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Abstract Livestock productions are changing with scale production increasing and
concentration in some geographical areas. As a consequence, the activity envi-
ronmental sustainability is under concern especially for manure and carcass man-
agement, disposal, or treatment. The livestock production system has its own
particularities for each rearing process, resulting in residues with different charac-
teristics. News technologies for pre-treatment and treatment for these residues have
been established. Anaerobic digestion is an alternative for treatment due to this
process combines the waste stabilization producing renewable energy and biofer-
tilizer. The different components of manure excreted by livestock could be influ-
enced on the biodegradation and biogas production. Previous studies are
corroborated in this chapter and highlighted the importance of process control and
digestate application when the carcass and manure are digested. For the evaluation
of the efficiency of treatment processes, reduce environmental risks, and sanitary
aspects, the choice of biomarkers is imperative. This chapter presents an approach
and review to legislation about the conditions and criteria for the use of manure and
carcasses in biodigesters and subsequently biofertilizer.
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5.1 Livestock Production

The world food economy is increasing the demand by livestock products and con-
sequently the global livestock production. Livestock is an important economic activity
around the world, due to high-value products (Herrero et al. 2013). Livestock products
(milk, beef, pork, and poultry meat) are supplied by four animal food systems (beef
cattle, dairy cattle, pigs, and broilers) (Weindl et al. 2017). Swine, poultry, and cattle
chains have representativeness importance in the global production with approxi-
mately 110, 71 and 61 million ton of meat in 2013, respectively, in addition, milk
production is around 508 million ton (Gerber et al. 2013).

Livestock operations providing social benefits, mostly in the developing ones,
however, are a major impact on the environmental quality through effluent pro-
duction, large uses of water, and emission of greenhouse gases (GHGs) Sakadevan
and Nguyen (2017). GHGs’ emissions from cattle represent about 65% of total,
while swine and poultry contribute with 9 and 8%, respectively. Table 5.1 is
described the emission intensity of each chain.

Manure management practices that ensure the recovery and recycling of nutri-
ents and energy contained in manure along chains can contribute to mitigation of
GHG. In many parts of the world, where occurs the increasing of specialized
livestock farms, without sufficient land for use these residues for crop production,
increase the necessity of treatment alternatives (Petersen et al. 2007).

5.1.1 Cattle

USA is the major producer of bovine meat with 11.9 million ton in 2017, followed
to Brazil (9.5), European Union (7.9), China (7.3), and India (4.3), and these
countries represent 66% of the world production USDA (2018). For milk pro-
duction, the leadership continues with USA (87 million ton), followed by India
(50 million ton), China (36 million ton), Russia (31 million ton), Brazil (31 mil-
lion ton), and Germany (29 million ton), and these countries represent approxi-
mately 50% of the world’s total production (IFCN 2016).

Dairy systems (meat and milk production) are constantly changing due to the
market demand and land occupation. The dairy systems are characterized by the
following phases (Fig. 5.1) (FAO 2016a):

• Gestation: refers to the pregnancy period after mating, when the calf fetus
develops prior to birth;

Table 5.1 Global production and emission intensity for livestock chains

Herd Production (million tons in 2013) Emission intensity (kgCO2-eq kg−1 product)

Cattle 61.4 67.6

Chicken 71.6 5.4

Swine 110.2 6.1

Source Gerber et al. (2013)
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• Birth—Weaning: is the period after birth up until the calf is weaned from either
its mother’s milk or a milk replacement substitute. This stage may have different
durations depending on the production system;

• Rearing (heifer): refers to the stage where the female animal (heifer) gains weight
postweaning, reaching approximately 65–80% of the adult weight;the heifer may
be mated or may be transferred to the beef system for fattening or immediate
slaughter. This stage defined that animal is used to milk or meat production;

• Mature (milking): refers to the stage where adult postpartum cows are milked;
• Mature (maintenance): the former refers to the stage where animals are at their

minimum mature body weight or may be used for other purposes;
• Finishing: the stage when the body weight is deliberately increased for slaughter.

Mortality on production units can depend on health status and management
level, being considered a routine mortality until 5% of herd annually (McConnel
et al. 2015; FAO 2016a).

5.1.2 Poultry

Statistics from poultry industry demonstrated that USA is the major producer of
meat with 18.7 million ton in 2017, followed to Brazil (13.1 million ton) European
Union (11.8 million ton), and China (11.6 million ton), representing 60% the
world production (Embrapa 2018; USDA 2018).

The poultry sector is structurally diverse; there are differences in the scale and
types of housing, feeding systems, and animal genetics. In a modern system pro-
duction, the broilers are raised in large, open, or fully enclosed houses. The floors of
the houses are covered with litter consisting of wood chips, rice hulks, or peanut
shells. Barns are frequently equipped with automatic systems to deliver feed and

Fig. 5.1 Differences between
systems of dairy milk and
meat production. Source
Adapted from FAO (2016a)
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water (FAO 2016b). Figure 5.2 demonstrates the systems of meat and egg pro-
duction. In this chain, the routine mortality was between 5 and 9% per year (CAST
2008).

5.1.3 Swine

China is the major producer of swine meat in the world with 53.4 million of ton in
2017, followed by European Union (23.6 million ton), USA (11.6 million ton),
and Brazil (3.7 million ton), representing approximately 83% of total global pro-
duction USDA (2018).

Swine production systems present a high variability ranging from very low
(subsistence) to large-scale, in response to a factors socio-economic, markets and
consumption. Globally, there is a wide variety of swine production systems, can be
characterized by the following phases (FAO 2016c):

• Gestation: breeding females during gestation period;
• Breeding or farrowing: piglets until weighing 7–15 kg between 21 and 28 days

of age;
• Nursery or Weaner: pigs, weighing 7–15 kg, reared to 25–35 kg at age 56–

84 days;
• Growing to finishing: feeder pigs, weighing 25–35 kg, grown to market weight;

Swine production segregation is organized according to the countries charac-
teristics (FAO 2016c). One example of segregation is demonstrated in Fig. 5.3, at
where: farrow-to-feeder (gestation and breeding/farrowing), wean-to-finish
(nursery/weaner and growing to finishing), Feeder-to-finishing (growing to finish-
ing), farrow-to-wean (gestation, breeding/farrowing and nursery/weaner) fully
integrated systems (gestation, breeding/farrowing, nursery/weaner, and growing to
finishing).

Fig. 5.2 Differences between
systems of meat and egg in
poultry chain. Source
Adapted from FAO (2016b)

102 D. C. Tápparo et al.



Mortality on production units can change depending on health status and
management level, generally is between 3 and 9%. Likewise, the number of piglets
stillbirths per litter can vary significantly, depending on litter size and sanitary
status (FAO 2016c).

5.2 Management and Treatment of Animal Carcasses

There are different types of residues generated in livestock and poultry production that
can be separated in: farm and industry levels. At farm level is generated mainly two
residues, manure and dead animals, meanwhile, at industry level we have hatchery
wastes, residues of meat, fat, feathers, blood, condemned carcasses, and others.

As the livestock industry grows, intensified for global food demands, the
necessity of disposal alternatives that effectively manage carcasses and manure are
increased. Simple and inexpensive methods such as burial are used for mortalities

Fig. 5.3 Swine production systems and animal phases. Source Cestonaro do Amaral et al. (2016)
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disposal on small farms, but they can lead to water and air pollution, and neither is
practical for routine, large-scale use (Gooding and Meeker 2016). Responsible and
safe animal carcass disposal is an important issue whole the world (Won et al.
2016), and need includes protection of environment, animal, and public health, due
to animal carcass may contain pathogens, many of zoonotic importance (Berge
et al. 2009; Zhong et al. 2017).

The methods used for carcass disposal include incineration, burial, rendering,
composting, and anaerobic digestion.

• Incineration: is thermal-treatment method where animal carcasses or
by-products are burnt at high temperatures (>850 °C), during this process is
expected to destroy all infective pathogens (NABC 2004) (Fig. 5.4). The
principal health concerns with the incineration of carcasses related to gaseous
emissions and release of dioxins and furans from flue gas and fly ash, from
incomplete combustion can settle in areas around carcass incinerators (Gwyther
et al. 2011; Hseu and Chen 2017). Pollution control, it is necessary for the
incineration installation, can reduce the risk of noxious emissions.

• From an environmental point, animal carcass incineration has a high energy
demand that uses very high temperature (Gwyther et al. 2011). Furthermore,
must be taken into consideration about biosecurity risks when transporting
animal carcasses off-site (farms) in order to incineration facilities Stanford and
Sexton (2006).

• Burial: To be applied this method should be considered, land topography, water
table, and soil type of the available land will determine if burial is a valid,
although has degradation need time and while production of noxious odors will
continue during the degradation Stanford and Sexton (2006). In order to reduce
the risk of transmission of bovine spongiform encephalopathy (BSE), the

Fig. 5.4 Animal carcass incinerator equipment. Source Lucas S. Cardoso
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Commission Regulation (EC No. 1774/2009) prohibited in EU on-farm burning
and burial for all fallen stock, irrespective of species susceptibility to prion
diseases (except in specific situations, or in areas where access is practically
impossible). In USA, burial/permitted landfilling is an accepted practice for
animal carcass disposal in emergency management of animal mortalities (USDA
2012).

• Rendering: in this process entails crushing animal carcasses and by-products
into smaller particles, heating and separate fat and protein, transforming in meat
and bone meal and tallow (Kalbasi-Ashtari et al. 2008). However, after prob-
lems with BSE, the feeding of meat and bone meal is currently prohibited in
developed countries, owing to rendering plants do not play as significant a role
in the disposal of animal wastes, to avoid the dispersion of pathogens
(Franke-Whittle and Insam 2013). Tallow from rendering can be used in among
other applications as soaps, washing powders, as lipids in the chemical industry
and cosmetics (Kalbasi-Ashtari et al. 2008). Rendering, as for incineration, has a
high energy demand but if tallow is recovered for subsequent energy production
then the net GHG emissions are likely to be low. The main environmental
concerns associated with rendering are related to gas and odor emissions
(Gwyther et al. 2011). Figure 5.5 demonstrates a flour of animal carcass.

• Composting: is a simple technique that can be undertaken on-farm, typically the
process involves the layering of carcasses between strata of carbon-rich sub-
strate such as straw, sawdust, or rice hulks with a final covering of carbon-rich
substrate over the entire pile (NABC 2004) (Fig. 5.6); it is a relatively inex-
pensive technology and the final product can be transformed in fertilizer (Wang
et al. 2016). Composting of dead animals requires the addition of a carbon
source to ensure proper C/N ratios, odor and leachate control and equipment
requirements differ the composting process (Kalbasi et al. 2005). The time for
composting is a concern due to characteristics of the organic material and
pathogens reduction (Glanville et al. 2016), because the organic matter insta-
bility, recontamination by pathogenic organisms and ammonia emission
(Lasekan et al. 2013).

Fig. 5.5 Flour of animal
carcass. Source Monalisa
Pereira
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• Anaerobic digestion (AD): is a promising technology that combines a method
for carcass disposal with renewable energy production, and other end products
including liquid and solid fertilizers (digestate) (Zhang and Ji 2015). Anaerobic
digestion of dead livestock is not permitted within current EU legislation
without prior treatment of the carcass (sterilization) (EC No. 1069/2009).
Figure 5.7 demonstrates an anaerobic co-digestion system that used animal
carcass after pre-treatment.

Decision-makers should consider factors that compose each disposal technology
(Table 5.2), including the principles of operation, costs, environmental considera-
tions, advantages, and disadvantages of each technology (Baba et al. 2017).

Fig. 5.6 Schematic of conventional composting system for dead animals

Fig. 5.7 Anaerobic co-digestion of swine carcass and manure. Source Monalisa Pereira
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5.3 Anaerobic Digestion Process Using Animal
by-Products

5.3.1 Biochemical Methane Potential (BMP)

Due to a large production of livestock and poultry products, thousands of tons of
organic by-products in the form of carcass, viscera, feet, head, bones, blood, and
feathers are generated. Studies have suggested that residues that contain high
concentrations of proteins and lipids (such as carcasses and animal products) are
attractive substrates for biogas production (Rajagopal et al. 2014; Zhang and Ji
2015). The BMP test can be very helpful to estimate the biogas generation
capacities of different substrates (Table 5.3).

The residues have a high methane potential, on the other hand, mono-digestion
methods are susceptible to inhibition due to the accumulation of volatile fatty acids
and/or unionized ammonia, resulting in toxicity for methanogenic archaea (Béline
et al. 2017), reducing the methane production. One alternative to reduce this effect
is simultaneous anaerobic co-digestion with others residues (e.g., manure), which
may contribute to the dilution of inhibitory compounds originated during decom-
position (Rajagopal et al. 2014). Using livestock manure with the substrate for
co-digestion has shown to be an alternative treatment option.

Anaerobic co-digestion (AcoD) between manures and C-rich residues overcome
these problems by maintaining a stable pH, within the methanogenic range, and
reducing the ammonia concentration by dilution while enhancing methane pro-
duction (Mata-Alvarez et al. 2011, 2014; Zhang et al. 2016). Most part of studies
were conducted using livestock manure to establish different residues, with different
types of reactors submitted at different operating parameters as temperature, organic
loading rate (OLR), and hydraulic retention time (HRT) (Nasir et al. 2012).

Table 5.2 Advantages and disadvantages of methods for livestock carcasses disposal

Disposal
methods

Advantages Disadvantages

Incineration Superior disease control high
volume of waste reduction

Expensive, equipment, and fuel required;
ash requires disposal; gas emissions;

Burial Easy and inexpensive Possible groundwater contamination
tracking of sites required low degradation

Rendering No generation of residues. Hide
and tallow recycled

Logistic limitations; odor and gas
emissions

Composting Organic fertilizer production,
easy technology, pathogens
inactivation

Need control the time of composting due
to odor emission and regrowth of
pathogens

Anaerobic
digestion

Renewable energy and organic
fertilizer production

Necessity of pre-treatment of carcasses
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5.3.2 Co-digestion of Animal Carcass

As discussed above, co-digestion is an interesting alternative to reduce inhibitory
effects of carcasses degradation under anaerobic conditions. Tápparo et al. (2018)
described biochemical methane potential of swine carcass is around 1076 ± 48
LNbiogas kgVSadd

−1 until five times more than swine manure. During co-digestion, the
potential of methane yield is incremented until 6% per each Kgcarcass added at m3 of
manure.

Massé et al. (2008) and Rajagopal et al. (2014) investigated psychrophilic AcoD
of swine carcasses and swine manure in a sequence batch reactor (SBR) operated at
25 °C. Their results showed an increase in biogas production and no inhibition at
rates of 20 and 40 kgcarcass m

�3
manure (that represents up to eight times commercial

swine farm mortality rates) (Massé et al. 2008). However, at carcass loading

Table 5.3 Biochemical methane potential of different residues of animal by-products

Animal Material BMP
(LN CH4 kgVSadd

−1 )
Refs.

Bovine and
swine

Digestive tract
content

400 Luste et al. (2009)

Meat and bone meal 390 Pitk et al. (2012)

Fat 978 Pitk et al. (2012)

Swine Meat tissue 976 Borowski and Kubacki (2015)

Intestinal waste 826 Borowski and Kubacki (2015)

Meat 575 Hejnfelt and Angelidaki (2009)

Carcass 600 Tápparo et al. (2018)

Solid slaughterhouse 580 Rodríguez-Abalde et al. (2011)

Manure 406–
1157 (biogas)

Cestonaro do Amaral et al.
(2016)

Bovine Soft offal 650 Ware and Power (2016)

Paunch 228 Ware and Power (2016)

Manure 204 Kafle and Chen (2016)

Poultry Intestine residues 512 Yoon et al. (2014)

Blood 250 Yoon et al. (2014)

Solid slaughterhouse 460 Rodríguez-Abalde et al. (2011)

Manure and feather 342 Yoon et al. (2014)

Feather 210 Salminen and Rintala (2002)

Meat 500 Salminen and Rintala (2002)

Litter 259 Kafle and Chen (2016)
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rates > 230 kgcarcass m
�3
manure simulating emergency disease outbreak, the system

was resulting in accumulation of volatile fatty acids and biogas inhibition
(Rajagopal et al. 2014).

Several studies have tested different operational conditions for livestock and
poultry carcass co-digestion with manure and others residues and are summarized
in Table 5.4.

5.3.3 Sanitary Aspects of Animal Carcass
Anaerobic Digestion

The AD process may be a sustainable method for on-farm carcasses management
converting into biogas and organic fertilizers, with environmental and socioeco-
nomic benefits (Hidalgo et al. 2018); however, when the reactors are operated in
psycrophilic and mesophilic temperatures, the AD process itself is not sufficient to
guarantee sanitary safety aspects (Viancelli et al. 2013; Fongaro et al. 2014;
Tápparo et al. 2018).

Temperature is considered the main factor that influences the pathogens inacti-
vation during anaerobic digestion (Franke-Whittle and Insam 2013) due to temper-
ature increase can cause denaturation of proteins in the cell membrane, because it is
more permeable and allowing diffusion of compounds into the cytoplasm Ziemba and
Peccia (2011). Considering sanitary aspects, for animal by-products use in biogas
plants, a pre-treatment is necessary to avoid pathogens dissemination in environment.

Regulation (EU) No 142/2011 (2011) determined that the process must be
monitored and E. coli and Enterococcus counts must not exceed 1000 (3.0 log10)
CFU/g, absence of Salmonella and Clostridium perfringens, reduction of infectivity
of thermoresistant viruses and products must be subjected to a reduction in
spore-forming bacteria, where they are identified as a relevant hazard (Commission
Regulation (EU) No 142/2011 2011).

Table 5.4 Operational conditions of animal carcasses anaerobic co-digestion

Material Organic
loading rate

Reactor
type

Temperature
(°C)

Refs.

Swine carcass and
manure

3.2 g COD L−1 d−1 SBR 20–25 Massé et al. (2008)

Swine carcass and
manure

3.2 g COD L−1 d−1 SBR 25 Rajagopal et al.
(2014)

Swine carcass and
sugar beet pulp

– Batch
scale

35 Kirby et al. (2018)

Beef carcass, algae,
and manure

– Batch
scale

40 Pratt et al. (2013)

Swine carcass and
vinasse

6.8 ± 0.4 kgvs add.
m−3 d−1

Batch
scale

35 Dai et al. (2015)
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5.3.4 Compounds that May Cause Inhibition During AcoD
Using Animal by-Products

The AcoD can be inhibited by some parameters that can compromise seriously the
biogas-generating process. Some of these parameters that need attention during
animal by-products anaerobic digestion are described below. Sometimes, these
parameters present synergic effect, making difficult to determine the exact cause of
decline in process performance (Moestedt et al. 2016).

5.3.4.1 Free Ammonia (FA)

The anaerobic digestion of livestock wastes and materials rich in proteins can
increase total ammoniacal nitrogen (TAN) in digestate, that can cause inhibition of
methanogenic microorganisms due to shifting of chemical equilibrium to FA
resulting in low methane production (Yenigün and Demirel 2013; Kunz and
Mukhtar 2016). The mechanism that explains FA inhibition says that it can freely
permeate cell membranes resulting in the change in intracellular pH, increasing the
cell maintenance energy requirement, and inhibition of specific enzyme reactions
(Tao et al. 2017). Bayr et al. (2012) reported that one FA concentration of
635 mg L−1 promotion an inhibition of 50% on methane producing during the
digestion of slaughterhouse by-products. High levels of FA also lead to an increase
on volatile fatty acids concentration (VFA) during AD process, and this situation
indicates an imbalance on microbiological community and facilitates foam gener-
ation (Kirchmayr et al. 2011; Resch et al. 2011). Previous studies about swine
carcass and manure co-digestion in laboratory scale demonstrated an increase
around 10 mg L−1 of NH3–N for each kgcarcass added per m�3

manure, (Table 5.5).

5.3.4.2 Volatile Fatty Acids (VFA)

Residues that contain high lipids concentration are difficult to degrade, such as
animal by-products, hydrolysis must be coupled with the growth of hydrolytic
bacteria (Vavilin et al. 2008). Lipids can cause flotation and during hydrolysis, by
extracellular lipases, VFA are accumulated (Palatsi et al. 2011). Anaerobic

Table 5.5 Ammonia and free ammonia during swine carcass and manure co-digestion

Swine manure and carcass ratio (kg m−3) Digestate

NH3–N (mg L−1) Free ammonia (mg L−1)

0 2180 208

35 2220 269

68 2850 320

100 3000 345

Source Authors
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digestion process is stable at a VFA-to-alkalinity ratio below 0.4. However, a severe
instability can occur when the volatile fat acids/alkalinity (VFA/AL) ratio exceeds
0.6 (Mézes et al. 2011). Due to the possible accumulation of VFA, the co-digestion
with substrate with higher alkalinity has a good option for animal by-products as
described by (Rajagopal et al. 2014) and (Tápparo et al. 2018).

5.3.4.3 Foaming Generation

Substrate composition (i.e., lipids and proteins higher) has effects on the AD pro-
cess viscosity, which may contribute to the increase of foaming (Kougias et al.
2014). Lipids have a tendency to form aggregates and foam causing problems
(Cuetos et al. 2008). The presence of foaming in a biodigester can represent
operational problems with as reactor overflow and fouling of mixing system
(Kougias et al. 2015).

Several studies demonstrated a decrease of methane production because foaming
problems and accumulation of fats occurred in the reactor during digestion or
co-digestion of animal by-products (Cuetos et al. 2008; Pitk et al. 2013; Borowski
and Kubacki 2015; Pagés-Díaz et al. 2015).

An ideal ratio between animal by-products and others residues are necessary for
the process occurred without declining in biogas production. If one substrate was
identified to cause foam, it was kept generally out of the process if possible or at
least reduced in the substrate mix until foaming stopped (Lindorfer and Demmig
2016).

5.4 Legislation Applied for Animal by-Products
Treatment and Disposal

European Union follows a regulation about the treatment and disposal of animal
by-products (ABP). The European regulation (EC No. 1069/2009) defines different
residues into categories based on the risk and material origin:

• Category 1: is a high-risk material, includes animals suspected of being infected
by a transmissible spongiform encephalopathy (TSE), wild, pet, and zoo
animals;

• Category 2: includes manure and digestive tract content, killed or fallen animals,
including animals killed to disease control purposes, fetuses and oocytes,
embryos, semen which are not destined for breeding purposes;

• Category 3: is low-risk ABP and comprises the following: carcasses and parts of
animals slaughtered, blood, placenta, wool, feathers, hair, horns, and hoof that
did not show infected disease communicable.
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EU regulation describes the anaerobic digestion as an alternative treatment for
Category 2 material (after pre-treatment, pressure sterilization), and Category 3
(some materials need used pasteurization like pre-treatment (EC No. 1069/2009).

In Brazil, national legislation describes that animals that died due to mandatory
notification diseases, according to IN 50 (MAPA 2013), is a high-risk material
(similar to material of Category 1 described in EU regulation), and have a specific
treatment according to, respectively, state legislation. However, for routine mor-
talities (that could be classified as Category 2), alternative treatments could be
applied. With the purpose of to evaluate and develop technological solutions of
correct disposal of dead animals along poultry, swine, and bovine chains Embrapa
(Brazilian Agricultural Research Corporation) and Ministry of Agriculture,
Livestock and Supply (MAPA) developed the project “TEC-DAM, Technologies
for disposal of dead animal”. One of the objectives of this project is to evaluate the
conditions for the use of dead animals in the biogas production chain (Nicoloso
et al. 2017).

Due to the less development of anaerobic digesters in USA, no specific regu-
lations about utilized animal by-products are found. However, Wang et al. (2018)
suggested that USA could follow the European Union regulations for pathogens
control during anaerobic digestion.

5.5 Final Remarks

Residues with high lipids and protein content like animal by-products, especially
carcass, have an excellent potential of biogas. However, it is necessary a good process
control due to a possibility of free ammonia and volatile fat acids accumulation and
consequently inhibitions on methane production and foam generation. Besides that
health aspects should be considered for digestion, as like European recommendation,
the pre-treatment is imperative to ensure the pathogens inactivation.
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