comes when
the distance from the most novel stream is too far away will always take too
much time to process an SU that will not add much value to what it is already
evaluated, and will generate several discarded computations which will end up
being time consumed without a result. Novel data means faster dispatch, less
noise in the pipeline and more added value on the data.

3.6 Runtime Implementation and User-Code Injection
The software that dispatches the incoming SUs and executes the pipelines runs
on STORM. STORM topologies are static, but the pipelines can easily change
over time, add connections between them, and have arbitrary sizes. For this rea-
son the STORM topology in ServIoTicy runs the stages described in Sect. 3.2,
common to all the pipelines to be processed. On the subscribers dispatch stage,
the target streams are requested, with the code to be executed in them (pre-
viously deployed by the owner of the Service Object using the REST API). In
the different execution stages (filters and transformation), the JavasScript code
related to it is executed on a JavaScript engine. The JavaScript engine used is
Rhino.

4 Evaluation

This section presents a performance evaluation of the implementation of the
ServIoTicy Data Pipelines.
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4.1 Evaluation Methodology and Infrastructure

In the experiment we explored the performance of several randomly-generated
topologies. We present here the average results for all of them and the specific
results of one illustrative case. A number of SUs were submitted to the topologies,
and we measured the time it took for each SU to be propagated to all the streams
that were subscribed directly or indirectly to the SU.

To drive the evaluation we developed a tool to automate the generation and
deployment of randomly generated Data Processing Pipelines. The tool provides
several control knobs to customize the properties of the topologies being gen-
erated. The most relevant controls are the number of streams, the number of
composite streams, the number of operands per stream and how the operands
are distributed between the streams.

The tests were run on two sets of nodes: one set for running the client emu-
lators and one set for running the servers of the system under test. The ‘server’
set was composed of 16 two-way 4-core Xeon L5630 @2.13 GHz Linux boxes, for
a total of 8 cores per node and 16 hardware threads because hyperthreading was
enabled. Each ‘server’ machine was enabled with 24 GB of RAM. The ‘client’ set
was composed of 2 two-way 6-core Xeon E5-2620 0 @2.00 GHz Linux boxes, for
a total of 12 cores per node and 24 hardware threads because hyperthreading
was enabled. Each ‘server’ machine was enabled with 64 GB of RAM. All nodes
were connected using GbE links to a non blocking 48port Cisco 3750-X switch.
The ServIoTicy data processing runtime was deployed on 2 server machines, and
1 client machine was used to generate the SUs. The REST API used the other
nodes to host its components. For the data processing pipelines we used Apache
STORM v0.9.2-incubating, Kafka v0.8.2.2 and ZooKeeper v3.4.5.

(a) Graph (b) Input stage latencies (c) Output stage latencies

Fig. 2. Topology number 3 and its related experiments results

4.2 Experiment

For this experiment, we generated six different testing topologies for ingesting
data produced by a Service Object. The characteristics of these topologies are
summarized in Table 1. They can be grouped based on their size (small, medium
or large), and we randomly produced 2 samples of each complexity level. Based
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Fig. 3. Stage latency by degree

on our experience, topologies 1 and 2 emulate two realistically sized situations.
Topologies 3 and 4 are large cases. Finally, topologies 5 and 6 are extreme cases.
A graphical representation of topology number 3 is shown in Fig. 2(a). In this
figure, dark nodes indicate a high out-degree and big nodes represent high in-
degree. The in and out degree related properties are also very relevant for this
experiment, as they have a big impact on the metrics taken.

Table 1. Pseudo-random topologies

Type Small Medium Big

Id 1 2 3 4 5 6

Max in-degree 9 8 14 16 29 24

Mean in-degree 1.42 1.94 3.54 3.51 5.28 6.18

In-degree std. dev 2.22 2.63 4.36 5.05 7.43 7.38

Max out-degree 4 7 15 15 25 28

Mean out-degree 1.42 1.94 3.54 3.51 5.28 6.18

Out-degree std. dev 1.07 2.14 4.59 4.44 7.71 9.48

Edges 30 37 149 151 423 458

Nodes 21 19 42 43 80 74

Sources 11 9 17 18 30 24

Sinks 4 7 15 15 25 28

Density 0.14 0.21 0.17 0.16 0.13 0.16

Connectivity 1 1 1 1 1 1

Edge-connectivity 1 1 1 1 1 1

For each data source, 10 Sensor Updates were sent to the platform in
sequence: a new update was generated only after the previous pipeline compu-
tation was finished. During the topology execution, two metrics were measured
for each stream. The first metric is the execution time to perform all the data
queries required to complete the processing, named the input stage. This metric
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measures the effect of using several inputs to generate a new update. The second
metric is the time difference between the instant at which a new update is emit-
ted and the time at which all subscribers have received it: this metric measures
how the topology processing time is affected by the number of subscribers at
each stage of the processing pipeline. This is named in this section as the output
stage.

Other stages were also measured, such as the injected code processing time
or the time an update remained unaccessed in Kafka. The function to generate a
new update was always a summation of the inputs, and so had complexity O(n),
being n the in-degree. However, these measures resulted on negligible times and
have not been included in the discussion.

Figures 2(b) and (c) show all the latencies measured for topology number 3.
Each dot in the plot represents one execution of a topology node with a given in-
or out-degree that corresponds to the value in the X-axis. The average latency
for each degree is also drawn in both charts as a solid line. As it can be observed,
latency grows linearly with the degree level as some sequential operations are
required for each operation. Although the communication is made asynchronous,
the stages need to be closed before jumping to the next step for the topology,
and therefore it is necessary to wait for all on-the-fly operations to complete at
some point, what results in a waiting time that is proportional to the number of
initiated operations and therefore the degree of the stage.

Finally, Fig. 3 shows the average latency on the input and output stages for
every related degree, across all six topologies. As it can be observed, the latency
of both the input and output stages grow linearly, but in a higher pace in the
output stage. While the in-degree latencies look almost the same to Figs. 2(b),
the out degree grows faster. The reason for this worse performance is that this
Figure reports average values that are affected by the higher latencies of the
bigger topologies. Therefore, the time of the output stage not only depends on
the out-degree, but also on the total size of the topology. And in particular, the
topology length is the most important factor that affects the performance of the
topologies. The larger the topology is, the more operations are run in parallel
in the topology and therefore the largest the response times of the components,
resulting in a slightly higher latency to complete the processing of an update.

5 Related Work

In the last years several stream processing platforms have emerged, being Apache
Storm [2] the most popular and it is used in this contribution as a platform run-
time. Storm is a distributed, reliable, and fault-tolerant stream processing sys-
tem, which was open sourced by Twitter after acquiring BackType and now dis-
tributed by the Apache Software foundation. ZeroMQ or Netty are the messaging
interfaces between the computation units. In the last versions multi-tenancy was
added in terms of several tenants deploying isolated topologies. This topologies
are always in memory whether are being used or not, and there is not data
subscription between tenants. Also open-source and distributed by the Apache
Software Foundation are Apache Samza [10] and Apache Flink [1] and Apache
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S4 [12]. Apache Samza uses Kafka for the whole messaging between the compu-
tation units and YARN for resource management. Apache Flink is a streaming
dataflow engine that provides data distribution, communication, and fault tol-
erance for distributed computations over data streams. It has two APIs, one for
data streams and another for data sets or batch processing. Flink also bundles
libraries for domain-specific use cases like complex event processing and machine
learning. Apache S4 is an already deprecated project started by Yahoo with a
very similar topology based philosophy to Storm and an architecture resem-
bling the Actors model. Microsoft Research developed a proprietary solution for
complex event processing called StreamInsight [7]. It also leverages a program-
ing model for temporal data streams, operator algebra and continuous queries.
Other relevant foundations on stream processing in real-time from Microsoft
come the CEDR [9] project. It is centered in the problem of keeping time con-
sistency on event streaming. Other well known research related projects on data
streams are Aurora [6] and its forks Medusa [8] and Borealis [5]. None of this
projects are maintained anymore. From the perspective of data stream sharing,
StreamGlobe [11] offers a Grid Computing solution using a P2P approach. It
consist then in stream sharing between machines but not multi-tenancy.

Data Centric view of the IoT is not something new for ServIoTicy as it
was widely covered in the survey presented in [14]. What ServIoTicy uniquely
provides is an open source solution that challenges the features of commercial
solutions such as Xively [4] and Evrythng [3], while extending their capabilities
with the ability to inject user-defined code into its stream processing runtime.

6 Conclusions

In this paper we have introduced a multi-tenant data stream processing mecha-
nism on top of Apache STORM that enables the tenants to share data streams
between them. STORM provides auto-scaling capabilities that make it partic-
ularly suitable for cloud deployments. The ServIoTicy runtime allows for users
to deploy custom service codes inside Service Objects in the form of composite
streams, and subscribe those streams to multiple sources of data (either outside
the platform on real-world devices or in other streams defined in the ServIoTicy
platform by other users). The user-code will be automatically injected in the
STORM topology and executed when a unit of data is generated from a source to
which the composite stream is subscribed. The runtime is designed to be highly
scalable, following a lock-free model that combines operations triggered by new
data being generated inside or outside the platform, with queries performed
over historic data logged for existing Service Objects. The design imposes some
restrictions mainly related to the timestamps of the updates being processed,
and some optimizations are applied to improve the scalability of the platform. A
basic evaluation of the runtime is included in this work, showing how acceptable
response times of less that 100 ms can be delivered by basic composite streams,
and that for most realistic pipelines can be processed in the range of less than a
second. The work presented in this paper is, to our knowledge, the first multi-
tenant IoT data processing platform for the Cloud.
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Abstract. Cloud and Fog Computing are two emerging technologies
that have being used in various fields of application. On one hand, Cloud
Computing has the problem of big latency, being especially problematic
when the application requires a rapid response in the edge network. On
the other hand, Fog Computing distributes the computational data pro-
cessing tasks to the edge network to reduce the latency, but it still faces
challenges especially when dealing with support for mobile users. This
work aims to present a review of the works in Cloud/Fog Computing
that use mobility prediction techniques in their favor in order to deal
with users mobility problem. Additionally we present the potential of
applying the techniques in Cloud/Fog environments.

Keywords: Cloud Computing · Fog computing · Mobility prediction

1 Introduction

In recent years, humans have become more connected. In the next few years it
is expected that billions of new devices, each one with the capacity to collect
information, communicate and interact with the environment, to be inserted into
the world. Cloud [4] and Fog [9] computing are both new technologies that aim
to deal with those kind of devices.

Cloud Computing has the objective of deploying computational systems in
highly distributed environments and deal with configuration of resources. There-
fore, Cloud Computing is not a good choice to deal with applications that need
frequent communication or real time response. For this purpose, Fog Computing
was proposed. Fog Computing is implemented in the edge of the network and it
provides low latency, location awareness and improves Quality of Service (QoS)
for streaming and real time applications.

A major challenge is that most of those new devices will be mobile, so it will
be an important issue to know how to deal with this characteristic. Integrating
c© Springer Nature Switzerland AG 2019
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mobility prediction with Cloud/Fog Computing studies can be a solution to
face this problem. In this work we present an overview of three research fields
(Handover, Computation Offloading and Resource Management) in Cloud/Fog
computing presenting state-of-the-art works and additionally we discuss how the
usage of mobility prediction techniques makes sense in their context.

The remainder of this paper is organized as follows. Section 2 presents an
overview of human mobility prediction and some of its applications. Section 3
discusses how mobility prediction can be applied in Cloud/Fog Environments to
improve their capabilities. Finally, Sect. 4 discusses challenges and open issues in
applying Human Mobility studies to the Cloud/Fog computing field and presents
conclusions and future works.

2 Human Mobility Prediction

To improve urban mobility, accessibility and quality of life, it is important to
understand how people travel and conduct their activities. This issue has been
one of the major focus of city planners, geographers and transportation planners.
Human mobility is important to characterize mobility patterns such as walking
home, driving to working places or utilizing public transportation system and it
could be applied in several fields as epidemic control, urban planning, traffic and
forecasting systems. Urban human mobility prediction refers to the estimation
of the person’s next location.

Current human mobility models can be classified into two groups: trace-based
and synthetic models [18]. The trace-based models generally use GPS (Global
Positioning System) traces, Bluetooth connectivity observations or Call Detail
Records (CDR). A problem that we found in the use of trace-based models is that
the data are collected in a specific place, as a consequence, their applicability
can be limited. Synthetic models are defined on mathematical basis what makes
them widely used in simulations. A drawback in this approach is that it often has
limited similarity with a mobility behavior in the real world. Figure 1 presents a
taxonomy of the presented models.

Fig. 1. Taxonomy of presented models

To define which data collection technique will be used, it is important to
take in consideration what kind of application will be conducted and what is
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the minimum acceptable accuracy that the user expects. Many other studies
started to use GPS data to track people. With the popularization of the usage of
smartphones, it becomes very easy to obtain GPS data from users. An advantage
of using GPS data is its accuracy in outdoor locations and also it is a low cost
way to obtain data. A drawback is that if the user is using GPS embedded in
a smartphone he/she tends to keep the GPS signal turned off to save battery.
In the literature it is possible to find articles that use GPS signal embedded in
smartphones [35], taxis [37], public transportation [26] and private vehicles [15].

It is also possible to use WiFi Scanning to predict human mobility [25]. While
people are walking, their devices could automatically connect to WiFi Access
Points (APs). As soon as they connect, this information becomes available in
real time and the model can detect where the user is. When the user connects to
another AP the system will know his/her trajectory. Nowadays, it has become
very popular the usage of Call Data Records (CDR) in human mobility stud-
ies [36]. CDRs are recorded every time that a voice-call or SMS or any Internet
activities occurs. Each CDR record is composed by the user id, the cell id of the
handling tower and the date and time of the phone activity.

Other kinds of data used are from social networks. Existing works take advan-
tage of check-ins or geotags posted on social networks like Twitter [11], Flickr [7]
and Foursquare [1], to try to infer the user’s movement. They use the last and
before last information to try to create the possible user’s route. Additionally
they use information of possible Points of Interests and probabilities of most
visited places to deduce the user’s route.

The most common used mobility models are Lévy Walks [29] and Radiation
Model [34]. A Lévy Walk is a random walk in which the step-lengths have a
probability distribution that is heavy-tailed. Intuitively, the Lévy walks consist
of many short flights and occasionally long flights where a flight is defined to be
a longest straight line trip of a human from one location to another without a
directional change or pause.

The Radiation Model is a stochastic process that captures local mobility deci-
sions to help to analytically derive commuting and mobility fluxes that require as
input only information on the population distribution. It predicts mobility pat-
terns according to mobility and transport patterns observed in a wide range of
phenomena. Given its parameter-free nature, the model can be applied in areas
where there is a lack of previous mobility measurements, significantly improv-
ing the predictive accuracy of most of the phenomena affected by mobility and
transport processes. Other works in literature propose their own human mobility
prediction models.

The study of human mobility creates several possibilities to apply the
acquired knowledge. Several areas could take advantage of this field. It is clearly
that the direct application of this kind of study is in the characterization of
human trajectory. With the proposed models it is possible to determinate with
high accuracy what trajectory a person or a group will take in a certain moment
in a certain day.
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In network research field it can help in different aspects of network operation
such as handover, resource management, routing and in a better independent
deployment of connectivity models [19]. It is possible to apply human mobility
in a network to achieve large scale dissemination in a dynamic Device to Device
based communication network [2,14]. Human mobility prediction can also be
applied in the field of Mobile Cloud Computing [16,24]. For example, it is possible
to apply the user’s next location to determine which cloud is the best one to
migrate an application that the user is executing [3,33]. Delay Tolerant Networks
(DTNs) and Opportunistic Networks (OppNets) can also benefit from the usage
of human mobility detection [20,31]. This kind of networks need an inter-contact
time to have an opportunity to forward message from one device to another. If
the user’s next location is known the node can determine which is the best
receiver based on its location.

3 Application of Mobility Prediction in Cloud/Fog
Computing

This section presents and discusses some research areas of Cloud and Fog Com-
puting and how human mobility prediction can be used in order to improve
their capabilities. We list the usage of human mobility prediction technique in
Handover, Computation Offloading and Resource Management in Cloud/Fog
Computing. In the presented works, mobility prediction was used as an Input
source for decision algorithms. With this information the algorithms could deter-
minate how to better deal with the user’s mobility and what actions it should
take to avoid resource (time, computing resources, money) wasting. Table 1
presents a summary of the presented papers and contributions.

Table 1. Summary of presented papers

Research

fields

How mobility prediction was used? Mobility predictioncontributions

Handover – Takes RSS strength in consideration

to define the next fog node

– Determines to which fog node the

packets will be transmitted

– Decrease the handover rate

– Determine the best fog node to accept node’s

handover request

– Send data directly to the destination fog node

Computation

offloading

– Infer the next user’s location to

proactive migrate services

– As input source to offloading

decision-making systems

– Select the best cloud/fog to offload the tasks

– Partial offloading approach

– Determine if it has enough time to offload the task

– Recreate routes

Resource

management

– As input source to resource

allocation decision-making systems

– Determine the best location for cloud/fog nodes

– Allocate resources according to user’s next

location to have resources close to them

3.1 Handover in Cloud/Fog Environments

One of the main challenges in mobile environments is how to deal with han-
dover procedures. Handover, or handoff, is the process where a node maintains
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its connection active while moving from one point of attachment to another. The
idea is that the equipment should select the best base station to connect. One
simple rule to determine the best base station is the received signal strength
(RSS) level, in other words, the equipment will select the base station with the
strongest signal [5]. In case another base station provides a higher RSS than the
current base station, the user equipment will change its association. This can
occur if the user equipment moves away from the current base station, for exam-
ple. Other metrics besides RSS can be used. Many studies have been conducted
in order to evaluate the best time to perform a handover procedure [12].

Bao et al. [6] proposed a framework known as Follow Me Fog (FMF) to
support a seamless handover timing scheme among different computation access
points. The proposed framework has a mechanism to pre-migrate a job when
a handover procedure is expected to happen. The FMF framework constantly
monitors RSSs from different fog nodes to determine when a job needs to be
migrated. When the RSS from the current fog node is decreasing while, at the
same time, the RSS from a neighbor fog node is increasing, the computation jobs
are migrated before the connection redirection. As a result, the service can be
resumed when the mobile device is redirected to the new fog node. The authors
developed a prototype and their evaluation demonstrated that FMF can achieve
a latency reduction of 36.5% when a mobile device is handed over from one fog
node to another.

Chen and Tsai [10] presented a new mobility management mechanism using
an integrated strategy of Follow Me Cloud (FMC) and Follow Me Edge (FME)
called Follow Me Cloud-Cloudlet (FMCL) for smart cities. The FMCL approach
aims to reduce the total transmission time if some data packets are pre-scheduled
and pre-stored into the cache of a cloudlet when an user is switching from the
previous Fog-RAN (Radio Access Network) to the serving Fog-RAN. FMCL
is evaluated through simulation in terms of the total transmission time, the
throughput, the probability of packet loss, and the number of control messages.
The proposed FMCL approach outperforms existing FMC results in terms of the
total transmission time, the average throughput, and the probability of packet
loss, but with higher overhead due to the amount of control messages.

Zhang et al. [38] presented an architecture for Fog RAN (FRAN) and then
proposed a handover management mechanism using edge caching in FRAN.
Authors argued that conventional handover schemes are mainly based on RSS,
where handover decisions are made comparing it to a predefined threshold. Their
proposed mechanism considers APs as a resource for mobile devices making the
handover process problem a resource allocation problem. Using simulation the
authors concluded that the proposed FRAN architecture in conjunction with the
mobility management scheme can significantly decrease the signaling overhead
of handover compared to conventional RANs.

Handover management brings several challenges in Cloud/Fog scenarios. For
instance, the higher the mobility of an user, the higher his/her handover rate
will be. Other problem must occur is if a node stays attached for a short period
of time, as there might not be sufficient time for the system to complete the
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handover procedure. Human mobility prediction could be used to improve the
performance of handover procedures. If the user’s next location is known, the
handover procedure can be performed in an optimal way. In a scenario where
there is a dense network with several fog nodes, as expected in 5G networks, when
the node starts to move and his/her next location is known by the network, the
closest fog node can be responsible to accept his/her handover process and this
way optimize this procedure. Other possible usage of mobility prediction is when
the node that is moving has packets to receive. Instead of waiting to send those
packets to the node, the sender can send them directly to the destination fog
node to be cached until the node complete his/her handover procedure.

3.2 Computation Offloading in Cloud/Fog Environments

Computation offloading is a process where tasks that demand a large amount of
resources can be executed over a Cloud/Fog infrastructure in order to overcome
the resource limitation problem of mobile devices and to try to reduce the total
execution time. Due their limited and non-scalable processing power, mobile
devices take longer time to execute intensive computations when compared to
the same computations executed over the cloud. Transmission time for offloading
computations and retrieving the results is an important factor which determines
whether the offloading process will be beneficial [8]. Besides the advantage of
the increase in the computational power when users offload their task, they also
benefit from the decreasing in their energy consumption.

Farris et al. [13] formulated the proactive migration problem at the network
edge. They applied prediction schemes of user mobility patterns to improve their
results. The authors defined two integer linear optimization problems aiming at
the one hand to minimize Quality of Experience (QoE) degradation due to service
migration and on the other hand, minimize the cost of proactive replication.
The proposed algorithms were evaluated in terms of probability of user reactive
migration and average number of replicas per user.

Lee and Shin [22] developed an offloading decision-making technique based
on a mobility model of each individual user known as Mob-Aware. This mobil-
ity model takes advantage of the regularity of user’s mobility pattern and it is
characterized by a sequence of networks to which users are connected. The Mob-
Aware decision maker gathers previous user movements and network changes
corresponding to the movements, builds a mobility model with gathered data,
and then makes offloading decisions. The authors evaluated their technique using
a trace-based simulation with real log data traces from 14 Android users. The
results showed that their technique, when users are highly mobile, can increase
the performance of mobile devices in terms of response time and energy con-
sumption.

Li et al. [23] presented a mobility prediction based offloading heuristic to
mobile device clouds. As nodes are usually connected via wireless technology and
can change their locations from time to time, the connections between devices are
usually unstable and the applications offloaded may fail. The authors proposal
has the objective of guaranteeing that users are able to continue the applications
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offloaded seamlessly regardless of the mobility of the nodes. Based on the simu-
lation results, it was shown that in a Mobile Cloud Computing environment, due
to the mobility of nodes, it is very difficult to build a robust and effective envi-
ronment for client nodes to offload computation-intensive applications. With the
help of mobility prediction, the proposed heuristic can complete the applications
offloaded as soon as possible and with the least risk of failure.

Shi et al. [32] proposed a cloudlet service model and formulated the ser-
vice scheduling problem in cloudlets aiming to find the optimal service running
sequence which minimizes the average service response time during the whole
running process of the service for a user. The authors presented an algorithm
known as Mobility Prediction-based Markov Decision Process (MPMDP) that
takes user’s mobility prediction into account and uses Markov Decision Pro-
cess to make a decision on which cloudlet the services should run. Their pro-
posal was evaluated by simulation using real world traces. The results showed
that MPMDP achieves a lower average response time compared with previous
schemes.

Having information about user mobility is essential to optimize computation
offloading. If a node is moving and it needs to offload some task, it will be better
if it offloads its task to a Cloud/Fog closer to its final destination. In this way,
the node will be able to receive its results only when it finishes moving, avoiding
unnecessary communication in the network. Other possible approach is, instead
of full offloading a task to a cloud/fog close to its final destination, the node
could partially offload the task, in other words, it could divide the task in some
parts and then offload those parts during its trajectory. Those parts could be
send to clouds/fogs that are in the node’s way. Another issue in computation
offloading is that users must know for how long they will stay at a determinate
place. With this information they can decide if it worth to offload their task at
that moment. If they realize that they will not stay long enough to finish the
offload process, the user can decide to wait until he/she arrived in an area that
he/she will stay long enough to finish the process. Mobility prediction can also
be used to recreate routes in a effective way, since a user can be in a different
place than the one that he/she initially the offloading process.

3.3 Resource Management in Cloud/Fog Environments

Resource management is one of the main research fields in Cloud/Fog Comput-
ing. Providing resources at the edge of networks (closer to end-devices) brings
several benefits such as low latency. Resource management brings two different
perspectives: where is the best place to allocate the resources, and when and
how much resource it is necessary to allocate. The main ideas behind resource
management is that it has to meet the agreed QoS constraints and minimize the
resource waste. To achieve this, placement and scheduler strategies can play a
major role by keeping log of the status of available resources.

Gao et al. [17] studied the resource allocation problem for cloud-based cache-
enabled small cell networks. In the proposed model, the contents that users
request are stored both at the cloud pool and at the cache storage of each small
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base station. Additionally the cloud pool can predict the users’ mobility pat-
terns and determine the resource allocation scheme in a period of time. The
authors formulated the problem using Game Theory. To solve this problem,
they proposed a machine learning based resource allocation method. Simula-
tion results show that the proposed algorithm achieves up to 58.2% and 26.1%
gains, respectively, in terms of network throughput compared to random and
the nearest algorithms.

Karimzadeh et al. [21] proposed an architecture called MOBaaS (Mobility
and Bandwidth Availability Prediction as a Service). MOBaaS is composed by
two algorithms that have the objective of predict user(s) mobility and network
link bandwidth availability. The information provided by MOBaaS can be used
in order to generate triggers for on-demand deploying, provisioning, disposing
of virtualized network components and also for self-adaptation procedures and
optimal network function configuration during run-time operation. Authors
implemented MOBaaS on the OpenStack platform and their results confirmed
the feasibility and the effectiveness of the prediction algorithms and the proposed
architecture.

Mustafa et al. [27] introduced a solution to reduce the effect of resources
mobility on the performance of vehicular cloud, using an efficient resource man-
agement scheme based on vehicles mobility prediction. Their mobility prediction
model is based on an Artificial Neural Network that enables the vehicular cloud
to take pre-planned procedures. The main objective is to reduce the negative
impact of sudden changes in vehicles locations on vehicular cloud performance.
Simulation results show that the proposed approach has leveraged the perfor-
mance of vehicular cloud effectively without overusing available vehicular cloud
resources when compared to other resources management approaches introduced
in the literature.

Ojima and Fujii [28] proposed a resource management for Mobile Edge Com-
puting using user mobility prediction. User mobility prediction is executed using
linear Kalman filter for estimation of the connectivity. With mobility prediction,
users can select the more stable Edge Server during task request and task col-
lection decreasing the failing rate that implies users to proceed the tasks again.
Simulation results have shown that this process has improved the success rate.

Plachy et al. [30] presented an algorithm to enable flexible selection of com-
munication path together with a dynamic Virtual Machine placement. The
authors use mobility prediction for dynamic VM (Virtual Machine) placement
and to find the most suitable communication path according to expected users’
movement. The authors compared their approach to state of the art ones. The
proposed algorithm leads to reduction of the task offloading delay between 10%
and 66% while energy consumed by user’s equipment is kept at similar level.

Adding knowledge about user mobility can optimize the resource allocation
and placement in a Cloud/Fog infrastructure. As the location of data centers is
crucial to optimize resource utilization and to improve performance of services,
QoE can be enhanced in terms of content access latency, by placing user content
at locations where they will be present in the future. This approach can be
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used, for example, when some kind of event is occurring and it will be necessary
for the infrastructure to reserve resources to serve every node. In this kind of
applications fogs or clouds could be able to reserve an amount of their resources
for a specific node or for a group of nodes that are going to a place near the
cloud/fog. Thinking in a cloudlet infrastructure, for example, if users are far away
from cloudlets due to their mobility, it can lead to a poor network connectivity,
consequently, their user experience will be poor. The main idea is that services
and applications allocate the resources according to user’s future locations, this
way the resources will usually be close from the users.

4 Final Considerations

This work presented an overview of Handover, Computation Offloading and
Resource Management research fields in Cloud/Fog Computing presenting some
state-of-the-art works. Additionally we discussed how mobility prediction tech-
niques could be used to improve Cloud/Fog Computing capabilities.

Cloud and Fog Computing already have interesting results in the literature
and, as presented in the previous sections, researchers are already dealing with
mobility issues in their works. As still exists open issues, mobility prediction
problem will continue to be a hot research topic. Having mobile devices and
mobile resources creates lots of challenges such as how to handle the unreliable
connectivity with those resources, how to provide seamless handovers, which
model better fits to predict node’s next place. Having mobile resources introduce
another level of complexity in resource management algorithms.

The combination of mobility prediction with Cloud/Fog Computing brings
many advantages as showed before, but it still has some open issues. It is neces-
sary to create strategies to deal with mobility prediction failure, in other words,
how the system will behave if the user’s next location is wrong. Another point
is understanding users’ behavior and mobility patterns to better planning appli-
cation scheduling, in other words, it is important to know the perfect timing to
instantiate or migrate resources to decrease the waiting time.

Besides the usage of user mobility prediction, it should be of great value the
usage of virtualization technologies as Network Function Virtualization (NFV)
and Software Defined Network (SDN) to deal with problems in cloud and fog
environments. Both technologies can help in the virtualization process and can
also improve the performance of the system. As future works we aim to char-
acterize this interaction and further analyze how mobility prediction could be
more helpful in this new scenario.
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Abstract. Fog-to-cloud (F2C) platforms provide an excellent frame-
work for the efficient resource management in the context of smart cities.
In such a scenario, a vast number of heterogeneous resources, including
computing devices and IoT sensors, are considered in coordination to
provide the best facilities. One of the most critical and challenging tasks
in this framework is appropriately managing the set of resources avail-
able in the smart city. Many devices with different features should be
efficiently classified, organized, and selected, to fulfill the requirements
during services execution. In this paper, we present the design of an
architecture for resource management as part of a core module in an
F2C system. In this architecture, we classify both, the system resources
and services and, based on the users’ preferences and sharing policies; we
discuss the process of resource selection according to a predefined cost
model. The cost model could consider any cost dimension, such as perfor-
mance, energy consumption, or any eventual business model associated
with the F2C system.

Keywords: Fog-to-Cloud (F2C) · Internet of Things (IoT)
Resource management

1 Introduction

In the current era of the smart world, we are and will be surrounded by a broad
set of smart objects, thus gradually, day by day, entering into and forming part
of an ever smart environment. In these days, significant research and industrial
activities are focusing on making everything much smarter. Many of these activ-
ities are using cutting-edge technologies. In this endeavor, the Internet of Things
(IoT) [9] is the most promising and enabling technology. In these days, almost
all of the computing and small electronic devices have the facilities to connect to
the Internet. Indeed, in [15], authors already provided various statistics to repre-
sent the increment rate and future trends of using the IoT devices. So following
these trends and statistics, it is clear that, as we are gradually entering into the
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smart environment, the number of IoT devices is also drastically increasing. By
looking at the smart environment system, it is noticeable that all these massive
numbers of IoT devices and other computing devices are highly distributed and
scattered over the network. For that reason, correct management of this massive
amount of devices intended to provide latency-sensitive services to the end users
efficiently - is one of the most challenging tasks. To that end, the Fog-to-Cloud
(F2C) concept recently came up aimed at optimizing resource utilization while
efficiently executing services.

In order to better understand what the F2C paradigm is, we represent in
Fig. 1 our view of smart city. In this figure, a smart city may consist of multi-
ple numbers of Fog Areas, each consisting of several heterogeneous IoT devices
and other computing devices. Most interestingly, all these devices are diverse
in nature. So, the management of this vast number of devices intended to pro-
vide real-time services delivery efficiently is the most crucial issue. By considering
these challenges and problems, our primary intention is to find out a suitable and
proper resource management strategy particularly suiting the F2C paradigm.
By identifying the resource and service classification and also by focusing on the
functionalities of the different management module (i.e., categorization, resource
sharing, resource collector etc.), in this paper, we are proposing the outlined
structure for managing the resources in the system. This adequate resource man-
agement strategy architecture is envisioned as the initial step for defining the
proper resource management strategy in the F2C.

Fig. 1. The Fog-to-Cloud (F2C) computing paradigm in a smart city.

The rest of the paper is organized as follows. We discuss the background of our
research work in Sect. 2. The core concepts of the F2C computing are presented
in Sect. 3. In Sect. 4, we present the resource management architecture for the
coordinated F2C paradigm. Following the previous sections, in Sect. 5 we briefly
discuss the future directions of our work by focusing on the various aspects of
designing the cost model in the F2C paradigm. Finally, some concluding remarks
of our research work are given in Sect. 6.
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2 State of the Art

With the recent advancement in modern technology and considering the smart
city scenario, many applications need real-time service provisioning support and
a massive amount of processing and storage capacity. So to fulfill these require-
ments, the new coordinated F2C system has emerged. In this system, IoT, fog,
and cloud technologies are potentially equal and play the crucial role to bring
more efficiency in the smart city scenario. Most importantly, in a smart city
scenario, the diversity and heterogeneity in the system resources and services
generate key challenges in building an efficient resource management strategy in
the F2C paradigm.

In [14], to improve the efficiency of fog resource utilization and satisfy the
users’ QoS requirements, the authors proposed a dynamic resource allocation
strategy for fog computing based on ‘priced timed Petri nets’. Whereas in [10],
considering the IoT devices and the fog computing platform the authors proposed
a simulator. The simulator toolkit measures the impact of a resource manage-
ment strategy in fog computing by considering the latency, network congestion,
energy consumption, and cost. Defining the cost model is one of the critical
tasks of any computing platform. In [1], authors proposed a cost model for the
fog computing platform, where they proposed the process for determining the
cost of accessing the resources to execute some tasks. Considering the virtual-
ization techniques, in [2], the authors proposed an architecture and a strategy
for resources provisioning in fog computing environment. Authors in [8] pro-
posed the linear programming based heuristic algorithm to build a cost-efficient
resource management strategy for the framework, which they have considered. In
that algorithm, they addressed the computation complexity in a fog computing
supported medical cyber-physical system.

Similarly, in the cloud computing paradigm, some research has been done to
tackle the cloud resource allocation and scheduling problem, both in academia
[22] and industry [21]. In [4,20], authors designed some work-flows for allocat-
ing the cloud resources and achieve some specific goals. Furthermore, in [23], a
resource management strategy has been described by considering the applica-
tion performance and cost. Whereas in [18], the authors proposed a scheduling
algorithm for cloud resources to enhance the cloud resource utilization and guar-
anteeing some execution deadlines. In [11], the authors presented a distributed
cloud resource allocation algorithm by optimizing the service response time.
Also, in [16], authors proposed a combinatorial double auction-based model for
allocating cloud resources.

Finally, like as the fog and cloud paradigms, in some other related computing
paradigms, some research has been done to find out the most efficient resource
management strategy. For instance, in [6], the authors proposed an auction-
based market-oriented resource scheduling algorithm for managing the resources
in a grid computing platform. Some research work has also been done on the
combined, fog to cloud, or cloud-edge platforms, to manage the system resources.
For example, by minimizing the service-latency, authors in [19] proposed the
QoS-aware service allocation problem in the combined fog-to-cloud architecture.
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Also, in [17], for a performance-sensitive application, the authors presented a
framework for managing the cloud-edge resources and guaranteeing the QoS
factor of their considering system. Though several numbers of research works
have been already conducted on tackling the resources in different individual
computing paradigms, we have not still found any comprehensive, cost-effective
strategy to managing the resources in such coordinated F2C computing platform.

3 Architectural View: The F2C Framework

In smart cities, the combined F2C computing paradigm has emerged as a ref-
erence architecture for optimizing resource utilization and improving services
execution. The main rationale for F2C is to combine the whole set of resources
brought in by putting together cloud computing and fog computing [5], seeking
for higher QoS delivery and a much better resource utilization. By following
Fig. 1, it can be easily identified that in a modern smart city several Fog Areas
may be defined to build the coordinated F2C platform. Each Fog Area builds
upon a vast amount of different IoT devices and considers a particular node is
acting as a fog service provider and thus responsible for providing the fog ser-
vices to the users of the corresponding Fog Area. This particular node is known
as Leader Fog Node. Similarly, many different cloud providers may control the
provisioning of cloud facilities to the citizens of a smart city.

Fig. 2. Fog-to-Cloud (F2C) computing architecture: Hierarchical representation.

In [12], the authors represent the F2C platform as a combined, hierarchi-
cal and layered architecture, where cloud resources reside at the top layer and
fog resources at the bottom, right above the IoT devices. Indeed, according to
the envisioned architecture, the IoT layer resides at the bottom of the layered
architecture and includes the whole set of IoT devices. The architecture con-
siders several intermediate fog layers, which are built by grouping various edge
devices. Hence, in this section, by considering all the key potential issues in the
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smart city scenario, we represent the hierarchical structure of the F2C architec-
ture as shown in Fig. 2. Following the hierarchical structure and considering the
depicted smart city scenario we argue that for each Fog Area, the Leader Fog
Node is acting as a gateway for coordinating with the upper layer resources.

Also in the same paper [12], authors highlighted the need to have a com-
prehensive devices control and management strategy to build an efficient F2C
system in their research work. As mentioned previously, we identify heterogeneity
as the main challenge of managing the vast amount of devices. So, in this paper,
by knowing the system resources and services, we present the model for manag-
ing the system resources and efficiently providing services delivery in the F2C
paradigm. Consequently, in the next section, we describe the proposed model for
the resource management strategy in the F2C paradigm. Moreover, we briefly
discuss the various modules involved in the resource management strategy of the
F2C paradigm.

4 Proposed Model: Resource Management Strategy for
the F2C Paradigm

Before we intensely focus on the resource allocation strategy in the F2C plat-
form, it is relevant to briefly discuss on the various modules and aspects, which
are mandatory to build a proper plan for managing the resources in the F2C
paradigm. Consequently, in this section, we represent the strategical model for
managing resources in the F2C platform.

Fig. 3. Resource management strategy in the F2C paradigm.
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In Fig. 3, we represent the framework for managing the resources in the Fog-
to-Cloud (F2C) computing platform. According to the diagram, there are several
components or modules are working together to achieve the proper resource
management strategy in the F2C paradigm. Considering the various potential
issues in a smart city scenario, in the next, we briefly discuss the functionalities
of each component or module.

4.1 Categorization Module

As earlier mentioned, the most significant challenge, for managing resources in
a smart city scenario is the diversity and variety of the whole set of resources
from the edge up to the cloud. Simultaneously, many different services may be
considered in a smart city scenario. Undoubtedly, by successfully and efficiently
providing all these services to its citizens, the city becomes much more smarter.
Unfortunately, services have different characteristics (i.e., free or chargeable ser-
vices), contexts (i.e., governmental, health, educational, etc.) and even different
requirements (i.e., resource requirements for executing the services). That kind
of diversity creates notable difficulties to build up the proper resource manage-
ment strategy in the F2C paradigm for an appropriate matching with the smart
services. So, before forming the appropriate resource management strategy, it
is pretty relevant to identify the classification and categorization of the system
resources and services involved in the F2C paradigm. Hence, in this subsection,
we first put the focus on the resource categorization, and later on, we briefly
represent the service categorization.

Resource Categorization. The enormous diversity and heterogeneity of the
system resources create some serious challenges for managing them into the
F2C paradigm. For that reason, it is essential to know the system resources
properly by understanding their characteristics and build a proper catalogue of
them. Following the hierarchical structure of the coordinated F2C platform in a
real smart city scenario, it can be easily identified that the devices working at
the lower layer (i.e., IoT or fog layer) are mostly resource-constrained devices.
Thus, their computation, storage and processing capabilities are different from
those at upper layers (i.e., cloud layer) devices. Most interestingly, in the F2C
visualized scenario this evaluation is even more elaborated, leveraging the various
layers foreseen for fog. Indeed, according to the hierarchical structure of the F2C
platform, different layers include devices with different characteristics. Thus,
considering all these potential issues and the hierarchical layered structure of
the F2C paradigm, we propose to define a novel taxonomy for characterizing the
different F2C resources.

In Fig. 4 we represent the categorization model of the F2C system resources.
Initially, in the F2C system, several attributes and characteristics are consid-
ered to classify the system resources, including Device attributes (i.e., hard-
ware, software, network specification, etc.), IoT components & Attached
components (i.e., sensors, actuators, RFID tags, or additional attached device
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components), Security & Privacy aspects (i.e., device hardware security, net-
work security and data security), Cost Information (i.e., chargeable device,
non-chargeable device), and History & Behavioral information (i.e., par-
ticipation role, mobility, life span, reliability, information of the device location,
etc.).

Fig. 4. Generalized resource categorization model in the F2C paradigm.

Service and Task Categorization. In any computing platform, before know-
ing the characteristics of services, it is relevant to identify the definition of ‘Ser-
vice’ and ‘Task’ because in the context of a system both of them are quite closely
related to each other. In [3], according to the authors, the ‘Task’ means perform-
ing some certain job(s) or function(s). Whereas, in [7], the authors define the
‘Service’ is a composite made up of small blocks of functionalities. According
to them, the system is providing the service to the users, by executing some
task. Therefore, following the F2C computing platform in the smart city envi-
ronment, we found that service characterization is the composite form of two
steps: one is the service classification, and the other is task classification. Com-
bining these two steps, we get the proper taxonomic model for service-task in
the F2C platform.

In addition, as said before, diversity also refers to the services concept. For-
mally speaking, in order to provide service(s), it is necessary to execute some
task(s) or perform some job(s). And, to that end, it is necessary to meet some
specific requirements (i.e., resource components requirements, time requirements
etc.). Interestingly, each of the tasks having various kind of requirements. In
Fig. 5, we represent the combined form of service-task categorization model in
the F2C paradigm. By considering all the potential issues in a smart city and
also following the various characteristics and attributes of the services, initially,
we classify the services according to five different aspects: Context of services
(i.e., governmental, educational, transport, etc. related services), Service loca-
tion (from where the services are offered, i.e., cloud or fog etc.), Secure &
Reliableness (i.e., based on the security preferences, services can be classified),
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Data Characteristics (i.e., based on the amount of data processing require-
ment, services can also be classified), and Cost information (i.e., based on the
service offering cost, services can be further classified into chargeable or non-
chargeable services). As earlier mentioned, in any system services are offered by
executing some task(s). Therefore, not only services in the F2C system should
be classified according to their characteristics and attributes, but similarly, tasks
can also be classified according to their Execution requirements (i.e., network
bandwidth capacity, time requirements, processor requirements, etc.) and their
Priority (i.e., high, medium, or low). So combining the service and task classifi-
cations in the considering system, we represent the Service-Task Categorization
model in the F2C paradigm.

Fig. 5. Generalized service and task categorization model in the F2C paradigm.

In the F2C paradigm, both of the categorization models help to identify the
characteristics and attributes of the resources and services. Explicitly, that helps
to define the proper resource-service mapping mechanism and build the proper
resource management strategy in the coordinated F2C platform.

4.2 Resource Sharing Module

Following the smart city scenario, it can be easily identified that many citizens
in the smart city, are only using the F2C system for only accessing some smart
services. Whereas, many of them are joining the F2C system by contributing
their devices to execute some task, in order to provide the service. Also, some
of them may enter into the F2C system for accessing the facilities as well as
contributing their devices to execute the task. So, mainly in the F2C system,
devices may participate as either ‘Consumer’, ‘Contributor’, or ‘Both’. For each
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device, before contributing their resource components to the F2C system, it is
necessary to define the resource sharing model. Based on the owner preference,
system policies, and availability of their resource-components, a resource shar-
ing model can be determined. For a specific device, the sharing model can be
defined as the abstract or ‘shareable-amount’ view of the whole set of avail-
able resource components of the corresponding device. In the F2C paradigm,
the virtualization technology enables the provision to make such an abstraction
for a particular device. In the F2C platform, the responsibility of the Resource
Sharing Module is to provide the information about the amount of participat-
ing resource-components to the system. Explicitly that information also helps to
manage the system resources efficiently, and adequately provide the services.

4.3 Resource Collector Module

Before deciding and allocating the proper and suitable resources for executing the
task and providing the service, it is essential to have an overview of the available
amount of resource-components. Initially, the Resource Collector Module obtains
the information about the resource characteristics from the Resource Categoriza-
tion Module. However, the Resource Sharing Module is enriching the Resource
Collector Module by providing the information about the actual amount of par-
ticipating resource-components. In the F2C platform, this module is in-charge of
continuous monitoring the status of currently available participating resources,
and also it is continuously generating a landscape of the system and providing
the information about the characteristics.

4.4 Smart Box and Perceptive Module

In the proposed F2C resource management framework, the Smart Box is one of
the most important and intelligent composite components. The sole function of
this component is to allocate the best available resource to execute the requested
task(s) and provide the service(s). In the F2C architecture, togetherly the Map-
per Module, Cost Model, and Forecasting Module define the Smart Box.

Initially, for the first time (i.e., the first time a resource is executing a new task
or first time a new resource is performing a task), the resource in the F2C system
is allocated based on the predefined Cost Model. Considering the hierarchical
distributed F2C architecture in a smart city scenario, we identified that it is
a pretty challenging job to define a proper Cost Model in such a distributed
paradigm. Following [8,13] and considering all the potential critical issues in
a smart city scenario, we identify that the Cost Model in the F2C paradigm
could be defined by considering various aspects, i.e., the system deployment cost,
resource usage cost, SLA, etc. In addition, we can find that there is a trade-off
between cost and QoS parameters; for example, the higher security requirement
cost for a system means that the QoS metrics should be degraded. Following
these various aspects we identified that the cost of the F2C system could be
mainly classified as following: Deployment cost - cost for deploying the system;
Task execution cost - can be measured by following the resource usage for
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executing the task, i.e., bandwidth usage cost, power cost, computation cost,
etc.; SLA related cost - the cost which is calculated by negotiation agreement
for services, between the service providers and users. Also, we can classify the
cost, according to the dependency on the QoS parameter. So considering all
these potential issues the Cost Model can be designed in the F2C system and
which helps to denote the resources by providing some weight on them. Finally,
based on this weights, the appropriate and best resource should be allocated to
execute the task(s) and provide the service(s).

For building an efficient and enhanced resource allocation mechanism, it is
necessary to understand the historical information of past execution. For this
reason, in the running F2C system it is essential to keep tracking the informa-
tion of resource usage for executing the task(s). So, following Fig. 3, it can be
easily identified that the Perceptive Module is always monitoring the task-service
execution procedure in the F2C paradigm and collecting the actual information
of resource usage during task(s) execution. After collecting this information,
the Perceptive Module is continuously updating this information to the Smart
Box. Based on the past execution information, available resource information,
and information about the service-task requirements, the Forecasting Module
predicts the updated resource usage for executing the newly requested task(s).
Using some machine learning techniques the Forecasting Module will be able to
predict the resource usage for executing the newly requested task(s) and then
passes this information to update the Cost Model. Now after getting this infor-
mation, the Cost Model calculates the new cost of the resource(s) and denoted
with the new weight. After that, the Mapper Module will be able to propose
new and more accurate allocation options for task(s) execution.

5 Future Directions and Opportunities

In the previous section, we have proposed the strategical architecture for resource
management in the F2C platform, as part of a smart city management sce-
nario. We have presented the different modules of the architecture which are
potentially involved in building the model. We have seen that there are sev-
eral technical issues to be addressed, such as virtualization techniques, defining
and managing user and system policies and preferences, and analyzing the effec-
tiveness of different cost models, just to name a few. In fact, by focusing on
various service-oriented system architectures, we found that cost is one of the
most important aspects to be considered. As we have already seen, an enormous
number of devices are participating in the F2C platform and contributing their
resource-components to provide some services, so it is pretty relevant that these
resources might get some revenue for providing the services in the F2C system.
So, we believe that it is necessary to define the generalized cost model for the F2C
system that might help to find and to allocate the most appropriate resource(s),
in order to execute some task. In the F2C platform, also by considering the cost
model and policies, it is possible to create the various strategy for managing the
resources. By comparing the different resource management strategies, it is pos-
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sible to build the generalized, approximate and optimal solutions for managing
the resources in the F2C paradigm.

6 Conclusion

In this paper, we have proposed the strategical architecture for managing the
resources in a coordinated Fog-to-Cloud computing platform. The proposed
model is illustrated in a smart city scenario for the sake of better understand-
ing. We also briefly described the different modules and their functionalities
envisioned in the proposed model. By addressing the various challenges in the
smart city scenario, we have defined the resource and service-task categoriza-
tion module for the F2C system. This work is presented as the initial step to
determine and design a comprehensive resource management strategy in the F2C
paradigm, but still, lots of work and many challenges remain to be addressed.
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Abstract. With the fog-to-cloud hybrid computing systems emerging
as a promising networking architecture, particularly interesting for IoT
scenarios, there is an increasing interest in exploring and developing new
technologies and solutions to achieve high performances of these systems.
One of these solutions includes machine learning algorithms implemen-
tation. Even without defined and standardized way of using machine
learning in fog-to-cloud systems, it is obvious that machine learning capa-
bilities of autonomous decision making would enrich both fog computing
and cloud computing network nodes. In this paper, we propose a service
management system specially designed to work in fog-to-cloud architec-
tures, followed with a proposal on how to implement it with different
machine learning solutions. We first show the global overview of service
management system functionality with the current specific design for
each of its integral components and, finally, we show the first results
obtained with machine learning algorithm for its component in charge of
traffic prediction.

Keywords: Machine learning · Fog-to-Cloud · Service management

1 Introduction

In the recent years, integration of the fog and cloud computing into fog-to-cloud
hybrid computing systems has became an important research subject, especially
regarding their presence in Internet of Things (IoT) scenarios. Both cloud and fog
computing satisfy different system requirements, complementing each other. In
these integrated solutions, cloud servers are used for analyzing and processing
large amounts of data that require high computing power and where service
execution is not time sensitive. Fog nodes include less powerful devices, but
also with computing power and data storage capabilities, which allows them to
process data from multiple sensors while minimizing latency and reducing the
amount of data which needs to be transported to the cloud. Some of the efforts
devoted to the development of an integrated fog to cloud (F2C) system include
the OpenFog Consortium [1] and the mF2C H2020 EU project [2].
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In order to ensure high performance of F2C solutions it is necessary to explore
new emerging technological solutions, such as Machine Learning (ML). At the
moment there is no determined definition of how machine learning should be
used in a F2C system, but it is evident that both fog and cloud enriched with
ML capabilities would improve the system performances with the ability to make
decisions and take actions individually based on algorithmic sensing of patterns
in locally captured sensor data in the case of fog nodes, and centrally captured
data in the case of the cloud nodes. In this paper, we propose ML implementation
as a mean of improving a specific area of F2C - service management. Since the
architecture of a F2C system is still a relatively new research field, without
strictly defined standards and guidelines, in order to observe ML behavior for
this purpose, we also propose an architectural component of F2C that would be
in charge of service related functionalities.

With most of the research efforts in fog computing and fog-to-cloud based
systems being more focused on the integrated architecture and communication
aspects of these new systems, and not just on the particular problem of man-
aging services, we relied on previous work done in this area in order to propose
a design of our service management component. A comprehensive survey on
service management and handling Web services and distributed services was
conducted in [3], offering an overview of well known service-oriented architec-
tures concepts. Some of the available service management solutions are cloud
oriented such as [4,5] or they present completely novel approaches as the one
proposed in [6], where authors developed a concept of managing services that
simplifies service operations by sharing different tasks and functionalities of a
global service among multiple distributed agents. Also, some papers focus on
the service management in IoT solutions, so for example in [7] authors propose
Management Server Service as a part of their IoT system architectural design
for handling service related tasks.

In this paper, we propose possible ways of using ML in a specific part of
fog-to-cloud computing system - components that are in charge of managing
service related functionalities. For this purpose, we propose a Service Manage-
ment System (SMS) integral unit, composed of multiple components, each of
them representing a different functionality. In the following sections we analyze
possible ML application areas in these components.

The rest of this paper is organized in the following way. Section 2 introduces
the Service Management System for fog-to-cloud based systems. Section 3 cov-
ers possible Service Management System components where different machine
learning algorithms can be used and show the preliminary results with Sect. 4
concluding the paper.

2 Service Management System

As the main F2C architecture component in charge of service related function-
alities, we propose a Service Management System (SMS), shown in Fig. 1, as an
integral component that can be deployed on all nodes/devices with computing
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Fig. 1. Service Management System architecture

capacities, both in the cloud and the fog. Different SMS tasks include classify-
ing different types of services, executing different phases of the service lifecycle,
deciding in which F2C system node will the execution take place, gathering and
measuring network data from different nodes, and ensuring quality of the service.

Figure 1 shows the components that comprise the Service Management Sys-
tem: Service Classifier, Service Processor, Resource Provider, QoS, Analytics
and a Database. When a new service registers to the system, regardless of the
node, it will first be passed on to the Service Classifier component where dif-
ferent services will be classified based on different requirements they have, and
this information will be saved in a database. Once the service is registered, the
system will be ready for receiving new instances of the service for executions.
When one of these service instances arrive, the Service Processor component of
SMS, which controls the service lifecycle, have to be previously registered. The
Service Processor will then communicate with the Resource Provider, the com-
ponent that decides where a service instance will be executed. For this decision,
it first has to read the information from the database on the availability of the
nodes, where he can obtain the information, whether it is possible to use mul-
tiple nodes, as well as the information from the Analytics on traffic prediction.
Nodes represent different devices with different levels of computing and process-
ing capabilities, allocated in different abstract layers of F2C system. To decide
whether it is possible to use these nodes, it will contact the QoS component.
Based on the recommended nodes from the Resource Provider and the possi-
bility of using them, the Service Processor will get the information where the
service instance should be executed and deploy it accordingly. The results of the
execution are saved in the database, so the Analytics component can use them
to update the Resource Provider and the QoS.

In the following section we will propose how some of these component’s func-
tionalities can be improved with machine learning solutions, which should result
with the improvement of the entire F2C system performances.
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Fig. 2. Service Classifier component

3 Components Implementing Machine Learning
Algorithms in Service Management System

In the Service Management System, we propose different methods of implement-
ing machine learning in the components where traditional heuristic algorithms
are not enough for taking complex decisions. These components include Ser-
vice Classifier, Resource Provider, QoS and Analytics. The numerical results are
shown for the Analytics and its implementation of ML for traffic prediction,
while for the other components we propose the current design, with numerical
results being the next step to prove the validity of the design.

3.1 Service Classifier

In [9] a service classification was proposed based on user defined requirements.
The goal was service differentiation based on their requirements to be able to
allocate resources. The service classification method proposed here was grouping
the services into classes according to information defined by the user. However,
what was not taken into consideration, and in most service classification mod-
ules, is that service requirements can be different from one execution to another
which makes the classification process dynamic and non trivial. As a result, we
need to learn from a previous execution of the service in the network to achieve
an accurate classification. The Service Classifier, shown in Fig. 2, is responsi-
ble for the categorization of new services registered into the F2C system based
on the information specified by the user about the service requirements. Some
requirements necessary for the service to be successfully executed are unknown
to the user, such as the network load, network topology, resource load, etc. Thus,
in the beginning the Classifier needs to execute the service in the network and
then extract some information to enhance the classification process. Afterwards,
service categories are stored in the database.

After the test executions, the Analytics component, which collects informa-
tion about services and node performance, will contact Service Classifier in order
to feedback the results from the execution which will update the ML engine for
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Fig. 3. Resource Provider component

the future classifications. The ML engine, in response, preprocesses the data and
extracts the features that will then train and tune a model offline. The model
obtained is used to update the Classifier which works online with new incom-
ing services. Moreover, it is also used to update the categories that are already
stored in the database. For the next step the presented component design should
be implemented with the choice of an adequate ML algorithm in order to test
the effectiveness and performances.

3.2 Resource Provider

The service instances that have already been registered, as described previously,
upon arriving for execution to the Service Processor component of SMS, initialize
the communication between the Service Processor and the Resource Provider,
the component that decides where the execution will take place.

Figure 3, shows the global picture of the Resource Provider component, which
includes three main parts: a knowledge base (KB), an online reasoning engine
and a ML engine working offline. So, when the Service Processor receives a service
instance, it requests for a node recommendation from the Resource Provider. The
Resource Provider will obtain this information about the particular service from
the database, generate node suggestions and send them to the QoS component
to decide where to execute this service instance. When a new service instance
is requested, the online reasoning engine generates recommendations based on
predefined rules and then stores the recommendations for each service instance in
the KB. If the information on the instance already exists in the KB, the Resource
Provider will directly send the suggestions to the QoS. After the execution, the
system collects statistics about the network: feedback about the suggested nodes,
traffic prediction, holding time, etc.

The gathered data is used to feed the ML engine working offline which is
responsible for recognizing data patterns to improve the reasoning engine and
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Fig. 4. QoS component

to improve the previous recommendations. This process is also shown in Fig. 3.
First, we preprocess data by adding labels and normalizing values. Then, we
train an ML model which will be used to generate recommendations based on
the history of the network. After that, we update the KB by the new recommen-
dations and finally we use those new recommendations to extract new actions
that can be used by the online reasoning engine to recommend nodes for newly
registered services. As with the previous component, the future steps include
testing of the proposed design.

3.3 Quality of Service

As mentioned above, in order for the Resource Provider to make a decision on
service instance execution, it will have to communicate with the QoS component.

This communication happens in the following step, after the Resource
Provider suggests the list of nodes to be used for the service instance execu-
tion, the service instance is sent to the QoS component. The design of this block
in shown in Fig. 4. The QoS component checks which of those nodes can actually
be used for the service execution or if they have to be discarded in case they are
not satisfying requirements to be considered as the potential solutions. In order
to make this decision, the QoS component also gets informed about the existing
Service Level Agreement (SLA) violations which are assumed to be stored in the
Analytics component each time a service execution finishes. SLA management
is out of the scope of our work with the assumption that SLA violations are
detected and stored after the execution of the service. After making the deci-
sion on which nodes should be acceptable for the service instance execution, a
modified service instance is returned to the Service Processor with the updated
list of suitable nodes. The SLA violations are not considered by the Resource
Provider component itself because the Resource Provider only takes into account
the individual information from the nodes and the QoS analyses if the service
as a global entity could be used for these devices.

The decision whether a certain resource can or cannot be used for a certain
service, is based on the number of SLA violations that had occurred in previous
executions of that specific service. With this information, the QoS Component
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uses reinforcement learning to allow or block the use of a specific node. The pro-
cess that takes place in QoS component in order to decide whether the suggested
nodes by the Resource Provider should be used, includes utilization of the num-
ber of service executions and the number of SLA violations. This information
is used to calculate a ratio which is then passed on as the input for the Deep
Q-learning (DQL) algorithm. Then, it has to be decided whether that input is
taken for training or for evaluation (the decision process being described below).
In the case of training, the DQL algorithm will initially get a random output,
which determines which nodes are accepted. Based on the output, a reward is
calculated following the next function:

rt =
N∑

n=0

yn(−2xs + 1) + (1 − yn)(xs − 1), (1)

where the N is the total number of nodes specified in the service instance, yn is 1
when the node n is chosen, 0 otherwise, and xs is the input ratio. The calculated
reward is observed by the network and in case it is lower than a specific threshold,
a new random output is generated and the process is repeated. When the reward
is greater or equal than desired, the output is being used to modify the list
of accepted nodes for the service instance. On the other hand, in the case of
evaluation, the QoS component will directly ask the network about an optimal
output for a specific input. How to decide if an input is taken for the training
or for the evaluation is based on the quantity of already acquired knowledge in
the network. For now, this decision is only based on a certain number of service
executions.

While the QoS component could use the reward function without the need of
using deep learning, the output would be only determined by that function, miss-
ing other non-trivial factors like the relation between the failure of the execution
of a service and the nodes that were involved. For that reason, the proposed
algorithm can be used to learn in every situation by taking random decisions
and helping the optimization of the decision making process in the evaluation
period. To be noted, at the moment the presented algorithm is a relatively simple
version that could be used for testing of the proposed system. In the future, the
reward function, the input, the output or how the decision to opt for a training
or evaluation case is taken could change in order to improve the effectiveness of
the algorithm.

3.4 Analytics

One of the most important SMS components which is used to update all the
others is the Analytics component. It is responsible for gathering data generated
from devices which allows it to offer an overview of network statistics. This com-
ponent includes traffic prediction module which is used to enhance effectiveness
of other modules by predicting traffic flows based on old statistics stored in the
database. The need of automating the process of obtaining the analytics and the
existence of datasets collected in this component opens the door for ML and AI
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to be implemented. Automation can dynamically extract insights from network
statistics and implement the right algorithms with achieving a high performance
results, instead of this task being handled by a developer, especially in the cases
when patterns are not visible for a human being. The Analytics might include
several features to provide a better view of the network such as device locations,
device connections and signal coverage, but, we focused on gathering the data
about the traffic and then generating insights to produce a real time visibility as
one of the more interesting features. In this context, we studied only this feature
of the Analytics, which analyzes the network traffic and leave the other features
for the future research. In our system this feature is called Traffic prediction.

Traffic Prediction. In this paper, we focus on a service traffic prediction which
we located in a F2C architecture as a part of the Analytics component. As a
first requirement for this component to implement ML we need a dataset that
represents the history of traffic demand at each instant of sampling, obtained
from the SMS database. In our case, the goal is to study the temporal evolution
of the traffic demand in a network, and to see how it can later be used to improve
Analytics component of F2C system. It is necessary to use historical data which
can be a real data or data that is modelled theoretically. We referenced several
models that were used to analyze the traffic in different networks such as mobile
cellular networks in order to generate out own dataset. [10] introduced a model
to simulate the traffic variation for a base station in real cellular networks. The
model used sinusoid superposition modelling method to describe the temporal
traffic variation. [11] studied the network traffic in 10 data centers of different
organization types (university, enterprise and cloud data centers). The study
shows that the lognormal distribution can fit the time series of data center traffic.
Thus, we use Eq. (2) to generate the mean values, then we use the lognormal
distribution to generate traffic demands for each mean value.

Mean(t) = a0 +
n∑

k=1

ak sin(wkt + φk) (2)

In our case, Mean(t) presents the total traffic demands in the data center,
a0 is the mean value of all traffic demands during 24 h, wk is the frequency
components of traffic, ak and φk represent the amplitudes and phases, n is the
number of frequency components. Table 1a summarizes the different values used
to generate the mean values. As a result, we obtain the following equation:

Mean(t) = 100 + 70 sin
( π

12
t + 3.11

)
+ 30 sin

(π

6
t + 2.36

)
(3)

Time series prediction has been studied for a long time using traditional
statistical techniques to solve forecasting problems. In the last two decades,
recurrent neural networks proved to have good performance results in time series
predictions due to their ability to capture short and long term dependencies.
Our goal was to predict multiple future values based on a sequence of previous
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Fig. 5. Tested F2C architecture

demands. As we used recurrent neural network, we were able to create a multi-
step forecasting model. This allowed prediction of all of the values in the time
window using only one model. We generated data gathered in a two-month period
to train and to test a Long Short Term Memory (LSTM) network. The data was
then divided into 67% for training and 33% for testing.

Table 1. Experiment parameters and results

After this step, we used a Keras API running on the top of Tensorflow to
obtain the forecast results. Generally, recurrent neural networks need a periodic
data to be able to offer good forecasting results. As a result, the data was mapped
into sequences of length 24 to be able to capture the data relationship during
a whole day. The LSTM network has three layers: input, hidden and output
layer. The model consists of an input layer, one hidden layer with 48 units and
an output layer with hyperbolic tangent function as an activation function. We
used mean square error as a loss function and the Root Mean Square Error
(RMSE) to measure the accuracy. The RMSE is defined as follow:

RMSE =

√∑n
k=1(ŷk − yk)2

n
(4)

RMSE has the same unit as the data and it estimates the difference between
true values and predictions.
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Fig. 6. Traffic prediction results

Performance Evaluation. In this section, we evaluate the performance of the
traffic predictor algorithm previously proposed running independently in each
node of the F2C architecture shown in Fig. 5. We assume that traffic is generated
by devices connected to the IoT nodes or by the IoT nodes themselves, and this
traffic is sent to the cloud through the fog nodes. The IoT layer, we assumed that
consists of nodes that present processing capable devices, which would allow ML
to be implemented in this layer. As a result the distribution of traffic in higher
network layers can be modeled as the sum of traffic flows coming from nodes in
the lower layers. We assume there are no additional constraints (link capacity,
node capacity, etc.), so we are able to send all the generated traffic to the cloud.
In this paper, we evaluate the performance of LSTM with 4 different traffic
flows generated by the four IoT devices using Eq. 2. Then, for instance, the node
fog 1 receives together the traffic generated by the iot 1 and iot 2, and the cloud
receives the traffic from fog 1 and fog 2. We evaluate the performance of the
prediction algorithm for these three layers in two cases: with smooth artificially
generated traffic without random noise and with the same shape but adding
random noise.

The numerical results, shown in Table 1b, show that the RMSE is low when
the traffic is predicted in the IoT layer without noise, but it is doubled when the
noise is added. However, when the prediction is tested in the fog or in the cloud
layer, RMSE increases in all cases being with noise the worst case and the cloud
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the layer with worse performance. Figure 6a and b show the traffic generated
by the iot 1 and iot 2 devices for the case when there is random noise. Here,
it can be seen how the prediction relatively well matches with the real traffic.
When we add both traffics to the fog 1 node, see in Fig. 6c, the LSTM network
still can perform well but with worse performance compared with the previous
case. Finally, when the traffic in the fog layer is added to the cloud 1 node, the
algorithm can not catch some of the periodical raises. This can be explained by
the effect of noise which is accumulated from different traffic flows to make it
difficult to the algorithm to differentiate between periods and noise. Since the
traffic in the upper layers is the sum of traffics coming from different nodes and
having a different periodicity, it results with a more complicated function. Also,
each traffic has its own noise the sum of noises makes the traffic more random,
so that the prediction become less efficient. That is why in the results we can
see better prediction in the nodes close to the traffic generation.

4 Conclusion

With the interest in fog computing and architectural solutions that integrate fog
and cloud, the focus is on developing and exploring new approaches and tech-
nologies, that would lead to significant improvements of these integrated F2C
systems. With that in mind, in this paper, we proposed an architectural design
of a service management component for a F2C system, and explored a ways how
different machine learning algorithms could be used in different composite com-
ponents of service management. In order to improve Analytics component we
implemented LSTM network to evaluate the performance of the traffic predic-
tion algorithm running independently in each node of the F2C architecture. The
traffic generated by nodes representing IoT devices was observed for two cases,
with and without noise added to the traffic. The results have shown that closer
the prediction is to the source of generated data, the prediction results will be
better in both cases. So the best prediction was achieved when it was performed
in IoT layer without added noise, with the assumption that IoT layer consists
of nodes with processing capabilities. Fog layer whose nodes were used as the
aggregating points for multiple IoT generated traffic flows also performed well
in terms of being able to predict close to real traffic. The worst traffic prediction
was achieved in the cloud layer, which received aggregated flows from the fog
layer. As a further step, QoS component improvement was implemented with a
Deep Q-Learning algorithm, enabling it to make decisions whether a use of a
certain node will be allowed or blocked, based on number of SLA violations that
had occurred in previous executions of a specific service. The numerical results
and improvement of decision making process for this algorithm are planned for
the future. Additionally, in this paper, we propose the utilization of ML in com-
ponents tasked with service classification and resource provisioning, with the
implementation part as a goal for future work.
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Abstract. The widespread diffusion of ubiquitous and smart devices is
radically changing the environment surrounding the users and brought
to the definition of a new ecosystem called Internet of Things (IoT).
Users are connected anywhere anytime, and can continuously monitor
and interact with the external environment. While devices are becoming
more and more powerful and efficient (e.g., using protocols like zigbee,
LTE, 5G), their security is still in its infancy. Such devices, as well as
the edge network providing connectivity, become the target of security
attacks without their owners being aware of the risks they are exposed to.
In this paper we present IoT Security Checker, a solution for IoT security
assessment coping with the most relevant IoT security issues. We also
provide some preliminary analysis showing how the IoT Security Checker
can be used for verifying the security of an IoT system.

1 Introduction

Internet of Things (IoT) is changing the world where we live and the way in
which we interact. Current environment composed of billions of interconnected
devices points to scenarios where everything can be a data source or an actuator.
According to Gartner, there will be more than 20 Billions devices by 2020 and
every sector, from private life to public services, will be influenced and signifi-
cantly improved by IoT technologies.1 Baby-monitor, fitness bands, dog-tracker,
smart-locker are already common goods with large adoption. Their exponential
rate of adoption makes IoT devices and infrastructure the target of new secu-
rity attacks [4], introducing many concerns about the risks an IoT systems need
to face. The heterogeneity, variety, and complexity of IoT systems require the
support of high security standards, which conflicts with the intrinsic insecurity
of devices that are often under the control of non-expert users. Several stud-
ies and articles [4,6,10,13] reported on security threats and flaws affecting an
enormous amount of devices, resulting in large-scale attacks and data breach [5].

1 https://www.gartner.com/newsroom/id/3598917.
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IoT security does not only concern the application layer, where IoT devices play
the role of sensors or actuators, but it also affects lower layers of the stack such
as network, hardware, and the center of the architecture (e.g., cloud) [2,3].

In this paper, we present the IoT Security Checker (Sect. 5), a scanner sup-
porting pentesters in carrying out a complete and structured analysis aimed to
identify IoT device vulnerabilities. IoT Security Checker identifies IoT devices
and collects information driving such analysis. It relies on public information
sources such as Shodan [8], Censys (https://censys.io/), and National Vulnera-
bility Database (https://nvd.nist.gov/).

The remaining of the paper is organized as follow. Section 2 describes the
main security issues affecting IoT solutions. Section 3 describes an IoT classifi-
cation used as a reference by the IoT-Security Checker. Section 5 describes the
architecture and processes implemented by the IoT Security Checker, while an
experimental scenario is reported in Sect. 6. Section 7 presents the related work
on IoT security. Finally Sect. 8 draws our conclusions.

2 Security Attack Surfaces

IoT security introduces new requirements and challenges due to: (i) lack of con-
trol on the production environment, (ii) limited resources of the devices, (iii)
limitations on the connectivity, reachability, power consumption, (iv) difficul-
ties in imposing security best practices that consider the entire IoT environ-
ment. The goal of providing a secure IoT environment is a complex task that
requires to consider both the plurality of devices and the heterogeneity of the
IoT infrastructure and edge network. Device hardening requires a security-by-
design approach involving the whole development-cycle, from hardware design
to software/firmware implementation. This scenario is further complicated by
the fact that security features need not to hinder the IoT functioning, especially
preserving resource consumptions.

In this context, Open Web Application Security Project (OWASP)
has identified the top ten IoT vulnerabilities (https://www.owasp.org/index.
php/Top IoT Vulnerabilities), as well as several possible attack surfaces
(https://www.owasp.org/index.php/OWASP Internet of Things Project#tab=
IoT Attack Surface Areas) that are summarized in the following.

– Ecosystem Access Control refers to access control mechanisms, enrollment
and decommissioning procedures.

– Device Memory refers to the possibility of having clear-text credentials stored
in memory and the management of cipher keys.

– Device Physical Interfaces refers to the firmware extraction and updates, and
to removal storages and reset operations.

– Device Web Interface refers to all features and services offered by the device
over the web.

– Device Firmware refers to the presence of credentials, sensitive information,
keys stored inside the firmware.

https://censys.io/
https://nvd.nist.gov/
https://www.owasp.org/index.php/Top_IoT_Vulnerabilities
https://www.owasp.org/index.php/Top_IoT_Vulnerabilities
https://www.owasp.org/index.php/OWASP_Internet_of_Things_Project#tab=IoT_Attack_Surface_Areas
https://www.owasp.org/index.php/OWASP_Internet_of_Things_Project#tab=IoT_Attack_Surface_Areas
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– Device Network Services refers to all security issues related to connectivity
and includes communication channels, UDP services and CLI (command line
interface) to interact with the device.

– Administrative Interface refers to all possible attacks and threats related to
the admin console, which may involve web attacks and restrict access and
accounting techniques to improve security.

– Local Data Storage refers to the need to encrypt data at rest and to guarantee
integrity.

– Cloud Web Interface refers to all services that are not offered by the devices,
but rather connected to them and, in turn, with the user through an interface.

– Third-party Backend APIs refers to all issues related to the possibility of data
breach using third parties. It points to the need of encrypted channels and
anonymized data.

– Update Mechanism refers to techniques that should prevent all attacks during
update operations, which may modify or replace device firmware and software.

– Mobile Application refers to all applications connected to the devices.
– Ecosystem Communication refers to all techniques that permit to monitor the

status of an IoT device, including deprovisioning and update notifications.
– Network Traffic refers to all security issues that are related to the network

and communication choices made during the design (e.g., radio or cabled
communications).

– Hardware (Sensors) refers to all possible physical tampering and damages
that may be applied to sensors and devices.

– Privacy refers to those devices leading to personal information, such as loca-
tion or medical data, leak.

– Authentication refers to all authentication mechanisms offered by the IoT:
administrative access, user access through the web, cloud applications, mobile
applications, peer to peer IoT exchange information, to name but a few.

– Vendor Backend APIs refers to all possible attacks and vulnerabilities that
may affect the APIs provided by the vendors.

Clearly, IoT attack surfaces are not limited to IoT devices. They also include
processes involving devices, cloud or mobile applications enabling interaction
with devices, as well as considered environments. Furthermore, the whole IoT
stack from physical layer to service layer may be the target of an attack. IoT
attack surfaces can be organized in four main categories that we identified in
this paper as follow:

– Third-Party Services. This category involves all attack surfaces that depend
on services and apps that may be used to collect or manage IoT devices (e.g.
smarphone apps, data logger, cloud apps).

– Physical Environment. This category involves all attack surfaces that are
correlated to environmental or physical damages a device may cause or suffer.

– Device Logic. This category includes all attack surfaces related to software,
interfaces, and services embedded in or provided by IoT devices.

– Communication Channel. This category includes all attack surfaces related
to the communication channel such as ZigBee and BLE.
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3 Devices Classification

Although IoT is today a shared concept, there are different definitions. In this
paper, we consider the ETSI definition that is built on the concept of Machine
to Machine (M2M). It separates the communication (M2M communication) and
the devices (M2M device), where M2M devices are defined as devices running
M2M application(s) using M2M communication capabilities. This section ana-
lyzes some of the M2M device characteristics and tries to provide a classification
over them that will be used in Sect. 5.

In 2017, NSfocus (https://blog.nsfocusglobal.com/categories/exposed-iot-
assets-in-china-analysis/) carried out an analysis on public device endpoints in
China based on information collected by most famous scan engines (Shodan,
NTI, Zoom Eye). The output of this analysis was a list of 12 IoT categories,
which we reassembled into six macro-categories used by the IoT Security Checker
to classify the discovered IoT devices.

– IP-Camera refers to all devices recording or playing video content such as
web cams, DVR and streaming devices such as baby monitors.

– Router refers to switches, modems, routers and any other network
appliances.

– Defense refers to all devices that aim to protect a system (e.g., firewalls,
IDSs, IPSs).

– Printer refers to all printing and fax devices that may be exposed to the
Internet to provide a higher interoperability.

– ICS refers to all Industrial Control System (ICS) that plays a fundamental
role in smart grids and industry 4.0.

– Generic refers to all devices that cannot be ranked in any of the above
categories, but expose well-known protocols such as XMPP, CoAP, MQTT.

4 Device Mining

Given the classification in Sect. 3, a preliminary knowledge extraction is needed
to support further analysis on the IoT devices. The scope of this knowledge
extraction is to identify a set of properties that describe every IoT category in
terms of (i) keywords, (ii) manufacturer, (iii) ports, and (iv) vulnerabilities,
thus enhancing the vulnerability assessment carried out with our IoT Security
Checker.

The knowledge extraction is based on text mining done on information
retrieved by Shodan [8] and composed of 3 main steps as follow:

1. Create a keyword and manufacturer list for each category.
2. Create a port list for each category.
3. Create a vulnerability list for each category.

https://blog.nsfocusglobal.com/categories/exposed-iot-assets-in-china-analysis/
https://blog.nsfocusglobal.com/categories/exposed-iot-assets-in-china-analysis/
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Fig. 1. Distribution of manufacturers and ports over three categories: IP-Cameras
(a, b), Routers (c, d), Printers (e, f).

Based on Shodan public information, an analysis on the main services
and ports used by IoT devices has been carried out. Figure 1(a) reports
the top 15 IP-Cameras manufacturer found by Shodan using the filter
“device:webcam”, while Fig. 1(b) shows the distribution of ports used by IP-
Cameras. Manufacturer and ports for routers has been identified using the filter
“device:switch”, device:broadband+router” and “device:load+balancer”; filters
“device:print+server” and “device:printer” have been used for category printer.
Results from categories router and printer are shown in Fig. 1(c), (d), (e), (f),
while the complete results of ports analysis are summarized in Table 1.
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Table 1. Matching between categories and ports from Shodan analysis

Category Ports

IP-Camera 81, 82, 83, 84, 88, 443, 554, 37777, 49152, 143

Router 1900, 21, 80, 8080, 1080, 9000, 8888, 8000, 49152, 81, 8081, 8443,
9090, 8088, 88, 82, 11, 9999, 22, 23, 7547

Printer 80, 631, 21, 443, 23, 8080, 137, 445, 25, 1000

Firewall 8080, 80, 443, 81, 4433, 8888, 4443, 8443

ICS 47808, 20000, 44818, 1911, 4911, 2404, 789, 502, 102

Generic 5222, 5683, 1883, 8883

Fig. 2. IoT Security Checker architecture.

5 IoT Security Checker

The IoT Security Checker helps pentesters in identifying vulnerable devices in a
given network, using discovery mechanism and known exploits. In the following,
we describe the IoT Security Checker architecture, execution flow, and target
exploit.

5.1 Architecture

Figure 2 shows the internal modules of IoT Security Checker.

Knowledge DB contains all information and data acquired during the mining
phase in a NO-SQL DB. It can be updated in real time as new information is
collected.

Scanner manages and starts the host discovery process. The scanning opera-
tions are run using masscan (https://github.com/robertdavidgraham/masscan).

Authenticator executes a dictionary attack on the following services: FTP, Tel-
net, SSH, HTTP basic. The dictionary is built based on the knowledge extraction
in Sect. 4.

Exploiter executes a set of exploits of well-know IoT vulnerabilities. As for
dictionary, the exploit list derives from the knowledge extraction in Sect. 4.

https://github.com/robertdavidgraham/masscan
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Fig. 3. IoT Security Checker execution flow

Engine manages all operations and exchanges of information through all mod-
ules. The user can set up the scan and then the Engine is in charge of starting
the scanning, redirect data to the parser and DBs, setting up the execution of
the Exploiter and Authenticator based on the results.

Utils provides a set of functionalities for input/output validation.

Parser includes all parsers that translate and filter outputs from one module
and give them as input to another module. It also includes a human-readable
translation parser for the final output.

Result DB stores all the information about the found services, hosts, and
devices. It is used as the target list by Authenticator and Exploiter, or to store
the final evaluation of the target devices. The host table storing the scanner
results has the following structure:

– Timestamp. It is the timestamp when the scanner returned the result.
– IP. It is the IP of the found services; we note that there might be several rows

with the same IP since the primary key is composed of the pair (IP, Port)
representing the service.

– Port. It is the port where the service is listening.
– Service. It is the type of found service (e.g., SSH, HTTP)
– Banner. It is the discovered banner for the related service.
– Info. It contains extra information found during the scanning of the given

service.
– Error. It contains any possible errors during the scanning operations.

5.2 System Flow

Figure 3 annotates the architecture in Fig. 2 with the flow of a single execution
of the IoT Security Checker. Before starting the flow execution, the IoT Security
Checker must be initialized by loading the knowledge. The IoT Security Checker
can then be configured by the user by simply specifying the target.
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Once the input parameters2 are set (A), based on the parameters and
the knowledge, the Engine launches the appropriate scanning (B). If no ser-
vices/hosts are found, the execution ends; otherwise, they are stored in the result
DB (C). The Engine analyzes all results based on the knowledge to identify
whether they are IoT devices or not (D); this process is called the IoT guess. In
case IoT devices are found, the Authenticator runs the appropriate vocabulary
attacks based on the available services (E). The Authenticator stores the attack
results in the Result DB and then the Exploiter runs the available exploits only
on those appropriate services (F-G). The results are stored in the Result DB
and finally shown to the user (H-I).

5.3 Target Exploit

The IoT Security Checker implements a set of exploits as follows.3

– Cisco-PVC-2300 : the web camera Cisco PVC-2300 is affected by several vul-
nerabilities that may allow an unauthenticated user to login and access to
multiple functionalities. The developed exploit tries to login and download
the device configuration to read username and password.

– Dlink : a set of Dlink webcams are affected by different vulnerabilities that
mainly permits OS command injection. The developed exploit tests each of
these vulnerabilities.

– h264-dvr-RCE : a set of devices identified by the caption “Cross Web Server”,
which have been used by several companies, may suffer Remote Command
Injection. This vulnerability allows an attacker to execute any commands on
the vulnerable device. The exploit verifies the vulnerabilities attempting to
create a file on the target device.

– Humax-HG100R: the Humax Wifi Router is vulnerable to Authentication
Bypass attack by sending specific crafted request to the management console.
If the console is publicly exposed, an attacker can exploit it and may get access
to confidential information.

– Rom-0 : a set of network appliances from companies such as ZTE, TP-Link,
ZynOS, and Huawei are vulnerable to Authentication Bypass attacks. An
attacker can access confidential data sending a crafted HTTP request to the
/rom=o resource.

– TV-IP410wn: Trendnet TV-IP410WN webcams are vulnerable to Remote
Command Execution attacks. The developed exploit verifies these vulnera-
bilities by executing the ls command on the target device.

2 All input parameters are described in details at https://github.com/c0mix/IoT-
SecurityChecker.

3 We took inspiration from the following articles: https://media.blackhat.com/us-
13/US-13-Heffner-Exploiting-Network-Surveillance-Cameras-Like-A-Hollywood-
Hacker-WP.pdf, http://www.kerneronsec.com/2016/02/remote-code-execution-
in-cctv-dvrs-of.html, https://www.exploit-db.com/exploits/42732/, https://
rootatnasro.wordpress.com/2014/01/11/how-i-saved-your-a-from-the-zynos-rom-
0-attack-full-disclosure/, https://medium.com/@lorenzo.comi93/break-into-2k-ip-
camera-cb65bbac9e8c.

https://github.com/c0mix/IoT-SecurityChecker
https://github.com/c0mix/IoT-SecurityChecker
https://media.blackhat.com/us-13/US-13-Heffner-Exploiting-Network-Surveillance-Cameras-Like-A-Hollywood-Hacker-WP.pdf
https://media.blackhat.com/us-13/US-13-Heffner-Exploiting-Network-Surveillance-Cameras-Like-A-Hollywood-Hacker-WP.pdf
https://media.blackhat.com/us-13/US-13-Heffner-Exploiting-Network-Surveillance-Cameras-Like-A-Hollywood-Hacker-WP.pdf
http://www.kerneronsec.com/2016/02/remote-code-execution-in-cctv-dvrs-of.html
http://www.kerneronsec.com/2016/02/remote-code-execution-in-cctv-dvrs-of.html
https://www.exploit-db.com/exploits/42732/
https://rootatnasro.wordpress.com/2014/01/11/how-i-saved-your-a-from-the-zynos-rom-0-attack-full-disclosure/
https://rootatnasro.wordpress.com/2014/01/11/how-i-saved-your-a-from-the-zynos-rom-0-attack-full-disclosure/
https://rootatnasro.wordpress.com/2014/01/11/how-i-saved-your-a-from-the-zynos-rom-0-attack-full-disclosure/
https://medium.com/@lorenzo.comi93/break-into-2k-ip-camera-cb65bbac9e8c
https://medium.com/@lorenzo.comi93/break-into-2k-ip-camera-cb65bbac9e8c
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Fig. 4. IoT Security Checker experimental scenario

A zero-day vulnerability affecting some webcams and baby monitors (IPcam-
era vulnerability in the following) has been discovered during the development
of the IoT Security Checker and now classified as CVE-2017-17101. It is based
on Credential Injection through the camera web app. An attacker can obtain
full admin access by using a crafted HTTP request, for instance, accessing video
streams and changing credentials.

6 Experimental Scenario

We run the IoT Security Checker in a simulated environment that have been
built specifically to test the tool functionalities. Figure 4 shows the networks
with all nodes. The experimental environment is composed of a private network
(A) containing the scanner node, an IPcamera wireless cam and a Cloud NAS.
All nodes access internet through a Netgear router. A Wireless cam and a router
(B) are added to the scenario and reachable from the private network through
Internet.

The IoT Security Checker was executed from the scanner node with the
following command,

sudo python3 IoT-SecurityChecker.py target.txt -m 300
-w 15 -E ALL -B ALL -T 2 -o result.csv

where:
target.txt contains three different targets: (i) the private network
(192.168.0.0/24) and the two public IPs (109.115.179.138, 13.113.110.137).
-m 300 -w 15 instructs masscan how to run the scan. These parameters require
to use no more than 300 packages per second and wait 15 s once the scan is done
to get the results.
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Table 2. Pairs (host, port) found after network scan (1); hosts, ports and information
after process IoT guess (2)

Table 3. Final results from IoT Security Checker.

192.168.0.10 23 Telnet TelnetAuthenticator Telnet Access found username:
adm password:

192.168.0.9 23 Telnet TelnetAuthenticator Telnet Access found username:
adm password:

192.168.0.9 22 SSH SSHAuthenticator SSH Access found username: test
password: admin

192.168.0.9 21 FTP FTPAuthenticator FTP Access found username:
anonymous password:

192.168.0.9 21 FTP FTPAuthenticator FTP Access found username:
user password: test

13.113.110.137 81 HTTP HttpAuthenticator Http Access found username:
test password: test

109.115.179.138 80 HTTP Rom-0 http://109.115.179.138:80/rom-0

192.168.0.10 80 HTTP IPcamera http://192.168.0.10:80 new
credentials are admin:hacked

-B ALL -E ALL -T 2 instructs Authenticator (-B) and Exploiter (-E) to run
all possible authentications and exploits, but using a maximum of two threads.
-o results.csv requires to store the final results in file result.csv.

The first phase of the analysis scans the network based on what specified
in target.txt. The scan returns a set of (host, port) as described in Table 2(a).
Each pair is then analyzed to identify possible IoT devices (process IoT guess).
Table 2(b) reports the results with service and IoT device classification for each
part after the IoT guess.

Following the IoT Security Checker flow described in Fig. 3, using the result
from IoT guess, the authenticator module attempts to authenticate to all avail-
able services. Authentication attacks were successful over telnet protocol on hosts
192.168.0.9 and 192.168.0.10: they have been accessed with username “adm” and
empty password. Attacks on SSH were tried on hosts 192.168.0.9, 13.113.110.137,

http://109.115.179.138:80/rom-0
http://192.168.0.10:80


A Knowledge-Based IoT Security Checker 309

109.115.179.138; access was granted only on 192.168.0.9. Attacks on HTTP basic
authentication were tried on hosts 192.168.0.1, 109.115.179.138, 13.113.110.137,
192.168.0.10; a single attack was successful on 13.113.110.137 (access was granted
on port 81 with credentials “test:test”).

After vocabulary attacks, the IoT Security Checker attempted to attack the
devices using the exploits described in Sect. 5.3 based on HTTP.

No host was vulnerable to h264-dvr-RCE, Cisco-PVC-2300, TV-IP410wn,
Humax-HG100R and Dlink. Host 109.115.179.138 was vulnerable to Rom-0,
while host 192.168.0.10 to IPcamera. Table 3 reports the final results returned
by the IoT Security Checker; each row of the table shows a security issue.4

7 Related Work

IoT security and vulnerability scanning are hot research topics. Kumar et al. [6]
and Zhao et al. [13] presented an overview of the main IoT security issues focus-
ing of the importance of a holistic view over the three-layer system structure.
A real use case is described by Seralathan et al. [10], where the authors ana-
lyze the security of a general webcam taking into consideration the camera
itself, as well as its mobile and cloud applications and communication chan-
nels. Shodan [8], a public information source on IoT devices, is widely used
in IoT security research [1,7,9,12]. Markowsky et al. [7] analyzed the router
status in the Indian Autonomous System Number (ASN) space, identifying mis-
configuration or Rom-0 vulnerability. Williams et al. [12] defined a pattern to
analyze webcams, smart-tv, and printers. First these devices are identified using
Shodan and then a vulnerability scan is used to assess possible vulnerabilities.
A similar approach is used by Samtani et al. [9], where Shodan is adopted to
identify SCADA system and then Nessus is run to find potential vulnerabilities.
The authors however introduced a text-mining approach that filters the results
from Shodan to enhance the SCADA recognition process. Al-Alami et al. [1]
presented an overall view of IoT devices in Jordan with a specific focus on secu-
rity using Shodan. Solutions based on Shodan support a fast and wide analysis,
but limited to public-accessible devices. Visoottiviseth et al. [11] presented an
assessment tool based on Kali Linux called PENTOS. Pentos permits to scan a
private network and subsequently assess the found services and hosts. PENTOS
is completely manual; indeed the pentesters set the scanning at the beginning
and then choose the assessment to run. The IoT Security Checker, being based
on a knowledge, automatically identifies IoT devices and sets the appropriate
assessment based on their characteristics.

4 The logs of this experiment are available at https://github.com/c0mix/IoT-
SecurityChecker.

https://github.com/c0mix/IoT-SecurityChecker
https://github.com/c0mix/IoT-SecurityChecker
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8 Conclusions

This paper presented IoT Security Checker, a vulnerability scanner for IoT
devices. The tool, using a knowledge built on public information, can help pen-
testers in providing an IoT security assessment. The modularity of the tool per-
mits to easily extend the knowledge, and the available vocabulary and exploits.
Future work will consider the development of an intelligent knowledge that can
be automatically built and updated, driving a more effective assessment. Fur-
thermore, IoT Security Checker will be extended towards assurance verification
and monitoring of IoT devices and infrastructures.
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References

1. Al-Alami, H., Hadi, A., Al-Bahadili, H.: Vulnerability scanning of IoT devices in
Jordan using Shodan. In: Proceedings of IT-DREPS 2017, pp. 1–6 (2017). https://
doi.org/10.1109/IT-DREPS.2017.8277814

2. Anisetti, M., Ardagna, C.A., Damiani, E., Gaudenzi, F., Veca, R.: Toward security
and performance certification of open stack. In: Proceedings of IEEE CLOUD 2015,
June 2015. https://doi.org/10.1109/CLOUD.2015.81

3. Anisetti, M., Ardagna, C., Damiani, E., Gaudenzi, F.: A semi-automatic and trust-
worthy scheme for continuous cloud service certification. IEEE TSC (2017)
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Abstract. Efficient distributed multi-sensor monitoring is a key fea-
ture of upcoming digitalized infrastructures. We address the problem of
obstacle detection, having as input multiple point clouds, from a set of
laser-based distance sensors; the latter generate high-rate data and can
rapidly exhaust baseline analysis methods, that gather and cluster all
the data. We propose MAD-C, a distributed approximate method: it
can build on any appropriate clustering, to process disjoint subsets of
the data distributedly; MAD-C then distills each resulting cluster into
a data-summary. The summaries, computable in a continuous way, in
constant time and space, are combined, in an order-insensitive, concur-
rent fashion, to produce approximate volumetric representations of the
objects. MAD-C leads to (i) communication savings proportional to the
number of points, (ii) multiplicative decrease in the dominating com-
ponent of the processing complexity and, at the same time, (iii) high
accuracy (with RandIndex > 0.95), in comparison to its baseline coun-
terpart. We also propose MAD-C-ext, building on the MAD-C’s output,
by further combining the original data-points, to improve the outcome
granularity, with the same asymptotic processing savings as MAD-C.

Keywords: Point cloud processing · Approximations · Fog computing

1 Introduction

LIDAR (LIght Detection And Ranging), used in e.g. autonomous vehicles and
production environments, is a 3D scanning method to measure ranges with rotat-
ing pulsed lasers. A LIDAR sensor produces hundreds of thousands of points
(point clouds) per rotation, at rates of several MBps. In the presence of occlu-
sions, multiple such sensors could join local views from various angles into a
consistent global view, an overlooked benefit, to the best of our knowledge, that
can enhance resiliency and availability.

Challenges. Single-source point cloud object detection can be achieved with
clustering methods [13]. With multiple LIDAR sensors, a baseline approach of
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clustering the union of the sources’ point clouds is impractical due to its cumu-
lative data volumes and rates resulting in prohibitive (i) processing costs and
latency (at least linear in the number of point-clouds’ sizes) even for parallel
clustering approaches [9,11], and (ii) communication bandwidth requirements.
Edge/fog continuous data processing (i.e., distributed clustering local to each
LIDAR) could overcome these limitations. However, two opposing goals make
such an approach challenging: sharing fine-grained data (to maximize the accu-
racy) versus coarse-grained data (to minimize communication overheads).

Contributions. We propose MAD-C, a multi-stage approximate distributed
cluster-combining method for obstacle detection and localization. First, it clus-
ters each point cloud at the edge, i.e. at each LIDAR sensor. Then, it computes
a local constant size geometric summary of each object and combines it with
those of other LIDARs (in time depending only on the number of objects and
sensors, not on the point-clouds’ sizes). We show that MAD-C’s summaries are
computable in a continuous way and can be combined in an order-insensitive con-
current fashion, exploiting data parallelism. Our extensive experimental study
covers a wide spectrum of scenarios, including very demanding cases, showing
that the common view produced by MAD-C is very close to that of the afore-
mentioned baseline. We also observe significant improvements in processing and
communication efficiency, which is all the more important for edge/fog architec-
tures and use of the algorithm in time-sensitive applications.

In the following, Sect. 2 describes the system model, problem and preliminary
concepts; Sect. 3 and Sect. 4 introduce MAD-C, its properties and its algorithmic
implementation. Experimental evaluation is presented in Sect. 5, related work
discussion in Sect. 6 and conclusions in Sect. 7.

2 Preliminaries

System Model. We consider K (≥ 1) asynchronous, interconnected nodes,
each being at a known location and associated with a LIDAR and a processing
unit (i.e. nodes are edge/fog devices). We assume the existence of a spanning tree
for nodes to communicate and aggregate data. Each node knows its children and
its parent. Let S denote the sink of the network (i.e., the tree-root), in charge of
generating a global view from data from the other nodes. We first present our
methods under the spanning tree and no-message-loss assumptions, for ease of
the presentation. Later, we generalize using known results in distributed systems.

Each LIDAR, in each rotation, collects a point cloud centered at its location.
The node can process the point-cloud locally, as well as communicate raw or
processed data to others. Let ptCloudi be the point cloud from a full rotation of
LIDAR Li, consisting of ni data points, as node i’s view. A (local) view refers to
an individual ptCloudi while a merged point cloud is the union of point clouds.
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(a) 3 nodes (b) N1’s view (c) N2’s view (d) N3’s view (e)merged view

Fig. 1. A scene with three LIDAR nodes

For simplicity and w.l.o.g we assume point clouds be obtained at the same
time and views are expressed in the same coordinate system1.

Problem Description. Using point clouds from K LIDARs, We want to detect
objects, with low communication cost, while ensuring high quality of detection,
data parallelism, as well as continuous, stream-compliant processing. The goal is
to find a map that: (i) enumerates the objects and (ii) for each object, provides
a representation (e.g. volumetric, or expressed as clusters of points). Besides
detection and localization, this map can be used in scenarios with e.g. geo-fences.

Evaluation Criteria: (i) complexity in time, communication overhead and
(ii) accuracy of the outcome. For the former we estimate the number of pro-
cessing steps and the amount of information that needs to be communicated
among the nodes. For the latter we use Rand Index, which is a similarity mea-
sure between two clusterings [15].

Example. Figure 1(a) is to introduce running example to illustrate the problem
and the functionality of our proposed methods. Parts 1(b–d) respectively visualize
the local views of the 3 LIDARs. Figure 1(e) shows the merged point cloud. Notice
that (i) there is at least one object missing in each local view and (ii) the views
are complementary regarding the objects that are not occluded; e.g. they display
almost non-overlapping segments of the car. Therefore, engaging more nodes to
collect point clouds can result in higher accuracy.

Background. Given a point cloud, there are several algorithms that segment
the data points in it into scene objects [4,13], that our proposed methods can
build on. Taking, e.g. Euclidean clustering, a point cloud would be partitioned
into a set of clusters that correspond to objects and noise-points. To describe
our methods we use the latter and for self-containment we paraphrase the defi-
nition from [13] (Ch. 4): Given n points in 3D space, a Euclidean clustering is a
partitioning of them into some (unknown) number of disjoint sets (i.e. clusters),
1 Else, pre-processing can transform them into a canonical system: depending on each

LIDAR’s disposition, a rotation matrix and a translation can be applied on its point-
cloud, in constant time, in conjunction with the data-reading, along with filtering
away ground points, a common pre-processing phase [8].
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each containing at least a predefined number of points (minPts), so that pairs of
points pi and pj are clustered together if ||pi − pj ||2 < ε, a predefined threshold.
Points that don’t belong to any cluster are characterized as noise.

3 The MAD-C Algorithm

We now describe MAD-C and how it meets the challenges described in Sect. 1.
Due to space limitations, the proof arguments are briefly sketched. We consider a
baseline that gathers all point-clouds and performs Euclidean clustering of these
n points, with complexity O(n log n) expected processing steps [4,13].

In a nutshell, each node Li in MAD-C locally detects objects in ptCloudi and
forwards compact summaries of the local objects. The summaries get merged
with the ones of other nodes along a spanning tree, up to S, which then can
deliver the set of global objects. Compared to the baseline, MAD-C drastically
reduces data communication, while it pipelines and distributes the analysis.

In the following we address how to efficiently (i) generate local maps, i.e.
summaries of the local clusters in the local views; and (ii) gradually merge the
maps in a deterministic fashion, despite network asynchrony.
Efficient Maps and Summarization of Local Clusterings. Consider two
local clusters c1 and c2 from two views. How can we determine whether to merge
them without having to calculate pairwise distances of points in c1 and c2?
Simply considering distances between their centroids doesn’t work, as the size
and shape of clusters matter. Hash-based similarity checks don’t apply either,
since point clouds have different elements. To address these issues efficiently,
MAD-C works on summaries of local clusters.

A summary of a cluster c should ideally (i) use small space (independent of
|c|), (ii) be built incrementally as new points are added, (iii) be shared with peers
as soon as all c’s points are found and (iv) express the volume that c occupies,
to allow comparisons and merging with close/overlapping clusters.

We noticed that bounding ellipsoids satisfy these requirements. With this in
mind, and inspired by contour surfaces of a three-variable Gaussian distribu-
tion, which form 3D ellipsoids, we propose to fit Gaussian distributions to local
clusters and represent them as bounding ellipsoids.

A Gaussian distribution is characterized by a mean vector μ ∈ R
3 (center of

the distribution) and a covariance matrix Σ ∈ R
3×3 (spread of the distribution).

The family of ellipsoids corresponding to the surface plots of a three-variable
Gaussian distribution are characterized through (x−μ)T Σ−1(x−μ) = α2, where
α is a constant (i.e. a parameter of MAD-C) which we call the confidence step.
The unit eigen-vectors of Σ define the directions of the principal axes of the
ellipsoid centered at μ [7]. The Gaussian fit through maximum likelihood esti-
mation [7], allows to calculate a bounding ellipsoid incrementally by calculating
N (c’s number of points), S =

∑N
1 pi (cumulative vector sum of c’s points) and

Σ̃ =
∑N

1 pip
T
i (cumulative sum of outer products of c’s points). As soon as c is

complete, μ and Σ of the bounding ellipsoid E can be calculated through S/N
and Σ̃/N − μμT respectively (Algorithm 1, l. 10).
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(a) M1 (b) M2 (c) M3 (d) (e)

Fig. 2. (a,b,c) are local maps. (d) Mw = C (M1, M2), (e) Mw = C (Mw, M3)

Example. Figure 2a, b, and c respectively show the local maps corresponding
to Fig. 1b, c, and d. Ellipses symbolically illustrate the bounding ellipsoids. The
delimiting boxes are explained later in this section. We need some definitions to
introduce next steps and properties of MAD-C.

Definition 1. A map M is a set of objects. An object O is a set of ellipsoids.
‖M‖ denotes the number of ellipsoids in M.

In MAD-C, a node Li produces a local map Mi, i.e. a set of singletons,
each containing a bounding ellipsoid approximating a local cluster in Li’s view
(excluding noise points). The calculation of each ellipsoid’s parameters can be
embedded in the calculation of the clustering, at constant overhead per point.

Observation 1. The representation of a bounding ellipsoid of cluster c is of size
independent of |c|. The cost of calculating its parameters μ and Σ is constant
per point in c. The representation of a map Mi is of size linear in |Mi|.

Algorithm 1. GenLocalMap(i)
1: A: Euclidean clustering algorithm

2: α: confidence step in MAD-C

3: while ∃ p just clustered by A do

4: c : local cluster where p belongs

5: if c is new then

6: c.N = 0; c.S = 0[3×1]; c.Σ̃ = 0[3×3]

7: c.N = c.N + 1; c.S ← c.S + p;

8: c.Σ̃ = c.Σ̃ + p ∗ pT

9: for c ∈ detected clusters at Li do

10: μ = c.S/c.N ; Σ = c.Σ̃/c.N − μμT ;

11: E : an ellipsoid with a unique id

12: E.μ ← μ;E.Σ ← α2Σ;

13: Initialize O to contain E

14: for d ∈ {x, y, z} do

15: O.bd = [min projdE,max projdE]

16: M.addSingleton(O)

Algorithm 2. UnifyChildren(i)

1: Mw = GenLocalMap(i)

2: for all Child C do

3: get(MC); Mw = Merge(Mw,MC)

4: send Mw to parent (if any)

5: Function Merge(Mw,MC)

6: Mr ← Mw ∪ MC

7: for all Oi ∈ Mw,Oj ∈ MC do

8: if overlap(Oi.b,Oj .b) then

9: if ∃E ∈ Oi ∧ ∃E′ ∈ Oj |E ∩ E
′ then

10: Mr.Merge(Oi,Oj) with:

11: bd = Oi.bd ∪ Oj .bd, d ∈ {x, y, z}
12: RETURN Mr

Combining Ellipsoids and Maps from Multiple Nodes. While passing
maps along the tree, each node merges its working map Mw (initially its local
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map), with maps from its children, then it forwards the result to its parent (cf.
Algorithm 2; shadowed lines are explained later in this section).

If merging is performed on the local point clouds rather than summaries, two
local clusters become one if at least a pair of points (one from each) are within ε
distance. Similarly, objects in the Mw and each child map MC are compared to
detect if they contain ellipsoids satisfying such matches. If so, those objects are
merged ; i.e. the union of their ellipsoids is recognized as one object in Mw. In
Sect. 4 we explain how (i) to integrate ε in an ellipsoid’s representation, (ii) to
check if two ellipsoids intersect and (iii) merge two objects, all in constant time.

If the baseline is performed on the merged point cloud excluding noise, then
it generates clusters consisting of one or more local clusters because local clusters
do not break into smaller pieces in the merged point cloud. Hence:

Lemma 1. Applying the baseline on ∪K
i=1ptCloudi results in clusters, each con-

taining local clusters from local views. Likewise, the objects returned by S are
sets of ellipsoids, each of the latter corresponding directly to a local cluster.

Example. Figure 2d shows the result of Merge (M1,M2). Figure 2e shows the
Merge result of the latter and M3.

Lemma 2. Operation Merge on maps containing ellipsoids with unique iden-
tities, satisfies the reflexive, symmetric and associative properties.

This follows through line 7 of Algorithm2: if Oi and Oj have intersecting
ellipsoids, they will be merged regardless of the order of execution, implying
that Merge satisfies properties of conflict-free replicated data types [12].

Corollary 1. The network topology and timing asynchrony does not affect the
final map at S. Moreover, the Merge operations can be executed using non-
atomic multicasting, similar to gossiping or selective flooding, guaranteeing even-
tually consistent final outcome and inherent fault-tolerance properties.

Corollary 1 implies the spanning tree assumption can be lifted and besides
the sink node, any other node can construct the global map, if nodes broadcast
their views in the network. We now study the processing and communication
overhead of MAD-C, with a single sink.

Observation 2. ‖M‖ equals ‖M1‖+‖M2‖ if M is the result of Merge(M1,M2).

Lemma 3. Comparing objects O1 and O2 needs at most θ(|O1|× |O2|) compar-
isons. O(‖M1‖‖M2‖) processing steps is an upper bound on the computational
cost of merging maps M1 and M2.

This is because the number of comparisons for merging two maps is at most:(
Σ

|M1|
i=1 Σ

|M2|
j=1 |M1(i)||M2(j)|

)
≤ (Σ|M1|

i=1 |M1(i)|)(Σ|M2|
j=1 |M2(j)|) = ‖M1‖‖M2‖,

while the cost of comparison and merging is constant (see Sect. 4). This bound
is an overestimation of a worst-case because it counts unnecessary comparisons
as well. The exact bound is data-dependent and hence harder to estimate in a
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data-agnostic way, yet we experimentally study the number of comparisons in
Sect. 5. In the following we study the role of topology in the above (still worst-
case estimations), while later in this section we explain how to avoid unnecessary
comparisons.

Let γ be the number of actual objects and K be the number of LIDARs. In
each local view, while some objects might be entirely occluded, others might split
into smaller ones, though not changing the order of magnitude of objects O(γ)
detected in the view, for the same ε and minPts (cf. Sect. 2) as the baseline.

Lemma 4. Merge’s worst-case complexity is O(γ2K2) with a star or non-
balanced tree topology and O(γ2K lg K) with a balanced binary tree.

Recall that the expected cost of Euclidean clustering of n points is O(n log n)
processing steps [4,13]. Let ni be the size of ptCloudi.

Corollary 2. The overall computation cost of MAD-C is the sum of (i) the
local clustering steps,

∑K
i=1 O(ni log(ni)), (ii) Merge operations steps,

(Lemma 4, Lemma 3) and (iii) bounding ellipsoids calculation steps,
∑K

i=1 O(ni)
(Observation 1).

Lemma 5. The total volume of data (e.g. in bytes) to be transferred between
pairs of nodes in MAD-C is O(γK), O(γK2), and O(γKlgK) under star, non-
balanced tree, and balanced binary tree topologies, respectively.

The above are determined through the ellipsoids to be transferred, using
Observation 2 to find the number of ellipsoids that any node transfers to its
parent.

Considering that (i) MAD-C relies on local clustering and assuming the latter
is performed in parallel, and (ii) in the worst case, no Merge operation takes
place until the latest local clustering is completed, we have:

Corollary 3. Completion time of MAD-C is determined by maxK
i=1 O(ni log ni),

plus the time to complete Merge operations and the time to transmit the maps.

Avoiding unnecessary comparisons To avoid unnecessary one-to-one com-
parisons (e.g. when two objects occupy completely different parts of the scene),
we propose delimiting boxes as a way of distinguishing objects, so that those
that don’t need to be compared, get grouped separately. An object’s delimit-
ing box is an axis-aligned rectangular shape that encapsulates all the ellipsoids
corresponding to that object (Algorithm2, l. 11). An ellipsoid’s delimiting box
is the smallest axis-aligned circumscribed rectangle encapsulating that ellipsoid,
i.e. one closed interval for each axis (Algorithm1, l.14).

Lemma 6. If the delimiting boxes of Oi and Oj do not overlap, the two objects
do not have overlapping ellipsoids.

This follows from the definition of delimiting boxes and it helps to reduce the
comparison costs, while the other properties shown in the analysis still hold.
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MAD-C-ext: Delivering Data Point Labels Rather than Ellipsoids. The
baseline determines a labeling/clustering tag for each data point in the merged
point cloud. MAD-C too can be modified so that, as well as maintaining a Mw,
each parent node combines point clouds from its children and its own, and it
determines a labeling for the latter and forwards both to its parent.

4 Algorithmic Implementation of MAD-C

Ellipsoidal Overlap. Given a pair of ellipsoids Ea,Eb, the method described
in [1] determines in constant time if they intersect. It characterizes Ea,Eb respec-
tively as XT AX = 0 and XT BX = 0, where A and B are 4×4 matrices derived
from their centroids and covariance matrices by extending with a default row
and column. Ea,Eb overlap if there is at least an admissible eigenvector (one
without a zero in the fourth dimension) of A−1B that satisfies both equations.

Aura: Integrating ε in Ellipsoids. If the minimum distance of pairs of points
from two objects is less than ε, then they are grouped together by the Euclidean
clustering algorithm. We target the same behaviour with the ellipsoidal models,
adding an aura δ = ε/2 around them, simply by increasing lengths of the main
axes by δ. This is achieved by manipulating the covariance matrix of the ellip-
soid to be expanded. Suppose V ΛV T is the singular value decomposition of the
covariance matrix. Since the lengths of the main axes of the ellipsoid are the
entries in the diagonal matrix Λ, it suffices to update Λ to

(
Λ0.5 + δ.I

)2.

Data Structure for Maps. Implementation of MAD-C requires a data struc-
ture supporting maps. As described in Sect. 3, a map is a set of objects, each
being a set of ellipsoids. We employed a variant of disjoint-set data structure
with path compression technique. In our implementation, ellipsoids are initially
elements of a disjoint-set forest and objects are merged by merging their cor-
responding trees through a simple pointer operation, hence the merging cost is
constant.

5 Experimental Evaluation

We study (i) how well the ellipsoids represent local objects, (ii) the quality of
MAD-C’s approximate clustering and (iii) the quality of the clustering from all
the LIDAR nodes for both the baseline and MAD-C-ext. To complement MAD-
C’s Merge and communication worst case costs (Lemmas 3, 4 and 5) we also
empirically measure (i) the computational costs of the former (including that of
maintaining maps on local nodes) and (ii) the communication costs of the latter.

Evaluation Data. Public LIDAR datasets are usually gathered by a single
source. Therefore, we only use them to study how well the ellipsoids represent
local objects. To that end, we use 30 randomly chosen point clouds from the
KITTI dataset [5], collected by a Velodyne laser scanner in urban driving (Fig. 3).
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Fig. 3. KITTI-dataset
scene.

Fig. 4. Factory scene. Fig. 5. Random scene.

We also use datasets generated by the Webots simulator (https://www.
cyberbotics.com/overview), which simulates real-world LIDARs (VelodyneHDL-
32e, in our case) and 3D scenes. One such scene resembles a factory environment
(with Automated Guided Vehicles, lifting arm cranes and related objects) with
four LIDARs placed at the corners of the scene and one in the middle (Fig. 4).
Other scenes define random objects, as small as cubic boxes (with lengths of
80 cm) to objects as big as cars, over an area of 50 × 50m2 with LIDARs placed
at up to seven spots. Each object is randomly rotated around its vertical axes
to vary the angle with which it is exposed to LIDARs (e.g. Fig. 5). To study
MAD-C’s operational costs, which depend on the number of scene’s object and
LIDARs (Lemmas 4 and 5), random scenes have a variable number of objects.
We define 10 scenes for 10, 50 and 100 objects, for a total of 30 scenes. We use
the notation Λi for any scene to specify it contains i LIDAR nodes. We exclude
the point cloud portions falling outside the scenes’ area.

Evaluation Setup. We implemented MAD-C in C++ and used GNU scientific
library and Eigen for matrix algebra. For the baseline and local clusterings, we
employed Euclidean clustering (cf. Sect. 2) algorithm in Point Cloud Library [14],
with ε and minPts respectively set to 0.35 and 10. With these values, the baseline
reasonably detects all objects in the scenes and provides a reliable ground-truth.
All experiments were run on an Ubuntu 14.04 virtual machine with one 3.1 GHz
core and 4 GB of memory. We assume a star topology, i.e. K −1 nodes communi-
cating with a sink. Execution of fog/edge devices was emulated by individually
running them on the virtual machine and profiling the intermediate results (i.e.
local maps) and the performance measurements. The Merge was performed
afterwards. Corollary 3 suggests why this approximations hold.

We estimate running times by dividing the rdtsc [10] count, the number of
CPU cycles, by the CPU frequency clock rate. To approximate the communi-
cation times, we divide the communication volume (sum of local point clouds’
volumes for the baseline and sum of the maps’ volumes in MAD-C) by the avail-
able bandwidth. Despite the latter being a coarse-grained approximation that
favours the baseline (since the latter transfers about two orders of magnitude
more data, which causes even higher communication overheads and possibly

https://www.cyberbotics.com/overview
https://www.cyberbotics.com/overview
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retransmissions, especially in multi-hop networks), we show that MAD-C still
has better performance. We also count the ellipsoid comparisons in Algorithm 2
to see how effective the delimiting-box method is.

Estimating the Confidence Step α: Large α (i.e., large bounding ellipsoids)
leads to high coverage of local objects. Yet, excessively large α, can lead to
ellipsoids erroneously covering other objects’ points. To study the trade-off, we
employ precision and recall. For a local object and its bounding ellipsoid, they
measure the ratio of the correctly covered points to all covered points and the
ratio of the correctly covered points to the size of the point-set of the object, as
detected by the baseline, respectively. As shown in Fig. 6 for the KITTI dataset
(similar is the behaviour for the Webots simulations), when α is too small, local
objects are partly covered (i.e. low average recall) or not covered at all (i.e. low
average precision). This is not the case for higher values of α, until the precision
decreases again when the bounding ellipsoids erroneously start overlapping other
objects. We take [0.8, 2.4] as the desirable range for α.

Accuracy of MAD-C and MAD-C-ext. As noted in Lemma 1, objects iden-
tified by the baseline contain one or more local objects from different views.
Objects returned by the sink node in MAD-C, likewise, are composed of ellip-
soids which in turn relate to local objects. Therefore, we take local objects as
the basic elements on which MAD-C and the Euclidean clustering algorithm are
executed and compare them using the RandIndex measure (cf. Sect. 2). Figure 7
presents the accuracy of MAD-C and MAD-C-ext, respectively, for two, three,
four, and five nodes with α values 0.8, 1.4, 1.8, and 2.4 for the factory scene.
Figure 8 shows their accuracy for α = 1.5 for the random scenes; we use box plots
to present accuracy for all the 30 scenes. As shown, both MAD-C’s and MAD-
C-ext’s clustering outcomes are close to the baseline ones. In the remainder, the
experimental study of processing and communication costs assumes α = 1.5.

Execution cost of MAD-C. Figure 9 (left) shows MAD-C’s and baseline’s
execution costs (Corollary 3) for the random scenes while Fig. 9 (middle) dis-
tinguishes MAD-C’s costs for local clustering - C1 - and for the Merge
operation (including the calculations of the bounding ellipsoids) - C2. Notice
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Fig. 9. MAD-C and baseline - avg. execution cost, MAD-C’s execution costs decom-
position and MAD-C vs baseline - avg. communication cost (random scenes).

Table 1. Average number of ellipsoid comparisons
with/without the delimiting-box method.

Λ2 Λ3 Λ5 Λ7

10 obj. 16 168 46 599 92 1827 164 2951
50 obj. 72 3610 218 12738 487 38858 804 56477
100 obj. 105 12618 390 42481 1094 140380 2049 203423

Table 2. Execution times
in seconds (100 objects).

Λ2 Λ3 Λ5 Λ7

baseline 14 19 32 50

MAD-C 9 11 15 19

the logarithmic-scale y-axis, showing order(s) of magnitude difference between
MAD-C and the baseline. Table 1 quantifies the effectiveness of the delimiting-
box heuristic (Lemma 6), showing the average number of comparisons with (high-
lighting) and without the heuristic.

Communication Cost of MAD-C. Figure 9 (right) contrasts the required
average volume of communication for both MAD-C (see Lemma 5) and the
baseline for the random scenes. MAD-C improves by two orders of magnitude
the average communication cost compared to that of the baseline.

Summary. In Table 2 we estimate the total execution time for 100 objects of
MAD-C versus the baseline, assuming CPU frequency of 2 Ghz and communi-
cation bandwidth of 10 Mbps (similar to specification of devices in edge and fog
computing). As observed, MAD-C offers a considerable improvement over the
state-of-the-art, with a gap increasing accordingly to the number of LIDARs.

6 Related Work

Relevant clustering-based object detection algorithms for point clouds found in
the literature are [4,13]. To cope with point clouds’ large data volumes, parallel
analysis techniques are given in [9,11]. All these can be leveraged by MAD-C
since, as discussed, it integrates on top of any clustering algorithm. Variants
of Octrees [3], voxel grids [13], and bounding boxes [6] are efficient tools for
processing point clouds. MAD-C offers new opportunities due to the compact
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representation of bounding ellipsoids and their properties. ICP [2] performs geo-
metric alignment of point clouds when the relative location and pose of sources
is unknown, yet, in our work, we know this information.

7 Conclusions and Future Work

MAD-C is a multi-stage method to distributedly approximate detection and
localization of objects with multiple LIDARs. Its core phase clusters disjoint
subsets of data in a distributed and parallel fashion. Through summarization,
it drastically reduces the volume of transmitted data while approximating effi-
ciently the outcomes obtained by clustering all the raw data as a whole. The
summaries, computable in a continuous way and with constant time and space
overhead, can be combined in an order-insensitive concurrent fashion, allowing
for more general-purpose uses of MAD-C. Future work will focus on the deploy-
ment of a MAD-C prototype on an IoT test-bed.
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Larrañaga, P., Inza, I., Bengoetxea, E. (eds.) Towards a New Evolutionary Com-
putation. STUDFUZZ, vol. 192, pp. 75–102. Springer, Heidelberg (2006). https://
doi.org/10.1007/3-540-32494-1 4

8. Himmelsbach, M., Hundelshausen, F.V., Wuensche, H.J.: Fast segmentation of 3D
point clouds for ground vehicles. In: Intelligent Vehicles Symposium, pp. 560–565.
IEEE (2010)

9. Kumari, S., Goyal, P., Sood, A., Kumar, D., Balasubramaniam, S., Goyal, N.:
Exact, fast and scalable parallel DBSCAN for commodity platforms. In: 18th Inter-
national Conference on Distributed Computing and Networking, p. 14. ACM (2017)

https://doi.org/10.1007/3-540-32494-1_4
https://doi.org/10.1007/3-540-32494-1_4


324 A. Keramatian et al.

10. Paoloni, G.: How to benchmark code execution times on Intel IA-32 and IA-64
instruction set architectures. Intel Corporation, p. 123 (2010)

11. Patwary, M.A., Palsetia, D., Agrawal, A., Liao, W.k., Manne, F., Choudhary, A.:
A new scalable parallel DBSCAN algorithm using the disjoint-set data structure.
In: Proceedings of the International Conference on High Performance Computing,
Networking, Storage and Analysis, p. 62. IEEE Computer Society Press (2012)

12. Preguica, N., Marques, J.M., Shapiro, M., Letia, M.: A commutative replicated
data type for cooperative editing. In: 29th IEEE International Conference on Dis-
tributed Computing Systems, ICDCS 2009, pp. 395–403. IEEE (2009)

13. Rusu, R.B.: Semantic 3D object maps for everyday manipulation in human living
environments. KI-Künstliche Intelligenz 24(4), 345–348 (2010)

14. Rusu, R.B., Cousins, S.: 3D is here: point cloud library (PCL). In: IEEE Interna-
tional Conference on Robotics and automation (ICRA), pp. 1–4. IEEE (2011)

15. Wagner, S., Wagner, D.: Comparing clusterings: an overview. Universität
Karlsruhe, Fakultät für Informatik Karlsruhe (2007)



FPDAPP - Workshop on Future
Perspective of Decentralised

Applications



Workshop on Future Perspectives
of Decentralized Applications (FPDAPP)

Workshop Description

Blockchain technologies (BCTs) make agreement amongst untrusted parties possible,
without the need for certification authorities. Proposed frameworks have been put
forward in sector as diverse as finance, health-care, notary, intellectual property
management, identity, provenance, international cooperation, social good, and security
to cite but a few. Smart contracts, i.e. self-enforcing agreements in terms of executable
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peers and their decentralised consensus.
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uation and comparison of killer applications that are showing evidence of how Dis-
tributed Ledger Technologies can revolutionize their domains or developing new
application areas. Evaluation and comparisons are broadly understood, form technical
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Abstract. Crypto-currencies are nowadays widely known and used by
more and more users, principally as a means of investment and payment,
outside the restrict circle of technologists and computer scientists. How-
ever, as fiat money, they can also be used as a means for illegal activ-
ities, exploiting their pseudo-anonymity and easiness/speed in moving
capitals. The aim of the suite of tools we propose in this paper is to bet-
ter analyse and understand money flows in the Bitcoin block-chain, e.g.,
by clustering addresses, scraping them in the Web, identifying mixing
services, and visualising all such information to forensic scientists.

1 Introduction

Following the popularity of Bitcoin [2,9], also other crypto-currencies have expe-
rienced a huge increase in acceptance/use (e.g., Ethereum, Litecoin, Ripple,
Monero). Hundreds of new crypto-currencies (coins and tokens) have been offered
to the market, currently reaching slightly less than two thousands proposals.
Crypto-currencies are no longer relegated (only) to darknet markets1 or tech-
nology enthusiasts, but are nowadays a matter of discussion and investment
products known by a large part of the population who has access to ICT.

However, due to the pseudo-anonymity offered to users, Bitcoin2 payments
have also become an attractive and frequently used means for collecting money
from illegal activities perpetrated by criminals. For instance, Bitcoin pay-
ments are requested by most of the last ransomware, as WannaCry [5] and
Petya3. Other activities are represented by demanding payments for illegal ser-
vices/goods, as software exploits or Ransomware-as-a-Service (RaaS ) targeting
a desired victim. A new frontier could be the use of crypto-currencies as tax
heavens.

After introducing Bitcoin in Sect. 2, in the remainder of the paper we describe
a work-in-progress suite of different software tools, whose aim is to facilitate
1 Commercial Web-sites that are only reachable through overlay networks imple-

mented by communication anonymisation projects as Tor or I2P.
2 In this paper we focus on this crypto-currency.
3 https://www.symantec.com/blogs/threat-intelligence/petya-ransomware-wiper.
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the analysis of bitcoin flows, and let the forensic scientist extract and visualise
useful insights on target (pools of) addresses. Results on specific case studies
have been already presented in [4–6]. We name the whole suite BlockChainVis,
inheriting from the visualisation module [6]. Section 5 wraps up the paper with
final conclusions.

2 Bitcoin

The white-paper on Bitcoin4 appeared in late 2008 [9], under the pseudonym
“Satoshi Nakamoto”. It consists of an open-source, peer-to-peer, digital cur-
rency. Money transactions do not require a third-party intermediary. The payer
and payee directly interact without using their real identities, and no personal
information is transferred from one to the other. However, differently from a fully
anonymous transaction, a complete transaction record of every bitcoin transfer
and every Bitcoin user’s encrypted identity is maintained on a public ledger,
called the block-chain. For this reason, Bitcoin transactions are pseudonymous,
and not completely anonymous: Bitcoin addresses are pseudonyms of real indi-
viduals, and a user may have several pseudonyms.

The only way to create new bitcoins is through the mining process: miners are
the nodes that verify the transactions and add them to the block-chain, grouped
into “blocks” of information. The amount of bitcoins5 created each time a miner
discovers a new block represents a reward for its job. Besides it, also the fees of
all the transactions in the mined block go to the miner.

Transactions. Transactions are the basic brick of the Bitcoin network: they
represent the mechanism that allows a user to cede money to another user, e.g.,
from a buyer to a seller. This mechanism is possible thank to Bitcoin addresses. A
Bitcoin address is an identifier of 26–35 alphanumeric characters, and it strictly
derives from the hash of a generated public key (pubkey in the following) [2].
A private key is a random 256bit number, and the corresponding pubkey is
generated through an Elliptic Curve Digital Signature Algorithm (ECDSA [7]).

A transaction input needs to store the proof it belongs to the address who
wants to re-transfer the money received in a previous transaction. The output of a
transaction contains the next destination of bitcoins instead. Thus, the ownership
of the coins is expressed and verified through links to previous transactions. For
example, Alice, in order to send 3 bitcoins (BTC) to Bob, must refer to other
transactions she has previously received, which amount to at least 3 BTC.

Block-chain. Miners keep the block-chain consistent, complete, and unalterable:
they repeatedly verify and collect newly broadcast transactions into a new block
of transactions. Each block header contains information that chains it to the pre-
vious block in the block-chain, that is the hash of the previous block. Thank to

4 We use “Bitcoin” for the protocol and network, and “bitcoin” for the coin.
5 Halved every 210, 000 blocks. Now it is 12.5 bitcoins.



A Suite of Tools for the Forensic Analysis of Bitcoin Transactions 331

Fig. 1. A graphical summary of the BlockChainVis suite of tools.

this field, a block (and consequently the block-chain) is computationally imprac-
tical to be modified, since every block after it would also have to be regenerated.
The remaining field of the header, i.e., the nonce, is obtained from the compu-
tation of the proof-of-work by miners. Once the header is filled with the nonce,
its hash has to be less than a target number.6 This proof is easy to verify (one
hash operation), but extremely time-consuming to generate.

3 System Design and Implementation

The BlockChainVis architecture is designed to accommodate a modular and
expandable framework with the purpose to build complex applications for the
forensic analysis of the Bitcoin block-chain. Figure 1 summarises the tools.

The entire database of transactions is stored within PostgreSQL7, even if
it is possible to use OrientDB8 as well. Moreover, we are currently moving
the database to Accumulo9. The back-end of this suite is implemented on a
machine with 512 Gbyte of RAM, 2 processors Intel(R) Xeon(R) CPU E5- 2620
v4 2.10 GHz 8 core (for a total of 32 threads); in particular, the implementation
consists of three different virtual machines running, (i) Bitcore, (ii) PostgreSQL,
and (iii) software dedicated to visualisation of Web-applications. In the remain-
der of this section we describe some of the modules in Fig. 1.

6 Such a difficulty threshold is adjusted every 2016 blocks, in order to let a block
mined every 10 min on the average.

7 https://www.postgresql.org/.
8 https://orientdb.com/.
9 https://accumulo.apache.org/.

https://www.postgresql.org/
https://orientdb.com/
https://accumulo.apache.org/
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Fig. 2. Getrawtransaction query.

3.1 Bitcore Node

Bitcore is a “full node”10 Bitcoin client. The raw block-chain can be queried
by using Insight API, and the result is presented to the user as a JavaScript
Object Notation (JSON11) file, which is a simple text-document where the basic
structure is a set of name-value pairs and an ordered list of values.

In Fig. 2 we can see the output of getrawtransaction query, which, by having
a hash as parameter, allows for receiving all the information about a transaction;
for instance, its block number, all the inputs and the outputs, the number blocks
following in the block-chain (i.e., confirmations).

3.2 Bitcoin Addresses Scraper

The Bitcoin addresses scraper crawls the Web for Bitcoin addressees to be associ-
ated with real users, or to Web URL. The aim is to fully de-anonymise addresses
where possible.
10 Full nodes download every block in the block-chain, currently 170 Gb of raw data.
11 http://www.json.org.

http://www.json.org


A Suite of Tools for the Forensic Analysis of Bitcoin Transactions 333

We use a set of scrapers [15] that crawl specific data form Web sites connected
to the Bitcoin world:

– user-names on Bitcoin Talk12 forum and Bitcoin-OTC13 marketplace;
– physical coins created by Casascius (https://www.casascius.com) along with

their Bitcoin value and status (opened, untouched);
– known scammers, by automatically identifying users that have significant

negative feedback on the Bitcoin-OTC and Bitcoin Talk trust system.
– name tags on block-chain.info14, e.g., “Wannacry ransomware 1”.

The tool helps users build lists of gambling addresses, online wallet addresses,
mining pool addresses, and addresses which were subject to seizure by law
enforcement authorities. All these addresses are entered in the database and they
are used to de-anonymise further addresses by using the heuristics in Sect. 3.6.

3.3 Database of Transactions

Originally we had all block-chain in a OrientDB database. OrientDB is a widely
used and open source NoSQL multi-model database. Unlike relational databases,
a graph database does not utilise foreign keys or “join” operations. Instead, all
relationships are natively stored as vertices of a graph. This results in deep
traversal capabilities, increased flexibility and enhanced agility. However, from
preliminary tests, this database is quite demanding in terms of RAM usage,
which was not sufficient to calculate all the islands of transactions present in the
block-chain, i.e., the strongly connected components.

For this reason, we are also testing a PostgreSQL database. Postgres, is an
Object-Relational Database Management System (ORDBMS) with an emphasis
on extensibility and standards compliance. As a database server, its primary
functions are to store data securely and return that data in response to requests
from other software applications.

3.4 Mixing Services Detector

Bitcoin is a good way to stay anonymous while making payments. Nevertheless,
Bitcoin transactions are never truly anonymous. Bitcoin activities are recorded
and available publicly via the block-chain. When a Bitcoin user pay for some
service or good, she will of course need to provide her name and address to
the seller for billing or delivery purposes. It means that a third party can
trace her transactions and associate her address with her name. To avoid this,
mixing services (also called tumblers) [13] provide the ability to interrupt a direct
money-flow from one user to another by using addresses that do not belong to the
original owner. Mixing services are used to mix one’s funds with other people’s

12 https://bitcointalk.org/.
13 https://bitcoin-otc.com/.
14 https://blockchain.info/tags.

https://www.casascius.com
https://bitcointalk.org/
https://bitcoin-otc.com/
https://blockchain.info/tags


334 S. Bistarelli et al.

Table 1. Characteristics of some mixing services.

Service name Fees Return time Minimum
import

Maximum
import

Helix light 2.5% max 24 h 0.01 BTC 43 BTC

Bitcoin blender 1–3% max 99 h 0.01 BTC None

Coin cloud 1.25% max 1 h 0.01 BTC None

CoinMixer 1–3% + 0.0006 BTC max 5 h 0.01 BTC None

BitClock 2% + 0.0008 BTC max 5 h 0.02 BTC 10 BTC

Table 2. Dataset characteristics.

Mixing services transactions All transactions

Made with mixing services Obtained from the Block-chain

Time range:
25 September 2017, 22 October 2017

Time range:
25 September 2017, 22 October 2017

Label with the name of the service No label

973 7 852 074

money, intending to confuse the trail back to the original source. In traditional
financial systems, the equivalent would be moving funds through banks located
in countries with strict bank-secrecy laws, such as the Cayman Islands.15

The goal of this module (see Fig. 1) is to find mixing services in the Bitcoin
network. In particular, to extract related behavioural-patterns in terms of pay-
ments, and consequently to understand how a mixing service works. In practice,
this allows for tracking a desired bitcoin-flow also through a mixing service.

To experimentally find such patterns, we prepared some real bitcoin-
payments using different mixing services: the final goals is to have identify those
addresses that belong to tumblers. In Table 1 we can see the characteristics of the
used mixing services. We extracted two databases to proceed with the investiga-
tion: one with all the transactions sending and receiving money from tumblers
addresses, while the other one with all other transactions performed in the same
time interval. The features of the two datasets are shown in Table 2.

Finally, we studied the behaviour of these addresses with Machine Learn-
ing, and in particular by using hierarchical clustering techniques considering
the following nine features: input addresses, output addresses, balance, average
balance, transaction ID, time of creation, number of inputs, number of outputs.

Unfortunately, in this way we were not able to spot a different behaviour
between the two datasets. Hence, in a second experiment we focused on a Data-
mining analysis instead; in the tumblers dataset we noticed that 4.9% of Coin-
Mixer transactions generates 89.7% of the edges, and 14 transactions generated
more than 1000 output addresses. These transactions have the following features:

15 https://en.bitcoin.it/wiki/Mixing service.

https://en.bitcoin.it/wiki/Mixing_service
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Table 3. Similarity of address sets (first six).

Transaction TX 1 TX 2 TX 3 TX 4 TX 5 TX 6

TX 1 100% 98.16% 97.31% 96.05% 94.54% 93.28%

Table 4. Similarity of address sets (second eight).

Transaction TX 7 TX 8 TX 9 TX 10 TX 11 TX 12 TX 13 TX 14

TX 1 92.58% 91.78% 90.91% 90.2% 89.55% 88.99% 88.28% 87.55%

(i) number of input addresses equal to 2, (ii) number of output addresses in the
range [2530, 2534], (iii) they were collected one a day, for 14 consecutive days.

We decided to compare the sets of output addresses and we noticed that
the similarity between the two datasets decreased day by day (see Tables 3 and
4). This feature allowed us to conclude that the output addresses are gradually
renewed over time with new addresses that work in the same way as those
deleted. These results clearly identify a behavioural pattern of the CoinMixer
service, generated by a specific internal algorithm. Hence, through an analysis
of transactions, and in particular of their output addresses, it is possible to also
recover all similar past and future transactions.

3.5 BlockChainVis (Visualisation)

BlockChainVis [6] is a module dedicated to the visual analysis of flows of Bit-
coin transactions. The aim of this module is to help analysing desired transaction
flows in deep. The block-chain can be considered as Big Data. For this reason
we turned our attention to Visual Analytics [16] (VA), that is the science of ana-
lytical reasoning facilitated by interactive visual-interfaces. The main objective
of VA is to help the visualisation of problems like size and complexity. The goal
is to rapidly visualise only the data of interest. Being VA task-oriented [16], we
have identified nine main tasks: (i) find miners; (ii) find transaction sources and
understand how they are connected; (iii) find the main addressees of transac-
tions; (iv) find the “richest” and “poorest” addresses; (v) find the addresses with
a break-even budget; (vi) find bitcoin flows from an arbitrary address; (vii) find
bitcoin flows from a set of different addresses; (viii) filter the block-chain on inter-
vals of time or block identifiers; (ix) filter the block-chain on specific transaction
amounts of bitcoins, or on their number of involved addresses. To reach such
tasks, in the initial window it is possible to select among three different kinds of
visualisation: Single Transaction, Address Transactions, and Archipelago. The
first view allows for manually inserting the hash of one desired transaction, and
then the tool shows the input addresses (in the following mentioned simply as
“inputs”) and the output addresses (in the following, “outputs”) as a graph. The
second option is the dual of the former: it is possible to type in an address and
the tool shows all the transactions that have such address as output, and all the
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Fig. 3. Island visualisation.

Fig. 4. Time visualisation.

inputs of these transactions. Hence, the first two options offer a more targeted
view: the user already has some initial information. The Archipelago view is
the third and most difficult one: it displays all the islands of the archipelago
of Bitcoin transactions. An island is a connected component of a graph, where
each couple of nodes is connected through a path, and each of the nodes is not
connected to any other vertex of the super-graph of block-chain. Currently, we
can visualise the Archipelago along time, as shown in Fig. 4. By clicking on any
island of the archipelago, a summary of its statistics pops-up. Then, it is possible
to enter into an island and visualise all its transactions, as shown in Fig. 3.
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3.6 Bitcoin Addresses Clusteriser

The goal of the Bitcoin addresses clusteriser module is to find groups of addresses
that belong to the same user. It incrementally reads the block-chain transactions
from the DB and generates/updates clusters of addresses by using the following
heuristics:

– The Multi-Input Heuristic [12] considers only transactions with more than one
input. All the inputs of this transaction are considered belonging to the same
owner. Formally: given a transaction t(Si → Ri) ∈ T and Si = a1, a2, . . . , an
the set of input addresses. Given also the cardinality of the ensemble |Ai| =
n, n > 1, then all input addresses belong to the same owner.

– The Shadow Heuristic [1] exploits the way in which clients manage the change,
i.e., every time a transactions has a change, a new address (called shadow)
is automatically created and used to collect back the change. This address
belongs to same owner of the input address.

– The Consumer Heuristic [10] uses the concept of “consumer wallet”, i.e., a
client that by default allows for sending bitcoins to a single address, so it
assembles transactions that have exactly 2 outputs. Given a transaction with
2 outputs, if there is an address appearing only in transactions that have 1
or 2 outputs, then this address and the input addresses are associated to the
same owner.

– The Optimal Change Heuristic [10] is based on the assumption that clients
try to use the outputs whose sum is closer to the value to be sent, then the
change must be less than values of all other input addresses. Considering a
transaction that has more than 2 outputs, if there is only one output whose
value is lower than all input values, then this address and the input addresses
are associated to the same owner.

– The One-to-one Heuristic considers only transactions having one input and
one output. Given one of these transactions, and given a pool of addresses
belonging to an exchange service16, if the two addresses do not belong to the
pool, they are considered belonging to the same owner.

– The Multisig-one Heuristic is based on multi-signature transactions17. Con-
sidering a transaction having a multisig output containing a pool of address
where to unlock it, it is necessary to control 1 or all private keys referred by
this pool of addresses, then the entire pool belongs to the same owner.

– The Multisig-two Heuristic considers multi-signature transactions that are
already spent. Given a transaction which have a spent multi-signature output
containing a set of addresses, where to unlock it is necessary to control more
than one private keys, then the subset of addresses, that has actually used to

16 Exchange services convert an amount of money in a given crypto-currency to a
different crypto-currency (or fiat money).

17 Multi-signature refers to requiring more than one key to authorise a Bitcoin trans-
action. https://en.bitcoin.it/wiki/Multisignature.

https://en.bitcoin.it/wiki/Multisignature
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Table 5. Percentage of Bitcoin addresses that can be clustered.

Heuristic Clustered addresses % of clustered addresses

MI 83,867,895 72.61

OC 5,004,254 4.33

MS1 520,396 0.45

MS2 2,263 0.001

MI+OC 87,613,567 75.86

MI+MS1 84,372,511 73.05

MI+MS2 83,868,035 72.61

OC+MS1 5,523,007 4.78

OC+MS2 5,006,484 4.33

MS1+MS2 521,263 0.45

MI+OC+MS1 88,116,265 76.29

MI+OC+MS2 87,613,699 75.86

MI+OC+MS1 84,373,211 72.61

OC+MS1+MS2 5,523,859 4.78

MI+OC+MS1+MS2 88,116,388 76.29

unlock the output, belong to the same owner. This heuristics is not applied
to 2-of-3 multi-signature because they could correspond to an escrow18.

Table 5 shows how many addresses can be clustered using individual heuris-
tics and their compositions. With only four heuristics, 76.29% of the total
addresses in the block-chain can be clustered (last row in Table 5).

3.7 Transaction Information

The last module, i.e., Transaction information, is focused on providing additional
information about transactions. First, it classifies transactions into standard and
non-standard types, according to the Bitcore function isStandard()19. Then, it
shows the distributions of standard and non-standard transactions in the block-
chain. Our first results on classification are provided in [4].

This module also allows for interacting with a Bitcoin scripting compiler. The
Bitcoin transaction language Script is a Forth-like [11] stack-based execution
language. Script requires minimal processing and it is intentionally not Turing-
complete (no loops) to lighten and secure the verification process of transactions.
An interpreter executes a script by processing each item from left to right in the
script. Data is pushed onto the stack, as well as operations, which can push or

18 Buyer commits money into a 2-of-3 address with the seller and a third-party
arbitrator.

19 https://github.com/bitcoin/bitcoin.

https://github.com/bitcoin/bitcoin
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pop one or more parameters on/from the execution stack, operate on them and
possibly push their result onto the stack.

4 Related Works

Analysing and understanding the Bitcoin block-chain is as complicated as inter-
esting and critical: several analysis tools have been developed. BitIodine [15] is a
modular framework, which parses the block-chain, clusters and labels addresses
and visualizes portions of transactions graph. Bitconeview [3] is a tool for the
visual analysis of how and when a flow of Bitcoins mixes with other flows in the
transaction graph. Blocksci [8] is an applications of block-chain analysis, that
allow to get information from transactions graph. In [14] the authors present
visualisation mechanisms for taint propagation in Bitcoin that display how cyber
criminals launder money. Chainalysis20 is a commercial Bitcoin forensic suites,
that allows to detect and investigate cryptocurrency laundering and frauds.

5 Conclusion and Future Work

In this paper, we have provided a preliminary report on the BlockchainVis suite
of tools, which is a modular framework to investigate the Bitcoin block-chain,
cluster addresses, identify mixing services, visualise information about transac-
tions, and allow for using scripting languages. In simple terms, we are currently
developing several integrated tools that simplify the life of the forensic scientist,
by automating some of the tasks performed to keep track of money flows and
their sources/destinations.

Bitcore Node: We plan to build a graphical interface to display the most
interesting information of Bitcore in real time, as the current broadcast trans-
actions (called the memory pool). Some examples of what we want to do are
in already-existing tools as bitcoind-status21, MyPHP Bitcoin Node Status22,
Satoshi.info23.

Database of Transactions: Since the bitcoin block-chain currently contains
320 million transactions, we have planned to test a third database system to
increase the response time of queries: Accumulo (see footnote 9). Apache Accu-
mulo is a highly scalable sorted, distributed key-value store based on Google’s
Bigtable24. Our idea is to have two different databases: a Postgres DB storing
all the needed information, and an Accumulo DB with Graphulo25 to store the

20 https://www.chainalysis.com/.
21 https://github.com/craigwatson/bitcoind-status.
22 https://www.reddit.com/r/Bitcoin/comments/2zexq0/my php bitcoin node

status page/.
23 https://statoshi.info/.
24 https://cloud.google.com/bigtable/.
25 https://graphulo.mit.edu/.

https://www.chainalysis.com/
https://github.com/craigwatson/bitcoind-status
https://www.reddit.com/r/Bitcoin/comments/2zexq0/my_php_bitcoin_node_status_page/
https://www.reddit.com/r/Bitcoin/comments/2zexq0/my_php_bitcoin_node_status_page/
https://statoshi.info/
https://cloud.google.com/bigtable/
https://graphulo.mit.edu/
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graph structure of transactions. In this way, the queries concerning the topology
of the graph do not need to also load useless data in memory.

Mixing Services Detector: At the moment, this module is not fully automa-
tised: in the future we plan to guide the user in reconnecting a broken flow of
bitcoins and visualise it by using the tool in Sect. 3.5.

Bitcoin Addresses Clusteriser: We are currently implementing all the afore-
mentioned heuristics and updating the database accordingly: we will highlight
all the addresses of the same user in the visualisation.

Transaction Information: We are developing a compiler to study a particular
transaction, called pay-to-script-hash (P2SH): transactions are sent to a script
hash (address starting with 3) instead of a public-key hash (address starting
with 1). The aim is to investigate such scripts.

Miner Analysis: We plan to build a new module that shows information about
miners, e.g., the relationship between miners and hashrate.

In addition to what described in this Section, we will also extend the power
of BlockchainVis by making it able to analyse not only Bitcoin, but also other
crypto-currencies, as Ethereum for example.

Acknowledgment. This work is supported by project “REMIX” (funded by Banca
d’Italia and Fondazione Cassa di Risparmio di Perugia) and project “ComPAArg”
(funded by “Ricerca di Base 2015–2016”, University of Perugia).
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Abstract. Emerging blockchain technology is a promising platform for
implementing smart contracts. But there is a large class of applications,
where blockchain is inadequate due to performance, scalability, and con-
sistency requirements, and also due to language expressiveness and cost
issues that are hard to solve. In this paper we explain that in some
situations a centralised approach that does not rely on blockchain is a
better alternative due to its simplicity, scalability, and performance. We
suggest that in applications where decentralisation and transparency are
essential, developers can advantageously combine the two approaches
into hybrid solutions where some operations are enforced by enforcers
deployed on–blockchains and the rest by enforcers deployed on trusted
third parties.

Keywords: Smart contracts · Blockchain · Monitoring
Enforcement · On chain · Off chain · IoT · Privacy · Trust

1 Introduction

This paper focuses on scenarios where two or more parties interact with each
other to conduct business over the Internet. Typical scenarios involve consumers
and providers where the latter sell tangible items or computing services to the
former. A specific example is the selling of personal data collected from IoT
sensors or social media applications to data consumers. We assume the business
parties involved are reluctant to trust each other unguardedly, that is; without
software mechanisms that assure (1) parties act according to some agreed upon
rules, and (2) performed actions are indelibly recorded on means that make them
undeniable and examinable, for example, to determine the sequence of actions
that led to an unexpected outcome and subsequent dispute.

In conventional business, the mechanisms normally used in these situations
are business contracts supported by ledgers. The contract stipulates what actions
c© Springer Nature Switzerland AG 2019
G. Mencagli et al. (Eds.): Euro-Par 2018 Workshops, LNCS 11339, pp. 342–354, 2019.
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the parties are expected to execute, while the ledger is used to record the his-
tory of the actions that have been executed. It is widely accepted that equivalent
mechanisms are also needed in electronic business. An emerging solution that
is currently being explored to address this question is smart contracts built
on the basis of blockchain technologies [4,25]. Examples of such technologies
are Bitcoin [2], Ethereum [10] and Hyperledger [34]. However, blockchain-based
smart contracts are only at their initial research stage, and plagued with ques-
tions about their scalability, performance, transaction costs and other questions
that emerge from their decentralised nature.

This article makes the following contributions to help clarify some of these
issues. (i) We explain that there are different approaches to implement smart con-
tracts ranging from centralised to decentralised. (ii) We explain the advantages
and disadvantages of these approaches and argue that their suitability in solving
the problem depends on the particularities of the application, the assumptions
made about the application, and the facilities offered by the blockchain technol-
ogy available. (iii) We argue that there is a large class of applications that can
benefit from a hybrid solution.

The remainder of this article is organised as follows: Sect. 2 presents a con-
tract example to motivate the use of smart contracts. In Sect. 3, we introduce
smart contracts and describe the difference between the centralised and decen-
tralised variations. Section 4 discusses implementation alternatives of smart con-
tracts. Section 5 places our work within past and current contexts. In Sect. 6,
we present some concluding remarks and raise questions that in our view, need
research attention.

Smart Contract 

contract-regulated operations 

used for producing 

 
1 The data buyer is entitled to 
present the data seller offers with 
offers to buy data data  
 
2 The data seller is free to use her 
discretion to either reject the offer 
or  

S1 

S2 

Sn 

Data seller 
(Alice) 

used for  enforcing Data buyer 
(Bob) 

data 
repository 
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Fig. 1. Data trading regulated by a smart contract.
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2 Motivating Scenario

An illustrative example of a contractually regulated IoT application of our
research interest is shown in Fig. 1. Alice is a person in possession of personal
data that she would like to sell and as such she plays the role of a Data seller.
The Data Buyer (represented by Bob) is a company interested in buying data
from Alice. Alice gathers her data from different sources, such as her social net-
work activities, body sensors and domestic sensors, as envisioned in [35]. For
simplicity and to frame the discussion, we assume that Alice is trading only
her data collected from her domestic sensors. We assume that Alice stores her
data in a personal repository, perhaps located in the cloud. Like in the “Hat”
project [1], we assume Alice is the absolute owner of the data and that she is
entitled to negotiate with potential buyers how to trade her data, i.e., to whom
to sell it to, when, and under which conditions. The negotiation process can be as
sophisticated as needed. Since this issue falls outside of the scope of this paper,
we consider only a simple accept or reject the offer as it is negotiation process.
An example of contractual clauses that Alice and Bob can use to regulate their
data trading follows:

1. The buyer (Bob) is entitled to present the data seller (Alice) with offers to
buy data collected from Alice’s domestic sensors.

2. The data seller is free to use her discretion to either reject the offer or
accept the offer as it is.
(a) The data seller is expected to send a notification of offer acceptance

within 36 h of receiving the offer, when she decides to accept it.
(b) Failure to send a notification will be considered as offer rejection.

3. The data buyer is obliged to send the payment to the data seller within 24 h
of receiving the notification of acceptance.
(a) Failure to meet his obligation will result in an abnormal termination of

the agreement to be sorted out off line.
4. The data seller is obliged to send a notification of payment acceptance

to the data buyer within 24 h of collecting the payment.
(a) Failure to meet his obligation will result in an abnormal termination of

the agreement to be sorted out off line.
5. The data seller is obliged to make the data available to the data buyer

within 24 h of collecting the payment and maintain the data repository
accessible during the following seven days.

6. The Data buyer is entitled to place data requests against the data seller
repository without exceeding 24 data requests per day.

7. The data buyer is entitled to close the repository upon expiration of the
seven day period.

8. This agreement will be considered successfully complete when the seven day
period expires.

The clauses include several contractual operations that we have highlighted in
bold such as offer to buy data, reject the offer, accept the offer, send a notification
of offer acceptance, send payment, etc. Though the clauses are relatively simple,
they are realistic enough to illustrate our arguments.
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3 Smart Contracts: Background

A smart contract is an event–condition–action stateful computer program, exe-
cuted between two or more parties that are reluctant to trust each other unguard-
edly. It can be regarded as Finite State Machine (FSM) that keeps a state that
models the development (from initiation to completion) of a shared activity. For
instance, in [22,32], the state is used for modeling changes in rights, obligations
and prohibitions as they are fulfilled or violated by the parties.

Research on executable contracts can be traced back to the mid 80s and early
90s [16,18]. In 1997, Szabo used the term smart contract [33] to refer to contracts
that can be converted into computer code and executed. However, commercial
interest in smart contracts emerged only in 2008 motivated by the publication of
Satoshi’s Bitcoin paper [24] that inspired the development of cryptocurrencies,
smart contracts and other distributed applications. Satoshi departed from the
centralised approach taken in previous research and demonstrated how smart
contracts can be decentralised.
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Fig. 2. Centralised and decentralised implementation of a smart contract.

3.1 Centralised and Decentralised Smart Contracts

Depending on the number of instances (copies) of the smart contract deployed to
monitor and enforce the contract we distinguish between centralised and decen-
tralised (distributed) approaches (Fig. 2). In the figure, A and B are business
partners, for example, Alice and Bob of our contract example of Sect. 2. SC is
the corresponding smart contract. op stands for operation executed against SC,
rp is the corresponding response. TTP node is a node under the control of a
Trusted Third Party. N1, . . . , N4 are untrusted nodes. CP stands for Consensus
Protocol. As shown in Fig. 2–(a), a contract can be implemented as a centralised
application that uses a single instance of the smart contract (SC ) running in
the TTP node. Besides the disadvantages that a TTP introduces (single point
of failure, trust placed on the TTP, etc.) this approach is comparatively sim-
pler that the decentralised approach. The decentralised approach relies on a set
of untrusted nodes instead of a single TTP that are used for running several
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identical instances (shown as SC1, . . . , SC4) of the smart contract. In this app-
roach, A and B are free to place their operation against any of the instances.
The price that the decentralised approach pays for getting rid of the TTP is
that the untrusted nodes must run a consensus protocol to verify that a given
operation has been executed correctly, and to keep the states of SC1, . . . , SC4

identical. Depending on the protocol used, its computational, communication
and performance degradation cost might be unbearable [36] or its consistency
guarantees inadequate [3] to the extent of rendering the decentralised approach
unsuitable.

4 Implementation Alternatives

We will take the example of Sect. 2 and highlight the advantages and disadvan-
tages of three implementation alternatives.
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Fig. 3. Centralised smart contract.

4.1 Centralised Implementation

A centralised implementation is shown in Fig. 3. The role of the SC is played
by the CCC (Contract Compliance Checker) developed at the University of
Newcastle. We use CCC and SC synonymously in this section. The CCC is a FSM
written in Java that accepts contractual clauses encoded as business rules written
in the Drools language [22]. The state of the FSM is altered by the execution of
contractual operations (op) initiated by the business partners, such as offer to
buy data, and send the payment. The FSM running within the CCC keeps track
of the state of the business process executed between Bob and Alice, and on this
basis it determines if a given operation is contract compliant (cc) or non contract
compliant (ncc). The CCC is used to control the gateway that grants access to
Alice’s data. For example, when Bob wishes to access Alice’s data, he (i) issues
the corresponding operation against the gateway, (ii) the gateway forwards the
operation to the CCC, (iii) the CCC evaluates the operation in accordance with
its business rules that encode the contractual clauses and responds with either cc
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or ncc to open or close the gateway, respectively, (iv) the opening of the gateway
allows Bob’s operation to reach the data repository and retrieve the response
(rp) that travels to Bob. Note that, to keep the figure simple, the arrows show
only the direction followed by operations initiated by Bob.

It is worth elaborating the following points. Observe that in the architecture,
all the operations are presented to the SC for evaluation. The operation rate is
not a problem because the architecture involves only a single instance of the SC,
i.e., there is no need to run consensus protocols. Likewise, the contract clauses,
which are encoded in the Drools languages, are executed by a FSM implemented
in Java. This means that we have a Turing complete programming environment
that allows us to encode and implement clauses of arbitrary complexity. Unfor-
tunately, the centralised approach introduces several drawbacks. For example,
the contracting parties need to trust the TTP to collect undeniable and indeli-
ble records of the actions executed by the contracting parties and make them
available upon request to parties that are entitled to see them, say to sort out
disputes. At the technical level, the TTP is a single point of failure. Another
issue is that the execution of the payment operation is centralised. We assume
a conventional card payment mediated by a bank as opposed to cryptocurrency
payment.
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4.2 Decentralised Implementation

A decentralised architecture is shown in Fig. 4. Four instances of the smart con-
tract (SC1, . . . , SC4) are deployed in four nodes N1, . . . , N4 (one each) of a
blockchain platform. Each operation initiated by a business partner is executed
against the contract; the contract determines if the operation is contract com-
pliant (cc) or non contract compliant (ncc) and responds to both business part-
ners accordingly. The response is also sent to the gateway to open or close it,
accordingly.
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To keep the figure simple, we show only the communication lines between
the Data buyer, SC1 and the gateway ; and between the Data seller, SC3 and
the gateway. Yet we assume that a given operation can be presented to any of
the four instances of the smart contract and that any of them can respond to
the business partners and the gateway.

The salient feature of the decentralised implementation is the replication of
the smart contract, consequently, there is no dependency on a single party. The
cost to pay for this benefit is the execution of the consensus protocol among the
instances which can significantly impact the performance of the smart contract
in terms of number of operations (called transactions in blockchain terminology)
per second that it can analyse, and the response time to complete a trans-
action. For example, Bitcoin, a public blockchain that uses a Proof of Work
(PoW) consensus algorithm, can only process about 7 transactions per second.
Another problem with Bitcoin is its consistency latency: its PoW algorithm offers
only eventual consistency that might take Bitcoin about an hour (or longer)
to approve and indelibly include a transaction in its blockchain [8]. Ethereum
operating under PoW consensus suffer from similar drawbacks. Permissioned
blockchains like Hyperledger rely on lighter consensus algorithms such as Proof of
State (PoS). However, applications where eventual consistency is unsafe, demand
strong consistency [3]. Strong consistency can only be delivered by communica-
tion intensive consensus protocols such as Byzantine Fault Tolerant protocols.
Unfortunately, these protocols suffer from scalability issues [36]. Some smart con-
tract applications (for example, applications that require instantaneous payment
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or the delivery of real time data) fall within this category. Another issue that
impacts decentralised approaches that rely on public blockchains is the trans-
action fee incurred by each operation analysed by the smart contract. In this
order, it would be insensible to take a decentralised implementation approach
for the contract example of Sect. 2 if the data buyer was to place a large number
of operations to retrieve small pieces of data under stringent time constraints.

4.3 Hybrid Implementation

Figure 5 shows the architecture of a hybrid implementation. It combines fea-
tures from the centralised and decentralised approaches discussed, respectively,
in Sects. 4.1 and 4.2. We separate the contractual operations into two classes:
decentralised operations (d–op) that need blockchain support and operations
that can be executed in a centralised fashion (c–op). d–op operations are encoded
using the decentralised approach and enforced by the instances (SC1, . . . , SC4)
whereas operation of the c–op category are encoded using the centralised app-
roach and enforced by the CCC.

The designer separates the contractual operation into d–op and c–op on the
basis of several criteria. As examples, we can mention some key parameters
related to the blockchain technology. The list is meant to be illustrative rather
then exhaustive. Complementary advise is discussed in [9,38] where they take
into account privacy concerns along with computation and data storage costs.

One decision criterion is the expressiveness of the language used for writing
the contract. For instance, if the blockchain does not offer a Turing–complete
language, the implementers needs to keep the d–op category simple. Bitcoin
for example, offers only a stack–based opcode scripting language that does not
support loops or flow control structures. In contrast, in a blockchain platform
like Ethereum that offers a Turing–complete language the designer can afford
to pass as much complexity to the decentralised part of the figure as she wishes
to. Another decision criterion is the transaction fee which is an issue in pri-
vate blockchains like Bitcoin and Ethereum but not in Hyperledger [37] when it
is operated as a permissioned blockchain. For example, Bitcoin and Ethereum
have already experienced average transaction fees of 54.90 and 4.15 USD, respec-
tively [5]. Another central parameter to take into account is the performance of
the blockchain, for example, the number of transactions per second and con-
sistency requirements as explained in Sect. 4.2. Operations that demand strong
consistency would be good candidates to be implemented as c–op. The perfor-
mance of the blockchain is especially relevant to IoT applications where transac-
tions must be automatically monitored to ensure that they perform under strict
Quality of Service requirements. For example one could easily imagine an addi-
tional clause being added to the contract in Sect. 2 requiring the repository to
process each request for data at a particular rate that would be too fast to be
monitored using a smart contract deployed on a blockchain. In such a scenario, a
centralised smart contract would be more logical, whereas the blockchain would
be used to record important milestone events such as the sending and receipt of
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payments for received data. We envision that the centralised and decentralised
integration can be operated in several ways, including the following:

Indelible Blockchain–Based Log. We can operate the blockchain–based part
of Fig. 5 as a passive log that records events that the parties consider worth
duplicating in the blockchain as well as in the TTP node. By passive we mean
that SC1, . . . , SC4 are not involved in enforcing activities—this is entirely the
responsibility of the CCC. This arrangement is useful when one or more of
the contracting parties is reluctant to trust the TTP blindly, say because it is
deployed within the buyer’s premises.

In this arrangement, the d–op set will include operations aimed at creating
additional records while c–op will include all the contractual operations like
in 4.1. The CCC and SC1, . . . , SC4 operate independently from each other.

Cryptocurrency–Based Payment Channel. The data buyer of the example
of Sect. 2 can take advantage of payment services offered by a public blockchain
(for example, Bitcoin) and use the top part of Fig. 5 to pay in satoshis. This
approach is recommended only when the payment operation is significantly larger
than the transaction fees and is not repetitive. In this arrangement, the d–op set
will include only the send the payment operation stipulated in clause 3. In this
arrangement, the CCC requires the assistance of the smart contract running in
the blockchain (SC1, . . . , SC4) only to verify that the data buyer has fulfilled
his obligation to pay. For instance, the data buyer application can submit his
payment through Bitcoin, wait for the confirmation of his transaction, collect
the evidence and submit it to the CCC.

Off-Blockchain Execution of Operations. In this arrangement the CCC
running in the TTP node is used as an off the blockchain channel. The designer
places in the d–op set only the contractual operations that need decentralised
treatment and leaves the remaining in the c–op. Naturally, operations that can-
not be executed in the decentralised blockchain because of the issues discussed
in Sect. 4.2 need to be included in c–op set. A good candidate operation to place
in the d–op set is send the payment (see Sect. 4.3). Another candidate is close
the repository when the data seller wishes to generate indelible records about
the closing time of her repository and completion of the contract. The remaining
operations can be cheaply and efficiently enforced by the CCC, the inclusion of
place data requests (clause 6), in the c–op set is highly desirable because its
recurrence would incur high accumulative transaction fees.

It is worth clarifying that there are some similarities between the deployment
shown in Fig. 5 and the lightning channels for executing off–blockchain payments
in Bitcoin [27]. However, observe that in lighting networks the aim is to create
channels for conducting micro–payment operations off the blockchain to save on
transaction fees. In contrast, in Fig. 5 we use the CCC (a complete contractual
enforcing tool) to execute most of the contractual operations off–blockchain.
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Operations from both sets are independently converted to smart contracts and
enforced at run time.

5 Related Work

An extended version of this paper can be found here [23]. Research on smart con-
tracts was pioneered by Minsky in the mid 80s [18] and followed by Marshall [16].
Though some of the contract tools exhibit some decentralised features [17], those
systems took mainly centralised approaches. Within this category falls [13,26].
To the same category belongs the model for enforcing contractual agreements
suggested by IBM [15] and the Heimdhal engine [12] aimed at monitoring state
obligations (see clause 5 of the contract example, maintain the data repository
accessible). Directly related to our work is the Contract Compliant Checker
reported in [22,32] which also took a centralised approach to gain in simplicity
at the expense of suffering from all the drawbacks that TTPs inevitably intro-
duce. Smart contracts were known as executable contracts or electronic contracts
in [20,21,30], where the important issues of smart contract representation and
verification were discussed. A pioneering implementation of a decentralised con-
tract enforcer is discussed in [29]. The central idea is the use of a distributed
middleware that is responsible for keeping indelible records of the operations exe-
cuted by each party. The middleware (called Business to Business Objects [7])
is in essence an indelible ledger similar in functionality to the hyperledger used
by current blockchains.

The publication of the Bitcoin paper [24] motivated the development of sev-
eral platforms for supporting the implementation of decentralised smart con-
tracts. Platforms in [2,10,34] are some of the most representative. A good sum-
mary of the features offered by these and other platforms can be found in [4].
Though they differ on language expression power, fees and other features dis-
cussed in Sect. 4.2 they are convenient for implementing decentralised smart
contracts. The hybrid approach that we suggest addresses problems that nei-
ther the centralised or decentralised approach can address separately and was
inspired by the off–blockchain payment channel discussed in [2,27]. Similar to our
work also is Ekiden, a system for combining blockchains with Trusted Execution
Environments (TEEs) [6]. The authors report significant performance improve-
ments however they do not discuss the challenges of testing and verification
hybrid smart contracts. The concept of logic–based smart contracts discussed
in [14] has some similarities with our hybrid approach. They suggest the use
of logic–based languages in the implementation of smart contracts capable of
performing on–chain and off–chain inference. The difficulty with this approach
is lack of support of logic–based languages in current blockchain technologies. In
our work, we rely on the native languages offered by the blockchain platforms,
for example, Ethereum’s Solidity.
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6 Conclusions and Future Research Directions

The central aim of this paper is to argue that conventional business contracts
can be automated (at least partially) and that depending on several factors,
the centralised approach suits some applications but others demand decen-
tralised implementations or even hybrid implementations. We are only start-
ing to explore hybrid implementation of smart contracts, yet on the basis of
the study of the APIs (JSON–RPC) that Bitcoin, Ethereum and Hyperledger
offer, the idea seems implementable [19]. Also, it is of practical interest as it
would offer a pragmatic answer to the scalability problems that afflict current
blockchain platforms. This approach opens several research questions.

An important issue is the interaction between the centralised (CCC) and
decentralised components. In Fig. 5 they cannot communicate directly. We are
currently working on a version of the CCC that can be deployed as a micro–
service capable of interacting with the JSON-RPC Client API that blockchain
technologies offer. Precisely, we are investigating how the hybrid architecture
can be realised using the Ethereum blockchain and a CCC implemented as a
decentralised application (DApp) [11]. The relationship (directly or indirectly)
between the CCC and the blockchain raises several questions that need further
investigation. They can interact directly, indirectly, tightly or loosely. Figure 5
suggests the latter where, for example, the CCC can fail and recover while the
send the payment operation is taking place through the block–chain based smart
contract (recall in Bitcoin it might take longer that 24 h to complete a transac-
tion). However, in some applications a tight relationship might be desirable to
hold or divert the progress of one of the contracts when its counterpart expe-
riences an exception or fails. Therefore it is important to develop an under-
standing on how to separate the contractual operations into c–op and d–op in a
manner that the two contracts collaborate instead of conflicting with each other.
For contracts with scores of clauses, this issue might require the assistance of
model–checking tools to ensure that the whole contractual clauses are consistent
and that the two sets do not conflict with each other [28,31].

Another issue is the language for writing the contract. It is arguably accepted
that declarative languages (rule based languages in particular) are more conve-
nient than imperative languages to encode contractual clauses. This feature is
enjoyed by the CCC. However, current blockchain platforms support only imper-
ative languages (for example Ethereum’s Solidity). This means that in our hybrid
approach the contract will be written in two different languages which will make
their interaction less intuitive. Therefore ideally blockchain platforms should sup-
port declarative languages, or alternatively developers should be offered a declar-
ative language that can be automatically translated to languages like Solidity or
Drools as needed.
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Abstract. Current Manuscript Review Systems (Conference/Journal)
rely on a centralized services (like EasyChair, iChair, HotCRP or EDAS),
which manage the whole process that starts with manuscript submissions
to notification of the results. As these review systems are centralized, the
trust is based on a single entity. The fairness of the system hinges on the
honesty of the central controlling authority. This dependency can be
avoided by decentralizing the source of the trust. Bitcoin has shown the
power of decentralization and shared database through blockchain tech-
nology, and currently is being studied for its immense impact on FinTech.
We leverage blockchain to address the above concern and present a decen-
tralized manuscript review system that provides trust and fairness. We
call this system MaRSChain. As a proof of concept, we develop a proto-
type of MaRSChain system on top of Hyperledger Fabric platform. To
the best of our knowledge, this is the first ever decentralized manuscript
review system based on Blockchain.

Keywords: Manuscript review system · Blockchain
Consensus · Fairness · Trust · Smart contract

1 Introduction

Ever since the cryptocurrency Bitcoin [16] has shown the application of
blockchain technology that rules out the need of central authority, it has drawn
attention from both the industry and academia. Blockchain enables mutually
distrusting parties form a peer to peer distributed network and maintain a com-
mon transaction ledger. A typical blockchain as in Bitcoin does not need ver-
ified identity of a peer, i.e., it is an open enrollment system. In other words
it is a permission-less blockchain. Research has been carried out to embrace
Blockchain’s decentralization feature in several applications ranging from finance
[10], supply chain [9], IoT [18], and to many other business use cases. A report
by world economic forum predicted that 10% of global GDP would be stored
on blockchain technology by 2025 [1]. The idea of permission-less blockchain
may not be suitable for many enterprise applications, like banks, which require

c© Springer Nature Switzerland AG 2019
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their users to be verified. To cater to this kind of applications, we need a per-
missioned model of blockchain, for example, Hyperledger Fabric [5]. With this
permissioned blockchain many centralized services can be decentralized, which is
now being explored. In this paper we focus on the applicability of permissioned
blockchain to build a decentralized conference management system.

A conference management system (for example, EasyChair [2], EDAS [3],
HotCRP [4] or iChair [7])1 handles the life-cycle of a conference from manuscript
submissions to acceptance/rejection notification. A conference program commit-
tee, first invites manuscripts for reviews and assigns the manuscripts to reviewers
for evaluation. Based on the evaluations submitted by the reviewers, the confer-
ence program chairs decide on the manuscript acceptance. The accepted papers
are invited for publication in the conference proceedings. Current systems are
flexible, easy to use and have many features that make them powerful event
managers for conducting international conferences. However, they are centralized
services, thereby giving the hosting entity full control of the system. A malicious
party in control of the system can manipulate decisions and results impacting
fairness of the system. For instance, the controlling entity can assign papers to
reviewers of his choice and hamper the fairness of reviews, or can change the
results in the system. To address the above challenges, we propose a decen-
tralized framework for fair manuscript review system based on permissioned
blockchain. A conference review system is an application operating in controlled
environment that employs parties with verified identities i.e., authors, reviewers,
program chairs. Hence, a permissioned model of blockchain is suitable in case of
applications where the distrusting parties involved have verified identities [15].

1.1 Related Work

Apart from the widely used conference management systems (such as EasyChair,
EDAS, HotCRP or iChair), other notable systems are ConfiChair [13], P3ERS
[12] and CryptSubmit [14]. ConfiChair proposes an architecture to build confer-
ence management systems in a privacy preserving manner in order to protect the
privacy of entities (authors/reviewers/Program Chairs(PCs)) against untrusted
cloud service providers. It preserves privacy and confidentiality using encryption
mechanisms with key translations and mixes. P3ERS (Privacy Preserving Peer
Review System) is a distributed peer review system with several group man-
agers. P3ERS preserves privacy of all the users in the system with an improved
group signature scheme. P3ERS considers an untrusted cloud service provider
and actors within the system as potential adversaries and proposes a distributed
architecture to host different services on different servers. It ensures privacy of
authors and reviewers from PCs by creating separate services for them. These
systems are still centralized and address privacy concerns within the conference
system.

1 EasyChair, EDAS and HotCRP are third party services whereas iChair is an open-
source software that can be hosted by any of the program chairs of a forum.
∗MaRSChain is listed in Hyperledger’s inventory of usecases [6].



MaRSChain: Framework for a Fair Manuscript Review System 357

CryptSubmit proposes a manuscript review system with timestamped sub-
missions and reviews. In this system, the hash of the submissions and reviews are
timestamped on the public Bitcoin blockchain that lies outside the actual review
system, still keeping the actual review system centralized. The manuscripts are
timestamped outside the system and the review system does not guarantee proof
of manuscript or review submissions into the system.

Centralized systems do not guarantee security against single point of failure
and hence there is a need for decentralized manuscript review system. In this
regard, we propose MaRSChain, a decentralized solution where the actual review
process is done on the blockchain. Decentralization ensures that a malicious
entity can not corrupt the system to modify/remove submissions and reviews
from the system. Our solution aims to improve trust in the system by leveraging
blockchain to decentralize the system. This is the first ever manuscript review
system based on blockchain.

1.2 Our Contribution

In this paper, we propose MaRSChain, a framework to build a manuscript review
system based on a permissioned blockchain. We leverage Hyperledger Fabric [5],
a permissioned blockchain platform, to build our system. MaRSChain can be
built on top of any permissioned blockchain platform which provides features
described in this paper. We employ several smart contracts to handle submissions
and reviews, validation of submissions and consolidation of reviews. In the usual
centralized conference management systems, the PCs have immense power and
control over the system. A malicious PC can manipulate reviewer assignments
or can modify/remove reviews and etc.

MaRSChain promises:

• Security against manipulation of manuscript reviewers assignment:
In a centralized system, a malicious PC can assign a manuscript to reviewers of
his choice, in order to hamper the fairness of reviews. A decentralized solution
ensures that a malicious PC can not manipulate the reviewers assignment.

• Security against manipulation of manuscript reviews: In a centralized
system, a malicious PC can manipulate the reviews to influence the accep-
tance/rejection of a manuscript. Decentralization guarantees that a malicious
party in the system can not manipulate reviews.

• Confidentiality and privacy of manuscript submissions and reviews:
A permissioned blockchain employs encryption and pseudonymous identities
along with access controls to better preserve confidentiality and privacy of
the authors/reviewers.
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2 System Overview

A conference/journal forum forms a peer-to-peer network of blockchain nodes.
We refer to this blockchain network as Conference Blockchain (CBC). The enti-
ties in a CBC are listed below:

• Authors
• Reviewers
• Program Chairs

Fig. 1. Conference blockchain (CBC)

All the entities in CBC Blockchain are registered into the network by Mem-
bership Service. The Membership Service hosts a Certificate Authority that is
responsible for issuing/revoking certificates to the entities. These certificates
are identities of the entities and are used to transact on the blockchain ledger.
Authors and Reviewers are end-users in the blockchain network. Users submit-
ting manuscripts to the conference are authors. Reviewers review manuscripts
submitted by the authors. PCs are the validating entities that are responsible
for manuscript validation, reviewers assignment and reviews consolidation.
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Operational Flow: A conference blockchain can be visualized as in Fig. 1.
Below, we describe the operational flow of our system.

1. Manuscript Submission. All the inputs to the blockchain systems are
signed transactions which are recorded in the blockchain. Authors submit their
manuscripts to a conference as signed transactions. On receiving the manuscript
transactions, the PC nodes in a CBC validate the transactions against submis-
sion policy (semantics, duplicates, signatures). If the transactions are valid, then
the manuscripts are accepted by the conference for review and are recorded onto
the blockchain ledger.

2. Reviewers Assignment. Once the manuscript acceptance window is closed,
the PCs reach consensus on assigning the submitted manuscripts to reviewers
for evaluation. For ease of implementation, we assume that this consensus is
an offline process and all the PCs have agreed to the decision on reviewers
assignment. A PC initiates the reviewer assignment transaction based on their
decision for each of the manuscripts. All these transactions are validated by the
PCs and their consensus reflects their agreement on reviewers assignments.

3. Review Submission. Reviewers evaluate the assigned manuscripts and sub-
mit their evaluations to the system in the form of transactions. Reviewers’ evalu-
ation transactions are validated by the PC nodes and the evaluations are updated
in the system. An evaluation is a score awarded to the manuscript by the reviewer
along with justifications (comments).

4. Results Declaration. Once the review window is closed and the reviews are
received, the PCs consolidate the evaluation scores of each of the submissions
and updates the results of the submissions. These scores reflect the decision of
the conference. These scores and results are then notified to the authors.

3 Security of Our System

In this section, we describe security guarantees of our system.

3.1 Security Against Manipulation of Reviewers Assignment

In a centralized system, a malicious PC can affect the fairness of the reviews by
assigning the manuscripts to reviewers of his choice in order to get his desired
evaluation result. Consider a malicious PC submits a reviewers assignment trans-
action with the manipulated reviewers assignment to the system. The transac-
tion submitted by malicious PC goes through consensus where each of the other
PCs validate the transaction. A malicious assignment can easily be detected by
the other PCs and the transaction is rejected during the consensus. This ensures
protection against unfair reviewers assignment. The consensus algorithm ensures
that a malicious PC can not influence reviewers assignment at his will without
corrupting some other PCs.
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3.2 Security Against Forgery or System Corruption

We assume that a malicious PC member is trying to manipulate review evalua-
tions to impact the decision on a manuscript. This can be done either by forging
review transactions of the reviewers or by corrupting all the PC nodes to exclude
certain review transactions.

Consider a malicious PC member as an adversary trying to manipulate the
review of a manuscript. To do so, the adversary has to do one of the follow-
ing: forge signatures of reviewers or exclude reviews from ledger. The reviewers
submit a review transaction digitally signed by reviewer’s private key which is
securely stored at his end. Security of a digital signature scheme ensures that a
signature is very hard to be forged. Hence, protection against forgery is ensured.
Excluding the review of a manuscript from the ledger either by denying the
reviewers’ transaction or by re-writing the ledger is one of the ways for the
adversary to manipulate the review. Decentralized system coupled with con-
sensus ensures that a single malicious party can not influence the system. The
consensus algorithm ensures that a malicious PC can not force reviews exclusion
without corrupting other PCs.

The digital signature schemes and secure consensus mechanisms ensure pro-
tection against malicious PCs. Hence, security against manipulation of reviews
is guaranteed.

3.3 Privacy and Confidentiality of Authors and Reviewers

All the users in the blockchain network submit transactions to the system which
are validated and recorded into a common ledger. In MaRSChain, an author can
monitor transactions from other authors or reviewers and their review assign-
ments. However, for fair reviews, the forums encourage anonymous submissions
and blind reviews. Lack of information about the authors limits unwarranted
behavior of reviewers in evaluation of manuscripts. Hence, privacy and confiden-
tial of data on blockchain is necessary.

Privacy of the users in blockchain can be viewed in two forms: Anonymity and
Unlinkability. Anonymity of transaction refers to hiding of the a user’s identity
in an anonymity set of all the users i.e., an identity on the ledger should not
directly be associated to particular user. Unlinkability refers to the association
of multiple transactions of a single user i.e., two different transactions from a
same user should not be related to each other. For anonymity and unlinkability,
MaRSChain provides one-time pseudonymous identities to the users. All the
transactions submitted to the blockchain are under pseudonymous identities.
Thus, a transaction on the blockchain ledger can neither be linked to the user
directly nor to other transaction by the same user. Only authorized parties (PCs)
with the knowledge of a secret have the ability to link pseudonymous identity
on the blockchain to the actual identity of the user.

To enable confidentiality of the transactions, a MaRSChain encrypts trans-
action payloads with one-time symmetric keys. The symmetric keys are only
available to the users themselves and other authorized parties in the network
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(PC nodes). Hence, an unauthorized adversary can not decrypt the transactions
without the knowledge of secret key. Furthermore, access-control mechanisms
that restrict access to transaction payloads provide another layer of security for
the transactions.

Therefore, MaRSChain guarantees privacy and confidentiality of transactions.

4 Implementation

We develop a prototype of our MaRSChain system on top of Hyperledger Fabric
platform (version 1.1.0-preview). We simulate various steps of a conference man-
agement system to illustrate the system operational flow Fig. 2. We remark that
a MaRSChain system can be built on top of any permissioned blockchain plat-
form. Note that our implementation assumes the program chairs decide offline on
reviewers assignment. However, the final decision is recorded on the blockchain
based on consensus. If the reviewer assignment transaction differs from the actu-
ally decided offline agreement, then the program chairs can easily detect and
reject the transaction. This is to enable ease of implementation. This process
can be made online, yet note that, this is off-chain process and only the final
decision is recorded on the blockchain. Our blockchain system is instantiated
with four PC nodes and the consensus requires majority of the nodes i.e., 3 out
of 4 nodes, to endorse a transaction (refer AppendixB for more details).

Fig. 2. CBC implementation flow
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4.1 CBC Chaincode

In Hyperledger Fabric, the smart contracts are realized in chaincode that is
deployed on the blockchain by peers. In this section, we describe various func-
tionalities in our chaincode:

• submit paper: Authors submit manuscripts by using client application to
invoke submit paper.

1: Manuscript submission to forum
Transaction: CBC Submit Txn=(manuscript, author pseudonyms)
Validation: Check if manuscript is already submitted to this forum
if manuscript is present in the ledger then

duplicate submission; rejected
else

considered for submission; submitted
end

• assign reviewers: Once the manuscript submission window is closed, PCs
decide on the reviewers assignment, one of the PCs invoke the assign reviewers
for each of the manuscripts to assign reviewers.

2: Reviewers Assignment
Transaction: CBC Update ReviewersList Txn=(manuscript id, reviewers list)
Validation: Check if reviewers list is acceptable(as decided by program committee)
if manuscript reviewers list is acceptable then

update reviewers list for manuscript in CBC
else

reject transaction
end

• submit review: Reviewers evaluate the assigned manuscripts and submit
reviews by invoking submit review through client application.

3: Review submission to forum
Transaction: CBC Reviewer Txn=(manuscript id, review pseudonym id, review, score)
Validation: Check if review is submitted by assigned reviewer
if reviewer in reviewers list then

update review and score for manuscript
else

reject transaction
end

• make decision: Once the review window is closed and the reviews are
received, the PCs consolidate the reviews for each of the manuscripts by
invoking make decision.
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4: Consolidate reviews of manuscripts
Transaction: CBC Reviews Consolidate Txn=(manuscripts)
Validation: Check if manuscript status is “under-review”
for all reviewedmanuscripts in CBC do

paper final score = (reviewer1 score + reviewer2 score + reviewer3 score)/3
update manuscript final score in CBC;
if paper final score>3 then

status updated to “accepted” in CBC
else

status updated to “rejected” in CBC
end

end

• querySubmittedPaperInfo: Details of a submitted manuscript can be
queried using querySubmittedPaperInfo.

• queryAllPaperIDs: List of all the manuscripts can be viewed using
queryAllPaperIDs.

• queryPaperStatus: Status of a manuscript can be queried with queryPa-
perStatus.

The transactions corresponding to all the above functionalities can be seen
in Appendix .

Our current implementation does not handle manuscript/review updations
that are common in currently available review systems. Also, it is a common prac-
tice to re-consider acceptance/rejection of manuscripts with borderline threshold
reviews. These features can be handled by introducing update transactions that
can be linked to already submitted manuscript/review/decision.

Our system will be available in Hyperledger Fabric’s Inventory of Usecases
[6]. A detailed document describing the whole setup and other instructions will
be available along with the implementation.

5 Conclusions and Discussions

We have proposed a framework to build a fair decentralized manuscript review
system based on blockchain (MaRSChain). Our decentralized system ensures
that a malicious party can not corrupt the system to hamper fairness of review
process. As part of our future work, we plan to integrate a reputation system to
strengthen MaRSChain further.

Another important problem in current conference management systems is to
detect double submissions (plagiarism) and concurrent submissions (submission
of a manuscript to multiple forums concurrently, during the review period) [17].
The current systems rely on some trusted third party services, for example iThen-
ticate [8], to detect double submissions. iThenticate has access to publication
content from several different publishers. It performs a “Similarity Check” [11]
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to check for plagiarism of the submissions i.e., double submission detection. To
do this, a submission is compared against public domain data and a database
of current and archived publications from publishing houses. As these services
are centralized, the root of trust hinges solely on them. Therefore, double sub-
missions can only be detected effectively as long as this third party is honest.
Moreover, as the content of a submitted manuscript in a conference is not public,
it is not possible to check concurrent submissions.

The nature of these problems is similar to “double spending” problem in
cryptocurrencies. Cryptocurrencies handle double spending by enforcing a com-
mon ledger for all the miners to check against. This idea can be invoked in
the conference systems too to detect double and concurrent submissions, i.e.,
we can enforce a common database of all publications from all the publishing
houses. This database also includes the publications currently under review at
all the conferences associated with the member publishing houses. Hence, when-
ever a manuscript is submitted to a conference, it can be compared with the list
of manuscripts in this database to detect double and concurrent submissions.
This effectively eliminates dependence on third party services for detecting dou-
ble submission and also detects concurrent submission. However, the burden of
maintaining huge database of publications makes this solution difficult to realize.

Acknowledgements. We would like to thank Vigneswaran R for his inputs towards
the development of our system.

Appendix A CBC Transactions

Hyperledger Fabric supports chaincode execution through “query” and“invoke”.
A query is a chaincode execution which reads from the ledger but does not write
into the ledger. Whereas, an invoke is capable of both, reading and writing.
invoke transactions will be captured as transactions on blockchain. Here is the
list of invoke and query transactions from our MaRSChain implementation:

• CBC Submit Txn:
peer chaincode invoke -o 127.0.0.1:7050 -C CBC Channel -n CBC CC -c ‘{“Args”:[“submit
paper”, “author1”,“author2”, “author3”,“attach 01”]}’

• CBC Reviewer Assignment Txn:
peer chaincode invoke -o 127.0.0.1:7050 -C CBC Channel -n CBC CC -c ‘{“Args”:[“assign
reviewers”, “paper id”,“reviewer1”, “reviewer2”,“reviewer3”]}’

• CBC Review Txn:
peer chaincode invoke -o 127.0.0.1:7050 -C CBC Channel -n CBC CC -c ‘{“Args”:[“submit
review”, “reviewer1”,“paper id”,“rating”]}’

• CBC Reviewes Consolidate Txn:
peer chaincode invoke -o 127.0.0.1:7050 -C CBC Channel -n CBC CC -c ‘{“Args”:[“make
decision”]}’

• CBC Query Manuscript Txn:
peer chaincode query -o 127.0.0.1:7050 -C CBC Channel -n CBC CC -c ‘{“Args”: [“querySub-
mittedPaperInfo”, “paper id”]}’

• CBC Query Manuscripts List Txn:
peer chaincode query -o 127.0.0.1:7050 -C CBC Channel -n CBC CC -c ‘{“Args”:
[“queryAllPaperIDs”]}’

• CBC Query Manuscript Status Txn:
peer chaincode query -o 127.0.0.1:7050 -C CBC Channel -n CBC CC -c ‘{“Args”:
[“queryPaperStatus”, “paper id”]}’
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Appendix B Endorsement Policy

The classical blockchain systems relied on order-execute architecture, where the
ordered transactions are executed by the peers sequentially. This has a drawback
of decreased throughput. The current Hyperledger Fabric (v1.0.0+) employs
execute-order-validate architecture to parallelize the validation of transactions by
the peers. A transaction is executed by the peers in parallel and the result of the
execution is provided as an endorsement to the user. The user collects and sends
all the endorsements to the committers through an orderer. The committers
validate the endorsements based on an endorsement policy(m out of n signatures)
before committing the transactions into the ledger. Our implementation assumes
a total of 4 PCs(3t+1), tolerating 1 malicious PC. Hence, our endorsement policy
mandates 3 out of 4 endorsements for any transaction. The endorsement policy
from our implementation can be seen below:

5: CBC Endorsement Policy
var epolicy = {
identities: [

{ role: { name: “member”, mspId: “PC1MSP” }},
{ role: { name: “member”, mspId: “PC2MSP” }},
{ role: { name: “member”, mspId: “PC3MSP” }},
{ role: { name: “member”, mspId: “PC4MSP” }}
],

policy: {
“3-of”: [{ “signed-by”: 0 }, { “signed-by”: 1 }, { “signed-by”: 2 }, { “signed-by”: 3 }]
}
};
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Abstract. Complex supply chains involve many different stakehold-
ers such as producers, traders, manufacturers, and consumers. These
entities comprise companies and other stakeholders spanning different
countries or continents. Depending on the involved goods, the origin
and the responsible harvesting of these elements are essential. Due to
their high complexity, these systems enable the introduction of resources
with forged identity, tricking the participants of the supply chain into
believing that they acquire goods with specific properties, e.g., environ-
mentally friendly wood or resources which are not the result of child
labor. We derive requirements from the global world trade of timber and
timer-based products, in which the origin of a large portion of certified
wood cannot be verified. A set of smart contracts deployed within the
Ethereum platform allows for a transparent supply chain with validated
sources. The platform enables the tracking of variations of the original
good, tracing not only the raw material but also the resulting products.
The proposed solution introduces a novel exchange contract and ensures
a correct overall volume of assets managed in the supply chain.

Keywords: Blockchain · Volume tracking · Ethereum
Smart contracts · Supply chain · Logistics

1 Introduction

The manufacturing of products of daily use such as furniture or work material is
the result of complex supply chains, involving multiple steps of different entities
in the respective systems. Usually, mining facilities produce the raw materi-
als for these products. These entities sell the resource, either with or without
intermediaries to other manufacturers which purify the raw materials or create
base components for further value creation. The process is repeated for each
manufacturing step until a final product is being sold to end-customers. These
procedures are time-consuming and tedious as a large number of stakeholders is
involved [19].

Customers have high demands on products of their desire [4]. Not only should
the product satisfy their needs in terms of functionality, design or appearance,
but also the production should only involve environmentally friendly compo-
nents and must avoid exploitation of child labor or unreasonably low wages [11].
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G. Mencagli et al. (Eds.): Euro-Par 2018 Workshops, LNCS 11339, pp. 367–378, 2019.
https://doi.org/10.1007/978-3-030-10549-5_29

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-10549-5_29&domain=pdf
http://orcid.org/0000-0001-5339-4486
https://doi.org/10.1007/978-3-030-10549-5_29


368 U. Gallersdörfer and F. Matthes

If their desires are satisfied, the willingness to pay for these products increases
[17]. However, these requirements pose difficulties for some manufacturers. Due
to their extensive network of suppliers, they often cannot verify the information
they receive about incoming resources, leaving them unaware of any manipula-
tions, fraud, or mislabeling [7]. As their customers are willing to pay more for
environmentally sound products, they have an intrinsic interest in the produc-
tion of such assets and therefore in a method to trace the origin of their base
materials.

Other entities involved in the process also have an interest in removing fraud-
ulent entities in the supply chain. Honest producers of base resources suffer from
the introduction of intentionally mis-labeled goods on the market. Independent
of the demand, a decrease of the overall supply could lead to higher market prices,
increasing the profits of the original producers. Also, the society emphasizes the
importance of environmentally sound and employee-friendly manufacturing and
production of goods [3].

Blockchain technology promises to solve problems in the supply-chain indus-
try [9]. A Blockchain network consists out of many interconnected computers
which share a common state of a ledger [16]. The entities in the system define
the rules for changing the state and appending new information to the ledger. As
of the absence of a central entity, there is no way to forge or delete information
afterward. As of these properties, the system can be used for creating decentral-
ized currencies like Bitcoin [12] or individual Smart Contracts with platforms
like Ethereum [20]. These contracts are software programs which are deployed
and executed on the Blockchain. After the deployment, these contracts cannot
be changed, assuring their integrity.

Many companies consider individual Smart Contracts as an opportunity to
digitize supply chains and the involved goods. Companies such as Maersk [5] have
already created concepts of Smart Contracts to trace the contents and ownership
of containers transported by ships. These proposals focus on the digitalization
of business processes, like the digitalization of the receipt of ownership, which
does not fit with the above-stated problem. Other approaches like Everledger
[10] do not cover the possibility of a good to be manipulated. We derive our
requirements and goals of a use case we describe in following.

The supply chain we consider includes the group of enterprises and companies
which harvest, trade and process resources made of wood from forests from
different countries. The aim of the supply chain is the production of goods such
as furniture or charcoal, generally speaking everything that can be made out of
wood. Wood itself is often certified by authorities (such as the UN [14]) or NGOs
(such as NEPCon [13]) which ensure that the wood originates from sustainable
forests. In theory, these certifications ensure that only sustainable wood enters
the supply chain. However, the chain itself is highly complex: Many different
stakeholders are involved, the trading routes are opaque and it is very difficult
to keep track of the flow of goods. The origin of the base resource wood is
often non-transparent or fabricated, leaving manufacturers in the dark about the
materials they use. Malicious entities in the system use these factors to introduce
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wood into the system without the required certification. This leads to a higher
overall output of certified wood in contrast to the lower maximum volume that
is allowed to be produced. Studies show that the volume of uncertified wood
from certain regions increased over 50% [6]. This increased volume is the main
problem in the supply chain. We derive our requirements from this specific case
for our system.

One other paper gives a sound overview about the problem in timber tracking
and discusses these issues [2]. The authors propose a Blockchain-based solution,
writing each transportation operation in the Blockchain. They also outline pos-
sible limiting factors regarding the technology.

In this paper we propose a smart contract system enabling the participants
of a supply chain to agree on

– the entities that are allowed to take part in the system
– the specification of the resources, products or goods handled on the supply

chain
– the exchange rate between two types of resources
– how entities are selected for issuing new resources

while ensuring that

– no party can create a token/good if it has not the right to
– no resource, product or good can be spent twice
– the overall created volume remains the same when handed through the supply

chain.

The system is implemented with Solidity for the platform Ethereum. We are
confident that implementations in any other Blockchain platform supporting
smart contracts are feasible, as the theoretical considerations remain constant.

After describing the various problems of the selected supply chain in detail
in Sect. 2, we introduce the design of the system including the users and smart
contracts involved in Sect. 3. We further discuss the processes and propose a
bootstrapping mechanism. In Sect. 4 we discuss the limitations and the applica-
bility of our proposed solution and end with an conclusion in Sect. 5.

2 Problem Statement

First, we introduce why a centralized approach under the supervision of NGOs
or regulators is not feasible. Afterwards, common problems of traditional
Blockchain-based solutions for supply chains are outlined. We describe the tech-
nical layout of the implementation, as it is important to understand the objective
of the proposed solution.

2.1 Centralized Platform Issues

As there are already NGOs and governments in place that validate forest own-
ers for a sustainable and environmentally-friendly approach, one might ask why
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these regulations do not prevent the introduction of mis-labeled materials? The
problem is that only the producers itself are validated and the information pro-
vided by them can be validated very easily. Forests can be measured and an
estimation gives a good indicator if the entity under validation is cheating. For
intermediaries, this process is much harder, as the information itself can easily
be tampered with without a convenient way to verify it. This imbalance leads to
the possibility to introduce uncertified goods into the supply chain. Therefore,
a digitalized system has to be put in place to track these streams and prevent
the introduction of illegal resources.

A platform for a tamper-proof tracking and issuing of goods and resources
is suited. However, it is the question if this platform should be run by a single
entity or shared among all participants. There are different reasons against a
centralized approach: The central authority is a worthwhile goal for attacks, as
its shutdown paralyzes the system or renders the attacker able to manipulate
account balances. These risks can be minimized, but one other issue remains:
The missing trust in the central authority (CA) [8]. As there are many different
entities which would qualify for this position, it would be impossible to agree on
one entity because of the different interests of stakeholders. The CA could easily
track every asset, could block single users or unilaterally introduce changes to
the system. As of this, entities in the system are not interested in a centralized
approach. As of that, we propose a decentralized system in which decisions are
transparent.

2.2 Technical Issues

The overall goal is to propose a platform that enables to track assets and prove
a valid origin. The platform is designed to be decentralized and governed only
by its entities, however in many decentralized applications a proportion of cen-
tralism remains. A supply chain handles individual goods. Each and every asset
transported in the supply chain could be identified by specific characteristics:
Entities trace goods via serial number or specific material structures such as a
DNA. However, these assumptions sometimes cannot be applied, as producers
face different problems:

Combination of Different Goods. The combination or separation of goods
leads, on a data level, to a creation of new good(s) and the destruction of old
good(s). It is important to define the boundaries and rules for these processes,
because if they are undefined, these procedure could lead to the creation of valid
resources out of thin air on data level. Other questions arise: Which entity defines
the new serial number of the defined product? Is it possible to sufficiently store
all data associated with one single product, possibly comprising out of arbitrary
amount of sub-products, goods and resources?

Loss of Information. In real world, the products or goods can lose the infor-
mation that identifies them. This rarely happens to finished products at the end
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of manufacturing process, however it is possible that the association between two
single goods (a base product and a manufactured product) gets lost as it is too
costly to validate which base product was processed to a manufactured product.
The information can also be lost as of the manufacturing process itself. Regu-
lar wood loses its DNA sequence when burned to produce coal. On a technical
level, it is impossible to ensure the integrity of the information if the real-world
processes are not sufficient to identify single entities.

Volume-Usage for Base Products. Manufacturers have reasons to not con-
sider the single entity of a material (e.g. a tree), but measure the volume of
these materials. They estimate their output for the given input volume, with-
out tracking which entity winds up in which output. The complexity increases
as base materials from different suppliers are combined, as it becomes impossi-
ble to refer the outputs to the resources of different suppliers. Additionally, the
tracking is too costly to implement.

Entities of the system face another problem: All participants of the supply
chain are required to use the platform for their transactions. If one user does
not support the platform, the chain is interrupted. This leads to the fact that
recipients of resources do not receive the equal amount on the platform.

3 System Design

In this section, we describe the design of the Blockchain-based supply chain
network.

3.1 Entities

We identify all entities in the system by a regular Ethereum address. These
addresses are either hashes of public keys or, in the case of smart contracts,
random generated numbers. The owner of the identity also possesses the private
key to express her will, in case of smart contracts code supplants the user.
Therefore, we can store the identity about all involved entities or smart contracts
with the data type address. In case the entity is a smart contract, the code
decides upon the will of the address. Although both types of entities act in a
similar way and have the same abilities, we separate between them for logical
reasons. For clarity, we will refer to human entities as users and code entities as
Smart Contracts (short: SC). An advantage of the equal treatment of entities in
Ethereum is that the architects are able to replace users with Smart Contracts.
A user has too many rights in SC A or one wants to impose a specific restriction
for this specific user? One can create a SC B which replaces the user in SC A.
The user is given the right to control SC B under the limits imposed in the code
in SC B.
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Users. First, we describe all human users in the system. As a general notice,
we further refer to the goods represented on the Blockchain as tokens.

Regulators. The regulators are users in charge of validating all processes in the
network. They can either be selected unilaterally by the entities deployed the
system or can be selected via democratic processes within the system. We do not
define any notion of how these regulators are selected or elected (as this varies
between different supply chains), we define their tasks and responsibilities. Reg-
ulators select forest owners and validate their correct operation1. After a correct
validation, they assign the right to create new tokens for a certain resource, either
directly within the token contract or via a separate contract that regulates the
amount of newly created tokens. Regulators also have the right to revoke access
to the creation of new tokens if rules are violated. The regulators do not take
part in the trade or exchange of tokens.

Trader. Traders are regular market participants in the supply chain. They are
able to receive and send tokens they previously received. Their access to the sys-
tem can be invitation only if necessary. We do not oppose any further restrictions
to the traders in the system, as they do not have any rights to exchange tokens
for other tokens or create new ones. The system designers can decide whether
they want to include the traders in the democratic processes.

Creator of Goods. The producer is the creator of goods in the supply chain.
She is responsible for creating new tokens and sending them alongside her real-
world goods. Usually, a producer has the right to create only one type of good
and therefore one type of token. Her rights to create tokens and the maximum
specified amount per period depend on the decisions of the regulators. As her
intrinsic motivation for a functional system, it is possible to involve the creator
of the goods in the democratic processes of the system.

Manufacturer. The manufacturer has the same rights as the trader. However, she
has the additional right to exchange one token for another at the exchange SC.
The manufacturers are elected by a democratic process or are selected by other
entities like the regulators. It is also possible to give traders and manufacturers
the same rights, as we do not expect the trader to gain an advantage out of
exchanging tokens for other tokens to which she has no real world product.

Smart Contracts. Further, we discuss the Smart Contracts specified in the
system.

Central Authority Contract. In contrary to decentralized systems, our proposed
solution contains a central authority SC controlling the system. As the gov-
ernance of supply chains differ from industry to industry, we do not want to
restrict the system to one specific design such as a majority vote. The owner of
the contract, as mentioned before, can be replaced by any desired structure, i.e.

1 Again, this process lies outside of the Blockchain and depends on the specific supply
chain.
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a democratic pattern or a 2 out-of 3 pattern. This decision has to be made by the
architects of the specific implementation of the system. The central authority
smart contract is the first contact in the system. It defines the available token
and exchange contracts, is responsible for the selection of the regulators, and has
the right to introduce new exchange rules or token contracts. It is also possible
to deploy the contract in a way such that there is no governance afterwards
possible; all rules and entities have to be agreed on before deployment on the
Blockchain. Due to the transparency, the owner of the central authority contract
can be reviewed by all participants of the system.

Tokens Contract. To enable compatibility with existing software components,
the token contracts are modified ERC-20 token contracts [18]. ERC-20 SCs are
widely accepted as they are mostly used in ICOs and other tokens on Ethereum.
Our token SCs implement two additional functions: createToken(uint
amount) and modifyTokenAmount(address account, uint amount). The first
function can only be executed by a producer or a regulated creation SC. It allows
the creator of goods to create new tokens, because in ERC20 contracts the over-
all supply of the token is usually defined at the initialization of the contract. The
second method is required for the exchange contract. The contract is responsible
for the exchange of tokens, therefore reducing one amount on one contract and
increasing the amount on another contract at the same time. The method allows
the exchange SC to modify the balance of a single account. Besides the addi-
tional functionality, the token contract supports traditional methods as sending,
checking account balances and sending amounts on behalf of another party.

Exchange Contract. The Exchange SC is the main contract for manufactur-
ers which exchange their tokens for other tokens as they further processed the
resources or created new products out of existing materials. The exchange SC is
registered in the central authority contract and in all token contracts, otherwise
it cannot manipulate the account balances in the existing token contracts. The
contract also stores the exchange rates for pairs of tokens.

Regulated Creation Contract. The regulated creation SC is one example of a
contract that regulates the usage of another contract, in this case a token contract
and the right to arbitrary create new tokens of a producer. The user allowed to
create new tokens is registered in the regulated creation contract, whereas the
regulated creation contract is registered as an issuer in the token contract. In
the regulated creation contract the regulators specify the maximum amount the
user is allowed to issue, for example depending on their producing facility or
other existing resources.

3.2 Processes

In this section, we describe recommended standard processes which occur while
using the system.
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Transfer of Goods. The transfer of goods is the basic process in the system.
The system’s main purpose is the transfer of goods on the Blockchain and is
designed to be easy and comprehensible for every participant. The transfer of
goods is facilitated in a regular way. The payment takes place with traditional
arrangements such as bank transfer or cash. The shipment or transportation
also happens in traditional ways. We do not create “digital twins” [1] on the
Blockchain, as we do not want to track the individual component but rather
the handled volume. A digital twin approach would be unnecessary, therefore
the transfer of the digital good has to be executed manually. The sender just
specifies the address of the receiver and the digital representatives are transfered.
A easy rule applies: “If a good is bought and it is not accompanied with the same
amount of the digital good, the good does not originate from a certified source.”
The transfer of goods is depicted in Fig. 1, in which malicious entities (red) are
not able to introduce mis-labeled wood into the valid (green) supply chain. A
red x marks where an operation fails on the Blockchain or in real world.

Fig. 1. Transfer of goods (Color figure online)

Exchange of Goods. The exchange of goods is a process required as the system
supports many different digital goods. If a manufacturer wants to transform a
good, she proceeds as always. The necessary physical steps stay identical. Addi-
tionally, she has to transform the digital good. To do so, she executes the method
exchange(uint Token1, uint token2) to exchange one token for another. As
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of the atomic nature of the transaction, the exchange is either successful or
aborts. It is not possible that the manufacturer keeps old tokens while creat-
ing new tokens or losing old tokens and not receiving new tokens. The tokens
can only be manipulated for the account that sends the transaction, therefore
manipulation is further restricted. The exchange of a single good by user #5 is
shown in Fig. 2.

Fig. 2. Exchange of goods

3.3 Bootstrapping of the System

All participants of the supply chain have to use the proposed system or otherwise
the system fails to provide all users the proposed functionality. If a supplier
does not use the smart contract platform, the receiver of the goods cannot prove
whether the good itself is from a valid source. The achieve a certain functionality,
we have to ensure that a considerable amount of participants are using the
system.

The idea for bootstrapping is as follows. From a game theoretical perspective,
we have to encourage the users to participate in the Blockchain-based supply
chain. Users which are just intermediaries do not gain an advantage of using
the system, and they lose the ability to behave maliciously. It is questionable if
the manufacturers of the base material do solely profit from introducing such a
system if no other entities use the system. The only participants which heavily
profit from the usage are large corporations which sell furniture or other goods
made from sustainable wood. They have to prove to their customers the usage
of economically friendly wood, otherwise their revenues would decrease. If the
commercial customers are using the system, they can require that every merchant
who provides them with wood has to use the system, which creates an incentive
for all intermediaries to also use the system, as otherwise they would not be
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able to supply these companies. This also applies for other intermediaries which
would start buying only from other suppliers which are able to actually provide
certified wood in the system. If this happens, the easiest part is to convince
the actual producers of the base material to introduce the system. They invest
money in certifications and can increase their own revenue if they support a
system that excludes their malicious competition from the market.

4 Discussion

4.1 Limitations

The introduced system exposes limitations due to the design of the Smart Con-
tract architecture. We do not discuss limitations due to the nature of the used
Blockchain technology and Smart Contract language such as transaction speed,
anonymity, or susceptibility to errors. As technology advances, these limitations
are likely to vanish.

Other limitations remain. The following list enables a brief overview of other
possible strategic alignments of digital supply chains.

Loss of Information. A problem we introduced in Sect. 2 remains: The loss of
information. As goods are recombined or merged, only a probabilistic assumption
can be given about the origin of a single product. Furthermore, from a technical
point of view we are not able to expand the platform in such way that it supports
a provenance lookup. The introduction of meta-data is possible, but it remains
unclear how the merging of meta-data from different sub-products would look
like. As of our problem statement, this limitation is not relevant to our use case,
as we are only interested in the consistent volume of goods managed by the
system.

Exchange of Certified with Uncertified Products. Our system does not
introduce digital twins, meaning that a digital good cannot be linked to a real-
world good without doubt. As we only consider volumes, it would be possible
for malicious entities to swap high quality (certified) wood with lower quality
(uncertified) wood and sell it as certified. He would only benefit from that fact
when a market exists for high quality wood outside of the supply chain where
the entity is not required to send the tokens digitally. Again, our use case mainly
focuses on prevention of volume manipulation. The damage incurred by swapping
is low in comparison to volume manipulations.

Introduction of New Types of Products. An organizational problem could
be the introduction of new products which require different amounts of other
goods. First, the participants of the network have to agree to valid “exchange”
rates: How much resources are required to create another product? Depending
on the manufacturing process and the efficiency of the different manufacturers,
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these numbers can differ. This can lead to two problems: A manufacturer has to
use more tokens than necessary on the Blockchain, basically “burning” tokens
or it has to use less tokens than required, allowing the entity to introduce uncer-
tified products into the supply chain. A way to mitigate the problem is that the
manufacturer defines its conversion rates itself. In that case, other participants
would have to validate whether these conversion rates are realistic or not. Gen-
erally, the participants have to be clear about their processes and the best way
to mitigate risks is to develop sound exchange rates before implementing the
system.

4.2 Applicability

We propose our solution for the use case of a timber-tracking supply chain. With
limitations, one can apply the distributed application for other areas of supply
chains.

Components for Electronic Devices. Electronic devices such as smart
phones, notebooks or televisions consists of many base components which then
again consist out of rare earths or other resources. Workers can get exploited in
mining these goods, also the operators can exploit nature for their profit. With
a system similar to our application, these drawbacks can be eliminated. The
limitation would apply at that point in the supply chain as products are tracked
on an individual level.

Ingredients of Food or Other Eatable Items. An additional supply chain
system based on measurement of volumes is the food industry. By involving many
stakeholders and intermediaries, the origin of base products such as wheat, corn
as well as fish or meat can be used for malicious purposes. Some ingredients are
intentionally mis-labeled, leading to a economical damage with potential health
damages for consumers. For example, in 2013 horse meat was sold as beef which
was unfit for human consumption [15]. With a proof, that meat originates from
certified farms, one can complicate the manipulation.

5 Conclusion

In this paper, we present a solution for volume manipulation in large supply
chains. The proposed exchange smart contract embedded in the system enables a
transformation of base goods into other products according to predefined values,
ensuring an overall sound maximum volume of base resources. Further advance-
ments describe possible bootstrapping processes to introduce this digital solution
in the industry. Future work can evaluate approaches to enable tracking of goods
in supply chains on an individual level. Additional work has to be done to ensure
a fully functional platform in case of non-participating entities.
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Abstract. We propose a blockchain oriented platform to secure stor-
age origin provenance for food data. By exploiting the blockchain dis-
tributed and immutable nature the proposed system ensures the supply
chain transparency with a view to encourage local region by promot-
ing the smart food tourism and by increasing local economy. Thanks
to the decentralized application platforms that makes us able to develop
smart contracts, we define and implement a system that works inside the
blockchain and guarantees transparency, reliability to all actors of the
food supply chain. Food, in fact, is the most direct way to get in touch
with a place. The touristic activities related to wine and food consump-
tion and sale in fact influence the choice of a destination and may encour-
age the purchase of typical food also once tourists are back home to the
country of origin. Touristic destinations must therefore be equipped with
innovative tools that, in a context of Smart Tourism, guarantee the orig-
inality of the products and their traceability.

Keywords: Blockchain · Smart tourism · Supply chain management
Product traceability

1 Introduction

Agrifood industry and land development are closely related. The food supply
chain is a complex system in which citizens, institutions, businesses and tourists
converge in a meeting based on two strategic axes: innovation and protection of
product quality. In the field of food safety the guarantee of products quality is a
key element. Traceability is considered a must and it is necessary not only from
a regulatory standpoint: it allows monitoring the effectiveness of production, of
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processing, of logistics and sales systems in food chains and increases customer
confidence and trust. The integrity of the food chain does not only include secu-
rity problems, but it is also involved in the field of counterfeiting in order to limit
the possibility of forgery and fraud. To address these requirements, a traceability
system is needed to provide information on the origin, on processing, on retailing
and on the final destination of food products. It is therefore necessary to have
a product identity card which guarantees its originality, provenance and prop-
erties in a unmodifiable way and that certifies in a transparent and reliable way
every single step in the production, supply and retail chain. In order to comlpy
with all these needs we use an approach based on the blockchain technology
as a means of safeguarding the local foodstuffs with special characteristics. In
fact transparency, reliability and invariability of data are intrinsic properties
of any blockchain technology, which is a digital ledger enabling a secure strat-
egy for implementing and recording transactions, contracts and agreements is
an excellent solution for those who wish to tell the history of their product in
order to ensure reliability. We applied the blockchain technology to trace the
food supply chain in Sardinia Region and we developed a system for protecting
Made in Sardinia products food in a touristic context. It must be noted that the
geographical characteristics of insularity of Sardinia characterize typical gastro-
nomic products which are very original and connected to the agro-pastoral world.
In Italy traditional agri-food products are defined as typical items whose meth-
ods of processing, preservation and maturing are performed homogeneously into
a particular territory and according to traditional rules which are extended over
time, for a period of at least 25 years. The platform we propose in this paper
aims not only at ensuring the authenticity of typical Sardinian products, but
also at improving their saling using on-line and on-site ordering in many of the
major touristic points in Sardinia (beaches, ports, airports, archaeological sites,
cultural heritage, etc.). The platform forecast a set of pop-up stores integrated
through the development of a dynamic and innovative modular software system
based on the blockchain technology within the framework of smart tourism.

The paper is structured as follows. Sections 2 and 3 present research back-
ground and related works. Section 4 explains the proposed platform based on
blockchain technology and Sect. 5 describes the system architecture. In Sect. 6
proposed smart contracts are detailed through a pseudo-code. Section 7 discusses
the use of the system to check the product traceability. Finally, Sect. 8 contains
the conclusions.

2 Research Background and Setting

The concept of smart tourism is very recent. It is a logical consequence of the
innovations and of the technological progress applied to traditional tourism, but
not only that. Smart tourism is connected to the idea of smart destinations and
more generally of smart cities. All those specific characteristics of urban or even
rural areas typical of a smart city, and therefore useful to residents, can also be
used by tourists in the context of mobility, sustainability and quality of visits
[12,13]. According to [1] the smart tourism destinations could contribute to the
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improvement of tourists experiences proposing products and services tailored
for each visitor with the understanding of its needs, wishes and desires. Our
platform and project, that we called “Bertulas”, aims at increasing the potential
of smart tourism in the Sardinia Region through the creation of an innovative
pop-up store system (POS), an interactive showcase of products for an effective
contextual shopping that can improve the possibilities for tourists to discover
the Sardinian food products. Pop-up stores are little local stores, runned by
an exhibitor, that will be positioned in places of particular touristic interest
in order to get the attention of potential customers inviting tourists to live an
effective shopping experience, innovative and functional to specific needs. The
exhibitor will be equipped with a tablet/laptop device connected to the network
and channeled on a dedicated e-commerce site. Turists will able to pay in a secure
way, using cryptocurrencies or by credit cards, and can choose a specific method
of delivery: at their temporary residence in Sardinia or at their own home in any
part of the world. Each movement of products, from local producer to customer,
is mapped in a blockchain that has a double role: the role of public, transparent
and unmodifiable ledger, and the role of control system which safeguards the
originality of products. The latter role is implemented thanks to the computing
resources available on the blockchain and will be explained later.

3 Related Works

The blockchain technology is mainly known as directly related to Bitcoin or
other cryptocurrency and to financial transactions. In fact the blockchain tech-
nology can provide an appropriate solution in all those cases in which a system
of relationships entirely based on a concept of trust and transparency is needed,
even if the technology still suffers of various drowbacks, mainly related to the
missing or the poor application of good practices of software engineering for
blockchain-oriented software development [9]. Examples of blockchain technol-
ogy application to smart cities or smart environments can be found in [10,11].
The first work attempts to respond to a topical issue in the scientific context:
how can blockchain help smart cities? The second study models a blockchain-
based solution in order to guarantee in a smart context the rights of temporary
employees and the transparency in the management of job contracts.

The use of the blockchain technology in an agrifood context is proposed in [2].
The work is based on RFID and blockchain technology for sharing and transferring
information about the production, the processing, the storage, the distribution and
the selling of foodstuffs. A similar work is [3] in which authors analyze the limits of
RFID technology proving it unreliable in the post supply chain because tags can
be rather easily cloned in the public space. An experimental ethereum blockchain
based on the proof-of-concept block validation is developed in the work, with an
analysis of its cost performances: the cost of managing the ownership of a product
with six transfers results in about one USD. In [4] Bateman focuses on the value of
traceability. The paper presents an encrypted item (bar-codes, tags or serial num-
ber representing physical goods) of transaction and sends it out to all other nodes
in the blockchain network. The nodes verify if this item of transactions is legitimate
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and add it to a ledger that then serves for future transactions. In the research of [5]
the authors study the blockchain technology applied to a supply chain for a four-
party logistic (4PL) firm to increase traceability and transparency. BigchainDB [6]
provides the access to a huge distributed database, with many blockchain features,
such as decentralized control, immutability and transfer of digital assets. In [7] the
authors develop a food supply chain traceability system for real-time food tracing
based on a blockchain, on the Internet of things and HACCP (Hazard Analysis
and Critical Control Points) and provide a platform transparent, reliable, secure
and useful to all the actors of the supply chain. The work of Kim and collabora-
tors [8] is focused on ontologies as tools that can contribute to blockchain design
applied to food provenance knowledge and traceability. Authors use the Ethereum
blockchain platform for developing smart contracts supporting goods traceability
and analyze the provenance of luxury goods produced and transported in interna-
tional, big and complex supply chains. Blockverify [16] is a startup which applies
the blockchain technology to improve anti-counterfeit measures in different indus-
tries, such as pharmaceuticals and luxury item’s context.

4 The Blockchain Based Platform
In this section we provide an overview of how the system can be implemented
by developing the following components:

– User-friendly and high-performance e-commerce platform containing all the
eno-gastronomic products that can be purchased. The e-commerce system
will be used both on the web and through a dedicated app.

– Dedicated on site exhibitors, named POS (pop-up stores), to be installed
in the areas with the highest touristic presences in Sardinia and equipped
with a laptop connected to the dedicated e-commerce website. These are real
interactive showcases designed for a standalone use and dedicated to the sale
and presentation of local, zero-mile, food and wine products.

– E-commerce system usable both through POS and through a dedicated app.
The customers will obtain information about local companies and producers
in order to buy further products as well as food and wine, for increasing the
attractiveness of the territory and to favor the economic development in the
context of a smart touristic region.

4.1 Blockchain Features for Chain-Food Applications

A record within the blockchain cannot be modified retroactively because of its
structure. Not only transactions but also other information can be recorded
within the blockchain, such as documents, identity management or food trace-
ability. These characteristics render the blockchain technology ideal for managing
the entire agri-food supply chain by avoiding the counterfeiting and ensuring the
transparency, the quality, the origin and the integrity.

In our model it is possible both to assign a unique digital identity card for
each product that must be traced, containing significant data related to the
production and the supply chain, and to verify the originality.
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The innovative commercial distribution process will allow the reduction of
the typical steps of the commercial chain: in our scheme the transitions will be
restricted and therefore the cost of storage on the blockchain will be limited.

Customers and all actors of the food chain can verify whether the data are
correct, true and accurate. Each actor in the chain has his own interest in avoid-
ing cheating from other actors and can easily check it. The system, based on
Keyless Signature Infrastructure (KSI), improves the scalability and settlement
time and uses the hash function to safeguard the integrity of data, and presents
three main attributes: the authenticity it secures that the data has not been
tampered with or modified, the identity it allows to uniquely identify the place
where the item was recorded, the proof of time it allows to uniquely identify date
and time at which the item was registered on the Blockchain.

By using KSI digital signatures our platform ensures the integrity of digital
assets related to local products and their authenticity through the detection of
unauthorized changes in software and configurations. At the same time allows to
detect a violation to access of information through the analysis of the blockchain.
In this context the blockchain is an enabling technology which allows for obtain-
ing the satisfaction of security and availability of data. Information stored in
blocks characterizes the state of the blockchain. The use of blockchain applied
to food supply chain in the context of smart tourism is powerful and can lead
important results and transformations in terms of procedure and process man-
agement opening the way for handling complex distributed applications.

4.2 Ethereum Blockchain and Smart Contracts

There are different possible choiches of blockchain for implementing our plat-
form. We choose the Ethereum blockchain for our system since it offers the
possibility to implement smart contracts in a simple way. Furthermore Solid-
ity is up to now the most used coding language for writing smart contracts, it
is continuously supported by the evolution of the Ethereum Virtual Machine
with new versions of the compiler and is continuously documented. Examples of
smart contracts source codes are freely available and validated on different online
platforms, like Etherscan, and bugs and fixing are continuously managed and
documented. Another solution could be a permissioned blockchain. We prefer to
tackle the problem with a permissionless blockchain since this approcah solves
completely the problem of customer’s trust. In fact a permissioned blockchain
may still give the sensation to the customer that a control which is indeed not
needed (the various permissions) is applied to the food chain and may intro-
duce the doubt that the central authority or some actor of the production chain
can deny the free and complete access to all the desired information. On the
contrary a permissionless and pervasively diffuse blockchain, such as Ethereum,
give the sensation that nothing is hidded and all the information on the prod-
ucts are freele accessible increasing customer’s trust. A contract in Ethereum, or
smart contract, is a special typology of account. It is recorded in a block of the
blockchain, and can receive and transmit messages from and to other account,
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by means of transactions. Messages can request the execution of a specific con-
tract function. In the case of our agri-chain traceability, for instance, a message
can contain the address of the receiver, the name of the function, and a list of
parameters that ensure the reliability of the system and protect the originality
of local products. For instance smart contracts can be used in the blockchain to
record measurements of product coming from the producers. All actors of the
food supply chain in our system are considered as senders and recipients of trans-
actions. They are blockchain accounts and are defined by an alphanumeric code
called address. The Ethereum blockchain provides a computational environment,
programmable by the development of decentralized applications. Etherum smart
contracts facilitate the exchange of money, goods, contents, properties, actions
or anything else of value. Once activated on the blockchain, the smart contract
operates independently and performs tasks automatically when specific condi-
tions occur. Each smart contract is executed on the blockchain and then there
are no risk of downtime, censorship, fraud or interference. Different blockchains
have the ability to execute programs, but often they are very limited. Ethereum
instead allows developers to implement any type of computation since the EVM
language is turing complete.

5 The System Architecture

The proposed system aims to certify the production and the supply chain con-
cerning food local products by using blockchain technology and smart contract.
The stakeholders involved are:

– authority as the system administrator
– local producers
– suppliers identified as central or peripheral warehouses
– retailers identified as pop-up stores and the e-commerce application

In our application, we assume the Sardinian Region as the authority, namely the
system administrator which inserts and monitors information about all the other
stakeholders. Each actor who want to work into the system, must be therefore
authorized and certified. The administrator also records information about every
food product involved that will be certified by the system. The local producer
must communicate with the authority a list or a single food product which may
produce as well. For each stored record a payment of a fee is required. All this
information will be stored in the blockchain as will be described later. According
to [14,15] a total of 193 agri-food products are recognized as traditional. Given
the shelf life, only part of these products will be sold through the system.

Figure 1 reports a state diagram describing the supply chain of the local agri-
food products. A local producer places on the market the product (S0) that will
be purchased at the end by the consumer (S4). A local producer can send the
product both to a POS (S1) or to a Central Warehouse (S2). It is possible to
have one or more peripheral warehouse (S3). We assume that a consumer can
buy a product in site by a POS or online through the e-commerce website.
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Fig. 1. The state diagram describing products agri-food chain.

6 Proposed Smart Contracts

We devised two smart contracts to automate the storage of information related
to the agri-food supply chain where we have different involved stakeholders. As
explained before, we have a detailed description for each local product contained
into a file and we store all the information in the blockchain using hash codes. In
fact a hash code can be used to verify the integrity of the data and for example
can be used to check the integrity of the file containing the list of local products.
By using hashing properties, it is possible to verify the integrity of the data by
comparing the hash codes. We choose as algorithm of encryption the SHA256.

We propose two different smart contracts: ProductChain and SupplyChain
that we describe through a pseudocode in Contract I and Contract II respec-
tively. In the ProductChain contract all information about stakeholders is
inserted by the authority, as well as information on products, with their ori-
gin and manufacturing, and then it is stored in the blockchain. Local producers
can insert information about production batch when a good is ready to sell. We
assume that the ProductChain contract manages the entire production chain.
The SupplyChain contract instead manages the supply chain until the final con-
sumer is reached. A customer can buy the product through a pop-up store or
through the e-commerce, and at any time he/she can check the history of the
product (form the production chain to the supply chain) because all transactions
are recorded and available in the blockchain.

We list and show below the main steps planned which involve a blockchain
transaction:

1. the authority records information about agri-food local products. The author-
ity assigns to each product an identity code similar to a barcode. When
the authority records information about products within the Ethereum
Blockchain, it stores the hash of the file which describe the product. As
explained before, only the authority, according to the function check of the
designed smart contract, can insert information about stakeholders involved



386 G. Baralla et al.

and agri-food local products. To insert a product, the authority uses the
insert record function described through a pseudocode in the ProductChain
contract. There is a different transaction for each new record and each trans-
action requires a fee.

2. the authority validates local producers. The authority, that in our case is the
Sardinian Region, has the list of accredited producer in its local database
with specific information. If a local producer wants to sell its product or a
list of products by using the proposed system it has to ask for accreditation.
The authority makes the following steps:
(a) creation of a wallet for the local producer, in this way he can be identified

by a specific address (create wallet pseudocode);
(b) addition of the address to an authorized author list and pairing of it to

the identity code of the agri-food product or products (enable stakeholder
function);

(c) creation of a transaction to store the hash code of the information about
the local producer; likewise the agri-food local product, also the data
related to a producer will be available in a public file, so that the hash
code of this public file and the hash code stored in the blockchain can be
compared to verify the integrity (insert record function);

3. the authority records information about other stakeholders involved such as
their addresses (supplier, retailer). The authority makes the following steps:
(a) creation of a wallet for each stakeholder involved, such as a supplier or

a retailer, so that it can be identified by a specific address (create wallet
pseudocode);

(b) addition of the address to an authorized authors list classifying it as
enabled addresses (enable stakehoder function);

(c) creation of a transaction to store the hash code of the information about
each stakeholder; like the agri-food local product also the data related to
the actor will be available in a public file, so that the hash code of this
public file and the hash code stored in the blockchain can be compared
to verify the integrity (insert record function);

4. the local producer records information about the production batch. The local
producer, by using its address, can store information about the production
batch:
(a) calling of smart contract ProductChain and the function insert

production batch providing as input its address and the products identifi-
cation code; the function checks (through a check map product function)
if the producer is enabled to record information about the production
batch;

(b) insertion of information giving a new transaction in the blockchain, about
production batch including an identifying code for that production.

5. the local producer records information about selling and address. The local
producer records within the blockchain, by using the smart contract Supply-
Chain, information about the sale:
(a) call send product function giving as input its address, the reference to the

transaction within the blockchain about the production batch to send,
the address of the recipient and the quantity of sending goods;
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(b) record of a transaction about selling if a function check property is ver-
ified; that function checks if the stakeholder has the property and the
quantity before selling.

6. the recipient records information about receipt of goods. The recipient records
within the blockchain by using the smart contract SupplyChain information
about the receipt:
(a) calling of receive product function giving as input its address, and the

reference about the transaction shipment recorded within the blockchain
by the sender;

(b) record of a transaction about the receipt if a check receiving function is
satisfied, that function checks if the receiving is correct.

7. the stakeholder records information about selling and recipient. Steps fifth
and sixth are repeated every time the product owner changes. Every step is
registered with a transaction in the blockchain.

7 Product Traceability
In Fig. 2 we report a detail of the transactions that our application stores
within the blockchain. We have indicated these transactions in pseudocode (see
Contract I and Contract II in Appendix).

A consumer can buy a product through a pop-up store or through the spe-
cialized e-commerce. He/she can obtain information about the production chain
and the supply chain in order to check authenticity, goodness and provenance of
the product. The entire system is designed to certify the local agri-food product
in order to prevent fraud and to promote the geographical area. All information
about a product is stored in the blockchain and for each product the system
recovers the information and shows it to the consumer that can verify the infor-
mation by using a simple QR-code reader, or a specialized mobile app linked
to the system. The customer can also manually verify the product information
integrity comparing the hashcode stored in the blockchain with the hash code
of the information displayed.

Our solution appears better than traditional solutions because all the infras-
tructure is already there and is the blockchain itself. There is no need to pay for
cloud solutions or for service providers. Furthermore maintenance is avoided and
customer’s trust is maximized because all the infrastructure has not an owner-
ship. There are no actors able to manipulate data as it could be for owned or
rented infrastructures. In the specific case of the Sardinia Region, but this is
valid also for others authorities, our solution minimizes the role of the central
authority increasing customer’s trust. The authority needs to be entrusted only
for actors and products accreditations and authorizations, using already existing
and used systems and infrastructures, which is a minimal requirement enforced
by law. After that no intermediary is involved into the certification chain which
is completely controlled through smart contracts in a completely trasparent and
freely accessible way and unmodifiable.

It performs also better with respect to other solutions provided in a
blockchain framework because only hashed information is inserted into the
blockchain reducing gas costs and payload.
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Fig. 2. Transactions recorded on blockchain.

8 Conclusions

The proposed platform aims at increasing the potential of the Sardinia Region
as a smart tourism region and starts with the awareness that the typical local
products are highly significant in order to offer to tourists a full sensory experi-
ence and able to tell, even with the taste, the uniqueness of Sardinian culture.
The system is based on the blockchain technology and uses the Ethereum plat-
form to implement a product agri-food chain by using smart contracts. The
system in fact aims at ensuring the authenticity of typical Sardinian products
and to sell them with online and on-site methods in many touristic places of
the region through a system of pop-up stores. We know in fact, that to reach
the end consumer each product deals with a complex production and distribu-
tion network and in the most recent period the need of transparency for end
users is increasing even more rapidly. Sometimes some information about prove-
nance exist, but we do not know if they are trustworthy because they are hard
to verify. However, in most of the cases we ignore the supply chain process
and its impacts on environment, health or safety fields. Currently there is a
strong need to rely on someone who can guarantee the entire origin of goods and
products. Moreover, given the complexity of the supply chain it would be desir-
able to have specialized entities for each different supply chain aspect causing
the increase of product price. We proposed to solve the problem of traceability
through the decentralized and reliable blockchain technology as a means of safe-
guarding the local foodstuffs with special characteristics and in order to create
their digital identity card. We analyzed the use of blockchain technology for the
food supply chain in Sardinia Region and we developed a system for protecting
Made in Sardinia products food. The cost of managing products with blockchain
technology will be minimal given the reduced number of transactions with the
use of zero-mile products. The platform then ensures to the consumer to check
the authenticity of the product before the purchase giving details on both pro-
duction chain and supply chain. This application is now under implementation
for being applied only to typical products, but it can be extended to different
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product types. The described system is supervised by a central authority, but it
can be redesigned as decentralized system according to the blockchain vision.

Appendix

CONTRACT I - ProductChain
INPUT: authority address, input address;
function check (input address)
START
if (input address == authority address) then

return true
else

exit
end if
END
function insert record (new record)
START
if true ← function check (input address) then

return id transaction ← (record a transaction(sha256(new record)))
else

exit
end if
END
function create wallet (stakeholder information)
START
if true ← function check (input address) then

return stakeholder address ← wallet(stakeholder information)
else

exit
end if
END
function enable stakeholder (stakeholder address, product code,
stakeholder type)
START
if true ← function check(inputaddress) then

if (stakeholder type == local producer) then
map product[k, v] ← put(stakeholder address, product code);
producer list ← add(stakeholder address);
return true;

end if
else

exit
end if
END
function insert production batch (stakeholder address, product code, production
information)
START
if true ← function check map product (stakeholder address, product code) then

return id transaction batch ← record a transaction(sha256(
production information))

else
exit

end if
END

CONTRACT II - SupplyChain
INPUT: input adressee list, producer list;
function send product (stakeholder address, id transaction batch,
addresee address, product quantity)
START
if true ← function check property (id transaction batch, stakeholder address,
product quantity)) then

return id transaction ship ← record a transaction(
addresee address, shipping information)
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else
exit

end if
END
function receive product (stakeholder address, id transaction ship)
START
if true ← function check receiving (
stakeholder address, id transaction ship) then

return id transaction batch ← record a transaction(
stakeholder address, id transaction ship)

else
exit

end if
END
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Abstract. Distributed ledger technologies (DLT) are becoming increas-
ingly popular and seen as a panacea for a wide range of applications.
However, it is clear that many organisations, and even engineers, are
selecting DLT solutions without fully understanding their power or limi-
tations. Those that make the assessment that blockchain is the best solu-
tion are provided little guidance on the vast array of types of blockchain;
whether permissioned, permissionless or federated; which consensus algo-
rithm to use; and a range of other considerations. This paper aims to
addresses this gap.

Keywords: Distributed ledger technology · Blockchain anatomy
Blockchain selection · Consensus determination protocol

1 Introduction

A distributed ledger is a form of database which is stored across a number of com-
puting devices within a network. Each node independently maintains an identical
copy of the shared ledger. The distribution is typically unique, as records are
independently constructed and held by each participant; as opposed to informa-
tion sourcing from a central authority. Each participant in the network places
a vote reflecting their calculated output, allowing the group to come to a con-
sensus regarding the true data output. Once consensus has been reached, the
distributed ledger can then be updated by all parties. Distributed ledger tech-
nology (DLT), affords a level of dexterity which is currently not facilitated by
centralized systems. A popular form of distributed ledger technology is known as
blockchain. Blockchain technologies are distinguishable from DLT by the nature
in which they store information. Data on a blockchain is grouped together and
organised into a series of cryptographically interconnected blocks. A blockchain
is an append-only structure, meaning that it only permits further data contri-
bution to the ledger. Once a block of data is committed to the blockchain, it is
impossible to alter or delete the information contained within. The immutable
nature of blockchain means that the technology is well suited for: records man-
agement, transaction processing and auditing. Because of this, we are seeing
the widespread adoption of this technology across a number of high risk supply
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chains, where fraudsters have long taken advantage of opaqueness in the prod-
uct life-cycle; typically with expensive ramifications. The nature of communica-
tions in such systems can help to eliminate intermediaries, allowing individuals
and organisations to interact freely with one another. Considering that many
industry infrastructures consist of such middlemen (such as distributors in sup-
ply chain networks), this could vastly decrease the operational costs associated
with running a business; consequently, providing a more open, transparent and
competitive marketplace. The implementation of blockchain technology is also
valuable within industries that are continuously subjected to rigorous regulation,
as the meeting of such requirements can be both time consuming and expensive
for an organisation.

The first notable implementation of DLT came in the form of the Bitcoin
whitepaper [1], written by Satoshi Nakamoto. Since then DLT such as blockchain
have become a panacea for a wide range of applications. They are often perceived
as the cornerstone of technological innovation across industries. As such, many
organisations show interest in implementing the technology within their industry.
Companies wishing to adopt such mechanisms are faced with the challenge of
selecting an appropriate configuration for their functional requirements. As the
solutions landscape continues to grow, it becomes increasingly important that
engineers and decision-makers within an organisation fully understand the power
and limitations of the various technologies on offer [7,8,13,14].

In this paper we present an anatomy of blockchain solutions, analysing their
key technological features. This paper begins by considering existing work within
the field, before proposing and analysing a generic anatomy. This is followed by
a brief discussion of a number of developed platforms, before concluding and
proposing areas for future work.

2 Existing Work

Since the rise in popularity of DLT, a number of papers have been published
analysing various areas within the field, such as: consensus, scalability, mining
difficulty and architecture. Pass et al. [2] conducted an analysis on the original
blockchain consensus mechanism [1], proving strength of consistency within an
asynchronous network environment. Their paper provided proof that Nakamoto’s
protocol satisfied their definitions for chain quality, growth, consistency (and the
upper-bound on chain growth). More generally, Glaser [6] provided a framework
for blockchain-enabled systems which was heavily grounded in hard use cases.
Zheng et al. [5] extend upon this, educating readers on the key features of a
blockchain product, with respects to both architecture and consensus. Their
focus was directed towards the benefits of using blockchain technology, refer-
encing a number of widely adopted consensus mechanisms. This paper builds
upon such work, educating readers on the selection process, in respects to which
anatomical structures are most appropriate given their functional (business)
requirements. Similarly, Vukolić [3] draws contrast between traditional proof-of-
work (PoW) blockchains and those grounded in byzantine-fault-tolerance (BFT)
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schemes. Notable emphasis is place upon the computational expense associated
with each of the discussed mechanisms. The scalability constraints placed upon
each approach are critically analysed, addressing a long-term problem within the
DLT community.

In a more critical sense, Kraft [4] focuses on analysing the computation inef-
ficiencies within existing blockchain technologies. In his paper, Kraft identified
inefficiencies within the mining processes of both Bitcoin and Namecoin. He pro-
poses a mechanism which is designed to work “perfectly” across both constant
and exponentially growing hash rates. Comparisons between his mechanism and
more traditional methods are drawn from three core metrics: mining difficulty,
average block-time and name expiration. The majority of academic work within
the field of DLT has been focused on analysing one core metric of the technol-
ogy. Very little work has been directed at educating readers in the identification
process for the appropriate solution for their requirements. This paper builds
upon a number of previous works, allowing us to address this knowledge gap.

3 An Anatomy of Blockchain Solutions

We now consider some of the key features of a blockchain network. The feature
list contained within this section does not fully encompass the topology of all
blockchain solutions. Instead, they are a select subset of features used by us
to create a generalized anatomy of a blockchain solution. Each block within a
blockchain network contains a series of transactions, accompanied by the sig-
nature of the sending network participant. Participation within a network is
controlled by the permission-determination protocol adopted by the network.
Network participants are often offered incentives to maintain the ledger. Within
public networks this can be achieved through mining. Consensus mechanisms
are used within blockchain networks to ensure that the ledger is maintained in
a valid and correct state, reflecting the true series of transactions taking place.

3.1 Blocks

Each block within a blockchain network contains both a header and a body.
The block header typically consists of information equivalent to metadata. The
header is usually used to support the identification and verification of blocks and
their body contents. The block body usually contains information surrounding
the transactions within the block. However, the format of data and information
contained within both the header and body, varies between implementation.

For example, within the Bitcoin [1] network, the header contains informa-
tion pertaining to the block version, which is an indication as to which set of
validation rules it follows. The header also contains: a hash of all transactions
within the block, a universal timestamp, a target threshold of a valid block hash,
a 4-byte field and a 256-bit hash from its parent block. Each block has only one
parent. The block body contains a series of transactions accompanied by a trans-
action counter. The maximum number of transactions contained within a block is
dependent upon the size of both the block and the transaction contained within.
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In contrast, the Ethereum [14,15] network block contains vastly different
content. The block head within an Ethereum block (based on the yellow paper
[15]) contains the: parent hash, ommers hash, beneficiary, state root, transactions
root, receipts root, logs bloom, difficulty, number, gas limit, gas used, timestamp,
extra data, mix hash and nonce. Whilst the body contains a list of transactions
and an ommers list.

3.2 Smart Contracts

In essence, smart contracts [18] are a protocol which allow for the contribution,
verification and implementation of actions within a contract. Smart contracts
can be implemented to ensure the effectuation of embedded regulation, contrac-
tual terms, business rules and other codifiable instructions. This allows for the
enforcement of obligations along with the auditable tracking of that enforcement
on the blockchain, in addition to transparency and third party integration. This
creates a unique value proposition for users, as well a proven platform on which
to further integrate partners’ systems and processes.

In the event that manual checks are required, smart contracts are capable of
triggering an event which notifies relevant parties that action is necessary. This
also extends to situations in which a combination of document submission and
manual checking is required. When critically analysing these processes, it would
be a waste of time to have a human perform an analysis if other supporting
documents are either not present or invalid. A smart contract is capable of
managing such scenarios, by first ensuring all supporting documents are present
and valid, before prompting the human interaction with the process. Essentially,
enabling effective time-management across an organisation.

While many blockchain platforms use smart contracts, such as: Ethereum
[14,15], Corda [13] and Hyperledger Fabric [12], not all do; with Monero [7]
being a prime example of this.

Monero is a platform which claims to offer superior security and privacy to its
competitors, through the implementation of mechanisms such as ring signatures.
Implementing smart contracts into a platform increases the attack surface of the
network. All of which is counter-intuitive for a privacy-focused platform such as
Monero.

3.3 Transaction Signing

Transaction signing is used within networks to provide assurance surrounding
the validity of transactions. Networks build their transaction signing mechanisms
upon a wide range of cryptographic mechanisms. One such example, is elliptic
curve (EC) cryptography. Elliptic curves can be applied within asymmetric cryp-
tography, to allow network participants to maintain ownership of their own pub-
lic and private keys. Parties use their private keys to sign transactions using the
elliptic curve digital signature algorithm (ECDSA). Signed transactions are then
broadcast across the network for peer verification. Digital signature algorithms
(DSA) such as ECDSA are used to ensure the authenticity of both the source
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and integrity of data. A great example of elliptic curves being implemented for
transaction signing can be seen in the secp256k1 elliptic curve, which is imple-
mented within: Bitcoin [1], Ethereum [14,15] and Zcash [8]. Numerous different
types of elliptic curves are used by blockchain networks in the signing process,
including the Ed25519 curve used within Monero [7].

3.4 Permissions

Permissions control access parameters around participation within a network,
and can either encourage open contribution from the general population, or
restrict admittance to pre-trusted entities. This is extremely useful from an
engineering perspective as it provides flexibility, adaptive to the specification
requirements of the proposed solution. Blockchain has three core permission-
determination protocols: permissionless, permissioned and federated.

Permissionless blockchain networks [20] allow for external parties to partic-
ipate within an open network, without the need for traditional registration mech-
anisms (permissionless access). This creates openness without imposing strong
self-identification restraints on actors within the network. Since anyone can par-
ticipate in the network freely, there is a requirement to offer a financial incentive
for peer validation and system maintenance tasks. Incentives help to promote
peer participation in the network, which in turn has a positive impact on the
overall security provided by the system. For example, within the PoW consensus
mechanism, a 51% network majority is required to enforce change.

Permissioned blockchains [20] are not controlled or manipulated by a single
entity, but by a consortia of entities, which provide selected parties with autho-
rization to participate within the network. This affords the consortia the power
to vet participants to a degree. Since permissioned networks operate under the
supervision of a trusted consortium of validators, the cost of verifying transac-
tions is significantly reduced. The infrastructure also supports the updating of
protocols with relative ease. As all nodes are well known and regulated, there is
negligible risk of network performance degradation or outage.

Federated blockchains also restrict access to the network. However, there is a
subtle difference in functionality from permissoned networks. For example, imag-
ine that a network consisted of 15 nodes. Within a permissioned network each
node would be required to sign transactions. However, within a federated net-
work, only a subsection of the overall consensus contributing nodes are required
to sign blocks. Flexibility is also afforded when assigning read permissions to
the ledger. Conducting consensus in this nature reduces the computational cost
associated with transaction signing and data redundancies even further.

3.5 Consensus

Consensus is the mechanism by which individuals within a network come to
an agreement regarding a particular decision or view. Ideally, consensus mech-
anisms are capable of mitigating the actions of dishonest individuals or groups;
whilst offering a level of redundancy in the event that a subset of parties are
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unable to respond. Within blockchain technology, consensus is used to provide a
degree of consistency across transactions within a ledger. Each consensus mecha-
nism has varying degrees of tolerance around the level of redundancy, resilience,
speed and security involved in the performance of their functionality. Common
consensus determination algorithms used within blockchain platforms include:
PoW [1,3,19], proof-of-stake (PoS) [19], delegated proof-of-stake (DPoS), proof-
of-authority (PoA), proof-of-elapsed-time (PoET) [16], byzantine fault tolerance
(BFT) [3,9,11].

Proof-of-Work [1,3] is a piece of data that is both time consuming and
costly to produce, but easily verifiable by peers. Producing a PoW is essentially
a random process with a low probability of success; thus, it is down to trial and
error. Perhaps the most notable implementation of PoW can be seen within the
Bitcoin network [1]. Within Bitcoin, block references are obtained through the
double hashing of the blocks header content, using the SHA-256 hash function.
Hashing, mining difficulty and threshold functions for PoW schemes are outlined
within [19]. Due to the nature of PoW, an adversarial party would require 51%
of the networks hash-rate (or computing power) to compromise the system.

Although PoW is a decentralized protocol, within networks such as Bitcoin,
PoW is executed by an ever increasing centralized system of miners. Practically
speaking, most people do not have the computational resources to participate
in the mining process. As a result, to guarantee stable returns for participation,
most miners pool their resources. This has effectively created a centralized mech-
anism, revolving around so called pool managers. Currently, the Bitcoin network,
the five biggest mining pools control over 3

4 of all hashing power.
Proof-of-Stake [19] derives its consensus from the holdings of the cryp-

tocurrency itself. For instance, if Bitcoin were to adopt PoS, users who hold
the largest amount of Bitcoin would have the authority to make change across
the network. Majority owners would also be able to mine an equivalent portion
of their funds regardless of computing power. For an explanation of how the
PoS algorithm works; including how it adjusts difficulty and provides proof of
address ownership, read [19]. There is a known flaw within the PoW scheme in
which newcomers to a network, without prior knowledge of the chain, can be
tricked into validating an invalid chain, based on its larger length. PoS combats
this by implementing a rule-set which disallows forking from a branching point
more than N blocks in the past. Therefore, new participants in the network are
provided with all information of prior block content. However, it must be noted
that this requires a trade-off in the form of a centralization, trusted source. For
a PoS mechanism to work effectively, there needs to be a way to select forg-
ers (a transaction validator) from a user group. Simply selecting forgers based
on their account balance would result in a system which is heavily skewed in
favour of richer participants, who decide to stake more of their currency. To
counter this problem a number of selection mechanisms have been created, such
as randomized block and coin age based selection.

It is worth noting that a semi-centralized PoS algorithm known as delegated
proof-of-stake also exists. Within DPoS, blocks are created by a select set of



398 C. Maple and J. Jackson

users within the system known as delegates. Stake within DPoS is used slightly
differently than within PoS. For example, delegates may be elected based on
their stake in proportion to the network. Additionally, delegates may receive
votes from network participants. The voting power of participants is also reliant
on their stake relative to the entire network. Delegates are rewarded for per-
forming their role and punished for misbehaviour. There are two core functions
performed by delegates: block building and signing. Each delegate is capable of
individually generating blocks; however typically speaking, multiple delegates
are required to sign a block. Signing is performed by a select subset of delegates.
One notable exception to this rule is Tendermint [10], in which any user in the
system canprovide a signature.

In essence, PoS systems are more computationally efficient than their PoW
counterpart. A greater number of people are encouraged to run nodes and partic-
ipate in the network as the cost of participation is affordable. As a result, they
system becomes increasingly decentralized. Additional protection comes from
the expense associated with executing an attack and the reduced incentive for
attackers. An attacker would require a near majority of all network currency to
manipulate the network. This is typically referred to as the monopoly problem.

Byzantine Fault Tolerance is commonly thought of in regard to the byzan-
tine generals problem [9]. With respect to the byzantine generals problem, byzan-
tine fault tolerance is achieved when loyal generals come to a majority agree-
ment on their strategy. Typically byzantine faults are the most challenging to
deal with, as no restrictions or assumptions are made around the behaviour a
node can exhibit. The most successful approach to date is known as practical
byzantine fault tolerance (PBFT) [11].

PBFT is the core for many algorithms used for tasks, such as: terminat-
ing reliable broadcast, group membership, view synchronous b-cast and state
machine replication. PBFT processes can be categorised into three core types:
clients, primary n replicas and backup n replicas. Any client within the system
can be faulty. In accordance with the 1/3rd corruption tolerance of BFT, the
number of replicas present is calculated as follows; n = 3f + 1, where f is upper
bound of faulty parties.

Practical Byzantine Fault Tolerant Consensus [11] is achieved through
a three-phase protocol, ensuring the validity and integrity of the agreement. The
first phase is known as pre-preparation. Within this phase an order of requests
within the same view is agreed upon. The preparation phase that follows again
agrees upon a request order within the same view, whilst also ensuring that
request execution is performed in the pre-prepared order across different views.
Garbage collection is also performed as part of the preparation phase. Finally
a commit phase is executed, which again ensures the order of request execu-
tion in accordance with the preparation phase, whilst handling further garbage
collection duties.

PBFT consumes less energy that both PoW and PoS mechanisms and also
offers a higher level of performance in respects to latency and network through-
put. Since it is a permissioned network protocol, its adversarial tolerance should
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not be compared to that of PoW, or permissionless PoS schemes. However,
due to the nature of PBFT consensus, scalability becomes a significant issue.
Therefore, we recommend using PBFT within small to medium size networks.
PBFT is particularly effective within industries consisting of a strictly defined
infrastructure.

Proof-of-Elapsed-Time (PoET) [16] is designed to achieve a distributed
consensus in a lottery-type function. It was originally designed with the aim of
creating a fair mechanism for distributing mining rights within permissioned
networks.

PoET abide by a four-stage process flow. Firstly, each validator requests
a randomly distributed wait-time period from a trusted enclave. Secondly, the
validator with the shortest wait time wins the election and is awarded leadership
for the transactional block in question. A function is used to create a timer for
the transaction block that is guaranteed to have been created by the enclave.
Another function is then used to verify the timer origin.

The enclave comes in the form of a secure CPU instruction-set, ensuring
fairness in the randomness of selection across all participants. This is achieved
through implementing in the low level, using Intel’s Software Guard Extensions
(SGX) [17]. This facilitates the PoET algorithm in providing random distribu-
tion of leadership across an entire population of participants, in a fair manner.
An attestation of execution provides verification of a participants claim to lead-
ership, providing a low cost for participation. This offers a strong incentive for
participation in the network, as the algorithm is perceived to be fair, just and
accessible (due to the low cost infrastructure). Perhaps the most notable imple-
mentation of PoET can be seen within the Hyperledger Sawtooth [16] network.

The following diagram provides a comparison between the aforementioned
consensus mechanisms Fig. 1.

Fig. 1. Consensus protocol comparison
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4 Developed Platforms

Once an engineer has determined that a blockchain solution is required it is then
necessary for them to undertake the platform selection process. We discuss some
of the key platforms here.

Corda [13] is an open-source DLT, which is targeted towards the financial
industry. Corda is a permissioned private platform, offering a plugable consensus
mechanism on a transactional level. This affords great flexibility to an engineer
when developing an application built on Corda. The nature of consensus within
the system means that no global broadcasting of data occurs. This is an attrac-
tive quality within heavily regulated industries, where information secrecy is
pivotal. Corda has recently been endorsed by the famous insurance consrtium
b3i. Smart contracts within Corda are grounded in legal prose; allowing for
the self-execution and automation of event-driven, legally binding agreements
between parties. This makes Corda ideal for financial records management and
the automation of financial agreements.

Ethereum [14,15] is a decentralized platform which affords developers the
ability to execute smart contracts within custom built blockchain networks.
Ethereum allows for the creation of cryptocurrencies and storing of crypto-assets
within the Ethereum Wallet. The wallet also allows for the writing, deployment
and use of smart contracts. Perhaps the most interesting use case for Ethereum,
can be seen within digital identity management systems. One great example
of this is uPort, which aims to give users a more secure way to provide proof
of their identity, by only offering critical information required to perform the
desired function. For example, only providing an airport with the relevent infor-
mation when boarding an aircraft. Ethereum is ideal for such a use-case as it
has an easy-to-use smart contract mechanism.

Hyperledger Fabric [12] is an open source, modular platform, currently
spearheaded by IBM (previously governed by the Linux Foundation). Fabric is a
private permissioned platform, which supports the use of one or more networks.
Each network manages the requirements of a different set of member nodes. Fab-
ric offers users the ability to perform queries and updates to the ledger, through
the use of a series of industry standard data store mechanisms, such as: key-
based lookups, composite key queries and range-based searches. Fabric utilizes
PBFT [11] and conducts consensus on a transactional level. Peers within Fabric
networks are required to endorse transactions in accordance with a number of
predefined policies. For a transaction within the network to be validated it must
pass all policy checks and receive the signature of all endorsing peers submitting
to the Fabric ordering service.

Fabric consists of channels, which contain the configuration block which
defines policies, access controls and other information important to the
blockchains function. Fabric channels allow for the derivation of cryptographic
materials from multiple sources. An example of a real world implementation of
Fabric can be seen within the Everledger organisation, in which Fabric is used
to track and trace diamonds across the supply chain network.
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Hyperledger Sawtooth [16] is also part of the Hyperledger family. How-
ever, it differs vastly from its sister Fabric network. Where Fabric was built for
vast business networks, Sawtooth was developed as solution aimed at reducing
the computational resource consumption within large distributed validator popu-
lations. It achieves this through implemented the proof-of-elapsed-time (PoET)
consensus protocol. Since consensus is performed within the CPU, which are
contained within most consumer electronics, realistically speaking, almost any
device can participate within consensus. Considering that PoET consensus is
also exceptionally lightweight, this makes Sawtooth ideal for use cases in which
IoT devices (which typically contain limited computing power) are implemented.
Sawtooth is a great choice for supply-chain networks with IoT device tracking
during transit.

MultiChain [21] offers a platform for building both permissioned and per-
missionless blockchain networks. Multichain differentiates itself from most other
blockchain networks through its use of streams, which come in three core for-
mats: A NoSQL key-value database or document store, an ordered time series
database, or an identity-driven database with author-based entry classification.
If the purpose of the blockchain product is to store information as opposed to
function execution, MultiChain provides a fast and lightweight solution. For this
reason, MultiChain is particularly useful for document storage systems, in which
simple CRUD functionality is required. Development on the MultiChain plat-
form is also exceptionally easy. Streams can be created and added to the network
without the need to write code.

Quorum [22], similarly to Corda, is a financial service facing blockchain net-
work. However, unlike Corda, Quorum is actually a fork of an existing blockchain
platform, Ethereum. The core changes Quorum makes within its fork, is the
addition of a different consensus protocol, encrypted storage and the change to
a permissioned access structure. Quorum still provides access to the standard
Ethereum features, such as a distributed ledger and smart contracts. Quorum
solves two major existing problems preventing permissioned network implemen-
tation upon the Ethereum platform. Firstly, within Ethereum anyone can con-
nect to the network due to its permissionless nature. Secondly, all data inside
of the smart contracts within Ethereum are visible to all participant nodes.
Quorum addresses these issues by taking an off-chain approach to data storage.
Quorum is particularly useful within use-cases in which privacy and security of
transactions are a core concern (Fig. 2).

Fig. 2. Platform comparison
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5 Conclusion

In this paper we propose a format for outlining a generic blockchain anatomy.
This anatomy ranges from permissions to consensus and can be referenced when
assessing blockchain solutions architecture; assist in the design and implemen-
tation of business logic within the technology. We draw comparisons between
existing technologies and protocols, providing solutions architects with a base-
line upon which to build their products. However, this paper is meant to be used
as a guideline, and is by no means a bible for building blockchain solutions. From
a practical perspective, within industry, it is necessary to consider a multitude
of factors outside that of the technological functionality; for example, cost.

In future work, we aim to address a number of other key topics for consider-
ation when building ontop of blockchain technologies, such as: off-chain storage
requirements, privacy preservation, integration with existing systems (particu-
larly legacy) and ease of use. This should provide engineers with further informa-
tion, upon which to effectively build their solutions. Platforms such as Monero
[7] which focus heavily on security would make for an interesting starting point
for such work.
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Heterogeneity is emerging as one of the most profound and challenging characteristics
of today’s parallel environments. From the macro level, where networks of distributed
computers composed of diverse node architectures are interconnected with potentially
heterogeneous networks, to the micro level, where deeper memory hierarchies and
various accelerator architectures are increasingly common, the impact of heterogeneity
on all computing tasks is increasing rapidly. Traditional parallel algorithms, pro-
gramming environments and tools, designed for legacy homogeneous multiprocessors,
will at best achieve a small fraction of the efficiency and the potential performance that
we should expect from parallel computing in tomorrow’s highly diversified and mixed
environments. New ideas, innovative algorithms, and specialized programming envi-
ronments and tools are needed to efficiently use these new and multifarious parallel
architectures.

HeteroPar is a forum tailored for study of diverse aspects of heterogeneity and
caters for researchers working on algorithms, programming languages, tools, and
theoretical models aimed at efficiently solving problems on heterogeneous platforms. It
includes broad range of topics pertaining to high performance heterogeneous com-
puting from heterogeneous parallel programming paradigms, and algorithms, models
and tools for energy optimization on heterogeneous platforms to fault tolerance of
parallel computations on heterogeneous platforms.

The sixteenth edition of the workshop (HeteroPar’2018) was held on 27th August
in Turin, Italy. For the tenth time, this workshop was organized in conjunction with the
Euro-Par annual series of international conferences. The format of the workshop
included a keynote followed by four sessions of technical presentations. The program
committee (PC) comprised of 25 members with expertise in various aspects of high
performance heterogeneous computing. The workshop was well-attended featuring an
healthy average of 35 attendees.

We have received 26 articles for review this year from 16 countries. Each paper
secured three reviews from members of the PC. After a thorough peer-reviewing
process, we have selected 10 articles (an acceptance ratio of 38%) for presentation at
the workshop. The review process focused on the quality of the papers, their innovative
ideas and their applicability to the field of high performance heterogeneous computing.

The accepted articles covered a diverse range of topics, techniques, and applica-
tions exhibiting lucidly the depth, breadth, and growth of the heterogeneous computing
field. The topics included realistic simulations of file replication strategies, anomaly
detection using FPGA, GPU-accelerated optical coherence tomography, application-
centric parallel memories, perturbations in heterogeneous systems, FPGA-accelerated
change-point detection, merging publish-subscribe pattern and shared memory, a



modular precision format, fast heuristic-based GPU compilation and benchmarking
latest GPU and tensor cores.

Finally, I would like to thank the HeteroPar Steering Committee and the HeteroPar
2018 Program Committee, for their diligent efforts in ensuring the high quality and
continued success of this workshop. I would also like to thank Euro-Par for hosting our
community, and the Euro-Par workshop chairs Dora Blanco Heras and Gabriele
Mencagli for their help and support.
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Université Lyon 1, Lyon, France
chai@creatis.insa-lyon.fr

2 IN2P3 Computing Center, CNRS, Lyon-Villeurbanne, France
3 Inria, Lyon, France

4 Department of Computer Science and Software Engineering,
Concordia University, Montreal, Canada

Abstract. File replication is widely used to reduce file transfer times
and improve data availability in large distributed systems. Replication
techniques are often evaluated through simulations, however, most sim-
ulation platform models are oversimplified, which questions the applica-
bility of the findings to real systems. In this paper, we investigate how
platform models influence the performance of file replication strategies
on large heterogeneous distributed systems, based on common existing
techniques such as prestaging and dynamic replication. The novelty of
our study resides in our evaluation using a realistic simulator. We con-
sider two platform models: a simple hierarchical model and a detailed
model built from execution traces. Our results show that conclusions
depend on the modeling of the platform and its capacity to capture the
characteristics of the targeted production infrastructure. We also derive
recommendations for the implementation of an optimized data manage-
ment strategy in a scientific gateway for medical image analysis.

Keywords: File replication · Platform model · Realistic simulation
Evaluation

1 Introduction

File replication to multiple storage resources is a common technique to optimize
data management in distributed systems. It reduces file transfer bottlenecks
and increases file availability, with great impact on the application execution
time [13]. Numerous file replication strategies were proposed and evaluated using
simulations [1,9,14,16,20,21], focusing mostly on the optimization of file transfer
durations (average or total duration by job). However, platform models are often
oversimplified, leading to questionable accuracy of simulated transfer duration.
c© Springer Nature Switzerland AG 2019
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Two platform models are commonly used in the literature. The homogeneous
model [2,12] uses a nominal bandwidth (e.g., 1 Gb/s) for all the network links
between storage and compute resources. The hierarchical model [8,17] uses dif-
ferent theoretical bandwidths for different link categories: for instance, 1 Gb/s
for local links between computing resources and their local storage resource;
100 Mb/s for national links (compute and storage resources in the same country);
10 Mb/s for inter-country links. While these models might be good approxima-
tions for large distributed systems at a coarse level, the limited number of band-
width values can hardly capture the heterogeneity and the complexity intrinsic to
real production systems. In a previous work focusing on simulation accuracy [4],
we have shown that the quality of simulated file transfer duration strongly
depends on the accuracy of the platform topology and on the parametrization
of the simulator. In particular, the homogeneous model can hardly capture the
characteristics of a large grid infrastructure and, consequently, the accuracy of
the simulation is rather poor when using such a model.

In this paper, we use two different platform models to evaluate file replica-
tion strategies: (i) a three-tier hierarchical model, representing the state-of-the-
art platform and (ii) a model built from real execution traces. We focus on file
management in the EGI e-Infrastructure (http://egi.eu), a large distributed sys-
tem with hundreds of sites spread world-wide, and in particular on applications
executed by the Virtual Imaging Platform (VIP) [11], a Web portal for medical
image analysis and simulation. We aim at answering the following questions:

– What is the impact of replication strategies on file transfer durations?
– Does the answer to the above question depend on the platform model?
– What would be reliable recommendations for data placement in VIP?

The remainder of this paper is organized as follows. Section 2 provides some
technical background on data replication strategies in general and, more partic-
ularly, in EGI and VIP. Section 3 describes our simulation studies with focuses
on platform models, studied data placement strategies, and simulation scenarios.
Section 4 presents the evaluation and the analysis of the simulation results. Rec-
ommendations for the targeted production system are given in Sect. 5. Finally,
Sect. 6 summarizes our findings and details of our future work.

2 Technical Background on File Replication

Replication management encompasses both replica creation and replica selection.
The former decides where and how many times to replicate a file, while the latter
defines how to choose the best replica for a given file transfer. Both components
can be implemented in various ways, depending on the features to optimize, e.g.,
file availability, transfer time, or network usage.

Replica creation strategies can be classified in two categories: static and
dynamic. In static replication, decisions are made before launching the appli-
cation and not changed during the execution. In [6,15], authors demonstrated

http://egi.eu
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that asynchronously replicating data to several remote sites before the applica-
tion execution can significantly reduce its execution time. This process is named
file prestaging. Static replication strategies are usually simple to implement, how-
ever, they are often inefficient in a dynamic environment such as a large grid
infrastructure. In dynamic replication, decisions can adapt to changes of the
infrastructure characteristics, e.g., storage capacity or network bandwidth. More
replicas can be created on new nodes during the execution of the application and
can be deleted when they are no longer required. Dynamic replication strategies
often rely on information obtained at runtime, hence adding an extra overhead
to the application execution time.

The Unified Middleware Distribution [7] is an integrated set of software com-
ponents packaged for deployment as production services on EGI. Among them,
the data management services allow users to upload files onto a Storage Element
(SE), then replicate and register them in a File Catalog. However, the decisions
about where to replicate files and how many replicas to create are left to the
applications (users). The replica selection algorithm of the middleware selects
replicas according to their distance to the computing site, that is, first in the SE
local to the computing site, then in the same country as the job execution, and
in last resort, randomly among all available replicas.

The replica creation strategy implemented in VIP relies on the experience
and a priori knowledge of its administrators. VIP files are automatically repli-
cated to a static predefined list of 3 SEs chosen among the ones considered as
stable, with a general good network connectivity, and sufficiently large amounts
of available storage space (generally at least 500 GB). This list is updated when
one of the SEs needs to be replaced, is in downtime, is full, or faces any other
issue preventing its usage. The number of replicas may also vary depending on
the type and size of the files. Files larger more than 500 MB are usually replicated
on the most available SEs.

3 Simulation Studies

The long-term objective of this study is to optimize data placement for scientific
gateways such as VIP using large scale distributed heterogeneous infrastructures
such as EGI. To this end, we propose to evaluate different simulation scenarios
fed with realistic information coming from execution traces. We developed a
simulator [18] based on the SimGrid toolkit [3] that is as close as possible to
the actual behavior of several VIP services. Hereafter we detail the different
components of these simulation scenarios.

3.1 Platform Models

We consider two platform models. First, we extend the realistic trace-based
model proposed in [4]. This model determines an average bandwidth value for
each network link between a SE and a computing site from file transfer logs of
several application executions. This has been shown to give the best accuracy
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when simulating file transfers. However, some links were not used, and thus not
in the logs, while they are needed to conduct the current study.

A naive solution to this issue would be to use the median of all the measured
bandwidths for the missing links. However, this would neither reflect the hierar-
chical topology of the platform nor the overall connectivity of a site concerned
by missing link(s). To address this limitation, we first define three categories
of network links (local, national, and inter-country) to reflect the topology. For
each category c we estimate the connectivity of a site Si as the ratio between
the median bandwidth of the known links to/from Si and the median bandwidth
of all the links: ˜Bc

i /
˜Bc. We weight this ratio by |Lc

i |/|Li|, since the larger the
number of known links, |L|, the more reliable the estimation. The overall con-
nectivity of Si with regard to the rest of the platform is then estimated by the
following weighted sum:

Ci =
∑

c

(

|Lc
i |

|Li| .
˜Bc
i

˜Bc

)

. (1)

Finally, the bandwidth of a missing link of category c to/from Si is computed
as the median bandwidth in this category times the overall connectivity: ˜Bc×Ci.

While this traced-based model is accurate, it is also complex to build. There-
fore, we also consider a simpler model inspired from the state-of-the-art hierar-
chical model. If simulation results are consistent between the two models, then
the building simplicity of this three-level hierarchical platform makes it a good
candidate for further studies. To better reflect the connectivity of the produc-
tion system, we enhance it by using average bandwidth values derived from logs
instead of the theoretical values proposed in the literature. We use 1.3 Gb/s for
local links, 255 Mb/s for national links, and 100 Mb/s for inter-country links.

3.2 Replication Strategies

We study data placement strategies based on (i) file prestaging and (ii) a dynamic
replication strategy. In the file prestaging strategy, files are copied on three
preselected SEs before the execution of the application. This corresponds to the
current replication strategy used by VIP. We evaluate the impact of different
prestaging lists on the performance of file transfers, with or without a priori
information on the sites where jobs are executed.

Given the large scale of distributed systems such as EGI, allowing thou-
sands of independent jobs to be executed in parallel, we believe that dynamic
replication could further improve data placement during the execution of an
application. Our idea is inspired by the “cache hit” mechanism. The first job
executed in a computing site downloads the file, then copies and registers it
onto the local SE associated to this site. Then, the subsequent jobs in the same
site can directly benefit of a local file transfer hence optimizing the overall file
transfer duration. This strategy derives of two observations made on EGI. First,
when the application consists of a large number of jobs, a given site will execute
more than one job in general. Second, the queuing time from a job submission



Evaluation Through Realistic Simulations of File Replication Strategies 413

to the job execution is highly variable. It means that if subsequent jobs have a
much longer queuing time compared to the first job, they can directly benefit of
the local transfer without any extra delay. More details are given in [5].

3.3 Simulation Scenarios

We simulate the execution of 15 workflows, each consisting of 100 jobs, to study
the performance of file transfers. Realistic information are extracted from exe-
cution traces and injected as parameters in our simulator (e.g., the queuing time
of jobs, execution site, source and destination of file transfers, . . . ).

To determine the impact of SE selection for each platform model, we study
three categories of prestaging lists: (i) the current production setting, which
corresponds to three SEs located in France, (ii) 50 randomly selected lists and
(iii) four prestaging lists selected based on statistical information on the sites
where the jobs of the 15 workflows were executed. These four lists contain the
local SEs of the three sites hosting the largest number of jobs located in one or
different countries or three sites hosting no jobs at all located in one or different
countries, respectively. We always fix the number of SEs used to prestage files to
three to match the number of replicas currently used in production. The impact
of the number of SEs is let out of the scope of this paper.

In total, we simulate 220 scenarios (2 strategies × 2 platform models ×
55 prestaging lists) for each of the 15 workflows.

4 Performance Evaluation

4.1 Impact of Dynamic Replication

We begin our evaluation by studying the cumulative distribution of the simulated
durations of file transfers with and without dynamic replication. Each line in
Fig. 1 corresponds to one list of 3 SEs used for file prestaging, using either the
3-level (top) or the trace-based (bottom) platform model. The same 50 random
prestaging lists are used in all four scenarios.

For the 3-level model, we see that dynamic replication significantly decreases
file transfer durations, as more jobs can download files from a local SE. Moreover,
the performance does not depend on the SEs used for prestaging with a median
duration of 5.1 s and a maximum value of 32.3 s. Without dynamic replication,
the choice of the prestaging list has a stronger impact, leading to longer and more
variable transfer durations. The median varies from 13 s to 21 s when utilizing
different lists while the maximum varies from 123 s to 290 s.

For the trace-based model, we also see a reduction of file transfer durations
when using dynamic replication, but the gap is less clear. Contrary to the 3-
level model, the performance with dynamic replication varies more significantly
depending on the prestaging list. For both models, the choice of the prestaging
list always has a strong impact on performance when there is no dynamic repli-
cation. Median duration varies from 20 s to 44 s while the maximum and the
longest duration is about 975 s when utilizing different lists.
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4.2 Impact of Different Prestaging Lists on Static Replication

We saw that, globally, the choice of SEs used for prestaging mainly matters
when there is no dynamic replication. To measure the impact of SE choice for
file prestaging, we compare the 50 random prestaging lists, the 4 predefined lists
and the current prestaging list used in production. The comparisons for the 3-
level hierarchical (top) and trace based-model (bottom) are depicted in Fig. 2.
We identify the best and the worst prestaging among these 55 lists based on
the median simulated file transfers duration. The performance corresponding to
the current production prestaging list is also identified (named “prod prestag-
ing”). It utilizes 3 SEs in France, chosen according to the criteria described in
Sect. 2. Note that we only evaluate the impact of the prestaging list w.r.t. the file
transfer duration. Other aspects taken into account by VIP administrators (e.g.,
reliability, availability and storage space of each SE) are left as future work.
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Fig. 1. Cumulative distribution of simulated file transfer durations with and without
dynamic replication. Each line corresponds to a list of 3 SEs used for file pre-staging.
The same 50 random prestaging lists are used in all four scenarios.

For the 3-level model, the “best prestaging” corresponds to one of the prede-
fined lists: three SEs associated to the sites hosting the largest number of jobs
located in three different countries, i.e., UK, Netherlands, and France. By select-
ing the most used sites, most of the jobs can directly download files from their
local SEs. Moreover, scattering file replicas in different countries can efficiently
reduce the number of downloads from a foreign country. Conversely, the “worst
prestaging” for the 3-level model is given by three SEs associated to sites that do
not execute any job and are located in different countries. Thus, most of the jobs
download files from a foreign country, which leads to the worst performance.
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Fig. 2. Comparison of random, predefined, and the current production prestaging list
without dynamic replication for two platform models

For the trace-based model, we find the exact same “best prestaging” and
“worst prestaging” as for the 3-level model. It further validates the findings from
the 3-level model. By collecting more historical information from the DIRAC [19]
server that schedules the jobs, we find that UK, Netherlands, and France are the
countries hosting the largest number of executed jobs in the Virtual Organization
used by VIP. We can thus conclude that the best performance without dynamic
replication is likely to be obtained by selecting the SE of the most used sites in
different countries hosting the largest cumulative number of executed jobs for
both models.

4.3 Impact of Platform Model on Replication Decisions

Figure 3 compares the duration of file transfers when using dynamic replication
for the two models. We observe that dynamic replication leads to much more
stable results in the 3-level model than in the trace-based model. In other words,
in the 3-level model, a random selection of SEs to prestage files is enough: no
improved SE selection strategy is required. However, for the trace-based model,
we observe a greater variability which can be explained by the important hetero-
geneity in terms of network connectivity that is better captured by this model.
While a local SE may have a poor connectivity in the trace-based model, the
3-level model will always assumes a very good connectivity, which is one of its
known limitations.

Figure 4 compares the best performance achieved by predefined or randomly
selected lists without dynamic replication for each model. As in simulation we
have the complete a priori information about the sites on which jobs are going
to be executed, the best predefined prestaging list is always better than the best
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random list that we obtained. Interestingly, we see that the gain is much larger in
trace-based model. The more heterogeneous the platform is, the more important
a priori information (e.g., the distribution of executed jobs on computing sites
or in countries) is to optimize file transfers.

It is also interesting to note in Fig. 2 that the performance of the prestaging
currently used in production is quite different between the 3-level and trace-based
models. In the former, SEs are equivalent in the sense that a single bandwidth
value is used for all the links in each category (i.e., local, inter-country, and
intra-country). Performance will then be better for lists with SEs close to the
sites executing most of the jobs. In the latter, each link is unique and the use of
close SEs alone cannot ensure the best performance. The “prod prestaging” list
illustrates this. It corresponds to three SEs in France, close to sites that execute
more than 16% (which is more than the average sites) of the total number of jobs.
However, the general connectivity for these three SEs is worse than the average.
This explains why the performance of the “prod prestaging” list is better than
most of the randomly selected prestaging lists in the 3-level model and worse in
the trace-based model. It also shows that different platform models can lead to
different qualitative assessments for similar scenarios.

5 Recommendations for File Replication in VIP on EGI

As we have seen, simulation results are not always consistent between the two
models. A larger variability exists in the trace-based model even with dynamic
replication. The relative performance of the current production configuration
also differs from a model to another. Consequently, recommendations for VIP
need to be based on the results obtained with the trace-based model.

Figure 5 compares the best and worst performance (with or without dynamic
replication) to the current production setting. The performance with and without
dynamic replication is depicted in black and gray, respectively.

Without dynamic replication, a careful selection of the SEs used for file
prestaging reduces file transfer times. However, this requires a priori informa-
tion on where jobs are going to be executed. For jobs submitted independently
in large distributed systems, we cannot know in advance where they will be exe-
cuted. However, we could attempt to predict it by leveraging historical data on
where the jobs have been running over a given period of time.

Table 1. 95%-confidence interval for the statistics of the simulated release transfers
durations of 55 prestagings with and without dynamic replication

1st Qu. Median Mean 3rd Qu. Max

With Dyn. Rep. [2.6;2.7] [3.5;4.3] [25.6;30.7] [19.8;24.7] [1192.1;1301.4]

Without Dyn. Rep. [8.3;11.2] [22.9;28.23] [60.5;71.2] [57.8;66.9] [974.4;974.8]

Dynamic replication always outperforms the current production configura-
tion. To better quantify its gain, we computed in Table 1 the 95%-confidence
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Fig. 3. Cumulative distribution of simulated file transfer durations with dynamic repli-
cation for two platform models
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Fig. 4. Cumulative distribution of simulated file transfer durations without dynamic
replication for two platform models. Best performance achieved by predefined or ran-
domly selected lists is highlighted.

interval for the statistics on the simulated transfer durations over the 55 stud-
ied prestaging lists. We conclude that with dynamic replication, there is a 95%
chance that 75% of file transfers will be 2.5 times shorter than without, regardless
of the selected prestaging list.

However, the longest transfer duration seems to be worse with dynamic repli-
cation. In the proposed dynamic replication algorithm (details are given in [5]),
the first job in a site tries to download the file using a timeout to reduce the
impact of extremely long transfers [10]. If this timeout expires, this transfer is
canceled and a new attempt is made with another SE. Then, the transfer time
corresponds to the cumulative time of all transfer attempts (failed and success-
ful). In the studied scenarios, the longest simulated transfer corresponds to a job
executed on a site with poor connectivity to/from most SEs in the trace-based
model. When using dynamic replication, the timeout expires 3 times, hence
adding an overhead of three times the timeout value. This timeout is currently
set to 110 s and corresponds to the third quartile of all measured transfer dura-
tions. This effect could be mitigated with a timeout value that makes a trade-off



418 A. Chai et al.

trace−based model

0%

25%

50%

75%

100%

1 5 10 50 100 500 1000
Transfer duration (in seconds)

Pe
rc

en
ta

ge
 o

f c
om

pl
et

ed
 fi

le
 tr

an
sf

er
s

Best − with Dyn. Rep.
Worst − with Dyn. Rep.
Best − without Dyn. Rep.
Worst − without Dyn. Rep.
Prod. prestaging

Fig. 5. Comparison of the best and the worst prestaging with the current production
prestaging for trace-based model with or without dynamic replication

between the longest acceptable transfer duration and this extra overhead caused
by retries. It is important to note that such an extreme case cannot be evalu-
ated with the 3-level model that does not reflect the heterogeneity of the actual
infrastructure.

To summarize, we can conclude from our observations that dynamic replica-
tion can globally reduce the duration of file transfers except for extreme cases
where multiple transfer timeouts are hit successively. Such cases are only cap-
tured by the trace-based platform model. As the benefits of dynamic replication
comes from the number of jobs that transfer files from a local SE thanks to
the copy made by the first job, it may not be interesting for small applica-
tions. Finally, implementing such a dynamic replication strategy in the produc-
tion environment would require non-negligible development effort for the correct
handling of concurrent file access synchronization, as well as finding the optimal
parameters (e.g., the timeout value and the maximum number of retries).

6 Conclusion

File replication is a widely used technique to optimize data management in
distributed systems. Many replication strategies have been proposed in the lit-
erature to solve various optimization problems in which efficiency has mostly
been evaluated through simulation. However, the often simplified configuration
of simulators may critically question the findings derived from simulation results.

In this paper, we presented our efforts to improve the evaluation of file repli-
cation strategies by studying two platform models: a 3-level hierarchical model
and a model built out of execution traces. We evaluated the impact of different
strategies on file transfer durations and compared the results obtained with each
model to cross-validate our findings. Last but not least, we proposed recommen-
dations to optimize the replication management for VIP.

Simulation results show that the estimated impact of a strategy can be quite
different when the platform model changes. In other words, the conclusion drawn
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from one model cannot be automatically transferred to another. We show that
the instantiation of the two models leads to different qualitative decisions, even
though they reflect a similar hierarchical topology. It emphasizes the fact that
the realism of the platform model is key to the evaluation process.

By comparing the results obtained with each model, we found that selecting
the sites hosting a large number of executed jobs to prestage files is a safe
recommendation to optimize data management in the production system. In
addition, adopting dynamic replication can further reduce the duration of file
transfers except for extreme cases (very poorly connected sites) that our realistic
simulations were able to capture.

All the simulation results presented in this article are available online along
with all the code and data used to produce them [5]. This material allows readers
and reviewers to reproduce and further investigate our results.

As future work, we plan to further improve the accuracy of our trace-based
model by collecting more execution traces and evaluate different methods to
fill the missing links. It would also be interesting to investigate the influence of
the number of replicas and other important parameters (e.g., timeout value) for
our strategy and take into account other parameters (e.g., transfer failure rate,
storage space, etc.) in the simulation scenarios. We also plan to build probability
distributions out of the real execution traces. Integrating them into the simulator
would allow us to study different “what if” scenarios.
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Abstract. Signal processing of optical coherence tomography (OCT)
has become a bottleneck for using OCT in medical and industrial appli-
cations. Recently, GPUs gained more importance as compute device to
achieve video frame rate of 25 frames/s. Therefore, we develop a CUDA
implementation of an OCT signal processing chain: We focus on refor-
mulating the signal processing algorithms in terms of high-performance
libraries like CUBLAS and CUFFT. Additionally, we use NVIDIA’s
stream concept to overlap computations and data transfers. Performance
results are presented for two Pascal GPUs and validated with a derived
performance model. The model gives an estimate for the overall execu-
tion time for the OCT signal processing chain, including compute and
transfer times.

Keywords: GPU · OCT · Performance model · CUDA

1 Introduction

Tomographic imaging methods are of great importance in medical and indus-
trial contexts. In medicine, one focus lies on imaging quality and processing
speed, whereas in industry the possibilities for automation and cost efficiency
are crucial. These various requirements have led to the development of a variety
of different tomographic imaging techniques. Originating from ophthalmology,
one of the techniques which gained importance in the last 25 years, is optical
coherence tomography (OCT). Due to its resolution in the lower micrometer
range, it is used in production metrology, i.e., for measuring coating thickness
in terms of quality assurance. At the Fraunhofer IPT OCT systems for medical
and industrial applications are developed, including the OCT itself as well as
the corresponding signal processing.
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For monitoring processes in a production or biomedical environment, not only
a high spatial resolution but also a high temporal resolution is needed. Currently,
this is limited by the signal processing time for OCT systems. The goal is to
achieve a frame rate of 25 frames/s, which corresponds to 40 ms of processing
time. Increasing the frame rate beyond this value may not benefit the human eye
while observing the process, but creates headroom for further image processing
and evaluation, as well as accelerating processing volumetric data. GPUs with
the possibility of executing massively parallel computations promise processing
of high-resolution OCT images with video frame rate. Hence, we developed a
GPU-parallel CUDA version of the signal processing based on an existing CPU
implementation. Since the investigated OCT system has been designed to be
cost-effective, we focused solely on consumer GPUs with Pascal architecture.
For testing and validating the GPU implementation a middle class and a high-
end GPU have been used. To validate the performance of our implementation,
we derive a performance model for the OCT signal processing chain that covers
runtime prediction of kernels and data transfers. This model can also be used to
get an estimate which resolutions could be achieved with a given GPU.

Thus, our main contributions are:

– A CUDA-based GPU implementation of the OCT signal processing chain
with focus on leveraging highly-optimized (BLAS) libraries

– A performance model which describes the computation and the data transfer
of the GPU signal processing

– Investigation of two different NVIDIA GPUs in comparison to two CPU-
parallel versions

The paper is structured as follows: Sect. 2 presents related work. The basics
of OCT and the used signal processing functions are described in Sect. 3. The
parallelization concepts using CUDA follow in Sect. 4. In Sect. 5, we derive a
performance model for the given OCT signal processing chain. The performance
results of our parallelization is presented in Sect. 6. Finally, we conclude and give
a short outlook in Sect. 7.

2 Related Work

Due to the needed processing time, using GPUs has become an important factor
during the development of OCT systems. So far, the main focus has lied on
resampling the data [11,18], or using multiple GPUs one for computation and
one for visualization [15,17]. These works do not elaborate on their strategies
for implementing a GPU version of the OCT signal processing chain, especially
leveraging BLAS libraries have not been reported yet. In addition, different
libraries are available which are designed for tomographic signal processing such
as the ASTRA Toolbox [1]. However, they do not include algorithms that are
specifically needed for the signal processing of the Fraunhofer IPT OCT system.

While different techniques exist for performance models for GPUs [12], we
focus on analytical-based models that illustrate a comprehensive approach. That
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means the model must cover the computational part, as well as the GPU-CPU
data transfers, and should not be tied to a specific application. Various mod-
els have been established to describe the transfer times on distributed-memory
systems [2–4]. The model of Boyer et al. [3] gives an estimate for the transfer
time based on the GPU’s bandwidth. A theoretical performance model, based
on the Roofline Model [16], for GPU applications has been introduced as the
so-called Boat Hull Model [13]. It gives an estimate of the floor of the attainable
runtime for the computational part depending on the device specifications and
some algorithm specific characteristics. To model concurrent copy and compute
operations, Gómez-Luna et al. [8] have focused on (today) older NVIDIA archi-
tectures, where Werkhoven et al. [14] update this approach to (more) recent
NVIDIA architectures with multiple copy engines. In this work, we combine the
approaches of [3,13], and [14] to derive a complete model for the OCT signal
processing chain as real-world application.

3 Optical Coherence Tomography

Optical coherence tomography is a cross-sectional tomographic imaging method
and is mostly applied in ophthalmology, due to the possibility of creating con-
tact free cross-sectional images of the eye [9]. In contrast to traditional imaging
techniques, OCT offers a higher penetration depth than confocal microscopy and
a better resolution than ultrasound imaging. Due to its destruction-free nature
and the possibility of a complete fiber-optic setup, OCT has recently been intro-
duced into new fields in biomedical imaging like cancer detection and tissue
engineering, as well as in production technology for quality assurance.

OCT is an interferometric measurement technique, in which low-coherent
light excites the material under investigation. Light, which is backscattered at
different depths inside the sample, is overlapped with light from a reference path
and interferes at the detector. The interference creates a modulated signal whose
frequency depends on the depth of the reflection. In a Frequency-Domain-OCT
(FD-OCT), a spectrometer is used to measure the interference and therefore
obtain spectral resolved modulated data. The depths of the reflection can be
computed by using a Fourier transformation on the modulated data, resulting
in the depth profile of the sample. As this is only a brief overview of OCT we
recommend [7] for further reading.

The OCT signal processing chain, as implemented in the OCT software at
Fraunhofer IPT, is shown in Fig. 1. For controlling the line scan camera and
the data acquisition boards only C++ interfaces are available, hence the driver
is implemented in C++. The obtained signal is stored in vectors as unsigned
short values and is processed serially on the CPU. From the line scan camera of
the spectrometer the recorded spectrum of a 2D-scan (B-scan) is continuously
written into the acquisition buffer. In the next step the data is processed and
the results are written to the display buffer.

Due to physical effects, the modulated data recorded by the line scan cam-
era is not equidistantly spaced [10]. Since Fourier transformations can only be
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Fig. 1. Signal processing chain. Dark gray items display necessary operations of OCT
signal processing, orange the bottleneck of the CPU implementation (WA).

applied if the data is sampled in an equidistant manner, the data must be rescaled
(DC). To obtain the depth profile of the sample, the Fourier transformation (FFT)
is applied. For this, we use the FFTW algorithm [6], in particular the real to
complex transformation, where only the magnitude of the result is of interest.
To reduce noise in the detected spectrum, the average of 1D-scans (A-scan) con-
tained in the B-scan is computed and subtracted from the complete scan, here
referred by white adjust (WA). Its implementation will be explained in Sect. 4.

As test data sets, we use different real-life OCT images that contain B-scans
of a pill (1120×256 px, 1120×500 px) and cancerous tissue (2048×512 px). Since
we are also interested in the performance for large data sets, one data set was
artificially enlarged, by doubling the input data (up to 2048 × 8192 px). With
these data sets also the correctness of the GPU implementation is assured.

In Fig. 2 the absolute runtimes of the serial reference OCT implementation
are shown. The white adjust needs up to 40% of the execution time. FFT, DC and
MEAN are further bottlenecks in the application. The red-dotted line indicates
the time limit for processing data with a video frame rate. A B-scan of size
2018 × 1536 px is already too large to be processed in less than 40 ms. As the
Fraunhofer IPT targets at larger data sets, a faster processing is needed.
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Fig. 2. Runtime of the reference implementation, split into the different processing
steps. The red line indicates the target frame rate of 25 frames per second.
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4 Parallelization with CUDA

Based on the existing serial CPU signal processing chain, we developed a
massively-parallel GPU implementation with CUDA that focuses on matrix
models. These models could also be applied to the original CPU implementation
to parallelize it and speedup its runtime.

4.1 Signal Processing Chain

For our CUDA implementation of the signal processing chain, we focused on
empowering the OCT application to leverage optimizations provided by the
CUBLAS library. We remodeled the data alignment of the original CPU imple-
mentation (see Sect. 3) in matrix notation as shown in Eq. 1. Using the fact, that
each A-scan is written continuously into the memory, we used a column-major
ordered matrix. ⎡

⎢⎢⎢⎣

A1
1 A2

1 . . . AdB
1

A1
2 A2

2 . . . AdB
2

...
...

. . .
...

A1
dA

A2
dA

. . . AdB

dA

⎤
⎥⎥⎥⎦ (1)

We exemplify the data interpretation as matrix model by looking in-depth
at the white adjust function (WA in Fig. 2) which is the hotspot of the CPU
implementation. Originally, three consecutive for-loops are used to improve the
image quality. The first loop computes the sum, the second one divides by the
number of A-scans, and the third loop subtracts the result from the original
data. The computation of the average can also be written as a matrix vector
product, which can be computed by calling gemv provided by the BLAS library.
It computes y ← αAx + βy where A is the obtained B-scan, x is a vector of
ones, α = 1

# A-scans , and β = 0. The results stored in y are subtracted from each
A-scan in A using the ger function: A ← αyxT + A. We assign x as vector of
ones, reuse y and A from the previous step and set α = −1. Thus, we rewrote
three for-loops using two BLAS calls. Using BLAS calls also holds for rewriting
MEAN and REF (see Sect. 3). To map code parts to CUBLAS-specific functions,
we also applied matrix models to the functions PI and WIN, which could be
reformulated using cublasDdgmm with a weighting vector as diagonal matrix.

For the function FFT, we exchanged the FFTW library that is used in the
CPU version by NVIDIA’s CUFFT library. It performs multiple Fourier Trans-
forms in parallel since the A-scans are independent from each other. For functions
which could not be remodeled in matrix notation, we used THRUST whenever
possible. It provides a GPU-optimized version of std::lib algorithms. With
THRUST, self-written transformations can be applied to each value of a data
vector. In case of LOG and amplitude computations, which is part of FFT we used
this to perform the needed operations. Finally, we provide self-written kernels for
the remaining functions, namely I2F and DC. An overview of the used principles
per function is given in Table 1.
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Table 1. Overview of optimization principles for the signal processing functions.

Function I2F REF WA DC WIN FFT MEAN LOG PI

Principle kernel CUBLAS CUBLAS kernel CUBLAS CUFFT+THRUST CUBLAS THRUST CUBLAS

4.2 Data Transfer

To optimize the data transfer to and from the GPU, we keep unmodified data
on the GPU and, thus, reduce the amount of data transferred. Data that is
modified in each step (B-scans) is copied as a whole to the GPU, resulting in a
high bandwidth. Furthermore, we use pinned memory with no ECC for all data
transfers as we aimed for asynchronous data transfers. OCT sync is the first code
version that the parallelization of all kernels in the signal processing chain while
relying on synchronous data transfers.

For the second (further optimized) code version OCT async, we overlap data
transfer and compute operations by using CUDA’s streaming concept and asyn-
chronous operations. Since the OCT B-scans are independent from each other,
each CUDA stream processes one B-scan. Thus, the processing can be executed
in one stream and another one moves data at the same time.

5 Performance Model

For validating the performance of the presented CUDA implementation, a per-
formance model which takes the compute and data transfer times with syn-
chronous and asynchronous transfers into account is derived. The results of the
performance models also depend on the hardware, as GPU we used a Geforce
GTX Titan X and a Geforce 1050 Ti, both of Pascal architecture. An overview
of the specifications is given in Table 2.

5.1 Signal Processing

As part of an overall performance model, we take the Boat Hull Model [13] to
abstract the OCT signal processing functions on the GPU. The model contains
the compute and memory bound of the Roofline Model. As our analysis reveals
that all functions are of low computational complexity, we only consider the
memory bound. The estimated runtime m0 for memory bound kernels is given by
Eq. 2 with d = c+u, where d is the total amount of data accessed, and c and u are
the coalesced and uncoalesced memory accesses respectively. The corresponding

Table 2. Specifications of the used GPUs.

Architecture Memory MP CUDA cores GPU Clock rate Mem. Clock rate Mem. Bus Width

GTX Titan X Pascal 12GB 24 3072 1.08GHz 3505MHz 384 bit

GTX 1050 Ti Pascal 4GB 6 768 1.46GHz 3504MHz 128 bit
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Table 3. Performance properties of the different used GPUs.

Pcoalesced Puncoalesced bH2D αH2D bD2H αD2H

GTX Titan X 230GB/s 10 GB/s 6.1610GB/s 0.030ms 6.7084GB/s 0.030ms

GTX 1050 Ti 101GB/s 12 GB/s 6.1614GB/s 0.035ms 6.7066GB/s 0.050ms

bandwidths are given by Pcoalesced and Puncoalesced. If only scattered memory
accesses occur, m1 gives the estimated execution time.

m0 =
c

Pcoalesced
+

u

Puncoalesced
, m1 =

d

Puncoalesced
(2)

To determine the on-device bandwidth we used the SHOC deviceMemory
benchmark [5]. We used the maximum of the measurements of
readGlobalMemoryCoalesced as bandwidth for the coalesced memory
access Pcoalesced, whereas the lowest value of readGlobalMemoryUnit and
writeGlobalMemoryUnit represents Puncoalesced. The latter measures the read
or write bandwidth of uncoalesced, per thread contiguous, global memory
accesses [5]. Since we optimized the algorithms by using high-performance
libraries the particular memory access pattern cannot be reconstructed. There-
fore, we needed to base values for c and u in the model on the assumption
that the used libraries mainly use contiguous data access. From results of the
NVIDIA profiler, we conclude that c is between 60% and 95% of the total data
amount d depending on the signal processing function. The GPU-specific model
parameters are listed in Table 3.

5.2 Data Transfer

Besides modeling the performance of the single GPU kernels, it is crucial to also
incorporate the CPU-GPU data transfer into the performance evaluation for a
better representation of the reality. First, we describe a general model for CPU-
GPU data transfers where the hardware-dependent parameters are obtained by
benchmarks. Later, we modified this model to take the OCT-specific data trans-
fers into account.

For modeling the time of the data transfer, we generally used T (d) = α + d
β

with data size d in Byte, latency α in seconds, and β the transfer bandwidth
[3]. For modeling the data transfer to the GPU, it holds d = 2B × dA × dB ,
α = αH2D, and β = bH2D. The transfer of the data back to CPU is divided
into two parts. First the processed data with dA × dB elements. Secondly, the
computed spectrum with (dA

2 + 1) × dB elements is copied to the CPU. Each
element of the data sets is of type float, hence has a size of 4 B. Additionally,
the latency αD2H is needed twice, once for each copy operation, as displayed in
Eq. 3.
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TD2H(dA, dB) =2 · αD2H +
4B

bD2H
× dA × dB +

4B

bD2H
× (

dA

2
+ 1) × dB (3)

We used the SHOC benchmarks BusSpeedDownload and BusSpeedReadback
for bH2D and bD2H , and self-written latency benchmarks for αH2D and αD2H .
The results are reported in Table 3. Of particular interest are the bandwidths
for data sets of 0.5 MB to 64 MB, as our test data sets. Both GPUs reach the
maximum of the transfer bandwidth at approx. 30 MB. As we are primarily inter-
ested in the performance of high-resolution OCT data sets, the highest attainable
bandwidth is used as model parameter. Comparing the model and the results
from the benchmark yield a deviation lower than 10%. This deviation occurs
mainly at small data sizes since we used the highest attainable bandwidth as
model parameter, hence, the transfer times for small data sets are underesti-
mated.

5.3 Synchronous Data Transfer (OCT sync)

The standard copy in CUDA is executed synchronously, meaning that the copy
operation first has to be completed before the next processing step can start. For
modeling the performance of systems with no overlapping computations or data
transfers, the runtime T is the sum of the data transfer time from host to device
and vise-versa (TH2D and TD2H) and the runtime of all kernels Tproc =

∑
m0.

Thus, the total processing can be estimated by Eq. 4.

T = TH2D + Tproc + TD2H (4)

5.4 Asynchronous Data Transfer (OCT async)

Modeling data transfer of GPUs with two copy engines (as in the used Pas-
cal GPUs) and no implicit synchronization is objective of [14]. The predicted
runtime is the maximum of all possible combinations of overlap as described in
Eq. 5. From Sect. 5.1 we concluded that the GPU is not utilized completely since
all processing functions are memory bound. Hence, multiple compute operations
of different streams can be executed concurrently on the GPU. Thus, the second
term in Eq. 5 can be neglected since it describes the case that all computations
are executed serially. The first term of Eq. 5 can also be eliminated since the time
needed for the copy from device to host is always larger than the transfer from
host to device, since more data needs to be transferred. Including the results
from the previous steps yields the performance model for a GPU with two copy
engines (as in our Pascal GPUs) for the OCT signal processing chain.

T = max(
���������������
TH2D +

Tproc

#streams
+

TD2H

#streams
,
���������������

TH2D

#streams
+ Tproc +

TD2H

#streams
,

TH2D

#streams
+

Tproc

#streams
+ TD2H)

(5)
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6 Results

For evaluating the performance of the OCT signal processing chain, we reduced
the software system of Fraunhofer IPT to a test setup focusing on the signal
processing functions included as shared libraries in the test suite. These imple-
mentations were compiled using either Microsoft’s Visual Compiler 14.0 (MS
VS), Intel’s Compiler 17.0 (ICC) or CUDA 8.0, respectively. Additionally to the
provided serial reference implementation (MSVS), BLAS libraries are utilized for
CPU-parallel versions: BLAS (OpenBLAS + MS VS) and ICC (MKL + ICC). We
used two different test set-ups: First a work station at Fraunhofer IPT, second
a compute node of the RWTH Aachen cluster. The work station contains an
Intel i7 3820 Sandy Bridge CPU with 3.6 GHz on 4 cores (8 threads) and 16 GB
main memory. The compute nodes of the cluster are 2-socket Intel Broadwell EP
E5-2650v4@2.2 GHz systems with an overall of 24 cores. Due to unbalanced data
affinity, using only one socket with 6 threads and close thread binding yields the
best-effort performance (ICC BW). Future work will cover improved data affinity.

Runtime measurements on the CPU were tracked using the boost::timer,
whereas CUDA calls were measured with CUDA events. The measured time
also includes some overhead from the program flow of the processing chain. For
OCT async, we conducted an overall measurement of 100 runs and then derived
the average runtime of a single execution. Furthermore, each of the measure-
ments is the mean of 100 separate runs. We ensured that the standard deviation
of measurements is within 10% of the reported mean and the measurements
are roughly normally distributed. The number of used streams was set (up) to
the number of multiprocessors as this lead to the best results in our tests (see
Table 2). Times needed for initial copy operations of constant values to the GPU
is not taken into account since it can be neglected when using OCT in real
applications.

6.1 Model vs. Measurement

To validate the performance of OCT async, we compare the measured runtimes
with our predicted times from the model (see Eq. 5). For the Geforce GTX
Titan X, the results are displayed in Fig. 3, tested to a maximum of 16 streams.
Comparing OCT sync with the predicted runtimes, shows an error of 5% to 8%.
In case of OCT async, the largest error (20%) occurs when using 4 streams, where
our implementation has a better performance than predicted by the model. Using
more than 4 streams lead to no further performance improvement, contrary more
streams tend to lead to a slower processing time for smaller data sets. In case
of the Geforce GTX 1050 Ti, the measured and predicted runtimes are shown
in Fig. 4. The difference for OCT sync is less than 5% for all tested data sets.
Although the Geforce GTX 1050 has 6 multiprocessors, we tested it up to 4
streams, as our tests showed the best performance. The difference between model
and reality is up 15%.

For both GPUs, OCT sync is slower as predicted by the model. But when
using multiple streams the measured execution time is faster than the model.
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Fig. 3. Comparison of measured and predicted compute times on Geforce GTX Titan
X with asynchronous data transfer.
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Fig. 4. Comparison of measured and predicted compute times on Geforce GTX 1050
Ti with asynchronous data transfer.

The error is mainly introduced in the prediction of Tproc, in particular in the func-
tions where mostly scattered memory accesses occur, i.e. DC. The benchmarked
Puncoalesced is based on more coalesced memory accesses than the compute ker-
nels, leading to an overestimation of the runtime. However, the performance of
our GPU implementations lies close to the predicted runtimes.

6.2 Performance Comparison

With the given (serial) reference implementation (MSVS), scans up to a size of
2048 × 1024 px could be processed with the desired frame rate. In Fig. 5, the
processing times of the different implementations and data sizes are shown.
Additionally, the speed-up compared to MSVS is displayed. The developed CPU
parallel versions allow to process our data set with 2048 × 2048 px in less than
40 ms. They lead to a speed-up between 1.5 and 3, which means up to 3 times
higher frame rate compared to the serial implementation. Due to higher clock
frequency, we get nearly the same execution time for the Sandy Bridge as for the
Broadwell node (ICC vs. ICC BW). By using our new implemented GPU version
with synchronous data transfer OCT sync, all of the given test data sets could
be processed faster than 40 ms with both GPUs. Overall the synchronous GPU
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Fig. 5. Runtime comparison (log scale) of the different implementations and Speed-up
compared to the serial reference implementation for the OCT signal processing chain.

implementation is 5 to 7 times faster than the provided reference implementa-
tion. Compared to the CPU-parallel version a speed-up of 2.5 to 3 is achieved.
Now using OCT async reduces the processing time by a factor of 2.5 for the
Geforce GTX 1050 Ti compared to OCT sync. Resulting in a speed-up of 8 to 16
compared to MSVS, and 4 to 5 compared to the CPU-parallel implementations.
For the Geforce GTX Titan X, an additional speed-up of 3 could be noted com-
pared to OCT sync, hence, it can process the OCT signal 8 to 21 times faster
than MSVS. Compared to the CPU-parallel versions OCT async is 5 to 7 times
faster.

7 Conclusion and Outlook

For creating tomographic images with OCT, the signal processing is the limiting
factor to achieve a frame rate of 25 frames/s for smoothly displaying the result.
In this work, we developed a GPU-parallel version of Fraunhofer IPT’s OCT
software using CUDA. We further created a corresponding performance model
that includes runtime prediction of the OCT kernels and the PCIe data transfers.

For the porting of the signal processing kernels, we focused on re-formulating
the algorithms in matrix notation to leverage highly-tuned libraries like
CUBLAS. Furthermore, our optimizations included overlapping of data trans-
fers and computations. With our CUDA implementation OCT sync, we achieve
a speed-up of factor 5 to 7 on consumer Pascal GPUs over the serial CPU ver-
sion. Hence, the frame rate is increased from 3 frames/s to 20 frames/s for the
largest data set. With OCT async, 45 frames/s are reached for this data set, i.e.,
a speed-up of 5 compared to the CPU-parallel versions. Our performance model
captures all important properties of these OCT GPU implementations. Devia-
tions of measured and modeled performance results are below 15%. Using the
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model, we estimate that B-scans up to 2048 × 24576 px can be processed with
video rate.

In future, to achieve further acceleration and enable video frame rates for
volumetric 3D-scans, we will constantly optimize the code for both, CPU and
GPU. Part of this is using the GPU to directly displaying the obtained signal,
hence, saving two copy operations.
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Abstract. In this work, we propose to decouple the arithmetic format
from the storage format in numerical algorithms. We complement this
idea with a modular precision storage layout that allows runtime preci-
sion adaptation such that a value can be accessed faster if lower accuracy
is acceptable. Combined with precision-aware numerical algorithms that
use full precision in all arithmetic computations, this strategy can result
in runtime savings without impacting the memory footprint or the accu-
racy of the final result. In an experimental analysis using the adaptive
precision Jacobi method we assess the benefits of the modular precision
format on a recent high-end GPU architecture.
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1 Introduction

Over the last decades, the scientific computing community witnessed a widening
gap between the computational performance in terms of the number of floating-
point operations per second (FLOPS) on the one side, and the memory through-
put in terms of how fast data can be brought into the computational elements
(bandwidth) on the other side. As a result, more and more algorithms are hitting
the “memory wall,” which means the performance being limited by the mem-
ory bandwidth, and the algorithms executing only at a fraction of the theoretical
peak performance. Already today, sparse linear algebra powering a large fraction
of the scientific simulations are memory bound on virtually all existing hardware
architectures. To continue the success story of simulation-based research, it is
therefore essential to develop novel strategies that allow to transfer the growing
computational power into algorithm performance.

In this work, we introduce a disruptive paradigm change with respect to how
data is stored and processed in numerical linear algebra. To reflect the imbalance
between computational power and memory bandwidth, we propose to radically
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decouple the storage format from the arithmetic format. We complement this
idea with the introduction of a “modular precision ecosystem” with demand-
fitted memory access routines. The idea behind is to decompose the IEEE stan-
dard precision formats into segments, and to store those in a fashion that enables
efficient access to the values at variable accuracy. This allows to maintain stan-
dard working precision in all arithmetic floating-point operations, but radically
reduces the cost of accessing the data if lower accuracy is acceptable.

We structure the rest of the paper as follows. In Sect. 2 we review some
existing work on mixed precision numerics before we introduce the idea of the
modular precision format in Sect. 3. We start the experimental section with a
review of the adaptive precision Jacobi that we employ to assess the efficiency
of the modular precision format and the developed memory access routines. The
experimental results we report in Sect. 4 are obtained from addressing a set of
artificial test problems on a high-end NVIDIA GPU. We conclude in Sect. 5 with
an outlook on future work.

2 Related Work on Mixed Precision Numerics

To illustrate the approach we take and its uniqueness, we address the iterative
solution of linear systems, which is a common task in scientific computing. The
quality of an iteratively generated solution depends on the condition number of
the linear system and the floating-point format that is employed to represent the
numbers. Generally, numerical errors due to rounding result in a less accurate
solution if a lower precision format is used. For scientific simulation codes, IEEE
double precision has become the de-facto standard. The numerical values are
stored in a binary format where a certain number of bits is used for storing
mantissa, exponent, and sign of the floating-point number representation [10].

While running an iterative solver in lower than double precision typically
results in a solution approximation of inferior quality, this solution approxima-
tion can usually be generated much faster: The approximation accuracy stag-
nates after fewer iterations, and every iteration only reads and writes data in
reduced precision, which, for memory bound algorithms, directly corresponds to
runtime savings. Leveraging this property in a smart fashion can enable savings
also when generating double precision solutions. The idea here is to combine
different precision formats inside a single algorithm, and use double precision
only if needed.

Among the most popular mixed precision strategies is the mixed precision
iterative refinement technique [5,8,12]. There, the idea is to refine a solution
approximation by solving a residual equation in lower than working precision.
In many situations, double precision accuracy can be achieved [9]. Other recent
work suggests the use of an incomplete factorization preconditioner computed
in lower precision inside an iterative F-GMRES framework [6], and even extends
this approach by cascading multiple formats of decreasing precision [7]. What all
these approaches share is the tight coupling between working precision format
and storage format. While this seems to be a natural choice, it ignores the
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hardware trend of the computational power growing at a much faster pace than
the memory bandwidth.

In [2], a preconditioner stored in low precision is employed inside a high
precision iterative solver. The numerical properties of the preconditioner are
analyzed and, if the characteristics allow for it, stored in lower than working
precision. This can be seen as a step towards decoupling storage format from
arithmetic format, but as only IEEE standard formats are considered, the values
have to be converted between the formats with careful protection against under-
and overflow.

A different mixed precision strategy was presented in [3], where the distinct
components in the solution vector are handled in different precision formats,
each adapted to the component’s convergence progress. The underlying idea
is to truncate the double precision format by chopping off mantissa bits. The
iteration process is started with few mantissa bits, and the mantissa length
is then successively increased individually for each component as needed for
convergence to a solution of double precision accuracy. This way, and in contrast
to the previously-mentioned mixed precision strategies, the work in [3] does not
refer to the IEEE standard precision formats, but, as part of a more experimental
research, employs artificial precisions that arise by arbitrarily truncating the
mantissa of the IEEE double precision format. The elegance of this approach is
that the number of exponent bits remains unchanged, which virtually eliminates
the danger of over- and underflow. Once read into the processing units, the
values are converted to double precision by filling the truncated mantissa bits
with zeros. The floating-point operations themselves all use double precision
accuracy.

What [3] fails to address is a concept that handles the artificial precision
format in memory. While this seems to be an implementation detail, the ques-
tion of how data is accessed is performance-crucial, in particular on streaming
architectures such as GPUs. There, each memory read accesses 128 bytes of
contiguous memory, and utilizing only part of the data inevitably results in low
performance [11]. Usually, mixed precision numerics duplicate the data (in differ-
ent precision formats) in memory. However, this not only increases the memory
footprint of the algorithm, but also makes it difficult to efficiently access different
subsets of the values in different formats.

3 Modular Precision Format

The two key ideas of the modular precision format are (1) to completely decouple
the storage format from the operating format, and (2) to abandon the IEEE-
supported standard precision formats to store the data, but split the arithmetic
format into segments, and store the segments of the values in the dataset in
interleaved fashion such that the same segments of all values are consecutive in
memory.

These two ideas can be addressed independently, however, they work effi-
ciently in particular when used in combination. Decoupling the operational for-
mat from the storage format is motivated by the performance of many linear
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algebra routines being bound by memory bandwidth: If the algorithm can accept
reading values with less accuracy, the data can be accessed much faster in a lower
precision format. The arithmetic operations can still use high precision without
impacting the performance as long as the algorithm remains memory bound.
Decoupling the storage format from the operational format in an environment
supporting IEEE standard precision requires to duplicate the data in memory
if it is used in different precision formats over the algorithm execution. Also,
as the IEEE standard formats differ in the exponent length (and therewith in
the range or representable values), the conversion between the formats has to
meticulously protect against under- and overflow.

Fig. 1. Splitting an IEEE double precision number into “head” and “tail” (top) and
storing head and tail of the data in the customized precision format in separate blocks
(bottom).

The customized precision format based on mantissa segmentation (“CPMS”)
does not convert between IEEE standard formats, but instead splits the high
precision number into segments. In Fig. 1 (top) we visualize this strategy for
a 2-segment splitting of the IEEE double precision format. For this specific
decomposition we refer to the two 32-bit segments as “head” and “tail” of the
customized precision format. Other splittings are possible. As the CPMS strategy
preserves the length of the exponent, the first 32 bits include less mantissa bits
than the 32 bits of IEEE single precision [10]. Hence, the head of the 2-segment
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CPMS carries less accuracy than the IEEE single precision format. The advan-
tages of this strategy are that (1) for specialized data access routines, no format
conversion is necessary; (2) preserving the length of the exponent avoids over-
flow/underflow; and (3) the data does not have to be duplicated in memory, but
reading additional segments of the value will increase the value’s accuracy.

We point out that by preserving the exponent bits of the IEEE standard
precision format, the segmentation can not turn a valid number into “NaN” or
infinity, as both are defined by all exponent bits being filled with “1 bits” [10].

To enable efficient access to the values in low precision, e.g. only the first seg-
ment of each value, it is important to separate the head from the tail in memory,
and store the head of all values consecutively in memory, see bottom of Fig. 1.
As long as considering all values under the accuracy of the head is acceptable,
no access to the second part of the memory is necessary. We emphasize that the
memory footprint for storing the values only is identical to storing the data in
IEEE standard double precision, if the data is accessed in different precisions,
an additional array is needed for storing the segment information for each value.

Obviously, the customized precision format could be realized independent
of the format decoupling, but not only are the arithmetic operations in this
non-standard format not natively supported by hardware, but also would this
introduce additional rounding errors in the numerical operations. Combining
CPMS with the idea of decoupling the arithmetic format eliminates the need of
customized routines for a format that is not natively supported by hardware, and
incurs no performance penalty as long as the algorithm remains memory-bound.

4 Experimental Evaluation

Problem Description and Algorithm Details. The problem we consider is
the iterative solution of a sparse linear system via the adaptive precision Jacobi
method proposed in [3]. The algorithm is based on the numeric property of
the Jacobi relaxation method typically having a constant convergence rate, and
the possibility to detect stagnation in the iteration vector on a component level.
Concretely, this property establishes that, for any component of the approximate
solution vectors at relaxation step k and k − 1, there exists a θi < 1:
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are, in general, different for the distinct components, but they remain constant
up to convergence; i.e., c
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i = . . . = ci, where we note that

ci > 1 is necessary for convergence [3]. The adaptive precision Jacobi presented
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in [3] utilizes this property by monitoring z
{k}
i at component level and some

periodicity φ, and use a stagnation test with some threshold δ̃
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that detects the necessity of mantissa extension [3].
While the test periodicity φ and the stagnation test threshold δ̃ can be

optimized for each problem individually, we use the default setting of δ̃ =
0.9 ·

(

cφ
i − 1

)

and φ = 10.

Experiment Environment and Test Matrices. The experimental analysis
was conducted on a single node of the Piz Daint supercomputer1 featuring an
NVIDIA P100 GPU. The complete algorithm was implemented in the CUDA
language [11] and compiled and executed with CUDA in version 8.0.

The test matrices we consider are all of size 1,000,000 × 1,000,000. They
differ in the number of nonzeros they carry in each row, the bandwidth, and
the condition number. The matrices are generated as band matrices with the
aggregated number of nonzeros in a row on the main diagonal, and the values
adjacent to the main diagonal set to −1.
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Fig. 2. Runtime for reading and writing data in double precision or customized preci-
sion with the accuracy of the data accesses indicated in the brackets.

Experimental Results. In a first experiment we assess the cost of reading and
writing data not stored in IEEE-supported formats but in the 2-segment and the
4-segment CPMS, respectively. The access routines for CPMS are not natively sup-
ported by hardware, and the hardware-specific implementations we developed
include the access to the segment information array, the element-individual deci-
sion of the segment access, some instruction logic to access the distinct segments

1 https://www.cscs.ch/computers/piz-daint/.

https://www.cscs.ch/computers/piz-daint/
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in memory, the type cast to the double precision operating format, and the
reassembling of the double precision format from head and mantissa segments.

The results in Fig. 2 reveal that reading 64-bit accuracy is 8% slower when
using 2-segment CPMS and 13% slower when using 4-segment CPMS. The advan-
tage of the customized precision format lies in the fact that the data access is
much faster if reading the values with a shorter mantissa is acceptable. Read-
ing 32-bit heads only is 1.6× faster than reading the data in double precision;
Reading 16-bit heads is about 1.9× times faster.

Fig. 3. Accuracy needs in adaptive Jacobi in a 2-segment (left) and a 4-segment (right)
CPMS realization. The white-colored area indicates only the head is accessed, the blue
areas indicate additional mantissa segment reads. (Color figure online)

Next, we realize the adaptive precision Jacobi in the modular precision for-
mat. In Fig. 3 we visualize for a small example problem with 129 nonzeros per row
how the adaptive precision Jacobi method accesses the modular precision formats
over the algorithm execution. Initially, the iteration process only reads the heads.
As the execution progresses, mantissa segments are accessed on a component-
individual basis once the stagnation test indicates the need for higher accuracy.
The 16 bit head in the 4-segment modular precision format quickly becomes
insufficient. We notice that the wavefront indicating the need for higher accu-
racy than 32 bits (which is reflected in the switch to 64 bits in the 2-segment
modular precision and the switch to 48 bits in the 3-segment modular precision)
is in both cases detected at the same iteration.

The experimental results presented in [3] reveal that the adaptive Jacobi
can exhibit some convergence delay compared to a plain Jacobi as the mantissa
extension detector may, depending on the test periodicity φ, not immediately
identify stagnating components, and the threshold δ̃ has to accept some rounding
effects [3]. The question is whether this convergence delay, the overhead of the
modular precision access routines, and the overhead of the stagnation detector is
compensated by the faster access to reduced precision values in some relaxation
steps. For this we compare the time-to-solution of the adaptive precision Jacobi
with a reference implementation of plain Jacobi in IEEE double precision, both
returning a solution approximation of the same accuracy. We consider different
relative residual stopping thresholds as Jacobi relaxations are often employed as
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Fig. 4. Speedup factors of the adaptive precision Jacobi in a 2-segment modular pre-
cision realization.

Fig. 5. Speedup factors of the adaptive precision Jacobi in a 4-segment modular pre-
cision realization.
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smoother in multigrid methods or for providing rough solution approximations,
e.g. in approximate sparse triangular solves [1,4].

Taking the plain Jacobi as reference, we report in Fig. 4 the speedup factors
of the adaptive precision Jacobi in a 2-segment modular precision realization
for the distinct matrix/threshold combinations. The experimental results reveal
that the adaptive precision Jacobi is attractive (about 30% faster) in particular
for settings where a significant amount of matrix data has to be accessed in every
iteration (many nonzero elements in every matrix row), and a large residual norm
is acceptable (few component iterations requiring the data with 64 bit accuracy).
The faster access to the matrix values fails to compensate the overhead of the
stagnation detection for problems with only few nonzeros in every row.

In Fig. 5 we report the same data for adaptive precision Jacobi in a 4-segment
modular precision realization. Here, the reference Jacobi is always faster. This
indicates that the modular precision format with finer segmentation is suitable
only if high iteration counts allow to reduce the frequency of the stagnation test.

5 Concluding Remarks

We have presented the idea of radically decoupling the arithmetic format used
in the floating-point operations from the format to store the data. We have pro-
posed a customized precision format that allows to access values much faster
in memory if reduced accuracy is acceptable. Experimental results on high-end
GPUs revealed that realizing mixed precision algorithms in the customized preci-
sion format can render resource savings without impacting the memory footprint
or the accuracy of the final result.

We are convinced that the application field of customized precisions is much
wider than what is presented in this work. We envision the customized preci-
sion realization of selection and sorting algorithms, as well as memory-bound
algorithms like PageRank that are central for Big Data analytics.
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ditioning. In: Träff, J.L., Hunold, S., Versaci, F. (eds.) Euro-Par 2015. LNCS,
vol. 9233, pp. 650–661. Springer, Heidelberg (2015). https://doi.org/10.1007/978-
3-662-48096-0 50

2. Anzt, H., Dongarra, J., Flegar, G., Higham, N.J., QuintanaOrt́ı, E.S.: Adaptive
precision in block-Jacobi preconditioning for iterative sparse linear system solvers.
Concurr. Comput. Pract. Experience 0(0), e4460. https://doi.org/10.1002/cpe.
4460. https://onlinelibrary.wiley.com/doi/abs/10.1002/cpe.4460, e4460 cpe.4460

https://doi.org/10.1007/978-3-662-48096-0_50
https://doi.org/10.1007/978-3-662-48096-0_50
https://doi.org/10.1002/cpe.4460
https://doi.org/10.1002/cpe.4460
https://onlinelibrary.wiley.com/doi/abs/10.1002/cpe.4460


A Modular Precision Format for Decoupling 443

3. Anzt, H., Dongarra, J., Quintana-Ort́ı, E.S.: Adaptive precision solvers for sparse
linear systems. In: Proceedings of the 3rd International Workshop on Energy Effi-
cient Supercomputing, pp. 2:1–2:10. ACM, New York (2015). https://doi.org/10.
1145/2834800.2834802. http://doi.acm.org/10.1145/2834800.2834802
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Abstract. The V100 GPU is the newest server-grade GPU produced
by NVIDIA and introduces a number of new hardware and API fea-
tures. This paper details the results of benchmarking the V100 GPU and
demonstrates that it is a significant generational improvement, increas-
ing memory bandwidth, cache bandwidth, and reducing latency. A major
new addition is the Tensor core units, which have been marketed as
deep learning acceleration features that enable the computation of a
4× 4× 4 half precision matrix-multiply-accumulate operation in a single
clock cycle. This paper confirms that the Tensor cores offer considerable
performance gains for half precision general matrix multiplication; how-
ever, programming them requires fine control of the memory hierarchy
that is typically unnecessary for other applications.

1 Introduction

To fit within the anticipated power budgets for future supercomputing archi-
tectures, it is possible that clusters targeting exascale and beyond will be com-
prised of diverse heterogeneous architectures, including both CPUs and acceler-
ator devices such as GPUs. Server-grade processors are constantly evolving in
terms of core counts, vector widths, and memory architectures, in response to
the needs of modern applications. Given the increasing complexity of heteroge-
neous devices, it is becoming more difficult to develop and optimise scientific
applications that can exploit available supercomputing resources. The core aim
of this paper is to uncover key architectural changes of the NVIDIA V100 GPU
compared to its predecessors, and discuss the implications on performance.

Renewed investment in the machine learning space means that many areas of
architecture design are focusing on the technological improvements that can also
benefit low precision, approximate computation. A recent example of technolog-
ical innovation targeting machine learning is the inclusion of Tensor cores in the
new NVIDIA Volta V100 GPUs, a principal focus of this research. Two of the
largest supercomputers in the world, Sierra and Summit [1], use dual-socketed
POWER9 CPUs and NVIDIA Volta GPUs, supporting a peak performance of
72 and 122 PetaFLOP/s respectively. Through the use of micro-benchmarks and
applications this paper will demonstrate that the V100 GPUs are a significant
improvement over previous generations, offering impressive performance for cur-
rent scientific workloads.
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2 Contributions

The following contributions are presented in the research:

– Benchmarking and analysis of many characteristics of the V100 GPUs com-
pared to the previous generation of server-grade GPUs (Table 1).

– Analysis and evaluation of the Tensor cores, through the optimisation of a
general matrix multiplication benchmark.

– A discussion regarding the applicability of Tensor cores to HPC.

3 Background

NVIDIA GPUs are throughput computing devices that support execution of
thousands of parallel threads on lightweight processing elements called Streaming
Multiprocessors (SMs). The GPU schedules multiple 32-wide units of execution,
named warps, on the SMs.

Table 1. Hardware details of NVIDIA Tesla P100 and V100 devices

Device Tesla P100 Tesla V100

SMs 56 80

FP32 cores/SM 64 64

FP64 cores/SM 32 32

Tensor cores/SM - 8

GPU clock 1.189 GHz 1.245 GHz

Shared memory/SM 64 KB 96 KB

L2 cache size 4096KB 6144 KB

The NVIDIA P100 GPU, presented in Fig. 1a, is the most powerful GPU in
widespread use at the time of writing. The GPU introduces hardware double
precision atomic instructions, and high bandwidth memory quoted to offer a
theoretical 732 GB/s at peak. The NVIDIA V100 GPU (Fig. 1b) is the newest
hardware from NVIDIA and introduces a number of features including:

– Tensor cores - Deep-learning focused cores that perform fast matrix-
multiply-accumulate (MMA) operations.

– Individual program counters per thread - Numerous changes to syn-
chronisation have been enabled as a consequence, including intra and inter
GPU synchronisation that was not previously possible.

– Increased memory bandwidth - The high bandwidth memory (HBM2)
has been optimised for a higher theoretical peak memory bandwidth.
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(a) P100 Warp Schedulers (b) V100 Warp Schedulers

Fig. 1. Balance of warp schedulers within each SM of P100 and V100 GPUs.

3.1 NVIDIA Volta GPU Tensor Cores

The available literature is not clear on the exact mechanisms that are used to
fulfil a 16 × 16 × 16 matrix multiplication using Tensor cores. In an NVIDIA
V100 GPU, the SMs contain 8 Tensor cores, with each supporting a 4 × 4 × 4
matrix-multiply-accumulate (A * B + C = D, or A * B + C = C ) operation
per clock cycle.

The matrix multiplication step is performed in half precision, while the accu-
mulation can be performed in either half or single precision. Although each of
the SMs possesses 8 of the 4 × 4 × 4 Tensor core units, the PTX ISA cur-
rently only supports warp-level operations of size 16 × 16 × 16, 32 × 8 × 16,
and 8 × 32 × 16 [10], exposed through the Warp Matrix-Multiply-Accumulate
(WMMA) interface. This reduces the number of use cases for Tensor cores, as
access to the individual 4× 4× 4 units could allow for thread-level optimisation
of routines, with the small blocking factor being far more useful to the general
case.

4 Benchmarking

In this section we will benchmark the P100 and V100 GPUs to compare for
generational improvements. All benchmarks are compiled with CUDA 9.0.

4.1 FLOP/s

Considering the NVIDIA V100 GPU with core clock speeds of 1.245 GHz, we
can calculate the maximum FLOP/s achievable through single precision Fused-
Multiply-Adds (FMAs): 2 FLOPs × 64 threads × 80 SMs × 1.245GHz =
12.7 TFLOP/s. Further to this, each of the 8 Tensor cores processes a 4× 4× 4
MMA operation in a single cycle, performing 64 FMAs: 8 Tensor Cores ×
128 FLOPs × 80 SMs × 1.245GHz = 102 TFLOP/s for a mixed half and
single precision operation. We observed a maximum of 25 TFLOP/s in half pre-
cision with FMAs, and 99 TFLOP/s using the MMA instructions.
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4.2 Memory Bandwidth

Fig. 2. NVIDIA GPU memory
bandwidth.

The peak global memory bandwidth has been
increased between the P100 and V100 by
1.23x; further, the achievable proportion of
peak increases from roughly 80% on the P100
to around 93% on the V100. This is an impor-
tant optimisation for many scientific work-
loads [7]. The number of warps in a thread-
block required to saturate memory bandwidth
has increased on the V100 to 4 warps from 3
warps on the P100 in single precision, or 8
warps from 5 warps in half precision (Fig. 2).

4.3 Cache Bandwidth

The P100 GPU showed significant improvements to cache bandwidth over its
predecessors [12] and through benchmarking we observed that the V100 contin-
ues this trend of increased memory bandwidth at the L1 cache level. To measure
and compare the cache memory bandwidths between the P100 and the V100 we
used the method outlined in [3], that is, we ran the STREAM Triad benchmark
[9] multiple times over the same data-set to ensure cache-residency. The bench-
mark increasingly allocates more memory per CPU core or CUDA thread-block,
which shows the bandwidth of each level of cache as the array saturates the
available capacity, eventually spilling accesses into main memory.

Fig. 3. Aggregate memory bandwidth as data per processing element doubles.

Figure 3 shows the aggregate bandwidth for several modern HPC proces-
sors. The L1 cache performance of the V100 GPU is 2.57x higher than the L1
cache performance of the P100, partly due to the increased number of SMs in
the V100 increasing the aggregate result. However, when observing the memory
bandwidth per SM, rather than the aggregate, the performance increase is 1.86x,
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suggesting there has been significant improvements made to the L1 cache. This
performance increase has come from a change in hardware design as the Volta
architecture features a unified shared memory/L1/texture cache, whereas the
Pascal architecture has separate L1/texture and shared memory caches.

Figure 3 also compares the cache bandwidth to CPU architectures, 56 core
Skylake, and 44 core Broadwell. The Xeon Skylake architecture outperforms
the previous generation of CPUs (Broadwell) by roughly 1.7x, mainly due to
the increase in vector width from 256-bit to 512-bit. The GPUs lag behind the
CPU architectures in terms of unmanaged L1 cache performance; however, the
shared-memory performance of the V100 and P100 architectures were observed
to be 11.0 TB/s and 6.3 TB/s respectively, hence are comparable to the cache
bandwidth of current CPU architectures.

4.4 Latency

Figure 4 shows the memory access latency of both the P100 and V100 GPUs
alongside the performance of the Skylake CPU.

Fig. 4. Latency of memory accesses as array size is doubled.

For all levels of the memory hierarchy lower per-cycle latency is observed
for the CPUs, compared to the GPUs. Further, the clock speed of the NVIDIA
GPUs is around 3x lower than the CPU when executing on a single core without
AVX, meaning that the CPUs move data significantly faster through the memory
hierarchy. The GPU manages many more active threads and in-flight memory
access requests than the CPU, in order to amortise the high latency for individual
accesses. In spite of this, there has been a significant generational improvement
in the L1 cache latency, as a consequence of the L1 and shared memories being
combined in the new architecture.
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4.5 Tensor Core Analysis

Fig. 5. Performance of MMA ker-
nel as number of warps per thread
block is increased.

Throughout the paper we will refer to tiles,
which represents a complete 16 × 16 × 16
matrix-multiply-accumulation. Each of the 80
SMs in the V100 GPU contain 8 Tensor cores,
where pairs of cores are situated on each of the
4 warp schedulers in an SM (Fig. 1b). Each of
the cores is capable of performing a single sub-
tile 4 × 4 × 4 MMA instruction per cycle; so
to perform an entire MMA for a 16 × 16 × 16
tile, a total of 64 individual sub-tile MMAs
are required. As a consequence, when a warp
requests a 16× 16× 16 MMA, there will be at
least a 32 cycle latency for the two cores on a
warp scheduler to fulfil the entire request.

In Fig. 5, we show the performance of increasing the number of warps resident
on the GPU, for a benchmark kernel that performs a matrix multiplication
without moving any data from global or shared memory. The performance scales
linearly as the number of warps resident on each SM is increased from 1 to 4,
and at 5 warps the performance plateaus. The results show that optimal MMA
throughput is achieved when 8 warps are active on an SM.

4.6 Application Performance

Fig. 6. Speedup observed for applications
taken from the arch project.

The results of executing three opti-
mised test applications written in
CUDA can be seen in Fig. 6; flow
is a 2D explicit hydrodynamics
application, hot is a 2D implicit
heat diffusion solver that uses the
Conjugate Gradient method, and
neutral is a 2D Monte Carlo neu-
tral particle transport solver [7,8].

The applications are intended
to represent the performance pro-
files of important HPC applica-
tions, and the results show a signif-
icant uplift in performance between
the generations of hardware. The
performance differences observed for both flow and hot track the memory band-
width improvements of the architecture, as expected. The neutral application
suffers from issues with memory latency due to poor reuse, and the performance
observed on the V100 GPU is indicative of improved memory latency hiding
in the new architecture, as well as improvements to compute throughput and
memory bandwidth.
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4.7 cuBLAS Performance

Fig. 7. cuBLAS Performance for increasing
matrix sizes.

Figure 7 presents the achieved FLOP/s
for the varying precision cuBLAS
routines, as the matrix size is
increased. The half and single pre-
cision routines improve in perfor-
mance, and asymptote upon reach-
ing 81922. In contrast, for the Ten-
sor core implementation we observe
a sudden drop in performance once
the matrix size exceeds 81922.

We compared the performance of
calculating a single 163842 Tensor
core MMA versus an equivalent cal-
culation using 4 MMAs where the
sub-matrices were 16384 wide on the k-th dimension and 8192 on the adjoining
dimension. We observed a 1.35x improvement in performance, demonstrating
that, in the short term, blocking cuBLAS for matrix sizes above 213 is necessary
even when the whole matrix is resident in high bandwidth memory.

5 Tensor Core Accelerated MMA

In a real application, the Tensor cores will more than likely be leveraged through
the cuBLAS and cuDNN interfaces; however, an aim of this research is to uncover
the current state of direct programming of the cores, and so we present the efforts
taken to develop an optimised matrix multiplication as a canonical example.

5.1 Parallelisation and Decomposition for Tensor Cores

Fig. 8. Decompose 128× 128 sub-
matrices into 16 × 16 tiles.

Our parallelisation strategy was influenced
by the NVIDIA CUDA matrix multiplication
sample, using 128 × 128 sub-matrices, con-
taining 64 16 × 16 × 16 MMA tiles, enabling
coalescence and saturation of shared memory.
We chose a block size of 256 threads, where
8 warps co-operate in performing the instruc-
tions to complete the blocked 128×128 MMA.

The WMMA API is a significant depar-
ture from the conventional CUDA APIs, as
the developer is expected to program opera-
tions at the warp level, rather than the thread level. As such, each CUDA block
is responsible for performing 64 16×16×16 MMAs per sub-matrix along the k-th
dimension, with each warp performing a single MMA at a time. Prior to per-
forming the MMA operation, tiles are loaded from shared memory into WMMA
fragments, which are groups of 16 × 16 registers, declared as in Listing 1.1.
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Listing 1.1. WMMA fragments (nvcuda::wmma excluded for brevity).

fragment <matrix_a , 16, 16, 16, half , row_major > a;

fragment <accumulator , 16, 16, 16, float > c;

Our initial implementation allocated each of the warps within a CUDA block
all 8 of the tiles in a row of the sub-matrix C. Each warp can fetch a single 16×16
fragment of A and multiply that by a whole row of B, achieving perfect reuse of
A but no reuse of B. The result is that every warp is required to load the entirety
of B from shared memory for every processed sub-matrix, with warps storing the
results in an array of fragments for each tile in each row of the sub-matrix C.

Listing 1.2. WMMA load A and perform MMA sync.

load_matrix_sync (a, &Ashared[Aidx], shared_tile_lda);

mma_sync(c[cidx], a, b[bidx], c[cidx]);

In the main computational loop of the matrix multiplication, the A and B
fragments were loaded and the MMA operation performed using the API calls
in Listing 1.2.

5.2 Tiling and Register Optimisation

The scheme described in the previous section is inefficient in its management
of fragments, introducing more shared memory requests than were actually
required. It was possible to adjust the partitioning to increase the reuse of B
and reduce shared memory accesses in favour of increasing register utilisation.

Fig. 9. The calculation of the first element of C, by multiplying the first element of A
with the first chunk row of B, and then repeating the calculation for the first element
of the second row of A.

Figure 9 depicts an optimisation where each warp is given a chunk of C,
shaded orange, meaning the warp is only responsible for loading half of sub-
matrix B per sub-matrix C. The result of this optimisation was a roughly 1.17x
speedup for N = 163842.
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5.3 Vector Loads

The matrix multiplication CUDA sample for the WMMA API adapted all reads
from global memory to 128-bit wide loads; as such, each of the threads was
responsible for reading 8 of the 16-bit floating-point numbers at once from global
memory, and populating shared memory with them. As such, each warp reads 2
rows of a 128 × 128 sub-matrix.

Fig. 10. Memory bandwidth of vector loads
from global memory (16 to 128-bits) for one
warp resident on each SM.

Figure 10 shows that the memory
bandwidth utilisation of a single warp
resident on an SM greatly increases
as the global load width is increased.
This trend is true even if we have a
single warp per warp scheduler on an
SM, for 4 per SM on Volta, where the
achieved memory bandwidth is 3.8x
higher for 128-bit loads than scalar
16-bit loads.

Through benchmarking we deter-
mined that, when the number of
blocks issued for a particular ker-
nel significantly over-subscribed the
number of available SMs and warp
schedulers, a single warp per block could saturate memory bandwidth using
128-bit vector loads, with half precision computation. For 64-bit vector loads,
two warps were required to saturate memory bandwidth.

5.4 Shared Memory Optimisation

The shared memory on a V100 GPU, as with previous compute capabilities,
is organised into 32 32-bit banks, which allow a warp to read 64 half precision
values in a single cycle, two from each bank. If two threads access elements in
the same bank, the latency of the resulting memory operation will increase to
two cycles, a two-way bank conflict.

In Fig. 8, we show a section of a sub-matrix, where each individual tile stored
in shared memory is read using a single WMMA API call. We can see in Fig. 11
that the individual banks, the orange bars, can contain 64 half precision elements,
and so are distributed across an entire row of the half sub-matrix, or twice per
row of the full sub-matrix. The banks line up perfectly so that the beginning of
each row of the tile coincides with the beginning of the shared memory banks.
As such, the 16 16-bit elements of each row of a tile reside within the same
8 32-bit banks of shared memory, meaning that, if a tile is allocated contiguously,
warp-level accesses to that tile inherently lead to banks conflicts.

The exact manner in which the WMMA API moves data into fragments is
not known; however, it is expected that the API uses all threads in a half-warp
to access a number of rows in the tile. In theory, each thread could access 2
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Fig. 11. A representation of the distribution of elements of the sub-matrix stored in
the banks shared memory.

elements of each row of the tile, so the 16 threads would access 2 rows of the tile
at once, resulting in a two-way bank conflict.

Padding, known as a skew factor, can be added to the leading dimension of
the sub-matrix to avoid the data lining up. It is clear that a skew of 16 elements
(16-bit elements of the sub-matrix) results in banks 0–7 containing row 0 of the
tile, and banks 8–15 containing row 1, and so on. This ensures that rows 0–3
can be read in a single cycle by a single warp.

Fig. 12. Tuning skew factor for shared
memory accesses where the sub-matrix
size is 128 × 128, and the tile size is
16 × 16 × 16.

Given that the V100 allows the user
to allocate up to 96 KB of shared mem-
ory per SM, and both A and B are 32 KB,
there is enough space to pad both of the
arrays in shared memory. In support of
the analytic choice of 16, we demonstrate
empirically that it is the best skew in
Fig. 12.

While the preceding analysis appears
specific to the optimisation of general
matrix multiplications, or our particular
choice of block size, it is important to
recognise the generality of this particular
issue. We anticipate that, in the majority
of use cases, the utilisation of Tensor cores will require memory to be read in
from global memory and reused within the available shared memory; as such,
the fact that the tiles of the sub-matrices are 16 × 16 is expected to result in
bank conflicts in general usage.

It is important that programmers are aware that bank conflicts are not fixed
by the WMMA API. The 2.5x difference in performance observed between the
0 skew and 16 skew cases in Fig. 12 demonstrates that avoiding bank conflicts is
an important part of programming with Tensor cores. Furthermore, due to the
dramatic jump in computational throughput introduced by the Tensor cores, it
is likely that tuning the use of shared memory, and potentially optimising for all
levels of cache, will be essential for maximum performance.
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6 Future Work

We expect that the majority of future research articles will focus on machine
learning use cases for the Tensor cores, but we are hopeful that researchers will
continue to investigate the potential for using them within HPC. As some of
the largest pre-exascale supercomputers include V100 GPUs, it is important
to discover use-cases or adaptations to existing algorithms that could leverage
the Tensor cores. It will be important future work to understand the implica-
tion of attempting to include the WMMA API calls into code that is otherwise
thread-level, as the shift in paradigm may make expressing some algorithms more
challenging.

7 Related Work

An NVIDIA PARALLEL FORALL blog by Appleyard et al. [2] presents details
about the Tensor hardware and API, and evaluates the performance of Ten-
sor core accelerated routines in cuBLAS and cuDNN. The article by Harris [4]
discussed mixed precision programming introduced in CUDA 8.0, providing tech-
nical details and demonstrating performance improvements for a number of use
cases and libraries.

Through micro-benchmarking, Jia et al. [5] uncovered many of the architec-
tural details of the Volta architecture such as the memory bandwidth/latency,
warp scheduling policy, and instruction latencies. Markidis et al. [6] evaluated
the Tensor core units in terms of programmability, performance, and precision,
finding similar performance to the results presented here and exploring in detail
the consequences of the loss in precision.

Reguly et al. [11] benchmarked the POWER8 GPUs in comparison to other
hardware for a number of applications and benchmarks. Trott [12] performed
an evaluation of the P100 GPU soon after release, and demonstrated that there
were significant improvements in cache bandwidths and atomic performance.

8 Conclusion

The NVIDIA V100 GPU has been proven to be a significant improvement over
its recent predecessor, the P100 GPU, introducing many new programmabil-
ity improvements and offering exceptionally high memory bandwidth. Through
benchmarking we observed that these memory bandwidth improvements have
come at all levels of the memory hierarchy, but most notably the L1 cache,
which offers considerably higher performance than the P100. We also observed
gains in performance provided by the Tensor cores but that performance is now
strongly coupled to the performance of the GPU memory hierarchy.

The Tensor cores can shift the balance of computational power within the
devices to such an extent that it will be essential to carefully consider all levels of
cache to successfully exploit the devices for computationally-bound algorithms.
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This has important consequences for the future of HPC on those devices, as a sig-
nificant amount of research is being conducted into the adaptation of algorithms
into compute bound variations to support future scaling.

The organisation of the WMMA API to issue instructions at the warp rather
than the thread level means that the individual 4 × 4 × 4 Tensor cores cannot
be directly programmed, and the developer will only have access to 16× 16× 16
MMA instructions. In spite of this, the Tensor cores allow for a huge increase in
compute performance when executing specific deep learning workloads, whilst
other architectural changes bring benefits to HPC workloads.
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Abstract. Scientific applications consist of large and computationally-
intensive loops. Dynamic loop scheduling (DLS) techniques are used
to load balance the execution of such applications. Load imbalance
can be caused by variations in loop iteration execution times due to
problem, algorithmic, or systemic characteristics (also perturbations).
The following question motivates this work: “Given an application, a
high-performance computing (HPC) system, and their characteristics
and interplay, which DLS technique will achieve improved performance
under unpredictable perturbations?” Existing work only considers per-
turbations caused by variations in the HPC system delivered computa-
tional speeds. However, perturbations in available network bandwidth or
latency are inevitable on production HPC systems. Simulator in the loop
(SiL) is introduced, herein, as a new control-theoretic inspired approach
to dynamically select DLS techniques that improve the performance of
applications on heterogeneous HPC systems under perturbations. The
present work examines the performance of six applications on a hetero-
geneous system under all above system perturbations. The SiL proof of
concept is evaluated using simulation. The performance results confirm
the initial hypothesis that no single DLS technique can deliver best per-
formance in all scenarios, whereas the SiL-based DLS selection achieved
improved application performance in most experiments.

Keywords: Performance · Load balancing · Loop scheduling
Heterogeneous computing systems · Perturbations · Simulation
Computationally-intensive applications · Simulator-in-the-loop

1 Introduction

Scientific applications are often characterized by large and computationally-
intensive parallel loops. The performance of these applications on high-
performance computing (HPC) systems may degrade due to load imbalance
caused by problem, algorithmic, or systemic characteristics. Application (prob-
lem or algorithmic) characteristics include the irregularity of the number of
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computations per loop iterations due to conditional statements, where systemic
characteristics include variations in delivered computational speed of process-
ing elements (PEs), available network bandwidth or latency. Such variations are
referred to as perturbations, and can also be caused by other applications or pro-
cesses that share the same resources, or a temporary system fault or malfunction.
Dynamic loop scheduling (DLS) is a widely-used approach for improving the
execution of parallel applications using self-scheduling, that is dynamic assign-
ment of the loop iterations to free and requesting processing elements. A wide
range of DLS techniques exists, and can be divided into nonadaptive and adap-
tive techniques. The nonadaptive DLS techniques account for the variability in
loop iterations execution times due to application characteristics. The nonadap-
tive DLS techniques include self-scheduling (SS), fixed size chunking (FSC) [14],
guided self-scheduling (GSS) [18], factoring (FAC) [12], and weighted factor-
ing (WF) [11]. The adaptive DLS techniques account for irregular system char-
acteristics by adapting the amount of assigned work per PE request (chunk size)
according to the application performance measured during execution. Adap-
tive DLS techniques include adaptive weighted factoring (AWF) [3], its variants
batch (AWF-B), chunk (AWF-C), batch-like (AWF-D), chunk-like (AWF-E) [7],
and adaptive factoring (AF) [2].

An a priori selection of the most appropriate DLS technique for a given
application and system is challenging, given the various sources of load imbal-
ance and the different load balancing properties of the DLS techniques. This
observation raises the following question and motivates the present work: “Given
an application, an HPC system, and their characteristics and interplay, which
DLS technique will achieve improved performance under unpredictable pertur-
bations?” Earlier work studied the flexibility of DLS (robustness to reduced
delivered computational speed) and the selection of robust DLS using machine
learning [20] with the SimGrid (SG) [8] simulation toolkit. The selection of DLS
techniques for synthetic time-stepping scientific applications using reinforcement
learning [4] was also studied using SG. The aforementioned existing work focuses
on one source of perturbations (variation in delivered computing speed) in time-
stepping applications to learn from previous steps. That approach may not be
applicable to applications without time-steps, nor would it be feasible in a highly
variable execution environment. Scheduling solutions using static optimizations,
e.g., using evolutionary and genetic algorithms, can not dynamically adapt to
the perturbations encountered during execution. Modern HPC systems are often
heterogeneous production systems typically shared by many users. Therefore,
perturbations in the available network bandwidth and latency in such systems
are unavoidable.

In the present work, in an effort to select the most appropriate DLS for a given
application and system, the performance of a scientific application (PSIA [10])
and five synthetic applications using nonadaptive and adaptive DLS techniques is
studied on a heterogeneous HPC system, in the presence of perturbations. The
present work makes the following contributions: (1) Proposes a novel simula-
tor in the loop (SiL) approach for dynamically selecting a DLS technique during
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execution, based on the application characteristics and the present (monitored or
predicted) state of the computing system; (2) Provides insights into the resilience
of the DLS techniques to perturbations; and (3) Confirms the initial hypothe-
sis that no single DLS ensures the best performance in all execution scenarios
considered; The SiL performance is evaluated for the selected applications in
simulation using SG.

This work is structured as follows. Section 2 contains a brief review of the
selected DLS techniques, the SG simulation toolkit, as well as related work.
The proposed SiL approach is discussed in Sect. 3. The experimental design and
setup, and the performance results are described and discussed in Sect. 4. The
work concludes and outlines potential future work in Sect. 5.

2 Background and Related Work

Loop Scheduling. The aim of loop scheduling is to achieve a balanced load exe-
cution among parallel PEs with minimum scheduling overhead. Loop scheduling
can be divided into static and dynamic. In static loop scheduling, the loop itera-
tions are divided and assigned to PEs before execution; both division and assign-
ment remain fixed during execution. This work considers static (block) scheduling,
denoted STATIC, each PE being assigned a chunk size equal to the number of iter-
ations N divided by the number of PEs P . STATIC incurs minimum scheduling
overhead, compared to dynamic loop scheduling, and may lead to load imbalance
for non-uniformly distributed tasks and/or on perturbed systems.

In dynamic loop scheduling (DLS), free and requesting PEs are assigned,
via self-scheduling, loop iterations during execution. The DLS techniques can
be categorized into nonadaptive and adaptive techniques. The nonadaptive DLS
techniques considered in this work are: SS [21], FSC [14], GSS [18], FAC [12],
and WF [11]. While STATIC represents one scheduling extreme, SS represents
the other scheduling extreme. In SS, the size of each chunk is one loop iteration.
This yields a high load balance with potentially very large scheduling overhead.
FSC assigns loop iterations in chunks of fixed sizes, where the chunk size depends
on the standard deviation of loop iteration execution times σ as an indication
of its variation and the incurred scheduling overhead h. GSS assigns loop iter-
ations in chunks of decreasing sizes, where the size of a chunk is equal to the
number of remaining unscheduled loop iterations R divided by the number of
PEs N . FAC employs a probabilistic modeling of loop characteristics (standard
deviation of iterations execution time σ and their mean μ) to calculate batch
sizes that maximize the probability of achieving a load balanced execution. A
PE’s chunk size is equal to the batch size divided by N . When this information
(σ and μ) is unavailable, FAC is practically implemented to assign half of the
remaining loop iterations R in a batch. WF divides a batch into unequally-sized
chunks, proportional to the relative PE speeds (weights). The PEs weights must
be determined prior to the execution and do not change afterward. This work
considers the practical implementations of FAC and WF. All nonadaptive DLS
techniques account for variations in iteration execution times due to application
characteristics.
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The adaptive DLS techniques measure the performance of the application
during execution and adapt the chunk calculation accordingly. Adaptive DLS
techniques include AWF [3], its variants [7]: AWF-B, AWF-C, AWF-D, AWF-E,
and AF [2]. AWF is designed for time-stepping applications. It improves WF
by changing the relative weights of PEs during execution by measuring their
performance in each time step and updating their weights accordingly. AWF-B
relieves the time stepping requirement in AWF, and measures the performance
after each batch to update the PE weights. AWF-C is similar to AWF-B, where
weight updates are performed upon the completion of each chunk, instead of a
batch. AWF-D is similar to AWF-B, and considers the total chunk time (equal
to the chunk iteration execution times plus the associated overhead of a PE to
acquire the chunk) and all the bookkeeping operations to calculate and update
the PE weights. AWF-B and AWF-C only consider the chunk iterations execu-
tion times. AWF-E is similar to AWF-C by updating the PE weights on every
chunk. Yet AWF-E is also similar to AWF-D by also considering the total chunk
time also. Unlike FAC, AF dynamically estimates the values of σ and μ during
execution and updates them based on the measured performance of the PEs.

Loop scheduling in simulation. SimGrid [8] (SG) is a versatile event-based
simulation toolkit designed for the study of the behavior of large-scale distributed
systems. It provides ready to use application programming interfaces (API)
to represent applications and computing systems through different interfaces:
MSG (SG-MSG), SimDag (SG-SD), and SMPI (SG-SMPI). SG uses a simple,
fast CPU computation model and verified network models [22] which render
it well suited for the study of computationally-intensive distributed scientific
applications.

Various studies have used SG to study the performance of applications with
DLS techniques in different scenarios [4,20]. To attain high trustworthiness in
the performance results obtained with SG, the implementation of the nonadap-
tive DLS techniques in SG-SD has been verified [17] by reproducing the results
presented in the work that introduced factoring [12]. In addition, the accuracy
of the performance results obtained by simulative experiments against native
experiments has recently been quantified [16]. This work employs the SG-SD
interface to study the performance of scientific applications on a heterogeneous
platform under perturbations.

Related Work. Robustness denotes the maintenance of certain desired sys-
tem characteristics despite fluctuations in the behavior of its components or
its environment [1], whereas, flexibility [20] denotes the robustness of DLS to
variations in the delivered computational speeds. The performance of scientific
applications under perturbations in the delivered computational speed is studied
with nonadaptive DLS techniques [13,23]. The robust scheduling of tasks with
uncertain communication time was also considered using a multi-objective evolu-
tionary algorithm [6]. The selection of the best performing DLS during execution
was studied for OpenMP multi-threaded applications [24], and for time-stepping
applications using reinforced learning [4]. Further, machine learning was used to
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create a portfolio of DLS robustness to variations in the delivered computational
speed on a homogeneous system [20].

Scheduling solutions based on optimization techniques, e.g., genetic and evo-
lutionary algorithms, can not adapt to perturbations during execution. None
of the aforementioned efforts considered perturbations in network bandwidth
and latency. This work complements the previous efforts by studying the perfor-
mance of scientific applications using nonadaptive and adaptive DLS techniques
under different perturbations (variations in delivered computational speed, net-
work bandwidth, network latency) on a heterogeneous computing system. A new
approach, namely simulator in the loop (SiL) is introduced, to dynamically select
DLS techniques that improve the performance of applications on heterogeneous
system under multiple sources of perturbations.

3 Simulator in the Loop (SiL)

The SiL is inspired by control theory, where a controller (scheduler) is used
to achieve and maintain a desired state (load balance) of the system (parallel
loop execution), as illustrated in Fig. 1. The SiL concept is motivated by the well-
known control strategy model predictive control (MPC) [19]. The MPC controller
predicts the performance of the system with different control signals to optimize
system performance. As shown in Fig. 1b, a call to the SiL simulator is inserted
inside a typical scheduling loop. SiL leverages state-of-the-art simulation toolkits
to estimate the performance of an application in a given execution scenario. The
system monitor and estimator components read the system state during the
execution and update the computing system representation accordingly. The
above steps may be repeated several times during the execution of the loop, and
its frequency can be aligned with the perturbations frequency or intensity.

Predicted 
response

Simulated 
control signal

Set 
point Controller Target 

system

System 
model

State 
estimator

System
Monitor

Control
 signal

Sensor 
measurements

Output

(a) A generic control system.

Scheduler
Chunk of tasks 
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HPC system representation

Loop representation
Loop scheduling portfolio

Scheduling 
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(b) Proposed SiL approach for loop scheduling.

Fig. 1. The proposed simulator in the loop (SiL) approach for loop scheduling (b) is
analogous to a typical control system (a). The components highlighted in mint color
in (b) represent the SiL additions to a typical loop scheduling system. (Color figure
online)
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The SiL leverages the use of already developed state-of-the-art simulators
to predict the performance dynamically during execution. Given that the main
concern of this work is load imbalanced computationally-intensive applications,
where the application data is replicated, the influence of complex memory hier-
archy on their performance is minimal. Therefore, application performance can
be predicted accurately via simulation. For instance, the percent error between
native and simulative executions for a given application (PSIA [10]) using the
SG-SD interface was found to be between 0.95% and 2.99% [16]. It is expected
that the accuracy and speed of the simulators employed by SiL will improve as
they are continuously being developed and refined. The cost of frequent calls to
SiL can be amortized by launching parallel SiL instances to concurrently derive
predictions for various DLS. Alternatively, this cost can be entirely mitigated
by asynchronously calling SiL, concurrently to the application execution. Upon
completion, SiL returns the recommended best suited DLS technique to the call-
ing application that uses the recommended DLS to improve its performance.

The system monitor and estimator components can be implemented with
a number of system monitoring tools [9], such as collectl. Such tools can
periodically be instantiated to measure PE and network loads and to update the
system representation in the simulator. The measured chunk execution times can
also be used to estimate the current PE computational speeds. The PE loads can
be estimated and predicted using autoregressive integrated moving average [15].

4 Evaluation and Analysis

Experimental Design and Setup. The design of factorial experiments is
presented in Table 1. The applications performance is discussed below.

Applications. This work considers a real-world application and five synthetic
applications. The parallel spin-image algorithm [10] (PSIA), is an application
from computer vision. The PSIA is algorithmically load imbalanced and the com-
putational effort of a loop iteration depends on the input data. The performance
of PSIA has been studied in prior work [10] and enhanced for a heterogeneous
cluster by using nonadaptive DLS techniques. The total number of PSIA loop
iterations is 400,000. To represent the PSIA in simulation, the number of floating
point operations (FLOP) of each loop iteration is counted using PAPI [5] coun-
ters. In SG-SD, each loop iteration is represented as a task [16]. Each of the five
synthetic applications contains 400,000 parallel loop iterations, similar to the
PSIA. The FLOP count in each loop iteration is assumed to follow five different
probability distributions, namely: constant, uniform, normal, exponential, and
gamma probability distributions. The probability distribution parameters used
to generate these FLOP counts are given in Table 1.

Loop scheduling. Eleven loop scheduling techniques are used to assess the per-
formance of the above six applications under test. These techniques represent
a wide range of loop scheduling approaches, namely, static and dynamic. The
dynamic loop scheduling (DLS) approach can further be distinguished into adap-
tive and nonadaptive. The DLS techniques can be implemented using centralized
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Table 1. Design of factorial experiments

Factors Values Properties

Applications Problem size N = 400,000 iterations

PSIA [5.9 · 107, 6.6 · 107] FLOP per iteration

Constant 2.3 · 108 FLOP per iteration

Uniform [103, 7 · 108] FLOP per iteration

Normal μ = 9.5 · 108 FLOP, σ = 7 · 107 FLOP, [6 · 108, 1.3 · 109]
FLOP per iteration

Exponential λ = 1/3 · 108 FLOP, [948, 4.5 · 109] FLOP per iteration

Gamma k = 2, θ = 108 FLOP, [4.1 · 106, 2.7 · 109] FLOP per

iteration

Loop scheduling STATIC Static

SS, FSC, GSS, FAC, WF Nonadaptive dynamic

AWF-B, -C, -D, -E, AF Adaptive dynamic

Computing

system

miniHPC (heterogeneous

HPC cluster)

22 Intel Broadwell nodes (22 · 20 cores), relative core

weight = 1.398

4 Intel Xeon Phi KNL nodes (4 · 64 cores), relative core

weight = 0.316

P = 224 heterogeneous (112 Broadwell + 112 KNL) cores

P = 696 heterogeneous (440 Broadwell + 256 KNL) cores

Perturbations Nominal conditions np (no perturbations)

PE availability pea-cm (constant mild): μ = 75%, σ = 0%

pea-cs (constant severe): μ = 25%, σ = 0%

pea-em (exponential mild): μ = 78%, σ = 24 · 10−3%

pea-es (exponential severe): μ = 31%, σ = 89 · 10−3%

Bandwidth bw-cm (constant mild): μ = 1 · 10−5%, σ = 0%

bw-cs (constant severe): μ = 1 · 10−7%, σ = 0%

bw-em (exponential mild): μ = 1.1 · 10−1%, σ = 9 · 10−2%

bw-es (exponential severe): μ = 23 · 10−2%, σ = 19 · 10−2%

Latency lat-cm (constant mild): μ = 1 · 10−5%, σ = 0%

lat-cs (constant severe): μ = 1 · 10−7%, σ = 0%

lat-em (exponential mild): μ = 1.2 · 10−5%, σ = 1.5 · 10−5%

lat-es (exponential severe): μ = 2.9 · 10−7%,

σ = 1.8 · 10−7%

Combined all-cm (constant mild): pea-cm, bw-cm, and lat-cm

all-cs (constant severe): pea-cs, bw-cs, and lat-cs

all-em (exponential mild): pea-em, bw-em, and lat-em

all-es (exponential severe): pea-es, bw-es, and lat-es

Experimentation Nativea PSIA on 224 cores under no perturbations (research

reportb)

Simulative All applications on 224 cores under all perturbations

(research reportb)

All applications on 696 cores under all perturbations
aDirect experiments on real HPC systems.
bMohammed A, Ciorba FM. SiL: An Approach for Adjusting Applications to Heterogeneous Systems Under

Perturbations. arXiv preprint arXiv:1807.03577. p. 18 (2018)

or decentralized execution and control approach. The decentralized control app-
roach was found to scale better by eliminating a centralized master, and hence,
the master-level contention [17]. The DLS implemented using the decentralized
control approach is considered in this work.
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Computing system. miniHPC 1 consists of 26 compute nodes: 22 nodes each with
one dual socket Intel Xeon E5-2640 v4 (20 cores) configuration and 4 nodes each
with one Intel Xeon Phi Knights Landing 7210 processor (64 cores). All nodes are
interconnected with Intel Omni-Path fabrics in a nonblocking two-level fat-tree
topology.

Simulation. A computing system is represented in SG via an XML file denoted
as platform file. SG registers each processor core for their representation as
a host in the platform file. The computational speed of a processor core
is estimated by measuring a loop execution time and dividing it by the total
number of floating point operations included in the loop [16]. A Xeon core was
found to be four times faster than a Xeon Phi core as indicated by the relative
core weights (cf. Table 1). The network bandwidth and latency represented in
the platform file are calibrated with the SG calibration procedure2.

Perturbations. Three different categories of perturbations are considered in this
work, namely delivered computational speed, available network bandwidth, and
available network latency. Two intensities are considered, mild and severe, for
each category. Two scenarios are considered for each intensity, where the value
of the delivered computational speed is either constant or exponentially dis-
tributed. All perturbations (cf. Table 1) are considered to occur periodically, with
a period of 100 s where the perturbations affect the system only during 50% of
the perturbation period. The network (bandwidth and latency) perturbations
commence with the application execution, whereas the delivered computational
speed perturbations begin 50 s after the start of the application. Another per-
turbation category is created by combining all perturbations from the other
individual categories. All perturbations are enacted in SG during simulation via
the availability, bandwidth, latency, and platform files.

Performance of Scientific Applications Under Perturbations. The per-
formance of the six applications of interest is shown in Fig. 2. One can see that
STATIC, FSC, GSS, and FAC perform poorly on heterogeneous systems. WF is
well suited for scheduling on heterogeneous systems. However, it can not adapt
to accommodate the variability in the system due to perturbations, especially
perturbations in the delivered computational speed. SS is resilient to perturba-
tions in the delivered computational speed of the PEs. However, it is significantly
influenced by the network latency variations, as can be seen in Fig. 2a lat-cs
and lat-es. Perturbations in the network bandwidth show a very small influence
on performance, as the PEs only communicate loop iterations indices to calcu-
late the start index of the next chunk. Therefore, the communicated messages
are small.

The adaptive techniques perform comparably, with a slight advantage for
AWF-C as can be seen in Fig. 2e all-cs and in Fig. 2a pea-cs and all-es.
However, in certain cases, other techniques outperform AWF-C. Specifically,

1 miniHPC is a fully controlled non-production HPC cluster at the Department of
Mathematics and Computer Science at the University of Basel, Switzerland.

2 http://simgrid.gforge.inria.fr/contrib/smpi-calibration-doc/.

http://simgrid.gforge.inria.fr/contrib/smpi-calibration-doc/
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(a) PSIA on 696 cores (b) Constant distribution on 696 cores

(c) Uniform distribution on 696 cores (d) Normal distribution on 696 cores

(e) Exponential distribution on 696 cores (f) Gamma distribution on 696 cores

Fig. 2. Performance results of the six applications of interest without (denoted with
np) and with (the rest) perturbations using SiL and eleven loop scheduling techniques
on 696 heterogeneous cores. The mint color shaded regions denote the upper and lower
bounds of the performance with SiL if only one DLS technique were selected during
execution in the particular execution scenario. (Color figure online)
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WF outperforms AWF-C in Fig. 2a lat-cs and all-cs. These results suggest
that no single DLS outperforms all other techniques in all execution scenarios.
Therefore, the best strategy is to dynamically select a DLS based on the current
application and system states.

The SiL is called every 50 s when there is a work request to select the best
performing DLS. A closer analysis of the SiL-based results reveals that it resulted
in the smallest execution time in most execution scenarios, especially for PSIA,
as shown in Fig. 2a. The PSIA execution with SiL in the all-es scenario out-
performed all other techniques, as the best DLS technique was changed during
the execution according to the execution scenario. In other cases, the applica-
tion performance with SiL was slightly slower than the minimum execution time
achieved by other DLS. This is due to the fact that loop scheduling is, by defini-
tion, non-preemptive and the execution of already scheduled loop iterations can
not be preempted to be resumed with the newly selected DLS.

Discussion. The advantage of the SiL approach is to dynamically select the
DLS that is predicted to achieve the best performance. A combination of two
or more DLS techniques throughout the application execution may result in a
shorter execution time than that achievable by any single DLS technique alone
as can be seen in Fig. 2a all-es. The SiL selected WF for the first 50 s in all-es,
as can be seen in Fig. 3. After 50 s, the network was no longer perturbed, and SiL
selects the SS technique to balance the load and achieve a better performance
than any single DLS technique.

Fig. 3. DLS selection results for
the PSIA application. Techniques
such as FSC, GSS, and FAC, are
not selected due to their poor pre-
dicted performance with SiL.

The performance results of simulative
experiments of the PSIA on 224 heteroge-
neous cores (112 Broadwell cores and 112
KNL cores) have been verified by native
experimentation under the no perturbation
execution scenario. The raw results and
details of the DLS selection for all the applica-
tions can be found online3. The native experi-
mentation of application performance in other
execution scenarios is planned as immediate
future work. In certain cases, such as all-em
in the application with normally distributed
tasks, the SiL-based execution did not yield
the best performance, due to the fact that
DLS is non-preemptive. A simple heuristic
that changes the selected DLS based on an
application performance measurement may
not cover all possible execution scenarios nor
fully capture the application and computing
system states. The DLS techniques selected

3 Mohammed A, Ciorba FM. SiL: An Approach for Adjusting Applications to Het-
erogeneous Systems Under Perturbations. arXiv preprint arXiv:1807.03577. p. 18
(2018).
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via SiL can be used as guidelines for a given application, computing system, and
perturbation scenario. The SiL approach can proactively select the best suited
DLS before any perturbations act on the system, when perturbations can be
predicted in advance. The study and prediction of perturbations on HPC sys-
tems need further examination, as perturbations in HPC shared resources are
inevitable. The cost of the SiL simulation depends on the problem size and the
system size. Specifically, simulating the execution of 20,000 iterations on 9 PEs
with SG-SD v. 3.16 built with Intel C compiler v. 17 executing on an Intel Broad-
well E5 processor, with CentOS 7.2 operating system, required 0.34 s on average,
whereas, it required 3.48 s for simulating the execution of 200,000 iterations on
the same number of PEs. These costs can be amortized by calling the simulator
asynchronously to the parallel loop execution.

5 Conclusion and Future Work

A new control-theoretic-inspired approach, namely simulator in the loop (SiL),
was introduced to select a DLS dynamically that achieves the best performance,
in an effort to answer the question of which DLS technique will achieve improved
performance under unpredictable perturbations. The performance of six applica-
tions is studied under perturbations, and insights into the resilience of the DLS
techniques to perturbations are provided. The performance results confirm the
hypothesis that no single DLS technique can achieve the best performance in all
the considered execution scenarios. Using the SiL approach improved the perfor-
mance of applications in most considered experiments. SiL leverages state-of-the-
art simulators to select the DLS predicted to result in the best performance of an
application under perturbations. The results show that in the case of a system
perturbed via multiple sources, a combination of two or more DLS techniques
may result in improved performance than that achievable by any single DLS
alone, such as the performance of the PSIA in the all-es execution scenario.
However, due to applications being non-preemptively scheduled, changing the
DLS during the execution may not result in the best performance. Further work
is planned to realize and evaluate the performance of the SiL approach using
native experimentation. Furthermore, experiments to investigate and enhance
the performance of SiL, in terms of improving the DLS selection strategy and
the period between SiL calls, are also planned as future work.
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Abstract. Heterogeneous distributed architectures require high-level
abstractions to ease the programmability and efficiently manage
resources. Both the publish-subscribe and the shared memory models
offer such abstraction. However they are intended to be used in different
application contexts. In this paper we propose to merge these two models
into a new one. It benefits from the rigorous cache coherence manage-
ment of the shared memory and the ability to cope with dynamic large-
scale environment of the publish-subscribe model. The publish-subscribe
mechanisms have been implemented within a distributed shared memory
system and tested using an heterogeneous micro-server.

Keywords: S-DSM · Publish-Subscribe · Heterogeneous computing

1 Introduction

Distributed heterogeneous architectures are considered as a solution for different
computing contexts that provides computational performance while saving the
energy consumption. A mix of high-performance and low-power computing nodes
are used in HPC and data centers, and a mix of low-power processors, specific
accelerators (e.g. for deep learning), GPUs and FPGAs will be used in future
embedded devices for autonomous vehicles or future industry. As for current
distributed heterogeneous architectures, a part of the main challenges is the
efficient programmability.

In such architectures, memories are physically distributed among the nodes,
which makes the management of data between tasks more complex. For exam-
ple it does not allow regular parallel applications with direct access to shared
data: inter-node access requires explicit message passing from the user, which is
usually addressed using hybrid programming. Distributed shared memory sys-
tems (DSM) offer an abstraction layer by federating memories into a global
logical space. Data management is hidden by the runtime. The shared memory
paradigm is convenient for programming HPC applications with quite a static
topology and regular access patterns. However it is not well adapted to event-
based applications in which volatile tasks get notified whenever an object state
changes.
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Event-based applications are popular in web services, wireless networks and
peer-to-peer (P2P) systems. It can be used to monitor a sensor, the output of a
computation or a decision system. This makes the programming paradigm well
adapted to new fields of computation such as the industry and the automotive
world. The publish-subscribe mechanism relies on a set of mutable objects that
can publish notifications to a set of subscribers. This paradigm fits to dynamic
applications with unexpected and volatile access to shared data. However, what
makes the strength of the paradigm is also a limitation it terms of data coher-
ence management. First, data sharing is usually immutable, meaning that data
is modified by the publisher while the subscribers are read-only. Second, the
protocol is loosely coupled and the data coherence model is very permissive. It
is quite difficult to ensure that the published version read by the subscribers is
the current version in the distributed system, according to the causal model.

Upcoming distributed heterogeneous platforms will also run heterogeneous
applications in terms of programming models. For example we can mix HPC
simulation code with event-based monitoring GUI. In this paper, we propose
to merge the publish-subscribe model with the shared memory model. We start
from an in-house DSM, we extend the API and implement some distributed
mechanisms on the atomic piece of shared data to raise publishing events.
We implement a video processing application with the regular shared memory
paradigm and the proposed mixed paradigm. Both implementations are then
evaluated on a Heterogeneous Christmann RECS|Box Antares Microserver.

2 Shared Memory, Synchronization Objects and Events

Shared memory is a convenient programming paradigm in which a set of tasks
can transparently access a set of data. The implementation of such system is
quite straightforward on a physically shared memory but reveals to be complex
on a distributed architecture. Software-Distributed Shared Memory (S-DSM) is
used to federate distributed physical memory and provide a high level of abstrac-
tion to the application. In a S-DSM, the system is in charge of the location, the
transfer and the management of multiple copies of data. It also provides objects
and primitives to synchronize task execution and concurrent accesses. DSM in
general have been studied since the late eighties to federate computer memo-
ries [7,8,12,14], clusters [1,3,16–18] and grids [4].

In a previous work [9], a S-DSM is proposed for heterogeneous distributed
architectures such as micro-servers. This system allows tasks to allocate and
access memory in a shared logical space. This is a super-peer distributed topol-
ogy in which the user code is executed by S-DSM clients, connected to S-DSM
servers. Allocated data can be split into chunks of any size, the atomic piece of
data managed by the S-DSM. While the data is always locally allocated in a
contiguous memory space on the clients to allow pointer arithmetic, the corre-
sponding chunks are not necessarily contiguous in the shared logical space and
can also be managed independently by the S-DSM servers afterwards. Accessing
shared data follows the entry consistency scope paradigm [7]. In this paradigm,
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access must be protected in the user code using (1) the READ or WRITE
primitive to enter the scope and (2) the RELEASE primitive to exit the scope.
Outside this scope, data consistency is not guaranteed. The S-DSM can deploy
different data coherence protocols on different chunks. In this paper we use the
home-based 4-state MESI protocol [10], which allows a single writer and multiple
readers (SWMR). The chunk metadata management is distributed among the
S-DSM servers by calculating a modulo on the chunk id.

Fig. 1. Event coding in shared memory.
Application to the parallel processing of tiles.

As a motivating example, we
consider a parallel HPC application
as illustrated in Fig. 1. The pur-
pose is to calculate the sea level for
each time step by applying a wave
propagation model. After each iter-
ation, some specific places on the
map are monitored to detect if there
is a threat to the population. The
base map is represented as a set of
chunks in the shared memory, each
chunk covering a square surface (a
tile). Several threads navigate the
chunks to update values. Some other
threads monitor the critical chunks
(represented in red color). One real-
istic constraint is that it is not pos-

sible to modify the HPC code to manage the critical aspect of the calculation.
Instead, we expect a smooth and non-intrusive integration of the critical code
regarding the HPC code.

A first approach is to use one rendez-vous and one monitoring thread per
critical chunk. Each time a HPC thread calculates a critical chunk, it invokes
the corresponding rendez-vous and releases the critical threads. This is a static
approach regarding the number of critical chunks and this requires to modify
the HPC code to invoke rendez-vous. A second approach is based on polling
the critical chunks: a set of monitoring threads continuously access the critical
chunks for new values. It possibly generates useless requests and network activity
in the S-DSM. It is also prone to skipping some updates between two accesses,
unless implementing a dual rendez-vous producer-consumer pattern.

A more elegant approach is to rely on a event-based publish-subscribe (PS)
mechanism. Monitoring threads subscribe to critical chunks and get notified each
time the chunk has been modified. This approach is transparent for the HPC
code and allows dynamic subscription of threads to critical chunks. In this paper,
we propose to design and implement this publish-subscribe mechanism within
the S-DSM runtime.
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3 Event Programming with Memory Chunks

The publish-subscribe paradigm is defined by a set of mutable objects (pub-
lishers) and a set of subscribers. There is a many-to-many relationship between
publishers and subscribers. Each time the mutable object is changed, it publishes
the information to all its subscribers. The information can be a simple notifica-
tion, an update or the complete data. We propose to merge the publish-subscribe
model with the shared memory programming model, with a few modifications to
the user API and the S-DSM runtime. The basic idea is to use chunks as muta-
ble publishing objects and to extend the distributed metadata management for
chunk coherence on the S-DSM servers with publish-subscribe metadata man-
agement. We consider the three following listings.
� �

1 void main_publisher () {

2 mychunk = MALLOC(chunkid , size); /* allocate shared data in S-DSM */

3 WRITE(mychunk); /* ask for the write lock */

4 foo(mychunk); /* in this scope it is possible to write chunk */

5 RELEASE(mychunk); /* release the write lock */

6 }

� �

� �

1 void main_subscriber () {

2 mychunk = LOOKUP(chunkid); /* fetch information about previously allocated chunk */

3 SUBSCRIBE(mychunk , subscriber_handler , parameters);

4 /* subscribe to the chunk with given user handler */

5 }

� �

� �

1 void subscriber_handler(chunk , parameters) {

2 WRITE(chunk); /* ask for the write lock */

3 foo(chunk , parameters); /* in this scope it is possible to read and write chunk */

4 RELEASE(chunk); /* release the write lock */

5 UNSUBSCRIBE(chunk); /* unsubscribe to the chunk , this handler wont be call */

6 /* afterwards , all publish notifications are discarded , */

7 /* including the RELEASE in this function */

8 }

� �

The first listing implements the publisher role. This code only makes use of
regular S-DSM primitives. The publish-subscribe API is used by subscribers, as
presented by the second listing. The subscribe primitive registers a user handler
(a pointer to a local function) and some user parameters to a given chunk. Each
time the chunk is modified -from anywhere in the S-DSM- this handler is called
on the subscribing task. Finally, a handler function example is given in the third
listing. Within the function it is possible to access shared data, subscribe to
other chunks and unsubscribe to any chunk. The same handler function can be
used to subscribe different chunks. Publish-subscribe events are sequentialized on
each client and the corresponding handlers are called in the notification message
delivering order. This choice has several ins and outs. First, the user code is
easier to write because there is no local concurrency to manage. Second, this
implies a tight design of the message handling in the S-DSM runtime: the main
issue being that if a user code is currently running, and if it waits for a particular
message from the S-DSM servers (e.g. a read or write acknowledgment message),
then it has to postpone the treatment of this publish notification. The message
is then pushed to an event pending list, to be later replayed. We propose the
following task model, illustrated by the sequence diagram given in Fig. 2.
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Fig. 2. Sequence diagram for shared memory access
and publish-subscribe events. S-DSM server can be
replicated.

A user task is defined
by a mandatory main
user function and several
optional handler functions.
The S-DSM runtime boot-
straps on the main func-
tion. At the end of this
function, it falls back to
the builtin S-DSM client
loop function that waits for
incoming events such as pub-
lish notifications. If there are
messages postponed in the
event pending list, then they
are locally replayed. If the
task has no active chunk
subscriptions, nor postponed
messages in the pending
list, then it effectively termi-
nates.

The PS mechanism can
work in two modes: (1) the
notification mode only trig-
gers a call to the user han-
dler and (2) the push mode embeds a chunk update. This second mode can
prefetch data if the user handler accesses the chunk. In the remaining of this
paper we only consider the notification mode. The PS mechanism is not allowed
to by-pass the consistency protocol and it is not possible to access the chunk
outside the consistency scope. PS is a loosely coupled protocol and, for a given
chunk, the only causal dependency between a PS notification and an access to
the chunk within the handler is that the chunk version accessed is greater or
equal to the chunk version that triggered the publish event. The notification and
the shared access are not atomic, and several writes can occur on the chunk in-
between. However, it is possible to implement a producer-consumer pattern with
PS using two chunks as implemented in the application used for the experiments.

4 Experiments with an Heterogeneous Micro-server

Experiments have been conducted onto a RECS|Box heterogeneous micro-server.
The form factor is a standard 1U rackable server that is composed by a backplane
onto which it is possible to plug computing nodes. Figure 3 presents the micro-
server configuration used for all experiments. Two Intel i7 nodes and two Arm-
based nodes, the latter embedding 4 Cortex A15 processors each. We do not use
the FPGA with Cortex A9 processor. The network is heterogeneous in terms
of latencies and bandwidth. The ethernet interface of Cortex A15 processors is



474 L. Cudennec

implemented over USB with an internal switch within the node to connect the
4 processors. This explains the poor network performances when accessing these
processors. Power consumption is monitored by contacting the remote control
unit using the REST protocol.

Fig. 3. Heterogeneous Christmann RECS|
Box Antares Microserver. Latencies are given
by Ping and throughputs by Iperf. If not
specified, we assume roughly the same per-
formances as similar links.

We consider a video process-
ing application composed by one
input task for video decoding and
frame scheduling, N frame process-
ing tasks, and one task for video
encoding. The processing tasks per-
form edge detection using a 3 ∗ 3
stencil convolution, followed by line
detection using a hough transform.
While the convolution complexity is
constant, the hough transform com-
plexity is data-dependent: the com-
plexity differs from one frame to
another. Above a detection thresh-
old, a pixel is represented as a
sinusoid in the intermediate trans-
formed representation. In this inter-
mediate representation, above a sec-
ond detection threshold, a pixel is
represented as a line in the final out-

put image. Both transform operations require the use of double-precision sinus
and cosinus functions, which is quite demanding in terms of computational
power. To illustrate the software heterogeneity, the processing task has been
written in different technologies: sequential C, Pthread (4 threads), OpenMP,
OpenCL and OpenCV (using the builtin OpenCV functions).

The application has been implemented using rendez-vous (RR for round-
robin scheduling) and publish-subscribe (PS) synchronization functions over the
S-DSM. Figure 4 represents the task interactions in both implementations. For
each processing task, the input and output frames are stored into memory buffers
that are allocated within the S-DSM chunks. The scheduling and buffer synchro-
nization patterns differ in the RR and PS implementations: in the top half part
of the figure, frames are written into the input buffers following a round-robin
scheduling strategy implemented by the producer-consumer pattern based on
rendez-vous synchronization. In the RR implementation, tasks will process the
same number of frames (plus one extra frame depending on the video length). If
there is a small parallelism degree -a small number of processing tasks- and if a
task performs slowly, then this task becomes a bottleneck due to the round-robin
strategy that will hang on this particular task until it has finished the job. In the
second half part of the figure, the PS implementation, processing tasks are noti-
fied each time a new frame has been written into their associated input buffer.
In turn, both encoding and decoding tasks are notified each time a processed
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Fig. 4. Description of the video processing application. Top half part is the round-robin
(RR) synchronization pattern while the second half part is the publish-subscribe (PS)
pattern. The producer-consumer pattern is implemented using a mix of PS notification
events and R/W shared memory access.

frame has been written to an output buffer. In that case, the encoding task
reads this buffer and writes to the output, while the decoding task decodes the
next frame and writes to the corresponding input buffer. This synchronization
implements an eager scheduling strategy based on a mix of publish-subscribe
notifications and S-DSM write events. The input is a 1-minute video file, with
a total of 1730 frames and a resolution of 1280 × 720 pixels. Processing a frame
using Pthread or OpenMP takes around 0.2s on a Core i7 (346s if we extrapolate
to 1730 frames) and 0.9s on a Cortex A15 (1557s for 1730 frames). In OpenCV,
it takes 0.05s on the Core i7 without external GPU (86.5s for 1730 frames).
However, the OpenCV implementation provided by libopencv differs from other
implementations and delivers quite different results.

Different configurations and mappings of the application are presented in Fig. 5
and labeled from A to F . The heterogeneity is given for processing tasks only. For
technical reasons, decoding and encoding tasks are implemented in OpenCV and
are always deployed on Core i7. For each configuration, Fig. 6 presents the num-
ber of frames processed by each task. The RR scheduling policy evenly distributes
the workload among the tasks while the PS implementation reveals how tasks can
process at different speeds depending on the hardware and the software choices.

PS Performs Better with Software Heterogeneity. In configuration A, a
set of 4 processing tasks implemented with similar technologies -Pthread and
OpenMP- are deployed on two i7 processors. Processing times are very close for
both RR and PS implementations with a quite similar distribution of frames
among the tasks. In configuration B, two tasks are implemented in OpenMP
and two tasks in OpenCV, the latter being a faster code. All tasks are running
on two i7 processors. The PS version performs better than RR by allowing the
OpenCV tasks to process more frames than OpenMP.
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NODES TASKS HETEROGENEITY TIME (s) W
i7 A15 Proc Serv Hardware Software RR PS

A 2 0 4 1 i7 Pthread OpenMP 220 218 58
B 2 0 4 1 i7 OpenMP OpenCV 177 153 58
C 1 8 8 1 A15 Sequential Pthread OpenMP 286 401 85
D 2 8 10 1 i7 A15 Pthread OpenMP 233 359 114
E 2 8 10 2 i7 A15 Pthread OpenMP 221 209 114
F 2 8 8 4 i7 A15 Pthread OpenMP 286 198 114

Fig. 5. Different configurations of the video processing application. For each configura-
tion, the table gives the number of Intel Core i7 and Arm Cortex A15 processors used,
the number of processing tasks (Proc), S-DSM data servers (Serv), the heterogeneity
in terms of hardware and software, the total processing time for round-robin (RR)
and publish-subscribe (PS) and the average instantaneous power consumption of the
RECS|Box micro-server.

Fig. 6. Number of frames processed by each task for both RR and PS implementations.
The software technology and the processor type into which the task is mapped are also
displayed.

RR Performs Better with Low-Performance Network. In configura-
tion C, 8 tasks are deployed over eight A15 processors. For technical reasons the
decoding and encoding tasks require to be deployed on the i7 processor. Two
processing tasks are implemented in a sequential C code, two in Pthread and
four in OpenMP. While we were able to get the expected speedup between the
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sequential and the parallel implementations on Core i7 (almost 4 times faster),
we observe that the sequential implementation performs slightly better than the
parallel ones onto Cortex A15. However, the PS implementation is not adapted
to this configuration, due to the poor network capabilities of our testbed, espe-
cially considering the latencies with the Arm baseboards. In that case, the RR
implementation provides a better use of the network by avoiding bursts of small
messages. In configuration D, 10 processing tasks are deployed over the two i7
and eight A15 processors. The PS implementation distributes more frames to
the tasks running on the i7 processors than to the A15. However, as for con-
figuration C, it does not perform well compared to the RR implementation.
The S-DSM is deployed using one server and all memory access requests and
publish-subscribe notifications are converging to the same i7 node.

PS Benefits from Distributed Metadata Management. Configurations E
and F respectively use 2 and 4 S-DSM servers to manage data and metadata.
In configuration E, S-DSM servers are deployed over the two i7 processors. The
PS implementation largely benefits from this configuration, going from 359 s
with one server to 209 s with two servers. In configuration F , two more S-DSM
servers are deployed, with a total of one server per baseboard. While this app-
roach involves more communications between servers and slows down the RR
implementation, it is well adapted to the PS event-based implementation which
performs slightly better than configuration E. This is quite a new result for
the proposed S-DSM for which it is rarely worth to distribute the data and
metadata management among different servers at this scale when using regular
shared access primitives. Instead, we notice that the publish-subscribe mecha-
nism requires a better load balance of events if the network is slow, even for
small configurations.

PS Balances Idle Times Among Tasks. Figure 7 presents the execution
time per task for both RR and PS implementations using configuration F . For
each task the time is decomposed into three parts: (1) the Sync MP corresponds

Fig. 7. S-DSM and application time per task for both RR and PS implementations
using configuration F . Figures 7a and b use the same vertical scale.
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to the time spent in the message passing receive primitive. This mainly happens
while waiting for a ack message when accessing the shared memory, a rendez-vous
release or a publish-subscribe notification. For HPC applications, this Sync MP
time should be avoided because it reveals that the task is waiting rather than
processing data. (2) The S-DSM code time corresponds to the local S-DSM data
management. It is usually not significant, with less than 0.7% of the task total
execution time in this example. (3) The User code corresponds to the time spent
in the user code execution, excluding S-DSM calls. In the RR implementation,
tasks running on i7 processors spend up to 86% of the time waiting on S-DSM
rendez-vous, compared to 12% to 28% for tasks running on the A15 processors.
In the PS implementation, while drastically decreasing the total computing time
(more than 1.5 faster), all tasks spend between 27% and 51% of their time waiting
for the next S-DSM events.

5 Related Works

Distributed shared memory and publish-subscribe systems have been widely
studied in the literature for the past decades. Most of the DSM systems, start-
ing with IVY [12] only provide mechanisms for implementing the shared memory
paradigm. Cache coherence protocols based on write-invalidate or write-update
policies such as MESI [10] are quite close to the publish-subscribe pattern: mem-
ories that host a copy of the data are in fact subscribing to its modifications.
However, the event is defined by the sole protocol, whether it is a change of the
data status in the metadata structure or the update of the data in the memory.
There is no third-party application nor user code that can be called on such event.
Event-based programming can be used to implement a DSM, as proposed in this
system [13], which describes a DSM implemented using the Java event-based dis-
tributed system. Our contribution is to implement an event-based distributed
system on top of the S-DSM, which is the opposite approach. Publish-subscribe
systems have been successfully used for GUIs, internet services, multicasting
in mobile networks [2,6] and managing immutable shared data in peer-to-peer
(P2P) systems [11,15]. The PS programming paradigm is quite different from
shared memory and as far as we know, there is no such system that merge
both paradigms. These two paradigms are shaped for very different computing
contexts: homogeneous reliable computing nodes with HPC code for DSM and
heterogeneous volatile devices with service-oriented code for PS. With the emer-
gence of heterogeneous systems mixing both HPC and event-based applications,
we think that our contribution can ease the programmability of the platform.
One example is the integration of the event-based system SOME/IP [19] within
the AUTOSAR specification standard for future automotive systems, in which
heterogeneous computing nodes will have to deal with both HPC applications for
vehicle guidance and service-oriented applications for entertainment. The design
of the video processing application used in this paper is very close to a dataflow
application, in which a set of tasks communicate using explicit channels. Some
dataflow runtimes include StarPU [5] designed for heterogeneous architectures
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with a complementary S-DSM used for internal data management. However, the
programming model exposed to the user is pure dataflow, and not a mix of both
shared memory and PS paradigms as proposed in this paper.

6 Conclusion

Heterogeneous distributed architectures are expected to be deployed in future
technological systems for data centers, industry and automotive. Each applica-
tion field relies on historical programming models and we propose to merge both
shared memory with publish-subscribe models, building a bridge between very
different application contexts. We found the underlying mechanisms very simi-
lar, leading to a quite straightforward integration. This work contributes with
(1) a programming model that merges shared memory and publish-subscribe,
(2) a task model that bootstraps on the main user code and terminates with the
event-based model and (3) experiments on a heterogeneous micro-server. The
experiments show that the choice between shared memory and PS should be
made according to the application configuration and the execution platform.

Acknowledgments. This work received support from the H2020-ICT-2015 European
Project M2DC - Modular Microserver Datacentre - under Grant Agreement number
688201.
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Abstract. Many applications running on parallel processors and accel-
erators are bandwidth bound. In this work, we explore the benefits of par-
allel (scratch-pad) memories to further accelerate such applications. To
this end, we propose a comprehensive approach to designing and imple-
menting application-centric parallel memories based on the polymor-
phic memory-model called PolyMem. Our approach enables the accel-
eration of a memory-bound region of an application by (1) analyzing the
memory access to extract parallel accesses, (2) configuring PolyMem to
deliver maximum speed-up for the detected accesses, and (3) building
an actual FPGA-based parallel-memory accelerator for this region, with
predictable performance. We validate our approach on 10 instances of
Sparse-STREAM (a STREAM benchmark adaptation with sparse mem-
ory accesses), for which we design and benchmark the corresponding
parallel-memory accelerators in hardware. Our results demonstrate that
building parallel-memory accelerators is feasible and leads to perfor-
mance gain, but their efficient integration in heterogeneous platforms
remains a challenge.

Keywords: Polymorphic parallel memory
Memory bandwidth improvement · Parallel-memory accelerator

1 Introduction

Many heterogeneous systems are currently based on massively parallel acceler-
ators (e.g., GPUs), built for compute-heavy applications. Although these accel-
erators offer significantly larger memory bandwidth than regular CPUs, many
kernels using them are bandwidth-bound. New technologies hold promise for
further bandwidth gain, but their adoption depends on the processor vendors,
and can therefore be slow. Instead, our work addresses the need for increased
bandwidth by enabling more parallelism in the memory system. In other words,
for bandwidth-bound applications, this work demonstrates how to build hetero-
geneous platforms using parallel-memory accelerators.

Designing and/or implementing application-specific parallel memories is non-
trivial [3]. Writing the data efficiently, reading the data with a minimum number
c© Springer Nature Switzerland AG 2019
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https://doi.org/10.1007/978-3-030-10549-5_38

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-10549-5_38&domain=pdf
https://doi.org/10.1007/978-3-030-10549-5_38


482 G. Stramondo et al.

of accesses and maximum parallelism, and using such memories in real applica-
tions are significant challenges. In this paper, we describe our comprehensive
approach to designing, building, and using parallel-memory application-specific
accelerators. Our parallel memory is designed based on PolyMem [5], a poly-
morphic parallel memory model with a given set of predefined parallel access
patterns. Our approach follows four stages: (1) analyze the memory access trace
of the given application to extract parallel memory accesses (Sect. 2), (2) con-
figure PolyMem to maximize the performance of the memory system for the
given application (Sects. 3.1, 3.2 and 3.3), (3) compute the (close-to-)optimal
mapping and scheduling of application concurrent memory accesses to Poly-
Mem accesses (Fig. 1, Sect. 3.4), and (4) implement the actual accelerator (using
MAX-PolyMem), also embedding its management into the host code (Sect. 4.1).

Application
Parallel Memory

Access
Trace

Supported
Patterns

Mapping

Fig. 1. Customizing parallel memories. Our research focuses on the mapping of the
access trace from the application to the parallel access patterns of the parallel memory.

The performance of our accelerators is assessed using two metrics: speed-
up against an equivalent accelerator with a sequential memory, and efficiency.
Blased on a simple, yet accurate model that estimates the bandwidth of the
resulting memory system. Using this estimate and benchmarking data, we could
further estimate the overall performance gain of the application using the newly
built heterogeneous system.

We validate our approach using 10 Sparse STREAM instances: the original
(dense) and 9 variants with various sparsity levels (Sect. 4). We demonstrate how
our method enables a seamless analysis and implementation of 10 accelerators in
hardware (using a Maxeler FPGA board). Finally, using real benchmarking data
from the PolyMem-based heterogeneous systems, we validate our performance
model.
In summary, our contribution in this paper is four-fold:

– We present a methodology to analyze and transform application access traces
into a sequence of parallel memory accesses.

– We provide a systematic approach to optimally configure a polymorphic par-
allel memory (e.g., PolyMem) and schedule the set of memory accesses to
maximize the performance of the resulting memory system.

– We define and validate a model that predicts the performance of our parallel-
memory system.
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– We present empirical evidence that the designs generated using our approach
can be implemented in hardware as parallel-memory accelerators, delivering
the predicted performance.

2 Preliminaries and Terminology

In this section we present the terminology and basic definitions necessary to
understand the remainder of this work.

2.1 Parallel Memories

Definition 1 (Parallel Memory). A Parallel Memory (PM) is a memory that
enables the access to multiple data elements in parallel.

A parallel memory can be realized combining a set of independent memories
- referred to as sequential memories. The width of the parallel memory, identified
by the number of sequential memories used in the implementation, represents
the maximum number of elements that can be read in parallel. The capacity of
the parallel memory refers to the amount of data that it can store.

A specific element contained in a PM is identified by its location, a combina-
tion of a memory module identifier (to specify which sequential memory hosts
the data) and an in-memory address (to specify where within that memory the
element is stored). We call this pair the parallel memory location of the data ele-
ment. Formally, thus, loc(A[I]) = (mk, addr), k = [0..M), where A[I] represents
an element of the application - see Sect. 2.2, mk is the memory module identifier,
M is the width of the PM, and addr is the in-memory address.

Our approach focuses on non-redundant parallel memories. These memories
use a one-to-one mapping between the coordinate of an element in the applica-
tion space and a memory location. Non-redundant parallel memories can use the
full capacity of all the memory resources available, and data consistency is guar-
anteed by avoiding data replication. However, these parallel memories restrict
the possible parallel accesses: only elements stored in different memories can be
accessed in parallel (see Sect. 2.2).

2.2 The Application

We use the term application to refer to the entity using the PM to read/write
data - e.g., a hardware element directly connected to the PM, or a software
application interfaced with the PM.

Without loss of generality, we will consider the data of an application to be
stored in an array A of N dimensions. Each data element can then be identified
by a tuple containing N coordinates I = (i0, i1, ..., iN−1), which are said to be
the coordinates of element A[I] = A[i0][i1]...[iN−1] in the application space.

An application memory access is a read/write operation which accesses A[I].
A concurrent access is a set of memory accesses, A[Ij ], j = 1..P , which the
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application can perform concurrently. An application memory access trace is a
temporal series of concurrent accesses. Finally, a parallel memory access is an
access to multiple data elements which actually happens in parallel.

Ideally, to maximize the performance of an application, any concurrent access
should be a parallel access, happening in one memory cycle. However, when the
size of a concurrent access (P ) is larger than the width of the PM (M), a schedul-
ing step is required, to schedule all P accesses on the M memories. Our goal
is to systematically minimize the number of parallel accesses for each concur-
rent access in the application trace. We do so by tweaking both the memory
configuration and the scheduling itself.

Tweaking the Memory Configuration. To specify a M -wide parallel
access to array A – stored in the PM –, one can explicitly enumerate M
addresses (A[I0]...A[IM−1]), or use an access pattern. The access pattern is
expressed as a M -wide set of N -dimensional offsets - i.e.,{(o0,0, o0,1, ..., o0,N−1)−
(oM−1,0, oM−1,1, ..., oM−1,N−1)}. Using a reference address - i.e. A[I] - and the
access pattern makes it possible to derive all M addresses to be accessed. For
example, for a 4-wide access (M = 4) in a 2D array (N = 2), where the accesses
are at the N,E,S,W elements, the access pattern is {(−1, 0), (0,−1), (1, 0), (0, 1)}.
When combining the pattern with a reference address - e.g., (4, 4) - we obtain a
set of M element coordinates - e.g, {(3, 4), (4, 3), (5, 4), (4, 5)}. We call the oper-
ation of instantiating a memory access pattern into a set of addresses based on
a reference address resolving the pattern. In Sect. 3.2 we will use the function
resolve pattern(p,a) - where p is an access pattern and a is a reference address -
to indicate this operation.

Definition 2 (Conflict-Free Parallel Access). A set of Q memory accesses
A[I0]..A[IQ−1] form a parallel memory access iff it constitutes a conflict-free
parallel access, namely:

∀(A[Ii], A[Ij ])

where i �= j, 0 ≤ i, j ≤ Q − 1, Q = M

loc(A[Ii]) = (mi, addri), loc(A[Ij ]) = (mj , addrj)

mi �= mj .

To map the access to an element in application space to a parallel access in
PM space, we need to define a mapping function that guarantees M -wide conflict
free accesses. Determining the function to use is a key challenge in defining a
custom parallel memory.

Definition 3 (Memory Mapping Function). The Memory Mapping Func-
tion (MMF) maps an application memory access to its parallel memory location.

MMF : (A[I],M,D[I]) → (mk, addrk), k = [0..M)

where I = (i0, i1, ..., iN−1) are the coordinates of the access in the application
space, M is the width of the parallel memory, and D[I] are the sizes of each
dimension of the application space array.
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We note that due to the restriction that only conflict-free accesses can be
parallel accesses, there is a limited set of access patterns that a parallel memory
can support. These patterns are an immediate consequence of the MMF .

A PM configuration is the pair (MMF,C), where MMF is a mapping func-
tion and C is the capacity of the PM. Customizing a parallel memory entails
finding, for a given application, the configuration that minimizes the number of
parallel accesses to the PM.

In the remainder of this paper we focus on a methodology to configure a
custom parallel memory with the right M , C, and MMF for a given application
(see Sect. 3 and further).

Scheduling Concurrent Accesses. Once the parallel memory configuration
is known, the transformation between the application concurrent accesses and
the memory parallel accesses is necessary. We call this transformation scheduling,
and note it can be static - i.e., computed pre-runtime, per concurrent access - or
dynamic - i.e., computed at runtime. In this work, we assume static scheduling is
possible, and the actual schedule is an outcome of our methodology (see Sect. 3
and further).

3 Scheduling an Application Access Trace to a PM

In this section we describe two approaches for scheduling an application access
trace using a set of PM parallel access patterns. The first one finds an opti-
mal solution to this problem - the minimum number of PM accesses that cover
the application access trace - using ILP. The second one proposes an alterna-
tive to ILP, in the form of a heuristic method which trades-off optimality for
speed. Finally, we end this section with an overview of our full approach towards
application-centric parallel memories and a simple predictive model to calculate
the performance of the resulting memory system.

3.1 The Set Covering Problem

We express the problem of scheduling an application access trace onto a set of PM
accesses as a particular instance of the set covering NP-complete problem [12].

Definition 4 (Set Covering [12]). Given a universe U of n elements, a col-
lection of sets S = {S1, ..., Sk}, with Si ⊆ U, and a cost function c : S → Q+,
find a minimum-cost subset of S that covers all elements of U.

The set cover can be formulated as an integer program:

minimize
∑

Si∈S

c(Si) · xSi

subject to
∑

Si:e∈Si

xSi
≥ 1, e ∈ U.
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In this formulation, xSi
= {0, 1} is a variable indicating if set Si is part of

the solution, c(Si) is the cost of set Si, and the solution is constrained to have
for each element e ∈ U at least one set Si : e ∈ Si.

3.2 From Concurrent Accesses to Set Covering

An optimal schedule of an application access trace on a set of PM parallel
accesses can be found by reducing this problem to a set covering one, and lever-
aging the ILP formulation discussed in the previous section. Although an appli-
cation access trace contains a list of application concurrent accesses, we schedule
each of those separately. For every application concurrent access, the universe U

is formed by all accesses. From the PM predefined parallel access patterns, we
define S as the collection of all possible parallel accesses in PM (see Algorithm 1).
Finally, the solution obtained using an ILP solver, Smin,Smin ⊆ S, is a list of
sets which optimally cover the concurrent accesses, and will be converted back
into a sequence of parallel memory accesses.

Algorithm 1. Generation of the Collection of Sets
1: S ← ∅

2: A ← {all application elements}
3: U ← {all accessed elements}
4: P ← {PM parallel access patterns}
5: for p ∈ P do
6: for a ∈ A do
7: pa ← resolve pattern(p, a).
8: Spa ← pa ∩ U.
9: S ← S ∪ Spa

10: end for
11: end for
12: return S.

Algorithm 1 shows how to generate S, from which the minimal coverage will
be extracted. Set P contains the list of PM conflict-free accesses patterns, and
it is obtained from the PM configuration. Set A contains the coordinates of the
application data. Each pair of an application element and an access pattern (i.e.,
elements from A and P, respectively) is resolved into a set of coordinates of appli-
cation elements, pa, by resolve pattern (see Sect. 2.1); To map our problem to
the ILP formulation above we need to guarantee that the union of the collection
of subsets in S is equal to the universe U. This is done by removing the elements
that are not being accessed in the concurrent access -i.e. the elements in A but
not in U- from the parallel access pa. The elements of S will be all these Spa

sets, for which it holds that
⋃

Spa∈S
Spa = U.

To solve our original problem, we are interested in finding the minimum
collection of sets Smin such that

⋃
S∈Smin

S = U and Smin ⊆ S, so the cost
function will be defined as c(Spa) = 1,∀Spa ∈ S. Once S,U, c are defined, an ILP
solver can be used to compute Smin - the minimum collection of sets that covers
the universe U.
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3.3 An Heuristic Approach

As our preliminary results show that ILP is a major bottleneck in our system,
speed-wise, we also investigate the possibility to offer an alternative to the ILP
formulation for solving the scheduling problem. Therefore, we have designed
and implemented a heuristic approach, based on a greedy algorithm (see Algo-
rithm2). Our heuristic is based on [12], and the solution is guaranteed to be
within an harmonic factor from the optimal solution (extracted with the ILP
approach).

Algorithm 2. Heuristic Application Trace Scheduling
1: U ← {all accessed elements}
2: S ← {possible parallel accesses}
3: Sh ← ∅

4: E ← U

5: while E �= ∅ do
6: Find Spa ∈ S s.t. |E\Spa| is minimum.
7: Sh ← Sh ∪ Spa.
8: E ← E\Spa

9: end while
10: return Sh.

Algorithm 2 shows our heuristic approach. E is a set used to keep track of the
elements still to be covered with a parallel access, and it is initialized with U, the
set containing all the elements in the concurrent access. S contains all parallel
accesses from A for a given PM configuration (Algorithm 1, Sect. 3.2). In each
iteration, the parallel access Spa ∈ S, which contains the maximum number of
elements that still needs to be covered, is added to the solution, and the elements
covered by Spa are removed from E. Once all the elements in the application
concurrent access have been covered, the algorithm returns the set of parallel
access Sh containing the solution.

3.4 The Complete Approach

Our complete approach is presented in Fig. 2. We start from the Application
Access Trace, a description of the concurrent accesses in the application, dis-
cussed in detail in Sect. 2.2. We test different parallel memory configuration by
providing different Configuration Files to our Memory Simulator. Each Con-
figuration File contains details regarding mapping scheme, number of parallel
lanes and capacity of the parallel memory. The Memory Simulator produces all
the available parallel accesses, compatible with the given parallel memory Con-
figuration File, that cover elements contained in the Application Access Trace.
The set of parallel accesses is then given as input to our ILP or Heuristic solver
- implemented as described in Sects. 3.2 and 3.3. The Solver selects the mini-
mum number of parallel accesses that fully cover the elements in the Application
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Access Trace, thus producing a Schedule of parallel memory accesses. The Sched-
ule can then directly be used in the hardware implementation of the application
parallel memory.

An important side-effect of our approach is that the information contained in
the schedule can further be used to accurately estimate the performance of the
generated memory system. Thus, to calculate the achievable average bandwidth
of the memory system for the given access trace, we can “penalize” the theoretical
bandwidth (i.e., assuming that all lanes are fully used) by our efficiency metric:
BWreal = BWpeak ×Efficiency = (Frequency ∗Bitwidth∗Lanes)× Nseq

Nelements
.

Frequency is the frequency the PM is operating at, Bitwidth is the size of each
element stored in the PM and Lanes represents the amount of elements that can
be accessed in parallel; Nseq is the number of required sequential accesses and
Nelements is the total number of elements accessed by the PM using a Schedule.

Memory
Simulator

ILP/
HEU 

Solver

ScheduleFile

Application Access
Trace

Set of all
Parallel

Accesses

Analysis

Hw Implementation

Fig. 2. An overview of our complete approach.

4 Experiments and Results

We evaluate the feasibility and performance of our approach by designing and
implementing 10 parallel-memory accelerators on an FPGA-based system. We
use a Maxeler Vectis board, equipped with a Xilinx Virtex-6 SX475T FPGA1 fea-
turing 475k logic cells and 4 MB of on-chip BRAMs.

4.1 MAX-PolyMem

Our parallel memory is based on PolyMem, a design inspired by the polymor-
phic register file [6]. The hardware implementations and performance analysis
presented in this section are all based on the Maxeler version of PolyMem, MAX-
PolyMem [5].
1 Xilinx Virtex-6 Family Overview:

http://xilinx.com/support/documentation/data sheets/ds150.pdf.

http://xilinx.com/support/documentation/data_sheets/ds150.pdf
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Fig. 3. The implementation of the STREAM benchmark for MAX-PolyMem (figure
updated from [5]). All transfers between host (the CPU) and PolyMem (on the FPGA)
are done via the PCIe link.

PolyMem is a non-redundant parallel memory, using multiple lanes to enable
parallel data access to bi-dimensional data structures, and a specialized hardware
module that enables parallelism for multiple access patterns. For example, an 8-
lane PolyMem allows reading/writing 8 elements at a time from/to a 2D memory.
The access shapes supported by PolyMem, defined as bi-dimensional shapes, are
Row, Column, Rectangle, Transposed Rectangle, Main Diagonal, and Secondary
Diagonal. Due to its multi-view design [6], PolyMem supports several access
schemes, i.e, it can perform memory operations with different access patterns
without reconfiguration:

– ReO: Rectangle.
– ReRo: Rectangle, Row, Diagonal, Sec. Diagonal.
– ReCo: Rectangle, Column, Diagonal, Sec. Diagonal.
– RoCo: Row, Column, Rectangle.
– ReTr: Rectangle, Transposed Rectangle.

4.2 Sparse STREAM

To prove the feasibility of our approach, from application access traces to hard-
ware, we adapt the STREAM benchmark [2,10], a well-known tool for memory
bandwidth estimation in modern computing systems, to support sparse accesses.

The original STREAM benchmark uses three dense vectors - A, B and C -
and proposes four kernels: Copy (C =A), Scale (A = q · B), Sum (A = B + C),
and Triad (A = B + q · C).

We have designed a version of STREAM for MAX-PolyMem [5]. A high-level
view of our design2, is presented in Fig. 3.

However, the original STREAM does not challenge our approach because it
uses dense, regular accesses. We therefore propose Sparse STREAM, an adap-
tation of STREAM which allows 2D arrays and configurable sparse accesses.
Table 1 presents 10 possible variants of Sparse STREAM, labeled based on their

2 STREAM for MAX-PolyMem is open-source and available online [1].
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Table 1. The 10 variants of the STREAM benchmark and the predicted performance
of the calculated schedules for two schemes (ReRo and RoCo). The other schemes are
omitted because they are not competitive for these patterns. In the patterns, only the
R elements need to be read.

Pattern description ReRo Scheme RoCo Scheme Selected
Density Pattern Nseq Npar Nelements Speed-up Efficiency Npar Nelements Speed-up Efficiency Scheme

20 RR________RR____ 17408 4369 34952 3.98 49.81 4369 34952 3.98 49.81 ReRo
25 R___R___R___R___ 21760 10880 87040 2.00 25.00 2816 22528 7.73 96.59 RoCo
33 R__R__R__R__R__R 29013 3724 29792 7.79 97.39 9671 77368 3.00 37.50 ReRo
40 RRRR____RRRR____ 34816 8687 69496 4.01 50.10 8687 69496 4.01 50.10 ReRo
50 R_R_R_R_R_R_R_R_ 43519 10880 87040 4.00 50.00 5504 44032 7.91 98.83 RoCo
60 RRRRRR____RRRRRR 52224 8821 70568 5.92 74.01 8821 70568 5.92 74.01 ReRo
66 RR_RR_RR_RR_RR_R 58026 7350 58800 7.89 98.68 9710 77680 5.98 74.70 ReRo
75 RRR_RRR_RRR_RRR_ 65279 10880 87040 6.00 75.00 8192 65536 7.97 99.61 RoCo
80 RRRRRRRR__RRRRRR 69632 8806 70448 7.91 98.84 8806 70448 7.91 98.84 ReRo
100 RRRRRRRRRRRRRRRR 87040 10880 87040 8.00 100.00 10880 87040 8.00 100.00 ReRo

read access density. The main difference between these variants is its number of
sequential accesses, Nseq.

We apply our methodology for each variant. Thus, for each variant, we obtain
the (close-to-) optimal schedule per access scheme. The schedule is character-
ized by the number of parallel accesses Npar, and the total number of accessed
elements Nelements (Sect. 3), from which we calculate speed-up and efficiency
per access scheme. We present these results for two schemes (namely, ReRo and
RoCo) in Table 1. We select the best performing to test in hardware.

The final step in our approach is the translation from a schedule to a hard-
ware implementation of our parallel-memory accelerator. The key challenge is
to enable the controller (see Fig. 3) to orchestrate the parallel memory opera-
tions based on the given schedule. Our current prototype stores the schedule,
which contains information regarding the required sequence of parallel accesses
(coordinates, shape, and mask), in an on-chip Schedule memory.

4.3 Results

We have implemented all 10 STREAM variants in hardware by configur-
ing MAX-PolyMem, for each test-case, with a memory of 261120 elements
(i.e., the maximum capacity available fitting the arrays A,B,C and the
schedule memory), and the best scheme (see Table 1). We have measured the
performance of each STREAM component and compared it against our band-
width estimation.

We measure the bandwidth of our 10 Sparse STREAM kernels (average over
10000 runs)*3. The results - predicted vs. measured - are presented in Fig. 4. We
make the following observations:

– Our performance model (see Sect. 3) accurately predicts the performance of
the memory system (below 1% error in most cases).

3 The overhead of uploading/downloading the arrays to PolyMem is not included in
these results.
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– For 6 out of the 9 sparse STREAM variants, we can achieve close to optimal
speed-up due to our parallel memory being multi-view and polymorphic.

– For S-25, S-50, and S-75, the performance gain versus choosing the alternative
scheme used in this experiment is, according to Table 1, of 70%, 50%, and 24%,
respectively.

– Our STREAM PolyMem design uses only 25.98% of the logic available in
the Vectis Maxeler board. More information regarding the resource usage is
available in [5].

Overall, our experiments are successful: we demonstrated that the schedule
generated by our approach can be used in real-hardware, and we showed that
the measured performance is practically the same with the predicted one.

Fig. 4. The performance results (measured, predicted, and ideal) for the 10 different
variants of the STREAM benchmark. The horizontal lines indicate the theoretical
bandwidth of MAX-PolyMem, configured with 8-byte data, 8 lanes, and 2 (for Copy
and Scale) or 3 (for Sum or Triad) parallel operations. Running at 100 MHz, MAX-
PolyMem can reach up to 12.8 GB/s for 1-operand benchmarks and up to 19.6 GB/s
for 2-operand benchmarks.

5 Related Work

Research on using parallel memories to improve system memory bandwidth has
started in the 70s, and remains of interest today. Parallel memories that use a set
of predefined mapping functions to enable specifically shaped parallel accesses
have improved to better support more shapes [7–9], multiple views, and poly-
morphic access [6]. Approaches that derive an application-specific mapping func-
tion [13,15] have also emerged, constantly improving the efficiency and perfor-
mance of the generated memory systems. The current version of this work uses
a polymorphic parallel memory with fixed shapes, to which we add the novel
analysis and configuration methodology.

As for building such memories in hardware, a lot of research has been invested
in building application-specific caches for FPGAs. Although successful, such
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research [4,11,14] does not (yet) address parallel and/or polymorphic memo-
ries. Our work fills this gap, by showing how to efficiently design a polymorphic,
multi-view parallel memory embedded into an FPGA-based accelerator.

6 Conclusion and Future Work

Modern accelerators, currently embedded in heterogeneous systems, offer mas-
sive parallelism for compute-intensive applications, but often suffer from memory
bandwidth limitations. Our work investigates the benefits of building accelera-
tors with application-specific parallel memories as a solution to alleviate this
bottleneck. Our approach is especially effective for applications with large sets
of concurrent accesses.

To this end, we proposed an end-to-end workflow which analyzes the applica-
tion access trace, configures and builds a custom non-redundant parallel memory
(e.g., PolyMem), optimized for the data-intensive kernel of interest, generates
our parallel-memory accelerator in hardware, and embeds it in the original host
code.

We have empirically validated our approach using Sparse STREAM with 10
different access densities. We demonstrated that we can instantiate and bench-
mark all 10 designs in real hardware (i.e., a Maxeler system and the MAX-
PolyMem version). Our experimental results demonstrate clear bandwidth gains,
and closely match our model’s predictions. Our on-going work focuses on the
analysis of more applications. In the near future, we aim to improve/automate
the access traces extraction, a more efficient integration of the parallel-memory
accelerator into the host application, and an extension of the model towards
accurate full-application performance prediction.
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Abstract. Iterative compilation focused on specialized phase orders
(i.e., custom selections of compiler passes and orderings for each pro-
gram or function) can significantly improve the performance of compiled
code. However, phase ordering specialization typically needs to deal with
large solution space. A previous approach, evaluated by targeting an x86
CPU, mitigates this issue by first using a training phase on reference
codes to produce a small set of high-quality reusable phase orders. This
approach then uses these phase orders to compile new codes, without any
code analysis. In this paper, we evaluate the viability of using this app-
roach to optimize the GPU execution performance of OpenCL kernels. In
addition, we propose and evaluate the use of a heuristic to further reduce
the number of evaluated phase orders, by comparing the speedups of the
resulting binaries with those of the training phase for each phase order.
This information is used to predict which untested phase order is most
likely to produce good results (e.g., highest speedup). We performed our
measurements using the PolyBench/GPU OpenCL benchmark suite on
an NVIDIA Pascal GPU. Without heuristics, we can achieve a geomean
execution speedup of 1.64×, using cross-validation, with 5 non-standard
phase orders. With the heuristic, we can achieve the same speedup with
only 3 non-standard phase orders. This is close to the geomean speedup
achieved in our iterative compilation experiments exploring thousands
of phase orders. Given the significant reduction in exploration time and
other advantages of this approach, we believe that it is suitable for a
wide range of compiler users concerned with performance.

Keywords: GPU · Phase ordering · Optimization

1 Introduction

Compilers optimize a function/program by applying a set of analysis and trans-
formation operations over a representation of its source code (see, e.g., [2]). Those
operations are implemented in compiler passes, each typically implementing a
well delimited operation with a specific purpose, such as unrolling loops.

The set of compiler passes considered, and the order in which they are exe-
cuted, can have a measurable impact in the quality of the final solution, for one

c© Springer Nature Switzerland AG 2019
G. Mencagli et al. (Eds.): Euro-Par 2018 Workshops, LNCS 11339, pp. 494–505, 2019.
https://doi.org/10.1007/978-3-030-10549-5_39

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-10549-5_39&domain=pdf
https://doi.org/10.1007/978-3-030-10549-5_39


Fast Heuristic-Based GPU Compiler Sequence Specialization 495

or more given metrics of interest in the context of software compilation target-
ing Central Processing Units (CPUs) [16] and hardware compilation targeting
Field-Programmable Gate Arrays (FPGAs) [10]. On Graphics Processing Units
(GPUs), using this technique can also yield considerable improvements (e.g.,
up to 5× when targeting a NVIDIA Pascal-based GPU [15]).

The problem of finding orders of compiler passes (also called compiler
sequences or phase orders) that result in better optimization (e.g., vs –O3) of
a given function/program, for a given target and objective metric, is known as
the phase ordering problem. The number of compiler passes available in current
compilers is high and increasing (e.g., LLVM 3.3 has 157 passes, LLVM 3.9 has
245 passes). In LLVM, compiler phase ordering is accessible through passing
ordered lists of flags to the LLVM Optimizer command-line tool (opt). Although
the user interface is simple, the amount of available compiler passes results in
a too large number of combinations to try manually. Moreover, compiler passes
can have complex interactions (positive or negative) with other passes depending
on when in the compilation process they are executed and depending on static
and/or dynamic features of the function/program being compiled. Due to these
factors, phase ordering is generally considered a difficult problem.

GPUs are widely used in a number of heterogeneous systems, such as smart-
phones, personal computers and supercomputers. Therefore, the performance of
these systems strongly depends on how effectively GPUs are used. Purini and
Jain [16] previously developed an approach for fast phase ordering, and evaluated
it on CPUs. They found that their approach produced binaries that were com-
parable to slower state-of-the-art alternatives. In this paper, we evaluate their
kind of approach in the context of OpenCL kernel compilation for GPUs. Going
one step further, we propose and experiment with the use of a simple heuristic
to make the approach more effective in generating suitable compiled code.

The rest of the paper is organized as follows. Section 2 provides background,
including the description of aspects we believe to be important for an approach
to address in order for it to suit a large number of compiler users concerned
with optimization. Section 3 presents a selection of work in the field of Design
Space Exploration (DSE) of compiler phase ordering, including the DSE app-
roach that we augment with an heuristic. The heuristic we propose and evaluate
in this paper is described in Sect. 4. Section 5 describes our experimental setup,
including the target GPU and the OpenCL kernels used in our experiments. The
experimental results are presented in Sect. 6. Finally, concluding remarks about
the work presented in this paper are presented in Sect. 7.

2 Background and Motivation

This section presents what we believe are the important qualities a phase order-
ing specialization approach must have in order for it to suit a large number of
compiler users and use cases.
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2.1 Concerns Related with Phase Ordering

Given how difficult it can be to manually derive effective compiler phase orders,
multiple automatic approaches have been proposed (see, e.g., [10,15,16]). Most
approaches presented in the state-of-the-art, given a new program/function,
generate new (i.e., previously untested) sequences for evaluation. Using these
sequences without strenuous validation can result in a number of unwanted sce-
narios. These include the premature halting of the compiler execution, broken
compiled code, or even the generation of compiled code that is functionally dif-
ferent than it should, which is arguably the worst possible outcome as it can be
difficult to detect. Moreover, a number of the approaches suffer from an unac-
ceptably high DSE overhead and/or they sacrifice too much in terms of the
quality of the solutions.

Assuring Functional Correctness. It is known that even production compil-
ers have bugs. Eide and Regehr evaluated thirteen production-quality C compil-
ers and, for each, were able to find cases where incorrect code to access volatile
variables was generated [9]. Iterative approaches for automatic phase ordering,
such as the ones based on genetic algorithms or simulated annealing, typically
rely on the generation and evaluation of a large number of compiler sequences
(e.g., hundreds, thousands) during DSE to achieve considerable improvements
in the compiled code in relation to an already optimized baseline (e.g., produced
using the most aggressive optimization level). The number of sequences that can
be generated by these iterative approaches is very large, so naturally most of
them were not previously validated by the compiler writers, and expecting them
to be exhaustively tested is not realistic. Therefore, compiler bugs are often
exposed by these iterative methods. When custom compiler pass sequences are
used, there is an high risk of side effects caused by bugs in any given compiler
pass not previously detected by the battery of tests performed by the compiler
developers. Even the validation of individual compiler passes is often incomplete.
Zhao et al. [20] were able to create a formally verified version of the mem2reg
pass, though they needed to rewrite the pass to do so and write 50, 000 lines
of proof scripts and infrastructure. However, despite this significant effort, the
formally verified pass was less optimized than the original non-verified pass.

Balancing Exploration Overhead and Solution Quality. DSE on top of
standard compilation can add a considerable overhead. This is aggravated in
cases where more than one execution per compiled version is required in order
to cover multiple execution flows, which might be required for a more thorough
validation of the generated compiled code. Exploration overhead might be signifi-
cant for most compiler users, to be further aggravated if the execution time of the
function/program is considerable (e.g., a function/program that even compiled
with GCC/Clang –O3 takes 1 h to execute). In some cases, certain techniques
can be used to reduce execution time of a function/program while still main-
taining it representative of the original function/program (e.g., reduce number
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of iterations of an outer loop) in a way that the same set of compiler knobs found
for the code version modified in preparation for DSE can be used on the origi-
nal version with comparable improvements. However, these techniques might not
be straightforward to implement automatically. Either way, independently of the
execution time for a given function/program, performing fewer compilations and
executing the compiled code fewer times is preferable.

2.2 What Can Make an Approach Suitable to Most Compiler
Users?

A considerable number of DSE approaches from the state-of-art are not suitable
to most compiler users because of they require non-trivial validation by the
final compiler user side and/or they require a large number of iterations to
considerably improve most codes.

Figure 1 presents the different roles that actors in an approach of such type
can take. To significantly lessen the requirement of validating (at the final user
side) the functional correctness of the code compiled with the use of custom
phase orders, we can evaluate only compiler sequences that have been previ-
ously demonstrated to work well on a set of representative functions/programs.
Considerable efficiency (regarding number of compilations/evaluations) can be
achieved by selecting a small, yet highly representative, set of these sequences.
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Fig. 1. Roles in a type of approach that uses predefined custom phase orders.

3 Related Work

To the best of our knowledge, Cooper et al. [8] were the first to propose iterative
compilation as a means to find phase orders to improve the quality of the com-
piled code with respect to a given metric. They used iterative compilation in the
form of a Genetic Algorithm (GA) as a way to minimize the footprint of compiled
code. Cooper et al. [7] explore compiler optimization phase ordering testing dif-
ferent randomized search algorithms based on genetic algorithms, hill climbers
and randomized sampling. Almagor et al. [3] rely on GAs, hill climbers, and
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greedy constructive algorithms to explore compiler phase ordering at program-
level to a simulated SPARC processor. Nobre [13] presents results for the use of
a approach that relies in simulated annealing to specialize compiler sequences in
the context of software and hardware compilation. More recently, Nobre et al. [14]
presented an approach based on sampling over a graph representing transitions
between compiler passes, targeting the LEON3 microarchitecture.

Agakov et al. [1] present a methodology to reduce the number of evaluations
of the program being compiled with iterative approaches. Models are gener-
ated taking into account program features and the shapes of compiler sequence
spaces generated from iteratively evaluating a reference set of programs. These
models are used to focus the iterative exploration for a new program, target-
ing the TI C6713 and AMD Au1500 embedded processors. Kulkarni and Cava-
zos [11] proposed an approach that formulates the phase ordering challenge as a
Markov process where the current state of a function being optimized conforms
to the Markov property (i.e., the current state must have all the information
to decide what to do next). Instead of suggesting complete compiler sequences,
these authors use a neural network to propose the next compiler pass based on
current code features. Sher et al. [19] describe a compilation system that relies
on evolutionary neural networks for phase ordering. Neural networks constructed
with reinforcement learning output a set of probabilities of use for each compiler
pass, which is then sampled to generate compiler sequences based on the input
program/function features. Martins et al. [12] propose the use of a clustering
method to reduce the exploration space in the context of compiler pass phase
order exploration. Amir et al. [5] present an approach for compiler phase order-
ing that relies on predictive modeling, using dynamic features to suggest the
next compiler phase to execute to maximize execution performance given the
current status; and more recently, they presented MICOMP, an approach that
performs phase ordering of the compiler passes in the sequences represented by
LLVM optimization levels using sub-sequences and machine learning to predict
the speedup of using combinations of subsequences [4].

Purini and Jain [16] presented and evaluated a type of approach that devises
an universal set of compiler sequences that covers the program space of a refer-
ence set of programs. Given a new program, all and only sequences from that pre-
defined set of sequences are evaluated. The authors demonstrated, using LLVM
3.3 to target a computer with an X86 CPU, that sets of compiler sequences
that perform well on a set of reference functions can also be suitable to compile
other functions to the same target. Purini and Jain demonstrated that these sets
can be quite small (e.g., 10 in what they call the Best-10 approach), while still
being able to achieve considerable binary execution performance improvements.
Comparing with other DSE approaches, this type of approach results in fast
evaluation at the user/programmer-side as the set of representative sequences
is small. This makes it feasible to perform an exhaustive offline validation, in
a manner similar to that of the standard optimization levels (e.g., –O3). This
is important because validation at the user-side would normally be expensive,
involving the comparison the outputs of the compiled functions/programs with
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sets of expected outputs for representative inputs, and even that might be insuf-
ficient as it may not cover all binary program paths.

The type of approach presented by Purini and Jain has a training phase,
performed offline by the phase order developers; and an online phase, performed
when a new program is compiled. In the training phase, other DSE methods
are used to produce a large number of phase orders and corresponding metric
improvements, of which a small set (K sequences) is selected.

In the online phase, only the sequences from the K set are evaluated. The
validation of these sequences can be performed offline.

Purini and Jain presented multiple approaches to obtain the representative
set of sequences, of which we opted to use the following:

1. Select the sequence that improves more kernels;
2. Select the sequence that combined with all previously selected sequences,

maximizes the number of improved kernels. Use geomean as a tiebreaker;
3. Repeat 2. until K sequences (K = 10, in their paper) were selected.

4 Our Approach

Purini and Jain’s approach [16] consists of generating a set of K sequences for
each platform/compiler, and then using those sequences to compile any new
programs/functions. However, if a user prefers to test fewer than K sequences,
it is still possible to do so, by using the following algorithm:

1. Evaluate Seq. 1 (i.e., the first sequence extracted offline);
2. Evaluate the next sequence (i.e., by extraction order);
3. Repeat 2. until all K sequences were evaluated, the number of evaluations

or time the user is willing to wait for is achieved, or the compiled code is
sufficiently improved over baseline.

In this approach, the order of evaluation of the compiler sequences is always
the same because, when the K set is constructed, each new sequence added is
the one that best complements the sequences already obtained, so testing them
in-order tends to yield better results, on average. We extend upon this type of
approach by proposing the use of an heuristic to make the order of evaluation
of the compiler sequences of the K set tuned to the code being compiled based
on the impact of the previously evaluated sequences. This still circumvents the
need to perform feature engineering and to classify code based on static and/or
dynamic features. The only feature is the metric that one wants phase ordering
to improve (e.g., performance). To the best of our knowledge, we are the first to
evaluate this type of phase ordering approach.

4.1 Proposed Heuristic

Given a new code to compile, the end-user of the type of approach presented
in [16] might not want to evaluate all K sequences. If less than K sequences are
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to be evaluated at the end-user side, then selecting which of those sequences to
evaluate is important. We will refer to the sequences from the K set that are to
be evaluated for a given new code as the T set (where 1 ≤ T ≤ K).

If no information about a given new code being compiled is taken into
account, then giving preference to the evaluation of sequences added first to
the K set during the training phase seems to be a good (though as we will
see below, not optimal) approach. For instance, if the end-user only wants to
evaluate 3 custom compiler phase orders, then Seqs. 1 to 3 would be evaluated
in-order. In this scenario, the order in which the sequences from the T set are to
be evaluated is not important, given all are evaluated. However, order of eval-
uation can be important in a scenario where it is not known from start at the
user side how many custom compiler phase orders are to be evaluated. In the
later case, first evaluating sequences from the T set with lower index likely yields
better results.

Other than all K sequences having been evaluated (i.e., T = K), other
possible stopping conditions for the process of evaluating sequences from the
K set (from lower index to higher index) can be, for instance, reaching a given
improvement over baseline or a maximum compilation/evaluation overhead.

It is important to note that, when evaluating less than K sequences, it is not
always the best choice to evaluate the subsequent custom sequences form the
K set that have lower index. The best subset of sequences from the K set to
evaluate depends on the particular code being compiled.

We propose and evaluate an heuristic, that we formulated in order to allow
achieving comparable improvements over baseline while requiring evaluating
fewer custom phase orders from a given K set. Given information about the
specific code being compiled, the end-result of using the heuristic is the evalu-
ation of a particular sub-selection of the K sequences. Notice that an heuristic
that is not suitable can result in losing efficiency over evaluating the sequences
with lower index from the K set. The first compiler phase order is always evalu-
ated, as it is by far the phase order that is most generic and other phase orders
are selected to be part of K for their ability to improve upon the sequences with
lower index.

The heuristic selects the next sequence from the K set to evaluate based on
the impact of the custom sequence from the K set previously evaluated. The
heuristic replaces point 2 of the process that selects the next sequence from the
K set to evaluate (see Sect. 4). Instead of evaluating sequences by the order they
were extracted from the initial set of pairs of sequences and fitness values, the
algorithm chooses the sequence that is predicted to be the most likely to result
in the highest speedup. It compares the result (e.g., speedup) of the last tested
sequence with that of each training program to find which one had the closest
result and verifies which of the untested K sequences produced the best results
for that program.
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4.2 Example

Consider the hypothetical example of Table 1, with K = 4 sequences. When
compiling a code, the approach would first compile and measure the impact of
using Seq. 1. Suppose that the speedup for this sequence is 5.5×. This means
that the training code that is most similar to this case is CODE3, so the next
sequence to test is Seq. 4 (as it has the highest speedup for CODE3 out of the 3
sequences that have not yet been tested).

Table 1. Hypothetical example of speedups for a set of sequences on a set of reference
programs/functions.

Ref. code Seq. 1 Seq. 2 Seq. 3 Seq. 4 Seq. 5

CODE1 2× 1× 2× 3× 0.2×
CODE2 4× 2× 0.1× 0.4× 0.1×
CODE3 6× 0.1× 0.1× 6× 1.2×

5 Experimental Setup

We used a workstation with an Intel Xeon E5-1650 v4 CPU, running at 3.6 GHz
(4.0 GHz Turbo) and 64 GB of Quad-channel ECC DDR4 at 2133 MHz. For the
experiments we relied on Ubuntu 16.04 64-bit with the NVIDIA CUDA 8.0
toolchain (released in Sept. 28, 2016) and the NVIDIA 378.13 Linux Display
Driver (released in Feb. 14, 2017).

The GPU is an EVGA NVIDIA GeForce GTX 1070 graphics card (08G-P4-
6276-KR) with a 1607/1797 MHz base/boost graphics clock (NVIDIA GP104
GPU) and 8 GB of 256 bit GDDR5 memory.

The kernel mode driver is set to keep the GPU initialized at all instances and
the preferred performance mode is set to maximum performance to reduce the
occurrence of extreme GPU and memory frequency variation during execution of
the GPU kernels. All execution time metrics reported in this paper correspond
to the average over 30 executions.

5.1 Kernels

In this paper we use the PolyBench/GPU benchmark suite [17] kernels. We
selected this particular benchmark as it is freely available and thus contributes
to making the results presented in this paper reproducible.

PolyBench/GPU is a collection of 15 kernels implemented for GPUs using
CUDA, OpenCL, and HMPP; including convolution kernels (2DCONV, 3DCONV),
linear algebra (2MM, 3MM, ATAX, BICG, GEMM, GESUMMV, GRAMSCH, MVT, SYR2K,
SYRK), data-mining (CORR, COVAR), and stencil computations (FDTD-2D). We use
the default datasets so that reproducibility of our results is more straightforward.



502 R. Nobre et al.

5.2 Compilation and Execution Flow with Specialized Phase
Ordering

We use Clang compiler’s OpenCL frontend with the libclc library to generate
an LLVM IR representation of a given input OpenCL kernel. Then, we use the
LLVM Optimizer tool (opt) to optimize the IR using a specific optimization
strategy represented by a compiler phase order, and we link this optimized IR
with the libclc OpenCL functions for our target using llvm-link. Finally,
using Clang, we generate the PTX representation of the kernel from the bytecode
resulting from the previous step, using the nvptx64-nvidia-nvcl target.

For specialized phase ordering, we use offline compilation, i.e., we compile
the source code to PTX using Clang/LLVM and pass the resulting PTX code
to the clCreateProgramWithBinary function.

5.3 Data Used for Devising a Small Set of Sequences

The OpenCL kernels from each of the benchmarks have been compiled/tested
with a set of 10, 000 randomly generated compiler phase orders (the same set
was used with all OpenCL codes) in the context of the work presented by Nobre
et al. [15]. The data resulting from this strenuous evaluation is the input to the
phase order extraction method used in the training phase. Only sequences that
produce code that passes validation may be selected for the K set.

Each phase order is composed of 256 LLVM pass instances (can include
repeated calls to the same pass) and the LLVM passes to consider for these
sequences were selected from a list with all LLVM 3.9 passes except the ones
that resulted in compilation and/or execution problems when used individually
to compile the PolyBench/GPU OpenCL kernels.

6 Experimental Results

This section presents the results for the experiments performed to evaluate the
efficiency of the proposed heuristic.

The evaluation of the approach was performed using 2-fold cross-validation.
Randomly distributing the 15 PolyBench [17] kernels between two non-
intersecting groups resulted in a group with 2DCONV, 2MM, 3MM, COVAR, GEMM,
MVT and SYRK; and another with 3DCONV, ATAX, BICG, CORR, FDTD-2D, GESUMMV,
GRAMSCHM, and SYR2K. The geometric mean metrics reported in this section con-
sider the speedups obtained on all 15 codes.

The baseline used to calculate the speedups obtained when compiling the
OpenCL codes using custom phase orders is the execution time of OpenCL
versions generated by offline compilation using Clang/LLVM with -O3.

Note that the speedups reported in this paper with the use of custom phase
orders would not be considerably higher or smaller if using other optimization
levels or online compilation as baseline, because all standard optimization levels
appear to be very similar for these kernels (see Nobre et al. [15]).
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Fig. 2. Speedup achieved on tested kernels as a function of the number of evaluated
sequences (T). Each line (K − T) represents a number of excluded sequences.

6.1 Impact of the Heuristic

Figure 2 depicts the speedups over baseline, considering different values (from 0
to 6) for the number of sequences excluded from evaluation, and different values
for T (number of custom sequences from the K set that are evaluated).

As seen in Fig. 2, the ideal number of excluded sequences (K − T ) is between
3 and 5. If too few sequences are excluded, then this method is not substantially
different from Purini’s approach (particularly when K − T = 0). If too many
sequences are excluded, then for the same number of tested sequences (T ), that
means the compiler sequence selector must select from a higher number of avail-
able sequences of K. Since each additional generated sequence tends to be worse
than all previous ones, that means that higher values of K imply worse average
sequence quality.

For between 3 and 5 excluded sequences, a speedup of 1.638× is achieved with
the evaluation of only 3 custom compiler sequences. Not relying on the heuristic
(K − T = 0) required 5 evaluations to achieve compiled code with similar
performance (1.633×). The ratio of improvement in efficiency with the use of
the heuristic increases if considering even fewer evaluations. For the spectrum of
values for the number of excluded sequences, evaluating only 2 custom compiler
sequences results in compiled code that is similar in terms of performance with
the compiled code obtained when relying on 4 evaluations without the heuristic.

Performing more that 3 evaluations (5 if not using the heuristic) does not
result in significantly performance improvements of the compiled code. The
geomean speedup obtained considering the use of the best individually found
compiler sequence (per OpenCL code) from the 10,000 compiler sequences eval-
uated during the training phase is 1.653× (calculated using the same baseline,
Clang/LLVM with –O3), making even the geomean speedup obtained with only
3 evaluations 0.99% of the former.

6.2 Generated GPU Code with Phase Ordering vs. Baseline

The performance increase with the use of phase ordering can be attributed
to the use of different unroll factors, different memory loads (single combined
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instruction vs. multiple instructions) and moving memory stores out of a loop.
A more detailed analysis can be found in Nobre et al. [15].

7 Conclusions

This paper presented and evaluated in the context of improving the performance
of code targeting a NVIDIA Pascal GPU, a heuristic-based extension to a pre-
vious approach evaluated in the context of specialized phase orders for CPUs.
This type of approach has characteristics that make it potentially more suitable
to a larger number of users and use-cases: fast and efficient exploration at the
final user side and possibility of pre-validating all the sequences used by the final
users. The proposed heuristic helps making evaluation at the user-side faster.

When considering very low numbers of compilations/evaluations, relying on
the heuristic to accelerate iterative compilation resulted in achieving compiled
GPU code of comparable binary execution performance while requiring signif-
icantly fewer compilations/executions. For instance, 2 evaluations of custom
phase orders using the heuristic achieves performance similar to 4 evaluations
without the heuristic, and 3 evaluations with the heuristic is comparable to 5
evaluations without the heuristic. Moreover, performing only the evaluation of
3 custom compiler sequences results in achieving a geometric mean speedup of
1.64×, while using the best sequence individually found for each code results in
a performance improvement of 1.65×.

We are currently evaluating the impact of a number of modifications to the
heuristic presented in this paper, such as considering features other than the
speedups obtained with the use of a single compiler sequence (the previously
evaluated sequence) when computing the distance metric, and using other dis-
tance metrics. Ongoing work also includes evaluating the approach with other
GPUs, including GPUs from other vendors (e.g., AMD). In addition, we plan to
evaluate with OpenCL kernels from other benchmarks with versions targeting
GPUs, such as Rodinia [6] and SNU NPB Suite [18].

We believe that the use of the proposed heuristic can make optimization
through specialization of compiler sequences accessible to an even larger number
of compiler users.
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Abstract. In statistical analysis and data mining, change-point detec-
tion that identifies the change-points which are times when the probabil-
ity distribution of time series changes has been used for various purposes,
such as anomaly detections on network traffic and transaction data. How-
ever, computation cost of a conventional AR (Auto-Regression) model
based approach is too high and infeasible for online. In this paper,
an AR model based online change-point detection algorithm, called
ChangeFinder, is implemented on an FPGA (Field Programmable Gate
Array) based NIC (Network Interface Card). The proposed system com-
putes the change-point score from time series data received from 10GbE
(10Gbit Ethernet). More specifically, it computes the change-point score
at the 10 GbE NIC in advance of host applications. This paper aims to
reduce the host workload and improve change-point detection perfor-
mance by offloading ChangeFinder algorithm from host to the NIC. As
evaluations, change-point detection in the FPGA NIC is compared with
a baseline software implementation and those enhanced by two network
optimization techniques using DPDK and Netfilter in terms of through-
put. The result demonstrates 16.8x improvement in change-point detec-
tion throughput compared to the baseline software implementation. The
throughput achieves 83.4% of the 10GbE line rate.

1 Introduction

Due to advances in information and communication technology, data sets
exchanged over networks are growing rapidly in size and the number. As the
data sets grow, high-bandwidth becomes more important for data analysis and
pattern recognition. Change-point detection is a method to identify the change-
points which are times when the probability distribution of time series changes.
Popular applications of the change-point detection are related to a security field
[13], such as detecting a sudden increase in traffic volume by computer virus
and worm. It is also used in other applications fields, such as transaction data,
resource management, and trend analysis [3].

In a conventional change-point detection algorithm [5], the computational
cost is too high to use it as an online algorithm. ChangeFinder algorithm [8]
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solves this issue and can be used as an online change-point detection. However,
its computational cost is still high to detect change-points from data received via
high bandwidth networks, such as 1 Gbps and 10 Gbps, due to heavy workload
imposed to the host.

In this paper, change-point detection using ChangeFinder algorithm is imple-
mented on an FPGA (Field Programmable Gate Array) based NIC (Network
Interface Card). The proposed system computes the change-point score from
time series data received from 10 GbE (10 Gbit Ethernet). More specifically,
ChangeFinder algorithm implemented in the FPGA NIC computes the score
in advance of host applications. This paper aims to reduce the host workload
and improve change-point detection performance by offloading ChangeFinder
algorithm from host to the NIC. As evaluations, change-point detection in the
FPGA NIC is compared with a baseline software implementation and those
enhanced by two network optimization techniques using DPDK and Netfilter
in terms of throughput. The result demonstrates 16.8x improvement in change-
point detection throughput compared to the baseline software implementation,
while keeping the same change-point detection accuracy.

The rest of this paper is organized as follows. Section 2 introduces
ChangeFinder algorithm and related FPGA-based accelerators. Section 3 designs
the ChangeFinder module and Sect. 4 integrates it in the FPGA NIC. Section 5
evaluates area and throughput. Section 6 concludes this paper.

2 Background

In statistical analysis and data mining, change-point detection has been used for
various purposes, such as step detection, edge detection, and anomaly detection.
Since AR model is a primary approach to describe time-varying process, in this
section, we will start with a conventional change-point detection based on AR
model.

2.1 AR Model: A Conventional Way

Let xn
1 = x1, ..., xn denote a time-series, and it is divided into xt

1 and xn
t+1 by a

time point t, where xt
1 = x1, ..., xt and xn

t+1 = xt+1, ..., xn. Assuming the k-th
order AR model, the conditional probability density function of xt is given as
follows.

p(xt|xt−1
t−k) =

1
(2π)d/2|Σ|1/2 exp

[
− (xt − ωt)TΣ−1(xt − ωt)

2

]
, (1)

where d and Σ denote the number of data dimensions and a covariance matrix,
respectively.

ωt is given as follows.

ωt =
k∑

i=1

αi(xt−i − μ) + μ, (2)
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Fig. 1. Flowchart of ChangeFinder

where α1, ..., αk and μ are model parameters.
Let ω̂t denote an estimated ωt calculated by Eq. 2 using estimated model

parameters. The model fitting error for xn
1 is thus given as follows.

I(xn
1 ) =

n∑
t=1

||xt − ω̂t||2 (3)

Here, time t is detected as a change-point when I(xt
1)+I(xn

t+1) is sufficiently
small compared to I(xn

1 ). Although this method is simple, computation cost is
O(n2) and thus cannot be used for online change-point detection.

2.2 ChangeFinder Algorithm

The above mentioned problem is addressed by SDAR (Sequentially Discount-
ing Auto-Regression model learning) algorithm [15]. ChangeFinder algorithm
employs SDAR algorithm for the online change-point detection. It has been
proven to be efficient. As one of promising applications, for example, [11] utilizes
the SDAR-based change-point detection for detecting fraudulent calls. Apache
Hivemall [1], which is a machine learning library on Apache Hive, releases a soft-
ware module of ChangeFinder. But its hardware design has not been discussed.

Overview. Figure 1 shows the ChangeFinder algorithm that consists of two
learning phases. Each step is described below.

Step 1 (Data Input) xt is received at time point t.

Step 2 (First Learning) For each t, an AR model is built. More specifically, a
sequence of probability density functions pt(x) : t = 1, 2, ... is obtained by the
SDAR model, which will be explained later. Please note that pt−1 is learned
based on xt−1. The “outlier” score at xt is calculated as follows.

Score(xt) = − log pt−1(xt) (4)
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Fig. 2. Two-phase learning of ChangeFinder

Step 3 (First Smoothing) For each t, a moving average of the outlier scores
(obtained in Step 2) in a time window is calculated, More specifically, a sequence
of moving averages of the outlier scores yt : t = 0, 1, 2... is obtained as follows.

yt =
1
T

t∑
i=t−T+1

Score(xi), (5)

where T is the length of a time window.

Steps 4 & 5 (Second Learning & Smoothing) For each t, an AR model is built for
the new time-series data yt : t = 0, 1, 2, ... (obtained in Step 3), and a sequence
of new probability density functions qt(x) : t = 1, 2, ... is obtained by the SDAR
model as well as Step 2. A smoothing step is also applied as well as Step 3. Thus,
a sequence of the moving averages zt : t = 0, 1, 2, ... is obtained as follows.

zt =
1
T

t∑
i=t−T+1

(− ln qt−1(yt)) (6)

Here, zt is denoted as the “change-point” score at time t. A higher change-
point score zt indicates a higher possibility of change-point at time t. As shown
in Fig. 2, by using the two-phase learning, outliers are eliminated by the first
smoothing step and thus only the change-points where the probability distribu-
tion of time series changes are extracted.

SDAR Model. SDAR model is used for online discounting learning that
relies on AR model. ChangeFinder algorithm uses SDAR model to obtain the
sequences of probability density functions pt(x) and qt(x). These probability den-
sity functions are derived from ωt and Σ in Eq. 1. To obtain these parameters,
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SDAR model is used as follows.

μ̂ := (1 − r)μ̂ + rxt (7)
Cj := (1 − r)Cj + r(xt − μ̂)(xt−j − μ̂)T (8)

x̂t :=
k∑

i=1

ω̂i(xt−i − μ̂) + μ̂ (9)

Σ̂ := (1 − r)Σ̂ + r(xt − x̂t)(xt − x̂t)T (10)

Here, r is a discounting rate. A smaller r indicates a greater influence on past
data. For each t, an weighted average μ̂ is updated using r and xt in Eq. 7. Based
on Cj : j = 1, ..., k obtained in Eq. 8, estimated ω1, ..., ωk (denoted as ω̂1, ..., ω̂k)
are derived so that the following equation is satisfied.

k∑
i=1

ωiCj−i = Cj (11)

Then ω̂1, ..., ω̂k are used for Eq. 9.
By introducing the discounting effect, SDAR model can be used for online

learning on non-stationary time-series data. In addition, the computation cost is
reduced down to O(n) and thus it is preferred for online change-point detection.

2.3 Related Work

In this paper, change-point detection using ChangeFinder algorithm is imple-
mented on an FPGA NIC. NPCUSUM (Non-Parametric Cumulative SUM) is a
classic and simple change-point detection algorithm. In [4], it is implemented on
a high-speed FPGA NIC in order to detect attacks from network. The network
attack detection using NPCUSUM is illustrated below.

S0 = 0 (12)

Sn = max{0, Sn−1 + Xn − μ̂ − εθ̂}, (13)

where Xn denotes input data. μ̂ is an estimated value of Xn before an attack, θ̂
is that after the attack, and ε is a tuning parameter. An attack from the network
is detected when Sn becomes unstable and changes drastically. Although it is
quite simple to implement, μ̂ and θ̂ must be known in advance, which limits the
applications of NPCUSUM.

There are some prior works that present FPGA-based outlier detection that
detects anomaly values (not change-points). In [6], LOF (Local Outlier Factor)
algorithm is accelerated by using an FPGA. Normal data are filtered at the NIC
and only anomaly data are transferred to the host machine to reduce data size.

Although our target is change-point detection to detect trend changes,
ChangeFinder algorithm can be used for both the change-point detection and
outlier detection. Actually, the result of the first learning phase Score(xt) is used
as outlier score, while the final output zt is used as change-point score. Please
note that this paper is the first work that accelerates ChangeFinder algorithm
that supports both the change-point and outlier detections by using FPGA NIC.
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Fig. 3. Pipeline of ChangeFinder module

3 ChangeFinder on FPGA

In this section, ChangeFinder module on FPGA is illustrated. It is integrated
into an FPGA NIC in Sect. 4. ChangeFinder module is written in C. As a high-
level synthesis tool we use Xilinx Vivado HLS for the implementation.

3.1 Pipeline Structure

Figure 3 illustrates an overview of ChangeFinder module. It consists of pipelined
six stages as mentioned in Section 2.2. As input data, a 32-bit float value is fed
to the module. It is processed as follows.

– sdar1: A probability density function pt(x) for input data xt in the first
learning phase is computed.

– log1: A logarithmic loss of the probability density function is computed as an
outlier score.

– smooth1: A moving average yt of the outlier scores is computed as a result of
the first learning phase.

– sdar2, log2, and smooth2: A change-point score zt is computed by the same
operations as the first phase.

These stages are operated at 125 MHz. In Fig. 3, the number in each pipeline
stage indicates the minimum interval between two input data in the stage. For
example, “1clk” indicates that new data can be accepted in every cycle. Thus,
log1, smooth1, log2, and smooth2 can accept new data every cycle, while sdar1
and sdar2 accept new data in every eight cycles. Please note that sdar1 and
sdar2, log1 and log2, and smooth1 and smooth2 are identical, respectively. In the
following, sdar1, log1, and smooth1 modules are illustrated.

3.2 Detail of Each Module

Figure 4 shows sdar module. Its inputs are r and xt. r is a discounting parameter.
Based on it, (1 − r) is computed. xt is an input float value. The outputs are x̂
and Σ̂. x̂ is an estimated value of xt and Σ̂ is that of Σt.
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Fig. 4. sdar module

As shown, sdar1 is further divided into five pipelined submodules: update mu,
update c, update omega, update estx, and update sigma. xt is stored in (k+1) 32-
bit registers (pastData in the figure) to refer to past k data, where k is the order
of AR model. Ci and ωi are accumulated in (k +1) 32-bit registers, respectively.

xt, r, and (1 − r) are fed to update mu submodule. update mu submodule
is corresponding to Eq. 7 and computes μ. update c submodule is corresponding
to Eq. 8 and updates Ci registers. update omega submodule updates ωi registers
based on Eq. 11. update estx submodule is corresponding to Eq. 9. It computes
x̂t. Finally, update sigma submodule is corresponding to Eq. 10. It computes Σ̂.

These five submodules work in a pipelined manner. As a result, sdar1 module
accepts new data xt in every eight cycles.

Log module performs a logarithmic computation as in Eq. 4. It is fully
pipelined and can accept new data in every cycle.

Then smooth module computes a moving average of recent T data as in
Eq. 5. The maximum T is set to 16 in our design. It is also fully pipelined and
can accept new data in every cycle.

4 ChangeFinder on FPGA NIC

ChangeFinder module is implemented on a 10 GbE FPGA NIC. It is denoted
as ChangeFinder NIC in this paper. It performs change-point detection for each
numerical value coming from the 10 GbE network. The change-point score com-
puted at the NIC is passed to a host application so that it can identify changes
in given time series data.

In this paper, NetFPGA-SUME [17] is adopted as a 10 GbE FPGA NIC. It
has four 10 GbE interfaces. Packets received by these interfaces are processed at
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an on-board FPGA and the results are transferred to a host machine via a PCI-
Express Gen3 x8 interface. We use 10 GbE MAC IP core provided by Xilinx. We
also use Reference NIC design provided by NetFPGA project [2] as a standard
10 GbE NIC function.

Fig. 5. ChageFinder on FPGA NIC

Fig. 6. Connection between wrapper and ChangeFinder modules

We implemented a wrapper module along the datapath of Reference NIC
design so that all the received packets go through the wrapper module. Then
ChangeFinder module designed with Xilinx Vivado HLS is implemented inside
the wrapper module. Figure 5 shows a block diagram of ChangeFinder NIC con-
sisting of ChangeFinder module and Reference NIC. In Reference NIC, packets
received by the four 10 GbE interfaces (i.e., RX0 to RX3) and host DMAC are
arbitrated at Input Arbiter module. Then, an output port is selected among
the four 10 GbE interfaces (i.e., TX0 to TX3) and host DMAC for each packet.
Packets are stored and transmitted via BRAM Output Queues corresponding
to the selected output ports. Packets are transferred between these modules as
AXI4 stream [14]. The wrapper module is implemented between Input Arbiter
and Outport Lookup modules. We use UDP/IP as transport/network layer pro-
tocols. ChangeFinder module computes a change-point score for each incoming
packet destined to a specific UDP port. All the other packets including ARP
and ICMP just skip the wrapper module without any additional delay.
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Figure 6 illustrates the wrapper module and input/output signals of
ChangeFinder module. A clock generator of 125 MHz and parameter registers
are implemented for ChangeFinder module. In addition, an input asynchronous
FIFO buffer is inserted between them, because ChangeFinder module is operat-
ing at 125 MHz and Reference NIC is operating at 160 MHz.

The wrapper module identifies packets that contain sample data. Then it
extracts the sample data and feeds them to ChangeFinder module. The packet
conveys sample data xt in a 32-bit float format in a UDP payload. UDP packets
with a specific destination port number are extracted as sample packets and
they are fed to the input FIFO buffer. As tuning parameters, AR model order
k, discounting rate r, and smoothing window size T are stored in the parameter
registers. They are fed to ChangeFinder module in addition to input data xt

when ChangeFinder module is ready. Then the change-point score zt is computed
and fed to an output asynchronous FIFO buffer. The score zt can be embedded
in the original packet and passed to host application.

Fig. 7. Evaluation environment for throughput

5 Evaluations

5.1 Evaluation Environment

The target 10 GbE FPGA NIC is NetFPGA-SUME that has a Xilinx Virtex-7
XC7VX690T FPGA and four SFP+ 10 GbE interfaces. It is mounted to a host
machine via PCI-Express Gen3 x8 interface. We use Xilinx Vivado HLS version
2016.4 for the implementation. Reference NIC part is operating at 160 MHz,
while the proposed ChangeFinder module is running at 125 MHz.

Figure 7 shows the evaluation environment using two machines and Table 1
shows their specification.

The client and server machines are connected by a SFP+ direct attached
cable for 10 GbE. The client machine has an FPGA NIC with OSNT (Open
Source Network Teste) installed, which is a hardware packet generator, and
sends packets to the server. In the server machine, the proposed ChangeFinder
module is implemented on the FPGA NIC and processes incoming time series
data. We measured the number of sample data processed at the ChangeFinder
module per a second as throughput.
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Table 1. Machines used in the environment

Server (host) machine Client machine

CPU Intel Core i5-4460 Intel Core i5-4460

OS Ubuntu 14.04 CentOS 6.6

NIC NetFPGA-SUME (Proposal)
Intel X520-DA2 (Software)

NetFPGA-10G for OSNT

5.2 Area Utilization

Table 2 shows area utilization of ChangeFinder NIC including ChangeFinder
module and Reference NIC. As shown in Table 2, ChangeFinder module con-
sumes 5.1 to 12.1% of the FPGA resources. Even with 10 GbE NIC functionality,
the entire resource utilizations are less than or equal to 18.8%.

Table 2. Resources used in ChageFinder NIC

ChangeFinder ChangeFinder + Reference NIC

DSP 437 (12.1%) 437 (12.1%)

FF 44,519 (5.1%) 100,403 (11.6%)

LUT 45,836 (10.6%) 81,517 (18.8%)

5.3 Throughput

As mentioned above, OSNT at the client machine transmits time series data at
10 GbE line rate to the server machine, and the number of sample data processed
in one second at the server machine is measured as throughput.

The proposed ChangeFinder NIC is compared with three software-based
counterparts implemented in C: Baseline, DPDK, and Netfilter. In Baseline, a
ChangeFinder program is running on the application layer. In DPDK, although
the ChangeFinder program is running on the application layer, the program
directly accesses the NIC without kernel UDP/IP stack. In Netfilter, the
ChangeFinder program is implemented as a kernel module.

Figure 8 shows their throughput. The proposed ChangeFinder module is
denoted as FPGA(sim) and the ChangeFinder NIC consisting of ChangeFinder
and Reference NIC modules is denoted as FPGA(actual). FPGA(sim) through-
put is derived by the number of cycles, pipeline structure (i.e., interval), and
operating frequency of the ChangeFinder module. FPGA(actual) is the measured
throughput. The proposed FPGA(actual) achieves 16.8x throughput improve-
ment compared to Baseline. It is much higher than those with software-based
optimizations by DPDK and Netfilter.
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Fig. 8. Throughput of change-point detection [samples/sec]

In practical use cases, a specific field of received packets is extracted and
fed to ChangeFinder module. In this experiment, we used 46-Byte UDP/IP
packets containing a single 32-bit float value. This assumption is pessimistic in
terms of throughput. Since internal data width of Reference NIC is 256 bits,
these sdar modules are not bottleneck when packet length is greater than or
equal to 256 Bytes. Considering the packet length of 46 Bytes1, the proposed
FPGA(actual) achieves 83.4% of 10 GbE line rate.

6 Summary

Toward anomaly detection, change-point detection is used to look for change in
a probability distribution of time series, while outlier detection is used to look
for entity being away from the mean of a probability distribution. ChangeFinder
algorithm based on SDAR model supports both the outlier and change-point
detections and can be used for online use. This paper is the first work that accel-
erates ChangeFinder algorithm using FPGA and integrates it into NetFPGA-
SUME for high-speed change-point detection at 10 GbE NICs. The proposed
ChangeFinder NIC is compared to a UDP baseline and two software-based opti-
mizations, i.e., DPDK and Netfilter. The throughput is much higher than these
counterparts and it is 16.8x higher than the UDP baseline. The throughput is
corresponding to 83.4% of the 10 GbE line rate. To achieve full 10 GbE line
rate or more, as future work, we are considering the possibility to use multiple
ChangeFinder modules while keeping their consistency. A demonstration video
of current design can be found in [16].

Acknowledgements. This work was supported by JST CREST Grant Number
JPMJCR1785, Japan.

1 In addition to the packet length, Ethernet preamble, FCS, and IFG are also considered.
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Abstract. Autoencoder, a neural-network based dimensionality reduc-
tion algorithm has demonstrated its effectiveness in anomaly detection.
It can detect whether an input sample is normal or abnormal by just
training only with normal data. In general, Autoencoder is built on
backpropagation-based neural networks (BP-NNs). When BP-NNs are
implemented in edge devices, they are typically specialized only for pre-
diction with weight matrices precomputed offline due to the high com-
putational cost. However, such devices cannot be immediately adapted
to time-series trend changes of input data. In this paper, we propose
an FPGA-based unsupervised anomaly detector, called OS-ELM-FPGA,
that combines Autoencoder and an online sequential learning algorithm
OS-ELM. Based on our theoretical analysis of the algorithm, the pro-
posed OS-ELM-FPGA completely eliminates matrix pseudoinversions
while improving the learning throughput. Simulation results using open-
source datasets show that OS-ELM-FPGA achieves favorable anomaly
detection accuracy compared to CPU and GPU implementations of BP-
NNs. Learning throughput of OS-ELM-FPGA is 3.47x to 27.99x and
5.22x to 78.06x higher than those of CPU and GPU implementations of
OS-ELM. It is also 3.62x to 36.15x and 1.53x to 43.44x higher than those
of CPU and GPU implementations of BP-NNs.

1 Introduction

Autoencoder, a neural-network-based dimensionality reduction algorithm has
demonstrated its effectiveness in anomaly detection [3,4,15,17]. Autoencoder
constrains the number of hidden nodes to be less than those of input and output
nodes, and is trained so that it reconstructs input data in its output. When the
reconstruction error between the input and output data is converged well, the
dimensionality reduction is completed in the hidden nodes. Since the model uses
input data as target data, we can train it in a unsupervised manner.

In a context of anomaly detection, the model is trained using only normal
data. When input data that have different patterns from the normal data are

c© Springer Nature Switzerland AG 2019
G. Mencagli et al. (Eds.): Euro-Par 2018 Workshops, LNCS 11339, pp. 518–529, 2019.
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Fig. 1. Single Hidden Layer Feedforward Network (SLFN)

fed to the model, the reconstruction error will increase. If the error exceeds a
threshold, the input data can be considered as abnormal data.

In general, Autoencoder is usually built on backpropagation-based neural
networks (BP-NNs), and their training is accelerated with GPU-based massively
parallel batch processing. For this reason, when BP-NNs are implemented in edge
devices, they are typically specialized only for prediction with weight matrices
precomputed offline. However, such prediction-only systems cannot immediately
follow trend changes of input data. Thus, an anomaly detector that can train
online is a primary solution for practical problems where input data trend or
noise pattern shift dynamically as time goes by.

In this paper, by making use of Autoencoder and an online sequential learning
algorithm OS-ELM, we propose an FPGA-based unsupervised anomaly detec-
tor, called OS-ELM-FPGA. OS-ELM [13] is one of neural-network-based convex
optimization models. It can train faster than BP-NNs and always find the global
optimal solution for its weight matrices at each training. Our theoretical analysis
of the algorithm demonstrates the proposed OS-ELM-FPGA completely elimi-
nates costly matrix inversions while improving the learning throughput by fixing
the batch size to one.

The rest of this paper is organized as follows. Section 2 briefly introduces
OS-ELM and anomaly detection using Autoencoder as background for OS-
ELM-FPGA. Section 3 introduces related work. Section 4 proposes our OS-ELM-
FPGA and Sect. 5 illustrates the implementation. Section 6 evaluates it in terms
of learning throughput, prediction throughput, anomaly detection accuracy, and
resource utilization. Section 7 summarizes this paper.

2 Preliminaries

2.1 ELM and OS-ELM

Before introducing OS-ELM, we briefly introduce ELM (Extreme Learning
Machine) [9] as background.

ELM is one of single hidden layer feedforward neural networks (SLFNs) illus-
trated in Fig. 1. In an SLFN, m-dimensional k outputs y ∈ Rk×m corresponding
to n-dimensional k input samples x ∈ Rk×n are computed by y = G(x·α+b)β,
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where α ∈ Rn×Ñ and b ∈ RÑ are parameters of the hidden layer. The former
is the weight matrix connecting the input layer and the hidden layer, while the
latter is the bias vector of the hidden nodes. β ∈ RÑ ×m is a weight matrix con-
necting the hidden layer and the output layer, and G is an activation function
applied to the hidden nodes.

If the SLFN with Ñ hidden nodes can approximate m-dimensional k targets
t ∈ Rk×m with zero error, it implies that there exists β that satisfies the
following equation.

G(x · α + b)β = t (1)

Then, if we define H ≡ G(x · α + b) ∈ Rk×Ñ , the optimized weight matrix β̂
is calculated as follows.

β̂ = H†t, (2)

where H† is a pseudoinverse of H. It can be computed with SVD (Singular
Value Decomposition). By just updating the initial β with β̂, the training phase
completes. The weight matrix α does not have to be updated once initialized
with random values. Furthermore, β̂ is always the global optimal solution, while
BP-NNs is required to address the local minima problem [8]. Please note that
ELM assumes all the training samples are available at the training phase in
advance.

OS-ELM (Online Sequential Extreme Learning Machine) [13] is an ELM-
based algorithm extended to learn input samples one-by-one or chunk-by-chunk.

Given the ith chunk of ki training samples {xi ∈ Rki ×n , ti ∈ Rki ×m }, we
have to find the optimized βi that minimizes the following prediction error.

∥
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∥
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, (3)

where Hi ≡ G(xi · α + b). According to the original paper [13], βi can be
sequentially computed with the following equation.

Pi = Pi−1 − Pi−1HT
i (I + HiPi−1H

T
i )−1HiPi−1

βi = βi−1 + PiH
T
i (ti − Hiβi−1)

(4)

Specially, P0 and β0 can be computed as P0 = (H0HT
0 )−1, β0 = P0H

T
0 t0.

As shown in Eq. 4, βi can be computed without any memories and retraining
for the past training samples.

2.2 Anomaly Detection Using Autoencoder

Autoencoder [7] is one of unsupervised learning models that reduces dimensions
of input data in its hidden nodes. The model uses input data as target data, and
is trained to reconstruct the input data in its output. Since the number of hidden
nodes is constrained to be less than those of input and output nodes, when the
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reconstruction error (e.g., mean squared error and mean absolute error) between
the input and the output data is converged well, the dimensionality reduction
of the input data is completed in the hidden nodes.

In a context of anomaly detection using Autoencoder, the model is trained
only with normal data. When input data that have different patterns from nor-
mal data (i.e., abnormal data) are fed, the reconstruction error will increase. If
the error exceeds a threshold, the corresponding input data can be considered as
abnormal data. Please note that this method does not require any abnormal data
or labeling during training. Although PCA (Principal Component Analysis) is
often mentioned as a similar model, Sakurada et al. showed that Autoencoder
can detect subtle anomalies that PCA fails to detect [17] and is easy to apply
nonlinear transformation without complex computations that kernel PCA [14]
typically requires.

3 Related Work

3.1 Anomaly Detection Using OS-ELM

Since online sequential learning algorithms can follow time-series variability of
input data, such algorithms are suitable for anomaly detection where we often
have to deal with the nonstationarity. In the past few years, several studies on
anomaly detection using OS-ELM have been reported. Singh et al. proposed an
OS-ELM-based network traffic IDS (Intrusion Detection System) to train fast
and accurately on huge amount of network traffic data with a limited memory.
Bosman et al. presented a decentralized anomaly detection system that can
detect abnormality in wireless sensor networks using OS-ELM in an unsupervised
manner [11]. Although the above studies apply OS-ELM to anomaly detection,
we use OS-ELM in conjunction with Autoencoder. As far as we know, this paper
is the first work that uses OS-ELM-based Autoencoder for anomaly detection.

3.2 Hardware Implementation of OS-ELM

Although several hardware implementations of ELM have been reported
[16,18,19], there are very few reports on that of OS-ELM. Bosman et al. proposed
a fixed-point implementation of OS-ELM and its stability correction mechanism
for resource-limited embedded devices [10], but they focused on software imple-
mentation. In this paper, we implement OS-ELM on an FPGA for the first time
and propose an efficient design based on our theoretical analysis discussed in
Sect. 4.

4 Analysis on OS-ELM Algorithm

OS-ELM update formula (i.e., Eq. 4) mainly consists of two types of matrix
operations: (1) matrix product and (2) matrix inversion. When we assume the
number of computational iterations for a matrix product A ∈ Rp×q ·B ∈ Rq×r
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is pqr, and that for a matrix inversion C−1 ∈ Rr×r is r3, the total numbers of
iterations for these matrix operations in the update formula are calculated as
follows.

Iprod = 4kÑ2 + k(2k + 2m + n)Ñ
Iinv = k3, (5)

where Iprod and Iinv denote the total numbers of iterations for the matrix
products and the matrix inversions, respectively. n, Ñ , and m are the num-
bers of input, hidden, and output nodes of OS-ELM. k is the batch size. For
example, we calculated the number of iterations for HiPi−1H

T
i by dividing

it into the following two steps: (1) Hi ∈ Rk×Ñ · Pi−1 ∈ RÑ ×Ñ and (2)
HiPi−1 ∈ Rk×Ñ · HT

i ∈ RÑ ×k , then computing the total number of these
iterations I = kÑ2 + k2Ñ .

Assuming that Ik denotes the total number of the iterations of matrix prod-
ucts and matrix inversions in OS-ELM update formula when the batch size is k,
we can derive the following equation.

Ik = Iprod + Iinv

= 4kÑ2 + k(2k + 2m + n)Ñ + k3

= k(4Ñ2 + (2k + 2m + n)Ñ + k2)
≥ k(4Ñ2 + (2 + 2m + n)Ñ + 1) = kI1 (6)

This equation implies that OS-ELM can train at the same or higher learning
throughput (i.e., Ik ≥ kI1) by fixing the batch size to one. In software frame-
works, as actually shown in Sect. 6.3, they suffer from a low throughput at small
batch sizes because of software specific overheads, such as dynamic memory allo-
cation and library calls. On the other hand, the proposed FPGA-based imple-
mentation of OS-ELM can fully enjoy the insight from Eq. 6, since it is free from
any software specific overheads.

Moreover, we can completely eliminate the costly matrix inversions in OS-
ELM update formula. Because the size of the target matrix (I + HiPi−1H

T
i )

is k × k, its inverse matrix can be easily calculated by computing its reciprocal
when k = 1. In this case, OS-ELM update formula can be transformed as follows.

Pi = Pi−1 − Pi−1hT
i hiPi−1

1 + hiPi−1hT
i

βi = βi−1 + Pih
T
i (ti − hiβi−1),

(7)

where h ∈ RÑ is a special case of H ∈ Rk×Ñ when k = 1.
Thanks to the above trick, the proposed OS-ELM-FPGA can train without

any costly matrix inversions. It reduces the hardware resources and significantly
accelerates the learning throughput. It is possible to further improve the train-
ing/prediction throughput by computing matrix products in parallel.
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5 Design and Implementation

We implemented the proposed OS-ELM-FPGA using Xilinx Vivado HLS 2016.4
as a toolchain for synthesizing hardware modules written in high-level languages
such as C/C++. We chose Xilinx Virtex-7 XC7VX690T as the target FPGA
and 100 MHz as the target frequency.

Fig. 2. Block diagram of OS-ELM-FPGA

5.1 Top Module

Figure 2 shows an overview of OS-ELM-FPGA. Since OS-ELM-FPGA uses
Autoencoder, the number of input nodes of the network is same as that of
output nodes.

top module consists of the following two modules: (1) seq train and (2) predict
modules. seq train module is to train sequentially on a given input sample x,
and update shared weight matrices β and P . predict module is to predict a
loss (i.e., a reconstruction error) by computing loss = L(x,y) where L is a loss
function and y denotes an output of the network. Here, we used MAE (Mean
Absolute Error) L(x,y) = 1

n

∑n
i=1 |xi − yi| as a loss function. Since OS-ELM

produces exactly the same learning result regardless of which loss function is
used unlike BP-NNs, we recommend to use a loss function that consumes less
hardware resources such as MAE.

A 1-bit input signal, named mode, determines whether to predict or train on
given input samples. When the value is 0 or 1, prediction or training is performed,
respectively. In our implementation, all the decimal numbers are represented by
32-bit fixed-point numbers (i.e., 10-bit integer and 22-bit decimal parts).

5.2 Seq train Module and Predict Module

seq train module executes OS-ELM-FPGA update formula (i.e., Eq. 7). Figure 3
shows the processing flow of the module. If 1 + hiPi−1hT

i is close to 0,
Pi−1hT

i hi Pi−1

1+hi Pi−1hT
i

will diverge, which makes the training significantly unstable. In
our implementation, we set a threshold EPSILON to 1e-4 to detect singular
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Fig. 3. Flowchart of Seq train module Fig. 4. Flowchart of predict
module

matrices. If EPSILON > 1 + hiPi−1hT
i is satisfied, OS-ELM-FPGA stops the

training and discards the input data for learning stability.
predict module computes output data on given input data by computing

matrix/vector products and then the corresponding loss value (i.e., reconstruc-
tion error) is computed. Figure 4 shows the processing flow. All the matrix/vector
products in seq train module and predict module can be accelerated by parallel
execution of N product-sums in the innermost loop. This parameter should be
tuned by considering the area and performance trade-offs.

6 Evaluations

In this section, OS-ELM-FPGA is evaluated in terms of anomaly detection accu-
racy, learning throughput, and FPGA resource utilization.

OS-ELM-FPGA is compared with the following four software counterparts:
1© OS-ELM(CPU), 2© OS-ELM(GPU), 3© BP-NN(CPU), 4© and BP-NN(GPU).
1©/ 2© is CPU/GPU implementation of OS-ELM, while 3©/ 4© is CPU/GPU
implementation of BP-NN. These counterparts are evaluated on a common server
machine (Intel Core i7-6700 (3.4 GHz), NVIDIA GTX 1070 (VRAM 8 GB),
DDR4 RAM (32 GB)).

To implement all the four software counterparts, we use Tensorflow [12] (ver
1.6.0). The model size (the numbers of input, hidden, and output nodes) of each
implementation is set to 784, 32, and 784 respectively. For OS-ELM-FPGA and
OS-ELM(CPU/GPU), we use the linear function f(x) = x as an activation func-
tion in their hidden nodes, because it produced better anomaly detection accu-
racy than other nonlinear functions. In this paper, all the matrix/vector products
in OS-ELM-FPGA are fully parallelized in the way mentioned in Sect. 5.2.

For BP-NN(CPU) and BP-NN(GPU), we use relu [20] function in their hid-
den nodes, and sigmoid [6] function in their output nodes. We use Adam [5]
(learning rate = 0.001, β1 = 0.9, β2 = 0.999) as the optimization algorithm
for them. For all the implementations, we use MAE L(x,y) = 1

n

∑n
i=1 |xi − yi|
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as the loss function as mentioned in Sect. 5.1. AVX (Advanced Vector eXten-
sions) instructions are used for all the CPU implementations to optimize their
performance.

6.1 Anomaly Detection Accuracy

Evaluation Procedure. First, we train each model with a normal training
dataset and then perform prediction to compute loss values for a normal vali-
dation dataset. Second, we calculate the mean μ and the standard deviation σ
of these loss values. Finally, we perform prediction again to calculate another
loss values (i.e., loss) on a mixed dataset that consists of the normal validation
dataset and an abnormal dataset. If loss−μ

σ > θ is satisfied, the corresponding
input sample is detected as abnormal.

Datasets. For the normal dataset, we use MNIST dataset (Fig. 5, 10-class
28 × 28 gray-scale images) [2]. This dataset consists of 60,000 training samples
and 10,000 validation samples. For the abnormal dataset, we use Fashion-MNIST
dataset (Fig. 6, 10-class 28 × 28 gray-scale images) [1]. The dataset also consists
of 60,000 training samples and 10,000 validation samples. We use the 10,000 val-
idation samples as abnormal samples. All the samples are fed to OS-ELM-FPGA
as 28 × 28 = 784-dimensional vector data.

Settings. All the images’ pixel values are normalized into [0,1]. The weight
matrix α of OS-ELM(CPU/GPU) is initialized with uniform distribution along
[0, 1] and then P0 and β0 are computed. α, P0, and β0 of OS-ELM-FPGA
are initialized with the same values. Regarding the training procedure, OS-
ELM(CPU/GPU) and OS-ELM-FPGA are trained with all the training samples
only once (i.e., one epoch), because it makes no sense to train iteratively on the
same dataset in OS-ELM algorithm. On the other hand, BP-NN(CPU) and BP-
NN(GPU) are trained for ten epochs, because they could not obtain comparable
anomaly detection accuracy with one epoch. For all the implementations except
for OS-ELM-FPGA, the batch size is set to 64.

Results. Table 1 shows the evaluation results of OS-ELM-FPGA and the four
counterparts in terms of precision, recall, and f-measure. In this paper, precision
(denoted by P ) means a percentage of actual abnormal samples to all the samples
detected as abnormal, while recall (denoted by R) is a percentage of samples
detected as abnormal to all the actual abnormal samples. F-measure (denoted

Fig. 5. MNIST Fig. 6. Fashion-MNIST
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Table 1. Anomaly detection accuracy

Implementation θ P R F

OS-ELM-FPGA 1.0 0.852 0.922 0.886

OS-ELM(CPU) 1.0 0.858 0.926 0.891

OS-ELM(GPU) 1.0 0.856 0.924 0.889

BP-NN(CPU) 1.0 0.852 0.908 0.879

BP-NN(GPU) 1.0 0.851 0.901 0.875

OS-ELM-FPGA 3.0 0.996 0.770 0.868

OS-ELM(CPU) 3.0 0.996 0.765 0.865

OS-ELM(GPU) 3.0 0.996 0.747 0.854

BP-NN(CPU) 3.0 0.991 0.662 0.794

BP-NN(GPU) 3.0 0.992 0.669 0.799

Table 2. FPGA resource utilization of
OS-ELM-FPGA

BRAM DSP FF LUT

Used 816 3,347 182,825 330,881

Available 2,940 3,600 866,400 433,200

Utilization 27% 92% 21% 76%

by F ) means a harmonic mean of precision and recall. Here, we call f-measure
as “anomaly detection accuracy”.

Anomaly detection accuracy of OS-ELM-FPGA is higher than those of
BP-NN(CPU) and BP-NN(GPU) by up to 9.74%. Considering that they are
trained for ten epochs while OS-ELM-FPGA is once, we can say OS-ELM-FPGA
achieved better anomaly detection accuracy in a short training time. The result
of OS-ELM-FPGA is slightly different from the other OS-ELM counterparts,
because we use 32-bit fixed-point to handle the numerical values instead of 32-
bit floating-point.

Please note that fixing batch size to one does not affect the accuracy, because
OS-ELM always produce the same training result regardless of the batch size.

6.2 FPGA Resource Utilization

OS-ELM-FPGA is evaluated in terms of FPGA resource utilization. Table 2
shows the result. As described in Sect. 5, the target FPGA is Xilinx Virtex-7
XC7VX690T. As shown in the table, all the resource utilizations are less than
their limit, though we fully parallelized all the matrix/vector products in OS-
ELM-FPGA. The target FPGA device is not the state-of-the-art FPGA already
and we can expect faster training/prediction throughput by using the latest
FPGAs.

6.3 Sequential Learning Throughput

OS-ELM-FPGA is compared with the counterparts in terms of learning through-
put by varying the batch size. Figure 7 shows the result. Since the batch size of
OS-ELM-FPGA is one, its learning throughput is constant regardless of x-axis
(batch size) in the graph. As shown in Fig. 7, although OS-ELM(CPU) can
train faster than BP-NN(CPU) at small batch sizes, the tendency is inverted at
big batch sizes since the computational cost for a matrix inversion in OS-ELM
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Fig. 7. Comparison of learning through-
put

Fig. 8. Comparison of prediction through-
put

update formula is proportional to the cube of the batch size. In the context of
realtime anomaly detection, it is required to detect abnormal samples immedi-
ately after the samples are fed to the detector, thus small batch sizes are preferred
in this case. This is a benefit of OS-ELM compared to BP-NNs. In addition, since
OS-ELM-FPGA eliminates the computational bottleneck of OS-ELM by fixing
the batch size to one, and computes matrix products in parallel, its learning
throughput is 3.47x to 27.99x higher than OS-ELM(CPU), and 5.22x to 78.06x
higher than OS-ELM(GPU), respectively. It is 3.62x to 36.15x and 1.53x to
43.44x higher than BP-NN(CPU) and BP-NN(GPU), respectively.

Regarding the GPU implementations, while BP-NN(GPU) significantly
accelerates its learning throughput, OS-ELM(GPU) suffers from a lower through-
put than OS-ELM(CPU). Since a matrix inversion in OS-ELM algorithm is dif-
ficult to execute in parallel because of a number of conditional operations, OS-
ELM(GPU) could not accelerate the learning throughput efficiently. This result
indicates that OS-ELM is less suitable for GPU acceleration than BP-NNs.

On the other hand, since the proposed OS-ELM-FPGA completely eliminates
the matrix inversion, it achieves the best learning throughput among all the
counterparts for all the batch sizes.

6.4 Prediction Throughput

OS-ELM-FPGA is compared with the counterparts in terms of prediction
throughput by varying the batch size. Figure 8 shows the result. Regarding
the CPU implementations, OS-ELM(CPU) achieved a slightly higher prediction
throughput than that of BP-NN(CPU), because BP-NN(CPU) uses nonlinear
activation functions while OS-ELM(CPU) does not use them.

Regarding the GPU implementations, although they execute prediction com-
putations (e.g., matrix products, and matrix sums) in parallel, their throughput
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decreases on the contrary. When a model size is small like SLFNs, data trans-
fer overheads between a host and GPU devices become major bottlenecks. For
this reason, OS-ELM(GPU) and BP-NN(GPU) failed to accelerate the predic-
tion speed. On the other hand, OS-ELM-FPGA is completely free from the data
transfer overheads and achieves 4.23x to 83.98x and 6.04x to 183.79x higher
throughput than OS-ELM(CPU) and OS-ELM(GPU), respectively. It is also
4.90x to 198.85x and 6.25x to 213.06x higher than NN-GPU(CPU) and NN-
BP(GPU), respectively.

7 Summary

In this paper, we proposed an FPGA-based unsupervised anomaly detector,
called OS-ELM-FPGA, that combines Autoencoder and an online sequential
learning algorithm OS-ELM. Our theoretical analysis demonstrated that the
design of OS-ELM-FPGA completely eliminates matrix pseudoinversions while
improving the learning throughput. As a result, OS-ELM-FPGA can train and
predict using only basic matrix operations, such as matrix product, addition, and
subtraction. Simulation results using a hand-written digits dataset and a fashion
items dataset showed that OS-ELM-FPGA achieved favorable anomaly detection
accuracy compared to CPU and GPU implementations of BP-NN in a short
training time. Learning throughput of OS-ELM-FPGA is 3.47x to 27.99x and
5.22x to 78.06x higher than CPU and GPU implementations of OS-ELM, while
3.62x to 36.15x and 1.53x to 43.44x higher than CPU and GPU implementations
of BP-NN.

Please note that this paper is the first work that combines OS-ELM and
Autoencoder and eliminates the matrix inversions for the efficient FPGA-based
online sequential learning unsupervised anomaly detector. In anomaly detection
for industries, because environmental noise differs by place and time, our online
sequential unsupervised approach is preferable since it can adapt to a given
environment online. As future work, we will extend this work to use multiple
OS-ELM-FPGA instances in an ensemble manner to improve the expression
capability. We will also conduct comprehensive comparisons between OS-ELM-
FPGA and some other methods (e.g., PCA and kernel PCA) on more practical
scenario using real industrial data.
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Abstract. There has been a huge increase in interest in blockchain tech-
nology. However, little is known about the drivers behind the adoption
of this technology. In this paper we identify and analyze these drivers,
using three real-world and representative scenarios. We confirm in our
analysis that blockchain is not an appropriate technology for some sce-
narios, from a purely technical point of view. The choice for blockchain
technology in such scenarios may therefore seem as an irrational choice.
However, our analysis reveals that there are non-technical drivers at play
that drive the adoption of blockchain, such as philosophical beliefs, net-
work effects, and economic incentives. These non-technical drivers may
explain the rationality behind the choice for blockchain adoption.

Keywords: Blockchain · Distributed ledger · Technical drivers
Non-technical drivers

1 Introduction

Blockchain technology has received a huge interest ever since its inception in
the cryptocurrency Bitcoin [22]. Indeed, on a global scale companies and gov-
ernments [27] are looking for applications of this technology [13]. Cryptocur-
rencies, in particular Bitcoin, are the best-known and most successful scenario
where blockchain technology has been adopted, but many other applications of
blockchain have been proposed, such as supply chain management [28], identity
management [15], and smart energy grids [29].

However, the justification for using a blockchain in many of these scenarios
is unclear. Indeed, many papers have argued that using a blockchain is not the
best – or not even a good – solution for particular scenarios [17]. This has led
to the proposal of methodologies for deciding if blockchain is an appropriate
solution for a given scenario, from a technical point of view [25,39]. However,
non-technical drivers are not typically discussed in most of the computer science
literature. In this paper we try to look beyond this technical view, and we also
consider the non-technical drivers behind the choice for blockchain in real-world
scenarios.
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To do this, we consider in Sect. 3 three real-world scenarios in which
blockchain technology is used, namely, the cryptocurrency Bitcoin, the identity
management solution uPort, and a supply chain scenario for agricultural prod-
ucts, namely table grapes. Here we also identify and analyze the drivers behind
the adoption of blockchain for these scenarios. We distinguish four categories of
drivers: technical properties, philosophical beliefs, network effects, and economic
incentives. Furthermore, we discuss the appropriateness of blockchain technology
for each scenario. We argue that using a blockchain is not an appropriate solu-
tion for some of the scenarios if we only take a technological perspective. This
may seem that using blockchain in these scenarios is an irrational choice. Based
on this analysis, Sect. 4 discusses the non-technical drivers that may explain
blockchain adoption. Here we argue that there is a rationality behind blockchain
adoption if we also take non-technical drivers into account. Section 5 discusses
related work, Sect. 6 future work, and Sect. 7 summarizes our conclusions.

2 Background

This section provides a generic description of blockchain technology and intro-
duces the decision model by Wüst and Gervais [39] for determining if blockchain
technology is appropriate for a particular scenario.

The novel part of blockchain technology is having a consortium of unknown
participants to reach consensus [26]. Typically, participants in blockchain tech-
nology consist of users and miners. At any time, a user may propose a new
state of the ownership of a token by means of a transaction. A transaction, con-
tains at least the sender’s account, the receiver’s account, the number of tokens
transferred, a timestamp and a signature of the sender.

Miners propose new ledger states, but only after having solved a crypto-
graphic puzzle. The idea here is to prevent multiple, different ledger states being
proposed. The participant who first solves the puzzle is allowed to propose a new
state of the ledger. Miners propose new ledger states by collecting user transac-
tions and proposing these as a set, called a block. Since the unique identifier of
the previous block is included in the new proposed block, a chain of blocks is
created, hence the term blockchain.

Blockchain may be useful in a scenario which contains certain properties.
Therefore, to determine if blockchain is an appropriate technology for a partic-
ular scenario, several blockchain decision models have been proposed.

2.1 Blockchain Decision Models

Wüst and Gervais [39] proposed a model to determine if blockchain technology is
appropriate for a particular problem. Several such models have been proposed,
as discussed by, for example, Meunier [20]. We chose the model of Wüst and
Gervais because it provides a detailed description of the decisions that have
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to be made, leaving less room for misinterpretation. Their model consist of a
decision tree based on the following scenario properties:

(a) Storing state. Refers to the need of storing data that may change both in
volume and in content over time.

(b) Number of writers. Multiple writers (also known as miners) must be present,
that have a common interest in agreeing on the validity of the stored state.

(c) Is there a Trusted Third Party? A Trusted Third Party (TTP) is a cen-
tralized entity that could manage changes and updates the state. A TTP, if
present, may also control who can read the state stored.

(d) Are all writers known? This refers to knowing the identity of all writers.
(e) Are all writers trusted? When writers are trusted, they are expected not to

behave maliciously. When writers are not trusted, they may behave mali-
ciously.

(f) Public verifiability of state. This property determines who may read the state
stored on the blockchain, and verify the integrity of the ledger.

Based on these six properties, the model determines one of four possible solutions
as the best solution for the scenario:

1. Permissionless blockchain. Anyone may join the network and read from the
state stored, and write to the blockchain.

2. Public permissioned blockchain. A limited set of participants may write to the
blockchain. Anyone may join the network and read the state.

3. Private permissioned blockchain. A limited set of participants may join the
network, and write a new state. Only this set can read the state.

4. Don’t use blockchain. This end state is reached when one of the properties
(a), (b), (c), or (e) above is not met.

3 Scenarios

The following paragraphs present three scenarios in which blockchain is used. We
chose these for two reasons. First, these are real-life and representative scenarios
where a blockchain is used. Second, these scenarios are generally well known to
be related with blockchain technology. For each scenario we propose a set of
blockchain adoption drivers (see Table 1) and we group these drivers into:

– Scenario properties. These drivers, (a)–(f) above, focus on the rationale for
using blockchain from a technological perspective.

– Philosophical beliefs. These drivers focus on the rationale for using blockchain
based on the participants’ beliefs.

– Network effects. Here we propose drivers where existing participants influence
new participants in using blockchain technology.

– Economic incentives. These drivers are based on financial gain, or preventing
potential financial losses, by one of the parties involved in the scenario.



538 T. Koens and E. Poll

Table 1. Blockchain technology adoption drivers

Category Drivers Bitcoin uPort Supply chain

Scenario properties Storing state • • •
Multiple writers • • •
Can not use TTP •
Writers unknown • •
Writers untrusted •
Public verifiability • • •

Philosophical beliefs Will not use TTP •
Decentralization need • •
Enhanced privacy • •
Alternative system • • •
Political reasons •

Network effects Driven by community •
Curiosity • • •
Cool to use • • •

Economic incentives Marketing product • •
Selling mining equipm. •
Selling consultancy • •
Charging for platform •
FOMO • •
Alternative investment •

The scenario properties are inherent characteristics of a scenario, which we con-
sider technical properties. The other three driver categories are more about pref-
erences or motivations of the participants, which we consider non-technical prop-
erties. This categorization is important because it allows us to determine what
drives blockchain adoption.

3.1 Scenario 1 - Bitcoin

Scenario Description. In Nakamoto’s work [22] a decentralized payment system is
envisioned. The essence is to have a consortium of unknown participants achieve
consensus [26]. To achieve this, Bitcoin uses a public permissionless blockchain,
allowing anyone to participate.

Each participant owns one or more Bitcoin accounts. An account is identi-
fied by a public cryptographic key, and managed by the corresponding private
key. Each account may hold a number of tokens, which represent a value, and
can be seen as ‘coins’. Coin ownership can be transferred by transactions. A
transaction, in principle, contains the account of the sender, the account of the
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receiver, the number of coins transferred, and the signature of the sender. Trans-
actions created by participants are collected by other participants called miners.
These miners independently solve a moderately-hard cryptographic puzzle. The
miner that solves the puzzle first, obtains the privilege to propose a new state of
accounts, based on the transactions collected. A miner proposes a new state by
presenting a sequence of transactions called a block. Note that only miners may
write to the blockchain. Each block holds the hash of its previous block, linking
all blocks into a block-chain.

Scenario Properties. This scenario has all the properties for the use of
blockchain to be the right solution according to the scheme of Wüst and Ger-
vais: we have to store state, there are multiple writers, there is (by design) no
Trusted Third Party (TTP), the writers are unknown and untrusted, and the
state should be publicly verifiable. In other words, the properties of this scenario
provide a clear technical rationale to use blockchain.

Philosophical Beliefs. Bitcoin’s pseudonymous inventor Nakamoto states that
‘What is needed is an electronic payment system based on cryptographic proof
instead of trust’ [22]. Clearly, Bitcoin is specifically designed not to have a TTP.
Also, many of its participants are motivated by political reasons to use Bitcoin
[30]. For example, when national governments prevented WikiLeaks from receiv-
ing donations by blocking credit card transactions [33], Bitcoin could be used
as an alternative payment system to circumvent these restrictions. Furthermore,
given the pseudonymous nature of all accounts in Bitcoin, payments are more
privacy-friendly than centralized bank payments.

Network Effects. Bitcoin has received considerable media attention in the last
few years [13,21,37]. This causes a network effect, where people consider Bitcoin
‘cool to use’ [3]. Also, at this point in time several issues remain which hinder
global adoption, such as scalability [4], high transaction fees, price volatility and
energy consumption [23]. These problems are hard to solve, which has led to a
growing academic interest in blockchain technology to tackle them [32,40].

Economic Incentives. Several companies have a direct economic interest in the
success of Bitcoin. As miners nowadays need special dedicated hardware, hard-
ware vendors supplying this hardware have a clear economic interest in the
success of Bitcoin. Furthermore, many companies, including established firms
and young startups [35], offer blockchain consultancy services, some of which
are related to Bitcoin. These companies also have a strong economic incentive,
namely to sell consulting services.

Finally, given the broad global attention to blockchain technology, there is
the fear of missing out (FOMO) [34]. This may lead to that some parties buy
bitcoins, as well as other cryptocurrencies, to mitigate the risk of having missed
the bandwagon when it turns out the technology becomes a success. For example,
public media has extensively reported on the rise of the value of Bitcoin. This
triggered other, new participants to also invest in Bitcoin, as these participants
also hope for a profitable investment in Bitcoin. Indeed, uninformed participants
consider Bitcoin as an alternative investment [13]. However, as Bitcoin is not
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backed by any government nor gold, these investments are fueled largely by
speculation.

3.2 Scenario 2 - uPort

Scenario Description. This second scenario addresses an identity management
solution. Such solutions aim to facilitate the management of identifiers, authen-
tication, personal information, and the presentation of this information to other
parties. Typically, in these solution schemes, a trusted identity provider such as
a government, issues attributes to a participant. These participants store their
attributes on their mobile device. This allows a verifying party such as a retailer,
to verify the validity of the attributes issued.

Several companies (e.g. Consensys, Evernym, and IBM) advertise their block-
chain-based identity solution. Here we focus on uPort [36] by Consensys. uPort
is an identity management solution that uses the Ethereum blockchain [38] for
so-called account recovery. In this account recovery process the user reclaims
ownership of a unique number, called a persistent identifier (PI). This then
allows participants to easily (re-)obtain attributes from issuing parties, by prov-
ing ownership of this PI.

The uPort app allows a device, such as a smart phone, to connect to a
specific smart contract on Ethereum. This contract contains a unique number
represented by the PI, which is linked to the participant’s public key. When, for
example, the device holding the attributes and private key is lost, a participant
may prove to be the owner of the PI. Ownership of this PI is proven by requesting
multiple trusted parties to state that, indeed, the participant is linked the unique
number, after which the user can link a new public key to the PI. Currently, uPort
seems to be the only identity management solution that offers recovery of a PI.

Scenario Properties. In this scenario, state in the form of a smart contract is
stored on the publicly verifiable Ethereum blockchain. From a participant per-
spective, all writers to the contract holding the persistent identifier are known,
since these are the parties (e.g. friends or government) trusted by the partici-
pant. In this scenario the owner of a smart contract, including its trustees, can
write to the contract. Furthermore, a centralized party, for example the issuing
party of the attributes, could store the unique number related to the attributes
of a participant. Therefore, following the model of Wüset and Gervais, there is
no technical rationale to use blockchain technology in this scenario as all writers
are trusted.

Philosophical Beliefs. The mission of uPort states that “we believe that everyone
has the right to control their own digital identity” [36]. Blockchain technology
offers a platform that can be used by everyone and, therefore, using a blockchain
is in the interest of uPort. From a company perspective, offering such a platform
is based on principles that drive uPort, such as company purpose, economic
principles, and social impact. However, from a technical perspective there is no
need to use blockchain for the unique number recovery, as explained above.
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Network Effects. Blockchain technology offers multiple functionalities, such as
storing of data, reaching consensus, and an audit trail. As companies often won-
der how blockchain functionalities can benefit their company, curiosity may have
played a role in blockchain adoption in this scenario.

Economic Incentives. The uPort app points to a perceived single source of truth,
the blockchain. When more participants would adopt the uPort app, uPort would
gain more exposure, recognition, and funding. Still, the need for blockchain tech-
nology can be questioned. Ethereum, despite its novel design, currently contains
several issues such as scalability [4], energy consumption [23], and lack of decen-
tralization [12]. Instead, an independent group of trusted third parties could be
used to manage the unique identifier of the smart contract. However, blockchain
technology is also a marketing tool to arouse interest in a product [3] which in
this scenario is the identity solution, or to arouse interest in an organization [1,2].

3.3 Scenario 3 - Agricultural Products Supply Chain

Scenario Description. In this third scenario a public permissioned blockchain
called Hyperledger Fabric by IBM [5] is used. This blockchain tracks certificates
in a supply chain of table grapes. In this scenario [11], a farmer in South Africa
produces organic grapes, and presents such a claim to a certification authority.
This authority issues a certificate to the farm, allowing the farm to certify its
grapes. Grapes are stored in boxes, which are identified by a unique barcode.

To ensure a correct certification process, certification authorities are accred-
ited by an accreditation authority. The certification authority stores the certifi-
cate it receives from an accreditation authority on the blockchain. Additionally,
details of the certification authority are stored on the blockchain, so that anyone
may see which party certified a farm. This entire process is audited. An audi-
tor may revoke the certificate issued by the certification authority, for example,
after the discovery of unauthorized pesticides [31] being used in the production of
the fruits. An auditor also may revoke accreditations made by the accreditation
authority. Here, both revocation types are recorded on the blockchain.

The grape boxes are shipped to resellers in Europe, after which the grapes
are sold to supermarkets, and eventually to customers. Since it is unknown who
may purchase the grapes, public verifiability is required. This allows all parties
involved to query the blockchain for the validity of the organic certificate. Also,
change of ownership is recorded in the blockchain, and provenance of the labeled
boxes can be determined. From this description we observe that there are mul-
tiple, known writers. However, these writers are not trusted, as can be observed
from the cascading audit trail from farmer to auditor.

Scenario Properties. In this scenario the origin and background of the grapes
are stored on the blockchain. Furthermore, multiple writers are present, such as
certificate authorities and auditors. Finally, the state stored must be publicly ver-
ifiable, as consumers verifying the grape origins must read from the blockchain.
Furthermore, in this scenario it is clear that writers are not trusted, because
there exists an extensive audit trail. However, blockchain technology does not
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replace the audit trail. In this scenario blockchain technology introduces a decen-
tralized administrative system in which audit findings are stored. In fact, even
with blockchain technology, audits still must be performed to ensure that each
party involved follows the regulations. Although blockchain technology may offer
insight in the entire audit trail, a shared centralized database could achieve the
same. This database could be managed by the highest auditing authority in this
grape scenario, as this is the final trusted party in the supply chain. Therefore,
as there may exists a TTP, according to Wüst and Gervais [39], there is no
technical rationale to use a blockchain in this scenario.

Philosophical Beliefs. In this scenario, blockchain technology is used as an alter-
native to a centralized solution. However, in any solution for this supply chain
scenario, some form of trust is third parties is unavoidable, because trust has
to be placed in auditors that audit the entire certification process. Furthermore,
there is also trust in the shipping company for not changing the content of the
grape boxes. For example, it would be feasible to exchange the contents of the
boxes containing organic grapes with those boxes containing non-organic grapes
during transport. Therefore, in essence, trust is placed in the integrity of the
information stored on the blockchain. All participants rely that the information
on the blockchain is correct only by trusting the auditors.

Network Effects. As blockchain is a complex technology, companies may exper-
iment with it by creating proof of concepts. Indeed, the aim of the original
scenario [11] was to provide a proof of concept based on blockchain technology.
As other technologies, such as a centralized database, seem not to be considered,
we assume that the use of blockchain technology is also driven by curiosity.

Economic Incentives. It benefits the technology supplier (here IBM) to use
blockchain in this scenario, as it may provide related consulting services. Fur-
thermore, the successful implementation of its technology serves as a platform
for future scenarios. In such scenarios both the technology as well as consultancy
may be provided. We therefore argue that in this scenario blockchain adoption
is also driven by company principles.

Furthermore, in this scenario FOMO may also be a driver for blockchain
adoption. Here, FOMO applies to all parties involved considering the potential
of blockchain technology. However, as other technologies are not considered in
[11], only blockchain seems to offer a solution to track certificates.

4 Discussion

All technical conditions must be met to ensure the appropriateness of using
blockchain, if we follow the scheme of Wüst and Gervais [39]. However, in the
uPort and supply chain scenarios only some technical drivers are addressed.
Indeed, blockchain is used in both scenarios, despite that there appears to be
no technical rationale to use blockchain, according to Wüst and Gervais [39].
Clearly, the scenario properties suggested in [39] alone are insufficient in explain-
ing blockchain adoption.
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As can be observed from Table 1, the majority of drivers for blockchain adop-
tion in each of the three scenarios is non-technical. However, the technology
supports at least one underlying technical property in a scenario, such as stor-
ing of state. Therefore, we conjecture that blockchain adoption is driven by a
combination of both technical and non-technical drivers.

Furthermore, we observe that in each scenario a TTP could be used. There-
fore, blockchain technology is not needed for any of these scenarios, according to
[39]. However, in the Bitcoin scenario there used to be an underlying academic
problem, namely, how can a consortium of unknown participants reach con-
sensus. Nakamoto [22] aims to answer that question by introducing blockchain
technology. Therefore, a rationale exists to use blockchain in the Bitcoin scenario.

5 Related Work

Although several models exists to determine technology acceptance, the Tech-
nology Acceptance Model [8] is most employed [7]. Blockchain technology and
the Technology Acceptance Model (TAM) are discussed in, for example, [10],
[3]. TAM is used to determine technology adoption based on two major con-
siderations, perceived usefulness and perceived ease of use by the intended user.
Depending on the research domain, TAM has been extended with other consid-
erations such as ‘perceived playfulness’ for the web acceptance, and ‘perceived
user resources’ in bulletin boards systems [14]. In our work we distinguish four
considerations (i.e. the driver categories) for the adoption of blockchain.

Debabrata and Albert argue that blockchain may eliminate fraud in supply
chain management [9]. However, eliminating fraud only by using a blockchain
in the grape scenario is impossible. A TTP must remain present to verify the
claims made by the farmers, certification authorities, and accreditation authori-
ties. Here, blockchain cannot replace the trust in human observation of a complex
process.

Seebacher and Schüritz propose that the qualitative aspects of transparency
and autonomy play a role in blockchain adoption [24]. In addition to these two
aspects, in our work we argue that blockchain adoption lies in both the technical
and non-technical drivers, and we identified a total of 20 drivers.

6 Future Work

In our work we have shown that technical and non-technical drivers exist for
blockchain technology adoption. Various models have been suggested to support
this decision making process, as discussed in Sect. 2. These models, however,
do not mention alternatives to blockchain. A further analysis, and a possible
extension of these models is needed to determine if blockchain is appropriate.

Also, trust in a third party appears to be a much broader concept than the
trust a blockchain can offer. In fact, this technology appears to provide trust in
integrity of the data recorded on the blockchain. However, we assume that the
trust needed by a participant goes beyond integrity of data alone. Therefore, it
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is unlikely that blockchain can fully replace a TTP. Additionally, the concept
of trust has been defined in many ways [19]. For example, one way of defining
trust is the willingness to depend, meaning that you make yourself vulnerable
to another person in a situation by relying on them [18]. However, these many
definitions also makes that the concept of trust is diffuse, and it is unclear what is
defined as a Trusted Third Party. How blockchain shifts trust, and which types
of trust are affected by blockchain also seem interesting subjects for further
explorationBlock.

Furthermore, additional scenarios that involve blockchain technology could
be analyzed in order to determine the value of blockchain technology over alter-
native technological solutions. Here, possibly more drivers for blockchain tech-
nology adoption may be found. Also, extending this work by adding weights
to the drivers may be part of future work. Adding weight to drivers allow for
determining which driver influences blockchain technology adoption most.

7 Conclusion

Many people have questioned the rationale behind blockchain adoption [6,16]. To
support such claims, methodologies have been proposed to see if blockchain suits
a particular scenario [20,39]. Such methodologies are mainly based on technical
drivers, which are properties inherent to a scenario. In real-life scenarios we see
that sometimes a blockchain-based solution is chosen even if these methodologies
would argue against that.

Given the inherent lack of technical drivers in some scenarios, the choice for
blockchain technology may seem irrational. Our novel insight is that blockchain
adoption may be explained by non-technical drivers, namely philosophical
beliefs, network effects and economic incentives. These drivers may explain, after
all, the rationale behind blockchain adoption. Our work can be generalized to
other scenarios that involve cryptocurrencies, identity management solutions and
supply chains, as it is likely that similar scenarios contain the same drivers.
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Abstract. Android smartphones ubiquitously available, they are mobile
and have sophisticated communication opportunities. With Opportunis-
tic Networks, we can use the wireless connectivity of smartphones and
other smart devices to relay messages in store-carry-forward fashion from
one node to another to implement novel data-oriented applications. We
can use these networks for high-bandwidth local data transfers, in cases
with low or no connectivity, such as in third-world countries or remote
areas, or in cases where communication should not leave any traces.
In the last years, we developed an Android application for Opportunis-
tic Networking, named opptain, that can be deployed on off-the-shelf
unrooted smartphones and smart devices, enabling to harness this idea
by simply installing an app. As the quality of such networks is essential,
we implemented a test framework for Android-based opportunistic net-
works to run tests and aggregate results automatically. In this paper, we
present the evaluation results of a field experiment we conducted with the
opptain application, in which we used 26 devices to evaluate the outcome
typical use cases. The tests show that the expected quality is reached and
provides robust performance for various applications. In total, opptain,
the testing environment, as well as the results themselves, are promising;
for an office scenario in which interference is more common than in other
possible scenarios, we achieved encouraging results.

Keywords: Opportunistic Networks · Android · Smartphones
Smart devices · Field tests · Measurement study

1 Introduction

Opportunistic Networks (OppNets) are disorganized Delay Tolerant Networks
(DTNs) with typically not existing end-to-end paths between nodes at a given
time. Nodes in OppNets can be represented by, among others, human-carried
equipment like smartphones, tablets, and other smart devices. Since there is
no end-to-end path between nodes, Store, Carry and Forward routing is used
in these networks. By this, messages can be passed on from node to node in
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the proximity, whenever an opportunity of data exchange occurs, which hap-
pens through the mobility of the nodes. We can classify routing schemes into
flooding-based and utility-based approaches. The simple Epidemic [10] routing
approach is a flooding-based routing scheme which replicates messages to every
encountered node that does not yet own a message copy. One of the utility-based
routing schemes, on the other hand, is PRoPHET [5] which relays messages only
if the connected node has higher delivery predictability.

Researchers working on OppNets are only able to simulate sufficiently large
networks. For simulating OppNets, there are multiple tools available [1], such
as The ONE Simulator [4] and PeerfactSim.KOM [2]. We can take results from
the simulators to improve real-life OppNets, but it is also desirable that results
of real-life OppNets improve the parameters of the simulator.

Real implementations of OppNets are limited to communicating devices
handed out by one organizer. One example is the Sámi Network Connectiv-
ity project [6] which provides network connectivity to nomadic reindeer herders.
The authors of [7] give another example which describes conference badges which
are used by researchers to connect and exchange research interests. If there is
a match, the user is made aware of the communication partner and a conversa-
tion is initialized. Additional information about their research can be exchanged
automatically and used by the device owner after the conference. These current
use cases only support a limited number of participants.

We use non-rooted off-the-shelf Android devices to establish OppNets on
mobile devices and thus opening the opportunity for OppNets with millions
or billions of users. Android devices “continue to capture roughly 85% of the
worldwide smartphone volume”1. opptain [3] is an Android-based application
to establish OppNets on smartphones and other smart devices. We are working
on opptain with regard to connection possibilities, routing schemes, forward-
ing strategies, drop policies, security, and multiple signal way transmissions.
We implemented several routing schemes, forward and drop policies and have
multiple third-party applications available. Implemented routing schemes are
PRoPHET, Epidemic, and (Binary) Spray & Wait/Focus [8,9]. The third-party
applications can use the provided API to use the opptain network; under ongoing
development are catastrophe, chat, file sharing, and gaming applications, as well
as a distributed database. This shows the wide range of applications possible to
run through this local, trace-less communication.

To test opptain and to create automatically running field tests, we developed
a test framework application. This framework helps to distribute a settings file
to all test devices opportunistically. All devices start the test at the same time,
and after the test period, all individual results are aggregated on one device for
evaluation.

The goal of this paper is to show that Android-based OppNets are capable of
successfully transmitting and delivering data such as chat messages or files. By
establishing such an OppNet, messages and files that are not time crucial can be

1 See https://www.gartner.com/newsroom/id/3859963.

https://www.gartner.com/newsroom/id/3859963
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transmitted locally and without an Internet connection. This is interesting for a
variety of situations.

During an office scenario, for example, there are both messages and files
that are not time crucial among others that cannot be delayed and have to be
transmitted in almost real-time like in prioritized emails. The former mentioned
messages and files, however, can be transmitted via our OppNet.

Another example is a catastrophe scenario where there may be a loss of Inter-
net connection to communicate with each other. Crucial in this scenario would
be people in need of help which could be asked for with the help of an Opp-
Net built up by smartphones from exactly those people involved. A message or
rather request for help could be either answered or carried along by every partic-
ipant in range and later on received by another person and delivered successfully
respectively.

Also, our OppNet is applicable for situations with no infrastructure in general
like areas with strict Internet surveillance going on, where communication must
be hidden or is otherwise blocked. In such a censorship-risky scenario, people
can communicate through an OppNet to stay connected and self-sufficient.

opptain may also be deployed in great rural areas without infrastructure.
In a village scenario, there is a large area to cover for transmitting messages
between villages or small towns. In this use case, delay is not crucial considering
inter-village movement is rather slow.

The contributions of this paper are the following:

– We developed a methodology for evaluating Android-based OppNets.
– We developed a test framework for the evaluation, for which different routing

protocols, forward and drop policies, TTLs or many different OppNet-related
variations can be tested.

– We ran an initial field test with 26 devices. We created a testbed of devices
and ran it with real people in our university building representing a use case.

– We present and discuss the findings of this field experiment.

The results show that we can use an Android-based OppNet to forward infor-
mation in office scenarios. We discuss how we can use these results for the pre-
diction of other scenarios, like catastrophe situations.

2 Methodology for Evaluating Opportunistic Networks

In this section, we present the methodology to evaluate OppNets in general, and
specific for Android-based OppNets. We define the metrics that are used to eval-
uate OppNets and the message states to determine those. After that, we define
our experimental setup to test the opptain application in a field experiment.

At the end of this section, we defined our test setup and metrics to present
the evaluation in the next section.
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2.1 Message States

In this section, we define the state of a message in the network. In OppNets a
message can either be at the sending node, a relaying node, or the destination.

The essential message states are the following:

1. ‘generated’ describes that a message is generated at some node.
2. ‘received’ describes that the message is forwarded to a relay node but not the

destination.
3. ‘delivered’ describes that the message reached its destination.
4. ‘reacted’ describes that a new message is generated in reaction to a delivered

message. The delivered message’s origin serves as the new recipient.

Both, simulators and our test framework track these message states as input
for the metrics’ formulas. We show these metrics in the following section.

2.2 Metrics

In this section we present the metrics for evaluation of our network. We identify
Delivery Ratio and Delay as the primary metrics and Overhead Ratio and Hop
Count as secondary metrics. While these four metrics can be used in OppNets
generally, two additional metrics, Client Time and Hotspot Time, are important
metrics for our specific Android-based OppNet.

The metrics used in this paper are the following:

1. Delivery Ratio is the ratio between delivered messages and generated ones.
Therefore, it is calculated with

DR = MDelivered/MGenerated (1)

where M is the sum of messages and DR is the calculated delivery ratio. As
there are no end-to-end paths in OppNets, message delivery is not guaranteed.
Therefore, Delivery Ratio is an essential measure for OppNets.

2. Delay is the time that successfully delivered messages need to reach their
destination. Therefore, it is calculated with

D = TSDelivered − TSGenerated (2)

where TS is the time in seconds and D is the calculated delay. As messages
are relayed in store-carry-forward fashion Delay is used to measure the quality
of the network.

3. Overhead Ratio is the ratio between transmissions and delivered messages.
Therefore, it is calculated with

OR = MTransmitted/MDelivered (3)

MTransmitted = MReceived + MDelivered (4)

where M is the sum of messages and OR is the calculated overhead ratio. We
track Overhead Ratio as most routing protocols create message copies and all
copies are transmitted more often than necessary.
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4. Hop Count is the number of hops that are necessary to deliver a message.
5. Client/Hotspot Time is the duration a device is either hotspot or client.

Android devices are not able to connect in ad-hoc fashion but use the Wi-Fi
infrastructure mode [3]. Due to these limitations a device is either a tethering
hotspot or acts as a client, and the devices have to be in different states to
transfer data. The duration of Client Time and Hotspot Time show how long
the devices are in each state, respectively.

2.3 Setup of Field Test

In this section, we describe the setup of our field tests. The goal of this evaluation
and field test is to show how an Android-based OppNet performs in a typical
office scenario with reasonable demand for data exchange. An office scenario
provides us the possibility to test our network application in a realistic environ-
ment. We handed out 26 pre-configured, unrooted Android mobile devices, out
of which 18 were mobile and eight static during office time.

With the help of our test framework, it is possible to set parameters in
opptain. Possible settings are routing protocol, TTL, message size, the time
interval in which messages are generated, the probability to react to a delivered
message. These settings can be changed in a simulator as well so that a supportive
comparison in a simulator is doable. A simulator could also emulate the network
and opportunistic meetings, based on our field study. In the field test, the devices
are spread to users. Our test framework can aggregate the data and log the
message states on sending, relaying and receiving devices. Thus, the field tests
could be reproduced in simulation.

In our test setup, we choose an overall test duration of five hours since these
are the core hours of an average office day in our test environment. Crucial
during this time are TTL and routing protocols as those are varied parameters.
For routing, we choose either Epidemic [10] or PRoPHET [5] with a routingMinP
of 0.4 and 150 and 300 min TTL respectively. The randomly generated messages
are at a fixed size of 10 Kb. The response probability is set to 70 which implies
that there is a 70% chance that there will be a direct reaction to a delivered
message.

We choose to model the network into four communication islands (sub-
networks) to simulate opportunistic behavior through individual offices. Islands
2 and 4 each consist of four devices whereas island 1 consists of ten and island 3 of
eight devices. Communication between islands is only possible if the participants
move around within the range of other participants’ devices.

We chose to run two field tests simultaneously. Both networks are defined that
only devices of the own network can connect to each other. Running two field test
at the same time has two advantages: First, we can cope with possible outages
of devices. Second, we can compare two test runs with the same parameters,
pattern of movement, and social interaction of the participants. A disadvantage
might be the WiFi interference of the networks to each other, but in a typical
office scenario, there already is WiFi interference.
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Table 1. Numerical results

Network Min Max Avg
All 0.48 15844.26 1375.03

Reacted 0.48 15519.59 660.77
1 0.57 15519.59 842.99
2 0.90 2327.90 109.55
3 1.34 8351.99 621.41
4 2.60 5743.31 203.13

(a) Delay (s)

Network Min Max Avg
All 38.31 71.44 60.85

Reacted 67.90 86.66 79.60
1 49.15 86.61 75.25
2 0.00 100.00 68.88
3 6.52 80.79 51.22
4 0.00 100.00 85.94

(b) Delivery Ratio (%)

Network Min Max Avg
All 4.44 6.39 5.15

Reacted 2.58 3.78 3.11
1 4.05 9.34 6.32
2 2.48 10.20 4.83
3 2.56 30.00 8.63
4 2.95 10.91 4.99

(c) Overhead Ratio

Network Min Max Avg
All 1.00 7.00 1.97
1 1.00 4.00 1.39
2 1.00 1.00 1.00
3 1.00 3.00 1.24
4 1.00 1.00 1.00

(d) Hop Count

Network Min Max Avg
All 0.099 328.028 43.472
1 0.099 325.007 48.453
2 9.803 40.936 22.923
3 0.109 328.028 49.790
4 15.271 57.210 34.745

(e) Client Time (s)

Network Min Max Avg
All 30.014 234.191 53.476
1 30.069 234.191 57.500
2 30.014 77.045 47.219
3 30.017 137.158 53.655
4 33.013 70.048 48.026

(f) Hotspot Time (s)

3 Performance of Real World Opportunistic Networks

In this section, we evaluate the performance of real-world OppNets based on
the metrics described in the last section. In the end, results are related to one
another and discussed.

The measurements indicate as the main result that the OppNet for our test
purpose is at all events capable of reliably transmitting data with an average
delay of 1375.03 s and a delivery ratio of 60.85%. In the following, we depict
the results of our field tests. Note that we evaluate the overall average of all
field tests merged with all sub-networks and additionally we evaluate the overall
average of all field tests partitioned by every single sub-network.

Figure 3 shows results separated by test runs. The first two characters indi-
cate the number of the test and its duplication; the three digits indicate the
TTL of 150 and 300 min respectively. The last character indicates the routing
protocol used for testing (either [e]pidemic or [p]RoPHET).

Thus, we can analyze every single sub-network completely encapsulated from
each other without intersection (see Table 1). In this case, we consider only mes-
sages generated, received, delivered and reacted inside this sub-network. There-
fore, these messages are just a subset of all messages and no inter-sub-network
transmissions are considered. That is why it is not possible to compare the overall
overhead ratio of all field tests to that of only a single sub-network.

Delay. On average a message’s delay was 1375.03 s (∼23 min) from its cre-
ation time until it was successfully delivered. The value of the upper bound is
15844.23 s (∼4.4 h) and therefore about 11.5 times higher than the average value.
With a value of roughly just half of a second, the lower bound shows a rather
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(a) Delay (b) Delivery (c) Overhead (d) Hops (e) Client (f) Hotspot

Fig. 1. Box plots of the metrics

fast transmission. Thus, the highest delay of all field tests is almost as long as
the overall test duration.

50% of delay per message is in the range of around 1150 s (∼19 min) to 1700 s
(∼28 min). The upper 25% of delay is between approximately 1700 and 2250 s
(∼37.5 min) (see Fig. 1a).

Sub-networks 1 and 3 show an average delay of 842.99 (∼14 min) and 621.41 s
(∼10.3 min) respectively whereas sub-networks 2 and 4 present a faster transmis-
sion (see Table 1) of 109.41 (∼1.8 min) and 203.13 s (∼3.4 min). Also, the upper
bounds correspond in this manner. As of sub-networks 1 and 3, there is a max-
imum delay of 15519.59 and 8341.99 s. Sub-networks 2 and 4 show us a delay of
2327.90 and 5741.31 s.

Delivery Ratio. Having a closer look at the delivery ratio we see that of
all generated messages on average 60.85% arrived at their randomly selected
destination. The upper and lower bounds are at 71.44 and 38.31%. 50% of the
delivery ratios are between about 56 and 64%, and the upper 25% are in the
range of around 64 and 72%. There is one outlier set at the absolute minimum of
38.31% (see Fig. 1b). As for the sub-networks values of the lower bound strongly
differ from each other ranging from 0 to 49.15% delivery rate. The upper bound
ranges from 71.44 to 100%.

Overhead Ratio. The overhead ratio of all field tests shows us that for every
message delivered to its destination 5.15 messages were received by relay nodes
on an average. Thus, it appears that for one message to be successfully delivered
almost 40% of all nodes received this message. We see that the upper and lower
limits are 6.39 and 4.44 respectively. There is no significantly high or low value
relative to the average value, so it seems all networks were flooded with messages
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almost evenly. This appears to be plausible considering that the test framework
randomly generates messages in a uniformly distributed span of time. So the
more messages are generated, the more can and will be transmitted. Also, since
we only use routing protocols on the basis of flooding messages are spread very
broadly. This behavior was presumed during preparation. 50% of all overhead
is set between 4.8 and 5.4 generated messages per delivery. 25% set from 5.4 to
6.39 messages (see Fig. 1c).

As for the sub-networks, there are more broad ranges from lower to upper
bounds. At a maximum, there is an overhead of 30 messages (4.67 times the
overall average value). At a minimum, there is an overhead of 2.48 messages (1.73
times the overall average value). The average values differ by 3.48 messages (sub-
network 3) at maximum and by 0.16 (sub-network 4) at minimum. It is evident
that sub-network 3’s upper limit is quite elevated compared to the corresponding
average’s value (see Table 1) That is because numerous messages did not reach
their destination. However, this is only the worst-case of all field tests and the
average value distributed across all field tests is much more significant. Such a
peak might happen inside an OppNet since the results of our study are entirely
dependent on human movement and interaction with each other.

Hop Count. The average hop count is oscillating around two hops and is almost
constant through all field test. The maximum value over all four sub-networks
ranges from 1 to 7. Half of all hops of all networks and all tests are in the range of
1 to 3 (see Fig. 1d). While 22.5% of all hops are in the range of 3 to 6 hops, only
2.5% of all hops are placing at 7 hops. Sub-networks 2 and 4 have an average of
1 hop, which is the only possible option since each sub-network consists of two
devices.

Client Time Versus Hotspot Time. The overall time a device resides in
client state is about 43 s compared to about 53 s in hotspot state (see Fig. 1e
and f). In sub-networks 1 and 3 there is a maximum of 325 and 328 s (∼5 min)
respectively in client state and for both sub-networks a minimum of one-tenth
of a second. This seems to be a very small value and is due to the mode of
operation of opptain which may not be able to establish this state and continue
to its next one entirely. In hotspot state, there is a maximum of 234 and 137 s
and a minimum of 30 s.

50% of all devices reside in a range of about 10 to 49 s in client task. The
upper 22.5% range from 49 to about 75 s whereas the top 2.5% of all client times
range from 100 to a maximum of 328 s.

50% of hotspot times reside in the range of roughly 48 to 53 s. Thus, this
task is oscillating around 50 s at an average. The upper 22.5% range from about
53 to 80 s. However the last 2.5% of the upper bound ranges from about 95 to
234 s.

In sub-networks 2 and 4, the ranges of client task and hotspot task combined
set from 22.923 s to 48.026 s. Thus, sub-networks 2 and 4 show a more narrow
span of time in contrast to sub-networks 1 and 3.
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Table 2. Numerical results of message states

Nw. Min Max Avg
All 539 726 663.38
1 63 102 84.13
2 4 9 5.75
3 41 60 50.88
4 5 15 8.63

(a) Generated Messages

Nw. Min Max Avg
All 2344 4778 3637.62
1 602 1314 1068.5
2 0 129 75
3 121 779 395.63
4 2 124 102.5

(b) Received Messages

Nw. Min Max Avg
All 367 983 724,25
1 298 488 399,63
2 0 128 74,38
3 80 382 223,75
4 2 123 102

(c) Delivered Messages

Nw. Min Max Avg
All 271 742 545
1 43 234 137,88
2 0 38 15,25
3 5 119 57,13
4 0 30 16,88

(d) Reacted Messages

Message States. Figure 2 and Table 2 show a distribution of the four predom-
inant states a message can be in. As for generated messages, there is an average
of 663.38 over 5 h test duration. Thus, about 2.1 messages per minute are gen-
erated. On an average 545 messages are resent as a reaction of delivered ones.
Roughly 720 messages are delivered. Included in those are also messages reacted
on. With an average of 3637.62 messages, received messages are about 5.5 times
the size of generated ones.

(a) Generated (b) Received (c) Delivered (d) Reacted

Fig. 2. Number of messages for each state

Reacted Messages. Delivered messages are reacted on at an average of 75.25%.
That produced an overhead of 3.11 received messages per delivery. Thus, that
is nearly two-thirds of the overall overhead ratio (see Table 1). Messages reacted
on are delivered at an average of 79.6% with a delay of 660.77 s (∼11 min).

These numbers allow identifying possible use cases of OppNet-based appli-
cations on Android-based smartphones in an office environment.
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4 Discussion

In this section, we correlate the previously described outcome of our field tests.
First, we compare the individual test runs among each other emphasizing com-
monalities and differences, followed by a general discussion of all results.

A test run with a TTL of 300 min was expected to be much worse concerning
overhead ratio than a run with a TTL of 150 min as there would be much more
transferable messages inside the network. Both are conducted with the Epidemic
routing protocol. The equivalent test runs 1A-150e & 1B-150e and 3A-300e &
3B-300e show however that this assumption cannot be verified evidently.

Epidemic routing supposedly produces a higher overhead than its modified
version PRoPHET which uses a threshold value and algorithms to determine a
suitable node to forward a message to. Also, it was expected that PRoPHET
presents a superior ratio between overhead and delivery meaning there would be
the same delivery ratio with less overhead ratio. These assumptions are also not
supported.

Test run 3A-300e presents the highest values in overhead ratio, delay and
hop count plus the lowest delivery ratio (see Fig. 3). In theory, a high overhead
ratio can be linked to an elevated hop count and slow transmission. We would
expect both high delivery ratio and high overhead ratio combined since the
chance would be higher to deliver a message with an elevated overhead ratio.

The delay of 1A-150e and 1B-150e is very low in comparison to the other
test runs. This can be explained with the possibility that the TTL may run out
and messages eventually are not delivered. The high overhead ratio of 3A-300e
and 3B-300e is an indication for this assumption. Also, there is a possibility
that the client tasks and hotspot tasks did not run in favor of each other. It is
an issue of smartphones that two devices may not be able to connect to each
other because a client may only connect to a hotspot and not to another client.
Nevertheless, this is the only option for unrooted devices to interact with each
other without user interaction. It is the same with a hotspot that cannot connect
to another hotspot.

It is striking that test run 3B-300e presents the lowest overhead combined
with the highest delivery ratio while supposedly being the same as 3A-300e
in configuration and pattern of movement. This vast difference in delay and
overhead can be explained by the fact that one device failed during test run
3B-300e. Thus, potentially relevant data is lost, and results are tampered. The
failed device taken in account, the delivery ratio would be equal or even higher
than it already is. It is also important to see how important the message ferry
devices are in such networks.

In the test runs 1A-150e and 1B-150e, overhead ratio, delivery ratio and delay
are all roughly similar to those of test runs 4A-300p and 4B-300p respectively.
This is quite interesting since the first tests are performed with a TTL of 150 min
and with Epidemic routing as the last two tests are set up with 300 min of
TTL and the PRoPHET routing protocol. Thus, both groups of tests run on an
entirely different configuration.
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(a) Delay (b) Delivery Ratio

(c) Overhead Ratio (d) Hop Count

Fig. 3. Evaluation analysis according to the various setups

Almost the same results are presented looking at Table 1. Reacted messages
are delivered at a maximum rate of almost 90% plus with nearly half of the
overhead of all messages and with a comparatively low delay of 400 to 600 s.

These results are a strong indication that both setups fit quite well for a
use case in a scenario in which messages are exchanged continuously and are
supposed to be reacted on, such as in an office scenario.

5 Conclusion

This section concludes the previously presented results and correlates these with
realistic scenarios and use cases of OppNets.

Our evaluation shows that our smartphone-based OppNets can successfully
deliver data such as chat messages or files. We show that it is possible for partici-
pants to engage in a conversation and keep it maintained, though, with a certain
delay. Thus, OppNets can practically be used to sustain a local communication
structure with specific use cases. The results pose possibilities for a few real-life
scenarios like an average office day, catastrophe or censorship situations or the
village scenario. The used parameters may be applied to all of those situations.

Since it is essential that the vast majority of messages are delivered, we
propose to neglect overhead ratio in favor of delivery ratio. As we can see from the
results, all proposed scenarios rely on the social interaction of people in general.
Therefore, our OppNet only works through people’s movement and performs
even better with an equal distribution of participants inside the network area.
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Our OppNet may not be suitable for real-time transmission (for example
VoIP) since it is not guaranteed that there is a stable and constant connection
at all times. However, overall delay in a chat or mail conversation generally poses
no significant problem as long as time is no crucial factor.

For the future, we plan further testing in larger scenarios with the applica-
tions sketched in the introduction. This includes varying the message size, the
message creation frequency, and the mobility patterns to support more scenar-
ios. There are many parameters in general which can be adjusted and have to
be evaluated.

References

1. Cheraghi, A., Amft, T., Sati, S., Hagemeister, P., Graffi, K.: The state of simu-
lation tools for P2P networks on mobile ad-hoc and opportunistic networks. In:
IEEE ICCCN 2016: Proceedings of the International Conference on Computer
Communication and Networks, pp. 1–7 (2016)

2. Graffi, K.: PeerfactSim.KOM: a P2P system simulator - experiences and lessons
learned. In: IEEE P2P 2011: Proceedings of the International Conference on Peer-
to-Peer Computing, pp. 154–155 (2011)

3. Ippisch, A., Graffi, K.: Infrastructure mode based opportunistic networks on
android devices. In: 2017 IEEE 31st International Conference on Advanced Infor-
mation Networking and Applications (AINA), pp. 454–461 (2017). https://doi.org/
10.1109/AINA.2017.32
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Abstract. This paper copes with the issue of extracting mobility pat-
terns in a urban computing scenario. The computation is parallelized by
partitioning the territory into a number of regions. In each region a com-
puting node collects data from a set of local sensors, analyzes the data
and coordinates with neighbor regions to extract the mobility patterns.
We propose and analyze a “local” synchronization approach, where com-
putation regarding a specific region is performed using the information
received from a subset of neighbor regions. When opposed to the usual
approach, where the computation proceeds after collecting the results
from all the regions, our approach offers notable benefits: reduction of
computation time, real-time model extraction, better support to local
decisions. The paper describes the model of local synchronization by
means of a Petri net and analyzes the performance in terms of the abil-
ity of the system of keeping the pace with the data collected by sensors.
The analysis is based on a real world dataset tracing the movements of
taxis in the urban area of Beijing.

Keywords: Smart city · Mobility patterns · Local synchronization
Parallel computation

1 Introduction

This paper presents a novel approach that can be used for the execution of
distributed smart city applications. We consider a scenario in which the paral-
lelization of computation is performed by partitioning the territory into regions,
and each region is assigned a portion of the computation, for which the input
data has been collected locally. The sample application analyzed in this paper
is the extraction of mobility patterns traced by people and vehicles over a city
area, aiming at providing useful real-time information about mobility-related
phenomena. To this purpose, we assume the existence of a network of sensors
distributed in a city, which collect data about traffic, road, weather conditions,
noise, etc. The analysis of such data, performed in coordination among the nodes,
can provide useful real-time insights for transport users and traffic operators and
can help to tackle a vast variety of mobility situations, e.g., congestion, safety,
tolling.
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The presented approach exploits the fact that useful information can be
obtained by analyzing the data related to a local area of the territory. Specif-
ically, if the computing node assigned to a region is able to process local data
together with data coming from a subset of neighbor regions, it is possible to
rapidly extract mobility patterns regarding a significant portion of the city. With
this approach, the computation does not require the all–to–all or global synchro-
nization among the nodes (i.e., all the nodes need to synchronize and collect all
the data before proceeding to computation), as typical with the master-slave
paradigm. Instead, the opportunity emerges of synchronizing the computation
only among a limited number of parallel nodes, without the need for a cen-
tral coordinator node. With this “local” synchronization, a computation at one
node can proceed after being notified about the mobility patterns discovered in
neighbor nodes, and can then concatenate those patterns with the ones discov-
ered locally. This allows mobility patterns to be available much more rapidly,
while the patterns regarding the whole territory can still be made available by
progressively extending the area covered by the local patterns.

In a previous work, we assessed the benefits of local synchronization in a
context where the objective is to predict the Internet traffic generated by mobile
users in a city avenue [4,5], in a monodimensional scenario. Here we focus on a
different and more general application case where the scenario is bidimensional
and real-time analysis is crucial, as the computation needs to keep the pace
with the production of data. We consider the case in which the computation is
step-based, i.e., at the end of a predetermined time interval (i.e., an hour) it is
possible to process the data regarding that time interval. The main benefits of
local synchronization are:

– Faster computation. Local synchronization allows the overall computation
to proceed faster, see Sect. 5. Intuitively, with global synchronization a long
execution at a node compels all the other nodes to wait, thus slowing down the
overall computation, while with local synchronization only the neighbor nodes
(i.e., the nodes assigned to neighbor regions) need to wait before proceeding
to the next step;

– Real-time model extraction. The previous benefit applies both to offline and
online computation. In the latter case, a further advantage is that a faster
computation helps to keep the pace with the data collected by sensors;

– Better support to local decisions. With local synchronization mobility patterns
are available earlier, enabling a faster reaction to local events, e.g., a traffic
congestion. This is particularly useful if the territory partitioning follows the
administrative organization. For example, based on the extracted patterns,
decisions on the traffic management in a city district can be performed auto-
matically or semi-automatically;

– Better data traffic management. With local synchronization, data is trans-
mitted among neighbor nodes, which is an advantage – in terms of data
traffic, congestion avoidance and battery consumption in the case of wireless
transmission – with respect to the case when all the data is delivered to a
single node.
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In this paper we focus on the first two advantages. We have modeled the local
and global synchronization paradigms through a Petri net and, starting from
real data extracted from a dataset regarding the mobility of users in the city of
Beijing, China, we have performed a set of experiments varying the partitioning
of the territory and the computational power of the nodes. We came to the
conclusion that local synchronization allows the system to keep the pace with
data production in a wider set of scenarios than global synchronization.

The rest of the paper is organized as follows: Sect. 2 discusses some related
work; Sect. 3 describes the problem of extracting mobility patterns in an urban
scenario; Sect. 4 presents the Petri net that models the computation; Sect. 5
reports performance results regarding the ability of local synchronization to
timely process the generated data; Sect. 6 concludes the paper and suggests
some avenues for future work.

2 Related Work

The availability of urban and environmental data enables to extract mobility-
related knowledge and achieve real-time traffic prediction that can support citi-
zens in their everyday mobility. For example, it is possible to predict travel events
and conditions (travel times over the street segments, traffic jams, slowed down
traffic, congestion points, start-stop locations, availability of parking places) and
road infrastructure conditions (bumpy road, slippery road surface, damaged road
surface location).

Discovering mobility patterns from object movements is a very challenging
task and several approaches to deal with it have been proposed in the litera-
ture [2,3,8,9]. In [3] a sequential approach to discovery hidden periodic patterns
in spatiotemporal data is proposed. In particular, authors define the spatiotem-
poral periodic pattern mining problem and propose an algorithm for retrieving
maximal periodic patterns. Moreover, they devise a specialized index structure,
aimed at supporting more efficient execution of spatiotemporal queries over the
discovered patterns. A parallel approach to estimate an object future location,
based on pattern information and recent movements, is proposed in [2]; specifi-
cally, the discovered trajectory patterns are stored in the TPT (Trajectory Pat-
tern Tree), a tree data structure exploited for an efficient and accurate prediction
of future locations. In [8] the big data generated from mobile devices is analyzed
in parallel at different locations and a final model is extracted by aggregating
several local models following a master-worker paradigm. In particular, human
mobility patterns are discovered by learning data-adaptive representations for
cellular network data that are distributed across a set of interconnected nodes.
In [9] a cooperative smart driving direction system is presented, where GPS-
equipped taxis are employed as mobile sensors aimed at probing the traffic
rhythm of a city. In particular, the main idea is to exploit the intelligence of
experienced taxi drivers so as to provide a user with the practically fastest route
to a given destination at a given departure time.
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3 Distributed Mobility Analysis in a Smart City

The analysis of mobility data is conceived for a scenario in which a city is par-
titioned into N regions, and for each region a computing node (e.g., a Rasp-
berry unit) collects and processes data coming from the sensors located in the
region. As mentioned in the introductory section, mobility patterns discovered
in a region can be concatenated with those discovered in neighbor regions, so as
to obtain patterns covering a wider area. The partitioning of the city in regions
can follow the administrative organization of the city, i.e., the shapes of the city
districts. However, for the sake of simplicity, and to allow a readier analysis of the
performance results, in this paper we consider equally-sized regions, uniformly
distributed over a two-dimensional grid, as represented in Fig. 1.

Fig. 1. A city partitioned through a bidimensional grid. This map represents the city
of Beijing.

The discovery of mobility patterns is usually modeled in literature as a fre-
quent itemset mining problem [3]. Let us suppose N sensors s1, ..., sN that collect
streams of urban mobility data in a region. Specifically, each sensor si collect a
data stream of data Di = {vt1

i , vt2
i , · · · , vtn

i , · · · }, where each v
tj
i represents the

value of a given observed measure (intensity of traffic, average speed, occupation
of the lane, etc.) at the sampling time tj . A common approach to assist mobility
services is the discovery of frequent mobility patterns from such data. A frequent
mobility pattern is represented in the form vt1

i vt2
j · · · vts

k , where the elements of
the pattern represent item values that co-occur together with a high frequency
(higher than a given threshold value). The mechanisms of association allow to
identify the conditions that tend to occur simultaneously, or the patterns that
repeat in certain conditions. As an example, a frequent pattern can represent the
flow of vehicles along the city avenues, i.e., the observation that a large number
of vehicles have been observed at a given location during a time interval and have
been later observed in a successive time interval in adjacent locations. Moreover,
rules can be derived from mobility patterns, in the form vt1

i vt2
j · · · →c vts

k with
time constraints t1 < t2 < . . . < ts. The blocks on the left and on the right are
the premises and the consequence of the rule, respectively, and c is its confidence
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Fig. 2. Transitions modelling a grid partitioning of a city territory.

(meaning that when the premise event occurs then the consequence event will
happen with probability c).

The discovery of mobility patterns has been performed by running an algo-
rithm for frequent items and itemsets mining that we described and assessed in
[1], and then by assembling the patterns discovered locally with those received
by neighbor regions. The assembling operation consists in concatenating a pat-
tern discovered in the local region with another pattern discovered in one of
the adjacent regions, in the case that these two patterns overlap on the border
between the two regions. In this way, two local patterns are joined and a longer
inter-region pattern is discovered. This approach requires the definition of a syn-
chronization barrier: the computation at one node, at a given step, can proceed
only after receiving the results of the computation performed by neighbor nodes
in the previous step. The formalization is provided in the next section.

4 The Petri Net Computational Model

The parallel computation process described in this paper is modeled by using
a Petri net [6]. This formalism has been chosen because it allows to represent
and analyze the main issues related to the parallel and distributed nature of the
examined scenario, in particular concerning the synchronization aspects. The
city territory is partitioned into multiple regions through a bidimensional grid,
and the computation step – aiming at deriving the mobility patterns – is modeled
by considering a timed Petri net transition for each region. In Fig. 2 we report the
case in which a territory is partitioned into nine regions and, as a consequence,
nine Petri net transitions are considered. The layout of the transitions mirrors
the topological and neighborhood relationship among the corresponding city
regions. For instance, the transition A is associated with a city region which has
three neighbors, respectively modeled by the transitions B, D and E.

In the following we derive a Petri net modeling the case of local synchroniza-
tion, while at the end of this section we focus on the case of global synchroniza-
tion. Figure 3 shows the Petri net associated with a single region, in this case,
region E, chosen here because it is the one having the largest number of neigh-
bors in Fig. 2. Beyond the transition associated with the computation, a further
transition, i.e., transition P in the figure, is defined to model the data acquisition
process. The acquisition process is performed through sensors that are spread
over the territory. We assume that at each region this data is produced and
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collected at regular intervals of time, e.g., every hour, at a single node. The time
interval is denoted as Tprod. The transition P is used to inform the computation
transitions of all the regions that the data has been collected for the last time
interval and is ready to be analyzed.

Fig. 3. Details of the Petri net model related to a single region in the city.

With reference to Fig. 3, the node at region E (also referred to as node E
in the following) can execute the next computation step when: (i) the node has
completed the previous computation step (ii) the node has received the results
related to the previous computation at the neighbor regions and (iii) the data
collected by the sensors during the last time interval has been collected and
consigned to the node. In terms of the Petri net formalism, the transition E is
connected by inbound arcs to ten input places, and in accordance with Petri net
rules [7], the transition is enabled, and the computation can start, if all the input
places hold at least one token. More in detail, the transition at node E is enabled
when there is one token at the input place Ready, meaning that the previous
step has been executed by node E, one token at the place Data, meaning that
the sensor data is available, and one token at each of the eight remaining input
places, meaning that all the eight neighbor nodes have completed the execution
of the previous step. As an example, one token is produced at the input place AE

when the transition A has completed its execution and node A has transmitted
the results to node E.

Once the node E has completed the computation step, it communicates the
results to its neighbors. This is modeled by the Petri net as follows: after the
firing of E, a token is consumed at each input place, and a new token is generated
(i) in the place Ready and (ii) through the outbound arcs shown in the figure,
in the input places of all the node E’s neighbors, i.e., in the input place EA of
the neighbor A, in the input place EB of the neighbor B, and so forth.

Figure 4 shows a portion of the whole Petri net model, which includes the
Petri net of node E and the analogous Petri nets of the other nodes. For the
sake of readability, the input places used by a node X to synchronize with its
neighbors are collapsed into a single place, labeled as NGX , and the arc that
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Fig. 4. A Petri net of the proposed computational model.

connects this place to the transition X has a weight equal to the number of X’s
neighbors. For example, the eight places labeled as AE , BE , CE , DE , FE , GE ,
HE , IE in Fig. 3 are now substituted with a single node NGE connected to node
E with an arc having a weight equal to eight. Analogously, the outgoing arcs
directed to the input places of neighbor nodes are substituted with a single arc
on which the input places are specified1.

From the definition of the Petri net models, it emerges that the time experi-
enced at a generic node i at the end of the step k + 1, denoted ad Ti(k + 1), is
determined by the recursive expression (1):

Ti(k + 1) = max
(
Ti(k),max(TNgh(i)(k)), Tprodi

(k)
)

+ Tcompi
(k + 1) (1)

where TNgh(i)(k) is the set containing the times experienced at all the nodes that
are adjacent to node i at the end of the step k, Tprodi

(k) is the time at which
the data related to step k has been consigned by the local sensors to node i, and
Tcompi

(k + 1) is the time needed by node i to compute the step k + 1.
In the case of global synchronization, the approach for synchronization is cen-

tralized: at each step a central entity receives the results (i.e., the local mobility
patterns) from every node that has completed the step, and after receiving the
results from all the nodes, sends an ack to every node to trigger the execution
of the next step. For brevity, here we do not show the Petri net that models the
global synchronization case.

1 Even with these simplifications, the Petri net maintains the desired semantics if
we assume that: (i) the computation at each region has a progressive step number,
(ii) each token holds the step number of the related computation, (iii) in a NGX

input place, only the tokens having the same step number can be used to enable the
transition.
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5 Experimental Evaluation

In this section we analyze the performance of the sample parallel application, i.e.,
the prediction of mobility patterns for an urban scenario (Sect. 3). In this paper
we focus on the computational efficiency, while we do not discuss the semantics
of the extracted patterns, nor the way they are obtained by concatenating those
discovered in neighbor regions, which is left to a future work.

The main objective is to analyze the advantages deriving from the local
synchronization strategy, with respect to the usual global synchronization strat-
egy. We developed a Matlab simulator that reproduces the local synchronization
model, in particular the recursive expression (1) of Sect. 4, and the global syn-
chronization model. The execution times of the nodes are established by consid-
ering the real execution times obtained when executing the algorithm for mobil-
ity pattern analysis on a real dataset, namely T-Drive Trajectory Data Sam-
ple [10]. T-Drive is a collection of GPS traces describing the movement of taxis
in the city of Beijing, China. In this fashion, we were able to assess the expected
performance of local and global synchronization for a real scenario. Section 5.1
describes the T-Drive dataset and the scenario of interest, while Sect. 5.2 reports
some interesting performance results.

5.1 Dataset Description and Scenario of Interest

The temporal span of the T-Drive dataset is one week. The number of vehicles
tracked is 10,357. The total distance covered by the trajectories reaches almost
9 million kilometers, with 15 millions of locations (geographic points). The total
data size amounts to about 772 MB. The original dataset was preprocessed to
make it suitable for the analysis. In particular, we cleaned the data by remov-
ing all the points with unreliable position (i.e., coordinates with clear errors in
latitude-longitude values) and those outside the city area of interest. The final
dataset counts about 61,500 daily trajectories, each containing the set of points
traced by a single taxi during a day.

The T-Drive dataset has been used to simulate a scenario where streams of
data are collected by sensors distributed in the regions and analyzed to discover
frequent mobility patterns in a city. As mentioned in Sect. 3, the analysis has
been performed by running an algorithm for frequent itemsets mining that we
presented in [1], and then by assembling the patterns discovered locally with
those received by neighbor regions.

Since the conditions in urban environments change dynamically, the genera-
tion rate of data and the processing times vary during the day and among the
regions. For this reason, we split the T-Drive data by considering time win-
dows of one hour, and we executed the algorithm by analyzing the volume
of data generated in those time windows. To analyze the statistical behavior
of the algorithm execution time, we clustered the computation time by hour
(for example, a cluster includes the execution times obtained from 5:00 pm to
6:00 pm of all the different days), computed the average of each cluster and then
normalized each computation time with respect to the average of its cluster.
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The distribution of the normalized execution times is reported in Fig. 5. The
figure also reports the probability density function of a normal distribution with
same mean and standard deviation. The two distributions appear very simi-
lar, which is confirmed by the fact that the Pearson coefficient is higher than
0.95. In conclusion, approximating the execution times with a normal curve is a
reasonable assumption.
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Fig. 5. Histogram of the normalized execution time of the algorithm for frequent item-
sets mining. A normal distribution with same mean and standard deviation is also
reported.

Though we base the analysis on the real data related to a specific city, in
this case Beijing, we aim to assess the performance for a more general scenario,
so as to draw conclusions that are related to the use of the local synchronization
approach in general, and that are not tied to a given city only. To this aim, we
define an experimental frame as indicated in the following:

1. we consider a city partitioned into N regions through a bidimensional grid,
with square numbers of equally sized-regions, i.e., N = 2 × 2, 3 × 3, etc.

2. we assume that the extraction of mobility patterns is executed on each region
by a computing node that receives and collects the mobility data produced at
sensors every time interval Tprod, which is set to 1 h. Therefore each computing
step is associated with the computation performed on the data of a specific
hour;

3. we assume that the users are distributed uniformly in the area of interest.
When considering the central area of Beijing, we found this assumption rea-
sonable. The rationale of this assumption is that the analysis of a uniform
scenario is preliminary to subsequently understand what happens in a non-
uniform scenario, which will be the subject of further studies;

4. all the N computing nodes are assumed to have the same computation power;
5. this computation power of nodes is varied by adopting the following approach.

We assume that the average time that would be needed by a single node to
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perform the computation at a single step for the entire area is Tserial. Then, we
define R = Tserial/Tprod and vary the values of this ratio by varying the value
of Tserial. Clearly the computation power of nodes in inversely proportional
to the ratio R;

6. the average computation time, Tnode, defined as the average time needed to
perform the computation on a single node, is assumed to be proportional
to the number of users located in the corresponding region, and then to the
area of the region. Therefore, when the area is partitioned into N regions,
Tnode = Tserial/N . When considering the definition of R given in the previous
item, it follows that Tnode = (R · Tprod)/N ;

7. the time needed to communicate (transmit and receive) data with the neigh-
bor nodes is negligible with respect to the computation time. This assump-
tion is reasonable because the nodes only need to transmit synthetic models,
i.e., the results of the mobility pattern analysis, which can be done in a few
seconds.

5.2 Experiments

The performance analysis was performed by using a Matlab simulator that repro-
duces the local and global synchronization models, as discussed at the beginning
of Sect. 5, under the assumptions listed in the previous subsection. The local
computation times used in the simulator are extracted from a normal distribu-
tion with average equal to Tnode = (R · Tprod)/N (see item 6 in Sect. 5.1)2. To
analyze the benefits of local synchronization in the case that different degrees of
variability are experienced, the standard deviation σ of the normal distribution
was taken as a parameter, and it was set to three different values, i.e., 0.25·Tnode,
0.5 · Tnode and 1.0 · Tnode. The number of simulated steps is equal to nstep. The
evaluated performance indices were the following:

– the average step time Tstep, defined as the average time to perform a com-
putational step on all the nodes. It is computed as the time to execute nstep

steps of the Petri net model divided by nstep. This index allows to assess the
ability of the system to timely process the data coming from sensors. More in
particular, the system does not keep the pace with data production (in the
following, we say that it is “unstable” for brevity) when Tstep is larger than
the acquisition interval Tprod, while it keeps the pace (it is “stable”) when
Tstep = Tprod. The value of Tstep cannot be lower than Tprod, because the
computation of a step must wait for the arrival of the related data;

– the fraction of missed deadlines, Fmiss, defined as the fraction of times that
a node receives new data coming from the sensors (the data produced during
the interval Tprod) before completing the computation related to the previous
bunch of data, i.e., the fraction of times that a single node does not keep the
pace with data production.

2 Negative values of the normal distribution are discarded and re-extracted.
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The experiments were carried out when setting Tprod to one hour and the
number of steps nstep to 720, corresponding to 30 days with the chosen value of
Tprod. Furthermore, we considered different numbers and computation powers of
nodes, more in particular, values of N ∈ {2, 4, 9, 16, 25}, and values of R ranging
between 1 and 12.

Figure 6 shows the values of the two performance indices versus the value
of R, when setting the number of nodes to 9, 16 and 25, and the value of the
standard deviation σ to 0.25 ·Tnode. In the left figure we can see that the system
is stable (i.e., Tstep = 1 hour) when the computation is partitioned on 25 nodes.
When using 16 nodes, the system is stable with local synchronization, but it is
unstable with global synchronization when R is greater than 11. When using 9
nodes, we notice that there is an interval of values of R, between 6 and 7, for
which the system is stable with local synchronization and unstable with global
synchronization. The values of Fmiss confirm this behavior: when the system
is stable the fraction of missed deadlines is zero or negligible, while this index
increases up to 1 when the system becomes unstable.

In Figs. 7 and 8 we report the performance values obtained when assum-
ing a larger variability of local computation times, as detailed in the captions.
When comparing these results to those in Fig. 6, we can notice two interesting
phenomena:

– when the variability increases, the system tends to be unstable even with low
values of R, i.e., with high values of the computation power of nodes. For
example, with R = 10, the system is stable (Tstep = 1 hour) with σ = 0.25 ·
Tnode when using 16 and 25 nodes, with both local and global synchronization;
it is stable with σ = 0.5 · Tnode only when using 25 nodes, irrespective of the
type of synchronization; it is stable with σ = 1.0 · Tnode only when using 25
nodes and local synchronization;

– when the variability increases, the advantage of local synchronization
increases as well. For example, if Fig. 8 is observed, we can notice that there
is a significant range of R values (between 8 and 10 for the case N = 25)
for which the system is stable with local synchronization but unstable with
global synchronization.

The reported results confirm the benefits brought by local synchronization.
Indeed, in some scenarios with local synchronization it is possible to keep the
pace with data production, while it is impossible with global synchronization and
it would be required to either increase the number of nodes (which means install
more computing nodes and sustain larger costs) or increase their computational
power. It will be important to assess this interesting outcome when removing
the simplifying assumption of uniform user distribution. When the distribution
is non-uniform, it can be useful to modify the territory partitioning, for example
by defining smaller regions where the user density is higher. Indeed, this is one
of the issues of our current research work in this field.
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Fig. 6. Values of Tstep and Fmiss versus the ratio R, with N = 9, 16 and 25, and σ
equal to 0.25 · Tnode. Characters “g” and “l” in the legend refer to global and local
synchronization, respectively.
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6 Conclusion

In this paper, we presented an original approach based on local synchronization
which is exploitable for the execution of distributed smart city applications. The
main idea is to speed up the computation by limiting the overhead induced
by the synchronization of the parallel nodes operating in different regions of
the city. Specifically, with the presented local synchronization approach, each
node needs to synchronize only with a set of neighbor nodes, instead of all the
other nodes as required by the classical master-slave paradigm. As a specific
application domain, the extraction of mobility patterns in an urban area was
considered. Results, based on the analysis of a real dataset, showed that local
synchronization helps to better keep the pace with the production of data in the
environment, and that the advantage increases with the variability of execution
times. This work has focused on the computation performance of the mobility
patterns analysis. We have not discussed the semantics of the extracted patterns,
nor the way they are obtained by concatenating those discovered in neighbor
regions, but we intend to focus on this aspect in a future work. Other interesting
research avenues are:

– extend the mobility patterns analysis to other city contexts;
– apply the approach to other smart city applications like those related to traffic

management, transportation systems, and crowd monitoring and control;
– improve the approach so as to consider scenarios having a non-uniform and

dynamic distribution of the workload among city regions;
– enrich the approach by furnishing a theoretical framework for the local syn-

chronization approach.
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Abstract. The usage of Online Social Networks (OSNs) has become a
daily activity for billions of people that share their contents and personal
information with the other users. Regardless of the platform exploited
to provide the OSNs’ services, these contents’ sharing could expose the
OSNs’ users to a number of privacy risks if proper privacy-preserving
mechanisms are not provided. Indeed, users must be able to define its
own privacy policies that are exploited by the OSN to regulate access to
the shared contents. To reduce such users’ privacy risks, we propose a
Privacy Policies Recommended System (PPRS) that assists the users in
defining their own privacy policies. Besides suggesting the most appropri-
ate privacy policies to end users, the proposed system is able to exploits
a certain set of properties (or attributes) of the users to define permis-
sions on the shared contents. The evaluation results based on real OSN
dataset show that our approach classifies users with a higher accuracy
by recommending specific privacy policies for different communities of
the users’ friends.

Keywords: Decentralized online social networks
Recommendation system · Privacy · Privacy policies · Security

1 Introduction

The usage of Online Social Networks (OSNs) has become a daily activity for bil-
lions of people who share several private information on current OSNs, exposing
them to privacy leaking. Indeed, current OSNs are free to use, and they make
money by selling private data to advertisers. The last scandal involves Facebook
and private data collected by Cambridge Analytica1.

1 https://www.theguardian.com/technology/2018/apr/04/facebook-cambridge-
analytica-user-data-latest-more-than-thought.
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During the last decade, several solutions have been proposed to overcome
the problem of current OSNs. One of the main promising is the decentralization
of social services. Decentralized Online Social Networks (DOSNs) guarantee a
higher level of privacy because data is distributed and users can have more
control over their personal data. The access control is one of the most used
technique to prevent privacy leaking in DOSNs. Indeed, the majority of existing
DOSNs provide a set of privacy policies based on the knowledge derived from
the relationships, content or profile information, etc...

In this paper we propose a new approach to define a Privacy Policy Rec-
ommendation System (PPRS) based on community detection in DOSNs. The
motivation of this work is that users with common attributes are more likely to
be friends and often form dense communities [15]. For this reason, our method-
ology exploits a set of attributes which describe properties of the users (such as
location and school information). By considering the homophily between users
[6], we compute communities based on the social graph and we exploit a decision
tree learning algorithm to suggest privacy policies for such communities.

The evaluation conducted on real dataset shows that the proposed approach
shall be capable of providing higher level of accuracy by correctly classifying
the 80% of the users’ friends in the proper community while exploiting different
attributes of the users.

The paper is organized as follows. In Sect. 2 we propose an overview of the
state of the art of privacy in OSNs. In Sect. 3 we introduce our approach. In
Sect. 4 we describe the dataset used to evaluate our approach. Section 5 shows
the evaluation of the approach, and finally, in Sect. 6 we propose our conclusion
and future improvements.

2 Related Work

Nowadays, the most popular OSNs are based on centralized architectures where
private data are stored in centralized storages which are under the control of the
administrations. The centralized management of data exposes to several privacy
risks. Indeed, malicious users, the service provider, and third-party applications
can access users’ private data. As explained in [11], the main attacks in OSNs are:

– Privacy breaches: attacks to strike the users’ privacy. Three primary parties
interact are involved: the service provider, the users, and third-party appli-
cations.

– Viral Marketing: spamming and phishing attacks which exploit information
extracted from user profiles.

– Network Structural Attacks: the most famous one is the Sybil attack, in which
an individual entity masquerades as multiple simultaneous identities.

– Malware Attacks: usage of OSNs to spread malicious software.

One of the main solution to the privacy issue in OSNs has been the introduc-
tion of Decentralized Online Social Networks (DOSNs) in order to overcome the
centralization of data [17]. Several works have been proposed during the last
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ten years which exploits P2P solutions to implement the underlying architecture
[1,4,12]. An important characteristic of DOSNs is that they provide the capa-
bility to define privacy preferences on the contents produced and exchanged to
define which users are allowed to see such contents [8]. Typically, privacy poli-
cies are simple statements which specify the main attributes a user can have to
access contents (such as friendship type, interests, work, school,...). In detail, a
DOSN proposes a privacy model [8] defined as the capability of DOSNs to pro-
vide privacy policies to specify the set of members who can access contents, and
a privacy policy management which guarantees that these policies are enforced
on each content by using proper security mechanisms.

3 Our Approach

Our scenario consists of a DOSNs in which each user has information about its
ego network, which includes the principal user (ego) together with the actors
they are connected to (alters) and all the links among these alters [2]. Each user
of the DOSNs can define privacy policies to manage the access to its content
[9], and it is characterized by a set of attributes, such as information about
personal profile (date of birthday, hometown, school, etc.) or information about
its preferences (music, movies). Each ego node knows the friends’ attributes and
it can exploit them to express their privacy preferences on these friends.

3.1 Privacy Policy Recommendation

The first step of the PPRS is the application of a community detection algorithm
to each ego network. The algorithm we used is DEMON [3] because it can be
adapted to an ego centric approach and it is computationally not expensive, as
explained in [13]. We extract the communities in the so called ego minus ego: a
network made of the ego network of a user where we remove the ego itself and all
edges connected to it. In this work, the community detection algorithm has been
configured to return a set of non-overlapped communities where each alter can
belong to only one community in the same ego network. The case of overlapped
communities is left as future work because it demands more investigation and
consideration than the case of disjointed communities. Each community has an
identifier, and this identifier is used as a user’s attribute, and it is inserted in
the attributes list of each ego to identify how its alters are clustered. At the
end of this phase, each ego node u has an array of attributes for each alter
f which contains: the values of the f ’s attributes p1(f), p2(f), p3(f), and the
communities C = {Cid|f ∈ Cid} of u.

The second step consists in the definition of decision trees which let us to
classify users. An example of decision trees is shown in Fig. 1. In Fig. 1(a) we
propose an example of six users with both their school attribute and the commu-
nity label associated. We exploit the School and Hometown attributes to build
the decision tree shown in Fig. 1(b). Finally, a privacy policy of a community
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Fig. 1. Example of the PPRS executed on the ego network (Fig. 1(a)) of a user with 6
friends having attributes and community label associated. The results of the PPRS is
the decision tree shown in Fig. 1(b)

can be provided by considering the attributes on each path from the leaves of
the community to the root of the decision tree. Thereafter, the conditions on
the attributes resulting from the model can be translated by the PPRS into a
privacy policy format. As for instance, the most part of privacy policy languages
leverage XML for defining constraints that must be satisfied by attributes of the
users [9]. Finally, the PPRS is able to suggest the most suitable privacy policies
to the user.

4 The Dataset

Information about attributes of Facebook users have been gathered by a Face-
book application (originally described in [5]), called SocialCircles!2, which
exploits the Facebook API to retrieve a set of social information about the
registered users which contain information about friends of registered users and
the friendship relations existing between them, profile information, and infor-
mation about interactions between registered users and their friends, such as
posts, comments, likes, tags and photo. Due to technical reasons (time needed
to fetch all data and storage capacity), we restrict the interaction information
retrieved up to 6 months prior to user application registration. The dataset we
use contains 205 complete Ego Networks, for a total of 95.716 users (ego and
their friends). In the following of this section we will present in more detail the
collected data to understand better its nature.

2 https://www.facebook.com/SocialCircles-244719909045196/.

https://www.facebook.com/SocialCircles-244719909045196/
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4.1 Features of the Dataset

We used the information collected from the OSNs to extract different features
of users that can be exploited as attributes by the PPRS. Such features (or
attributes) are properties of the users that can be either obtained from the
users’ profile (such as, age, sex, number of common friends, etc.) or derived from
the OSNs information (such as tie strength and trustiness). An overview of the
statistical properties that quantitatively describes the features obtained from
our collection of information are listed below.

Friends and Common friends. We first analyze the degree distribution of our
dataset. The graph of Fig. 2(a) shows the Cumulative Distribution Function
(CDF) of the number of friends of the registered users as well as the degree
distribution of the entire sample (all users). The graph clearly indicates that
50% of the registered users have at most 432 friends in their ego networks while
the most part of them (about 90%) have at most 1000 friends. In addition,
the CDF of the whole set of the users in our sample points out the presence
of a higher number of users (about 85%) having only one friendship relation.
According to [5], this is caused by Facebook privacy setting that could not
allow our application to collect enough information related to the friends of
the registered users.

We focus on the number of common friends between users by measuring
the number of mutual friends that each alter shares with the ego. As shown
by Fig. 2(b), the CDF of the number of common friends has exponential shape,
resulting in about 10% of the friendship relations between the egos and their
alters with any friends in common while about 50% of them have less than 8
mutual friends.

Age and Gender. We investigate the gender distribution by measuring the frac-
tion of male and female users who have registered to our application. Figure 2(c)
shows the gender distribution for both the set of registered users and of all users
in the dataset, as well as the median number of male and female users’ friends
of the registered users. We can observe that registered users registered consist
of about 127 (63%) men and 76 (37%) women while the whole set of users (all
users) is more balanced and it consists of about 54% men and 45% women. The
typical users established, on average, 202 (55%) friendships with men and 161
(45%) friend relationships with women.

We investigated the distribution of ages in our dataset by measuring the
difference between the birthday date and the current date. Figure 2(d) shows
the distribution of the ages for all the users in the dataset and for the set of
registered users. We observed that about 20% of the registered users and 40%
of all the users did not specify their birthday date or they provided an age of 0.
The median age of the registered users (30 years old) is higher than those of all
users (27 years old).
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Fig. 2. General description of the statistical characteristics of the Facebook dataset.

Hometown and Current Location. Geographical locations of the users are also
collected and they can be exploited to measure the distance or proximity between
users. The map in Fig. 3 indicates the geographical location that users have
specified in their Facebook profiles. In particular, we consider the hometown
(Fig. 3(a)) and the current location (Fig. 3(b)) of users because they could affect
their interaction patterns. The most part of the collected users have hometown
location and current location placed in Europe, where the application was ini-
tially disseminated. However, the maps indicate that our application had spread
also in America and a large portion of users came from North America.

Dunbar’s Circles. An interesting analysis with respect of the OSNs is the char-
acterization of the ego network of the user (introduced in Sect. 3). Indeed, many
studies showed that the number of active relationships that a user can establish
in his ego network is limited (about 150), the so called Dunbar number [10].
Figure 4(a) summarizes the average number of friends in each circle as well as
their 95% confidence interval in square brackets while the frequency of contacts
is used to estimate the tie strength between users. In particular, the closest circle,
called support clique (circle 0), consist of 4 [±0.17] and the typical frequency of
contact between individuals is estimated to be at least once weekly. The second
circle is the sympathy group (circle 1), being the set of individuals contacted at
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Fig. 3. Geographic map representing the hometown and current location of the users.

least monthly and it consists of 13 [±0.48] users. The next circle is the affinity
group (circle 2) which consists of 33 [±1.21] users, and finally the outermost
circle is the active network (circle 3), which consists of 84 [±3.2] users. The
total number of users that belong to the Dunbar’s circles is equals to 134 [±5]
while any other contact is considered to be a simple acquaintance. In particular,
acquaintances are friends of an ego e that are occasionally contacted by e and the
total number of acquaintances of an ego is equals to 391 [±15]. The procedure
performed to obtain the Dunbar’s circles are described in more detail in [5].

Community Structure. A significant property of OSNs is the community
structure, i.e., densely connected groups of users which are sparely connected to
other users. An important step for the PPRS is to identify, for each ego network,
to which community a specific user belongs to. For this reason, we consider
the ego networks of registered users and we utilize the community detection
algorithm exploited in [6,13] to compute both the number and the structure
of the communities. The total number of communities discovered in this step
is equal to 2237 and in Fig. 4(b) we show the CDF of the community size. The
average size of communities is about 60 contacts while about 80% of communities
has less than 250 nodes. Figure 4(c) shows the average number of communities
discovered in ego networks having different number of alters. The plot indicates
that the number of communities defined by users is weakly correlated with the
number of users’ friends: as long as the number of users’ friends increases the
number of communities of such users remains bounded to 30 while the average
and median number of communities for each ego network is about 14.

We focused on the size of the communities discovered in each ego network
and we showed in Fig. 4(d) the average size of the communities defined by users
having different number of friends. We observe that the size of the communities
of users strongly depends on the number of friendships established by such users,
resulting in left skewed distribution with average and median community size
equal to 444 and 176, respectively.
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Fig. 4. Analysis of the Dunbar-based and static communities of the ego network

5 Experimental Methodology and Results

We focused on the evaluation of the classification task, i.e., on the capability of
the PPRS to correctly identify the communities of users in each ego network by
exploiting the users’ attributes derived from the users’ profiles.

5.1 Training and Classification Algorithm

Since our dataset is a collection of registered users, we considered the ego net-
work of each registered user individually for the classification task. Given an ego
network of the registered user u, we perform a transformation phase on the orig-
inal dataset in order to construct an input dataset which contains a record R for
each friend in the ego network. The record R consists of the set of attributes that
a registered user u wants to exploit to define privacy policies on his ego network.
In particular, the attributes are derived from the dataset’s features (described in
Sect. 4.1) and they include, for each friend f of u: a) the sex of f , b) the age of f ,
c) the number of common friends between u and f , d) the distance (in meters)
between the hometown location of u and f , e) the distance (in meters) between
the current location of u and f , and f) the Dunbar’s circle to which f belongs, in
the ego network of u. In addition to these attributes, a target attribute is created
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for each friend f of the registered user u to indicate the community to which the
user f belongs, in the ego network of u, and it is used as (discrete, unordered)
class label by the classification task. For this reason, we create a class label(c)
for each community c in the ego network of the registered user u and we set the
target attribute of each friend f in the community c to the class label(c). The
goal of the classification task is to create a model for each registered user u that
can be used to classify each friend f of u in the proper community c, based on
a number of attributes related to f :

[gender, year, comm, distH, distC, dunbarCircle] ⇒ label(c) (1)

The model of each registered user u is created by exploiting the C4.5 Decision
Tree Learner [16], that is one of the most used methods for classification decision
tree. The algorithm builds a hierarchical decision tree which is used for classifying
the class label of a user. The attributes of f are used by the tree to routes f
towards a leaf node which contains a class label of the community in the ego
network of u. The conditions on internal nodes of the tree are generated by
splitting the domain of attributes in two partitions (i.e., using a binary split)
and the Gini index is used as a quality measure to calculate such splitting point.

5.2 Results Validation

In order to evaluate the models resulting from the supervised learning algorithm
we collected several performance measures for each decision tree of a registered
user u. The box plot of Fig. 5(a) shows the minimum, lower quartile, median,
upper quartile, and maximum, of different tree properties. In particular, we
consider the number of leaves in the tree (#Leaves), the size of the tree model
(Tree size), and both the number of friends correctly and incorrectly classified in
their community (Correct and Incorrect, respectively). The decision trees of the
registered users have an average number of leaves equals to 76 [±0.31], which
account for an average size of 151 [±0.63]. The size of the tree clearly depends
on the number of leaves but, in general, the 80% of the trees have less than
120 leaves. The attributes selected from the users allow to correctly classify
about 396 [±1.3] friends in the proper community while the average number
of incorrectly classified friends is equals to 80 [±0.4]. Indeed, the amount of
friends correctly classified by the model is high: 80% of the registered users have
correctly classified at most 535 friends in their ego network while the number of
friends incorrectly classified by the model is less than 130.

As shown by Fig. 5(b), the average fraction of friends correctly identified in
each ego network amounts to 85.6% with average relative absolute error equals to
44 [±0.05] while only 14.3% of the friends cannot be classified by exploiting the
selected attributes. In particular, the most part of the registered users (about
80%) have classified an average fraction of friends which ranges between 80%
and 95%. Figure 5(c) shows the average error rate is quite low (about 0.14)
while the median Kappa index, which measures the degree of accuracy and
reliability of the classification task, is equal to 0.64. As explained also in [7],
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Fig. 5. Analysis of the performance of the classification task

depending on the value of kappa, the index can be interpreted as [14]: (i) no
agreement if k ∈ [0, 0.2], (ii) fair agreement if k ∈ [0.21, 0.4], (iii) moderate
agreement if k ∈ [0.41, 0.6], (iv) substantial agreement if k ∈ [0.61, 0.8], and (v)
perfect agreement if k ∈ [0.81, 1]. Instead, the error of the predicted probability
distribution (Avg Abs Error) and the root mean square error (Root Sqrt Error)
are quite low and their media value does not exceed 0.13.

We investigated in more detail the ability of the predictors to correctly derive
the community to which users belong to. Figure 5(d) shows the CDF of the
recall and precision on the resulting models. As we expected, the recall of the
classifier in predicting the community of the users is very high (about 0.84) and
the precision of the most part of the users (80%) is higher that than 0.75. In
addition, the predictors show to have similar precision, indicating that the most
part of users are correctly classified by the models by exploiting the values of
the users’ attributes.

The last step in our analysis consists in evaluating the accuracy of the results,
indicating the ability of the model to classify friends that belong to different
communities while the F-measure summarizes the performance of each predic-
tor. We showed in Fig. 5(e) the CDF of both the accuracy and the F-measure
of the models. The average accuracy achieved by the model is 0.83 [±0.0004]
and it is to the median accuracy (about 0.80), suggesting that about 50% of the
models expose an accuracy higher than 0.80. Figure 6(a) shows the average per-
formance achieved by models which are build on users having different number
of friends, while Fig. 6(b) shows the attributes’ importance which is measured as
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Fig. 6. Analysis of the accuracy of the model for ego network having different size.

the information gain provided by an attribute in order to identify the class label
of a community. The graph clearly indicates that the most part of the models
have either accuracy or fraction of correctly classified friends higher than 0.8
while some users (those in the ranges [900–1200] and [1500,1800]) expose a lower
accuracy because the attributes specified by friends cannot be used to correctly
classify them in the proper community.

6 Conclusion

In this paper, we focused on the privacy issues related to the contents sharing
in Distributed Online Social Networks (DOSNs) by proposing a Privacy Policy
Recommendation System (PPRS) that suggests to users the most appropriate
privacy policy that expressing the groups of friends who can read the content they
share. In particular, the privacy policy specify the authorized users in terms of a
set of features encoded by attributes. Those attributes model different properties
of users (such as gender, age, common relationship, preferences, location, etc.)
and they are exploited by the PPRS to predict the privacy preference a user
would give to their friends. We investigated the capability of the PPRS to select
the attributes of the privacy policies by considering a real dataset obtained from
Facebook, and the communities of friends arising from the friendships defined by
each user. The experimental results performed on six attributes reveal that the
PPRS is able to suggest privacy policies which correctly grant access to about
80% of the members of the communities, achieving higher level of accuracy.

We plan to enhance the proposed system by introducing proper mechanisms
that adjust the conditions generated on each attribute by the PPRS in order to
refine the set of authorized members. A further extension is also the investigation
of the effect that different configuration parameters have on the performance of
the classification algorithm.
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Abstract. The problem of protecting sensitive data like medical
records, and enabling the access only to authorized entities is currently a
challenge. Current solutions often require trusting some centralized entity
which is in charge of managing the data. The disruptive technology of
blockchains may offer the possibility to change the current scenario and
give to the users the control on their personal data.

In this paper we propose ComeHere, a system able to store medical
records and to exploit the blockchain technology to control and track
the access right transfer on the blockchain. The paper shows the current
status of the project, presents a preliminary proof-of-concept implemen-
tation and discusses the future improvements of the system, and some
critical issues which are still open.

Keywords: Ethereum · Healthcare · Blockchain

1 Introduction

The huge amount of personal data produced by different networked services,
(social networks, health care services, selling services,...), are currently scattered
among numerous data servers owned by different companies. The end users do
not really have the control over their data and have to trust several entities
which manage them, hoping they maintain the privacy of users’ data. However,
their trust is, in many cases, misplaced, because these entities handle users’ data
in a hardly controllable and verifiable way. Logging events generated by users
to keep track of how data is used may be a solution, but in general, it is not
implemented, and, in any case, no guarantee against log tampering is given.

A nagging problem is that of sensitive data such as medical records which
may be scattered between numerous servers and encoded in different ways. When
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a user moves from a healthcare entity to another one, often he or she has to ask
for their own data. Furthermore, research groups need to gather lots of medical
data from a large number of individuals to support their researches and patients
have to trust those groups to maintain their privacy and data secure. However,
the tools to guarantee that only the proper entities access data and that gathered
data remains anonymous are often inadequate.

Medical data pose several challenges, some of the most important are sum-
marized in [2]. These data are sensitive and should be handled with the highest
security standards. In particular, amongst other requirements, users should be
able to delete their data; data should be exempt from tampering; only allowed
entities should be able to access and process users data; all additions, deletions,
and modifications of data should be logged, and all actors participating in the
data handling system should be accountable for their actions. A system designed
to fulfill security requirements would only allow access to a restricted set of
agents, requiring explicit user consent to grant access to new agents. However,
there are several cases in which requiring explicit consent could be impractical
or would be detrimental to users best interests, e.g. to allow access to medical
doctors in an emergency, or to allow researchers to develop drugs that the user
might need in the future.

The blockchain technology [1] has recently been proposed as a solution to
many of these problems. At a high level, the blockchain is a publicly accessible,
append-only, tamper-free, distributed and replicated ledger of the same type of
data. Using the blockchain technology and its characteristic to support tracking
of medical data is a novel research field. Even without completely eliminating
a centralized trusted entity, the blockchain technology could help to define a
public and trusted log, storing how users data is accessed and shared, enforcing
accountability for data access. Of course, control over data has to be guaranteed
to their real owners. Data may be encrypted and shared on the blockchain so
there is no way for people except who knows the right decryption key to access
the data. Furthermore sharing data on the blockchain must be done carefully
because, as already mentioned, it’s an append-only data structure so it’s impos-
sible to remove data from it.

The ComeHere project exploits the blockchain technology to create a shared,
trusted log of all the actions made over the data. This log is guaranteed to be
tamper-proof and the creation of its record is delegated to trusted code running
on the blockchain therefore not modifiable and publicly audible by every party
that use the system. The difference between a traditional storage system and
ComeHere is that the way data is shared, requested, saved etc. is publicly audible
and impossible to tamper.

The structure of the paper is the following: Sect. 2 presents a brief intro-
duction to blockchain technology, in particular Ethereum, and analyzes some
existing proposals close to our system. Section 3 describes the general struc-
ture and architecture of ComeHere focusing, in particular, on the role of each
smart contract. Section 5 shows how the system is implemented and the necessary
steps to execute each action available to the users. Some preliminary results are
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presented in Sect. 6, and finally, Sect. 7 concludes the paper pointing out some
open problems and future directions that ComeHere will take.

2 Background and Related Work

2.1 The Ethereum Blockchain

Blockchain technology allows creating an immutable, distributed and secure
database of arbitrary data. A distributed consensus protocol gives the rules on
how to manage and update the database (in particular decides what valid data
is to add). The first usage of the blockchain technology was as a support for
the Bitcoin cryptocurrency [6], in this scenario the database is used to record
the transaction between entities. ComeHere exploits the Ethereum blockchain [7]
which takes the idea of the Bitcoin blockchain and adds the possibility to execute
distributed applications defined through a Turing complete programming lan-
guage. The protocol has ether as currency. Entities in the blockchain, masked
with a pseudonym (addresses), can exchange value between them by sending
transactions to the network which are validated and update the global state.
To validate a transaction, miners in the network have to execute the Ethereum
consensus algorithm called Ethash which is based on PoW (i.e. Proof-of-Work).
The main characteristic of the Ethereum protocol is the possibility to use the
blockchain not only to store value but also code. Users can send transactions
carrying executable Turing complete code, the smart contracts. Transactions
can create smart contracts which deploy their code and link that to a public
address. Any new transaction sent to this address triggers the execution of one
of the functions inside the deployed smart contract. Transactions carry the func-
tion parameters needed for the execution. To validate such transactions the code
has to be executed, and this can possibly update the global state which can be
seen as the state the EVM, i.e. the Ethereum Virtual Machine, a virtual machine
that runs all the code stored inside the blockchain. Miners actually execute the
code inside the smart contract and they are rewarded for this: to each instruction
of the EVM it’s assigned a price proportional to the difficulty of that instruction.
This price is called gas. So a transaction will have a total gas cost which is the
sum of gas of every single instruction that has to be executed. Each transaction
specifies two parameters gas limit and gas price, the former is the maximum
amount of gas the transaction is allowed to consume, the latter is the amount
that the user creating the transaction is willing to pay for each gas consumed.

2.2 Blockchain and Access Control

The use of blockchain for giving permission and access to data has been recently
proposed, in particular for sensible records like health care data. The main reason
why we are trying to use this technology instead of standard and consolidated
ones is that the blockchain gives audibility and removes the need for trust-
ing who maintains personal data. The code is publicly readable and checkable,
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hosted in the blockchain, we don’t need anymore to trust closed systems that
promise functionalities we don’t have any control over. A general approach to
the use of blockchain as an access control is presented in [3,4] where they imple-
ment the standard XACML directly in the blockchain. In [5] the authors imple-
ment a typology of smart contract that pairs each patient to a medical provider
and stores pointers to data (as SQL queries) of the patient in the provider’s
database. [8] proposes a system where private blockchains are used to directly
store the data encrypted and HDGs (i.e. Healthcare Data Gateway) which are
off chain software are used as gatekeeper for the access to such data.

3 The ComeHere System: General Architecture

This paper proposes the ComeHere system, the Fig. 1 shows an high level repre-
sentation of the system architecture. The system includes a trusted centralized
server that maintains personal and sensitive healthcare data and exploits the
Ethereum public blockchain to create a public audible log of the history of the
data managed by the system. This log is made using 4 smart contracts commu-
nicating with each other, the server queries the smart contracts to give access
to data and the rights to access any data can be verified by anyone checking the
smart contract.

Fig. 1. Representation of the interaction and the structure of the ComeHere system

The aim of the system is to transform the provision of personal healthcare by
commodifying and brokering personal healthcare data (e.g. from WBS, mobile
devices or the IoT) to healthcare providers, enabling them to optimize preven-
tative healthcare and helping to achieve a more efficient healthcare system. The
system establishes the technical, logistic and socio-economic feasibility of the use
of a public blockchain as an access-control manager to personal healthcare data.
In particular, ComeHere aims to change the present paradigm where health-
care providers have to find people to base their study on. This system offers to
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healthcare providers an already established pool of people which will be informed
about the researches the providers are carrying on. Who is willing to participate
decides to opt-in giving the authorization to share personal and anonymous data
to them.

There are two types of actors in the system: institutions which use the system
to gather data to support their research and participants which take part in
researches and create data for them.

The system is formed by a centralized server and a blockchain where four
smart contracts have been deployed. The functions of the smart contracts are
the following ones:

– IdManager. Maintains the digital identity of the registered users
– ResearchManager. Maintains public information about published researches

and the list of participants of each research
– KSI. Keyless Signature Infrastructure, maintains information about submit-

ted data and stores the hash of all the data submitted as an anti-tamper
proof

– DataManager. Maintains authorization to store and retrieve data, and imple-
ments the real log of the access and storage of all the data managed by
ComeHere.

Every user is publicly identified by their Ethereum address. The personal
information which links an address to a person or institution is maintained
securely in the centralized server. The registration is done sending personal
data to the server that stores it in its database, and a message signed with
their Ethereum private key which proves they own the address. The server may
request additional information from the user and the registration is completed
when the address is saved on the IdManager. After the registration, only the
Ethereum address is required to interact with the system.

Institutions can publish researches by sending a transaction to the Research-
Manager smart contract with all the needed information that are saved directly
on the blockchain. The server maintains in its database a link to the published
research. Participants can request the list of the researches to the server which
gathers all the information from the ResearchManager and sends them to the
participant. If a participant decides to opt in a research, he/she sends a trans-
action to the ResearchManager which logs that he/she is now participating in
that research.

Participants are requested to publish data for researches. Data is stored in
the server database, while the blockchain is used to guarantee their correct usage.
First, the hash of the data is sent to the KSI smart contract. This proves that data
won’t be changed when submitted and after it is saved. Then data is submitted
to the server which checks the identity of the submitter and that the hash of the
data exists. The server logs on the blockchain the reception of the data. At this
point, the participant submits an authorization to the blockchain that requests
to save his data. The server sets in the blockchain a unique id that identifies the
data in its server and adds this id to the list of the research data’s id.
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To retrieve the data submitted for their researches, institutions send a trans-
action to the DataManager to log and authorize the request to retrieve data.
Then, they send the request to the server which asks the DataManager to check
if the authorization has been submitted, if the authorization is found, the server
retrieves the list of data’s id from the blockchain and sends those data, saved in
its database, to the institution.

4 ComeHere: The Smart Contracts

Each smart contract defines a set of public functions that can be called by every
registered user and some private functions reserved to the server which is the
only one that has the right to use them. Examples of private functions are those
setting the unique ID of some data or registering new users in the system. Those
functions can’t be public but are a prerogative of the server.

4.1 Keyless Signature Infrastructure

This smart contract allows registered users to publish the hash of their data,
those hash are also timestamped and the sender address is logged. The hash is
used as an anti-tamper proof for the data. The centralized server can invoke two
more functions of the smart contract which permit to log the event corresponding
to the reception of the data and to set the data unique id when it is saved (Fig. 2).

Fig. 2. Data stored in the KSI smart contract

4.2 IdManager

The smart contract saves the registered users of the system with their roles and
the permissions set during the registration process. Only the server has the rights
to register new users. In particular, institutions that retrieve data first need to
be identified by the system. The smart contract permits also to check the role
of every registered user. No personal information is stored in the blockchain:
users are identified by their address and the server maintains a link between the
address and the personal information (Fig. 3).
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Fig. 3. Data stored in the IdManager smart contract

4.3 ResearchManager

The smart contract allows registered institutions to publish new researches. The
data they provide is the research period and an URL where the user may find fur-
ther information about the research. Participants can utilize the smart contract
to participate in published researches (Fig. 4).

Fig. 4. ResearchManager smart contract is used to publish researches. It stores
research’s public info and the Ethereum address of each participant is added to the
participants list

4.4 DataManager

The smart contract logs requests to store and retrieve data from the server
database. Participants send a request to save data submitting the hash and
the project id of the data. The smart contract checks if the user is authorized to
perform this action and if the server has previously received the data. Institutions
can submit authorization to retrieve data for their researches, the smart contract
checks if the institution has the rights to send the authorization, in particular
if the research has started and has not finished yet. The server uses this smart
contract to set the unique ID of the data and also adds that ID to the list



592 M. Franceschi et al.

of research’s data. This smart contract is also used when an institution asks
the server to get the data for its research. The smart contract first checks the
existence of an authorization submitted within a day and retrieves the list of ids
of data to send to the institution (Fig. 5).

Fig. 5. DataManager has three different type of data structures: store authorization
used to store submitted data, Research’s Id List which maintains for each research the
list of data Id relatives to that research and retrieve authorization used to log when a
retrieve request is made.

5 ComeHere: Implementation

The server is implemented as a simple HTTP server which already gives all the
functionalities described, but it can also be used by sending requests directly
to it, without using a browser. The server doesn’t need to implement any reg-
istration or cryptographic protocol to identify the user that is interacting with
it, because the blockchain provides all the security and identification needed.
The interaction between the server and the blockchain is realized by exploiting
the standard web3.js library and truffle-contract1 library to instantiate and use
the smart contracts. The smart contracts are written using Solidity. Solidity is a
contract-oriented language which is compiled into a bytecode executable by the
Ethereum Virtual Machine.

The server monitors in real time when a new research is published and a new
request to save data is received. The identification of a user requires the server to
request from that user a signed message with its Ethereum address private key
which proves its identity and the signature is directly controlled by the smart
contracts code as an additional trust check.

The website pages provided by the server use Metamask plugin2 which injects
its own implementation of the standard web3.js library to interact with the smart
contracts and Ethereum blockchain.

As already mentioned, even if the server does not expose a proper API at
the moment, it’s already possible to send requests directly from the application
without standard authentication protocols. This is possible because each request
made to the server will be authenticated using the blockchain smart contracts.
1 https://github.com/trufflesuite/truffle-contract.
2 https://metamask.io.

https://github.com/trufflesuite/truffle-contract
https://metamask.io
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5.1 Registration

The registration is made by the server sending a transaction to the IdManager
smart contract. The address of the user to register is sent in the transaction along
with a message signed with that address’s private key and parameters chosen
by the server to set the permissions of the new user (e.g. possible permissions
are the ability to create or retrieve data and to publish researches). The smart
contract checks that the signed message is valid and registers the user in the
system.

5.2 Publishing Research

A registered institution with the authorization of publishing researches can send
a transaction to the ResearchManager smart contract to publish a new research.
The smart contract checks the authorization of the user, then stores all the
information in the public blockchain. The smart contract also fires an event that
informs that a new research has been published and the server stores the id of
the new research in its database. Other applications can also receive the event
and act accordingly, for example, a notification server can wait for those events
and push a notification on the mobile phone of a user.

5.3 Participating in a Research

A registered user can send a transaction to the ResearchManager smart contract
to opt-in a research. The smart contract checks that the user is registered in the
system and then adds its public address to the research’s list of participants.

5.4 Submitting Data for Research

A user submits data to the system by sending to the KSI smart contract a
transaction with the hash of the data. This contract first checks if the user is
registered and has the authorization to submit data. If this condition is true,
it stores the hash of the data with its timestamp and the address of the user.
Afterwards, the user sends the data to the server with its hash signed with its
private key.

The server again checks that the user is registered and authorized, then ver-
ifies the signature and if all these conditions are satisfied, it sends a transaction
to the KSI smart contract to log that it received the data, then it sends a pos-
itive response to the user. The user, at this point, can send an authorization
request to save its data to the DataManager smart contract calling the method
submitAuthorization. This method includes the hash of the data to save and the
id of the research for which data is saved. The smart contract checks that the
user of the data is participating in the research he is submitting data for and
that the sender of the data is also the owner of it. Then checks that the hash of
the data exists and has been sent by the same user who sent this message and
that has been received by the server. In this case, it stores the new authorization
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and fires an event that requests to save the sent data. The server waits for these
events and it is the only authorized to submit a transaction to the DataManager
smart contract which adds the Id of the data to the research’s id list and sets
the same Id on the KSI smart contract.

We plan to extend the ComeHere system to let users called Data Producers
to submit data on behalf of other participants and this is the reason for the
complexity of the procedure to submit data. If users submit data for themselves,
it is enough to publish the hash of data to the KSI smart contract and then save
it to the database. In the more general case, where Data Producers submit data
on behalf of other users, they have to send the authorization request and the
end user decides to authorize to save the data or not.

5.5 Retrieving Data for Research

When an institution wants to retrieve the data that has been previously sub-
mitted for its research, it needs first to submit an authorization request to
the DataManager smart contract, the authorization is used as a timestamped
retrieval requests to be stored on the log. The institutions send a transaction
which includes the ID of the research to retrieve data for and the DataManager
checks that the sender is also who published the research and that the research
has not been yet concluded. Note that each authorization is timestamped and
is valid for a day. Then the institution sends the request to the server which
requires it to sign a message with its personal Ethereum address private key
to prove its identity, then ask the DataManager to retrieve the research’s list
of data Id. The DataManager checks again that authorization not yet expired
exists, and, in this case, it sends to the server the list of data’s id to send to the
institution. In this case, the authorizations to retrieve data are just a log of the
number and time of the requests because when a user decides to participate in
a research it gives the consent to give the institution its data.

As a future work, ComeHere will also permit institutions, medical staff or
others entities called Data Retriever to request data from a user. In this case,
the authorization request is stored on the blockchain and the owner of the data
decides to give the authorization to access its data.

6 Experiments

We conducted a preliminary set of experiments on a ‘proof of concept’ system
including the server and a private Ethereum network running on our machines,
with just a node which validates all the incoming transactions. Even if in our test
every transaction is instantly mined, we can evaluate the average time required
to execute an operation like submitting new data to be at least 50 s in a real
Ethereum network, where a new block is mined approximately every 10 s.

We created 50 users that submitted random data each day for 9 days for a
single project. The simulation showed that with a fixed gas price of 5 gwei for
transaction (the standard gas price swings between 2 and 5 gwei in this moment)
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a total of 0.376352 ether was spent by the users which is equivalent to 283,85$ (at
an ethereum price of 755,35$3) each user spent 0.00752832 ether which is 5,68$.
This may be an issue with the utilization of this system because people won’t
willingly spend their own money to give data for free for researches. Including
a reward system for users or using another type of blockchain, for instance, a
permissioned one could resolve this problem.

Over the time of the simulation, the amount of space occupied in the
blockchain global state was 259.2 kbyte, not counting the space occupied by each
block mined during the process. We need to take in consideration the space that
this system occupies because blockchain space is expensive. The blockchain is
replicated in every node of the network so 259.2 kbyte are replicated in thousands
of others machines. We plan to solve this problem by defining a hierarchical solu-
tion including user’s node which does not store an entire copy of the blockchain
but connects to full nodes which maintain a full copy of the blockchain. Users’
nodes can send transactions and interact with the smart contracts using full
nodes.

7 Conclusions and Future Work

In this paper we presented ComeHere, a work in progress system to maintain
medical data secure and give permissions over them through the use of the
blockchain technology. The current implementation is a system where users pub-
lish their own medical data. In a real scenario, users never create medical and
biometrical data for themselves but hospitals, medical staffs, care services create
data for them. In the future, we plan to modify the system so that these third
parties could create, submit and also retrieve data for users. The system offers
a trusted environment where institutions may gather data for their research
projects. The system gives the possibility to store and retrieve data to third par-
ties so giving users a unique place where they can safely store and manage all
their data. The user approves requests from third parties to submit or retrieve
their data. The blockchain makes this possible, by registering the user’s decision
in a tamper-free distributed ledger. We plan to develop a full version of the server
and to implement a real API. A mobile app will be created to interact with the
system and also to enable interaction with other healthcare applications.

Some real-world problems have to be addressed before making ComeHere a
publicly available system. For example, in every cryptocurrency, there is no way
to recover a lost private key and who lose it automatically lose all his funds. Even
if losing funds is already a big loss, it’s not even comparable to losing access to
all your medical history. A system must be designed to address this problem.
The other problem that we need to address is the fact that we can keep track
of data while it’s inside ComeHere environment but when a user gives access to
some data to third parties actually trusting those third parties and trusting how
his data will be managed, we lose the traceability over that piece of data. After
these and others minor problems have been addressed we think that ComeHere
3 https://coinmarketcap.com/currencies/ethereum/.

https://coinmarketcap.com/currencies/ethereum/
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will be a really successful and groundbreaking platform that uses one of the most
discussed and researched technology of this time.
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Abstract. Genomics and related technologies, collectively known as
Omics, have transformed life sciences research. These technologies pro-
duce mountain of data that needs to be managed and analysed. Rapid
developments in the Next Generation Sequencing technologies have
helped genomics become mainstream, but the compute support systems,
meant to enable genomics, have lagged behind. As genomics is making
inroads into personalised health care and clinical settings, it is paramount
that a robust compute infrastructure be designed to meet the growing
needs of the field. Infrastructure design to deal with omics datasets is
an active area of research and a critical one, for omics to be adopted
in industrial healthcare and clinical settings. In this paper, we propose
a blueprint for an as-a service compute infrastructure for fast and scal-
able processing of omics datasets. We explain our approach with help
of a well-known bioinformatics workflow and a compute environment
that can be tailored to achieve portability, reproducibility and scalabil-
ity using modern High Performance Computing systems.

Keywords: Bioinformatics · HPC · Containers · Genomics
Workflows

1 Introduction

Biology is a Big Data discipline, driven largely by the advancements in instru-
mentation that produce vast quantity of data. The key technologies are col-
lectively known as Omics, consisting of genomics, transcriptomics, proteomics,
metabolomics and several imaging techniques. Researchers often use a combina-
tion, or variations, of omics techniques (multi-omics) to understand biological
systems in a comprehensive manner. Each of these omics techniques, can gener-
ate data in order of hundreds of gigabytes per experiment. The data magnitude
scales up vastly in mulit-omics studies. While the omics revolution, provides us
a magnifier to look at biology at a fine resolution, its success largely depends
on the underlying data management techniques. Big Data and Omics, are fast
evolving techniques in their respective domains, and it is becoming increasingly
clear that the success of omics-revolution depends on highly scalable computing
provisions that provide cost and energy efficient processing capabilities.

At the same time there are two important trends emerging in the Information
Technologies industry: (a) Delivery of compute and storage resources as-a-service
c© Springer Nature Switzerland AG 2019
G. Mencagli et al. (Eds.): Euro-Par 2018 Workshops, LNCS 11339, pp. 601–612, 2019.
https://doi.org/10.1007/978-3-030-10549-5_47
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to provide various degrees of abstractions (platform as a service, software as a
service, etc.) aimed to simplify interaction between end users and computational
infrastructure, (b) Application of High Performance Computing (HPC) towards
Data Centric (DC) architecture [14] that are designed to better handle workflows
like the ones in omics.

In this paper, we will attempt to provide a road-map for Bioinformatics as a
Service (BaaS) for distributed computing infrastructure, which can take advan-
tage of modern HPC architectures to enable large scale omics data processing.
We will focus on the Next Generation Sequencing (NGS) technologies, primar-
ily applied for genomics and transcriptomics, and the main computational tasks
involved in efficient processing of these datasets. We will explain our approach
using a computational pipeline developed for processing whole transcriptomics
datasets, also known as RNA-Seq datasets that are playing a central role in
adaptation of NGS in clinical settings.

2 Motivation

Genomics data is growing at an unprecedented rate [15]. Much of the pub-
lished raw data is available at the Sequence Read Archive (SRA) maintained
by NIH/NCBI or its partnering institutions at EMBL-EBI (ENA - European
Nucleotide Archive) and DNA Database of Japan (DDBJ). The magnitude of
data produced from each experiment depends on many factors like the choice
of sequencing platform, organism(s) being sequenced, expected read coverage,
experimental goals etc. [5]. While a human whole genome sequencing data
straight from the Illumina sequencer at 30x coverage is expected to be around
200 GB in size per sample [1], the whole transcriptome data can be much smaller
around 2–10 GB in the similar settings [16]. An experiment will usually contain
multiple samples and replicates. Specialised databases, like The Cancer Genome
Atlas, ICGC etc., focus on cancer genomics and contain tens of thousands of
samples obtained from a wider population. These samples need to be studied
in tandem to create a comprehensive understanding of biological processes and
phenotypes of interest. The very first steps towards creating a biological under-
standing from a set of omics data, is to process the dataset through appropri-
ate bioinformatics pipelines. The pipelines churn through the raw datasets and
create a reduced representation in form of community standard compressed file
formats like SAM/BAM/VCF etc. These files create a basis for downstream data
analysis through appropriate statistical and computational routines to generate
biological insights.

2.1 Anatomy of a RNA-Seq Pipeline

RNA-Seq datasets are obtained to understand a range of biological phenomena,
including understanding alternate gene splicing, gene fusion, changes in gene
expression over time, or difference in gene expressions over different groups or
treatments. Here, we will present a brief overview of a well accepted RNA-Seq
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data processing pipeline, called Tuxedo protocol [17], to lay the basis for our
case-study. For simplicity, we assume that the experiment compares gene expres-
sion across only two conditions: wild-type vs mutant, and we want to compare
the transcriptome profiles across conditions. The de facto standard for storing
the output from a genome sequencer is the FASTQ format, a text based for-
mat that contains both the biological sequence as well as quality score. FASTQ
files provide the starting point for the bioinformatics pipeline. For a typical
paired-end read dataset, there would be a pair of FASTQ files for each technical
replicate. Ideally, each experiment would contain several technical replicate for
each biological replicate. The main computational steps involved in the protocol
are read mapping, transcript assembly and detection of differentially expressed
genes or transcripts. Figure 1 shows the information flow in the pipeline and the
main tools used. The Tuxedo pipeline is based on TopHat [9] and Cufflinks [18]
set of tools. TopHat is used to map reads from input FASTQ files to a user
provided reference genome database and annotations. The read alignments are
reported in form of compressed BAM files that are further processed through
Cufflink to generate assembled transcripts for each condition. These assemblies
are merged together by Cuffmerge to create a unified final transcript assem-
bly file, which provides basis for comparing gene and transcript expression in
each condition. The detection of differentially expressed gene or transcript is
performed by Cuffdiff. Cuffdiff can also be used to perform an additional step
of grouping transcripts into biologically relevant groups by performing a com-
bined analysis of input FASTQ files with the final assembled transcripts. The
results from Cuffdiff can be processed through a R [12] based package called
CummeRbund for statistically relevant visualisation and final reporting. The
entire pipeline consists of several stages, where some stages can be accelerated
by employing efficient parallel and data movement strategies.

2.2 Scope for Parallel Constructs

While Fig. 1 shows an execution plan for a single sample with paired-end input
files for two conditions, in reality, each experiment can consist of multiple samples
and multiple conditions. Each pair of files, representing a particular sample under
a particular condition, needs to be independently mapped and assembly-called
using TopHat and Cufflinks respectively. These steps can be performed in an
embarrassingly parallel way by assigning a dedicated resource - e.g. node, core,
or accelerator - for each pair of files. When all the pair of FASTQ files have
been processed to generate their respective BAM and GTF files, they need to be
merged together through Cuffmerge to generate a final transcript assembly that
needs to be analysed as a whole. Further, if there is a plan to perform grouping
of reads through Cuffdiff, then this task is also specific to each pair of input files
and can be performed independently in an asynchronous manner. In order to
achieve significant speedup in case of large input FASTQ files on scales on tens of
gigabytes, one can divide FASTQ files in chunks of manageable sizes and perform
read mapping and assembly calling for each chunk and combine the BAMs and
GTFs in the end. These strategies of divide and compute at certain stages in
the pipeline provide means to manage memory, time and compute resources.
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Fig. 1. The Tuxedo pipeline: (A) There are three main tasks in the pipeline - read
mapping, transcript assembly, and detection of differential genes and transcripts. (B)
The information flow in the pipeline and outputs produced at each stage. The input
FASTQ files, shown in Orange and Light Blue, represent data from two experimental
conditions. The same colour scheme is used to represent all the intermediate files gener-
ated for each condition. The steps in the pipeline are drawn to align with the sub-task
listed in panel A. The input files are processed through different stages using tools
as shown in the panel C of the figure. Each stage generates a set of output files that
are used for downstream analysis. (C) List of tools grouped according to the sub-tasks
listed in panel A. (Color figure online)

2.3 Portability and Reproducibility

While Tuxedo is a well understood and adopted pipeline, portability and repro-
ducibility are two fundamental problems in bioinformatics. A typical workflow in
bioinformatics requires a number of independently developed components that
are stitched together through shell scripts, workflow standards or traditional
programming constructs. These components are generally developed indepen-
dently, using heterogeneous software engineering practices, by different research
groups. Development of a pipeline that runs on a wide variety of platforms, and
produces reproducible results is an important consideration in a clinical setting.
The tools in a pipeline like Tuxedo offer a number of command-line arguments
that need to be configured carefully and consistently to perform a reproducible
study. The pipeline itself should be portable across compute architectures. The
portability can be achieved through use of container technology like Docker [4],
and reproducibility can be achieved using recently developed workflow languages
like Common Workflow Language (CWL) [3]. To put reproducibility in context
of our use case, lets focus on the first two steps in the pipeline, which are invo-
cations of TopHat and Cufflinks respectively. The following boxes show how a
call to these tools will look like when executed from a command-line interface.
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tophat2 -p 8 -G user annotation.gtf -o tophat output
reference genome Exp R1 1.fq Exp R1 2.fq

cufflinks -p 8 -o cufflinks output tophat output accepted hits.bam

Both TopHat and Cufflinks come with a range of command line arguments
to provide specific instructions to the tool depending on the input data. Here we
use only the necessary arguments for demonstration purposes. In both TopHat
and Cufflinks calls, switches like -p, -o represent the number of processors to use,
and the name of output directories respectively. In TopHat, there is an additional
switch -G to indicate the user provided annotation file. In order to achieve repro-
ducibility, it is vital that the repeated execution of these tools involve the same
arguments every time they are executed. Suppose, a new user comes with addi-
tional information about a particular dataset and decides to execute TopHat
with an additional parameter –library-type fr-secondstrand which forces TopHat
to perform read alignment in a different manner, the results will be different from
what will otherwise be produced in the default mode, and the reproducibility
will not be achieved. Specifications like CWL, provide a framework to facilitate
on-demand construction of command-line calls and data movement in a con-
sistent manner across environments. A user would directly manipulate a CWL
representation as opposed to explicitly setting command line options.

Figure 2 shows a Rabix [19] enabled visualisation of the CWL code for TopHat
and Cufflinks. Toolkits like Rabix, provide a graphical interface to enable a
bench-biologist to create pipelines in CWL, without worrying about the language
specifications. While at the same time, these tools provide an environment for
experienced programmers to write complex CWL pipelines. The visualisation can
be quite useful to understand and debug a pipeline with tens of intermediate
steps and multiple input parameters. The combination of workflow languages
with containers are increasingly being adopted by the bioinformatics community,
and truly provide a plug-and-play environment for development of workflows and
pipelines. These constructs provide a modular environment to introduce a new
step, or, modify an existing one, without disturbing the rest of the pipeline.
This is extremely handy as some bioinformatics pipelines can involve tens of
steps and tools where maintaining a synchronisation between the components
can be a tiresome and error-prone process.

3 Bioinformatics as a Service (BaaS)

The Tuxedo pipeline discussed in the previous sections is an example of a typical
bioinformatics workflow, where a set of tools are stitched together to achieve a
specific goal. While the tools in Tuxedo were developed by the same research
group, it is often not the case in large bioinformatics workflows, where tools are
developed by independent research groups, and a bioinformatician often mixes
and matches among a set of available alternatives to prepare a workflow for
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Fig. 2. Rabix based visualisation of CWL representation of TopHat and Cufflinks com-
mands and their interconnectedness in the pipeline. The num processor stands for -p
in the above text. final th dir corresponds to -o tophat output in the TopHat call and
so on.

specific requirement. Different tools have different compute requirements and
are diverse in their design and implementation. These are some fundamental
problems in using different tools as components in a workflow: (a) Installation
of the components –One can use a bioinformatics software, only if the software
can be installed first. The software must be developed with good design and
development practises. Many bioinformatics software can fail at this point itself.
The dependent third party libraries can often be outdated, have obscure origin or
not maintained anymore. The effort in trying to stitch dozens of such components
together, where each component first needs to be built and tested before it
can be a part of the pipeline can be daunting. (b) Security/Resilience –Due
to the reasons mentioned above, one would not want an entire server to go
down because a badly designed program misused the machine resources. At the
very least, we expect the application to fail gracefully and the server to recover
with minimum downtime. (c) Continuous changing landscape of the genomic
technology –Genomics is among the fastest growing industries. The sequencing
platforms, and the chemistry driving those platforms, both have been evolving
rapidly, increasing the quality and quantity of the data produced. As a result,
the software landscape is dynamic too, as it needs to keep pace with the latest
platform updates. This dynamics require that there be a provision that a new
software can be tested by easily plugging into the existing pipeline and discarded
without affecting the entire workflow.
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3.1 Essential Components

Our plan for implementing genomic pipelines as-a-service is shown in Fig. 3.
We use a combination of HPC and virtualisation technologies, to build scalable,
high performing and portable solutions, which can be used across private, public
and hybrid Cloud environments. As a proof of concept we plan to use Docker,
IBM R©Spectrum LSFTM [7] and CWLEXEC [8]. All these components provide
interoperable building blocks for creating as-a-service pipelines. Cluster design
shown in Fig. 3 can be deployed in a private, public or hybrid Cloud. Portability
can be achieved through custom-built Docker containers for each component in
the workflow. Note that while our design is based on IBM POWERTM architec-
tures, using the IBM-provided middle-ware components, the same design remains
valid for building pipelines across different architectures.

Fig. 3. BaaS workflow. Major components: GUI front-end for submission and dis-
playing results, CWL engine, batch scheduler like IBM Spectrum LSF, HPC cluster
with high bandwidth Infiniband interconnect, parallel high performance filesystem and
Docker repository. Note that both shared and node local storage can be used for better
I/O performance.

3.2 Pipeline Execution

In the proposed environment, the control flow of the pipeline is as follows:

1. User creates the desired workflow using a graphical interface, or directly
through CWL language constructs

2. The workflow specification is parsed by the CWL engine and translated into
submission scripts understandable by a scheduler.

3. Pipeline jobs are submitted to a scheduler in the order prescribed in the CWL
flow. Scheduler ensures optimal job placement on compute nodes.
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4. Jobs are started on compute nodes. Required components like TopHat and
Cufflink are pulled from a Docker repository on demand.

5. All stages of a pipeline are completed, results are forwarded to the user.

Note that multiple instances of the above flow can be executed concurrently
within the same HPC cluster following the scheme provided in Sect. 2.2. Data
accesses from multiple pipelines are handled by the high performing parallel file
system.

Figure 4 shows control flow of a single Pipeline instance as sequences of jobs
with dependencies. Each stage of the pipeline consists of multiple concurrent
jobs, with each job operating on a chunk of data. A special wait job waits for all
jobs in a given stage to finish, and kicks off jobs for the next stage in the pipeline.
In our context, it could be understood as Cufflinks will be executed only after
TopHat has finished the mapping process and a BAM file for each FASTQ pair
is available. Similarly, Cuffmerge will be executed only after all the GFT files
are available before they are merged together. Similar wait constructs will be
applied in case of Cuffdiff as well. In case, of the input FASTQ files divided in
chunks and mapped individually, the system will wait for all the chunks to be
mapped and results merged together to create a unified BAM. This sequence is
repeated as many times as there are stages in the pipeline. It is important to
note that all dependencies of each job - data availability, other jobs, etc. - are
known to a scheduler and not hidden inside a job. This assures the best possible
HPC resource utilisation and high throughput.

Fig. 4. Pipeline Instance Control Flow. Each stage consists of multiple concurrent
jobs. Special “wait” jobs are used for synchronisation between stages. “Final” job is
responsible for post-processing of the overall pipeline results.
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4 BaaS in Data-Centric Systems

For a biologist, studying transcriptional activities, pipelines like Tuxedo pro-
vide a way to create meaningful insights from raw sequence data. The results
are often in form of ASCII files and plots (like in Tuxedo) that provide the
basis for further downstream analysis where specific biological questions can be
asked, like understanding the interaction between differentially expressed genes
of interest through a network perspective, or clustering of genes according to
their functional profiles, or inference of phylogenetic relationships etc. Tuxedo
like pipelines are independent but essential cog in a larger bioinformatics work-
flows, and a compute framework must make provisions to provide analytical
capabilities to the results produced by such pipelines. The nature of questions
that we ask from computational biology perspective varies as the field itself, and
so can be the computational requirements. In order to realise BaaS, it is essential
that we provide provisions to manage heterogeneous compute resources in the
target data-centric systems to cater to different computational needs that arise
in downstream analysis.

4.1 Heterogeneous Systems

Heterogeneous Systems have several types of processing elements and memory
hierarchies, in contrast to the traditional systems with single type of processing
element and a fixed memory hierarchy. Performance and compute density is
obtained by specialised hardware tailored to compute patterns commonly found
in scientific applications [10] making them suitable for compute intensive tasks in
bioinformatics studies. Accelerators, in particular, Graphical Processing Units
(GPUs) becoming integral elements of heterogeneous systems. We are seeing
increasing examples of new software in bioinformatics exploiting GPUs [11],
including tasks like read-mapping as achieved via TopHat in our case study, and
examples of phylogenetic inferences [13], network biology etc. [2] as required for
Post-Tuxedo downstream analysis.

One of the consequences of using accelerators is the necessity of using dif-
ferent memory spaces and move data efficiently between them. The intricacies
around system heterogeneity pose an extra burden on users, as they now have
to control where and when code should be executed and data be moved. Sophis-
ticated interconnect between hardware and middleware, like NVLINK, and sup-
porting development ecosystems like gpuR [6] etc. are increasingly being applied
in bioinformatics studies [11].

As the benefits of using accelerators like GPUs become more apparent to
users, we anticipate the presence of accelerated code and dependences to accel-
erator toolchains to become increasingly more frequent in the application used
and developed in bioinformatics. For an end-user, in a heterogenous environ-
ment, to use a Tuxedo like pipeline, this will require two major considerations:
(i) complex specification of resources in the pipeline, and (ii) increased schedul-
ing complexity.
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Specification of Heterogeneous Resources in the Pipeline. The resource
requirements for a tool within a pipeline needs to be communicated to the sched-
uler, so the schedular can determine where and how a given application in the
pipeline can be launched. Where because the schedule needs to forward the work-
load to machines that possess that resource (e.g. not all nodes may have a GPU).
In some cases a given resource can be a hard dependence, i.e. the application
only works if that resource is present, or it can be an option dependency, i.e. the
application would perform better if that resource is present. Further, it is not
uncommon that an application requires the environment or one of its arguments
to specify the number of resources available to drive the partition of the prob-
lem at hand. This can be tackled by the creation of CWL nodes with attributes
known to the scheduler that would be a dependence to the application. E.g. for
the CWL representation in Fig. 2, the node num processor would be provision
of special attributes so that the scheduler knows the type of processors the appli-
cation requires and its number. If the number of processors does not affect the
results, an attribute would mark this node so that the scheduler could set the
number at runtime depending on the number of resources it has available at a
given time.

Fig. 5. Scheduling example for a set of application in a heterogeneous system with 4
NVIDIA GPUs and 16 Power 8 CPUs per core. In a given node, applications should
use resources unused by applications already running there. The resource allocation
can span across more than one node. Performance optimisation may involve migrat-
ing work once resources belonging to an application that finishes are released so that
communication between all resources used by the other applications is more efficient.

Scheduling Complexity. Deploying an as-a-service platform for bioinformat-
ics, necessarily implies that in a given system, multiple pipelines, each one with
multiple independent jobs, will be running at a given time, and the scheduler
must ensure that the system resources are utilised to the fullest. In a heteroge-
nous environment, it is important that resources in a given machine are shared
by different applications. If a given application only use CPUs, preventing the
use of GPUs in that machine by some other application would hurt occupancy
and, therefore, waste resources. Virtualisation of resources is therefore a must
in order to obtain the right partition of resources from a given machine to be
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used by an application as shown in Fig. 5. That will also facilitate migration of
resources between nodes to improve locality in the set of resources bound by an
application. Modern scheduling tools have evolved to recognise accelerators like
GPUs as a system resource in its own right and will be part of the BaaS design.

5 Conclusions

Even though Life Sciences is a vast field, DNAs are the fundamental unit of life,
and central to all the biological questions. Omics technologies aim to understand
DNA and its products, and are rapidly changing biology into a data-intensive
discipline. Large amount of data requires efficient compute infrastructure for
data processing. The infrastructure must be contextualised according to the
discipline it aims to support. Bioinformatics has its own needs due to the nature
of datasets and the computational tasks involved. BaaS is an attempt to address
some of the typical computational requirements that arise from a Bioinformatics
study. Though BaaS is presented in this paper as a blueprint, it utilises some
well understood ideas and is easy to implement. We anticipate, as the NGS
technologies progress in future, we will see many variations of field experiments
and the rapid rise in produced data. We are already seeing a flood of data in
Single cell sequencing experiments that are fast becoming mainstream. As the
technology improves, so will the audacity of the experimental questions being
asked, and so will be the amount of data produced. In our opinion, in order to
under the central dogma of biology through the prism of omics data, we will
need clever algorithms running on a range of compute devices as envisioned in
BaaS. The specifications for BaaS as mentioned in this paper are by no means
complete, as there are several important issues we didn’t touch upon and would
be useful for future improvements in the design. In this paper, we focussed only
on the core functional aspect of BaaS as how jobs can be installed, scheduled and
executed. To enhance the design of BaaS further, there must be considerations
on the scope and role of its users and administrators, provisions for efficient data
movement from a user’s location to the compute cluster, cost effectiveness and
benefits to the end-user, provisions for data sharing, and several other issues
specific to Bioinformatics domain.

References

1. Robison, R.J.: How big is the human genome? https://medium.com/precision-
medicine/how-big-is-the-human-genome-e90caa3409b0

2. Bhattacharya, A., Cui, Y.: A GPU-accelerated algorithm for biclustering analysis
and detection of condition-dependent coexpression network modules. Sci. Rep. 7(1)
(2017). Article no. 4162

3. CWL working group: Common workflow language (2016). https://www.
commonwl.org/

4. Docker: Docker (2018). https://www.docker.com/
5. Ekblom, R., Wolf, J.B.W.: A field guide to whole-genome sequencing, assembly

and annotation 7(9), 1026–1042. https://doi.org/10.1111/eva.12178

https://medium.com/precision-medicine/how-big-is-the-human-genome-e90caa3409b0
https://medium.com/precision-medicine/how-big-is-the-human-genome-e90caa3409b0
https://www.commonwl.org/
https://www.commonwl.org/
https://www.docker.com/
https://doi.org/10.1111/eva.12178


612 R. Krishna et al.

6. gpuR: gpuR repository page (2018). https://cran.r-project.org/web/packages/
gpuR/index.html

7. IBM: IBM Spectrum LSF (2017). https://developer.ibm.com/storage/products/
ibm-spectrum-lsf/

8. IBM: CWLEXEC (2018). https://github.com/IBMSpectrumComputing/cwlexec
9. Kim, D., Pertea, G., Trapnell, C., Pimentel, H., Kelley, R., Salzberg, S.L.: TopHat2:

accurate alignment of transcriptomes in the presence of insertions, deletions and
gene fusions 14, R36. https://doi.org/10.1186/gb-2013-14-4-r36

10. Kim, N.S., Chen, D., Xiong, J., Hwu, W.W.: Heterogeneous computing meets near-
memory acceleration and high-level synthesis in the post-moore era. IEEE Micro
37(4), 10–18 (2017). https://doi.org/10.1109/MM.2017.3211105

11. Nobile, M.S., Cazzaniga, P., Tangherloni, A., Besozzi, D.: Graphics processing units
in bioinformatics, computational biology and systems biology. Brief. Bioinform.
18(5), 870–885 (2017)

12. R Core Team: R: A Language and Environment for Statistical Computing. R Foun-
dation for Statistical Computing, Vienna, Austria (2013). http://www.R-project.
org/

13. Ronquist F., et al.: MrBayes 3.2: Efficient Bayesian phylogenetic inference and
model choice across a large model space. Syst. Biol. 61(3), 539–542 (2012)

14. Sadasivam, S.K., Thompto, B.W., Kalla, R., Starke, W.J.: IBM power9 proces-
sor architecture. IEEE Micro 37(2), 40–51 (2017). https://doi.org/10.1109/MM.
2017.40

15. Stephens, Z.D., et al.: Big data: astronomical or genomical? 13(7), e1002195.
https://doi.org/10.1371/journal.pbio.1002195

16. Tebani, A., Afonso, C., Marret, S., Bekri, S.: Omics-based strategies in precision
medicine: toward a paradigm shift in inborn errors of metabolism investigations
17(9), 1555. https://doi.org/10.3390/ijms17091555

17. Trapnell, C., et al.: Differential gene and transcript expression analysis of RNA-seq
experiments with TopHat and Cufflinks 7(3), 562–578. https://doi.org/10.1038/
nprot.2012.016

18. Trapnell, C., et al.: Transcript assembly and abundance estimation from RNA-seq
reveals thousands of new transcripts and switching among isoforms 28(5), 511–515.
https://doi.org/10.1038/nbt.1621

19. Various: Rabix website (2018). http://rabix.io/

https://cran.r-project.org/web/packages/gpuR/index.html
https://cran.r-project.org/web/packages/gpuR/index.html
https://developer.ibm.com/storage/products/ibm-spectrum-lsf/
https://developer.ibm.com/storage/products/ibm-spectrum-lsf/
https://github.com/IBMSpectrumComputing/cwlexec
https://doi.org/10.1186/gb-2013-14-4-r36
https://doi.org/10.1109/MM.2017.3211105
http://www.R-project.org/
http://www.R-project.org/
https://doi.org/10.1109/MM.2017.40
https://doi.org/10.1109/MM.2017.40
https://doi.org/10.1371/journal.pbio.1002195
https://doi.org/10.3390/ijms17091555
https://doi.org/10.1038/nprot.2012.016
https://doi.org/10.1038/nprot.2012.016
https://doi.org/10.1038/nbt.1621
http://rabix.io/


Disaggregating Non-Volatile Memory
for Throughput-Oriented Genomics

Workloads
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Abstract. Massive exploitation of next-generation sequencing technolo-
gies requires dealing with both: huge amounts of data and complex
bioinformatics pipelines. Computing architectures have evolved to deal
with these problems, enabling approaches that were unfeasible years ago:
accelerators and Non-Volatile Memories (NVM) are becoming widely
used to enhance the most demanding workloads. However, bioinformatics
workloads are usually part of bigger pipelines with different and dynamic
needs in terms of resources. The introduction of Software Defined Infras-
tructures (SDI) for data centers provides roots to dramatically increase
the efficiency in the management of infrastructures. SDI enables new
ways to structure hardware resources through disaggregation, and pro-
vides new hardware composability and sharing mechanisms to deploy
workloads in more flexible ways. In this paper we study a state-of-the-
art genomics application, SMUFIN, aiming to address the challenges of
future HPC facilities.

Keywords: Genomics · Disaggregation · Composability · NVM
NVMeOF · Characterization · Orchestration

1 Introduction

The genetic basis of disease is increasingly becoming more accessible thanks to
the emergence of Next Generation Sequencing platforms, which have extremely
reduced the costs and increased the throughput of genomic sequencing. For the
first time in history, personalized medicine is close to becoming a reality through
the analysis of each patient’s genome. Genomic variations, between patients or
among cells of the same patient, have been identified to be the direct cause, or a
predisposition to genetic diseases: from single nucleotide variants to structural
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variants, which can correspond to deletions, insertions, inversions, translocations
and copy number variations, ranging from a few nucleotides to large genomic
regions.

The exploitation of genomic sequencing should involve the accurate identifi-
cation of all kinds of variants, in order to derive a correct diagnosis and to select
the best therapy. For clinical purposes, it is important that this computational
process be carried out within an effective timeframe. But a simple sequencing
experiment typically yields thousands of millions of reads per genome, which
have to be stored and processed. As a consequence, the analysis of genomes with
diagnostic and therapeutic purposes is still a great challenge, both in the design
of efficient algorithms and at the level of computing performance.

The field of computational genomics is quickly evolving in a continuous seek
for more accurate results, but also looking for improvements in terms of perfor-
mance and cost-efficiency. In parallel, computing architectures have also evolved,
enabling approaches that were unfeasible only years ago. The use of Non-Volatile
Memories (NVM) and accelerators has been widely adopted for all kinds of work-
loads with the introduction of NVMe cards, GPUs, and FPGAs for some of the
most demanding computing challenges. Genomics workloads today have a larger
variety of requirements related to the compute platforms they run in. Workloads
are tuned to work optimally on specific configurations of compute, memory, and
storage. On top of that, current genomics workloads and pipelines tend to be
composed of multiple phases with different behaviors and resource requirements.

One such example in the context of variant calling is SMUFIN [15], a state-of-
the-art method that performs a direct comparison of normal and tumor genomic
samples from the same patient without the need of a reference genome, lead-
ing to more comprehensive results. In its original implementation, published in
Nature [15] in 2014, this novel approach required significant amounts of resources
in a supercomputing facility. Since then, it has been optimized and adapted to
scale up and make the most of Non-Volatile Memory [1].

Beyond Non-Volatile Memories and accelerators, new technological advances
currently under development, such as Software Defined Infrastructures, are dra-
matically changing the data center landscape. One of the key features of Soft-
ware Defined Infrastructures is disaggregation, which allows dynamically attach-
ing and detaching resources from physical nodes with just a software operation,
removing the constraints of getting hardware components statically confined to
servers. This paper takes a modern genomics workload, SMUFIN, evaluates dis-
aggregation mechanisms when running it, and describes how characterization
can be used to guide the orchestration of a genomics pipeline.

The rest of the paper is structured as follows. Section 2 provides an overview
of the foundations of SMUFIN, the variant-calling method studied in this paper.
Section 3 introduces resource disaggregation and the technology used to imple-
ment it. Next, Sect. 4 characterizes disaggregation mechanisms using SMUFIN.
Section 5 shows how characterization can be used to guide orchestration. And
finally, Sect. 6 discussed related work and Sect. 7 concludes.
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2 SMUFIN: A Throughput-Oriented Genomics Workload

Most currently available methods for detecting genomic variations rely on an
initial step that involves aligning sequence reads to a reference genome generally
using Burrows-Wheeler transform [12], which has an impact not only on per-
formance, but also on the accuracy of results. First, tumoral reads that carry
variation may be harder or impossible to align against a reference genome. Sec-
ond, the use of references also leads to interference with millions of inherited
(germline) variants that affect the actual identification of somatic changes, con-
sequently decreasing the final reliability and applicability of the results. The
initial alignment also has an impact on subsequent analysis since most methods
are tuned to identify only a particular kind or size of mutation [14]. Alternative
methods that don’t rely on the initial alignment of sequenced reads against a
reference genome have been developed. In particular, the application used in
this work is based on SMUFIN [15], a reference-free approach based on a direct
comparison between normal and tumoral samples from the same patient. The
basic idea behind SMUFIN can be summarized in the following steps: (i) input
two sets of nucleic acid reads, normal and tumoral; (ii) build frequency counters
of substrings in the input reads; and (iii) compare branches to find imbalances,
which are then extracted as candidate positions for variation.

Internally, SMUFIN consists of a set of checkpointable stages that are com-
bined to build fully fledged workloads (Fig. 1). These stages can be shaped on
computing platforms depending on different criteria, such as availability or cost-
effectiveness, allowing executions to be adapted to its environment. Data can be
split into one or more partitions, and each one of these partitions can then be
placed and distributed as needed: sequentially in a single machine, in parallel in
multiple nodes, or even in different hardware depending on the characteristics
of the stage. Data partitioning can be effectively used to adapt executions to a
particular level of resources made available to SMUFIN, because it imposes a
trade-off between computation and IO. This data partitioning can be achieved
by going multiple times through the input data set that corresponds to each
stage: Prune, Count, and Filter. In practice, systems with high-end capabilities
will not require a high level of partitioning and hence IO, what ends up with
scale-up solutions; on the opposite side of the spectrum, lower-end platforms are
able to run the algorithm by partitioning data and duplicating IO, leading to
scale-out solutions. The goal of each one of the stages is as follows:

– Prune: Discards sequences from the input by generating a bloom filter of k-
mers that have been observed in the input more than once. Allows lowering
memory requirements at the expense of additional computation and IO.

– Count : Builds a frequency table of normal and tumoral k-mers in the input
sequences. More specifically, k-mer counters are used to detect imbalances
when comparing two samples.

– Filter : Selects k-mers with imbalanced frequencies, which are candidates for
variation, while also building indexes of sequences with such k-mers.
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– Merge: Reads and combines multiple filter indexes from different partitions
into single, unified indexes. Merging indexes only involves simple operations
such as concatenation, OR on bitmaps, and appending.

– Group: Matches candidate sequences that belong to the same region. First,
selecting reads that meet certain criteria, and then retrieving related reads
by looking up those that contain the same imbalanced k-mers.

Fig. 1. SMUFIN’s variant calling architecture: overview of stages and its data flow

One of the main characteristics of the current version of SMUFIN [1] is its
ability to use NVM as memory extension. This can be exploited in two different
ways. First, using an NVM optimized Key-Value Store such as RocksDB, and
second, using a custom optimized swapping mechanism to flush memory directly
to the device. When such memory extensions are available, a maximum size for
the data structures is set; once such size is reached, data is flushed to the memory
extension while a new empty structure becomes available. Generally speaking,
bigger sizes are recommended: they help avoid duplicate data, and also lead to
higher performance, as writing big chunks to a Non-Volatile Memory allows to
exploit internal parallelism typical of flash drives [2].

SMUFIN’s performance greatly benefits from NVM, as shown in Fig. 2, which
compares an execution in 16 machines in a supercomputing facility (left) and
a scale-up execution in a single node with NVM enabled (right). The latter
leads to faster executions and lower power consumption. NVM can be leveraged
in some way in most SMUFIN stages, and the experiments performed in this
paper are focused on Merge using the RocksDB-based implementation, which is
one of the most IO intensive of the pipeline. However, other stages have similar
characteristics and the same techniques can be used elsewhere.
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Fig. 2. Aggregate CPU time of a SMUFIN execution running in 16 MareNostrum
nodes and in 1 Xeon-based node with NVM. Power consumption per execution (one
patient) shown for reference.

3 Resource Disaggregation

Traditional data centers usually contain homogeneous and heterogeneous com-
pute platforms (also referred to as computing nodes or servers). These platforms
are statically composed by computing, memory, storage, fabric, and/or acceler-
ator components, and they are usually stored in racks. However, in the last few
years there has been a trend towards new technologies that allow disaggregating
resources over the network, increasing flexibility and easying the management
of such data centers.

This paper analyzes the use of one of those new technologies: NVMe Over
Fabrics (NVMeOF). First off, NVMe [17] is an interface specification for access-
ing direct-attached NVM via a regular PCI Express bus. On the other hand
NVMeOF [4] is an emerging network protocol used to communicate nodes with
NVMe devices over a networking fabric. The architecture of NVMeOF allows
scaling to large numbers of devices, and supports a range of different network
fabrics, usually through Remote Direct Memory Access (RDMA) so as to elim-
inate middle software layers and provide very low latency.

Disaggregating NVMe over the network with NVMeOF allows new mecha-
nisms to scale-up and improve efficiency of genomics workloads:

Resource Sharing. As workloads perceive remote NVMe as physically
attached to their compute nodes, those can be partitioned, and each one
of these partitions can then be exposed to the computational nodes as an
exclusive resource. This translates into workload-unaware resource sharing,
which in turn can lead to improved resource efficiency by maximizing usage.

Resource Composition. Certain resources can be aggregated and exposed as
a single, physically attached resource. Instead of accessing individual units,
accessing combined resources enables increased capacities that can lead to
improved performance. For instance, two SSD disks with a bandwidth of
2 GB/s each can be composed and exposed as a single one with twice as
much capacity and bandwidth, providing a total of 4 GB/s.
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4 Characterizing Resource Disaggregation on SMUFIN

In a continuous need to deal with increasingly larger amounts of data, genomics
workloads are quickly adapting, and NVM technologies have become widely used
as a key component in the memory-storage hierarchy. This Section explores how
disaggregating NVM might have an impact on genomics workloads, and in par-
ticular SMUFIN. As part of the evaluation, resource sharing and composition are
analyzed using NVMeOF in an attempt to scale-up and shape the performance
of the workload.

4.1 Experimental Environment

The experiments are conducted in an environment as depicted in Fig. 3.
The NVMe drives are used by SMUFIN as a memory extension over fabric

to store temporary data structures required to accelerate the computation. As
the drives are dual-controller, two NVMe devices – of half its physical size – are
exposed by the system for each physical device. In order to expose a single NVMe
consisting of its two controllers, or to unify several NVMe devices, Intel Rapid
Storage Technology [9] (RST) is used. RST composes a RAID0 of the controllers
which becomes exposed over fabric as a single NVMe card. Mellanox OFED 4.0-
2.0.0.1 drivers were used for the InfiniBand HCA adapters. The drivers included
modules for NVMe over fabrics as well, both the target and the client. Kernel
4.8.0-39 was used under Ubuntu server 16.10 operating system in all nodes.

Fig. 3. Experiments environment

We use SMUFIN on its merge stage, as explained in Sect. 2. In the following
evaluations each SMUFIN instance reads and processes a sample DNA input
(+300 GB) from a NFS shared storage, while the shared NVMe devices are used
as memory extension for temporary data and final output. SMUFIN has been
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implemented to maximize sequential writes to the devices, and this behavior has
been verified by analyzing its access pattern. A block trace sample of requested
blocks to the device was generated using Linux’s blktrace, and the trace was then
fed to the algorithm provided by [3] to calculate the percentage of sequential
write accesses. This method identified 88% of sequential writes after adapting
the algorithm to consider accesses in which the final address matched the initial
address of many immediately following requests, thus accounting for file appends.

4.2 Direct-Attached Storage vs NVMe over Fabrics

The performance of NVMeOF has been studied in the literature [7], and found
not to show any significant degradation when compared to local directly-attached
storage (DAS). Additionally, in this section we perform our own experiments
running up to 3 instances of SMUFIN in the same node: against a directly-
attached NVMe device and against NVMeOF. Each instance processes the same
dataset, generating ≈150 GB, with an average use of bandwidth of 477 MB/s
per SMUFIN instance. The NVMe device is capable of handling 2 GB/s band-
width under sequential write pattern, as is the SMUFIN scenario. Figure 4 shows
average execution time and deviation after repeating the executions six times.
As it can be observed, when running one and two instances on local storage
(Fig. 4a) there is no performance degradation when disaggregating NVMe over
fabrics (Fig. 4b). However, when running three concurrent instances there is a
significant degradation of 6% when using NVMeOF.

Fig. 4. Boxplot of execution time of Direct-Attached Storage (DAS) and NVMeOF
when running 1x, 2x and 3x SMUFIN instances on the same node

On the other hand there is a certain performance degradation scaling up to
three instances in both scenarios. Analyzing this behavior, up to two instances,
the host’s memory can handle all the intermediate data generated by SMUFIN
and the NVMe becomes only used to output final data. However, with three
instances the memory becomes a bottleneck and intermediate data not fitting
in memory gets flushed to the NVMe device more frequently. Is in this scenario
when degradation is observed and performance comparison against NVMeOF is
worse. Figure 5 depicts memory usage on the three scenarios (1, 2 and 3 SMUFIN
on the same node, directly-attached) over a period of 1500 s, evidencing the
memory bottleneck.
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Fig. 5. Memory usage on 1x, 2x, 3x SMUFIN scenarios using Direct-Attached NVMe
on a period of 1500 s

4.3 Resource Sharing and Composability

When multiple workloads share resources and hence compete for its usage, their
execution time compared to a dedicated execution in isolation degrades when a
threshold is reached, as shown in previous section. In this section we explore if
degradation still occurs when running up to six concurrent instances, all of them
using partitions from the same set of NVMe devices and running on separate
nodes to avoid the aforementioned interferences.

Fig. 6. Boxplots showing how execution time evolves when running multiple SMUFIN
instances: sharing a single device (1xNVMe), or sharing on composed nodes (2xNVMe,
3xNVMe)

Figure 6a represents the box plot of individual execution times under differ-
ent configurations, along with its quartiles, median, and standard deviation. In
(a) only one NVMe SSD is used. It can be observed running three instances sepa-
rately against a single device do not degrade as significantly as running under the
same node. However, performance degradation is still experienced when certain
resource sharing threshold is reached.

When disaggregating NVMe over fabrics we can benefit of composing several
NVMe devices and expose them as a single one. Under composition, profiling
data shows that the Intel driver balances the bandwidth evenly through all com-
posed devices. It is also observed that provided bandwidth scales linearly with
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the number of devices, hence under 2 and 3-compositions 4 GB/s and 6 GB/s of
sequential write speed can be reached respectively (each individual drive pro-
vides 2 GB/s). Through composition, performance degradation can be mitigated.
Compositions of two and three NVMe SSD exposed as a single target to clients
increases the bare-performance, as a composition multiplies the total available
bandwidth. The evolution of execution time respect composition level is pre-
sented in Figs. 6b and c. In the 2-composition scenario, up to 3 sharing work-
loads obtain the same performance as if running alone in a single NVMe. The
level of concurrency can be increased without introducing significant degradation
using a composition of 3 NVMe, being able to have six sharing workloads with a
similar performance as when running alone in a single device. Thus, workloads
indeed benefit of resource composition. However, in all scenarios performance
degradation still occurs on reaching a certain threshold, larger as more devices
are used. Under 2-NVMe compositions it is at four workloads, whereas on the
3-composition the tendency is observed at six instances threshold.

4.4 Bandwidth

We observed performance degradation when a certain sharing ratio of resources
is reached. Despite composition increases this threshold, degradation still occurs
regardless of composition. As the memory bottleneck was removed and cannot
be found on the network bandwidth, we analyze the target NVMe bandwidth.

Fig. 7. Bandwidth measured from the NVMe pool server for 1x, 2x, 3x and 4x instances
of SMUFIN

Figures 7a and b show the NVMe bandwidth over time for experiments run-
ning up to four concurrent SMUFIN instances in the single-resource and the
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2-composed resource configuration. The solid horizontal lines indicate the max-
imum bandwidth for sequential write that the resources can provide (2 GB/s in
single-resource configuration, 4 GB/s for the composed scenario).

From the figures it can be appreciated, on one hand, that resource com-
position scales linearly, doubling the maximum available bandwidth of a single
resource. In both scenarios, two important characteristics can be noticed as more
concurrent instances are included in the experiment: (1) the bandwidth observed
from the NVMe perspective is steadier; (2) the bandwidth that the NVMe device
is capable of delivering is reduced as more concurrent instances are added. Run-
ning a single instance, the full bandwidth of the combined NVMe can be used
with bursts at the maximum 4 GB/s. However as more concurrent executions are
added these bursts make use of less bandwidth until reaching saturation levels,
decreasing significantly.

5 Towards Efficient Orchestration of Shared
and Composed Resources

Previous sections have shown how NVMe disaggregation provides new ways to
use resources through resource sharing and composition. However, its behavior
is not obvious a priori: heavy resource sharing may have a negative impact
on performance, whereas composition may help increase sharing ratios without
degradation. Therefore, deciding whether to compose a resource or to share
it among many workloads is not trivial decision. With the help of workload
characterization, platform orchestrator will be able to make more informed and
smarter decisions.

In Fig. 8 we present different orchestration policies that could be managed
with our data. The figure shows our cluster running five concurrent instances
of SMUFIN, and three different resource allocation strategies for the instances:
(a) sharing a single device, (b) sharing two NVMe devices, and (c) one instance-
dedicated device and the remaining four instances on a shared NVM device.
This example was run under the same setup as in Sect. 4. When the SMUFIN
instances use two composed devices (b) it leads to faster executions times than
using a single device (a). However, when using a dedicated device to run a single
instance and a shared device to run the remaining four (c), the dedicated-device
does not grant that instance an improved performance compared to a fully shared
scenario using both devices (b). Intuitively it might be believed that just sharing
all the resources under composition is the obvious winning strategy. However this
approach does not consider arriving workloads might have a time requirement
for completion, and upon arrival of those workloads, if the resources are fully
occupied serving others the orchestrator will be unable to meet the requirement.
Other concerns might be power consumption or total cost of ownership (as more
resources, more expensive it becomes to run). Therefore, the strategy to follow
must consider the trade-off between execution time and requirements of current
and incoming workloads to maximize the granted quality of service, which in
the case of genomics might be critical. The work on those policies is out of the
scope of this paper and left as future work.
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Fig. 8. Execution time of 5 SMUFIN instances under different scenarios

6 Related Work

Genomics workloads and pipelines in general are a good fit for disaggregation,
but prior to this paper applications haven’t explored its large-scale explotation.
A number of different approaches to parallelize whole genome analysis in HPC
systems have been proposed in the literature [10,13,16], but these tend simply
adapt existing algorithms without considering or taking complete advantage of
next generation computing platforms.

Resource disaggregation is being increasingly studied in the literature. In [6],
the authors examine the network requirements for disaggregating resources at
rack- and data-center levels. Minimum requirements are measured in terms of
network bandwidth and latency. Those requirements must be such so that a
given set of applications doesn’t experiment any performance degradation when
disaggregation memory or other resources over the fabric. [11] implements NVMe
disaggregation, but unlike the work presented in this paper, the authors focus
on a custom software layer to expose devices instead of using the NVMeOF
standard. On the other hand, [18] evaluates the impact of FPGA disaggregation.
In terms of Software-Defined Infrastructures, Intel Rack Scale [8] is a prototype
system that allows dynamic composition of nodes. It fully disaggregates resources
in pools, such as CPU, storage, memory, FPGA, GPU, etc. Facebook has engaged
with Intel developing its own prototype, the Facebook Disaggregated Rack [5].

7 Conclusions

This paper evaluates resource sharing and composition benefits for NVM-centric
workloads in the context of disaggregated datacenters. This work takes SMUFIN,
a real production workload in the field of Computational Genomics, leverag-
ing remote NVMe devices as memory extension. This paper presents a com-
prehensive characterization of SMUFIN’s resource consumption patterns. It is
shown NVMe is utilized in a sequential write pattern. A performance compari-
son between directly-attached NVMe and NVMeOF is then presented and shown
that as long the system’s memory is capable of handling SMUFIN instances there
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is no degradation. To increase concurrency disaggregating over fabrics allows to
share the same resource across multiple nodes running instances, as well as the
possibility of composition. Thus, through disaggregation we are able to han-
dle more concurrent SMUFIN instances without individual degradation. On the
other hand, reaching the resources’ sharing ratio limit significantly degrades per-
formance as the utilization of the available bandwidth diminishes, never reaching
its maximum. Thus the NVMe becomes the bottleneck.

Finally the paper briefly explains how the results of this characterization
could be used to implement data-center scheduling policies in order to maxi-
mize the efficiency in terms of Quality of Service. Quality of Service could be
understood in terms of execution time, so all workloads should be completing
its executions within a certain requested time-frame. The work on those policies
is left as future work.
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Abstract. The computational analysis of complex biological systems
can be hindered by two main factors. First, modeling the system so that
it can be easily understood and analyzed by non-expert users is not
always possible, especially when dealing with systems of Ordinary Dif-
ferential Equations. Second, when the system is composed of hundreds or
thousands of reactions and chemical species, the classic CPU-based sim-
ulators could not be appropriate to efficiently derive the behavior of the
system. To overcome these limitations, in this paper we propose a novel
approach that combines the descriptive power of Stochastic Symmetric
Nets–a Petri Net formalism that allows modeler to describe the system in
a parametric and compact manner–with LASSIE, a GPU-powered deter-
ministic simulator that offloads onto the GPU the calculations required
to execute many simulations by following both fine-grained and coarse-
grained parallelization strategies. This pipeline has been applied to carry
out a parameter sweep analysis of a relapsing-remitting multiple sclero-
sis model, aimed at understanding the role of possible malfunctions in
the cross-balancing mechanisms that regulate peripheral tolerance of self-
reactive T lymphocytes. From our experiments, LASSIE achieves around
97× speed-up with respect to the sequential execution of the same num-
ber of simulations.
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1 Introduction

The Immune System (IS) is the ensemble of cells and molecules that protects
living organisms from foreign pathogens. This complex machinery consists in a
set of mechanisms whose complexity depends on the evolutionary level of the
host. In mammals, besides the innate immunity, the adaptive immunity repre-
sents the most effective weapon against viruses and bacteria, thanks to its ability
to specifically recognize and act against pathogens (specificity), to discriminate
between self and non-self, and to remember previously encountered pathogens in
order to act more rapidly (memory). While being extremely effective, adaptive
immunity is not faultless. A breakdown of the mechanisms that allow the IS
to discriminate between self and non-self antigens may lead to harmful effects,
such as the arise of autoimmune diseases. Multiple sclerosis (MS), a disease of
the Central Nervous System (CNS), falls within those.

MS is a chronic inflammatory disease that causes the removal of myelin sheath
created by oligodendrocytes from axons, leading to a reduced functionality of the
CNS. It is well known that a genetic predisposition correlates with MS [8]. More-
over, environmental and dietary factors may play an important role. Epstein-
Barr virus (EBV) may trigger the disease onset [17,18], while it is supposed
that vitamin D could help in preventing MS [11]. Symptoms include weakness
and fatigue, blurry vision, speech problems, numbness and tingling, dizziness,
lack of coordination and uncontrolled bodily functions. The most common form
of MS (80−90% of the total insurgence) is Relapsing-Remitting MS (RRMS)
[20], where relapses (periods of disease progression) are followed by periods of
remission (total or partial recovery from symptoms). RRMS usually occurs in
the age of 20−40, with a women-to-men ratio of 2:1. When left untreated, 65%
of RRMS cases turn after 15−25 years to more severe MS forms [7].

Even if the etiology of MS is not fully understood, the common shared
hypothesis suggests that self-reactive T lymphocytes may be activated in the
periphery by an external trigger (i.e., EBV). Activated T cells can overcome the
blood brain barrier and go through the CNS [24]. Once in the brain, self-reactive
cells cause inflammatory events that negatively affect both myelin and oligoden-
drocytes, also involving other IS entities such as B lymphocytes, macrophages,
and microglia. It is worth noting that relapses usually represent the clinical cor-
relates of inflammatory bouts. Self-reactive T lymphocytes represent one of the
main actors in the development and progression of the disease, as such cells
tend to decrease in the peripheral blood while increasing in the spinal fluid
when relapses occur. Furthermore, homeostasis of regulatory T cells (Treg) and
effectors T cells (Teff) is fundamental in preventing autoimmunity [9,13]. More
precisely, a breakdown of the peripheral tolerance mechanisms, such as the lack
of functionality or deficiency of Treg functions, may bring to uncontrolled acti-
vation and proliferation of effectors T cells [19].
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This hypothesis has been confirmed by Vélez de Mendizábal et al. [23], with
the use of an Ordinary Differential Equations (ODEs) model capable of repro-
ducing the behavior of RRMS. However, this model represented a very simplistic
scenario, by avoiding to explicitly include the trigger of the disease represented
by an external factor such as the EBV, as well as the occurrence of neural damage
represented by the loss of myelin and/or the death of oligodendrocytes. Further-
more, the model totally missed to give any description of the spatial evolution
of the disease. These issues were fulfilled by an agent based model (ABM) capa-
ble of better describing, from a temporal and spatial points of view, the typical
shape of RRMS [16]. It must be said that, due to the significant computational
efforts needed to run thousands of ABM simulations, a deeper analysis of the
model parameters that may influence the disease progression was not carried
out.

To cope with these aspects, in this paper we propose a new framework for
the analysis of this type of biological systems, in which a graphical formalism is
exploited to facilitate the model creation and the simulation of its behavior. In
detail, Stochastic Symmetric Net (SSN) [6], a high-level Petri Nets formalism,
is used to describe the system in a parametric and compact manner. Then, from
the SSN model an ODE system is automatically derived and solved through
a numerical integrator that exploits a High Performance Computing solution.
In particular, a GPU-based simulation algorithm of ODE systems is suitable
in this context [15], since models translated from SSNs into set of equations
typically involve thousands of reactions and/or chemical species. It is therefore
necessary to accelerate the numerical integration to achieve thorough analyses
of the system. Here we exploit an improved version of LASSIE [22], a GPU-
powered deterministic simulator capable of realizing both a fine-grained and a
coarse-grained parallelization, meaning that the calculations required by a single
simulation are distributed over the GPU cores, as well as multiple simulations
that run in a parallel fashion on the GPU.

We show that this novel framework that combines SSNs with LASSIE may
provide a good compromise between its effectiveness in terms of model descrip-
tion and solution, and the mathematical and computational skills needed to
generate, simulate and analyse models.

The paper is structured as follows. In Sect. 2 we briefly recall the basic
notions of SSN and the functioning of LASSIE, while in Sect. 3 we describe the
SSN model of MS. In Sect. 4 we present our developed framework and the results
of the parameter sweep analysis executed on the RRMS model. We conclude in
Sect. 5 with some final remarks and future directions of this work.

2 Background

In this section we introduce all the definitions, notations and methods used in
the rest of the paper. We first introduce the SSN formalism and then we describe
how to translate a SSN model into the corresponding (symbolic) ODE system.
Finally, we briefly describe LASSIE, the GPU-powered deterministic simulator
exploited to realize the analysis of the RRMS model.
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2.1 The SSN Formalism

Stochastic Symmetric Net (SSN) is a high-level graphical formalism that extends
Stochastic Petri Net (SPN) formalism with colored tokens [6], so that an infor-
mation can be associated with tokens flowing in the net. This feature allows for
a more compact system representation that can be exploited during both the
construction and the solution of the model [1,3,6]. SSN is a bipartite directed
graph with two types of nodes, called places and transitions.

The places, graphically represented as circles, correspond to the variables
describing the state of the system. Places can contain colored tokens, whose
colors are defined by the color domain cd() associated with any place. The place
color domains are thus defined as Cartesian products of color classes Ci, or by
the neutral element ε consisting of a neutral color as in ordinary Petri Nets. A
color class Ci can be partitioned into static sub-classes Ci,1 ∪ . . . ∪ Ci,l. Then,
the colors of a class represent entities of the same nature (e.g., regulatory T cells),
but only the colors within a static sub-class are guaranteed to behave similarly
(e.g., regulatory T cells in active state). Moreover, a color class is ordered if and
only if it is possible to define on it a successor function, denoted by ++, which
determines a circular order on its elements. For instance, in the SSN model in
Fig. 1, three color classes are defined: State denoting the cell state, PosX and
PosY encoding the cell position on a grid representing a tissue portion. The
color class State is divided into two static sub-classes N and A, which refer
to the cell states Naive and Active, respectively. Differently, the ordered color
classes PosX and PosY are not divided into static sub-classes. According to this
color definition, the color domain of places Treg and Teff is State×PosX×PosY.
Differently, the color domain of places ODC and EBV is PosX × PosY.

The transitions, graphically represented as boxes, correspond to the system
events. The possible colored instances of a transition are defined by the color
domain cd() associated with any transition. The transition color domains are
thus expressed through a list of typed variables, whose types are selected among
the color classes Ci. The variables associated with a transition appear in the
functions labeling its arcs, so that a transition instance binds each variable to a
specific color of proper type. Then, a guard can be used to introduce restrictions
on the allowed instances of a transition. Such restrictions are defined as Boolean
expression over the color domain of the transition, and their terms, called basic
predicates, allow one (i) to compare colors assigned to variables of the same or
different type (x = y, x �= y); (ii) to test whether a color element belongs to a
given static sub-class (x ∈ Ci,j); (iii) to compare the static sub-classes of the
colors assigned to two variables (x, y ∈ Ci,j). For instance, the color domain of
transition TeffActivation in Fig. 1 is State × State × PosX × PosY. The guard
[m ∈ N ∧ n ∈ A] is associated with this transition to mimics the activation of
a Naive Teff cell.



630 M. Beccuti et al.

The functions labeling arcs are formally expressed as sums of tuples where
each tuple element is chosen from a set of predefined basic functions, whose
domains and co-domains are respectively color classes and multisets on color
classes. The basic functions in SSN formalism can be grouped as follows: projec-
tion functions, denoted by a variable in the transition color domain (e.g., m, x
and y appearing in the arc expression < m,x, y > labeling several arcs in net);
successor functions, denoted by x + +, where x is a variable in the transition
color domain whose type is an ordered class; a constant function returning all
elements in a class (or sub-class), indicated as classname.All. Input, output arcs
are denoted by I,O[p, t] : cd(t) → Bag[cd(p)], where Bag[A] is the set of all
possible multisets that may be built on set A.

The state of an SSN, called marking, is defined by the number of colored
tokens in each place. For instance, a marking for the model in Fig.1, assuming
N = {n}, A = {a}, PosX= {x1, . . . , xn} and PosY = {y1, . . . , yn}, is

m = Treg(10〈n, x1, y2〉) + Teff(12〈a, x2, y2〉),

representing the state in which there are 10 Treg cells in position x1, y2 and 12
Teff cells in position x2, y2.

The evolution of the system is given by the firing of an enabled transition,
where the enabling condition and the state change associated with each transi-
tion instance are specified by means of arc functions labeling the arcs connecting
a place to this transition and vice versa. Given the color identifying an instance
of the transition t, the arc function labeling the arc connecting t to a place p
provides the (multi)set of colored tokens that will be either added to or removed
from p. In the SSNs, the firing of an enabled transition instance 〈t, c〉 occurs
after a random delay sampled from a negative exponential distribution whose
rate is given by:

ω(t, c) =
{

ri condi(c) ∀i = 1, . . . , n,
rn+1 otherwise,

where condi is a Boolean expression comprising standard predicates on the tran-
sition color instance. In this manner, the firing rate ri of a transition instance
can depend only on the static sub-classes of the objects assigned to the tran-
sition parameters and on the comparison of variables of the same type. We
assume that the conditions condi are mutually exclusive. So doing, the stochas-
tic process mimicking the dynamic of SSN models is a Continuous Time Markov
Chain (CTMC), where the states are identified with SSN markings and the state
changes correspond to the marking changes in the SSN.

If we assume that all the transitions of the SSN use an infinite server policy,
the transition rate from state m to state m′ in the CTMC can be written as:

qm,m′ =
∑

∀t,c:m〈t,c〉−→m′

ω(t, c)e(m, t, c),
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where e(m, t, c) is the enabling degree of the transition instance 〈t, c〉 in marking
m, defined as:

e(m, t, c) = min
(pj ,c′):I[pj ,t](c)(c′) �=0

⌊
m(pj)(c′)

I[pj , t](c)(c′)

⌋
.

According to these assumptions, the temporal behavior of an SSN model can
be derived by means of analytic or numerical approaches [21]. However, in the
case of very complex models, the underlying CTMC can not be derived or/and
solved due to the well-known state space explosion problem. To deal with these
cases, whenever the stochasticity of the modeled system can be neglected (e.g.,
due to huge number of cells), the so-called deterministic approach [12] can be
exploited, assuming that the behavior of entities contained in a place of the net
is described with an ODE and that the whole model is specified with a system
of ODEs, one for each place of the net.

2.2 From SSN Models to ODEs

Starting from Kurtz’s results [12], in [3] we described how to efficiently derive an
ODE system that provides a good deterministic approximation for the stochastic
behavior of the corresponding SSN model. Practically, a SSN model is firstly
translated into its equivalent SPN through the unfolding procedure [3], which
consists of replicating places and transitions as many times as the cardinalities
of the corresponding color domains. Hence, colors disappear in the unfolded
model and the complex behavior due to color combinations, color arc functions
and color transition guards, is encoded with a net structure in which tokens are
indistinguishable entities and new transitions, places and arcs are introduced to
account for the different actions performed by instances of the same transition
on colored tokens. Note that the name of new places (transitions) in the unfolded
net is defined by associating with the original name of the place (transition) in
the SSN one possible element of its color domain. For instance, the unfolding of
the SSN p place, with cd(p) = C × C and C = {c1, c2}, will provide four places:
pc1,c1, pc1,c2, pc2,c1 and pc2,c2.

When the unfolded SPN model is derived, the average number of tokens in
each place of the unfolded net is approximated through the following ODE:

dxi(ν)
dν

=
|T |∑
j=1

s(tj , x(ν))(O[pi, tj ] − I[pi, tj ]), (1)

where x(ν) is a vector of real numbers representing the average number of tokens
in the model places at time ν, T is the set of the net transitions, and s(tj , x(ν))
is a function defining the speed of transition tj in the state x(ν) as follows:

s(tj , x(ν)) = ω(tj) min
l:I(pl,tj) �=0

xl(ν)
I[pl, tj ]

. (2)
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2.3 LASSIE: GPU-Powered Simulation of Large-Scale Models

LASSIE is a GPU-powered deterministic simulator that can be easily used with-
out any specific GPU programming or ODE modeling skills [22]. LASSIE was
designed to perform deterministic simulations of large-scale biochemical mod-
els, distributing all required calculations on the cores of the GPU. LASSIE
requires as input a biological system formalized as a reaction-based model [4,10]
under the assumption of mass-action kinetics [14], as in the case of SSN mod-
els translated into ODE systems (see Sect. 2.2). LASSIE was developed using
the most widespread GPU computing library, namely, Nvidia Compute Unified
Device Architecture (CUDA), which allows programmers to exploit the GPUs
for general-purpose computational tasks (GPGPU computing).

In this work, we make use of an improved version of LASSIE that realizes
both a fine-grained and a coarse-grained parallelization of the simulations. This
means that two different levels of parallelism are implemented: (i) the numerical
integration of ODEs required by a single simulation is parallelized on the GPU
cores, and (ii) many simulations of the same model characterized by different
initial conditions and kinetic parameters are executed in a parallel fashion on the
same GPU. The second level of parallelization was introduced to the aim of fully
occupying the GPU cores, and to further accelerate the analysis of large-scale
models of biological systems.

3 Treg-Teff Cross Regulation in RRMS

Our case study, as already anticipated in Sect. 1, refers to the cross regulation
mechanism between Treg and Teff cells in RRMS. T cells are a type of white
blood cells that play a central role in the human immune system. Indeed, they
implement the adaptive immunity that tailors the immune response of the body
to specific pathogens. T cells are commonly divided into various populations,
including Cytotoxic CD8 T lymphocytes, also known as effectors T cells (Teff),
the main effectors of cellular-mediated immunity that can directly attack infected
or cancer cells, and CD4 T helper lymphocytes, essential to boost the immune
functions by activating other immune cells. More recently, regulatory T cells
(Treg) have been discovered as one of the main actors in modulating the immune
system in order to maintain tolerance to self-antigens and to prevent autoimmune
diseases. In particular, Treg cells are usually responsible of controlling the Teff
functionalities suppressing their potentially deleterious activities. Teff cells can
be inhibited by Treg cells through cell-to-cell contact and immunosuppressive
cytokines. Furthermore, Treg proliferation can be stimulated as a consequence
of the suppression of Teff cells. In our study we consider the activation of self-
reactive Teff and Treg cells due to an EBV infection that, through a process
called antigenic mimicry, misleads such cells. In this situation, in healthy people,
Treg cells are able to control the spread of Teff cells activated by EBV. Instead,
in diseased people a breakdown of the regulation mechanism, represented by a
malfunction of Treg activities, leads to widespread inflammatory events driven
by Teff cells that erroneously attack the Myelin Based Protein (MBP), a major
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structural component of myelin that is expressed by oligodendrocytes (ODC) in
the central nervous system. This attack can irredeemably damage myelin sheath
of neurons leading to the occurrence of demyelinating diseases as MS.

Fig. 1. SSN model describing Treg-Teff cross regulation in multiple sclerosis.

Figure 1 shows the SSN model describing our case study. The color class
State divided into two sub-classes (i.e. Naive and Active) represents the cell
status, while the ordered color classes PosX and PosY encode the cell position
considering the tissue portion as spherical grid. The marking of places Teff (resp.
Treg) provides the number of active and inactive Teff (resp. Treg) cells in each
grid position. Similarly, the marking of places EBV and ODC represents the
concentration of EBVs and ODCs in each grid position.

The Teff, Treg, and EBV diffusion process is modeled by the transitions
MoveTeff, MoveTreg and MoveEBV. The proliferation of inactive Teff and Treg
cells is modeled by the firing of the transitions TeffBorn and TregBorn, while
their natural death by the firing of the transitions TregDeath and TeffDeath.
The activation of a Teff cell due to the contact with EBV is modeled by the
transition TeffActivation. Similarly, the transition TregActivation represents the
activation of a Treg cell due to the contact with EBV. The transition TeffKill-
sODC describes the attack of Teff against ODCs causing the axonal damage.
Moreover, as a feedback, the Teff cell will be duplicated. The partial recovery
(recoverable damage) of ODC functions up to their initial value is instead rep-
resented by the transition recovery. Finally, the transition TregKillsTeff is used
to model the already described down regulation functions of Treg cells against
Teff cells.

4 Results

4.1 Framework Architecture

In this section we describe the architecture of the prototype framework that we
developed for the study of Treg-Teff cross regulation in RRMS. This framework
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is integrated in GreatSPN [2], a well-known suite for the analysis of Discrete
Event Dynamic Systems described through Petri Net formalisms. In details, our
framework exploits the GreatSPN GUI to draw an SSN model and to derive the
corresponding ODE system from an SSN model, while LASSIE [22] is used for
solving the generated ODE system. The architecture of this prototype framework
is depicted in Fig. 2: GreatSPN is used as graphical interface for constructing the
model and as solution manager for activating the solution process. The solution
manager executes in the correct order the framework components, and manages
the models/data exchanges between them.

Fig. 2. Schematization of the prototype framework combining GreatSPN suite with
LASSIE (the components are shown by rectangles, component invocations by solid
arrows, models/data exchanges by dashed arrows).

Thus, the solution process comprises three steps:

1. Unfolding to derive the unfolded SPN model from an SNN model, as described
in Sect. 2;

2. PN2ODE to generate the ODE system from an SPN model, as formalized in
Sect. 2. Then, the derived ODE system is exported according to the LASSIE
input format;

3. LASSIE to solve the generated ODE system by offloading onto the GPU
all the calculations required by the numerical integration of all parallel
simulations.

4.2 Computational Results

To test the effectiveness of the pipeline presented in Sect. 4.1, we performed a
parameter sweep analysis (PSA) [5] on the RRMS model, in which one kinetic
parameter was varied within a given sweep interval (chosen with respect to a
fixed reference value for each parameter). For this test we exploited a Nvidia
GeForce GTX Titan Z (2880 cores, clock 876 MHz, RAM 6 GB).
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The RRMS model depicted in Fig. 1 was converted into an ODE system char-
acterized by 3200 reactions and 700 chemical species. The PSA was performed
by generating a set of different initial conditions—corresponding to different
parameterizations of the model—and then automatically executing the parallel
deterministic simulations with LASSIE. The initial marking, the transition rates
and the grid size used in the experiments are reported in Fig. 1. The kinetic con-
stant associated with the firing of the TregKillsTeff transition was varied by
taking 640 different values equally distributed in the interval [10−3, 1] days−1.
We recall here that the firing rate of such transition is fundamental to describe
the possible malfunction of Treg cells activities, which may lead to a breakdown
of the peripheral tolerance and thus to the insurgence of the disease.

Fig. 3. Dynamics of Teff (left) and ODC (right) with different values of the kinetic
constant associated with the TregKillsTeff transition. (Color figure online)

The results of this analysis are reported in Fig. 3, where we can observe
that for values of the kinetic constant higher than 0.109 days−1, Treg cells are
able to control the spread of Teff cells (left panel, yellow and purple lines) and
consequently to avoid the appearing of the disease. This is also visible on the
ODC plot (right panel, yellow and purple lines) that shows how the amount of
ODC, even if initially lowered due to the Teff actions, goes rapidly back to its
maximum value, suggesting that any damage has been avoided or recovered at
most (recoverable damage). This outcome well describes the scenario of healthy
people, in which the peripheral tolerance is able to compensate for a genetic
predisposition in developing the disease. For values of the kinetic constant lower
than 0.109 days−1, an oscillatory behavior of Teff starts to appear (left panel, red
line), becoming more and more pronounced as the value of the kinetic constant
decreases (i.e., left panel, black line). In this scenario, it is possible to observe that
the amount of ODC decreases to around zero in correspondence to each peak
in the number of Teff (left panel, red and black lines), suggesting an ongoing
inflammation that causes neural damage, and thus the possibility of relapses
in correspondence of each peak in the Teff amount. Interestingly, a fixed initial
quantity of EBV seems to be sufficient to start such oscillatory behavior that can
be correlated to multiple relapses. This is somewhat different from the models
presented in [16,23], where each relapse was triggered by a single spread of virus.
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For what concerns the computational time required to execute the PSA on
the GPU, by considering the time necessary to run a single simulation with a
C++ implementation of Dormand and Prince method, exploiting a single core
of a CPU Intel Core i7-6700HQ, 2.6 GHz, we estimated a speed-up around 97×
on the Nvidia GeForce GTX Titan Z, thanks to the parallelization provided by
LASSIE.

5 Conclusions

In this paper we presented a novel framework for the analysis of complex biolog-
ical systems. This framework combines the descriptive power of Stochastic Sym-
metric Nets, which allows one to provide a graphical representation of complex
biological systems in a compact and parametric way, with a tool that automat-
ically derives a system of ODEs corresponding to the net. The resulting ODEs
system is typically composed of hundreds or thousands of reactions and/or chem-
ical species; it is therefore essential to accelerate the simulations by means of a
High Performance Computing solution. In our framework we exploit LASSIE,
a GPU-powered deterministic simulator capable of realizing both a fine-grained
and a coarse-grained parallelization strategy.

The framework presented here was applied to a complex biological system
of relapsing-remitting multiple sclerosis, consisting in 3200 reactions and 700
chemical species. In particular, we realized a parameter sweep analysis to inves-
tigate the effects of possible malfunctions in the Teff-Treg cross regulation mech-
anisms that involve a break of peripheral tolerance and bring to the occurrence
of relapses. Thanks to the acceleration provided by LASSIE, we obtained around
97× speed-up with respect to a CPU-based execution of the same analysis.

As a future extension of this work, on the one hand, we plan to execute
extensive analyses of the parameter space of the model to better understand the
underlying mechanisms of multiple sclerosis; on the other hand, we will assess the
performance of our framework on different GPUs and on multi-GPU systems.
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Abstract. In this work a previously published bioinformatics pipeline
was reimplemented across various computational platforms, and the per-
formances of its steps evaluated. The tested environments were: (I) dedi-
cated bioinformatics-specific server (II) low-power single node (III) HPC
single node (IV) virtual machine. The pipeline was tested on a use case
of the analysis of a single patient to assess single-use performances, using
the same configuration of the pipeline to be able to perform meaningful
comparison and search the optimal environment/hybrid system configu-
ration for biomedical analysis. Performances were evaluated in terms of
execution wall time, memory usage and energy consumption per patient.
Our results show that, albeit slower, low power single nodes are compa-
rable with other environments for most of the steps, but with an energy
consumption two to four times lower. These results indicate that these
environments are viable candidates for bioinformatics clusters where long
term efficiency is a factor.

Keywords: Whole genome sequencing · Bioinformatic pipeline
Low-power · GATK-LODn pipeline

1 Introduction

Biomedical data are growing both in size and breath of possible uses. Of spe-
cial importance are the so called biomedical big data, blanket term describing
data generated from several machines and used to describe the health state of a
person:

1. Next generation sequencing NGS. NGS technology. RNA-seq: experi-
mental procedure, challenges and opportunities in statistical data analysis.
ChIP-Seq: experimental procedure and statistical data analysis.
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2. Proteomics and Metabolomics. LC/MS technology, challenges in data
processing. Biological pathways.

3. Biomedical imaging. Imaging techniques, acquisition methods and data
structures/characteristics for different imaging modalities.

4. Statistical Analysis of Imaging Data. Data processing techniques, study
designs, analysis strategies, research questions and goals. Radiomics.

5. Brain Networks and Imaging Genetics. The importance of brain net-
works in differentiating between healthy and mentally ill subjects, methods on
how to estimate the brain network which may or may not rely on additional
clinical, demographic and genetic information.

6. Molecular genetics and population genetics. Biological backgrounds for
statistical genetics, concepts from population genetics that are most relevant
to association analysis.

7. Genetic association studies. Tests for association, challenges especially in
the context of genome-wide association studies (GWAS), including how to
correct for population stratification and multiple testing.

These datasets are known to contain vast amount of information, especially
when connected together to enhance the power of the biological modeling [2,7].

Genetic information is important in studying cancer, as frequently the pro-
cess is kickstarted from a small subset of mutations in the genetic code of the
cell [5]. These mutations can, via genomic instability, generate a wide variety of
mutations in the cancerous cells, often different not only from case to case, but
even inside a single case. To address this problem and to find interesting treat-
ment target, identifying the original mutations is necessary, and this requires an
in depth analysis of the genome of both healthy and tumoral tissues, possibly
across several subjects.

With the increasing demand of resources from ever-growing datasets, it is
not favorable to focus on single server execution, and is better to distribute the
computation over cluster of less powerful nodes. The computational pipeline also
has to manage a high number of subjects, and several steps of the analyses are
not trivial to be done in a highly parallel way. Thus, the importance of system
statistics management as the efficiency usage of available resources are crucial to
reach a compromise between computational execution time and energy cost. For
these reasons our main focus is on the performance evaluation of a single sub-
ject without using all the available resources, as these could be more efficiently
allocated to concurrently execute several subjects at the same time. Due to the
nature of the employed algorithms, not all steps can exploit the available cores
in a highly efficient way: some scales sublinearly with the number of cores, some
have resource access bottleneck. Other tools are simply not implemented with
parallelism in mind, often because they are the result of the effort of small teams
that prefer to focus their attention on the scientific development side rather than
the computational one.

Moreover in order to obtain an optimal execution of bioinformatics pipelines,
each analysis step might need very different resources. This means that any sub-
optimal component of a server could act as a bottleneck, requiring bleeding edge
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technology if all the steps are to be performed on a single machine. Hybrid sys-
tems could be a possible solution to these issues, but designing them requires
detailed information about how to partition the different steps of the pipeline.
This work explores the different behavior of a recent pipeline on different com-
puting environments as a starting point for this partition.

1.1 GATK-LODn Pipeline

This pipeline has been developed in 2016 by Valle et al. [9], and codifies a
new approach aimed to Single Nucleotype Polimorphism (SNP) identification in
tumors from Whole Exome Sequencing data (WES). WES is a type of “next
generation sequencing” data [1,8,11], focused on the part of the genome that
actually codifies proteins (the exome). Albeit known that non-transcriptional
parts of the genome can affect the dynamic of gene expression, the majority of
cancers inducing mutations are known to be on the exome, thus WES data allow
to focus the computational effort on the most interesting part of the genome.
Being the exome in human approximately 1% of the total genome, this approach
helps significantly in reducing the number of false positives detected by the
pipeline. The different sizes of next generation sequencing dataset are shown in
Table 1.

The GATK-LODn pipeline is designed to combine results of two different
SNP-calling softwares, GATK [6] and MuTect [4]. These two softwares employ
different statistical approaches for the SNP calling: GATK examines the healthy
tissue and the cancerous tissue independently, and identifies the suspect SNPs by
comparing them; Mutect compares healthy and cancerous tissues at the same
time and has a more strict threshold of selection. In identifying more SNPs,
GATK has a higher true positive calling than Mutect, but also an higher number
of false positives. On the other end Mutect has few false positives, but often does
not recognize known SNPs. The two programs also call different set of SNPs,
even when the set size is similar. The pipeline therefore uses a combination of
the two sets of chosen SNPs to select a single one, averaging the strictness of
Mutect with the recognition of known variants of GATK.

The pipeline workflow includes a series of common steps in bioinformatics
analysis and in the common bioinformatics pipelines. It includes also a sufficient
representative sample of tools for the performances statistical analysis. In this
way the results extracted from the single steps analysis could be easily general-
ized to other standard bioinformatics pipelines.

1.2 System Resources Management

As mentioned earlier, a bioinformatics pipeline consists of various steps that
could be independent or sequential from each other. Each step could need more
or less resources (e.g. memory and threads). So the optimal pipeline execution
is closely related to the amount of available resources. The number of samples
(patients) to process can penalize performances. There are two main optimiza-
tion strategies: the first is to improve the efficiency of a single run on a single
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Table 1. Typical dataset size for a single patient of different types of next generation
sequencing. BAM file size refers to the size of the binary file containing the reads from
the machine.

Coverage No. of reads Read length BAM file size NGS size

Whole genome 37.7x 975,000,000 115 82 GB 104 GB

Whole genome 38.4x 3,200,000,000 36 138 GB 193 GB

Exome 40x 110,000,000 75 5.7 GB 7.1 GB

patient and the second is to employ massive parallelization on various samples.
In both cases we have to know the necessary resources of the pipeline (and in
a fine grain the resources of each step) and the optimal concurrency strategy
to be applied to our workflow (see Fig. 1). In the analyses we want to highlight
limits and efficiencies of the most common computational environments used in
big data analytics, without any optimization strategy of the codes or systems.

We also focused on a single patient analysis, the base case study to design a
possible parallelization strategy. This is especially relevant for the multi-sample
parallelization, that is the most promising of the two optimization strategies, as
it does not rely on specific implementations of the softwares employed in the
pipeline.

Fig. 1. Examples of concurrency workflow of two processes. The first case (a) represents
a simple (naive) sequential workflow; the second (b) highlights a brute force paralleliza-
tion; the third (c) is the case of a perfect match between the available resources and
the requested resources. Often brute force parallelization of pipelines done as in the
image b ends up overlapping the most computationally intensive steps. Measuring the
minimum viable requirements for the execution allow to better allocate resources as
seen in the image c.

2 Materials and Methods

The pipeline was implemented on 5 computational environments: 1 server grade
machine (Xeon E52640), 1 HPC node (Xeon E52683), 2 low power machines
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(Xeon D and Pentium J) and one virtual machine built on an AMD Opteron
hypervisor. The characteristics of each node are presented in Table 2.

The server-grade node is a typical node used for bioinformatics computation,
and as such features hundreds of GB of memory with multiple cores per moth-
erboard: for these reasons we chose it as reference machine and the following
results are expressed in relation to it.

The two low-power machines are designed to have a good cost-to-performance
ratio, especially for the running cost1. These machines have been proven to be
a viable solution for high performance computations [3]. Their low starting and
running cost mean that a cluster of these machines would be more accessible for
research groups looking forward to increase their computational power.

The last node is a virtual machine, designed to be operated in a cloud envi-
ronment.

The monitoring tool used is Telegraf, which is an agent written in Go for col-
lecting, processing, aggregating, and writing metrics. Each section of the pipeline
sends messages to the Telegraf daemon independently.

Regardless of the number of cores of each machine we restrict the number
of cores used to only two to compare the statistics: this restriction certainly
penalize the environment with multiple cores but with a view of maximizing

Table 2. Characteristics of the tested computational environments. Electrical costs
are estimated as 0.25 e/kWh; CPU frequencies are reported in GHz; TDP: Thermal
Design Power, an estimation indicator of maximum amount of heat generated by a
computer chip when a “real application” runs.

Class Server grade machines Low power machines Virtual machine

CPU Intel Xeon Intel Xeon Intel Pentium Intel Xeon AMD Opteron

Version E5-2683v3 E5-2640v2 J4205 D-1540 6386 SE

Microarchitecture Haswell Ivy Bridge EP Apollo Lake Broadwell Piledriver

Launch date Q3’14 Q3’13 Q4’16 Q1’15 Q3’12

Lithography 22 nm 22 nm 14 nm 14 nm 32 nm

Cores/threads 14/28 8/16 4/4 8/16 16

Base/Max Freq 2.00/3.00 2.00/2.50 1.50/2.60 2.00/2.60 2.80/3.50

L2 Cache 35 MB 20 MB 2 MB 12 MB 16 MB

TDP 120 W 95 W 10 W 45 W 115 W

Total CPUs 2 2 1 1 1

Total cores/threads 28/56 16/32 4/4 8/16 16

Total Memory 256 GB 252 GB 8 GB 32 GB 60 GB

System power 240 + 60 W 190 + 60 W 10 + 2 W 45 + 10 W 115 + 10 W

Electrical costs 650 e/year 550 e/year 26 e/year 120 e/year 273e /year

System price 4000–6000 e 3000–5000 e 100–130 e 900–1200 e 2000-3000e

1 Running cost is evaluated as the energy consumption that the node requires per
subject, assuming that the consumption scales linearly with the number of cores
used in the individual step.
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the parallelizations and minimize the energy cost it is the playground to com-
pare all the available environments. Another restriction is applied to the chosen
architectures: since available low-power machines provides only x86-architectures
also the other environments are forced to work in x86 to allow the statistics
comparison.

2.1 Dedicated Bioinformatics Server

The reference node for the tests is one of the servers employed for bioinformatics
analyses by the authors. This is a single node with 252 GB memory, 125 TB
storage and 2 CPU E5-2640v2, with 16 cores each.

This machine was designed to be able to sustain most commonly performed
bioinformatics pipelines, using high volume memory and storage.

2.2 HPC Cluster Hardware Configuration

The HPC cluster is composed by 27 Infiniband interconnected worker nodes,
which provide 640 core (Hyperthreaded, E5-2640 cpu), 48 HT cores X5650, 48
HT cores E5-2620, 168 HT cores E5-2683v3, 15 GPUs (8 Tesla K40, 7 Tesla K20,
2 x (4GRID K1)), 2 MICs (2 x Xeon Phi 5100).

A dedicated storage has been setup for the cluster. Storage is accessible by
all the nodes through the GPFS file system. In particular the setup includes
2 disks servers, 60 TB of shared disk space, 4 TB for shared home directories.
Disks servers are equipped with dual 10 Gb/s Ethernet.

Worker nodes are connected each other via Infiniband (QDR) and are
equipped with 1 Gb Ethernet interfaces for storage and network traffic. Home,
data and softwares directories are located on a dedicated GPFS file system and
shared between all the cluster nodes. The LSF batch system (version 9.1.3) is
used to manage job submission to the cluster nodes. The execution environment
is shared with a number of other users, therefore in order to measure resource
usage, it has been necessary to monitor our jobs from within.

2.3 The Low-power Cluster

The nodes of the cluster are located in a I.N.F.N. facility located in Bologna
(Italy) and are based on the current state-of-the-art low-power processors tech-
nology. Low power processors are gaining interest in many scientific applicative
fields. Designed for the embedded, mobile or consumer market, they are progres-
sively reducing the performance gap with server grade environments, with the
added values of keeping a competitive edge on the bill of material and electrical
energy costs.

In particular, low power Systems-on-Chip (SoCs) are designed to meet the
best computing performance with the lowest power consumption. The SoCs
superior performance/consumption ratio is driven by the growing demands for
energy-saving boards in mobile and embedded industries. Indeed, the primary



644 N. Curti et al.

design goal for SoCs has been low power consumption because of their use in
battery-powered devices or rugged industrial embedded devices. On the con-
trary, the current server grade CPUs were designed to meet high performance
demand required by data center power-hungry clients. Moving away from their
embedded and consumer worlds, SoCs are becoming a valid alternative environ-
ment for scientific applications without sacrificing too much the performances of
server grade CPUs.

The low-power cluster is equipped with nodes based on ARMv7, ARMv8 and
x86 low-power environments and is currently used for scientific benchmarks and
real-time application tests. Nevertheless, in this work we have only considered
x86-based low-power environments because they do not require porting compil-
ing issues and because on the basis of our experience other low-power archi-
tectures (i.e. ARM based) are equivalent to x86 low-power platform in term of
CPU performance. GPU-enhanced applications can result in a different scenario
between ARM and x86 platforms, however, the software pipeline in this work
were developed for CPU only.

We chose the following two x86 low-power architectures because they are
deployed in different fields of applications: the extremely low-power Intel Pen-
tium J Series (Apollo Lake code name) and the high-performance low-power
Intel Xeon D Family (Broadwell code name). We would stress the fact that the
Intel Xeon D Family is on the edge of the low-power boundary definition, as
shown in the last two rows at the bottom of the Table 2 with the thermal design
power (TDP) and median Bill Of Material (BOM) of each platform, but we
chose it because it is a natural glue between the low-power platforms and the
server-grade platforms.

2.4 Virtual Machine

The virtual machine used in our tests is made available by the project
Cloud@CNAF with 16 VCPUs, 60 GB RAM and an attached persistent stor-
age volume of 1 TB. A small list of the benefits from an end-user point of
view is: lower computer costs; flexibility and scalability; virtually unlimited
storage capacity; increased data reliability; easier group collaboration; device
independent.

The Cloud@CNAF IaaS (Infrastructure as a Service) is based on OpenStack,
a free and open-source cloud-computing software platform and it has all the ser-
vices deployed using a High-Availability (HA) setup or in a clustered manner
(for ex. using a Percona XtraDB MySQL clustering solution for the deployment
of the DBs). It is able to satisfy diversified users needs of compute and storage
resources, having available, up to now, 66 hypervisors, with a total of approx-
imately 1400 CPUs, 4 TB of memory and more than 70 TB of storage. The
hypervisors range from SuperMicro nodes with 2 × 8 Core AMD Opteron Pro-
cessor 6320, 64 GB of memory to 2 × 12 AMD Opteron Processor 6238, 80 GB of
memory, connected to a PowerVault MD3660i through a GPFS cluster, acting as
backend for the cloud VMs ephemeral storage and the persistent, block-storage
one.
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2.5 Pipeline Steps

The pipeline steps that have been examined are a subset of all the possible steps:
we only focus on those whose computational requirements are higher and thus
require the most computational power. These steps are:

1. mapping: takes all the reads of the subjects and maps them on the reference
genome;

2. sort: sorts the sequences based on the alignment, to improve the reconstruc-
tion steps;

3. markduplicates: checks for read duplicates (that could be imperfections in
the experimental procedures and would skew the results);

4. buildbamindex: indexes the dataset for faster sorting;
5. indexrealigner: realigns the created data index to the reference genome;
6. BQSR: base quality score recalibration of the reads, to improve SNPs detec-

tion;
7. haplotypecaller: determines the SNPs of the subject;
8. hardfilter: removes the least significant SNPs.

The following statistics were evaluated:

1. memory per function: estimate percentage of the total memory available
to the node used for each individual step of the pipeline;

2. energy consumption: estimated as the time taken by the step, multiplied
by the number of cores used in the step and the power consumption per
core (TDP divided by the available cores). As mentioned before this normal-
ization unavoidably penalize the multi-core machines but give us a term of
comparison between the different environment;

3. elapsed time: wall time of each step.

The pipeline was tested on the patient data from the 1000 genome project
with access code NA12878, sample SRR1611178. It is referred as a Gold Standard
reference dataset [10]. It is generated with an Illumina HiSeq2000 platform,
SeqCap EZ Human Exome Lib v3.0 library and have a 80x coverage. As Gold
Standard reference it is commonly used as benchmark of new algorithm and for
our purpose can be used as valid prototype of genome.

3 Results

Memory occupation is one of the major drawbacks of the bioinformatics
pipelines, and one of the greater limits to the possibility of parallel computation
of multiple subjects at the same time. As it can be seen in Fig. 2, the memory
occupation is comprised between 10% and 30% on all the nodes. This is due
to the default behavior of the GATK libraries to reserve a fixed percentage of
the total memory of the node. The authors could not find any solution to pre-
vent this behavior from happening. As it can be noticed, in the node with the
greatest amount of total memory (both Xeon E5 and the virtual machine) the
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Fig. 2. Memory used for each step of the pipeline. Due to the GATK memory alloca-
tion strategy, all steps use a baseline amount of memory proportional to the available
memory. Smaller nodes, like the low power ones, require more memory as the baseline
allocated memory is not sufficient to perform the calculation.

requested memory is approximately stable, as is always sufficient for the required
task. The memory allocation is less stable in the nodes with a limited memory
(Xeon D and Pentium J), as GATK might requires more memory than what
initially allocated to perform the calculation. The exception to this behavior is
the “mapping” step, that uses a fixed amount of memory independently from the
available one (between 5 and 7 GB). This is due to the necessity of loading the
whole human reference genome (version hg19GRCh37) to align each individual
read to it. All the other steps do not require the human reference genome but can
work on the individual reads, allowing greater flexibility in memory allocation.

Fig. 3. Time elapsed per step of the pipeline, and total elapsed time. In the sorting
step, Pentium J is 20 times slower than the reference, probably due to the limited cache
size.
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As can be seen in Figs. 3 and 4, this increase of memory consumption does
not correspond to a proportional improvement of the time elapsed in the com-
putation.

The elapsed time for each step and for the whole pipeline can be seen in
Fig. 3. It can be seen that there is a non consistent trend in the behavior of
the different environments. Aside from the most extreme low power machine,
the pentium J, the elapsed times are on average higher for the low power and
slightly higher for the cloud node, but the time for the individual rule can vary.
In the sorting step, Pentium J is 20 times slower than the reference. This is
probably due to the limited cache and memory size of the pentium J, that are
both important factors determining the execution time of a sorting algorithm
and are both at least four to six times smaller than the other machines. The
HPC machine, the Xeon E52683, is consistently faster than the reference node.

The energy consumption per step can be seen in Fig. 4. The low power
machines are consistently less than half the baseline consumption. Even con-
sidering the peak of consumption due to the long time required to perform the
sorting, the most efficient low power machine, the pentium J, consumes 40%
of the reference, and the Xeon D consumes 60% of the reference. The HPC
machine, the Xeon E52683, have consumption close to the low power nodes, bal-
ancing out the higher energy consumption with a faster execution speed. The
virtual machine has the highest consumption despite the fact that the execution
time of the whole pipeline is comparable to the reference due to the high TDP
compared to its execution time.

Fig. 4. Energy consumption per pipeline step and on the whole pipeline. Energy con-
sumption is estimated as the time taken by the step, multiplied by the number of cores
used in the step and the power consumption per core (TDP divided by the available
cores).
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4 Discussion and Conclusions

Bioinformatic pipelines are one of the most important uses of biomedical big data
and, at the same time, one of the hardest to optimize, both for their extreme
requisites and the constant change of the specification, both in input-output
data format and program API.

This makes the task of pipeline optimization a daunting one, especially for
the final target of the results; physicians and biologists could lack the techni-
cal expertise (and time) required to optimize each new version of the various
softwares of the pipelines. Moreover, in a verified pipeline updating the software
included without a long and detailed crossvalidation with the previous one is
often considered a bad practice: this means that often these pipelines are run-
ning with underperforming versions of each software.

Clinical use of these pipelines is growing, in particular with the rise of the
concept of “personalized medicine”, where the therapy plan is designed on the
specific genotype and phenotype of the individual patient rather than on the
characteristic of the overall population. This would increase the precision of the
therapy and thus increase its efficacy, while cutting considerably the trial and
error process required to identify promising target of therapy. This requires the
pipelines to be evaluated in real time, for multiple subjects at the same time
(and potentially with multiple samples per subject). To perform this task no
single node is powerful enough, and thus it is necessary to use clusters. This
brings the need to evaluate which is the most cost and time efficient node that
can be employed.

In the cost assessment there are several factors that need to be considered
aside of the initial setup cost, namely cost for running the server and opportunity
cost for obsolescence. Scaled on medium sized facilities, such the one that could
be required for a hospital, this cost could quickly overcome the setup cost. This
cost does also include not only the direct power consumption of the nodes, but
also the required power for air conditioning to maintain them in the working
temperature range. Opportunity costs are more complex, but do represent the
loss of possibility of using the most advanced technologies due to the cost of the
individual node of the cluster. Higher end nodes require a significant investment,
and thus can not be replaced often.

With this perspective in mind, we surmise that energy efficient nodes present
an interesting opportunity for the implementation of these pipelines. As shown in
this work, these nodes have a low cost per subject, paired with a low setup cost.
This makes them an interesting alternative to traditional nodes as a workhorse
node for a cluster, as a greater number of cores can be bought and maintained
for the same cost.

Given the high variability of the performances in the various steps, in par-
ticular with the sorting and mapping steps, it might be more efficient to employ
a hybrid environment, where few high power nodes are used for specific tasks,
while the bulk of the computation is done by the energy efficient nodes. This is
true even for those steps that can be massively parallelized, such as the map-
ping, as they benefit mainly from a high number of processors rather than few
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powerful ones. In this work we focused only on CPUs computation, but another
possibility could be an hybrid-parallelization approach in which the use of a sin-
gle GPU accelerator can improve the parallelization of the slower steps. Each
pipeline workflow requires its own analyses and tuning to reach the best per-
formances and the right parallelization strategy based on the use which it is
intended but a low energy node approach is emerging as a good alternative to
the more expensive and common solutions.
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Abstract. The reconstruction of the haplotype pair for each chromo-
some is a hot topic in Bioinformatics and Genome Analysis. In Haplo-
type Assembly (HA), all heterozygous Single Nucleotide Polymorphisms
(SNPs) have to be assigned to exactly one of the two chromosomes. In
this work, we outline the state-of-the-art on HA approaches and present
an in-depth analysis of the computational performance of GenHap, a
recent method based on Genetic Algorithms. GenHap was designed to
tackle the computational complexity of the HA problem by means of
a divide-et-impera strategy that effectively leverages multi-core architec-
tures. In order to evaluate GenHap’s performance, we generated different
instances of synthetic (yet realistic) data exploiting empirical error mod-
els of four different sequencing platforms (namely, Illumina NovaSeq,
Roche/454, PacBio RS II and Oxford Nanopore Technologies MinION).
Our results show that the processing time generally decreases along with
the read length, involving a lower number of sub-problems to be dis-
tributed on multiple cores.

Keywords: Future-generation sequencing
Genome Analysis Haplotype Assembly
High Performance Computing · Master-Slave paradigm

1 Introduction

The advent of second-generation sequencing technologies revolutionized the field
of genomics, enabling a more complete view and understanding of the genome
of different species. However, despite their great contribution to the field, the
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data produced by these technologies are still unsuitable for several applications,
including Haplotype Assembly (HA). This problem consists in assigning all het-
erozygous Single Nucleotide Polymorphisms (SNPs) to exactly one of the two
homologous chromosomes, leveraging data from sequencing experiments. The
short length of the reads produced by second-generation sequencing technolo-
gies might be not long enough to span over a relevant number of SNP positions,
leading to the reconstruction of short haplotype blocks [8,43] and ultimately
hindering the possibility of reconstructing the full haplotypes.

In recent years, however, a third-generation of sequencing technologies was
developed and paved the way to the production of sequencing data character-
ized by reads covering hundreds of kilobases, thus able to span different SNP
loci at once [16,32,33]. Unfortunately, the increase in length comes at the cost
of a decrease in the accuracy of the reads, compared to the short and precise
ones produced by second-generation sequencing technologies, such as NovaSeq
(Illumina Inc., San Diego, CA, USA) [31]. In order to compensate for this inad-
equacy, there is a need for increasing the read coverage. Formally, the coverage
of a sequencing experiment is the average number of times that each nucleotide
is expected to be covered by a read. This value is given by the following rela-
tionship:

cov = (L · N)/G, (1)

where cov stands for the coverage, L for the read length, N for the number of
reads and G for the length of the haploid region of the genome on which the reads
are mapped [20]. Equation (1) shows that longer reads or a higher amount of
reads are needed to increase the coverage. In practice, an average coverage higher
than 30× is the de facto standard for accurate SNP detection [38]. Along with the
HA issues, novel challenges—e.g., poliploidity, metagenomics, analysis of cancer
cell heterogeneity and chromosomal capture experiments—require sequencing
data with a high coverage.

In this paper, we briefly describe the state-of-the-art on haplotype computa-
tional tools, providing a taxonomy based on the employed computational tech-
niques. Then, we focus on GenHap [40], an evolutionary method that exploits
High Performance Computing (HPC) architectures. We show how GenHap per-
forms on data produced by four different sequencing platforms, namely:

– Illumina NovaSeq (Illumina Inc., San Diego, CA, USA) [31]: the most used
and widespread platform belonging to the class of second-generation sequenc-
ing technologies, able to produce a huge number of short and precise reads
(up to 150 bp);

– Roche/454 (Roche AG, Basel, Switzerland) [23]: a second-generation sequenc-
ing technology able to produce accurate and slightly longer reads than Illu-
mina sequencers (up to 700 bp);

– PacBio RS II (Pacific Biosciences of California Inc., Menlo Park, CA, USA)
[32,33]: a third-generation sequencing technology able to produce long reads
(up to 30000 bp);



652 A. Tangherloni et al.

– Oxford Nanopore Technologies (ONT) MinION (ONT Ltd., Oxford, United
Kingdom) [16,17,36]: the latest developed third-generation sequencing tech-
nology, able to produce reads that are tens of kilobases long.

The manuscript is structured as follows. Section 2 describes and classifies the
most used HA approaches, focusing on HPC potential provided by GenHap. The
achieved results, in terms of scalability and efficiency on multi-core architectures,
are shown and analyzed in Sect. 3. Finally, future directions and possible fruitful
connections with other research fields, such as machine learning and security in
distributed computing, are mentioned in Sect. 4.

2 HPC in Haplotype Assembly

Current human Whole Genome Sequencing (WGS) approaches do not gener-
ally provide phasing information, limiting the identification of clinically-relevant
samples, estimation of compound heterozygosity as well as population-level phe-
nomena, including haplotype diversity and Linkage Disequilibrium patterns that
could help to resolve migratory patterns and mutation origins [7].

Several computational HA approaches for human genome phasing have been
proposed in literature [7]. Most of these methods solve the NP-hard Minimum
Error Correction (MEC) problem, which aims at inferring the haplotype pair
that yields two disjoint sets of the sequencing reads characterized by the mini-
mum number of SNP values to be corrected [41]. An additional variant of MEC
exists, called weighted MEC (wMEC) [14], which takes into account also the
information concerning the quality of the reads.

In what follows, we concisely describe the most diffused HA methods and
graphically represent them by means of a “phylogenetic tree”-like diagram
(Fig. 1). Then, we focus on the functioning of the distributed GenHap imple-
mentation on multi-core architectures [40].

2.1 Related Work

Beagle [5] is one of the earliest heuristic approaches based on Hidden Markov
Models (HMMs). Considering the genotype information of an individual, Beagle
finds the most likely haplotype pair among different possible haplotype solutions.
It has a quadratic computational complexity with respect to the input data.

SHAPEIT [10] starts from genotyping data related to a population and,
given the genotype data of an individual, exploits an HMM-based approach to
estimate the haplotype pair. The population data are used to apply constraints
on the graph, which denotes all possible haplotypes compatible with the input
data, in order to determine the haplotype of that individual. At each iteration,
SHAPEIT has a linear complexity with respect to the number of haplotypes.

Eagle2 [22] is a phasing algorithm that exploits the Burrows-Wheeler trans-
form to encode the information from large external reference panels. It relies
on an HMM to explore only the most relevant phase paths among all possible
paths. The authors showed that Eagle is 20 times faster than SHAPEIT [10].



High Performance Computing for Haplotyping: Models and Platforms 653

hen et al.
Hap

et a l

Hap

Fig. 1. The “phylogeny” of haplotyping methods. Over the past few years, the reper-
toire of tools for haplotyping has rapidly expanded. A “phylogenetic tree”-like diagram
is used here to depict the division of the algorithms in 4 different classes, namely:
exact, greedy, probabilistic, metaheuristic. Hybrid methods are connected with dashed
lines to the implemented multiple computational techniques. The orange superscript
denotes the analyzed data: sequencing (S) and genotyping (G). Methods that solve
either the MEC or the wMEC problem are denoted with blue or magenta, respectively.
Finally, the HA methods that exploit HPC are highlighted with a green arrow directed
to the used computational resources. See text in Sect. 2.1 for descriptions of the most
common software representatives of branches, and for the definitions of abbreviations.
(Color figure online)

HapCUT [1] leverages sequencing data (i.e., the entire set of reads is consid-
ered) instead of population genotypes. It infers the haplotype pair of an indi-
vidual by partitioning the set of reads solving the MEC problem. The MEC
problem is reduced to the max-cut problem, which is greedily solved over the
graph representation of the input instance.

HapCUT2 [12] is a recent heuristic approach that exploits a haplotype like-
lihood model for the sequencing reads. A partial likelihood function is used to
evaluate the likelihood of a subset of the fragments. Differently from its previous
version (HapCUT [1]), which is based on a greedy max-cut algorithm, HapCUT2
optimizes the likelihood to find a max-cut in graph representation of the input
instance.
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ProbHap [18] relies on an exact likelihood optimization technique to solve
a generalized version of the MEC problem. It exploits a dynamic programming
algorithm capable of exactly optimizing a likelihood function, which is specified
by a probabilistic graphical model that generalizes the MEC problem.

ReFHap [11] is based on a heuristic algorithm to find the max-cut. ReFHap
solves the Maximum Fragments Cut (MFC) problem instead of the classic
MEC problem. The max-cut problem is reduced to the MFC problem, which
is addressed using a greedy approach.

HuRef [21] is a heuristic approach that aims at inferring the heterozygous
variants of an individual. It is based on a greedy algorithm that iteratively refines
the initial partial haplotype solutions. The authors leveraged this HA approach
to study non-SNP genetic alterations considering the diploid nature of the human
genome.

Chen et al. [6] proposed an exact approach for the MEC problem using an
integer linear programming solver. First, the fragment matrix is decomposed into
small independent sub-matrices. Each of these sub-matrices is used to define an
integer linear programming problem that is then exactly solved.

WhatsHap [29] is an exact method relying on a dynamic programming algo-
rithm used to solve wMEC. It implements a fixed parameter tractable algorithm,
where the fixed parameter is the maximum coverage of the input instance, to
deal with the NP-hardness of the wMEC problem. This method does not assume
the all-heterozygosity of the phased positions.

pWhatsHap [4] is an efficient version of WhatsHap [29], which was designed
to leverage multi-core architectures in order to obtain a relevant reduction of the
execution time required by WhatsHap. The proposed implementation exploits
the physical shared memory of the underlying architecture to avoid data com-
munication among threads.

HapCol [30] implements a dynamic programming algorithm to solve an alter-
native version of the wMEC problem, called k-MEC, which is used to take into
account the distribution of sequencing errors of future-generation technologies.
In this strategy, the number of corrections per column is bounded by the param-
eter k. No all-heterozygous assumption is required.

Two-Level ACO [2] is based on the Ant Colony Optimization (ACO) tech-
nique, which is a metaheuristic designed to deal with combinatorial problems on
graphs generated starting from the genotyping data given as input. This app-
roach is based on the pure parsimony criterion to find the smallest set of distinct
haplotypes that solves the HA problem.

Probabilistic Evolutionary Algorithm with Toggling for Haplotyping (PEATH)
[26] is based on the Estimation of Distribution Algorithm (EDA), which is a
metaheuristic suitable for continuous problems. During each iteration of EDA,
the promising individuals are used to build probabilistic models that are sampled
to explore the search space. This metaheuristic is exploited to deal with noisy
sequencing reads, aiming at inferring one haplotype, under the all-heterozygous
assumption.
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Wang et al. [41] relies on Genetic Algorithms (GAs), which are a family
of metaheuristics designed to tackle combinatorial and discrete problems. This
method was proposed to address an extended version of the MEC problem in
which genotyping data are considered during the SNP correction process.

GAHap [42] uses GAs to infer the haplotype pair of an individual working
on nucleotide strings. During the optimization, GAHap solves the MEC problem
by means of a majority rule that takes into account allele frequencies. No all-
heterozygous assumption is required.

GenHap [40] is a novel computational method based on GAs to solve the
wMEC problem. This method exploits a divide-et-impera approach to parti-
tion the entire problem into smaller and manageable overlapped sub-problems.
In order to solve in parallel the sub-problems, GenHap was developed using a
Master-Slave approach to leverage multi-core architectures.

2.2 GenHap: A Distributed Computing Implementation for HA

Hereafter, we briefly recall the peculiarities of GenHap [40], by focusing on the
HPC implementation. GenHap tackles the HA problem by solving the wMEC
problem, exploiting an approach based on GAs. Since the execution time and the
problem difficulty increase with the number of reads and SNPs of the input data,
GenHap follows a divide-et-impera approach [24] in which the wMEC problem
is efficiently solved by splitting the fragment matrix M into Π = �m/γ� sub-
matrices consisting of γ reads (where γ depends on the coverage value and on
the nature of the sequencing technology). By so doing, the problem difficulty is
reduced by solving the sub-problems by means of independent GA executions
that eventually converge to solutions having two sub-haplotypes with the least
number of corrections to the SNP values. Finally, these sub-haplotypes are com-
bined to achieve the complete haplotype pair. It is worth noting that GenHap
considers all phased positions [19] as heterozygous during the optimization phase
with GAs. As soon as the sub-haplotypes are obtained, all possible uncorrected
heterozygous sites are removed and the correct value is assigned by checking the
columns of the sub-partitions.

GenHap makes use of a Master-Slave distributed programming paradigm [39]
to speed up the overall execution (Fig. 2) [35]. It was developed using the C++
programming language and the Message Passing Interface (MPI) specifications
to leverage multi-core Central Processing Units (CPUs). The Master-Slave strat-
egy of GenHap consists of the following phases: (1) the Master process (MPI
rank 0) proceeds by (i) allocating the necessary resources, (ii) partitioning the
matrix into Π sub-matrices, and (iii) offloading the data onto the available Σ
Slave processes. Each Slave σ (with MPI rank 1 ≤ σ ≤ Σ) proceeds by ran-
domly generating the initial population of the GA; (2) each Slave executes the
assigned wMEC sub-task by means of an independent GA instance. If multiple
cores are available, the Slave processes are executed in a parallel fashion; (3) as
soon as the wMEC sub-tasks are terminated, the Master process recombines the
sub-solutions received from the Slaves, and yields the complete wMEC solution.
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According to the GA settings analysis provided in [40], we used here 100
individuals, tournament selection with size equal to 10 individuals, crossover and
mutation rates equal to 0.9 and 0.05, respectively. Finally, the elitism strategy is
exploited to copy the best individual from the current population into the next
one without undergoing the genetic operators.

MasterMPI rank 0

Slave 3MPI rank 3

Slave ΣMPI rank 

Slave 2MPI rank 2

Slave 1MPI rank 1
...

Multi-cores
G

A

G
A

G
A

G
A

Fig. 2. Graphical representation of the Master-Slave approach implemented by Gen-
Hap: the Master process handles all the Σ Slaves by sending one or more sub-partitions
to each Slave, which then solves the assigned wMEC sub-task leveraging a core.

3 Test Battery and Results

In what follows, we present some computational results obtained by considering
different sequencing technologies, namely: Illumina NovaSeq, Roche/454, PacBio
RS II, and ONT MinION. In [40], GenHap was shown to be faster than HapCol
achieving up to 20× speed-up on PacBio RS II instances, reconstructing haplo-
types characterized by a very low haplotype error rate. Moreover, GenHap was
capable of solving in about 10 min a real PacBio RS II instance characterized by
#SNPs � 28000 and #reads � 140000, with average and maximum coverages
equal to 29 and 565, respectively. Notice that a direct comparison with the only
other parallel method, pWhatsHap [4], was not possible since the source code of
that tool is no longer publicly available.

In order to assess the computational performance of GenHap, we used the
General Error-Model based SIMulator (GemSIM) toolbox [25] to generate dif-
ferent instances of synthetic (yet realistic) data, compliant with these sequenc-
ing technologies. GemSIM generates the instances relying on empirical error
models and distributions learned from real NGS data. A detailed description
of the whole pipeline is described in [40]. For each sequencing technology, we
generated a single instance varying the following parameters: (i) #SNPs ∈
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Fig. 3. Comparison of the running time required by GenHap on sequencing data gen-
erated by four sequencing technologies (Illumina NovaSeq, Roche/454, PacBio RS II,
ONT MinION) by varying the coverage values. Note that the instances generated using
the Illumina NovaSeq technology and characterized by #SNPs = 20000 required more
RAM than the amount of memory available on the computing nodes used for the tests.
The tests were executed by increasing the number of cores exploited to run GenHap,
to evaluate the scalability of the implementation based on distributed computing.

{500, 1000, 5000, 10000, 20000}; (ii) cov ∈ {∼ 30×,∼ 40×,∼ 50×,∼ 60×}; (iii)
average fSNPs = 200 (i.e., one SNP every 200 bp exists [13,27]).

These instances were used to evaluate the scalability of GenHap by varying
the number of cores, that is, #cores ∈ {2, 4, 8, 16, 24, 32, 40, 48, 56, 64}. All tests
were performed on the MARCONI supercomputer, which is based on the Lenovo
NeXtScale System R© platform (Morrisville, NC, USA), provided by the Italian
inter-university consortium CINECA (Bologna, Italy). Three different partitions
running on CentOS 7.2 are available on this supercomputer:

A1 Broadwell (BDW) partition consists of 720 compute nodes, each one equipped
with 2 Intel R© Xeon R© E5-2697 v4 (18 cores at 2.30 GHz) and 128 GB RAM;

A2 Knights Landing (KNL) partition consists of 3600 compute nodes, each one
equipped with an Intel R© Knights Landing (68 cores at 1.40 GHz and 16 GB
MCDRAM), which is the next-generation of the Intel R© Xeon PhiTM product
family for many-core architectures, and 93 GB RAM;

A3 Skylake (SKL) partition consists of 92 compute nodes, each one equipped
with 2 Intel R© Xeon R© 8160 CPU (18 cores at 2.10 GHz) and 192 GB RAM.

Our analysis was carried out by using the computing nodes of partition A2,
which was chosen due to the availability of a higher number of computing cores.

Figure 3 depicts the running times required by GenHap to infer the pairs of
haplotypes. As expected, the processing time generally decreases along with the
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read length: indeed, according to Eq. (1), the same coverage can be obtained
by means of long reads coupled with a lower number of reads. This circum-
stance leads to a lower number of sub-problems to be solved, reducing the neces-
sary computational effort. Moreover, the lowest running time is achieved on the
instances generated relying on the ONT MinION, which is capable of produc-
ing long reads (up to 6000 bp) with accuracy greater than 92%. As a matter of
fact, the amount of SNPs to be corrected decreases when reads characterized by
high accuracy are taken into account, allowing the GA instances to have a fast
convergence to the optimal solutions. The results obtained for each sequencing
platform are summarized as follows. (i) Illumina NovaSeq: independently from
the coverage, the lowest running time is achieved by exploiting 24 cores to par-
allelize the GA instances when #SNPs = 10000. When #SNPs < 10000, 16 or
24 cores require the minimum running time to infer the haplotype pairs; (ii)
Roche/454: when #SNPs ≥ 5000, the best GenHap’s performance is achieved
by exploiting 16 or 24 cores, otherwise the best choice is 24 cores; (iii) PacBio
RS II: in every test, the fastest executions are generally obtained by exploiting
24 cores to parallelize the GA instances, except when #SNPs = 500 is taken into
account. In this case, the running time decreases when 16 cores are exploited
to effectively distribute the GA instances on multiple cores. Since the reads
generated by relying on this technology have a low accuracy (approximately
87%), which makes the problem more difficult to be solved (i.e., the amount of
SNPs to be corrected increases), the scalability of GenHap is emphasized; (iv)
ONT MinION: in all tests, the best choice is 16 cores that allow for efficiently
distributing the computational load. In every test, a number of cores greater
than 24 does not reduce the running time since the overhead introduced by
MPI is not entirely mitigated by the required computational load. Furthermore,
when the number of sub-problems is lower than the number of available cores,
our Master-Slave approach exploits a number of cores equal to the number of
sub-problems. On the one hand, when technologies producing short reads are
considered, the number of haplotype blocks increases along with #SNPs. Since
these blocks are solved sequentially and are generally characterized by a number
of sub-problems lower than the available cores, 16 or 24 cores allow for balancing
the computational load. On the other hand, technologies producing long reads
generate a small number of reads that lead to a low number of sub-problems
to be solved. Notice that exploiting the accuracy of the reads produced using
Illumina NovaSeq, Roche/454 and ONT MinION, the GA instances have a fast
convergence to the optimal solutions requiring only a dozen of generations.

4 Conclusion and Future Trends

In this paper, we presented a complete overview on the currently available HA
computational tools, focusing on the potential of HPC in this research area. In
particular, we investigated the computational performance of GenHap [40], a
recent evolutionary method leveraging multi-core architectures.

As a future development, we plan to extend GenHap to deal with HA in
organisms characterized by different ploidity. Differently from diploid organisms
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having two copies of each chromosome set, polyploid organisms have multiple
copies of their chromosome sets. Polyploidy has gained scientific interest in the
study of the ongoing species diversification phenomena [28]. This characteristic
is mainly present in plant genomes, but also in animals (such as salmonid fishes
and African clawed frogs) [34]. In these comparative genomic studies, haplotype-
aware assemblies play a crucial role in elucidating genetic and epigenetic reg-
ulatory evolutionary aspects. Unfortunately, the computational burden of the
HA problem is emphasized in the case of polyploid haplotypes with respect to
diploids [9]. Therefore, HPC represents a key element for efficient, accurate, and
scalable methods for HA of both diploid and polyploid organisms.

An interesting future trend in Genome Analysis is related to its connection
with machine learning. As a matter of fact, deep learning has been successfully
applied in population genetic inference and learning informative features of data
[37]. Combining population genetics inference and HA can provide insights on
patterns regarding the genetic diversity in DNA polymorphism data, especially
for rapid adaptation and selection [15].

An additional issue worth of notice is that, although the integration of vari-
ous types of information (e.g., electronic health records and genome sequences)
conveys a wealth of information, it is giving rise to unique challenges in bioinfor-
matics analysis even in terms of secure genomic information sharing [3]. With ref-
erence to secure Genome-Wide Association Study (GWAS) in distributed com-
puting environments, multi-party computation schemes based on conventional
cryptographic techniques achieve limited performance in practice [7]. Therefore,
HPC could become an enabling factor also in this context.
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Abstract. Spatial interpolations are commonly used in geometric mod-
eling for life science applications. In large-scale spatial interpolations,
it is always needed to find a local set of data points for each interpo-
lated point using the k Nearest Neighbor (kNN) search procedure. To
improve the computational efficiency of kNN search, spatial decompo-
sition structures such as grids and trees are employed to fastly locate
the nearest neighbors. Among those spatial decomposition structures,
the uniform grid is the simplest one, and the size of the grid cell could
strongly affect the efficiency of kNN search. In this paper, we evaluate
the effect of the size of uniform grid cell on the efficiency of kNN search.
Our objective is to find the relatively optimal size of grid cell by con-
sidering the distribution of scattered points (i.e., the data points and
the interpolated points). We employ the Standard Deviation of points’
coordinates to measure the spatial distribution of scattered points. For
the irregularly distributed scattered points, we perform several series of
kNN search procedures in two dimensions. Benchmark results indicate
that: in two dimensions, with the increase of the Standard Deviation of
points’ coordinates, the relatively optimal size of the grid cell decreases
and eventually converges. The relationships between the Standard Devi-
ation of scattered points’ coordinates and the relatively optimal size of
grid cell are also fitted. The fitted relationships could be applied to deter-
mine the relatively optimal grid cell in kNN search, and further, improve
the computational efficiency of spatial interpolations.

Keywords: Spatial interpolation · k nearest neighbors (kNN) search
Uniform grid · Spatial distribution · Standard error

1 Introduction

A spatial interpolation algorithm is the method in which the attributes at some
known locations (data points) are used to predict the attributes at some unknown
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locations (interpolated points). Spatial interpolation algorithms, such as the
Inverse Distance Weighting (IDW) [15], Kriging [24], Moving Least Squares
method (MLS) [19], Radial Basis Functions (RBFs) Interpolation [5–7]. Dif-
ferent interpolation methods are widely used in various scientific fields, such as
Geographic Information System (GIS) [9,10], geometric modeling [2,11], image
processing [8,18], numerical analysis [25,27].

Interpolation algorithms are widely used in the field of life science applica-
tions. Liu et al. [13] proposed a hybrid approach to shape-based interpolation of
stereotactic atlases of the human brain. Volkau et al. [26] combined a minimal
distance map and cubic splines to reconstruct the subcortical structures of the
Talairach-Tournoux atlas. Parrot et al. [23] focused on interpolation of scalar
values in the 3-D gird of input data. Pan et al. [22] compared filter interpola-
tion, ordinary interpolation and general partial volume interpolation in medical
image interpolation.

In large-scale spatial interpolations, to improve the computational efficiency
of interpolating, it always uses a local set of data points rather than the global
set of data points to predict the interpolation value of each interpolated points.
Thus, it commonly needs to find a local set of data points for each interpolated
point using several approaches such as the k Nearest Neighbor (kNN) search
procedure.

For example, Li et al. [12] proposed the Random kNN (a novel generaliza-
tion of traditional nearest-neighbor modeling) for pattern analysis and modeled
with high-dimensional data. Al Aghbari [1] studied the multiple kNN queries
processing techniques in constrained spatial networks. Nutanong [20] studied an
efficient algorithm for moving k Nearest Neighbor queries. Roberto Cavoretto [4]
proposed an efficient scheme for the computation of triangular Shepard method.
Mei [17] presented an efficient AIDW interpolation algorithm on the GPU by
utilizing a fast kNN search method.

The space decomposition data structures such as RP-tree [21], VP-tree [14],
k-d tree [3], and uniform grid [17] are employed to accelerate the kNN search
procedure. Among those space decomposition structures, the uniform grid is the
simplest. And a critical issue in creating the uniform grid is the size of grid
cell since it could strongly affect the search efficiency and cannot be too small
or too large. To the best of our knowledge, there is currently no research work
specifically focusing on determining the optimal size of grid cell in the kNN
search.

Based on our previous work [7,16,17], in this paper we first evaluate the effect
of the size of uniform grid cell on the efficiency of kNN search, and then attempt
to find the relatively optimal size of grid cell by considering the distribution of
scattered points.

This paper is organized as follows. Section 2 briefly describes the kNN search
that is commonly used in spatial interpolation. Section 3 introduces our bench-
mark tests. Section 4 presents and discusses the test results. Finally, Sect. 5 draws
several conclusions.
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2 Background: kNN Search in Spatial Interpolation

The kNN search algorithm is directly derived from our previous work [7,16,17].
And more details on the process of the kNN search are described as follows.
Step 1: Creating an even grid

The creating of an even planar grid is straightforward. We first determine the
planar rectangular region for partitioning by finding the minimum and maximum
x and y coordinates of all points. Then, the numbers of rows and columns of the
grid can be easily determined by dividing the rectangle with the width of the
square cell; see a simple illustration in Fig. 1.
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Interpolated Point Data Point

  





























      

Fig. 1. Creation of an even grid according to the minimum and maximum coordinates
of all the data points and interpolated points in two dimensions. (This figure is directly
derived from our previous work [17].)

Step 2: Distributing data points into cells
The objective of distributing all data points into the grid cells is to find out

in which grid cell each data point is located. The distributing of each data point
is in fact to determine the row and column indices of the cell in which it locates.
Since the grid cells are indexed sequentially first by rows and then by columns,
the procedure of distributing can be easily carried out. First, the differences
between the coordinates of a data point and the minimum coordinates of all
cells are calculated; then the indices of column and row can be determined by
dividing the above differences with the cell width.
Step 3: Determining data points in each cell

The objective of this step is to determine the number and the indices of those
data points located in the same cell. The number of data points located in the
same cell can be determined with the use of a segmented parallel reduction. After
sorting all data points according to cell indices, the data points are sequentially
stored in a group of segments; each segment is flagged with the cell index and
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contains the indices of data points locating in the same cell. The number of those
data points located in the same cell can be obtained by performing a reduction
for each segment. Moreover, the head index of the first point of each segment
can be determined using segmented parallel scan.
Step 4: Searching nearest neighbors

The process of kNN search for each interpolated point can be summarized as
the following substeps: (1) locating the interpolate point into the even grid, (2)
determining the level of cell expanding (see Fig. 1), and (3) finding the k nearest
neighbors within the local region. More details on searching the nearest neigh-
boring data points for each interpolated points were presented in our previous
work [17].

3 Methods

In large-scale spatial interpolations, a local set of data points is always to
be used to predict the interpolation value for each interpolated point. There-
fore, there are commonly two procedures: (1) the kNN search procedure, and
(2) the interpolating procedure. An efficient kNN search procedure would be
helpful to improve the computational efficiency of the entire process of spatial
interpolation.

In the kNN search based on a uniform grid, one of the critical steps is to
determine the size of the grid cell and then create the even grid. When attempting
to search for k nearest data points, the levels of grid cells are constantly expanded
to find required number of data points. When the data points are intensive, the
grid cell could be too large and contain too many points. In this case, the number
of data points locating in the current level of grid cells is far more than the
required k; and the redundant data points need to be removed by sorting. This
removal may cost significant extra computational consumption. In contrast, if the
grid cell is very small, it needs to expand several times to cover enough number
of data points. The expanding could also cost significant extra computational
consumption.

In summary, the size of the uniform grid cell could strongly affect the com-
putational efficiency of the kNN search procedure, and it could not be too large
or too small. Our objective in this paper is to find the relatively optimal size of
grid cell by considering the distribution of scattered points.

In this paper, several factors may affect the determination of grid cell size
which include the value of k, the data points’ density, and two metrics of data
distribution (i.e., the mean and Standard Deviation).

The basic idea in this paper is as follows. By changing the size of grid cells, the
efficiency of kNN search is first analyzed, and then the influences of the several
factors on the size of grid cells are discussed. Finally, we fit the relationships
between the several factors and the relatively optimal size of the grid cell.

The sizes of grid cells are constant for the same distribution of data points
in the original formula, we multiply the original formula by a coefficient w in
this paper, the original formula for calculating the cellWidth is described in
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Eq. (1) in two dimensions. The used formula for changing the cellWidth in two
dimensions is described in Eq. (2).

cellWidth2D
0 =

√
ABox/dnum2D (1)

cellWidth2D
used = w2D × cellWidth2D

0 (2)

where, cellWidth2D
0 is the size of the original grid cell in two dimensions,

cellWidth2D
used is the size of the used grid cell in two dimensions, w2D is the

coefficient in two dimensions, dnum2D is the number of known data points in
two dimensions, ABox is the area of the Boundary Box, and VBox is the volume
of the Boundary Box. The relationship between each factor and the coefficient
w of grid cell size will be directly discussed subsequently.

4 Results and Discussion

4.1 Benchmark Environment and Testing Data

We carry out five groups of benchmark tests in two-dimensions on a powerful
workstation computer. The specifications of the employed workstations are listed
in Table 1.

Table 1. Specifications of the employed workstation computer for performing bench-
mark tests

Specifications Details

CPU Intel Xeon E5-2650 v3

CPU Frequency 2.30 GHz

CPU RAM 144 GB

CPU Core 40

GPU Quadro M5000

GPU Memory 8 GB

GPU Core 2048

OS Windows 7 Professional

Compiler Visual Studio 2010

CUDA Version v8.0

For each group of the two-dimensional testing data, each set of data points
is created by randomly distributing on a parametric surface; the equation of the
parametric surface is demonstrated in Eq. (3). More specifically, both x and y
coordinates are randomly generated in the range of 0−1000, while the associated
value is simply calculated according to Eq. (3) after the x and y coordinates have
been determined. The generation of five sets of interpolated points is the same
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as that of the data points. Both x and y coordinates of each interpolated points
are randomly generated in the range of 0−1000.

f (x, y) = 750 exp
[
(9x/1000−2)2+(9y/1000−2)2

4

]

+750 exp
[
(9x/1000+1)2

49 + (9y/1000+1)
10

]

−200 exp
[
(9x/1000 − 4)2 + (9y/1000 − 7)2

]

+500 exp
[
(9x/1000−7)2+(9y/1000−3)2

4

]

(3)

4.2 Benchmark Results in Two-Dimensions

The test data in two-dimensions are listed in Table 2, including the number
of irregularly distributed data points, and the number of interpolated points,
respectively. For the irregularly distributed data points, the number of interpo-
lated points is the same.

Table 2. Test data in two-dimensional benchmark tests

Data set Num. of irregularly distributed data points Num. of interpolated points

Size 1 67766 72301

Size 2 140157 144601

Size 3 263199 287977

Size 4 455637 580194

Size 5 723576 1149231

Influence of the Value of k on the Relatively Optimal Coefficient w
of Grid Cell Size for Irregularly Distributed Scattered Points. This
subsection discusses the effect of different k values and different point densities
on the relatively optimal coefficient w of grid cell size for irregularly distribution
scattered points. When the points’ spatial distribution is irregular, the mean
value is 500 and the Standard Deviation value is 166. In the benchmark tests,
the k values specified as 10, 20, 50, 100, and 200 for irregularly distribution
scattered points is discussed in this section.

The benchmark results illustrated in Fig. 2 indicate that: when the point
density is set as the Size 1 and the w is approximately 3.0, the highest efficiency
can be achieved for different values of k. Moreover, the trends of the fitted curves
are similar when configuring different values of k. For other four-point densities
(i.e., the sizes of data points), almost the same conclusions can be drawn. It
can be concluded that: the k value is of weak effect on the relatively optimal
coefficient w of grid cell size for irregularly distributed scattered points, see
Fig. 3.
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(a) Size 1 (b) Size 2

(c) Size 3 (d) Size 4

(e) Size 5

Fig. 2. Influence of the value of k on the coefficient w of grid cell size for irregularly
distributed scattered points.

Influence of Point Density on the Relatively Optimal Coefficient w
of Grid Cell Size for Irregularly Distributed Scattered Points. This
subsection specifically discusses the relationship between different point densities
and the coefficient w of grid cell size by fixing the k values. In the benchmark
tests, the point densities were specified as Size 1, Size 2, Size 3, Size 4, and Size
5 for irregularly distribution scattered points.
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Fig. 3. The relatively optimal coefficient w of grid cell size when setting different values
of k for irregularly distributed scattered points.

The benchmark results illustrated in Fig. 4 indicate that: when the value of
k is set as the 10 and the w is approximately 3.0, the highest efficiency can be
achieved for different point densities. Moreover, the trends of the fitted curves are
similar when configuring different point densities. For other values of k, almost
the same conclusions can be drawn for irregularly distributed scattered points.
It can be concluded that: the points densities are of weak effect on the relatively
optimal coefficient w of grid cell size for irregularly distributed scattered points,
see Fig. 5.

Influence of Mean of Points’ Coordinates on the Relatively Optimal
Coefficient w of Grid Cell Size for Irregularly Distributed Scattered
Points. This subsection specifically discusses the relationship between different
mean of points’ coordinates and the coefficient w of grid cell size by fixing other
factors. In the benchmark tests, the mean of points’ coordinates was specified
as (400,400), (600,400), (600,600), and (400,600). The number of data points is
67766, the number of interpolated points is 72301, the Standard Deviation value
is 200, and the value of k is 50.

The benchmark results illustrated in Fig. 6 indicate that: the trends of the
fitted curves are similar when configuring different mean of points’ coordinates,
the highest efficiency corresponding to the relatively optimal coefficient w of
grid cell size is close to 2.5 for different mean of points’ coordinates. It can be
concluded that: the mean of points’ coordinates is of weak effect on the relatively
optimal coefficient w of grid cell size for irregularly distributed scattered points.
Influence of Standard Deviation of Points’ Coordinates on the Rel-
atively Optimal Coefficient w of Grid Cell Size for Irregularly Dis-
tributed Scattered Points.This subsection specifically discusses the relation-
ship between different Standard Deviation and the coefficient w of grid cell size
by fixing other factors. In the benchmark tests, the number of data points is
67766, the number of interpolated points is 72301, the mean of x and y is 500,
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(a) k=10 (b) k=20

(c) k=50 (d) k=100

(e) k=200

Fig. 4. Influence of point densities on the coefficient w of grid cell size for irregularly
distributed scattered points.

and the value of k is 50. The Standard Deviation was specified as 100, 130, 160,
190, 200, 250, 300, 350, and 400. The benchmark results indicate that with the
increase of the Standard Deviation of points’ coordinates, the relatively optimal
size of the grid cell decreases and eventually converges, see Table 3. We have
also fitted the relationships between the Standard Deviation of scattered points’
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Fig. 5. The relatively optimal coefficient w of grid cell size when setting different point
densities for irregularly distributed scattered points.

Fig. 6. Influence of mean on the relatively optimal coefficient w of grid cell size for
irregularly distributed scattered points.

Fig. 7. The fitted curve indicating the relationships between the Standard Deviation
and the relatively optimal coefficient w of grid cell size in two-dimensions.
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coordinates and the relatively optimal size of the grid cell in two-dimensions, see
Fig. 7, the fitted relationship is described in Eq. (4).

w =
4.09003

1 + (σ + 178.4079)6.20917
+ 1.00546 (4)

To evaluate the Goodness of Fit, we use the COD (Coefficient of Determi-
nation) to measure the fitted equation. The COD of fitted equation is 0.98192,
which indicates the fitting is good.

Table 3. The optimal coefficient w of grid cell size corresponding to different Standard
Deviations in two-dimensions

Standard Deviation 100 150 190 200 250 300 400

w 5 4 3 2 1.5 1.2 1

5 Conclusion

In this paper, we have investigated the effect of the decomposition of uniform
grid on the computational efficiency of the kNN search procedure used in spatial
interpolations. More precisely, we have evaluated the influence of the size of
grid cell on the efficiency of the kNN search procedure. Our objective is to find
a relatively optimal size of the grid cell. We have performed several series of
benchmark based on irregularly distributed scattered points, and found that the
distribution of scattered points, which is measured by the Standard Deviation of
points’ coordinates, is of strong influence on the determination of the relatively
optimal size of the grid cell. More specifically, the benchmark results indicate
that: in two dimensions, with the increase of the Standard Deviation of points’
coordinates, the relatively optimal size of the grid cell decreases and eventually
converges. We have also fitted the relationships between the Standard Deviation
of scattered points’ coordinates and the relatively optimal size of the grid cell,
the COD of fitted equation is 0.98192, which indicates the fitting is good. The
fitted relationships could be employed to determine the relatively optimal grid
cell in kNN search, and further, improve the computational efficiency of spatial
interpolations that could be commonly used in the geometric modeling for life
science applications.

In this paper, we have only evaluated the effect of the size of grid cell on
the efficiency of kNN search executed on the CPU. In the kNN search proce-
dure, there are several logic routines. It has been widely learned that the same
logic routines executed on the CPU and GPU may lead to dramatically differ-
ent efficiencies. Thus, the relationships between the distributions of scattered
points between the relatively optimal size of the grid cell obtained on the CPU
may differ from those achieved on the GPU. In the future, we will address this
problem.
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Abstract. In recent years the development of novel technologies, as Hi-C or
GAM, allowed to investigate the spatial structure of chromatin in the cell
nucleus with a constantly increasing level of accuracy. Polymer physics models
have been developed and improved to better interpret the wealth of complex
information coming from the experimental data, providing highly accurate
understandings on chromatin architecture and on the mechanisms regulating
genome folding. To investigate the capability of the models to explain the
experiments and to test their agreement with the data, massive parallel simu-
lations are needed and efficient algorithms are fundamental. In this work, we
consider general computational Molecular Dynamics (MD) techniques com-
monly used to implement such models, with a special focus on the Strings &
Binders Switch polymer model. By combining this model with machine learning
computational approaches, it is possible to give an accurate description of real
genomic loci. In addition, it is also possible to make predictions about the
impact of structural variants of the genomic sequence, which are known to be
linked to severe congenital diseases.

Keywords: Molecular dynamics � Chromatin � Polymer physics

1 Introduction

The 3D conformation of chromosomes in the nucleus is important since it is deeply
linked to genome regulation [1–5]. The development of new experimental technologies
such as Hi-C [6] and GAM [7] allowed to have powerful tools to investigate genome
structure. Indeed, they can measure the frequency of physical contacts between any
pairs of DNA regions, with high accuracy and genome-wide. This kind of data are
typically collected in contact maps, which reveal non-random patterns of interaction
that highlight the complex organization of chromatin in the nucleus.
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From the analysis of Hi-C data it was discovered, for instance, that chromosomes
can be partitioned into compartment A/B domains [6], approximately 10 Mb wide
regions, associated with active and repressed chromatin respectively.

At lower genomic scales, it has emerged that chromosomes are also divided into a
sequence of megabase-sized domains, called Topological Associating Domains (TADs,
[8, 9]), where chromatin tend to interact preferentially. Such domains interact non-
randomly with each other giving rise to higher order structures, called meta-TADs [10,
11], extending up to entire chromosome scales. Additionally, TADs have non-trivial
internal structures [12, 13]. More recently, some of the molecular factors necessary to
chromatin folding are also being identified (for instance, CTCF and active or poised
transcription factories [14, 15]).

Importantly, it has been also shown that modifications of the chromatin architecture
can be associated to human diseases [16, 17], highlighting even more the importance of
the genome folding problem.

To better understand the information coming from such an amount of experimental
data and to quantitatively explain the spatial organization of chromatin in the nucleus,
theoretical models from Polymer Physics have been developed [18–21]. Such models
represent powerful tools to investigate chromosome structure, since they can suc-
cessfully explain many general features of genome folding [22–32]. On the other hand,
in order to accurately evaluate their prediction efficacy, it is crucial to set up an efficient
computational implementation. In this work, we will focus our attention on the Strings
& Binders Switch (SBS) polymer model [22, 23], that has been shown to recapitulate
some important features of genome folding, as observed from the experimental Hi-C
and GAM data [7, 15, 23, 28].

In Sect. 2, we will describe some general computational methods to implement the
SBS model using Molecular Dynamics (MD) techniques [28, 33], and we will try to
highlight the importance of High Performance Computing (HPC) resources to fully
explore the advantages and the limitations of the model. Importantly, we also stress that
the described theoretical and computational methods are of absolutely general validity
(see e.g. [36–38]) and are broadly used in the field [25, 28–31]. Next, in Sect. 3, we
will show how the combination of such MD methods with a machine learning-like
approach, based on the so-called PRISMR algorithm [17], allow to go beyond the
description of average structural properties of chromatin and explain the folding of real
genomic loci. We will describe how the algorithm works and evaluate its performance
by applying it on an exemplificative case of study. Notably, the method also allows to
make predictions about the impact on chromatin structure produced by genomic
mutations, as deletions or duplications [17, 28].

2 Molecular Dynamics Simulations

2.1 The Polymer Chain

In these kind of systems, a coarse-grained model of the chromatin filament is typically
used. Here, a standard bead-on-a-chain polymer describes a chromosome, or a fixed
genomic locus, and each bead represents a certain amount of genomic content,
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expressed in number of bases. The self-avoiding-walk (SAW) polymer chain is made
of N consecutives beads, with a diameter equal to r. To model the hard-core nature of
the particles, between any two beads i and j there is a truncated Lennard-Jones
(LJ) potential VLJ [36], that is:

VLJ ¼ 4e r
rij

� �12
� r

rij

� �6
� �

þ e r\2r1=6

0 otherwise

8<
: ð1Þ

where r is the diameter of a bead, rij ¼ ri � rj
�� �� is the center-to-center distance and

e = kBT defines the intensity of the interaction (expressed in kBT units, T temperature of
the system and kB the Boltzmann constant). As shown in Fig. 1, panel a (blue curve),
such potential is a continuous decreasing positive function of rij, being 0 for rij\21=6r.
In this way, we take into account excluded volume effects between the beads.

The bonds between two consecutive beads in the chain are modelled with a finitely
extensible nonlinear elastic (FENE) potential VFENE:

VFENE ¼ � kFENER2
0

2
ln 1� riþ 1 � rij j

R0

� �2
" #

ð2Þ

originally introduced in [36] and now broadly used in literature [28–31]. In the
expression, ri and riþ 1 are the position of neighboring beads on polymer, kFENE is the
strength of the FENE spring and R0 is its maximal extension. As shown in Fig. 1, panel
a, yellow curve, the FENE potential is close to a harmonic potential for values of the
distance r¼ riþ 1 � rij j near to zero (r ! 0) and diverges for r ! R0, representing the
maximal length of the bond.

The resulting total potential, V rð Þ ¼ VLJ þVFENE represent the interaction experi-
enced by two consecutive beads on the chain. As can be seen from Fig. 1, panel a

a)                                                                       b)  

R g
/R

g(
RW

)

Timesteps

Fig. 1. (a) In this plot, the Fene potential (yellow curve) and the purely repulsive hard-core LJ
potential (blue curve) are shown. The potential between two consecutive beads on the chain is the
sum of these two contributions (green curve). The vertical dashed line is the minimum of the
potential, and gives the average distance between two consecutive beads. (b) The gyration radius
in the transition from the RW state to the SAW states. Adapted from [33]. (Color figure online)
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(green curve), its minimum corresponds to the mean distance between consecutives
beads on the chain and depends on the potential parameters. Here, the parameters used
are kFENE ¼ 30 kBT=r2 and R0 ¼ 1:6r, which have been typically employed in chro-
matin models [28–31].

2.2 Preparations of the SAW

A SAW polymer state can be obtained in the following way [28, 31, 36]: first, it is
generated a Random-Walk (RW) chain configuration. Its average bond length is taken
to be equal to the minimum of the bonding potential (e.g., 0.97 r with the previous
FENE parameters). Then, excess overlap between the beads of the chain are softly
removed by replacing the hard-core LJ repulsive potential with:

Vsoft ¼ A 1þ cos
pr

21=6r

� �
ð3Þ

where A is a normalization factor linearly increasing during the simulation [28, 31, 36].
This potential does not diverge at small distances, so the Langevin equations (see

below) can be easily integrated for enough time-steps to completely remove the overlap
and to reach the equilibrium SAW state.

A fundamental quantity used to check whether the polymer SAW state (and in
general any equilibrium state) has been approached is the gyration radius [23, 28, 35] Rg:

Rg ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
N

XN

i¼1
ri � rCMð Þ2

r
ð4Þ

where N is the number of beads, rCM is the position of the center of mass of the chain
and ri is the position of its i-th bead. This quantity can be used as an estimation of the
polymer size. In Fig. 1, Panel b, it is shown the gyration radius Rg from an ensemble of
real MD simulations, as a function of time t during the dynamics: when it reaches a
plateau, the equilibrium SAW state is reached.

2.3 The Strings and Binders Switch Model

In the Strings & Binders Switch (SBS) model, a chromatin filament (the string) is
represented as the just described SAW polymer chain. Additionally, the beads interact
with diffusing molecules (the binders) distributed in the environment at a concentration
c. They can bridge pairs of different beads and allow the formation of loops in the
polymer. The interaction intensity is energy Eint. The folding of the polymer is driven
by the interaction between beads and binders. As widely discussed in literature, for this
system different equilibrium thermodynamics phases exist, depending on the value of
control parameters, Eint and c [23, 28, 29]. A schematic cartoon of the SBS model is
shown in Fig. 2, panel a, showing the case with only one type of binders and binding
sites (all in red). For values of Eint and c above a threshold, the polymer is able to
collapse from a SAW state to a globule conformation, in the so-called coil-globule,
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switch-like, transition. Extensive details can be found in [23, 28, 29]. More complex
situations, as real genomic loci, require different types of beads (and correspondingly
cognate binders), which can be schematically represented by different “colors” [17, 28].
This is discussed in detail below.

In the MD implementation, the binders are modelled as hard-core particles, so they
interact with any other bead or binder through the above LJ potential of Eq. (1). The
interaction between a binder and its cognate beads on the polymer is modelled by the
truncated LJ potential described above, with a higher cut-off distance in order to
include the attractive part in the potential. The expression for this potential Vint is then:

Vint ¼ 4eint rbb
r


 �12� rbb
r


 �6� rbb
rint

� �12
þ rbb

rint

� �6
� �

r\rint

0 otherwise

8<
: ð5Þ

In the above formula, rbb is the sum of bead and binder radii (typically, rbb = 1 r, that
is beads and binders have the same radius), eint modulates the attractive interaction
intensity (see following expression), r is the center-to-center distance between the
binder and the polymer bead and rint is the cut-off distance. As Vint goes to zero when
r = rint, beads and binders interact if their distance is shorter than the range rint. The
interaction energy Eint is the minimum (in absolute value) of the potential Vint:

Eint ¼ min Vintð Þj j ¼ 4eint
rbb
rint

� �6

� rbb
rint

� �12

� 1
4

" #�����
�����

Typical parameters are rint = 1.5r, eint = 12kBT and rbb = 1r [17, 28].

a) b)
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)

Fig. 2. (a) Schematic representation of the SBS model. (b) The folding dynamics is followed by
monitoring the gyration radius. Adapted from [33]. (Color figure online)
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2.4 Folding Dynamics

Once the potential parameters have been set (LJ or soft), the system evolves according
to the Langevin equation [34, 36]

m
d2x tð Þ
dt2

¼ �f
dx tð Þ
dt

�rV þ n tð Þ ð6Þ

where m and x(t) are respectively the mass and the position (in vector notation) of the
particle, f is the friction coefficient, V the total potential on the particle, and n(t) is the
random noise term representing the collisions with the molecules in the fluid. Basically,
the system is simulated under Brownian motion conditions. The components of the
noise term have a Gaussian probability distribution with zero mean and a time cor-
relation given by:

ni tð Þnj t0ð Þ�  ¼ 2kBTf dijd t � t0ð Þ ð7Þ

where T is the temperature of the system and ni(t) is the i-th component of the noise
vector.

The simulations are typically performed in dimensionless units. A typical value for
the dimensionless friction coefficient is f = 0.5 [36], and it is widely used in chromatin
modelling [25, 28–31]. The other standard [36] dimensionless MD parameters are
e = kBT = 1 (energy scale), r = 1 (length scale) and m = 1 (mass).

Usually, the system is confined in a cubic simulation box, having edge size D and
periodic boundary conditions. Roughly, the size D of the box edge is at least as large as
the gyration radius of the polymer in its open SAW conformation, in order to minimize
finite size effects [33].

2.5 Efficiency of the MD Implementation

As the simulation starts, the beads and the binders interact, and the polymer, if the
values of Eint and c are high enough (see above), folds according to the coil-globule
transition. This process is monitored by the gyration radius Rg (defined in Eq. 4), which
has a sharp drop since the polymer reduces consistently its size in this transition. In
Fig. 2, panel b, Rg is shown as a function of the time steps, for a polymer made of
N = 1000 beads.

Note that the MD time required in order to complete the transition of this (very
simple) system, is quite small (*106 single time steps). Of course, this number
strongly depends on the system complexity, as the total number of particles (beads and
binders), the number of binding sites and the interaction energy Eint. All these details
are crucial when the simulated polymer aims to model a real genomic region, where the
complexity is determined from a machine learning approach informed with the
experimental data (see next section). More details can also be found in refs. [28, 29].

Analogously, the real computational time required to reach the equilibrium depends
not only on the just mentioned parameters, but also on other details as the sampling
frequency of the physical quantities (as the particle positions).
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In order to have reliable results and robust distributions for the interesting quan-
tities, each system needs to be simulated several times, i.e. an ensemble average is
required. Again, the require number of independent runs to produce reliable ensemble
averages depends on the system complexity. As order of magnitude, one hundred of
replicates, for each system parameter choice, is a convenient amount.

Several established MD software exist to perform this kind of simulations. A very
important example is LAMMPS, a publicly available and efficient MD code [37],
optimized for parallel computing and broadly used in the field [17, 25, 28–31].

3 PRISMR: A New Machine Learning Approach
to Investigate Chromatin Spatial Structure

3.1 The Idea Behind the PRISMR Algorithm

As stated in the Introduction, novel experimental technologies have been developed to
quantitatively investigate the three-dimensional structure of chromosomes. Specifically,
the Hi-C method [6] allow to measure the spatial contact frequency of any pair of
genomic loci. That is, in a population of cells, it gives the number of times two
genomic loci are in spatial proximity. Such contact frequencies are collected in a matrix
(one for each chromosome), where each bin xij gives the frequency between the locus
i and the locus j. Typically, this kind of data are represented as heat-maps, where the
contact frequencies are associated to a fixed color scheme. Examples of Hi-C data are
shown below.

This experimental data can be combined with the above discussed polymer model
to reconstruct the 3D structure of real genomic regions.

In its simplest version, that is one type of binding site and one type of binders, the
SBS model is able to explain the long-range average contact probability profile [23,
28]. By introducing another color, other general features can be explained, as the
TADs, metaTADs and A/B compartments [28, 29]. By generalizing this approach, it is
possible to explain the architectural features of a specific DNA region. The idea is to
find, starting from an experimental Hi-C contact map, a SBS polymer able to reca-
pitulate the features contained in that Hi-C contact map. In general, this polymer will
have several different types of binding sites, conveniently located along the polymer
chain (Fig. 3, left panel). To find the number of types and their positions, we developed
a machine learning computational procedure, named PRISMR (Polymer-based Recur-
sive Statistical Inference Method), where the best polymer is found by minimizing a
cost function H, with a standard Simulated Annealing Monte Carlo procedure.
Specifically, H is made of two terms: the distance between the experimental Hi-C map
and the model contact map, and a Bayesian term that penalizes the addition of binding
sites, in order to avoid overfitting. Full details can be found in ref. [17]. Importantly, the
described procedure can be applied to every locus of the genome and for every cell line,
provided that the required experimental data are available.

Once the binding sites arrangement along the polymer chain is obtained, MD
simulations are performed. The potentials and the associated parameters employed in
the simulations have been extensively discussed in the previous section. This is
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definitely the most computational demanding step, since it requires the use of massive
parallel simulations, whereas the number of single processors strongly depends on the
system complexity. The simulation is performed until the equilibrium state is achieved
(see previous section). Additionally, the same system needs to be simulated several
times, in order to have a reliable set of replicates and compute robust statistics.

3.2 Example of PRISMR Performance: The Sox9 Locus

The performance of the procedure has been successfully tested on several loci (see [17,
28, 29] and reviews in [33, 38, 39]). Here we report the test case of the Sox9 locus, an
important genomic region in mammals, involved in male sexual development, whose
mutations are linked to genetic diseases, such as skeletal malformation and sex-reversal
syndromes [40]. The procedure has been applied on a L = 6 Mb region around the
Sox9 gene, genomic coordinates chr11:109-115 Mb. The experimental contact map
(Hi-C data from [8]) is shown Fig. 4, panel a, upper matrix, in mouse embryonic cells
(mESC-J1). In general, given a Hi-C matrix with a resolution of n base pairs (that is,
each bin represents a genomic window of n base pairs) describing a genomic region
L bases long, the corresponding matrix has a size N � N, with N = L/n. In the Hi-C
data used in the Sox9 case, n = 40 kb and L = 6 Mb, so N = 150 and the experimental
matrix has a size of 150 � 150.

To explain the complexity of the patterns in the data, PRISMR extracts the number
of types and the sequence of the binding sites. Here, 15 different types of binding sites
had to be introduced, with their cognate binders [28]. Once the algorithm returns the
polymer, we can perform MD simulations with the above described methods, and study
the three-dimensional conformations. From them, we can re-compute the contact map,
based on the physical distances between the beads of the polymer, and compare it with
the experimental maps. In Fig. 4, panel a, bottom matrix, is shown the resulting
simulated map, which captures very accurately most of features contained in the
experimental Hi-C map. This demonstrates that the simulated 3D structures could
represent the real 3D architecture of the locus. In Fig. 4, panel b, a snapshot from a real
MD simulation is shown.

Fig. 3. The PRISMR algorithm aims to find the best binding sites configurations describing the
contact map. On the left, a schematic polymer with different binding sites. On the right, a
graphical scheme of PRISMR computational procedure. Adapted from [17].

Understanding Chromatin Structure 687



If the genomic region to model is increased of a factor b, the size of the corre-
sponding matrix is increased of factor b2. This means that the data size rapidly increases
with the size of the genomic region to investigate. To give a sense of the scales
involved, the whole mouse chromosome 11, which contain the discussed Sox9 region
and has an intermediate genomic length (122 Mb) among the other chromosomes, at
40 kb resolution has a linear size N > 3000, and a Hi-C of approximately
3000 � 3000. Furthermore, more accurate databases are becoming available, with very
high resolutions (up to 1 kb [14]), making huge the amount of the data and very
difficult their management. In this sense, HPC computational resources become, once
again, essential in order to model larger loci using more accurate datasets.

3.3 PRISMR Can Be Used to Predict Structural Variant Effects

An important application of the PRISMR algorithm is the possibility to make predic-
tions of the effects of genomic structural variants at a given locus on its 3D structure.
The polymer model of the considered locus, inferred by the algorithm trained on its
wild type (WT) experimental contact matrix (Fig. 3), can in fact be used to implement
in-silico any genomic mutation, like deletions, inversions or duplications (schemati-
cally shown in Fig. 5). For example, to model a deletion, it is enough to remove the
piece of polymer located at the deleted genomic region and, without any fitting
parameter, simply re-run the ensemble of MD simulations on the mutated polymer.
This way an ensemble of 3D configurations is obtained for the mutated system and its
average contact matrix can be computed (Fig. 5). The model predictions of the effects
of a set of structural variants at the Epha4 locus, known to be implicated in human limb
malformations, have been indeed experimentally tested and confirmed by independent
Capture Hi-C experiment [17].

Fig. 4. (a) Comparison between experimental Hi-C contact map (upper matrix, chr11:109-
115 Mb, data from [8]) with the result of PRISMR (bottom matrix). The limits in the colorbar
refers to the distributions percentiles of the represented data. (b) 3D structure of the Sox9 locus
obtained from a real MD simulation, with some important genes highlighted. Adapted from [28].
(Color figure online)
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3.4 Conclusions

The development of polymer models, based on theoretical and computational classical
methods, has allowed to quantitatively interpret genome contact data, revealing a
powerful tool to investigate chromatin spatial organization. Here, we focused our
attention on the SBS model, and recalled in detail the computational ingredients nec-
essary to build a fast and efficient MD implementation. To fully exploit the power of
this model (and of any other model in general), High Performance Computing is
necessary, and becomes crucial to simulate increasingly more complex polymer sys-
tems, as large genomic regions described by high resolution data. In this way, it would
be possible to give a more accurate description of the genome structure and the
mechanisms orchestrating its folding. In the next years, the challenge is to produce
models of better quality, taking into account finer details, and, on the other hand,
improving the efficiency of the computational tools [41]. That must be combined with
the integration and an efficient management of constantly increasing experimental
databases [41], in order to get a deeper understanding of chromatin organization and its
links to gene regulation.

References

1. Misteli, T.: Beyond the sequence: cellular organization of genome function. Cell 128, 787–
800 (2007)

2. Lanctôt, C., Cheutin, T., Cremer, M., Cavalli, G., Cremer, T.: Dynamic genome architecture
in the nuclear space: regulation of gene expression in three dimensions. Nat. Rev. Genet. 8,
104–115 (2007)

3. Bickmore, W.A., van Steensel, B.: Genome architecture: domain organization of interphase
chromosomes. Cell 152(6), 1270–1284 (2013)

4. Tanay, A., Cavalli, G.: Chromosomal domains: epigenetic contexts and functional
implications of genomic compartmentalization. Curr. Opin. Genet. Dev. 23, 197–203 (2013)

5. Dekker, J., Mirny, L.: 3D genome as moderator of chromosomal communication. Cell 164
(6), 1110–1121 (2016)

6. Lieberman-Aiden, E., et al.: Comprehensive mapping of long-range interactions reveals
folding principles of the human genome. Science 326, 289–293 (2009)

7. Beagrie, R., et al.: Complex multi-enhancer contacts captured by genome architecture
mapping. Nature 543(7646), 519–524 (2017)

Fig. 5. The effects of structural variants, like deletions, inversions and duplications, on
chromatin 3D folding can be predicted in-silico. Adapted from [17].

Understanding Chromatin Structure 689



8. Dixon, J.R., et al.: Topological domains in mammalian genomes identified by analysis of
chromatin interactions. Nature 485, 376–380 (2012)

9. Nora, E.P., et al.: Spatial partitioning of the regulatory landscape of the X-inactivation
centre. Nature 485, 381–385 (2012)

10. Fraser, J., Ferrai, C., Chiariello, A.M., et al.: Hierarchical folding and reorganisation of
chromosomes are linked to transcriptional changes during cellular differentiation. Mol. Syst.
Biol. 11, 852 (2015)

11. Chiariello, A.M., et al.: The scaling features of the 3D organization are highlighted by a
transformation à la Kadanoff on HiC data. EPL 120, 40004 (2017)

12. Sexton, T., et al.: Three-dimensional folding and functional organization principles of the
Drosophila genome. Cell 148, 458–472 (2012)

13. Phillips-Cremins, J.E., et al.: Architectural protein subclasses shape 3D organization of
genomes during lineage commitment. Cell 153, 1281–1295 (2013)

14. Rao, S.S.P., et al.: A 3D map of the human genome at kilobase resolution reveals principles
of chromatin looping. Cell 159, 1665–1680 (2014)

15. Barbieri, M., et al.: Active and poised promoter states drive folding of the extended HoxB
locus in mouse embryonic stem cells. Nat. Struct. Mol. Biol. 24, 515–524 (2017)

16. Lupiáñez, D.G., Kraft, K., Heinrich, V., et al.: Disruptions of topological chromatin domains
cause pathogenic rewiring of gene-enhancer interactions. Cell 161(5), 1012–1025 (2015)

17. Bianco, S., et al.: Polymer physics predicts the effects of structural variants on chromatin
architecture. Nat. Gen. 50, 662–667 (2018)

18. Emanuel, M., Radja, N.H., Henriksson, A., Schiessel, H.: The physics behind the larger scale
organization of DNA in eukaryotes. Phys. Biol. 6, 025008 (2009)

19. Tark-Dame, M., van Driel, R., Heermann, D.W.: Chromatin folding–from biology to
polymer models and back. J. Cell Sci. 124, 839–845 (2011)

20. Barbieri, M., Scialdone, A., Gamba, A., Pombo, A., Nicodemi, M.: Polymer physics, scaling
and heterogeneity in the spatial organisation of chromosomes in the cell nucleus. Soft Matter
9, 8631–8635 (2013)

21. Nicodemi, M., Pombo, A.: Models of chromosome structure. Curr. Opin. Cell Biol. 28, 90–
95 (2014)

22. Nicodemi, M., Prisco, A.: Thermodynamic pathways to genome spatial organization in the
cell nucleus. Biophys. J. 96, 2168–2177 (2009)

23. Barbieri, M., et al.: Complexity of chromatin folding is captured by the strings and binders
switch model. Proc. Natl. Acad. Sci. U.S.A. 109, 16173–16178 (2012)

24. Bohn, M., Heermann, D.W.: Diffusion-driven looping provides a consistent framework for
chromatin organization. PLoS ONE 5(8), e12218 (2010)

25. Sanborn, A.L., Rao, S.S.P., Huang, S.-C., et al.: Chromatin extrusion explains key features
of loop and domain formation in wild-type and engineered genomes. Proc. Natl. Acad. Sci.
U.S.A. 112, E6456–E6465 (2015)

26. Fudenberg, G., Imakaev, M., Lu, C., et al.: Formation of chromosomal domains by loop
extrusion. Cell Rep. 15, 1–12 (2016)

27. Brackley, C.A., et al.: Nonequilibrium chromosome looping via molecular slip links. Phys.
Rev. Lett. 108, 158103 (2017)

28. Chiariello, A.M., Annunziatella, C., Bianco, S., Esposito, A., Nicodemi, M.: Polymer
physics of chromosome large-scale 3d organization. Sci. Rep. 6, 29775 (2016)

29. Annunziatella, C., Chiariello, A.M., Bianco, S., Nicodemi, M.: Polymer models of the
hierarchical folding of the Hox-B chromosomal locus. Phys. Rev. E 94, 042402 (2016)

30. Rosa, A., Everaers, R.: Structure and dynamics of interphase chromosomes. PLoS Comput.
Biol. 4, e1000153 (2008)

690 S. Bianco et al.



31. Brackley, C.A., Taylor, S., Papantonis, A., Cook, P.R., Marenduzzo, D.: Nonspecific
bridging-induced attraction drives clustering of DNA-binding proteins and genome
organization. Proc. Natl. Acad. Sci. U.S.A. 110, E3605–E3611 (2013)

32. Jost, D., Carrivain, P., Cavalli, G., Vaillant, C.: Modeling epigenome folding: formation and
dynamics of topologically associated chromatin domains. Nucleic Acids Res. 42, 9553–9561
(2014)

33. Annunziatella, C., Chiariello, A.M., Esposito, A., Bianco, S., Fiorillo, L., Nicodemi, M.:
Molecular dynamics simulations of the strings and binders switch model of chromatin.
Methods 142, 81–88 (2018)

34. Allen, M.P., Tildesley, D.J.: Computer Simulation of Liquids. Oxford University Press,
Oxford (1987)

35. de Gennes, P.G.: Scaling Concepts in Polymer Physics. Cornel University Press, Ithaca
(1979)

36. Kremer, K., Grest, G.S.: Dynamics of entangled linear polymer melts: a molecular-dynamics
simulation. J. Chem. Phys. 92(8), 5057–5086 (1990)

37. Plimpton, S.: Fast parallel algorithms for short-range molecular dynamics. J. Comput. Phys.
117, 1–19 (1995)

38. Bianco, S., Chiariello, A.M., Annunziatella, C., Esposito, A., Nicodemi, M.: Predicting
chromatin architecture from models of polymer physics. Chromosome Res. 25, 25–34
(2017)

39. Chiariello, A.M., et al.: A polymer physics investigation of the architecture of the murine
orthologue of the 7q11.23 human locus. Front. Neurosci. 11, 559 (2017)

40. Franke, M., et al.: Formation of new chromatin domains determines pathogenicity of
genomic duplications. Nature 538(7624), 265–269 (2016)

41. Dekker, J., et al.: The 4D nucleome project. Nature 549, 219–226 (2017)

Understanding Chromatin Structure 691



Towards Heterogeneous Network
Alignment: Design and Implementation of
a Large-Scale Data Processing Framework

Marianna Milano1,2 , Pierangelo Veltri1,2, Mario Cannataro1,2 ,
and Pietro H. Guzzi1,2(B)

1 Department of Medical and Surgical Science,
University Magna Græcia, Catanzaro, Italy

2 Data Analytics Research Centre, University of Catanzaro, Catanzaro, Italy
{m.milano,veltri,cannataro,hguzzi}@unicz.it

Abstract. The importance of the use of networks to model and analyse
biological data and the interplay of bio-molecules is widely recognised.
Consequently, many algorithms for the analysis and the comparison of
networks (such as alignment algorithms) have been developed in the
past. Recently, many different approaches tried to integrate into a single
model the interplay of different molecules, such as genes, transcription
factors and microRNAs. A possible formalism to model such scenario
comes from node coloured networks (or heterogeneous networks) imple-
mented as node/ edge-coloured graphs. Consequently, the need for the
introduction of alignment algorithms able to analyse heterogeneous net-
works arises. To the best of our knowledge, all the existing algorithms are
not able to mine heterogeneous networks. We propose a two-step align-
ment strategy that receives as input two heterogeneous networks (node-
coloured graphs) and a similarity function among nodes of two networks
extending the previous formulations. We first build a single alignment
graph. Then we mine this graph extracting relevant subgraphs. Despite
this simple approach, the analysis of such networks relies on graph and
subgraph isomorphism and the size of the data is still growing. There-
fore the use of high-performance data analytics framework is needed. We
here present HetNetAligner a framework built on top of Apache Spark.
We also implemented our algorithm, and we tested it on some selected
heterogeneous biological networks. Preliminary results confirm that our
method may extract relevant knowledge from biological data reducing
the computational time.

Keywords: Heterogeneous network · Network alignment
Apache Spark

1 Introduction

The importance of the use of networks to model and analyse biological data is
widely recognised [11]. For instance, networks have been used to model inter-
actions among biological macromolecules inside cells, such as protein-protein
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interactions (PPI), or gene-gene interactions [2]. Usually, these models contain
a single node type (e.g. proteins or genes) and simple (i.e. uncoloured and
eventually weighted) edges. For example, in protein-protein interaction (PPI)
networks, nodes are proteins while edges are their interactions and associated
weights model the reliability of the discovered interactions.

The use of networks has enabled the discovery of many biological insights
related to cells and related to disease development and progression [5,18]. Conse-
quently, many approaches have led to the introduction of data models, databases
and algorithms of analysis. Nevertheless, the interplay of molecules inside cells
is always made by molecules of different types (e.g. genes, proteins and ribonu-
cleic acids [8]. Consequently, the possible integration in a single comprehensive
model of heterogeneous data is still a challenge. In the scenario we envision, a
single network containing both different kinds of nodes and different kinds of
edges may model the reality inside cells [16]. One of the best formalism to model
such scenario comes from heterogeneous networks implemented as node/ edge-
coloured graphs. [7]. For example, data have been collected on how proteins are
related to diseases, and how drugs interact with proteins. Consequently, a single
network may represent proteins, drugs and diseases as nodes of different kind or
colour.

The possible scenarios of analysis of such networks involve many tasks [16],
and we here focus on the local alignment of networks. Local network alignment
has been defined in the past for homogeneous network (LNAhom), and it has
been formalised in many papers, from those we recall the approaches of Berg
and Lassig [1] and the subsequent formalisation by Mina and Guzzi [15]. Many
LNAshom are based on a two-step strategy: (i) initially they merge two input
networks in a single one (referred to as alignment graph), (ii) the alignment
graph is then analysed to extract relevant subnetworks (or communities).

Here we extend this approach to consider heterogeneous network by propos-
ing a two-way strategy to align heterogeneous networks: (i) initially merge two
input networks in a single one (referred to as heterogeneous alignment graph),
(ii) then we analyse the alignment graph to extract relevant subnetworks (or
communities).

Even though the single formulation dimension of real networks is still growing
due to the introduction of novel technological platforms and on the integration
of different data sources. Consequently, the development of novel approaches
able to leverage computational resource offered by high computational platforms
such as clusters and novel programming models tailored to big data is a crucial
challenge. For these aims, after the formulation of the problem of the alignment
for heterogeneous networks, we here propose a high-performance framework for
the alignment based on Apache Spark. We present some preliminary results that
demonstrate the advantage of the use of such approach.

2 Related Work

Local Network Alignment (LNA) algorithms were developed initially for homo-
geneous networks to find multiple and unrelated regions of isomorphism, i.e.
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same graph structure, between the input networks, where each region implies a
mapping independently of other regions. The strategy consists of the mapping or
set of mappings between subsets of nodes such that their similarity is maximal
over all possible subsets. These subnetworks correspond to conserved patterns
of interactions that can represent a conserved motif or pattern of activities. To
the best of our knowledge, currently, there is not an algorithm for local align-
ment of heterogeneous networks. Therefore we here present main approaches for
homogeneous networks.

The first work by Berg and Lassig [1] proposed the first formalisation for
network alignment in biology. Then, the work [13] proposed an LNA algorithm
tailored for biological networks based on the theory of evolution of genes (the
so-called duplication-divergence model).

AlignNemo [3] algorithm, given the networks of two organisms, enables the
discovery of subnetworks of proteins related to biological function and topol-
ogy of interactions. The algorithm can handle sparse interaction data with an
expansion process that at each step explores the local topology of the networks
beyond the proteins directly interacting with the current solution. AlignMCL [15]
is a local alignment algorithm that represents an evolution of previous algorithm
AlignNemo. AlignMCL builds the local alignment, by merging all the input data
in a single graph, alignment graph, that is afterwards examined, and by using
the Markov cluster algorithm MCL [6], to extract the conserved subnetworks.
The main contribution of AlignMCL consists of the ability to extract functional
modules, represented as local dense subgraphs, without the imposition of any
particular topology.

LocalAli [10] is a local network alignment algorithm based on a maximum-
parsimony evolutionary model for the build of local alignment among multi-
ple networks as functionally conserved modules. LocalAli uses the maximum-
parsimony evolutionary model to infer the evolutionary tree of networks nodes.
Then, LocalAli extracts local alignments as conserved modules that have been
evolved from a common ancestral module.

3 Local Alignment of Heterogeneous Networks

We develop a framework for the local alignment of heterogeneous biological
networks. We formally define the computational problem matches, mismatches,
and gaps.

3.1 Heterogeneous Network Alignment Problem

An heterogeneous biological network is modeled by a node colored graph Ghet =
(Vhet, Ehet, C), where Vhet is a set of coloured nodes, Ehet ⊆ Vhet×Vhet and C is a
set of colors that define a coverage of Vhet. We extend the formulation provided
in [13], therefore given two heterogeneous networks Ghet1 = (Vhet1, Ehet1, C)
and Ghet2 = (Vhet2, Ehet2, C), a subset of node pair L ⊆ Vhet1 × Vhet2, induces a
local alignment Lali of Ghet1 and Ghet2 under a scoring function F that measure
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the similarity among nodes of two input networks F : Vhet1 × Vhet2 → [0, 1],
and under a match, mismatch and gap schema. Formally, the local alignment
may relate node of different colors. Considering the topology, and the distance
between nodes participating in the input networks we may find clear three pos-
sible cases.

Given two pair of nodes of the input networks (v11, v12) ∈ Ghet1 and
(v21, v22) ∈ Ghet2, there is a match if both v11, v12 and v21, v22 are connected in
input networks. There is a mismatch if only a pair of nodes is connected to a
network. There is a gap if a pair of nodes is connected ant the other two nodes
are at a distance k lower than δ.

Figure 1 depicts this scenario.

Fig. 1. Framework.

Clearly, for each match, mismatch and gap we may associate a scoring using a
function Q that takes into account both the similarity of nodes and the topology.
Consequently, the problem of finding a local alignment may be formulated as
the finding of a subset of node pairs that maximise the overall score Qmax.

Since the general formulation is computationally hard [1], we propose a
heuristic algorithm to solve the problem based on two main steps:

1. Building of the Alignment Graph: starting from two node-coloured
graphs, and a similarity function among nodes of these graphs, we build a
weighted alignment graph.

2. Analysis of the Alignment Graph: the alignment graph is then analysed
to extract communities using Markov clustering algorithm [6].

Thus the more general formulation of the network alignment problem is to
find a L ⊆ Vhet1 × Vhet2 that maximise a function Q.

3.2 Heterogeneous Alignment Graph

The alignment graph G = (Val, Eal) is a node-colored graph that is built starting
from two input graphs G1 = (V1, E1), and G2 = (V2, E2). Each node val ∈ Val

represent a pair of nodes of the input graphs, therefore Val ⊂ V1 × V2. For the
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sake of the simplicity we consider only the integration of two nodes of the same
color, but the extension may be easily obtained. Edges of the alignment graph
are inserted by the presence of the edges relating corresponding nodes on two
input graphs. Edges are weighted by using a scoring function that extends the
match-mismatch-gap score of the classical alignment graph. Given two nodes
of the alignment graph, the corresponding nodes of the input graph may be
connected or not, and may be of the same colour or not. Intuitively, the best
case is when nodes are connected and of the same colour. The scoring function
should take into account this consideration by considering six possible cases of
match, mismatch and gap and two possible sub-cases for each one, homogeneous
and heterogeneous. We first introduce these cases.

Match. Given two nodes of the alignment graph val,1 = (v11, v21) and val,2 =
(v21, v22), an homogeneous match is established when the input nodes are
adjacent and all the nodes have the same color. Given two nodes of the alignment
graph val,1 = (v11, v21) and val,2 = (v21, v22), an heterogeneous match is
established when the input nodes are adjacent and the input nodes have the a
different color. Figure 2 depicts this scenario.

Fig. 2. Match

Mismatch. Given two nodes of the alignment graph val,1 = (v11, v21) and val,2 =
(v21, v22), an homogeneous mismatch is established when the input nodes are
adjacent only in a single network and all the nodes have the same color. Given
two nodes of the alignment graph val,1 = (v11, v21) and val,2 = (v21, v22), an
heterogeneous mismatch is established when the input nodes are adjacent
only in a single network and the input nodes have the a different color. Figure 3
depicts this scenario.

Fig. 3. Mismatch
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Gap. Given two nodes of the alignment graph val,1 = (v11, v21) and val,2 ==
(v21, v22), an homogeneous gap is established when the input nodes are adja-
cent only in a single network and they are at distance lower than Δ (gap thresh-
old) in the other network and all the nodes have the same color. Given two nodes
of the alignment graph val,1 = (v11, v21) and val,2 == (v21, v22), an heteroge-
neous gap is established when the input nodes are are adjacent only in a single
network and they are at distance lower than Δ in the other network and the
input nodes have the a different color. Figure 4 depicts this scenario.

Fig. 4. Gap

3.3 Weighting the Edges

Clearly, after the building of the edges of the alignment graph, there is the need
to weight each edge using an ad-hoc scoring function F and the gap threshold
Δ. This function should emphasise matches and should penalise mismatch and
gaps. The nature of the scoring function has a high impact on the resulting
alignment graph and on the alignment itself.

4 Sequential Implementation in R

At first, we implemented our algorithm using the R programming language [12].
The algorithm takes as input two heterogeneous networks Ghet1 =

(Vhet1, Ehet1, C) and Ghet2 = (Vhet2, Ehet2, C), a subset of node pair matched
according to a similarity functions and builds the local alignment of Ghet1 and
Ghet2 under a scoring function F and under a match, mismatch and gap schema.

The Network analysis were performed using the igraph [4] R Package. The
Fig. 5 show the workflow algorithm.

Step 1-Import heterogeneous networks and similarity nodes: the algorithm
receives as input two input node-coloured graphs and the list of matched pair
nodes. For simplicity, we consider two different colours to model the nodes of
the heterogeneous networks.
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Fig. 5. Workflow of algorithm on R.

Step 2-Building of the Alignment Graph: The algorithm builds an alignment
graph represented as a weighted graph.

Step 2.1-Node Alignment Graph Definition: The algorithm defines the nodes
of the alignment graph represented by the pair of nodes matched by the similarity
considerations. Thus, the nodes of the alignment graph are composite nodes
representing pairs of similar nodes of two input networks

Step 2.2-Edges Building and Edges Weighting Step: The algorithm proceeds
to insert the edges of the alignment graph considering the presence of corre-
sponding edges in both networks, or the presence of at least an edge in one of
the input networks. While the edges are inserted, the algorithm apply an edge
scoring strategy to weights each edge. The algorithm computes a distance matrix
for each input networks and set a distance threshold Δ that relies on the distance
of nodes in the input networks. According to these, the algorithm weights the
edges of the alignment graph. The edges are weighted by considering six cases of
match homogeneous/heterogeneous, mismatch homogeneous/heterogeneous and
gap homogeneous/heterogeneous. In case of match homogeneous, the algorithm
assigns a score equals to 1 to the edge, whereas the weight of edge is equal to
0.9 in match heterogeneous case. Instead, when the algorithm finds a mismatch
homogeneous weights the edge with 0.5, while in mismatch heterogeneous case
the weight edge is equal to 0.4. Finally, in gap homogeneous case and gap het-
erogeneous the weights edge are equals to 0.2 and 0.1 The process ends when
none edge is added.

Finally, the Markov clustering algorithm is used.

5 High Performance Computing on Apache Spark

Apache Spark [19] is a framework for big data analytics and processing built on
top of the Hadoop MapReduce experience.

Hadoop MapReduce has found many applications in Bioinformatics and com-
putational biology [17]. Recently, the analysis of (big) data in bioinformatics has
caused the need for the introduction of high computational platforms for process-
ing (big) data generated from technological platforms. The common paradigm for
big data analytics involves the distribution of computations in a set of machines
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(or a cluster) that share data in a shared file system. Among the other pro-
gramming models, the Hadoop’s MapReduce API has gained an important role.
Usually, the Hadoop MapReduce API operate in a remote data centre that is
accessed through web interface. Hadoop [20] is a software framework available
for Linux platforms that enable in a natural way the access and the use of the
computational power of a cluster. Main characteristics of Hadoop are (i) robust,
fault-tolerant Hadoop Distributed File System (HDFS), (ii) Map-Reduce pro-
gramming model. The HDFS allows parallel processing across the nodes of the
cluster using the MapReduce paradigm.

Hadoop uses a Fault-tolerant, shared-nothing architecture based on the con-
straint that tasks are mutually independent. Therefore the failure of a node
requires the restart of a single node.

Hadoop employs a Map/Reduce execution engine [19] to realize a fault-
tolerant distributed computing system over the large data sets stored in the
cluster’s distributed file system. The critical idea of the Map/Reduce engine is
the processing workflow that is subdivided in two main stages Map and Reduce.
Each computation has many separate Map and Reduce steps, each step is done
in parallel. Each node operates on a subset of the initial dataset. Therefore, each
node run a Map function on such dataset. The output of such step is a set of
records stored as key-value pairs. In the second stage, (Reduce Stage), records
must be grouped considering keys. Therefore, for any key there is a Reducer,
running on a node, that group all the records of the key until all the data from
the Map stage has been transferred to the appropriate machine. The Reduce
stage produces another set of key-value pairs, as final output. Despite the sim-
plicity and the constraint of the use of key-value pairs, this programming model
may be used on a broad set of problems and tasks.

The Apache Spark framework is based on MapReduce programming model
improving its weaknesses. Apache Spark is an open-source cluster computing
framework for significant data processing offering to the user an easy way to
access map reduce programming on a cluster. Spark extend the Map-Reduce
capabilities: it runs more faster [19] and it simplifies the use by providing a rich
set of API in Python, Java, Scala and R. The core concept of SPARK is the
distributed data frame that has been used in many applications including large
queries, machine learning, and graph processing.

6 A Framework for Graph Alignment in Apache Spark

We designed HetNetAligner, a framework for heterogeneous graph aligner over
Spark. Main modules of HetNetAligner, as depicted in Fig. 6, are:

– A User Interface: that is responsible for interacting with users. User Inter-
face has two main instances: a command line that accept instruction using the
command line and a graphical user interface (currently under development)
that simplify the user commands.

– NetworkX Libraries [9]: HetNetHaligner uses the NetworkX libraries for
managing input and output of graphs.
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– Graph Clustering Libraries: we used the mLib [14] to analyse the graph
efficiently.

Currently, we designed the overall architecture of the HetNetAligner frame-
work, and we implemented main modules to test the effectiveness of our app-
roach.

Fig. 6. The architecture of HetNetALigner.

6.1 Implementation of the Heterogeneous Graph Alignment
Algorithm

The implementation of the alignment algorithm in Spark is based on five main
steps as described in the following algorithm.

Algorithm 1: Alignment Graph Building
Input: Graph 1, Graph 2
Output: Alignment Graph.
1: Building of Node List
2: Building Empty Adjacency Matrix
3: Parallelization of the Adjacency Matrix
4: Parallel Calculation of Edges and Weights
5: End

Step 1 and two are performed sequentially. After building of the empty adja-
cent matrix, this matrix is spread among nodes using distributed matrix abstrac-
tion of Spark (Fig. 7).

7 Results

7.1 Dataset

The dataset consisted of 12 synthetic networks. We built the synthetic networks
using a random graph generator according to the Erdos-Renyi model.
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Fig. 7. Implementation of the algorithm on Spark.

We set all model network instances to the same size of 9500 nodes, and we
vary the number of edges. Then, we randomly assign each node a colour out of 2
possible colours because the existing random graph generators are not designed
to produce heterogeneous networks. The Table 1 shows the network parameters.

Table 1. Details of synthetic networks used for experiments

Network Nodes Edge

N1 9500 341000

N2 9500 342000

N3 9500 334000

N4 9500 320000

N5 9500 353000

N6 9500 333000

N7 9500 333000

N8 9500 338000

N9 9500 449000

N10 9500 406000

N11 9500 438000

N12 9500 416000

All the experiments were performed on an Intel Xeon(R) Processor (3.4
Ghz, 4 core, and 8 threads) with 16 Gbytes of memory running an Ubuntu OS
ver 18.04.

We configured the Apache Spark environment and the HetNetAligner frame-
work. We measured both the quality of the alignment and the increase of the
performances when varying the number of clusters. We compared each network
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with itself, and we increased the number of cores using 1, 2, 4 and 16 cores.
Figure 8 shows the scalability of our algorithm considering the time to build the
alignment. We should note the time to build the alignment is reduced for each
network.

Fig. 8. Scalability of HetNetAligner.

8 Conclusion

We here presented HetNetAligner a framework built on top of Apache Spark. We
also implemented our algorithm, and we tested it on some selected heterogeneous
biological networks. Preliminary results confirm that our method may extract
relevant knowledge from biological data reducing the computational time. Future
work will regard the implementation of the whole framework.
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Abstract. Adenocarcinomas are tumors that originate in the lining
epithelium of the ducts that form the endocrine glands of the human
body. Infiltrating breast and one of the most frequent neoplasms among
female population, and the early detection of the disease is then funda-
mental and, for this reason, a profound knowledge of the biology of tumor
at this phase is essential. Among the distinct tools that contribute to
this knowledge, computational simulation is more frequently used every
day. The availability of fast and efficient computations that allow the
simulation of tumor dynamics in situ, under a wide range of different
parameters, is an important research topic. Based on cellular automata,
this paper proposes a generic simulation model for the Adenocarcino-
mas In Situ (CIS). We applied it to the breast ductal adenocarcinoma
in situ (DCIS), modeling our cells with the genomic load that we cur-
rently know that the tumor starts, and proposing a numerical coding
method for the genome that allows efficient computational management.
We propose a parallelization scheme using data parallelism, and we show
the acceleration achieved in multiple nodes of our cluster of processors.

Keywords: Adenocarcionomas in situ · Cellular automaton
Data partition · Parallel processing · Speedup

1 Introduction

It is estimated that one in eight women [8] will suffer breast cancer, being approx-
imately 80% of them ductal carcinomas. Likewise, one in every nine men will
suffer a prostate cancer. Thus, the incidence of these neoplasms in the adult
population and the magnitude of the health problem they imply will be very
important. Early detection is aimed at identifying the disease when it has not
yet acquired infiltrating character, and it is limited to glandular ducts (in situ),
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i.e. the glandular parenchyma not was infiltrated yet. At this point, the disease
can only be root out with surgery that removes the affected segment of the duct,
and a safety margin free of disease, while preserving the rest of the patient’s
breast, with a success rate of more than 90%. In the case of prostate carci-
nomas, prostate-specific antigen, which has traditionally been used as a tumor
marker, it has been found out that is unaccurate in screening the disease for men.
In both cases, the characterization of the disease when is still in situ becomes
of great interest, and for this, computer simulation can be an excellent tool to
investigate it. Carcinogenesis is a phenomenon in which one or multiple muta-
tions on certain genes allow the cells to reproduce and survive abnormally, under
a selection process that results in uncontrolled tumor growth characterized by
infiltrating nature. There are many mathematical models in the literature that
contain the knowledge we currently have about genes involvement in neoplasms
[1–3,6,7,9,11], which study the mutations that neoplasms can develop to orig-
inate a CIS. In this paper, we propose a three-dimensional cellular automaton
based CIS model to simulate a generic glandular duct and to analyze how the
mutations in the cells of the simulated duct become CIS. We also apply the model
to known breast intraductal adenocarcinoma data, parallelize it and we study
its natural development with respect to the parallel model and the acceleration
achieved.

Fig. 1. Natural development of Adenocarcinomas in Situ (CIS), from a normal duct
to an infiltrated one.

2 Biology of Breast Adenocarcinomas in Situ

If not detected and treated, the natural development of these tumours is the
progression to an infiltrating adenocarcinoma, as shown in Fig. 1. In the case of
the human breast, it is now known that within a normal duct the two types of
cells that form the ducts originate from a single class of progenitor cell that, by
cellular differentiation, leads to two germ lines that conclude in the two cited
types of cells. Ductal adenocarcinomas initially have a local character and then
grow to infiltrate and reach the duct.

It is known that those women with genetic predisposition to breast cancer
accumulate inherited specific mutations [16,17], and thus, an estimate points out
that up to 12% the number of cases is due to this circumstance, not mentioning
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other genes that may be involved. In addition it is now known that mutations in
the BRCA1, BRCA2, PTEN and TP53 genes increase the likelihood of suffering
from ductal carcinoma. In the model proposed here, this genetic predisposition
will be taken into account by means of a logical variable HMG. In our simulation,
all the stem cells of the duct will be defined with the genetic predisposition
incorporated into their genome.

The meaning of the four genes that we will consider in the simulation is
illustrated in Table 1. In it, the first and second columns collect the modeled
genes and their function in physiological conditions. When one or several of the
genes suffer damage, the behavior of the cell that contains it becomes malignant.
When a chain of specific mutations occurs it inexorably leads to the proliferation
of ductal carcinoma, first local, and then infiltrating, breaking the duct and
expanding to the glandular parenchyma.

Table 1. Pathological functioning of genes.

Gen Operation with damages

BRCA1 The cell dies

BRCA2 Neoplastic reproduction

PTEN Neoplastic reproduction

PTEN Does not inhibit neoplastic reproduction

TP53 Cell survival with damage to proto-oncogenes

TP53 Cell survival with damage to the double-layer architecture

3 Cellular Automata

A cellular automaton (CA) [5,15,18] is as a 4-tuple (ζ, ε,N I , ρ) where:

– ζ is a discrete regular network of cells (or nodes) together with some border
conditions set for the finite dimension net case, which are of use to define
neighboring conditions of cells at the net frontier.In our case, we have the
mathematical representation of a 3D-cubic: ζ = {r : r = (r1, r2, r3) ∈ Z3}.

– ε is a finite set (usually, with an algebraic Abelian ring structure) of states
that the network of cells can take on.

– N I is a finite set of cells that define the neighbor cells with which a given cell
of the network can interaction.

– The transition function ρ that defines how any cell’s state can change depend-
ing on time and on its neighbor cells own state N I .

Given the previous definitions, any area of cells can be defined as the net-
work ζ included in the real 3D space Rd that uniformly covers a portion of the
d-dimensional Euclidean space. Each cell is labeled by its position r ∈ ζ. The
layout of cells is spatially specified by the connections that any cell holds with
its closest neighbors, which are obtained by connecting pairs of cells following
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a regular pattern. For any spatial coordinate r, the neighborhood grid Nb(r)
consists of a list of neighbor cells that is defined by

Nb(r) = {r + ci : ci ∈ Nb, i = 1, · · · , b} (1)

Where b is the coordination number or, in other words, the number of the
grid neighbors that directly interact with the cell at coordinate r. Nb denotes
the elements in that pattern as ci ∈ Rd, i = 1, · · · , b.

ζ = {r : r ∈ Z
3} (2)

The total number of cells available is usually denoted by |ζ|. The entire set
of neighboring cells whose states affect any cell r is defined by the interaction
vicinity N I

b (r) function, N I
b (r) = {r + ci : ci ∈ N I

b }.
Any cell’s neighborhood can be chosen in different ways, though we choose for

our simulation the vicinity schema of Moore [5], where any cell has as neighbors
only its surrounding cells. Furthermore, each cell r ∈ ζ has a state s(r) ∈ ε.
A global configuration of the automaton s ∈ ε|ζ| is determined by the state
of all the cells on the grid. Finally, model’s temporal evolution dynamics is
determined by the function of transition ρ that specifies the changes in any
cell state according to its previous state, and the interaction with closest-cells
neighborhood given by ρ : εμ → ε where μ = |N I

b |. The rule is proved to be
spatially homogeneous and does not therefore explicitly depends on the position
of a given cell [14]. Extensions of the previous definition to include temporary
or spatial homogeneity are feasible. If the CA is deterministic, the function of
transition yields only one feasible change of state, whereas if it is stochastic, the
new cell’s state is given by a specific distribution of probability.

4 Modelling Breast Adeconocarcinoma Ductal in Situ
with Cellular Automata

To model the duct, a cellular automaton [12,13] assuming a three-dimensional
ζ grid with 20 × 20 × 200 nodes is used, which is built from the two-dimensional
model proposed in [14], by just adding an additional dimension. Each node
may contains a cell. Although a human ductal cell has a genome composed of
multiple genes with millions of DNA bases, we will limit ourselves to consider
only the four genes in the model involved in the pathogenesis of the DICS, which
are encoded by 32 bits integers. The genetic load of a cell is then modeled by
an ordered tuple of the form GC = (brca1, brca2, pten, tp53). The tuple GC
is encoded in its turn by a single integer using the pairing function given by
the Eq. 3. The three dimensional version of Moore’s neighborhood and a null
boundary condition is used to give the ends of the duct a biological coherence.

〈x, y〉 = 2x(2y + 1) − 1 (3)

This function, which is a bijection, may be nested by means of the expression.

〈〈brca1, brca2, 〉 , 〈pten, tp53〉〉 (4)
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It allows the encoding of the entire genome of a cell in a single positive inte-
ger by using a compact and reasonably efficient way. In this way, each node
of the ζ grid of the cellular automaton contains a pair of positive numbers
that respectively code the cell type and its genetic load, which in turn are
re-encoded by applying the pairing function to both data, so that the node
contains a unique number in Z

+. Decoding the integer to update that genetic
load when a cell mutates or for any other reason is trivial, given the encod-
ing technique exposed, by simply using the decoding functions r(z) and (z),
described in the Eqs. 5 and 6. The set of possible cell types1 of the grid is
S = {free, basal, luminal,myoephitelial} and, as we have said, they are numer-
ically coded.

l(z) = minx≤z[(∃y)≤z](z = 〈x, y〉) (5)

r(z) = miny≤z[(∃x)≤z](z = 〈x, y〉) (6)

The three given functions are primitive recursive [4] and, therefore, com-
putable. The nodes of the grid are synchronously updated node by node of the
duct. The cells are updated according to the probability of mutation and its
neighborhood environment. Both variables define the transition function ρ. The
selection and updating of the 8×104 nodes of the grid defines a generation. The
number of generations varies depending on the length of the natural history of
the tumor being simulated, increasing or decreasing the number of generations
of the simulation. The grid is initialized by a completely deterministic algorithm
that creates a base membrane and places a small number of progenitor cells in
its interior, which reproduce to form a double layer duct, though we will apply
it to the breast ducts here. Each section of the duct contains approximately 45–
50 luminal cells. Originally, all the cells are located on the duct have a healthy
genome, which is represented by 32 bits equal to zero. Mutations are modeled
by nullifying the value of one or several bits of a gene. The HMG flag allows us to
execute the model considering an inherited genetic predisposition to contract the
disease, using a Monte-Carlo method. The algorithm to obtain a simulation of
the duct compatible with the histological structure of a human breast is shown
below2.

1 Algorithm SetUp
2 Input : empty g r id
3 Output : g r id with i n i t i a l s t a t e s f o r nodes
4 Method :
5

6 1 . With r a d i a l symmetry put b a s a l c e l l s to d e f i n e basa l
membrane ;

1 Basal cells: they form the outer layer of tissue that surrounds the duct; luminal and
myoephitelial cells: form the internal structure of a normal duct (see Fig. 1); free
represents the internal space of the duct that is empty.

2 For the sake of clarity, we have abstracted the necessary coding and decoding steps
that allow us to modify the state of a node of the reticle or the genome of a cell
located in that node. However, the reader should always bear in mind that any
reading or writing to node in the grid requires that state modification.



A Parallel Cellular Automaton Model for Adenocarcinomas in Situ with Java 709

7 s t em c e l l s = [ ] ;
8 // seed ing stem c e l l s . . .
9 2 . f o r ( i =0; i <200; i++){

10 cx=random (0 , 19) ;
11 cy=random (0 , 19) ;
12 cz=random (0 ,199) ;
13 g r id [ x ] [ y ] [ z ]=stem ;
14 s t em c e l l s . add ( ( x , y , z ) ) ;
15 }
16 // putt ing mutations in stem c e l l s . . .
17 3 . i f (HMG==true )
18 f o r i t e r a t o r in s t em c e l l s {
19 x=i t e r a t o r ( x ) ;
20 y=i t e r a t o r ( y ) ;
21 z=i t e r a t o r ( z ) ;
22 mutate ( g r id [ x ] [ y ] [ z ] , a l l g e n s , 15%) ;
23 }
24 //making the r e s t o f duct . . .
25 4 . While ( f r e e p l a c e s ) {
26 5 . f o r a l l c e l l s in g r id
27 reproduce ( g r id [ x ] [ y ] [ z ] , adjacent , h i e ra r chy ) ;
28 6 . f o r a l l ! ( s t em c e l l ) in g r id
29 migrate ( g r id [ x ] [ y ] [ z ] , vacant ne ighbor ing ,

radia l symemtry ) ;
30 }

Fig. 2. Initial state for a layer of the duct.

When the previous simulation is executed in the Java language, a grid is
obtained that coherently models the normal histological structure of a human
duct (Fig. 2), and all the cells generated in the grid remain inside, adopting
the double layer structure illustrated in Fig. 1 for the normal state of the duct.
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During the reproduction phase, modeled on line number 5, all the cells of the
grid get divided and take up the adjacent places, wherever there is enough room
for them. The inherited genetic load can be mutated, according to the mutation
rate set as a parameter of the mutate method, to which we have given a value of
15%, which reasonably encompasses the various real causes that can lead to this
type of mutations, and that include the environment, the genetics and even the
type of the cell [7]. Since all genes are mutated through the method, including
those that control both mitosis and programmed cell death, the cells of the duct
resulting from the routine SetUp will eventually lead to neoplastic pathology.
Once the grid is in its initial state, it is necessary to make it evolve over time,
which is the responsibility of the Evolve algorithm.

1 Algorithm Evolve
2 Input : g r id in t−time
3 Output : g r id in ( t+1)−time
4 Method :
5

6 //now , the t r a n s i t i o n func t i on . . .
7 1 . f o r a l l c e l l s in g r id {
8 //normal apopto s i s . . .
9 2 . i f ( ( mutations (BRCA1( g r id [ x ] [ y ] [ z ] ) )

10 +mutations (TP53( g r id [ x ] [ y ] [ z ] ) ) )>32)
11 g r id [ x ] [ y ] [ z ]= f r e e ; // c e l l d i e s
12 //normal apopto s i s . . .
13 3 . i f ( mutations (TP53( g r id [ x ] [ y ] [ z ] ) )<16 && (
14 ! a d j a c en t ba sa l ( g r id [ x ] [ y ] [ z ] ) | |
15 ! a d j a c en t myop i th e l i a l ( g r id [ x ] [ y ] [ z ] ) ) )
16 g r id [ x ] [ y ] [ z ]= f r e e ; // c e l l d i e s
17 //anormal apopto s i s . . .
18 4 . i f ( stem ( g r id [ x ] [ y ] [ z ] ) ) {
19 5 . i f ( a d j a c e n t f r e e ( g r id [ x ] [ y ] [ z ] ) )
20 normal reproduct ion ( ) ;
21 6 . i f ( ( mutations (BRCA1( g r id [ x ] [ y ] [ z ] ) )+
22 mutations (BRCA1( g r id [ x ] [ y ] [ z ] )+
23 mutations (PTEN( gr id [ x ] [ y ] [ z ] )+
24 mutations (TP53( g r id [ x ] [ y ] [ z ] ) ) )>64)
25 cance rous r eproduc t i on ( )
26 }
27 7 . f o r a l l ! ( s t em c e l l ) in g r id
28 migrate ( ) ;
29 }

In the previous algorithm, the methods BRCA1, BRCA2, PTEN and TP53 takes
the integer that encodes the genome of a cell in the grid and extracts the 32-
bit integer that encodes the gene according to the name of the method; the
mutations method takes a numerically coded gene as its argument and returns
the number of mutations it presents, as an integer between 0 and 32. The meth-
ods adjacent basal and adjacent myopithelial allow us to know the type
of the cells that form the Moore’s neighborhood cube of a given cell while the
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method adjacent free gets the free nodes on the neighborhood of the node
given as argument. On the other hand, there is also available a set of four meth-
ods that allow us to know the type of the cell that is in a node of the grid.
The subroutine normal reproduction allows parents to be reproduced correctly
around their local cubic neighborhood, preserving the double layer structure of
the duct. The subroutine cancerous reproduction, allows parents to be repro-
duced at points in their local cubic neighborhood, but does not respect the
double-layer structure of the duct, and ended up forming an intraductal carci-
noma in situ. Note that for a parent to reproduce in this way, it is necessary that
the total sum of mutations present in their four genes is greater than half the
positions that the four genes encode. Finally, a simulation is carried out using a
given number of discrete time steps, in which each of them the described algo-
rithm Evolve is executed. When a critical number of mutations is reached, cells
begin to proliferate uncontrollably, filling the duct lumen and forming the carci-
noma in situ. Figure 3 illustrates this for a segment of the duct consisting of fifty
layers, where the neoplastic transformation has taken place and the malignant
cells have begun to fill the duct lumen, without infiltrating the base membrane.

Fig. 3. Simulation for a full duct by layers. Neoplastic cells (yellow) are filling the
inside of the duct. (Color figure online)

5 Implementation

The previous model was implemented using the Java programming language,
and parallelizing the initial, sequential version. The parallelization employed
the principles of symmetric multiprocessing with data parallelism, dividing the
grid in its longitudinal dimension z into cubic sections that were processed by
different threads on a dedicated core to each one of them [18].

A security condition is implemented to ensure the consistency of the simu-
lation, which consists of forcing a thread trying to write in the bilayer section
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of the neighboring sub-table to consult the state of the node in which it intends
to write after the acquisition of the lock, since the thread responsible for that
sub-grid reticle could have occupied that node in its own writing time [15].
The execution tests were developed on four different nodes of the cluster of our
university. Each node has two Intel R©XeonTM E5 processors at 2.6 GHz, which
yield 20.8 Gflops together, with 128 GB memory and without hyperthreading
activated. The entry node operates the HP Cluster Management Utility on Red
Hat Enterprise Linux for HPC and the processing nodes the version Compute
Node of the same operating system. The version of the Java development kit
used was Oracle 1.8.0.151-1.b12.el7 4.

6 Measurements and Results Discussion

Figures 4 and 5 show the average times and speedups obtained, for 5×103 genera-
tions. Once computed, the simulation stopped. Average times ans speedups were
obtained by computing the same simulation in different nodes of our cluster It
can be seen that both time and speedup curves reach their bests values for eight
parallel threads and that these values get worse if the number of parallel tasks
is increased. In other words, the optimal average time is 4.18 s for a maximum
speedup of 5.85, over a theoretical maximum of 16, which is the number of cores
available in each node, and starting from an optimal sequential time of 24.45 s.
One might think that the parallelization of the model, which barely gets up to
half of the theoretical maximum speedup, could be easily improved. However, the
following items clarify the obtained results rationale:

Fig. 4. Execution times (Mean ± Standard Deviation).

– It must be remembered that the contact zones between sub-reticles, con-
trolled by different threads, are protected by a mutually exclusive lock, which
introduces undesirable latencies that are however necessary to guarantee the
coherence of the state of the nodes in the grid. This directly induces an
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overload of the execution time that is proportional to the number of paral-
lel threads (and contact zones). This shortcoming was identified in previous
work [15] and by other authors in [10].

– Although the introduction of different reading and writing grids allow the
threads to process the nodes that are not in the contact areas of the grid in
a fully parallel manner, this is not the case of the nodes in those areas. Here,
the thread that wants to write to a node located in the contact area, once
it has got the permission to do it, cannot just use the neighborhood data in
the reading grid, but has also to check the writing grid to verify that there
is enough free space for the modification, because another thread may have
occupied that space as the result of a mitosis. This also induces execution
overloads.

– It is also worth mentioning that each node of the grid encodes a lot of infor-
mation by using a single positive integer (type of cell that occupies the node,
and BRCA1, BRCA, PTEN and TP53 genes). This introduces a heavy load
process for decoding (and encoding, when appropriate) the information in the
neighborhood of a cell.

One could think that the representation of the state and the genome of a
cell by means of a class gridCell.java could improve the results, although the
measures obtained by using an alternative implementation, discarded that. The
space occupied in the heap of the Java Virtual Machine by the nodes modeled
as classes, and the need of navigate through their respective references to reach
them, increases the global process times and decreases the speedups. In short,
the three previous items justify why those seepdups have been obtained, being
the second one of particular relevance, and also being coherent with models
that develop similar simulation dynamics in two dimensions, such as the results
published in [10] and in [15]. The parallelization is worthwhile by itself, besides
the proposed method is very general, and applicable to other types of tumors
where, depending on the transition function with which they are modeled, the
speedup could be slightly improved.

Regarding the biological fidelity of the model, we have compared the simula-
tion with a real specimen, using the number of neoplastic cells in the duct as a
as variable that changes over time (number of generations). In the real case, the
genetic predisposition was verified by means of immunohistochemical method,
while in our case the corresponding flag of the simulation was activated. The
classic gompertzian behavior [7] that describes the tumor dynamics for both in
vivo and in vitro were observed, which tends to occupy all available tissue domain
with a quasi-exponential acceleration from a specific time instant. We see that
the simulation in silico is compatible with biological and histological observa-
tions, with an acceptable degree of fidelity in terms of the global dynamics of
neoplastic growth in situ refers.
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Fig. 5. Speedups (Mean ± Standard Deviation).

7 Conclusions and Future Works

In this work we have proposed a general procedure for the parallel simulation
of adenocarcinomas in situ by using cellular automata-based model. A change
of the transition function of the cellular automaton and the genetic load model
allows us to adapt it to different types of glandular neoplasms, before they adopt
infiltrating character. From the proposed algorithms, a parallel implementation
has been developed using the Java language with symmetric multiprocessing by
means of data parallelism for the study of a case: breast ductal adenocarcinoma
in situ. The parallel simulation in the cluster of our University achieved a sig-
nificant reduction of the processing times (Fig. 4), getting a maximum speedup
factor of 5.85 (Fig. 5); it has also allowed us to identify an important limita-
tion to the scalability of the proposed method, derived from the need to have
under mutual exclusion control the nodes of the simulation grid located in con-
tact zones that separate the data spaces reserved for different threads, which we
already had identified in a previous work [15] for a two dimensional simulation.
This limitation is typical of the nature of the problem and, therefore, cannot be
ignored. The fidelity of the proposed model to the biological reality has also been
checked, showing that the simulation achieves a more than acceptable fidelity
with respect to the usual behavior in this type of neoplasms. Our future work is
focused in:

– the application of the developed model to other glandular neoplasms in situ.
– the development of a data partitioning scheme that allows parallel simulations

on GPU architectures.
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Abstract. We herein describe the performance evaluation of a modular
implementation of the MGRIT (MultiGrid-In-Time) algorithm within
the context of the PETSc (the Portable, Extensible Toolkit for Scientific
computing) library. Our aim is to give the PETSc users the opportunity
of testing the MGRIT parallel-in-time approach as an alternative to the
Time Stepping integrator (TS), when solving their problems arising from
the discretization of linear evolutionary models. To this end, we analyzed
the performance parameters of the algorithm in order to underline the
relationship between the configuration factors and problem characteris-
tics, intentionally overlooking any accuracy issue and spacial parallelism.
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1 Introduction

Scientific applications in life science and in many other fields can benefit from the
Parallel In Time (PINT) methods which have the potential to extract additional
parallelism in many applications governed by evolutionary models, allowing for
concurrency also along the temporal dimension. Consider as an example the
analysis, the reconstruction and the denoising of ultrasound images arising from
2D/3D echocardiography [2,18,24]. In the European Exascale Software Initiative
(EESI) 2014 roadmap, PINT approaches are recommended to the end of develop-
ing efficient applications for Exascale computing, thus taking a significant step
beyond “traditional” HPC. On the other side, the deployment of application
codes by means of scientific libraries, such as PETSc (the Portable, Extensible
Toolkit for Scientific computing) [1], can be considered as a good investment [2]
to maximize the availability of PinT algorithms for scientific applications.
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Recent advances in PETSc regarded the improvement of multilevel, multido-
main and multiphysics algorithms. The most relevant capabilities allow users
to test different solvers (linear, nonlinear, and time stepping) for their com-
plex simulations, without making premature choices about algorithms and data
structures [1]. Neverthless, PETSc does not provide any parallel-in-time support.

The MultiGrid-In-Time (MGRIT) algorithm is a PINT approach based on
Multigrid Reduction (MGR) techniques [3]. Although we know that it is imple-
mented in the software package XBraid [4], we are developing a modular mul-
tilevel parallel implementation [5] based on PETSc. The main goal of our app-
roach is to provide a model predicting the performance gain achievable using
the MGRIT approach instead of a timemarching integrator, independently of
wheather parallelism in the space dimension is introduced or not. The perfor-
mance model in [7], instead, aims to selecting the best parallel configuration
(i.e. how much parallelism is to be devoteted to space vs. time). Therefore,
we analyze the performance parameters of the algorithm in the mathematical
framework presented in other works by the same authors [8]. We intentionally
overlook spacial parallelism. In this way we describe the performance improve-
ment regardless of the execution time needed to implement the characteristic
function of the problem. We believe that both performance models could be
employed for the successful implementation of the MGRIT algorithm [9].

In the second section we describe the basic idea of the algorithm to be imple-
mented, summarizing the main results described in other works [3,7,10,11]. In
the third section we briefly define the tools of the performance evaluation frame-
work we need. In the fourth one we give some details about the PETSc imple-
mentation of MGRIT and write a performance model to describe the expected
performance gain, depending mainly on the number of processors, the number
of time-discretization points and of grids levels. Finally, in the last section we
introduce what we are currently working on and what are the next planned steps.

2 MGRIT Algorithm. Basic Idea

The basic idea of MGRIT comes from the two-grid formulation of the Parareal
method [11] for solving an Ordinary Differential Equation (ODE) and its dis-
cretization

ut = f(u, t), with u(0) = u0 and t ∈ [0, T ]. (1)

u(t + δt) = Φ(u(t), u(t + δt)) + g(t + δt). (2)

where Φ is a linear (or nonlinear) operator that encapsulates the chosen time
stepping solver, and g incorporates all solution independent terms. The applica-
tion of Φ is either a matrix vector multiplication, e.g. forward Euler, or a spatial
solver, e.g. backward Euler [13].

The MGRIT algorithm is detailed in several works [3,7,10,13]. Briefly, let
ti = iδt, i = 0, 1, ..., N be a discretization of [0, T ] with spacing δt = T

N (this
mesh will be called F-grid), and tj = jΔT , where j = 0, 1, ..., NΔ with NΔ = N

m
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and m > 1 (called C-grid). We rewrite the problem 2 on the F-grid, denoted as
Fine problem:

A(u) =

⎡
⎢⎢⎢⎢⎢⎣

I 0 · · · 0 0
−Φ0 I · · · 0 0

0 −Φ1 · · · 0 0
...
0 0 · · · −ΦN−1 I

⎤
⎥⎥⎥⎥⎥⎦

·

⎡
⎢⎢⎢⎣

u0

u1

...
uN

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣

g0
g1
...

gN

⎤
⎥⎥⎥⎦ = g (3)

that corresponds to a C-grid problem obtained by introducing the appropri-
ate interpolation and restriction operators P and R (see definitions in [10] and
description in [9]). Then the multigrid reduction approximates AΔ by BΔ which
is based on a new coarse propagator ΦΔ,i arising from the re-discretization of
problem 2 on the C-grid, and which is less expensive to evaluate. In this way we
have to solve the so-called Coarse problem:

BΔ =

⎡
⎢⎢⎢⎢⎢⎣

I 0 · · · 0 0
−ΦΔ,0 I · · · 0 0

0 −ΦΔ,1 · · · 0 0
...
0 0 · · · −ΦΔ,N−1 I

⎤
⎥⎥⎥⎥⎥⎦

·

⎡
⎢⎢⎢⎣

uΔ,0

uΔ,1

...
uΔ,N

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣

gΔ,0

gΔ,0

...
gΔ,0

⎤
⎥⎥⎥⎦ = gΔ (4)

Let us assume that the model equations in (1) are linear so that the Φi

are linear, and we let Φi ≡ Φ, i = 1, 2, . . . , N . Then, Parareal can be derived
as an approximate Schur-complement approach with F-relaxation (relaxation1

applied on the so-called fine points, or F-points, that are the points on the F-grid
and not also on the C-grid), i.e. a two-level multigrid method. Mainly MGRIT
algorithm extends the Parareal approach on more grids. This means that it uses
discretization, relaxation, restriction, and projection operators for each grid-
level, according to different kinds of cycles. The key difference from Parareal
relies on a new relaxation operator called the FCF-relaxation. In practice it
is the application of the F-relaxation and the C-relaxation repeated one after
another once or more times [7].

The MGRIT algorithm for solving the linear case, as detailed in [3], is listed
in Algorithm 1.

where:

– l is the current level, 0 ≤ l ≤ L and Lis the coarsest level,
– ml is the coarsening step at each level l, with m0 = 1, and δl is the discretiza-

tion time step at each level l, where δl = δl−1 · ml

– Nl is the number of time steps for each l, with N0 > N1 > ... > NL and Al

is the matrix at level l
– u(l) and g(l) are the solution and right hand side vectors at level l,

1 Relaxation meaning the solution of (3) by using an iterative method (see [12] for
details).
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Algorithm 1. MGRIT(l) - Linear MGRIT algorithm at level l

if l is the coarsest level L then
Solve the Coarse problem ALu

(L) = g(L)

else
Apply FCF-relaxation to Alu

(l) = g(l)

Compute and restrict residual using injection g(l+1) = RInj(g
(l) − Alu

(l))
Recursively call MGRIT(l + 1) to solve on next level
Correct using ideal interpolation u(l) ← u(l) + Pu(l+1)

end if

– RInj is the restriction/injection operator from a level to the coarser one and
P is the ideal interpolation (see [3]) corresponding to an injection from the
coarser level to a finer one, followed by an F-relaxation with a zero right-hand
side (see [13]).

3 Preliminary Concepts and Definitions

The increasing need for parallel and scalable software, ready to exploit the new
exascale architectures, leads to the development of many performance models,
mainly based on architecture features [19–23,26] or especially made for choosen
algorithm classes [25,27–29]. The model we present here is mainly focused on
the dependencies among the computational tasks of the algorithm and is meant
to be as general as possible.

We start by giving the definition of dependency relation on a set.

Definition 1 (Dependency relation). Let E be a set and let πE be a strict
partial order relation on E describing a dependency relation between the ele-
ments. We say that any element of E, say A, depends on another element of E,
say B, if AπEB, and we write A ← B. If A and B do not depend on each other
we write A � B.

Then, consider the set of all the computational problems Γ and any element
BN ∈ Γ where N is the input data size, called the problem size. Any BN can
always be decomposed in at least one finite set of other computational problems,
that we call decomposition of BN . Given a decomposition in k subproblems BNi

,
called Dk, and, taking into account the dependencies among the subproblems, we
build a dependency matrix MDk

where in each row we essentially put subprob-
lems independent of one another and dependent on those in the previous rows.
Let us introduce the dependency relation πDk

such that BNi
πDk

BNj
with i �= j

if and only if the solution of BNj
must be found before the one of BNi

.

Definition 2 (Dependency Matrix). Given the partially ordered set
(Dk, πDk

), the matrix MDk
, of size rDk

× cDk
, whose elements di,j, are s.t.

∀i ∈ [0, rDk
− 1] and ∀s, j ∈ [0, cDk

− 1] it is di,j � di,s and s.t. ∀i ∈
[1, rDk

− 1] ∃q ∈ [0, cDk
− 1] s.t. di,j ← di−1,q ∀j ∈ [0, cDk

− 1], while the
other elements are set equal to zero, is called the dependency matrix.
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Given Dk, cDk
is the concurrency degree of BN , and rDk

is the dependency
degree of BN , according to the actual decomposition, so that the dependency
degree measures the amount of dependencies intrinsic to the chosen decomposi-
tion. The number and size of sub-problems a problem is decomposed into deter-
mine the granularity of the decomposition. Granularity has a major consequence
in the level of detail required for an algorithm to be analysed with this approach.

The decomposition matrix allows us to identify some properties of the algo-
rithm design, such as the concurrency available in a problem when we choose
a decomposition rather than another. So the first question must be about how
to decompose the problem. That is pretty obvious, but it can lead to algorithm
characteristics that we want to emphasize and possibly exploit.

At this point we define the Scale up, using the cardinality of two decompo-
sitions.

Definition 3 (Scale Up). Let us consider the following two decomposition Dki

and Dkj
of BN , with cardinalities kj �= ki, the ratio SC(Dki

,Dkj
) := ki

kj
is called

scale-up factor of Dkj
measured with respect to Dki

.

The next step is to assign the identified subproblems to the computing
machine. First we introduce the machine MP equipped with P ≥ 1 processing
elements with specific logical-operational capabilities2 called computing opera-
tors of MP , and denoted by the function3 I[· ] : BN ∈ Γ −→ S(BN ) ∈ S where
S is the set of the solutions of all the problems in Γ and S(BN ) is the solution
of BN . Given MP , the set without repetitions CopMP

= {Ij}j∈[0,q−1], where
q ∈ N, characterizes logical-operational capabilities of the machine MP .

Definition 4 (Algorithm). Given the problem decomposition Dk, an algo-
rithm solving BN on MP , is the partially ordered set (Ak,P , πAk,P

), with not
necessarily distinct elements, where Ak,P = {Ii0 , Ii1 , ...Iik} such that Iij ∈
CopMP

and

∀BNν
∈ Dk(BN ) ∃!Iij ∈ Ak,P : Iij [BNν

] = S(BNν
). (5)

There is a bijective correspondence γ : BNν
∈ Dk ←→ Iij ∈ Ak,P . Every ordered

subset of Ak,P is called sub-algorithm of Ak,P .

By virtue of the property 5, operators of Ak,P inherit the dependencies existing
between subproblems in Dk, but not the independencies, because, for example,
two operators may depend on the availability of computing units of MP during
their executions [6].

Let ALBN
(or simply AL) be the set of algorithms that solve BN , obtained by

varying MP , P and Dk. Let us associate each algorithm of AL to a decomposi-
tion suited for MP , which means that we introduce the surjective correspondence

2 Such as basic operations (arithmetic,. . .), special functions evaluations (sin, cos, . . .),
solvers (integrals, equations system, non linear equations. . .).

3 An operator can be an algorithm itself, from a finer granularity point of view.
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ψ : Ak,P ∈ AL −→ Dk, which induces an equivalence relationship 	 of AL to
itself, such that

	(Ak,P ) = {˜Ak,P ∈ AL : ψ(˜Ak,P ) = ψ(Ak,P )}. (6)

Therefore, 	(Ak,P ) is the set of algorithms of AL associated with the same
decomposition Dk

4. Hence, 	 induces the quotient set AL
� , the elements of which

are disjoint subsets of AL determined by 	, that is they are equivalence classes
under 	. In the following we consider Ak,P as a representative of its equivalence
class in AL.

Definition 5 (Complexity). The cardinality of Ak,P is called complexity of
Ak,P . It is denoted as C(Ak,P ). That is C(Ak,P ) := card(Ak,P ) = k.

Notice that, by virtue of the property 5, it holds that

card(Ak,P ) = card(Dk(BNr
)) = k, ∀Ak,P ∈ 	(Ak,P ). (7)

and so C(Ak,P ) = k equals the number of non empty elements of MDk
(see

Definition 2). This means that each algorithm belonging to the same equivalence
class according to 	 has the same complexity. Thus an integer (the complexity) is
associated with each element 	(Ak,P ) of quotient set AL

� and induces an ordering
relation between the equivalence classes in AL

� . Therefore there is a minimum
complexity for algorithms that solve the problem BNr

.
Let us better define the order relation on the algorithm set, as a second

dependency relation πAk,P
such that Iij πAk,P

Iir with j �= r if and only if Iij

solves a subproblem dependent on the one solved by Iir , and/or the execution
of Iij needs to wait for the execution of Iir to use the same computing resource.

Definition 6 (Execution matrix). Given the partially ordered set
(Ak,P , πAk,P

), the matrix Ek,P , of size rEk,P
× cEk,P

, with5 cEk,P
= P , whose

elements ei,j, are s.t. ∀i ∈ [0, rEk,P
−1] and ∀s, j ∈ [0, P −1] it is ei,j � ei,s and

s.t. ∀i ∈ [1, rEk,P
− 1] ∃q ∈ [0, P − 1] s.t. ei,j ← ei−1,q ∀j ∈ [0, P − 1], while

the other elements are set equal to zero, is called the execution matrix.

Inside an equivalency class, the algorithm solving a problem according to
a decomposition that is executed on a machine with just one processor is a
sequential algorithm and its execution matrix has just one column, since P = 1.
In general, the execution matrix size describes the cost of the algorithm. In case
of empty spaces in the matrix, they represent the algorithm overhead.

The number of rows rEk,P
is directly related to the execution time of the

algorithm executed with that number P of processing units. Note that in order
to compare two algorithms we must ensure that they are described by the same
4 In this set the algorithms can have different value of P.
5 In general cE ≤ P , but we can exclude cases where dependencies between subprob-

lems do not allow us to use all the computing units available, i.e. in which cE < P ,
because they can easily be taken back to the case where cE = P .
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kind of operators, or with the same granularity. In particular, if all the operators
have the same execution time t, the algorithm execution time is proportional to
rEk,P

and the Speed Up can be defined for an algorithm, in its equivalency class,
as the ratio between its complexity and the number of rows. More specifically,
if Ak,P is an algorithm built according to the decomposition Dk and executed
on a machine with P processing units, we give the following definitions

Definition 7 (Execution time). The quantity T (Ak,P ) := rEk,P
· t is called

execution time of Ak,P .

Definition 8 (Speed Up). Given the algorithms Ak,P executed with P com-
puting units the ratio S(Ak,P ) := C(Ak,P )

rEk,P
is called Speed Up of Ak,P in its

equivalency class.

This rewrites the classical speed up formula, so we can say that the ideal
value is P , and we can also show that, varying P , it is limited by the concurrency
degree of the problem in the same decomposition.

Briefly, given two different decompositions Dki
and Dkj

, with kj �= ki, given
two different machines with two different number of processors P1 = 1 and
P > 1, for the two corresponding algorithms we define the General Speed Up of
the parallel one respect to the sequential one, as the product of the Scale Up
between the two decompositions and the classical speed up of the parallel one.

Definition 9 (General Speed Up). The ratio

GS(Akj ,P , Aki,1) := SC(Dki
,Dkj

) · S(Akj ,P ) =
ki

kj
· kj

rEAkj,P

=
rEAki,1

rEAkj,P

is called General Speed Up of Akj ,P respect to Aki,1.

Note that the ideal value of the General Speed Up is not limited by the number
of processing units P .

4 The PETSc Based Implementation of MGRIT
for the Linear Case

At the top of the PETSc hierarchy there are the object to solve ODEs and nonlin-
ear systems, built on other objects needed to solve linear systems. In particular,
the TS (TimeStepping) library provides a framework to solve ODEs and DAEs
arising from the discretization of time-dependent PDEs. Users shall essentially
provide the F function, the G function (if nonzero), the initial condition and the
Jacobian.

We are now developing a kind of “parallel TS”, based on MGRIT, to be
compared with the already provided sequential ones. The idea is to “simply”
solve the linear system using a linear solver with a multigrid preconditioner.

The first step of the implementation is to provide the data structure to handle
the time dimension together with the space ones, in the context of the PETSc
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DM or Distributed objects. This means (1) to provide the basic operations for
the new type, (2) to handle the coarsening factor, and (3) to provide the user
interface to the function which describes the way of operating for Φ, that is the
spacial solver, and the time discretization calls.

Everything about the coarsening of the grids along the levels, the distribution
of the points among the processes and the communications is handled by the
PETSc DA (DistributedArray) object linked to the solvers in a fully transparent
fashion. Users can tune the behavior of the solver and thus the actual structure
of the scheme through the option setting (including tolerance and initial guess
for all the operators involved) at runtime.

The second step is the implementation of F- and C-relaxations that must be
set as down and up smoothers of the multigrid scheme, tunable (even at runtime)
by the user to fit his/her own problem, according to the PETSc design. Users
will still control all the parameters and solver choices even at runtime.

4.1 The Performance Model

First, we notice that the application of Φ is the dominant task. In case of explicit
time stepping each application of Φ corresponds to a matrix-vector product,
whose execution time will be constant. In case of implicit time stepping, each
application of Φ equates itself to a system solver. Using an optimal space solver
and fixing the stopping tolerance or the number of iterations and the initial guess
choice for the spacial solver, the work required for one time step evaluation can be
considered constant across all time levels (and associated time step sizes)6 [10].

Let Φi,j be the subproblem of evaluating the function Φ at any instant uδi,j ,
with i = 0, ...L and j = 1, ...Nl, and φi,j the operator to solve it. Notice that
there is no evaluation at the first instant of each grid.

Let NFl
:= Nl − Nl+1 be the number of F-points and Nl+1 be the number of

C-points at each level l of MGRIT algorithm. The relation between the number
of F-points and C-points depends on the coarsening factor m that can be the
same for all levels or possibly different for each one. In Algorithm 1, we note
that if L is the coarsest level, and the solver of the system on the coarsest-grid
is sequential, this will involve at least one φ-execution for each time step on the
L-th grid. It means that if L is the coarsest level there are NL executions of φ.
Otherwise, for each level l < L,

– the FCF-relaxation involves NFl
F-relaxation steps (or φ-executions), which

can be performed in parallel, Nl+1 C-relaxation steps (or φ-executions), which
can be performed in parallel, F-relaxation steps (or φ-executions), which can
be performed in parallel,

– computing the residual requires one φ-execution for each time step on the
(l + 1)-th grid, that is Nl+1, which can be performed in parallel,

6 For the sake of brevity we discuss here the execution of only one V-Cycle, as described
in Algorithm 1. The number of iterations of the multigrid cycles can be considered
later.
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– the ideal interpolation requires NFl
F-relaxation steps (or φ-executions),

which can be performed in parallel.

Let us now define the dependency matrix MD (see Definition 2 in Sect. 3)
of the time-space problem to be solved, according to its decomposition in
the space subproblems Φi,j , for i = 0, . . . , L and j = 1, . . . , Np where Np ∈
{NFl

, Nl+1, NL} and where in each row we essentially put subproblems inde-
pendent of one another and dependent on those in the previous rows (the MD

matrix is well described in [9]).
The concurrency degree of the problem decomposed in this way is cD, i.e.

the maximum number of simultaneous Φ evaluations. Since NFl
> Nl+1 and

NFl
> NFl+1 , which means that the number of F-points at any level is greater

than the number of C-points at the same level and greater than the F-points at
the next level, cD = NF0 .

The dependency degree is rD = 5 ·L+NL, since, with L+1 levels, we have (1)
3 rows for each FCF-relaxation, that means 3 ·L rows, (2) 1 row for each residual
computation, that means L rows, which are the longest rows in the matrix, or
with the largest numbers of columns, (3) NL rows for the coarsest-grid solver,
(4) 1 row for each ideal interpolation (F-relaxation), that means L rows.

Consider now a computing architecture with P processing elements, where
P = cD

np (this condition states that the points on the finest grid are equally
distributed among the processors, that is cD is a multiple of P ) and np ∈ N and
P <= NL (this condition states that on the coarsest grid each processor holds
at least one point).

We can define the execution matrix EP of MGRIT (see Definition 6, in
Sect. 3), consisting of the operators φi,k·P+j , with i = 0, . . . , L and j = 1, ...P

and k = 1, . . . ,
NFl

P for F-relaxation or k = 1, . . . , Nl+1
P for C-relaxation and

residual computation, considering that, for each level, the number of points of
the grid is a multiple of P 7 (the EP matrix is well described in [9]).

Consider now the algorithm AN0,1, which solves (2) with the same discretiza-
tion in time on the finest grid (same initial guess and same tolerance) but with-
out introducing MGR or any parallelism, that means using a sequential time-
stepping approach with the same discretization techniques and parameters as
used by MGRIT on the finest grid. AN0,1 is made of N0 executions of φ, leading
to the execution matrix E1 with one column and N0 rows (the E1 matrix is well
described in [9]).

7 This is without loss of generality, as, otherwise, the number of rows is still the same
but with just some empty elements.



Performance Evaluation for a PETSc Parallel-in-Time Solver 725

We can prove the following (proof in [9]):

Theorem 1. Let us assume that MGRIT algorithm runs on a computing archi-
tecture with P <= NL processing elements, where P = N0

np and np ∈ N. Let tφ
be the execution time of φ, ∀l ∈ [0, L].
Let us say that it reaches the same accuracy as AN0,1 in ν iterations. Then
the general speed-up GS(MGRITNMGRIT ,P , AN0,1) of MGRIT with respect to
AN0,1 is

GS(MGRITNMGRIT ,P , AN0,1) =
N0

ν ·
(∑L−1

l=0

(
3 · NFl

P + 2 · Nl+1
P

)
+ NL

) (8)

5 Conclusions and Future Work

Summarizing, we introduced a mathematical framework to propose a speed-up
model for our implementation of MGRIT algorithm. It describes the impact of
several factors (i.e. the number of time steps and the number of processors)
on the dependencies among operators and thus on the algorithm performance,
regardless of the execution of φ. Any choice related to its implementation affects
the unit time tφ and/or the numerical accuracy of the results. The required
accuracy will limit one or more parameters in a way that is beyond the scope
of this paper. If Φ is nonlinear, each application becomes an iterative nonlinear
solver, whose conditioning usually depends on the time step size [13].

The main topics we are now focusing on are the following:

– definition of a memory access matrix to take into account the communications
that can significantly affect the software speed up limiting the number of
processing elements and grid levels to be used,

– parallel implementation of Φ, to handle different levels of parallelism, exploit-
ing the capabilities of heterogeneous architectures, such as multicore clusters
and GPUs, to efficiently treat the parallelism in the spacial dimension [14–17],

– validation of all the results arising from this designing approach through the
execution of the resulting software prototype on a suited set of problems.
The validation activities should provide the PETSc users with the needed
guidelines to efficiently use the new TS object to solve their problems.
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Abstract. Modern algorithms for virtual reality, machine learning or
big data find its way into more and more application fields and result in
stricter power per watt requirements. This challenges traditional homoge-
neous computing concepts and drives the development of new, heteroge-
neous architectures. One idea to attain a balance of high data throughput
and flexibility are GPU-like soft-core processors combined with general
purpose CPUs as hosts. However, the approaches proposed in recent
years are still not sufficient regarding their integration in a shared hard-
ware environment and unified software stack. The approach of the HSA
Foundation provides a complete communication definition for heteroge-
neous systems but lacks FPGA accelerator support. Our work presents a
methodology making soft-core processors HSA compliant within MPSoC
systems. This enables high level software programming and therefore
eases the accessibility of soft-core FPGA accelerators. Furthermore, the
integration effort is kept low by fully utilizing the HSA Foundation stan-
dards and toolchains.

Keywords: Heterogeneous system architecture · FPGA
Programmable accelerator · HSA foundation · Zynq ultrascale+
Nyuzi processor

1 Introduction

Modern computing applications keep growing requirements in terms of execu-
tion time and power consumption. This development can be observed for high-
performance computing, desktop environments, as well as in embedded systems.
However, the upcoming end of Moore’s law limits the prospects of traditional
CPU centered computing. In the future these requirements can only be satisfied
by increasingly heterogeneous systems. Such environments exploit the benefits of

c© Springer Nature Switzerland AG 2019
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CPUs, GPUs, DSPs and FPGAs by executing each task on the best suited. This
way heterogeneous systems can be designed combining different architectures in
order to attain the highest energy efficiency. For embedded systems this concept
can be further extended by integrating all cores on a single die.

Contrary to all benefits of heterogeneous architectures, software develop-
ment is getting more and more complex with the rising amount of different
parts. Therefore, various programming models and language extensions, like
CUDA, OpenCL or OpenMP, have been introduced to reduce the programming
complexity by abstracting architecture specific properties. Some of them also
hide data communication between different hardware units. However, most of
the existing standards are either proprietary or lack exact definitions regarding
communication from a hardware point of view. To close this gap the Heteroge-
neous System Architecture Foundation (HSA Foundation1) specified a low-level
programming model and system software infrastructure to support heteroge-
neous computing architectures [10]. This facilitates the extension of new HSA
compliant acceleration devices to existing systems without any changes to the
application source code.

HSA Foundation standards are already established in the desktop computers
from AMD and their graphics cards [3,12]. Recent embedded devices, such as
smartphones, also incorporate HSA compliant chips [14]. Unfortunately, FPGAs
which are a good choice for heterogeneous systems due to their high peak per-
formance and low power consumption, are currently not fully supported. Due
to their highly flexible nature, finding a mapping is significantly more complex
and needs to be further investigated. This means up to now, new, emerging
SoC architectures e.g. from Xilinx or Altera, which contain processor cores and
an FPGA part, could not benefit from HSA Foundation standards. This limits
the flexibility of these powerful embedded devices. Therefore, in this paper we
show a new methodology to make SoCs, containing a CPU and FPGA part,
HSA compliant. Due to the interface’s open definition between software runtime
and hardware the HSA environment is ideally suitable handling the FPGA’s
communication to other components in heterogeneous systems.

To demonstrate our concept, we chose a Xilinx SoC containing an ARM
application processor deployed as controlling host unit and a FPGA part as
hardware accelerator. Traditionally, such FPGA based hardware accelerators are
described with custom HDL code, which makes the accessibility of FPGA accel-
erators rather low. Therefore, to preserve the flexibility and to avoid language
restrictions, we use in this paper highly configurable and customizable soft-core
accelerators, to unite flexibility and pragmatism of FPGAs. Those cores enable
the execution of multiple application tasks without the need of resynthesis and
reloading, but can also be adapted for the application, e.g. by adding custom
instruction units.

This paper is structured as follows: First, competing concepts and similar
approaches are evaluated in Sect. 2. Afterwards in Sect. 3 the used hardware
platform, the necessary fundamentals of the HSA Foundation standards and

1 http://www.hsafoundation.com.

http://www.hsafoundation.com
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the architecture of the selected GPU like soft-core are explained. Then Sect. 4
describes the derived hardware setup and software toolchain. The detailed results
are presented in Sect. 5. Lastly Sect. 6 summarizes the paper and briefly covers
possibilities for future work.

2 Related Work

The most promising alternative to programmable soft-core GPUs for using an
FPGA from a common language is high-level synthesis (HLS). However, instead
of compiling to an accelerator’s instruction set architecture (ISA), the function-
ality of the kernel itself is mapped to an application-specific hardware circuit.
While in its simplest form only the kernel itself is translated to HDL [17], there
exist more sophisticated solutions generating the hardware connection as well as
software interfacing automatically. The most prominent ones are the commercial
Xilinx SDAccel [16] and the Intel FPGA SDK for OpenCL [2]. Both are based
on the vendor neutral and well known OpenCL standard to ease the usage for
developers. An academic approach to HLS was for example done by LegUp [8].
It provides FPGA accessibility via pthreads or OpenMP [9], but also tries to get
a step further by automatically determining and offloading frequently used code
sections. While this process usually leads to better results than code execution
on a soft-core processor, it has major drawbacks. Since each kernel can only
execute a specific program, the time-consuming synthesis and FPGA reconfigu-
ration has to be done anew for each kernel in the application. Therefore, a more
flexible approach based on soft-core accelerators is advantageous.

Further approaches rely on application-specific instruction set processors
(ASIP). The ISA of those cores is optimized for a certain application-field. For
example in [15] an ASIP for power quality monitoring was developed. In compar-
ison to hard-wired solutions ASIPs require a slight resource overhead and provide
slightly less performance, but offer programming flexibility without resynthesis
as big benefit. This strategy works well for processing intense tasks, but in times
of Internet-of-Things even more flexibility is necessary to realize communication
protocols like for example OPC UA or TCP/IP. Thus, a combined system-on-
a-chip architecture consisting of multiple general-purpose embedded CPU- and
accelerator cores (MPSoC) is required, to obtain a low-power solution at suf-
ficient performance and flexibility. Nevertheless, the performance enhancement
of ASIPs can only be exploited when using their rather complex instructions,
like FFT- or mean value calculations. Current compilers are incapable to map
standard source code to those specific instructions, so developers have to use
architecture-specific functions to benefit from such architectures. That practice
cumbers the flexible source-code portability from and to other architectures.

While many open source processors like LEON32, OpenRISC3, Amber ARM-
compatible core4 and various RISC-V5 implementations are available for scalar
2 http://www.gaisler.com.
3 https://openrisc.io.
4 https://opencores.org/project/amber.
5 https://riscv.org.

http://www.gaisler.com
https://openrisc.io
https://opencores.org/project/amber
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data processing, the variety for soft-core GPU architectures is more reduced.
Al-Dujaili et al. extended the mentioned LEON3 processor by adding paral-
lelization and synchronization features to support the CUDA execution model
with their Guppy GPU-like soft-core processor [1]. An other approach is pursued
by the FlexGrip project [4] and the MIAOW project [5]. The developed architec-
tures are based on proprietary Nvidia or AMD GPUs and modeled according to
available information. Due to ISA compatibility the existing vendor toolchains
can be used for code generation.

Al Kadi et al. proposed the FGPU [11] with a MIPS-based ISA, which is
extended by further vector-processing instructions to execute OpenCL kernels.
It provides hardware support for scheduling work items to multiple computing
units conveniently to the SIMT programming model and includes an LLVM-
backend. In contrast to this the Nyami [6], or later Nyuzi [7], presented by
Jeff Bush et al. uses a more general purpose architecture utilizing wide vector
registers with predicated execution vicarious to the Intel Xeon Phi architecture.
It also uses its own ISA similar to MIPS-ISA and, besides integer arithmetic,
floating point operations are supported as well. Due to the LLVM-backend many
languages providing LLVM-frontends can be translated to the processor’s ISA.

The selection of available source languages is currently quite limited for all
these approaches and there is little freedom of choice. A common low-level stan-
dard like the HSA specifications can reduce the time to develop language front-
ends and diversify the existing solutions.

3 Fundamentals

3.1 MPSoC Platform

The Xilinx Zynq UltraScale+ MPSoC integrates a quad-core ARM Cortex-
A53 MPCore based processing system (PS) and Xilinx programmable logic
(PL) in a single device [18]. The 16 nm FinFET+ PL communicates with the
PS through 6,000 interconnects that are organized into twelve 128-bit high-
performance ARM AMBA AXI4 ports each providing different capabilities. The
high-performance AXI4 ports provide access from the PL to DDR and high-
speed interconnect in the PS. The PL can be tightly or loosely coupled to the
A53 APUs via two-way coherent, I/O (one-way) coherent, or non-coherent trans-
actions. Address translation is provided by the system memory management unit
(SMMU) on select AXI4 interfaces.

3.2 HSA Specifications

In this paper we leverage the HSA Foundation standards [10] and its existing
ecosystem to improve the integrability of heterogeneous SoCs. This provides a
new level of flexibility for developers of embedded systems. The specifications
consist of three main parts:

– The Programmer’s Reference Manual defines the HSA intermediate language
(HSAIL) which abstracts the target ISA.
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– The Runtime Programmer’s Reference Manual defines the vendor neutral
hardware communication API a language runtime is expected to target.

– The Platform System Architecture Specification defines the underlying hard-
ware model which the software toolchain is targeting.

To utilize all features the HSA ecosystem provides an application developer
does not need to use any HSA specific constructs. Instead the programming lan-
guage can freely be chosen among the available HSA compiler frontends. When
the application software is compiled the compiler is expected to separate ker-
nel from host code and generate all HSA runtime API calls needed. To provide
an enhanced flexibility with regards to the actual accelerator hardware a spe-
cial virtual language is used as an intermediate representation of accelerator
kernel code.

This language is called HSAIL and has a textual form which resembles
Nvidia’s PTX. Its binary representation is BRIG. For all purposes of this paper
HSAIL and BRIG are equivalent and can be converted into each other. Similar
to CUDA and OpenCL, a separation of kernels into work-groups and work-items
is also used in this execution model. A common workflow is splitted into the two
steps. First, the source code of a supported language is compiled to HSAIL.
Afterwards, either at compile time or runtime, this intermediate code is final-
ized to the accelerator ISA. Finalization is very lightweight, because most time
consuming steps like register allocation already happened in the previous com-
pile process that produces low-level BRIG. This is possible due to the minimum
hardware requirements defined in the Platform System Architecture Specifica-
tion. With this concept the dispatch latency can be reduced compared to direct
compilation from LLVM-IR/SPIR.

A reference to these kernels in target ISA is embedded in an AQL kernel
dispatch packet. These packets have a special format and compliant hardware is
expected to be able to interpret it. Besides the actual binary all associated meta
information like the grid size are also included. To submit a job to an accelerator
core such a packet just needs to be written to a user-mode queue provided by
the device. All further processing is then in the responsibility of the hardware.

3.3 LibHSA Library

In order to logically and physically connect a programmable accelerator in the
PL to the ARM cores in the PS a connector is needed. In particular these
components must adhere to the protocol specified by the HSA Foundation. With
LibHSA the first implementation of such a system was presented by Reichenbach
et al. [13]. Its core component is a self-developed, lightweight, 64 bit CPU based
on the MIPS III ISA. It acts as an AQL packet processor and manages all
incoming tasks dispatched via the HSA runtime. After interpreting the AQL
packet, the packet processor issues the execution command described in Fig. 1
to a suitable accelerator core. As bus protocol the widespread AXI4 standard
has been incorporated to decrease the needed integration effort for new cores.
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Fig. 1. Execution command format of the packet processor to the accelerator cores.

Additionally a fixed interface of an accelerator has been defined such that cores
can be freely interchanged.

In the following LibHSA is used to connect the accelerator core to the ARM
host in an HSA compatible way. However, in the original paper they only demon-
strated a MIPS CPU in the PL as a host. An implementation for a faster and
highly energy-efficient ARM CPU has not been presented yet. Therefore, some
adaptions had to be made in this paper.

3.4 Nyuzi Vector Processor

The accelerator core used in this paper is the open source, 32 bit Nyuzi vector
processor6. It was designed by Jeff Bush for highly parallel applications [7]. The
simultanious multi threading (SMT) capable, multi-core architecture incorpo-
rates floating point and integer SIMD execution units. Its memory subsystem
consists of coherent, set associative L1 and L2 caches. All vector instructions sup-
port predication allowing individual lanes of the vector to be masked to avoid
branches for diverging program flow paths. The data communication is estab-
lished via two separate bus systems. On the one hand the IO-bus is used for
uncached peripheral small data transfers without any protocol overhead besides
access arbitration. On the other hand memory transactions with the remain-
ing system are carried out by an AXI4-full interface with 32 bit addresses and
adjustable data width.

The Nyuzi processor is parameterized and can be easily modified to contain
the desired number of cores. Moreover, the cache size, number of vector lanes,
and threads per hardware core can be also configured. To program the parallel
processor architecture of Nyuzi the project includes a complete LLVM compiler
toolchain which utilizes all of the hardware features.

6 http://nyuzi.org/.

http://nyuzi.org/
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4 Environment

4.1 Hardware Structure

The general hardware setup can be seen in Fig. 2. Compared to the setup
Reichenbach et al. proposed in [13] the accelerator cores are no longer limited to
fixed function accelerators. Now programmable soft-core architectures are also
possible. Moreover, with our extention their custom MIPS host processor can
be replaced by a high-performance ARM ASIC. Our design is the same for all
Zynq-based designs from low-cost UltraZed and Ultra96 boards to the high-end
Sidewinder-100. On the host side the ARM Cortex A-53 is used for the reasons
explained in Sect. 3.1. It dispatches all tasks which need to be accelerated to
the Nyuzi vector processor. The connection between these main components is
realized with the LibHSA library described in Sect. 3.3. It acts as middleware
between host and accelerator to provide a uniform HSA-based interface and
communication protocol. The central component is the packet processor which
manages all submitted kernels. Since the task dispatch always follows the HSA
specifications there is no difference between the instruction sets of different host
processors. This means on the software side any programming language with an
HSA backend is supported including upcoming, future backends. However, the
physical connection on the hardware level differs making adaptions necessary.

First, the way to send and receive interrupts differs between the Zynq ARM
core and MIPS host processor. While Reichenbach et al.’s custom MIPS has
dedicated pins for all needed in- and outgoing interrupts, this had to be changed
to GPIO for the ARM processor.

Secondly, in the Zynq system there is only one main DRAM memory region
where data is shared and this is accessible with the same addresses from PS
an PL. This means in contrast to a x86/PCIe setup the shared virtual memory
requirement is trivially satisfied in the Zynq MPSoC system.

Lastly, in an MPSoC system the DRAM is accessed via the Zynq IP core.
Here, cache coherency can be established with the integrated CCI-400. This
means no additional hardware units or software changes to the packet proces-
sor are needed to fulfill this requirement. However, not all accelerators (like
Nyuzi) support cache snooping via ACE, such that this property can be relaxed
if the specific application doesn’t need it. For that reason, to have both, high-
throughput DMA and (one-way) cache coherency, the AXI HPC ports were used
to access the DRAM from PL.

On the accelerator side LibHSA uses its own protocol since no requirements
are stated in the HSA specification. As explained in [13] accelerator cores can be
usually easily adapted with connector components provided by LibHSA. How-
ever, the Nyuzi vector processor additionally lacks abilities like system wide
memory barriers to make it suitable for shared, heterogeneous processing with
other hardware components. Therefore, more adaptions need to made which are
explained in the following Sect. 4.2.
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Fig. 2. Overview of the system components. The design is splitted into three main
parts. On the right hand side there is the host subsystem with ARM, DRAM and cache-
coherent interconnect. These parts are exclusively located in the PS. The accelerator
cores can be seen on the left hand side. They are part of the programmable logic and
are interchangeable at runtime. Both parts are connected via the LibHSA library in
the middle section. It ensures the HSA conformance of the accelerator cores.

4.2 Nyuzi Adapter

The Nyuzi architecture is designed to run as host processor in a computing
system, not as co-processor, offering two data bus systems and an interrupt
interface to communicate with its environment. In order to minimize the man-
agement overhead inside the compute units a dedicated hardware component,
the Nyuzi-controller, is added. This can accept AQL packets via a separate AXI-
LITE interface and can schedule work items directly on specific Nyuzi hardware
threads assigned to one core. After a thread is completed, it disables itself moni-
tored by the Nyuzi controller to schedule the next work item on the now available
thread.

Work item related information, e.g. item id or group dimensions, is also
retained for each thread in the Nyuzi controller. To avoid cache invalidations
and unwanted replacements the work item meta information is transfered over
the separate IO-bus allowing simple 32 bit read and write transactions. In the
original Nyuzi design each write or read will cause a pipeline rollback because
the IO-bus was intended to perform for slow peripheral memory accesses. To
speedup IO-bus requests the execution was pipelined into four stages according
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to a best case access scenario. Therefore, only bus conflicts will lead to pipeline
rollbacks.

The cache system is coherent over all cores but is not capable of communicat-
ing to external components. Therefore, the L2 cache was extended with global
flushing and invalidation functionality enabling HSA memory fences. The added
flush controller waits till all L1 caches have finished their write requests and
flushes all dirty cache lines afterwards. For cache invalidation all valid bits in L2
and L1 caches are cleared after flushing the L2 cache.

4.3 HSAIL/BRIG Finalization

The executed kernel functions are compiled from any supported high level lan-
guage into the HSA intermediate representation, BRIG. Due to developers pro-
viding an LLVM-backend for Nyuzi code generation the BRIG program is first
transformed into the LLVM intermediate representation (LLVM-IR). Because
of the lacking tooling support on the side of the HSA Foundation this step is
accomplished using a self written tool supporting all instructions required for
the example kernels. For better utilization of the vector register and arithmetic
the used kernels are automatically vectorized, based on kernels’ LLVM-IR for
better reusability. The basic concept is to compute 16 work item in concurrent X
dimension with one kernel call. Therefore, within the kernel the API-call return-
ing the X-id is searched and replaced with a vector of ascending, adjacent ids.
Instructions using this now vectorized id have to expand each other operand
by ether expanding the scalar value or vectorization. Using vectorized operands
transforms the instruction result into a vectorized value, which is recursively
for all instructions. Control flow divergence evoked by vectorized branch condi-
tions lead to the reorganization of the control flow graph with the addition of
executions masks for predicated instruction execution.

5 Results

The presented results are based on the hardware boards described in Sect. 4.1.
The Nyuzi accelerator is synthesized with four different configurations regarding
the amount of cores and cache sizes, two for the UltraZed board and two for the
Sidewinder-100 board. Due to the selection of benchmark programs no floating
point unit is configured in all variants. Table 1 shows the chosen configurations
combined with the required hardware resource using Vivado version 2017.2 as
synthesis toolchain. The complete FPGA resources are split into the static part,
the LibHSA environment, and the configurable part, the accelerator cores.

On the software side the host program is running bare metal on one ARM
core and starts various benchmark kernels using a reduced HSA-runtime. The
selected pure integer programs are:

– Vec Add : The simple addition of two vector with 215 values.
– Mat Mul : Multiplication of a 2048× 100 and a 100× 100 matrix.
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Table 1. FPGA resource utilization for LibHSA environment and Nyuzi-core configu-
rations on the UltraZed and Sidewinder MPSoC platforms

Platform Component LUTs [k] FFs [k] BRAM DSPs

UltraZed LibHSA Environment 8.3 (11.8%) 7.1 (5%) 8 (4%) 0 (0%)

1-Core, Cache-Sizes: 32KB-L1 256KB-L2 40.9 (58%) 24.5 (17%) 96.5 (45%) 160 (44%)

2-Cores, Cache-Sizes: 4KB-L1 16KB-L2 57.4 (81%) 33.6 (24%) 78.5 (36%) 128 (36%)

Sidewinder-100 LibHSA Environment 8.3 (1.6%) 7.0 (0.7%) 8 (0.8%) 0 (0%)

4-Cores, Cache-Sizes: 16KB-L1 128KB-L2 117 (22%) 65 (6.2%) 171 (17%) 256 (13%)

8-Cores, Cores-Sizes: 32KB-L1 256KB-L2 229 (44%) 124 (12%) 345 (35%) 512 (26%)

Table 2. Runtime comparison of different benchmark program kernels running on
different Nyuzi configurations and the ARM Cortex A53

Vec Add Mat Mul Gauss 3× 3 Gauss 5× 5 Diff of Gauss

1 Nyuzi-Cores @150 MHz 10.6 ms 15.3 s 164.4 ms 336.2 ms 588.4 ms

2 Nyuzi-Cores @100 MHz 4.83 ms 129.2 s 86.0 ms 186.7 ms 377.9 ms

4 Nyuzi-Cores @150 MHz 1.87 ms 312.5 ms 15.0 ms 28.3 ms 57.8 ms

8 Nyuzi-Cores @100 MHz 1.90 ms 90.0 ms 10.4 ms 14.2 ms 38.8 ms

– Gauss 3 × 3 : Application of a 3× 3 convolution filter to a 512× 512 image.
– Gauss 5 × 5 : Application of a 5× 5 convolution filter to a 512× 512 image.
– Diff of Gauss: This programs calculates the absolute value of the difference

of Gauss 5 × 5 and Gauss 3 × 3.

The resulting execution times for one kernel call can be seen in Table 2. Fur-
thermore, it demonstrates the achieved PL-frequencies. The time measurements
are accomplished using the ARM’s real time clock, and are averaged over 100
runs. Attention should be paid to the difference in memory access times of both
hardware platforms with the Sidewinder-100 board performing around four times
faster than the UltraZed board. The kernel execution includes the transfer from
the ARM’s cache into the Nyuzi’s cache, the actual kernel execution, and the
flushing backing into the cache system of the ARM. Therefore, primarily memory
bound kernels, like Vec Add, hardly scale with the rising amount of computing
cores. This scaling can be distinguished clearly for the three convolution filter
kernels. The unpropotional trend of execution time for the Mat Mul kernel can
be explained with the variation of the cache size matching the problem size
superiorly.

6 Conclusion

In this paper we presented a methodology to utilize highly configurable and pro-
grammable soft-core accelerators by making MPSoC systems HSA compliant.
The high flexibility regarding the front end programing language and standard-
ized communication interface substantially could improve the accessibility these
accelerators.
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We could demonstrate a HSA based heterogeneous system connecting an
ARM host CPU to the existing GPU like Nyuzi processor using software and
hardware components of LibHSA [13]. The necessary extensions to the Nyuzi
core on hardware level and the LibHSA environment were described. On the
software side a finalizer provides the conversion from intermediate BRIG code
to Nyuzi ISA.

All in all we could show that the HSA Foundation standards can reduce
the overall complexity of heterogeneous platforms, like the Zynq UltraScale+.
Moreover, the Zynq capabilities itself are well suited to implement an HSA-based
system on top of it. Furthermore, the overhead in the system introduced by the
HSA standard is only negligible. The HSA runtime API allows easy dispatching
of tasks to the accelerator cores with no knowledge of hardware specifics required.

The host code is currently running bare metal on an ARM core. In the
future an adaptation for a full Linux operating system can make it even simpler
to deploy an easily usable, heterogeneous, multi-user system on Zynq basis. In
addition, other accelerator cores could replace the currently used Nyuzi proces-
sor. Furthermore, it is conceivable to integrate LibHSA’s packet processor as a
separate ASIC in the MPSoC system and use its capabilities to bring the HSA
functionality to embedded devices without needing additional logic resources.
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Abstract. In recent years, increasing attention has been given to the
possibility of guaranteeing Service Level Objectives (SLOs) to users
about their applications, either regarding performance or power con-
sumption. SLO can be implemented for parallel applications since they
can provide many control knobs (e.g., the number of threads to use,
the clock frequency of the cores, etc.) to tune the performance and
power consumption of the application. Different from most of the exist-
ing approaches, we target sequential stream processing applications by
proposing a solution based on C++ annotations. The user specifies which
parts of the code to parallelize and what type of requirements should be
enforced on that part of the code. Our solution first automatically paral-
lelizes the annotated code and then applies self-adaptation approaches at
run-time to enforce the user-expressed objectives. We ran experiments on
different real-world applications, showing its simplicity and effectiveness.

Keywords: Parallel programming
Adaptive and autonomic computing · Power-aware computing
Domain-specific language

1 Introduction

The rich stream processing application domain motivated the creation of differ-
ent parallel programming environments/tools to speed up the computation of
data stream. In multi-core systems, this is typically exploited by using linear
or non-linear pipeline structures [15]. To this purpose, state-of-the-art frame-
work such as Streamit, TBB, and FastFlow provide different programming
approaches and interfaces with a reasonable performance scalability for this
domain [1,16,19]. Although these frameworks are equipped with high-level pat-
terns implementation to express the parallelism, they are still closer to expert
system programmers rather than to the application domain programmers. Seek-
ing to provide domain-specific and suitable abstractions for stream parallelism,
c© Springer Nature Switzerland AG 2019
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SPar was created. Different from these frameworks, application programmers are
invited to express parallelism with SPar through C++11 annotation without the
need for rewriting/restructuring the sequential source code semantics [10].

Moreover, stream processing applications usually have unpredictable load
fluctuations and uncertain end of execution (may never end) characteristics [3].
Therefore, besides the need for improving performance through the efficient
exploitation of the multi-core parallelism, there are other major concerns
such adaptive and autonomic computing, power-aware computing, and efficient
resource usage [9,13]. In this direction, Nornirwas created to be a simple inter-
face and runtime support to dynamically and automatically control the resources
allocated to the application according to the user needs [7]. However Nornir,
like most existing self-adaptive solutions, only works on parallel applications.

In this paper, we propose the use of the Service Level Objective (SLO) con-
cept [18] for sequential stream processing applications. The idea is that the
programmer annotates the code by using the SPar language, synergistically
specifying both the parallelism exploitation and the SLO. Based on the code
annotations, SPar generates a parallel code with the Nornir runtime system,
which will dynamically adapt the parallel execution to meet the SLO. We sim-
plify the SLO definition by introducing new attributes in SPar. The simplicity is
delivered by integrating SPar annotation syntax with new attributes to specify
SLO about throughput, power consumption, system utilization or a combina-
tion of these. Our approach could also be applied to REPARA project1, which
provides a set of C++11 attributes to introduce parallelism [6].

This paper is organized as follows. In Sect. 2 we analyze the related work
in this area. Then, in Sect. 3 we introduce the SPar domain-specific language
and in Sect. 4 we describe how we extended it to consider SLO. In Sect. 5 we
perform our evaluation and, eventually, in Sect. 6 we draw the conclusions, and
we outline some possible future directions for this work.

2 Related Work

In the literature, there are different studies targeting power consumption,
throughput, and system utilization objectives. Among them, the approach of
Maggio el al. [13] monitors generic applications and supports the specification
of a target performance (throughput) in the parallel code. It efficiently manages
the CPU cores, adapting the amount of resource usage needed. However, it sup-
poses that the parallel application has already been implemented, and does not
provide any mechanism to introduce SLO in sequential programs.

Concerning stream parallel processing for real-time data analytic, Floratou
et al. [9] introduced the notion of self-regulation in Twitter’s Heron framework,
called Dhalion. The user defines a target throughput as an SLO parameter for
Dhalion. The self-regulator engine handles the number of process and number
of instances in a cloud infrastructure to provide the specified throughput. In
the experiments, the results revealed that the system can dynamically adapt

1 http://repara-project.eu/.

http://repara-project.eu/
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resources and automatically reconfigure to meet SLOs. We differently proposed
three target SLOs (throughput, energy, utilization) to be expressed in sequential
source codes for multi-core systems. Our adaptive runtime uses system knobs and
applies machine learning algorithms to dynamically adapt CPU frequency and
the number of active threads to meet SLO requirements.

There are studies focusing on high-level abstractions for energy saving on
data parallelism [2,17]. They provide compiler directives for expressing energy
consumption and performance objectives in OpenMP. While Shafik et al. [17] can
minimize energy consumption on both sequential and parallel applications, they
do not provide any means to explicitly control the performance of the appli-
cation. On the other hand, in Alessi et al. [2], OpenMPE is proposed adding
a new construct and two clauses (objectives) for OpenMP. Their solution was
implemented using a source-to-source compiler, which recognizes the new direc-
tives and control the number of threads used by OpenMP and applies DVFS
to satisfy the SLOs expressed by the user. This is probably the closest work to
the approach we are proposing in this work. The main difference is that, while
Alessi et al. [2] targets batch applications (i.e. applications for which all the
input data is already available in memory) implemented through OpenMP, we
provide support for stream processing applications, exposing ad-hoc SLOs for
these applications such as system utilization.

3 SPar: High-Level Stream Parallelism

SPar2 is an internal Domain-Specific Language (DSL) designed to support high-
level stream parallelism for application programmers [10]. With SPar, instead of
rewriting the source code, the programmer introduces C++ annotations (stan-
dard C++-11 [14]) using five attributes, representing the main properties of
stream processing applications. The ToStream attribute identifies the beginning
of a stream region, which can be viewed as an assembly line. The Stage attribute
marks a stage in the assembly line and as many as necessary can be declared.
Auxiliary attributes can be used inside the attribute list of an annotation sen-
tence. The Input and Output respectively attributes are used to specify the input

1 [ [ spar : :ToStream ] ] while (1 ) {
2 frame f = read frame ( ) ;
3 i f ( f . empty ( ) ) break ;
4 [ [ spar : : Stage , spar : : Input ( f ) , spar : :

Output( f ) , spar : : Replicate (n) ] ]
5 for ( int i =0; i<f . l ength ( ) ; i++) {
6 f [ i ] = convert ( f [ i ] ) ;
7 }
8 [ [ spar : : Stage , spar : : Input ( f ) ] ] {
9 wr i t e f rame ( f ) ;

10 }
11 }

Listing 1.1. SPar code example. Fig. 1. Parallel activity graph.

2 SPar website: https://gmap.pucrs.br/spar.

https://gmap.pucrs.br/spar
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and output stream items, while the Replicate attribute is used for replicating
stateless stages to increase the degree of parallelism.

Listing 1.1 provides a short code example annotated with SPar attributes.
This example represents a typical use case of stream parallelism, where there is
a sequence of operations to be performed on each stream element. The parallel
activity graph produced by the SPar compiler for Listing 1.1 is shown in Fig. 1.
SPar generates the parallel code with the FastFlow library [1], which implements
different parallel patterns [15] for stream processing computations. SPar compiler
parses the code of Listing 1.1 and represents the code with an Abstract Syntax
Tree (AST) [10]. Traversing the AST, it performs a semantic analysis of the
attributes to further make the source-to-source transformation. In this step,
SPar compiler finds the best parallel pattern that meets the parsed annotation
schema. In the case of Listing 1.1, it will generate parallel code with three stages
where one of them have replicated instances. There will be situations where there
will be different compositions of stages and replicated instances. By default,
elements are scheduled from the ToStream stage to the Stage.x stages in a
round-robin way. However, it is possible to use an on-demand policy by specifying
the -spar ondemand flag to the SPar compiler. If the data needs to be received
from the last stage in the same order it was produced by the ToStream stage,
the programmer can specify the -spar ordered flag to the SPar compiler.

4 Service Level Objective for Stream Parallelism

Service Level Objectives (SLOs) are traditionally included in Service Level
Agreements (SLAs), which are contracts to manage the quality of service deliv-
ered by or received by a provider [18]. An SLA contract defines the accept-
able levels of service by user and attainable levels of service by a provider.
The SLO is a target value or a range of values for a certain level of ser-
vice to be delivered and the level of service is measured by a Service Level
Indicator (SLI). A typical structure of SLO can be written SLI ≤ target or
lower bound ≤ SLI ≤ upper bound [4]. When an SLO is violated, the sys-
tem will autonomously react to guarantee the quality of service and SLA. Our
design goal is to simplify the usability of SLO for stream parallel applications,
on top of an existing parallel programming tool. Since SPar already provides
high-level parallel programming abstractions and allows us to extend its anno-
tations, we made our proof of concept on top of it. We will concentrate for the
moment on three different SLOs (throughput, power, and utilization), which can
be expressed by using standard C++11 attributes that will be described in the
following section.

4.1 Attributes

The proposed attributes have to be used along with a ToStream annotation,
which identifies the beginning of a stream parallelism region, so that the SLO
is applied to this particular region. Listing 1.2 presents how the code looks
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like when expressing a power consumption SLO of 60 w. It is worth noting
that, beside the slo::Power attribute, no other modification is required with
respect to the original SPar code (Listing 1.1). The following list enumerates the
attributes we added to SPar in this work, to support SLOs.

1 [ [ spar : :ToStream , s lo : :Power(60) ] ] while
(1 ) {

2 frame f = read frame ( ) ;
3 i f ( f . empty ( ) ) break ;
4 [ [ spar : : Stage , spar : : Input ( f ) , spar : :

Output( f ) , spar : : Replicate (n) ] ]
5 for ( int i =0; i<f . l ength ( ) ; i++) {
6 f [ i ] = convert ( f [ i ] ) ;
7 }
8 [ [ spar : : Stage , spar : : Input ( f ) ] ] {
9 wr i t e f rame ( f ) ;

10 }
11 }
Listing 1.2. SPar code example with power
consumption SLO.

Fig. 2. Parallel activity graph
with self-adaptation support.

slo::Power(<max-watts>) is the attribute used to specify the power consump-
tion SLO. The user can specify the maximum power consumption in Watts. If
no other attributes are specified, Nornirwill implicitly find the configuration
with the highest throughput among those with a power consumption lower than
<max-watts>.

slo::Throughput(<min-items/second>) is the attribute used to specify the
application throughput SLO. The user can specify the minimum throughput
required in items per second. If a power consumption SLO is not explicitly set,
Nornirwill implicitly find the configuration with the lowest power consumption
among those with a throughput greater than <min-items/second>.

slo::Utilization(min-percentage) is the attribute used to specify the appli-
cation utilization SLO. The user can specify the minimum utilization required
in percentage. Utilization represents the percentage of time that the system is
active (i.e. actively processing input elements) over a time interval. Having a low
utilization is often associated to a low power efficiency, since resources may be
active but performing useless activities (i.e. actively waiting for new elements
to be processed). If a power consumption SLO is not explicitly set, Nornirwill
implicitly find the configuration with the lowest power consumption among those
with a greater utilization number than <min-percentage>.

4.2 Implementation and Self-adaptation Support with Nornir

In the SPar compiler, we registered the new SLO attributes and performed the
semantic analysis traversing the source code AST. Since the SLO attributes
belong only to the ToStream attribute list, we stored it along with the SPar
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AST [10]. In the source-to-source code transformation, we generate the same par-
allel patterns originally designed. However, we check if there is an SLO attribute
to generate code with Nornir in the situations where SPar annotation generates
a stage with replicated instances.

To provide the specified SLO, we couple a self-adaptive runtime to the activ-
ity graph (Fig. 2). In this work, we rely on the Nornir self-adaptive runtime
support [7]. Nornirmonitors the application throughout its entire execution,
dynamically changing the number of resources used by the application to sat-
isfy the requirements expressed by the user. For example, Nornirmay decide
to reduce the number of replicated stages of the application to decrease its
power consumption, or to increase the clock frequency of the cores to increase
its throughput3. Nornir can rely on different algorithms to decide how many
resources to add/remove, either based on machine learning techniques [8] or
on heuristics. In both cases, when the application starts, Nornir spends some
time in collecting data about the application in different configurations. These
data are used to build prediction models which will be used to find the opti-
mal configuration according to the objectives specified by the user. If no feasible
solutions are found, Nornirwill select the configuration with performance and
power consumption closest to the user requirements. More information about
this algorithm can be found in [8].

Besides providing the possibility to control existing parallel applications (by
inserting instrumentation calls in the existing code), Nornir can also be used as
a programming framework (by relying on the FastFlow framework) for imple-
menting stream-parallel applications with an embedded self-adaptation support.
In this work, we exploited this second possibility, so that SPar can translate
sequentially annotated code into self-adaptive Nornirparallel code.

While the integration with SPar allows to use Nornir in a simple and trans-
parent way, it is worth noting that Nornir could also be used on other frame-
works different from SPar.

5 Experiments

In this section, we evaluate our approach over some real-world applications. We
will first introduce the considered applications. Then, we will compare the code
generated by SPar with some handwritten parallel implementations, both regard-
ing maximum performance achieved and in terms of productivity. Eventually, we
will analyze the self-adaptation capabilities of our solution under different sce-
narios.

All the experiments have been executed on a dual-socket NUMA machine
with two Intel Xeon E5-2695 Ivy Bridge CPUs running at 2.40 GHz featuring
24 cores (12 per socket). The machine exposes 13 frequency levels, ranging from
1.2 GHz to 2.4 GHz, at steps of 0.1 GHz. Each core has 2-way hyperthreading,
3 Since the number of replicas is dynamically changed during the execution, the num-

ber of replicas specified with the spar::Replicate attribute now represents the
maximum number of replicas that can be active at any time.
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32 KB private L1, 256 KB private L2 and 30 MB of L3 shared with the cores
on the same socket. The machine has 64 GB of DDR3 RAM. We used Linux
3.14.49× 86 64 shipped with CentOS 7.1 and gcc version 4.8.5. For all our
experiments we disabled the hyper-threading feature.

5.1 Applications

In this section, we briefly describe the real-world application set, input loads,
and parallel implementations. For a detailed description of how Lane Detection
and Person Recognition have been parallelized by using SPar please refer to [12],
while for Pbzip2 more details can be found in [11].

Lane Detection is a video processing application to detect road lanes, imple-
mented by using the OpenCV library. To introduce parallelism in the sequential
code, we annotated it with SPar by identifying three stages: (i) a first stage
which reads the frames; (ii) another stage, replicated a number of times, which
processes the frames in parallel; (iii) a last stage which displays the frames in
the proper order, with the lanes properly marked. As input workload, we used
a 22 MB MPEG-4 video (640× 360 pixels).

Person Recognition is an application used to recognize people in a video. The
parallel structure of this application is similar to Lane Detection, with the middle
stage detecting the faces from the crowd and searching in an image database to
classify each face detected. As input workload, we used a 4.8 MB MPEG-4 video
(640× 360 pixels) along with a training set of 10 face images of 150× 150 pixels.

Pbzip application is a parallel implementation of the bzip2 block-sorting files
compressor4. This is a very coarse grained application characterized by a stream
parallel programming model. We annotated the SPar version with three stages,
where the middle stage is replicated. The input compressed file used for our
experiments has 6.3 GB containing a dump of all abstracts present in the English
Wikipedia extracted on 01/12/2015.

5.2 Comparison with Handwritten Implementations

Before evaluating the ability to satisfy SLO specified by the user we want to prove
that, from a performance standpoint, the code generated by SPar is comparable
with a handwritten implementation. On the other hand, we would like to show
that our solution reduces the code intrusion required to transform a sequential
application into a parallel one. As reference implementations for Pbzip we con-
sider the original Pthreads version, while for Lane Detection and Person Recog-
nition applications we consider the handwritten FastFlow versions described
in [12].

4 http://compression.ca/pbzip2/.

http://compression.ca/pbzip2/
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Performance. To measure the maximum performance, we executed both the
reference and our solution generated versions by running them with 24 threads
(to have at most one thread per core). For our generated version, we did not
specify any SLO, but we still monitor the application by using Nornir. By doing
so, we monitor both the overhead introduced by the interaction with the self-
adaptive support and possible inefficiencies in the generated code. As shown by
the results in Table 1, for Lane Detection and Person Recognition, the overhead
is negligible (below 1.5%). For Pbzip2, there is a slight improvement caused by
the use of FastFlow as runtime support, while the reference implementation
was based on Pthreads.

Table 1. Performance improvement with respect to a handwritten implementation.
Negative values mean that SPar version is slower than the handwritten one. For LOC
Reduction, negative values mean that SPar version is more concise than the handwrit-
ten one.

Pbzip2 Lane detection Person recognition

Performance improvement (%) +0.48% −1.45% −0.92%

LOC reduction (%) −15.86% −21.51% −24.49%

Code Intrusion. To measure the code intrusion, we rely on Lines of Code (LOC)
metric. Despite that LOC is not universally accepted, it is commonly used to
compare different implementations of the same application [20]. For our mea-
surements, we only considered the source files containing the code relevant for
the parallelization. In all the cases, parallelizing an application by using SPar
requires a lower code intrusion with respect to Pthreads or FastFlow [10,11],
since it usually only requires introducing some annotations in the already exist-
ing sequential code. Also, the SLOs attributes requires minimal effort.

5.3 Self-adaptation Analysis

To analyze the self-adaptation capabilities of the parallel code automatically
generated by our solution, we first require the application to have a greater
throughput number than the sequential version while minimizing the power con-
sumption.

Table 2. Power consumption reduction obtained by a parallel application with the
same throughput of the sequential one.

Pbzip2 Lane detection Person recognition

Power consumption reduction (%) −9.43% −10.37% −7.39%

The target of this first experiment is to prove that parallelization is not only
useful for improving the performance of an application, but it can also be used
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to reduce its power consumption. In a nutshell, we want to prove that a parallel
application with the same performance of the sequential one has lower power
consumption. We show the results of this test in Table 2.

The interpretation we would like to give to these results is that, even if the
performance of a sequential application is satisfactory, parallelizing it may still be
useful for reducing its power consumption. This effect occurs since by increasing
the number of replicas (and thus the number of cores used by the application),
we can reduce the clock frequency while keeping the same performance. Since
the power consumption increases linearly with the number of cores but more
than quadratically with the clock frequency [5], running an application on more
cores at a lower frequency is usually more energy efficient than running it on
fewer cores at a higher frequency. Having tools and methodologies for doing
that automatically and with low code intrusion, like those we are describing in
this work is of paramount importance for enabling such techniques in real-world
scenarios.
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Fig. 3. Person recognition application with slo::Throughput(7) and slo::Power(75).

We now analyze the time behavior of different applications for different types
of SLO. In Fig. 3, we show how throughput and power change in time when the
user requires a greater throughput number than 7 frames per seconds and a power
consumption lower than 75 w for the Person Recognition application. In the first
40 s of the execution, our runtime changes the configuration a few times to collect
some data which will then be used to predict the best configuration according to
the user requirements. This behaviour depends from the specific algorithm we
used in Nornir and other algorithms, which avoid such fluctuations could be
used as well. Around 390 s from the beginning, the application enters a different
phase of its execution, and our runtime needs to update the prediction models by
collecting new data. This different phase impacts in the throughput and power
consumption fluctuations, occurring around 400 s from the beginning.

In Fig. 4 we analyze a different scenario, where the user requires a greater
throughput number than 20 blocks per second and power consumption lower
than 65 W for the Pbzip application. In this test, we add some external noise
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to show that our runtime succeeds in providing the required SLO even in the
presence of unexpected behaviors. In particular, besides the usual calibration
done in the first seconds of execution, after 50 s from the start of Pbzip, we start
another application on the same machine. Since the two applications share some
resources (i.e., cores, memory, among others), the throughput of Pbzip2 starts
to decrease. In response to this issue, our runtime recomputes the prediction
models, now considering the presence of external interference. As a consequence,
as we can see from the bottom part of Fig. 4, our runtime increases the number of
replicas of the middle stage from 12 to 14. When the other interfering application
terminates (around 120 s from the start of Pbzip2 ), our runtime recomputes the
models and decreases the number of replicas from 14 to 13. As we can see from
the two upper parts of the figure, our runtime satisfies the user requirements
throughout the entire execution (excepts for the phases where the models are
computed), independently from the presence of other applications running on
the system.
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Fig. 4. Pbzip2 application with slo::Throughput(20) and slo::Power(65).

In the last experiment, which we report in Fig. 5, we analyze the Lane Detec-
tion application, in a scenario where it produces no more than 50 frames per
seconds. In such case, using all the available resources could be inefficient, since
they could be idle for most of the time. To avoid such scenario, we set a utiliza-
tion SLO of 80%. In the upper part of Fig. 5, we report the utilization when an
SLO is specified and when it is not specified. In the bottom part, we report the
power consumption. As shown by the result when an SLO is not specified, the
utilization would be around 20%. This utilization means that the threads of the
application would spend 80% of the time waiting for new frames to arrive. By
requiring a minimum utilization of 80%, our runtime decreases the number of
resources allocated to the application, decreasing the power consumption from
90 W to 55 W. This event occurs without decreasing the overall performance of
the application. Indeed, the threads still spend some time waiting for new data,
but it is reduced from 80% to 5% (the utilization is around 95%).
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Fig. 5. Lane detection application with slo::Utilization(80).

6 Conclusions and Future Work

In this paper we provided the possibility to express SLO on the sequential code,
using automatic parallelization and self-adaptation of resources such as the num-
ber of replicas (and, consequently, the number of cores) and clock frequency.
We described how we extended the SPar source-to-source compiler to support
different types of SLO and we performed an experimental evaluation showing
the effectiveness of our approach. The results demonstrated that by using self-
adaptation, under certain conditions, we reduced the power consumption up to
42%. Also, we reduced the power consumption by 9.06% while not decreasing
the performance with respect to the sequential version. Lines of code are reduced
20% in average with respect to a handwritten implementation, which shows the
simplicity of our solution. As a future work, we intend to consider other types of
SLO such as execution time and energy consumption (i.e., integral of power con-
sumption over time). Moreover, we would like to extend our work by considering
more applications and different or more heterogeneous workloads.
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Abstract. Existing programming models tend to tightly interleave
algorithm and optimization in HPC simulation codes. This requires scien-
tists to become experts in both the simulated domain and the optimiza-
tion process and makes the code difficult to maintain and port to new
architectures. This paper proposes the InKS programming model that
decouples these two concerns with distinct languages for each. The sim-
ulation algorithm is expressed in the InKSpia language with no concern
for machine-specific optimizations. Optimizations are expressed using
both a family of dedicated optimizations DSLs (InKSO) and plain C++.
InKSO relies on the InKSpia source to assist developers with common
optimizations while C++ is used for less common ones. Our evaluation
demonstrates the soundness of the approach by using it on synthetic
benchmarks and the Vlasov-Poisson equation. It shows that InKS offers
separation of concerns at no performance cost.

Keywords: Programming model · Separation of concerns
HPC · DSL

1 Introduction

It is more and more common to identify simulation as the third pillar of
science together with theory and experimentation. Parallel computers provide
the computing power required by the more demanding of these simulations. The
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complexity and heterogeneity of these architectures do however force scientists
to write complex code (using vectorization, parallelization, accelerator specific
languages, etc.) These optimizations heavily depend on the target machine and
the whole code has to be adapted whenever it is ported to a new architecture.

As a result, scientists have to become experts in the art of computer opti-
mizations in addition to their own domain of expertise. It is very difficult in
practice to maintain a code targeting multiple distinct architectures. One fun-
damental cause for this situation is the tight interleaving of two distinct concerns
imposed by most programming models. On the one hand, the algorithm comes
from the expertise of the domain scientist and does not depend on the target
architecture. On the other hand, optimization is the expertise of optimization
specialists and has to be adapted for every new architecture.

Many approaches have been proposed to improve this situation in the form of
libraries or languages. Approaches based on automated optimization processes
typically isolate the algorithmic aspects very well but restrict their domain of
applicability and/or the range of supported optimizations. Approaches based
on optimization tools and libraries enable optimization specialists to express
common optimizations very efficiently but leave others mixed with the algorithm.

In this paper, we propose the Independent Kernel Scheduling (InKS) pro-
gramming model to separate algorithm from optimization choices in HPC sim-
ulation codes. We define the InKSpia language used to express the algorithm of
an application independently of its optimization. Such a program can be opti-
mized with the InKSO family of domain-specific languages (DSLs) for common
optimizations or C++ for less common optimizations.

This paper makes the following contributions: (1) it defines the InKS pro-
gramming model and its platform-independent algorithmic language InKSpia; (2)
it proposes an implementation of InKS with two optimization DSLs, InKSO/Loop
and InKSO/XMP; and (3) it evaluates the approach on the synthetic NAS paral-
lel benchmarks [3] and on the 6D Vlasov-Poisson solving with a semi-Lagrangian
method.

The remaining of the paper is organized as follows. Section 2 presents and
analyzes related work. Section 3 describes the InKS programming model and
its implementation. Section 4 presents the 6D Vlasov-Poisson problem and its
implementation using InKS while Sect. 5 evaluates the approach. Finally, Sect. 6
concludes the paper and identifies some perspectives.

2 Related Works

Many approaches are used to implement optimized scientific simulations. A first
widely used approach is based on imperative languages such as Fortran, C or
C++. Libraries like MPI extend this to distributed memory with message pass-
ing. Abstractions very close to the actual execution machine make fine-tuning
possible to achieve good performance on any specific architecture. It does how-
ever require encoding complex optimizations directly in the code. As there is no
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language support to separate the algorithm and architecture-specific optimiza-
tions, tedious efforts have to be applied [10] to support performance portability.
Algorithm and optimizations are instead often tightly bound together in codes.

A second approach is thus offered by tools (libraries, frameworks or language
extensions) that encode classical optimizations. OpenMP [5] or Kokkos [4] sup-
port common shared-memory parallelization patterns. E.g, Kokkos offers multi-
dimensional arrays and iterators for which efficient memory mappings and iter-
ation orders are selected independently. E.g, UPC [8] or XMP [14] support the
partitioned global address space paradigm. In XMP, directives describe array dis-
tribution and communications between nodes. These tools offer gains of produc-
tivity when the optimization patterns they offer fit the requirements. The separa-
tion of optimizations from the main code base also eases porting between archi-
tectures. Even if expressed more compactly optimizations do however remain
mixed with the algorithm and only cover part of the requirements.

A third approach pushes this further with tools that automate the optimiza-
tion process. For example, PaRSEC [11] or StarPU [1] support the many-tasks
paradigm. In StarPU, the user expresses its code as a DAG of tasks with data
dependencies that is automatically scheduled at runtime depending on the avail-
able resources. Another examples are SkeTo [18] or Lift [16] that offer algorithmic
skeletons. Lift offers a limited set of parallel patterns whose combinations are
automatically transformed by an optimizing compiler. Automating optimization
improves productivity and clearly separate these optimizations which improves
portability. The tools do however not cover the whole range of potential opti-
mizations such as the choice of work granularity inside tasks. The algorithm
remains largely interleaved with optimization choices even with this approach.

A last approach is based on DSLs that restrict optimizations, such as Pochoir
[17] or PATUS [6], DSLs for stencil problems. In Pochoir, the user only specifies
a stencil (computation kernel and access pattern), boundary conditions and a
space-time domain while all optimizations are handled by a compiler. DSLs
restrict the developer to the expression of the algorithm only, while optimizations
are handled independently. This ensures a very good separation of these aspects.
The narrower the target domain is, the more efficient domain and architecture-
specific optimizations are possible. However, it makes it less likely for the tool
to cover the needs of a whole application. Real-world applications can fall at
the frontier between the domains of distinct DSLs or not be covered by a single
one. Performance then depends on the choice of DSLs to use and the best choice
depends on the target architecture leading to new portability issues.

To summarize, one can consider a continuum of approaches from very gen-
eral approaches where the optimization process is manual to more and more
domain specific where the optimization process can be automated. The more gen-
eral approaches support a large range of optimizations and application domains
but yield high implementation costs and low separation of concerns and porta-
bility. The more automated approaches reduce implementation costs and offer
good separation of concerns and portability but restrain the range of supported
domains and optimizations. Ideally, one would like to combine all these advan-
tages: (1) the domain generality of imperative languages, (2) the ease of opti-
mization offered by dedicated tools and (3) the separation of concerns and
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performance portability offered by DSLs. The following section describes the
InKS programming model that aims to combine these approaches to offer such a
solution.

3 The InKS Programming Model

This section describes the core of our contribution, the InKS programming
model. This approach is based on the use of distinct languages to express algo-
rithm and optimization choices; thus enforcing their separation. The algorithm
of the simulation consists in the set of values computed, the formula used to pro-
duce each of them as well as the simulation inputs and outputs. We include in
optimization choices all that is not the algorithm, such as the choice of a comput-
ing unit for each computation, their ordering, the choice of a location in memory
for each value, etc. Multiple optimization choices can differ in performance but
simulation results depend on the algorithm only.

Fig. 1. The InKS model

The InKS approach is summarized in
Fig. 1. The InKSpia language is used to
express the algorithm with no concern for
optimization choices. A compiler gener-
ates non-optimized, generic choices auto-
matically from this specification for test
purposes. The InKSO family of DSLs is
used to define common optimizations effi-
ciently while C++ is used to describe
arbitrarily complex optimizations. Many
versions of the optimization choices can
be devised to optimize for multiple tar-
gets.

The remaining of the section describes
InKSpia and proposes two prelimi-
nary InKSO DSLs. InKSO/XMP han-
dles domain decomposition and inter-
node communications while InKSO/Loop
focuses on efficient loops.
The InKSpia language. In InKSpia [2]
(illustrated in Listing 1), values are stored in infinite multidimensional arrays
based on dynamic single assignment (DSA, each coordinate can only be written
once). Memory placement of each coordinate is left unspecified. Computations
are specified by kernel procedures that (1) take as parameters data arrays and
integer coordinates; (2) specify the coordinate they might read and will write
in each array; and (3) define either a C++ or InKS implementation. An InKS
implementation defines kernels validity domains: coordinates where C++ ker-
nels can generate values in arrays. Kernel execution order is left unspecified. The
simulation entry point is a kernel marked public. This specifies a parameterized
task graph (PTG) [7]. This representation covers a large range of problems but
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imposes a few limitations. Mostly, all the problem parameters must be known
at launch time, it does for example not support adaptive mesh or time-steps.
It is still possible to express these concerns outside InKSpia and call the InKS
implementation multiple times with different parameters.

The InKSpia compiler [2] extracts C++ functions from InKSpia kernels and
generates a function with correct but non-optimized loops and memory alloca-
tions to execute them. Arbitrarily complex versions of these can also be written
manually in plain C++ and rely on existing optimization tools. These functions
can be called from any existing code whose language supports the C calling con-
vention. However, that approach requires information present in InKSpia to be
repeated. The InKSO DSLs thus interface optimization tools with InKSpia.

1 kernel stencil3(x, t): ( double A(2) {in: (x-1:x+1, t) | out: (x, t+1)} )
2 #CODE(C) A(x, t+1) = 0.5*A(x, t-1) + 0.25*(A(x-1, t-1)+A(x+1, t-1)); #END
3 public kernel inks_stencil(DIM_X, N_ITER):
4 ( double A_decl(2) {in: (0:DIM_X, 0) | out: (1:DIM_X-1, N_ITER-1)} )
5 #CODE(INKS) stencil3(1:DIM_X-1, 1:N_ITER-1):(A_decl) #END

Listing 1: 1D stencil computation on a 2D domain in InKSpia

1 #pragma xmp nodes p6d[pV3][pV2][pV1][pZ][pY][pX]
2 #pragma inks decompose dynamic % f6d // dynamic allocation of f6d algorithmic array
3 (8:, 7:, 6, 5, 4, 3, 2, 1) // dimension reordering, dim 7 & 8 are folded
4 with t6d onto p6d // block decomposition mapped on the XMP topology
5 // Dynamic halo exchange on the 4th dimension, halo sizes are computed automatically
6 #pragma inks exchange periodic f6d(4, advection4) to R and L
7 /*R and L are now allocated buffers and contain the halo values: */ foo(R, L);

Listing 2: 6D decomposition and dynamic halo exchange in InKSO/XMP

1 double (f6d*)[][][][][]; // need to declare f6d global, valid in xmp
2 #pragma xmp nodes p6d[pV3][pV2][pV1][pZ][pY][pX] // xmp 6d cartesian node topology
3 #pragma xmp template t6d[:][:][:][:][:][:] // xmp 6d logical array
4 #pragma xmp distribute t6d [block][block][block][block][block][block] onto p6d
5 // map element of f6d to element of t6d
6 #pragma xmp align f6d[n][m][l][k][j][i] with t6d[n][m][l][k][j][i]
7 #pragma xmp template_fix t6d[N][M][L][K][J][I]
8 f6d = (double(*)[M][L][K][J][I]) xmp_malloc(xmp_desc_of(f6d), N, M, L, K, J, I);

Listing 3: XMP code generated for the f6D decomposition of Listing 2

The InKSO/XMP Optimization Language. InKSO/XMP (illustrated in Listing 2)
handles distributed memory domain decomposition by combining C and direc-
tives based on XMP and adapted for InKS. The compiler replaces these direc-
tives by C and XMP code (Listing 3). The inks decompose directive supports
static or dynamic allocation of arrays from the algorithm. The domain size is
extracted from InKSpia source and the user only has to specify its mapping onto
memory. As in XMP, InKSO/XMP supports domain decomposition mapped onto
an XMP topology. In addition, it supports dimension reordering and folding
which consists in reusing the same memory address for subsequent indices in a
given dimension. This feature is important to reuse memory due to the DSA
nature of InKSpia arrays. The exchange directive supports halo exchanges. The
required halo size is automatically extracted from the algorithm and the user
only has to specify when to execute the communications and in what dimension.
While XMP requires halo values to be stored contiguously with the domain,
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InKSO/XMP support a dynamic halo extension where halo values are stored in
dedicated, dynamically allocated buffers to reduce memory footprint.

1 /*** advec.iks InKSpia algorithmic file ***/
2 kernel advection3 (i, j, k, l, m, n, t, K, step) : (
3 double f6d { in: (i, j, 0:K, l, m, n, t, step-1) | out: (i, j, k, l, m, n, t, step) },
4 int disp {in: (n)}, double coef {in: (n, 0:4)} )
5 #CODE (C) /* ... */ #END
6
7 public kernel main_code(t, I, J, K, L, M, N, Niter): ( double coef(2), int disp(1)
8 double f6d(6) { in: (i, j, 0:K, l, m, n, t, step-1) | out: (i, j, k, l, m, n, t,

step) } )
9 #CODE(INKS)

10 /* ... */
11 advection3 (0:I, 0:J, 0:K, 0:L, 0:M, 0:N, 1:Niter, K, 2) : (f6d, disp, coef)
12 /* ... */
13 #END
14
15 /*** advec.iloop InKSo/Loop optimization choices file ***/
16 loop advection3_loops(t, I, J, K, L, M, N, Niter) : advection3 { // set "t" value
17 // "Set" not specified -> loop bounds are computed, with a fixed "t"
18 Order: n, m, l, j, i, k; // order of the loop
19 Block: 16; // blocking on the inner dimension k
20 Buffer: f6d(3); } // copy the third dimension of f6d to a 1d buffer

Listing 4: A loop nest in InKSpia optimized in InKSO/Loop

1 /* for all N, M, L, J, do */ for (int i=0; i<I; i+=blockSize){
2 for(int ci=-halo_size; ci<0; ++ci) /*Copy to buffer*/
3 for(int ii=0; ii<blockSize; ++ii) buff.buff_in[...] = left[...];
4 for(int ci=0; ci<K; ++ci)
5 for(int ii=0; ii<blockSize; ++ii) buff.buff_in[...] = f6d[...];
6 for(int ci=sizeK; ci<sizeK+halo_size; ++ci)
7 for(int ii=0; ii<blockSize; ++ii) buff.buff_in[...] = right[...];
8 for(int idb=0; idb<size_block; ++idb) /*Computation*/
9 for(int k=0; k<K; ++k) advection3(buff, idb+i, j, k, l, m, n);

10 for(int ci=0; ci<K; ++ci) /*Copy to f6d*/
11 for(int ii=0; ii<block_size; ++ii) f6d[...] = buff.buff_out[...];}

Listing 5: C++ code generated for the loop nest of Listing 4

The InKSO/Loop Optimization Language. InKSO/Loop (illustrated in Listing 4)
offers to specify manually loop nests for which the compiler generates plain C++
loops (Listing 5). Plain C++ is usable with InKSO/Loop. The loop keyword
introduces a nest optimization with a name, the list of parameters from the
algorithm on which the loop bounds depend and a reference to the optimized
kernel. Loop bounds can be automatically extracted from InKSpia, but the Set
keyword makes it possible to restrict these bounds. The Order keyword specifies
the iteration order on the dimensions and the Block keyword enables the user
to implement blocking. It takes as parameters the size of block for the loops
starting from the innermost one. If there are less block sizes than loops, the
remaining loops are not blocked. The Buffer keyword supports copying data in
a local buffer before computation and back after to ensure data continuity and
improve vectorization. The compiler uses data dependencies from the algorithm
to check the validity of the loops order and generate vectorization directives
where possible.
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4 The 6D Vlasov/Poisson Problem

The 6D Vlasov-Poisson equation, presented in (1), describes the movement of
particles in a plasma and the resulting electric field. We study its resolution for
a single species on a 6D Cartesian mesh with periodic boundary conditions. We
solve the Poisson part using a fast Fourier transform (FFT) and rely on a Strang
splitting (order 2 in time) for the Vlasov part. This leads to 6 1D advections: 3
in the space dimensions (x1, x2, x3) and 3 in the velocity dimensions (v1, v2, v3).
Each 1D advection relies on a Lagrange interpolation of degree 4. In the space
dimensions, we use a semi-Lagrangian approach where the stencil is not applied
around the destination point but at the foot of characteristics, a coordinate
known at runtime only. This is described in more details in [15].

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

∂f(t, x, v)
∂t

+ v.∇xf(t, x, v) − E(t, x).∇vf(t, x, v) = 0

− Δφ(t, x) = 1 − ρ(t, x)
E(t, x) = −∇φ(t, x)

ρ(t, x) =
∫

f(t, x, v)dv

(1)

The main unknown is f (f6D in the code), the distribution function of par-
ticles in 6D phase space. Due to the Strang splitting, a first half time-step of
advections is required after f6D initialization but before the main time-loop.
These advections need the electric field E as input. E is obtained through the
FFT-based Poisson solver that in turn needs the charge density ρ as input. ρ is
computed by a reduction of f6D. The main time-loop is composed of 3 steps:
advections in space dimensions, computation of the charge density (reduction)
and electric field (Poisson solver) and advections in velocity dimensions.

The 6D nature of f6D requires a lot of memory, but the regularity of the
problem means it can be distributed in blocks with good load-balancing. Halos
are required to hold values of neighbors for the advections. Connected halo zones
would increase the number of points in all dimensions and consume too much
memory. Split advections mean that halos are required in a single dimension at
a time though. We therefore use dynamic halos composed of two buffers, one
for each boundary of the advected dimension (denoted “right” and “left”) as
shown on Fig. 2. Listing 2 corresponds to the InKSO/XMP implementation of this
strategy.

Advections are the main computational cost of the problem, accounting for
90% of the sequential execution time. Six loops surround the stencil computation
of each advection and in a naive version, the use of a modulo to handle period-
icity and application along non-contiguous dimensions slow down the computa-
tion. To enable vectorization and improve cache use, we copy f6D elements into
contiguous buffers along with the left and right halos. Advections are applied
on these buffers before copying them back into f6D. Blocking further improves
performance by copying 16 elements at a time. Listing 5 corresponds to the
InKSO/Loop implementation of these optimizations.
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(a) Buffers used as halo regions in the
first dimension

(b) Buffers used as halo regions in
the second dimension

Fig. 2. Dynamic halo exchange representation on a 2D domain

5 Evaluation

This section evaluates the InKS model on the NAS parallel benchmark, a simple
stencil code and the 6D Vlasov-Poisson problem. Plain C++ is used for the
synthetic benchmarks optimization while InKSO/XMP, InKSO/Loop, plain C++
and C with XMP are used for Vlasov-Poisson. All codes are compiled with Intel
18 compiler (-O3 -xHost), Intel MPI 5.0.1 and executed on the Poincare cluster
(Idris, France) with 32 GB RAM and two Sandy Bridge E5-2670 CPUs per node
and a QLogic QDR InfiniBand interconnect.

5.1 Synthetic Benchmarks

We have implemented 4 out of the 5 sequential NAS benchmark kernels (IS, FT,
EP and MG) in InKSpia and optimized them with plain C++. The C++ version [9],
is used as reference. We have also implemented a 3D heat equation resolution by
finite differences (7-point stencil) with two distinct C++ optimization strategies
from a single InKSpia source. Both strategies comes from the reference [12]. One
uses double buffering (Heat/Buf) and the other implements a cache oblivious
strategy (Heat/Obl).

The NAS CG kernel relies on indirections not expressible in the PTG model
of InKSpia. Its implementation would thus have to rely on a large C++ kernel
whose optimization would be mixed with the algorithm. InKSpia can however be
used to express all other NAS kernels as well as the 3D heat equation solver. Even
if not as expressive as C or Fortran, InKSpia covers the needs of a wide range of
simulation domains and offers abstractions close to the execution machine rather
than from a specific simulation domain. Among others, it can express computa-
tions such as FFTs or stencils with input coordinates unknown at compile-time.

InKS separates the specification of algorithm and optimization in distinct
files. Multiple optimization strategies can be implemented for a single algorithm,
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Table 1. Execution time of the C++ and InKS implementations of the sequential
NAS benchmark, class B - time/iteration of the 3D heat equation (7point stencil), size
(10243) - median and standard deviation of 10 executions - GNU complexity score of
the implementation.

Execution time (second) Complexity

Benchmark Reference InKS Rel. dev. Ref. InKS

NAS/FT 62.43 (±0.57) 62.86 (±0.71) 0.68% 6 5

NAS/IS 3.39 (±0.00) 3.44 (±0.00) 1.47% 55 52

NAS/MG 5.10 (±0.02) 4.73 (±0.06) −7.25% 20 12

NAS/EP 76.43 (±0.21) 76.47 (±0.22) 0.05% 19 19

Heat/Buf 3.05 (±0.01) 2.97 (±0.06) −2.58% 5 3

Heat/Obl 2.43 (±0.01) 2.05 (±0.02) −15.59% 22 13

as shown for the 3D heat equation where each relies on a specific memory layout
and scheduling. It thus offers a clear separation of algorithm and optimization.

Finding the right metric to evaluate the easiness of writing a code is a difficult
question. As illustrated in Listing 4 however, algorithm expression in InKSpia

is close to the most naive C implementation where loops are replaced by InKS
validity domains with no worry for optimization. The specification of optimiza-
tion choices is close to their expression in C++. Table 1 compares the GNU
complexity score of InKS optimizations to the reference code. InKS scores are
slightly better because kernels extracted from the algorithm hide computations
and thus, part of the complexity. In addition, the use of C++ to write opti-
mizations let optimization specialists reuse their preexisting knowledge of this
language. These considerations should not hide the fact that some information
has to be specified both in the InKSpia and C++ files with this approach leading
to more code overall.

Regarding performance, the InKS approach makes it possible to express
optimizations that do not change the algorithm. Optimizations of the four NAS
parallel benchmarks and 3D heat equation solver in InKS were trivial to imple-
ment and their performance match or improve upon the reference as presented in
Table 1. Investigation have shown that Intel ICC 18 does not vectorize properly
the reference versions of Heat/Obl and NAS/MG. The use of the Intel ivdep
directive as done on the InKS versions leads to slightly better performance.

5.2 Vlasov-Poisson

We evaluate InKSO/XMP and InKSO/Loop on Vlasov-Poisson separately as they
target different optimizations and are not usable together currently. A first exper-
iment focuses on the sequential aspects with the intra-node optimization of the
v1 advection using either InKSO/Loop or plain C++. A second experiment focuses
on the parallel aspects with the charge density computation, the Poisson solver
and a halo exchange optimized either with C/XMP or with InKSO/XMP. The
reference is the Fortran/MPI implementation from the Selalib library [13].
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Distinct files for both concerns in InKS makes possible to write a unique
InKSpia algorithm and multiple versions of optimization choices. Four optimiza-
tion choices are implemented based on one InKSpia source : (1) InKSO/XMP,
(2) C with XMP, (3) InKSO/Loop and (4) plain C++. This proves, to some
extent, that the separation of concerns is respected. As of now, InKSO/XMP and
InKSO/Loop are not usable together since InKSO/Loop relies on C++ that XMP
does not support. We plan to address this limitation in the future.

For the v1 advection, both the C++ and InKSO/Loop optimizations of the
InKS code achieve performance similar to the reference as shown in Table 2. For
the parallel aspects, the InKSO/XMP optimization offers performance similar to
XMP as shown on Fig. 3. The performance is comparable to MPI on the reduc-
tion operation but MPI is faster on the Poisson solver and the halo exchanges.
At the moment, it seems that XMP does not optimize local copies which slows
down the Poisson solver. Besides, XMP directives used for the halo exchanges
are based on MPI RMA which make the comparison with MPI Send/Receive
complex. Still, MPI is much harder to program: more than 350 lines of MPI and
Fortran are required to handle domain decomposition, remapping for FFT and
halo exchange in Selalib vs. 50 lines in XMP and 15 in InKSO/XMP.

Table 2. Comparison between Fortran, C++ and InKSO/Loop version of the v1 advec-
tion on a 326 grid (double precision) on a single E5-2670 core with vectorization. Median
of 12 executions

Version Time/advection GFLOP/s % Peak core perf.

Selalib (Fortran) 4.81 s 1.12 5.36%

InKS (C++) 3.76 s 1.43 6.87%

InKS (InKSO/Loop) 3.61 s 1.49 7.16%

1 2 4 8 16 32 64
0.6

0.8

1

1.2

1.3

XMP weak
InKSO/XMP weak

MPI weak
XMP strong

InKSO/XMP strong
MPI strong

(a) f6D reduction
8 16 32 64

0.03

0.1

0.3

1

(b) Poisson solver
1 2 4 8 16 32 64

0.001

0.01

0.1

1

Local copies Remote copies

(c) Dynamic halo exchanges

Fig. 3. Weak and strong scaling for 3 parts of the Vlasov-poisson solver up to 64 nodes
(1 process/node) on a 326 grid divided among processes (strong scaling) or 166 grid
per process (weak scaling). Median of 10 executions.
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The InKSO family of DSLs enables the developer to specify optimization
choices only while algorithmic information is extracted from InKSpia code. This
is illustrated by Listings 2, presenting the InKSO/XMP 6D domain decomposition,
and 3, presenting the XMP version. Both are equivalent, but the InKSO/XMP
expects only optimization choices parameters. Hence, one can test another mem-
ory layout, such as a different dimension ordering, by changing only a few
parameters, while multiple directives must be modified in XMP. Similarly, with
InKSO/Loop (Listing 4), developers can easily test different optimization choices
that would be tedious in plain C++. Since InKSO/XMP and InKSO/Loop are
respectively usable with C and C++, InKS does not restrict the expressible opti-
mization choices: one can still implement optimizations not handled by InKSO

in C/C++. Moreover, operations such as halo size computation or vectoriza-
tion capabilities detection are automatized using the algorithm. In summary,
the approach enables optimization specialists to focus on their specialty which
make the development easier.

6 Conclusion and Future Works

In this paper, we have presented the InKS programming model to separate algo-
rithm (InKSpia) and optimization choices (InKSO & C++) and its implementa-
tion supporting two DSLs : InKSO/Loop for loop optimizations and InKSO/XMP
for domain decomposition. We have evaluated InKS on synthetic benchmarks
and on the Vlasov-Poisson solving. We have demonstrated its generality and its
advantages in terms of separation of concerns to improve maintainability and
portability while offering performance on par with existing approaches.

While this paper demonstrates the interest of the InKS approach, it still
requires some work to further develop it. We plan to apply the InKS model
on a range of different problems. We will improve the optimization DSLs; base
InKSO/Loop on existing loop optimization tools and ensure good interactions
with InKSO/XMP. We also want to target different architectures to demonstrate
the portability gains of the InKS approach.
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Abstract. Most CPUs in heterogeneous systems are now equipped with
SIMD (Single Instruction Multiple Data) extensions that operate on
short vectors in parallel to enable high performance. Refactoring pro-
grams for such systems relies on vectorization, i.e., transforming into a
form with SIMD-instructions. We improve the state of the art in refactor-
ing loops with nested IF-statements that are notoriously difficult to vec-
torize. For IF-statements whose conditions are independent of the loop
variable, we improve the classical loop unswitching method, such that it
can tackle nested IFs. For IF-statements whose conditions change with
loop iterations, we develop a novel IF-select transformation method: (1)
it can work with arbitrarily nested IFs, and (2) while previous methods
rely on either masked instructions or hardware support for predicated
execution, our method works for SIMD extensions without such opera-
tions (as found, e.g., in IBM Power8 and ARM Cortex-A8). Our experi-
mental evaluation for the SPEC CPU2006 benchmark suite is conducted
on an SW26010 processor used in the Sunway TaihuLight supercomputer
(#2 in the TOP500 list); it demonstrates the performance advantages of
our implemented approach over the vectorizer of the Open64 compiler.

Keywords: SIMD extensions · Nested IF-statements
Loop vectorization · Loop unswitching · IF-select transformation

1 Motivation and Related Work

Most modern processors are equipped with SIMD (Single Instruction Multiple
Data) extensions that operate on short vectors in parallel to enable high per-
formance. To use this performance potential, programs must be refactored to a
form with SIMD instructions; this is traditionally called vectorization. Manual
vectorization via hand-written instrinsics is tedious, error-prone and unportable.
Therefore, automatic vectorization is an indispensable part of most modern com-
pilers, such as the commercial compiler ICC [11], as well as open-source compilers
Open64 [3], GCC [6], and LLVM [14].
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There are three classic vectorization approaches: (1) loop vectorization [18]
combines multiple occurrences of a scalar operation across consecutive loop iter-
ations into one SIMD instruction, (2) basic block or SLP (Superword Level
Parallelism) vectorization [13] transforms a group of isomorphic operations into
one SIMD instruction, and (3) WFV (Whole Function Vectorization) [12] con-
verts multiple instances of a kernel into SIMD instructions. These approaches
are restricted: in particular, IF-statements lead to the control flow divergence
that makes vectorization difficult.

Several methods were suggested to overcome this restriction, but they work
only in special cases. The loop unswitching method [19] requires that the IF-
condition remains the same across loop iterations. The IF conversion method
[2] targets vector computers with explicit hardware support for predicated execu-
tion, where instructions from both paths of the branch are executed speculatively,
and each instruction is then associated with a dedicated predicated register that
determines whether this instruction should modify processor state. In this paper,
we develop vectorization methods for processors with SIMD extensions that do
not have explicit hardware support for predicated execution. Shin et al. [16]
extend the classic SLP method to work in the presence of IF-statements. Our
approach is similar to [16], except that we extend loop vectorization to work in
the presence of arbitrarily nested IF-statements; we discuss further differences
below. In comparison with the WFV method [12], we vectorize loops rather
than functions in data-parallel languages (like CUDA or OpenCL). The state-
of-the-art compilers such as LLVM depend on masked instructions to vector-
ize IF-statements, and need to fall back on IF-cascades on architectures with-
out masked instructions, which makes automatic vectorization futile on such
architectures. In our recent work [8], we extend the WFV vectorizer for SIMD
extensions without masked instructions. Also Smith et al. [17] describe using
masked vector instructions for vectorization, while we target architectures with-
out masked instructions.

Summarizing, we aim at improving the state-of-the-art methods of refactor-
ing by vectorization, that currently cannot generate efficient SIMD code for loops
with arbitrarily nested IF-statements without hardware support for predicated
execution or masked instructions. We cover two cases depending on whether
the IF-condition changes across the loop iterations: (1) for loop-independent
IF-statements, we extend the loop unswitching method to arbitrarily nested
IF-statements; (2) for loop-dependent IF-statements, we develop a novel IF-
select transformation method which works for loops with arbitrarily nested IF-
statements on SIMD extensions without hardware support for predicated exe-
cution and masked instructions. We integrate our approach into the Open64
compiler [3] and evaluate it on an SW26010 processor [7] with a 256-bit SIMD
extension as used in the Sunway TaihuLight supercomputer (#2 in the TOP500
list [20]). Experiments on a set of benchmarks from SPEC CPU2006 [9] with
loops containing IF-statements confirm the efficiency of our approach.

In the remainder of the paper, Sect. 2 introduces the background on refac-
toring via vectorization and our target architecture model. Section 3 presents
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our vectorization approach for loops with nested IF-statements. Experimental
results are presented in Sect. 4, and Sect. 5 concludes the paper.

2 Background: SIMD Extensions and Vectorization

We target modern heterogeneous systems that comprise CPUs with SIMD exten-
sions, but without masked instructions, such as IBM Power8 [10], ARM Cortex-
A8 [4], and SW26010 [7]. While the existing frameworks like FastFlow [1] and
REPARA [5] can distribute workload among different cores using manual refac-
toring based on parallel patterns, we aim at automated refactoring within one
core using vectorization. We use the SW26010 processor as our example: each
core of it employs a 256-bit SIMD extension that works on 256 bits in parallel:
it can be one long int (256-bit) operation, or 8 integer operations, or 4 floating
point operations. Without loss of generality, we work in this paper with 64-bit
floating point values, i.e., 4 operations can be executed simultaneously on such
values.

Figure 1 illustrates a simple example of refactoring via vectorization: Fig. 1(a)
shows a loop with regular computations, so it is straightforwardly vectorizable.
Figure 1(b) shows the vectorization result using SIMD intrinsics, i.e., C-style
functions providing access to SIMD instructions. For simplicity, we call these
intrinsics instructions. A SIMD extension executes a loop iteration in Fig. 1(b)
in parallel as follows: load the operands from memory to vectors, add the two
vectors, and store the result vector into memory.

Fig. 1. (a) An easily vectorizable loop; (b) The loop after vectorization

Table 1 shows the SIMD instructions used in this paper, with the names as
used in the SW26010 processor. We only list the instructions for double preci-
sion floating point parameters; the vector type doublev4 means 4 packed 64-bit
double elements.

An important feature of our target architecture model is that we do not
assume the existence of dedicated predicate registers, while many previous
approaches to vectorization (e.g., [2]) rely on these registers and the correspond-
ing predicated execution modus. Such registers can be found, e.g., in conventional
vector processors, but not in modern CPUs with SIMD extensions. We also do
not require from our target SIMD extensions to provide masked instructions
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Table 1. Specific SIMD instructions used in this paper

Instruction Operation Input Output Functional description

simd load Load doublev4 va, double *addr void Load 4 double elements into

vector va from contiguous

memory starting from *addr

simd store Store doublev4 va, double *addr void Store 4 elements of vector

va into contiguous memory

starting from *addr

simd vaddd Addition doublev4 va, vb doublev4 Add 4 elements of va with 4

elements of vb element-wise,

return the result

simd vsubd Subtraction doublev4 va, vb doublev4 Subtract 4 elements of va

from 4 elements of vb

element-wise, return the

result

simd vseleq Select doublev4 va, vb, vc doublev4 Test the value of va

element-wise: if it equals 0,

then return the element of

vb, otherwise return the

element of vc

simd vfcmplt Comparison doublev4 va, vb doublev4 Compare the value of va and

vb element-wise; if va< vb,

then the element of vc is

assigned 1.0, otherwise 0

that are present, e.g., in the Intel AVX extension and used in some vectoriza-
tion methods [17]. Summarizing, we aim at covering a broader class of target
architectures than most of previous approaches.

3 Vectorization of Loops with IF-statements

Figure 2 shows the overall structure of our vectorization approach. For clarity,
we assume that there is only a single, probably nested, IF-statement in the loop.
For multiple IF-statements, we process them ordinally.

The first step in Fig. 2, SIMD preanalysis, checks whether vectorization can
be applied to the loop legally. We mainly rely on the traditional four criteria of
legal vectorization: (1) there are no dependence cycles between the statements
in the loop body; (2) the loop is countable [15], i.e., the number of iterations of
the loop is known before entering the loop body; (3) there is only one exit from
the loop; (4) the loop is the innermost loop.
Note that the IF-statement may be nested, such that either the THEN or ELSE
block or both have at least one IF-statement. Each IF-statement in a candidate
loop is put into one of two categories:

– a loop-independent IF-statement, if its condition remains the same across loop
iterations;

– a loop-dependent IF-statement, if its condition changes with loop iterations.
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Loop with an IF-statement

SIMD preanalysis (loop)

Loop-independent?

Loop unswitching IF-select transformation

IF-statement left
(when nested)?

IF-statement left
(when nested)?

SIMD instructions generation

Vectorized loop

no

yes

no

yesyes

no

Fig. 2. Overview of our vectorization approach for a loop with a single, possibly nested
IF-statement

According to these two cases, we apply two vectorization methods in Fig. 2:

– If the IF-statement is loop-independent, we apply our improved loop unswitch-
ing method (described in Sect. 3.1) to move the condition testing of the IF-
statement outside of the loop. If the IF-statement is nested, we first tackle
the outermost IF-statement, then tackle the inner IF-statement in the THEN
or ELSE block and so on, until there is no IF-statement left, or until we
encounter a loop-dependent IF-statement.

– If the IF-statement is loop-dependent, we apply our novel IF-select transfor-
mation (described in Sect. 3.2) that converts control dependences (IF) into
data dependences (select). If the IF-statement is nested, we first tackle the
innermost IF-statement in the corresponding THEN or ELSE block, then
tackle the outer IF-statement and so on, until there is no IF-statement left.

The output of our method is the loop without IF-statements, for which equiv-
alent SIMD instructions can be generated straightforwardly like in Fig. 1. The
following two subsections describe the two core methods (the highlighted parts
in Fig. 2) in detail.
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3.1 Vectorizing Loop-Independent IFs: Loop Unswitching

The loop unswitching method, originally proposed in [19], is applied to a loop
with a loop-independent IF-statement: the idea is to move the condition testing
of the IF-statement outside of the loop; the original loop is duplicated, and a
copy of it is placed inside of both THEN and ELSE blocks of the resulting
IF-statement. Note that, besides enabling vectorization, loop unswitching also
optimizes the program, because the testing of the IF-condition is performed only
once outside of the loop, rather than repetitively in each loop iteration.

Our modification of the original loop unswitching method [19] allows it to be
applied to arbitrarily nested IF-statements within a loop if all of them are loop-
independent: we first apply loop unswitching to the outermost IF-statement,
and then we apply loop unswitching iteratively to the both copies of the loop
with respect to their outermost IF-statements, and so on, see Fig. 2. However,
repetitive loop unswitching may lead to an exponential increase of code size,
thus hindering the compiler to do other optimizations. We empirically impose a
limit of 4 passes of this transformation for nested IF-statements, which is found
to be a good solution via experimental evaluation.

3.2 Vectorizing Loop-Dependent IFs: IF-select Transformation

As described above, the classical loop unswitching method is only applicable to
loop-independent IF-statements. For a loop-dependent IF-statement, we follow
the idea of [16] to transform the IF-statement into select statements. However,
our approach proceeds very differently from [16], where the original IF conversion
[2] is applied to transform a program with IF-statements into an equivalent
program with predicated statements, which are then transformed into select
statements. This transformation relies on the PHG (Predicate Hierarchy Graph)
representing the nesting relations among predicates. Our approach generates
select statements directly, without generating predicated statements: we also
avoid building and analyzing the PHG.

The idea of our approach is that we generate select statements by match-
ing the statements in the THEN block with the statements in the ELSE block
and combining each pair of matched statements into a select statement. We
say that statements are matched if they define the same variable. For exam-
ple, in the statement if(cond){dst=val1;} else{dst=val2;}, the statements
in the THEN and ELSE blocks both define dst, so they are matched, and we
can combine them into one select statement dst=select(cond,val1,val2). In
contrast, if there are no matched statements for the current statement in the
THEN or the ELSE block, then we assume that there is a fictitious statement
dst=dst to match with the current statement, and we combine the original
statement with the fictitious statement into one select statement. For exam-
ple, in the statement if(cond){dst=val1;}, there is no ELSE part and thus
no matched statement, therefore, for this single statement we generate the
select statement dst=select(cond,val1,dst). We denote the former case that
generates a select statement for two matched statements as Rule 1, and the
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latter case that generates a select statement for a single unmatched statement as
Rule 2.

Algorithm 1 shows the pseudocode of our IF-select transformation method
applied to an IF-statement in a loop. We first create a new block sel wn to store
the newly generated select statements (line 2). Then we sequentially traverse
the statements in the THEN and ELSE blocks (line 6): we initialize the flag
matched as FALSE (line 7) at the beginning of each traversal pass, and then
we try to match the statements in the THEN and ELSE blocks and generate
corresponding select statements according to Rule 1 and Rule 2 (line 8–44).
Eventually, if sel wn is not empty (line 45), we replace the original IF-statement
with sel wn (line 46), otherwise, we leave the IF-statement unchanged.

We describe in the following how we match statements and generate select
statements, especially when there are flow dependences in the block. We begin
with traversing the ELSE block from the current statement and looking for a
matching statement (line 10–14) for the current statement in the THEN block.
If there is no matching statement (Case 1), then we generate a select statement
according to Rule 2 (line 16) and we turn to the next statement in the THEN
block (line 17). If we find a matching statement that is the current statement in
the ELSE block (Case 2), then we combine these two statements and generate a
select statement according to Rule 1 (line 20), and we turn to the next statements
in the THEN and ELSE blocks (line 21–22).

Otherwise, if the matching statement is not the current statement in the
ELSE block (Case 3), then we reset flag matched to FALSE (line 24), and then
we turn to looking for a matching statement in the THEN block (line 26–30) for
the current statement in the ELSE block. If there is no matching statement in
the THEN block (line 31), then we generate a select statement according to Rule
2 (line 32), and we turn to the next statement in the ELSE block (line 33). If a
matching statement for the current statement is found, then it means that the
order of these two statements is different in the THEN and ELSE blocks: e.g.,
dst1 is defined before dst2 in the THEN block and after dst2 in the ELSE block.
In this case, we check whether there is a flow dependence between the memory
accesses in these two statements (line 35). If no flow dependence is found from
then stmt to then iter, then we change the order of these two statements in
the THEN block by moving then stmt after then iter. Likewise, if no flow
dependence is found from else stmt to else iter, then we change the order of
these two statements in the ELSE block by moving else stmt after else iter.
Otherwise, we retain the IF-statement unchanged, ignore all select statements
generated before, and return (line 41). After detecting flow dependences and
reordering statements, we generate select statements according to Rule 1 (line
36) and turn to the next statements in the THEN and ELSE blocks (line 37–
38). Note that case 3 enables us to generate select statements even when there
is a flow dependence between the statements in the THEN or ELSE block. If
we would simply add all matched statements to sel wn and perform an analysis
for detecting a cyclic dependence afterward, we may end up with inconsistent
semantics by ignoring flow dependences.
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Algorithm 1. IF-select Transformation
1 Function IF-selectTransformation(IF)
2 build a new block sel wn ; // store the generated select statements
3 get the Array Dependence Graph as ADG;
4 then stmt=get first(IF.then); // initiate the current statement in the THEN block
5 else stmt=get first(IF.else); // initiate the current statement in the ELSE block
6 while then stmt!=NULL | else stmt!=NULL do
7 BOOL matched = FALSE;
8 if then stmt != NULL then
9 else iter=else stmt;

10 while else iter!=NULL & matched ==FALSE do
11 if else iter is matched with then stmt then
12 matched = TRUE ; // find the matched else iter
13 else
14 else iter=get next(else iter);

15 if matched==FALSE then // Case 1
16 generate select statement (Rule 2) and insert it into sel wn;
17 then stmt=get next(then stmt);

18 else
19 if else iter == else stmt then // Case 2
20 generate select statements (Rule 1) and insert it into sel wn;
21 then stmt=get next(then stmt);
22 else stmt=get next(else stmt);

23 else // Case 3
24 matched = FALSE;
25 then iter=then stmt;
26 while then iter!=NULL & matched ==FALSE do
27 if then iter is matched with else stmt then
28 matched = TRUE ; // find the matched then iter
29 else
30 then iter=get next(then iter);

31 if matched==FALSE then
32 generate select statement (Rule 2) and insert it into sel wn;
33 else stmt=get next(else stmt);

34 else
35 if Forward Motion(then stmt, then iter, ADG) |

Forward Motion(else stmt, else iter, ADG) then
36 generate select statements (Rule 1) and insert it into sel wn;
37 then stmt=get next(then stmt);
38 else stmt=get next(else stmt);

39 else
40 sel wn = NULL;
41 return;

42 else if else stmt != NULL then // Case 4
43 generate select statement (Rule 2) and insert it into sel wn;
44 else stmt=get next(else stmt);

45 if sel wn != NULL then
46 replace IF with sel wn;

If we are done with all statements in the THEN block and there are still
statements in the ELSE block (Case 4), then for the current statement in the
ELSE block we generate a select statement according to Rule 2 (line 43), and we
turn to the next statement in the ELSE block (line 44), until we are also done
with all statements in the ELSE block.

We further extend our IF-select transformation method (Algorithm1) to han-
dle nested loop-dependent IF-statements: we tackle the IF-statements starting
from the innermost one and moving to the outermost, see Fig. 2.
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Fig. 3. (a) A loop with a nested loop-dependent IF-statement; (b) Apply IF-select
transformation to the innermost IF-statement; (c) Apply IF-select transformation to
the outermost IF-statement; (d) Vectorized code with SIMD instructions

Figure 3(a) illustrates how we vectorize a nested loop-dependent IF-
statement. According to Algorithm 1, we first transform the innermost IF-
statement to a select statement (Rule 1), with the result in Fig. 3(b). Then we
transform the outermost IF-statement to a select statement (Rule 2), with the
result in Fig. 3(c). Finally, we generate SIMD instructions as shown in Fig. 3(d).

4 Experimental Evaluation and Results

We integrated our presented vectorization approach for loops with nested IF-
statements into the Open64 compiler [3] by adding to it our improved methods of
loop unswitching (Sect. 3.1) and IF-select transformation (Sect. 3.2). The SIMD
preanalysis and the generation of SIMD instructions shown in Fig. 2 have been
slightly adapted in order to exploit our proposed vectorization methods.

Table 2. Benchmark kernels with IF-statements from SPEC CPU2006

Program Kernel Kernel runtime (%) Application category IF-stmt type

429.mcf primal bea mpp 49.95 Combinatorial optimization Nested

456.hmmer P7Viterbi 99.53 Search gene sequence database Nested

464.h264ref SetupFastFullPelSearch 40.93 Video compression Nested

454.calculix e c3d 69.12 Structural mechanics Nested

482.sphinx3 vector gautbl eval logs3 38.67 Speech recognition Single

458.sjeng std eval 15.11 Pattern recognition Nested

462.libquantum quantum toffoli 63.41 Physics and quantum computing Nested
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We conduct our experiments on the programs with IF-statements from the
SPEC CPU2006 benchmark suite [9], listed in Table 2. Out of 29 programs in
SPEC CPU2006, the 7 programs in the table contain IF-statements in their most
time-consuming loops; 6 of these programs have nested IF-statements within
loops. Our experimental platform is an SW26010 processor with a 256-bit dedi-
cated SIMD extension, running under Linux Redhat Enterprise 5.

429
.m

cf

456
.hm

mer

464
.h2

64r
ef

454
.ca

lcu
lix

482
.sp

hin
x3

458
.sje

ng

462
.lib

qu
ant

um mean
0

0.5

1

1.5

2

2.5

Sp
ee
du

p

Open64 Vectorization
Our Approach

Fig. 4. Kernel speedups: our approach compared with the Open64 vectorization

For the seven benchmarks listed in Table 2, both kernel and whole-program
speedups are presented. We compare two vectorization approaches: the Open64
compiler vectorization (performing loop unswitching and IF conversion) and our
approach. All programs are compiled with the same flags: -O3, -LNO:simd=1.
The execution time of a kernel or program is measured as the average of 20 runs.
The results are within a few percent over each run. The speedups are calculated
as compared with the execution on the same SW26010 processor, but without
vectorization, i.e., when the SIMD extension is not used.

Figure 4 shows the kernel speedups. The mean kernel speedup achieved by
our approach is 1.43x compared to the non-vectorization baseline and 1.25x
compared to the Open64 vectorization. Our approach outperforms Open64 vec-
torization for 4 out of 7 programs and matches it for 3 remaining programs. We
attribute the performance gains as follows. For 454.calculix, our loop unswitching
method is applied twice to the two-level nested loop-independent IF-statement.
For 456.hmmer, there is a two-level nested IF-statement: firstly, our loop
unswitching method is applied to the outermost loop-independent IF-statement,
and then our IF-select transformation is applied to the innermost loop-dependent
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IF-statement, the same is done for 464.h264ref. For 462.libquantum, our IF-
select transformation is applied to the two-level nested loop-dependent IF-
statement. Our approach achieves a speedup similar to the Open64 vectorizer for
482.sphinx3, because its IF-statement is not nested. The remaining 2 programs
which show no improvement are 429.mcf and 458.sjeng: they are not vectorized.
For 429.mcf, its IF-statement contains pointers where dependence cycles are con-
servatively assumed and, therefore, the surrounding loop is excluded from vector-
ization. For 458.sjeng, there is a three-level nested loop-dependent IF-statement,
however, the dependence cycles between the indirected arrays exclude the loop
from vectorization in the SIMD preanalysis phase.
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Fig. 5. Whole-program speedups: our approach compared with the Open64 vectoriza-
tion

Figure 5 shows the whole-program speedups. The mean whole-program
speedup achieved by our approach is 1.26x compared to the non-vectorization
baseline and 1.11x compared to the Open64 vectorization. In most cases, the
achieved whole-program speedups are consistent with the cumulative speedups
of the most-time consuming kernels.

5 Conclusions

In this paper, we present an approach to refactoring loops with nested IF-
statements by vectorizing them. Our new contributions to the state of the art
in program vectorization are as follows:

– for loop-independent IF-statements, our modified loop unswitching method
extends previous work to the case of arbitrarily nested IF-statements;
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– for loop-dependent IF-statements, we develop a novel IF-select transforma-
tion method for targeting arbitrarily nested IF-statements and for SIMD
extensions without predicated execution and masked instructions.

We integrate our approach into the Open64 compiler and we experimentally
confirm its advantages using SPEC CPU2006 benchmarks on the SW26010 pro-
cessor used in the Sunway TaihuLight supercomputer (#2 in the TOP500 list).
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Abstract. This paper compares the performance of different approaches
to tolerate failures using checkpoint/restart when executed on large-
scale failure-prone platforms. We study (i) Rigid applications, which use
a constant number of processors throughout execution; (ii) Moldable
applications, which can use a different number of processors after each
restart following a fail-stop error; and (iii) GridShaped applications,
which are moldable applications restricted to use rectangular processor
grids (such as many dense linear algebra kernels). For each application
type, we compute the optimal number of failures to tolerate before relin-
quishing the current allocation and waiting until a new resource can be
allocated, and we determine the optimal yield that can be achieved. We
instantiate our performance model with a realistic applicative scenario
and make it publicly available for further usage.

Keywords: Resilience · Spare nodes · Moldable applications
Checkpoint · Restart · Allocation length · Wait time

1 Introduction

Consider a long-running job that requests N processors from the batch sched-
uler. Resilience to fail-stop errors1 is provided by a Checkpoint/Restart (CR)
mechanism, which is the de-facto standard approach for High-Performance Com-
puting (HPC) applications. After each failure, the application restarts from the
last checkpoint but the number of available processors decreases, assuming the
application can continue execution after a failure (e.g., using ULFM [3]). Until
which point should the execution proceed before requesting a new allocation
with N fresh resources from the batch scheduler?

1 We use the terms fail-stop error and failure indifferently.
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The answer depends upon the nature of the application. For a Rigid applica-
tion, the number of processors must remain constant throughout the execution.
The question is then to decide the number F of processors (out of the N avail-
able initially) that will be used as spares. With F spares, the application can
tolerate F failures. The application always executes with N −F processors: after
each failure, then it restarts from the last checkpoint and continues executing
with N − F processors, the faulty processor having been replaced by a spare.
After F failures, the application stops when the (F + 1)st failure strikes, and
relinquishes the current allocation. It then asks for a new allocation with N pro-
cessors, which takes a wait time, D, to start (as other applications are most likely
using the platform concurrently). The optimal value of F obviously depends on
the value of D, in addition to the application and resilience parameters. The
wait time typically ranges from several hours to several days if the platform is
over-subscribed (up to 10 days for large applications on the K-computer [24]).
The metric to optimize here is the (expected) application yield, which is the
fraction of useful work per second, averaged over the N resources, and com-
puted in steady-state mode (expected value for multiple batch allocations of N
resources).

For a Moldable application, the problem is different: here we assume that
the application can use a different number of processors after each restart. The
application starts executing with N processors; after the first failure, the appli-
cation recovers from the last checkpoint and is able to continue with only N − 1
processors, albeit with a slowdown factor N−1

N . After how many failures F should
the application decide to stop2 and accept to produce no progress during D, in
order to request a new allocation? Again, the metric to optimize is the applica-
tion yield.

Finally, consider an application which must have a given shape (or a set of
given shapes) in terms of processor layout. Typically, these shapes are dictated
by the algorithm. In this paper, we use the example of a GridShaped appli-
cation, which is required to execute on a rectangular processor grid whose size
can dynamically be chosen. Most dense linear algebra kernels (matrix multipli-
cation, LU, Cholesky and QR factorizations) are GridShaped applications, and
perform more efficiently on square processor grids than on elongated rectangle
ones. The application starts with a square p×p grid of N = p2 processors. After
the first failure, execution continues on a p × (p − 1) rectangular grid, keeping
p − 1 processors as spares for the next p − 1 failures. After p failures, the grid
is shrunk again to a (p − 1) × (p − 1) square grid, and so on. We address the
same question: after how many failures F should the application stop working
on a smaller processor grid and request a new allocation, in order to optimize
the application yield?

2 Another limit is induced by the total application memory Memtot . There must remain
at least � live processors such that Memtot ≤ � × Memind , where Memind is the
memory of each processor. We ignore this contraint in the paper but it would be
straightforward to take it into account.
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The major contribution of this paper is to present a detailed performance
model and to provide analytical formulas for the expected yield of each applica-
tion type. Due to lack of space, we instantiate the model for a single applicative
scenarios, for which we draw comparisons across application types. Our model
is publicly available [21] so that more scenarios can be explored. Notably, the
paper qualifies the optimal number of spares for the optimal yield, and the opti-
mal length of a period between two full restarts; it also qualifies how much the
yield and total work done within a period are improved by deploying Moldable
applications w.r.t. Rigid applications.

The rest of the paper is organized as follows. Section 2 provides an overview
of related work. Section 3 is devoted to formally defining the performance model.
Section 4 provides formulas for the yield of Rigid, Moldable and GridShaped
applications. These formulas are instantiated through the applicative scenario in
Sect. 5, to compare the different results. Finally, Sect. 6 provides final remarks
and hints for future work.

2 Related Work

We first survey related work on checkpoint-restart. Then we discuss previous
contributions on Moldable applications.

Checkpoint-Restart. Checkpoint/restart (CR) is the most common strategy
employed to protect applications from underlying faults and failures on HPC
platforms. Generally, CR periodically outputs snapshots (i.e., checkpoints) of
the application global, distributed state to some stable storage device. When
a failure occurs, the last stored checkpoint is retrieved and used to restart the
application.

A widely-used approach for HPC applications is to use a fixed checkpoint
period (typically one or a few hours), but it is sub-optimal. Instead, application-
specific metrics can (and should) be used to determine the optimal checkpoint
period. The well-known Young/Daly formula [8,25] yields an application optimal
checkpoint period,

√
2μC seconds, where C is the time to commit a checkpoint

and μ the application Mean Time Between Failures (MTBF) on the platform. We
have μ = μind

N , where N is the number of processors enrolled by the application
and μind is the MTBF of an individual processor [17].

The Young/Daly formula minimizes platform waste, defined as the fraction
of job execution time that does not contribute to its progress. The two sources
of waste are the time spent taking checkpoints (which motivates longer check-
point periods) and the time needed to recover and re-execute after each failure
(which motivates shorter checkpoint periods). The Young/Daly period achieves
the optimal trade-off between these sources to minimize the total waste.

For Rigid applications, both [18,26] report some experimental study to deter-
mine the optimal number of processors and of spares that should be used. Fur-
thermore, the optimal number of resources for a perfectly parallel job is com-
puted via an iterative relaxation procedure in [18] and through analytical for-
mulas in [5].
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Moldable and GridShaped Applications. Rigid and Moldable applica-
tions have been studied for long in the context of scientific applications. A
detailed survey on various application types (Rigid, Moldable, malleable) was
conducted in [10]. Resizing application to improve performance has been inves-
tigated by many authors, including [6,19,22,23] among others. A related recent
study is the design of a MPI prototype for enabling tolerance in Moldable
MapReduce applications [13].

The TORQUE/Maui scheduler has been extended to support evolving, mal-
leable, and Moldable parallel jobs [20]. In addition, the scheduler may have
system-wide spare nodes to replace failed nodes. In contrast, our scheme does
not assume a change of behavior from the batch schedulers and resource allo-
cators, but utilizes job-wide spare nodes: a node set including potential spare
nodes is allocated and dedicated to a job at the time of scheduling, that can be
used by the application to restart within the same job after a failure.

An experimental validation of the feasibility of shrinking application on the
fly is provided in [2]. In this paper, the authors used an iterative solver applica-
tion to compare two recovery strategies, shrinking and spare node substitution.
They use ULFM, the fault-tolerant extension of MPI that offers the possibiliity of
dynamically resizing the execution after a failure. In [11,15], the authors studied
Moldable and GridShaped applications that continue executing after some
failures. They focus on the performance degradation incurred after shrinking or
spare node substitution, due to less efficient communications (in particular col-
lective communications). A major difference with our work is that these studies
focus on recovery overhead and do not address overall performance nor yield.

3 Performance Model

This section reviews the key parameters of the performance model. Some
assumptions are made to simplify the computation of the yield. We discuss pos-
sible extensions in Sect. 6.

Application/Platform Framework. We consider perfectly parallel applica-
tions that execute on homogeneous parallel platforms. Without loss of generality,
we assume that each processor has unit speed: we only need to know that the
total amount of work done by p processors within T seconds requires p

q T seconds
with q processors.

Mean Time Between Failures (MTBF). Each processor is subject to fail-
ures which are IID (independent and identically distributed) random variables
following an Exponential probability distribution of mean μind , the individual
processor MTBF. Then the MTBF of a section of the platform comprised of i
processors is given by μi = μind

i [17].



Do Moldable Applications Perform Better on Failure-Prone HPC Platforms? 791

Checkpoints. Processors checkpoint periodically, using the optimal Young/
Daly period [8,25]: for an application using i processors, this period is

√
2Ciμi,

where Ci is the time to checkpoint with i processors3. We consider two cases
to define Ci. In both cases, the overall application memory footprint is consid-
ered constant at Memtot , so the size of individual checkpoints is inversely linear
with the number of participating/surviving processors. In the first case, the I/O
bandwidth is the bottleneck (which is often the case in HPC platforms – it takes
only a few processors to saturate the I/O bandwidth); then the checkpoint cost is
constant and given by Ci = Memtot

τio
, where τio is the aggregated I/O bandwidth.

In the second case, the processor network card is the bottleneck (which is the
case for in-memory checkpointing, or checkpointing to NVRAM), and the check-
point cost is inversely proportional to number of active processors: Ci = Memtot

τxnet×i ,
where τxnet is the available network bandwidth, and Memtot

i the checkpoint size.
We denote the recovery time with i processors as Ri. For all simulations we

use Ri = Ci, assuming that the read and write bandwidths are identical.

Objective. We consider a long-lasting application that requests a resource allo-
cation with N processors. We aim at deriving the optimal number of failures F
that should be tolerated before paying the wait time and requesting a new alloca-
tion. We aim at maximizing the yield Y of the application, defined as the fraction
of time during the allocation length and wait time where the N resources per-
form useful work. Of course a spare does not perform useful work when idle, and
no processor is active during wait time, which explains that the yield will always
be smaller than 1. We will derive the value of F that maximizes Y for the three
application types.

4 Expected Yield

This section is the core of the paper. We compute the expected yield for each
application type, Rigid, Moldable and GridShaped.

4.1 Rigid Application

We first consider a Rigid application that can be parallelized at compile-time
to use any number of processors but cannot change this number until it reaches
termination. There are N processors allocated to the application. We use N −F
for execution and keep F as spares. The execution is protected from failures by
checkpoints of duration CN−F . Each failure striking the application will incur an
in-place restart of duration RN−F , using a spare processor to replace the faulty
one. However, when the (F + 1)st failure strikes, the job will have to stop and

3 In [8], the optimal checkpoitning period is
√

2Ciμi + Ci, but we use
√

2Ciμi as
derived in [17]. Note that both formulas are only first-order approximations and
collapse when Ci is small in front of the MTBF μi. The exact formula for the
optimal checkpointing period is given in [17].
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perform a full restart, waiting for a new allocation of N processors to be granted
by the job scheduler.

We define TR as the expected duration of an execution period until the appli-
cation is ready to continue after the (F + 1)st failure strikes. We compute TR

using several first-order approximations. In particular, we ignore scenarios where
failures strike during checkpoint, recovery or re-execution, thereby neglecting the
probability of two failures within a short time window. Also, we approximate the
time lost after a failure as half the checkpointing period. Finally, we assume an
integer number of checkpointing periods in between failures. The first failure is
expected to strike after μN seconds, the second failure μN−1 seconds after the
first one, and so on. Without any overhead, the length of a period would be∑N−F

i=N μi. Except for the last failure, each failure incurs some overhead only if
it strikes the application. This happens with probability N−F

i , where i is the
current number of live processors. In that case, the failure requires a restart and
some re-execution, namely half the checkpoint period in average. The applica-
tion always uses N − F processors, hence the checkpoint period remains equal
to

√
2CN−F μN−F . On the contrary, if the failure strikes a spare, there is no

overhead. The last failure always requires a wait time, and then a restart and
re-execution. Therefore, we derive:

TR =

N−F∑

i=N

µi+

N−F+1∑

i=N

N − F

i

(
RN−F +

√
2CN−FµN−F

2

)
+D+RN−F +

√
2CN−FµN−F

2

What is the total amount of work WR computed during a period? During
the sub-period of length μi, there are μi√

2CN−F μN−F

checkpoints, each of length

CN−F , and each processor works during μi

1+
CN−F√

2CN−F µN−F

seconds. There are N −

F processors at work, hence

WR = (N − F ) ·
N−F∑

i=N

μi

1 + CN−F√
2CN−F μN−F

During the duration TR of the period, in the absence of failures and pro-
tection, the application could have used all N processors to compute. Thus the
effective yield with protection for the application during TR is reduced to YR:

YR =
WR

N · TR

4.2 Moldable Application

We now consider a Moldable application that can use a different number of
processors after each restart. The application starts executing with N processors;
after the first failure, the application recovers from the last checkpoint and is
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able to continue with only N − 1 processors after paying the restart cost RN−1,
albeit with a slowdown factor N−1

N of the parallel work per time unit.
We define TM as the expected duration of an execution period until the

(F + 1)st failure strikes. Without any overhead, the length of a period would
be

∑N−F
i=N μi, the same as for Rigid applications. But there are few differences.

First, each failure strikes the application, since it always uses all live processors.
Second, the checkpoint period increases after each failure, since the number
of live processors decreases. Third, the re-execution after a failure (except the
last one) incurs a slowdown factor because we move from i processors to i − 1
processors. Fourth and finally, the re-execution after the last failure is performed
faster, because there are more live processors. Altogether, we derive that

TM =

N−F∑

i=N

µi +

N−F+1∑

i=N

(
Ri−1 +

i

i − 1
·

√
2Ciµi

2

)
+D +RN +

N − F

N

√
2CN−FµN−F

2

To compute the total amount of work WM during a period, we proceed as
before and consider each sub-period. During the sub-period of length μi, there
are μi√

2Ciμi
checkpoints, each of length Ci, and each processor works during

μi

1+
Ci√
2Ciµi

seconds. And there are i processors at work during that sub-period.

Altogether:

WM =
N−F∑

i=N

i × μi

1 + Ci√
2Ciμi

, and YM =
WM

N · TM

where YM is the yield of the Moldable application.

4.3 GridShaped Application

Finally, we consider a GridShaped application, defined as a moldable execution
which requires a rectangular processor grid. The application starts with a square
p × p grid of N = p2 processors. After the first failure, execution continues on a
p× (p− 1) rectangular grid, keeping p− 1 processors as spares for the next p− 1
failures. After p failures, the grid is shrunk again to a (p−1)×(p−1) square grid,
and the execution continues on this reduced-size square grid. After how many
failures F should the application stop, in order to maximize the application
yield? The derivation of the expected length of a period and of the total work
are more complicated for GridShaped than for Rigid and Moldable. Due to
lack of space, we refer to the extended version [12], as well as to the publicly
available software [21], for detailed formulas and an algorithm to compute the
optimal value of F .
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5 Applicative Scenario

As an applicative scenario, we consider a platform with 22,250 nodes (1502),
with a node MTBF of 20 years, and an application that would take 2 min to
checkpoint (at 22,250 nodes). In other words, we let N = 22, 500, μind = 20y
and Ci = C = 120s. These values are inspired from existing platforms: the Titan
supercomputer at OLCF [14], for example, holds 18,688 nodes, and experiences a
few node failures per day, implying a node MTBF between 18 and 25 years. The
filesystem has a bandwidth of 1.4 TB/s, and nodes altogether aggregate 100 TB
of memory, thus a checkpoint that would save 30% of that system should take in
the order of 2 min to complete. Further experiments varying N , μind and with
several scenarios for checkpoint costs are available in the extended version [12].

Figure 1 shows the yield that can be expected if doing a full restart after an
optimal number of failures, as a function of the wait time, for the three kind
of applications considered (Rigid, Moldable and GridShaped). We also plot
the expected yield when the application experiences a full restart after each
failure (NoSpare). First, one sees that the three approaches that avoid paying
the cost of a wait time after every failure experience a comparable yield, while
the performance of the NoSpare approach quickly degrades to a small efficiency
(30% when the wait time is around 14 h).

The zoom box to differentiate the Rigid, Moldable and GridShaped
yield shows that the Moldable approach has a slightly higher yield than the
other ones, but only for a minimal fraction of the yield. This is expected, as
the Moldable approach takes advantage of all living processors, while the
GridShaped and Rigid approaches sacrifice the computing power of the spare
nodes waiting for the next failure. However, the size of the gain is small to the
point of being negligible. The GridShaped approach experiences a yield that
changes in steps. Both these phenomenons are explained by the next figure.
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Fig. 1. Optimal yield as function of the wait time, for the different types of applications.

Figure 2 shows the number of failures after which the application should do
a full restart, to obtain an optimal yield, as a function of the wait time, for the
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Fig. 2. Optimal number of failures tolerated between two full restarts, as function of
the wait time, for the different types of applications.

three kind of applications considered. We observe that this optimal is quickly
reached: even with long wait times (e.g. 10 h), 200 to 250 failures (depending
on the method) should be tolerated within the allocation before relinquishing
it. This is small compared to the number of nodes: less than 1% of the resource
should be dedicated as spares for the Rigid approach, and after losing 1% of
the resource, the Moldable approach should request a new allocation.

This is remarkable, taking into account the poor yield obtained by the app-
roach that does not tolerate failures within the allocation. Even with a small
wait time (assuming the platform would be capable of re-scheduling applica-
tions that experience failures in less than 2 h), Fig. 1 shows that the yield of
the NoSpare approach would decrease to 70%. This represents a waste of 30%,
which is much higher than the recommended waste of 10% for resilience in the
current HPC platforms recommendations [4,7]. Comparatively, provisioning only
1% of additional resources as spares within the allocations, would allow to achieve
a yield over 88%, for every approach considered, when the wait time does not
exceed 20 h.

The GridShaped approach experiences steps that correspond to using all
the spares created when redeploying the application over a smaller grid before
relinquishing the allocation. As illustrated in Fig. 1, the yield evolves in steps,
changing the slope of a linear approximation radically when redeploying over
a smaller grid. This has for consequence that the maximal yield is always at a
slope change point, thus at the frontier of a new grid size. It is still remarkable
that even with very small wait times, it is more beneficial to use spares (and
thus to lose a full row of processors) than to redeploy immediately.

Figure 3 shows the length of an allocation providing the optimal yield (best
value of F ). After such a duration, the job will have to fully restart in order
to maintain the optimal yield. This figure illustrates the real difference between
the Rigid and Moldable approaches: although both approaches are capable of
extracting the same yield, the Moldable approach can do so with significantly
longer periods between full restarts. This is important when considering real
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life applications, because this means that the applications using a Moldable
approach have a higher chance to complete before the first full restart, and overall
will always complete in a lower number of allocations than the Rigid approach.
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Fig. 3. Optimal length of allocations, for the different types of applications.

Finally, Fig. 4 shows an upper limit of the duration of the wait time in order
to guarantee a given yield for the three applications. In particular, we see that
to reach a yield of 90%, an application which would restart its job at each
fault would need that restart to be done in less than 6 min whereas the Rigid
and GridShaped approaches need a full restart in less than 3 h approximately.
This bound goes up to 7 h for the Moldable approach. In comparison, with
a wait time of 1 h, the yield obtained using NoSpare is only 80%. This shows
that, using these parameters, it seems impossible to guarantee the recommended
waste of 10% without tolerating (a small) number of failures before rescheduling
the job.

Fig. 4. Maximum wait time allowed to reach a target yield.
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6 Conclusion

In this paper, we have compared the performance of Rigid, Moldable and
GridShaped applications when executed on large-scale failure-prone platforms.
For each application type, we have computed the optimal number of faults that
should be tolerated before requesting a new allocation, as a function of the
wait time. Through a realistic applicative scenario inspired by state-of-the-art
platforms, we have shown that the three application types experience an optimal
yield when requesting a new allocation after experiencing a number of failures
that represents a small percentage of the initial number of resources (hence
a small percentage of spares for Rigid applications), and this even for large
values of the wait time. On the contrary, the NoSpare strategy, where a new
allocation is requested after each failure, sees its yield dramatically decrease when
the wait time increases. We also observed that Moldable applications enjoy
much longer execution periods in between two re-allocations, thereby decreasing
the total execution time as compared to Rigid applications (and GridShaped
applications lying in between).

Future work will be devoted to exploring more applicative scenarios. We also
intend to extend the model in several directions. On the application side, we aim
at dealing with non-perfectly parallel applications but instead with applications
whose speedup profile obeys Amdahl’s law [1]. We will also introduce a more
refined speedup profile for GridShaped applications, with an execution speed
that depends on the grid shape (a square being usually faster than an elongated
rectangle). On the resilience side, we will address forward-recovery schemes, such
as ABFT [9,16], in replacement of, or in combination with, checkpoint-restart
techniques.
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798 V. Le Fèvre et al.

8. Daly, J.T.: A higher order estimate of the optimum checkpoint interval for restart
dumps. Future Gener. Comp. Syst. 22(3), 303–312 (2006)

9. Du, P., Bouteiller, A., et al.: Algorithm-based fault tolerance for dense matrix
factorizations. In: PPoPP, pp. 225–234. ACM (2012)
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Abstract. We present FINJ, a high-level fault injection tool for High-
Performance Computing (HPC) systems, with a focus on the manage-
ment of complex experiments. FINJ provides support for custom work-
loads and allows generation of anomalous conditions through the use of
fault-triggering executable programs. FINJ can also be integrated seam-
lessly with most other lower-level fault injection tools, allowing users to
create and monitor a variety of highly-complex and diverse fault con-
ditions in HPC systems that would be difficult to recreate in practice.
FINJ is suitable for experiments involving many, potentially interacting
nodes, making it a very versatile design and evaluation tool.

Keywords: Exascale systems · Resiliency
Fault detection · Monitoring · Benchmarking · Open-source

1 Introduction

Motivation. High-Performance Computing (HPC) systems have become indis-
pensable for economic growth and scientific progress in our modern society. As
the performance of HPC systems increases, the value of the results they produce
increases through higher-fidelity simulations, better predictive models and anal-
ysis of greater quantities of data. The resulting techniques, policy decisions and
vastly-improved manufacturing processes in areas such as agriculture, engineer-
ing, transportation, materials, energy, health care, security and the environment
are bound to impact most aspects of our lives. Today, HPC systems are also being
used as fundamental “instruments” to achieve groundbreaking results in basic
sciences ranging from particle physics to cosmology. Yet, many important prob-
lems in various fields remain unsolvable with current computational resources.
Exascale HPC systems, capable of 1018 operations per second, are believed to
c© Springer Nature Switzerland AG 2019
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be essential for solving such problems [2]. Reaching exascale performance is the
moonshot for modern HPC systems with many nations and companies engaged
in an arms race towards achieving it.

Exascale systems, when they arrive, will come at a significant cost: scaling
current technologies to exascale performance through massive parallelism will
result in systems that have prohibitively-high levels of power consumption [17]
and excessively-high failure rates [4]. Thus, to be usable in production envi-
ronments with acceptable Quality of Service levels, exascale systems need to
improve their power efficiency and resiliency by several orders of magnitude.

In our terminology, a fault is defined as an anomalous behavior at the software
or hardware level that can lead to illegal system states (errors) and, in the worst
case, to service interruptions (failures) [7]. In this paper, we limit our attention
to improving the resiliency of HPC systems through the use of mechanisms for
predicting, detecting and preventing errors and failures. An important technique
in this endeavor is fault injection: the deliberate triggering of faults in a system
so as to observe their behavior in a controlled environment, enable development
of new prediction and response techniques and testing of existing ones [11]. For
fault injection to be effective, dedicated tools are necessary, allowing users to
trigger complex and realistic fault scenarios in a reproducible manner.

Related Work. Fault injection for prediction and detection purposes has been
a topic of great interest in recent years. In [6,8,9,16], the authors employed
software-based fault injection techniques to observe the behavior and perfor-
mance variations of HPC systems in anomalous conditions, and to detect such
faults using system performance metrics. However, while characterizing the fault-
simulating programs that were used, these works do not focus on the tools used
to inject and coordinate the faults themselves in the system.

Several studies have proposed fault injection tools with varying levels of
abstraction. Calhoun et al. [3] devised a compiler-level fault injection tool focused
on memory bit-flip errors, targeting HPC applications. De Bardeleben et al. [5]
proposed a logic error-oriented fault injection tool. This tool is designed to inject
faults in virtual machines, by exploiting emulated machine instructions through
the open-source virtual machine and processor emulator (QEMU). Both works
focus on low-level fault-specific tools and do not provide functionality for the
injection of complex workloads, and for the collection of produced data, if any.

Stott et al. [15] proposed NFTAPE, a high-level and generic tool for fault
injection. This tool is designed to be integrated with other fault injection tools
and triggers at various levels, allowing for the automation of long and complex
experiments. The tool however has aged considerably, and is not publicly avail-
able. A similar fault injection tool was proposed by Naughton et al. [14], however,
to the best of our knowledge, it has never progressed past the prototype stage
and is also not publicly available. Moreover, both tools require users to write
a fair amount of wrapper and configuration code, resulting in a complex setup
process. The Gremlins Python package1 also supplies a high-level fault injector.

1 https://github.com/toddlipcon/gremlins.

https://github.com/toddlipcon/gremlins
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However, it does not support workload or data collection functionalities, and
experiments on multiple nodes cannot be performed.

Joshi et al. [12] introduced the PREFAIL tool, which allows for the injection
of failures at any code entry point in the underlying operating system. This
tool, like NFTAPE, employs a coordinator process for the execution of complex
experiments. It is targeted at a specific type of fault (code-level errors) and does
not permit performing experiments focused on performance degradation and
interference, among other fault types. Similarly, the tool proposed by Gunawi
et al. [10], named FATE, allows the execution of long experiments; furthermore,
it is focused on reproducing specific fault sequences, simulating real scenarios.
Like PREFAIL, it is limited to a specific fault type, namely I/O errors, thus
greatly limiting its scope.

Contributions. The main contribution of this paper is the design and imple-
mentation of FINJ, an easy-to-use open-source Python tool for fault injection
targeted at HPC systems, with workload management capabilities. A relevant
feature of FINJ is the possibility of seamless integration with other injection
tools targeted at specific fault types, thus enabling users to coordinate faults
from different sources and different system levels. By using FINJ’s workload fea-
ture, users can also specify lists of applications to be executed and faults to
be triggered on multiple nodes at specific times with specific durations. FINJ
thus represents a high-level, flexible tool, enabling users to perform complex and
reproducible experiments, aimed at revealing the complex relations that may
exist between faults, application behavior and the system itself. FINJ is also
extremely easy to use: it can be set up and executed in a matter of minutes, and
does not require the writing of additional code in most of its usage scenarios.
To the best of our knowledge, FINJ is the first portable, open-source tool that
allows users to perform and control complex injection experiments, that can be
integrated with heterogeneous fault types and that includes workload support,
while retaining ease of use and a quick setup time.

Organization. The rest of the paper is structured as follows. In Sect. 2, we
describe the FINJ architecture (Sect. 2.1), its components (Sect. 2.2) and their
implementation (Sect. 2.3). In Sect. 3, we present a simple use case to show how
FINJ can be deployed, while Sect. 4 concludes the paper.

2 FINJ Architecture

In this Section we discuss how fault injection is achieved in FINJ. We then
present its architecture, together with some implementation details. Due to its
portable and modular nature, customizing FINJ for different purposes is easy.

2.1 Architecture Overview

Fault injection in FINJ is achieved through tasks that are executed on target
nodes: each task corresponds to a particular application, which can either be
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Fig. 1. Architecture of the FINJ tool showing the division between a controller node
(left) and a target node (right).

a benchmark program or a fault-triggering program. As demonstrated in [15],
this approach allows for the integration in FINJ of any low-level fault injection
framework that can be triggered by using an executable program or a shell script.
A task is defined by the following attributes:

– args: the full shell command required to run the selected task. The command
must refer to an executable file that can be accessed from the target hosts;

– timestamp: the time in seconds at which the task must be started, relative to
the starting time of the injection session;

– duration: the task’s maximum allowed duration, expressed in seconds, after
which it will be abruptly terminated. This duration can serve as an exact
duration as well, with FINJ restarting the task if it finishes earlier, and ter-
minating it if it lasts more. This behavior depends on the FINJ configuration
(see Sect. 2.2). A duration of 0 implies that the task is always allowed to run
until its termination;

– isFault : defines whether the task corresponds to a fault-triggering program,
or to a benchmark application;

– seqNum: a sequence number used to uniquely identify the task;
– cores: the list of CPU cores that the task is allowed to use on target nodes,

enforced through a NUMA Control policy [13]; this attribute is optional.

A set of tasks defines a workload, which is a succession of scheduled fault and
benchmark executions at specific times, reproducing a realistic working environ-
ment for the fault injection process. A particular execution of a given workload
then constitutes an injection session. Many fault programs are supplied with
FINJ, allowing users to experiment with a variety of anomalies out-of-the-box.

FINJ consists of two basic components: a fault injection controller, and a
fault injection engine. The two components correspond to processes that must
be run on the nodes subject to injection experiments. Communication between
them is achieved through TCP sockets using a simple message-based protocol.
The high-level structure of the FINJ architecture is illustrated in Fig. 1.
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FINJ Controller. The controller is the orchestrator of the injection process, and
should be run on an external node that is not affected by the faults. The con-
troller maintains connections to all nodes involved in the injection session, which
run fault injection engine instances and whose addresses are specified by users
when launching the program. Therefore, injection sessions can be performed on
multiple nodes at the same time. The controller reads task entries from the
selected workload: the reading process is incremental, and tasks are read in real-
time a few minutes before their expected execution, according to their relative
time-stamp. For each task the controller sends a command to all target hosts,
instructing them to start the new task at the specified time. Finally, the con-
troller collects all status messages produced by the target hosts, and stores them
in a separate file for each host. These status messages are related to the start and
termination of each single task, besides status changes in the host (for example,
when connection is lost and re-established).

FINJ Engine. The engine is structured as a daemon, perpetually running on
nodes that are expected to be subject to injection sessions. The engine waits for
task commands to be received from remote controller instances. Engines can be
connected to multiple controllers at the same time, and status messages will be
sent to all of them. However, task commands are accepted from one controller
at a time, which is defined as the master of the injection session. The engine
manages received task commands by assigning them to a dedicated thread from
a pool. The thread manages all aspects related to the execution of the task,
such as spawning the necessary subprocesses and sending status messages to
controllers when relevant events (such as the start or termination of the task)
occur. Whenever a fault causes a target node to crash and reboot, controllers are
able to re-establish and recover the previously running injection session, given
that the engine is set up to be executed at boot time on the target node.

2.2 Components

FINJ is based on a highly modular architecture, and therefore it is very easy to
customize single components in order to add or tune features.

Network. Engine and controller instances communicate through a network layer
in the FINJ tool. Communication is achieved through a simple message-based
protocol employing TCP sockets. This design choice is motivated by the fact
that the volume of data sent during injection sessions is extremely low, while
high reliability is a desirable quality. Users can still integrate their preferred
transport method with little effort, thanks to FINJ’s highly modular nature.

Specifically, a message client and server were implemented: clients are used
by FINJ controllers in order to connect to servers hosted on FINJ engine
instances. Messages can then be either commands, related to single tasks and
imposed by controllers, or status messages, which are sent by engines and are
related to status changes in their system. All messages are in the form of dic-
tionaries. This component also handles resiliency features such as automatic
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re-connection from clients to servers, since temporary connection losses are to
be expected in a fault injection context.

Thread Pool. Task commands in FINJ engines are assigned to a thread in a
pool as they are received: each thread manages all aspects of a task assigned to
it. Specifically, the thread sleeps until the scheduled starting time of the task
(according to its time-stamp); then, it spawns a subprocess running the speci-
fied task, and sends a message to all connected controllers to inform them of the
event. At this point, the thread waits for the task’s termination, depending on
its duration and on the current configuration. Finally, the thread sends a new
status message to all connected hosts informing them of the task’s termination,
and returns to sleep. The amount of threads in the pool, which is a configurable
parameter, determines the maximum number of tasks that can be executed con-
currently. Since threads in the pool are started only once during the engine’s
initialization, and wake up for minimal amounts of time when a task needs to be
started or terminated, we expect their impact on performance to be negligible.

Input and Output. In FINJ, input and output of all data related to injection
sessions are performed by controller instances, and are handled by reader and
writer entities. By default, these employ the CSV format, which was chosen
due to its extreme simplicity and generality, but they can be easily customized
by users for other formats. Input in FINJ is constituted by workload files: as
mentioned in Sect. 2.1, these files include one entry for each task that must be
executed in the injection session. Using the CSV format makes workload files
extremely readable, and manually writing workloads corresponding to highly
specific test cases can be easily achieved as well. FINJ output, instead, is made up
of two parts. The first is the execution log, which contains entries corresponding
to status changes in the target node, namely the start and termination of tasks,
errors that are encountered if any, and connection loss or recovery events. The
second part of FINJ output is related to tasks: all output text written to the
stdout or stderr channels during their execution, if any, is reported to controllers,
and is stored in separate plain-text files in a directory alongside the main output
file, each named according to the task’s name and sequence number.

Configuration. The FINJ tool’s runtime behavior is customizable by means of
a configuration file. This file is in JSON format and includes several options
that alter the behavior of either controller or engine instances. Among the basic
options, it is possible to specify the listening TCP port for engine instances, and
the list of addresses of target hosts, to which controller instances should connect
at launch time. The latter is useful when injection sessions must be performed
on large sets of nodes, whose addresses can be conveniently stored in a file.
More complex options are also available: for instance, it is possible to define a
series of commands corresponding to tasks that must be launched together with
FINJ, and must be terminated with it. This option proves especially useful when
users wish to set up monitoring frameworks, such as the Lightweight Distributed
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Metric Service (LDMS) [1], to be launched together with FINJ in order to collect
system performance metrics during injection sessions.

Workload Generation. While writing workload files manually is possible, this
is time-consuming and not desirable for long injection sessions. Therefore, we
implemented in FINJ a workload generation tool, which can be used to auto-
matically generate workload files with certain statistical features, while trying
to combine flexibility and ease of use. The workload generation process is con-
trolled by three parameters: a maximum time span for the total duration of the
workload expressed in seconds, a statistical distribution for the duration of tasks,
and another one for their inter-arrival times. These distributions are separated
in two sets, for fault and benchmark tasks, thus amounting to a total of four.
They can be either specified analytically by the user or can be fitted from real
data, thus reproducing realistic behavior.

A workload is composed as a series of fault and benchmark tasks that are
selected from a list of possible shell commands. To control the composition of
workloads, users can optionally associate to each command a probability for its
selection during the generation process, and a list of CPU cores for its execution,
as explained in Sect. 2.1. By default, commands are picked uniformly. Having
defined its parameters, the workload generation process is then fairly simple:
tasks are randomly generated in order to achieve statistical features close to those
specified as input, and are written to an output CSV file, until the maximum
imposed time span is reached. Alongside the full workload, a probe file is also
produced: this workload file contains one entry for each task type, all with a
short fixed duration, and represents a lightweight workload version. This file can
be used during the setup phase to test the correct configuration of the system,
making sure that all tasks are correctly found and executed on the target hosts,
without having to run the entire heavy workload.

2.3 Implementation

FINJ is implemented in Python, an object-oriented, high-level interpreted pro-
gramming language2, and can be used on all major operating systems. All FINJ
dependencies are included in the Python distribution, and the only optional
external dependency is the scipy package, which is needed for the workload gen-
eration functionality. The source code is publicly available on GitHub3 under
the MIT license, together with its documentation, usage examples and several
fault-triggering programs. FINJ works on Python versions 3.4 and above.

In Fig. 2 we illustrate the class diagram for the FINJ tool. The engine and
controller entities are respectively represented by the InjectorEngine and Injec-
torController classes. Users can instantiate these classes and start injection ses-
sions directly, by using the listen method to put the engine in listening mode, and
the inject method of the controller, which allows to start the injection session

2 https://www.python.org/events/python-events/.
3 https://github.com/AlessioNetti/fault injector.

https://www.python.org/events/python-events/
https://github.com/AlessioNetti/fault_injector
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Fig. 2. Class diagram of the FINJ tool.

itself. However, scripts are supplied with FINJ to create controller and engine
instances from a command-line interface, simplifying the process. This method
will be discussed in Sect. 3. The InjectionThreadPool class, instead, supplies the
thread pool implementation used to execute and manage tasks.

The network layer of the tool is represented by the MsgClient and MsgServer
classes, which implement the message and queue-based client and server used
for communication. Both classes are implementations of the MsgEntity abstract
class, which provides the interface for sending and receiving messages, and imple-
ments the basic mechanisms that regulate the access to the underlying queue.

Input and output are instead handled by the Reader and Writer abstract
classes and their implementations: CSVReader and CSVWriter handle the read-
ing and writing of workload files, while ExecutionLogReader and ExecutionLog-
Writer handle execution logs generated by injection sessions. Since these classes
are all implementations of abstract interfaces, it is easy for users to customize
them for different formats. Tasks are modeled by the Task class that contains
all attributes specified in Sect. 2.1.

Lastly, access to the workload generator is provided through the Workload-
Generator class, which is the interface used to set up and start the generation
process. This class is backed by the ElementGenerator class, which offers basic
functionality for fitting data and generating random values. This class acts as a
wrapper on scipy’s rv continuous class, which generates random variables.

3 Using FINJ

In this Section we demonstrate the flow of execution of FINJ through a concrete
example carried out on a real HPC node and provide insight on its overhead.
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Fig. 3. A sample CSV workload that can be used with FINJ.

3.1 Sample Execution

In this Section we will consider a sample fault injection session carried out using
FINJ. The employed workload file, named sample.csv, is illustrated in Fig. 3.
The test was carried out on one node of an HPC system equipped with two Intel
Xeon E5-2630 v3 CPUs, each with 8 cores, 128 GB of RAM, and running CentOS
7.3. The finj engine and finj controller Python scripts are supplied with FINJ
to start engine and controller instances respectively. Their usage is explained on
the GitHub repository for the tool, together with all configuration options.

In this workload, the first task is the Intel Distribution4 for the well-known
High-Performance Linpack (HPL) benchmark, optimized for Intel Xeon CPUs.
This task starts at time 0 in the workload, and has a maximum allowed dura-
tion of 30 min. The following two tasks are fault-triggering programs: cpufreq
uses the Intel P-State driver in the Linux kernel5 to dynamically reduce the
maximum allowed CPU frequency, emulating performance degradation, while
leak [16] creates a memory leak in the system, eventually using all available
RAM. The cpufreq program requires appropriate permissions, so that users can
access the files controlling Linux CPU governors. The HPL benchmark was run
with 8 threads, pinned on the first 8 cores of the machine, while the cpufreq and
leak tasks were forced to run on cores 6 and 4 respectively. Also note that the
tasks must be available at the specified path on the systems running the FINJ
engine, which in this case is relative to the location of the launching script.

Having defined the workload, the injection engine and controller must be
started. Using the default configuration, and supposing that the test must be
performed locally, this can be accomplished with the two following commands:
python finj_engine -p 30000 &
python finj_controller -w sample.csv -a localhost:30000

In the code above, the -p argument indicates the listening TCP port for the
engine instance. The -a argument is instead the list of engine addresses to which
the controller should connect, and -w is the path of the CSV workload file to
be injected. The controller instance will then connect to the engine and start
executing the workload, storing all output in a unique CSV file for each target
host. When this process is finished, the controller terminates. The output CSV
files for our example have the format shown in Fig. 4: each entry represents a
status change event, which in this case is the start or termination of tasks, and
4 https://software.intel.com/en-us/mkl-windows-developer-guide-overview-of-the-

intel-distribution-for-linpack-benchmark.
5 https://www.kernel.org/doc/Documentation/cpu-freq/intel-pstate.txt.

https://software.intel.com/en-us/mkl-windows-developer-guide-overview-of-the-intel-distribution-for-linpack-benchmark
https://software.intel.com/en-us/mkl-windows-developer-guide-overview-of-the-intel-distribution-for-linpack-benchmark
https://www.kernel.org/doc/Documentation/cpu-freq/intel-pstate.txt
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Fig. 4. A sample output file produced by FINJ after an injection session for the work-
load specified in Fig. 3.

is flagged with its absolute time-stamp on the target host. In addition, we also
find an error field, detailing possible errors that were encountered. Note that the
file is opened and closed by session start and end entries: the presence of these
ensures that the injection process did not encounter errors and that the entire
workload was processed successfully. It can be clearly seen from this experiment
how easily a FINJ experiment can be configured and started on multiple cores.

At this point, the data generated by FINJ can be easily compared with
other data, for example performance metrics collected through a monitoring
framework, in order to better understand the system’s behavior under faults. For
this test, we used the LDMS framework [1] to collect performance metrics on the
target host at each second, for the duration of the injection session. In Fig. 5 we
show the total RAM usage and the CPU frequency of core 0. The benchmark’s
profile is simple, showing a constant CPU frequency while RAM usage slowly
increases as the application performs tests on increasing matrix sizes. The effect
of our fault programs, marked in gray, can be clearly observed in the system:
the cpufreq fault causes a sudden drop in CPU frequency, resulting in reduced
performance and longer computation times, while the leak fault causes a steady,
linear increase in RAM usage. Even though saturation of the available RAM is
not reached, this peculiar behavior can be used for prediction purposes.

3.2 Overhead of FINJ

We also performed tests in order to evaluate the overhead that FINJ may intro-
duce. To do so, we employed the same system used in Sect. 3.1 together with
the HPL benchmark, this time configured to use all 16 cores of the machine. We
run the HPL benchmark 20 times directly, and then repeated the same process
by using a FINJ workload. FINJ was once again instantiated locally. In both
conditions the HPL benchmark scored an average running time of roughly 320
seconds, therefore leading us to conclude that the impact of FINJ on running
applications is negligible, as expected from the implementation.
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Fig. 5. CPU Frequency and RAM Usage, as monitored on the target system during
the sample injection session.

4 Conclusions

We have presented FINJ, a high-level, easy-to-use tool for fault injection and
monitoring in HPC systems. FINJ allows for the automation of complex experi-
ments, and for reproducing anomalous behaviors in a deterministic, simple way.
FINJ is open-source and implemented in Python, an object-oriented interpreted
programming language available on all major operating systems, and has no
dependencies for its core operation. This, together with the simplicity of its
command-line interface, makes the deployment of FINJ on large-scale systems
trivial. Since FINJ is based on the use of tasks, which are external executable
programs, users can integrate the tool with any existing lower-level fault injection
framework that can be triggered in such way, and ranging from the application
level to the kernel, or even hardware level. The use of workloads in FINJ also
allows to reproduce complex, specific fault conditions in HPC systems, and to
reliably perform experiments involving multiple nodes at the same time.

As future work, we plan to perform scalability studies on the FINJ tool,
by deploying it on a large-scale HPC environment. We have already performed
extensive testing on the system presented in Sect. 3 with excellent preliminary
results. Also, we plan to implement the ability to build workloads in which the
order of tasks is defined by causal relationships rather than time-stamps, which
might simplify the triggering of extremely specific anomalous states in a given
system. We will also integrate multiple network transport methods to choose
from besides TCP, so as to extend the range of systems FINJ can be applied to.
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Abstract. In this paper, we address the design challenge of building
multiresilient iterative high-performance computing (HPC) applications.
Multiresilience in HPC applications is the ability to tolerate and maintain
forward progress in the presence of both soft errors and process failures.
We address the challenge by proposing performance models which are
useful to design performance efficient and resilient iterative applications.
The models consider the interaction between soft error and process fail-
ure resilience solutions. We experimented with a linear solver application
with two distinct kinds of soft error detectors: one detector has high over-
head and high accuracy, whereas the second has low overhead and low
accuracy. We show how both can be leveraged for verifying the integrity
of checkpointed state used to recover from both soft errors and process
failures. Our results show the performance efficiency and resiliency ben-
efit of employing the low overhead detector with high frequency within
the checkpoint interval, so that timely soft error recovery can take place,
resulting in less re-computed work.
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1 Introduction

Reliable operation of extreme-scale computing systems is a significant challenge
due to evolving system architectures, hardware components and software, and
sheer scale of these systems. Since it is difficult and costly to build reliable high-
performance computing (HPC) systems, its users or application developers need
to devise solutions which can ensure predictable outcome in the presence of an
array of faults, errors, and failures. Broadly, HPC applications are affected by
soft errors and hard errors. Soft errors are transient in nature, caused mostly
due to cosmic radiation particles interacting with various electronic components
in the computing system. On the other hand, permanent failures in the system
affect components such as memory, processor, system software, and eventually
the applications executing on the HPC system.

Complete resilience of HPC applications requires tackling both soft errors and
process failures, or hereafter referred to as multiresilience. The manner in which
both errors impact applications is unique. Some kind of soft errors can eventually
cause a process failure, such as via corruption of a pointer variable, or loop index
variable. Most soft errors will corrupt the data of the application. Hard errors
which eventually cause a process or compute node failure are relatively easy to
detect. Whereas, it may not always be possible to detect soft errors, i.e., they may
silently corrupt the state of the application with no obvious symptoms, which is
usually referred to as silent data corruption (SDC). SDCs can have significantly
varying consequences on the outcome of the application, ranging from negligible
effect on correctness to unusable results. Therefore, it is important to be able to
design applications which can tolerate and make useful forward progress in the
presence of both soft errors and process failures.

We leverage a design pattern oriented approach to implement multiresilient
HPC applications [1]. Design patterns provide concrete and repeatable solutions
to commonly occurring problems. Based on this idea, previous work [9] identifies
and formalizes design patterns for solution of resilience problems occurring in
HPC systems. In this work, we focus on performance models for design patterns
used for soft error and process failure resilience. These models serve as a guide to
build optimal, efficient and reliable HPC applications. Specifically, we focus on
iterative HPC applications, which can tolerate soft errors by taking additional
time to converge to a solution [4,10]. We are interested in the combination of
soft error detection and checkpoint-based recovery which has minimal impact
on application execution time and provides acceptable level of tolerance to soft
errors. Previous work has identified combination of soft error detection with
checkpoints by identifying the optimal number of verifications to perform within
a checkpoint interval [2]. However, the prior work assumes ideal soft error detec-
tors. On the contrary, we focus on practical detectors which might leave some
soft errors undetected and corrupt checkpointed state, yet provide a satisfactory
solution at the cost of additional iterations beyond the error free case.

Checkpointing is commonly used in HPC applications to recover from pro-
cess failures [9]. It involves checkpointing the application state to a stable stor-
age at regular intervals and its utilization in the event of a process failure.
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The application rollbacks to the last known good checkpoint and continues exe-
cution. A checkpointing based approach becomes complicated with the presence
of soft errors since the state which is being checkpointed may be corrupted, and
the iterative application can become stuck and make no progress. Therefore, it is
important to verify the integrity of the checkpoint before it is stored to a stable
storage. This check provides a loose guarantee that the application will keep on
making forward progress.

In this paper, we develop performance models for multiresilience to both
soft and hard errors using checkpoint-based recovery, which is a well-utilized
method in the field. In our experiments, we compare the performance of two
distinct soft error detectors. One detector is high overhead and high accuracy,
whereas the other detector is low overhead and low accuracy. We investigate
through experiments and derive analytical models to assess whether it is better
to use a high overhead detector less often or a low overhead detector more often.
A tradeoff exists since the low overhead detector can cause the application to
consume more iterations to converge as compared to the case when high over-
head detector is used. This tradeoff is investigated in our work. We perform our
experiments with a Generalized Minimal Residual (GMRES) solver implemented
using Trilinos and Open MPI User Level Failure Mitigation (ULFM) [3] in C++
programming language. The experiments are performed on an in-house Linux
cluster with 960 processing cores as described in Sect. 5.

2 Soft Error Resilience

In this section, the two distinct soft error resilience design patterns utilized in
our work are discussed. Without loss of generality and encompassing the scope
of our work to iterative applications, we introduce the patterns based on a linear
solver. The solver solves for the solution vector x in the system of equations
of the form: Ax = b, where matrix A and right hand vector b are known. Soft
errors can corrupt the state of the solver, which is composed of both static
and dynamic states. The static state in this case forms the matrix A and the
vector b, whereas the dynamic state is represented by the solution vector x.
The remaining state of the solver which is required for achieving computational
results is the environment state. The environmental state includes the variables
associated with the runtime system of the message passing library (e.g., Open
MPI), pointers, index variables, etc. Corruption of any of the above mentioned
state categorizations can cause slowdowns, unbounded errors or fatal crashes.

The SDC detection patterns assist in catching these abnormalities exploit-
ing common algorithmic characteristics of the solver. The two patterns namely:
“Monotonicity Violation” and “Bounded Computations” are listed in Tables 1
and 2 respectively. In the first case, the use of the pattern relies on the property
of the solver that it is always making forward progress with increasing iteration
count, i.e., a characteristic of iterative algorithms. This pattern can be utilized
in all iterative applications which use a quality metric to determine convergence
of the algorithm. To reduce the possibility of a false positive detection using
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Table 1. Resilience pattern: monotonicity violation

Pattern name Monotonicity violation

Problem SDC Detection in iterative algorithms

Context Check the progress of algorithm at each iteration by
inspecting the quality metric

Forces Applicable for iterative algorithms where quality metric is
monotonically non-increasing

Solution Calculate quality metric at each iteration and check violation
by comparing the quality metric from previous iteration

Capability The need to calculate quality metric frequently increases
computation and communication between parallel processes

Protection domain SDCs in static and dynamic state can be detected

Resulting context Enables timely recovery of iterative algorithm state

Rationale Inexpensive method as compared to redundant computation

this pattern, the difference from prior iteration can be bounded within certain
limit. For detection in the GMRES solver, we utilize the residual which is a
measurement of the error in the current solution. The residual at iteration or
time step k is defined as: rk = b − Axk. The residual has the property of being
monotonically decreasing in the GMRES solver [8]. Over the course of iterative
computations, if for any reason, this property is violated, we infer the presence of
soft errors, and initiate recovery. The calculation of residual is a costly operation
because it involves matrix vector multiplication, Axk. The matrix multiplication
is a global operation across all the parallel processes and involves both parallel
computation and communication. However, this high overhead detector is able
to catch soft errors with high accuracy.

The GMRES solver does not need to calculate the residual at every iteration
to determine convergence since it can use the 2-norm of the result obtained
from solving the least squares problem as an indicator for convergence [8]. The
residual only needs to be calculated after convergence has been indicated and it
is used to certify that convergence criteria has been met, i.e., the residual falls
below a certain user-specified threshold value. Even though the value of 2-norm
can be used as an indicator of errors, we rely on the more accurate residual as
a quality metric for use within the monotonicity violation resilience pattern. As
far as our low overhead detector is concerned, we rely on inexpensive invariant
checks, as highlighted by the bounded computations design pattern in Table 2.
It involves checking of an invariant condition which is done locally. In case of
GMRES solver, projection lengths produced during the orthogonalization phase
are bounded by Frobenius norm of matrix A. This condition on the projections
can be checked relatively inexpensively, since each parallel process iterates over
its projection lengths locally. These are a good indicator of the corruption of
state due to soft errors [8]. However, it is not a high accuracy detector.
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Table 2. Resilience pattern: bounded computations

Pattern name Bounded computations

Problem SDC Detection in critical computations

Context Check the progress and integrity of algorithm by inspecting
the outputs produced during critical computations

Forces Applicable for algorithms with identifiable critical
computations and deterministic lower and upper bounds

Solution Compare key outputs produced during critical
computations against lower and/or upper bounds

Capability Utilize implicit calculations and local invariant checking

Protection domain SDCs in static and dynamic state can be detected

Resulting context Enables timely recovery of the iterative algorithm state

Rationale Inexpensive method as compared to redundant
computation

Once soft errors are detected, checkpoints are utilized for soft rollback. To
be able to minimize the amount of re-computations, it is best to perform soft
error detections frequently such that the rollback takes place quickly, i.e., we fail
fast. Otherwise, if only a single detection or verification is performed prior to the
checkpoint, then the whole interval which is usually composed of multiple itera-
tions needs to be re-computed. This is because soft errors cause data corruption
unlike process failures which cause disruption in the parallel environment and
are relatively easy to detect. The resilience to process failures and aspects for
multiresilience are discussed in the next section.

3 Process Failure Resilience and Multiresilience

In distributed applications based on the message passing programming model,
the failure of even one process in the parallel environment causes a fatal crash
of the application in most implementations. Recent proposal to integrate ULFM
in Message-Passing Interface (MPI) addresses some of the challenges associated
with handling process failures [3]. For example, ULFM implementation based on
Open MPI provides the ability to reliably detect process failures using a con-
sensus algorithm. It also provides the ability to continue execution despite the
presence of process failures, by reconstructing communication objects. However,
it does not provide the ability to recover application state and this is left on
to the users to enable exploitation of unique traits of each application. Multi-
ple methods exist to recover application state including forward and backward
recovery of application state [9]. Methods which use application-oblivious check-
pointing tend to have high storage and performance overheads as compared to an
approach which only stores the minimal state required to resume computation.
In this work, we utilize application-assisted checkpointing. For example, we only
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checkpoint the dynamic state of the solver at regular intervals, whereas the static
state of the solver only needs to be checkpointed at the start and redistributed
after each process failure to sustain future failures.

The checkpoint restart design pattern to recover from process failures is
widely utilized [9]. Recovery from process failure can be accomplished via spares
or using only the surviving processes. In this work, we utilize spare processes to
recover from failures since it avoids the need to re-balance the workload among
surviving processes. We also use in-memory checkpointing [12], whereby the
highly optimized point-to-point connectivity between nodes in the HPC system
is utilized to store the checkpoints in the memories of assigned nodes in the sys-
tem. We maintain two copies of the checkpoint, one is maintained locally, and
the other one is maintained at a neighboring process. This arrangement helps
to recover checkpointed state in case of failure of one process. The approach
can be extended to handle multiple process failures by maintaining extra level
of redundancy at more than two processes. This is beyond the scope of this
work. In a multiresilient implementation, the local checkpoints can be used to
recover from soft errors relatively inexpensively compared to the communication
overhead required in case of process failure. Thus, performing multiple soft error
detections within the interval is feasible since errors can be caught early and
timely recovery can be performed.

In a multiresilient solution, it is also important to verify the integrity of
the state being checkpointed, since use of corrupt state in recovery can hinder
the ability of the iterative application to make forward progress. It may be
possible to store multiple checkpoints, and jump back to older ones, in case no
forward progress is determined, however it results in high overheads as well as the
challenge of determining when the soft error might have started the corruption
of checkpoints. Therefore, it is important to perform soft error detection to look
for obvious abnormalities in the state being checkpointed. After the memory
store, we assume that the checkpointed state will not be corrupted. However,
with double in-memory checkpoints it is possible to drop this assumption.

4 Performance Model for Multiresilience

In this section, we develop analytical models to investigate performance charac-
teristics of multiresilient iterative applications. We focus on the combination of
soft error detection and mitigation patterns, and process failure mitigation pat-
terns that reduce the time-to-solution. Specifically, we are interested in finding
which kind of detector to use and how often to use it within a single checkpoint
interval given their overheads. We assume two types of soft error detectors D1, a
high overhead and high accuracy detector, and D2, a low overhead and low accu-
racy detector, with overheads quantified in software implementation as TD1 and
TD2 , respectively. In case of GMRES, TD1 is mostly composed of the overhead of
calculating the residual and TD2 is composed of the overhead of iterating through
multiple projection lengths and performing the comparisons. It is noteworthy to
mention that if we assume both D1 and D2 to be ideal detectors, i.e., they can
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detect each and every soft error, then choosing the low-overhead detector D2 is
the obvious choice. As opposed to prior work [2], we define our detectors to be
non-ideal and are therefore interested in the overall impact on time-to-solution.
With a generic software detector having a overhead TD, the time-to-solution for
an iterative application in the error- and failure-free case (TFF ) is quantified as:

TFF = TworkNFF + �NFF γcheck�(TDND + Tcheck) (1)

Here, Twork represents the time spent doing useful work inside a single iteration
of the application, NFF represents the number of iterations required to con-
verge to a solution when no error or failure occurs, γcheck represents the factor
or frequency with which checkpoints are taken (assumes checkpoints are only
taken at the completion of an iteration, e.g., a value of 1/20 means checkpoint
is taken after every 20 iterations), Tcheck represents time spent performing the
checkpoint, and ND represents the number of soft error detections done within
a single checkpoint interval. The rate with which to take the checkpoints is
dependent on the cost of performing the checkpoint and failure rate of the HPC
system [7]. A tradeoff exists between frequency of checkpoints which causes over-
head in case of failure-free execution and the amount of re-computation in case
of failure which may be high if checkpoints are not taken frequently. We assume
γcheck to be constant for our analysis. Other parameters are dependent on the
application and vary depending on the workload used.

Fig. 1. The multiresilient checkpointing and fail-fast recovery approach.

Now, we model the time-to-solution in the presence of both detected soft
errors and process failures, Tfail. This is composed of the following components:
(1) error- and failure-free total time, (2) overhead incurred due to re-computation
after recovery from detected soft-errors and process failures, (3) recovery over-
heads of detected errors and failures, and (4) extra work done beyond error free
case due to presence of bounded errors or undetected soft errors in the state of
the application. With these overheads, Tfail can be quantified as:

Tfail = TFF + NSE(TrecompSE + TSEr) + NPF (TrecompPF + TPFr)
+ TworkNextra + �γcheckNextra�(TDND + Tcheck), where,

(2)

TrecompSE = ((1 + 2 + 3 + ... + ND)/ND).((Tworkγ
−1
check)/ND + TD)

= 0.5 (ND + 1).((Tworkγ
−1
check)/ND + TD), and, (3)

TrecompPF = (Tworkγ
−1
check + TDND)/2 (4)
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Here, NSE is the expected number of soft errors which are detected and is there-
fore dependent on the type and frequency with which the detector is utilized
(note, this represents each instance when the detector positively flags corrup-
tion of state which may include multiple soft errors in practice); TrecompSE and
TSEr represent the re-computation and recovery overheads after recovery from a
single successful soft error detection, respectively; NPF represents the expected
number of process failures which are detected; TrecompPF and TPFr represent re-
computation and recovery overheads associated with detected process failures,
respectively; Nextra represents the expected number of extra iterations taken by
the iterative application beyond the error-free case. In Fig. 1, the periodic place-
ment of soft error detectors is shown. We assume that the detectors are placed
such that the interval is divided into equal sized chunks which may compose
multiple iterations of useful work depending on ND. Irrespective of the original
location of the soft fault, the error only has a chance to be detected upon the
execution of a detector. If the first detector after the checkpoint catches an error,
then only one chunk of work and one detection need to be recomputed. Simi-
larly, if the second detector catches an error, then two chunks of work and two
detections starting from the last restart location need to be recomputed, and so
on. Following this observation and assuming the fault is equally likely to strike
in each chunk, the average value for re-computation due to detected soft errors
can be estimated as in Eq. 3. On the other hand, a process failure is detected
almost immediately due to its disruptive nature, therefore, based on a uniform
distribution, the average amount of work recomputed is estimated as in Eq. 4.

Other parameters such as NSE and NPF also depend on the system spec-
ifications such as error and failure rates, respectively. Similarly, Tcheck can be
determined based on the latency of transferring checkpoints over the HPC net-
work and the size of the checkpoint [5]. The values for other parameters are best
estimated through statistical fault injection experiments. In the next experiment
and results section, we find the value of ND for each type of soft error detector
which minimizes Tfail. We also estimate Nextra and NSE in terms of type and
frequency of detector used, although they are strongly application dependent.

5 Experiments and Results

In our experiments, we utilize the FT-GMRES solver which has been imple-
mented using the Trilinos framework [8]. Trilinos provides the ability to solve
large scale problems using an array of parallel programming models on a variety
of computing platforms. Our implementation is done using ULFM 1.1 built on
top of Open MPI 1.7.1. ULFM provides the ability to detect failed processes
and remove them from communication objects. In our previous work, we modi-
fied FT-GMRES to support multiresilience including the ability to utilize spare
processes to recover from process failures [1]. This work provides an in-depth
analysis of how to choose the right soft error detector in a multiresilient setup.

We perform our experiments on a Linux cluster with 40 nodes with 2 AMD
Opteron processors each (48 cores per node) interconnected with 1 Gbps ether-
net. We solve a linear problem with a sparse matrix A which has about 7 million
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rows and 186 million non-zero elements using 512 cores. The GMRES solver is
able to converge to a solution in 320 iterations in the fault free (NFF ) case. We
perform fault injection in our experiments to determine the multiresilience of
the solver and various parameters of interest. In all cases, the number of process
failures and the time window in which these are injected are the same, and are
based on an exponential distribution. The checkpoints are also performed at the
same rate, e.g., we set γcheck = 1/20 for all our experiments. With this setup, the
variables associated with process failures have bounded values. Soft errors are
injected randomly into computed data (e.g., the resultant vector produced after
a sparse matrix vector multiplication operation) after almost every 10 iterations
of useful work. The error and failure rates are fixed across all our experiments.
Enough fault injection experiments (at least 100 for each case) are performed in
each case to keep the coefficient of variation low.

Fig. 2. The effect on total time-to-solution (average and std. dev.) with different num-
ber of soft error detections inside a single checkpoint interval. Performance estimates
from proposed analytical models in Eqs. 1 and 2 are also plotted.

The overall time-to-solution for FT-GMRES with the two soft error detec-
tors, i.e., monotonicity violation and bounded computations (projections), is
shown in Fig. 2. The effect of performing increasing number of soft error detec-
tions inside a single checkpoint interval (note: a max of 20 detections can be
performed) on time-to-solution shows the runaway effect when using the high-
overhead detector, especially when ND > 5. In our experiments, on average we
measured about 90 fold higher overhead for monotonicity detector compared
to bounded computations detector. Thus, using the high accuracy detector too
often starts to dominate the time-to-solution nullifying any other positive effects.
However, the disparity among overheads of accurate and inaccurate detectors is
high for FT-GMRES solver. Consequently, the conclusions may differ for other
applications depending on the tradeoff between penalty of extra work with low
accuracy detector and overhead of using the high accuracy detector. The estima-
tions obtained from the performance models proposed in Eqs. 1 and 2 are also
plotted in Fig. 2, demonstrating a decent bound on time-to-solution with both
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detectors in FT-GMRES solver. Some observations on the parameters in our
models are: Tcheck is dominated by the time to store the checkpoint in remote
memory, TSEr << TPFr recovering checkpoint from local memory is orders of
magnitude faster than process failure recovery, and Nextra and NSE depend on
the type of the detector and the frequency (ND) with which it is used.

Based on the performance of the two detectors, we also evaluate an additional
type of detector, which is a hybrid of the monotonicity violation and bounded
computations detectors. In this case, we perform the low overhead detection at
every iteration of the solver, whereas the high overhead detector is performed
up to 5 times inside a single checkpoint interval. The time-to-solution with the
hybrid soft error detector is shown in Fig. 2. The hybrid detector gives mid-tier
overall performance, with interesting implications on total iteration count and
soft error detection success rate as discussed hereafter.

Results in Fig. 3 show the total number of iterations taken by the solver to
converge to a solution with each type of detector while using different number
of detections inside a single checkpoint interval. The total iteration count here
includes all the re-computations after each soft error and process failure recovery,
and the extra iterations taken by the solver to converge to a solution beyond the
fault free case. Overall, increasing the use of low overhead detector does not effect
the iteration count drastically when compared to the high overhead detector. For
example, the total iterations decrease at a rate of 0.08 and 0.71 per detection
when using bounded computations and monotonicity patterns, respectively. The
hybrid approach seems to provide the fastest decrease in total iteration count
among all cases. These results correspond directly to the number of additional
iterations taken by the solver beyond the fault free case, Nextra. Our estimations
for Nextra range between 18 and 46 for the high accuracy detector, and between
51 and 60 for the low accuracy detector. These results show that there is more
overhead due to additional iterations for the low accuracy detector including
extra checkpoints as compared to high accuracy detector.

Fig. 3. The effect on total iterations (average and std. dev.) to converge to a solu-
tion with different number of soft error detections inside a single checkpoint interval.
Includes re-computations with errors and extra iterations beyond error-free case.
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The detection accuracy of each soft error detector is shown in Fig. 4. Here,
the undetected soft errors may cause any of the following cases: negligible effect
on the outcome or convergence of the solver, extra work to converge to a solution,
and increased chances of inducing a process failure. Another possibility is that
the solver does not converge to a solution in allocated time, which is not listed
earlier since sufficient time is given to the solver in our experiments. The results
in Fig. 4 also provide a good estimate for expected number of soft errors detected
NSE in each case. We estimate NSE by averaging the number of soft errors
detected across all runs. On average, the high accuracy detector catches between
1 and 2 soft errors, whereas the low accuracy detector catches between 0 and 1
soft errors in each run depending on the number of detections performed in each
interval. A significantly higher number of soft errors are injected compared to
those which are detected in line with the premise of our work. As expected, the
bounded computations soft error detection pattern achieves lower accuracy than
the monotonicity violation pattern. The low accuracy detector seems to surpass
the lowest accuracy achieved by high accuracy detector with ND > 15. The use
of high accuracy detector at low frequency combined with low accuracy detector
at highest frequency is seen to provide matching or better accuracy than the
high accuracy detector in most cases. Overall, the hybrid detector is able to
detect soft errors more often reducing the overheads due to extra iterations and
therefore is able to provide significantly better resilience than the low overhead
detector with up to 4% more performance overhead.

Fig. 4. Variation of soft error detection rate (total number of experiments in which
soft errors were successfully detected out of all experiments) when different number of
soft error detections are performed inside a single checkpoint interval.
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6 Related Work

Previous works in the design of resilient iterative methods have focused on tol-
erance to either soft errors [4,10] or process failures [6], but not both together.
Most recently, design patterns have been utilized for implementation of mul-
tiresilient solutions in HPC applications [1]. The catalog of design patterns [9]
comprehensively describes various resilience solutions, a layered hierarchy of the
patterns and a patterns language. The use of algorithmic approaches to detect
soft errors for sparse linear algebra and a linear solver are demonstrated in [11]
and [8], respectively. In this work, we develop a performance model which aids in
the selection and tuning of soft error detectors in conjunction with a checkpoint-
based recovery approach, which is widely applicable [5,12]. Related work [2]
developed a performance model for checkpoint-based recovery in presence of both
soft errors and process failures, however, it assumes ideal soft error detection and
therefore does not consider the special case of iterative algorithms. Furthermore,
we also test the efficacy of our performance models via experiments with a linear
solver.

7 Conclusion

We demonstrate the design of performance efficient multiresilient linear solver
application. Checkpoint restart is shown to be an effective recovery approach
in our multiresilient solution. Our approach shows the appropriate combination
of soft error and process failure resilience solutions. We evaluate two different
type of soft error detectors in our work and investigate the tradeoffs of using
them under non-ideal detection conditions. Results evaluate the affect of using
the detectors with different frequency on time-to-solution, the number of extra
iterations taken by the solver beyond the fault free case, and the rate of successful
soft error detections in simulated fault injection experiments. A hybrid approach
which uses the high overhead and high accuracy detector sparingly combined
with a low overhead detector and low accuracy detector at every iteration is
observed to have similar or better detection success rate as using a high overhead
detector at every iteration with significantly less impact on time-to-solution.

Acknowledgements. This material is based upon work supported by the U.S.
Department of Energy, Office of Science, Office of Advanced Scientific Comput-
ing Research, program manager Lucy Nowell, under contract number DE-AC05-
00OR22725.
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Abstract. Resilience for HPC applications typically is implemented
as a CPU-based rollback-recovery technique. In this context, long run-
ning accelerator computations on GPUs pose a major challenge as these
devices usually do not offer any means of interrupt. This paper proposes a
solution to the aforementioned problem: it suggests a novel approach that
rewrites GPU kernels so that a soft interrupt of their execution becomes
possible. Our approach is based on the Compute Unified Device Archi-
tecture (CUDA) by Nvidia and works by taking advantage of CUDA’s
execution model of partitioning threads into blocks. In essence, we re-
write the kernel so that each block determines whether it should continue
execution or return control to the CPU. By doing so we are able to per-
form a premature interrupt of kernels.

Keywords: HPC · GPU · Resilience

1 Introduction

A large number of high-performance systems these days are equipped with
GPGPUs [2,6,7,13,15], as they provide higher energy efficiency and offer a sig-
nificantly larger degree of parallelism than traditional multi-core CPUs. As a
result, the number of compute cores on such systems becomes very large, which
in turn, increases the probability of hardware failures. This brings the prob-
lem of resilience to hardware failures, which is known to be a challenging topic
already [3,5], to the next level. First, the mean time between failures (MTBF) for
a single node becomes shorter. Second, resilience for failing GPU nodes requires
special treatment.

The de-facto resilience technique today is application checkpointing. A check-
pointing system pauses the running application and takes a snapshot of its state.
The state is either captured automatically by recording register values and the
state of the memory of a paused process (e.g. by using software such as BLCR [1])
or by explicit stores of relevant data (e.g. by using libraries such as FTI [4]). On
restore, the captured state is restored and the application restarts its execution
from the latest checkpoint. For applications that use GPUs, the described check-
pointing mechanism will not work without further measures. GPU kernels do not
run as a part of any operating system processes. Even if a process is suspended,
c© Springer Nature Switzerland AG 2019
G. Mencagli et al. (Eds.): Euro-Par 2018 Workshops, LNCS 11339, pp. 826–838, 2019.
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the GPU kernels keep on running. Actually, at the time of writing, we are not
aware of any hardware mechanisms to interrupt a running GPU kernel.

This behavior poses a serious problem to automated checkpoint mechanisms
such as BLCR: as the GPU cannot be interrupted, it is not possible to save a
stable snapshot of the GPU state. Checkpoints are only possible between kernel
invocations. The problem is intensified, as the size of memory on the GPUs
increases, resulting in longer runs of the individual kernels [18,19]. In the case
of long kernel execution times, explicit stores of relevant data do not help either
as snapshots can only be orchestrated between kernel executions. Furthermore,
snapshots require all relevant data to be present on the host.

This paper focuses on finding a solution to the GPU kernel snapshotting
and restoring problem in a checkpointing-system agnostic way. We propose an
approach that is based on the observation that most GPU kernels schedule orders
of magnitude more threads than a GPU can physically execute concurrently.
While it is not possible to interrupt an individual thread, a thread can voluntarily
stop its execution. Thus, in principle, we are able to interrupt a kernel execution,
after the currently running threads have terminated.

We describe a technique on how to rewrite CUDA kernels so that they become
“interruptible”, and we provide a library1 with a concise API to simplify this
task. We demonstrate how the proposed approach can be used by modifying the
code of a real world application. We measure the overheads that our approach
brings, using real-world and synthetic benchmarks, concluding that typically the
overheads are below 0.2%. This shows that the proposed approach can be used
in combination with any checkpointing system for applications that use GPUs.

2 Mechanism Description

The key idea of our approach lies in the observation that due to resource con-
straints, it is not possible to schedule all kernel threads simultaneously, instead,
threads are scheduled in blocks. After all threads in a block are terminated, they
are replaced by remaining threads of the compute kernel. This staggered starting
makes it possible to instrument every thread at the beginning of its execution
with a check of a shared interrupt variable and terminate the execution if the
variable is set to a specific value. As a result, a kernel can be forced to terminate
in a very short time.

Issuing an interrupt. In order to implement the interrupt mechanism, we use
a memory-mapped integer variable that is shared between the host and the
device. On the host we define a variable and ask the CUDA driver to share it
with the GPU:

1 int ∗ t imeout = 0 ;
2 cudaHostAlloc ( timeout , s izeof ( int ) , cudaHostAllocMapped ) ;

1 Freely available at https://bitbucket.org/maxbaird/cuda backup.

https://bitbucket.org/maxbaird/cuda_backup
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For a host to issue an interrupt, it writes a value 1 into a shared variable
*timeout. The host waits for the kernel to terminate then transfers data from
the GPU. After that the value of *timeout can be set back to 0 so that further
kernel invocations could perform some useful work.

Fig. 1. GPU multithread execution model. (a) shows the conceptual view with all
threads running in parallel, while in reality (b) the number of concurrent executing
threads is limited by hardware resources.

Interrupting a kernel. The CUDA execution model [11] suggests that all the
threads are launched simultaneously and the kernel runs till all the threads are
completed (see Fig. 1a). However, in reality, threads are scheduled in blocks as
it is shown in Fig. 1b.

While indeed a thread cannot be interrupted once it has been started, a
thread can decide to interrupt itself. Such a decision can be based on checking
the state of a global variable at the start of execution. According to the model
from Fig. 1a, this approach would not work: all threads check the variable at the
same time and then either all continue or interrupt. However, using the more
realistic model, the threads that have not been scheduled will observe a change
in the variable and will interrupt. As a result, the kernel terminates faster than
the case where we wait for all threads to complete, as we only have to:

– wait for all the currently scheduled threads to complete; and
– execute all the remaining threads where the first statement within every such

a thread will terminate its execution.

Consider a host issuing an interrupt at time t1 in Fig. 1b. The kernel can
complete at t1′ + max((c × n), tr), where c is the time it takes to execute one
conditional per block (GPU executes in a lock-step), n is the number of remaining
unscheduled blocks, and tr is the time to finish already scheduled threads.

Snapshotting. After a kernel has been interrupted, the host copies all data that
will be necessary to restart the kernel. In the simplest case, these data include
inputs of the kernel and partial outputs of the kernel. In addition, we need to
perform a bit of bookkeeping via a boolean array which tracks which threads
have been executed to completion. At the start of each thread, we check whether
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this thread has yet to run. At the end of each thread, we update this boolean
array to indicate that it has completed. At every snapshot, we also copy this
array back to the host.

Restarting. Restarting a kernel is straight-forward: we copy all the kernel-
relevant data back to the GPU and launch the kernel again. We use above
mentioned mask to prevent already completed threads from executing again.

Fig. 2. How to apply the proposed technique to the original application.

2.1 Integration with Checkpointing System

Once the GPU kernel has been interrupted and all the relevant data has been
copied to host, it is safe to snapshot the global state of the application. However,
as most checkpointing systems are not aware of GPUs, it is difficult to predict
when the checkpointing will happen, and, as a consequence, when to capture the
state of running kernels. Our solution to this is to make kernel snapshots every
n time units. After each snapshot, the host checks the boolean array for any
unfinished threads. If such threads exists, then the kernel is relaunched. This
process continues iteratively until all threads are executed.

To apply the proposed technique, we modify the kernel and the code that
invokes the kernel as shown in Fig. 2. The wait time on the host should ideally
fall within the MTBF.

2.2 Synchronisation Within Kernels

The approach presented so far works for kernels that do not use explicit syn-
chronisation because explicit synchronisation breaks the proposed approach. The
reason for this is that threads within blocks are not necessarily scheduled all at
the same time. Threads within blocks are split in warps and if a warp is stalled
for any reason the scheduler is free to replace it with another warp. Consider the
case of a kernel with explicit synchronization, and after the first warp reaches
the synchronization point, an interrupt occurs. In this case all the other warps
will skip their executions, but threads from the first warp will never leave syn-
chronisation point, resulting in a hung kernel.
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Our solution to this problem is to terminate the entire block when we receive
an interrupt from the host. To do this, the value of timeout is only read once by
thread zero of warp zero and stored in a variable local to the block. A block-level
synchronisation point is set immediately after the read of timeout so that no
warps can proceed until timeout has been read. After all warps have synchro-
nised, the block-local variable is checked to determine whether or not the block
should be executed.

A final note about synchronization, CUDA 9.0 introduced grid and multi-
device synchronization along with co-operative groups to the programming
model. Co-operative groups extends the CUDA model to organise groups of
co-operating threads so that programmers can express the granularity of com-
municating threads. The approach presented in this paper is unaffected by ker-
nels using co-operative groups because co-operative groups are within blocks
and still obey block level synchronization. Our approach cannot work if a ker-
nel performs grid or multi-device synchronization because our mechanism would
cause the kernel to hang if some blocks terminate early before reaching the grid
synchronization point and other blocks are already in wait of synchronization.
In summary, the advantages of this approach are as follows:

1. Only makes sense for long running kernels
2. The kernels must be resource intensive enough to exhaust the parallelism in

the GPU
3. Does not work for kernels that perform grid or multi-device synchronization
4. May not be suitable for kernels that consume most of the GPU memory

2.3 Implementation

For the adoption of the proposed approach we introduce an API2 that facili-
tates adjustment of applications. The core of the API consists of three macros:
BACKUP KERNEL DEF, BACKUP CONTINUE, BACKUP KERNEL LAUNCH and a wrapper
around cudaMalloc. Assuming that an application has one kernel, we replace
cudaMalloc with its BACKUP_ version. We adjust kernel definitions as follows:

1 g l o b a l void
2 kernel name ( /∗ args ∗/ ){
3 /∗ k e rne l body ∗/
4 }

1 g l o b a l void
2 BACKUP KERNEL DEF ( kernel name ,
3 /∗ args ∗/ ){
4 BACKUP CONTINUE ( ) ;
5 /∗ k e rne l body ∗/
6 }

2 The API with its documentation and examples can be found at https://bitbucket.
org/maxbaird/cuda backup.

https://bitbucket.org/maxbaird/cuda_backup
https://bitbucket.org/maxbaird/cuda_backup
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We replace kernel invocation as follows:

1 kernel name<<<blocks ,
2 threads>>>
3 ( /∗ args ∗/ ) ;

1 BACKUP KERNEL LAUNCH
2 ( kernel name , blocks ,
3 threads , /∗ args ∗/ ) ;

When we rewrite a kernel definition, the macros extend the arguments with
a boolean mask array to log which threads ran previously, and they insert the
code that checks for the interrupts and the code that terminates the entire
block of threads if the interrupt has been received. The BACKUP cudaMalloc
memory wrapper collects the allocated data structures that the kernels need so
that we can transfer them back from the GPU to the host for the purpose of
snapshotting. The macro that wraps the launch of the kernel defines a loop that
launches the kernel, waits for a certain time, sets the interrupt and transfers the
data (captured by BACKUP cudaMalloc wrapper) from the GPU.

For a complete example, please refer to demo directory https://goo.gl/
BKvcxX where we demonstrate how the proposed API applies to an applica-
tion with a kernel that adds two vectors. We provide an original code vecadd-
original.cu and its modified version vecadd-modified.cu that uses our API.

Currently, the API is restricted to applications with a single kernel and only
provides a wrapper for cudaMalloc. Allocations done via cudaMallocManaged
automatically work because they are managed by the unified memory system
which means that data is readily available at snapshot time. Wrappers for the
remaining CUDA allocation functions like cudaMalloc3D and cudaMemcpy2D are
missing. These limitations are only of a technical nature and will be fixed in the
foreseeable future.

3 Experimental Setup

In order to evaluate the proposed mechanism we use a real-world application,
PBOOST [19] and an artificial example. Ideally, it would have been more suit-
able to use an established benchmarking suite such as the Rodinia benchmarks
instead of an artificial example. However, these benchmarks do not run long
enough on our hardware to escape measurement noise and provide conclusive
results. A simple kernel is best to isolate and measure the sources of overhead.
PBOOST is a tool for parallel permutation tests in genome-wide association
studies which concern single nucleotide polymorphism pairs and their associa-
tion with diseases via the combination of their main effects and interactions. On
our system PBOOST runs for about 38 min. The modified version of PBOOST
can be found at https://goo.gl/84pNQs. All the modifications to the code are
implemented using our API.

https://goo.gl/BKvcxX
https://goo.gl/BKvcxX
https://goo.gl/84pNQs
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We also use the artificial kernel in Listing 1.1 to perform an in-depth analysis
of the overheads introduced by our mechanism.

1 g l o b a l void
2 ke rne l (unsigned long long n , unsigned long long ∗ r e s ){
3 unsigned long long x = 0 ;
4 for (unsigned long long i = 0 ; i < n ; i++){
5 x++;
6 }
7 ∗ r e s = x ;
8 }

Listing 1.1. Artificial kernel for evaluating overheads

We deliberately choose such a trivial kernel, so that we get 100% occupancy
on the GPU. All experiments are performed on a AMD Opteron 6376 system
with four sockets running Scientific Linux Release 7.4 (Nitrogen), kernel ver-
sion 3.10.0. The system is fitted with 512 GB of RAM, running at 800 MHz and
an NVIDIA TITAN-XP GPU, which is connected via PCIe x16. The TITAN-
XP can execute 61,440 threads simultaneously using its 30 streaming multi-
processors (SM). For our experiments we use CUDA 9.0 with a driver ver-
sion 384.81. Each application is executed 10 times to eliminate measurement
noise. We report the average execution time and 90% confidence intervals. In
addition, we note kernel configurations in the tripple-chevron CUDA notation:
<<<blocks, threads>>>; where blocks represents the number of blocks of
threads and threads represents the number of threads per block.

4 Evaluation

Figure 3 shows the execution times of PBOOST with an increasing number of
snapshots. The application runs for approximately 38 minutes and the variation
of execution time is within 5 s (0.2%) when performing 0 to 6 interrupts. We
see that in this particular example, the execution time of the application with
our mechanism enabled is the same as that of the vanilla version within the
measurement error.

Despite such a low overhead looking very promising, this result is not con-
clusive. In order to understand the nature of the overheads that our mechanism
really brings, we study them in isolation. We investigate how expensive is it
to do:

1. Conditional checks in each thread
2. Soft interrupts of a kernel
3. Memory transfers

For these experiments we will use the kernel from Listing. 1.1.
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Fig. 3. Absolute runtimes of modified application

4.1 Conditional Checks Overheads

Every thread needs to perform two conditional checks (interrupt and did it
already execute) to determine whether to continue or not, so the goal of this
experiment is to determine the cost of having these extra checks. To avoid also
measuring any overhead that may come from the GPU scheduler, we use a ker-
nel configuration that matches the number of simultaneous threads that can be
executed by the GPU. As the TITAN-XP can execute 61,440 threads simultane-
ously, we use a configuration of <<<60, 1024>>>. The results in Fig. 4a show
that the conditional checks is significant if number of operations, and by exten-
sion runtime, is very small. However this becomes irrelevant for the cases, we
are interested in. Figure 4b shows that the overhead remains minimal for much
larger values of n.

Fig. 4. Overhead of conditional check
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4.2 Interrupt Overheads

In order to examine this overhead, we performed set n = 1.6× 109 with a kernel
configuration of <<<1320, 1024>>>. This configuration is needed to be able
to interrupt the kernel at least 20 times. To be able to interrupt a kernel N
times, at least (N + 1) × s × t threads are required, where s is the number of
SMs and t is the maximum number of threads an SM can execute. No memory
transfers were made. Figure 5a shows the absolute runtime for each interrupt
and Fig. 5b shows the time each interrupt adds to the vanilla execution. We see
that for a runtime of approximately 3 min, each interrupt adds between 34 ms
to 85 ms; the variability of which can be attributed to measurement noise.

Fig. 5. Overheads of soft interrupts. Kernel configuration <<<1320, 1024>>>

Fig. 6. n = 1.6×109. Kernel configuration <<<1320, 1024>>>. Single memory copy
of 11.9 GB made at each interrupt
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4.3 Data Transfer Overheads

To measure this overhead, we set n = 1.6 × 109 with 98.3% (11.9 GB) of GPU
memory allocated. At each interrupt, all GPU allocated memory is transferred
back to the device. The results in Fig. 6 show that having to perform large
memory transfers at each interrupt noticeably increases the overhead.

The first two experiments show that practical overheads of checking a condi-
tional or doing a software interrupt are close to zero. Memory overheads on the
other head, can be quite expensive, but we did not observe them in PBOOST.
The reason for this is that despite the kernel runs for such a long time, it only
uses 213 MB of the GPU memory, which can be copied very quickly.

5 Related Work

CheCUDA [16] and NVCR [10] are presented as checkpoint/restart tools both
of which take a similar approach to GPU fault tolerance. The former works
by hooking into basic CUDA driver API calls to record status changes on the
device, writing those changes into a file at checkpoint time and using this file
to re-initialise the device at restart. NVCR works in a similar way but deletes
all CUDA resources before checkpointing and restores them right after check-
pointing. Both approaches need the kernel to run to completion and depend on
the CUDA runtime to automatically detach itself from the running process and
destroy its context. Unfortunately the CUDA runtime stopped doing this from
version 3.2 and onward when support for 64-bit device side memory space was
added. This is a problem because an existing context at checkpoint time will
have its information captured. Restarting an application with this information
will fail because the context is no longer attached to the device.

A possible way to circumvent the limitation of CUDA’s runtime remain-
ing attached would be to mimic the approach taken by CheCL [17]. CheCL is
implemented in the context of OpenCL and transparently provides checkpoint-
ing capabilities by substituting the OpenCL shared library with its own version.
This allows CheCL to decouple the process from the OpenCL runtime by for-
warding all API calls to a proxy process that executes the real API function.

Virtual machines (VMs) are a viable option to achieve both fault tolerance
and process migration. Along these lines vCuda [9] and GVIM [8] are proposed as
a GPGPU computing solution for applications running on VMs. The advantage
of a VM is that it inherently decouples the application from the GPU hardware
interface thus simplifying the checkpoint step. This means that API calls need to
be intercepted and redirected to the guest OS resulting in large communication
overheads and performance degradation.

CudaCR [14] and VOCL [12] are presented as schemes for soft error recovery
for GPUs and coprocessors respectively. CudaCR captures the GPU state within
the kernel to be able to roll back to a previous state if a soft error occurs. VOCL
provides a transparent virtualization layer between applications and the OpenCL
runtime. This allows the capture of API calls so that they can be replayed if a soft
error occurs. It is worthy to note that CudaCR does address soft errors for long
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running kernels, however in contrast to our work, neither of these approaches
specifically target hardware failures. Approaches mentioned in this section need
to wait for GPU kernels to complete before taking a checkpoint; to the best of
our knowledge none consider the case of a long-running kernel.

6 Conclusions and Future Work

This paper proposes a solution to the problem of checkpointing applications that
use GPU kernels. We present a mechanism that periodically captures a state
of the running GPU kernels. With such a mechanism in place, we can use any
existing checkpointing system to make snapshots of an application, while a GPU
kernel is still running. It is guaranteed by the construction of our mechanism that
any such a snapshot captures enough of a state to safely restore the application.

The key insight of this approach lies in the observation that not all the
threads of the kernel start at the same time. Such a delay makes it possible to
instrument the thread to check for the interrupt and terminate voluntarily if
the interrupt has been received. As we have demonstrated on a real-world and
synthetic examples, the runtime overhead of the proposed mechanism is very
small. We have implemented a library with a compact API which makes our
approach straight-forwardly applicable to existing applications. The implemen-
tation is freely available at BitBucket.

The effectiveness of the proposed approach enables several future directions
of research. First of all, the straightforward nature of our API suggests an auto-
mated instrumentation of GPU kernels should be easily possible. Secondly, we
would like to integrate our approach with an existing checkpointing system. All
we need to do is to make sure that the system makes a snapshot at the time
when we captured the state of a kernel (“Checkpoint” stage in Fig. 2b). The
checkpointing system could also set or change the time we wait after the kernel
launch, so that the snapshotting frequency could be altered.

As our experiments show, the amount of data that is transferred to enable
checkpointing dominates the overall overhead. The amount of data that we cur-
rently copy at every interrupt/kernel restart is a conservative over approxima-
tion. The blocks of results that have been computed do not need to be copied
to the GPU. However, figuring out whether it is safe to copy data partially is
far from trivial. Despite being inspired by the needs of resilience, our interrupt
mechanism has further uses. Fail early scenarios can use our approach so that
GPUs return as soon as possible if the system has already started failing and
a rollback has to occur. It can also be used for fault injection testing on GPUs
which is difficult if kernels run to completion.
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