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Abstract This chapter, dedicated to a specific packing optimization scenario of
considerable interest in space engineering and logistics, follows a previous one
appearing in this volume [1]. Although it is presented as the second part of the
whole topical discussion proposed, it can be read independently.

The layout optimization, with balancing conditions, of a given set of 3D-objects,
in a container partitioned by horizontal planes into subcontainers, is considered.

We define special combinatorial configurations describing the specific structure
of the problem. A mathematical model, based on the combination of the phi-function
technique and the introduced configurations, is provided. The model takes into
account not only the placement constraints (i.e., nonoverlapping, containment) and
the mechanical characteristics of the system but also the combinatorial features
relevant to the partitions of the set of objects placed inside the subcontainers. The
solution strategy is proposed and the results of numerical experiments are presented.

1 Introduction

Layout instances with balancing conditions belong to the class of NP-hard problems
and are a subject of study in computational geometry and operations research [2, 3],
where the methods adopted for their solution represent quite a recent branch.

The essence of the problem lies in the search for the optimal placement of a
given set of 3D-objects in a container, ensuring the balancing of the system under
consideration.
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The necessity of taking into account the assigned balancing constraints in opti-
mization layout problems arises in various applied science fields and technologies,
such as, for example, in engineering concerning the design of aircraft, ships,
submarines, devices, and components, in logistics problems (when packing goods
for transportation or storage) [4, 5]. Rocket design and space technology represent
an area of particular interest in this class of problems.

At the initial stages of the layout definition of a spacecraft, it is necessary to
take into account special constraints on static and dynamic characteristics (center of
mass, axial and centrifugal moments of inertia), as described in [6].

In [7–10], the problems of the layout of cylinders in a cylindrical container
with balancing constraints are considered. These publications provide mathematical
models with different objective functions. To solve these problems, heuristic
algorithms, based on the specific features of each mathematical model, are proposed.
Papers [11–13] consider mathematical models and methods for solving the layout
problem of a given set of objects, with balancing conditions.

In [3], the authors study (NP-hard) placement optimization problems, which
cover a wide spectrum of industrial applications, including space engineering. The
present chapter considers mathematical modelling tools and a solution strategy
for placement problems. A class of 2D/3D geometric objects, called phi-objects,
is introduced and considered as mathematical models of real items. The concept
of phi-functions is used to describe nonoverlapping and containment constraints.
A mathematical model of a basic placement issue is constructed as a constrained
optimization problem that takes into account allowable distances between objects.
A solution strategy is proposed. As an example, a placement optimization problem
with balancing conditions arising in space engineering is considered. This consists
in the placement of cylinders and cuboids of given weights and sizes in a parabolic
container, divided by parallel axial circles minimizing the deviation of the system
center of gravity from a given point. The chapter also provides a number of
computational results for 2D and 3D applications.

Paper [13] studies the layout optimization problem, called BLP, of 3D-objects
(solid spheres, straight circular cylinders, spherocylinders, straight regular prisms,
cuboids, and tori) in a container (with cylindrical, parabolic, or truncated conical
shapes) partitioned into sectors by parallel axial circles. The problem takes into
account given minimum and maximum allowable distances between objects, as well
as balancing conditions in terms of equilibrium, moments of inertia, and stability
constraints. A continuous nonlinear programming (NLP) model of the problem
is developed using the phi-function technique. The abovementioned paper also
considers several BLP variants, providing appropriate mathematical models and
solution algorithms, based on nonlinear programming and nonsmooth optimization
methods, as well as the relevant computational analysis. In this work, however, the
assignment of objects to the container sectors is assumed to be established a priori.

The innovative contribution of this chapter relates to the following points:

1. We extend the formulation of the layout optimization problem discussed in
[13]. Our new formulation, called CBLP, takes into account not only placement
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and balancing constraints of the system but also combinatorial features of the
problem. These consist, in particular, in the assignment (no longer established a
priori) of the given items to the system sectors.

2. We investigate the concept of combinatorial configurations to handle the discrete
structure of the CBLP problem.

3. We define mathematical modelling tools for placement constraints, with both
continuous and discrete variables, called D-phi-function and quasi-D-phi-
function.

4. We provide a mathematical model formulation of the CBLP problem that
involves both continuous and discrete variables.

5. We propose a solution strategy that uses the novel algorithm for the combinatorial
configuration generation.

2 Problem Formulation

Let � be a container of height H that can take the form of a cuboid, cylinder,
paraboloid of rotation, or truncated cone. The container � is defined in the fixed
coordinate system Oxyz, where Oz is the longitudinal axis of symmetry. We
assume that container � is divided by horizontal planes into subcontainers �j,
j ∈ Jm = {1, . . . , m}. We denote distances between circles Sj and Sj + 1 by tj,

j ∈ Jm,
m∑

j=1
tj = H . The center of the base of container � is located in the origin of

the coordinate system Oxyz.
Let A = {Ti , i ∈ Jn} be a set of homogeneous 3D-objects given by their metrical

characteristics. Each object Ti of height hi and mass mi is defined in its local
coordinate system Oixiyizi, i ∈ Jn. The location of object Ti inside container �

is defined by vector ui = (vi, zi, θi), where (vi, zi) is a translation vector in the
coordinate system Oxyz, θi is a rotation angle of object Ti in the plane Oixiyi, where
vi = (xi, yi), and the value of zi, i ∈ Jn, is uniquely defined by subcontainer �j,
j ∈ Jm, in which object Ti will be placed.

In the BLP problem, the requirement for placing objects in specific subcontainers
�j, j ∈ Jm, is known a priori. In this study, the issue of the balanced layout of objects
is formulated, considering the generation and selection of a partition of the set A into
nonempty subsets Aj, j ∈ Jm. Here, Aj is a subset of objects which have to be placed
on circle Sj inside subcontainer �j.

Regarding the placement of object Ti , i ∈ Jn, inside subcontainer �j the
following constraints are imposed:

zi =
j∑

l=1

tl−1 + hi, (1)

where j ∈ Jm.We consider that t0 = 0 and ∀i ∈ Jn there exists j∗ ∈ Jm: hi ≤ tj∗ .
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Let J
j
n ⊆ Jn be a set of indexes of objects which are placed in subcontainer �j,

j ∈ Jm:

m∪
j=1

J
j
n = Jn, J i

n ∩ J
j
n = ∅, i 	= j ∈ Jm; (2)

kj = |Aj | is the number of objects which are placed in subcontainer �j, kj > 0,
j ∈ Jm:

m∑

j=1

kj = n. (3)

In addition, the following placement constraints have to be taken into account:

intTi1 ∩ intTi2 = ∅, i1 < i2 ∈ J
j
n , j ∈ Jm, (4)

Ti ⊆ �j , i ∈ J
j
n , j ∈ Jm, (5)

hj ≤ tj , h
j = max

{
h

j
i , i ∈ J

j
n

}
, j ∈ Jm. (6)

We designate a system, formed as a result of the placement of objects Ti of
the set £ in container � by �A, and a reference frame of �A by OsXYZ, where
Os = (xs(v), ys(v), zs(v)) is the mass center of �A:

xs(v) =

n∑

i=1
mixi

M
, ys(v) =

n∑

i=1
miyi

M
, zs =

n∑

i=1
mizi

M
, (7)

M =
n∑

i=1
mi is the mass of system �A and OsX‖Ox, OsY‖Oy, OsZ‖Oz.

We consider the deviation of the center of mass Os of system �A from the given
point (x0, y0, z0) as the objective function.

Combinatorial Balanced Layout Problem (CBLP) Define a partition of set A
into nonempty subsets Aj, j ∈ Jm, and the corresponding placement parameters
ui = (vi, zi, θi) of objects Ti , i ∈ Jn, such that the objective function is minimized,
taking into account relations (2)–(6).

We assume that the problem has at least one feasible solution.
N.B Restrictions on the axial and centrifugal moments of the system and

allowable distances between objects may also be given.
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3 Mathematical Model

Now, we define special combinatorial configurations describing the discrete struc-
ture of the CBLP problem. Some basic approaches for mathematical modelling of
optimization problems on combinatorial configurations are described, for instance,
in [14–16].

The possibilities of partitioning set A into nonempty subsets Aj, j ∈ Jm, are
determined by both the number of elements in each subset and the order of the
subsets.

Let us consider the subcontainers and the assumed corresponding sets of objects

Aj, j ∈ Jm. Then, the tuple of natural numbers (k1, k2, . . . , km), such that
m∑

j=1
kj = n,

denotes the number kj of objects associated with each subcontainer �j.
The number of all such tuples is equal to the number of compositions of the

number n of length m [17], which is (n−1)!
(m−1)!(n−m)! .

We shall derive how it is possible to partition a set A of n objects into m
subcontainers �j, j ∈ Jm, containing k1, k2, . . . , km items, respectively, with no
ordering condition within each �j. We denote subsets of objects that are placed
inside corresponding subcontainers �j by Aj, j ∈ Jm.

Without loss of generality, we will distinguish the objects with the same values
of metrical characteristics, height hi and mass mi (for example, providing them with
different identification numbers).

We order the elements of set A. We assign to each object the number of the
subcontainer into which it is expected to be placed. We get a tuple consisting of n
elements that form a permutation with repetitions from m numbers 1, 2, . . . , m, in
which the first element is repeated k1 times, the second element is repeated k2 times,
..., the last element is repeated km times.

The total number of permutations is equal to:

P (n, k1, k2, . . . , km) = n!
k1! · k2! · · · · · km! . (8)

Therefore, the total number of partitions of n objects into m subcontainers �j,
provided that each �j contains at least one object and the order in which objects are
placed inside �j is not considered, is equal to:

∑

k1+k2+···+km=n

P (n, k1, k2, . . . , km) =
∑

k1+k2+···+km=n

n!
k1! · k2! · · · · · km! (9)

Note that the number of summands in (9) is equal to N =
∣
∣
∣Cm−1

n−1

∣
∣
∣ =

(n−1)!
(m−1)!(n−m)! .
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To generate subsets Aj, j ∈ Jm, we introduce a special combinatorial
configuration [18].

Rather complex combinatorial configurations can formally be described and
generated using compositional κ-images of combinatorial sets (κ-sets) introduced
in [19]. A combinatorial set is a set of tuples that are constructed from a finite
set of arbitrary elements (so-called generating elements), according to certain
rules. Permutations, combinations, and binary sequences are examples of classical
combinatorial sets. We describe the concept of κ-sets.

The basic idea of κ-sets generation is introduced in [19]. However, the problem
of generating κ-sets of more complicated combinatorial structure remains an open
problem. One of these special cases is studied in [20].

The problem of generating κ-sets is based on special techniques of generating
basic combinatorial sets. The basic sets can be defined as combinatorial sets with
the given features, i.e., both classical combinatorial sets (e.g., permutations, combi-
nations, compositions, partitions, and n-tuples) and nonclassical combinatorial sets
(e.g., permutations of tuples, compositions of permutations, and permutations with
a prescribed number of cycles). Generation algorithms for basic combinatorial sets
are described, e.g., in [21–25].

A generation strategy for the compositional κ-images of combinatorial sets
(κ-sets).

We denote as CP(n, m) the set of compositions of the number n of length
m (which corresponds to the partition of different objects from set A into m
subcontainers �j, j ∈ Jm), provided that each subcontainer contains at least one
object and the order of objects inside the subcontainer is not considered, where,

|CP (n,m)| = N =
∣
∣
∣Cm−1

n−1

∣
∣
∣.

Let k = (k1, k2, . . . , km) ∈ CP (n,m),
m∑

j=1
kj = n, kj ≥ 1, j ∈ Jm.

We introduce a combinatorial set Q (k) that is a composition image of combina-
torial sets (κ-set) CP(n, m); C

k1
n , C

k2
n1 , C

k3
n2 , . . . , C

km
nm−1 , generated by sets In0 , In1 ,

In2 , . . . , Inm−1 , where ni = n − k1 − . . . − ki, i ∈ Jm − 1,

In0 = Jn,

In1 = In0\
{
j

n0
1 , j

n0
2 , . . . , j

n0
k1

}
,
(
j

n0
1 , j

n0
2 , . . . , j

n0
k1

)
∈ Ck1

n ,

In2 = In1\
{
j

n1
1 , j

n1
2 , . . . , j

n1
k2

}
,
(
j

n1
1 , j

n1
2 , . . . , j

n1
k2

)
∈ Ck2

n1
,

. . .
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Inm−1 = Inm−2\
{
j

nm−2
1 , j

nm−2
2 , . . . , j

nm−2
km−1

}
,
(
j

nm−2
1 , j

nm−2
2 , . . . , j

nm−2
km−1

)
∈ C

km−1
nm−2 ,

Inm−1 =
{
j

nm−1
1 , j

nm−1
2 , . . . , j

nm−1
km

}
,
(
j

nm−1
1 , j

nm−1
2 , . . . , j

nm−1
km

)
∈ Ckm

nm−1
.

Note that

In0 ∪ In1 ∪ · · · ∪ Inm−1 = Jn = {1, 2, . . . , n} ,

Ins ∩ Int = ∅, s 	= t ∈ J 0
m−1 = {0, 1, . . . , m − 1} .

Each element q (k) ∈ Q (k) can be described in the form:

q (k) = (
q1, . . . , qk1

∣
∣qk1+1, . . . , qk1+k2 |, . . . , ∣

∣qk1+···+km−1 , . . . , qkm−1+km

)
,

where
(
q1, . . . , qk1

) =
(
j

n0
1 , j

n0
2 , . . . , j

n0
k1

)
∈ C

k1
n ,

(
qk1+1, . . . , qk1+k2

) =
(
j

n1
1 , j

n1
2 , . . . , j

n1
k2

)
∈ Ck2

n1
,

. . .

(
qk1+···+km−1 , . . . , qkm−1+km

) =
(
j

nm−1
1 , j

nm−1
2 , . . . , j

nm−1
km

)
∈ Ckm

nm−1
.

The cardinality of set Q (k) is derived by (9).
An element q (k) of the set Q (k) is said to be a tuple of partition of the set £

into subsets Aj, j ∈ Jm.
Now, we define the vector of the basic variables of the problem ´BLP:

u = (v, z, θ), where v = (v1, . . . , vn) ∈ R2n, θ = (θ1, . . . , θn) ∈ Rn,
vi = (xi, yi) ∈ R2, xi, yi, θi are continuous variables, and z = (z1, . . . , zn) ∈ Rn, zi,
i ∈ Jn, are discrete variables defined by (1).

The values of variables zi, i ∈ Jn, are determined in the order given by elements
q (k) of combinatorial set Q (k):

zqi
=

s∑

l=1

tl−1 + hqi
, (10)
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where:

s =

⎧
⎪⎪⎨

⎪⎪⎩

1, if i ≤ k1,

2, if k1 < i ≤ k1 + k2,

. . .

m, if k1 + k2 + · · · + km−1 < i ≤ k1 + k2 + · · · + km,

i = 1, 2, .., n, qi ∈ {1, 2, .., n}, q (k) ∈ Q (k) .

Let us formalize placement constraints (4)–(6), using the phi-function technique.
We consider two objects T1 and T2 with variable parameters u1 = (v1, z1, θ1)

∈R3, u2 = (v2, z2, θ2) ∈R3, where v1 = (x1, y1), v2 = (x2, y2), x1, y1, θ1 x2, y2, θ2
are continuous variables and z1, z2 are discrete variables.

By definition [2, 3], a phi-function is a continuous function, therefore we extend
the concept to discrete variables z1, z2.

Definition 1 Function ϒ12(u1, u2) is called a D-phi-function of 3D-objects T1 and
T2 if function ϒ12

(
v1, z

0
1, θ1, v2, z

0
2, θ2

)
is a phi-function �12

(
v1, z

0
1, θ1, v2, z

0
2, θ2

)

of objects T1 and T2 for fixed values z1 = z0
1 and z2 = z0

2.

Definition 2 Function ϒ ′
12 (u1, u2, u12) is called a quasi-D-phi-function of 3D-

objects, T1 and T2 if function ϒ ′
12

(
v1, z

0
1, θ1, v2, z

0
2, θ2, u12

)
is a quasi-phi-function

�′
12

(
v1, z

0
1, θ1, v2, z

0
2, θ2, u12

)
of objects T1 and T2 for fixed values z1 = z0

1 and
z2 = z0

2.

Here, u12 is the vector of auxiliary continuous variables that is used to construct
a quasi-phi-function of objects T1 and T2.

The placement constraints (4)–(6) are described by the system of inequalities
ϒ1(u, τ ) ≥ 0, ϒ∗

2 (u) ≥ 0, where the inequality ϒ1(u, τ ) ≥ 0 describes the
nonoverlapping constraints and the inequality ϒ∗

2 (u) ≥ 0 describes the containment
constraints:

ϒ1 (u, τ ) = min
{
ϒ

j

1 (u, τ ) , j ∈ Jm

}
,

ϒ
j

1 (u, τ ) = min
{
ϒ

j
q1q2

(
uq1, uq2 , uq1q2

)
, q1 < q2 ∈ J

j
n

}
, (11)

τ =
(
uq1q2, q1 < q2 ∈ J

j
n

)
,

ϒ∗
2 (u) = min

{
ϒ

∗j

2 (u), j ∈ Jm

}
, ϒ

∗j

2 (u) = min
{
ϒ∗

qi

(
uqi

)
, qi ∈ J

j
n

}
, (12)

ϒ
j
q1q2

(
uq1, uq2 , uq1q2

)
is the function that describes the nonoverlapping

condition between objects Tq1 and Tq2 , and uq1 = (
xq1 , yq1 , zq1 , θq1

)
, uq2 =(

xq2 , yq2 , zq2 , θq2

)
, ϒ∗

qi

(
uqi

)
is the function that describes the nonoverlapping

condition between objects Tqi
and �∗j = R3/ int �j.
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Thus, in expressions (11) and (12) for fixed values zq1 and zq2 , we have:

ϒ
j
q1q2

(
uq1, uq2

)
is a phi-function [26] �TT

q1q2

(
uq1, uq2

)
for objects Tq1 and Tq2 or a

quasi-phi-function [27] �′TT
q1q2

(
uq1, uq2 , uq1q2

)
for objects Tq1 and Tq2 ; ϒ∗

qi

(
uqi

)
is

a phi-function �T�∗j

qi

(
uqi

)
for objects Tqi

and �∗j .

If a minimum allowable distance condition between objects is given, adjusted
phi-functions (quasi-phi-functions) are used for the corresponding pairs of objects
[26, 27].

The mathematical model of the CBLP problem can be defined as follows:

F
(
u∗, τ ∗) = min F (u, τ) s.t. (u, τ ) ∈ W, (13)

W = {
(u, τ ) ∈ Rσ : ϒ1 (u, τ ) ≥ 0, ϒ∗

2 (u) ≥ 0, μ(u) ≥ 0
}
, (14)

where:

F(u) = d = (xs (v, z) − x0)
2 + (ys (v, z) − y0)

2 + (zs − z0)
2

u = (v, z, θ), v = (v1, . . . , vn), θ = (θ1, . . . , θn), vi = (xi, yi), i ∈ Jn,
v = (v1, . . . , vn), θ = (θ1, . . . , θn), vi = (xi, yi), i ∈ Jn, z = (z1, . . . , zn), function

ϒ1(u, τ ) is described by (11) with � = m∪
j=1

�j , �j =
{
(q1, q2) : q1 < q2 ∈ J

j
n

}
,

τ = (τ1, . . . , τs) =
(
uq1q2 , q1 < q2 ∈ J

j
n

)
is a vector of auxiliary variables for

quasi-phi-functions, s = |�|, function ϒ∗
2 (u) is defined by (12), elements of vector

z are given by (10), and μ(u) ≥ 0 describes the given balancing constraints.
For example, problem (13) and (14) for the layout of cylinders in a cylindrical

container takes the form:

min d, s.t.u = (v, z) ∈ W, (15)

where:

v = (x1, y1, . . . , xn, yn) , z = (z1, . . . , zn) ,

d =
[

n∑

i=1

m′
ixi

]2

+
[

n∑

i=1

m′
iyi

]2

+
[

n∑

i=1

m′
izi − z0

]2

,

and the feasible region W is described by the inequality system:
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⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(
xq2 − xq1

)2 + (
yq2 − yq1

)2 − (
rq2 + rq1

)2 ≥ 0,

q1, q2 ∈ �j , j ∈ Jm,

− xqi
2 − yqi

2 +
(
Rz

qi
− rqi

)2 ≥ 0,

qi ∈ �j , j ∈ Jm.

(16)

Note, that m′
i = mi

M
= const , M =

n∑

i=1
mi = const .

The problem of packing cylinders into cylindrical containers, with balancing
conditions, is considered, for instance, in [11, 13].

The CBLP problem can be represented as a mixed integer programming (MIP)
problem, using Boolean variables. However, unlike (13) and (14), this approach
increases the number of discrete variables and therefore increases the dimension of
the CBLP problem.

4 Solution Strategy

The following strategy is used to solve CBLP problems:

1. Generate a subset {q (k)}χ ⊂ Q (k) using the concept of the Nested Combinato-
rial κ-sets.

2. Construct a subset
{
q ′ (k)

}
χ ′ ⊆ {q (k)}χ of tuples that satisfy (6). If

{
q ′ (k)

}
χ ′

=∅, then go to Step 1.
3. Construct a set of feasible starting points

{
u′

0

}
for each tuple from the set{

q ′ (k)
}
χ ′ , using the algorithm presented in [13].

4. Search for a local extremum of problem (13) and (14) for each starting point
u′

0 ∈ W with respect to q ′ (k) ∈ {
q ′ (k)

}
χ ′ .

5. Choose the best of the local extrema found for all tuples of the set
{
q ′ (k)

}
χ ′ and

feasible starting points
{
u′

0

}
as a local optimal solution of problem (13) and (14).

To solve nonlinear programming problems, IPOPT is used, being available as an
open noncommercial resource (https://projects.coin-or.org/Ipopt). IPOPT is based
on the internal point method described in [28].

In order to generate a subset {q (k)}χ ⊂ Q (k), we use the concept of the Nested
Combinatorial κ-sets.

https://projects.coin-or.org/Ipopt
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Concept of the Nested Combinatorial κ-Sets To define a structure of the nested
combinatorial κ-set, we use the κ-level tree.

Let i ∈ J 0
κ = {0, 1, . . . , κ}, where κ is the number of levels of the tree. At each

level of the tree, we have ηi nodes.
And, let

Y01

Y11, Y12, . . . , Y1η1

Y21, Y22, . . . , Y2η2 (17)

. . .

Yκ1, Yκ2, . . . , Yκηκ

be combinatorial sets that correspond to the nodes of the i-th level of the κ-level
tree, i = 0, 1, . . . , κ.

Each combinatorial set Yij of the tree is defined by a finite set β ij of generative
elements of Yij, i = 0, 1, . . . , κ, j = 1, . . . , ηi. We denote the number of elements
of β ij by nij, therefore:

η0 = 1, η1 = n, η2 =
η1∑

j=1

n2j , η3 =
η2∑

j=1

n3j , · · · , ηi =
ηi−1∑

j=1

nij , ηκ =
ηκ−1∑

j=1

nκj .

The core idea of the Nested Combinatorial κ-set is based on relationships
between generative elements β ij of each combinatorial set Yij of i-th level and ele-
ments of combinatorial sets of (i + 1)-th level, using the following correspondence:

β ∈ βij ↔ (
y1, y2, . . . , ynl

) ∈ Yi+1,l , l ∈ {1, . . . , ηi+1} , i ∈ {0, 1, . . . , κ − 1} .

(18)

A nested combinatorial κ-set is a composed combinatorial set produced by means
of the tree structure (17) and correspondence (18) (see [19] for formal definition).

Let us consider an example to make clear the concept. We denote a nested
combinatorial κ-set by Tκ.

Example 1 Let Tκ have a two-level structure (17), where Y01 is a permutation set
P(a,b) generated by β01 = {a, b}; Y11 is a combination set C2

3 (c, d, e) generated by
β11 = {c, d, e}; and Y12 is a permutation set P(g,h) generated by β12 = {g, h} (see
Figure1). Therefore, n01 = 2, n11 = 3, n12 = 2, η0 = 1, η1 = 2.

In order to produce the nested combinatorial set Tκ, we replace the generative
elements a, b in each element of P(a,b) by each element of the combinatorial sets
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Figure 1 Two-level structure
(17) of the nested
combinatorial κ-set Tκ

Y01 =P(a,b)

2
11 3 ( , , )Y C c d e= Y12 =P(g,h)

a b

cd ce de gh hg

gh hg gh hg gh hg cd ce de cd ce de

cdgh cdhg cegh cehg degh dehg ghcd ghce ghde hgcd hgce hgde

P(a,b)
a b

Figure 2 Elements of the combinatorial set Tκ

C2
3 (c, d, e) and P(g,h) consequently, using correspondence (18) (see Figure 2). Ter-

minal nodes of the tree correspond to elements of the combinatorial set Tκ:(cdgh),
(cdhg), (cegh), (cehg), (degh), (dehg), (ghcd), (ghce), (ghde), (hgcd), (hgce), (hgde).

Details of algorithm for generating a nested combinatorial κ-set are represented
in [25].

Now, we consider an example of the algorithm generating q (k).

Example 2 Let the basic sets CP(5, 2), C
k1
5 , C

k2
5−k1

generated by elements
{q1, q2, q3, q4, q5} be given, k1 + k2 = n = 5.
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Since CP (5, 2) = {(
ki

1, k
i
2

)} = {(1, 4) , (2, 3) , (3, 2) , (4, 1)}, then we have:

1. k1 = 1, k2 = 4
C

k1
5 = C1

5 = {(q1) , (q2) , (q3) , (q4) , (q5)}
C

k2
5−k1

= C4
4 : {(q2, q3, q4, q5)} , {(q1, q3, q4, q5)} , {(q1, q2, q4, q5)} ,

{(q1, q2, q3, q5)} , {(q1, q2, q3, q4)}
2. k1 = 4, k2 = 1

C
k1
5 = C4

5 =
{

(q1, q2, q3, q4) , (q1, q2, q3, q5) , (q1, q2, q4, q5) ,

(q1, q3, q4, q5), (q2, q3, q4, q5)}
C

k2
5−k1

= C1
1 : {(q5)} , {(q4)} , {(q3)} , {(q2)} , {(q1)}

3. k1 = 2, k2 = 3

C
k1
5 = C2

5 =
{

(q1, q2) , (q1, q3) , (q1, q4) , (q1, q5) , (q2, q3) ,

(q2, q4), (q2, q5), (q3, q4), (q3, q5), (q4, q5)}
C

k2
5−k1

= C3
3 : {(q3, q4, q5)} , {(q2, q4, q5)} , {(q2, q3, q5)} ,

{(q2, q3, q4)}, {(q1, q4, q5)}, {(q1, q3, q5)}, {(q1, q3, q4)},
{(q1, q2, q5)}, {(q1, q2, q4)}, {(q1, q2, q3)}

4. k1 = 3, k2 = 2

C
k1
5 =C3

5 =
{

(q1, q2, q3) , (q1, q2, q4) , (q1, q2, q5) , (q1, q3, q4) , (q1, q3, q5),

(q1, q4, q5), (q2, q3, q4), (q2, q3, q5), (q2, q4, q5), (q3, q4, q5)}
C

k2
5−k1

= C2
2 : {(q4, q5)} , {(q3, q5)} , {(q3, q4)} , {(q2, q5)} , {(q2, q4)} ,

{(q2, q3)}, {(q1, q5)}, {(q1, q4)}, {(q1, q3)}, {(q1, q2)}
Example 3 We show here the κ-set of compositions of two combinations C

k1
5 , Ck2

5−k1
generated by elements {q1, q2, q3, q4, q5}, k1 + k2 = n = 5, using the Gen_κ-set
algorithm and the results of Example 1. Then, κ=1 and Y0 is the set of compositions
CP(5, 2), Y11 = C

k1
5 , Y12 = C

k2
5−k1

. Let us present the structure of the κ-set
constructed in Example 2.

In the set Y01, the first generating element k1 will be replaced with the unique

element of the set Y11, i.e., with the tuple
(
qi1 , qi2 , . . . , qik1

)
∈ C

k1
5 , and element k2

with the tuple
(
qj1 , qj2 , . . . , qjk2

)
∈ C

k2
5 .

We apply the algorithm presented in [25] to generate all elements of the set Q (k)

(see Table 1). According to (9), the number of elements in the set Q (k) is equal to
30.

5 Computational Results

Example 4 We consider the problem (15) and (16) for cylinders Ci, i ∈ Jn that have
to be placed into the cylindrical container � with one separation plane (circle) in
order to minimize the deviation of the center of mass of �A from the given point
(x0, y0, z0). Characteristics of cylinders are given in Table 2.
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Table 1 Data for Example 3
and appropriate elements of
set Q

(
k

)
№ q ∈ Q k q

(
k

) ∈ Q
(
k

)

1 (q1, q2, q3, q4, q5) (1,4) (q1, |q2, q3, q4, q5)
2 (q2, q1, q3, q4, q5) (1,4) (q2, |q1, q3, q4, q5)
3 (q3, q1, q2, q4, q5) (1,4) (q3, |q1, q2, q4, q5)
4 (q4, q1, q2, q3, q5) (1,4) (q4, |q1, q2, q3, q5)
5 (q5, q1, q2, q3, q4) (1,4) (q5, |q1, q2, q3, q4)
6 (q1, q2, q3, q4, q5) (4,1) (q1, q2, q3, q4, |q5)
7 (q1, q2, q3, q5, q4) (4,1) (q1, q2, q3, q5, |q4)
8 (q1, q2, q4, q5, q3) (4,1) (q1, q2, q4, q5, |q3)
9 (q1, q3, q4, q5, q2) (4,1) (q1, q3, q4, q5, |q2)
10 (q2, q3, q4, q5, q1) (4,1) (q2, q3, q4, q5, |q1)
11 (q1, q2, q3, q4, q5) (2,3) (q1, q2, |q3, q4, q5)
12 (q1, q3, q2, q4, q5) (2,3) (q1, q3, |q2, q4, q5)
13 (q1, q4, q2, q3, q5) (2,3) (q1, q4, |q2, q3, q5)
14 (q1, q5, q2, q3, q4) (2,3) (q1, q5, |q2, q3, q4)
15 (q2, q3, q1, q4, q5) (2,3) (q2, q3, |q1, q4, q5)
16 (q2, q4, q1, q3, q5) (2,3) (q2, q4, |q1, q3, q5)
17 (q2, q5, q1, q3, q4) (2,3) (q2, q5, |q1, q3, q4)
18 (q3, q4, q1, q2, q5) (2,3) (q3, q4, |q1, q2, q5)
19 (q3, q5, q1, q2, q4) (2,3) (q3, q5, |q1, q2, q4)
20 (q4, q5, q1, q2, q3) (2,3) (q4, q5, |q1, q2, q3)
21 (q3, q4, q5, q1, q2) (3,2) (q3, q4, q5, |q1, q2)
22 (q2, q4, q5, q1, q3) (3,2) (q2, q4, q5, |q1, q3)
23 (q2, q3, q5, q1, q4) (3,2) (q2, q3, q5, |q1, q4)
24 (q2, q3, q4, q1, q5) (3,2) (q2, q3, q4, |q1, q5)
25 (q1, q4, q5, q2, q3) (3,2) (q1, q4, q5, |q2, q3)
26 (q1, q3, q5, q2, q4) (3,2) (q1, q3, q5, |q2, q4)
27 (q1, q3, q4, q2, q5) (3,2) (q1, q3, q4, |q2, q5)
28 (q1, q2, q5, q3, q4) (3,2) (q1, q2, q5, |q3, q4)
29 (q1, q2, q4, q3, q5) (3,2) (q1, q2, q4, |q3, q5)
30 (q1, q2, q3, q4, q5) (3,2) (q1, q2, q3, |q4, q5)

Table 2 Characteristics of
cylinders in Example 4

C1 C2 C3 C4 C5

mi 4 2 1 3 5
ri 1 0.7 0.45 0.8 0. 9
hi 1.27 1.3 1.57 1.49 1.96

Let m = 2, H = 6, R = 2.5, t1 = 3 be the parameters characterizing our cylindrical
container and (x0, y0, z0) = (0, 0, 3).

The values of the objective function for all n = 30 tuples of the partition q (k) ∈
Q (k) and appropriate compositions k are presented in Table 3.

Figure 3 shows the local optimal placements of cylinders in the two subcontainers
found by our algorithm that correspond to the tuples: (a) q1(k), (b) q18(k) in
Example 4.

The best value of the objective function in Example 4 is 0.0003 that corresponds
to two tuples q1(k) = (1| 2 3 4 5) and q18(k) = (3 4| 1 2 5).
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Table 3 Output data in
Example 4

i q
(
k

) ∈ Q
(
k

)
k Objective function, d

1 (1 |2 3 4 5) (1,4) 0.0003
2 (2 |1 3 4 5) (1,4) 0.1475
3 (3 |1 2 4 5) (1,4) 0.3411
4 (4 |1 2 3 5) (1,4) 0.0339
5 (5 |1 2 3 4) (1,4) 0.0467
6 (1 2 3 4| 5) (4,1) 1.4787
7 (1 2 3 5| 4) (4,1) 2.6115
8 (1 2 4 5| 3) (4,1) 4.0643
9 (1 3 4 5| 2) (4,1) 3.2979
10 (2 3 4 5| 1) (4,1) 2.0051
11 (1 2| 3 4 5) (2,3) 0.1731
12 (1 3| 2 4 5) (2,3) 0.0467
13 (1 4| 2 3 5) (2,3) 0.3795
14 (1 5| 2 3 4) (2,3) 1.0323
15 (2 3| 1 4 5) (2,3) 0.0339
16 (2 4| 1 3 5) (2,3) 0.0467
17 (2 5| 1 3 4) (2,3) 0.3795
18 (3 4| 1 2 5) (2,3) 0.0003
19 (3 5| 1 2 4) (2,3) 0.1731
20 (4 5| 1 2 3) (2,3) 0.6659
21 (3 4 5| 1 2) (3,2) 1.0323
22 (2 4 5| 1 3) (3,2) 1.4787
23 (2 3 5| 1 4) (3,2) 0.6659
24 (2 3 4| 1 5) (3,2) 0.1731
25 (1 4 5| 2 3) (3,2) 2.6115
26 (1 3 5| 2 4) (3,2) 1.4787
27 (1 3 4| 2 5) (3,2) 0.6659
28 (1 2 5| 3 4) (3,2) 2.0051
29 (1 2 4| 3 5) (3,2) 1.0323
30 (1 2 3| 4 5) (3,2) 0.3795

Example 5 Let us consider the problem (13) and (14). Let � be a cylindrical
container of height H = 1 and the basis radius R = 0.55. The container has two
separation circles. We assume that t1 = t2 = 0.35. Let m0 = 500 be the mass and
(x0, y0, z0) = (0, 0, 0.5) be the center of mass of the cylindrical container �.

We consider the collection of 3D-objects of six shapes (Figure 4): A = {Si , i =
1, . . . , 6, Ci, i = 7, . . . , 13, Qi, i= 14...17, SCi, i = 18, ...21, Pi , i = 22, 23, 24c,
K25} with the following characteristics:

{mi, i = 1, .., 25}= {20.944, 15.2681, 27.8764, 20.944, 20.944, 34.5575, 63.7115,
41.8146, 30.4106, 6.28319, 20.1062, 31.4159, 28.4245, 49.9649, 24.8714, 38.6888,
26.2637, 20.7764, 17.2159, 16.8756, 52.8, 52.8, 52.8, 23.1489} are the given masses
of the 3D-objects;

r1 = 0.1, r2 = 0.09, r3 = 0.11, r4 = 0.11, r5 = 0.1, r6 = 0.1 are the radii of
spheres Si , i = 1, . . . , 6;
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Figure 3 Balanced layout of cylinders and relevant item projections on the base of the container
and separation circle corresponding to tuples: (a) q1(k), (b) q18(k) in Example 4

Figure 4 Shapes of objects in Example 5: Si ,Ci, Qi, SCi,Pi, Ki

r7 = 0.1, h7 = 0.11, r8 = 0.13, h8 = 0.12, r9 = 0.11, h9 = 0.11, r10 = 0.11,
h10 = 0.08, r11 = 0.05, h11 = 0.08, r12 = 0.08, h12 = 0.1, r13 = 0.1, h13 = 0.1 are
the radii and half-heights of cylinders Ci, i = 7, . . . , 13;

r14 = 0.08, h14 = 0.07, r15 = 0.09, h15 = 0.075, r16 = 0.07, h16 = 0.06,
r17 = 0.08, h17 = 0.07 are the radii of the generating circles and half-heights of
tori Qi, i= 14...17;

r18 = 0.1, h18 = 0.05, l18 = 0.07, r19 = 0.05, h19 = 0.05, l19 = 0.08, r20 = 0.08,
h20 = 0.05, l20 = 0.06, r21 = 0.08, h21 = 0.04, l21 = 0.07 are the radii, half-
heights of cylinders, and heights of spherical segments for spherocylinders SCi, i =
18, ...21;

wi = 0.11, li = 0.1, hi = 0.12, i = 22, 23, 24 are the half-widths, half-lengths,
and half-heights of cuboids Pi, i = 22, 23, 24;

r25 = 0.09, h25 = 0.11 are the length of the basis side and half-height of the right
hexagonal prism K25.
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Table 4 Output data in Example 5

i q
(
k

) ∈ Q
(
k

)
k Objective function, d

1 (2,3,6,8,10,14,17,21,24|4,7,11,13,18,20,22,23|
1,5,9,12,15,16,19,25)

(9,8,8) 0.002387

2 (3,5,6,7,10,13,17,21|2,4,8,12,14,18,19,22,25|
1,9,11,15,16,20,23,24)

(8,9,8) 0.000269

3 (1,5,10,17,19,21,22,25|2,4,6,9,12,13,14,18|
3,7,8,11,15,16,20,23,24)

(8,8,9) 0.943362 × 10−7
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Figure 5 Local optimal placement of 3D-objects and the relative object projections onto the
separation circles corresponding to tuples: (a) q1(k), (b) q2(k), (c) q3(k) in Example 5

The values of the objective function for three chosen tuples of the partition
q (k) ∈ Q (k) and appropriate compositions k are presented in Table 4.

Figure 5 shows the local optimal placement of 3D-objects in subcontainers and
the relative object projections onto the separation circles corresponding to tuples:
(a) q1(k), (b) q2(k), (c) q3(k) given in Table 4.
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The best values found for the objective function in Example 5 is 0.943362 × 10−7

that corresponds to tuple q3(k) = (1,5,10,17,19,21,22,25|2,4,6,9,12,13,14,18|
3,7,8,11,15,16,20,23,24).

6 Concluding Remarks

This chapter discusses the problem of placing 3D-objects into a container, parti-
tioned into sectors by parallel separation planes, minimizing the distance of the
overall center of mass from an assigned position.

The mathematical model formulated for the purpose, on the basis of the phi-
function methodology, is illustrated in detail. It takes into account not only the
geometrical and balancing constraints, but also the combinatorial features relevant
to the assignment of items to sectors.

A solution strategy is provided, which includes the following procedures:
generation of partition tuples, based on combinatorial configurations, construction
of feasible starting points, and local optimization. This approach implements the
multi-start strategy to search for “good” feasible solutions. The results of the
numerical experiments show the efficiency of the proposed approach for the class
of layout problems considered.
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