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Preface

Two edited volumes dedicated to the challenging and wide-ranging subject of
optimization in space engineering have been recently published:

Fasano and Pintér, Eds., Modeling and Optimization in Space Engineering,
Springer, 2013

Fasano and Pintér, Eds., Space Engineering: Modeling and Optimization with Case
Studies, Springer, 2016

The strong interest towards the topics covered by these works has motivated the
third topical book project that has led to the present volume.

Space engineering tasks frequently require the analysis and solution of advanced
and often very hard optimization problems. In the earliest studies, the primary
concern was related to the viability of the mission to accomplish. Therefore
optimization generally focused on mission analysis aspects, with specific attention
to technical feasibility and mission safety. Space engineering projects typically
required the analysis and optimization of trajectories and fuel consumption, with
paramount consideration given to crew protection.

As time has passed, commercial interests and implied cost-efficiency aspects
related to space projects have become increasingly important. A well-known
example – in apparent need of complex cost-benefit and risk analysis studies – is
the continuing operation of the International Space Station.

For current and forthcoming space engineering projects, today’s higher envi-
ronmental awareness imposes mission constraints that in the past were sim-
ply (or almost) neglected. The ambitious goals of future interplanetary explo-
rations – specifically including manned missions – will require advanced analytical
approaches to guarantee safety, to maximize the performance of the systems
adopted, and to make use of mission resources as efficiently as possible.

Current optimization issues are related to a broad range of challenges including,
e.g. low-thrust transfers, interplanetary trajectories, transfers to near-Earth objects,
safety analysis of possible collision with space debris, re-entry vehicles, hybrid
rocket engines, robust spacecraft design, on-board task scheduling, cargo loading
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vi Preface

and packing, payload accommodation with balancing conditions, and satellite
constellation image acquisition.

While the necessary depth and quality of the decisions required by space
engineering projects has been increasing, we have also witnessed continuing
innovation regarding theoretical advances and practical (ready-to-use) decision
support tools for such applications. The results of scientific innovation, modelling,
and algorithmic developments are supported and enhanced by today’s advanced
computational modelling and optimization environments. Starting from the earliest
space engineering applications, the solution of increasingly hard optimization
problems has become necessary. Until fairly recent times, numerical optimization
approaches were limited to handling linear or convex nonlinear continuous models,
as well as integer linear or mixed integer-continuous linear optimization problems.
Recent advances in the area of optimization support also the handling of non-convex
problem formulations: this development enables the solution of more realistic – but
often much harder – optimization problems.

The present volume consists of 17 contributed chapters. Written by leading
experts, the book offers in-depth discussions of the mathematical modelling and
algorithmic aspects of tackling a broad range of space engineering applications.

Specific mission analysis and attitude control subjects include the following:
optimal launch date analysis for interplanetary missions, evolutionary neuro-control
for the global optimization of continuous-thrust trajectories, machine learning and
evolutionary optimization techniques for interplanetary trajectory design, optimal
finite-thrust orbital transfers, single-stage-to-orbit space-plane trajectory perfor-
mance analysis, ascent trajectory optimization and neighbouring optimal guidance
of multistage launch vehicles, catalogue generation of parametric time-optimal
transfers for all-electric geostationary satellites, real-time optimal control dedicated
tools, advanced numerical strategies for sensitivity analysis and reliability assess-
ment of a launcher stage fallout zone, evidence-based robust optimization of pulsed
laser orbital debris removal, simulation and attitude determination, and control of
small satellites.

System design and configuration aspects are discussed in several chapters. Topics
include the general problem of control dispatch optimization in a spacecraft and
a real-world application in the framework of the European Space Agency’s Next
Generation Gravity Mission, packing problems with balancing conditions, and
the optimal topological design of a thermal insulator for a monopropellant space
thruster. The analysis of observation planning and scheduling aspects in multiple
heterogeneous satellite missions also belongs to this group of studies.

This book will be of interest for researchers and practitioners working in the field
of space engineering. Since it offers an in-depth exposition of the mathematical
modelling and algorithmic and numerical solution aspects of the topics covered,
the book will be useful also for aerospace engineering graduate and post-graduate
students who wish to expand upon their knowledge, by studying real-world applica-
tions and challenges that they will meet in their professional work. The contributed
chapters are focused on space engineering practice, rather than on theory. With this
aspect in mind, researchers and practitioners in mathematical systems modelling,
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operations research, optimization, and optimal control will also benefit from the
case studies presented in this work.

The model development and optimization approaches discussed in the book
can be extended also towards other application areas that are not related to space
engineering. Hence, the book can be a useful reference to assist the development
of new applications. Readers will obtain a broad overview of some of the most
challenging space engineering operational scenarios of today and tomorrow: this
aspect will benefit managers in the aerospace field, as well as in other industrial
sectors.

Turin, Italy Giorgio Fasano
Bethlehem, PA, USA János D. Pintér
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Control Propellant Minimization for
the Next Generation Gravity Mission

Alberto Anselmi, Stefano Cesare, Sabrina Dionisio, Giorgio Fasano,
and Luca Massotti

Abstract This chapter addresses the Next Generation Gravity Mission (NGGM),
a candidate Earth observation mission of the European Space Agency (ESA),
currently undergoing system and technology studies. NGGM is intended to continue
the series of ESA missions measuring Earth gravity from space, successfully started
with the Gravity field and Ocean Circulation Explorer (GOCE) satellite which flew
between 2009 and 2013. Whereas GOCE measured static gravity by a three-axis
gradiometer, NGGM will monitor the temporal variations of the gravity field due
to mass (primarily water) transport in the Earth system with a concept pioneered
by GRACE (Gravity Recovery and Climate Experiment), with improved sensitivity,
thanks to laser tracking between satellite pairs. As a monitoring mission, NGGM
shall be of a long duration, 11 years according to the current scientific requirements.
In addition, the laser interferometer and accelerometer payloads impose demanding
requirements such as suppression of the air drag disturbances, precise pointing, and
angular rate control. The long lifetime and the control requirements can only be met
by using electric thrusters with high specific impulse, hence low mass consumption.
Nevertheless, propellant mass minimization remains a dominant task of the mission
design. This objective requires proper selection of the thruster operating ranges, as
well as an optimized thruster layout and thrust dispatching algorithms. The method
applied to solve the thrust dispatching problem is the subject of another chapter in
this volume. The present chapter illustrates the flow-down of mission and system
requirements into the proposed spacecraft implementation and operation features,
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e-mail: alberto.anselmi@thalesaleniaspace.com; stefano.cesare@thalesaleniaspace.com;
sabrina.dionisio@thalesaleniaspace.com; giorgio.fasano@thalesaleniaspace.com

L. Massotti
European Space Agency, ESTEC, Noordwijk, The Netherlands
e-mail: luca.massotti@esa.int

© Springer Nature Switzerland AG 2019
G. Fasano, J. D. Pintér (eds.), Modeling and Optimization
in Space Engineering, Springer Optimization and Its Applications 144,
https://doi.org/10.1007/978-3-030-10501-3_1

1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-10501-3_1&domain=pdf
mailto:alberto.anselmi@thalesaleniaspace.com
mailto:stefano.cesare@thalesaleniaspace.com
sabrina.dionisio@thalesaleniaspace.com
mailto:giorgio.fasano@thalesaleniaspace.com
mailto:luca.massotti@esa.int
https://doi.org/10.1007/978-3-030-10501-3_1


2 A. Anselmi et al.

focusing on the thruster layout optimization problem. The proposed design is shown
to meet the mission requirements, thus validating the methodology adopted as well
as the results achieved. Further research avenues opened by the current work are
outlined in the conclusions.

Abbreviations

AOCS Attitude and Orbit Control System
CoM Centers of mass
DFACS Drag-Free and Attitude Control System
DoF Degrees of freedom
E2E End-to-end simulator
EGG Electrostatic gravity gradiometer
ESA European Space Agency
GNC Guidance Navigation and Control
GO Global optimization
GOCE Gravity field and Ocean Circulation Explorer
GRACE Gravity Recovery and Climate Experiment
LAGEOS Laser Geodynamics Satellite
LL-SST Low-low satellite-to-satellite tracking
MBW Measurement bandwidth
MDT Mean dynamic topography
MILP Mixed integer linear programming
NGGM Next Generation Gravity Mission
NLP Nonlinear programming
POD Precise orbit determination
RC Repeat cycle
SD Spectral density
SGG Satellite gravity gradiometry
SLR Satellite laser ranging
SSD Satellite-to-satellite distance
SST Satellite-to-satellite tracking

1 Measuring Gravity from Space: Previous Projects
and NGGM Overview

The study of the perturbations of the orbits of artificial satellites provided the first
source of detailed information about Earth’s gravity field [1]. Soon, however, the
non-gravitational perturbations became a fundamental limit to the accuracy and
resolution of the field that could be obtained. Thus, satellites dedicated to geodesy
were conceived.
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The Laser Geodynamics Satellite, LAGEOS, launched in 1976 [2], was the
first dedicated geodesy satellite, whose orbital path is precisely reconstructed via
laser ranging. From that date, satellite laser ranging (SLR) to high-altitude geodesy
satellites such as LAGEOS and its successors has been the source of the most
accurate data on the very-long-wavelength range coefficients of the Earth’s field
and their variations.

Sampling the field with a high spatial and temporal resolution requires very low
orbit altitude satellites and sophisticated metrological techniques, with matching
measurement and control of the non-gravitational effects. Techniques studied since
the 1970s include low-low satellite-to-satellite tracking (SST) and satellite gravity
gradiometry (SGG) (see, e.g., [3–6]). Since the advent of the GPS constellation,
high-low SST has been another resource for gravity field modelling.

GRACE (Gravity Recovery and Climate Experiment), operating from 2002
to 2017, was the first SST mission using microwave ranging between two co-
orbiting low-altitude satellites [7]. GRACE produced consistent long-to-medium-
wavelength global gravity field models and models of its temporal changes. GOCE
(Gravity field and Ocean Circulation Explorer), operating from 2009 to 2013, was
the first satellite gradiometry mission, and it provided high-accuracy and high-
resolution static gravity field models [8].

The gravity field reveals the density distribution of the Earth’s interior. Together
with seismic tomography and magnetometry, gravimetry is one of the few means
we have to probe the Earth’s deep interior. Gravity and geoid anomalies reflect
density anomalies in oceanic and continental lithosphere and the mantle, while
redistribution or exchange of mass in the Earth’s system results in temporal gravity
and geoid changes [9]. In recent years, understanding global change has become a
dominant focus of Earth research for its impact on society, as well as science. Time-
variable gravity results from GRACE have provided unique insight into phenomena
such as ice mass trends in Greenland and Antarctica, total water storage in major
global river basins, and trends in ocean mass distribution, revealing decadal shifts
in ocean circulation. No space mission except one dedicated to gravity can provide
measurements of mass flux in the Earth System of such sensitivity and scope. This
motivates ESA’s initiative toward a Next Generation Gravity Mission (NGGM).
The NGGM requires a quantum leap not only in the ranging sensor, such as that
provided by laser interferometry in place of microwave sensing, but also a parallel
improvement in the performance of the satellite subsystems dedicated to attitude
and disturbance control, where the GOCE experience will be brought to bear.

1.1 GOCE and Its Heritage

The scientific objectives of GOCE were the determination of the Earth’s steady-
state gravity field anomalies with an accuracy of 1 mGal (1 × 10−5 m/s2), and the
determination of the geoid height with an accuracy between 1 and 2 cm, at length
scales smaller than 100 km. GOCE achieved its objectives by measuring gravity
gradients by an electrostatic gravity gradiometer (EGG), and carrying out precise
orbit determination (POD) based on GPS data.
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GOCE has produced, and continues to produce, fundamental results and
improvements in all its application areas, i.e., oceanography, solid earth, geodesy,
seismology, and aeronomy. The GOCE geoid models had a major impact for
the estimation of the ocean mean dynamic topography (MDT) and the related
geostrophic currents. GOCE data have been linked to seismic or seismological
derived models to assess the contribution of mantle dynamics to surface topography.
The techniques developed to process and interpret the gradients from GOCE
have been used in applications, integrated with airborne gravity surveys, and as
background models for geological exploration.

The 1060-kg GOCE spacecraft (Figure 1) was launched on March 17, 2009
from Plesetsk on a Rokot launch vehicle. Initially it flew in a Sun-synchronous
orbit (96.7◦ inclination, ascending node at 18.00 h) at an altitude in the range of
250÷280 km. Altitude control and drag compensation of the slender spacecraft with
a small (1.1 m2) frontal cross section were realized by two ion thrusters (main and
redundant) with a thrust range between 1 and 20 mN, operated in closed loop with
the payload accelerometers. Three magnetic torquers provided the attitude control.

About 41 kg of xenon and 14 kg of nitrogen were allocated for drag-free control
and gradiometer calibration, sufficient for the planned 20-month lifetime. The actual
mission evolution was very different from the worst-case predictions (Figure 2). It
turned out that Solar Cycle 24 produced the lowest maximum ever measured. This
implied a level of atmospheric drag much lower than expected, to the benefit of the
mission lifetime. Thanks to the low-density environment and to the conservative
pre-launch satellite drag estimation, the entire mission was spent at altitudes lower
than the minimum planned before flight, first around 260 km and then reaching 250,

Figure 1 GOCE configuration at the flight acceptance review (March 2008)
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Figure 2 GOCE altitude profile (altitude = |spacecraft position vector| − 6378 km)

245, 240, and even 229 km in the final months, enhancing the scientific return of the
mission.

The flawless performance of the Drag-Free and Attitude Control System
(DFACS) was essential to accomplish the mission requirements. In its early design
concept, the GOCE drag-free control encompassed six (attitude and orbit) degrees
of freedom (DoF). This was intended to provide enhanced robustness vs. the
uncertainty of both environment and gradiometer response. The corresponding
design had two ion thrusters for active compensation of the main component of the
drag and eight micro-thrusters for lateral drag and attitude control purposes. When
it became clear that the development of the micro-thruster technology would not be
compatible with the planned launch date, it was decided to move to a 4-DoF design,
using one ion-thruster for in-track drag compensation and magnetic torque rods
for the attitude control, supplemented by on/off cold-gas thrusters for gradiometer
calibration [10]. Central to the DFACS achievement was the high-fidelity end-to-
end (E2E) simulator designed and implemented at Thales Alenia Space since the
early project phases to prove mission performance.

1.2 The Next Generation Gravity Mission Project

Already during the development of GOCE, ESA began preparations for the next
step. Studies were promoted to establish the scientific priorities, to identify the most
appropriate measurement techniques, to start the associated technology develop-
ments, and to define the optimal system scenarios of the mission provisionally called
NGGM.
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While GOCE aimed to provide a high-resolution static map of the Earth’s
gravity, the objective of NGGM is the long-term monitoring (namely, one full
solar cycle, i.e., 11 years) of the time-variable gravity field. The mission aims to
achieve gravity solutions with better than 1 mGal accuracy, with spatial resolution
comparable to that of GOCE, at shorter time intervals than GRACE (weekly
or less). With respect to GOCE, the new mission implies new measurement
techniques and instrumentation, a new mission scenario, and different spacecraft
design drivers. Despite the differences, however, several achievements of GOCE
(e.g., demonstration of long-duration wide-band drag compensation, ultrasensitive
accelerometers, and stable non-cryogenic temperature control in low-Earth orbit)
stand as the basis upon which NGGM has been defined.

The time-variable gravity field takes contributions from global geophysical
processes encompassing atmosphere, ocean, continental hydrology, and ice, coupled
by water flow. In addition, gravity field changes are induced by solid-Earth processes
like secular glacial isostatic adjustment and sudden earthquakes with co-seismic and
post-seismic signals. Figure 3 shows the Earth system domains with their processes
and the relevant spatial and temporal resolutions which should be sampled by the
NGGM. Each geophysical process can be modelled, and the models combined and
converted to gravity field spherical harmonic series, commonly used to describe the
Earth’s global gravity field [11].

The NGGM objectives require the production of a geoid solution with 1 mm
accuracy at a 500-km spatial resolution every 3 days, and at a 150-km spatial
resolution every 10 days. Comparison with Figure 3 shows that a large majority
of the phenomena can be recovered from space by the mission (very high space
resolution is only attainable in conjunction with local measurements).

The demanding requirements of the NGGM cannot be achieved by gradiometry.
The low-low SST technique pioneered by GRACE, instead, can provide the neces-
sary resolution in one direction, that of the line connecting the two satellites. By this
approach, two satellites flying in loose formation in a low-Earth orbit act as proof
masses immersed in the gravity field (Figure 4). The distance variation between
the satellites is the geodetic observable (as measured by the laser interferometer)
plus the background non-gravitational acceleration—measured by ultrasensitive
accelerometers (like those installed on GOCE)—to be subtracted in the post-
processing.

Past ESA studies have addressed the available options in terms of formation
geometry, number of satellite pairs, and satellite orbit altitude and inclination, from
a scientific point of view [12] and from an engineering perspective [8]. The best
compromise between performance and implementation complexity and cost was
found by considering the simplest mission scenario, consisting of two pairs of
satellites, each pair in the so-called in-line formation (two satellites on the same
circular orbit at different true anomalies with the direction of the laser beam along
the line joining the centers of mass of the two satellites). Each in-line formation
samples the gravity field in the along-track direction only. On a polar orbit, this
formation is more sensitive to gravity field variations in the North-South than in
the East-West direction. Therefore, a second pair of satellites must be launched in
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Figure 3 Earth system domains and processes and their spatial and temporal signature [11]

a medium-inclination orbit in order to tackle the aliasing problem with a proper
choice (close to optimality) of the repeat cycle (RC). The formation composed by
two pairs of satellites, one in near-polar orbit and one in medium-inclination orbit,
has become known as the “Bender formation” ([13], Figure 5).

Circular orbits with an altitude of around 350 km and near-polar (one pair) and
∼66◦ (second pair) inclination are suitable for the NGGM, providing all-latitude
coverage, short-repeat cycles/sub-cycles, and excellent gravity signal retrieval, and
are compatible with a long lifetime (Table 1). For inter-satellite distances in the
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Figure 4 Principle of the LL-SST technique for measuring the Earth’s gravity field

Figure 5 NGGM satellite
formations

Table 1 NGGM reference orbits

Near-polar Inclined

Altitude 367.9 km 345.3 km
Inclination 88◦ 66◦
Number of revolutions in repeat cycle 343 451
Repeat period [nodal day] 22 29

range of 70–100 km, the NGGM performance is relatively constant and lengths
>100 km do not provide any benefit in terms of gravity field recovery. Hence, a
100 km inter-satellite distance has been selected.

Due to the non-Sun-synchronous orbits, each NGGM satellite shall tolerate large
variation of the solar illumination. Disturbances to the payload shall be minimized
and a complex control system shall be implemented, capable of carrying out several
tasks in close coordination: orbit and altitude maintenance, formation keeping,
attitude stabilization, drag compensation, and laser beam pointing at micro-radian
level.
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The current on-going “Consolidation of the system concept for the Next Gener-
ation Gravity Mission” study, carried out for ESA by Thales Alenia Space, focuses
on the consolidation of the mission concept and of the relevant space segment. One
of the main drivers is to achieve thrust authority and efficiency for compensating
the air drag environment in low-Earth orbit throughout an entire solar cycle, with
thrust demand varying by a large factor at orbit frequency and with epoch. This
has implications on both technology (thruster performance) and DFACS control
(thrust range, minimum control authority, and modulation). The thruster layout is
an important factor in meeting the requirements: thus, an optimization methodology
was employed aimed at finding the optimal orientation of a set of N thrust vectors
(with fixed points of application, dictated by the spacecraft configuration, see
Figure 6) minimizing the total propellant consumption.

The remainder of this chapter is structured as follows. Section 2 introduces the
NGGM systems engineering constraints, with particular attention paid to the control
requirements and their implications on both design and operation. The thruster
layout optimization problem is stated together with the related objective function,
the propellant consumption, bearing in mind the implicit correlations with design
features and overall system operability. Section 3 begins by outlining the dedicated
NGGM end-to-end simulator, utilized as the basic instrument for the analysis of
the system dynamics. Then, the approach followed for solving the thruster layout
problem is discussed, as an application of the methodology conceived for the control
dispatch of a general dynamic system and illustrated in detail in another chapter
of this book [14]. Illustrative examples from the analysis carried out during the
study conclude the section. Future improvements and extensions of the analysis are
outlined in Sect. 4, where some conclusions are drawn.

Figure 6 NGGM satellite launch and orbit configuration



10 A. Anselmi et al.

2 System and Control Drivers

Numerous constraints from the spacecraft must be considered in the control design
(Table 2). The NGGM spacecraft are launched in pairs by Vega-C (see Figure 6).

The diameter and length of the fairing and the central dispenser constrain the size
of the spacecraft, and the allowable total mass at launch (about 2250 kg, including
two spacecraft and dispenser/adapter, for a near-polar orbit at ∼400 km circular
altitude) limits the mass of each satellite to about 900 kg.

The 1-kW electric power demand, driven by the electric propulsion, coupled with
the unfavorable Sun illumination during parts of the year, leads to a large (16 m2)
solar array which contributes about half of the drag force to be counteracted by the
in-track thrusters, the other half being due to the ∼1 m2 front cross section. The
thrusters must be capable of finely tuned modulation for the science modes and
yet provide sufficiently large force for the spacecraft to execute operations, such as
formation acquisition, in a reasonably short time. Miniaturized radiofrequency ion
thrusters are envisaged at this stage of the study. Thrusters of this type have a limited
range of maximum-to-minimum thrust level in which sufficient power and mass
efficiency is guaranteed. For this reason, two versions of the thrusters are employed:
one set for the thrust in the direction of motion, optimized in the range 1–10 mN;
and another set for cross-track control (with a component in the in-track direction
too), optimized in the range 50 μN to 1 mN.

Figure 7 shows the laser interferometer and the accelerometers which are the
main components of the NGGM payload.

Figure 8 shows the NGGM measurement performance requirements consistent
with the stated scientific objectives, expressed as amplitude error spectral density
(SD) of the relative distance (dimensionless) and the residual acceleration. For an
inter-satellite distance of 100 km, the left-hand side of Figure 8 implies a distance

Table 2 NGGM mission and system drivers

Mission drivers System drivers

Dual launch • Restricted transportable mass and satellite dimensions

11-year mission (∼1 solar cycle) • Equipment lifetime

• Propellant demand to perform orbit and altitude
maintenance and drag-free science operations

Low-low SST orbit • AOCS sensors and actuators and GNC algorithms
complexity

• Thruster range, noise, and response time to guarantee the
mission operations (altitude maintenance, orbit control, and
drag compensation)

Global coverage • Non-Sun-synchronous orbits affect power and thermal
designs
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Figure 7 NGGM Payloads:
laser instrument and
accelerometers

measurement error <2 × 10−8 m/
√

Hz (threshold requirement) down to a frequency
of 10 mHz. This outstanding performance is achieved by using a laser interferometer
fed by a source stabilized in frequency.

The inter-satellite distance variation measurement requirement must be comple-
mented by the requirement on the relative acceleration between the satellite centers
of mass (CoM) induced by the non-gravitational forces. This second observable is
necessary in order to estimate and separate the non-gravitational effects produced
by atmospheric drag from the first observable, thus obtaining the distance variation
between the satellite CoMs produced solely by the gravity field. A measurement
error SD < 1 × 10−11 m/s2/

√
Hz between 1 and 100 mHz is specified for relative

acceleration (threshold requirement). On top of these stringent attitude pointing and
drag-free requirements, the NGGM control system is in charge of the orbit and
formation maintenance. Table 3 presents the set of NGGM control requirements.

As the mission spans a complete solar cycle of 11 years, the design must make
provisions for all foreseeable air density conditions at the lower design altitude
of 340 km, where the sensitivity to the gravity signal is still high. Depending
on the phase in the cycle, the mean density may vary by a factor of 10. As an
example, GOCE flew for 4 years in the altitude range between 260 and 240 km,
using up to 40 kg of Xenon propellant to compensate the drag solely in the in-
flight direction, all the time in low solar flux conditions (13-month smoothed
solar flux index F10.7 < 140; for comparison, the 95 percentile index predicted
for the next solar maximum in 2024 is 240). Even though the altitude is higher,
the NGGM lifetime requirement and its 6-DoF control a priori imply much higher
propellant consumption. It is therefore necessary to design the system taking into
account propellant minimization from the beginning. The optimization process shall
encompass both the thruster layout, which cannot be changed after launch, and the
thrust dispatch, which depends on the day-to-day evolution of the environment.
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Table 3 NGGM control performance requirements

NGGM control
requirements
Control
function Requirement Remarks

Orbit control • H = Href ±100 m Href stands for reference
mean orbit altitude. Current
definition is in Table 1
Href and �H depend on the
orbit repeat cycle (RC) of
interest

Formation
control

• SSD = 100 km + 0%/−10% SSD stands for
satellite-to-satellite distance.
Its value is defined by the
metrology working range
and by scientific needs

Drag-free
control
(linear/angular)

• Lin_acc ≤ 10−6 m/s2

• Lin_acc_SD ≤ 5·10−9 m/s2/
√

Hz in MBW
• Ang_acc ≤ 10−6 rad/s2

• Ang_acc_SD ≤ 10−8 rad/s2/
√

Hz in MBW

Lin_acc/Ang_acc and
Lin_acc_SD/Ang_acc_SD
stand for the residual
linear/angular
non-gravitational
accelerations in time and
relevant spectral density.
MBW stands for
measurement bandwidth and
its range is between 10−3

and 10−1 Hz
Attitude
pointing
control

• SSL ≤ 2·10−5 rad
• SSL_SD
≤10−5 rad/

√
Hz, for 10−3 ≤ f < 10−2 Hz

≤2·10−6 rad/
√

Hz, for 10−2 ≤ f ≤ 10−1 Hz

SSL/SSL_SD stands for
satellite-to-satellite line
pointing and relevant
pointing stability in terms of
spectral density

3 Thruster Layout Optimization in a Real-World Scenario

Atmospheric drag is the dominant source of unpredictability for low-Earth orbiting
spacecraft, due to the uncertainty about both the relevant density and the properties
of the satellite surfaces. In this very challenging framework, an essential instrument
is represented by the in-house developed end-to-end (E2E) simulator [8], currently
in use and continuously upgraded [15]. It consists of an enhanced version of
the system-and-mission-consolidation code, successfully adopted for GOCE, and
represents a remarkable by-product of this project. The experience derived has
indeed confirmed that the E2E models can be relied on to adequately predict the
actual perturbation acting on the satellite when in flight. Figure 9 reports the GOCE
drag force along the flight direction, as calculated by the E2E simulator (blue line)
and measured on board (July 2011, red line).
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The last released E2E simulator is up to contemplating either a single-satellite-
configuration, as in the case of GOCE, or an in-line formation of coupled satellites.
It consists of two specific modules: the satellite module takes account of all sensors
and actuators, the guidance, navigation, and control (GNC) modes, as well as the
spacecraft physical features. The environmental characteristics, the whole system
interacts with while operating its measurement process, including all error sources,
are additionally considered. The post-processing module, instead, performs the
outline data post-processing of the scientific output, consisting in the measurements
data yielded by the satellite module.

During the last preliminary study carried out for NGGM, the E2E simulator
was employed in support of the system design and as a validation framework for
the obtained thruster layout solutions. The overall forces and torques required by
the control, during the science mode, have been evaluated on the basis of the
11-year prediction of the solar activity modelled on Cycle 23. To the purpose, three
atmospheric condition scenarios, representing the so-called minimum, mean, and
maximum solar activities, have been selected, as the analysis framework. Figure 10
reports the drag perturbation force along the flight direction, as per a prediction
example modelled on Cycle 23, for an orbit with a mean altitude of about 340 km.

For each scenario, a statistically representative sample has been extracted and the
relevant control force/torque evaluated. This force/torque profile is the input to the
thruster layout optimization exercise, as described in the remainder of this section,
and a subsequent validation process is carried out by the E2E simulator.

The validation of the analytical optimal solutions to the thruster layout problem,
in terms of propellant consumption and actuator life time, is obtained through

Figure 10 Example of drag perturbation force along the flight direction prediction (Cycle 23,
∼340 km mean altitude)
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long-run executions of the E2E simulator. For this aim, the possibility of defining
any given thruster layout, parametrically, as an input of the E2E simulator, has been
introduced. An ad hoc on-board dispatch algorithm, compliant with the thruster
layout optimization criterion, has additionally been introduced as a further basic
feature of the E2E simulator.

The obtained enhanced version has widely confirmed the potential of the overall
optimization methodology outlined hereinafter.

As is gathered from what has been illustrated so far in this chapter, the thruster
layout optimization issue presents even a skilled designer with a very challenging
task. As anticipated, the specific exercise relevant to the NGGM study has been
coped with, by adopting a novel mathematical approach, conceived, as a whole,
for the control dispatch in a general dynamic system. This overall methodology is
described at a detailed level in a dedicated chapter of this book [14]. Its application
to the NGGM framework is outlined hereinafter, focusing on the relevant conceptual
facets of the problem and carrying over the specific terminology adopted in the
study. The analysis reported in the following refers to a single satellite of the NGGM
formation, being conceptually identical for both.

As anticipated above for the NGGM study, three operational scenarios represen-
tative of the low/medium/high atmospheric drag conditions, respectively, have been
considered, in addition to a specific control law. The given control law (for each
operational scenario) is expressed in terms of overall force and torque demand, i.e.,
F and T, as expressed with respect to a given system reference frame (X,Y,Z).

Due to the discrete nature of the control action, the whole time span considered in
the analysis is discretized on the basis of a (predefined) set of time steps (instants),
of duration � each. The given control law is expressed by the following equations:

∀i ∈ I

v1xu1i + · · · + vNxuNi = Fix,

v1yu1i + · · · + vNyuNi = Fiy,

v1zu1i + · · · + vNzuNi = Fiz,(
p1 × v1

)
x
u1i + · · · + (

pN × vN

)
x
uNi = Tix,(

p1 × v1
)
y
u1i + · · · + (

pN × vN

)
y
uNi = Tiy,(

p1 × v1
)
z
u1i + · · · + (

pN × vN

)
z
uNi = Tiz.

(1)

Here, the following notations have been adopted:

• I is the set of time steps considered;
• N is the number of thrusters utilized;
• v1, . . . , vN are the unit vectors determining the orientation of each thruster;
• v1x, v1y,v1z, . . . , vNx, vNy,vNz are the direction cosines associated with v1, . . . ,

vN ;
• u1i, . . . , uNi are the thrusts (scalars) associated with each thruster, respectively,

at each instant i considered;
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• p1, . . . , pN are the position vectors of the thrusters (i.e., the force application
points, corresponding to each thruster);

• (p1 × v1)x, (p1 × v1)y, (p1 × v1)z, . . . , (pN × vN)x, (pN × vN)y, (pN × vN)z are
the components of the vector products p1 × v1, . . . , pN × vN , respectively;

• Fxi, Fyi, Fzi and Txi, Tyi, Tzi are the components of the overall force Fi and torque
Ti, at each instant i considered.

The following normalization conditions have to be set, for the direction cosines
corresponding to each thruster r (r = 1, . . . , N):

∀r v2
xr + v2

yr + v2
zr = 1,

V r ≤
(
vrx, vry,vrz

)T ≤ V r ,
(2)

where V r and V r are lower and upper bounds, respectively (expressed as column
vectors, see Layout model description) on the admissible orientation for each
thruster. In the present study, all external directions, with respect to the surface
on which the thruster is positioned, are contemplated (although more restrictive
conditions will be imposed in the future).

Since each thruster has given limitations, consisting of the minimum and
maximum force that it can exert (depending on its technical characteristics), the
lower/upper bounds below are primarily set (for all the instants), as basic conditions:

∀i ∈ I Ur ≤ uri ≤ Ur, (3)

where Ur and Urare given (positive) constants.
Further conditions such as the following can, nonetheless, be profitably added,

in order to take into account of the technical limitation of the thrusters, in terms
of thrust rate capability. To this purpose it is stated that the maximum allowable
difference of the forces applied by the same thruster in two subsequent instants
cannot exceed a given limit (this can be interpreted as a Lipschitzian condition, in a
discretized form):

∀i ∈ {0, 1, . . . , |I | − 2} | ur(i+1) − uri |≤ Lr (4)

where Lr is a given (positive) constant.
Similarly, the following additional constraints are introduced, with the scope

of limiting the utilization of each thruster, along the whole time span and thus
preventing the possible overworking of some of these (presumably, among those
with a lower cost in terms of energy):

∀r
∑

i∈I
uri ≤ Jr

�
, (5)
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where Jr represents, for each thruster r, a (technological) upper bound on the total
impulse admissible during the whole time span.

It should be observed that, according to a classical approach, equation system (1),
per se, could be solved, for each instant i, by means of the Moore–Penrose pseudo-
inverse matrix (see, e.g., [16]). As per a known property, this way the Euclidean
norm ‖u‖2 is minimized. This criterion, nevertheless, differs on the whole from
the overall propellant minimization. The aforementioned inversion, moreover, is
not in general able to contemplate any of conditions (3), (4), or (5). The actual
optimization problem in question, indeed, features the following objective function
that corresponds to the overall propellant consumption minimization:

min
∑

r,i

fr (uri) , (6)

where fr(uri) is, for each instant i, the demand associated with each thruster r (the
objective function thus defined is not necessarily linear). The minimization target is
furthermore subject to conditions (1)–(5).

All that being stated, it has moreover to be observed that for quite predictable
“physical” reasons, the resulting problem could be infeasible, i.e., the domain
delimited by conditions (1)–(5) could be empty. This would mean that there is no
thruster accommodation up to satisfying the control request, at any instant, for the
whole time span. The existence of a single thruster layout, indeed, able to dispatch
the requested control (in compliance with the given thrust bounds and additional
operational conditions) for the whole set of instants considered is not granted a
priori. To overcome this shortcoming, a possible relaxation of the problem could
be taken into account, by adding error variables in (1) and readjusting the objective
function adequately, in order to minimize (additionally) the overall error. Equations
(1) may therefore be substituted with the following:

∀i ∈ I

v1xu1i + · · · + vNxuNi = Fix + εF ix,

v1yu1i + · · · + vNyuNi = Fiy + εF iy,

v1zu1i + · · · + vNzuNi = Fiz + εF iz,(
p1 × v1

)
x
u1i + · · · + (

pN × vN

)
x
uNi = Tix + εT ix,(

p1 × v1
)
y
u1i + · · · + (

pN × vN

)
y
uNi = Tiy + εT iy,(

p1 × v1
)
z
u1i + · · · + (

pN × vN
)
z
uNi = Tiz + εT iz,

∀i ∈ I εF i ∈ [−EF ,EF ]
∀i ∈ I εT i ∈ [−ET ,ET ] ,

(7)

where εFi = (εFxi, εFyi, εFzi)T , εTi = (εTxi, εTyi, εTzi)T and EF > 0, ET > 0 are the
admitted tolerances (expressed as column vectors). This aspect, not addressed here,
could be the subject of a future extension.

In the NGGM study carried out so far, the thruster positions (i.e., p1, . . . ,
pN) have been assumed to be constant (this restriction could, indeed, be dropped
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in a more in-depth analysis, although stringent configuration constraints would
apply anyway). Equations (1), involving both the thrust direction cosines and the
corresponding thrusts as variables, for each instant of the whole period to analyze,
are associated with the overall demand (to be dispatched by means of the thrusters
available), in terms of forces and torques. Normalization Eq. (2) state the inter-
dependence among the direction cosines associated with each thruster. The lower
and upper bounds (3) delimit the force that can be exerted by each thruster (instant
by instant). Inequalities (4) state, additionally, a restriction on the force trend
relevant to each thruster, controlling any two subsequent instants. Constraints (5)
represent, instead, global conditions relevant to the overall thruster exploitation.

In the current NGGM study, the objective function (6) has been assumed linear
(although future work could drop this restriction). The following expression has
namely been considered:

min
∑

r,i∈I
Kruri, (8)

where the constants Kr represent the propellant consumption associated with each
thruster (per force unit and supposed to be time-independent).

It is understood that, considering the wide range of envisaged operational
conditions, the optimization problem under discussion is of a global type. An
overall global optimization (GO; see, e.g., [17]) approach is therefore unavoidable.
The resulting exercise, due to the presence of conditions (1) and (2), is of a
non-convex quadratically constrained type and, as such, belongs to the NP-hard
class of problems, considered, in the computational complexity theory context
(see, e.g., [18]), as extremely demanding. Indeed, under the conjecture (strongly
supported by most of scholars) that P 	= NP (where P and NP stand, respectively,
for the “polynomial time” and “nondeterministic polynomial time” classes), it has
been proven that NP-hard problems cannot be solved in polynomial time. Finding
even satisfactory (albeit sub-optimal) solutions to NP-hard problems can be an
extremely challenging task. The scale of the instance (e.g., the number of non-
convex constraints or of binary variables, if any) is in general a heavily influential
factor concerning the actual tractability of the problem.

The case study discussed here is very large. For instance, three different
atmosphere density scenarios and approximately two whole representative orbits for
each could be taken into account. Considering, for all the selected orbits, a constant
time discretization � of 2 s, the instants associated with each scenario (i.e., two
orbits) would be ∼5000, amounting to a total of ∼15,000. This would give rise to
∼90,000 equations of type (1).

The difficulty of the overall mathematical model under consideration is essen-
tially generated by constraints (1) and (2), since these are non-convex and an
additional grade of complexity could well arise, in the case of a nonlinear objective
function (in particular a non-convex one). Their overall number, in addition to the
current state-of-the-art algorithms available in literature, clearly suggests that the
solution of the problem tout court is not the best path.
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The model, nonetheless, shows quite a peculiar structure, susceptible to an
advantageous approach. Equations (1) (once the position vectors p1, . . . ,pN of the
thrusters are assumed to be constant, as in the present case) are bilinear (and involve
a large quantity of variables, i.e., the thrusts associated with each thruster per instant
considered), while (2) are (few) Euclidean-norm-quadratic equations (involving a
very limited number of variables, i.e., the direction cosines).

This has led to the conception of a new ad hoc methodology (see [14]), as an
alternative to the adoption of a general algorithm for (non-convex) quadratically
constrained problems.

The problem is therefore advantageously partitioned into two sub-problems,
entailing the implementation of two dedicated (classes of) models. The first denoted
(according to the NGGM terminology) as Layout model, focuses (mainly) on
thruster layout or, more precisely, their orientation (since in the current version the
position of the thruster is assumed to be established a priori). To this purpose, quite
a limited sub-set of instants, supposed to be representative of the whole mission,
is taken into account. The second sub-problem is devoted to the total propellant
minimization, referring to the whole operational scenario (i.e., contemplating low,
medium, and high atmosphere density conditions), corresponding to the entire
mission. This (according to the NGGM terminology) is referred to as the Master
model: as a matter of fact, it mainly intends to verify the feasibility of the solution
found by the Layout model, covering the entire set of instants relevant to the whole
analysis, instead of a sub-set of it only.

Both the Layout and Master models include Eq. (1), bounds (3), and objective
function (8). Equations (2) are considered exclusively in the Layout model, while
inequalities (4) and (5) in the Master model only. In the first, all the variables
of the general problem (i.e., v and u) are treated as such. In the second, instead,
the variables relative to the thruster orientations (i.e., v) are fixed on the basis of
the results obtained by the Layout model. As a consequence, while the Layout
model keeps its characteristic of being quadratically constrained, the Master model
becomes linear. The Layout model (supposedly very tough to tackle) is intended to
solve small-scale instances (corresponding to appropriate sub-sets of instants). The
Master model instead (plausibly easy to manage) is dedicated to the solution of the
very large-scale instance contemplating the full set of instants.

Concerning the Layout model, two (GO) approaches have been looked into.
The first (rigorous approach) consists in utilizing a global optimizer and solving
the Layout model directly. The second (approximated approach) is based on the
discretization of the variables (v) corresponding to the thruster orientations (this
is quite advantageous, since there are only three orientation variables for each
thruster). This way, the quadratic Eq. (1) become linear (for each discretized
value of the variables v) and the normalization conditions (2) are dropped. The
aforementioned discretization, however, requires the introduction of a number of 0–
1 variables and this, inevitably, transforms the original nonlinear model into a mixed
integer linear programming (MILP; see, e.g., [19]) one that also, as such, belongs to
the NP-hard class. (It should be noticed here that often the choice of an approximate
approach, instead of a rigorous one, can lead to more effective solutions in practice.)
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By fixing, in the Master model, the variables (v) corresponding to the thruster
orientations, all the constraints involved, i.e., (1), (3)–(5) result in being linear. As
pointed out previously, the overall optimization problem (covering all the given
operational scenarios) could, per se, be infeasible, giving rise to a non-eliminable
amount of error. The infeasibility, nonetheless, could also be caused by the fact
that the orientations of the thrusters are pre-selected (by the Layout model) taking
into account only quite a restricted number of instants. In this case, a reduction
of the overall error is plausible and a further search should be carried out. To this
purpose, a post-optimization phase based on sequential linear programming can be
realized (see, e.g., [20]). The Layout and Master models are reported, explicitly,
hereinafter.

3.1 Layout Model

The general formulation of the Layout model can be expressed as follows:

∀i ∈ I

v1xu1i + · · · + vNxuNi = Fix,

v1yu1i + · · · + vNyuNi = Fiy,

v1zu1i + · · · + vNzuNi = Fiz,(
p1 × v1

)
x
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(9)

In this model (encompassing both the continuous and discretized versions) I ⊂ I

and inequalities (4), as well as (5) are omitted (the latter could be included in a
more refined version). It contemplates, for each thruster, the set (or a sub-set, in
the discretized version) of all admissible orientations that are associated with a unit
semi-sphere. This is described by all unit vectors centered in the thruster position
(actually the thrust application point) and directed externally, with respect to the
corresponding satellite surface. A local reference frame is hence defined for each
semi-sphere. Each axis (x,y,z) of this is parallel to the corresponding (X,Y,Z) of
the system reference frame. Each unit vector (describing the corresponding semi-
sphere) can be identified through two spherical coordinates α and β (angles in
radians). The angle α (0 ≤ α ≤ 2π ) represents, for each semi-sphere, the polar
coordinate, with α = 0 corresponding to the y axis. The angle β (0 ≤ β ≤
π
2 π ) represents, for each semi-sphere, the azimuthal coordinate, with β = π

2
corresponding to the x axis.
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The non-continuous formulation of the Layout model is based on the discretiza-
tion of the orientations corresponding to each thruster. To this purpose, both angles α

and β can be partitioned into two finite sub-sets, dividing the corresponding intervals
α ∈ [0, 2π ] and β ∈ [

0, π
2

]
by a pre-selected number. The amplitudes of the

thus obtained sub-angles will be denoted in the following by �-angle. Different
discretization approaches may be considered.

3.2 Master Model

The resulting linearly constrained model of the Master model can be expressed as

∀i ∈ I
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�
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Kruri,

(10)

In this model all variables v are fixed (on the basis of the solution obtained from
the Layout model) and Eq. (2) are dropped.

As far as the Layout model, in its continuous version, is concerned, the instance
below illustrates how its dimension is determined (the selection of the instant sub-
set is carried out as specified later on in this section). Considering, for example, a
set of 9 thrusters and 18 instants, the resulting instance contains:

• 9 × 18 variables representing the thrust, for each thruster, at each instant;
• 9 × 3 variables, corresponding to the direction cosines;
• 9 × 18 × 2 lower and upper bounds on the thrust variables;
• 6 × 18 + 9 (bilinear and quadratic) equations (see [14]).

The following general rules account for the abovementioned instance:

• number of thrust variables = (number of thrusters) × (number of instants);
• number of orientation variables = (number of thrusters) × (3 direction cosines

per thruster);
• number of lower bounds (for the thrust variables) = number of (thrust) variables;
• number of upper bounds (for the thrust variables) = number of (thrust) variables;
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• number of (bilinear dispatch) equations (corresponding to (1)) = (6 matrix rows)
x (number of instants);

• number of (quadratic normalization) equations (corresponding to (2)) = number
of thrusters.

In the present study, an experimental analysis concerning the continuous Layout
model has been performed by utilizing a general global NLP (nonlinear program-
ming; see, e.g., [21]) optimizer. The tests concerned instances involving ∼100
variables and ∼70 constraints (satisfactory solutions were usually found in less
than 1 h). Although even larger tests have been successfully executed, this order
of magnitude represents the current standard (to obtain satisfactory solutions, in
reasonable computational times). An in-depth research, aimed at tailoring the solver
performances on the specific problem (including, if necessary, the adoption of
a dedicated optimizer for non-convex quadratically constrained programming), is
expected to extend, even significantly, this current dimensional limit.

Since the continuous Layout model is actually obtained by the whole original
problem, simply by restricting the set of instants, the above considerations provide
an indirect and empirical confirmation that to tackle it tout court would be totally
unrealistic.

Regarding the discretized version of the Layout model, the same instance
reported above, for �-angles corresponding to π

24 (rad), gives rise to:

• (24 + 6) × 9 binary variables;
• 6 × 18 linear equations;
• 9 × 24 × 6 × 18 ∼46,000 (discretization) constraints in substitution of the

9 × 18 × 2 lower and upper bounds on the thrust variables.

The abovementioned instance derives from the following statement:

• The (polar) angle α (0 ≤ α ≤ 2π ) is partitioned into a number of equal sub-angles
(24 in the aforementioned example);

• The (azimuthal) angle β (0 ≤ β ≤ π
2 π ) is partitioned into a number of equal

sub-angles (6 in the aforementioned example);
• For each thruster r, each sub-angle h of α and each sub-angle k of β, a binary

variable δrhk is introduced, with the meaning:

δrhk = 1 if thruster r takes the (discretized) orientation (h, k) ;
δrhk = 1 otherwise.

The total number of binary variables results in being:

binary variable number = [
(number of sub − angles of α)

+ (number of sub − angles of β)
]× (number of thrusters)



24 A. Anselmi et al.

The number of the thus linearized (dispatch) equations (corresponding to (1))
becomes:

number of linear equations = (6 matrix rows)× (number of instants) .

For each thruster, at each instant, the thrust lower bound is substituted with:

(number of sub-angles of α)× (number of sub-angles of β)

discretization conditions and similarly concerning the corresponding upper bounds.
The total number of the discretization constraints, replacing both the lower and

upper bounds (3), is therefore the following:

number of bound constraints = (number of thruster)× (number of sub-angles of α)
× (number of sub-angles of β)× (6 matrix rows corresponding to (1))
× (number of instants)× (2 bounds associated with each thruster) .

The tests considered for the discretized Layout model involved up to ∼40,000
constraints, ∼40,000 continuous variables, and ∼1300 binary variables (satisfactory
solutions were usually found in less than 30 min).

As easily ascertained, both continuous and discretized formulations give rise
to difficult instances, despite the quite restrained number of instants covered.
A recursive utilization of these models turns out to be very useful in practice.
For example, the discretized Layout model can be adopted to solve an instance
relative to 9 instants and �-angles of π

24 rad, as a first start. The results obtained
are utilized to initialize a subsequent optimization, restricting the search to an
appropriate neighborhood of the solution found. This allows for the extension of
the number of instants and the reduction of the �-angles involved, while keeping
the model dimension below an acceptable threshold. For instance, 18 instants could
be considered with �-angles of π

72 (rad). A combined use of the two Layout model
versions may also be profitably adopted.

The discretization of the whole time span relevant to the reference operational
scenarios gives rise to very large-scale models and this affects the Master model
directly. For example, an instance with 9 thrusters and 15,000 instants contains:

• 9 × 15,000 variables representing, respectively, the thrust, for each thruster, at
each instant;

• 6 × 15,000 linear equations (corresponding to (1));
• 9 × 15,000 × 2 lower and upper bounds on the thrust variables;
• 2 × 15,000 linear inequalities (corresponding to (4)).
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The tests considered for the Master model involved up to ∼135,000 continuous
variables and ∼120,000 constraints (optimal solutions were always found in a few
minutes).

As mentioned previously, the presence of a nonlinear objective function would
make the problem more difficult, significantly increasing the number of variables
and constraints involved (in the case of non-convex functions, the introduction of
additional binary variables is moreover deemed necessary, see, e.g., [22]). This
could be the focus of future investigation.

Global NLP and MILP (deterministic) solvers usually provide (as in the case of
the present study) reference bounds on the objective function (e.g., lower bounds,
when minimizing), to allow for an evaluation of the quality of the solution(s)
obtained (their feasibility is normally verified by the optimizer, with a certain degree
of approximation). When, nonetheless, NP-hard problems relevant to real-world
applications are involved, especially if at large scale, the proof of optimality (i.e.,
the convergence to an optimal solution) is not so frequently guaranteed (even when
deterministic algorithms, e.g., based on branch and bound search, see, e.g., [23], are
utilized).

On the basis of the overall philosophy embraced in this work, it has to be
pointed out that the scope of the whole optimization exercise is that of finding
satisfactory solutions. Looking for the global optimal one(s), even though a GO
approach has been adopted, is indeed renounced a priori. An empirical validation of
the solution(s) can, on the other hand, be carried out by the E2E simulator.

The potential of the optimization approach outlined in this chapter is illustrated,
in a realistic operative scenario by the following example, based on an overall
system configuration, originally considered as the most suitable (it was, however,
substituted, afterwards, with an alternative, at present kept as confidential).

The relevant design concept, involving eight engines, is conceived to perform all
the requested control tasks during the scientific operational mode, contrasting the
atmospheric drag of a typical NGGM orbit, with a mean altitude of about 340 km. It
should be noticed that the perturbation forces, in this specific operational scenario,
can vary from much less than 1 mN up to 5 mN, depending on the actual solar
activity present. The thrust range considered is 50–2500 μN. Figure 11 shows the
corresponding propellant consumption, as a function of the thrust exerted.

The thruster orientations, obtained by means of the discretized Layout model for
the abovementioned atmospheric perturbation assumptions, are compared in Figure
12 with the simplified symmetrical solution of the preliminary design, for which no
optimization approach had been adopted.

An example of the Master model results, derived in turn by the Layout model
outcome, is provided. A worst-case instance in terms of propellant consumption,
i.e., concerning the maximum solar activity scenario, is illustrated in Figure 13 that
reports the commanded forces and torques. In Figure 14, the optimized solution
is compared with the one obtained by applying a classical Moore–Penrose inverse
matrix to the initial symmetric (non-optimal) thruster layout.

For full controllability, the ensemble of the thrusters must provide positive
and negative force components along all three orthogonal axes, and positive and
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Figure 11 Propellant consumption rate vs. thrust

Figure 12 Optimized thruster layout vs. non-optimized solution

negative torque components about all axes. With periodic, zero-mean perturbations,
this would produce a symmetric orientation of the thruster ensemble. The opti-
mized solution, instead, takes into account the main asymmetries of the external
perturbations by suitably biasing the thruster orientations. The asymmetric (non-
zero-mean) perturbing terms include the main component of the drag force along
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Figure 13 Example of commanded forces and torques in case of maximum solar activity (WC) at
an average altitude of 340 km

−X; another large component of the drag force along +Z; and the pitch torque
about −Y produced by the centers of mass not coinciding with the center of
pressure. Figure 13 shows the corresponding required control forces and torques,
with opposite signs. Accordingly, in the optimized solution, all four rear thrusters
T5–T8 provide a dominant force component along +X (against the main drag force
term), plus all positive and negative torque combinations. The forward thrusters
are more individually specialized, providing, in particular, force components along
−X, ±Y, and ±Z (T1 and T2), +Y (T3), and −Z (T4) as well as, again, all
positive and negative torque combinations. The sensitivity of the solution achieved
to the boundary conditions is yet to be studied; it is possible that many nearly
equivalent solutions exist in its neighborhood. Anyway, the exercise demonstrates
that a significant step toward the objective (minimum propellant consumption
requirement) has been achieved.

As per the optimized solution, the total propellant needed to cover a 1-year
mission is 5.8 kg, vs the 7.9 kg corresponding to the non-optimized one. The
optimized configuration reduces the propellant consumption by about 27%, while
providing a quasi-uniformly distributed utilization of the eight thrusters available,
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Figure 14 Optimized vs. non-optimized solution

reducing the required thrust range and the thrust saturation probability (with all the
annexed technological issues in developing such electric propulsion equipment).

Concerning the computational environment, LGO [24] and IBM ILOG CPLEX
12.3 [25] have been selected as optimizers. More precisely, LGO is intended to solve
the continuous version of the Layout model, while IBM-CPLEX the discretized one,
as well as the Master model.

4 Future Developments and Conclusive Remarks

This chapter regards a very demanding study, funded by the European Space Agency
(ESA) and currently under development, in support of the future space project
denoted as the Next Generation Gravity Mission (NGGM).

Advanced investigations relevant to terrestrial gravimetry are perceived, day after
day, as very important, both for the scientific knowledge and also for the social fall-
out that is expected to derive from disciplines such as climatology, hydrogeology,
and agriculture.
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The GOCE (Gravity Field and Steady-State Ocean Circulation Explorer, ESA,
2009–2013) mission is well known for being a successful predecessor of this very
ambitious scientific project. NGGM mission, indeed, has been conceived with
the scope of outperforming the previous, in terms of both measurement quality
and overall scientific target. As is gathered, the challenge inherent to the mission
objectives is directly reflected both on the design and the operational features, by
very stringent requirements. From a mission point of view, the minimization of the
on-board propellant consumption certainly represents a major task, entailing the
intrinsically correlated issue of thruster layout optimization. A new methodology,
thought up for the control dispatch of a general dynamic system (introduced
and discussed at a detailed level in a further chapter of this volume), has been
beneficially applied to the NGGM case study.

This chapter focuses on the specific task of determining an optimal configuration
for the thrusters, in order to minimize the overall propellant consumption and hence
the relevant mass loaded on board. The topical scientific contest is outlined, pointing
out its relevance, not only at a speculative level, but also for the envisaged social
impact.

The feasibility itself of the NGGM mission, which is expected to cover a time
span of 11 years, is strictly dependent on a permanent control of the formation
system, acting, step by step, in order to regulate the satellite attitude and to
counteract the atmospheric drag, particularly detrimental when navigating in low
orbit. Once an appropriate control law is looked into, a further and not any easier
task concerns the issue of timely satisfying the recurrent request, in terms of force
and torque, by means of the thrusters available on board. Their configuration has
to be established by a once-and-for-all solution and, as a consequence, the relevant
design choice affects the whole propulsion performance.

In the present study, the positions of the thrusters have been selected mainly on
the basis of overall considerations at a system design level. Their optimal orien-
tation, on the other hand, has represented the object of an in-depth investigation.
The aforementioned methodology for the control dispatch of a dynamic system
has been applied to the specific case study, by considering a suitable selection of
low, medium, and high atmospheric density scenarios, assumed to be realistically
representative of the whole mission. The overall approach, taking advantage of
an advanced global optimization perspective (involving both nonlinear and mixed
integer linear programming), essentially consists in the (iterative/recursive) solution
of two sub-tasks, referred to as Layout and Master sub-problems, respectively. Their
adoption is outlined in this chapter, underlining the relevant conceptual features (and
referring the reader to the dedicated work for an extensive mathematical exposition).
The outcomes yielded by an ad hoc experimental analysis, carried out with the
support of an end-to-end simulator, implemented to assess the system dynamic
behavior, have proven to be promising. A significant part of the chapter is devoted
to quite a detailed discussion on this matter.

A number of prospective research directions have been identified so far, also
in light of the updated mission requests that have arisen during the consolidation
of the NGGM system design. First and foremost, a significant extension of the
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experimental analysis is foreseen. To this purpose, further operational scenarios,
based on a finer classification of the atmospheric density, have to be examined and
the relevant detail level properly upgraded. A wider selection of thruster typologies
should be scrutinized, as well, in order to evaluate different technological features,
both in terms of lower and upper bounds on the thrusts and the relevant consumption
curves. A dedicated sensitivity analysis on the technological features of the thrusters
could additionally be beneficial, in order to recommend possible development
directions to manufacturers.

In order to perform the abovementioned additional experimental analysis,
upgrading of the end-to-end simulator is expected. This has the scope of validating
the optimization solutions obtained, by contemplating the more realistic scenarios
to deal with, appropriately.

Investigations into aspects that have been neglected in the feasibility analysis
achieved to date are moreover envisaged, as essential objectives of the forthcoming
project developments. As in the previous stage of the study, these can be obtained
as straightforward applications of the theoretical fundamentals put forward in the
aforementioned chapter, devoted to the control dispatch of a dynamic system. In this
respect, a first research subject could consist in a local optimization, with the scope
of improving the positioning of the thrusters (within suitable neighborhoods of the
identified locations). The presence of clearance zones should furthermore be taken
into account, in order to prevent undesirable interaction among the various devices
placed on board for service, payload, and neutralization purposes. The number (in
addition to the position) of the frontal, as well as rear actuators, moreover, could be
profitably reconsidered, by exploring the suitability of front-back asymmetries.

In order to refine the mathematical models adopted, the linearity assumptions
on the propellant consumption curves may be profitably dropped, by considering
more representative nonlinear functions as optimization targets. Different objective
functions can also be evaluated, with the scope of extending the overall analysis to
features that, although not as crucial as the propellant consumption minimization,
deserve consideration. Distributing the workload associated with each thruster as
uniformly as possible during the whole mission, in order to prevent possible overuse
of a sub-set of actuators, is one example. A further extension could concern the
realization of a redundant system of thrusters, up to providing, at each instant, the
required control dispatch, should an actuator (or more) break down, by minimizing
the number of additional devices.

The work discussed in this chapter constitutes a significant step forward toward
an in-depth understanding of the very though-provoking scenarios the NGGM study
gives rise to, in terms of both design and operational objectives. The way has been
paved for taking on an even more demanding challenge on the horizon in the near
future.
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Global Optimization
of Continuous-Thrust Trajectories Using
Evolutionary Neurocontrol

Bernd Dachwald and Andreas Ohndorf

Abstract Searching optimal continuous-thrust trajectories is usually a difficult and
time-consuming task. The solution quality of traditional optimal-control methods
depends strongly on an adequate initial guess because the solution is typically
close to the initial guess, which may be far from the (unknown) global optimum.
Evolutionary neurocontrol attacks continuous-thrust optimization problems from
the perspective of artificial intelligence and machine learning, combining artificial
neural networks and evolutionary algorithms. This chapter describes the method and
shows some example results for single- and multi-phase continuous-thrust trajectory
optimization problems to assess its performance. Evolutionary neurocontrol can
explore the trajectory search space more exhaustively than a human expert can
do with traditional optimal-control methods. Especially for difficult problems, it
usually finds solutions that are closer to the global optimum. Another fundamental
advantage is that continuous-thrust trajectories can be optimized without an initial
guess and without expert supervision.

1 Introduction

Traditionally, continuous-thrust trajectories are optimized by the application of
numerical optimal-control methods that are based on the calculus of variations.
These can be divided into direct ones, such as nonlinear programming (NLP)
methods, and indirect ones, such as neighboring extremal and gradient methods.
All these are generally classified as local trajectory optimization methods, where
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the term optimization does not mean to find the best solution, but rather to find
a solution. Prior to optimization, the NLP and the gradient methods require an
initial guess for the control history, whereas the neighboring extremal methods
require an initial guess for the starting adjoint vector of Lagrange multipliers or
costate vector [30]. Unfortunately, the convergence behavior of local trajectory
optimization methods (especially of the indirect ones) is very sensitive to the initial
guess, and an adequate initial guess is often hard to find, even for an expert in
astrodynamics and optimal-control theory. Similar initial guesses often produce
very dissimilar optimization results, so that the initial guess cannot be improved
iteratively and trajectory optimization becomes more of an art than science [3]. Even
if the optimizer finally converges to an optimal trajectory, this trajectory is typically
close to the initial guess, and that is rarely close to the (unknown) global optimum.
Because the optimization process requires nearly permanent expert supervision, the
search for a good trajectory can become very time-consuming and thus expensive.
Another drawback of local trajectory optimization methods is the fact that the
initial conditions (launch date, initial propellant mass, initial velocity vector, etc.)—
although they are crucial for mission performance—are generally chosen according
to the expert’s judgment and are therefore not an explicit part of the optimization
problem.

To transcend the drawbacks of local trajectory optimization methods, a smart
global trajectory optimization method was developed by Dachwald [5] and Ohn-
dorf [19]. This method—termed evolutionary neurocontrol (ENC)—fuses artificial
neural networks (ANNs) and evolutionary algorithms (EAs) into so-called evolu-
tionary neurocontrollers (ENCs). The implementation of ENC for continuous-thrust
trajectory optimization was termed InTrance, which stands for Intelligent Trajectory
optimization using neurocontroller evolution. To find a near-globally optimal
trajectory, InTrance requires only the mission objective and intervals for the initial
conditions as input. It does not require an initial guess or the near-permanent
supervision of a trajectory optimization expert. During the optimization process,
InTrance searches not only the optimal spacecraft control but also the optimal initial
conditions within the specified intervals.

In the beginning, to keep it simple, InTrance was designed by Dachwald [5]
only for heliocentric single-phase trajectory optimization problems (e.g., to transfer
from Earth with a given max. C3 to rendezvous another planet, to escape the solar
system with a max. velocity, or to impact an asteroid with a max. velocity). This
will be described in Sects. 2 and 4, and selected single-phase results will be shown
in Sect. 5. Later, InTrance was extended by Ohndorf [19] for multi-phase problems
with more than one central body (e.g., for a transfer from low-Earth-orbit to a low-
Moon or a low-Mars-orbit or for multiple-asteroid rendezvous missions). This will
be described in Sect. 6 and selected multi-phase results will be shown in Sect. 7.
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2 Evolutionary Neurocontrol

2.1 Continuous-Thrust Trajectory Optimization as a Delayed
Reinforcement Learning Problem

Reinforcement learning (RL) problems form an important class of difficult learning
problems, for which the optimal behavior of the learning system (called agent)
has to be learned solely through interaction with the environment, which gives
an immediate or delayed evaluation, also called reward or reinforcement [12, 31].
This evaluation is analogous to an objective function and will therefore also be
denoted by the symbol J . The agent’s behavior is defined by an associative mapping
from situations to actions S : X �→ A (X is called state space and A is called
action space). Within this chapter, this associative mapping that is typically called
policy in the RL-related literature is termed strategy. The optimal strategy S� of
the agent is defined as the one that maximizes the sum of positive reinforcements
and minimizes the sum of negative reinforcements over time. If, given a situation
X ∈ X, the agent tries an action A ∈ A and the environment immediately returns
an evaluation J (X,A) of the (X,A) pair, one has an immediate reinforcement
learning problem. Delayed reinforcement learning problems form a class of even
more difficult learning problems, for which the environment gives only a single
evaluation J (X,A)[t], collectively for the sequence of (X,A) pairs occurring in
time during the agent’s operation.

From the perspective of machine learning, a spacecraft steering strategy may be
defined as an associative mapping S that gives—at any time along the trajectory—
the current spacecraft control u from some input X that comprises the variables that
are relevant for the optimal steering of the spacecraft (the current state of the relevant
environment). Because the trajectory is the result of the spacecraft steering strategy,
the trajectory optimization problem is actually a problem of finding the optimal
spacecraft steering strategy S�. This is a delayed reinforcement learning problem
because a spacecraft steering strategy cannot be evaluated before its trajectory is
known and a reward can be given according to the fulfillment of the optimization
objective(s) and constraint(s). One obvious way to implement spacecraft steering
strategies is to use ANNs because they have already been applied successfully
to learn associative mappings for a wide range of problems. For other recent
applications of machine learning and evolutionary techniques in interplanetary
trajectory design see also the chapter by Izzo et al. [11] in this book.

2.2 Evolutionary Neurocontrol

InTrance uses a feedforward ANN with a sigmoid neural transfer function. Mathe-
matically, an ANN is a continuous parameterized function (called network function)

Nπ : X ⊆ R
ni �→ Y ⊆ (0, 1)no (1)
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Figure 1 Mapping of an ANN onto a chromosome (note that the input neurons do not have
parameters)

that maps from an ni-dimensional input space X onto an no-dimensional output
space Y. The parameter set π = {π1, . . . , πnπ } of the network function comprises
the nπ internal ANN parameters (i.e., the weights of the neuron connections and the
biases of the neurons). ANNs have been successfully applied as neurocontrollers
(NCs) for reinforcement learning problems [9]. The most simple way to apply an
ANN for controlling a dynamical system is by letting the ANN, at every discrete
time step t̄ , provide the control u(Y(t̄)) (with Y(t̄) ∈ Y) from some input X(t̄) ∈ X
that contains the relevant information for the control task. The NC’s behavior is
completely characterized by its network function Nπ that is—for a given network
topology—again completely characterized by its parameter set π . If the correct
output is known for a set of given inputs (the training set), the difference between
the resulting output and the known correct output can be utilized to learn the optimal
network function N� � Nπ� by adapting π in a way that minimizes this difference
for all input/output pairs in the training set. A variety of learning algorithms has
been developed for this kind of learning, the backpropagation algorithm being the
most widely known. Unfortunately, learning algorithms that rely on a training set
fail when the correct output for a given input is not known, as it is the case for
delayed reinforcement learning problems. In this case, EAs may be used as robust
learning methods for determining N� [33, 35, 41] because the ANN parameter set π

can be mapped onto a real-valued string ξ (also called chromosome or individual)
that provides an equivalent description of the network function Nπ , as it is shown in
Figure 1.

2.3 Additionally Encoded Problem Parameters

If an EA is already employed for the NC parameter optimization, it is manifest
to use it also for the co-optimization of additional problem parameters. Therefore,
InTrance encodes the relevant initial conditions p additionally on the chromosome
(e.g., launch date, hyperbolic excess velocity vector, initial propellant mass), all
within user-defined intervals. Thus ξ = (π ,p). This way, the initial conditions
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Figure 2 Transformation of
a chromosome into a
trajectory

are made an explicit part of the optimization problem. Figure 2 sketches the
transformation of a chromosome ξ into a trajectory xSC[t]. By searching for the
fittest individual ξ �, the EA searches for the optimal spacecraft trajectory x�

SC[t].

2.4 Neurocontroller Input and Output

Two fundamental questions arise concerning the application of an NC for spacecraft
steering: (1) “what input should the NC get?” (or “what should the NC know to steer
the spacecraft?”) and (2) “what output should the NC give?” (or “what should the
NC do to steer the spacecraft?”

To determine the currently optimal spacecraft control u(t̄i ), the spacecraft
steering strategy should have to know—at any time step t̄i—the current spacecraft
state xSC(t̄i ) and the current target state xT(t̄i ). For spacecraft with an electric
propulsion system, the spacecraft state includes also the current propellant mass
mP(t̄i ). Thus S : {(xSC, xT,mP)} �→ {u}. The number of potential input sets,
however, is still large because xSC and xT may be given in coordinates of any
reference frame and in combinations of them. An ANN with cartesian coordinates
and the propellant mass as a potential input set is depicted in Figure 3.

Now, what output should the NC give? At any time step t̄i , each output neuron
j gives a value Yj (t̄i ) ∈ (0, 1). The number of potential output interpretations is
also large because there are many alternatives to define u, and to calculate u from
Y. The following approach was chosen in InTrance because it gave good results for
the majority of the problems that have been investigated: the NC provides a three-
dimensional output vector d′′ ∈ (0, 1)3 from which a unit vector d is calculated via

d′ � 2d′′ −
⎛

⎝
1
1
1

⎞

⎠ ∈ (−1, 1)3 and d � d′

|d′| (2)
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Figure 3 Example for a neurocontroller that implements a spacecraft steering strategy

This unit vector is interpreted as the desired thrust direction and is therefore called
direction unit vector. The output must also include the engine throttle 0 ≤ χ ≤ 1,
so that u � (d, χ), hence S : {(xSC, xT,mP)} �→ {d, χ}. This potential output set
is also depicted in Figure 3. For bang-bang control, the output of the neuron that is
associated with the throttle uχ may be interpreted as χ = 0 if uχ < 0.5 and χ = 1
if uχ ≥ 0.5.

2.5 Neurocontroller Fitness Assignment

In EAs, the objective function J that rates the optimality of a chromosome is called
fitness function. In this section, we show how InTrance implements the fitness
function for the rendezvous and the flyby problem.

The optimality of a trajectory may be defined with respect to various primary
objectives (e.g., transfer time or propellant consumption). When an ENC is used
for trajectory optimization, the accuracy of the trajectory with respect to the final
constraints must also be considered as secondary optimization objectives because
they are not enforced otherwise. If, for example, the transfer time for a rendezvous
is to be minimized, the fitness function must include the transfer time T � t̄f −
t̄0, the final distance to the target �rf � |rT(t̄f ) − rSC(t̄f )|, and the final relative
velocity to the target �vf � |vT(t̄f )− vSC(t̄f )|, hence J = J (T ,�rf ,�vf ). If, for
example, the propellant mass for a flyby problem is to be minimized, T and �vf
are not relevant, but the consumed propellant �mP must be included in the fitness
function. In this case, J = J (�mP,�rf ). Because the ENC unlikely generates a
trajectory that satisfies the final constraints exactly (�rf = 0 m, �vf = 0 m/s), a
max. allowed distance �rf,max and a max. allowed relative velocity �vf,max have
to be defined. Using �rf,max and �vf,max, the distance and relative velocity at the
target can be normalized to �Rf � �rf /�rf,max and �Vf � �vf /�vf,max.
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Because at the beginning of the search process most individuals do not meet the
final constraints with the required accuracy (�Rf < 1, �Vf < 1), a max. transfer
time Tmax must be defined for the numerical integration of the trajectory.

Sub-fitness functions may be defined with respect to all primary and secondary
optimization objectives. It was found that the performance of ENC strongly depends
on an adequate choice of the sub-fitness functions and on their composition to the
(overall) fitness function. This is reasonable because the fitness function has not
only to decide autonomously which trajectories are good and which are not, but
also which trajectories might be promising in the future optimization process. The
primary sub-fitness function

JmP � mP(t̄0)

2mP(t̄0)−mP(t̄f )
− 1

3

and the secondary sub-fitness functions

Jr � log

(
1

�Rf

)
and Jv � log

(
1

�Vf

)

were empirically found to produce good results for rendezvous and flyby trajec-
tories, if the propellant consumption is to be minimized. Jr and Jv are positive
when the respective accuracy requirement is fulfilled and negative when it is not.
Another empirical finding was that the search process should first concentrate on the
accuracy of the trajectory and then on the primary optimization objective. Therefore,
the sub-fitness function for the primary optimization objective is modified to

J ′
mP

�
{

0 if Jr < 0 ∨ Jv < 0

JmP if Jr ≥ 0 ∧ Jv ≥ 0

for the rendezvous problem and

J ′
mP

�
{

0 if Jr < 0

JmP if Jr ≥ 0

for the flyby problem. To minimize the propellant mass for a rendezvous, for
example, the following fitness function may be conceived:

J (�mP,�rf ,�vf ) � J ′
mP

+ 1
√
�R2

f +�V 2
f

To minimize the propellant mass for a flyby, only the positions must match:

J (�mP,�rf ) � J ′
mP

+ 1

�Rf
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2.6 Implementation of Evolutionary Neurocontrol in InTrance

Figure 4 shows how InTrance implements evolutionary neurocontrol for continuous-
thrust trajectory optimization. To find the optimal spacecraft trajectory, InTrance-
runs in two loops. The EA in the outer NC optimization loop holds a population P =
{ξ1, . . . , ξq} of chromosomes. Each chromosome ξ of the population comprises
an NC parameter set π and initial problem conditions p, i.e., ξ = (π ,p). Every
time a new chromosome ξ j is generated via reproduction, it is examined within
the (inner) trajectory integration loop for its suitability to generate an optimal
trajectory. Within the inner trajectory integration loop, the NC steers the spacecraft
according to the initial conditions pj on its chromosome and according to its NC
network function, which is completely defined by its parameter set π j . Within the
trajectory optimization loop, the NC takes the current spacecraft state xSC(t̄i ) and
the current target state xT(t̄i ) as input, and maps them via the network function
and the transformations described in Sect. 2.4 onto the spacecraft control u(t̄i ).
Then, xSC(t̄i ) and u(t̄i ) are inserted into the equations of motion and numerically
integrated over one time step to yield xSC(t̄i+1). The new state is then fed back into
the NC. The trajectory integration loop stops when the final constraints are met with
sufficient accuracy or when a given time limit is reached. Then, back in the NC
optimization loop, the trajectory is rated by the EA’s fitness function J (ξ j ). The
fitness of ξ j is crucial for its probability to reproduce and create offspring. Under
this selection pressure, the EA “breeds” more and more suitable steering strategies
that generate better and better trajectories. Finally, the EA that is used within this
work converges against a single steering strategy, which, in the best case, gives a
near-globally optimal trajectory x�

SC[t].

Figure 4 Implementation of evolutionary neurocontrol for continuous-thrust trajectory optimiza-
tion in InTrance
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3 Evolutionary Algorithm Implementation Issues

3.1 Real-Valued Parameter Encoding

InTrance implements real-valued parameter encoding because experiments like
those performed by Michalewicz [17] indicate that the real-valued parameter
representation is faster, more consistent from run to run, and provides higher
precision, especially in large search spaces. It is also closer to the problem space,
which facilitates the development of problem-specific evolutionary operators.

3.2 Multi-Objective Tournament Selection and Steady-State
Reproduction

InTrance implements tournament selection because of its computational efficiency.
A parent individual is selected by choosing randomly two individuals from the
population and allowing only the better one to reproduce. Thus the reproduction
probability of each individual is independent of its absolute fitness, and the selective
pressure remains constant throughout the search process [1]. Another advantage of
tournament selection is that each tournament can be performed (randomly) with
respect to a different objective. Such a selection mechanism prefers individuals that
perform reasonably well with respect to all objectives, supporting multi-objective
optimization. Another approach that has been selected due to its computational effi-
ciency is steady-state reproduction, also called one-at-a-time reproduction because,
at each time step, only one reproduction takes place. This is computationally less
expensive than generational reproduction. Steady-state reproduction in combination
with tournament selection, as shown in Figure 5, is conceptually very simple. Two

Figure 5 Steady-state reproduction with tournament selection
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tournaments are performed to determine the two parent chromosomes, which are
the winners of the tournaments. They stay in the population, while the two offspring
chromosomes replace the two tournament losers.

3.3 Real Delta Coding

A method termed delta coding (DC) was proposed by Whitley et al. [34] to
enhance the precision and convergence behavior of genetic search (for binary
strings). It is based on the idea that a string can also express a distance to some
previous solution, which is called partial solution. DC runs in search epochs.
In each epoch, only a dynamically selected subspace of the total search space,
which is constructed around the most recent partial solution, is explored. By
periodically re-initializing the population, the partial solution is improved, and
premature convergence is avoided. Dachwald [4] and Tsinas and Dachwald [33]
extended the idea of DC to real-valued strings and termed this method float-
ing point delta coding (FPDC). The algorithm that is implemented in InTrance
is a revised version of FPDC and is termed real delta coding (RDC). It fea-
tures a search space reduction mechanism that guarantees convergence and pro-
vides a kind of gradient search behavior during optimization. Because the details
of RDC are quite complex, the reader is referred to [5] for a more detailed
description.

3.4 Evolutionary Operators

InTrance implements four crossover operators: one-point crossover [18], uniform
crossover [32], arithmetical crossover [17], and finally crossover-nodes [18], which
is tailored to ANN chromosomes. InTrance implements also a computationally
efficient mutation operator, which is termed fast uniform mutation. For details, the
reader is referred to [5] and [19].

4 InTrance Evaluation

To assess the viability and performance of ENC for continuous-thrust trajectory
optimization, the convergence behavior of InTrance was evaluated, and the quality
of the obtained solutions was assessed by comparing them with reference trajec-
tories for problems found in the literature. All reference problems employed a
one-body simulation model, where the gravitational influence of the planets and
other disturbing forces were neglected.
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Here, we focus on a single reference problem,1 a solar-sail transfer from Earth
to Mercury for an ideal solar sail with a characteristic acceleration2 of ac =
0.55 mm/s2. A reference trajectory was calculated by Leipold et al. [13, 16] using a
local trajectory optimization method. This reference trajectory launches at Earth on
15 Jan 2003 (MJD 52654.5) with zero hyperbolic excess energy and takes 665 days
to rendezvous Mercury.

To evaluate the convergence behavior and stability of InTrance, it was run
using five different initial NC populations with 50 randomly initialized individuals.
The launch date was set to the one used by Leipold et al. [13, 16]. A 12-30-3
neurocontroller with 12 input neurons, one hidden layer with 30 hidden neurons,
and 3 output neurons was used, where the input neurons receive the actual spacecraft
state xSC and the actual target body state xT in cartesian coordinates, and the
output neurons define—according to Equation (2)—directly the thrust direction
unit vector d. The max. transfer time was set to 600 days, and the sailcraft was
“allowed” to change its attitude once every day (piecewise constant control). The
final accuracy limit (convergence criterion) was set to �rf,max = 0.1 × 106 km
and �vf,max = 0.1 km/s.3 Figure 6 shows the trajectories of the five InTrance-
runs. The left side of Figure 7 shows the two solar-sail steering angles. Although
the trajectories and the steering angles differ considerably for the five runs, the
respective transfer times differ by less than 3%. This gives some confidence that the
best trajectory found is not far from to the global optimum. Also, it is 91 days (16%)
faster than the reference trajectory, revealing that the latter is far from the global

Figure 6 Mercury rendezvous trajectories for the five different initial NC populations, 2D (left)
and 3D (right)

1A detailed description of all evaluation calculations can be found in [5].
2The characteristic acceleration of a solar sail describes its lightness and is its main performance
parameter. It is defined as the max. acceleration at Earth distance from the Sun.
3�vf,max = 0.1 km/s was also used by Leipold [13], whereas �rf,max was not given there.



44 B. Dachwald and A. Ohndorf

Figure 7 Steering angles (left) and launch date fingerprint (right) for the five different initial NC

populations (the bold line is for the best trajectory found, �Xf =
√

1/2(�R2
f +�V 2

f ))

optimum. The final distance to Mercury is �rf ≈ 0.057 × 106 km and the final
relative velocity is �vf ≈ 0.057 km/s, both being much better than the required
accuracy limits.

To assess the similarity of the five InTrance-steering strategies, so-called launch
date fingerprints (LDFs) have been calculated, as they are shown on the right side of
Figure 7. These LDFs show the accuracy of the steering strategy for different launch
dates within a 1-year interval around the nominal launch date (MJD 52654.5). From
the LDFs, one can see that all five steering strategies achieve a good accuracy
only for the launch date for which they have been “bred” by the EA, so that
they are not universally valid. A universal steering strategy would achieve a good
accuracy for all launch dates. For each specific launch date, the final trajectory
deviation is approximately the same for all five ENCs. This similarity of the LDFs
indicates that—generating similar outputs from similar4 inputs—the underlying
steering strategies can also be expected to be similar.

Because a 12-30-3 neurocontroller is only one of many possible NCs that may
be used for this trajectory optimization problem, different input and output sets
and different numbers of hidden neurons/layers have also been tested [5, 6]. It
was found that the quality of the solutions is quite robust with respect to those
variations. Especially the number of hidden neurons had little effect on the results.
Most NCs achieved the required accuracy in all five InTrance-runs, and even NCs
with only 10 hidden neurons provided acceptable results. It was noted, however,
that only NCs with cartesian inputs achieved the required accuracy in all five runs,
although the motion of spacecraft in interplanetary space is better described in polar

4Note that the inputs diverge gradually due to the differences in the steering strategies.
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coordinates or by orbital elements. This is probably due to the fact that the variation
of the input in cartesian coordinates is larger than in polar coordinates and in orbital
elements.

In the calculations above, the launch date was fixed. InTrance was later used to
further optimize the Earth–Mercury transfer trajectory by varying the launch date
within a given interval. The optimal launch date around the reference launch date
was found to be 31 Mar 03, 75 days later than the reference launch date. The best
solution found takes 502 days to rendezvous Mercury, being 163 days faster than the
reference trajectory. The final distance to Mercury is �rf ≈ 0.02 × 106 km and the
final relative velocity is �vf ≈ 0.02 km/s, both being much better than the required
values.

5 Selected Single-Phase Trajectory Optimization Results

ENC and InTrance are not constrained by the type of continuous-thrust propulsion
system and even trajectories for hybrid or staged continuous-thrust propulsion
systems can be optimized. Many of those propulsion systems have already been
implemented into InTrance (e.g., solar electric propulsion, nuclear electric propul-
sion, radioisotope electric propulsion, different thrusters, solar sails, laser-enhanced
solar sails). Nevertheless, in this section, two quite difficult solar-sail problems are
described, for which no other solutions are known so far. Problems that use other
propulsion systems will be covered in Sect. 7.

5.1 Solar System Escape with Solar Sail

Although the solar radiation pressure decreases with the square of the solar distance,
solar sails enable fast flyby missions to the outer planets and solar system escape
missions, without gravity assist maneuvers. Sauer [27] observed that the solar
sail may gain a large amount of orbit energy by making a close approach to
the Sun, turning the trajectory into a hyperbolic one, a maneuver for which
Leipold coined the term “solar photonic assist” or SPA [14, 15]. Sauer [29] made
parametric studies for near-interstellar missions up to 1000 AU using ideal very-
high-performance solar sails that reach a high solar system escape velocity with
just a single SPA. Leipold observed that solar sails with a more conservative
performance require multiple SPAs to achieve solar system escape. He calculated
some trajectories for ideal solar sails but made no parametric studies. Both did
not make trajectory calculations for low-performance solar sails, probably because
the trajectories get more complex (more SPAs) when the sail lightness, i.e., the
characteristic acceleration ac, decreases. Using InTrance, Dachwald [7] was able
to make parametric studies also for low-performance solar sails with many SPAs.
Some solutions are shown in Figure 8.



46 B. Dachwald and A. Ohndorf

Figure 8 In Trance solutions for Neptune flyby trajectories for ideal solar sails with different
characteristic accelerations

The minimum flight time to an outer solar system target depends not only on
the lightness of the solar sail but also on the allowed minimum solar distance: the
smaller the minimum solar distance, the larger the amount of orbit energy that
can be gained by a solar approach. For realistic (non-ideal) sails, the minimum
solar distance, however, is limited by the temperature limit Tlim of the sail film.
In the previous work by Sauer and Leipold, a minimum solar distance rmin was
used as a path constraint for trajectory optimization, with the argument that such
a constraint enforces that some Tlim will not be exceeded during the closest solar
approach. The sail temperature, however, depends not only on the solar distance but
also on the light incidence angle, as defined by the sail attitude. Using InTrance,
it was shown in [7] that faster trajectories can be obtained for a given sail
temperature limit, if not the allowed minimum solar distance, but the allowed max.
sail temperature is directly used as a path constraint for optimization, as shown in
Figure 9.

InTrance was used to calculate optimal SPA trajectories to all major outer
solar system bodies and to 200 AU for various characteristic accelerations and sail
temperature limits. Figure 10 shows that, despite the complex SPA topology, the
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Figure 9 InTrance solutions for Neptune flyby trajectories for a real solar sail with different
optimization path constraints, solar distance limit (left) and sail film temperature limit (right)

Figure 10 Flight times for outer planet and 200 AU flybys depending on the solar-sail character-
istic acceleration (left) and minimum flight times to 200 AU for different sail temperature limits
(right)

variation of flight time over characteristic acceleration follows simple power laws.
Again, this gives some confidence that the InTrance solutions are close to the global
optimum.

5.2 Trajectory Optimization for NASA’s Solar Polar Imager
Mission

NASA’s Solar Polar Imager (SPI) mission was one of the several Sun–Earth
connection solar-sail roadmap missions envisioned by NASA. The SPI target orbit
was a heliocentric circular orbit at 0.48 AU (in 3:1 resonance with Earth) with an
inclination of 75◦. The reference mission design was based on a solar sail with a
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characteristic acceleration of 0.35 mm/s2. It was first found by Wright [39, 40] and
further examined by Sauer [28] that the best way to perform a large inclination
change with a solar sail is to first spiral inwards to a close solar distance, and
then to use the large available solar radiation pressure to crank the orbit. NASA’s
reference trajectory, calculated by Sauer [37] and Wie [36], is shown on the left side
of Figure 11. Not approaching the Sun closer than 0.48 AU, the sail film temperature
cannot exceed Tlim = 100 ◦C, which is a quite conservative value. Therefore, this
was termed a “cold” mission scenario by Dachwald et al. [8].

Using the same sail film temperature limit as a path constraint, the transfer
trajectory found by InTrance, shown on the right side of Figure 11, approaches
the Sun closer than the reference trajectory (to about 0.4 AU solar distance) and
therefore, exploiting the larger solar radiation pressure, takes—even with a lower
hyperbolic excess energy for interplanetary insertion—only 6.4 instead of 6.7 years.

For a higher sail temperature limit of 240 ◦C (a “hot” mission scenario), the
best transfer trajectory found by InTrance, shown on the left side of Figure 12,
approaches the Sun much closer (to about 0.22 AU solar distance) before it spirals
outwards again to the target orbit, resulting in an even shorter transfer duration of
only 4.7 years. Such a trajectory was not seen before with any other optimization
method. Looking at the steering angles on the right side of Figure 12, however,

Figure 11 NASA’s SPI reference trajectory by Sauer (left, courtesy of NASA/JPL) and InTrance
trajectory (right)
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Figure 12 Trajectory (left) and steering angles (right) for the “hot” mission scenario
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their “noisy” behavior shows that—due to the poor local search behavior of ENC—
the final trajectory is not locally optimal. Therefore, colleagues that work with an
indirect local method were asked to use the InTrance trajectory as an initial guess
and refine the solution locally. It turned out, however, that this was not possible.
But they found out that the found InTrance trajectory is indeed not locally optimal,
because they found a solution that is about 1.35% (12 days) faster, after about 900
days of flight time, shortly after the cranking of the orbit has begun (G. Mengali and
A. Quarta, 2006, personal communication).

6 Extension of Evolutionary Neurocontrol for Multi-Phase
Trajectory Optimization

The optimization of multi-phase continuous-thrust missions provides additional
challenges because (1) the optimization objective for the entire mission may be
more complex, (2) the distinct phases affect each other during optimization, and (3)
additional constraints are introduced, which may be quite complex, as in the case of
a min. and max. time between two phases, e.g., for staying at a body. A quite simple
two-phase SEP-powered Earth–Mars–Earth transfer may be used to exemplify the
potential problems and constraints that may hamper the optimization of such multi-
phase mission designs as well as the strategies used in InTrance to tackle those
problems.

A multi-phase scenario offers additional optimization objectives compared to
those of single-phase missions. Each phase k of the n mission phases has an initial
time t

(k)
0 , final time t

(k)
f , initial propellant mass m

(k)
P,0 , final propellant mass m

(k)
P,f , and

so on. Besides minimizing the mission duration

Tmission = t
(n)
f − t

(1)
0 (= t

(2)
f − t

(1)
0 for n = 2) (3)

or the total propellant consumption

�mP = m
(1)
P,0 −m

(n)
P,f (= m

(1)
P,0 −m

(2)
P,f for n = 2) (4)

it is also possible to maximize the stay-time between the n phases for a given max.
mission duration (as in the case of a multiple-asteroid rendezvous)

Tstay =
n−1∑

k=1

(
t
(k+1)
0 − t

(k)
f

)
(= t

(2)
0 − t

(1)
f for n = 2) (5)

or to minimize the total time in flight (e.g., for radiation protection)

Tflight =
n∑

k=1

(
t
(k)
f − t

(k)
0

)
(= (t

(1)
f − t

(1)
0 )+ (t

(2)
f − t

(2)
0 ) for n = 2) (6)
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Figure 13 Mapping of the NC parameters onto a chromosome for multi-phase trajectory
optimization

Depending on the chosen optimization objective, the phase steering strategies S(k),
the departure dates t

(k)
0 , and the initial propellant masses m

(k)
P,0 will be different,

and these are the variables to be optimized in the overall mission context. Even if
all single-phase transfers are optimal, the entire mission might be far from being
optimal. This is even more complicated by additional constraints like a min. and
max. stay-time at Mars, as it would be required by a human mission.

For the multi-phase continuous-thrust optimization approach chosen in InTrance,
the chromosome holds all NC and mission- and phase-related parameters, as
shown in Figure 13. In this example, the steering strategy of the two phases is
incorporated by a separate ANN for each phase. The ANN parameter sets and the
initial conditions of each phase become substrings of the chromosome, as it will
be justified below. By encoding all phases onto a single chromosome, the solutions
for the different phases can co-evolve to yield an optimal solution for the entire
trajectory.

The most obvious option for multi-phase trajectory optimization is to evaluate
the phases one by one, with phase k + 1 always starting exactly at the final state
of phase k. This way, only the initial conditions of the first phase would have to be
encoded on the chromosome, which reduces the number of optimization parameters.
It always guarantees physically valid trajectories. As it constrains the solution space
of phase k + 1 to a subspace that starts directly at the end of phase k, however,
good solutions for later phases cannot be found, if already the first phase drives
the optimization into a sub-optimal direction. A better option also evaluates the
phases one by one but encodes phase-specific initial conditions additionally on the
chromosome. At the expense of additional optimization parameters, the solution
space of subsequent phases is therefore not constrained by the solution for the first
phase. As a disadvantage, however, this option generates discontinuous trajectories
because the initial conditions of phase k + 1 now generally differ from the final
conditions of phase k. Therefore, the assertion of a continuous and smooth final
trajectory is now an additional task for the optimization procedure.

For multi-phase trajectory optimization, InTrance requires a sophisticated mis-
sion simulation framework. This was developed by Ohndorf [19], using a linked
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Figure 14 Concatenation of simulation objects

chain of simulation objects for the mission, where each object in the list represents
a single mission phase. Starting with the first object, each object calls the following
one in sequential order, as soon as a phase transition condition is met (more about
phase transitions below). Figure 14 shows this concept for a mission that comprises
three phases, with the first and the last phase employing an NC for spacecraft
steering and the middle one being a ballistic arc. The simulation object chain is
implemented as a doubly linked list. This way, each object can access its predecessor
and its successor, and iteratively also all other objects in the list. This assures that
each object can access the public information of all other objects, which is important
for the optimization of the transition or coupling conditions.

For evaluation, the EA passes each newly generated chromosome to the first
object of the (problem-specific) chain of simulation objects. Based on the user-
provided problem description, this simulation object reads the initial conditions
encoded on the chromosome, initializes an NC with the corresponding values
encoded on the chromosome, and integrates the trajectory. Then, based on the
achieved final state and the phase-specific target state (rendezvous, flyby, etc.),
it computes the chromosome’s phase-related sub-fitness. In the case of a flyby
problem, the target state may be, for example, a flyby within a required distance
of less than 100,000 km. If the achieved state (i.e., the flyby distance), for example,
is only 150,000 km the underachievement of 50,000 km is reflected in the phase-
related sub-fitness. After the computation of the phase-related sub-fitness, the
first simulation object calls the second simulation object and passes the entire
chromosome on to its successor in the simulation object chain. The second object
then repeats the setup of the phase-related initial conditions setup, as read from
the chromosome and from the problem description provided by the user. If the
second phase is a free-flight phase, it does not require an NC, as it is shown in
the example of Figure 14. In this case, the final state of the phase is determined
solely by its initial state and the laws of motion, which include the external forces.
Again, the execution of this simulation object ends with the computation of the
phase-related sub-fitness. The subsequent call of the third and final object of this
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simulation object chain completes the evaluation of the chromosome. Based on all
phase-related sub-fitness values, the final object then calculates the overall fitness of
the entire chromosome. The algorithm then goes back through the calling chain and
into the outer EA loop. An important feature of the implemented simulation chain in
Figure 14 is that the target state of a simulation object may be subject to optimization
itself. In this example, the first simulation object may take the initial conditions of
the second simulation object as its target state. Therefore, the EA not only creates
chromosomes that achieve higher phase-related sub-fitness values, i.e., that better
solve a space mission’s individual flight phases, but implicitly also optimizes the
entire mission setup.

7 Selected Multi-Phase Trajectory Optimization Results

This section presents InTrance solutions for two multi-phase continuous-thrust
transfer problems, an Earth–Moon transfer and a Dawn-like multiple-asteroid
rendezvous with Vesta and Ceres.

7.1 Earth–Moon Transfer

An Earth–Moon transfer provides a good two-phase continuous-thrust example
problem. The two phases around the two different central bodies are separated by
the crossing of the Moon’s gravitational sphere of influence (SOI). The example
problem is a time-of-flight optimal transfer from an Earth-bound orbit into a low-
Moon orbit with only partly specified final conditions, as shown in Table 1. The
resulting trajectory should qualitatively resemble the trajectory of SMART-1, one
of the few actually flown continuous-thrust missions so far and the only one to the
Moon [2, 10].

The first leg of the Earth–Moon transfer was computed in cartesian Earth-
centered inertial (ECI) frame coordinates and the second one in cartesian Moon-
centered inertial (MCI) frame coordinates. The handover was at the Moon’s SOI,
where the state vector at the end of the first phase was taken as the initial state for
the second phase. Therefore, the resulting trajectory did not have any discontinuities.
The DE405 ephemerides catalog of JPL is used for position and velocity of the Earth
and the Moon. The initial spacecraft mass was set to 671 kg, the max. thrust was

Table 1 Initial and target orbit for Earth–Moon transfer

Orbit type Central body a e i 
 ω M

Initial Earth orbit Earth 24,460 km 0.73◦ 6◦ 279.2◦ 177.9◦ 3.5◦

Final Moon orbit Moon 2000 km 0◦ 84◦ Free Free Free



Evolutionary Neurocontrol 53

Figure 15 InTrance solution for 2-phase Earth–Moon transfer (left: Earth orbit to Moon SOI,
right: Moon SOI to Moon orbit

271 mN, and the specific impulse was 3714 s. Each phase used a dedicated NC for
spacecraft steering, the first phase a 26-15-6 NC topology, and the second phase a
23-35-6 NC topology. The resulting trajectory is shown in Figure 15. It has a flight
time of 183 days and uses 105 kg of propellant. The final distance to the target orbit
is �rf = 694 km and the final relative velocity is �vf = 91 m/s.

This example highlights a substantial advantage of ENC for many-revolution
trajectories. Such trajectories have many nodes.5 Using ENC, the number of
optimization parameters is greatly reduced. Originally, one has three optimization
parameters for every node (thrust direction and magnitude). While complex tra-
jectories may have in the order of 100,000 node variables, an ANN has only in
the order of 1000 variables. In this case, the solution space would be reduced by
about 99,000 dimensions. Therefore, ANNs allow the EA an efficient search for the
optimal trajectory. The original solution space would be too large to be searched by
an EA.

7.2 Dawn-Like Multiple-Asteroid Rendezvous

NASA’s Dawn mission [21, 23, 24, 26], set to rendezvous the two largest objects
in the main asteroid belt, Vesta and Ceres, is another example for a multi-phase
continuous-thrust mission. It uses SEP for the entire mission. Based on the original
mission specification, InTrance was used to recalculate the respective phases and to
optimize the entire mission for minimum duration [20].

For the recalculation of the real Dawn mission trajectory with InTrance, the
following assumptions were made. The launch should not be later than 30 Sep 2007

5A node is a trajectory point at which the thrust vector is determined and then held constant for the
integration of the equations of motion until the next node.
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(MJD 54373). Because InTrance currently still lacks a robust implementation of
gravity assists, the mission should not perform a gravity assist at Mars, contrary to
the real Dawn mission. A maximum hyperbolic excess energy of C3 = 11.3 km2/s2,
which corresponds to a hyperbolic excess velocity of 3.362 km/s, was allowed [23],
with the direction being subject to optimization by InTrance. Duty cycle limits and
the initial operational commissioning phases were not included.

The stay-time at Vesta should be at least 250 days, and the arrival at Ceres should
not be later than at the end of March 2015 (MJD 57112). The final accuracy limit
was set to �rf = 0.5 × 106 km and �vf = 0.5 km/s. The dry mass was set to
790 kg, and the propellant mass was optimized by InTrance for both phases. Mass
reductions due to the hydrazine depletion of Dawn’s attitude control system were
also not modeled. To account for the load of other spacecraft components, the
available electrical power at 1 AU was set to 9.8 kW instead of the 10.3 kW supplied
at that distance by the solar generator of the real Dawn spacecraft. Degradation was
not simulated, and the power law exponent was set to 1.7, according to [25]. Thrust
and propellant consumption curves of the NSTAR ion thruster were taken from [38].
The maximum thruster input power was 2.6 kW.

Figure 16 shows the InTrance solution for the Dawn trajectory. The launch mass
is 1139 kg, with 346 kg of propellant. The launch is on 21 Aug 2007 (MJD 54333)
with the predefined hyperbolic excess velocity of 3.362 km/s. The interplanetary-
insertion direction, however, was determined by InTrance. The spacecraft arrives
after 1472 days on 01 Sep 2011 (MJD 55805) at Vesta. The arrival conditions
are �rf = 0.162 × 106 km and �vf = 0.195 km/s. 264 kg of propellant was
consumed. The stay-time at Vesta is 251 days, and on 08 May 2012 (MJD 56055)
Dawn leaves Vesta towards Ceres. After 1047 days, the spacecraft arrives at Ceres
on 21 Mar 2015 (MJD 57054) with �rf = 0.480 × 106 km and �vf = 0.239 km/s.
The total mission duration until arrival at Ceres is 2770 days.

Figure 16 Original Dawn reference trajectory (left, taken from [22], courtesy of NASA/JPL) and
InTrance solution (without Mars gravity assist, right)



Evolutionary Neurocontrol 55

Except for the excluded Mars gravity assist, the InTrance trajectory on the
right side of Figure 16 looks very similar to the reference trajectory on the left
side. Its propellant consumption, however, is 20% less than the reference value
of 425 kg. With the original propellant mass, however, the transfers from Earth
to Vesta and from Vesta to Ceres are not achievable without a violation of set
constraints, i.e., mission duration or stay-time at Vesta, probably due to the missing
Mars gravity assist. Dawn, however, requires this additional 87 kg of propellant for
orbit maneuvers at the asteroids and as a safety margin in the propellant budget.
The implementation of ENC for heliocentric multi-rendezvous missions in InTrance
is nevertheless considered valid, as the described recalculation led to qualitatively
similar results. Due to the Mars gravity assist of the reference trajectory, a deeper
comparison is difficult.

8 Chapter Summary and Conclusions

Evolutionary neurocontrol (ENC) is a novel approach to calculate a wide variety
of continuous-thrust trajectories for various propulsion systems and trajectory
optimization problems that may be close to the (unknown) global optimum. Its
trajectory optimization software implementation—InTrance—also allows the co-
optimization of the initial conditions for a mission. The solutions obtained with
InTrance are at least similar and for difficult problems usually even better than
expert-generated solutions (using local trajectory optimization methods). To the best
of our knowledge, ENC has produced the only near-globally optimal trajectories
for some of the very difficult problems shown in this chapter. The application
of InTrance requires no initial guess and only basic knowledge in astrodynamics.
Knowledge of optimal-control theory is not needed. In principle, ENC can also
be applied for various other difficult and/or poorly structured optimal-control
problems in space mission design and engineering, like attitude control, launcher
ascent trajectories, atmospheric entry, descent, and landing trajectories, autonomous
planetary surface and subsurface vehicles, autonomous flight around small bodies.
The primary focus of future enhancements is currently the robust implementation
of gravity assists and the coupling with a local trajectory optimization for the fine-
tuning of the final results.

References

1. Bäck, T.: Evolutionary algorithms. ACM SIGBIO Newsl. 12, 26–31 (1992)
2. Betts, T.J., Erb, S.O.: Optimal low thrust trajectories to the moon. SIAM J. Appl. Dyn. Syst.

2(2), 144–170 (2003)
3. Coverstone-Carroll, V., Hartmann, J., Mason, J.: Optimal multi-objective low-thrust spacecraft

trajectories. Comput. Methods Appl. Mech. Eng. 186, 387–402 (2000)



56 B. Dachwald and A. Ohndorf

4. Dachwald, B.: Optimierung des Lernverhaltens neuronaler Netze mit Hilfe genetischer
Algorithmen. Diploma thesis, Universität der Bundeswehr München, Fakultät für Luft- und
Raumfahrttechnik, Institut für Meßtechnik, July 1993 (in German)

5. Dachwald, B.: Low-thrust trajectory optimization and interplanetary mission analysis using
evolutionary neurocontrol. Doctoral thesis, Universität der Bundeswehr München, Fakultät für
Luft- und Raumfahrttechnik (2004)

6. Dachwald, B.: Optimization of interplanetary solar sailcraft trajectories using evolutionary
neurocontrol. J. Guid. Control. Dyn. 27(1), 66–72 (2004)

7. Dachwald, B.: Optimal solar sail trajectories for missions to the outer solar system. J. Guid.
Control. Dyn. 28(6), 1187–1193 (2005)

8. Dachwald, B., Ohndorf, A., Wie, B.: Solar sail trajectory optimization for the Solar
Polar Imager (SPI) mission. In: AAS/AIAA Astrodynamics Specialist, Conference, Keystone,
August 2006. AAS Paper 2006-6177

9. Dracopoulos, D.: Evolutionary Learning Algorithms for Neural Adaptive Control. Perspectives
in Neural Computing. Springer, Berlin (1997)

10. Herman, A.L., and Conway, B.A.: Optimal, low-thrust, earth-moon orbit transfer. J. Guid.
Control. Dyn. 21(1), 131–147 (1998)

11. Izzo, D., Sprague, C., Tailor, D.: Machine learning and evolutionary techniques in interplan-
etary trajectory design. In: Fasano, G., Pintér, J. (eds.) Modeling and Optimization in Space
Engineering. Springer International Publishing, Cham (2019)

12. Keerthi, S., Ravindran, B.: A tutorial survey of reinforcement learning. Technical report,
Department of Computer Science and Automation, Indian Institute of Science, Bangalore
(1995)

13. Leipold, M.: Solar sail mission design. Doctoral thesis, Lehrstuhl für Flugmechanik und
Flugregelung; Technische Universität München (1999). DLR-FB-2000-22

14. Leipold, M.: To the sun and Pluto with solar sails and micro-sciencecraft. Acta Astronaut.
45(4–9), 549–555 (1999)

15. Leipold, M., Wagner, O.: ‘Solar photonic assist’ trajectory design for solar sail missions to the
outer solar system and beyond. In: Stengle, T. (ed.) Spaceflight Dynamics 1998, vol. 100, Part
2 of Advances in the Astronautical Sciences, pp. 1035–1045. Univelt, Inc., Escondido (1998)

16. Leipold, M., Seboldt, W., Lingner, S., Borg, E., Herrmann, A., Pabsch, A., Wagner, O.,
Brückner, J.: Mercury sun-synchronous polar orbiter with a solar sail. Acta Astronaut. 39(1–4),
143–151 (1996)

17. Michalewicz, Z.: Genetic Algorithms + Data Structures = Evolution Programs, 3rd, revised
and extended edition. Springer, Berlin (1999)

18. Montana, D., Davies, L.: Training feedforward neural networks using genetic algorithms. In:
Joint Conference on Artificial Intelligence, Los Altos (1989)

19. Ohndorf, A.: Multiphase low-thrust trajectory optimization using evolutionary neurocontrol.
Doctoral thesis, TU Delft, Space Systems Engineering (2016)

20. Ohndorf, A., Dachwald, B.: InTrance - a tool for multi-objective multi-phase low-thrust tra-
jectory optimization. In: 4th International Conference on Astrodynamic Tools and Techniques
(2010)

21. Rayman, M., Mase, R.: The second year of Dawn mission operations: Mars gravity assist and
onward to Vesta. Acta Astronaut. 67(3–4), 483–488 (2010)

22. Rayman, M., Mase, R.: Dawn’s exploration of Vesta, Naples (2012)
23. Rayman, M., Patel, K.: The Dawn project’s transition to mission operations: on its way to

rendezvous with (4) Vesta and (1) Ceres. Acta Astronaut. 66(1–2), 230–238 (2010)
24. Rayman, M., Fraschetti, T., Raymond, C., Russel, C.: Dawn: a mission in development for

exploration of main belt asteroids Vesta and Ceres. Acta Astronaut. 58(11), 605–616 (2006)
25. Rayman, M., Fraschetti, T., Raymond, C., Russel, C.: Coupling of system resource margins

through the use of electric propulsion: implications in preparing for the Dawn mission to Ceres
and Vesta. Acta Astronaut. 60, 930–938 (2007)



Evolutionary Neurocontrol 57

26. Russel, C., Barucci, M., Binzel, R., Capria, M., Christensen, U., Coradini, A., De Sanctis, M.,
Feldman, W., Jaumann, R., Keller, H., Konopliv, A., McCord, T., McFadden, L., McKeegan,
K., McSween, H., Raymond, C., Sierks, H., Smith, D., Spohn, T., Sykes, M., Vilas, F., Zuber,
M.: Exploring the asteroid belt with ion propulsion: dawn mission history, status and plans.
Adv. Space Res. 40, 193–201 (2007)

27. Sauer, C.: Optimum solar-sail interplanetary trajectories. In: AIAA/AAS Astrodynamics
Conference, San Diego, August 1976. AIAA Paper 76-792

28. Sauer, C.: A comparison of solar sail and ion drive trajectories for a Halley’s comet rendezvous
mission. In: AAS/AIAA Astrodynamics Conference, Jackson, September 1977. AAS Paper
77-104

29. Sauer, C.: Solar sail trajectories for solar polar and interstellar probe missions. In: Howell, K.,
Hoots, F., Kaufman, B. (eds.) Astrodynamics 1999. Advances in the Astronautical Sciences,
vol. 103, pp. 547–562. Univelt, Inc., Escondido (2000)

30. Stengel, R.: Optimal Control and Estimation. Dover Books on Mathematics. Dover, New York
(1994)

31. Sutton, R., Barto, A.: Reinforcement Learning. MIT Press, Cambridge (1998)
32. Syswerda, G.: Uniform crossover in genetic algorithms. In: Third International Conference on

Genetic Algorithms, San Mateo (1989)
33. Tsinas, L., Dachwald, B.: A combined neural and genetic learning algorithm. In: Proceedings

of the 1st IEEE Conference on Evolutionary Computation, IEEE World Congress on Com-
putational Intelligence, 27–29 June 1994, Orlando, vol. 2, pp. 770–774. IEEE, Piscataway
(1994)

34. Whitley, D., Mathias, K., Fitzhorn, P.: Delta coding: an iterative search strategy for genetic
algorithms. In: Fourth International Conference on Genetic Algorithms, San Mateo (1991)

35. Whitley, D., Dominic, S., Das, R., Anderson, C.: Genetic reinforcement learning for
neurocontrol problems. Mach. Learn. 13, 259–284 (1993)

36. Wie, B.: Thrust vector control of solar sail spacecraft. In: AIAA Guidance, Navigation, and
Control Conference, San Francisco, August 2005. AIAA Paper 2005-6086

37. Wie, B., Thomas, S., Paluszek, M., Murphy, D.: Propellantless AOCS design for a 160-m,
450-kg sailcraft of the Solar Polar Imager mission. In: 41st AIAA/ASME/SAE/ASEE Joint
Propulsion Conference and Exhibit, Tucson, July 2005. AIAA Paper 2005-3928

38. Williams, S.N., Coverstone-Carroll, V.: Mars missions using solar electric propulsion. J.
Spacecr. Rocket. 37(1), 71–77 (2000)

39. Wright, J.: Solar sailing – evaluation of concept and potential. Technical report, Battelle
Columbus Laboratories, Columbus, OH, March 1976. BMI-NLVP-TM-74-3

40. Wright, J., Warmke, J.: Solar sail mission applications. In: AIAA/AAS Astrodynamics
Conference, San Diego, 18–20 August 1976. AIAA Paper 76-808

41. Yao, X.: Evolutionary artificial neural networks. In: Kent, A., et al. (eds.) Encyclopedia of
Computer Science and Technology, vol. 33, pp. 137–170. Marcel Dekker, New York (1995)



Nonparametric Importance Sampling
Techniques for Sensitivity Analysis
and Reliability Assessment of a Launcher
Stage Fallout

Pierre Derennes, Vincent Chabridon, Jérôme Morio, Mathieu Balesdent,
Florian Simatos, Jean-Marc Bourinet, and Nicolas Gayton

Abstract Space launcher complexity arises, on the one hand, from the coupling
between several subsystems such as stages or boosters and other embedded systems,
and on the other hand, from the physical phenomena endured during the flight.
Optimal trajectory assessment is a key discipline since it is one of the cornerstones
of the mission success. However, during the real flight, uncertainties can affect
the different flight phases at different levels and be combined to lead to a failure
state of the space vehicle trajectory. After their propelled phase, the different stages
reach successively their separation altitudes and may fall back into the ocean. Such
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a dynamic phase is of major importance in terms of launcher safety since the
consequence of a mistake in the prediction of the fallout zone can be dramatic in
terms of human security and environmental impact. For that reason, the handling of
uncertainties plays a crucial role in the comprehension and prediction of the global
system behavior. Consequently, it is of major concern to take them into account
during the reliability analysis. In this book chapter, two new sensitivity analysis
techniques are considered to characterize the system uncertainties and optimize its
reliability.

1 Introduction

During the launch of a satellite or other space systems, the most important event
is, of course, the ascent phase. Nevertheless, a successful launch is not the end of
the launcher task. Once their mission is completed, the launch vehicle stages are
jettisoned and fall back into the ocean. The estimation of launch vehicle fallout
safety zone is a crucial problem in aerospace since it potentially involves dramatic
repercussions on the population and the environment [35].

The goal of this chapter is to illustrate the use of advanced sensitivity analysis
methods on an aerospace test-case. For that purpose, a simplified fallout trajectory
simulation is used to be representative of the phenomena encountered but with a
reduced simulation cost (e.g., use of mass point model). The performance obtained
for the proposed sensitivity analysis methods is independent of the fidelity of the
model. For more realistic problems such as [22], other parameters can be considered
in the dynamics of the vehicle (e.g., perturbation of atmospheric density, winds) but
are not taken into account in this study for the sake of simplicity and interpretation
of the given results.

The launcher stage fallout simulation may be modeled as an input-output black-
box function. The inputs are notably some characteristics of the launch vehicle and
some conditions (initial or arising during the flight) of the fallout. They are affected
by epistemic and aleatory uncertainties and considered as a random vector with a
given probability density function (PDF). It is assumed that this PDF is described by
a parametric model of density. The output corresponds to the position of fallout and
is also a random variable because of the input randomness. A quantity of interest
is notably the probability that a launch vehicle stage falls at a distance greater than
a given safety limit. Indeed this estimation is strategic for the qualification of such
vehicles.

Determining the most important inputs on the launcher stage impact point
position and on its failure probability is thus a key question regarding safety. It is
exactly the purpose of sensitivity analysis. Indeed, the aim of sensitivity analysis of
model output (SAMO) [24] is to study how the output of the simulation model varies
regarding the inputs. It enables, for instance, to identify model inputs that cause
significant uncertainty in the output and should therefore be the focus of attention
or to fix model inputs that have no effect on the output. Reliability-based sensitivity
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analysis (RbSA) [8, 28] aims at quantifying the impact of the variability affecting
any input quantity on an estimated output measure of safety. In this second type
of sensitivity analysis, the quantity of interest is no longer the model output, but
a reliability measure such as, in the present chapter, the failure probability of the
launch vehicle stage fallout. SAMO and RbSA are quite complementary techniques
because a given input may have a negligible influence on the whole output variation,
but could not be neglected for the estimation of a failure probability and conversely.

SAMO and RbSA require the estimation of multidimensional integrals. For that
purpose, Monte Carlo sampling [41] is a well-known approach that takes advantage
of the law of large numbers. To decrease the variance of Monte Carlo sampling
estimate, different techniques have been proposed. In this chapter, both SAMO and
RbSA are performed using a nonparametric importance sampling (NIS) technique
[9] whose aim is to estimate the optimal auxiliary sampling distribution of an
integral with kernel density estimators [45].

This book chapter is organized as follows. First, a brief presentation of the
launcher stage fallout test-case is proposed in Sect. 2 and a description of its
different inputs and output is provided. Then, a new estimation scheme of moment
independent SAMO measure is given in Sect. 3 followed by an application to the
launcher stage fallout test-case to determine the most influential inputs on the output
distribution. Sect. 4 of this chapter is devoted to RbSA with local approach to study
how the uncertainty on some input variables plays a role on the variability of the
failure probability. To sum up, Sect. 5 aims at providing a brief synthesis of the
different results of sensitivity analysis. Finally, a conclusion gathering the most
important outcomes of this chapter is given in Sect. 6.

2 Launcher Stage Fallout and the Uncertainty
Quantification Methodology

2.1 Description of the Test-Case

Space launcher complexity arises from the coupling between several subsystems,
such as stages or boosters and other embedded systems. Optimal trajectory assess-
ment is a key discipline since it is one of the cornerstones of the mission success
(for ascent as well as for re-entry trajectories). However, during the real flight,
aleatory uncertainties can affect the different flight phases at different levels (e.g.,
due to weather perturbations or stage combustion) and be combined to lead to a
failure state of the space vehicle trajectory. After their propelled phase, the different
stages reach successively their separation altitudes and may fall back into the
ocean (see Figure 1). Such a dynamic phase is of utmost importance in terms of
launcher safety since the consequence of a mistake in the prediction of the fallout
zone can be dramatic in terms of human security and environmental impact. As a
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Figure 1 Illustration scheme of a launch vehicle first stage fallout phase into the Atlantic Ocean.
Multiple fallout trajectories are drawn (red dotted lines), leading to the safe zone (yellow circular
surface). Due to uncertainties, one fallout trajectory may lead to a failure impact point (red star)

consequence, the handling of uncertainties plays a crucial role in the comprehension
and prediction of the global system behavior. That is the reason why it is of prime
importance to take it into account during the reliability analysis.

The simulation model used in this chapter can be considered as a black-box
model denoted by M : Rd=6 → R. Here, it is a simplified trajectory simulation
code of the dynamic fallout phase of a generic launcher first stage [31]. The
advantage of a black-box model is to enlarge the applicability of the proposed
statistical approaches illustrated in this chapter to any test-cases in this range
of models. As a matter of fact, the following methods proposed in this chapter
are said to be “non-intrusive” with respect to the model under study. The d-
dimensional (here d = 6) input vector of the simulation code, denoted X, contains
the following basic variables (i.e., physical variables) representing some initial
conditions, environmental variables, and launch vehicle characteristics:

X1: stage altitude perturbation at separation (�a (m));
X2: velocity perturbation at separation (�v (m s−1));
X3: flight path angle perturbation at separation (�γ (rad));
X4: azimuth angle perturbation at separation (�ψ (rad));
X5: propellant mass residual perturbation at separation (�m (kg));
X6: drag force error perturbation (�Cd dimensionless).



Sensitivity Analysis and Reliability of a Launcher Stage Fallout 63

These variables are assumed to be independent for the sake of simplicity. As an
output, the code will give back the scalar distance Y = M(X) which represents
the distance Dcode between the theoretical fallout position into the ocean and the
estimated one due to the uncertainty propagation.

2.2 Uncertainty Quantification Methodology Applied to the
Launcher Stage Fallout Code

Uncertainty quantification (UQ) methodology is devoted to the study of the impact
of input uncertainties on the behavior of a complex system. Figure 2 provides
a summary of the main UQ steps. Starting from the physical black-box model
M(·) (cf. block A) and assuming that this model is verified, calibrated, and
validated [39], one may identify and represent the input uncertainties by choosing
a dedicated mathematical formalism (probabilistic or extra-probabilistic [1]) to
encode them (cf. block B). The choice of the formalism depends on the input
available information. Here, it is supposed that enough data is available to postulate
existence of the input PDFs. Then, one can distinguish between two phases:

– the forward UQ which corresponds to the propagation of input uncertainties to
the output (cf. block C) but also contains the analysis of the output variability
and reliability assessment through the definition of a failure criterion;

Figure 2 Uncertainty quantification methodology applied to the launcher stage fallout case
(adapted from [43])
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Table 1 Input probabilistic
model

Variable Xi
a Distribution Mean μXi

Std σXi

X1 = �a (m) Normal 0 1650

X2 = �v (m s−1) Normal 0 3.7

X3 = �γ (rad) Normal 0 0.001

X4 = �ψ (rad) Normal 0 0.0018

X5 = �m (kg) Normal 0 70

X6 = �Cd (1) Normal 0 0.1
aThe input variables are independent

– the backward UQ which mainly corresponds to SAMO or RbSA (cf. block D),
but also to inverse problems such as model calibration.

This UQ methodology can be seen as an iterative loop procedure which plays a
role, either in the preliminary design process or in the certification procedure (e.g.,
regarding safety requirements) of complex systems such as aerospace ones.

In the context of the launch vehicle fallout case, the input variables are known
to be affected by uncertainties (for instance, by natural variability or due to lack-
of-knowledge). Thus, applying UQ methodology leads to consider a probabilistic
model for the input vector X, i.e., by assuming the existence of a joint PDF fX :
DX ⊆ Rd → R+. Since the input variables are assumed to be independent, this
joint PDF corresponds to the product of the marginal PDFs fXi

of the input variables
Xi, i ∈ {1, . . . , d}. The input probabilistic model for the launch vehicle fallout case
is given in Table 1. For the sake of illustration, the numerical values used in this
example are hypothetic.

Propagating the uncertainties from the input to the output of the black-box
computer code (going from block B to block C in Figure 2) can be achieved by
various methods (e.g., Monte Carlo simulations or any other advanced techniques
such as those reviewed in [31, 42]). Thus, the model output is no more a single
scalar value, but becomes a random variable characterized by its own PDF fY . An
estimation of this PDF fY is given in Figure 3.

In the next section, it is proposed to apply a recent numerical scheme to estimate
density-based SAMO measure that determines the components of X that have the
most significant influence on the distribution of Y .

3 Global Sensitivity Analysis of the Model Output with
Moment Independent Sensitivity Measures

SAMO presents two main objectives: on the one hand, to identify the most
influential inputs that one may then seek to know with the greatest possible accuracy
to reduce the output variability, and on the other hand, to determine non-influential
inputs, which then makes it possible to decrease the model complexity. There
are essentially two families of SAMO techniques: local sensitivity analysis and
global sensitivity analysis. The local approaches correspond to the assessment
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Figure 3 Probability density function estimation of the model output Y

of the local impact of an input on the model output by concentrating on the
sensitivity in the vicinity of a set of nominal values. It may be defined as the partial
derivatives of the model output. In contrast, global sensitivity analysis methods
consider the whole variation range of the inputs: there are various techniques such
as screening methods, graphical and smoothing tools, variance-based and moment
independent methods. Variance-based importance measures [34, 40] are one of
the most widely used importance measures. They are based on Sobol’s indices,
which express the share of variance of the output that is due to a given input or
input combination. However, these methods focus on the second-order moment
of the output distribution, which is not always sufficient to represent the entire
variability of the distribution, as illustrated in [3]. To overcome this drawback,
several alternatives are available, see [25] and the associated references for a
review of these methods. In particular, Borgonovo [4] proposed distribution-based
sensitivity indices that are currently gaining an increasing attention [5].
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3.1 The δ-Sensitivity Measures

In order to define the moment independent sensitivity measures (also known as δ-
sensitivity measures) initially proposed by Borgonovo [4], it is assumed throughout
this section that for every i ∈ {1, . . . , d}, the pair (Xi, Y ) admits a probability
density function (PDF) fXi,Y . This implies in particular that the random variables
Xi , Y , and Y conditioned on Xi = xi for any xi ∈ R also admit a PDF denoted
respectively by fXi

, fY , and f
Xi=xi
Y in the following.

The moment independent sensitivity analysis method is a global, quantitative,
and model free SAMO method, which focuses on finding the inputs that, when
held fixed, lead to the most significant modification of the output distribution. This
difference between the conditional and unconditional model output densities f Xi=xi

Y

and fY is quantified by the shift s(xi) defined as their L1 distance, which measures
the area enclosed between their representative curve (see Figure 4):

s(xi)
def=
∥∥∥fY − f

Xi=xi
Y

∥∥∥
L1(R)

=
∫ ∣∣∣fY (y)− f

Xi=xi
Y (y)

∣∣∣ dy . (1)

So as to consider the whole range of values the random variable Xi can take into
account, the sensitivity of the output Y with respect to the input Xi is defined by the
renormalized expectation of the shift over Xi , i.e., the δ-sensitivity measure is given
by:

δi = 1

2
E [s(Xi)] . (2)

Owing to its appealing advantages, this importance measure has attracted more
and more attention of practitioners recently. Firstly, it is monotonic transformation
invariant, i.e., δi equals to the δ-sensitivity measure of the model Ỹ := ϕ ◦M(X)

for any C1 diffeomorphism ϕ, which can be beneficial in practice. Moreover, this
SAMO technique makes no assumption on the model, in particular the function
M may be nonlinear and the input variables may be correlated. Eventually, this
approach does not focus on a particular moment as the variance-based SAMO
methods, which consider only the second-order moment, which is not always
sufficient to represent the entire variability of the output distribution.

Finally, one can mention that Equation (2) can be generalized to a strict group of
inputs I ⊂ {1, . . . , d} by:

δI
def= 1

2
E [s(XI )] with s(xI)

def=
∥∥∥fY − fXI=xI

Y

∥∥∥
L1(R)

=
∫ ∣∣∣fY(y)− fXI=xI

Y (y)
∣∣∣ dy ,

(3)
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X4=−0.027
Y conditioned on X4 fixed at its mean value−0.027 (dotted

curve) and the associated shift (colored area)

where XI
def= (Xi, i ∈ I ). Throughout this section, the study is restricted to the case

of the first-order indices δi , but all the results can be generalized to the higher order
indices.

3.2 Estimation Scheme of δi

By its properties, δi index is attracting increasing attention and research has mostly
focused on the delicate question of its estimation. Indeed, estimating the measure
δi while minimizing the number of calls to the model response is a challenging
task because of the unknown conditional and unconditional model output densities
f

Xi=xi
Y and fY that intervene in a convoluted way (i.e., through an L1-norm) in their

definition (see Equations (1) and (2)).
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The measure δi can be re-interpreted as an L1-difference between the joint
distribution fXi,Y and the density of the random variables Xi and Y if they were
independent. Indeed, from Equations (1) and (2) it follows immediately that:

δi = 1

2

∫
fXi

(x)

(∫ ∣∣∣fY (y)− f
Xi=x
Y (y)

∣∣∣ dy
)

dx

= 1

2

∫
fXi

(x)

∣∣
∣∣fY (y)− fXi,Y (x, y)

fXi
(x)

∣∣
∣∣ dxdy

= 1

2

∥∥fXi
fY − fXi,Y

∥∥
L1(R

2)
.

This interpretation opens the way for various estimation procedures of δi . Here,
a new estimation scheme based on importance sampling procedure is exposed [16].

Step IS1. Generate (X1, . . . ,XN) independent and identically distributed (i.i.d.)
copies of X, with common distribution X, and then obtain N observations of the
model by Y k = M(Xk) for k = 1, . . . , N .

Step IS2. Use the sample (Xk, Y k) to estimate the PDFs fY and fXi,Y by kernel
density estimation (KDE):

f̂Y (y)
def= 1

Nh

N∑

k=1

K

(
y − Y k

h

)
, y ∈ R, (4)

and

f̂Xi ,Y (x, y)
def= 1

Nh1h2

N∑

k=1

K

(
x −Xk

i

h1

)

K

(
y − Y k

h2

)
, (x, y) ∈ R2 , (5)

where K is the Gaussian kernel K(t) = 1√
2π

exp(− 1
2 t

2) and where the band-
widths h, h1, and h2 are estimated with the diffusion-based method proposed
in [6]. This method chooses the bandwidth parameters optimally without ever
using or assuming a parametric model for the data or any “rule of thumb.”

Step IS3. Let η be any sampling distribution on R2 which is allowed to depend
on the sample (Xk, Y k). Let (V1, . . . ,VN ′

) be N ′ i.i.d. random variables drawn
according to η with Vk = (V k

1 , V k
2 ) ∈ R2. Get the estimator δ̂

IS,η
i of δi defined

by:

δ̂
IS,η
i

def= 1

2N ′
N ′∑

k=1

∣∣∣f̂Y (V
k
2 )fXi

(V k
1 )− f̂Xi ,Y (V

k)

∣∣∣

η(Vk)
, (6)

i.e., the importance sampling estimator of 1
2

∥∥∥fXi
f̂Y − f̂Xi ,Y

∥∥∥
L1(R

2)
.



Sensitivity Analysis and Reliability of a Launcher Stage Fallout 69

This method combines a single Monte Carlo loop and a KDE procedure.
Furthermore, it requires only N calls to the black-box function M for the estimation
of all the δ-sensitivity measures.

3.3 Choice of the Sampling Distribution

Since the variables Vk are i.i.d given the variables (Xk,Yk), the law of total variance
gives the following variance decomposition:

Var
(
δ̂
IS,η
i

)
= 1

4
Var

(∥∥∥fXi
f̂Y−f̂Xi ,Y

∥∥∥
L1(R

2)

)
+ 1

4N ′E
[
Var

(
ĥ(V) | (Xk, Y k)

)]
,

(7)
where

ĥ(x, y) = 1η(x,y)>0

∣∣∣f̂Y (y)fXi
(x)− f̂Xi ,Y (x, y)

∣∣∣

η(x, y)
.

This decomposition clearly highlights the two errors made by the estimator δ̂IS,ηi :
the term Var(�̂) corresponds to the error induced by the KDE procedure of Step IS2
and the second term to the error induced by the importance sampling Step IS3.

According to [17, Theorem 1] and Lebesgue’s dominated convergence theorem,
the first term tends to 0 when N tends to +∞ upon standard assumptions on the
bandwidths h, h1, and h2. As far as the second one is concerned, the variance term:

Var
(
ĥ(V) | (Xk, Y k)

)
=
∫

∣∣∣f̂Y fXi
− f̂Xi ,Y

∣∣∣
2

η
−
(∫ ∣∣∣f̂Y fXi

− f̂Xi ,Y

∣∣∣
)2

, (8)

may be infinite if the distribution η is not well chosen. Nevertheless in practice,
assuming that η is nearly proportional to the numerator |f̂Y fXi

− f̂Xi ,Y |, this term
can be made as small as desired because of the factor 1

N ′ without further calls to
the possibly expensive black-box function M. In addition, this term equals to zero
when the sampling distribution η is given by the function:

ηopt = |fXi
f̂Y − f̂Xi ,Y |

‖fXi
f̂Y − f̂Xi ,Y ‖L1(R

2)

, (9)

called optimal sampling distribution. Unfortunately ηopt cannot be used directly in
practice because of the unknown normalization constant, but it can be approximated
by some η̂opt using the nonparametric importance sampling procedure described
in [45]. Assuming that Steps IS1 and IS2 have been performed and that we have the
KDE f̂Y and f̂Xi ,Y at our disposal, η̂opt is derived by the following implementation
steps:
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• Generate a sample
{
(X̃1

i , Ỹ
1), . . . , (X̃N ′′

i , Ỹ N ′′
)
}

according to an initial distri-

bution η0. It has to be noticed that no additional calls to the model output are
needed.

• Compute the weights:

w(X̃k
i , Ỹ

k) =
∣∣
∣fXi

(X̃k
i )f̂Y (Ỹ

k)− f̂Xi ,Y (X̃
k
i , Ỹ

k)

∣∣
∣

η0(X̃
k
i , Ỹ

k)
, k = 1, . . . , N ′′.

• Estimate ηopt by the weighted kernel estimator:

η̂opt (x, y)
def= 1

N ′′h̃1h̃2w̃

N ′′∑

k=1

w(X̃k
i , Ỹ

k)K

(
x − X̃k

i

h̃1

)

K

(
y − Ỹ k

h̃2

)

, (10)

where w̃ = 1

N ′′
∑N ′′

k=1 w(X̃k
i , Ỹ

k). Some results dealing with the convergence of

the estimator η̂opt are established in [45].

In the next section, the importance sampling estimator δ̂
IS,ηopt
i , denoted by δ̂

Opt
i ,

is used to analyze the sensitivity of the launch vehicle stage fallout model.

3.4 Application to the Launch Vehicle Stage Fallout Model

In this section, the method described in Sects. 3.2 and 3.3 is employed for the launch
vehicle stage fallout model. An indicator of the efficiency of the estimator δ̂

Opt
i of

the importance measure δi is the coefficient of variation:

cv(δ̂Opt
i ) =

√
Var(δ̂Opt

i )

E
(
δ̂
Opt
i

) .

The mean and the standard deviation of δ̂
Opt
i are approximated using a Monte

Carlo procedure. Considering m estimates (δ̂1
i , . . . , δ̂

m
i ), the respective unbiased

estimators of the mean and the standard deviation are computed such that:

δ̄i
def= 1

m

m∑

k=1

δ̂ki and σ̄i
def=
√√√√ 1

m− 1

m∑

k=1

(δ̂ki − δ̄i )2,
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Table 2 Estimates of the δ-sensitivity measures of the launch vehicle stage fallout test-case

Input

X1 X2 X3 X4 X5 X6

Mean δ̄i 0.0362 0.1556 0.0746 0.2976 0.0355 0.0490

cv(δ̂Opt
i ) 0.1042 0.0381 0.0699 0.0310 0.1012 0.0863

which provides the following estimator of the coefficient of variation:

cv(δ̂Opt
i ) ≈ δ̄i

σ̄i

.

All the six δ-sensitivity indices (δi)1≤i≤6 displayed in Table 2 are estimated by
applying m = 100 runs of the proposed estimation scheme. In order to ensure a
good compromise between the minimization of the model calls and the efficiency
of the kernel estimation step, the parameter N is fixed to 5 × 103. The results lead
to the importance ranking X5 < X1 < X6 < X3 < X2 < X4 which highlights
that the most influential inputs are X2, velocity perturbation at separation, and X4,
azimuth angle perturbation at separation, which present δ-sensitivity indices greater
than 15%.

These results may be compared with other popular sensitivity measures of the
contribution of the input Xi : the Sobol’s indices first introduced by Sobol [40] which
aim to appreciate the contribution of the variable Xi to the variance of the output Y .
The first-order sensitivity index [40] is stated as follows:

Si
def= Var (E [Y |Xi])

Var (Y )
,

and the total effect index [21] is defined by:

ST i
def= E [Var (Y |X∼ i )]

Var (Y )
,

where E [Var (Y |X∼ i )] is the expected variance that is left when all inputs but Xi

are known.
In order to get a fair comparison, m = 100 estimations of both Sobol’s indices

are used by adapting the code provided in [2] allowing to compute their respective
mean and coefficient of variation, as for the δ-sensitivity measures. The results
are reported in Table 3. The first-order indices lead to the ranking X5 < X1 <

X6 < X3 < X4 < X2 which is quite similar to the previous one, except that the
contribution to the output variance of the main effect of X2 is greater than X4. On
that test-case, considering only the variance leads to underestimate the influence of
X4 relatively to X2 as the δ-sensitivity indices describe the influence of a given input
on the whole distribution of output and not only the variance. The total effect indices
provide additional information showing the variables X3 and X6 play an important
role when they are combined with other variables. It may be interesting to compare
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Table 3 Estimates of the first order and total effect Sobol’s indices of the launch vehicle stage
fallout test-case

Input

X1 X2 X3 X4 X5 X6

Mean Si 0.0047 0.2642 0.0712 0.1915 0.0040 0.0223

cv(Si ) 3.4040 0.0590 0.2414 0.0783 4.1093 0.8090

Mean ST i 0.0151 0.6577 0.3826 0.2104 0.0169 0.2191

cv(ST i ) 0.0266 0.0211 0.0238 0.0270 0.0248 0.0231

these indices with the higher order Borgonovo indices δI defined in Equation (3),
which implies to estimate the joint PDF fXI ,Y . However, KDE is not robust in the
case of high dimensional densities. Practitioners essentially consider Sobol’s indices
for SAMO for the sake of simplicity. Nevertheless, even if it is more complex to
estimate δ-sensitivity indices than Sobol’s indices, one can show that it is of interest
to focus on the δ-sensitivity indices as it captures the complete distribution of an
input and, in the same time, the computational cost required to estimate δ-sensitivity
indices does not depend on the input dimension of the problem.

In this test-case, all the three sensitivity measures indicate that the inputs X1 and
X5 have little influence in view of their low indices. Then, the uncertainty of the
model output may be reduced by controlling the error of the velocity perturbation
and azimuth angle perturbation at separation.

4 Reliability and Sensitivity Analyses Under Distribution
Parameter Uncertainty

In the previous section, a new SAMO strategy based on the δ-sensitivity measures
coupled with a nonparametric importance sampling procedure has been applied
to the model output. However, the marginal PDFs fXi

, for i ∈ {1, . . . , d}, were
supposed to be perfectly known, i.e., that the distribution parameters (e.g., means
and standard deviations given in Table 1) are true deterministic values, which are
able to catch the underlying physics. However, among the available information
to construct a parametrized probabilistic model for the input basic variables,
one often has only access to limited data, possibly unadapted literature-based
recommendations and finally subjective expert opinions [19]. Thus, an imperfect
state of knowledge [13, 18] may conduct to a misestimation of the failure probability
and lead to dramatic consequences in terms of risk mitigation. Statistical uncertainty
arises in the estimation procedure of the probability distribution parameters when
one can only deal with insufficient measures or data. In some cases, it may also
happen that neither data nor expert judgment is available, which imposes to the
engineer yet to make a choice for the values of parameters. This problem is often
encountered in the field of complex systems for which data acquisition is difficult.
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4.1 Basics of Reliability Assessment

The system failure of the case presented in Sect. 2 can be considered if the fallout
distance Y exceeds a given threshold distance dsafe. Such a failure criterion can be
characterized by the limit-state function (LSF) g : Rd=6 → R defined such that:

g(X) = dsafe −M(X) = dsafe − Y. (11)

The failure probability associated with this failure scenario is thus given by:

Pf = P [g(X) ≤ 0] = P [Y > dsafe] =
∫

DX

1Fx
(x)fX(x)dx = EfX

[
1Fx

(X)
]

(12)
where Fx = {x ∈ DX : g(x) ≤ 0} is the so-called failure domain, dx = dx1 . . . dxd ,
and 1Fx

(·), the indicator function of the failure domain defined by: 1Fx
(x) = 1 if

x ∈ Fx and 1Fx
(x) = 0 otherwise.

Finally, estimating a failure probability implies to evaluate the integral defined
in Equation (12). However, depending on various constraints (rareness of the
failure event, high-dimensionality of the input space, nonlinearity of the model,
expensive simulation cost of a single code run), this integral may be difficult and/or
costly to evaluate. To do so, various techniques are available in the literature.
Among them, one can distinguish between approximation-based techniques [27]
and sampling-based techniques [37]. Approximation-based techniques rely on an
approximation of the LSF, either by a Taylor series expansion (which leads to the
well-known first/second-order reliability methods (FORM/SORM) [27]) or by a
surrogate model whose aim is to replace the true but unknown LSF by a cheaper
function (e.g., Gaussian processes, polynomial chaos expansions, support vector
machines). Simulation-based techniques rely on the use of Monte Carlo samples to
estimate the integral in Equation (12). Starting from the crude Monte Carlo (CMC)
sampling, one can derive other more advanced sampling techniques in order to
reduce the variance of estimation, and thus the number of calls to the computer
code. Among these techniques, one can cite importance sampling (IS) and subset
sampling (SS). For a review of these techniques, the interested reader may refer to
[9, 31, 37].

Following mathematical and historical reasons [27], some of these methods
(especially FORM/SORM) have been developed in the so-called standard normal
space (denoted as “U-space”) in which all random components of X become
independent standard Gaussian variates gathered in the vector U. Among the
simulation methods, the use of such a standard normal space is not always required
(e.g., CMC relies on simulations in the original physical space, denoted as “X-
space”). The general idea is to construct a regular transformation T : DX → Rd

allowing (in terms of probability distributions) to get:

U = T (X) ⇔ X = T −1(U) (13)
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where U = (U1, U2, . . . , Ud)
� is a d-dimensional standard Gaussian vector of

independent normal variates Ui with zero means and unit standard deviations. Then,
one can define a new mapping for the LSF in the standard normal space considering
G : Rd → R defined such that:

U �→ G(U) =
(
g ◦ T −1

)
(U) (14)

which allows to rewrite the failure probability:

Pf = P [G(U) ≤ 0] =
∫

Fu

ϕd(u)du =
∫

Rd
1Fu

(u)ϕd(u)du = Eϕd

[
1Fu

(U)
]

(15)
where Fu = {u ∈ Rd : G(u) ≤ 0} stands for the failure domain in the standard
normal space, du = du1du2 . . . dud and ϕd : Rd → R+ is the d-dimensional
standard Gaussian PDF of U. Usually, the transformation between the two spaces
can be either the Nataf one [26] or the Rosenblatt one [36].

Combining approximation methods and the use of the standard normal space
leads to the concept of most probable failure point (MPFP) which is the closest point
of the failure domain to the origin of the standard normal space [27]. The MPFP is a
cornerstone of the FORM/SORM methods. Even if this notion is a pure geometrical
concept which loses its probabilistic meaning as the input dimensionality increases
[23], one can still use it to visualize the shape of the failure domain. To do so, one
can use FORM to get the MPFP and then study how the LSF behaves, in the U-
space, by considering two-dimensional cross-cuts (i.e., one fixes all the inputs but
two) [7, 20].

Figure 5 provides the cross-cuts in the (ui, uj )-plane for the launcher stage
fallout test-case. The black cross is the origin and the black square represents the
MPFP. The black line is the limit-state surface (denoted by LSS, formally defined
by F0 = {u : G(u) = 0}), highlighting the separation between the safe domain (in
green) and the failure domain (in orange). The analysis of these cross-cuts leads to
point out two remarks:

– firstly, one can notice that, for some combinations, the LSS is highly nonlinear
(e.g., for the pairs (u1, u4), (u2, u4), (u3, u4), (u4, u5)). This indicates that the
methods relying on a linear assumption of the LSS (such as FORM) should be
avoided for reliability assessment in this specific case;

– secondly, one can notice that the two cross-cuts ((u2, u3), (u2, u6)) present
possible multiple MPFPs. In particular, (u2, u3) would suggest the presence of a
second MPFP of opposite coordinates.

Tracking multiple MPFPs can be achieved using a modification of the FORM
algorithm proposed in [15]. Briefly, this method consists in repeating a FORM
analysis with a modified LSF which triggers the search outside the area where
a MPFP has been found. Here, by applying this method, one can find that a
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Figure 5 Illustration of cross-cuts in U-space (black cross ≡ origin of U-space, black square ≡
MPFP, black line ≡ limit-state surface, light gray (green) area ≡ safe domain, dark gray (orange)
area ≡ failure domain)

second MFPF exists with the coordinates in the standard normal space (u2, u3) =
(3.084, 2.058) and (u2, u6) = (3.084,−1.798). This result is just a qualitative
view and does not help to correctly infer about the failure probability since the
LSF is highly nonlinear. Thus, in the following, one will consider a nonparametric
importance sampling scheme [45] for failure probability estimation in the launcher
stage fallout test-case as it is able to cope with nonlinear LSS and the presence of
multiple MPFPs.
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4.2 Reliability Assessment Under Distribution Parameter
Uncertainty

Dealing with distribution parameter uncertainty requires, first, to choose a way
to represent this type of uncertainty, and second, to find a numerical strategy to
propagate it and to take it into account in the failure probability estimation.

In this chapter, the Bayesian view is adopted [32, 33] in the sense that a
parametric prior distribution is assumed for the uncertain parameters. Thus, the input
probabilistic model, with the associated PDFs, is as follows:

X ∼ fX|�(x|θ) : DX ⊆ Rd → R+ (stochastic physical variables) (16a)

� ∼ f�|ξ (θ |ξ) : D� ⊆ Rk → R+ (stochastic distribution parameters) (16b)

ξ = (ξ1, ξ2, . . . , ξq)
� ∈ Dξ ⊆ Rq (deterministic hyper-parameters). (16c)

In this hierarchical model, the vector of deterministic hyper-parameters ξ represents
the available prior information (e.g., arising from sparse data or from expert
judgment).

From the UQ methodology point of view, one can reconsider the initial method-
ology by adding some components in the different UQ steps such as illustrated in
Figure 6. It results in the consideration of a bi-level input uncertainty which has to
be propagated through the code. Modifying the input probabilistic model leads to
reconsider the way one propagates and takes into account the bi-level uncertainty.

Figure 6 Uncertainty quantification methodology under bi-level uncertainty
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Consequently, one can reconsider the failure probability in Equation (12) as a
conditional failure probability since it depends on the realization θ of the vector of
distribution parameters. Then, it comes

Pf(θ) = P [g(X) ≤ 0 | � = θ ] =
∫

DX

1Fx
(x)fX|�(x|θ)dx

= EfX|�
[
1Fx

(X) | � = θ
]
. (17)

Then, one can propagate the second uncertainty level by looking at the mean
estimator of all the failure probabilities regarding the variability of the distribution
parameters [14], namely the “predictive failure probability” (PFP), defined such
that:

P̃f(ξ)
def= Ef�|ξ [Pf(�)] = Ef�|ξ

[
EfX|�

[
1Fx

(X) | �
]]

=
∫

D�

Pf(θ)f�|ξ (θ |ξ)dθ .

(18)
This quantity can be estimated by two different approaches: a double-loop approach
over both integration domains (called nested reliability approach, NRA) [29] or a
single-loop one (called augmented reliability approach, ARA).

In this second strategy, one considers an “augmented” random vector Z def=
(X,�)� defined on DZ = DX ×D� (where × is the Cartesian product) with joint
pdf fZ|ξ (z|ξ) def= fX|�(x|θ)f�|ξ (θ |ξ) such that the expression in Equation (18) can
be rewritten as follows:

P̃f(ξ) =
∫

D�

∫

DX

1Fx
(x)fX|�(x|θ)f�|ξ (θ |ξ)dxdθ

=
∫

DZ

1Fz
(z)fZ|ξ (z|ξ)dz = EfZ|ξ

[
1Fz

(Z)|ξ
]

(19)

where Fz = {z ∈ DZ : g(z) ≤ 0}. As discussed in [10], ARA offers several
possibilities compared to NRA in terms of simulation cost reduction, estimation
accuracy, and robustness with respect to (w.r.t.) several numerical challenges
concerning real aerospace test-cases.

Estimating a rare event probability with CMC can be cumbersome and can
even become untraceable for costly-to-evaluate computer codes. As previously
mentioned, IS is now a well-known variance-reduction technique [38] which
enables to reduce the simulation cost. The idea is to use a so-called auxiliary density
η(·) to generate samples such that more samples lead to the failure event {g(z) ≤ 0}.
To introduce it, one can start from the observation that the following equality holds:

P̃f(ξ) =
∫

DZ

1Fz
(z)fZ|ξ (z|ξ)dz =

∫

DZ

1Fz
(z)

fZ|ξ (z|ξ)
η(z)

η(z)dz

=
∫

DZ

1Fz
(z)w(z)η(z)dz (20)
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where w(z) def= fZ|ξ (z|ξ)
η(z) is called the likelihood ratio [38]. This weight is introduced

in the probability estimator to take into account the change in the PDF to generate
samples. Thus, considering a sample {Z(i)}Ni=1 of N i.i.d. copies drawn according to
η(z), the IS estimator for the PFP in the ARA framework is

P̃

∧

f =
IS

1

N

N∑

i=1

1Fz
(Z(i)) w(Z(i)). (21)

The estimator P̃
∧

f of P̃f is unbiased and its variance Var
(
P̃

∧

f

)
reduces to zero as the

density η(·) equals the optimal auxiliary density η∗(·) which is given by:

η∗(z) = 1Fz
(z)fZ|ξ (z|ξ)

P̃f
. (22)

Since this quantity depends on the PFP one would like to estimate, this intricate
problem can be solved by using adaptive importance sampling (AIS) techniques
[44]. These techniques aim at using different adaptive strategies to sequentially
approximate the optimal auxiliary density. In this chapter, a nonparametric adaptive
importance sampling (NAIS) scheme (see [31] for any further detail about the NAIS
method), adapted to the ARA framework, is used for the estimation of the PFP and
the sensitivities of the PFP w.r.t. the a priori hyper-parameters, as explained in the
following section.

4.3 Reliability-Based Sensitivity Analysis

Getting an estimate of the PFP is crucial for reliability assessment under the bi-level
uncertainty. However, such an estimate depends on the a priori choice set in the
prior distribution f�|ξ (θ |ξ), i.e., in the choice of the type of prior distribution and
the choice of the hyper-parameters ξ . In this chapter, an estimator of the sensitivity
of the PFP w.r.t. this a priori choice of hyper-parameters is proposed.

The gradient of the predictive failure probability P̃f w.r.t. the vector of the hyper-
parameters ξ is defined as follows:

∇P̃f(ξ) =
(
∂P̃f(ξ)

∂ξj
, j = 1, . . . , q

)�
. (23)

In this chapter, the case where ξj is an hyper-parameter of a prior distribution with
an unbounded support is treated. However, one could consider the case where ξj is
an hyper-parameter of a prior distribution with a bounded or truncated support. This
case is detailed in [12].

The partial derivative of the PFP w.r.t. the j -th component of ξ is given by:
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Sloc
j

def= ∂P̃f(ξ)

∂ξj
= ∂

∂ξj

[∫

D�

Pf(θ)f�|ξ (θ |ξ)dθ

]
=
∫

D�

Pf(θ)
∂f�|ξ (θ |ξ)

∂ξj
dθ .

(24)
Using the so-called importance sampling trick [38] so as to get an expectation w.r.t.
the same probability measure as the one used for the failure probability estimation,
it comes

∂P̃f(ξ)

∂ξj
=
∫

D�

Pf(θ)
∂ ln f�|ξ (θ |ξ)

∂ξj
f�|ξ (θ |ξ)dθ (25a)

=
∫

D�

(∫

DX

1Fx
(x) κj (θ , ξ) fX|�(x|θ)dx

)
f�|ξ (θ |ξ)dθ (25b)

= EfZ|ξ

[
1Fz

(Z) κj (�, ξ)
]

(25c)

where κj (θ , ξ)
def= ∂ ln f�|ξ (θ |ξ)

∂ξj
is called the “score function” [11]. One should notice

that, to avoid any confusion, in the above equations and in the rest of the chapter,
the vector � is explicitly written instead of Z = (X,�)� since the dependence
w.r.t. ξ is through �. Examples of score functions for a variety of distributions can
be found in [30]. Then, considering N i.i.d. samples {Z(i)}Ni=1, one can derive the
following IS estimator:

Sloc
j

∧

=
IS

1

N

N∑

i=1

1Fz
(Z(i)) w(Z(i)) κj (�

(i), ξ). (26)

As a remark, the gradient given in Equation (26) can be estimated as a simple post-
treatment of the previous samples used in Equation (21) for the PFP estimation, with
no additional computational effort.

4.4 Application to the Launch Vehicle Fallback Zone
Estimation Code

In addition to the first level of uncertainty, one assumes that epistemic uncertainty
is affecting two mean values, respectively, μX2 and μX3 , i.e., the mean values of the
perturbations affecting the velocity at separation and the perturbations affecting the
flight path angle at separation as shown in Table 4. These physical quantities can be
difficult to measure and to control in real conditions. For the sake of illustration, the
numerical values used in this example are hypothetic. In the numerical experiment,
the threshold safety distance dsafe is chosen to be equal to 15 km.

Numerical results gathered in Table 5 are averaged over a hundred replications
of the algorithm. Left column corresponds to the reference results obtained by
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Table 4 Input probabilistic model under bi-level uncertainty

Variablea Distribution Parameter #1 Parameter #2

X1 = �a (m) Normal μX1 = 0 σX1 = 1650

X2 = �v (m s−1) Normal μX2 uncertainb σX2 = 3.7

X3 = �γ (rad) Normal μX3 uncertain σX3 = 0.001

X4 = �ψ (rad) Normal μX4 = 0 σX4 = 0.0018

X5 = �m (kg) Normal μX5 = 0 σX5 = 70

X6 = �Cd (1) Normal μX6 = 0 σX6 = 0.1

�2 = μX2 (m s−1) Normal ξ1 = μμX2
= 0 ξ2 = σμX2

= 3.7

�3 = μX3 (rad) Normal ξ3 = μμX3
= 0 ξ4 = σμX3

= 0.001

aThe basic variables are independent. The distribution parameters are independent too
bFor fixed values μX2 = 0, μX3 = 0 and a threshold distance dsafe = 15 km, Pf = 1.36 × 10−4

Table 5 Numerical results

Ref.: ARA/CMC (dsafe = 15 km) ARA/NAIS (dsafe = 15 km) ARA/NAIS (dsafe = 20 km)

(Nx,θ = 106 samples) (Nx,θ = 104 samples/step) (Nx,θ = 104 samples/step)

Estimate cv Estimate cv Estimate cv

P̃

∧

f
4.40×10−3 (1.38%) 4.40 × 10−3 (2.08%) 1.19 × 10−4 (2.85%)

Sloc
1

∧ −9.13 ×
10−4

(3.44%) −9.12 × 10−4 (5.90%) −3.66 × 10−5 (7.00%)

Sloc
2

∧

2.95×10−3 (2.32%) 2.95 × 10−3 (3.22%) 1.41 × 10−4 (3.62%)

Sloc
3

∧

−2.31 (3.88%) −2.30 (5.82%) −9.18 × 10−2 (7.67%)

Sloc
4

∧

6.43 (2.18%) 6.41 (3.77%) 3.10 × 10−1 (4.24%)

ν − − 13 − 207 −

ARA/CMC (see [11]). The values of the estimates, for both the PFP and the
sensitivities, are provided with their values of coefficient of variation (cv). The
simulation budgets Nx,θ in the augmented space are provided. However, for
ARA/NAIS, only the results for Nx,θ = 104 samples per step are given. The number
of samples per step is a tuning parameter in the NAIS algorithm [31]. For the sake of
comparison, the numerical efficiency ν is provided in the last row of the table. This
efficiency indicates by how much one can divide the ARA/CMC simulation budget
to allow an estimation of the PFP of the same accuracy (i.e., same coefficients of
variation between ARA/CMC and ARA/NAIS).

From these results, one can see first that ARA/NAIS manages to estimate
accurately the PFP. As a first remark, this PFP is slightly greater than the fail-
ure probability under single-level uncertainty (see Equation (12)) recalled below
Table 4. This shows again that, in this case, the distribution parameter uncertainty
makes the system less safe. In terms of sensitivities, the PFP seems to be more
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sensitive to the hyper-parameters ξ4 and ξ3 which are respectively the standard
deviation and the mean of �3 = μX3 . Here, the lack of knowledge affecting the
mean value of the flight path angle perturbation really plays a key role on the
final predictive failure probability. This is a relevant information for refining the
a priori probabilistic model for �3 (especially in terms of variance reduction) and
set up an investigation policy about the possible reduction of epistemic (statistical)
uncertainty affecting �3. Concerning the efficiency, for dsafe = 15 km, i.e., for a
moderate rareness of the failure event, ARA/NAIS allows to divide the simulation
budget by 13 for the same level of accuracy compared to ARA/CMC.

Finally, as the failure event becomes rare (i.e., for the case dsafe = 20 km, see
the right column in Table 5), one can see that ARA/NAIS outperforms ARA/CMC
by allowing to reduce the simulation budget by 207. Similar comparisons can be
drawn to the previous case regarding the relative influence of the hyper-parameters.
However, one can still notice that increasing the rareness of the failure event
decreased, in proportion, the relative influence of ξ4.

Figure 7 provides an illustration of the simulation of 103 fallback trajectories
(impact points) of a first launcher stage into the ocean. The “safe zone” (i.e., the dark
blue disk) is set to a given optimal center point (latitude and longitude coordinates
estimated by the trajectory simulation code) and a radius of dsafe = 15 km. On
three different plots, the behaviors of numerical strategies are represented: namely,
NRA/CMC (nested crude Monte Carlo), ARA/CMC, and ARA/NAIS. For each
case, the total number of impact points into the ocean is 103. However, on the left,
one can notice the sequential trend of NRA/CMC, while in the middle, one can see
the better covering of the ARA/CMC. However, in both cases, a lot of samples
are useless regarding the failure domain. On the right, ARA/NAIS manages to
efficiently draw samples in the regions of interest, i.e., impact points corresponding
to the two most probable failure points.

As for Figure 8, one can see the possibilities ARA/NAIS offers in terms of
simulation budget reduction compared to NRA/CMC (which is the most expensive

Figure 7 Illustration of the simulation of first launcher stage impact points into the ocean
(103 samples for each method) and the safe zone (darker disk): NRA/CMC (left)—ARA/CMC
(middle)—ARA/NAIS (right)
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Figure 8 Evolution of the estimation budget of PFP and its sensitivities Sloc
j for each method

(NRA/CMC is taken as the reference for the percentage, coupled with a finite difference scheme
to estimate the sensitivities). The results are represented in log scale

approach since it relies on a double-Monte-Carlo-loop sampling strategy) and
ARA/CMC.

5 Synthesis About Numerical Results for the Launch Vehicle
Case

The numerical results described in Sect. 3 show that the inputs X2 and X4 are
very influent in regard to their respective δ-sensitivity measures δi and first-order
Sobol’s indices Si . Nevertheless, Borgonovo approach does not provide the same
importance ranking than Sobol one since δ2 < δ4 but S4 < S2. Then, considering
only the variance may lead to underestimate the influence of an input on the
whole distribution of the output. In addition, one can note that the influence of
X3 in the sense of both Borgonovo and Sobol is slightly higher than X1, X5,
and X6. Then, investigate the combined contribution of the inputs may provide
additional information. This is confirmed by the total effect indices which highlight
the important role of X3. Unfortunately, the higher order δ-sensitivity measures
δI are very difficult to estimate with precision because of the estimation of
an r-dimensional density with r > 3. To conclude, the δ-sensitivity measure
indicates that the velocity perturbation at separation and mostly the azimuth angle
perturbation at separation have an important impact on the output distribution.
Furthermore, an additional investigation with total effect indices shows that the
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flight path angle perturbation at separation has also a significant influence on the
distance Y .

From a reliability assessment perspective, as studied in Sect. 4, one can see that
studying the behavior of the LSS in the standard normal space corroborates the
SAMO results, i.e., that X2 and X4 should influence the reliability. Moreover, when
considering a bi-level input uncertainty, the RbSA results show that the PFP is
very sensitive to the distribution hyper-parameters defining the prior of the mean
of X3 that corroborates the result obtained for the total Sobol’s indices for this
variable as mentioned previously. As a result, one should investigate more about
the probabilistic model associated with X3 since this variable plays a role both on
the model output and on the PFP.

As a conclusion, SAMO and RbSA provide different levels of information about
the sensitivity of different quantities of interest based on the model output. By
combining them, one may find some common trends (or opposite trends) which
can help the user, either to get a deeper understanding of the black-box computer
code and underlying physics or to adopt an investigation policy so as to enhance the
input probabilistic model.

6 Conclusion

In this book chapter, we considered a simplified launcher stage fallout model to
analyze, without loss of generality, the efficiency of the proposed methods. Our
objective was to determine the most influential factors on the fallout and on its
failure probability. For that purpose, we first apply a new scheme of estimation
of moment independent sensitivity measures (δ-sensitivity measures) that has a low
computational cost. These indices take the entire fallout distribution probability into
account unlike classical Sobol’s indices that focus on the distribution variance. We
noticed in this test-case that the influence of the input “propellant mass perturbation
at separation” was underestimated by Sobol’s indices while it is the most influential
factors according to δ-sensitivity measures. In a second part, we assume that the
launcher stage fallout model is affected by a bi-level uncertainty and propose a
numerical estimation strategy to estimate the predictive failure probability and its
sensitivities w.r.t. the hyper-parameters of the prior distribution. This estimation
strategy, called ARA/NAIS, relies on the use of an augmented space (ARA) coupled
to a nonparametric adaptive importance sampling (NAIS) scheme. Thus, this
strategy allows to estimate, with a better efficiency than CMC, both the predictive
failure probability and its sensitivities by just post-processing the samples used to
estimate the predictive failure probability. This study shows the benefits of using
an ARA/NAIS strategy when the failure event becomes very rare, especially for
complex models.
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Dynamic System Control Dispatch:
A Global Optimization Approach

Giorgio Fasano

Abstract This work originates from research related to an optimal control dispatch
problem in space: the problem in question is presented in detail in another chapter
of this volume by Anselmi et al. (Control propellant minimization for the next
generation gravity mission. In: Fasano G, Pintér JD (eds) Modeling and optimization
in space engineering – state of the art and new challenges. Springer, New York,
2019). Here we discuss the general issue of dispatching the control of a dynamic
system through a number of actuators, presenting a novel model development and
algorithmic solution approach. A control law, expressed in terms of total force
and torque demand, represents the operational scenario. This gives rise to a very
challenging optimization problem, concerning the actuator accommodation and uti-
lization. Following the model formulation, a dedicated heuristic approach–involving
nonlinear and mixed integer linear programming–is proposed. The numerical results
presented illustrate the efficiency of the methodology adopted.

1 Introduction

This study takes its inspiration from a space engineering application, namely, the
demanding task of spacecraft attitude control. In this context, a dedicated controller
has the task of determining, usually at a predetermined frequency, the overall control
action, aimed at achieving (step by step) the desired system attitude. A number
of thrusters are available to exert the overall force and torque as required. The
control designer is presented with the difficult task of positioning and orienting
these thrusters on the external surface of the spacecraft, since different layouts are
expected to accommodate a significant performance range, in terms of propellant
consumption of the entire mission.
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From a practical point of view, the possible choices concerning the thruster
location are usually far less problematic than those relevant to their orientation, since
the suitable placements are quite limited. At the same time, the thruster orientation –
that is assumed to be kept fixed during the mission – is a major issue. Once on orbit,
the requested spacecraft control has to be dispatched (in compliance with given
operational rules) through the thrusters, minimizing the propellant consumption.
The methodology presented here has been adopted for a real-world application,
in the context of the Next Generation Gravity Mission studies (European Space
Agency, ESA), discussed by Anselmi et al. [1], in this volume.

The relevant optimization context can be extended, mutatis mutandis, to a wide
range of real-world high-tech scenarios, including applications in robotics and
automation. Therefore our work is intended to provide a general point of view,
independently from the current specific field of application. According to this
general setting, a dynamic system is considered, assuming that its overall control
is performed by a number of actuators.

The remainder of this chapter is structured as follows: Sect. 2 presents the
actuator layout problem in terms of global optimization. Since this issue, in its
general form, is extremely complex, the problem is redefined adopting a restricted
version that limits the layout aspect to actuator orientation only (by supposing
that their positions are assigned a priori). This specific problem is still an NP-
hard problem: regarding the complexity theory, consult, e.g., Cenzer and Remmel
[2], Dasgupta et al. [3], Goldreich [4], Harel and Feldman [5], and Rudich and
Wigderson [6]. Section 3 outlines a heuristic global optimization (GO) approach
aimed at finding satisfactory (albeit sub-optimal or approximate) solutions to the
redefined problem. Regarding relevant GO aspects, consult, e.g., Floudas et al. [7],
Floudas and Pardalos [8], Horst and Pardalos [9], Liberti and Maculan [10, 11], and
Pintér [12, 13]. The overall methodology introduced here consists in partitioning
this hard GO problem into two sub-problems that are significantly easier to handle.
The first sub-problem focuses on actuator orientation, considering only a subset
of control steps from the whole time span considered. The second sub-problem,
carrying over the orientations of the actuators obtained as the results of the first one,
looks into the final solution of the original problem, considering the entire analysis
period (i.e., covering the entire time span).

Sections 4 and 5, respectively, are devoted to the two sub-problems, providing
an in-depth discussion on the relevant mathematical models, formulated in terms of
nonlinear programming (NLP), mixed integer (linear) programming (MI(L)P), and
linear programming (LP). Regarding NLP, we refer, e.g., to Bertsekas [14], Bonnans
et al. [15], Brinkhuis and Tikhomirov [16], Hillier and Lieberman [17], Mordecai
[18], Nocedal and Wright [19], and Ruszczyński [20]. MI(L)P is discussed, e.g., by
Chen et al. [21], Karlof [22], Jünger et al. [23], Hillier and Lieberman [17], Minoux
[24], Nemhauser and Wolsey [25], Papadimitriou and Steiglitz [26], and Schrijver
[27]. A selection of appropriate LP references are, e.g., Cottle [28], Dantzig and
Thapa [29, 30], Gärtner and Matoušek [31], Padberg [32], Roos et al. [33], and
Vanderbei [34]. Section 6 surveys possible extensions and applications in a real-
world context. Section 7 provides some insight on relevant computational aspects.
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2 Problem Statement

We consider a general rigid body system S over a given timeframe [0, T]. An
appropriate S-based main orthogonal reference frame (O, x, y, z) is defined. This
is the only reference frame used throughout this work, and all vectors shall be
with respect to it, without referring to this convention. Considering that the overall
control of S is executed at discrete time steps, the entire interval [0, T] may be
equipartitioned into a set of sub-intervals, of duration � each, delimited by NI + 1
instants i ∈ {0, 1, . . . , NI} = I (the number of time steps can be very large, due
to control exercised at a high frequency). It is assumed that, at each time instant i,
a force Fi = (Fxi, Fyi, Fzi) and a torque Ti = (Txi, Tyi, Tzi), representing the overall
control request, have to be exerted on the system through a set of NA actuators
r ∈ {1, . . . , NA} = A, during the time sub-interval �.

In accordance with the above general framework, the following notations are
introduced and used throughout in this study:

‖w‖ is the Euclidean norm of vector w;
I is the set of time instants, starting from 0, NI is the last instant;
NA is the number of actuators;
Fi = (Fxi, Fyi, Fzi)T is the overall force (represented as a column vector), requested

by the controller from the actuators at instant i;
Ti = (Txi, Tyi, Tzi)T is the overall torque (represented as a column vector), requested

by the controller from the actuators at instant i;
vr = (vrx, vry, vrz) are the unit vectors, representing the orientation of each actuator

r;
v =

((
ν1x, ν1y, ν1z

)T
, . . . ,

(
νrx, νry, νrz

)
T , . . . ,

(
νNAx, νNAy, νNAz

)
T
)

is the

(sub-)matrix whose columns are the column vectors associated with each vr

(the notation v = (
v1x, v1y, v1z, . . . , vrx, vry, vrz, . . . , vNAx, vNAy, vNAz

)
is also

utilized, depending on the context);
fri = (frxi, fryi, frzi) is the force exerted by actuator r at instant i;
uri are, for each actuator r, the (Euclidean) norm ‖fri‖ of the force exerted at instant

i, i.e.,

f ri = urivr ;

u = (
u10, . . . , ur0, . . . , uNA0, . . . , u1i , . . . , uri , . . . , uNAi, . . . ,

u1NI
, . . . , urNI

, . . . , uNANI

) ;

pr = (prx, pry, prz) is, for each actuator r, the application-point vector of fri, holding
for all instants i;
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p = (
p1x, p1y, p1z, . . . , prx, pry, prz, . . . , pNAx, pNAy, pNAz

) ;

pr × vr = (qrx, qry, qrz) is the cross product of pr and vr;

p×v =
((

q1x, q1y, q1z
)T

, . . . ,
(
qrx, qry, qrz

)
T , . . . ,

(
qNAx, qNAy, qNAz

)
T
)

is the

(sub-)matrix whose columns are the column vectors associated with each cross
product pr × vr;

Ur,Ur are, for each actuator r, the lower and upper bounds imposed on uri,
respectively (for the sake of simplicity, it is assumed that both are time-
independent);

Dvr ⊂ R3 is a compact domain delimited by specific (geometrical/operational)
conditions on actuator r orientations;

Dpr ⊂ R3 is a compact domain delimited by specific (geometrical/operational)
conditions on actuator r positions.

Applying the above notation, our modeling framework gives rise to the condi-
tions expressed below (in a compact formalism and allowing for a slight abuse of
notation):

∀i ∈ I

(
v

p × v

)

⎛

⎜⎜⎜⎜⎜
⎝

u1i

. . .

uri

. . .

uNAi

⎞

⎟⎟⎟⎟⎟
⎠
=
(
Fi

Ti

)
, (1)

∀r ∈ A ‖vr‖ = 1, (2)

∀r ∈ A ∀i ∈ I uri ∈
[
Ur,Ur

]
, ∀r ∈ A vr ∈ Dvr, pr ∈ Dpr. (3)

Equation (1) expresses the assigned system control law that, in a more explicit
(vector) formulation, reads as follows:

∀i ∈ I
∑

r∈A
urivr = F i ,

∀i ∈ I
∑

r∈A
pr × (urivr) = T i .
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Equation (2) is a normalization condition, stating that each vr is a unit-vector that
determines the orientation of the forces exerted by the corresponding actuator. It is
understood that, for each r, the lower bound Ur is always non-negative. Hence, the
optimization problem can be stated as follows:

Choose the values for (parameters) p, ν, as well as for (variables) u, minimizing
a given cost function f (p, v, u) (representing, e.g., the overall energy consumption)
and subject to conditions (1), (2), and (3).

Obviously, the specific features characterizing Dvr, Dpr, and f (p, v, u) strongly
affect the actual nature and difficulty of the problem in question (that, in all cases
considered here, is non-convex). As a first strong simplification, it is assumed that p
consists of constant elements, i.e., for each r, Dpr is reduced to a single point,
characterizing conditions (1) as a set of bilinear equations. Recall that a bilinear
function (consisting in a special case of the quadratic class) has the general form
f (r, s) = ArR + RTQS + AsS, where r ∈ Rn, s ∈ Rm, R and S are the corresponding
column vectors, and Ar, As, and Q are the real matrices of dimension 1 × n,
1 × m, and n × m, respectively. The handling of bilinear terms in an MIP model
is discussed, e.g., by Floudas [35]. Furthermore, for each r, Dvr is assumed to
be a three-dimensional interval, i.e., V r ≤ (

vrx, vry, vrz
)T ≤ V r . Here V r and

V r are the lower and upper bounds, respectively, expressed as column vectors:
V r ≥ (−1,−1,−1)T and V r ≤ (1, 1, 1)T . Define f (p, v, u) as a separable function
with respect to the variables u only. More precisely, with these specifications and
simplifications, the original model reads as follows:

min
∑

r ∈ A

i ∈ I

fr (uri) , (4)

subject to

∀i ∈ I

(
v

P × v

)

⎛

⎜⎜⎜⎜
⎜
⎝

u1i

. . .

uri

. . .

uNAi

⎞

⎟⎟⎟⎟
⎟
⎠
=
(
Fi

Ti

)
, (5)

∀r ∈ A v2
rx + v2

ry + v2
rz = 1, (6)

∀r ∈ A ∀i ∈ I uri ∈
[
Ur,Ur

]
, V r ≤

(
vrx, vry, vrz

)T ≤ V r . (7)

Here Eq. (2) has been substituted with the more convenient (equivalent) expres-
sions (6). Furthermore, it is assumed that the cost associated with each actuator r
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remains the same, independently from the time instant i ∈ [0, T] considered. Bear
also in mind that the convention of denoting the model variables with lower-case
characters, and the constants with capital letters, has been adopted (in respect to
this, p × v has been substituted with P × v in (5)). The same formal rule shall be
followed in this chapter.

The specific occurrence (quite common in practice, at least in terms of an
acceptable approximation), where the objective function appearing in (4) reduces
to a linear one, is, for its simplicity, of particular interest. In this case (4) assumes
the explicit expression shown below:

min
∑

r ∈ A

i ∈ I

Kruri, (8)

where Kr are the positive constants, representing for each actuator r the associated
cost per unit force.

In order to make the overall problem in question more representative of real-
world scenarios, an appropriate enhancement is proposed. As a first refinement, the
following restrictions are introduced:

∀i ∈ {0, 1, . . . , NI − 1} | ur(i+1) − uri |≤ Lr, (9)

where Lr are the given positive constants. These inequalities state that the maximum
allowable difference of the forces applied by the same actuator in two subsequent
instants cannot exceed a given threshold. Constraints (9) represent for each r a
Lipschitz condition expressed with respect to each � on each variable ur, interpreted
as a time-function.

In order to prevent the possible overworking of some particular actuators
(presumably, among those with a lower cost), global conditions are introduced to
limit the utilization of each actuator throughout the time period [0, T]. For this
purpose, the following constraints are introduced:

∀r
∑

i∈I
uri ≤ Jr

�
, (10)

where Jr represents, for each actuator r, a (technological) upper bound on the total
impulse (scalar) admissible during the whole time span.

The present work mainly focuses on the formulation provided above, consisting
of constraints (5)–(10) and objective function (8). This specific statement of the
problem shall be referred to, in the following, as P. It is summarized below for the
sake of convenience:

(P ) min
∑

r ∈ A

i ∈ I

Kruri,
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subject to

∀i ∈ I

(
v

P × v

)

⎛

⎜⎜⎜⎜⎜
⎝

u1i

. . .

uri

. . .

uNAi

⎞

⎟⎟⎟⎟⎟
⎠
=
(
Fi

Ti

)
,

∀r ∈ A v2
rx + v2

ry + v2
rz = 1,

∀r ∈ A ∀i ∈ {0, 1, . . . , NI − 1} | ur(i+1) − uri |≤ Lr,

∀r ∈ A
∑

i∈I
uri ≤ Jr

�
,

∀r ∈ A ∀i ∈ I uri ∈
[
Ur,Ur

]
, V r ≤

(
vrx, vry, vrz

)T ≤ V r .

As a further consideration on the overall statement of the problem, it should be
observed that P (or its possible variations) can be solved exclusively on the implicit
assumption that there exists (at least) a single set of NA (time-independent) unit
vectors allowing for a feasible solution of the assigned constraints, at any time
instant. From a physical point of view, this means that it is always possible to
identify a fixed orientation for the actuators to satisfy the control demand, instant
by instant, over the entire time span, in compliance with all operational restrictions.
In some real-world applications, this supposition may not be fully applicable. To
overcome this shortcoming, a possible relaxation of the problem could be taken into
account, by adding in (5) error variables defined within given tolerance ranges and
readjusting, if necessary, the objective function adequately, e.g., by introducing the
total error as a term to be minimized. Equation (5) may therefore be substituted with
the following:

∀i ∈ I

(
v

P × v

)

⎛

⎜⎜⎜⎜⎜
⎝

u1i

. . .

uri

. . .

uNAi

⎞

⎟⎟⎟⎟⎟
⎠
=
(
Fi + εF i

Ti + εT i

)
, (11)

∀i ∈ I − EF ≤ εF i ≤ EF , −ET ≤ εT i ≤ ET . (12)
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Here εFi = (εFxi, εFyi, εFzi)T , εTi = (εTxi, εTyi, εTzi)T , EF > 0, and ET > 0 are the
chosen admissible levels of tolerance (expressed as column vectors). Albeit quite
useful in practice, this approach shall not be further investigated in this work.

Let us also remark that although in most real-world scenarios the primary
optimization target is to minimize the overall energy consumption, alternative
objective functions could be considered, e.g., the overall difference in contribution
among the actuators could be minimized (these aspects are also omitted here from
further discussion).

3 A Heuristic Solution Perspective

Notwithstanding the fact that P is, actually, a simplified version of the overall
problem outlined in Sect. 2, it still represents a very challenging numerical issue.
Indeed, despite adopting a linear objective function, the relevant formulation relates
to a non-convex quadratically constrained model, well known for being NP-
hard. (Since any 0–1 integer problem can be formulated through a quadratically
constrained model, quadratically constrained programming is, in general, NP-hard;
similar considerations are valid, concerning the class of bilinear constraints.)

Problem complexity becomes even more evident, when large-scale instances
are to be solved, as in the real-world context addressed by this work. To give an
example, an operational scenario encompassing 5000 time instants gives rise to
30,000 bilinear equations, corresponding to (5).

In general, given NI instants and NA actuators, the resulting instance contains:

6NI bilinear equations, corresponding to (5);
NA quadratic equations, corresponding to (6);
(2NI + NA) linear equations, corresponding to (9) and (10), respectively;
3NA (continuous and bounded) variables v;
NA(NI + 1) (continuous and bounded) variables u.

Therefore our study puts forward a heuristic methodology, aimed at providing
approximate and sub-optimal solutions to P, or some possible variation of it, at
a satisfactory level for a number of real-world applications. As a preliminary
consideration, coping with this issue alone appears to be an extremely arduous
task to achieve – except for very specific small-scale instances. The basic idea is
to partition problem P into much easier sub-problems and to solve these (iteratively
or recursively, if necessary).

The approach proposed takes advantage of the fact that our optimization problem
has a very specific structure. First and foremost, the variables involved can be
partitioned into two sets, whose cardinalities may be assumed to be significantly
different from each other. The set corresponding to variables v has cardinality 3| A|,
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while the set associated with variables u has cardinality |A||I|: note that |I| > > || A|.
In virtue of this feature, most of the nonlinear equations corresponding to (5) are
bilinear, while the remaining constraints (of a limited number) are quadratic. If
we fix variables v, then the resulting problem becomes linear, since all bilinear
equations (5) reduce to linear and all quadratic relations (6) can be dropped. This
suggests that two separate sub-problems could be considered: the first, called the
Reduced-Time-Domain sub-problem (PR), is aimed at finding a suitable set of values
for the variables v, in order to make P linear (i.e., easy to solve); the second, referred
to as the Overall-Time-Domain sub-problem (PO), is this LP reduction.

More precisely, PR mainly addresses the orientation of the actuators, i.e., the
identification of sets of values for all variables v. For this purpose, limited subsets of
instants (i.e., subsets of I), assumed to be representative of the whole time span, are
taken into account. These can be generated either randomly or (more appropriately)
through an ad hoc optimization process, selecting the instants on the basis of a best-
representative criterion. (These aspects will not be discussed within this work).

On the other hand, PO consists in optimizing the overall problem P, covering the
entire set of instants I, once the variables v have been assigned the values obtained by
solving PR. The result thus obtained (if necessary by introducing a certain tolerance
level with respect to Eq. (5)) is, in general, a sub-optimal solution of the original
problem P. If this solution is not deemed satisfactory, then a further set of values for
the all variables v is considered and the search process continues until a predefined
stopping rule is satisfied. The generation of v can be obtained by solving a new
PR instance (based on a different subset of instants), or by meta-heuristic processes
such as genetic or path-relinking algorithms.

Refinements of the current or final PO solution may be carried out by applying
local NLP or sequential linear programming (SLP), cf. e.g., Nocedal and Wright
[36]. The overall search process applies, albeit heuristically, a global optimization
logic. Specific models with different levels of approximation have therefore been
conceived to tackle both sub-problems PR and PO. These shall be denoted and
referred to as Reduced-Time-Domain (RTD) and Overall-Time-Domain (OTD)
models.

4 Reduced-Time-Domain Models

As outlined in Sect. 3, sub-problem PR is derived from P by replacing the set of
instants I by a subset I ⊂ I . The following general model form is assumed:

(PR) min
∑

r ∈ A,

i ∈ I

Kruri,
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subject to

∀i ∈ I

(
v

P × v

)

⎛

⎜⎜⎜⎜⎜
⎝

u1i

. . .

uri

. . .

uNAi

⎞

⎟⎟⎟⎟⎟
⎠
=
(
Fi

Ti

)
,

∀r ∈ A v2
rx + v2

ry + v2
rz = 1,

∀r ∈ A ∀i ∈ I uri ∈
[
Ur,Ur

]
, V r ≤

(
vrx, vry, vrz

)T ≤ V r .

Note that in this case inequalities (9) and (10) have been eliminated. Conditions
(9), indeed, are stated for all couples of subsequent instants of I and are not supposed
to carry over to I (since it does not necessarily include pairs of subsequent instants).
Inequalities (10) could be kept, provided that the terms Jr are properly reduced;
however, these conditions are neglected for the sake of simplicity.

A further significant simplification of PR is obtained when, for some r, a
component (vrρ) of the relative orientation vector vr is either non-negative or non-
positive, i.e., vrρ ∈ [0, 1] or vrρ ∈ [−1, 0], ρ ∈ {x, y, z}. In this case, multiple
solutions are implicitly excluded, e.g., if vrx ∈ [0, 1], then the solution vrx =
−
√

1 − v2
ry − v2

rz is not admissible.

GO approaches may be considered to handle sub-problem PR. The first approach
is to solve PR directly using a global NLP solver, perhaps additionally providing
a suitable initial solution. However, since even finding any quasi-feasible solution
could be a challenging task, it is advisable to look for alternatives. The results
obtained by these can be refined through a (not necessarily global) NLP algorithm.
Two dedicated MILP models, aimed at finding approximate (sub-optimal) solutions
to PR, are illustrated hereinafter. Note that the level of approximation and the
solution quality can be refined through iterative procedures that are, however, not
discussed here.

4.1 Discretized Reduced-Time-Domain Models

A discretized formulation of sub-problem PR, achieved in terms of an MILP model,
is illustrated hereinafter and referred to as DRTD. In this setting, the variables vrx,
vry, and vrz corresponding to all possible orientations of each actuator r are no
longer supposed to be continuous but can only take a finite number of values (the
non-trivial problem of generating a set of discretized orientations, as “evenly” as
possible, can be related to that of the distribution of points on a unit sphere, e.g.,
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[37]). The resulting sub-problem is therefore an approximation of PR; evidently, the
larger the number of these discretized values is, the more accurate the formulation
becomes.

Let us consider the index set Ω , corresponding to all possible discretized
orientations for the actuators: it is supposed, without loss of generality,
that all actuators have the same number of admissible orientations. The set
Ωr = {Vr1, . . . , Vrω, . . . , Vr � 
�} is associated with each r, in compliance
with (7), by defining Vrω = (Vrωx, Vrωy, Vrωz) as the unit-vector corresponding
to orientation ω. Next, the binary variables δrω ∈ {0, 1} are introduced, with the
following interpretation:

δrω = 1 if r has orientation ω;
δrω = 0 otherwise.

The continuous variables urωi ∈ [
0, Ur

]
represent the force exerted by each

actuator r, with respect to orientation ω, at each instant i. It is understood, as is
shown in detail below, that if actuator r has orientation ω, then ∀i ∈ I ∀ω′ 	= ω

urω′ i = 0.
The following mutually exclusive conditions hold, stating that each actuator r is

assigned to exactly one orientation ω:

∀r ∈ A
∑

ω∈

δrω = 1. (13)

The following inequalities guarantee that each actuator r can exert a non-zero
force, only in correspondence to the chosen orientation associated with the ω for
which δrω = 1:

∀r ∈ A ∀ω ∈ 

∑

i∈I
urωi ≤ Ur | I | δrω. (14)

Here Ur | I | are set as big M values, cf. e.g., Williams [38]. Conditions (14)
state that, if orientation ω is not selected for actuator r, then the variables urωi are
set to zero, for all instants i ∈ I , i.e., the forces exerted by each actuator are directed
along the corresponding orientation vector only.

The lower bounds Ur on the force applied by each r, for all instants of I , are
expressed by

∀r ∈ A, ∀ω ∈ 
, ∀i ∈ I urωi ≥ Urδrω. (15)

The following vector equations represent the control law conditions (5):

∀i ∈ I
∑

r ∈ A

ω ∈ 


urωiV rω = F i , (16)
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∀i ∈ I
∑

r ∈ A

ω ∈ 


P r × (urωiV rω) = T i . (17)

An appropriate formulation of (16) and (17) corresponding to (11) and (12) could
be also taken into consideration. Finally, the objective function corresponding to (8)
is rewritten by directly substituting variables uri with urωi:

min
∑

r ∈ A

ω ∈ 


i ∈ I

Krurωi . (18)

A practically useful variant of the DRTD model derived above is briefly outlined
here. For this purpose, for any actuator r, a one-to-one correspondence is established
between 
r and the set 
φr × 
ϑr of the discretized polar and azimuthal angles
(φr1, ϑr1), . . . , (φrω, ϑrω), . . . , (φr � 
�, ϑr � 
�) in the spherical coordinate system
centered in the application-point Pr (applying the orientation of the main reference
frame). This allows for a dramatic reduction of the binary variables involved, giving
rise to a significantly enhanced DRTD model version. (As we know, advantageous
reformulations of MI(L)P problems are frequently obtained by decreasing the
number of 0–1 variables.) The substitution of δrω with δrφ and δrϑ (also binary)
is therefore adopted, by stating the condition:

δrω = 1 ⇐⇒ (
δrφ = 1

) ∧ (δrϑ = 1) ,

where it is implied that (δrφ = 0) ∨ (δrϑ = 0) otherwise.
Conditions (13)–(15) are hence rewritten as follows:

∀r ∈ A
∑

φ∈
φ

δrφ = 1, (19)

∀r ∈ A
∑

ϑ∈
ϑ

δrϑ = 1, (20)

∀r ∈ A ∀φ ∈ 
φ

∑

ϑ ∈ 
ϑ

i ∈ I

urφϑi ≤ Ur | I | δrφ, (21)
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∀r ∈ A ∀ϑ ∈ 
ϑ

∑

φ ∈ 
φ

i ∈ I

urφϑi ≤ Ur | I | δrϑ , (22)

∀r ∈ A ∀φ ∈ 
φ ∀ϑ ∈ 
ϑ ∀i ∈ I , (23)

urφϑi ≥ Urδrφ + Urδrϑ − Ur.

Here the variables urφϑi ∈
[
0, Ur

]
replace the corresponding urωi. Analogous

substitutions hold for (16)–(18).

4.2 Relaxation of the Discretized Reduced-Time-domain Model

This section discusses a possible relaxation of the DRTD model. This approach,
aimed at finding approximate solutions to sub-problem PR, is of use in practice,
especially when | I | is quite large and, as such, likely to give rise to hard model
instances. For this purpose, the joint use of two dedicated sub-models has been
considered, denoted as DRTD-1 and DRTD-2, respectively. In DRTD-1, the bilinear
terms vrxuri, vryruri, and vrzuri are substituted with the variables wrxi, wryi, and wrzi,
respectively (assumed as independent). Conditions (5)–(7) are rewritten as follows:

∀i ∈ I
∑

r∈A
wri = F i , (24)

∀i ∈ I
∑

r∈A
P r × wri = T i , (25)

∀r ∈ A ∀i ∈ I U2
r ≤ w2

rxi + w2
ryi + w2

rzi ≤ U
2
r , (26)

where wri = (wrxi, wryi, wrzi).
Having adopted the variables wrxi, wryi, and wrzi instead of vrxuri, vryuri, and

vrzuri, Eqs. (24) and (25), in addition to inequalities (26), represent for PR a set of
necessary conditions. The quadratic constraints (26) are separable and can easily be
approximated by piecewise linear functions and handled by means of SOS2 (special
ordered sets of type 2) relations (e.g., [38]). A further relaxation of PR can be carried
out by dropping the lower bounds in (26): these are replaced by w2

rxi+w2
ryi+w2

rzi ≤
U

2
r . The latter are convex and, as such, manageable, as piecewise linear functions,

in an LP framework (e.g., [38]).
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Since, for all instants i ∈ I and for each actuator r, the variables uri are non-
negative (positive, if Ur > 0), the signs of variables wrxi, wryi, and wrzi are
determined by the actuator orientation. Consequently, the signs of these variables
are kept unvaried for all instants i ∈ I , as is expressed by the following conditions:

∀r ∈ A ∀i ∈ I ρ = x, y, z,

σ−
rρ + σ 0

rρ + σ+
rρ = 1, (27)

wrρi ≥ Urσ
0
rρ − Ur, (28a)

wrρi ≤ −Urσ
0
rρ + Ur, (28b)

wrρi ≤ −�Sσ
−
rρ + σ+

rρUr, (28c)

wrρi ≥ �Sσ
+
rρ − σ−

rρUr, (28d)

∑

ρ

σ 0
rρ ≤ 2. (29)

Here σ−
rρ, σ

0
rρ, σ

+
rρ ∈ {0, 1}, ±�S is a predefined tolerance with respect to zero

and (29) states that at most two direction cosines of the same actuator r can be zero.
Since it is expected that, in general, the domain corresponding to constraints

(24)–(29) contains a subset of solutions that are not feasible for PR, additional
conditions can be considered, in the perspective of a heuristic approach. The
following linear (non-necessary) conditions are hence included:

∀r ∈ A ∀i ∈ I ρ = x, y, z wrρi = hrρFρi + ηrρi, (30)

where hrρ are the non-negative variables, ηrρi ∈ [−E, E], and E > 0 is a parameter
expressing a tolerance on these additional conditions. The variables hrρ represent
the contributions per unit force provided by each actuator r and are supposed to
be approximately the same for all instants of I . This assumption is deemed to be
acceptable, as a first approximation, in a number of real-world scenarios; in any
case, it may be adopted as a useful trick to approximate the solution feasibility by
acting suitably on E.

In order to express objective function (8), as a function of the variables wrxi, wryi,
and wrzi, the following second-order-cone constraints [39, 40] can be introduced:
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w2
rxi + w2

ryi + w2
rzi ≤ l2ri , (31)

where lri are the non-negative variables. This way, the optimization target (8) is
rewritten as

min
∑

r ∈ A

i ∈ I

Kr lri . (32)

As a possible (albeit naïve) alternative, inequalities (31) can be tackled through
piecewise linearization: in such a case, SOS2 conditions would be requested to
approximate the terms l2ri , exclusively. It is nonetheless evident that, in the perspec-
tive of the heuristic approach adopted, instead of resorting to (31) and (32) objective
function (8) could be replaced by the surrogate

∑

r∈A,i∈I
Kr

(
wrxi + wryi + wrzi

)
to

be minimized, based on the l1 norm. This makes it significantly easier to deal with: a
suitable trade-off between the adopted objective function and the parameter E could
moreover be looked for by applying an iterative process.

The DRTD-1 model discussed above has the scope of providing realistic
approximations for the bilinear terms vrxuri, vryuri, and vrzuri, in compliance with
the assigned control law; the restrictions involving variables vrx, vry, vrz, and uri,
respectively, have been neglected, however.

The DRTD-2 model, as is described hereinafter, is conceived in order to find
approximate values for these variables (compliant with the given bounds), starting
from the DRTD-1 (optimal) solutions, denoted as W ∗

rxi , W
∗
ryi , and W ∗

rzi . By setting
vrxuri = W ∗

rxi , vryuri = W ∗
ryi , and vrzuri = W ∗

rzi , the following conditions,
holding for W ∗

rxi 	= 0, W ∗
ryi 	= 0, and W ∗

rzi 	= 0, are stated:

∀r ∈ A ∀i ∈ I W ∗
ryivrx = W ∗

rxivry − η−rxyi + η+rxyi , (33a)

∀r ∈ A ∀i ∈ I W ∗
rzivrx = W ∗

rxivrz − η−rxzi + η+rxzi , (33b)

∀r ∈ A ∀i ∈ I W ∗
rzivry = W ∗

rzivrz − η−rzi + η+ryzi . (33c)

Here the additional variables η represent possible errors (on the basis of the
DRTD-1 results, some variables vr are set a priori to 0 or 1). The following
relaxation of condition (6) is considered:

∀r ∈ A v2
rx + v2

ry + v2
rz ≤ 1. (34)

This convex inequality, which can be approximated in terms of piecewise linear
functions, without imposing SOS2 conditions, does not guarantee per se that, for
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each r, v2
rx + v2

ry + v2
rz = ‖vr‖2 = 1. If ‖vr‖ < 1, then vr is substituted

with the normalized vector vr‖vr‖ and the associated variables uri (corresponding to
vrxuri = Wrxi, and/or vryuri = Wryi, and/or vrzuri = Wrzi) are replaced with ‖vr‖uri.
This is always admissible when Ur = 0; otherwise, a relaxation of the bound Ur

might be implicit (by redefining Ur as U ’r = min
i∈I

{
Ur , ‖vr‖ uri

}
).

The total error relative to the additional variables η of Eqs. (33a), (33b), (33c) is
minimized:

min
∑

r ∈ A

i ∈ I

(
η−rxyi + η+rxyi + η−rxzi + η+rxzi + η−ryzi + η+ryzi

)
. (35)

The DRTD-1 and DRTD-2 models, based on an overall relaxation of the
corresponding DRTD, are aimed at providing approximate (sub-optimal) solutions
to PR that are expected to be at least nearly feasible. The results obtained with
DRTD-2 can be refined either by solving PR directly, as an NLP problem (taking
the DRTD-2 results as starting solutions), or adopting the DRTD model. This can
be used to find local optima, with respect to suitable (discretized) neighborhoods
of the DRTD-2 solutions. Alternatively, these can be utilized by the OTD model
directly (without further refinement, within the overall heuristic procedure outlined
in Sect. 3).

5 Overall Time-Domain Model and Solution Refinement

The OTD model assumes the following linear formulation:

(PO) min
∑

r ∈ A

i ∈ I

Kruri,

subject to

∀i ∈ I

(
V ∗
P × V ∗

)

⎛

⎜⎜
⎜⎜⎜
⎝

u1i

. . .

uri

. . .

uNAi

⎞

⎟⎟
⎟⎟⎟
⎠
=
(
Fi

Ti

)
,

∀i ∈ {0, 1, . . . , NI − 1} | ur(i+1) − uri |≤ Lr,
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∀r ∈ A
∑

i∈I
uri ≤ Jr

�
,

∀r ∈ A ∀i ∈ I uri ∈
[
Ur,Ur

]
.

Here the terms V∗ are given by the values obtained as (optimal) solutions of sub-
problem PR. Since the imposition of these values could jeopardize the feasibility of
PO, even if P is feasible per se, the relaxations (11) and (12) should be taken into
consideration, with an appropriate adaptation of the optimization objective. If the
solution obtained for PO is deemed satisfactory, then this solution, together with the
values set for the parameters V∗ , can be accepted as the solution of P. Otherwise,
the optimization process is carried on, searching for improved values for V∗ , as per
the overall heuristic approach outlined in Sect. 3.

The way the various phases are activated determines the specificity of the
heuristic strategy adopted (once again, this non-trivial topic is not dealt with
here). The additional optimization aimed at refining the values of V∗ (possibly
considering a larger subset of instants) can be carried out by solving directly PR

as an NLP problem. Here we take advantage of the available solution as an initial
guess for the adopted local/global NLP algorithm. The DRTD model itself can be
used (to perform local search) recursively, refining step-by-step, the discretization
adopted for the vectors vr, while restricting the relative admissibility neighborhoods,
coincident for each r with

[
V r, V r

]
at the initial step.

Additionally, refinements of any solution of PO may be explored. A first approach
consists in adopting a large-scale NLP local optimization approach, exploiting
the solution available at hand as an initial guess. As an interesting alternative,
sequential linear programming (SLP) could be considered. This can be carried out
by solving recursively a sequence of problem P approximations (through first-order
Taylor expansion of each quadratic term) within appropriate trust regions. A case of
particular interest occurs when for some r, one of their elements can be expressed

as a function of the others (e.g., vxr =
√

1 − v2
yr − v2

zr ). This circumstance allows

the elimination of conditions (6).

6 Extensions and Related Problems

The control dispatch problem stated in Sect. 2 has been discussed focusing on the
specific formulation of P. A number of its extensions could also be studied. Some
extended problems are briefly dealt with in this section as illustrative examples.
Anything but non-trivial another issue, certainly of interest in several real-world
applications, is further taken into account. It concerns the control dispatch, in terms
of actions to accomplish, step-by-step, within given (usually very strict) time limits.
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6.1 Extended Problems

A first type of extensions concerns possible generalizations of objective function
(8). Provided that it is reasonable to maintain its separability feature, it may
be represented in the more general (not necessarily linear) form

∑

r ∈ A
i ∈ I

fr (uri).

Depending on the specific connotation of each term, the resulting function can
be either convex or non-convex. Piecewise linear formulations may be adopted to
approximate each nonlinear function, with the introduction of SOS2 restrictions, in
case of non-convexity.

A further issue that could be of interest in some applications deals with the
determination of the actuator positions, in addition to their orientations. This
certainly represents a very challenging task. A possible approach consists in tackling
the resulting non-convex NLP problem directly, by using a global optimization
solver engine. To this purpose, problem P can be solved as a first step, by making
suitable assumptions on the positions of the actuators. Its solutions are subsequently
taken as an initial guess for the extended problem. As an alternative, a discretized
set of values, admissible for the positions of the actuators, may be considered. As
already pointed out, refinements of the solutions, also in this extended version, could
be found either by large-scale local NLP or SLP: in both cases, the positions of the
actuators should be considered as variables.

An additional and by no means easier extension might concern the problem
of realizing a redundant system of actuators, up to satisfying, at each instant, the
control demand, should any actuator break down. The difficulty of the problem
becomes even greater when it is assumed that more than one actuator is not working
and/or the actuator positions are not fixed. These aspects, in addition to the above
mentioned extended problems, will be the subject of future research.

6.2 Step-by-Step Control Dispatch

The step-by-step control dispatch problem has to be solved at each instant, after
receiving the control demand as input, in terms of overall force and torque.
Conditions (9) are imposed on the current step, taking into account the solution
of the previous step. The intersections of the resulting intervals for each ur with
those established by conditions (7) give rise for each actuator r, to the lower and
upper bounds

[
USr, USr

]
. The obtained problem is referred to as PS and stated as

follows:

(PS) min
∑

r∈A
KruSr ,
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subject to

(
V

P × V

)
uSr =

(
FS

TS

)
,

∀r ∈ A uSr ∈
[
USr, USr

]
.

Here uSr are the forces associated with the actuators at the current instant,
whereas FS and TS correspond to the overall force and torque requested; V and
P × V are the given sub-matrices, corresponding to the given positions and
orientation of the actuators. As it is immediately seen, PS is an LP problem. It is
assumed that the system of equations in PS is consistent and has rank (6) and, as
such, it can be solved directly by an LP algorithm [41, 42]. In a number of real-
world applications this approach could nevertheless result in being inadequate, due
to the execution time necessary that might exceed the limit imposed at any step. The
Moore–Penrose pseudo-inverse [43–45] cannot even be utilized to obtain a feasible
solution to PS, due to the presence of the lower and upper bounds.

As a possible alternative, a naïve heuristic approach, aimed at providing fast sub-
optimal and approximate solutions to PS, is briefly outlined here. In order to find
sub-optimal solutions to PS rapidly, it is substituted with the convex nonlinear PSNL

shown below:

(PSNL) min
∑

r∈A

[
KruSr +Hr(uSr − U0r )

2
]
,

subject to

(
V

P × V

)
uSr =

(
FSr

TSr

)
.

Here for each r, U0r = USr+USr

2 and Hr > 0 are penalty parameters that can
properly be chosen, in order to meet the conditions ur ∈

[
USr, USr

]
, as established

in PS. Alternative and more refined selections for U0 = (
U01, . . . , U0r , . . . , U0NA

)

could also be considered. This suggests that an iterative process can be designed
to achieve an acceptable trade-off, between obtaining the actual optimal solution
of PS and the compliance with the relevant bounds. (In most cases, a first good
estimation of the parameters Hr may be available a priori, e.g., derived from a
previous statistical analysis.) At each iteration ι, a set of parameters Hrι is chosen,
either by appropriately increasing or decreasing their values with respect to the
previous iteration step, and the corresponding problem PSNL solved.

An analytical (i.e., closed-form) solution of PSNL can be determined a priori,
by making use of the multipliers (λx, λx, λz, μx, μy, μz), corresponding to equa-
tions VuS = FS and (P × V)uS = TS, respectively. The Lagrangian L(u, λ, μ) is
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therefore introduced, with the conditions ∇u, λ, μL(u, λ, μ) = 0. This gives rise to
the following (linear) equations:

∀r ∈ A Kr + 2Hr (uSr − U)+ Vrxλx + Vryλy + Vrzλz + (P × V )rμx

+ (P × V )rμy + (P × V )rμz = 0,

(
V

P × V

)
uSr =

(
FS

TS

)
.

7 Computational Aspects

An experimental analysis (currently on-going) has been performed to date, mainly
focusing on sub-problem PR: in the framework considered, this represents a major
task in terms of computational effort. A bird’s-eye view of these aspects is
provided hereinafter, focusing on a real-world application arising in a specific space
engineering context (hence, technical details have to be kept confidential). Test
instances of PR have been solved both directly by an NLP (GO) approach and by
the DRTD model. The following optimizers have been adopted for the purpose:

LGO [46–48];
IBM ILOG CPLEX (12.3, [49]).

LGO has been utilized as the global nonlinear solver, while CPLEX as the MILP
solver. Tests have been performed on a personal computer, equipped with Core 2
Duo P8600, 2.40 GHz processor; 1.93 GB RAM; MS Windows XP Professional,
Service Pack 2.

The tests carried out using LGO concerned instances involving 100 variables
and 70 constraints. Nominal orientations for the actuators (based on symmetry
considerations) were adopted as an initial guess. The solution quality resulted,
on the whole, comparable to that obtained, for the same instances, by CPLEX
with the DRTD model. The execution time requested was in the range of 7000–
10,000 seconds (s), i.e., in about 2–3 h. An instance, involving up to 168 variables
and 116 constraints, was solved in 14,000 s (i.e., about 4 h), but this dimension
is plausibly very close to the tractability limit to date. (An advanced tuning of the
LGO parameters is expected to significantly improve the solver performances; non-
negligible enhancements are also foreseen, related to the choice of the initial guess.)

The DRTD model allowed for the handling of larger PR instances (in terms
of subset I ), with respect to those solved directly by the NLP optimizer; future
research should be dedicated to a combined approach, by utilizing the DRTD model
to generate the initial solutions. Some DRTD test results are outlined in Table 1, as
illustrative examples. The instance dimensional aspects are there summarized. We
report the relevant data with reference to the reduced model, as obtained after the
execution of the CPLEX MIP pre-processing phase, as well as the computational
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Table 1 Illustrative DRTD tests

Tests Rows Columns
0–1
variables

First sol.
gap %

First sol.
execution
time (s)

Best sol.
gap %

Best sol.
execution
time (s)

1DRTD 6033 5905 108 17.39 8 17.39 8
T2DRTD 6668 6542 116 22.82 7 14.37 7
T3DRTD 6920 6794 116 41.35 15 11.95 104
T4DRTD 7228 7102 118 29.23 5 13.12 369
T5DRTD 5761 6129 248 48.43 227 23.25 1573
T6DRTD 21,268 21,128 248 41.16 110 18.55 2116
T7DRTD 35,260 35,048 248 48.98 227 23.21 3277
T8DRTD 11,244 11,154 279 39.75 72 25.77 975
T9DRTD 11,679 11,589 279 36.06 1311 19.26 1490
T10DRTD 12,114 12,024 279 49.51 39 30.06 86

Figure 1 A real-world case study in space engineering

performance, attained with the imposition of a 1-h limit for each test, showing the
time spent to reach the first and the best solutions found, respectively. The CPLEX
gaps relevant to the first integer solution found and the last one, within the maximum
allowed time, are further reported (these gaps are computed as: (best integer – best
node)/(1e–10 + abs(best integer)) and expressed as percentages, see IBM, 2010).

Figure 1 is introduced in order to provide some hints concerning the real-world
applicability of the overall methodology presented here. It relates to a case study
arising in space engineering, relevant to a challenging gravimetry mission [1]. Two
solutions, obtained for the same operational scenario, have been considered and
are represented by the pictures on the left and right, respectively. Both report the
force (thrust, expressed in millinewtons, mN) exerted by each of the eight actuators
(thrusters) involved, during the given time span expressed in seconds. In the left-
hand side figure, a symmetrical configuration of the thrusters has been imposed a
priori, and the solution has been obtained through a dedicated simulator, cf. [1]. The
solution on the right-hand side has been obtained by the joint use of the DRTD
and OTD models. As shown by Figure 1, for the specific operational scenario
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considered, the resulting non-symmetrical thruster configuration has provided a
reduction of the overall propellant consumption by about 23%.

8 Concluding Remarks

This work, motivated by advanced space engineering applications, investigates the
issue of dispatching the control of a dynamic system through a number of actuators.
An appropriate control strategy – expressed in terms of total force and torque
demand, occurring step by step during the entire time span relevant to a baseline
scenario—represents the operational framework. The control distribution among
the available actuators, in terms of forces requested step by step, is optimized, in
compliance with an appropriate criterion such as the total energy consumption.
This problem setting leads to a very challenging assignment, concerning actuator
layout and utilization. Here we analyze the control dispatch of a general dynamic
system, introducing a well-defined problem and provide a detailed description of
the relevant mathematical models. Next, an ad hoc heuristic methodology, based on
mathematical programming (NLP/GO, MILP, and LP) techniques is proposed, to
attain satisfactory (albeit non-rigorous and, in most cases, sub-optimal) solutions for
practice. A straightforward application of our approach to a real-world case study
is discussed by Anselmi et al. [1]. Possible extensions and open problems are also
highlighted, to identify future research objectives.

Acknowledgements I express my thanks to the referee of the present chapter for the constructive
comments offered. I also wish to acknowledge J. Pintér for his meticulous observations and subtle
suggestions providing significant enhancements, as well as J. Evans for her accurate perusal of the
text.
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Choice of the Optimal Launch Date
for Interplanetary Missions

Giancarlo Genta and P. Federica Maffione

Abstract Interplanetary missions are strictly dependent on the launch date. Mission
planning requires a knowledge not only of the technological and cost constraints
but also the study of the influence of the launch opportunity on the spacecraft
performance and on the feasibility of the mission. Pork-chop plots are effective tools
to design interplanetary missions, providing a graphical overview of the relationship
between the fundamental parameters of the mission design, namely, the launch date,
the duration and the energy requirements. In this way it is possible to evaluate
the best timing to accomplish the mission under current constraints. Plots of a
similar type can be drawn also for optimizing missions based on low thrust or
on propellantless propulsion—like solar sails. The cost function described in these
plots may be the square of the hyperbolic excess speed, the �V, the ratio between
the initial mass and the payload mass or between the mass of the propulsion system
and the payload or the cost function J used in the optimization of the trajectory. In
case of two-way missions, it is possible to plot a cost function of the same type, by
adding the values related to the forward and the backward journeys, as a function of
the duration of the two legs of the travel, once the stay on the planet has been fixed.
In this way it is possible to optimize also missions which are intrinsically two ways,
like human exploration missions or sample return missions.
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a Thrust/mass ratio
C3 Square of V∞
I, J Cost function
Is Specific impulse
K Tankage factor
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m Mass of the spacecraft
mf Final mass
mi Initial mass
mL Payload mass
mp Propellant mass
mps Mass of the propulsion system
ms Structural mass
mt Mass of the thruster
mtank Mass of the tanks
mw Mass of the generator
r Vector defining the position of the spacecraft
RE Radius of the orbit of Earth
T Spaceflight duration
T Thrust
t Time
Ta Arrival date
Tp Time spent on the planet
Ts Starting date
V∞ Hyperbolic excess speed
α Mass/power ratio of the power generator
γ Optimization parameter
ΔV Velocity increment
ε Earth axis obliquity
η Efficiency
CEV Constant Exhaust Velocity
ICRF International Celestial Reference Frame
IMLEO Initial Mass in Low Earth Orbit
LEO Low Earth Orbit
NEP Nuclear Electric Propulsion
NTP Nuclear Thermal Propulsion
SEP Solar Electric Propulsion
VEV Variable Exhaust Velocity
VASIMR

®
Variable Specific Impulse Magnetoplasma Rocket

Subscripts

i Inbound
o Outbound
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1 Introduction

The planets of our Solar System move in a complex way around the Sun, and this
causes the performances of any interplanetary spacecraft to depend on the launch
opportunity and, once the latter has been chosen, on the exact launch date.

The precision required in the computation of the spacecraft trajectory is such
that the approximation obtained assuming that the planets move along circular
and even elliptical orbits is not sufficient for the analysis of an interplanetary
mission, and the knowledge of detailed ephemerides is required. While historically
ephemerides consisted in tables where the positions of the celestial bodies of
interest were reported as functions of time, modern ephemerides are based on
mathematical models allowing to compute the position of the solar system bodies
at any given time. Precise reference frames and time reference must then be
stated: at present the ephemerides made available by NASA-JPL (https://ssd.
jpl.nasa.gov/?ephemerides, https://naif.jpl.nasa.gov/pub/naif/toolkit_docs/C/req/
frames.html#Selecting a Name) are based on the International Celestial Reference
Frame (ICRF) and on the Julian time.

The ICRF is an inertial reference frame centred in the centre of mass of the solar
system and whose axes are fixed to a set of 295 extra-galactic radio sources. The
axes directions are assumed to be very close to that of the axes of the Earth-fixed
J2000 frame, and so its x-axis points in the direction of the vernal equinox and the
y-axis is contained in the Earth equatorial plane in its position at 12.00 of January
1st, 2000. For solar system navigation it is perhaps better to rotate the reference
frame about its x-axis of the obliquity angle ε of the Earth axis, so that the x–y plane
coincides with the ecliptic plane. An Earth-fixed reference frame with the axes so
oriented is the ECLIPJ2000 frame.

The solar system is particularly simple, with respect to the many star systems in
which the central star is multiple, in that the mass of the Sun is much greater, by
orders of magnitude, than that of all other bodies. As a consequence, the trajectories
of all bodies, natural and artificial, are very close to conic sections and, in particular,
to ellipses.

If the spacecraft is propelled by a high thrust or impulsive system, i.e. a thruster
which supplies a thrust much higher than all other forces acting on the spacecraft for
a time which is much shorter that the travel time, the patched conics approach allows
to compute the trajectory with a good approximation. The thrust is assumed to be
similar to a Dirac’s delta, i.e. an infinitely large force applied for an infinitesimal
time, so that it results in an instant velocity variation ΔV and the trajectory is
determined by the gravitational attractions only (coasting arcs). Moreover, each
coasting arc is approximated by an arc of a conical section determined by the
attraction of a single celestial body, that in whose sphere of influence the spacecraft
lies, i.e. that exerting the largest gravitational acceleration. In this case, a spacecraft
leaving planet A and aimed to planet B moves along an hyperbolic trajectory
about the starting planet until it gets out of its sphere of influence, then follows

https://ssd.jpl.nasa.gov/?ephemerides
https://ssd.jpl.nasa.gov/?ephemerides
https://naif.jpl.nasa.gov/pub/naif/toolkit_docs/C/req/frames.html%23Selecting%20a%20Name
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an heliocentric elliptical (or hyperbolic) trajectory until it enters the sphere of
influence of the destination planet and finally follows a hyperbolic trajectory centred
in planet B.

The thrust bursts are best applied at the beginning and at the end of the journey
(in the latter case aerodynamic forces due to the atmosphere of the destination planet
can be used), but usually the conic arcs are interrupted by (usually small) velocity
variations aimed at correcting the overall trajectory. More complex trajectories can
be split in a larger number of arcs, for instance, when a gravity assist manoeuvre is
performed in the sphere of influence of another planet.

In case of low-thrust systems, i.e. thrusters which provide a thrust which is not
much higher than the other forces acting on the spacecraft and is applied for long
times, possibly up to the whole travel time, the same scheme can be applied by
subdividing the trajectory in arcs performed in the sphere of influence of a single
body. The propelled arcs are, in this case, no more parts of conical sections. Usually
geometrically they look like arcs of spirals, which are neither logarithmic nor
Archimedes spirals, and cannot be computed in closed form, so that the numerical
integration of the trajectory becomes mandatory.

This patched arcs approach is thus the simplest, although approximate, way of
computing the trajectory of a spacecraft in the solar system.1 The present chapter
will be based on this approach.

2 Choice of the Best Travel Dates

The problem of choosing the best start and arrival date for an interplanetary mission
requires that a parameter, namely, a cost function I is stated. This parameter must be
minimized to find the start and the arrival dates (Ts and Ta) or, which is the same,
the start date and the travel duration (Ts and T) yielding the minimum value of I.
Depending on the propulsion type and the mission goals, different formulations of
the cost function I can be chosen. For instance, in case of an interplanetary travel
starting from Low Earth Orbit (LEO) with the aim of bringing cargo to a planet, say
Mars, the cost function may be the Initial Mass in Earth Orbit (IMLEO), which is
strictly linked with the cost of the mission. In case of a human mission to the same
planet, the IMLEO is not the only important parameter, since the duration T of the
travel is in itself a parameter to be minimized and a compromise between T and the
IMLEO must be looked for.

Another important difference is whether the mission under consideration is a
one-way mission, e.g. launching a probe, delivering a cargo or performing a one-

1It must be expressly stated that this approach will be impossible when the problem of travelling in
the system around a multiple star will be faced. If a mission like that studied in the Breakthrough
Starshot project will aim to perform more than just a flyby in the Alpha Centaury system, even its
preliminary study will need to go beyond the patched arcs assumption.
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way colonization mission, or a two-way mission like a human exploration mission.
In this case the parameters to be chosen are the starting and arrival dates of the
outbound and inbound journeys (Tso, Tao, Tsi and Tai) or the overall starting date,
the duration of both journeys and the stay on the planet (Tso, To, Tp and Ti).

In two-way missions a distinction must be made: Is the return journey to be
performed in the same or in a different launch opportunity? In the latter case, at least
if the journey duration is much shorter than the synodic period of the destination
planet with respect to the starting one, the outbound and the inbound journeys can
be studied independently and it is not required to perform the optimization of the
whole mission, while in the former case the whole mission must be optimized taking
into consideration both journeys.

Consider the optimization of a one-way journey: the problem is to find the values
of Ts and Ta (or of Ts and T) yielding the minimum of function I(Ts, Ta) (or of
function I(Ts, T))—if such a minimum exists—or yielding a suitable compromise
between minimizing I and minimizing T.

To solve this problem the value of I is computed for a large number of missions
characterized by different values of Ts and Ta and the surface I(Ts, Ta) is plotted,
in particular in the form of a contour plot. From this plot it is possible to identify
the dates yielding a minimum of I or, if such a minimum does not exist or leads
to a value of the travel time which is unpractically long, searching for a reasonable
trade-off between travel time and cost.

The fact that a minimum of the cost function may not exist, or may lead to
an unacceptably long travel time, justifies the computationally heavy approach
mentioned above instead of using more efficient optimization methods like those
based on a gradient descent. What is essential in this case is to gain a good
knowledge of the overall shape of the surface I(Ts, Ta) to search for an adequate
compromise between low cost function and low travel time.

The cost function can be computed for the interplanetary journey only, and in
this case—if the planetary orbits are assumed to be circular and coplanar—there
exists a single plot for a given pair of planets once the propulsion system has been
chosen. If, on the contrary, the ellipticity and non-coplanarity of the planetary orbits
is accounted for, the plot depends on the chosen launch opportunity.

Function I(Ts, Ta) can be defined to take into account the whole journey, from
the starting orbit around the first planet (or the planetary surface) to the arrival orbit
about the second planet. In this case the plot can be obtained only after many details
of the mission have been stated (starting and arrival orbits parameters, possible
flybys, aerobraking manoeuvres, trajectory corrections, etc.) and the increase in
accuracy is paid with a decrease in the generality of the results.

The computation of the plot is quite computationally intensive, since it requires
to compute thousands (possibly hundred thousand or millions) trajectories. Each
one of the trajectories may involve an optimization procedure, particularly in the
case of low thrust, in which case not only the trajectory but also the thrust profile
needs to be computed. The cost function may be the same cost function which
will be then used to plot the final diagram. However, as it will be shown below,
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even in cases in which the procedure is very computationally intensive, the choice
of the launch and arrival dates can be performed in a few hours using a laptop
computer.

The starting and arrival time can be expressed in terms of Julian dates or of
Gregorian dates or, in a simpler way, as days after the closest opposition. This is
perhaps the simplest way of stating the scales of the plot; since the mission usually
starts before the opposition and arrives after, Ts and Ta are usually negative and
positive, respectively.

In case of two-way travels, the two plots for the outbound and the inbound
journeys Io(Tso, To) and Ii(Tsi, Ti) must be first computed. Then some relationships
between the four independent variables have to be introduced, for instance, that
yielding to an arbitrarily assumed time spent on the planet Tp and to a minimum
value of the sum Io + Ii at fixed values of To and Ti and then the plot (Io + Ii)(To,
Ti) is computed. From such a plot the values yielding to a minimum value of the
total cost function or to the required compromise value can be identified.

3 Impulsive Thrust

The tool traditionally used to choose the starting and arrival dates for a one-way
impulsive mission is the so-called pork-chop plot. It has been used since the 1970s,
when it was introduced for the Voyager programme, in the preliminary stages of the
mission design. Since Voyager required a higher accuracy compared to the previous
missions as Mariner or Viking, the mission planners Roger Bourke and Charles
Kohlhase needed to know exactly the position of the spacecraft at each instant. In
particular, they tried to design a mission to be completed before the end of the 1981,
maintaining a very high position precision in all mission phases [1]. They generated
10,000 possible trajectories from the pork-chop plot and then selected the best one
that satisfied the mission objectives.

The classical pork-chop plot uses as cost function the square of the hyperbolic
excess speed C3 = V∞2 as a function of Ts and Ta and thus takes into account
only the energy of the trajectory when leaving the starting planet’s sphere of
influence, without accounting for the ΔV required to enter the arrival planet’s
sphere of influence or those related to the manoeuvres performed to leave the
starting orbits or achieving the arrival one. This is in a way obvious because to
take them into account would mean to have already taken many design decisions,
like whether opting for propulsive or aerodynamic manoeuvres at arrival (in case
of a planet with an atmosphere) or whether opting for a direct launch, or a perigee
burn, etc.

In this regard, JPL developed MIDAS, a patched conic interplanetary trajectory
optimization tool (http://trajectory.grc.nasa.gov/tools/midas.shtml). Then, using the
data obtained from this programme, JPL published a Mission Design Handbook
which provides the trajectory designers with contour plots for all Earth–Mars
mission opportunities from 1991 to 2045 [2–5]. Once the launch window is chosen,

http://trajectory.grc.nasa.gov/tools/midas.shtml
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there are several types of pork-chop plot: the simplest one refers to ballistic
trajectories without any deep space manoeuvres, the second one takes into account
the addition of the deep space manoeuvres or of flybys of other planets. In this way
it is possible to compare different mission architectures.

Plotting a pork-chop plot is relatively simple: the values of Ts and Ta are chosen,
then from the ephemerides the positions of the starting and arrival planets are
obtained and the orbital parameters of the trajectory between these two points
can be computed, together with the initial and final velocity and thus the value
of C3 [6, 7].

If the planetary orbits were circular and coplanar, the surface C3(Ts, Ta) would
have a single minimum corresponding to the Hohmann transfer, which in the case of
Earth–Mars trajectories starts about 96 days before the opposition (Ts ≈ −96 days)
and has a duration of 258.73 days (Ta ≈ 163 days). Since in an actual case the
orbits of the planets must be considered at least elliptical and not coplanar, the pork-
chop plot depends on the specific launch opportunity and usually the surface C3(Ts,
Ta) has two minima, one related to type I missions (trajectories which intersect the
orbit of the arrival planet the first time at the arrival time) and the other to type
II missions (trajectories intersecting the orbit of the arrival planet once before the
arrival time). Depending on the launch opportunity, the absolute minimum of C3

may occur for type I or type II trajectories: for instance, in the 2035 opportunity the
minimum energy required for a Earth–Mars type I trajectory (C3 = 10.28 km2/s2) is
lower than that required for type II (C3 = 17.78 km2/s2) trajectories and the optimal
transfer times are, respectively, 194 and 426 days.

The pork-chop plot is usually plotted for a limited range of starting dates around
the optimal launch window, but it may be extended indefinitely to study what
happens also in case of a launch well outside the optimal conditions. This may seem
to have very little practical interest, but it may be useful for designing short-stay
Mars missions or to deal with cases in which an advanced propulsion system—
mostly of the Nuclear Thermal (NTP) type—allows to perform a mission to deliver
badly needed cargo to an outpost or to allow the return of personnel from Mars in
an emergency.

In case a wide range of start dates is expedient, to obtain a more compact plot,
it is convenient to put the interplanetary transit time T instead of the arrival time Ta

on the ordinate axis.
It is also possible to compute the total orbit-to-orbit ΔV, i.e. the sum of the

velocity increments required to enter the interplanetary trajectory from the parking
orbit plus that required to enter the orbit about the arrival planet from the former. In
case the manoeuvres at the arrival planet are performed using the aerodynamic drag
of the planetary atmosphere (aerobraking or aerocapture manoeuvres), the second
ΔV is set to 0 or to a low value. Such a plot can be defined as a ΔV-plot.

Clearly, the pork-chop plot is much more general, since it doesn’t require to
state the orbits about the two planets. It is also more useful in the case of chemical
propulsion, when the braking at the arrival planet is performing aerodynamically,
while the ΔV-plot is required in the case of Nuclear Thermal Propulsion (NTP)
when a propulsive braking manoeuvre is performed [8].
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Figure 1 ΔV-plot for Earth–Mars transfers performed between mid-August 2034 and the end of
December 2038. The ΔV is expressed in km/s and the time is in days

As an example, the ΔV-plot for Earth–Mars transfers performed between mid-
August 2034 (400 days before the 2035 opposition) and the end of December 2038
(1200 after the same opposition) is shown in Figure 1. The departure orbit is circular
and has an altitude of 900 km (a possible choice for NTP), while the arrival orbit is
highly elliptical with a periareion of 400 km and an apoareion of 30,000 km.

The dotted lines are the arrival dates, expressed in days after the 2035 opposition.
The plot covers more than two complete synodic periods, and the differences

between the two launch opportunities are clear. In the 2035 opportunity the optimal
launch window is around 80 days before opposition and the minimum energy
trajectory is of type I with a duration of about 200 days. A good choice is launching
on June 27, 2035, which requires ΔV1 = 3542 m/s and ΔV2 = 921 m/s, with a total
ΔV of 4468 m/s. A value of C3 = 10.30 km2/s2 is obtained, which is lower than that
required for a type II trajectory (C3 = 20.68 km2/s2) with launch on May 5, 2035
and a total ΔV of 4977 m/s. It must be stated that a lower C3 could be obtained for
a longer type II trajectory (down to C3 = 17.78 km2/s2), but in this case a higher
total ΔV was obtained. In fact, the spacecraft would have a higher hyperbolic excess
speed arriving to Mars, requiring much more energy to brake, unless aerobraking is
used.
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In the following launch opportunity, type II trajectories would be more conve-
nient, particularly for what C3 is concerned. If different starting or arrival orbits
were chosen, or a non-propulsive manoeuvre were performed at arrival, the plot
would have been different.

The plot was obtained using a purposely written MATLAB code, based on the
Newton Raphson method [9], solving the Gauss problem and the ephemeris data
downloaded from the Jet Propulsion Laboratory’s online resources (http://ssd.jpl.
nasa.gov/?planet_pos). The total number of trajectories computed is 240,000.

4 Low Thrust

The case of low thrust is increasingly more important, since a number of robotic
planetary missions are propelled by electric thrusters—mostly ion thrusters—[10,
11] powered by solar arrays (Solar Electric Propulsion, SEP), often in conjunction
with gravity assist manoeuvres, and in the future also Nuclear Electric Propulsion
is much promising [12]. Since the early studies of human Mars missions, the
possibility of using electric propulsion (mostly NEP, but also SEP) was considered
[13, 14]. In this case the time spent in space becomes a very important parameter
of the mission, and the use of gravity assist manoeuvres is seldom considered,
except for performing missions which would be impossible without exploiting the
gravitational field of a planet different from the departure or arrival planets (in case
of Mars missions, the Venus’ gravitational field).

Owing to the rising number of interplanetary mission planned for low-thrust
electric propulsion and the importance of the travel time, there is a need for a plot
similar to the pork-chop or the ΔV-plot, but for low, continuous thrust, trajectories
which can be applied to NEP and SEP spacecrafts. A plot of this kind, usually
referred to as the bacon plot, has recently been introduced [15]. In this case the
useful mass carried to the destination planet mL + ms, obviously at equal initial
mass mi or at equal IMLEO, is assumed as a cost function to be maximized instead
of minimized. Better, what is to be maximized is the ratio (mL + ms)/mi. To use a
true cost function to be minimized, its reciprocal can be used: I = mi/ (mL + ms).

The first difference between the pork-chop plot and the bacon plot is related to the
mathematical approach used to compute them. While in case of impulsive mission
the patched conics approach can be used and the trajectory can be obtained in
closed form, in case of low-thrust mission the trajectory must be computed together
with the thrust profile and different types of optimization techniques, both direct or
indirect, can be used [16]. Many programmes aimed to compute the trajectory and
the thrust profile of low-thrust missions are available.

The second difference is that in case of low thrust the contours are not closed,
i.e. the cost function I has no minima and the longer is the travel time, the lower is
the value of the cost function.

In case of low-thrust mission, it is also necessary to distinguish between Variable
Ejection Velocity (VEV) and Constant Ejection Velocity (CEV) systems [17–20].
The simplest and most convenient approach is assuming that the system operates

http://ssd.jpl.nasa.gov/?planet_pos
http://ssd.jpl.nasa.gov/?planet_pos
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at constant power (in the case of NEP) or at the maximum power allowed by
the solar arrays (in the case of SEP) [21–24] and when the computed thrust
profile requires a reduction of the thrust, this is obtained by increasing the specific
impulse. This approach is described in detail in [25, 26] and leads to much
less computationally intensive algorithms. However, it has a basic limitation: the
maximum value of the specific impulse which is required, in particular in the middle
of the interplanetary cruise, is much higher than the maximum value the thruster can
actually reach, even if particularly suitable plasma thrusters, like the VASIMR

®
[12]

(http://www.adastrarocket.com/aarc/VASIMR, http://www.nasa.gov/home/hqnews/
2008/dec/HQ_08-332_VASIMR_engine.html), are used.

When the thrust must be reduced below the value corresponding to the maximum
specific impulse, the simplest action is to keep the latter at the maximum possible
value and to reduce the power, but this leads to a non-optimal control law and then
to an increase of the cost function. A much better alternative is maintaining the
power at its maximum possible value when the thruster is on, and switching off the
thruster, letting the spacecraft to proceed with its engine off, for a certain time. The
engine on-off times are among the parameters to be optimized, together with the
thrust direction and intensity and the specific impulse.

The basic equations used for the optimization of the trajectory and of the thrust
profile and for the optimal spacecraft mass breakdown are summarized in Appendix.

It must be expressly stated that the cost function J as defined by Eq. (11) or
Eq. (27) has a meaning only in the case of a thruster with unlimited specific impulse.
If on the contrary there are limitations on the maximum specific impulse of the
thruster, a different definition of J is required (Eq. 30).

Since it is possible to compute the value of J once that the starting and arrival
dates are stated, it is possible to plot the surface J(Ts,Ta) or J(Ts,T) also in this
case. The dependence of the energy requirements of the interplanetary flight on the
starting and arrival dates (or on the starting date and the travel time) can thus be
summarized by a single contour plot, which is here indicated as J-plot.

The J-plot can be obtained using both direct and indirect optimization methods.
Of course also stochastic methods can be used but, since a large number of
trajectories must be computed and the problem is a constrained one, they become too
computationally intensive and for this reason are not considered here. Here a Matlab
tool developed by the authors and called IRMA (InteRplanetary Mission Analysis)
and based on the approach proposed by Keaton in [25] is used. The boundary value
problem is solved by using the BVP5C [27] Matlab routine based on the four-stage
Lobatto IIIa formula and implemented as an implicit Runge–Kutta formula.

If direct methods are considered, the optimal control software Falcon.m, devel-
oped at the Institute of Flight System Dynamics of Munich, is used [28]. The
problem is converted into a nonlinear programming problem using the trapezoidal
transcription method and then solved using the numerical solver IPOPT (Interior
Point OPTimizer) [29]. A more detailed discussion of the solution techniques can
be found in [30, 31].

http://www.adastrarocket.com/aarc/VASIMR
http://www.nasa.gov/home/hqnews/2008/dec/HQ_08-332_VASIMR_engine.html
http://www.nasa.gov/home/hqnews/2008/dec/HQ_08-332_VASIMR_engine.html
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Figure 2 Ideal J-plot for NEP for Earth–Mars travels in the launch opportunity of 2035. J is
expressed in m2/s3. Computation performed both using the IRMA and the FALCON.m codes.
Note that in the zone included in the area between the two dashed lines, where the two codes give
similar results, the lines for J = 5, 9, 13, 30 and 40 m2/s3 are completely superimposed, while
those for J = 0.6, 0.8, 1 m2/s3 are very close to each other

A J-plot is computed using both IRMA and Falcon.m codes for Earth–Mars
travels in the launch opportunity of 2035, with α = 10 kg/kW, and maximum
specific impulse Ismax = 6000 s is reported in Figure 2. The plot has been obtained
by using the ephemerides developed by JPL (https://naif.jpl.nasa.gov/pub/naif/
toolkit_docs/C/req/frames.html#Selecting a Name). The computation time is 1631 s
for IRMA and 3988 s for Falcon.m. The two plots are almost coincident near the
optimal launch window but, away from this region, FALCON.m finds local minima
that are far from the global minimum (as the results from IRMA suggest). It would
be necessary to optimize again the trajectory in these points, leading to a severe
increase of computational time. It can be concluded that in this case the indirect
method is more efficient than the direct one.

Also in the case of low thrust it is possible to obtain an orbit-to-orbit plot.
However, while in the case of impulsive thrust, the duration of the first and the last
phase, performed within the spheres of influence of the start and destination planets,
can be neglected, in the present case they can take a substantial fraction of the total
time. The relative durations of the three phases constitute a set of parameters which
are essential in the overall optimization of each mission.

https://naif.jpl.nasa.gov/pub/naif/toolkit_docs/C/req/frames.html%23Selecting%20a%20Name
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Consider the case in which the cost function J, defined either by Eq. (11), Eq. (28)
or Eq. (31), is used. Let the durations of the three phases be T1, T2 and T3, and the
values of the parameter J be J1, J2 and J3. The total duration and cost function are
thus [26, 32]

Ttot = T1 + T2 + T3, Jtot = J1 + J2 + J3. (1)

Once the starting orbit, which may be either circular or elliptical, has been
defined, it is possible to compute a function J1 = J1(T1), at least in an approximate
way, by approximate algorithms (for circular orbits) or numerical integration (for
elliptical orbits). If the spacecraft is powered by a solar array, the interruption of the
thrust in the shadow of the planet can be accounted for [24]. In the same way also
function J3 = J3(T3) is easily obtained.

The J-plot for the interplanetary cruise gives the function J2 = J2 (T2,Ts2). Since

Ts2 = Ts + T1, (2)

for each value of Ts and Ttot it is possible to obtain a function Jtot (T1,T3) and
then the values of the first and third phases leading to the minimum value of Jtot.
Repeating this computation for all the values of Ts and Ttot, a plot of the function
Jtot (Ts, Ttot), namely, an orbit-to-orbit J-plot, is finally obtained.

Such a plot for a NEP spacecraft travelling from Earth to Mars in the 2035 and
2037 launch opportunities, characterized by α = 10 kg/kW and a maximum specific
impulse Ismax = 6000 s, is shown in Figure 3. The starting and arrival orbits are the
same as those considered in Figure 1.

5 Propellantless Propulsion

The possibility of travelling in space without the need of propellant is extremely
interesting. At present the only devices which allow to produce a thrust without
the need of expelling a propellant are solar or magnetic sails. They produce very
small thrust, but one which may be adequate for a number of robotic missions. With
further technological improvements aimed to build very low mass sails, there is the
possibility of extending their applicability to other types of missions.

Apart from solar sails, propelled by solar light, there is the possibility of using
laser sails2 and magnetic sails, propelled by solar wind. Still hypothetical (and
much controversial) is the possibility of future propellantless propulsion systems
like those studied in the NASA Breakthrough Propulsion Physics (BPP) project [34].

In all these systems it is possible to define a specific thrust, i.e. a ratio between
the thrust supplied by the propulsion system and its total mass. In the case of solar

2Laser sails have been proposed also for interstellar journeys (see, for instance, [33]) and are at the
base of the Breakthrough Starshot project (https://breakthroughinitiatives.org/initiative/3). Solar
and laser sails are collectively referred to as light sails.

https://breakthroughinitiatives.org/initiative/3
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Figure 3 Orbit-to-orbit J-plot for a NEP spacecraft travelling from Earth to Mars in the 2035 and
2037 launch opportunities. α = 10 kg/kW, maximum specific impulse Ismax = 6000 s. The starting
and arrival orbits are the same as those considered in Figure 1

sails the specific thrust decreases with the square of the distance from the Sun.
In case of sails of all types, the value of the thrust depends of the orientation of
the sail, reducing to zero when the sail is in a plane containing the light source.
Each trajectory, characterized by a starting and an arrival date, can be optimized
by searching the direction of the thrust which minimizes the total mass of the
propulsion system (or better the ratio between the propulsion system and the total
mass of the spacecraft mps/mi) [23].

A plot of I = mps/mi (Ts, Ta) can thus be obtained also in the case of
propellantless systems, although this plot does not yet have a name.

6 Two-Way Journeys

As already stated, a two-way mission can be optimized as a whole; in particular, this
is the case for human Mars missions when the two journeys are performed in the
same launch opportunity (short-stay missions). Also in this case the optimal dates
can be obtained by plotting a suitable contour plot.

In case of impulsive thrust, this plot is a two-way ΔV-plot.
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The total ΔV is a function of four parameters, either the starting and arrival dates
of both journeys (Tso, Tao, Tsi and Ta) or the starting date of the outbound journey
(Tso), the duration of the inbound and outbound travels (Ti, To) and the stay on the
planet (Tp):

�Vmission=�Vmission (Tso+Tao+Tsi+Tai)=�Vmission

(
Tso + To + Ti + Tp

)
.

(3)

A way to optimize an impulsive mission with a given value of the time spent on
the destination planet Tp is to state a range for the duration of the outbound and the
inbound journeys To and Ti and to search the value of the start time for the outbound
Ts yielding the minimum value of the total ΔV for each pair To, Ti. Proceeding in
this way it is possible to obtain a contour plot in the plane (To, Ti): for instance,
using the orbit-to-orbit ΔV-plots for the Earth–Mars and Mars–Earth journeys in
the 2035 launch opportunity, from an 800 km circular LEO to an elliptical Mars
orbit with a 320 km periaerion and a 35,000 km apoareion, and assuming a stay on
Mars Tp = 40 days, the plot of Figure 4 has been obtained.

The surface has an absolute minimum (A) obtained with two type II trajectories,
while minimum B is obtained with a type I trajectory outbound and a type II

Figure 4 Contour plot of the total ΔV for a two-way Earth–Mars travel with a stay on Mars of
40 days performed in the 2035 launch opportunity
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Table 1 Three near-optimum short-stay missions. The first is close to the absolute minimum, while
the second is made by a short outbound journey followed by a much longer return; the opposite for
the third. The last two lines deal with a mission contemplating a Venus flyby in the return journey.
Times are in days, referred to the opposition date

ΔV (m/s)
Starting
date

Arrival
date

Travel
time Total ΔVmiss (m/s) Type

Min. A Outbound 7700 −260 −34 236 486 15,842 II
Inbound 8142 6 266 250 II

Min. B Outbound 5439 −122 38 160 410 17,172 I
Inbound 11,733 78 328 250 II

Min. C Outbound 9307 −296 −70 230 386 17,569 II
Inbound 8262 −30 130 156 I
Outbound 6425 −125 25 150 420 15,342 I
Inbound 8917 65 335 270 Flyby

inbound; minimum C is obtained with a type II trajectory outbound and a type I
inbound and minimum D with two type I trajectories.

Three cases of near-optimum short-stay missions (the D minimum is flat enough
to make it immaterial to search for the exact minimum) are reported in detail in
Table 1. Inserting a Venus flyby in the return leg of the journey allows to either
reducing the total time spent in space or to reduce the total ΔV of the mission. The
total ΔV is lower than those for mixed type I and type II missions, or the total time in
space is much smaller than that of a mission contemplating both type II trajectories.

Things are different in case of low-thrust missions. From the two J-plots for
forward and backward journeys, it is possible to obtain the two-way plot for the
whole mission which does not contain closed lines. Such a plot for a stay on Mars
of 40 days and the same conditions of Figure 2 are shown in Figure 5. There is no
optimal mission, in the sense of a minimum energy mission; however, it is possible
to identify an outbound and an inbound journey which give the minimum value of
the sum of parameter J of the two-way journeys for a given total time in space.

Such conditions are identified by the points in which the lines for constant total
time in space (parallel to the bisector of the second quadrant—if the scales are equal)
are tangent to the contour lines.

For very short journeys there is only one of such points per contour line;
accepting longer journeys there are two of such conditions, with the most favourable
one being that with a longer outbound travel, then the best one is that with the
longest travel in the inbound leg of the journey, and finally there is only one point
of tangency. The two solutions for a total time in space of 400 days are shown in
Table 2 (the most favorable one is that with a short outbound and long inbound
travel).
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Figure 5 Contour plot of the surface Jmiss(To,Ti), for a two-way Earth–Mars travel (2037 launch
opportunity) obtained from the J-plots of Figure 3. The values of J are expressed in m2/s3

Table 2 Two low-thrust short-stay (40 days) missions. The first has a slow outbound travel and a
fast return journey, while the second the opposite. Time in days after the opposition

J (m2/s3) Starting date Arrival date Travel time Total time

Outbound 36.802 −300 −60 240 400
Inbound 41.948 −20 140 160
Outbound 29.621 −90 50 140 400
Inbound 42.760 90 350 260

7 Examples

7.1 NTP Mission to Titan, Possibly with a Jupiter Flyby

Titan, the satellite of Saturn, is a very interesting destination and sending there
a lander, with a rover [35] perhaps able to also sail in the methane lakes, is a
priority. Reaching Saturn is not easy, and nuclear thermal (or electric) propulsion
is a possibility—like it was for the Jupiter moons (JIMO) mission considered in
the past and then cancelled. Reaching Saturn can be helped by performing a flyby
of Jupiter, and the 2039 launch is a good choice for this type of trajectory. The
example is performed using the following data: Trajectory data:
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Figure 6 Superimposition of the �V-plots for orbit-to-orbit Earth–Saturn travels in the 2039
launch opportunity without (full lines) and with (dashed lines) a Jupiter flyby

• Starting orbit: Circular, 800 km (adequate for NTP) from Earth surface.
• Arrival orbit: Circular about Saturn, same radius as Titan orbit, 1,161,662 km

(from which the spacecraft can be positioned in the Titan–Saturn L4 or L5 from
where the lander can start).

Spacecraft data: NTP with Is = 850 s.
The orbit-to-orbit ΔV-plots without (full lines) and with (dashed lines) a Jupiter

flyby are reported in Figure 6: the ΔV is expressed in km/s and the dates are in days
after the opposition (March 17, 2039). From the plot it is clear that performing a
flyby it is possible to shorten (even if not dramatically) the duration of the mission
at equal ΔV or decreasing the ΔV at equal duration.

A more thorough use of flybys would be to start, for instance, with an Earth
or Venus flyby, perhaps a multiple one. This has, however, not been considered
here since it would drastically increase the number of possibilities which need to be
considered and also would drastically increase the travel time.

A possible starting date for a 1450-day mission without flyby is November
24, 2038 (113 days before opposition), with arrival date on November 13, 2042.
The relevant speed increments are ΔV1 = 8158.8 m/s and ΔV2 = 5088.7 m/s
(ΔVtot = 13, 347.5 m/s).
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Figure 7 Trajectories for the Earth–Saturn mission without and with Jupiter flyby

Owing to the high specific impulse, the ratio mi/mf = 4.9.
In case of Jupiter flyby, a possible starting date for a 1450.0-day journey is

October 31, 2038. The flyby occurs on June 29, 2040 (607.1 days after leaving
Earth orbit) and the arrival date is October 20, 2042.

The flyby main parameters are: distance from the centre of Jupiter
3,561,954 km and deviation angle δ = 30.37◦. The relevant speed increments
are ΔV1 = 7161.3 m/s and ΔV2 = 5470.8 m/s (ΔVtot = 12, 632.1 m/s).

The ratio mi/mf = 4.5. A possible mass breakdown is final mass: 4.4 t, initial
mass 19.8 t; propellant mass: 15,4 t.

A plot of the trajectories for the two cases is reported in Figure 7.

7.2 NEP Mission to Europa

Europa is one of the most interesting destinations in the solar system, and sending
a lander, possibly with a rover, on its surface is an important mission which may be
performed by a NEP robotic spacecraft. The problem of choosing the best launch
date for starting such a mission in the 2039 launch opportunity is here dealt with,
together with a first approximation mission design. Trajectory data:

• Starting orbit: Circular, 800 km from Earth surface.
• Arrival orbit: Circular about Jupiter, same radius as Europa orbit 670,900 km

(from which the spacecraft can be positioned in the Europa-Jupiter L4 or L5
from where the lander can start).

Spacecraft data:

• Generator: Nuclear, with α = 5 kg/kW = 0.005 kg/W.
• Thruster: VASIMR

®
, H = 0.625 (αe = α/H = 8 kg/kW), Ismax = 8000 s.
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Figure 8 (a) Orbit-to-orbit J-plot and (b) bacon plot for a Jupiter-Europa mission in the 2039
launch opportunity

The J-plot for an orbit-to-orbit trajectory is first obtained together with a bacon
plot (Figure 8; J is expressed in m2/s3; in the bacon plot ratio (mf -mw)/mi has been
reported).

A reasonable choice for the starting date is August 7, 2038 (192 days before
the opposition) which, together with a travel duration of 640 days, yields a value
(mL + ms)/mi = 0.2.

The first phase (geocentric) lasts 47.4 days and the spacecraft enters the
interplanetary trajectory on September 23, 2038 (144.6 days before the opposition).
The interplanetary travel lasts 521.6 days, with an arrival at Jupiter on February 26,
2040 (376.9 days after the opposition). The date at which the final orbit is reached is
May 8, 2040 (448.0 days after the opposition) after 71.1 days spent spiralling about
Jupiter (in this computation the gravitational attraction of Jupiter satellites has been
neglected).

The trajectory of the spacecraft is shown in Figure 9.
The values of J are 5.528 m2/s3, 23.446 m2/s3, and 9.187 m2/s3 for the three

phases, with a total J = 38.161 m2/s3. The overall value of γ is 0.553.
The time histories of the acceleration, the specific impulse, the thrust and the

power or the jet are reported in Figure 10.
A possible mass breakdown of the spacecraft is the following:

• Initial mass 19,977 kg
• Payload plus structures (including the thrusters) 4000 kg
• Propellant mass 11,038 kg
• Power generator mass 4939 kg
• Generator power 988 kW
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Figure 9 Trajectory of the Earth–Jupiter mission

A mission to Europa allowing to bring a payload of the order of about 1.5 t in
less than 2 years with an IMLEO of 20 t is thus possible if a nuclear generator of
moderate power with a specific mass of 5 kg/kW is available.

8 Conclusions

The choice of the launch date and of the travel duration for interplanetary missions
is a delicate one, since it strongly affects the energy required for the mission, or,
which is the same, the IMLEO and thus the cost.

The usual approach is defining a cost function linked in some way to the IMLEO,
or better to the ratio mi/mL, where mL is the mass of the payload carried to
destination and plotting the surface which expresses the cost function versus the
start and arrival dates, or better the start date and the journey duration. This plot,
usually in the form of a contour plot, can be used to search for a minimum of the
cost function, or better, to perform a trade-off between the cost function and the
travel time—in particular in the case of human missions, in which minimizing the
travel time is in itself a very important goal.
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Figure 10 Time histories of the acceleration, the specific impulse, the thrust and the power of
the jet

The resulting plots can be subdivided in two wide classes, depending on the type
of propulsion used.

If the spacecraft is propelled by an impulsive system and most of the trajectory
is performed without thrust, and thus its shape is made up by conic sections (if the
two-body problem is assumed), the resulting surface has one or two minima (the
contour lines are closed lines) and it is possible to define optimal conditions for the
IMLEO. Since the zones about the minima are fairly flat, it is possible to search for
a compromise between time and cost, but it is not convenient to move much from
the optimal conditions.

The plots used in this case are called pork-chop plots (usually when only the
hyperbolic excess speed needed to start the trajectory is considered), or �V-plot,
when the total �V required to leave the parking orbit about the starting planet and
to enter an orbit around the destination planet (or even to leave the surface of the
former and to reach the surface of the latter) is considered.

On the contrary, if the spacecraft is propelled by a thruster which supplies a
small thrust for the entire duration of the flight, or at least for a substantial part of
it, the freedom of choosing the trajectory is much larger. This is the case of electric
propulsion, but also of propellantless propulsion like solar or laser sails. Even if
the two-body problem is solved, the trajectories are not conic sections (except for
the coasting arcs which can be included), and a thrust programme must be defined
together with the trajectory. The surface doesn’t have minima (or maxima), but there
is a constant decrease of the cost function with increasing travel time. A compromise
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with short travel time and low IMLEO must always be searched and this depends on
the mission to be designed. For instance, this allows to distinguish between cargo
spacecraft, which can economically carry large cargos along slow trajectories, and
passenger spacecraft, which can carry a reduced payload along fast trajectories.

The plots of this kind are called bacon plots (in which the cost function must be
maximized) and J-plots. Also in this case it is possible to take into account not only
the interplanetary part of the journey, which takes place in the sphere of influence of
the Sun, but also the parts occurring within the spheres of influence of the starting
and the arrival planets, to obtain orbit-to-orbit plots.

A third type of plot can then be introduced to study two-way journeys, in
particular in the case in which they cannot be studied independently. Two-way
journeys are important practically only in case of human missions, which at present
are mostly aimed to Mars exploration. In the case of Mars, “long-stay missions” can
be studied by considering independently the outbound and the inbound journeys,
while in case of short-stay missions they must be dealt with in an integrated way. A
total cost function can be defined, but this depends on four parameters, the start and
arrival dates of both legs of the travel, or the start date, the two travel times and the
stay on the planet. By fixing the stay time and searching for the start date leading
to the smallest cost function, a plot in which the cost function is plotted against the
two travel times can be obtained. A trade-off between the time spent in space and
the cost of the mission, for a given stay time, can thus be performed.

A.1 Appendix: Optimization of a VEV Electric Spacecraft

A.1.1 NEP Spacecraft

Consider the case of an ideal VEV (Variable Exhaust Velocity) spacecraft—i.e. a
spacecraft provided with a thruster which has no limitation in the specific impulse,
powered by a nuclear generator.

The optimization of the trajectory and of the spacecraft can be performed
separately as shown in [25] for the case in which the initial mass mi is assumed
to be

mi = mL +ms +mw +mt +mta +mp, (4)

where mL is the payload mass, ms is the structural mass, mw is the mass of the
generator, mt is the mass of the thruster, mta is the mass of the tanks and mp is the
mass of the propellant.

The power system can be assumed as made by a generator, a power conditioning
system and a thruster (Figure 11b); the mass of the generator can be assumed to be
proportional to the power it produces and that of the thruster to the power it receives
from the ECU. Including the mass of the ECU into that of the generator, the total
mass of the propulsion system:
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Figure 11 Sketch of the propulsion system. (a) simplified scheme; (b) more detailed scheme

mps = mw +mt = αgPg + αtPgηp =
(

αg

ηpηt
+ αt

ηt

)
Pj = αePj , (5)

where Pj is the power of the jet and αe, αg and αt are the effective specific masses
of the power system, the generator and the thruster.

The power of the jet is linked with the thrust T, the exhaust velocity ve and the
propellant throughput ṁ by the relationship

Pj = 1

2
ṁv2

e =
1

2
T vej , (6)

where Pj is the power of the jet and αe is the effective specific mass of the generator.
The ratio between the thrust and the mass (both functions of time) is

a = T
m

= − ṁve

m
. (7)

Solving Eq. (7) in ve and substituting it in Eq. (6) it follows:

a2

2Pj

= − ṁ

m2 = − d

dt

(
1

m

)
. (8)

By integrating Eq. (8) from the starting moment 0 to the final time, it follows:

1

mf

= 1

mi

+
∫ T

0

a(u)2

2Pj (u)
du = 1

mi

+ 1

2Pj

∫ T

0
a(u)2du. (9)

The second formulation is justified by considering that in the case of NEP the
system can be regulated so that the power is maintained constant at its maximum
value and the thrust is regulated by changing the specific impulse. By introducing
Eq. (12) into Eq. (16) it follows:
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1

mf

= 1

mi

+ 1

mps

1

2
αe

∫ T

0
a(u)2du = 1

mi

+ αeJ

mps

= 1

mi

+ γ 2

mps

, (10)

where parameters J and γ are, respectively,

J = 1

2

∫ T

0
a(u)2du; γ = √

αeJ . (11)

The optimum trajectory and thrust profile are obtained by minimizing the integral
J, which can be used as a cost function of the optimization problem. In [25] it is
shown that the minimum problem can be expressed by a set of 6 s order scalar
differential equations (in the three-dimensional case):

{
r̈ = −∇U (r, t)+ a(t)
ä = −a∇ [∇U (r, t)]

, (12)

where U (r,t) is the gravitational potential in which the spacecraft is moving. The
boundary conditions are simply the positions r and the velocities ṙ at the initial and
final instants.

Equation (10) can be rewritten as

mf

mi

= 1

mi

(
1
mi

+ γ 2

mps

) = mps

mi

1
(

mps

mi
+ γ 2

) . (13)

From Eq. (4) the final mass can be written as

mf = mL +ms +mw +mt +mta. (14)

The latter mass mta can be written as

mta = Kmp, (15)

where the mass of the tank has been assumed to be proportional to the mass of the
propellant through the so-called tankage factor K.

The propellant fraction is

mp

mi

= 1 − mf

mi

= 1 − mps

mi

1
(

mps

mi
+ γ 2

) , (16)

and thus

mL +ms

mi

= mps

mi

⎡

⎣ (1 +K)
(

mps

mi
+ γ 2

) − 1

⎤

⎦−K. (17)
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Equation (17) can be written as

y = x

[
(1 +K)
(
x + γ 2

) − 1

]

−K, (18)

where

y = mL +ms

mi

, x = mps

mi

.

To maximize the payload factor y, it is enough to search for a generator mass x
such that

dy

dx
= (1 +K)

(
x + γ 2

) − 1 − x
(1 +K)
(
x + γ 2

)2 = 0, (19)

i.e.

mps

mi

= γ
√

1 +K − γ 2. (20)

It then follows:

mp

mi

= γ

√
1

1 +K
,
mta

mi

= γK

√
1

1 +K
, (21)

mL +ms

mi

=
(√

1 +K − γ
)2 −K = 1 + γ 2 − 2γ

√
1 +K.

Clearly (ml + ms)/mi must be positive, which puts a limitation to γ :

γ <
√

1 +K −√
K, (22)

which is only a theoretical minimum, since it corresponds to a case in which
the spacecraft is made only of propellant, tank and propulsion system, with no
allowance for payload and structure.

The mass breakdown as a function of γ is shown, for the case K = 0.06, in
Figure 12. In this case the limitation is γ < 0.7846.

From the figure it is clear that minimizing γ leads to not only minimizing the
propellant fraction but also minimizing the propulsion system lass and maximizing
the payload (and structure) fraction.
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Figure 12 Mass breakdown as a function of γ for K = 0.06

A.1.2 SEP Spacecraft

Consider now an ideal VEV (variable exhaust velocity) spacecraft powered by
a solar generator. The power generator supplies a power which depends on the
distance from the Sun through a function f (r):

Pg = P 0f (r), (23)

where P0 is the power supplied at 1 AU from the Sun and function f (r) is a function
which takes a unit value when r = 1 AU. If the efficiency of the solar arrays were
constant, function f (r) would be

f (r) =
(
RE

r

)2

, (24)

where RE is the mean radius of Earth orbit. However, f (r) decreases less than what
could be obtained from Eq. (28) because the efficiency of the arrays increases
with decreasing temperature and thus with increasing distance from the Sun. Other
functions f (r) have been suggested to account for this effect [20–22].
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The power of the jet is thus linked with the mass of the generator as

Pj = mw

f (r)

αe0
, (25)

where αe0 is the effective specific mass of the propulsion system αe at 1 AU from
the Sun.

Operating as seen for the case of NEP, Eq. (10) becomes

1

mf

= 1

mi

+ 1

mw

1

2
αe0

∫ T

0

a(u)2

f (r)
du. (26)

By introducing vector

q = a√
f (r)

, (27)

integral J can be written in the form

J = 1

2

∫ T

0
q(u)2du, (28)

and the differential equations yielding the trajectory and thrust profile become

{
r̈ = −∇U (r, t)+ q(t)f (r)

q̈ = −q∇ [∇U (r, t)]
. (29)

Equations (29) can thus be used to solve the problem of the trajectory and the
thrust profile in the case of a SEP spacecraft, exactly like Eq. (12), was used for a
NEP spacecraft.

Equation (13) can be used again to obtain the final mass, provided that the correct
value of γ , obtained from the value of J in Eq. (28), is introduced.

The optimized mass breakdown can be obtained in the same way seen in the
previous section.

A.1.3 Limited Specific Impulse Spacecraft

In the previous two sections an ideal VEV spacecraft was considered. Actual
systems usually cannot reach the very high value of the specific impulse which
is required to optimize the thrust programme in the way seen above, i.e. a value
high enough to reduce the thrust as required in the central part of the interplanetary
trajectory, absorbing at the same time the maximum power which the power
generator is able to supply.



138 G. Genta and P. F. Maffione

The strategies which could be implemented are essentially two: reducing the
power supplied to the thrusters so that the required thrust can be obtained with a
possible value of the specific impulse and maintaining the power at its maximum
value and then switching off the thruster for a suitable time, introducing a coasting
arc in the trajectory. Both strategies cause a decrease of the performance of the
system, since the generator is used below its potential capabilities for a certain
period of the spaceflight.

The first approach has the advantage of not requiring to re-compute the trajectory,
but it yields an overall performance lower than the second one. The second approach
is better from the viewpoint of performances but requires to re-optimize both the
trajectory and the thrust profile.

A secondary advantage is that the thrusters are not used for the whole travel time,
reducing the required useful life of the device and, in the case of crewed missions,
allowing the crew to perform maintenance and repair operations.

In both cases Eqs. (11) and (28) are no more valid, but a different definition of
J can be introduced. After optimizing the trajectory, it is possible to compute the
final mass of the spacecraft, and then the propellant mass fraction. At this point, the
value of γ is readily obtained from the first Eq. (21)

γ = √
1 +K

mp

mi

(30)

Since γ = √
αeJ , a value of parameter J can be obtained:

J = 1 +K

αe

(
mp

mi

)2

. (31)
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Optimal Topological Design of a Thermal
Isolator for a Monopropellant Space
Thruster

Sebastián Miguel Giusti, Augusto Alejandro Romero,
and Javier Eduardo Salomone

Abstract This work is focused on the study of the thermal-structural behavior
of a thermal isolator device employed in a monopropellant thruster for space
applications. Engines of this kind are widely used to perform attitude corrections in
artificial satellites. Their operating principle is based on the catalytic decomposition
of the fuel (hydrazine), producing gasification with a consequent heat generation.
These gases are properly conducted to a nozzle to produce thrust. A couple of
redundant solenoid on-off electro-valves, in a serial configuration, are used to
control the fuel supply system. To avoid leak risk in this system, soft seals are also
used. Duration and performance of this kind of engine rely on two main aspects. The
first one is the number of cold ignitions. When the engine starts at low temperature
conditions, the catalytic bed is subjected to a thermal transient (high gradient—
hundreds of ◦C/s) which generates a breakage of grains, causing low size particles
to fill the inter-granular spaces, clogging the downstream gas flow. The second
aspect to consider in the reduction of the life span is the loss of reliability in the
soft seals used in the fuel supply system due to high temperature degradation.
Such degradation can drive the module out of service, generate a catastrophic
failure in the reactor, or lead to mission stoppage. A thermal isolator is used to
protect the seals from a premature degradation due to thermal effects. Its structural
design is optimized by using a novelty structural optimization methodology based
on topological sensitivity analysis in this work. This analysis allows achieving the
best structural configuration that minimizes the temperature field around the seals
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and also the isolator weight. Finally, a thermal and structural evaluation of the
monopropellant thruster is presented in order to validate the structural strength and
integrity. Inertial forces due to high G’s are considered in this analysis.

1 Introduction

Low thrust monopropellant engines are usually used in launch vehicles as reaction
control systems, attitude and positioning control of low earth orbit (LEO) satellites,
apogee insertion and north-south keeping of geosynchronous satellites, speed incre-
ment (�V ) and retro-propulsion of spaceships, and as orbit and attitude correctors in
artificial satellites. In this work is considered a 1.5 N thrust monopropellant engine
to be used in a LEO class satellite.

The fuel used by the engine is hydrazine and is conducted by a platinum-iridium
alloy pipe through the combustion chamber. The pipe is welded in the inlet zone to
the wall of the chamber to fix and seal the interface. Inside the chamber, an injector
distributes the propellant through the catalytic bed. When the fuel interacts with the
catalyst, the breakage of the molecules will produce the following reaction:

1st stage :3N2H4 → 4NH3 + N2 (1)

2ndstage :3NH3 → 2N2 + 6H2 (2)

In the first stage, the fuel dissociates into ammonia and nitrogen producing an
exothermic reaction, while in the second stage the ammonia dissociates into nitrogen
and hydrogen in an endothermic reaction.

The thruster was designed based on the following guidelines:

• High quantities of propulsion shots,
• Long life span,
• Redundancies to prevent catastrophic failure,
• High performance,
• Cold ignition avoidance,
• Prevent degradation of soft seals,
• Prevent monopropellant freezing.

Figure 1 shows a section view of the thruster, where it is possible to see the
proximal valve, the thermal isolator, the soft seals, the Pt-Ir pipe, and the catalytic
bed. The heat flow generated in the catalytic bed is dissipated by means of: (a)
radiation to space, (b) conduction to the vehicle through the feeding pipe and
the thermal isolator to the proximal valve. An elastomeric soft seal, which is
highly sensitive to high temperatures, is located close to the proximal valve. This
component will be protected by means of an optimal design of the thermal isolator.
For the detailed design and analysis of the engine, the reader may refer to the works
[7, 27–29]. In Figure 2 a detailed view of the soft seal region, indicated by a red
dashed box in Figure 1, is presented.
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Figure 1 Section of monopropellant thruster

Figure 2 Detailed view of
soft seal zone

The main objective of this work is to optimize the thermal isolator design
in a way that maximizes the thermal dissipation by radiation and minimizes the
thermal conduction towards the area next to the soft seals, keeping its weight
within acceptable values. In addition, a mechanical and thermal simulation will be
carried out in order to validate that the optimized component can withstand the
environmental conditions and mechanical loads that result from space operations.

The thermal isolator optimization is performed by applying a novelty topological
optimization technique based on topological sensitivity analysis and topological
derivative concept [22]. The main characteristic of this technique is that it allows
to establish the sensitivity to topological changes in every point of the design
domain. In general, a topological change is represented by the introduction of a
hole at the point where the sensitivity reaches the maximum or the minimum value,
depending on the objective pursued with the optimization. In this sense, the notion of
a topological change can be extended to study how two different materials interact
between them. Therefore, it is possible to establish the sensitivity to a change in
the constitutive properties of the underlying material at each point of the project
domain.

The algorithm used to perform the topology optimization is based on the
geometrical description of the domain via a level-set representation, see [23]. The
topological derivative is used as a feasible descent direction in the algorithm, and the
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procedure is described in detail in [3, 20]. Once the optimization procedure finishes
and the optimal topology of the thermal isolator is obtained, a series of compu-
tational simulations will be executed to verify the thermal and structural behavior
considering the operating conditions of the different configurations obtained.

This work is organized as follows. Section 2 introduces a theoretical background
for the heat transfer problem. Section 3 describes the methodology to address the
optimum design problem and the procedure to solve it. This section also explains
topology optimization and topological derivatives general concepts. Section 4 shows
the optimization procedure results and a thermal and structural validation are carried
out for the different configurations obtained of the thermal isolator. The work ends
in Sect. 5 where final remarks are presented.

2 Steady-State Heat Transfer Problem

Consider an isotropic three dimensional body Ω with a smooth enough boundary
(surface) ∂Ω with outer normal denoted as n (see Figure 3). The thermal flux across
the boundary ∂Ω is qn = q(θ) · n, where θ is the temperature field. By considering
a heat source b acting within the body Ω , the thermal equilibrium equation that
governs the steady-state heat transfer problem is: Find the temperature field θ , such
that

div q(θ) = binΩ. (3)

By considering the Fourier’s law, the thermal flux q(θ) can be stated as

q(θ) = −k∇θ, (4)

where k is the thermal conductivity of the material. The above equation states that
the thermal flux is opposite to the thermal gradient, and it will flow from a higher
temperature zone to a lower temperature zone. Equation (3) must be solved taking
into account the following boundary conditions:

Figure 3 Representation of
the steady-state heat transfer
problem
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{
θ = θ̄ on �D,

q(θ) · n = q̄ on �N.
(5)

Being �D the part of the boundary ∂Ω where the temperature θ is prescribed by
θ̄ . Analogously �N denotes the part of the boundary ∂Ω where the flux q(θ) is
prescribed by q̄. In addition, these regions of the boundary must fulfill the following
conditions, ∂Ω=�D ∪ �N and �D ∩ �N=∅.

The set of Equations (3)–(5) is called the strong formulation of the steady-state
heat transfer problem, see [25]. The total potential energy developed by the solid
under the later conditions can be written as

J(θ) = 1

2

∫

Ω

k∇θ · ∇θdΩ +
∫

Ω

bθdΩ +
∫

�N

q̄θd�N . (6)

The associated variational formulation (or weak form) for the heat transfer problem
presented in Equations (3)–(5) is: Find θ ∈ U, such that

∫

Ω

q(θ) · ∇ηdΩ =
∫

Ω

b θdΩ +
∫

�N

q̄ηd�N ∀η ∈ V,

with q(θ) = −k∇θ .

(7)

The functional set U and the functional space V are given by

U := {φ ∈ H 1(Ω;R3) : φ|�D
= θ̄} andV := {φ ∈ H 1(Ω;R3) : φ|�D

= 0} , (8)

Hilbert’s space, denoted as H 1(Ω;R3), is defined as

H 1(Ω;R3) :
{

φ ∈ Ω ⊂ R
3;
(∫

Ω

φ2 + (∇φ)2 dΩ

)1/2

≤ c < ∞
}

(9)

where c is an arbitrary constant. The choice of this function space ensures that both
the discrete solution of the variational equation (7) and its gradient are bounded
by the constant c. For other heat transfer models by considering, for instance,
anisotropic medium, radiation effects, see [8, 25] and for a detailed explanation on
functional spaces see [19].

3 Structural Topological Optimization

As it was mentioned at the beginning, the thermal isolator is used to prevent the
overheating of the soft seals near the proximal valve. The working principle is the
following: first it generates a thermal conductive resistance between the hot side of
the space thruster (near the nozzle) and the cold side (near the proximal valve) and
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second, it works as a heat radiant emitter. Therefore, to obtain an optimal design for
the thermal isolator it is necessary to minimize the thermal conduction in a particular
direction and also maximize the thermal dissipation by radiation. These conditions
can be expressed mathematically as

Ψ (Ω, θ) = 1

2

∫

Ω

k∇θ · ∇θdΩ +
∫

�N

q̄θd�N−λ|Ω|, (10)

where |Ω| is used to denote the measure of the domain Ω . Note that the two first
terms in (10) represent the total potential energy associated with the stationary heat
conduction problem introduced in Equation (6) without a thermal source b, and the
last one represents the volume of the material to be optimized, which is penalized by
the parameter λ. This penalization parameter λ allows in the optimization procedure
the introduction of a linear constraint on the final volume of the thermal isolator
vf . This technique is called penalty function method or sequential unconstrained
minimization, see [21, 24]. The minimization of the proposed functional meets with
the proposed objectives of this work, since:

1. the minimization of the total potential energy will define the topology of the
reference configuration Ω that conduces less amount of heat towards the soft
seals,

2. under the same hypothesis mentioned above, the problem of maximizing heat
dissipation towards the outer space in form of radiation is equivalent to maxi-
mizing the exposed surfaces (represented by the term λ|Ω|).

Therefore, there is a competition to obtain the optimal topology of the domain
Ω between these two factors: the first part would try to minimize the conduction
surface, and at the same time, the last term would attempt to maximize the exposed
surface. Finally, the optimization problem can be stated as:

⎧
⎨

⎩

Minimize Ψ (Ω, θ),

Ω

Subjected to θ being the solution of (7),
(11)

3.1 Topological Derivative Concept

The topological sensitivity analysis gives the topological asymptotic expansion of
a shape functional with respect to an infinitesimal singular domain perturbation.
The main term of this expansion is a scalar field called topological derivative.
In order to introduce these concepts, let us consider the open bounded domain
Ω ∈ R

3, which is subjected to a non-smooth perturbation in a small region Bε(̂x)

of size ε with center at an arbitrary point x̂ ∈ Ω . Thus, introducing a characteristic
function χ = 1Ω , associated with the unperturbed domain, it is possible to define
the characteristic function associated with the topological perturbed domain χε .
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Figure 4 Topological derivative concept

Particularly, if the topological perturbation is an inclusion, we have χε(̂x) =
1Ω − (1 − γ )1Bε (̂x)

, where γ ∈ R+ is the contrast parameter in the material
property of the medium, see Figure 4. Then we assume that a given shape functional
ψ(χε(̂x)), associated with the topological perturbed domain, admits the following
topological asymptotic expansion:

ψ(χε(̂x)) = ψ(χ)+ f (ε)TDψ(̂x)+ o(f (ε)) , (12)

where ψ(χ) is the shape functional associated with the unperturbed domain Ω ,
f (ε) is a function such that f (ε) → 0+, with ε → 0+. Equation (12) can be
interpreted as a Taylor expansion, which first term measures the sensitivity of a
topological change in the domain Ω . A function x̂ �→ TDψ(̂x) is the so-called
topological derivative of ψ in the point x̂. Thus, the topological derivative can be
seen as a first order correction factor over ψ(χ) to approximate ψ(χε(̂x)). In fact,
after rearranging (12), we have

ψ(χε(̂x))− ψ(χ)

f (ε)
= TDψ(̂x)+ o(f (ε))

f (ε)
. (13)

Taking the limit ε → 0+ in the above expression,

TDψ(̂x) = lim
ε→0+

ψ(χε(̂x))− ψ(χ)

f (ε)
. (14)

Note that the shape functionals ψ(χε(̂x)) and ψ(χ) are associated with domains
with different topologies. Then, to calculate the limit ε → 0+ in (14) it is necessary
to perform an asymptotic expansion of the functional ψ(χε(̂x)) with respect to the
parameter ε.

Expression (14) represents the topological sensitivity of the shape functional
ψ(χ) due to the introduction of a singular perturbation in an arbitrary point x̂ ∈
Ω . Historically, the topological derivative concept was rigorously introduced in
[30]. Since then, this concept has been widely used in several research areas and
engineering applications, see, for instance, the works [1, 6, 11–13, 15, 17, 18, 26, 34]
and the book [22].
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Theorem 1 For the shape functional stated in Equation (10) and considering a
sphere of radius ε as topological perturbation, the analytical expression of the
topological derivative (14) is given by:

TDΨ (x̂) = −3k
(1 − γ )

(2 + γ )
∇θ(x̂) · ∇θ(x̂)−λ , (15)

where γ is the contrast coefficient and defines a relation between the base material
and the perturbation material.

Proof The reader interested in the proof of this result may refer to [2, 22].

The topological derivative (15) will be used as a feasible descent direction in a
computational framework for topology optimization.

3.2 Optimization Procedure

The optimization procedure is based on the representation of the domain in a
bi-material fashion. The topology is identified by the hard material distribution
(denoted as Ωh) and the inclusions of soft material (denoted as Ωs) are used to
mimic the holes. The constitutive properties of these regions are characterized by
the thermal conductivity k, and the phase contrast γ ∗ so that, we have

k(x) =
{

k ∀x ∈ Ωh

γ ∗k ∀x ∈ Ωs . (16)

Based on the approach presented above, note that the constitutive properties of
the domains Ωh and Ωs are correlated with the contrast parameter γ ∗ (see Figure 5).

Figure 5 Bi-material
distribution in the domain Ω
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Therefore, the optimization problem (11) can be re-written as:

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

Minimize Ψ (Ω, θ) = 1
2

∫
Ω

k∇θ · ∇θdΩ + ∫
�N

q̄θd�N−λ|Ωh|,
Ωh ⊂ Ω

Subjected to Find θ ∈ U such that :∫
Ω

q(θ) · ∇ηdΩ = ∫
�N

q̄ηd�N ∀η ∈ V .

(17)

It should be stressed that the design variable in problem (17) is the topology of
the domain Ωh. Hence, by considering the exact topological sensitivity information
provided by the topological derivative (15) it is possible to construct a numerical
optimization procedure to tackle the problem.

Then, the computation of (15) is carried out by using γ = γ ∗ if x ∈ Ωh; and
γ = 1/γ ∗ if x ∈ Ωs . Having made the previous consideration and in order to
solve the optimization problem (17), we use the topology optimization algorithm
proposed by Amstutz and Andrä [3]. The procedure relies on a level-set domain
representation [23] and the approximation of the topological optimality conditions
by a fixed point iteration. The topological derivative (15) is used as a feasible
descent direction to minimize the cost function Ψ (Ω, θ). This class of algorithm
has been successfully used in research areas related to topological optimization such
as microstructure of materials [5], load-bearing structures and flow through porous
media [3], load-bearing structures subjected to point-wise stress constraint [4, 6],
and advanced multi-physics devices [11, 14, 16]. For completeness, the algorithm is
outlined in the following. For further details we refer to the works [3] and [20].

By considering the level-set domain representation, the strong (or hard) material
is characterized by a function Φ ∈ L2(Ω) such that

Ωh = {x ∈ Ω,Φ(x) < 0} , (18)

whereas the weak (or soft) material domain is defined by

Ωs = {x ∈ Ω,Φ(x) > 0} . (19)

Lebesgue spaces denoted by L2(Ω) are defined as

L2(Ω;R3) :
{

φ ∈ Ω ⊂ R
3;
(∫

Ω

φ2 dΩ

)1/2

≤ c < ∞
}

(20)

where c is an arbitrary constant. The norm associated with this space is

‖φ‖L2(Ω) =
(∫

Ω

φ2 dΩ

)1/2

(21)
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and its corresponding inner product is stated as

〈φ1, φ2〉 =
∫

Ω

φ1φ2dΩ. (22)

Now, let us consider the topological derivative TDΨ . According to [3], a sufficient
condition of local optimality of problem (11) for the class of perturbations consisting
of spherical inclusions is

TDΨ (x) > 0 ∀x ∈ Ω . (23)

To devise a level-set-based algorithm whose aim is to produce a topology that
satisfies (23) it is convenient to define the function

g(x) =
{−T h

DΨ (x) if x ∈ Ωh

T s
DΨ (x) if x ∈ Ωs . (24)

With the above definition and Equations (18)–(19) it can be easily established that
the sufficient condition (23) is satisfied if the following equivalence relation between
the functions g and the level-set Φ holds

∃ τ > 0 s.t g = τ Φ , (25)

or, equivalently,

ϕ := arccos

[ 〈g,Φ〉L2(Ω)

‖g‖L2(Ω) ‖Φ‖L2(Ω)

]

= 0 , (26)

where ϕ is the angle between the vectors g and Φ in L2(Ω). Starting from a
given level-set function Φ0 ∈ L2(Ω) which defines the chosen initial guess for
the optimum topology, the algorithm proposed in [3] produces a sequence (Φi)i∈N
of level-set functions that provides successive approximations to the sufficient
condition for optimality (25). The sequence satisfies

Φ0 ∈ L2(Ω) ,

Φi+1 ∈ co(Φi, gi) ∀i ∈ N ,
(27)

where co(Φi, gi) is the convex hull of {Φi, gi}. In the current algorithm the initial
guess Φ0 is normalized. With S denoting the unit sphere in L2(Ω), the algorithm
is explicitly given by

Φ0 ∈ S ,

Φi+1 = 1

sinϕi

[

sin((1 − κi)ϕi)Φi + sin(κiϕi)
gi

‖gi‖L2(Ω)

]

,
(28)
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where κi ∈ [0, 1] is a step size determined by a line-search in order to decrease
the value of the cost functional Ψ . The iterative process is stopped when for some
iteration the obtained decrease in Ψ is smaller than a given numerical tolerance. If,
at this stage, the optimality condition (25), (26) is not satisfied to the desired degree
of accuracy, i.e., if ϕi+1 > εϕ , where εϕ is a pre-specified convergence tolerance,
then a uniform mesh refinement of the structure is carried out and the procedure is
continued.

Based on the above description, the main steps of the algorithm can be summa-
rized as follows:

1. Choose an initial level-set function by defining the initial guess for the optimal
structure domain.

2. Define the domains Ωh and Ωs according to (18) and (19).
3. Define the constitutive properties for the finite elements in each domain Ωh and

Ωs according to (16).
4. Obtain the discretized field θ by solving the problem (7) by using the standard

finite element method (FEM), see [33].
5. Compute the topological derivative field (15) at the Gauss point of the finite

element and perform a standard nodal averaging procedure.
6. Obtain the function g(x) according to (24) by using the nodal values of the

topological derivative and compute the ϕ angle with Equation (26).
7. Update the level-set function Φi+1 according to (28) and update the domains Ωh

and Ωs by considering Equations (18) and (19).
8. Check convergence ϕi+1 ≤ εϕ . If True: Exit. If False: go to 3.

A general flowchart for the algorithm is shown in Figure 6.

3.3 Computational Optimization Model

The thermal isolator is made of INCONEL 600 (UNS N06600), where the consti-
tutive properties exhibit a dependence with the temperature (see Figure 7). These
dependencies are not considered for the optimization procedure. The constitutive
properties considered for this analysis are estimated on a basis of an operating
temperature at 500 ◦C. Under this consideration, the thermal conductivity is given
by: k = 22.1 W/m ◦C .

The project domain for the optimization procedure of the thermal isolator
consists of a cylindrical tube with a length of 24.7 mm, 10.65 mm inner diameter,
and 11.75 mm outer diameter, see Figure 8.

The boundary conditions established on stationary state during the operation time
were based on the following considerations:

• Prescribed temperature θ̄ = 330 K on the thermal isolator/proximal valve
interface, due to existence of a device that controls this temperature.
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Figure 6 Flowchart of the optimization algorithm

• Thermal flux q̄ = 28 W/mm2 in the contact area between the engine and the
catalytic bed. This flux was determined by considering the heat generated by the
chemical reaction of the hydrazine.

Figure 9 presents the design domain and applied boundary conditions used for
the topological optimization procedure.

In Figure 10 a selected set of optimal configurations obtained with the opti-
mization algorithm for two volume fractions vf is shown. Notice that to obtain the
desired volume fraction vf at the end of the optimization procedure, the penalization
parameter λ must be enforced manually in each case. In Figure 10 gray color zones
represent material INCONEL 600, while blue zones indicate holes. It can be seen
that, although both configurations are optimal solutions from the thermal point of
view, the results lack structural viability for volume fractions lower than 50%, since
disconnected material zones appear.

In both cases, it can be seen how the optimization algorithm minimizes the
conductive surface and at the same time maximizes the radiant surface.

4 Computational Simulations for Operational Conditions

The optimal topologies obtained from the optimization procedure will be validated
under operational conditions in this section. In order to avoid stress concentration
zones and constructive issues, the optimal solutions obtained from the algorithm
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described in the previous section (see Figure 10) need to be interpreted from an
engineering point of view. This interpretation requires to smooth the corners of
the holes to be drilled. After that, we proceed to model several configurations of
the thermal isolator (each one with a different volume fraction). This is done in
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Figure 9 Project domain and
its boundary conditions

Figure 10 Optimal configuration results. (a) Optimal configuration vf = 47%. (b) Optimal
configuration vf = 80%

Figure 11 Final topological designs for the thermal isolator. (a) vf = 80%. (b) vf = 65%. (c)
vf = 50%

order to study the effect that each configuration of the thermal isolator has in the
whole thermal behavior of the engine during operating conditions. Also a structural
validation by using computational simulation under operational conditions will be
carried out.

Figure 11 shows thermal isolator designs based on the optimal topological
configurations for volume fractions of 80%, 65%, and 50%.
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Table 1 Number of nodes
and elements of used meshes

Volume fraction vf Nodes Elements

1.00 78,226 359,453

0.80 82,272 372,617

0.65 81,016 368,001

0.50 84,935 385,481

Figure 12 Finite element mesh of the reference configuration of the thermal isolator

All configurations were discretized using 4-node-tetrahedral elements, and the
same mesh is used to carry out both thermal and structural simulations. The number
of nodes and elements used for each configuration is listed in Table 1 and the
reference configuration mesh is shown in Figure 12.

4.1 Heat Transfer Validation

A heat transfer simulation of the whole assembly is performed in order to validate
the optimal configuration under operating conditions. The constitutive properties of
the material are presented in Figure 7. To determine the heat loss, the following
reference temperature values are assumed: θsurf = 313 K and θvac = 15 K, where
θsurf and θvac are the external surface and the outer space temperature, respectively,
see Figure 13. A view factor of fv =1 is adopted to model the heat loss due to
radiation while it will be assumed that only the faces exposed to the outer space will
take part in the process.

The net energy �H released during the chemical reaction presented early
depends fundamentally on the percentage of ammonia dissociated which can be
calculated as (see [9, 10, 31, 32]):

�H = 3484 − (1910X) J/g (29)
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Figure 13 Model to be simulated with its boundary conditions

where X is used to denote the percentage of ammonia dissociated. The amount of
ammonia dissociated depends on the length of the catalytic bed and can reach 40%
for high performance thrusters. Therefore the following is obtained:

�H = 2720 J/g (30)

The nominal fuel flow, denoted as ṁ, of the engine under study is 0.8 g/s; then the
heat flow Q generated within the catalytic bed is

Q = �Hṁ = 2176 W. (31)

The heat generated by the chemical reaction presented in Equations (29)–(31) will
be considered as a thermal flux q̄ distributed in the internal surface of the catalytic
bed.

The boundary conditions were determined based on the following considera-
tions:

1. a temperature of 313 K on the left surface, since the operation of this type of
engine is by pulses and the analysis will correspond to a stationary state;

2. a thermal flux q̄ = 650 W/mm2 is adopted on the exposed surface of the catalytic
bed.

3. a thermal flux q̄ = 5 W/mm2 on the upper part of the engine;
4. an exterior temperature of 15 K on the isolator zone and the nozzle.

The model of the monopropellant thruster to simulate (with its boundary conditions)
is shown in Figure 13.

Figures 14, 15, and 16 illustrate the results of the simulation with the original
design of the thermal isolator. For comparative reasons, the results of this simulation
will be taken as a reference solution.

From Figure 16, it can be seen that the temperature in the seal housing area is in
the range of 163–178 ◦C, with the critical temperature being 200 ◦C.
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Figure 14 Full view. Maximum (in red): θ = 1265 ◦C—minimum (in blue): θ = 40 ◦C

Figure 15 Section view. Maximum (in red): θ = 1265 ◦C—minimum (in blue): θ = 40 ◦C

In Figures 17, 18, and 19, the temperature distribution obtained by considering
an optimal configuration isolator with 80% volume fraction is shown.

The maximum temperature reached for the case of a thermal isolator with
vf = 80% of material decreased to 159.3 ◦C, being 66 ◦C lower than the maximum
obtained with the reference solution, see Figure 14. Also the temperature in the seal
housing is below 120 ◦C.

Figures 20, 21, and 22 show the results of the assembly simulation containing
the 65% volume fraction of the original configuration of the isolator. For this case,
the maximum temperature reached is 132.8 ◦C, being 92 ◦C below the reference
solution. The temperature in the housing seal area is near to 100 ◦C, approximately
38% lower than the reference solution, see Figure 22.
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Figure 16 Soft seal zone. Maximum (in red): θ = 224.5 ◦C—minimum (in blue): θ = 40 ◦C

Figure 17 Full view with thermal isolator with vf = 80%. Maximum (in red): θ = 1244 ◦C—
minimum (in blue): θ = 40 ◦C

Finally, the results obtained for a thermal isolator with 50% of the original
amount of material are presented in Figures 23, 24, and 25. The simulation shows
that the temperature on the interest zone is 85 ◦C (78◦C below the reference
configuration), which represents a 48% decrease, see Figure 25.

The obtained surface temperature profile of the whole assembly is presented
in Figure 26, where all the optimized configurations have been considered and
compared with the reference solution.
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Figure 18 Section view with thermal isolator with vf = 80%. Maximum (in red): θ = 1244 ◦C—
minimum (in blue): θ = 40 ◦C

Figure 19 Soft seal zone. Maximum (in red): θ = 159.3 ◦C—minimum (in blue): θ = 40 ◦C

From the simulations carried out for the three cases of volume fraction, it is clear
that when the amount of material decreases the temperature on the seal housing
region does too. Therefore the main objective for the topological optimization of
the thermal isolator was fulfilled. The maximum temperature reached in the region
of interest in all configurations does not exceed 120 ◦C, which results satisfactory
since the soft seals will not run the risk of premature degradation.
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Figure 20 Full view with thermal isolator with vf = 65%. Maximum (in red): θ = 1250 ◦C—
minimum (in blue): θ = 40 ◦C

Figure 21 Section view with thermal isolator with vf = 65%. Maximum (in red): θ = 1250 ◦C—
minimum (in blue): θ = 40 ◦C

4.2 Structural Validation

Since these types of components need to meet certain structural strength criteria, as
an integral part of a more complex mechanical system, the mechanical behavior of
the thruster must be analyzed in this section. Loads generated during the operation
of the monopropellant thruster are quite low, about 1.5 N approximately, and the
generated stresses could be negligible. However, during launch stage, the thermal
isolator must withstand a static load equivalent to 42 times the gravity load. The
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Figure 22 Soft seal zone. Maximum (in red): θ = 132.8 ◦C—minimum (in blue): θ = 40 ◦C

Figure 23 Perspective view with thermal isolator with vf = 50%. Maximum (in red): θ =
1262 ◦C— minimum (in blue): θ = 40 ◦C

assembly shall be simulated under the above conditions for two different positions
of the load vector:

• Load case (I): vertical direction.
• Load case (II): horizontal direction.

The boundary conditions considered for the computational structural simulations
can be seen in Figure 27.
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Figure 24 Section view with thermal isolator with vf = 50%. Maximum (in red): θ = 1262 ◦C—
minimum (in blue): θ = 40 ◦C

Figure 25 Soft seal zone. Maximum (in red): θ = 106.8 ◦C—minimum (in blue): θ = 40 ◦C

From these simulations, it can be analyzed the impact of the optimized topology
in the structural behavior of the assembly. Although the simulation of the structural
behavior was carried out with the complete assembly, only the stress distribution
corresponding to the thermal isolator will be shown. In Figures 28, 29, and 30, the
results of the simulations for the three optimized configurations are presented. The
von Mises failure criterion will be considered for the structural validation. For this
criterion, the von Mises stress should not exceed the limit value of the yield stress
of INCONEL600, namely Fy = 280 MPa.
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Figure 26 Surface temperature profile of the evaluated configurations

From the results shown in Figures 28, 29, and 30, it can be observed that the von
Mises stress values reached are below the yield stress of the material. The structural
strength safety factors for each configuration of the thermal isolator are: 38 (vf =
80%), 17 (vf = 65%), and 6.6 (vf = 50%).

5 Final Remarks

The topological optimization and numerical simulation of a thermal isolator of a
monopropellant thruster for space applications have been presented. The topological
optimization was carried out by considering the thermal behavior of the component.
The used optimization procedure is based on the concept of topological derivative.

The objective function was formulated to minimize the heat transfer towards the
soft seal of the thruster. For this purpose, minimizing the heat conduction of the
thermal isolator and, simultaneously, maximizing the dissipation towards the outer
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Figure 27 Boundary
conditions for the structural
validation. (a) Load case (I).
(b) Load case (II)

Figure 28 von Mises stress (in MPa) with thermal isolator with vf = 80%. (a) Load case (I).
Maximum (red): 7.10—minimum (blue) 6.23 × 10−4. (b) Load case (II). Maximum (red): 7.36—
minimum (blue) 5.82 × 10−2
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Figure 29 von Mises stress (in MPa) with thermal isolator with vf = 65%. (a) Load case (I).
Maximum (red): 16.50—minimum (blue) 5.07×10−2. (b) Load case (II). Maximum (red): 16.08—
minimum (blue) 5.17 × 10−2

Figure 30 von Mises stress (in MPa) with thermal isolator with vf = 50%. (a) Load case (I).
Maximum (red): 41.44—minimum (blue) 5.59×10−3. (b) Load case (II). Maximum (red): 41.92—
minimum (blue) 7.60 × 10−3

space in the form of radiation has been proposed. From the optimization procedure
it was obtained that the lower volume fraction of material is 50%. Optimal designs
with values less than 50% result in thermal isolators that are unviable from the
constructive point of view.

From the thermal simulations under operating conditions, the obtained optimal
configurations for the isolator fulfill the requirements of reducing the thermal flux
from the catalytic bed. The obtained temperature values in the proximal zone of the
soft seal are below the operative limit value. In the worst case, configuration with
vf = 80%, the developed temperature is 11% lower than the value of the reference
configuration (without optimization).

The results of the structural simulations in all the optimized configurations are
satisfactory. The adopted failure criterion based on the von Mises stress is adequate
for this kind of material. Also, the obtained stress distribution indicates that the
maximum values of von Mises stress is lower than the established limit value for
INCONEL600, with a minimum safety factor of 6.6.

Finally, from the present analysis, it is possible to conclude that the design of this
type of engine is driven by the thermal dissipation criterion, rather than the structural
behavior.
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Evidence-Based Robust Optimization of
Pulsed Laser Orbital Debris Removal
Under Epistemic Uncertainty

Liqiang Hou, Massimiliano Vasile, and Zhaohui Hou

Abstract An evidence-based robust optimization method for pulsed laser orbital
debris removal (LODR) is presented. Epistemic type uncertainties due to limited
knowledge are considered. The objective of the design optimization is set to mini-
mize the debris lifetime while at the same time maximizing the corresponding belief
value. The Dempster–Shafer theory of evidence (DST), which merges interval-
based and probabilistic uncertainty modeling, is used to model and compute the
uncertainty impacts. A Kriging based surrogate is used to reduce the cost due to the
expensive numerical life prediction model. Effectiveness of the proposed method
is illustrated by a set of benchmark problems. Based on the method, a numerical
simulation of the removal of Iridium 33 with pulsed lasers is presented, and the
most robust solutions with minimum lifetime under uncertainty are identified using
the proposed method.

1 Introduction

The vast majority of the objects larger than 1 cm diameter in low-Earth orbit consists
of space debris and remnants of larger man-made objects [14, 16]. Some of them
will drop out of orbit and finally re-enter the atmosphere due to atmospheric effects,
but most of them may stay in the orbit for numbers of years if no operation
of debris removal is implemented. In the past decades, the amount of space
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debris orbiting Earth has grown exponentially. The growing space debris seriously
threatens the safety of spacecrafts on orbit, especially in the near-Earth space,
in which the probability of collision with debris increases steadily. To tackle the
issues, researchers proposed a series of methods to reduce the threat of debris
by collision avoidance maneuver and active debris removal. Recent proposals to
reduce the amount of debris include electrical currents, slingshots, solar sails, electro
dynamic tethers, etc. Some of these proposals are still hypothetical, some of them
are operational and will be implemented in the near future. Among them the pulsed
laser orbital debris removal (LODR) has attracted the attention of many researchers,
whose feasibility has been demonstrated in some recent missions.

The ground-based laser orbital debris removal (LODR) system delivers a pulsed
laser on the target object to deorbit the target. The pulsed laser is delivered at a
pre-determined angle such that the plasma jet generated by the laser slows down
the target’s velocity and lowers its perigee altitude. A typical project using LODR
includes the Orion Project, conducted by NASA and the USAF in 1995–1996. In
[13], effects of irregular shapes on the laser debris removal are investigated. In [14],
a method of debris collision avoidance using laser radiation is proposed. Simulation
results show that promising results of range displacement for the LEO debris objects
could be achieved.

In this chapter, a robust optimization method for determining the targets of
pulsed laser orbital debris removal (LODR) under uncertainty is presented. Due to
limited knowledge, actual values of the debris characteristics parameters, e.g., mass,
dimensions, and ablation rate, may not be available before the design optimization.
In most cases, the information on the uncertainties are given in the form of interval
distributions. To minimize the impact of the uncertainties, an evidence-based robust
design optimization method can be used. The robust design optimization takes
into account the epistemic uncertainties, optimizes the LODR performance, and
maximizes its belief value [22]. A numerical lifetime predictor is used to evaluate
lifetimes of the debris before and after the laser pulses.

Robust design optimization is complex and expensive. In design optimization
of LODR, the uncertainties, such as the dimensions and masses of the debris,
are hard to be modeled using the conventional continuous distribution model.
With DST, both the epistemic and aleatory uncertainty can be properly modeled
[6, 27]. However, the number of focal elements needed to be explored in the design
optimization grows exponentially with the dimension of the uncertain space, and
soon becomes prohibitively expensive if a number of uncertainties are involved
[21]. Another problem in the design optimization relates to lifetime prediction of
the debris in the LODR. The high accuracy numerical debris lifetime prediction
model is computationally expensive, and is repetitively used during the search of
the optimal solutions. Therefore, a strategy that reduces the computational cost due
to the numerical lifetime prediction, while maintaining the accuracy, is required.

The evidence-based robust design optimization of LODR is formulated as
a multi-objective optimization problem (MOP). Unlike the conventional design
optimization, with the evidence-based robust optimization, a step-like Pareto front
should be obtained. Therefore, some new algorithms and techniques for the design
optimization should be developed. Accordingly, the remainder of the chapter is



Evidence-Based Robust Optimization of Pulsed LODR Under Epistemic Uncertainty 171

structured as follows: Sect. 2 presents the general framework of design optimization
of pulsed LODR. In Sect. 3, a multi-objective optimization (MOO) algorithm with
Tchebysheff decomposition and Gaussian Predictor is developed. A Kriging based
surrogate is used to reduce the cost due to the numerical debris lifetime prediction.
Discussions of the strategy to incorporate the evidence computation into the design
optimization are presented in this section too. Section 4 presents a numerical
simulation of a LODR example problem under epistemic uncertainties, and finally
Sect. 5 concludes the book chapter.

2 Design Optimization of Laser Orbital Debris Removal
(LODR)

2.1 Pulsed LODR

Figure 1 shows schematically the geometry of laser–target interaction of pulsed
LODR and debris. Series of multi-kJ laser pulses are delivered at the target debris
to decelerate the debris velocity and finally re-enter it into the atmosphere. The
velocity variation obtained with the pulse laser is [13, 17]

Δv = η0CmΦ

μ
(1)

where η0 is the efficiency factor for the combined effects of improper thrust
direction, target shape, target tumbling, etc., μ is the target areal mass density, Φ is

Figure 1 Geometry of
laser–target interaction of
pulsed LODR: the laser
pulses are delivered at the
target to lower its perigee
altitude. During the LODR,
the angle ϑ is greater than a
specified value
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the laser fluence, and Cm is the mechanical coupling coefficient to the laser pulse
energy and defined as [17, 20]

Cm = pτ

Φ
= p

I
(PaW−1m−2 or N/W) (2)

where p is the ablation pressure delivered to the target, I is the laser intensity, τ is
the duration of the pulse, and Φ is the laser fluence.

The laser pulses are delivered at the target when the LODR station finds the
target, and the angle between the debris velocity and the laser beam

ϑ = arccos

( |(r − rl ) · v|
|r − rl | × |v|

)
(3)

is greater than a specified value, e.g., 100◦ , where rl is the position of LODR station,
and r and v are the debris position and velocity, respectively.

The Δv obtained with Equation (1) is aligned with laser beam, and the velocity
variation in radial–transversal coordinates Δv = [Δvr,Δvθ ,Δvn] due to the laser
pulse can be computed as

⎡

⎣
Δvr

Δvθ

Δvn

⎤

⎦ = Moi

(r − rl )
|r − rl |Δv (4)

where Moi is the transformation matrix from the earth-centered inertial (ECI)
reference frame to the radial–transversal coordinate system, and rl is the position
of the ground station in ECI frame.

Given the velocity variation in radial–transversal coordinates, variations of the
orbital elements due to the velocity increment can be computed ([19], Ch.12).
Repeating the process until the LODR is stopped, the debris orbital elements after
the LODR can be obtained. The orbit propagator can then be used to predict the
debris lifetimes after the LODR.

2.2 Debris Lifetime Prediction

A numerical orbit propagator model can be used to predict the debris lifetime
after LODR. In the numerical model, influences of the gravitational and non-
gravitational forces, including non-spherical Earth, third-bodies, atmospheric drag,
solar radiation pressure (SRP), etc., are considered.

The acceleration due to solar radiation pressure is given by

a = −Cr

A

m

Kϕs

c

(
1

RAU

)2

rs (5)
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where Cr , φs , and c are the coefficient of reflectivity, solar flux at 1 AU, and the
speed of light, respectively. K represents the percentage of the sun, as seen from the
object (usually 1.0), RAU is the distance from the object to the sun in AU, and rs is
the unit position vector of the sun, as seen from the debris.

The acceleration due to atmospheric drag is given by

D = 1

2
CD

A

m
ρv2 v

|v| (6)

where CD , A, and m are the drag coefficient, cross-sectional area, and mass,
respectively. v is the velocity of the debris relative to the atmosphere, and ρ is the
atmospheric density at the location of the debris.

The drag coefficient is a dimensionless quantity which describes the interaction
of the atmosphere with the surface material. The coefficient depends on several
factors, including the debris shape, orientation, composition, and temperature of the
atmosphere, etc. A crude approximation is CD = 2.2 for compactly shaped debris
[14]. A variable step-size numerical integrator is used to integrate the high fidelity
dynamic equations. Error control techniques are used to manage the integration step
size, increasing the computational efficiency, while preserving accuracy [19].

Although some numerical techniques, such as the variable step-size numerical
integrator, can be used for predicting the lifetimes of debris, the overall computa-
tional cost of the optimization process is expensive because one needs to compute
the debris lifetimes and evaluate uncertainty impacts repetitively during the design
optimization. Therefore, the cost will be huge if the numerical lifetime predictor is
implemented directly in the design optimization.

3 Evidence-Based Robust Design Optimization

3.1 Epistemic Uncertainties and Evidence Computation

The uncertainties of debris parameters include the cross-sectional area and masses.
Uncertainties of laser characteristic parameters, e.g., efficiency factor and coupling
coefficient, should be taken into account too. Due to a lack of knowledge, accurate
distribution of the uncertainties cannot be given in advance of the design opti-
mization. The estimated values may be from different sources, and have different
belief levels too. Therefore, in this work, an evidence-based tool is used to quantify
the uncertainties. Based on the evidence theory, an evidence-based robust design
optimization method is proposed.

In evidence theory, beliefs of uncertain parameters u are supposed to be within
various intervals given by the experts. The level of confidence an expert has on
an elementary proposition E on the set U is quantified using the basic probability
assignment (BPA). The BPA m(E) satisfies the three following axioms [1, 6]:
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Table 1 Example of BPA structure of the interval-based evidence sets

Parameter Expert Estimated uncertain intervals ([Ul, Uu]) BPA(U)

Mass (Kg) A [1.3 , 1.5] 0.7

B [1.2 , 1.7] 0.2

C [1.4 , 1.8] 0.1

Ablation rate (Kg/J) A [76 · 10−9 , 80 · 10−9] 0.3

B [60 · 10−9 , 78 · 10−9] 0.5

C [65 · 10−9 , 85 · 10−9] 0.2

Estimates of the intervals of the debris mass and ablation rate are given by three experts.
Corresponding confidence levels or BPAs of the intervals are listed in the table. The BPA values
show the experts’ confidence in the proposition of the uncertain intervals

⎧
⎪⎪⎨

⎪⎪⎩

m(E) ≥ 0, ∀E ∈ U

m(∅) = 0, and∑

E∈U
m(E) = 1

(7)

Table 1 shows an example of BPA structure of uncertainties of LODR. The physical
properties of debris, average mass, and ablation rate can differ considerably from
one debris to the other. In this table, estimates of uncertain intervals of the debris
mass and ablation rate are given in evidence form by three experts. The confidence
levels represent the perception that experts have on the specified physical properties
of debris:

• Expert A is quite optimistic on his/her estimate interval of the mass. Therefore
he/she assigns a high confidence of 70% to the proposition that the mass will
be between 1.3 and 1.5 kg; on the other hand, the expert is less confident about
the estimate of the ablation rate and assigns a confidence level of 30% that the
interval of the ablation rate is between 76 · 10−9 and 80 · 10−9.

• While expert B, due to the data available and accuracy levels of the instruments,
assigns a comparatively low confidence of 20% to the proposition that the
mass will be between 1.2 and 1.7 kg. In contrast, he/she is quite confident on
his/her estimate of the laser ablation rate, and the probability assignment of the
proposition that the ablation rate is between 60 ·10−9 and 78 ·10−9 is set to 50%.

• As for expert C, his/her estimates of the interval of the mass and ablation rate are
[1.4, 1.8] and [65 · 10−9 , 85 · 10−9], respectively, with the confidence levels of
the mass 10% and ablation rate 20%.

Written in mathematical terms, the statements of the estimated intervals given by
the three experts can be expressed as Table 1 shows.

An element of U ∈ R
n that has a non-zero BPA is named a focal element (FE).

When more than one parameter is considered uncertain (e.g., u1 and u2 ), the BPA
of the uncertain space defined by the Cartesian product of single uncertain intervals
is the product of the BPA of each interval

m(u1, u2) ∈ [a1, b1] × [a2, b2] = m(u1 ∈ [a1, b1])m(u2 ∈ [a2, b2]) (8)
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Two measures quantifying the epistemic uncertain impacts, the belief and
plausibility of proposition A, over the frame of discernment U, can then be defined
as

bel(A) =
∑

FE⊂A,FE∈U

m(FE) (9)

pl(A) =
∑

FE
⋂

A	=∅,FE∈U

m(FE) (10)

where m(FE) is the BPA value of the focal element FE, and

pl(A) = 1 − bel(Ā) (11)

Plausibility and belief can be viewed as the upper and lower probabilities of possible
values.

Figure 2 shows a BPA structure of the interval type data given by two experts.
Focal elements of the BPA structure, generated by the Cartesian product of single
uncertain intervals, are computed and listed in the lower part of the table. The
intersection of two intervals is defined by the maximum of the two lower bounds
and the minimum of the two upper bounds. With calculation of Dempster’s rule,
using Equations (8)–(11), cumulative belief and plausibility value of the proposition
that the data is less than a specified value can be obtained. Figure 3 shows the
belief and plausibility values. As the figure shows, the belief represents confidence
that the proposition is true, while the plausibility represents the confidence that the
proposition is possible.

Table 2 shows an example of the BPA structure associated to the uncertain
parameters for a Gaussian distribution. The evidence data set consists of statistics
data values of the debris and ablation rate, and three experts express their own
opinion of the estimated intervals of the mean value and standard deviation. BPA

Figure 2 BPAs of the interval type data given by two experts. Corresponding focal elements are
generated using Equation (8). Intersection of two intervals is defined by the maximum of the two
lower bounds and the minimum of the two upper bounds corresponding to the intersection
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Figure 3 Calculation of
Dempster’s rule using
expression equations
(8)–(11). Cumulative
plausibility and belief values
of the proposition that the
data is less than a specified
value are computed by adding
up the masses associated to
the focal elements that
partially or totally support the
proposition. BPA structure of
the data is from Figure 2

Table 2 Another example of BPA structure

Parameter Description μ σl σu BPA

u(kg/J) Ablation rate 80 · 10−9 10 · 10−10 20 · 10−10 0.40

78 · 10−9 15 · 10−10 22 · 10−10 0.30

72 · 10−9 12 · 10−10 17 · 10−10 0.30

m0(kg) Average mass [12] 1.30 0.05 0.10 0.30

1.50 0.05 0.12 0.20

1.42 0.05 0.08 0.50

This time, the BPA structure consists of estimated values, deviations, and corresponding BPAs.
Three experts express their opinion of the estimated interval of the mean value and standard
deviation of the uncertain mass and ablation rate

values are assigned to each data set to show the expert’s confidence level of the
estimated data set. In the table, if μi

1 = . . . = μi
m, the parameter μi can be

removed because the parameter is a deterministic parameter. The table now consists
of intervals of σ and associated BPA values. Therefore, the table can be seen as
a variation of Table 1. Belief and plausibility of the uncertain intervals can be
computed in a way similar to Table 1.

3.2 Formulation of Evidence-Based Robust Design
Optimization

Consider an optimization problem under uncertainty

min
d∈D,u∈U

f (d,u) (12)
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where f (d,u) is the objective function, d ∈ D ⊂ R
n are the design variables, and

u ∈ U are the interval-based set uncertainties with BPA values. Distribution of the
uncertainties is given in the form of BPA structure as Table 1 shows.

To obtain the optimal robust design solutions, one needs to optimize the cost
function and maximize its belief under uncertainties at the same time. Therefore,
the problem can be formulated as a multi-objective optimization problem (MOP)
[6, 27]

⎧
⎨

⎩

max
v∈R,d∈D,u∈U

Bel(f (d,u) < v)

min
v∈R v

(13)

where v is the threshold to be minimized, and Bel is the belief value.
Note that the evidence metric for the uncertainty impacts is related to the uncer-

tain space only. Therefore, one can decompose the uncertain box first, recombine
the focal elements, and compute BPA values of the new focal elements in advance
of the optimization. A sampling based approach can be used for this purpose. First,
a set of intervals are generated using the sampling approach, new focal elements
are then generated and combined using the evidence rules. The number of focal
elements is set to be equal to the population size of the design variables, and each
focal element is associated to one individual. Following Equations (9) and (11),
belief and plausibility of f (d,u) < v can be computed as [10, 11]

Bel(f (d,u) < v) =
∑

FE∈U|∀u∈FE,f (d,u)<v

m(FE) (14)

and

P l(f (d,u) < v) =
∑

FE∈U|∃u∈FE,f (d,u)<v

m(FE) (15)

where FE is the new focal element in the uncertain space. An evidence-based
analysis tool is used to sample and recombine the focal elements [3, 18].

3.3 MOO with Tchebysheff Decomposition and Proportional
Orthogonal Decomposition

Consider a MOP as follows:

min
x∈D

F(x) = [f1(x), . . . fm(x)]T x ∈ D ⊂ R
n (16)
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where x is the design variable and fi(x) ∈ R with i =∈ {1, 2, . . . , m} are the
objective functions.

To search the optimal Pareto solutions of Equation (16), the genetic MOO
algorithms, e.g., NSGA-II [8], MOPSO, and MOEA/D [26], etc., can be used.
However, the computational cost can be expensive as it may take hundreds of
iterations of the MOOs to search for the optimal solutions. To resolve this issue,
in this work, a new high efficiency MOO with decomposition is developed. The
new MOO works as follows.

With the Tchebysheff decomposition, the MOP of Equation (16) can be formu-
lated into a set of scalar single-objective optimization problems [2, 7]

min
x∈D

g (f (x),w, z) = min
x∈D

max
i=1,...,m

wi(fi(x)− zi) (17)

where g ∈ R is the Tchebysheff metric, w ∈ R
m is the weight vector , and z ∈ R

m

denotes the reference point

zi = min
x∈D

fi(x) (i = 1, . . . , m) (18)

Initialize the population xj ∈ R
n, j = 1, . . . , npop randomly, where npop is the

population size. For each x(i)
j ∈ X(i) , where X(i) is the population at ith iteration,

compute the Tchebysheff metrics g
(i)
j , j = 1, . . . , npop using Equation (18). Select

the individuals using the Tchebysheff metric, a set of non-dominated individuals can
be obtained. Note that during the selection, some individuals may have the optimal
Tchebysheff metrics w.r.t more than one weight vectors.

Suppose population X(i) = {x(i)
j ∈n |j = 1, . . . , npop} can be described using

a set of distribution parameters σ (i) = {σ (i)
j (x) ∈ |j = 1, . . . , d ≤ npop}, new

distribution parameters σ (i) of the potential solutions based on previous σ (i−1) and
Tchebysheff metric values g(i−1) = {g(i−1)

j ∈ R|j = 1, . . . , npop} can be predicted
as

σ (i) = σ (i−1) + K(g, σ )
(

g(i) − g(i−1)
)

(19)

where K(g, σ ) is the feedback matrix, and new individuals x(i)
j ∈ X(i) are generated

using σ (i).
The key now is to estimate adaptively the distribution parameter σ and feedback

matrix K(g, σ ) with the previous σ (i−1) and metric values g(i−1). To tackle the
problem, a proportional orthogonal decomposition (POD, also called Principal
component analysis (PCA) [23, 25]) and Gaussian estimator based technique are
proposed.

Suppose in the ith generation, the individuals are x(i)
j , a confidence ellipsoid that

contains all the possible candidate individuals can be constructed. The distribution
parameters σ can be computed using proportional orthogonal decomposition (POD,
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also called Principal component analysis). Given data set X = {xj ∈ R
n|j =

1, . . . , npop} of the individuals, kernel matrix of X can be computed as

C =
npop∑

j=1

(xj − xc)(xj − xc)
T (20)

where xc is the barycenter of x1, x2, . . . xnpop . The j th principal component in the
direction of the eigenvector associated with the j th largest eigenvalue is

ξj =
√√√√
√√

λj

M∑

j=1
λj

vj (21)

where vj ∈n and λj ∈ R are the eigenvectors and eigenvalues of C, respectively.
Candidate individuals in the ellipsoid can then be generated at random uniformly as
the weighed sum of the principal components

xnew =
d∑

j=1

[
σj (rand(1, 1)− 0.5) ξj + xrefj

]
(22)

where σj ∈ R is the magnitude of the ellipsoids semi-axis in the direction of ξi ∈
R

n, and xrefj is the vector of the population centroid projected on ξi

xrefj =
xc · ξj
|ξj |2 ξj (23)

Changing σ = {σj |j = 1, . . . , d ≤ n} and xref , the size and location of the ellipsoid
can be varied.

In Equation (22), the number of principal components d that generates new
design variables can be less than the dimension of design space, n, as those
principal components that make little contributions to the function evaluations can
be neglected and removed [23–25].

Figure 4 schematically shows the proposed techniques using principal analysis.
The population of the design variables in the design space and corresponding front
in the criteria space are shown in the upper panel of the figure. Principal components
of the population are listed in the figure too. Given the data set of distribution
parameters σ , new individuals can be generated using Equations (20)–(23). To
obtain the optimal parameters σ , correlation between the data set σ and Tchebysheff
metrics g needs to be modeled. The lower panel of the figure shows the correlation
between the data set of g and σ established a priori, using a Gaussian type model.



Figure 4 Principal analysis and Tchebysheff metrics of the bi-objective optimization problem. In
the upper panel, principal components of the population of design variables and corresponding
fronts in the criteria space are presented. Fronts are pushed forwards by varying the control
parameters σ of principal components (Equations (20)–(23)). The lower part of the figure correlates
the control parameters σ to the data set of the metric values g using a Gaussian type model. Control
parameters σ to generate new individuals can be determined using the previous data set of σ and
the metric values of g
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Now the problem becomes that of determining the parameters σ (i) of the new
ellipsoid of the solutions given g(i), formerly σ (i−1) and g(i−1). Suppose σ (i−1) and
g(i−1) are jointly Gaussian, i.e.,

[
σ

g

]
∼ N

([
μσ

μg

]
,

[
#σ #σg

#σg #g

])
(24)

where μσ and μg are the mean value of parameters σ and g , #g, #σg are the
co-variance of σ and g, respectively, then the conditional distribution of σ given
g = [gi] is normal and has [4]

μσ |g = μσ +#σg#
−1
g (g − μg) (25)

with the variance

#σ |g = #σ −#σg#
−1
g #T

σg (26)

The estimator makes sense even when g and σ are not jointly Gaussian, and
#σ −#σg#

−1
g #T

σg ≤ #σ , i.e., the covariance of the estimation error is always less
than the previous covariance of [15].

The new data set of σ = {
σj |j = 1, . . . , d

}
can then be generated as

σ = N (μσ |g, #σ |g) (27)

Putting the data set σ into Equation (22), new individuals can be generated.
Implementing the steps Equations (20)–(27) till the termination conditions (e.g.,
the number of iterations, MSE of g) are met, the optimal solutions can be obtained.

Figure 5 shows the simulation results of the new algorithm, POD-MOO, and
the conventional evolutionary algorithm, NSGA-II. The test function is bi-objective
ZDT1 with 30 design variables. Population sizes of POD-MOO and NSGA-II are
both set to 100, and in the POD-MOO, only 5 principal components are used to

Figure 5 POD-MOO vs.
NSGA-II and MOEA/D. Test
function: ZDT1. Iterations:
20. Population size: 200.
Number of design
variables:30. Function
evaluations of both
algorithms: around 4000
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generate new individuals. Crossover probability and mutation probability of NSGA-
II are set to pc = 0.9 and pm = 1/n, respectively, where n is the number of decision
variables. The distribution indices of SBX and polynomial mutation in NSGA-II
are both set equal to 20. It appears that after 20 iterations, the solutions obtained
using POD-MOO are quite close to the true Pareto set. As for the popular MOO
algorithm, NSGA-II, it may take up to hundreds of iterations before the optimal
Pareto solutions are obtained.

Figure 6 shows the experimental results of the standard bi-objective ZDT series
benchmarks: ZDT2, ZDT3, ZDT6, and ZDT4.1 Population size of the MOO is set to

Gen = 20
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Figure 6 Tests of POD-MOO on standard benchmarks of ZDT2(top-left), ZDT3 (top-right),
ZDT6 (bottom-left), and ZDT4 (bottom-right). Population size: 200. Reference vectors of the
decomposed bi-objective optimization (w in Equation (17)) are listed in the test of ZDT4. Although
the benchmarks have different Pareto fronts, in each test, the MOO takes dozens of iterations to
converge to the true Pareto front

1Program code of POD-MOO and experimental simulations of the bi-objective and three objec-
tive benchmarks are available at https://sites.google.com/site/adloptimization/moo-with-principle-
component-analysis.

https://sites.google.com/site/adloptimization/moo-with-principle-component-analysis
https://sites.google.com/site/adloptimization/moo-with-principle-component-analysis
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200. Reference vectors of the decomposed bi-objective optimization (w in Equation
(17)) are listed in the test of ZDT4. Although the benchmarks have different Pareto
fronts, in each test, the MOO takes dozens of iterations to converge to the true Pareto
front. In contrast, if the conventional genetic algorithms, e.g., NSGA-II, are used, it
may take hundreds of iterations for the algorithms to search the true Pareto fronts.

3.4 Surrogate Assisted Optimization

To reduce the computational cost of the numerical model, the Kriging based
surrogate can be used. The Kriging surrogate acts like an interpolator. First, a set
of sample data and corresponding responses of the numerical model are put into the
surrogate to train the surrogate. New data at the untested point can then be predicted
using the Kriging surrogate.

The surrogate is constructed as follows: Consider a set of sample individuals X
with the responses of the numerical model, y, the Kriging prediction at point x can
be constructed as a mean function plus a variance [5, 9]

ŷ(x) = μ̂+ ψ(x,X)Ψ−1(X,X)(y − 1μ̂) (28)

with the predictive mean and variance

μ̂ = 1T Ψ−1(X,X)y
1T Ψ−1(X,X)1

(29)

σ̂ 2 = (y − 1μ)T Ψ−1(y − 1μ)

n
(30)

where 1 is the n×1 column vector of ones. ψ(x,X) and Ψ (X,X′) are the correlation
vector and correlation matrix with

ψ(x, x′) = exp

(

−
pi∑

i=1

θi |xi − x
′
i |pi

)

(31)

where θ and p are the hyper parameters that can be determined using the maximum
likelihood method [5, 9].

The mean squared error of the prediction at x is

ŝ2(x) = σ 2
[

1 − ψT Ψ−1ψ + 1 − 1T Ψ−1ψ

1TΨ−11

]
(32)

To update the surrogate during the optimization, some more sample data can be
used to train the surrogate further. In this work, an expected improvement (EI) based
infill strategy is used to update the surrogate.
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Suppose N
(
ŷ(x), ŝ2(x)

)
is the Kriging prediction for the objective function

y(x), and the minimum of y(x) over all evaluated points in population X is ymin,
then the expected improvement of an untested point x is [5]

EI (x) = E [max{ymin − y(x), 0}] (33)

and can be computed as

E [I (x)] =
[
ymin − $

y(x)
]
Φ

(
ymin − ŷ(x)

ŝ(x)

)
+ ŝ(x)φ

(
ymin − ŷ(x)

ŝ(x)

)
(34)

New infill points can then be determined by exploring the design space using the
infill criterion, and those points that have maximum EI values can be sampled as the
infill points to improve the surrogate.

3.5 Surrogate Assisted Evidence-Based Robust Design
Optimization

The design optimization consists of two loops. In the inner loop, the Kriging based
surrogate of the expensive numerical lifetime predictor is constructed, while in the
outer loop the new MOO algorithm is implemented. The surrogate reads the debris
area-to-mass ratio (AMR), semi-axis, eccentricity, argument of perigee, and mean
anomaly and computes the debris lifetime till the decay altitude reaches 65 km. Data
of the numerical lifetime predictor are Latin-hypercube sampled and put into the
surrogate to train the surrogate.

The evidence computation samples the uncertain space and decomposes the
uncertain space into a series of subspaces. Uncertain parameters and the design
variables are put into the surrogate to compute the lifetime. With the predicted
lifetimes, evidence of the lifetimes can be computed using the sampling approach
as Equations (14) and (15) show. The MOO of Equations (17)–(27) is then used
to optimize the objective functions of the belief and lifetimes. Figure 7 shows the
flowchart of the proposed evidence-based robust design optimization.

4 Numerical Simulation

Consider the robust design optimization problem of the pulsed LODR.2 The target
debris is set to Iridium 33, and the optimization objective is set to maximize under
uncertainty the difference in the sum of the lifetimes of 10 debris objects. The orbital

2Part of program code of the robust POD-MOO and numerical simulation of LODR are available
at https://sites.google.com/site/adloptimization.

https://sites.google.com/site/adloptimization
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Figure 7 Flowchart of the evidence-based robust design optimization. The design optimization
consists of two loops. In the inner loop, the surrogate is constructed and updated with the new infill
points , while in the outer loop, the bi-objective optimization is implemented to optimize debris
lifetimes and their belief values

elements of the debris are from the CelesTrak database (TLEs of the debris are
available at http://celestrak.com/NORAD/elements/iridium-33-debris.txt). Table 3
shows the parameters of the pulsed laser.

In the numerical propagator of the debris lifetime prediction, solar radiation
pressure, atmospheric drag, non-spherical Earth, and gravity from the third body
are taken into account. The Jacchia 1970 atmospheric density model is used, and
the decay altitude is set to 65 km. In the numerical lifetime predictor, a Runge–
Kutta–Fehlberg 7th order integrator with 8th order error control is used. The drag
coefficient is set to 2.2, and the coefficient of reflectivity is set to 0.28 [14]. Note that

http://celestrak.com/NORAD/elements/iridium-33-debris.txt
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Table 3 Parameters of the
pulsed LODR

Parameter Value Unit

Number of impulse 4750 –

Laser pulse frequency 100 Hz

Laser pulse interval 100 ns between pulses

Laser power 1000 J/pulse

Table 4 BPA structure of uncertainties

Parameter Description μ σl σu BPA

Cm(NS/J) Coupling coefficient 2.0 · 10−5 0.8 · 10−7 1.5 · 10−7 0.60

2.8 · 10−5 0.5 · 10−7 1.0 · 10−7 0.30

2.0 · 10−5 0.2 · 10−7 1.2 · 10−7 0.10

u(kg/J) Ablation rate 80 · 10−9 10 · 10−10 20 · 10−10 0.40

78 · 10−9 15 · 10−10 22 · 10−10 0.30

72 · 10−9 12 · 10−10 17 · 10−10 0.30

m0(kg) Average mass [12] 1.30 0.05 0.10 0.30

1.50 0.05 0.12 0.20

1.42 0.05 0.08 0.50

r0(cm) Debris average radius 12.33 1.05 1.50 0.50

11.40 0.85 1.02 0.20

13.52 0.75 0.98 0.30

Cr Coefficient of reflectivity 0.20 0.05 0.10 0.20

0.23 0.07 0.12 0.30

0.32 0.05 0.08 0.50

Cd Drag coefficient 2.20 0.05 0.10 0.30

2.23 0.05 0.12 0.20

2.32 0.05 0.08 0.50

The uncertainties are of the LODR and debris parameters, and supposed to be estimated by three
experts

both values are closely related to the shape of the debris, and can vary with different
debris. Regarding the LODR characteristic parameters, the coupling coefficient is
Cm = 2.0 · 10−5 Ns/J for the ideal case of aluminum, and the ablation rate is equal
to μ = 80 · 10−9 kg/J [20]. Both the values could vary with the laser parameters
such as intensity, wavelength, pulse length irradiated to the debris material, and
surface conditions [20]. The average mass of a single Iridium 33 debris object is
set equal to m0 = 1.327 kg [12]. A BPA structure for the parameters is presented
(Table 3) to show the uncertainty effects. Three groups of estimated values and
standard deviations are listed in the table, assuming that the uncertainties follow a
Gaussian distribution (Table 4).

Most of the orbital eccentricities of the debris are less than 0.01, and the laser
impulses are delivered within a short period of time (47 s in the simulation);
therefore, the accumulated velocity increment with a constant delivered angle can be
used to compute the orbital elements after LODR. The station is set to Svalbard with
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latitude equal to 78.21670◦. To simplify the computation, the velocity is computed
in advance using the parameters provided in Table 3, and an equivalent constant ϑ ,
120◦, is used (Figure 1).

All debris is associated to an ID No. 1-466. The design vectors are then the ID
numbers of the debris and the objective is set to maximize under uncertainty the
difference in the sum of the lifetimes of 10 debris objects. Writing in mathematical
form, the problem can be formulated as

min
x∈D,u∈U

f (x,u) =
10∑

i=1

L(xi ,u) (35)

where x ∈ N are the indices of debris from 1 to 466, u ∈ U is the uncertain
parameters, and L(xi ,u) is the predicted lifetime of xi debris.

The population size of robust POD-MOO is set to 200. Focal elements and
corresponding masses are combined and approximated in advance to reduce the
computational cost. The number of focal elements is set to be equal to the
population size. A data set of numerical lifetime prediction with perigee altitude
hP ∈ [250 km, 600 km] and eccentricity e ∈ [0, 0.3] is Latin-hypercube sampled
and put into Kriging to initialize the surrogate. The sample size is set to 240. In each
iteration, 5 solutions with maximum EI values are selected as the infill points, and
put into the Kriging to update the surrogate.

Figure 8 shows the objective values of the optimal solutions after 50 iterations.
Among the solutions, two solutions A and B with the belief of 0.865 and 0.625,
respectively, are selected. Table 5 shows the debris IDs of solution A and B and
their evidence levels. The belief of solution A is 0. 865 for a sum of the post-LODR
lifetimes of 32.41 years, while the belief of solution B is 0. 625/24.07 years.

Figure 8 Solution A and B:
target debris, lifetimes, and
belief values
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Table 5 Robust optimal solution A and B: target debris, lifetimes before/after LODR, and
evidence level of the optimal solutions

Solution Debris
Sum (before/after,
years) Belief/plausibility

A 283, 115, 9, 31, 3, 75, 425, 192, 112, 52 796.95/32.41 0.865/0.995

B 45, 133, 109, 308, 15, 275, 297, 144, 82, 40 631.18/24.07 0.625/0.975

Table 6 Solution C: target debris and lifetimes before and after LODR (assuming all uncertainties
are set to zero and using a deterministic optimizer)

Debris Before (years) After (years) Sum (before/after, years)

142 8.32 0.07 117.50/1.558

194 10.97 0.16

168 29.01 0.44

207 7.60 0.11

133 9.82 0.18

335 8.17 0.11

142 8.32 0.07

281 8.96 0.03

196 22.63 0.32

159 3.67 0.04

To verify the robust solutions, a genetic based deterministic optimizer is used to
optimize directly the objective function with Cm = 2.0 · 10−5, μ = 80 · 10−9 kg/J,
and m0 = 1.327 kg, respectively. As for coefficient of reflectivity, drag coefficient,
and average radius of the debris, the values of Cr = 0.28, Cd = 2.2, and r0 =
12.33 cm are used [12, 14].

Table 6 shows the deterministic optimal solution (Solution C) using the time
consuming numerical predictor. The data is in good agreement with the proposed
method and is highly consistent with the robust calculations when the uncertainty
impacts are unconsidered. In Figure 8, the minimum lifetimes of the curves are about
1.5 years with nearly zero belief (the belief is 0.04) in which the non-deterministic
effects can be ignored, while the result of the deterministic approach is 1.558 years.
The two sets of calculations are quite close. As can be seen, in addition to providing
a deterministic calculation result, the proposed method can provide the confidence
levels of the calculation results under non-deterministic conditions. All of these
provide convenience for decision makers to optimize their designs.

5 Conclusion

In this work, an early stage robust analysis tool for the LODR design is presented. In
the design optimization, both the epistemic uncertainty and aleatory uncertainty are
considered. The evidence-based analysis tool is used to quantify the evidence level
of the optimal solutions. Compared to the optimization method using conventional
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optimization algorithms, the method proposed in this work provides not only the
solutions that could be implemented in the LODR, but also the maximum belief
values that the solutions can be achieved.

To resolve the problems due to the evidence computation and the expensive
numerical model, a high efficiency MOO, using the Tchebysheff decomposition
strategy and Gaussian predictor, is proposed. The MOO outperforms the conven-
tional algorithms in a series of standard test functions. A surrogate is used to reduce
the cost due to the expensive model. Evidence computations of the uncertainty
impacts are integrated into the optimization via the sampling approach. At each
iteration, the number of objective function evaluations is twice the population size.
Data from the surrogate are used instead of the numerical expensive data, and an EI
based infill strategy is used to update the surrogate.

In the simulation, the debris fragments are supposed to be spherical and face-on
planes. As the lifetimes of the debris can vary greatly with the relevant parameters,
a more detailed analysis of the objects properties, such as the realistic shapes and
tumbling effects, should be taken into account if an actual LODR is implemented.
The robust optimization method presented in this chapter provides an early stage
robust analysis tool for the LODR in order to determine the potential candidates.
Impacts due to the attitude and shape of the debris will be taken into account in
future works.

References

1. Agarwal, H., Renaud, J.E., Preston, E.L., Padmanabhan, D.: Uncertainty quantification using
evidence theory in multidisciplinary design optimization. Reliab. Eng. Syst. Saf. 85(1), 281–
294 (2004)

2. Asafuddoula, M., Ray, T., Sarker, R.: A decomposition-based evolutionary algorithm for many
objective optimization. IEEE Trans. Evol. Comput. 19(3), 445–460 (2015)

3. Auer, E., Luther, W., Rebner, G., Limbourg, P.: A verified Matlab toolbox for the Dempster-
Shafer theory. In: Workshop on the Theory of Belief Functions (2010)

4. Balakrishnan, N.: Continuous Multivariate Distributions. Wiley, London (2006)
5. Couckuyt, I., Dhaene, T., Demeester, P.: ooDACE toolbox: a flexible object-oriented Kriging

implementation. J. Mach. Learn. Res. 15, 3183–3186 (2014)
6. Croisard, N., Vasile, M., Kemble, S., Radice, G.: Preliminary space mission design under

uncertainty. Acta Astronaut. 66(5), 654–664 (2010)
7. Deb, K.: Multi-objective optimization. In: Search Methodologies, pp. 403–449. Springer,

Berlin (2014)
8. Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: A fast and elitist multiobjective genetic

algorithm: NSGA-II. IEEE Trans. Evol. Comput. 6(2), 182–197 (2002)
9. Forrester, A., Keane, A., et al.: Engineering Design via Surrogate Modelling: A Practical

Guide. Wiley, London (2008)
10. Hou, L., Pirzada, A., Cai, Y., Ma, H.: Robust design optimization using integrated evidence

computationłwith application to orbital debris removal. In: 2015 IEEE Congress on Evolution-
ary Computation (CEC), pp. 3263–3270. IEEE, Piscataway (2015)

11. Hou, L., Tan, W., Ma, H.: Multi-fidelity design optimization under epistemic uncertainty. In:
2016 IEEE Congress on Evolutionary Computation (CEC), pp. 4452–4459. IEEE, Piscataway
(2016)



190 L. Hou et al.

12. Kelso, T., et al.: Analysis of the iridium 33-cosmos 2251 collision. Adv. Astronaut. Sci. 135(2),
1099–1112 (2009)

13. Liedahl, D., Rubenchik, A., Libby, S.B., Nikolaev, S., Phipps, C.R.: Pulsed laser interactions
with space debris: target shape effects. Adv. Space Res. 52(5), 895–915 (2013)

14. Mason, J., Stupl, J., Marshall, W., Levit, C.: Orbital debris–debris collision avoidance. Adv.
Space Res. 48(10), 1643–1655 (2011)

15. Moon, T.K., Stirling, W.C.: Mathematical Methods and Algorithms for Signal Processing,
vol. 1. Prentice Hall, New York (2000)

16. Phipps, C., Albrecht, G., Friedman, H., Gavel, D., George, E., Murray, J., Ho, C., Priedhorsky,
W., Michaelis, M., Reilly, J.: Orion: Clearing near-earth space debris using a 20-kw, 530-nm,
earth-based, repetitively pulsed laser. Laser Part. Beams 14(1), 1–44 (1996)

17. Phipps, C.R., Baker, K.L., Libby, S.B., Liedahl, D.A., Olivier, S.S., Pleasance, L.D.,
Rubenchik, A., Trebes, J.E., George, E.V., Marcovici, B., et al.: Removing orbital debris with
lasers. Adv. Space Res. 49(9), 1283–1300 (2012)

18. Rebner, G., Auer, E., Luther, W.: A verified realization of a Dempster–Shafer based fault tree
analysis. Computing 94(2), 313–324 (2012)

19. Roy, A.E.: Orbital Motion. CRC Press, West Palm Beach (2004)
20. Schall, W.O.: Laser radiation for cleaning space debris from lower earth orbits. J. Spacecr.

Rocket. 39(1), 81–91 (2002)
21. Vasile, M.: Robust mission design through evidence theory and multiagent collaborative

search. Ann. N. Y. Acad. Sci. 1065(1), 152–173 (2005)
22. Vasile, M.: A behavioral-based meta-heuristic for robust global trajectory optimization. In:

IEEE Congress on Evolutionary Computation, CEC 2007, pp. 2056–2063. IEEE, Piscataway
(2007)

23. Volkwein, S.: Proper Orthogonal Decomposition: Theory and Reduced-Order Modelling.
Lecture Notes. vol. 4(4). University of Konstanz, Konstanz (2013)

24. Xiao, D., Fang, F., Buchan, A.G., Pain, C.C., Navon, I.M., Du, J., Hu, G.: Non-linear model
reduction for the Navier–Stokes equations using residual DEIM method. J. Comput. Phys. 263,
1–18 (2014)

25. Xie, D., Xu, M., Dowell, E.H.: Proper orthogonal decomposition reduced-order model for
nonlinear aeroelastic oscillations. AIAA J. 52(2), 229–241 (2014)

26. Zhang, Q., Li, H.: MOEA/D: a multiobjective evolutionary algorithm based on decomposition.
IEEE Trans. Evol. Comput. 11(6), 712–731 (2007)

27. Zuiani, F., Vasile, M., Gibbings, A.: Evidence-based robust design of deflection actions for
near earth objects. Celest. Mech. Dyn. Astron. 114, 107–136 (2012)



Machine Learning and Evolutionary
Techniques in Interplanetary Trajectory
Design

Dario Izzo, Christopher Iliffe Sprague, and Dharmesh Vijay Tailor

Abstract After providing a brief historical overview on the synergies between arti-
ficial intelligence research, in the areas of evolutionary computations and machine
learning, and the optimal design of interplanetary trajectories, we propose and
study the use of deep artificial neural networks to represent, on-board, the optimal
guidance profile of an interplanetary mission. The results, limited to the chosen
test case of an Earth–Mars orbital transfer, extend the findings made previously
for landing scenarios and quadcopter dynamics, opening a new research area in
interplanetary trajectory planning.

1 Introduction

The use of artificial intelligence (AI) techniques for the design of interplanetary
trajectories, in particular in their early design phases, has been proposed and
studied by numerous scientists over the past few decades. Among the AI techniques
deployed to help the optimisation of spacecraft trajectories are evolutionary algo-
rithms [15, 22, 23, 28, 31, 35, 48, 52], machine learning techniques [2, 4, 27, 33],
evolutionary neuro-controllers [6, 7], tree search methods [17, 18, 23, 27, 50] to
only name a few widely studied methods. While the synergies between research in
AI and in trajectory design were becoming increasingly apparent, the field of AI as a
whole experienced a renaissance in the second decade of the millennium, delivering
exciting developments that are of significance to many scientific fields. Certainly
the area of machine learning is one that is powering such an AI renaissance,
in particular with deep learning techniques [47] becoming fundamental to define
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new benchmarks in the most diverse applications. It thus seems likely that also
the optimisation of interplanetary trajectories, already receptive of AI methods in
general, is going to benefit from the vast amount of new knowledge being produced
in the context of AI research.

In this chapter we first briefly provide an overview on the state-of-the art
of the use of evolutionary techniques (Sect. 2) and machine learning techniques
(Sect. 3) when it comes to optimising interplanetary trajectories, and we then
introduce a novel idea concerning the application of deep learning for the on-board
representation of the optimal guidance profile for an interplanetary probe, extending
previous work made on planetary landing scenarios [42–44].

2 Evolutionary Algorithms for Trajectory Planning: An
Overview

Evolutionary algorithms are a class of global optimisation techniques that make
use of heuristic rules, often inspired but not limited to natural paradigms such
as Darwinian evolution, to search for optimal solutions in discontinuous, rugged
landscapes. As such they are a good match to solve interplanetary trajectory
optimisation problems where the planetary geometry defines a quite complex
solution landscape already in simple cases. Already in 1985 a genetic algorithm
(GA) [28] was proposed and studied in the context of interplanetary trajectory
optimisation concluding that

. . . a considerable effort is still needed for developing efficient schemes using genetic
algorithms. However, they appear to offer an entirely original way for solving a large class
of [interplanetary trajectory] global optimisation problems . . .

Given the CPU power available at the time, it is only natural that this pioneering
work complained about efficiency. In the following decade the “entirely original
way” was consolidated and more successful applications of GAs for both low-
thrust propelled spacecraft [40] and impulsive thrust strategies [15] were deployed.
Studies on the use of some form of GA, also leveraging on the ever increasing
computational power available, continued (see for example [3, 9, 12, 14, 41])
showing how the original intuition, back in 1985, was one rich of consequences.
It was indeed relatively consequential to substitute the GA with any other form
of stochastic optimiser, so that in 2004 the European Space Agency performed a
series of studies, in collaboration with academia, to test and compare several global
optimisers on interplanetary trajectory problems [10, 22, 34]. It then became clear
how other evolutionary algorithms were offering alternative, and in many ways
superior, choices to help the preliminary phases of trajectory design. Among them,
differential evolution (DE) and particle swarm optimisation (PSO) were identified
and benchmarked on several chemical propulsion problems opening the way to
further independent confirmations of their performances [32, 35, 37, 48, 52, 55].
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Interestingly, in 2013, a self-adaptive differential evolution algorithm was used to
plan the grand tour of the Jupiter moons that was awarded the golden Humies
medal [23] for “human-competitive results produced by genetic and evolutionary
computation”. Many other evolutionary approaches have been proved to be of use
by various researchers during the early 2000s, including simulated annealing (SA)
[32] and ant colony optimisation (ACO) [5, 39]. More recently, covariance matrix
evolutionary strategy (CMA-ES) was shown to be potentially outperforming self-
adaptive DE on a class of transfers [24].

While the no free lunch theorem [54] guarantees that no evolutionary approach
is better than any other on average, restricting the class of optimisation problems
to those representing interplanetary transfers allows to identify the most useful
approaches. To this end, a set of problems called GTOP database [53] (a sort of open
trajectory gym) was created and made available to the scientific community and is
still the subject of active research [1, 4, 20, 45, 49, 51]. Some of the interplanetary
trajectory problems (i.e. Messenger and Cassini2) in the GTOP database were also
used during the CEC2011 competition attracting the attention of the larger scientific
community of evolutionary computations (see [12] for the competition winner).

Most of the research mentioned so far considers continuous optimisation
problems with a single objective and box constraints. In its most general case,
though, the problem encountered in interplanetary trajectory design is multi-
objective, with nonlinear constraints and, possibly, integer decision variables.
Genetic approaches to multi-objective trajectory design were benchmarked already
in 2005 [31] followed by deeper studies on non-dominated sorting genetic algorithm
(NSGA-II) that included also, as integer variables, the planetary fly-by sequence
[9]. Multi-objective versions of PSO have also been considered early on [30]. The
more modern multi-objective evolutionary algorithm by decomposition (MOEA/D)
was later identified as a most performing technique in applicable cases [24]; in
the same work, several constraint handling techniques including co-evolution and
immune systems were tested.

Whenever the representation of an interplanetary trajectory requires integer
and continuous variables, the resulting optimisation problem (a MINLP) typically
becomes intractable also for evolutionary approaches and while some results have
been obtained, for example using the ACO paradigm [5, 46], a more convincing
approach is to consider the continuous part and the integer part of the problem
separately and architect some optimisation scheme tackling the two problems with
different nested techniques (bi-level optimisation). Evolutionary approaches based
on GAs [13, 25, 26] or ACO [50] have been used in bi-level optimisation schemes,
often coupled with smart tree search strategies such as beam search (BS) [17, 50],
Monte Carlo tree search (MCTS) [18], multi-objective beam search (MOBS) [27],
or lazy race tree search (LRTS) [23] to take care of the integer part.

Evolutionary approaches to interplanetary trajectory planning have proven their
worth beyond any criticism and while they are still not as widely used by the
aerospace industry as they could, it is likely that we will see a larger penetration
in the industrial sector in the upcoming years, as the interest in artificial intelligence
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methods powered by deep learning and machine learning will put also evolutionary
techniques in the spotlight.

3 Machine Learning and Interplanetary Trajectories

The use of machine learning (ML) algorithms to aid the design of interplanetary
trajectory is not as widely researched as that of evolutionary techniques and is
limited to fewer works. The reasons are to be found in the less obvious applicability
of these methods to the problems encountered in the design of interplanetary
trajectories and in the lack of data sets produced and made available by the aerospace
community. In this section we try to summarise the ideas that have so far been
proposed.

During the optimisation of an interplanetary transfer, as in any optimisation task,
a large number of solutions are computed and assessed to inform the search for
better candidates. Typically all these design points are discarded and lost after they
have been used to produce new promising search directions. The idea of applying
supervised learning on such a data set in order to build a model improving the further
selection of initial guesses to guide successive evolutionary runs was proposed and
tested [4] on some of the trajectory problems in the GTOP database [53] using
support vector machines (SVM). Following a similar reasoning, a ML model can
be trained, using the points sampled during the evolution, in order to construct a
surrogate model of the trajectory worth, which then avoids expensive evaluations of
the objective function [2]. Building surrogate models is particularly relevant when
the interplanetary mission fitness requires a high degree of computational resources
such as in the case of optimal low-thrust transfers. In that case a surrogate model
approximating the final optimal transfer mass enables to quickly search for good
launch and arrival epochs, as well as planetary body sequences, e.g. in the case
of multiple asteroid or debris rendezvous missions [19, 33]. Unsupervised learning
techniques such as clustering or nearest neighbours have also been used to select the
target of transfers in multiple asteroid rendezvous missions, upon proper definition
of a metric coping with the orbital nonlinearities [27], or to define new box bounds
and hence focus successive evolutionary runs in promising areas of the search space
(cluster pruning [21]).

A second field where ML algorithms have been used in the context of research
in interplanetary trajectory design methods is that of the on-board representation
of the optimal guidance profile. Already in 2004 [6] the idea was put forward of
using machine learning to learn a representation of the optimal spacecraft guidance
profile. In later years the technique was studied exclusively in the context of
evolutionary neuro-controllers and optimal control. More recently, neuro-evolution
has been substituted with supervised learning (back-propagation), the artificial
neural network structure has become deeper, and focus has been shifted to the
on-board real time computation of guidance profiles [42–44]. These last works



Machine Learning and Evolutionary Techniques in Interplanetary Trajectory Design 195

have all been limited to landing problems and the applicability of these ideas to
interplanetary trajectories has not been studied. In the next section we will try to
contribute closing this gap showing how the optimal guidance profile of a phase-
less Earth–Mars transfer can also be satisfactorily represented by a deep artificial
neural network.

4 On-Board Optimal Guidance via a Deep Network

In planetary landing problems, the possibility to generate optimal guidance profiles
on-board has been studied and suggested to significantly enhance a vehicles landing
accuracy [8, 11]. The resulting algorithms need to run on a radiation-hardened
flight processor, that is on a significantly slower processor than those available on
modern desktops and one having significant architectural differences. As a rule of
thumb, a space qualified processor is an order of magnitude slower than the average
desktop processor. The resulting CPU load on the spacecraft has been estimated in
a practical scenario [11] to be 0.7s for the computation of one optimal action. To the
same end, an alternative is offered by deep feed-forward neural networks trained on
the ground to approximate the optimal control and used on-board in real time. The
on-board computational effort associated to this architecture is that of one forward
pass of the network which, though deep, is not necessarily large [42, 43]. Extending
on previous studies on landing and quadcopter dynamics, the feasibility of such
a scheme for interplanetary low-thrust transfers is studied here. The same overall
scheme is used [43]:

• Step 1: We solve thousands of optimal control problems using Pontryagin’s
maximum principle. We store, with some time sampling, the obtained
solutions in a data set.

• Step 2: We train deep feed-forward neural networks on the data set to learn
the optimal control structure.

• Step 3: We use, on-board, the trained network to compute the optimal
feedback.

With respect to the previously studied case of planetary landings the
methodology is, essentially, unchanged and it is of great interest to see how it can
be applied on a radically different problem having larger dimensionality, different
nonlinearities and, arguably, a more complex structure.

A Short Note on Notation
We use boldface symbols (e.g. λ, r, etc.) to denote vector quantities, while scalars
or the vector norm will be indicated by normal symbols (e.g. λ, r , etc.). Unit vectors
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will be indicated with a small hat (e.g. î) and time derivatives with a dot (e.g. ẋ). We
will sometime use the asterisk as a superscript to indicate optimal quantities (e.g.
u∗).

4.1 Spacecraft Dynamics

The motion of a spacecraft equipped with a constant specific impulse nuclear
electric low-thrust propulsion system can be described in some heliocentric, inertial,
frame using Cartesian coordinates by the equations:

ṙ = v
v̇ = − μ

r3 r + c1
u(t)
m

îu(t)
ṁ = −c2u(t)

(1)

where r, v and m denote the spacecraft position, velocity and mass (also denoted
as spacecraft state x), μ is the gravitational parameter of the Sun, c1 is the
maximum thrust achievable by the on-board propulsion system and c2 = c1/Ispg0.
We have denoted with Isp the propulsion specific impulse and with g0 the Earth
gravity constant at sea level. The control variables u(t) and îu(t) (or u(t) for
brevity) describe the thrust level (here also called throttle) and its direction and are
constrained as follows |u(t)| ≤ 1 and |îu(t)| = 1,∀t ∈ [t1, t2].

We are interested in the problem of finding the controls u(t) and îu(t) to minimise
the functional:

J (t1, t2, u(t)) = α

∫ t2

t1

u(t)dt + (1 − α)

∫ t2

t1

u2(t)dt (2)

and able to steer the spacecraft from some initial point x1 ∈ S1 to some final point
x2 ∈ S2 where the sets S1 and S2 are some closed subsets (hypersurfaces) of
the state space. Note that the functional J is parameterised by the continuation
parameter α ∈ [0, 1] which weights two contributions corresponding to mass
optimality (α = 1) and quadratic control optimality (α = 0).

We now derive the, known, necessary optimality conditions for the above stated
problem applying the maximum principle from Pontryagin (note that we have stated
a minimisation problem, hence the conditions are actually slightly different from the
ones originally derived in Pontryagin work [38]).



Machine Learning and Evolutionary Techniques in Interplanetary Trajectory Design 197

4.2 Minimisation of the Hamiltonian H

We start by introducing seven auxiliary functions defined in t ∈ [t1, t2], the co-
states, which we will denote with λr ,λv and λm, or, for brevity, λ. We then introduce
the Hamiltonian function:

H(x,λ,u) = λr · v + λv ·
(
− μ

r3
r + c1

u

m
îu
)
− λmc2u+ αu+ (1 − α)u2 (3)

which, following Pontryagin theory, needs to be minimised by our controls along
an optimal trajectory. Isolating the relevant part of the Hamiltonian that depends on
the control îu we have that H = . . . + c1

u
m

λv · îu + . . ., which allows to conclude
that, since m,u and c1 are all positive numbers, the thrust direction must be in the
opposite direction of λv for H to be minimised, more formally:

î∗u = −λv

λv

(4)

Substituting this expression back into the Hamiltonian we get

H(x,λ,u) = λr · v − μ

r3 λv · r − c1
u

m
λv − λmc2u+ αu+ (1 − α)u2

which we now need to minimise with respect to u. Isolating the relevant part of H,
i.e. the terms that depend on u, we have

H = . . .+ (1 − α)u2 + u
(
α − c1

m
λv − λmc2

)
+ . . .

which is a convex parabola that will take its minimal value in u =
c1
m
λv+λmc2−α

2(1−α)
.

Since u ∈ [0, 1], we get the final expression for an optimal u∗:

u∗ = min

[
max

( c1
m
λv + λmc2 − α

2(1 − α)
, 0

)
, 1

]
(5)

Note that in the corner case α = 1, which corresponds to a mass-optimal control,
the above expression results to be singular and the minimiser of the Hamiltonian
can be conveniently rewritten introducing the switching function

Ssw = c1λv +mc2λm −mα

as

u∗ =
{

1 if Ssw > 0
0 if Ssw < 0

(6)
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4.3 The Co-state Equations

The states x(t) and co-states λ(t) must be a solution to the set of differential
equations that are elegantly written using the Hamiltonian formalism as

ṙ = ∂H
∂λr

, λ̇r = − ∂H
∂r

v̇ = ∂H
∂λv

, λ̇v = − ∂H
∂v

ṁ = ∂H
∂λm

, λ̇m = − ∂H
∂m

while for the first three equations it is trivial to get back the expressions in
Equation (1), the co-states equations do require some extra work, in particular when
deriving the gravity gradient. Let us then start deriving the co-state equations by

computing ∂H
∂r starting from the expression in Equation (3). We have

∂H

∂r
= −λv · ∇

( μ

r3
r
)

where the symbol ∇ denotes the gradient operator. It is easier to compute the
expression regrouping as follows:

− 1

μ

∂H

∂r
= ∇

(
λv · 1

r3 r
)
=

= 1

r3
∇ (λv · r)+ (λv · r)∇

(
1

r3

)
=

= λv

r3 − 3 (λv · r)
∇r

r4 =

= λv

r3 − 3 (λv · r)
r
r5

We may thus write the corresponding Hamilton equation as

λ̇r = −∂H

∂r
= μ

λv

r3 − 3μ (λv · r)
r
r5

The remaining two equations are then also easily obtained as

λ̇v = −∂H

∂v
= −λr

and

λ̇m = −∂H

∂m
= c1u

λv · îu
m2
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The final system of differential equations describing the state and co-states evolution
along an optimal trajectory may be now summarised:

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

ṙ = v
v̇ = − μ

r3 r − c1
u∗(t)
m

λv

λv

ṁ = −c2u
∗(t)

λ̇r = μλv

r3 − 3μ (λv · r) r
r5

λ̇v = −λr

λ̇m = −c1u
∗(t) λv

m2

(7)

4.4 The Two-Point Boundary Value Problem

Following the maximum principle, we know that there exist initial values for the co-
states λ(t1) = λ1 such that an optimal trajectory steering the system from a starting
state x1 ∈ S1 to a final state x2 ∈ S2 will be found integrating the system of
equations stated in Equation (7) from the initial condition x1,λ1, for a time t2 − t1
leading to a final condition x2,λ2. Since we also want to find optimal values for
x1 ∈ S1, x2 ∈ S2 and t2 we need some additional conditions. The problem of
finding the optimal t2 (t1 can be assumed to be 0 as our system is autonomous) is
solved by adding a condition on the Hamiltonian:

H(x(t2),λ(t2),u∗(t2)) = 0 (8)

To optimally select x1 ∈ S1 and x2 ∈ S2, instead, we will need to add some
conditions, called transversality conditions and derived in the next section.

4.5 Transversality Conditions

Transversality conditions ensure that the initial and final states are selected opti-
mally in the allowed sets S1 and S2. They can be elegantly written introducing the
vectors θ1 and θ2 belonging to the hyperplane tangent to the hypersurfaces S1 and
S2 in x1 and x2. For all such vectors it must be that

λ(t1) · θ1 = 0

and equivalently,

λ(t2) · θ2 = 0
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Let us now derive explicitly these relations in the case of the interplanetary transfer
dynamics. We start focusing on the terminal condition x2 ∈ S2. Typically the final
mass of the spacecraft is not specified and we may, in this case, express S2 as
x2 = [r2, v2, c] with c being a free parameter and r2andv2 being at this stage
considered as fixed. Trivially, in this case, θ2 = [0, 0, θ2] and the transversality
condition for a free final mass is thus

λm(t2) = 0 (9)

More work is needed to derive transversality conditions in the case where also
r2 and v2 are not fixed but constrained to belong to some manifold. A typical
situation would be, for example, to leave some of the final Keplerian orbital elements
as free. In this case, in order to find θ2, i.e. the vector tangent to the defined
manifold, we need to write a parameterisation of such manifold, that is an expression
of r2 and v2 as a function of the desired orbital parameter. Using the Keplerian
elements a, e, i, ω,Ω,E we may use well-known relations to establish such a
parameterisation:

r2 = R

⎡

⎣
a(cosE − e)

a
√

1 − e2 sinE

0

⎤

⎦

v2 =
√

μ

a3
1

1−e cosE R

⎡

⎣
−a sinE

a
√

1 − e2 cosE
0

⎤

⎦

(10)

where R is the rotation matrix from the orbital reference frame to the inertial defined
as

R =
⎡

⎣
cosΩ cosω − sinΩ sinω cos i − cosΩ sinω − sinΩ cosω cos i sinΩ sin i

sinΩ cosω + cosω sinω cos i − sinΩ sinω + cosΩ cosω cos i − cosΩ sin i

sinω sin i cosω cos i cos i

⎤

⎦

the tangent vector to the resulting manifold will then be simply obtained deriving
the above expression with respect to the chosen parameter.

For example, let us take the case of a free final anomaly. This corresponds to
a transfer to some final target orbit regardless of the phase. Deriving the above
expressions with respect to E, or in this case equivalently t , we get the transversality
condition:

λr · v2 − λv · μ

r3
2

r2 = 0 (11)
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Similarly if we leave the semi-major axis a as free, the conditions are easily obtained
as

2λr · r2 − λv · v2 = 0 (12)

Similar expressions are derived in [36] using true anomaly and not the eccentric
anomaly and using a different method.

5 Test Case Description (Nominal Trajectories)

As a test case, we consider a low-thrust Earth–Mars orbital transfer. A spacecraft
having mass m0 = 1000 (kg) and equipped with a propulsion system able to deliver
a constant Tmax = 0.3 (N) with a specific impulse of Isp = 2500 (s) starts its
transfer from Earth’s orbit to reach, after a time of flight Δt , Mars’ orbit. Both
starting and target orbits are considered Keplerian. The optimal transfer strategy is
found by solving the resulting TPBVP where we seek the time of flight Δt , departure
eccentric anomaly E0, arrival eccentric anomaly Ef and departure co-state variables
λ0 that satisfy the boundary conditions, the dynamics Equation (7), the transversality
condition on free time Equation (8), free mass Equation (9) and free anomalies
Equation (12).

The TPBVP is solved first for quadratic control optimality (QOC - α = 0).
Once the optimal trajectory is found, the problem is then solved with gradually
increasing α until mass-optimal control (MOC) is achieved α = 1, at which point
both solutions (nominal trajectories visualised in Figure 1) are stored as

Mass Optimal Control
Quadratic Control

Figure 1 The two nominal trajectories considered
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Tnom = {
(x,λ, t)nom,j

}
, j = 0, . . . , Jnom

where the grid points are determined by the adaptive integrator used. This will result
in more points allocated in areas where the dynamics gradient is higher, which
are also areas where we would want to have more training samples, and is thus
considered as an appropriate mechanism.

6 Generating the QOC Data Set

As we want to train a deep neural architecture to represent the optimal control
around our nominal trajectories, we need to generate a large data set describing
the functional relationship that is to be learned. Such a functional relationship is the
optimal state feedback (x → u∗) which can be computed along single trajectories
neighbouring the nominal ones at the cost of solving the resulting TPBVPs. In
order to make use of previously computed solutions (starting from the nominal
trajectories) to help the convergence of the TPBVP solver, a continuation technique
is then employed where new TPBVPs are created using as initial states those of
the nominal trajectories perturbed along a random walk and as initial co-states
those computed from previous steps. This allows to generate efficiently the database
continuing one starting solution, i.e. the nominal trajectory. The TPBVP is solved
by means of a simple single shooting method. The pseudo algorithm used to fill
the data set is given in Algorithm 1 which is run starting from ten different points
equally spaced along the nominal trajectory and using α = 0. Let the final data set

TQOC = {Ti} , i = 0, . . . , I (13)

contain I trajectories

Ti =
{
(x,λ, t)i,j

}
, j = 0, . . . , Ji (14)

sampled in Ji nodes (as determined by the outcome of an adaptive step numerical
integration) each recording the states x, the co-states λ and the times t . We refer to
this data set as QOC (quadratic optimal control).

6.1 Generating the MOC Data Set

A second data set containing mass-optimal trajectories is obtained via continuation
over the parameter α (homotopy). Iterating through the initial states and co-states
in TQOC, an attempt is made to solve, starting from that guess, directly a mass-
optimal control (α = 1). If the resulting trajectory is feasible, it is stored and the
next data set entry is considered. If the trajectory is not feasible, the homotopy
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Algorithm 1 Random walk
1: procedure RANDOM WALK(xnom,j ,λnom,j , Δtnom,j , Efnom , α, γ , n)
2: T ← {} % Set of optimal trajectories
3: x0 ← xnom,j % Set initial state as nominal
4: λ0 ← λnom,j % Set initial co-state as nominal
5: Δt ← Δtnom,j % Set time of flight as nominal
6: Ef ← Efnom % Set arrival eccentric anomaly as nominal
7: γ ← γ % Nominal perturbation percentage
8: for i ← 1, . . . , n do % n random perturbations
9: β ← U(−1, 1) ∈ R

7 % Vector of random uniformly distributed numbers
10: x1 ← x0 + x0 & βγ % Perturb state in random direction by γ

11: (λ1,Δt1, Ef1 ) ← TPBVP(x1,λ0,Δt, Ef , α)

12: if successful then % If the TPBVP is successfully solved
13: Update T % Save successful trajectory
14: x0 ← x1 % Accept perturbed state
15: λ0 ← λ1 % Accept new computed co-states
16: Δt0 ← Δt1 % Accept new computed time of flight
17: Ef0 ← Ef1 % Accept new computed eccentric anomaly
18: γ ← (γ + γ )/2 % Increase perturbation size
19: else % If solution is unfeasible
20: γ ← γ /2 % Decrease perturbation size and solve again
21: end if
22: end for
23: return T % Return set of optimal trajectories
24: end procedure

parameter is decreased, and the optimisation is reattempted. If successful, the
homotopy parameter is saved as the current best and its current value is increased. If,
instead, the TPBVP solver is not converging, the homotopy parameter is decreased,
and the algorithm continues. The pseudo code describing the homotopy method
is outlined in Algorithm 2 and results in a new data set TMOC containing mass-
optimal trajectories and visualised in Figure 2.

7 Learning Details and Network Architecture

We consider for both of the data sets, TMOC and TQOC, the optimal state-action
pairs (x,u) and we build a deep model of the relation u(x), i.e. the optimal state
feedback. The dimension of the values we have to model is D = 3 as they represent
a three dimensional vector (i.e. the thrust vector). We choose to represent such a
vector in its polar coordinates so that

u = u [sin θ cosφ, sin θ sinπ, cos θ ]

where θ is the polar angle, φ is the azimuth angle and u is the throttle magnitude.
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Algorithm 2 Homotopy
1: procedure HOMOTOPY(xQOC,0,λQOC,0,ΔtQOC,EfQOC

, αtol)
2: α ← 1 % Try to solve for mass-optimal at first
3: loop
4: (λ,Δt, Ef ) ← TPBVP(xQOC,0,λQOC,0,ΔtQOC,EfQOC

, α)

5: if successful then % If the TPBVP is successfully solved
6: α� ← α % Current best α
7: (λQOC,0,ΔtQOC,EfQOC

) ← (λ,Δt, Ef ) % x�
0 doesn’t change

8: if α < αtol then
9: α ← (1 + α)/2 % Increase α

10: else if α ≥ αtol then % If α is close to 1
11: α ← 1
12: else if α = 1 then % If trajectory is feasible and mass-optimal
13: return T % Break the loop and return trajectory
14: end if
15: else
16: α ← (α + α�)/2 % Decrease α and retry
17: end if
18: end loop
19: end procedure

Figure 2 Visualisation of the MOC data set containing 308,579 optimal state-control pairs around
the nominal trajectory

In previous work [42], it was found that a feed-forward, fully connected neural
network with 3 hidden layers and 32 units/layer could satisfactorily represent the
optimal guidance profile for a problem with simpler dynamics. Starting from that
knowledge, and from the fact that we are here considering a higher dimensional
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case with a higher degree of complexity, we experimented with deeper and wider
networks. The result of our investigation indicated that peak performance could
be obtained by a neural network with four hidden layers and 200 units per layer.
Larger networks either matched this performance or performed worse. We settled
on the rectified linear unit (ReLU) as the activation function for the hidden layers.
In addition, we used a hyperbolic tangent activation function for the output layer.
Thus we scaled the targets in the data set to the range [−1, 1]. We initialised the
network’s weights using the heuristic in [16] in which random values are sampled
from a uniform distribution close to zero. Biases were initialised to zero. We also
normalised our input data such that features had a mean of zero and standard
deviation of one; this helped to speed up the optimisation process. We used the
Adam training algorithm [29], a variant of stochastic gradient descent. Weights were
updated based on a minibatch of 64 training examples. For the performance metric
we use the commonly used mean squared error loss function (MSE). A 10% split
is used to define training and validation data. We used an adaptive learning rate
starting from an initial value of 10−3. The learning rate was reduced by a factor
of 10 when we observed a plateau in the training loss for a period greater than
10 epochs. Furthermore, we stopped training when we observed a plateau in the
training loss for greater than 50 epochs (‘early stopping’). The plateau was defined
to be a decrease in loss less than 10−4. We experimented with different values for
the hyperparameters described above before settling on the final configuration.

8 Results

We train different networks to predict the three outputs both concurrently or
separately and on both TMOC and TQOC data sets. We indicate each network

using superscripts and subscripts. For example, NMOC
φ,θ indicates the network trained

to model the variables φ and θ in the TMOC data set. We report in Table 1 the
obtained validation loss in the cases tested. We note that the best results for the
output variables are obtained from different models indicating the absence of a clear

Table 1 MSE for neural networks trained on the MOC and QOC data sets

MSE

Network u φ θ Epochs

N
QOC
u,φ,θ 0.0178 0.0690 0.0870 453

N
QOC
φ,θ – 0.0755 0.0907 461

N
QOC
u 0.0075 – – 247

N
QOC
φ – 0.0698 – 394

N
QOC
θ – – 0.0976 503

MSE

Network u φ θ Epochs

NMOC
u,φ,θ 0.7250 0.0255 0.0337 794

NMOC
φ,θ – 0.0212 0.0289 316

NMOC
u 0.7740 – – 721

NMOC
φ – 0.0204 – 248

NMOC
θ – – 0.0305 324

The networks differ on the output dimension
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Figure 3 Loss history for the networks N
QOC
u,φ,θ and NMOC

u,φ,θ . Note the jumps correspond to the
learning rate being reduced

Figure 4 Network N
QOC
u,φ,θ predictions on four different transfers from the QOC test set

trend to be exploited, while one could expect that predicting the entire thrust vector
at once would bring advantages as the network would be able to share some of the
weights as part of the necessary computations. We also report in Figure 3 the loss
during the training for the representative case of the NMOC

u,φ,θ and NQOC
u,φ,θ networks

showing a relatively standard trend. We finally show four different optimal transfers
and plot alongside them the optimal values against the predicted network values.
The results are visualised in Figures 4 and 5.

It appears that a deep network is able to represent the optimal guidance structure
of the Earth–Mars transfer quite satisfactorily introducing errors that are, on
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Figure 5 Network NMOC
u,φ,θ predictions on four different transfers from the MOC test set

average, rather small. One should also keep in mind that the actual quantitative
value of the losses can be improved by further fine-tuning of the hyperparameters
used in training the models. In general, we observe the prediction of the throttle u is
better attained in the QOC case. This is not surprising as the structure of the optimal
control in the MOC case is highly discontinuous being a bang-bang control. We
further note that data points close to the switching points are very difficult to predict
correctly and when erroneously predicted result in big contributions to the overall
loss. These points form a majority in the data sets; a consequence of the time grid
defined by the numerical integrator for the TPBVP shooting method solver. This is
the reason for the MSE on the u prediction to be of a greater magnitude in the case
of the MOC networks, while the visualised plot of the predictions for the same cases
is actually returning a much better scenario.

A definitive assessment on the capability of the trained deep models to steer
correctly the spacecraft has to be conducted, in a similar fashion to what done in
[42], by integrating forward the whole spacecraft dynamics considering the deep
network predictions as a control and will be part of a separate future publication.
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Real-Time Optimal Control Using
TransWORHP and WORHP Zen

Matthias Knauer and Christof Büskens

Abstract In many industrial applications solutions of optimal control problems are
used, where the need for low computational times outweighs the need for absolute
optimality. For solutions of fully discretized optimal control problems we propose
two methods to approximate the solutions of problems with modified parameter
values in real-time by using sensitivity derivatives.

We use TransWORHP to transcribe an optimal control problem to a sparse
nonlinear programming problem, which will be solved using our NLP solver
WORHP. For this nominal solution sensitivity derivatives can be computed with
respect to any system parameter using WORHP Zen. On NLP level, the sensitivity
derivatives allow to perform correction steps for changes in the system parameters.
This concept can be transferred to discretized optimal control problems using,
e.g., the sensitivity derivatives of the boundary condition or of the discretized
differential equations. The quality and applicability of both methods are illustrated
by a trajectory planning problem in the context of the planar restricted problem
of three bodies. In both methods the sensitivity derivatives can be used to give
numerical validations of the theoretically expected convergence behaviour.

1 Introduction

Numerical solution methods for optimal control problems are used widely and
successfully in many academic and industrial applications. The quality of a
computed optimal solution depends on the used mathematical model and on the
knowledge available at the start of the optimization process. If the solution is applied
to operate a real system, perturbations will always occur. The initial state might be
different than expected, or the environment might have changed since the solution
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was computed. Of course, an updated optimal control problem can be solved now
to handle the new situation.

In many cases, however, the solution of the updated optimal control problem
would take too much time, even if the old solution could be used as a good initial
guess. Different strategies have been developed to generate feasible trajectories
within limited computation time:

Feedback control. Based on the dynamic system, a Riccati controller can be used
to compensate for occurring perturbations and bring the states back on track, see
[11].

Model predictive control. By considering only a finite time horizon for the
optimal control problem, computation times can be reduced. In this method, any
type of changing constraints can be considered, see [8, 10].

Sensitivity updates. Only cheap matrix–vector multiplications are needed to
update the solution using sensitivity derivatives, see [5].

In this chapter, we will propose two methods for sensitivity updates for fully
discretized optimal control problems. Using an example we will discuss the appli-
cability and quality of both methods. We use TransWORHP to solve optimal control
problems and WORHP Zen to generate the accompanying sensitivity derivatives.
Both tools were developed especially for the NLP solver WORHP.

2 Optimal Control

How do I have to operate a system to guide it from an initial state to a final state
without overstressing? This question, which applies to a wide range of problems
(from landing trajectories of spaceships to medication of patients), is the template
for optimal control problems:

min
x,u,tf

φ(x(tf ))+
tf∫

0

f0(x(t), u(t)) dt

s.t. ẋ(t) = f (x(t), u(t)), t ∈ [0; tf ]
x(0) = x0

x(tf ) = xf

g(x(t), u(t)) ≤ 0, t ∈ [0; tf ]

(1)

Here, a control function u ∈ C0
p([0; tf ],Rnu) and a state function x ∈

C1
p([0; tf ],Rnx ) have to be determined for a fixed or free final time tf . The dynamic

behaviour of the system is modelled using a function f ∈ C1(Rnx × R
nu,Rnx ).

Cj (I,Rn) denotes the class of j times continuously differentiable functions from a
domain I ⊂ R

k to R
n, and C

j
p(I,R

n) ⊂ Cj−1(I,Rn) the class of j times piecewise
continuously differentiable functions.
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For simplicity, let’s for now allow only completely given initial and final states
x0 resp. xf . The control u(t) and the state x(t) have to comply with inequality
constraints using the function g ∈ C1(Rnx × R

nu,Rng ).
The optimal solution (x�(t), u�(t)) has to minimize the objective function

consisting of the final term φ ∈ C1(Rnx ;R) and the integral of f0 ∈ C1(Rnx ,Rnu).
Note that the integral term can always be omitted by introducing a new differential
equation

ẋ+(t) = f0(x(t), u(t)), x+(0) = 0 (2)

and using φ(x(tf ))+ x+(tf ) in the objective. Hence, we can assume f0 ≡ 0 in the
following.

2.1 Discretization

The infinite dimensional optimal control problem (1) can be approximated by a
nonlinear programming problem (NLP) consisting of a large, but only finite number
of parameters. See [2] or also [13] for a comparison of different methods. The so-
called direct methods replace the continuous time interval [0; tf ] by discrete grid
points

0 = t1 ≤ t2 ≤ · · · ≤ t% = tf , % ∈ N (3)

Likewise, the control function u(t) and the state function x(t) are replaced by
vectors of discrete values

u = (u1, . . . , u%)T , x = (x1, . . . , x%)T (4)

where ui ≈ u(ti) and xi ≈ x(ti).
Finally, the trapezoidal method is applied to the system of ordinary differential

equations in (1), resulting in the discretized version of the optimal control problem,
where hi := ti+1 − ti , i = 1, . . . , %− 1 and f i = f (xi, ui):

min
x,u,tf

φ(x%)

s.t. xi+1 = xi + hi
f i+f i+1

2 , i = 1, . . . , %− 1
x1 = x0

x% = xf

g(xi, ui) ≤ 0, i = 1, . . . , %

(5)

For full discretization the discretized variables x and u can be grouped to a vector
of optimization variables z = (x, u) ∈ R

(nx+nu)·%. In case of a free final time, tf is
also inserted into the vector z. The (in-)equality constraints of (5) can be grouped
together as well. Alternatively, for shooting methods the discretized variables x are
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only considered in the vector of optimization variables z for selected shooting points
and are computed using Runge–Kutta schemes elsewhere. In both cases, (5) was
led back to an NLP with n optimization variables and m constraints. Using the
function F ∈ C1(Rn,R) for the objective, and collecting all me equality and m−me

inequality constraints in G ∈ C1(Rn,Rm), we get:

min
z∈Rn

F (z)

s.t. Gi(z) = 0, i = 1, . . . , me

Gi(z) ≤ 0, i = me + 1, . . . , m

(6)

2.2 Numerical Solution

Sequential quadratic programming methods (SQP) can be used to solve (6) effi-
ciently. Starting from an initial guess they approximate the solution of the nonlinear
problem by a sequence of solutions of quadratic problems (QP). The ESA NLP
solver WORHP implements a sparse SQP method to solve systems with millions of
variables under millions of constraints, see [6]. Obviously, also for smaller problems
the sparsity of the derivative matrices can be exploited to keep computation times
small. Fully discretized problems (5) naturally yield highly structured NLPs.

To solve an optimal control problem (1) the software library TransWORHP
generates the finite dimensional problem (5) and uses WORHP to solve it, see [9].
Different transcription schemes are available in TransWORHP:

Full discretization. The user can currently choose between Euler’s method, the
trapezoidal rule and Hermite–Simpson.

Multiple shooting. All discretized control variables, but only selected state
variables are optimized. This method can be used with any Runge–Kutta method
or Runge–Kutta–Fehlberg method for integration.

Pseudospectral methods. The discretized control and state variables are inter-
preted as control points of a polynomial of high order resulting in smooth
functions.

TransWORHP was especially designed to solve problems consisting of multiple
phases. The user can define a set of optimal control problems and connect their
discretized versions to one large NLP.

3 Parametric Nonlinear Programming

If the functions F and G in (6) additionally depend on a parameter p ∈ N
np , a

parametric nonlinear programming problem is formulated. After an optimal solution
was found for a fixed p = p0, it is known, which constraints are active or inactive.
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Without restriction the inactive inequality constraints can be removed from the
problem, and only ma ≤ m active constraints Ga remain:

min
z∈Rn

F (z, p)

s.t. Ga
i (z, p) = 0, i = 1, . . . , ma

(7)

For an optimal solution of (7) for a fixed p = p0, the tool WORHP Zen can be
used to compute sensitivity derivatives dz

dp
(p0). The proof of the sensitivity theorem,

as given, for example, by Fiacco et al. [7], shows how the sensitivity derivatives can
be computed without measurable computational cost by solving this system:

( ∇2
z L ∇zG

aT

∇zG
a 0

)
·
(

dz
dp

(p0)
dλ
dp

(p0)

)

= −
( ∇zpL

∇pG
a

)
(8)

Here, the Lagrange multipliers λ ∈ R
ma and the Lagrange function

L(z, λ, p) := F(z, p)+ λT Ga(z, p) (9)

are used. If perturbations occur, i.e. p 	= p0, the sensitivity derivatives can be used
for real-time approximations of the solution of a perturbed problem:

z[1] := z(p0)+ dz

dp
(p0) · (p − p0) (10)

After this pre-correction step the constraint Ga
i (z

[1]) ≤ 0 might not be fulfilled
anymore and z[1] has to be considered as an infeasible solution. However for a
sequence of post-correction steps, we additionally consider linear perturbations
q ∈ N

m in the constraints of (7):

min
z∈Rn

F (z, p)

s.t. Ga
i (z, p)+ q = 0, i = 1, . . . , ma

(11)

For q = 0 the problems (7) and (11) coincide. The measured violation of the
constraints, q, can be reduced iteratively for i = 1, 2, 3, . . . :

z[i+1] := z[i] + dz

dq
(0) · q (12)

Please note that after solving (11) the sensitivity derivatives dz
dq

(0) can be
computed as in (8) for a simpler right-hand side, as ∇zqL = 0 and ∇q(G

a+q) = I .
Some important properties of these correction steps are proven in [4].
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Theorem 1 (Convergence of Repeated Correction Method) Let the necessary
and sufficient optimality conditions of first and second order be fulfilled, and
F,Ga ∈ C3.

Then there exists U(p0), v ∈ Ker(∇zG
a(z(p0), p0)), ‖v‖ = O(‖p− p0‖2) such

that for all p ∈ U(p0), i = 2, 3, 4, . . . :

‖z(p)− z[i]‖ = ‖v‖ + O(‖p − p0‖3)

‖F(z(p), p)− F(z[i], p)‖ = O(‖p − p0‖3)

‖Ga(z[i], p)‖ = O(‖p − p0‖i+1)

(13)

The last equation ensures the convergence to a feasible solution, as

‖Ga(z[∞], p)‖ = 0 (14)

4 Real-Time Optimal Control

Sensitivity derivatives for parametric optimal control problems with a perturbation
parameter p in any function of (1) can be straightforwardly determined, at least
when considering the discretized version (5). Further, the results of Theorem 1
can be transferred to optimal control problems and the sensitivity derivatives can
be used for iteratively reducing errors in boundary conditions or path constraints
while preserving optimality [3]. After solving the fully discretized optimal control
problem for a nominal value p = p0 and preparing the sensitivity differentials
dz
dp

(p0), approximative solutions for perturbations p 	= p0 can be computed in real-
time.

For comprehensibility, we restrict the presentation of the following methods to
perturbations in the initial point and want to ensure that boundary conditions in the
final point hold.

4.1 Using Sensitivity Derivatives of Boundary Condition

This method can be applied to fully discretized optimal control problems as well as
to shooting methods:

min
x,u,tf

φ(x%)

s.t. xj+1 = xj + hj
f j+f j+1

2 , j = 1, . . . , %− 1
x1 = x0 + p

x% = xf + q

g(xj , uj ) ≤ 0, j = 1, . . . , %

(15)
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Initialize iteration counter i := 1
Update control to compensate initial perturbation:

u[1] := u(p0)+ du

dp
(p0) · (p − p0)

Compute state x[1] by integration using u[1]
Measure final state deviation:

Δq[i] := x[i],% − xf

while ‖Δq[i]‖∞ > ε do
Update control:

u[i+1] := u[i] + du

dq
(0) ·Δq[i]

Compute state x[i+1] by integration using u[i+1]
Update final state deviation Δq[i+1]
Update iteration counter i ← i + 1

end

Algorithm 1: Real-time optimal control using sensitivity derivatives of boundary
condition

To handle perturbations p at the initial point in the pre-correction step, the sensitivity
derivative du

dp
(p0) ∈ R

(nu·%)×nx is needed. To ensure feasibility of the final point in
the post-correction steps, an additional perturbation q is introduced to compute the
sensitivity derivative du

dq
(0) ∈ R

(nu·%)×nx .

Algorithm 1 uses the derivatives du
dp

(p0) and du
dq

(0) to generate an approximative
solution of the perturbed optimal control problem in real-time.

To integrate the state in Algorithm 1 starting from x[i],1 = x0+p, the trapezoidal
method has to be implemented. However, this requires the solution of implicit
equations.

4.2 Using Sensitivity Derivatives of Discretized Differential
Equations

This method only applies to fully discretized optimal control problems:

min
x,u,tf

φ(x%)

s.t. xj+1 = xj + hj
f j+f j+1

2 + qj , j = 1, . . . , %− 1
x1 = x0 + p

x% = xf

g(xj , uj ) ≤ 0, j = 1, . . . , %

(16)
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Initialize iteration counter i := 1
Update control and state to compensate initial perturbation:

u[1] := u(p0)+ du

dp
(p0) · (p − p0)

x[1] := x(p0)+ dx

dp
(p0) · (p − p0)

Measure deviations in discretized differential equations:

Δq[i] :=
(
x[i],j+1 − x[i],j − hj

f [i],j + f [i],j+1

2

)

j=1,...,%−1

while ‖Δq[i]‖∞ > ε do
Update control and state:

u[i+1] := u[i] + du

dq
(0) ·Δq[i]

x[i+1] := x[i] + dx

dq
(0) ·Δq[i]

Update deviation in discretized differential equations Δq[i+1]
Update iteration counter i ← i + 1

end

Algorithm 2: Real-time optimal control using sensitivity derivatives of discretized
differential equations

To handle perturbations p at the initial point in the pre-correction step, the sensitivity
derivatives du

dp
(p0) ∈ R

(nu·%)×nx and dx
dp

(p0) ∈ R
(nx ·%)×nx are needed. After the pre-

correction step the final point is still feasible, as the optimization variable x% is
forced to equal xf and hence the sensitivity of x% with respect to any perturbations
is zero. However, the equations containing the discretized differential equations
will not hold anymore. To enforce them in the post-correction steps, an additional
perturbation q = (qj )j=1,...,%−1 is used to provide the sensitivity derivatives
du
dq

(0) ∈ R
(nu·%)×(nx ·(%−1)) and dx

dq
(0) ∈ R

(nx ·%)×(nx ·(%−1)).

Algorithm 2 uses the derivatives du
dp

(p0), dx
dp

(p0), dx
dq

(0) and du
dq

(0) to generate
an approximative solution of the perturbed optimal control problem in real-time
only using matrix–vector multiplications. We used the abbreviation f [i],j =
f (x[i],j , u[i],j ). In case of a free final time tf , the derivatives

dtf
dp

(p0) and
dtf
dq

(0)
have to be considered analogously for both methods. This is necessary, as the final
time is expected to change for perturbed problems.
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5 Numerical Results

The functionality of Algorithms 1 and 2 will be illustrated by the restricted problem
of three bodies [1], which we expand to an optimal control problem.

5.1 Restricted Problem of Three Bodies

Two bodies with finite masses m1 and m2 are orbiting around their center of mass.
The restricted problem of three bodies studies the motion of a test body with
infinitesimal mass in the gravitational field of the masses m1 and m2. In particular
the test body does not influence the other bodies.

The standard scaling of this problem is also suitable for optimization:

• The masses of the two bodies are scaled such that their sum is 1. Without
restriction let m2 = μ ≤ 1

2 . Then we get m1 = 1 − μ.
• The constant distance between the finite masses is a = 1.
• The time scale is chosen such that the gravitational constant is G = 1.
• The mean motion n of the masses depends on their period T and hence

n = 2π

T
=
√

G
(1 − μ)+ μ

a3 = 1 (17)

The coordinate system to describe the motion of the test body is defined such that
the origin is located in the center of mass of the system, and the axes are rotating
together with the masses in the x–y-plane such that the x-axis always goes through
the masses m1 and m2. For simplicity, we will only consider the planar restricted
problem of three bodies. The fixed positions of the masses m1 and m2 in the rotating
coordinate system are (x1, 0) and (x2, 0), respectively. We will denote the distance
of the test body to the mass mi by

ri =
√
(x − xi)2 + y2, i = 1, 2 (18)

Then, the motion of the test body is subject to this system of second order
differential equations:

ẍ − 2ẏ − x = −(1 − μ)
x − x1

r3
1

− μ
x − x2

r3
2

ÿ + 2ẋ − y = −(1 − μ)
y − y1

r3
1

− μ
y − y2

r3
2

(19)
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Figure 1 Lagrangian points
L1–L5 in the restricted
problem of three bodies

L 1 L 2

L 4

L 5

L 3

To ensure that the center of mass is in the origin, x1 = −μ and x2 = 1 − μ have
to be fulfilled. The Lagrangian points Li are the five stationary solutions of (19).
L1, L2 and L3 are located on the x-axis. L4 and L5 form equilateral triangles with

the masses m1 and m2, as shown in Figure 1. If μ < 1
2 −

√
23
108 it can be shown that

L4 and L5 are stable in the linearized system.
As exemplary optimal control problem we will discuss the controlled motion of

the test body.

5.2 Optimal Control for a Spaceship

As an illustrative example the task is to generate trajectories for a spaceship flying
from a point p0 close to L5 to a point pf close to L4:

p0 = (0.5,−0.866), pf = (0.5, 0.866) (20)

The acceleration achieved by the thrusters is considered as the vector of control
functions u = (ux, uy) in the optimal control problem. Here, the control ux is acting
in the direction of x and the control uy is acting in the direction of y.

The vector of state functions x = (px, py, vx, vy) collects the positions in
directions x and y and their velocities, which we have to introduce when writing (19)
as a first order system. To generate a maneuver between two rest positions,
we set

v0 = (0, 0), vf = (0, 0) (21)
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In the notation of (1), let us define the trajectory planning problem as follows:

min
x,u,tf

tf + ω

tf∫

0

u2
x + u2

y dt

s.t. ṗx = vx

ṗy = vy

v̇x = 2vy + px − (1 − μ)(px − x1)

r3
1

− μ(px − x2)

r3
2

+ ux

v̇y = −2vx + py − (1 − μ)py

r3
1

− μpy

r3
2

+ uy

(px, py)(0) = p0

(px, py)(tf ) = pf

(vx, vy)(0) = v0

(vx, vy)(tf ) = vf

(22)

The objective is to minimize the process time tf as well as the control input (or
‘energy’) as an integral term. For simplicity we use the weighting parameter ω = 1.
The mass of the smaller body is μ = 0.01.

5.3 Reference Solution with TransWORHP

In Figure 2 the unperturbed solution is shown in blue for % = 101 discrete points.
The task was to find a trajectory from p0 to pf . The spaceship can gain velocity by
being attracted to the larger mass m1, close to the origin. The resulting process time
is tf = 2.46672 and E = 1.13076 is a measure for the control input.

If the initial position is perturbed—in our example we modify the position in
direction y by 0.1 and the velocity in the same direction by 0.1—the final position
will not be reached if the same control is applied, as the red curve (perturbed
integration) in Figure 2 shows. The slightly smaller initial distance to the masses
accelerates the spaceship more than planned during optimization.

However, solving the optimal control problem from the perturbed initial position
and velocity

p̃0 = (0.5,−0.866 + 0.1), ṽ0 = (0, 0 + 0.1) (23)

we will fulfil the final condition again, as shown in green in Figure 2. As the
distance from the perturbed initial point to the final point is shorter, and as the
perturbed initial velocity points in the right direction, we get a faster process with
tf = 2.22978 and need less energy E = 1.04937. The controls for the unperturbed
and perturbed solution are shown in Figure 3.
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Figure 2 Position and velocity for the optimal solution from the unperturbed and the perturbed
initial position
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Figure 3 Controls for the optimal solution from the unperturbed and the perturbed initial position

All solutions for (22) have been computed with TransWORHP. Full discretization
with the trapezoidal method requires n = (nx + nu)% + 1 = 708 variables in the
NLP. Note that nx = 5, as the integral term in the objective function, is implemented
as an additional differential equation. One optimization variable is used for the free
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Table 1 Dependency pattern for differential equations as used by TransWORHP

States Controls

px py vx vy E ux uy

Differential equations ṗx ×
ṗy ×
v̇x × × × ×
v̇y × × × ×
Ė × ×

final time. After optimization m = nx(% − 1) = 500 equality constraints for the
discretized differential equations have to be fulfilled.

The objective function only consists of two NLP variables. Hence the gradient
only has two non-zero entries out of n (with the values 1 and ω). The Jacobian
of the constraints could store up to n · m = 354,000 entries. However, due to the
discretization in (5) each constraint only depends on two adjacent points. Table 1
shows that each differential equation only depends on few states and controls. This
pattern can be used to provide a Jacobian with only 3900 non-zero entries. We use
finite differences to compute them (although it would also be possible analytically).
The Hessian also takes advantage of the fact that constraints only depend on two
adjacent points. Using finite differences again, we only have to compute 3536 out
of n(n+1)

2 = 250,986 entries.
We used a reasonable initial guess for the process time tf = 2.5 and for the

controls

ux = 0.5 − 0.38t, uy = −0.6(t − 1.3)2

and provided an initial guess for the states by integration. An optimal solution
was found using TransWORHP in 10 NLP iterations with a precision of 10−6 for
feasibility and optimality. The high level of sparsity allowed the computation in
approximately 5 s on a standard pc using standard WORHP settings.

5.4 Real-Time Solution Using WORHP Zen

Instead of solving the optimal control problem again in the case of a perturbation,
we will now apply the algorithms of Sect. 4 to approximate the optimal solution in
less time.

In the method described in Sect. 4.1 the pre-correction step considering the
measured perturbation in the initial position brings the spaceship closer to the final
position, but still does not reach it. The final position in direction y is almost
reached, whereas in direction x there is a big gap, see the yellow curves in Figure 4.
After some post-correction steps, however, the desired final position is reached
precisely (purple curves). In Table 2 the iterative behaviour of the objective function
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Figure 4 Real-time optimal control for the spaceship using sensitivity derivatives of boundary
condition
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Table 2 Process time tf ,
energy term and final state
deviation for real-time
optimal control for the
spaceship using sensitivity
derivatives of boundary
condition

Iteration tf E ‖Δq[i]‖∞
0 2.46672 1.13076 0.5256863

1 2.30186 0.77673 0.4980371

2 2.34467 1.19887 0.1383581

3 2.33899 0.83768 0.0231891

4 2.33976 0.84755 0.0030709

5 2.33917 0.84558 0.0015629

6 2.33919 0.84594 0.0001827

7 2.33917 0.84585 0.0000756

8 2.33917 0.84586 0.0000132

9 2.33917 0.84585 0.0000041

10 2.33916 0.84585 0.0000009

and the constraints during the correction steps is shown. The free process time tf
is also adjusted during the iteration. Starting with an initial velocity towards our
target results in a shorter process time. Iteration 0 is the solution computed for the
perturbed initial position. In iteration 1 the pre-correction step was applied, and the
following iterations refer to the post-correction steps.

On the other side, the pre-correction step of the method described in Sect. 4.2
already reaches the final position and velocity exactly as shown in Figure 5.
However, the updated controls and states do not fulfil the system of discretized
differential equations anymore, as shown in Figure 6. This gap can be closed
during the post-correction steps. In Figure 6 after the fourth post-correction step
the deviation can’t be distinguished from zero anymore.

The process time is also adjusted for this method. Comparing the results for both
methods in Tables 2 and 3 we get a smaller process time for the second method, at
a higher energy cost.

5.5 Comparison with Convergence Theorem

In Theorem 1 an exponential convergence rate for the constraints (13) was shown.
This can be observed in the last column of Table 2 and in Figure 7 for the method
described in Sect. 4.1. In every iteration, the measured deviation in the final point is
reduced by the same magnitude.

Analogously, Table 3 and Figure 8 visualize the convergence rate for the method
described in Sect. 4.2. A remarkable fact when using the post-correction steps:
solutions can be found which hold the system of differential equations with higher
accuracy than the original solution, where only 10−6 was demanded.

Furthermore, Theorem 1 states in (13) that the objective function maintains
optimality depending on the deviation ‖p−p0‖3. To show this numerically, we use
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Figure 5 Real-time optimal control for the spaceship using sensitivity derivatives of discretized
differential equation
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Figure 6 Deviation Δq[i],j in discretized differential equations for j = 1, . . . , % − 1 (% = 101)
during correction steps

the same unperturbed solution as in Sect. 5.3 together with the sensitivity derivatives
and consider perturbations Δy0 ∈ [−0.4, 0.4] in the initial position of py .

For the method described in Sect. 4.1, Figure 9 shows that the feasible solution
after the post-correction steps is a good approximation of the perturbed optimal
solution for a large range of Δy0. For the objective function (sum of process time
and energy) a cubic behaviour was expected. However, the individual components
of the objective function act differently.

As expected, smaller perturbations require less iterations. The number of itera-
tions is reflected also directly in the computational time of 0.5–2 s using MATLAB.
Obviously, the trapezoidal method takes the largest part of the high computational
cost.
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Table 3 Process time tf ,
energy term and deviations in
discretized differential
equations for real-time
optimal control for the
spaceship using sensitivity
derivatives of discretized
differential equation

Iteration tf E ‖Δq[i]‖∞
0 2.46672 1.13076 0.1414214

1 2.30186 0.77673 0.0113876

2 2.29206 0.90077 0.0089981

3 2.28513 0.92540 0.0011791

4 2.28319 0.93618 0.0013948

5 2.28328 0.93942 0.0002601

6 2.28275 0.94005 0.0001871

7 2.28292 0.94058 0.0000506

8 2.28280 0.94056 0.0000245

9 2.28284 0.94065 0.0000086

10 2.28282 0.94063 0.0000033

11 2.28282 0.94065 0.0000015

12 2.28282 0.94065 0.0000006

0 2 4 6 8 10 12
iteration

10-6

10-4

10-2

100

Figure 7 Convergence of ‖Δq[i]‖∞ in final point during correction steps

Analogously Figure 10 shows the results for the method described in Sect. 4.2.
The post-correction steps yield better approximations for the objective function than
for the first method. Even if the number of iterations is higher (for larger deviations)
than for the first method, the computational time of under 0.06 s (using MATLAB
again) is remarkably smaller as the trapezoidal method is not called any more.
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Figure 8 Convergence ‖Δq[i]‖∞ in discretized differential equations during correction steps

6 Conclusion

Sensitivity derivatives can be used to generate sub-optimal solutions of perturbed
optimal control problems. Constraints, which have been active in the solution of the
unperturbed problem, can be iteratively fulfilled. The optimality of the sub-optimal
solution depends on the amount of perturbation.

We presented two methods to ensure feasibility in the post-correction steps:
First, by using sensitivity derivatives of the boundary condition only small matrices
of sensitivity derivatives were needed. However, the states have to be integrated
for updated controls to evaluate the deviation. For implicit integration methods
as the trapezoidal method, this would require costful operations. Second, by
using sensitivity derivatives of discretized differential equations larger matrices
of sensitivity derivatives were needed. Apart from function evaluations of f this
method only uses matrix–vector multiplications to update the states and controls.

If only selected states have to be transferred to a motor controller, the pre-
correction step of the second method already provides an acceptable solution.

As active constraints on the controls would stay active after the correction
steps, optimality can’t be guaranteed any more. On the other hand, the presented
algorithms would not handle it, if inactive constraints on the controls would get
active. However, by trimming the controls to the feasible region, the algorithm can
be adjusted.
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Figure 9 Approximation of the objective function for the perturbed trajectory using sensitivity
derivatives of boundary condition
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Figure 10 Approximation of the objective function for the perturbed trajectory using sensitivity
derivatives of discretized differential equation
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The hidden potential of sensitivity derivatives is still large. To improve handling
of state perturbations at any time during a manoeuver in the pre-correction step,
[12] applied similar techniques to efficient on-board optimization for a Mars entry.
However, large data sets for sensitivity derivatives are needed in any of these
methods.
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Theory and Applications of Optimal
Finite Thrust Orbital Transfers

L. Mazzini and M. Cerreto

Abstract The main author proposed a mission for the first time with a LEO
to GEO orbital transfer for telecommunication application (GovSatCom). This
mission will allow the use of small launchers to bring, at a lower cost, satellites
of medium and large size at Geostationary orbit. This motivated the authors to
develop a mathematical model in order to find the optimal thrust strategy for very
long orbital transfers of satellites with electric thrusters. During the transfer, the
satellite is supposed capable to steer the thrust vector in any direction. To solve
the optimization problem, an averaging technique has been adopted. The authors
discussed and solved this problem including the J2 and eclipse effects. Moreover
some external constraints are included in the problem in order to avoid simulations
with unrealistic orbital transfers (i.e., too low perigee altitude). Referring to the
papers already published by the authors, this last one is a synthetic review of the
theory and the applications. After a mathematical introduction of the theoretical
notions, new numerical results are presented.

Nomenclature

0 Subscript of the initial orbit
f Subscript of the final orbit
e Eccentricity
a Semi-major axis (km)
g Perigee anomaly from the ascending node
I Inclination
h Right ascension of the ascending node (RAAN)
u Anomaly from the descending node
ν Anomaly from the perigee
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r Satellite range, dimensional (km) or non-dimensional r = r/a0
p Satellite range rate (km/s)
G

√
μα(1 − e2), momentum (km2/s) or non-dimensional

G = √
α(1 − e2)/α0

w Orbital rate integrated in time defined by ẇ = G/r2 = √
μα(1 − e2)/r2

H Angular momentum normal to the equatorial plane (km2/s) or non-
dimensional H = H/

√
μα0

Y1 l/r
Y2 w derivative of Y1
μ Gravitational constant (km3/s2)

A 3-vector, acceleration vector (km/s2)

X 6-vector, non-dimensional orbit state
L 6-vector, non-dimensional orbital costate
X 8-vector, non-dimensional orbital state
L 8-vector, non-dimensional orbital costate
l 3-vector, firing direction cosines in orbital frame
B 6,3-matrix, maneuver matrix
M Satellite mass (kg)
m Mass flow rate (kg/s)
Ve Gas exhaust velocity (km/s)
f Non-dimensional control force
V Non-dimensional characteristic velocity
GEO Geostationary Earth Orbit
MEO Medium Earth Orbit
LEO Low Earth Orbit
GTO Geostationary Transfer Orbit
RAAN Right Ascension of the Ascending Node

1 Introduction

The use of electric propulsion systems for satellite orbital transfers is a fundamental
topic in space applications. For a given mission and payload application, the electric
thrusters, due to the high value of the specific impulse, significantly reduce the
satellite launch mass with respect to chemical propulsion system. However, the
electric propulsion system provides a very low thrust, thus the orbital transfers
can last many months: for this reason an optimal thrust strategy computation is
necessary in order to minimize the time of the transfer or the propellant.

The optimal control theory for orbital transfers involves two main objectives:
minimize the transfer time (defined by the authors “Tmin problem”) or minimize
the propellant consumption (defined by the authors “Vmin problem”). In particular,
considering a Tmin problem, the thrusters are always switched on during the orbital
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transfer, except when the satellite is in eclipse phase. In the Vmin problem the
optimal thrust strategy calculates the firing arcs where it is convenient to switch
on the thrusters in order to save propellant mass.

The optimization problem can be treated with two different techniques (see also
[3]). The direct method involves controlling the discrete force vector in many nodes
and, for very long orbital transfers, this results in a great number of control variables
in the numeric algorithm. This method is often simplified using part of the features
of the extremal solutions derived from the Maximum Principle (see [7] and, for a
modern introduction, [2]).

The indirect approach looks for the solution using the first order necessary
conditions of extremality from the Maximum Principle, which results in a two
boundary value problem. The problem does not result in searching for the minimum
of a function directly, but consists in solving a two boundary value problem
“shooting” the correct boundary conditions with an algorithm, which is not globally
convergent in such a highly nonlinear context (see modern papers like [6, 7]
and [2]).

In this paper the indirect method is used with simplified solutions for initializing
the “shooting” algorithm. The usual approach is to find approximate solutions
implementing a control parametrization, then averaging the dynamical equations
and finally using the Maximum Principle to optimize the parametrized control.

The authors apply the averaging to the “exact” Hamiltonian and use the averaging
theorem (see Sect. 2.3) that state the ε closeness with the exact optimal solution
in a ε−1 non-dimensional timescale, where ε is the non-dimensional control
force maximum value. The averaging techniques can provide fast and converging
computing methods for long orbital transfers (see also [7]).

The mathematical model developed for the finite thrust optimization takes
into account the perturbations as J2 and the eclipses. In particular, during the
eclipse phases the thrusters must be switched off thus a constraint is necessary
in the optimization process. The conditions produced by the Earth’s shadow can
be represented mathematically as the effect of a non-smooth mixed state control
constraint (see also [4]). This constraint produces a discontinuity in the costate
through an eclipse function (E) which is negative when the satellite is in eclipse
and positive if it is in sunlight.

Thousands of cases representing all possible scenarios for applications have been
studied by the authors, some of them are reported in the numerical section focusing
on the perturbations and eclipse effects.

Furthermore, the study of the relationship between the mission �V cost and the
final right ascending node is reported. The use of low-thrust optimization allows to
deliver in a single launch multiple satellites in different orbital planes (constellation
deployment), this requires the computation of the evolution of the �V as a function
of the final right ascending node. As presented in [11] it is possible to obtain
different extremal solutions starting from the same initial conditions, one with a
higher �V than the other. The introduction of the J2 in this analysis increases
the problem complexity and requires the introduction of the perigee constraint to
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avoid unrealistic collision with the Earth. Two different orbital transfers with a
strong change of RAAN are reported in the numerical section in order to discuss
the obtained results.

Finally, in the numerical section a Vmin problem is reported in order to show how
the mission �V cost decreases, increasing the available transfer time.

2 Mathematical Model

The mathematical model adopted uses a representation in a non-dimensional state,
which greatly simplifies the usual equations. It is possible to obtain the invariant
non-dimensional vector that defines the state of the orbit, always starting from the
Keplerian elements (see [9] and [8]). Following [8] the authors use coordinates
derived from the Hill parameters. In this way they permit to set the system in a
suitable form for direct averaging, without ε series.

For what concern the derivation of the controlled dynamics of the state, it is
necessary to introduce the equations of the satellite dynamics under the effect of
external accelerations. Define the vector A that contains the radial, bi-normal, and
normal components Ar , At , An of the acceleration:

Aα = lα
|ṁ|Ve

M
; dM

dt
= −|ṁ|; α = r, t, n (1)

where ṁ is the propellant mass flow rate, M is the satellite mass, Ve is the exhaust
velocity, and l is the unitary vector of the local flight triad.

The Hill variables were introduced into artificial satellite theory by Izsak, and
they are effective in describing satellite short-term perturbations. In these variables
the maneuver equations are

ṙ = p

ṗ = G2

r3 − μ

r2 + Ar

Ġ = rAt

u̇ = G

r2
− r cos(I )

sin(u)An

G sin(I )

Ḣ = r cos(I )At − r sin(I ) cos(u)An

ḣ = r
sin(u)

G sin(I )
An

(2)



Theory and Applications of Optimal Finite Thrust Orbital Transfers 237

At this point a new independent variable is introduced, the anomaly w that is defined
by:

ẇ = G

r2 ⇒ dt = r2 dw

G
(3)

The vector A multiplied by dt
dw

provides the velocity variation per variation of
anomaly w:

Aw
α = lα

ṁVer
2

MG
(4)

New variables Y1 and Y2 are introduced in place of r and p to obtain an expression
for the in-plane free dynamics similar to that of an oscillator. Such a feature will
later permit to easily introduce as states the invariant amplitudes of the oscillator.
Letting Y1 = 1

r
, dY1

dw
= Y2 and differentiating these two equations with respect to

w, it follows

dY2

dw
= −Y1 + μ

G2
+ Y2

GY1
Aw

t − Aw
r

G
(5)

Then, all the variables are made non-dimensional using a0, the semi-major axis
of the final orbit, by letting Yad.

1 = Y1a0, Yad.
2 = Y2a0, Aad.

α = Aw
α√
μ
a0

, Gad. =
G√
μa0

, and Had. = H√
μa0

. The resulting equations in non-dimensional variables are
formally identical to the dimensional ones with μ = 1. The non-dimensional vector
A is

Aad.
α = lα

ṁVer
2

MG
√

μ
a0

= lαe
V
Ve f

√
a0

a(1−e2)

Y 2
1

(6)

where

• f is the positive non-dimensional control thrust f = ṁVe

M0
μ

a2
0

, limited by a small

parameter ε: f ≤ ε

• M0 is the initial launch mass;
• V is the characteristic velocity;
• Ve is the gas exhaust velocity;
• Y1 is the non-dimensional satellite inverse range.

The multiplicative term in the expression of the acceleration is

√
a0

a(1−e2)

Y 2
1

= dτ
dw

,

where τ = t
√

μ

a3
0

is the non-dimensional time (from now on, the non-dimensional

variables will be always used without the superscript ad.).
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A new non-dimensional invariant state vector X, based on the non-dimensional
Hill parameters and the Keplerian elements, can now be introduced as:

X1 = (Y1 −X3) cos(u)− Y2 sin(u) = eX3 cos(g)

X2 = (Y1 −X3) sin(u)+ Y2 cos(u) = eX3 sin(g)

X3 = 1

G2
= a0

a(1 − e2)

X4 = H

G
= cos(I )

X5 = h

X6 = u− w = g + ν − w

(7)

where a is the semi-major axis, a0 is the reference semi-major axis (typically the
semi-major axis of the final orbit), e is the eccentricity, I is the inclination, g

is perigee anomaly from the ascending node, ν is the anomaly from the perigee,

w is anomaly rate integrated in time from t0 defined by ẇ =
√

μa(1−e2)

r2 . These
parameters have been used in references [9, 10] to develop the full theory of the
optimal transfer, and they offer quite simple maneuver equations although affected
by singularities for orbit at null eccentricity and inclination.

In order to avoid the abovementioned singularities, the theory has been evolved
using a new coordinate system (see [11]). Calling h the right ascension, the new
non-dimensional invariant state vector X is defined as:

X1 = e
a0

a (1 − e2)
cos(g + h) = eX3 cos(g + h)

X2 = e
a0

a (1 − e2)
sin(g + h) = eX3 sin(g + h)

X3 = a0

a (1 − e2)

X4 = tan

(
I

2

)
cos(h)

X5 = tan

(
I

2

)
sin(h)

X6 = h+ g + ν − w

(8)
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The initial conditions can be set such that g0 = 0, w0 = 0, u0 = 0, I0 = 90◦ and
the initial orbits are parametrized only in the eccentricity e0, so that:

X01 = e0

1 − e2
0

X02 = 0

X03 = 1

1 − e2
0

X04 = 0

X05 = 0

X06 = 0

(9)

all the possible elliptic final orbits are defined by a choice of the first five state
variables such that:

√
X2

f 1 + X2
f 2 < Xf 3

Each state variable is constant if the external accelerations are null. The state
variables X1 and X2 can be considered as amplitudes of the non-dimensional inverse
range,

Y1 = X1 cos(u)+ X2 sin(u)+ X3 Y2 = −X1 sin(u)+ X2 cos(u)

At this point, the maneuver equations in the independent variable w are defined as:

dX
dw

= B(X, u = w + X6)A (10)

where B(X, u = w + X6) is a 6 × 3 matrix that functionally depends on the first
four entries of X: X1,X2,X3, and X4.

The independence on the fifth entry is due to symmetry reasons while the depen-
dence on the sixth entry takes place through the specific 2π -periodic argument:
u = w+X6. Using the new definition of the state vector, the elements of the matrix
B̃ = Y1B are

B̃11 = (X3 + X1 cos(u)+ X2 sin(u)) sin(u)
√

X3

B̃12 =
(

X2

2
sin(2u)− X1 sin2(2u)+ 2X3 cos(u)

)√
X3

B̃13 = (X5 cos(u)− X4 sin(u))X2

√
X3



240 L. Mazzini and M. Cerreto

B̃21 = − cos(u)
√

X3(X3 + X1 cos(u)+ X2 sin(u))

B̃22 =
√

X3(−X2 cos2(u)+ 2X3 sin(u)+ X1 sin(u) cos(u))

B̃23 = (−X5 cos(u)+ X4 sin(u))X1

√
X3

B̃32 = −2
√

X3
3

B̃43 = 1

2
cos(u)(X2

4 + X2
5 + 1)

√
X3

B̃53 = 1

2
sin(u)(X2

4 + X2
5 + 1)

√
X3

B̃63 = (−X5 cos(u)+ X4 sin(u))
√

X3

B̃31 = B̃33 = B̃41 = B̃42 = B̃51 = B̃52 = B̃61 = B̃62 = 0

(11)

In the orbital control problems, the quantity to be minimized is the non-
dimensional characteristic velocity:

V =
∫ wf

w0

|A | dw (12)

or the total transfer time T = ∫ wf

w0

dτ
dw

dw.
The dynamic system that will be used for the orbital transfer optimization

includes Equation (10) and the time, because it is necessary to represent the Sun’s
motion. In order to obtain the perturbation structure of the system in the parameter ε,
time will be represented in the state with the variable T = ετ , ε being the maximum
possible value for the non-dimensional control force f . The state (X, V , T ) evolves
as:

dX
dw

= f B(X, w + X6) l e
V
Ve

√
X3

Y 2
1

dV

dw
= f e

V
Ve

√
X3

Y 2
1

dT

dw
= ε

√
X3

Y 2
1

(13)

where the controls are f and l.
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The non-dimensional control force is limited by the following inequality: 0 <

f ≤ ε. With this setting it is introduced the pre-Hamiltonian H̃ and the costate L
(L ∈ R6, LV , LT ), following the standard Maximum Principle method [2], where
LV and LT are, respectively, the costate components referred to the velocity and the
time.

H̃ = f (LT B(X, u)l + LV )e
V
Ve

√
X3

Y 2
1

+ εLT

√
X3

Y 2
1

(14)

The Hamiltonian is obtained by maximizing H̃ in the controls l, f :

H = sup
f ∈ [0, ε], l ∈ |l| = 1

H̃

H = εκ(S)S(X,L, LV , u)e
V
Ve

√
X3

Y 2
1

+ εLt

√
X3

Y 2
1

(15)

where the functions S and κ(S) have been defined as:

S(X,L, LV , u) =
√

LT B(X, u)B(X, u)T L + LV

⎧
⎨

⎩

κ(S) = 1, ∀S > 0

κ(S) = 0, ∀S < 0

(16)

The control action, as derived by maximizing the pre-Hamiltonian, is

l = B(X, u)T L
√

LT B(X, u)B(X, u)T L

f = ε κ(S)

(17)

The control action f is not defined when S(X,L, LV , u) = 0 but this happens
in a single isolated point, so the state and costate curves are unique, unless there
is a specific and non-generic case of a singular arc which can be studied using
higher order derivatives. When the state and costate curves cross the surface
S(X,L, Lv, u) = 0 there is an on/off switching of the thrusters, therefore S is
called the Switching function.

The necessary conditions that any extremal satisfies are expressed by the
following system of differential equations derived from the Hamiltonian:
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dX
dw

= εκ(S)
B(X, u)B(X, u)T L

√
LT B(X, u)B(X, u)T L

e
V
Ve

√
X3

Y 2
1

dV

dw
= εκ(S)e

V
Ve

√
X3

Y 2
1

dT

dw
= ε

√
X3

Y 2
1

dL
dw

= −εκ(S)
∂
√

LT B(X, u)B(X, u)T L
∂X

e
V
Ve

√
X3

Y 2
1

− ε
(
κ(S)Se

V
Ve + LT

) ∂
√

X3

Y 2
1

∂X

dLV

dw
= −εκ(S)S

e
V
Ve

Ve

√
X3

Y 2
1

dLT

dw
= 0

(18)

2.1 Boundary Conditions

Concerning the orbital transfer optimization, the boundary conditions are reported in
this section. In particular the presented system of 16 differential equations requires
16 boundary conditions, plus the final w free that is another condition, for a total of
17 boundary conditions.

Typically the initial and final state X0 and Xf are known:

Xk(0) = X0k f or k = 1, .., 6

Xk(wf ) = Xf k f or k = 1, .., 5
(19)

The time and cost at starting anomaly are null:

V (0) = T (0) = 0 (20)

There are two transversality conditions: the first derived from the fact that X6(wf ) is
not specified because the authors are not interested in the final anomaly, the second
derived by the fact that wf is free:

L6(wf ) = 0

H(wf ) = 0
(21)
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Finally the additional transversality conditions depend on the specific optimization
problem, since there are two different possible goals, for Tmin and Vmin problems
these conditions are

Tmin : LV (wf ) = 0, LT (wf ) = −1

Vmin : LV (wf ) = −1, T (wf ) = Tf

(22)

It is possible to verify that under the minimum time problem conditions, the
Switching function is always positive definite and the optimal solution has a
continuous firing. In fact, the derivative of LV is always negative semi-definite and
the final condition LV (wf ) = 0 ensures that LV (wf ) ≥ 0 which implies that the
Switching function is always semi-positive.

2.2 Eclipse δ Layer

The entire optimization tool described here is adopted for low-thrust orbital transfers
referring to satellites with electric propulsion system. The thrusters require a high
amount of energy that cannot be fed by batteries alone during the eclipse phases: for
this reason, the thrusters are usually switched off at these times with a significant
change in the orbital transfer optimization process. To include also the eclipse
problem, then, in the optimization algorithm, an eclipse function E(X, T ,w, ε) is
inserted that is negative during the shadow (eclipse) and positive during the period
of sunlight. The constraint placed in f previously, that provided f ∈ [0, ε], is
then replaced by f ∈ [0, εκ(E(X, T ,w, ε))]. In this case it is used as a non-
smooth mixed control-state constraint (see [1]). But function E is also included
in Equation (13) by multiplying the X and V state derivatives by κ(E). This,
however, leads to no longer being able to use the excellent control theory, since
the equations system is transformed into a non-Lipschitz system. To overcome this
problem, instead of κ , a κδ function is inserted, where the δ subscript identifies a
small positive real number, and thus the κδ function is defined as:

κδ(E) =

⎧
⎪⎪⎨

⎪⎪⎩

1, ∀E > δ

E
δ
, 0 < E < δ

0, ∀E < 0

(23)

Having restored the weakest regularity conditions to apply the Maximum Principle
[2], it is possible to obtain the necessary conditions for extremality for any positive
δ > 0.

When treating problems without the eclipse constraint, the solution and the
�V cost depends only on f and on the ratio between the engine thrust and the
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initial satellite launch mass. The Hamiltonian is determined maximizing the pre-
Hamiltonian in the controls (see also [1]):

H= sup
f ∈ [0, εκδ(E)], l ∈ |l| = 1

H̃ = εκ(S)κδ(E)S(X,L, LV , u)e
V
Ve

√
X3

Y 2
1

+ εLt

√
X3

Y 2
1

(24)
where the functions S and κ(S) have been defined in Equation (16).

The control action, as derived by maximizing the pre-Hamiltonian taking into
account the eclipse functions, is

l = B(X, u)T L
√

LT B(X, u)B(X, u)T L

f = ε κ(S) κδ(E)

(25)

The necessary conditions that any extremal satisfies are expressed by the following
system of differential equations derived from the Hamiltonian with respect to the
state and the costate:

dX
dw

= ∂H

∂L
; dV

dw
= ∂H

∂LV

; dT

dw
= ∂H

∂LT

dL
dw

= −∂H

∂X
; dLV

dw
= −∂H

∂V
; dLT

dw
= −∂H

∂T

(26)

The extremal equations are

dX
dw

= εκ(S)κδ(E)
B(X, u)B(X, u)T L

√
LT B(X, u)B(X, u)T L

e
V
Ve

√
X3

Y 2
1

dV

dw
= εκ(S)κδ(E)e

V
Ve

√
X3

Y 2
1

dT

dw
= ε

X3

Y 2
1

dL
dw

= − εκ(S)κδ(E)
∂
√

LT B(X, u)B(X, u)T L
∂X

e
V
Ve

√
X3

Y 2
1

− ε
(
κ(S)κδ(E)Se

V
Ve + LT

) ∂
√

X3

Y 2
1

∂X

− εκ(S)κ(E)S
dκδ(E)

dE

∂E

∂X

√
X3

Y 2
1

e
V
Ve

(27)
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dLV

dw
= − εκ(S)κδ(E)S

e
V
Ve

Ve

√
X3

Y 2
1

dLT

dw
= − εκ(S)κ(E)S

dκδ(E)

dE

∂E

∂T

√
X3

Y 2
1

e
V
Ve

Defining Uδ = (X, T ,w)|0 ≤ E(X, T ,w, ε) ≤ δ, the term dκδ(E)
dE

= 1
δ

if

(X, T ,w) ∈ Uδ and dκδ
dE

= 0 if
(X, T ,w) /∈ Uδ . The set Uδ will be called the δ layer.

2.2.1 Integrating in the δ Layer

In this section, it is introduced a specific symbol to extend the state (X, V , T ) and
the costate (L, LV , LT ) vector. In this way the velocity and the time factors are
directly inserted in the problem. They are denoted by X̃, L̃, therefore, X̃7 = V ,
X̃8 = T , L̃7 = LV , L̃8 = LT . With these symbols it is possible to represent the
system of Equation (27) in the Uδ layer as:

dX̃
dw

= εf0(X̃, w)+ εf1(X̃, L̃, w)
E

δ

dL̃
dw

= −εg0(X̃, L̃, w)− εg1(X̃, L̃, w)
E

δ
− εg2(X̃, L̃, w)(

1

δ
)

dE

dw
= ∂x̃E(X̃, w)

dX̃
dw

+ ∂wE(X̃, w)

(28)

where fk, gk, k = 0 . . . 2, are suitable regular functions of the arguments and do not
depend on δ. It is considered now a point P0 ∈ Uδ⊗R8⊗R = (X̃0, w0, L̃0, E0) for
the system of Equation (28), that is a boundary point of Uδ such that E(X̃0, w0) =
E0 = 0. This point P0 may be an eclipse entry point if dE

dw
< 0, or eclipse exit point

if dE
dw

> 0 or an eclipse critical point if dE
dw

= 0. In order to integrate from P0 in the
system of Equation (28), it is introduced new variable s = w−w0

δ
and E = E

δ
. With

such positions the system becomes

dX̃
ds

= εf0(X̃, w0 + sδ)δ + εf1(X̃, L̃, w0 + sδ)Eδ

dL̃
ds

= −εg0(X̃, L̃, w0 + sδ)δ − εg1(X̃, L̃, w0 + sδ)Eδ − εg2(X̃, L̃, w0 + sδ)

dE
ds

= ∂x̃E(X̃, w0+sδ)(εf0(X̃, w0+sδ)+εf1(X̃, L̃, w0+sδ)E)+∂wE(X̃, w0+sδ)

(29)
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In order to calculate the behavior of the system when crossing the δ layer, this system
must be integrated in s from E = 0 to E = 1. For the regularity of the fk , gk ,
k = 0, 1, 2, the second member of the system can be developed in a series of
δ. Developing also the solution on powers of δ, and introducing the series in the
system of Equation (29) the solution is

dX̃
ds

= 0

dL̃
ds

= −εg2(X̃0, L̃, w0)

dE
ds
=∂x̃E(X̃0, w0)(εf0(X̃0, w0)+εf1(X̃0, L̃, w0)E+∂wE(X̃0, w0)

(30)

If the system of Equation (30) is specialized with the fk , gk , k = 0, 1, 2, specific of
the system of Equation (27), it is found:

dX
ds

= 0; dV

ds
= 0; dT

ds
= 0

dL
ds

= −εκ(S)S
∂E

∂X

√
X3

Y 2
1

e
V
Ve ; dLV

ds
= 0; dLT

ds
= −εκ(S)S

∂E

∂T

√
X3

Y 2
1

e
V
Ve

dE
ds

= ε ∂T E

√
X3

Y 2
1

+ εE
∂ET B(X,u)B(X,u)T L

∂X√
LT B(X, u)B(X, u)T L

e
V
Ve

√
X3

Y 2
1

+ ∂E

∂w

(31)
where X = X0, V = V0 T = T0, u = u0, LV = LV 0. In addition, the
term ∂XET B(X, u)T L is null, since during an impulsive maneuver the satellite
coordinates remain constant, for the following property:

∂yk(X,w)

∂Xj

dXj

dw
= ∂yk(X,w)

∂Xj

Bj,n = 0 (32)

Therefore, any function that depends on X through the satellite position, like the
eclipse function, has the gradient in the null space of the maneuver matrix.

The second member of Equation (31) in E is linear in s. Therefore E is easily

integrated in E = sEw, where Ew =
(
∂wE + ε∂T E

√
X3
Y 2

1

) ∣∣∣
P0

. The system exists

the δ layer at s = 1
Ew

. Now L and LT are integrated between s = [0 . . . 1
Ew

].
If (X, T ,w) is constant in the δ layer, then also ∂E

∂X = ∂E
∂X

∣∣
∣
P0

is constant, it

follows that L = L0 + ρ(s) ∂E
∂X

∣∣∣
0
, ρ(s) being some scalar function. Introducing this

last position in the definition of the Switching function and considering the property
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described in Equation (32), it is possible to define that the Switching function S =
S(X0, L0) is constant in the δ layer. The costate is easily integrated in the δ layer
(remember that s = E

Ew
):

L = L0 − ε

(

κ(S)S
∂E

∂X

√
X3

Y 2
1

e
V
Ve

) ∣
∣∣
0

E
Ew

LT = LT 0 − ε

(

κ(S)S
∂E

∂T

√
X3

Y 2
1

e
V
Ve

) ∣∣∣
0

E
Ew

(33)

The jump of the costate in the δ layer is calculated as the variation from E = 0
to E = 1. This is the variation from eclipse zone to the sunlight. In terms of
variation in the direction of increasing w, an additional sign is considered which
is positive outwards the eclipse and negative when inwards. So the jump calculated
as a variation of the costate in the �w > 0 direction can be obtained by applying
the modulus to Ew, which is negative at the eclipse entry and positive at the eclipse
exit:

�L = −
ε

(
κ(S)S ∂E

∂X

√
X3

Y 2
1

eV/Ve

) ∣∣
∣
0

|Ew|

�LT = −
ε

(
κ(S)S ∂E

∂T

√
X3

Y 2
1

eV/Ve

) ∣
∣∣
0

|Ew|

(34)

The points where Ew = 0, where the derivative of the eclipse function becomes
null and it is possible to pass from a set of eclipse orbits to fully sunlight ones or
vice versa, will be called critical points. At the critical points, the costate jumps go
to infinity. Such a singularity will also affect the averaged equations that will be
analyzed later.

The jump of the orbital costate �L is in the null space of the maneuver matrix
B(X, u) as it is expressed in Equation (32). This implies the continuity of the
Switching function and the continuity of the derivative of the state across the eclipse
entry and exit points.

The final equations with eclipse are modified as follows:

dX
dw

= εκ(S)κ(E)
B(X, u)B(X, u)T L

√
LT B(X, u)B(X, u)T L

e
V
Ve

√
X3

Y 2
1

dV

dw
= εκ(S)κ(E)e

V
Ve

√
X3

Y 2
1

dT

dw
= ε

√
X3

Y 2
1



248 L. Mazzini and M. Cerreto

dL
dw

= − εκ(S)κ(E)
∂
√

LT B(X, u)B(X, u)T L
∂X

e
V
Ve

√
X3

Y 2
1

− ε
(
κ(S)κ(E)Se

V
Ve + LT

) ∂
√

X3

Y 2
1

∂X
− εκ(S)S

∂E

∂X

√
X3

Y 2
1

e
V
Ve

δ(w − we)

|Ew|

dLV

dw
= − εκ(S)κ(E)S

eV/Ve

Ve

√
X3

Y 2
1

dLT

dw
= − εκ(S)S

∂E

∂T

√
X3

Y 2
1

e
V
Ve

δ(w − we)

|Ew|
(35)

where δ(w − we) is the Dirac function at the eclipse entrance we = wentry(X, T )

and at the eclipse exit we = wentry(X, T ) anomalies of any orbit. In this case it is
considered a strictly decreasing sequence of δn → 0.

This sequence generates, using Equation (27) and a set of boundary conditions,
a series of δn-regularized extremal solutions. The succession of objective function
generated by these δn-regularized extremal solution will be decreasing because for
any δa > δb the optimal solution with the δa-regularized will always be in the
set of the feasible solutions for the δb-regularized optimal problem. The sequence
of objective functions will then be convergent, because it is naturally limited from
below. It is possible to deduce that there exists a δ-regularized optimal solution as
close as desired to this objective function limit. If, in addition, there exists a solution
of the system of Equation (35) with the same boundary conditions, then it will be
the limit of the δn-regularized extremal solutions and it will have as cost the limit of
the objective function series.

2.3 Averaging

It is possible to note that in the system of Equations (27) and (35) the term ε = ṁVe
M0
μa2

0
is always present. In these applications, ε is considered as a small parameter in the
range of ≈10−3, 10−4. The second members of systems of Equations (27) and (35)
are periodic functions of the independent variable. Therefore, the system is set in the
perturbation standard form (see [13], Chapter 1.6). It is possible to use the averaging
technique to implement an approximate solution. Here it is applied the averaging
on a suitable δ - regularized system of Equation (27) for a given δ > 0, then the
averaged equations are derived and finally δ is zero. In order to do this an averaging
operator is introduced
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Ew[Hδ(X,L, w)] = 1

2π

∫ 2π

0
Hδ(X,L, w) dw

Ew[Hδ(X,L, w)] = Hδ(X,L)

(36)

It is possible to note that the averaging is performed in the independent variable w.
The state and the costate, including the variable T which is the slow time used to
describe the Sun motion, are considered fixed during the averaging integral.

Hδ(X,L) = εEw
[

κ(S)Sκδ(E)

√
X3

Y 2
1

]

e
V
Ve + εLT Ew

[√
X3

Y 2
1

]

(37)

The average Hamiltonian is then independent of w and X6. The average equations
can be obtained using the Ew[.] on the second members of the system of Equa-
tions (27) and (35) or deriving the Hamiltonian flow from the averaged Hamiltonian:

dX
dw

= ∂Hδ

∂L

dL
dw

= −∂Hδ

∂X

(38)

In this case ∂Hδ

∂X6
= 0. When δ → 0, the resulting averaged equations are

dX
dw

= εEw
[

κ(S)κ(E)
B(X, u)B(X, u)T L

√
LT B(X, u)B(X, u)T L

√
X3

Y 2
1

]

e
V
Ve

dV

dw
= εEw

[

κ(S)κ(E)e
V
Ve

√
X3

Y 2
1

]

e
V
Ve

dT

dw
= εEw

[√
X3

Y 2
1

]

dL
dw

= − εEw
[

κ(S)κ(E)
∂
√

LT B(X, u)B(X, u)T L
∂X

√
X3

Y 2
1

]

e
V
Ve

− εEw
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κ(S)κ(E)Se
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Ve + LT

] ∂
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e
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1

2πEw

) ∣∣∣
wexit

wentry

(39)
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LV

dw
= − εEw

[

κ(S)κ(E)S

√
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Y 2
1

]
e

V
Ve

Ve

LT

dw
= − ε
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κ(S)S
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e
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1

2πEw

) ∣∣∣
wexit
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If in the Hamiltonian instead of κ(E) it is inserted κ(Eδ), it is obtained an
averaged Hamiltonian similar to that presented in [12], where the effects of the
mixed control-state constraint, which are represented by the costate jumps averaged
over one period, are not analyzed. This approach will be called Heuristic: in
certain missions, including the costate jumps in the averaged equations produces
a significant difference in the optimized solution. These equations can be associated
with the boundary conditions of Equations (17) and (21) where H(wf ) is substituted
by H(wf ) and (22) depending on the specific problem. The exploitation of the
system of Equation (39) is numerically faster than the solution given by the system
of Equation (35) and, using the proximity of the two trajectories, the solution of the
system of Equation (35) can be easily solved numerically starting from the averaged
one.

This implies the calculations of the short terms of the solution. To do this, the
initial costate found by the average solution, is changed of a ε small quantity in
order to satisfy terminal conditions at a final wf which is close to the one of the
“averaged extremal.” The terminal condition on the average Hamiltonian H(wf ) =
0 guarantees that the close by extremal has a null Hamiltonian H(w∗

f ) = 0 at some
point of the same orbit w∗

f .

2.4 Orbital Perturbations

Another improvement in the calculation is applied taking into account the effects
of the orbital perturbations (as the J2 effects). It represents an important problem
especially for long transfer. In particular, the rotation of the node has a significant
effect on LEO to MEO/GEO transfers. When a perturbation creates a node it should
be left rotating within the boundary conditions so to not consume propellant and
keeping it fixed. Such a condition is expressed by setting Lf 5 = 0 and keeping Xf 5
free. Mathematically, the perturbation effects can be considered, by adding a term
to the Hamiltonian (see [10] and [9]). If Ap(X,w) is a perturbation field such that
the dynamic equation (10) becomes

dX
dw

= B(X, u = w + X6)(A+ Ap(X, w)) (40)
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then the Hamiltonian of the optimal control problem is

H = εκ(S)Sκ(E)e
V
Ve

√
X3

Y 2
1

+ εLT

√
X3

Y 2
1

+ LT B(X, u)Ap(X, w) (41)

In the averaged version it is introduced Ew[B(X, u)Ap(X, w)] = Xp(X).
The extremal equations for the averaged case that are modified in the presence of

perturbations are

dX
dw

= εEw
[

κ(S)κ(E)
B(X, u)B(X, u)T L
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e
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− ∂LT Xp(X)

∂X

(42)

Since the perturbation action of the J2 effects is taken into account during the
computation, it is necessary to study the J2 potential, that is:

F2 = −J2
μ

r

(
R

r

)2 (3 sin(θ)2 − 1

2

)
(43)

The three accelerations are calculated from the gradient of the potential dividing it
by μ

a2
0

to obtain non-dimensional accelerations (Ar , At , and An). Then, applying the

averaging: Xp(X) = Ew
[
B(X, u)A

√
X3

Y 2
1

]
. This can be done by quadratures, calling

j2 =
(

J2R
2

a2
0

)
it is obtained

Xp1 = −3

2
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X2 X2
3

(X2
4 + X2

5 + 1)2
(3 X4

4 + 3 X4
5 − 6 X2

4 − 6 X2
5 + 6 X2

4 X2
5 + 1)

Xp2 = 3

2
j2

X1 X2
3

(X2
4 + X2

5 + 1)2
(3 X4

4 + 3 X4
5 − 6 X2
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4 X2
5 + 1)

Xp3 = 0
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Xp4 = −3

2
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4 + X2

5 + 1
(X2

4 + X2
5 − 1)
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(X2
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(44)

The costate equation terms can be obtained with a further derivation in the state as

the expression ∂LT Xp

∂X .

2.5 Introduction of Inequality Constraints on the State Along
the Path

Considering some specific cases of GTO to MEO orbital transfer that require big
plane changes in the presence of J2, some solutions appear unrealistic, since the
perigee is lower than the Earth radius. For this reason, a barrier function has been
introduced in order to avoid the satellite-Earth collision.

Since the optimal control solution is found by maximizing the Hamiltonian
H , the cost function has to penalize (i.e., reduce) the value of H when the state
approaches the inadmissible area of its domain. Calling H0 the Hamiltonian of the
original problem without constraints, the Hamiltonian of the constrained problem is
expressed as:

H(X,L) = H0(X,L) − P · W(r(X)) (45)

where

• P is the weight of the barrier
• r(X > 0) represents the inequality constraint and is a function of the state which

equals 0 on the boundary of the inadmissible domain;
• W (r(X)) is the barrier function, defined as a function such that:

– W(r(X)) ≥ 0 for r(X) > 0 (strictly admissible zone)
– W(r(X)) →+∞ for r(X) → 0 (boundary of the inadmissible zone)

The optimal equations of motion (27) are then modified as:

Ẋ = dH

dL
= dH0

dL

L̇ = −dH

dX
= −dH0

dX
+ P · dW

dr

dr

dX

(46)
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3 Numerical Results

All the theory outlined above is applied to find numerical solutions, through
the code developed by the authors and named SOFTT (Space Optimal Finite
Thrust Transfer). Using SOFTT was possible to resolve many mission analyzes for
different proposals such as Galileo Second Generation.

In this section some interesting results are reported

• Minimum time problem for orbital transfers to achieve MEO and GEO starting
from LEO and GTO. In these cases both the J2 and the eclipse effects are
considered in the optimization.

• Analysis of the relationship between the launch mass and the minimum transfer
time to achieve the GEO starting from an elliptical GTO.

• Minimum mass consumption problem (Vmin) for a GTO to GEO orbital transfer.
This study is reported to show how the �V mission cost increases as function
of the available transfer time. For the Vmin problem the solution convergence is
very slow thus the J2 and eclipse effects are not considered only to minimize the
computational time.

• Constellation deployment application, with the study of the evolution of the �V

mission cost as function of the final right ascending node. The introduction of the
J2 effects increases the problem complexity and the perigee altitude constraint
effects are explained. In this study too, the solution convergence is very slow
thus eclipse effects are not considered in order to analyze the problem regardless
of the Sun longitude.

3.1 Typical Orbital Transfers to MEO

In this section two minimum time orbital transfers to achieve MEO are reported.
The first mission starts from a circular LEO while the second starts from an elliptic
GTO.

Referring to the Galileo Second Generation proposal, the orbital Keplerian
parameters, the satellite, and the propulsion system characteristics are the follow-
ing:

• LEO: a = 7378 km; e = 0; I = 56◦;
• GTO: a = 24,475 km; e = 0.7292; I = 6◦; g = 178◦;
• MEO: a = 29,601 km; e = 0; I = 56◦.

• Launch mass = 1500 kg;
• Thrust = 0.6 N;
• Isp = 1500 s.
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In these cases the eclipse effects are considered. Many figures are reported in order
to compare the main differences with and without eclipse effects. Furthermore the
J2 effects are always considered.

3.1.1 LEO to MEO Orbital Transfer

Considering the first mission, from circular LEO to circular MEO, the orbital
transfer results are reported in Table 1 in terms of transfer time, mission �V , and
required propellant mass. It possible to note a significant variation on the transfer
time (≈12%) and a smaller change of the mission �V . These are expected results
due to the presence of the perturbations: in particular taking into account the eclipse
presence, the transfer time increases due to the fact that during the eclipse phases
the thrusters are switched off. The variation on the mission �V is due to the J2
presence.

The following Figures 1 and 2 show the evolution of the Keplerian parameters
in terms of semi-major axis (Figure 1 left), eccentricity (Figure 1 right), inclination
(Figure 2 left), and right ascending node (Figure 2 right).

Looking at the evolution of the semi-major axis (Figure 1 left) it is clear how the
transfer time increases due to the introduction of the eclipse effects but the behavior

Table 1 Orbital transfer results with and without eclipse effects

Figure 1 Evolution of the semi-major axis (left) and the eccentricity (right) with and without
eclipse effects
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Figure 2 Evolution of the inclination (left) and the right ascending node (right) with and without
eclipse effects

Figure 3 Evolution of the
eclipse entry/exit anomaly
during the orbital transfer

remains practically the same. The evolution of the eccentricity (Figure 1 right) and
the inclination (Figure 2 left) are practically the same.

Figure 3 shows the evolution of the eclipse anomaly entry (grey line) and exit
(black line) during the orbital transfer.

Finally Figure 4 shows the evolution of the square acceleration components in
radial, normal, and bi-normal direction, obtained during the orbital transfer: with
eclipse effects (left) and without them (right). In the right figure (no eclipse) it is
possible to note that all components are equal to zero except the ortho-radial that
is equal to one. This means that in this case the thrust direction is tangential to
the orbit, like a classic spiral transfer. Taking into account the eclipse effects, the
fire vector components show some differences: in particular, in the last part of the
transfer the ortho-radial component too is different from zero to maintain the final
orbit circular.
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Figure 4 Evolution of the square acceleration components with (left)and without (right) eclipse
effects during the orbital transfer

3.1.2 GTO to MEO Orbital Transfer

Considering the second mission, from elliptic GTO to circular MEO, the orbital
transfer results are reported in Table 2 in terms of transfer time, mission �V , and
required propellant mass.

In this case the variation on the transfer time is lower (≈2%) than the previous
case (≈12%).

Figures 5 and 6 show the evolution of the Keplerian parameters in terms of semi-
major axis (Figure 5 left), eccentricity (Figure 5 right), inclination (Figure 6 left),
and right ascending node (Figure 6 right).

As introduced in Table 2, looking at these figures it is possible to confirm how the
introduction of the eclipse does not influence the evolution of the orbital parameters.

Figure 7 shows the evolution of the eclipse anomaly entry (grey line) and exit
(black line) during the orbital transfer, while Figure 8 shows the evolution of the
square acceleration components with (left) and without (right) eclipse effects.

The evolution of the accelerations is practically the same justifying the behavior
of the Keplerian parameters that are very similar considering or not the eclipse
effects.

Table 2 Orbital transfer results with and without eclipse effects
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Figure 5 Evolution of the semi-major axis (left) and the eccentricity (right) with and without
eclipse effects

Figure 6 Evolution of the inclination (left) and the right ascending node (right) with and without
eclipse effects

Figure 7 Evolution of the
eclipse entry/exit anomaly
during the orbital transfer
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Figure 8 Evolution of the square acceleration components with (left) and without (right) eclipse
effects during the orbital transfer

3.2 Typical Orbital Transfers to GEO

Two different orbital transfers to achieve GEO are examined. The first mission starts
from a circular LEO while the second starts from an elliptic GTO.

Referring to the Galileo Second Generation proposal, the orbital Keplerian
parameters, the satellite, and the propulsion system characteristics are the follow-
ing:

• LEO: a = 7378 km; e = 0; I = 5◦;
• GTO: a = 24,475 km; e = 0.7292; I = 6◦; g = 178◦;
• GEO: a = 42,164 km; e = 0; I = 0◦.

• Launch mass = 1500 kg;
• Thrust = 0.6 N;
• Isp = 1500 s.

In these cases too the eclipse effects are considered case by case in order to underline
the main differences between the different analysis. Otherwise the J2 effects are
always considered.

3.2.1 LEO to GEO Orbital Transfer

Considering the first mission, from circular LEO to circular GEO, the orbital transfer
results are reported in Table 3 in terms of transfer time, mission �V , and required
propellant mass. It is possible to note a significant variation on the transfer time
(≈14%) and a smaller change of the mission �V cost. As seen in Sect. 3.1.1 the
transfer time variation was expected due to the presence of the eclipse, while the
variation on the mission �V cost is due to the J2 presence.

Figures 9 and 10 show the evolution of the Keplerian parameters in terms
of semi-major axis (Figure 9 left), eccentricity (Figure 9 right), and inclination
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Table 3 Orbital transfer results with and without eclipse effects

Figure 9 Evolution of the semi-major axis (left) and the eccentricity (right) with and without
eclipse effects

Figure 10 Evolution of the
inclination with and without
eclipse effects

(Figure 10). Looking at the evolution of the semi-major axis (Figure 9 left) it is
possible to note how the transfer time increases due to the introduction of the
eclipse effects but the behavior remains practically the same. The evolution of the
eccentricity (Figure 9 right) and the inclination (Figure 10) are quite different but
the absolute values have small changes.

Figure 11 shows the evolution of the eclipse anomaly entry (grey line) and exit
(black line) during the orbital transfer.
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Figure 11 Evolution of the
eclipse entry/exit anomaly
during the orbital transfer

Figure 12 Evolution of the square acceleration components with (left) and without (right) eclipse
effects during the orbital transfer

Finally Figure 12 shows the evolution of the square acceleration components in
radial, normal, and bi-normal direction, obtained during the orbital transfer: with
eclipse effects (left) and without them (right).

Taking into account the eclipse effects or not the fire vector components show
some differences but practically the evolution is quite similar. With respect to
Sect. 3.1, now the normal component too is different from zero, justifying an out
of plane maneuver in order to correct the orbital inclination.

3.2.2 GTO to GEO Orbital Transfer

Considering the second mission, from elliptical GTO to circular GEO, the numerical
results are reported in Table 4. Looking at Table 4, in this case too, the transfer time
remains the same (≈1%) due to the lower eclipse period with respect to the case in
Sect. 3.1.
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Table 4 GTO to GEO orbital transfer resulting using the software SOFTT

Figure 13 Evolution of the
eclipse entry/exit anomaly
during the orbital transfer

The comparison between the evolution of the Keplerian parameters and the
accelerations development with and without eclipse effects is not interesting due
to the same behavior of these parameters. For this reason, figures that represent
the Keplerian elements and the accelerations are not reported. Figure 13 shows the
evolution of the eclipse anomaly entry (grey line) and exit (black line) during the
orbital transfer.

3.3 Different Launch Mass for Typical Orbital Transfer: GTO
to GEO

Considering a minimum time orbital transfer, in this section a typical GTO to GEO
orbital transfer is considered for different launch masses.

The initial and final orbital Keplerian parameters for this analysis are the
following:

• GTO: a = 24,475 km; e = 0.7292; I = 6◦; g = 178◦;
• GEO: a = 42,164 km; e = 0; I = 0◦.
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The electrical propulsion system considered has the following characteristics:

• Thrust = 0.3 N;
• Isp = 1500 s.

Different values of the initial launch mass are considered: 1500, 1650, 1800, and
2000 kg.

Both the eclipse and J2 perturbations effects are considered.
The numerical orbital transfer results are reported in Table 5 in terms of transfer

time, �V mission cost, and mass consumption.
Looking at this table it is possible to note how the transfer time increases as a

function of the initial launch mass: this is an expected result because maintaining
the same thrust value and increasing the launch mass, the acceleration decreases
then the transfer time results higher.

Otherwise the �V mission cost does not change due to the fact that the Keplerian
parameters are always the same. Figures 14 and 15 show the evolution of the
Keplerian parameters in terms of semi-major axis (Figure 14 left), eccentricity
(Figure 14 right), and inclination (Figure 15).

Table 5 Orbital transfer results for different values of initial launch mass

Figure 14 Evolution of the semi-major axis (left) and the eccentricity (right) with and without
eclipse effects
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Figure 15 Evolution of the
inclination with and without
eclipse effects

Looking at the evolution of the Keplerian parameters, it is possible to note how
the transfer time increases as function of the initial launch mass, but the behavior is
practically the same.

Figures that represent the evolution of the eclipse entry/exit anomaly and the
accelerations are not reported.

3.4 Minimum Velocity Orbital Transfer from GTO to GEO

Here a different optimization approach is used with respect to the previous
Sects. 3.1, 3.2, and 3.3, the optimization was done minimizing the transfer time. In
this section an analysis of elliptical GTO to circular GEO orbital transfer is reported
minimizing the mass consumption (Vmin problem).

Considering the minimum mass consumption, SOFTT estimates the arcs where
it is convenient to switch on the thrusters during the orbital transfer. The longer is
the available transfer time, the lower is the �V cost of the mission due to the longer
time with thrusters switched off.

In this kind of analysis the convergence is very slow. SOFTT is able to compute
the thrust strategy including the perturbations effects but in this paper, the eclipse
and the J2 effects are not considered, only in order to save computational time.

For this analysis the initial and final Keplerian parameters are the following:

• GTO: a = 24,475 km; e = 0.7292; I = 6◦; g = 178◦;
• GEO: a = 42,164 km; e = 0; I = 0◦.
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The satellite and the electrical propulsion system characteristics data are

• Launch mass = 2000 kg;
• Thrust = 0.3 N;
• Isp = 1500 s.

Table 6 reports the orbital transfer results in terms of �V mission cost and mass
consumption as function of the available transfer time.

Figure 16 shows the evolution of the �V mission cost as function of the available
transfer time.

Table 6 Orbital transfer
results for different values of
the available transfer time

Figure 16 Evolution of the
�V mission cost as function
of the available transfer time
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Starting from the Tmin solution (black point), each solution was found with an
iterative method, increasing step by step the available transfer time and using the
initial costate of the previous solution.

Figure 16 shows how the �V mission cost decreases with higher available
transfer time: the total velocity reaches an asymptotic value that represents the
minimum possible velocity expendable, the impulsive maneuver.

In order to show the evolution of the Keplerian parameters, four transfer times
are selected: 157 (that corresponds to the Tmin solution), 197, 227, and 277 days.

Figures 17 and 18 show the evolution of the Keplerian parameters in terms
of semi-major axis (Figure 17 left), eccentricity (Figure 17 right), and inclination
(Figure 18) increasing the available transfer time.

Figure 19 shows the evolution of the Switching function on three particular orbits
for Tmin case (left) and for Vmin case at fixed time 277 days (right). It is possible to
note that in the Tmin case (Figure 19 left) the Switching function is always positive,

Figure 17 Evolution of the semi-major axis (left) and the eccentricity (right) for different values
of the available transfer time

Figure 18 Evolution of the
inclination for different
values of the available
transfer time
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Figure 19 Switching function for Tmin(left) and Vmin(right) solutions: S > 0 thrusters are on,
S < 0 thrusters are off

meaning that the thrusters were always switched on during the transfer. Otherwise
in the Vmin case (Figure 19 right) the Switching function can be positive or negative,
meaning that the thrusters were switched on only on the arcs where it was convenient
to fire.

3.5 Orbital Transfer to MEO Delta-RAAN Analysis

The constellation deployment consists in launching more than one satellite at the
same time with the same launcher and achieve different planes characterized by
different right ascension values.

For this study the approach was to compute the evolution of the �V mission
cost as function of the change of the delta-RAAN which is defined as the difference
between the final RAAN and the initial or separation RAAN.

Two different analyses are reported later: a GTO to MEO and a LEO to MEO
delta-RAAN mission analyses. In both of them the eclipse effects are not included,
in order to analyze a problem independent on the initial Sun longitude (see [11] for
more details).

Otherwise the J2 presence is considered due to the relevant effects on the orbital
transfers with strong change of the right ascending node.

The initial (GTO) and final (MEO) Keplerian parameters are the following:

• GTO: a = 24,475 km; e = 0.7292; I = 178◦;
• MEO: a = 29,601 km; e = 0; I = 56◦.

The satellite and the propulsion system characteristics are

• Launch mass = 1800 kg;
• Thrust = 0.240 N;
• Isp = 1500 s.
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Figure 20 Evolution of the �V mission cost as function of the change of the delta-RAAN

Figure 20 shows the evolution of the �V mission cost as function of the change
of the delta-RAAN. In particular three different lines are reported: the black one
represents the �V cost without considering the J2 effects, the dark grey line
represents the �V cost with J2 effects, and the light grey line represents the �V

cost considering the J2 effects and the perigee altitude constraint.
As reported in [11] Figure 20 shows the possibility to have two different solutions

for the same initial and final conditions, one with a �V higher than the other, just
changing the initial costate L0. In this particular case the second order necessary and
sufficient conditions should be adopted to verify which solution is a local minimizer
(see [5]).

Furthermore the introduction of the J2 changes the �V evolution breaking the
symmetry with respect to the delta-RAAN and providing unrealistic solutions that
consider an impossible collision with the Earth. For this reason the perigee altitude
constraint was introduced in the optimal strategy computation.

The same analysis was done for a LEO to MEO orbital transfer, studying the
evolution of the �V mission cost as function of the delta-RAAN.

The Keplerian parameters are the following:

• LEO: a = 7978 km; e = 0; I = 56◦;
• MEO: a = 29,601 km; e = 0; I = 56◦.

The satellite and the propulsion system characteristics are

• Launch mass = 1625 kg
• Thrust = 0.180 N
• Isp = 3829 s
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Figure 21 Evolution of the
�V mission cost as function
of the change of the
delta-RAAN

As reported in [11], Figure 21 shows the evolution of the �V mission cost as
function of the delta-RAAN. In this case too it is possible to note some areas where
there is more than one solution with different �V , one higher than the other.

See [11] for more details.

4 Conclusions

The electrical propulsion application on the telecom satellites is going to be one
of the most interesting topics of the international scenario. Many companies are
investing many millions of euros in order to design and develop electrical satellites
for future applications in space (telecommunication, Earth observation, navigation,
etc.). Electrical propulsion means lower launch masses than the chemical systems,
but implies very long orbital transfers to achieve the target orbit. In this context it is
fundamental the computation of an optimal thrust strategy in order to minimize the
orbital transfer time or the propellant consumption.

In this paper the authors have shown an optimal mathematical model based on
an indirect method. This method was implemented in a code called SOFTT able to
compute the optimal thrust strategy for every orbital transfer taking into account the
perturbations, J2, and eclipse.

Many numerical results are presented starting from simple orbital transfers
arriving to solve more difficult problems such as constellation deployment.

A future interesting application of the optimal control theory on the orbital
transfers is the possibility to implement an optimizer directly on board the satellite,
this requires the capability to measure the satellite orbital status autonomously. Even
if technical difficulties still exist to make such autonomous estimation on board,
this research is well motivated by the cost of maintaining a LEOP ground segment
operational during such long transfers.
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The authors are now working to develop a “on board real time trajectory
optimization” software, named AUTONAV. It will provide the possibility to design
smart and autonomous satellites able to compute continuously the optimal trajectory
from an estimated satellite orbital status. This approach shall enable for a new
generation of electrical, smart, and autonomous satellites independent from the
ground stations contacts and commands and will be particularly effective in the
case of constellation deployments.
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Collection Planning and Scheduling
for Multiple Heterogeneous Satellite
Missions: Survey, Optimization Problem,
and Mathematical Programming
Formulation

Snezana Mitrovic-Minic, Darren Thomson, Jean Berger, and Jeff Secker

Abstract This chapter introduces novel integrated management of multiple hetero-
geneous satellite missions for the purpose of intelligence collection. The focus is on
optimization of acquisition planning and scheduling for various missions including
single satellites and satellite constellations. The relevant optimization problem and
its mathematical programming formulation that allow multiple area coverage plans
for each acquisition request, as well as consideration of the quality measures of
coverage plan, strip, and imaging opportunity, are presented. The chapter consists
of a multi-mission planning system overview, a survey of relevant literature, a
definition of the integrated acquisition scheduling optimization problem and its
mathematical programming formulation.

1 Introduction

This chapter presents a novel optimization problem recently arising in the satellite
industry. With the latest developments in Earth observation missions and the
constant increase in the demand for remote sensing imagery, the need for integrated
scheduling of multiple heterogeneous satellite missions is becoming eminent. The
need is twofold: from the perspective of the organizations that operate an increased
number of satellite missions and sell the imagery, and from the perspective of
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governments that own several missions and consider ordering access time windows
or imagery from commercial satellite providers.

This chapter reports on an initial study of the integrated resource management of
satellites and satellite constellations for intelligence gathering. The remainder of the
document is organized as follows:

• This section presents the context and the motivation for the study.
• Section 2 provides a survey of relevant literature.
• Section 3 introduces the optimization problem statement for multi-mission

acquisition scheduling.
• Section 4 introduces models for multi-satellite (multi-mission) acquisition

scheduling.
• Section 5 provides conclusions followed by the appendix that contains a sum-

mary of the literature survey.

1.1 Motivation

The number of Earth observation satellites has been growing steadily, but at
the same time the demand for satellite imagery has been increasing at even a
higher pace. The satellite imagery is nowadays a crucial part of many areas of
human life including meteorology, agriculture, environmental monitoring, energy
explorations, map charting, ice monitoring, security, search-and-rescue, and disaster
relief operations.

The first artificial satellite Sputnik 1 was launched on October 4, 1957, followed
soon after, in 1960, by the first Earth observation satellite CORONA. In November
2017, there were 4635 satellites orbiting Earth [32], out of which 1738 were
operational. Most operational satellites are either communication satellites (742)
or Earth observation satellites (596). In terms of their altitude, more than half
of the operational satellites (61.6%) are in low Earth orbit (LEO), including the
International Space Station and the Hubble Space Telescope, orbiting the Earth at
the distance of several 100–2000 km. Most of the other satellites (30.6%) are in the
geostationary orbit (GEO), orbiting the Earth at the altitude of around 36,000 km.

Earth observation satellites most commonly acquire images using optical cam-
eras or SAR (synthetic aperture radar) sensors. Image acquisition planning and
scheduling was initially performed manually, but as demand for satellite imagery
has increased, researchers and mission managers have successfully improved
the utilization of single satellites and small satellite constellations by applying
operations research and optimization methodologies to satellite operations.

Nowadays, many governments and commercial vendors manage more than one
satellite mission or satellite constellation. For example, a commercial vendor Planet
operates 191 satellites belonging to several missions. Overcoming separate order
desks for each satellite mission and the silo-effect in their management would be
beneficial to all parties. A centralized order desk and integrated management of
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multiple-satellite missions would simplify operations, increase satellite utilization,
and it would result in increased performance of intelligence collection. It would
allow more imaging, satisfying customer needs faster, and potentially increasing
overall operational performance by 25–40% [14, 30].

The imminent motivation for the preliminary study project, whose findings are
presented in this chapter, arises from the need for:

• Integrated utilization of RADARSAT-2 and RCM constellation.
• Enhanced resource management of RCM (RADARSAT Constellation Mission).
• Enrichments for search-and-rescue decision support.
• Surveillance support for a variety of domains including vast Canadian territories

in the North and in the Arctic.

1.2 Multi-Mission Planning System Overview

The multi-mission planning and scheduling system (MiMPS) allows a user to enter
an order for satellite imagery through a centralized order desk. The user can specify
explicitly which satellite or a set of satellites can be used for satisfying the order,
or the user can provide the request specifications and the system would be given
the freedom to select an appropriate available satellite to acquire the images. By
avoiding several entries to different order desks, and by avoiding situations of being
rejected due to already occupied resources, the user’s needs would be satisfied faster
and better. If the best satellite is available, it will acquire the image. If this satellite
is not available, the second-best choice would be selected and the user will get their
order fulfilled instead of rejected.

The MiMPS system mandate [28] includes:

1. Receiving the acquisition requests or intelligence, surveillance, and reconnais-
sance (ISR) tasks from a variety of users.

2. Scheduling the satellites to best meet the needs of users and the requirements of
their image acquisition requests.

3. Generating optimized de-conflicted schedules for the satellites.
4. Utilizing the multi-mission satellite resources, commonly oversubscribed, in the

best manner such that the mission constraints are satisfied.

The MiMPS system consists of the commercial satellite image acquisition
planning system (CSIAPS) and the multi-mission schedule optimizer. The MiMPS
context is shown in Figure 1. Planners and analysts from various organizations
submit orders as intelligence, surveillance, and reconnaissance (ISR) tasks or
as image acquisition requests through the multi-mission order handling system
(MiOHS). Simple examples of ISR tasks are: “Extract shoreline for GIS foundation
layers,” “Detect ships in open ocean,” and “Extract terrain slope and surface
roughness for trafficability.” The order priorities are consolidated in the MiOHS
based on the user/organization priority and the order priority. The orders are then
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Figure 1 Multi-mission planning and scheduling system (MiMPS) context

sent to MiMPS where each ISR task is translated into image acquisition request(s)
using the CSIAPS guidance expert system [33, 35]. On a regular basis, the MiMPS
requests a report on the satellite availability from satellite missions. Based on these
reports, the MiMPS generates coverage plans for the area of interest (AOI) of each
image acquisition request. The AOI coverage plan is built by the CSIAPS’ large
area collection build-up tool (LACBU). The image acquisition requests and the
corresponding AOI coverage plans are sent to multi-mission acquisition schedule
optimizer to generate optimized de-conflicted schedules, one for each satellite.

The MiMPS system is designed to support different operational scenarios of
satellite missions, and as such, differentiates between committed satellite missions
and uncommitted satellite missions. The committed satellite mission is fully con-
trolled by the MiMPS system. The entire acquisition schedule the MiMPS system
generates will be sent and acquired by the mission’s satellites. The uncommitted
satellite mission will receive separate orders (image acquisition requests) gener-
ated from the MiMPS acquisition schedule. If the uncommitted satellite mission
rejects the acquisition request, the MiMPS system will trigger re-planning and re-
scheduling.

2 Literature Survey

This section provides a survey of scientific literature relevant to multi-mission
planning and scheduling. It is a summary of the survey presented in Mitrovic-Minic
et al. [28] and it includes manuscripts on image acquisition scheduling for a single
satellite or a satellite constellation.
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Most of the literature covers centralized scheduling for deterministic and static
problems. The papers tackle:

• Optical satellites or SAR satellites.
• Single satellite or a satellite constellation.
• Single-orbit or multi-orbit scheduling.
• Scheduling horizons from an hour to a week.
• Imaging of spot targets and imaging of large polygons.
• One, two, or three sensors/cameras: for potential stereo-imaging.

As per Bensana et al. [3], the satellite image acquisition scheduling problem
deals with serving observation tasks with satellite resources. Most often, it deals
with selecting opportunities to acquire as many images as possible within a planning
horizon while considering image priorities and requirements and satisfying satellite
constraints. The problem can be categorized as a version of the multi-dimensional
knapsack problem and as such it is NP-hard.

Solution approaches proposed for solving the image acquisition scheduling
problem are:

• Heuristics including variety of greedy construction algorithms.
• Metaheuristics including simulated annealing (originally introduced in 1983),

tabu search (originally proposed in 1989), genetic algorithms (initially proposed
in 1995), and squeaky wheel algorithms (first presented in 1999).

• Constraint programming.
• Exact optimization methods.
• Bounding procedures.

Comprehensive surveys of image acquisition scheduling are provided in [6, 30,
38, 39]. Verfaillie’s PhD thesis [39] contains an annotated bibliography of 110
papers on satellite scheduling. The problems include: ground planning of Earth
observation satellite activities (40 papers), onboard planning of Earth observation
satellite activities (31 papers), cooperation of ground and onboard planning (3
papers), planning of Earth observation satellite constellation activities (25 papers),
fair sharing of the use of Earth observation satellites (6 papers), and six PhD theses.
Verfaillie [38] is a tutorial presentation on scheduling optical and radar satellites
prepared by ONERA (French Aerospace Lab) research group.

Several exact algorithms have been proposed. Bensana et al. [3] reported
on scheduling for French satellite SPOT—an electro-optical satellite with multi-
spectral capability and three cameras that have to be scheduled in parallel for
some requests. The requests included mono images and stereo images. Gabrel and
Vanderpooten [12] formulated the SPOT scheduling problem as a multi-criteria path
problem over an acyclic graph. Their algorithm was an adaptation of the label-
setting shortest path algorithm for generating all efficient paths, followed by an
interactive session for selection of the best sequence. The optimization criteria
included demand satisfaction, maximization of the number of high-priority shots,
and minimization of satellite use to prevent wear. For one satellite over four orbits,
the algorithm run time was less than an hour. Hall and Magazine [16] proposed a
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dynamic programming algorithm with a bounding procedure by either Lagrangian
relaxation or relaxation of some constraints. They solved instances with 200 targets.

A selection of the most efficient heuristics and metaheuristics is presented in the
following paragraphs.

Nelson [30] in her PhD thesis proposes a column generation approach for solving
the image acquisition scheduling problem for a satellite constellation for a given
set of spot targets. The approach is a combination of exact methods (integer and
linear programming) and heuristics, and it contains three steps: cluster, route, and
schedule. The clustering step groups imaging targets; the routing step uses column
generation, where each satellite and each orbit are treated as separate subproblems
to determine which clusters would be imaged by which satellite; and the scheduling
step schedules each satellite separately using time–space networks and heuristics.

The radar imaging satellites are considered with two-dimensional electronic
scanning array (ESA). Moving from one target to another within the ESA’s field
of regard (EFOR) is almost instantaneous. Dwell time is the time needed to image
a target. It can also be called the processing time of the imaging task. The SAR
satellite constellation considered in this research has ten SAR imaging satellites in
five equally spaced orbital planes. The satellite orbits are circular at an altitude of
1000 km and an inclination of 60◦. The orbit time is 104 min. An average time
window within which a target has to be imaged is 3 min.

Each satellite has limited power (20 min of imaging time per orbit) and different
resolution modes. Higher resolution modes require longer imaging time. The
satellite can image to the left or to the right from its track. The time between imaging
two targets within the same EFOR is zero. The time required to image the target is
randomly assigned to between 5 s and 45 s. The problem instances included 8000
targets and scheduling horizons of two and four orbits. Computational study results
state that 768 clusters were formed for 4200 targets in 8.5 min. Column generation
took 108 min. The time–space network generated for scheduling with 5-s time incre-
ments resulted in a mixed-integer programming formulation with ten million vari-
ables and 45,000 constraints. Scheduling of all four revolutions took 47 min and 328
targets were scheduled, almost all high priority with only two medium and one low.

In addition, Nelson [30] provides comprehensive literature survey including
the following excerpts: Verfaille et al. [18] and Lemaitre [40] proposed advanced
versions of constraint-programming algorithm. Pemberton [31] recognized that
over-constrained scheduling problems, such as the satellite scheduling problem,
can be challenging for constraint-programming methods. Wolfe et al. [43] defined
the problem as a window-constrained packing problem. Bianchessi et al. [4] and
Cordeau and Laporte [5] achieved near-optimal solution using a tabu search algo-
rithm for scheduling optical satellites. The infeasible solutions were also explored
by relaxing time window constraints. Muraoka et al. [29] proposed complex ranking
function consisting of 12 elements, [31] used priority segmentation and solved each
subproblem to optimality by branch and bound, and Frank et al. [10] proposed
greedy hill-climbing with stochastic variations to escape local optima and with
ranking that used priority and contention. Globus et al. [14] and Globus et al. [15]
compared 13 variations of genetic algorithm, simulated annealing, stochastic hill-
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climbing, squeaky wheel, and iterated sampling on optical satellite constellation and
concluded that the simulated annealing performed the best. Two solved problems are
scheduling a single satellite with a cross-track slewable sensor and scheduling a two-
satellite constellation with the similar sensor. The schedule horizon is 1 week. Lin
et al. [21] decomposed the problem into subproblems using Lagrangian relaxation,
solved the subproblems by linear search, and generated a feasible schedule by a
greedy heuristic. Lin and Chang [22] proposed a hybrid algorithm which included
Lagrangian relaxation with a tabu search based feasibility adjustment.

Lamaitre et al. [19] researched scheduling of agile Earth observing satellites,
including French Pleiades. Most often, an agile satellite has a non-mobile onboard
sensor and the whole satellite maneuvers for image acquisitions on two or three
axes (roll, pitch, and yaw). The authors analyzed the scheduling problem of imaging
spot targets and large polygon areas. A piecewise-linear function is introduced for
measuring the satisfaction of a request with large polygon area. The memory and
energy constraints are considered. The scheduling horizon is one orbit and there
is one opportunity for each image. For solving the track selection and scheduling
problem, the authors propose: greedy algorithm, dynamic programming algorithm,
constraint programming, and local search algorithm (with insertion and removal
moves). The algorithms were tested on six real-world problem instances with
70–375 requests (within an orbit). There were 12–87 stereo-images, 17–346 spot
targets, and 4–133 polygon targets. There were in total 212–1068 opportunities
for candidate images, with 5–9 s average imaging time. Stopping criteria for the
algorithms was 2 min, and the local search heuristic achieved best performance.

Systems toolkit (STK) [8, 9] has a component for satellite-task scheduling called
STK scheduler. The tool implements two algorithms: a sequential algorithm and a
neural algorithm. The sequential algorithm is a greedy algorithm with backtracking
capabilities and with selectable ranking functions. The neural algorithm, inspired by
neural networks, assigns a probability to each satellite-task assignment and changes
the probability iteratively with the aim of increasing the objective function.

Bianchessi et al. [4] proposed a tabu search metaheuristic algorithm for solving
a multi-satellite multi-orbit image acquisition scheduling problem for optical agile
satellite. The authors modeled the French satellite constellation Pleiades, which was
launched in 2008. Each imaging request has a priority and belongs to one user group.
The imaging area of a request may consist of several equal-width strips. Each image
strip is of a varying length that determines the duration of imaging. Sometimes the
strips of one request have to be acquired one after another (in time) and one next to
each other (in space)—without acquiring another strip in between. Mono and stereo
images are also considered. The stereo-image request is considered satisfied only if
both images are taken. The objective function is a weighted sum of the normalized
utilities associated with the different users. The utility of a user is defined as the sum
of the profits associated with the (possibly partially) satisfied user’s requests. Order
weighted average is used to ensure fairness. The objective function is linear with
respect to the proportion of the polygon’s area being acquired as opposed to the
piecewise-linear convex used in Cordeau and Laporte [5] and Malladi et al. [23].
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In addition, one direction of acquisition is allowed for each strip instead of two
(forward and backward) as in Cordeau and Laporte [5].

The tabu search metaheuristic the authors proposed has the capability to explore
infeasible solutions during the search. The time window constraints are relaxed
and relevant penalties are added to the objective function. The multiplier of the
time window violations is a self-adjusting parameter. Six types of moves define the
neighborhoods, and several elaborate intensification and diversification procedures
are proposed.

A computational study was done on 13 problem instances provided by CNES
(Centre National d’Etudes Spatiales). The schedule horizon was 24 h long and there
were four user groups. The instances have 3000–4000 requests, with 100–120 high-
priority requests, around 2500 twin requests, and around 500 polygon requests with
around 2000 strips. The stopping criteria for the algorithm was the 2-h running
time, and the solutions achieved were within 3% of the upper bound, for most of the
instances.

Hwang et al. [17] proposed a genetic algorithm for scheduling multiple agile
satellites. The authors also provided ways to calculate opportunity time windows
and a function for calculating the imaging time using Cauchy partial differential
equations (PDF) instead of Gaussian PDF. The initial scheduling problem is divided
into subproblems based on satellite orbits. The uncorrelated parallel machine
scheduling problems are solved where each single track (orbit) is a machine. The
target assignment to tracks is performed by mission track coordination.

Dishan et al. [6] propose a rolling-horizon based heuristic for solving the
dynamic scheduling problem for agile satellites. The heuristic is greedy where
ranking function includes dynamic problem aspects, including waiting time. The
authors also propose a mixed-integer programming (MIP) formulation of the
problem. Each request is a strip and has a priority, imaging duration, roll angle and
pitch angle, arrival time, and a deadline. Each strip has several opportunities. The
schedule horizon has 24 h, and the rolling horizon is 2 h long. The computational
study compared different ranking schemas on 12 problem instances with 4–6
satellites and 100–400 requests.

Wu et al. [44] propose adaptive simulated annealing aggregated with dynamic
task clustering strategy. The major contributions of the paper include: adaptive tem-
perature control, tabu-list based revisiting avoidance technique, and the intelligent
combination of two neighborhoods. The “adaptive” refers to the choice between
two neighborhood structures: the swap (insertion and removal) neighborhood, and
the task migration neighborhood. The task migration neighborhood attempts to
move a scheduled task that has multiple opportunities to another orbit. The choice
between the two neighborhoods is based on the probabilities of the success of
each neighborhood in previous iterations. A computational study was performed
on two groups of problem instances: “The first group could represent the normal
situation. The second group reflects some emergent situations such as an earthquake,
forest fire, flooding, and military conflict.” The problem instances include four
satellites, scheduling horizon of 1 day, and 100–1000 target requests. Run times
were from 2 min to 1 h, for small and large problem instances, respectively.
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There were 200–2500 opportunities and 5–30% of targets were not scheduled. The
proposed algorithm achieved the best performance compared to typical ant colony
optimization, tabu search metaheuristic, genetic algorithm, and a highest-priority
first schedule algorithm.

Augenstein [1] describes a decision-support system for scheduling Skybox agile
optical satellites that can slew. The author proposes modeling the problem as a
maximum weight longest path in a precedence (sequence) graph of the targets
(images) that can be imaged by the satellite. Each target has a priority, an imaging
time, and one opportunity to be imaged. The schedule horizon is one orbit. The
problem is polynomially solvable when the precedence graph is acyclic. The
interactive aspect of the solver consists of the capability that a user can force an
insertion of an image in the schedule or a removal of an image from the schedule.

Xiaolu et al. [45] propose a decomposition algorithm for scheduling multiple
agile satellites that can roll. The requests are for imaging spot targets and the
problem is modeled as observation scheduling. Each observation images a strip
that can contain several merged spot targets. The authors divide the problem in
task assignment and task merging. The task assignment deals with assigning a
task to one of the potential observation windows (strips). The task merging merges
the tasks assigned to one observation window for each satellite and each orbit
separately. The algorithm alternates between the task assignment and the task
merging until the stopping criteria is met. The task assignment is solved by ant
colony optimization. The task merging, modeled as the maximal covering location
problem, is solved by a dynamic programming algorithm. The authors also provide
the mixed-integer programming (MIP) formulation of the observation scheduling
problem that includes energy and memory considerations as well as maximal
continual imaging time of the satellite.

For the computational study, a series of problem instances were generated
inspired by the Solomon’s construction of the problem instances for the vehicle
routing problem with time windows (VRPTW). Three distributions were consid-
ered: uniform, collective (clustered), and mixed. There are 63 problem instances
with 100–600 imaging requests and 2–8 satellites. There are 200–4300 imaging
opportunities. The proposed decomposition algorithm is compared with a simulated
annealing algorithm developed earlier by the authors. The new algorithm achieved
considerable improvements of around 25% and up to 50% for some instances. The
algorithm has been used in a satellite scheduling software that has been operational
in the China Satellite Management Center.

Tangpattanakul et al. [34] propose iterated indicator-based multi-objective local
search (IBMOLS) algorithm for scheduling image acquisitions of agile satellites.
The objective is to maximize profit and to simultaneously ensure fairness. The
fairness is represented as minimizing the maximum profit difference between the
users. The satellite can roll, pitch, and yaw. The imaging targets are spot targets and
rectangle targets. They are all transformed into strips, where a spot target consists of
one strip and a rectangle can consist of several strips. There are also stereo requests.
The gain part of the profit function for a rectangle request is a convex piecewise-
linear function and it depends on the acquired area.
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The IBMOLS is an iterated search algorithm that in each iteration generates a
population P of solutions from which a set A of non-dominated solutions is selected.
Within each iteration, the following process is repeated as long as A keeps changing:
the local search is applied to each solution from P and the non-dominated set A
is updated. When A remains unchanged, the iteration is complete and the set PO
of Pareto optimal solutions is updated by adding solutions from A. Then a next
iteration of the IBMOLS algorithm starts with the creation of new P set generated
partially from PO set by removing ¾ of the scheduled strips from each solution.
The algorithm stops when a stopping criterion is satisfied. The local search step
generates a neighborhood of each solution in P and when a better solution is found
it replaces the worst solution in P. The best improvement strategy is used as opposed
to the first improvement strategy used in an earlier study by the same authors. The
algorithm was tested on the modified instances of ROADEF 2003 challenge. The
proposed algorithm is compared to the random-key genetic algorithm proposed in
the authors’ earlier paper. Most of the results show that the IBMOLS algorithm
obtains better solutions within a shorter running time.

Wang et al. [41] propose an exact optimization algorithm and several heuristic
algorithms for solving image acquisition scheduling problem for optical satellites
with uncertainty of clouds. The paper also provides a novel non-linear mathematical
programming model. The satellite can slew (roll), but it cannot pitch. The allocation
of a task to multiple resources is allowed to achieve a higher probability of acquiring
an image without a cloud cover. The problem is divided into a master problem and
multiple subproblems—one for each satellite and orbit. Based on the solutions of the
subproblems, all feasible solutions of the master problem are listed and an optimal
solution is selected. The non-linear profit function is transformed into a piecewise-
linear convex function of the acquired surface. The authors consider the memory
and the energy capacities for each orbit to be constants. For the practical-size
problem instances the authors propose five heuristics for solving the subproblems
and generating the set of feasible solutions out of which in the master problem one
solution will be selected.

Experiments by simulation on three satellites were conducted to verify that
the proposed method performs better than previous studies under uncertainties of
clouds. The authors used 90 medium-size problem instances and 60 large-size
problem instances. The medium-size instances have up to 60 tasks in nine orbits
and up to 30 tasks in 21 orbits. The large-size instances have up to 160 tasks in 21
and 42 orbits. The achieved results were compared to the CPLEX-based approach
proposed by Liao and Chang [20].

Malladi et al. [23, 24] studies deal with scheduling RCM (RADARSAT Con-
stellation Mission) that is a satellite constellation of three identical non-agile SAR
satellites. Each satellite can image only to the right of its nadir. The satellite can
image using one of the several modes characterized by different swath widths
and resolutions. For certain modes, the satellite can make images with one of the
several different incidence angles. The time satellite needs to switch between two
incidence angles is almost instantaneous. Malladi et al. [23] propose a mixed-integer
programming (MIP) model and solve the problem using CPLEX. Malladi et al.
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[24] solve the problem using graph-based models and a model-based metaheuristic
(matheuristic). Each request is characterized with a geographic area, priority, mode,
repeat cycle, and a deadline. Each large area is divided into strips. The width of
each strip depends on the mode of the request. Each satellite may have several
opportunities for imaging a strip. Each opportunity has a duration and an incidence
angle. In the schedule, each strip has to be acquired at most once.

The objective function is a piecewise-linear function. Two versions of the
piecewise-linear function are tested. A computational study was performed using
generated problem instances based on the statistical analysis of potential practical
yearly orders. Encouraging results have been achieved. The computational study
used seven problem instances with the scheduling horizon of 1 day. Optimal
solutions were generated within several minutes. The number of strips was between
1300 and 10,000.

The computational study also indicated that the energy and thermal constraints
are not tight nor bounding. Thus, a further research study was conducted on the
relaxed scheduling problem. The relaxed problem is a special novel version of
the maximum clique problem, called the cluster-restricted maximum weight clique
problem [24]. A compatibility graph is devised that captures compatibilities between
the pairs of opportunities. Each opportunity is a node of the compatibility graph,
and an edge between two opportunities indicates that the pair is not in conflict.
Furthermore, all opportunities of one strip represent a cluster and there is no edge
between two nodes in one cluster. The acquisition scheduling problem is thus
converted into the problem of finding the special maximum weight clique in the
compatibility graph. The computational study using the proposed mixed-integer
programming (MIP) model and the model-based metaheuristic (matheuristic) was
performed on the problem instances generated by an adaptation of well-known
DIMACS and BOSHLIB benchmark instances for the maximum weight clique
problem. There are 80 DIMACS instances and 36 BOSHLIB instances with between
400 and 1500 nodes. The nodes were randomly partitioned into 25 clusters. The
proposed model-based metaheuristic achieved encouraging results when compared
to CPLEX.

3 Optimization Problem Statement

3.1 Context

3.1.1 Problem Type

We assume that the acquisition scheduling problem is deterministic and centralized.
Both static and dynamic environments are considered. Dynamic environment is
handled by repeated scheduling sessions whose start is triggered by arrival of
request(s). The dynamic environment allows for dealing with near real-time tasking,
urgent requests, adaptive sensing, re-tasking, and re-planning.
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3.1.2 Satellite Types

We consider the heterogeneous satellites and satellite constellations for Earth
observations. In terms of agility, we consider agile and non-agile satellites. An agile
satellite can yaw, pitch, and roll (slew). Pitching allows the satellites to look forward
and backward along their direction of travel. Rolling allows the satellite to look left
and right, perpendicular to their direction of travel. Yawing changes the heading of
the satellite, although not necessarily their direction of travel. The time needed to
change the satellite (sensor) positioning between imaging two strips is called the
maneuver time.

A satellite that cannot yaw, nor pitch, nor roll is a non-agile satellite. A sensor
on a non-agile satellite produces an image as satellite moves along its track. The
starting time of any candidate image is the time at which the satellite flies over the
beginning of the area to be acquired. Consequently, the compatibilities between the
images and the opportunities can be pre-computed.

A satellite generates energy using solar panels, stores it in batteries, and uses it
for maneuvering, imaging, and communicating with ground stations.

Some non-agile satellites can image using different incidence angles (Figure
2). A non-agile satellite with a SAR (synthetic aperture radar) sensor is typically
capable of imaging in many different beam modes. A beam mode is characterized
by a resolution, field of view, noise characteristics, and the number of beams that
need to be activated to generate an image. For certain beam modes, only a subset
of beams available on the SAR sensor need to be activated. Thus, by activating two
different subsets of the satellite beams, two different incidence angles can be used
to make an image. The change of the incidence angle represents the change of the
subset of active beams and it is almost instantaneous. The change of incidence angle
results also in the change of geographic footprint the satellite can image in its pass.

3.1.3 Sensor Types

Each Earth observation satellite has a sensor of a certain type including optical
camera, SAR (synthetic aperture radar), infrared, multi-spectral, and hyper-spectral.
The sensors are able to acquire images with various modes, resolutions (from
hundreds of meters to less than 1 m), and different swath widths (from several
kilometers to several hundreds of kilometers). For the purpose of acquisition
scheduling, in this chapter we assume that each satellite has a single sensor.

Most of optical cameras and SAR sensors generate a one-dimensional image at
each time instant. A two-dimensional image is created by imaging for a specified
duration of time while the satellite passes over the area. This imaging duration
is called imaging time, or observation duration, or dwell time. The time window
when the imaging can be performed is called an observation time window, visibility
window, or an opportunity time window. It is the time interval within which the
sensor “sees” the target. For a non-agile satellite, with a one-dimensional imaging
device, the observation duration is equal to the length of the opportunity time
window.



Collection Planning for Multiple Satellite Missions 283

Figure 2 Look angle and incidence angle [7]

For an agile satellite, the observation window can be anywhere within the
opportunity time window. Therefore, there may be several observation opportunities
for imaging a strip within one satellite pass. If the satellite maneuvering is
sufficiently fast, the agile satellite may even allow stereo observations within one
orbit (Figure 3).

Most often in image acquisition scheduling, approximation(s) of maneuver time
between two successive observations is used, since the maneuver (transition) time
is non-linear and depends on the time at which the transition is initiated (Figure 4).

3.2 Multi-Mission Collection Scheduling

Multi-mission collection scheduling deals with scheduling of satellite resources to
satisfy the acquisition requests and satellite constraints and to optimize pre-specified
optimization criteria. More precisely, for a given:
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Figure 3 Non-agile satellite vs. agile satellite: opportunity time window and observation duration
[38]

Figure 4 Maneuver time between two imaging targets depends on the time at which the maneuver
is triggered [38]

• Set of intelligence, surveillance, and reconnaissance (ISR) tasks with specific
requirements.

• Set of image acquisition requests with specific requirements.
• Set of satellites (satellite constellations) and satellite sensor assets with specific

performance capabilities.
• Collection tasking objectives and constraints.
• Scheduling horizon.

The Multi-Satellite Collection Scheduling Problem determines the satellite
schedules that serve the requests, optimize the collection scheduling objectives and
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asset utilization, and satisfy the constraints. Solving the multi-mission collection
scheduling problem consists of the following steps:

• Step 1: Translation of the ISR imaging task to image acquisition request(s),
including the compatibility evaluation between sensor capabilities and ISR task
requirements.

• Step 2: Generating the coverage plans, for a given list of satellites, for the
geographic area of interest (AOI) to be imaged as defined in the image acquisition
request.

• Step 3: Generating schedules by solving the integrated multi-mission acquisition
scheduling problem.

This chapter focuses mostly on Step 3—solving the optimization problem deal-
ing with integrated multi-mission image acquisition scheduling. This scheduling
problem is solved by the multi-mission schedule optimizer system (Figure 1). The
first two steps are done by CSIAPS (commercial satellite image acquisition planning
system). The first step is performed by the CSIAPS guidance expert system that
translates an ISR imaging task to one or more image acquisition requests [33, 35].
The second step is done by the CSIAPS large area collection build-up tool (LACBU)
that generates the AOI coverage plans.

3.3 CSIAPS

The commercial satellite image acquisition planning system (CSIAPS) has the
following capabilities:

• Automatically selects the best satellite(s) and sensor mode(s) for a specified ISR
imaging, based on the knowledge of subject matter experts that has been encoded
into inference rules and ranking algorithms.

• Creates an AOI coverage plan for the automatically selected set of satellites.

The first capability is supported by the CSIAPS guidance expert system. The
second capability is supported by the CSIAPS LACBU tool in the following
manner:

1. For an AOI and a selection of satellites (provided by the CSIAPS guidance expert
system or by an intelligence analyst), CSIAPS generates all the opportunities
that represent the intersection of satellites’ swaths and the AOI. Only compatible
satellites and satellite modes are used. The number of opportunities can be in the
thousands.

2. From the generated pool of opportunities, the CSIAPS LACBU tool selects the
opportunities to generate the AOI coverage plan. The current algorithm is an
iterative approach that repeatedly selects the strip and opportunity that covers the
most uncovered area of the AOI until the AOI is covered to a given tolerance
(e.g., 98%). The coverage plan can consists of the strips from more than one
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satellite. All opportunities that comprise a coverage plan are designed to be strips.
For each strip, the corresponding opportunities are selected and marked as the
opportunities to image the strip.

The CSIAPS can generate several AOI coverage plans for one ISR task or image
acquisition request. For example, one coverage plan could be derived from only the
ascending orbits, another from only the descending orbits, and a third derived from
the opportunities that are weighted by their collection date and time.

In MiMPS, CSIAPS pre-processes the ISR tasks one by one and generates the
set of image acquisition requests with AOI coverage plans. Then, the multi-mission
acquisition schedule optimizer system generates a schedule for each satellite from
the multi-mission systems optimizing the pre-specified optimization criteria.

3.4 Multi-Mission Image Acquisition Scheduling

This section focuses on the models and algorithms for the multi-mission (satellite)
image acquisition schedule optimizer system (Figure 1) whose purpose is to
generate acquisition schedules for the set of given satellites that serve acquisition
requests, optimize the asset utilization, and satisfy the existing constraints. An image
acquisition request is characterized by the following specifications:

• Area of interest (AOI)—the geographic area with location, size, and shape.
• Request time window within which the AOI has to be imaged.
• Request priority: priority of the user and importance of the task.
• Satellite(s) or sensor(s), potentially with preference values.
• Resolution(s), mode(s), polarization(s), potentially with preference values.
• Range of incidence angles.
• Look direction(s), for the case of satellite that can be left-looking or right-

looking.
• Pass direction: ascending pass (from South to North) and/or descending pass

(from North to South).
• Repeated imaging, or a standing order (e.g., daily, weekly repeat cycle).

Initially, each standing order is converted to a set of image acquisition requests
whose time windows do not overlap and satisfy request repeat cycle. Further,
according to the request specifications, CSIAPS builds the AOI coverage plan(s).
Thus, the input to multi-mission acquisition schedule optimizer system contains at
least one AOI coverage plan for each image acquisition request. Each coverage plan
consists of a set of strips that may overlap (Figure 5). Each strip is a portion of the
satellite swath—the footprint the satellite can image. The strips of one coverage plan
may belong to different satellites (depicted in Figure 5 by different colors). Further,
each strip can have one or more opportunities to be acquired. Each opportunity
allows for the acquisition of the entire strip and it satisfies the request specifications.

Therefore, the multi-mission image acquisition scheduling problem deals with
selecting the opportunities that would acquire as many images as possible within the
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Figure 5 An AOI coverage
plan with overlapping strips

schedule horizon while considering the acquisition request priorities and constraints.
The problem is a selective scheduling problem since the satellite acquisition
scheduling is most often oversubscribed and it is not possible to satisfy all the
requests. The schedule horizon is the duration of the schedule. The resource
constraints for a satellite include: (a) energy/fuel capacity, (b) thermal constraints
(instrument temperature) that often translates to the maximal continuous imaging
duration, (c) memory/data storage capacity, and (d) the maximal imaging time per
orbit.

Processing and exploitation of satellite imagery is often sensitive to the particular
imagery characteristics. As a result, for a single request only one AOI coverage plan
should be selected to be acquired. Potential dependencies between the coverage
plan strips further stress the need for that selection. For example, all strips in one
coverage plan are on ascending passes of a satellite.

The number of opportunities to acquire a strip depends on the request time
window and on the agility of the satellites compatible with the request specifications.
The following often holds:

• Non-agile satellite: There is at least one opportunity to acquire a strip in one
revisit cycle of a satellite. The revisit cycle is the duration of time the satellite
needs to come over exactly the same point on Earth. The revisit cycle for a
satellite is typically several days or few weeks. For example, the revisit cycle
time for RADARSAT-2 satellite is 24 days.

• Agile satellites: In one satellite orbit there could be many opportunities to acquire
a strip. The satellite agility allows many different imaging start times within the
opportunity time window. There could also be several orbits within the satellite
revisit cycle in which a strip could be acquired.

Each AOI coverage plan can be assigned a quality measure indicating how well
the plan meets the request specifications. It may include the following aspects: (a)
compatibility or preference of the selected satellites to the request specifications,
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(b) the percentage of the covered AOI, and (c) the amount of overlap among the
strips. Each strip of the AOI coverage plan is characterized by the satellite, the
geographic footprint (portion of a satellite swath), and a quality measure of the
strip (for example, indicating which portion of the AOI the strip covers). Each
opportunity of a strip is characterized by the time window within which the strip
acquisition can start and the quality of the opportunity. The opportunity quality may
indicate how close the opportunity incidence angle is to the preferred incidence
angle defined in the request specifications. Note that the geographic footprint of
each opportunity is equal to the geographic footprint of the strip.

Further pre-processing could be considered to divide the strips at the strip
intersections to reduce the size of the imaging strips that are in conflict.

4 Models for Multi-Mission Acquisition Scheduling

This section provides a mathematical programming formulation for the optimization
problem dealing with acquisition scheduling for multiple heterogeneous satellite
missions. The model is a mixed-integer programming (MIP) formulation and it
models integrated management of agile and non-agile satellites. First, the notation
and the decision variables are listed, followed by the optimization criteria and the
MIP model.

4.1 Notation and Decision Variables

This section provides notation and decision variables used for the MIP model.

4.1.1 Notation

H planning horizon [0, T]
Γ set of non-agile satellites
' set of agile satellites
R set of image acquisition requests
pr priority of image acquisition request r
[Rr, Dr] time window of request r. It is the time interval within which the request

has to be acquired. The opportunities for the strips associated with request r are
within the request time window

Φr set of the AOI coverage plans for request r
Ar area size of the AOI of request r
Ar

c sum of the areas of all strips of AOI coverage plan c of request r. Note that this
may be larger than the total area Arof the AOI of request r since the strips may
overlap

Aj area size of strip j
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ϕr
c quality measure on how well the specifications of request r are satisfied with the

coverage plan c
I set of all strips of all requests in R
I r
c strips that belong to the AOI coverage plan c ∈Φr.

∣∣I r
c

∣∣ is the number of strips in
the plan

Ir set of all strips of request r. I = ⋃
r∈R I r , I r = ⋃

c∈Φr I r.
c

P set of all opportunities within H for all strips in I of the requests in R
Ts set of all opportunities of satellite s for all strips of requests in R. Thus, P =⋃

s∈Γ ∪Π Ts

Pj set of all opportunities of strip j
P s
j set of all opportunities to image strip j by satellite s, P s

j = Pj ∩ Ts

Pr set of all opportunities of request r. P r = ⋃
j∈I r Pj , P = ⋃

r∈R P r

Tsi− set of opportunities of satellite s whose time window is after, or overlap with,
the time window of opportunity i

Tsi+ set of opportunities of satellite s whose time window is before, or overlap with,
the time window of opportunity i

T k
s set of all opportunities of satellite s in orbit k for all strips of requests in R

csi cost of acquiring (imaging) the strip associated with the opportunity i using
satellite s

ds
i duration of imaging the strip associated with the opportunity i using satellite s
[Ei, Li + ds

i ] time window of opportunity i is the time interval within which the
associated strip could be acquired (Figure 6)

Figure 6 The opportunity
time window [Ei, Li + dj]
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qs
ir opportunity quality indicating how well request r specifications are satisfied if

opportunity i is scheduled
C set of pairs of the opportunities that are in conflict and cannot be both imaged by

one satellite
πr total acquired area of request r. In the case of a dynamic scheduling problem,

this may include the area scheduled in the current scheduling session and an area
π ′

r scheduled in the previous scheduling sessions
τ1 maximal imaging time allowed for a satellite during an orbit
τ2 average acquisition time per orbit allowed for a satellite over the planning horizon
κs number of orbits of satellite s in the planning horizon
t sij maneuver time of satellite s required between the end of imaging strip associated

with opportunity i and the beginning of imaging strip associated with opportu-
nity j

0s,ns + 1 initial and final position (look angle) of the camera head for satellite s.
Since the schedule time horizon is [0, T], then the time window of the initial
camera head position [E0s , L0s ] is [0,0] and the time window of the final camera
head position [Ens+1, Lns+1] is [T,T]

βs power usage per 1 s of imaging activity for satellite s
γ s power usage per 1 s of maneuvering time for satellite s
Ξ s total power available within the schedule horizon
δsj memory consumption per 1 s of imaging opportunity j by satellite s
Ψ s total memory available within the schedule horizon on satellite s
ω1, ω2 the objective function weights

4.1.2 Decision Variables

The decision variables for the proposed MIP model are:

zrc =
{

1,AOI coverage plan c is selected to satisfy request r
0, otherwise

ys
i =

{
1, if opportunity i of satellite s is scheduled
0, otherwise

xs
ij =

{
1, opportunity i is scheduled immediatelly before opporunity j on satellite s
0, otherwise

us
i = start time of strip acquistion associated with opportunity i on satellite s
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4.2 Optimization Criteria

This section presents an initial set of possible optimization criteria. The problem is
solved as single-objective optimization problem where the objective function is a
weighted sum of selected optimization criteria.

4.2.1 Request Fulfillment, Priorities, and Image Quality

For the simplicity, assume that there is one AOI coverage plan for each request. The
optimization criteria could be to maximize the utility of the acquired images with
respect to the image acquisition requests. The utility for each request is a product of
the request priority and the proportion of the acquired area [23]:

Max
∑

r∈R
pr ∗ f

( πr

Ar

)
(1)

where π r is the area acquired and Ar is the total area of all the strips of the AOI
coverage plan. Function f can be f(x) = x or an increasing piecewise-linear function.
The latter encourages acquiring the strips of already partially acquired requests
[23]. When π r is expanded:

Max
∑

r∈Rpr ∗ f

(∑
j∈I r Aj

∑
i∈Pj

yi

Ar

)

(2)

The quality of an opportunity qs
ir can encompass the following factors: (1) how

well the satellite sensor capabilities satisfy the request specifications, and (2) how
well the mode and the geometry parameters associated to the opportunity satisfy the
request specifications. Thus, the expanded optimization criteria is

Max
∑

r∈R
pr ∗ f

(∑
j∈I r Aj

∑
s∈Γ ∪Π

∑
i∈P s

j
qs
iryi

Ar

)

(3)

Since an opportunity has the same geographic footprint as the strip, the strip
opportunities on non-agile SAR satellites are most often associated to the satellites
from a same constellation (that are homogenous and follow the same orbits). In
this situation, the difference in the opportunity quality would be caused by different
incidence angles, if allowed. Another cause of a difference might be a partially
faulty sensor on one satellite in a constellation. For agile optical satellites, the
opportunities of one strip could be associated with different satellites or satellite
constellations and the difference in the quality could arise from the difference
between the satellite missions. Also, for optical satellites the differences between
the opportunities might be related to the difference in illumination and time of day.
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Introducing the quality measure ϕr
cof the AOI coverage plan c for request r

further refines the optimization criteria to

Max
∑

r∈R
pr ∗

∑

cεΦr

ϕr
c ∗ f

(∑
j∈I rc Aj

∑
s∈Γ ∪Π

∑
i∈P s

j
qs
iryi

Ar
c

)

(4)

4.2.2 Monetary Cost

If the upper bound of the monetary cost is not known, the optimization criteria may
include its minimization:

Min
∑

r∈R

∑

cεΦr

∑

j∈I rc

∑

s∈Γ ∪Π

∑

i∈P s
j

csi yi (5)

However, note that this should not be the only optimization criteria since it would
result in an empty schedule.

4.2.3 Dynamic Problem and Rolling Horizons

When solving a dynamic scheduling problem using rolling horizons, a series of
subsequent scheduling sessions will be performed. The scheduling horizons of two
consecutive scheduling sessions may overlap. The total acquired area of request r
consists of the areas that scheduled in this scheduling session plus the areas that
were scheduled in all previous scheduling sessions π ′

r, up to the start time of the
current scheduling horizon. Thus instead of (I) we use [23]

πr = π ′r +
∑

j∈I rAj

∑

i∈Pj

yi

4.3 Mathematical Programming Formulation

The mathematical programming formulation of the image acquisition scheduling
problem for the integrated management of multiple heterogeneous satellite missions
is a mixed-integer programming (MIP) model. The portion of the model dealing
with non-agile satellites is a special case of a maximum clique problem [24].
The portion of the model dealing with agile satellites is a special case of the
selective multiple traveling salesman problem with time windows (m-TSPTW).
The satellite resource constraints are similar to the m-TSPTW constraints handling
the maximal route duration and the maximal total service time of a route. The
corresponding entities of the m-TSPTW and the multi-satellite image acquisition
scheduling problem are: (1) cities (nodes) are the opportunities, (2) service times
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are the observation times, (3) time windows are the opportunity time windows, (4)
each salesman is one satellite, and (5) distances between cities are the maneuver
times.

The proposed MIP model can handle:

• Multiple missions, including multiple satellites and multiple constellations.
• Heterogeneous satellites.
• Any combination of non-agile and agile satellites.
• Multiple AOI coverage plans for one acquisition request.
• Multiple strips in an AOI.
• Multiple opportunities for a strip.

Max ω1

∑

r∈R
pr

∑

cεΦr

ϕr
c f

(∑
j∈I rc Aj

∑
s∈Γ ∪Π

∑
i∈P s

j
qs
iry

s
i

Ar
c

)

−ω2

∑

r∈R

∑

cεΦr

∑

j∈I rc

∑

s∈Γ ∪Π

∑

i∈P s
j

csi y
s
i

(6)

Subject to:

∑

s∈Π∪Γ

∑

i∈P s
j

ys
i ≤ 1, j ∈ I r

c , cεΦ
r, rεR (7)

ys
i + ys

j ≤ 1,∀ {i, j} ∈ C, s ∈ Γ (8)

∑

j∈I rc

∑

s∈Π∪Γ

∑

i∈P s
j

ys
i ≤ zrc∗ | I r

c |, cεΦr, rεR (9)

∑

cεΦr

zrc ≤ 1,∀rεR (10)

∑

k∈{0s }∪Tsi+
xs
ki = ys

i ,∀i ∈ Ts,∀s ∈ Π (11)

∑

j∈{ns+1}∪Tsi−
xs
ij = ys

i ,∀i ∈ Ts,∀s ∈ Π (12)

∑

j∈Ts∪{ns+1}
xs

0s j = 1,∀s ∈ Π (13)
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∑

j∈Ts∪{0s }
xj,ns+1 = 1,∀s ∈ Π (14)

∑

i∈Ts

∑

j∈Ts
xs
ij =

∑

j∈Ts
ys
i − 1,∀s ∈ Π (15)

(
us
i + ds

i

)+ t sij −
(

1 − xs
ij

)
M ≤ us

j , 0s ≤ i, j ≤ ns + 1,∀s ∈ Π (16)

us
ns+1 ≤ T ,∀s ∈ Π (17)

∑

j∈Ts∪{0s ,ns+1}
ds
j y

s
j +

∑

j∈Ts∪{0s }

∑

j∈Ts∪{ns+1}
t sij x

s
ij ≤ T ,∀s ∈ Π (18)

Es
i ≤ us

i ≤ Ls
i , 0s ≤ i ≤ ns + 1,∀s ∈ Π (19)

ys
0 = ys

ns+1 = 1,∀s ∈ Π ∪ Γ (20)

∑

i∈T k
s

ds
i y

s
i ≤ τ s

1 ,∀k ∈
{
1, . . . , κs

}
,∀s ∈ Γ ∪Π (21)

∑

i∈Ts
ds
i y

s
i ≤ κs ∗ τ s

2 ,∀s ∈ Γ ∪Π (22)

βs
∑

j∈Ts∪{0s ,ns+1}
ds
j y

s
j + γ s

∑

j∈Ts∪{0s }

∑

j∈Ts∪{ns+1}
t sij x

s
ij ≤ -s,∀s ∈ Π (23)

∑

j∈Ts∪{0s ,ns+1}
δsj ∗ ds

j ∗ ys
j ≤ 0s,∀s ∈ Γ ∪Π (24)

ys
i ∈ {0, 1} , 1 ≤ i ≤ ns,∀s ∈ Π ∪ Γ (25)

xs
ij ∈ {0, 1} , 0s ≤ i, j ≤ ns + 1,∀s ∈ Π (26)

zrc ∈ {0, 1} , cεΦr, rεR (27)

us
i ∈ R, 1 ≤ i ≤ ns,∀s ∈ Π (28)
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where M in Constraint (16) is an arbitrarily large number, greater or equal to
max
i,j

{
ui + di + tij

}
. It states that xs

ij = 1 =⇒ (
us
i + ds

i

)+ t sij ≤ us
j . Note also that

xs
ij = 1 =⇒ ys

i = 1
∧

ys
j = 1.

Objective function (6) is a weighted sum of two objective criteria: maximizing
the fulfillment of the high-priority requests with the AOI coverage plans of high
quality consisting of the high quality opportunities and minimizing the dollar cost
of the schedule.

Constraint (7) assures that at most one opportunity for each strip is acquired.
Constraint (8) assures that no two opportunities that are in conflict are to be imaged.
Set C contains all opportunity pairs that are in conflict. Two opportunities are in
conflict if: (a) they belong to the same satellite and (b) their (opportunity) time
windows overlap.

Constraint (10) states that at most one AOI coverage plan is selected to be
scheduled for each acquisition request. Constraint (9) assures that only the oppor-
tunities for acquiring the strips of the selected AOI coverage plan are scheduled.
Constraints (11) and (12) state that, for each satellite, before and after of each
scheduled opportunity there is another scheduled opportunity, or the initial and
final camera head positions. Constraints (13) and (14) state that for each satellite
at least two positions (dummy opportunities) are scheduled: the initial camera head
position and the final camera head position. Constraint (15) provides relationship
between two sets of the problem variables x and y. Constraint (16) represents the
sub-tour elimination constraints. Constraint (17) states that for each satellite the
camera head has to be back at its final position before the end of schedule horizon
T. Constraint (19) guarantees that each strip acquisition starts within the strip’s
opportunity time window. Constraint (20) makes sure that the initial and the final
camera head positions are included in the schedule, for each satellite.

The proposed model accounts for heterogeneous satellites in terms of the
resource constraints, where each satellite has different parameters and resource
bounds. Constraints (21) and (22) deal with thermal requirements arising from
imaging activities. Constraint (21) states that the imaging duration per orbit cannot
exceed τ 1 of each satellite s. Constraint (22) states that the average imaging duration
per orbit, over the planning horizon that has κ orbits, cannot exceed τ 2 for each
satellite s. Constraint (23) handles the power constraints and states that the power is
used for imaging activity and for the maneuver activity and it is proportional to the
duration of those activities. Parameter Ξ s is the total power available within the time
horizon T on satellite s, βs is the power usage per 1 s of time of imaging activity,
and γ s is the power usage per 1 s of maneuvering activity of the satellite. Constraint
(24) handles memory requirements. Ψ s is the total memory available within the
time horizon T on satellite s, and δsj is the memory consumption per 1 s of image
acquisition by satellite s for opportunity j.

Constraints (25), (26), and (27) are binary variable constraints, whereas con-
straint (28) states that the start time for the acquisitions can have non-integral values.

In the proposed model, the constraints (8) and (11)–(28) could be partitioned into
separate subproblems each of which deals with scheduling one satellite. The only
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linking expressions are the objective function and Constraints (7), (9), and (10).
Thus, decomposition solution approaches could be used, including Dantzig–Wolfe
decomposition.

The MIP model can be used for solving the scheduling problem for multiple
heterogeneous satellite missions using a general purpose MIP solver (CPLEX or
Gurobi). In the case of large-scale practical problems dealing with large satellite
constellations, the MIP model is a basis for designing a model-based metaheuristics
(matheuristic) such as variable intensity neighborhood search (VINS) [25–27].

5 Conclusion

This chapter provides a description of a novel optimization problem in satellite
industry that arises from the need for integrated utilization of multiple-satellite
missions for the purpose of collection of surveillance products. The chapter also
presents a survey of the image acquisition scheduling literature and a mathematical
programming formulation of the integrated scheduling problem. Novelties of the
presented optimization scheduling problem compared to the literature include
dealing with:

• Multiple-satellite missions.
• Heterogeneous satellites, in terms of agility and in terms of sensor types.
• Multiple AOI coverage plans for one image acquisition request.
• Quality of coverage plans, strips, and imaging opportunities.

Integrated multi-mission collection scheduling of heterogeneous satellites would
result in enhanced intelligence collection beneficial to many applications including
maritime surveillance and ship detection, land surveillance of remote unpopulated
areas, environmental sensing, and search-and-rescue operations.

The design and development of the MiMPS system with the multi-mission
acquisition schedule optimizer system for generating optimized and de-conflicted
schedules has the potential to considerably increase the overall operational per-
formance and utilization of satellite resources. The proposed MIP model can be
used for solving the scheduling for multiple heterogeneous satellite missions using
a general purpose MIP solver or a model-based metaheuristics (matheuristic).

A.1 Appendix: Survey Summary

Table 1 summarizes the literature survey presented in this chapter. The manuscripts
are grouped by the solution approach in the following manner: exact methods,
heuristics and metaheuristics, constraint programming, and bounds. Within each
group, the manuscripts are listed chronologically.
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Single-Stage-to-Orbit Space-Plane
Trajectory Performance Analysis

Erwin Mooij

Abstract The development of fully reusable launch systems has been the topic
of many studies since the 1960s. Over the years, several aspects of both so-called
single- and two-stage-to-orbit space planes have provided many interesting research
topics. Amongst others, the constrained trajectory optimisation has proven to be
a challenging subject. In this chapter, an inverse-dynamics approach is combined
with trajectory optimisation and analysis, by discretising a representative (vertical-
plane) ascent trajectory into a number of flight segments, and by parametrising the
guidance in terms of flight-path angle as a function of altitude. When the individual
guidance parameters are varied, the effect on performance indices payload mass and
integrated heat load can be analysed. This can subsequently lead to a refinement of
the trajectory. To do so with limited effort, design-of-experiment techniques are
used. It is shown that with this relatively simple simulation scheme, combined with
variance analysis and response-surface methodology, the insight in the trajectory
dynamics can be increased. Alternatively, this method can be used as refinement to
an otherwise (local) optimum trajectory. It is stressed, though, that the application
of design of experiments to the ascent-trajectory problem cannot replace numerical
optimisation. Finally, the impact of using thrust-vector control as a means to
(partially) trim the vehicle shows significant fuel savings and should therefore be
included in the optimisation process.
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1 Introduction

In the ongoing effort to reduce launch costs, the current development focuses on
the reusability of the first stage of conventional launchers, such as the Falcon 9.1

Studies on the reusability of second stages are ongoing, and it will probably not be
for long that this will be flight tested [1].

The development of fully reusable launch systems has been the topic of
many studies since the 1960s, but the enormous cost involved in the technology
development has until now put a stop to most system developments. Over the years,
several aspects of both so-called single-stage-to-orbit (SSTO) and two-stage-to-orbit
(TSTO) space planes have provided many interesting research topics. Amongst
others, the constrained trajectory optimisation has proven to be a challenging
subject. As for SSTO launchers, the ascent is the most strenuous flight phase; in fact,
the design and sizing is largely determined by the ascent mission goals [2]. Because
of the very small performance margin, the guidance should be based on fuel-optimal
trajectories to ensure mission success [3, 4]. Also frequent on-board reoptimisation
and high-gain perturbation guidance that rapidly responds to perturbations and
therefore closely tracks the optimal trajectory will likely be required [5].

For TSTO vehicles, on the other hand, the requirements are less demanding, since
the burden of achieving mission success is divided over two vehicles. Last but not
least, since it is unlikely that SSTO and TSTO vehicles will go all the way to orbit on
the very first mission, also flight test-type missions should be considered. Therefore,
guidance must also be provided for more conventional flight modes, e.g., lower-
performance climbs and descents, altitude holds, and achieving and maintaining
course to area navigation targets.

New developments in guidance algorithms for space planes commonly start from
the notion that the algorithms should result in optimal (or near-optimal) trajectories.
For instance, [6] and [7] apply the singular-perturbation technique to achieve a
rapid, near-optimal trajectory generation and guidance scheme for space planes
(zero-order solution). Van Buren and Mease [8] extended this model to a first-order
solution and included feedback control. Drawback of these methods is that they
lean heavily on trajectory optimisation. Alternatively, one can draw from guidance-
system development in the field of re-entry, e.g., the predictor–corrector guidance
developed by Lu [9], which will then have to be extended with thrust forces.

Since the main focus of this study is not the development of robust guidance algo-
rithms, a relatively simple alternative can be found in a so-called inverse-dynamics
approach, which can be described as follows. Given a differential equation of motion
that relates the time derivative of a state variable to some external force, this time
derivative can be prescribed such that the external forces (and therefore also the
controlling variables) can be determined, instead of the usual way of computing the

1De Selding, P.B., “SpaceX to launch SES-10 on previously flown Falcon 9 this year”,
Spacenews, August 30, 2016. http://spacenews.com/spacex-to-launch-ses-10-satellite-on-reused-
falcon-9-by-years-end/. Accessed October 5, 2017.

http://spacenews.com/spacex-to-launch-ses-10-satellite-on-reused-falcon-9-by-years-end/
http://spacenews.com/spacex-to-launch-ses-10-satellite-on-reused-falcon-9-by-years-end/
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time derivative for a given value of the external force (hence the term inverse). This
approach is very much suitable to the foreseen trajectory segmentation and using
the dynamics parameters as design parameters to analyse the complete trajectory.

For actual guidance-system design, the inverse-dynamics approach has been
applied by Lu [10] and proved to be quite effective in solving the difficult problem
of trajectory optimisation, and by Hess et al. [11] who developed a generalised
technique for inverse simulation applied to aircraft manoeuvres. Finally, Morrio
et al. [12] used flatness theory combined with non-linear dynamic inversion that
led to a longitudinal guidance law that is in-flight self-adaptive to any feasible
hypersonic trajectory. It only requires a limited set of design parameters, because
of its analytical formulation.

In this chapter, the inverse-dynamics approach is combined with trajectory
optimisation and analysis, by discretising a representative (vertical-plane) ascent
trajectory into a number of flight segments, and by parametrising the guidance in
terms of flight-path angle as a function of altitude. When the individual guidance
parameters are varied, the effect on performance indices, such as payload mass and
integrated heat load, can be analysed, which can subsequently lead to a refinement
of the trajectory. To do so with limited effort, design-of-experiment techniques are
used. In this way, insight in the trajectory dynamics can be obtained in an easy
and fast way. And, once a consolidated methodology has been established, it may
assist in local refinement of an otherwise optimal trajectory obtained from a global
optimisation process, or may provide insight in the robustness of the trajectory if
small changes in trajectory parameters occur.

The layout of the rest of this chapter is as follows. In Sect. 2, the simulation model
is introduced, consisting of the reference vehicle, the flight-dynamics model, and the
guidance system. In the following Sect. 3 the parametric design and analysis method
taken from the field of design of experiments is discussed. This methodology is
successively applied to the sub-optimisation and analysis of the vertical-ascent flight
of an SSTO space plane, for which the (constrained) reference trajectory has been
predefined in terms of flight-path angle and flight-path angle rate (Sect. 4). Included
in the analysis is the application of thrust-vector control to reduce the induced drag
due to elevon deflections. Section 5 concludes this chapter with some final remarks.

2 Simulation Model

2.1 Reference Vehicle

The winged-cone configuration (WCC) reference vehicle, also known as the Lang-
ley accelerator, is a generic, horizontal take-off, SSTO configuration that can be used
for point-mass as well as batch and real-time six-degrees-of-freedom simulations
[13]. In the past, the WCC has been successfully used in many optimisation and
control-system design studies, see, for instance, [8, 10, 14–16]. Even though design
details concerning structure and propulsion system are lacking, and the performance
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of the vehicle is far too optimistic, the advantage of using this vehicle lies in the fact
that a complete aero-propulsive database is publicly available. As it is difficult to
find complete and consistent databases of other, more realistic space-plane concepts,
the WCC is chosen to be the reference vehicle for setting up the performance-
analysis methodology. Below, the aerodynamic, propulsion and mass models will
be briefly described. More details as well as the numerical values of the complete
database are provided by Shaughnessy et al. [13].

The WCC has a dry mass of 58,968 kg and is composed of an axisymmetric 5◦
half-angle conical forebody, a cylindrical engine nacelle section and a cone frustum
nozzle [15]. The wing has a leading-edge sweep of 78◦ and is set at 0◦ incidence
and dihedral. The wing is a 4% thick diamond airfoil. Elevons are located at the
trailing edge of the wing with their hinge line perpendicular to the fuselage centre
line, and positive deflections are with the trailing edge down. The vertical tail is a
4% thick diamond airfoil with a leading-edge sweep angle of 70◦ and includes a
rudder with a hinge line at the 75% chord position measured from the leading edge.
Positive rudder deflections are with the trailing edge left. The canards have a 6%
thick symmetrical 65A series airfoil, are deployed only at subsonic speeds and are
kept at 0◦ incidence relative to the fuselage centre line. Positive canard deflections
are with the trailing edge down. The take-off mass of the vehicle is 136,079 kg. The
main geometric characteristics can be found in Figure 1 and Table 1.

The aerodynamic database was generated with the aerodynamic preliminary
analysis system (APAS), a collection of algorithms to compute aerodynamic coef-
ficients in the subsonic, supersonic and hypersonic velocity range. Also the control
effectiveness and dynamic derivatives are output. Data are given as a function of
Mach number, M , angle of attack and sideslip, α and β, the angular roll, pitch and

Figure 1 Geometry of the winged-cone configuration
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Table 1 WCC geometric
characteristics

Fuselage length 61.0 m

Cone half angle 5◦

Cylinder radius 3.9 m

Cylinder length 3.9 m

Boat-tail half angle 9◦

Boat-tail length 12.2 m

Moment reference centre from nose 37.8 m

Wing reference area 334.7 m2

Aspect ratio 1.0

Span 18.3 m

Mean aerodynamic chord 24.4 m

Elevon area 8.6 m2

Chord 2.2 m

Rudder area 15.0 m2

Span 7.0 m

Chord (relative to tail) 25%

Canard area 14.3 m2

Aspect ratio 5.48

Span 10.2 m

yaw rate, p, q and r , and control-surface deflection angles, and are defined with
respect to the (fixed) moment reference centre.

The propulsion model was developed using a two-dimensional forebody, inlet
and nozzle code with a one-dimensional combustor code. The thrust and specific
impulse of the all air-breathing engine, T and Isp, were determined as functions of
M , dynamic pressure, q̄, and fuel-equivalence ratio, φT . The effects of α, β, p, q,
r and control-surface deflections on T and Isp are assumed to be negligible for the
current configuration of the WCC.

From the available documentation it is not clear what the geometry of the
propulsion system is like. However, the Langley accelerator is known to have engine
modules all around the cylindrical engine nacelle section. In principle, each of the
inlets is equally effective at α = 0◦, since only in that case there is a symmetrical
flow and none of the modules are shielded from the flow by the fuselage. Although
the major part of the flight of the WCC will be at small α (and preferably at β = 0◦),
it is not known to what extent the assumption of independency on both α and β

holds.
The vehicle mass model is based on a rigid structure and distributed fuel. No

fuel slosh is considered. The mass properties, i.e., the total mass, the x-location of
the centre of mass (c.o.m.) and the moments of inertia vary due to the consumption
of fuel. They are modelled as a function of the current total mass. Note that the
products of inertia are assumed to be negligible, even though the use of the inertia
tensor is restricted to simulating rotational motion, which is not considered here.
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(a) (b)

Figure 2 Definition of state variables. (a) Position and velocity. (b) Attitude

2.2 Flight Dynamics

To describe the flight dynamics we use the position and velocity definition in
spherical coordinates, see Figure 2a. The position is defined by the distance R =
Re + h (sum of Earth radius and altitude), longitude τ and latitude δ, whereas the
velocity is expressed by its modulus, the groundspeed V and two direction angles,
i.e., flight-path angle γ with respect to the local horizon, and heading, χ . For a flight
to the north, the latter is defined as χ = 0◦ whereas χ = 90◦ for a flight to the east.
The attitude of a vehicle, or, in mathematical terms, the orientation of the body-fixed
reference frame with respect to the trajectory reference frame, is expressed by the
so-called aerodynamic angles, i.e., the angle of attack α, the angle of sideslip β and
the bank angle σ , see also Figure 2b. For the flight considered, the angle of sideslip
is always β = 0◦.

For a large portion of the mission, the ascent flight of an SSTO space plane can be
assumed to take place in a single, vertical frame. As a consequence, in the absence
of (horizontal) manoeuvres, the vehicle can fly with zero bank angle, yielding the
maximum lift, L, in the vertical plane. Any control over the vertical motion will
thus be achieved by angle-of-attack modulation, and could possibly be supported
by using thrust-vector control (TVC). Nominally, the thrust force, T , will contribute
to the vertical acceleration proportional to the (positive) flight-path angle.

To simplify the equations of motion, it is further assumed that this vertical plane
coincides with the equatorial plane. With the spherical coordinates used, this means
that the flight heading is equal to χ = 90◦ with χ̇ = 0◦/s, whereas the latitude
remains constant at δ = 0◦. This assumption will effectively decouple the vertical
from the horizontal motion and reduces the equations of motion to [17]:

V̇ = −D

m
+ T cos(α + εT )− g sin γ + ω2

cbR sin γ (1)
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V γ̇ = L

m
+ T sin(α + εT )− g cos γ + 2ωcbV + V 2

R
cos γ + ω2

cbR cos γ (2)

Ṙ = ḣ = V sin γ (3)

In the above equations D and L are the aerodynamic drag and lift in N, g is the
gravitational acceleration in m/s2 and ωcb is the rotational rate of the Earth in rad/s.
T is the total thrust, i.e., the sum of impulse and pressure thrust. The Coriolis effect
due to variable mass is neglected, as it will only be non-zero in case the vehicle is
rotating, and then only at a high rate.

It is noted that when a robust guidance system is to be developed the full set of
equations of motion shall be used, to account for all non-linearities and asymmetries
in the flight dynamics. As the focus of this study is to show the capabilities of
parametric design and analysis, in combination with the use of a simple guidance
system the chosen assumptions are assumed to be justified.

2.3 Guidance

Starting point for describing the guidance model is the notion that a reference
trajectory is available, i.e., γ as a function of, for instance, h, V or M . This γ -
profile is to be followed as closely as possible, thereby responding to deviations
by controlling α. This so-called gamma-alpha steering is based on an inverse-
dynamics approach, i.e., a prescribed γ̇ yields αc by solving the corresponding
differential equation for γ . Furthermore, flying at the maximum values of the flight-
path constraints maximum dynamic pressure, axial load and heat flux (so-called
constraint tracking) will be considered, since that will result in principle in an
optimal trajectory [8]. The flight-path constraints will be controlled by adjusting
the thrust, which is discussed in more detail in the next subsection.

For the small angles of attack encountered during the major part of hypersonic
flight, after inspecting the aerodynamic database a linear lift curve can be assumed,
i.e., L ≈ (CL0 + CLαα)q̄Sref [13]. If also the thrust elevation is small, then
sin(α + εT ) can be approximated by α + εT . After rearranging terms, a functional
relationship between α and γ̇ is obtained from Equation (2):

α = Kγ 1γ̇ +Kγ 2 +Kγ 3 (4)

with

Kγ 1 = mV

T + CLα q̄Sref

Kγ 2 = −T εT −mg cos γ + CL0 q̄Sref

T + CLα q̄Sref
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Kγ 3 = 2ωcb + V
R

cos γ

T + CLα q̄Sref

In Equation (4) Kγ 1 is the actual γ̇ -to-α gain, whereas Kγ 2 can be seen as the
trim value of α at which the thrust and aerodynamic forces balance the component
of the gravity normal to the velocity vector, and thus at which γ̇ is zero. The Kγ 3
term represents the influence of the Coriolis and centrifugal acceleration.

What is left is to compute a commanded γ̇ , which drives the actual γ to its
reference value, γc. This is done in a general manner by applying a combination
of proportional, integral and derivative control, the so-called PID family of control
laws. Consider a time-varying error eγ (t), i.e., the difference between γc and γ . In
proportional control, the output of the controller is simply related to its input by a
proportional constant, u(t) = Kγpeγ (t). Hence, a large current error signal will
result in a large corrective action. The integral control law is represented by u(t) =
Kγi

∫ t

0 eγ (t)dt , with its output proportional to the accumulation of the past error.
This can be very effective when the error has the same sign for most of the time.
The derivative control law, finally, relates its output to the time derivative of the error
signal, i.e., u(t) = Kγd

deγ
dt . A large slope of the error will give a large corrective

action, implying that this control law anticipates on a large future error. With slowly
varying errors, this control law is not very effective, but overall it improves stability.
The flight-path angle steering loop is thus formulated as:

γ̇c = Kγpeγ +Kγi

t∫

0

eγ dt +Kγd

deγ
dt

,with eγ = γc − γ (5)

Without detailed analysis, the gains that give a satisfactory response are Kγp =
2.5, Kγi = 1.8 and Kγd = 0.05 for Mach numbers lower than M = 2, Kγp = 2.0,
Kγi = 0.05 and Kγd = 0.2 for 2 < M ≤ 4, Kγp = 1.0, Kγi = 0.9 and Kγd =
0.01 for 4 < M ≤ 6, and Kγp = 6.0, Kγi = 2.0 and Kγd = 0.2 otherwise.

2.4 Throttle Control

To ensure mission success, it is important that the so-called flight-path constraints
maximum dynamic pressure, maximum axial acceleration and maximum heat flux
are satisfied. These constraints are, amongst others, a function of the velocity and
since the velocity is directly dependent on the magnitude of the thrust, the throttle
setting can be used to regulate the velocity. Successively, a feedback control law to
regulate each of the three mentioned constraints will be developed that is easy to
implement and is robust enough to account for sudden changes in flight path.

The throttle-control law for regulating q̄ is derived from the expression of ˙̄q,
which is given by
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q̄ = 1

2
ρV 2 ⇒ ˙̄q = ρV V̇ + V 2

2
ρ̇ (6)

Since the trajectory of the space plane is shallow (γ ≈ 0), flown at α close to zero,
for guidance purposes V̇ can be approximated from Equation (1):

V̇ = T −D

m
(7)

Furthermore, the atmospheric density is assumed to be exponential so that the
density variation with time can be written as

dρ

dt
= dρ

dh

dh

dt
= − ρ

Hs

ḣ (8)

where Hs is the density scale height (Hs = 7050 m for the Earth’s atmosphere).
Substitution of Equations (7) and (8) into Equation (6) yields

˙̄q = ρV

m
T − ρV

m
D − ρV 2

2Hs

ḣ (9)

For a flight along the dynamic-pressure constraint, the above rate is zero yielding
the commanded thrust, Tc, to maintain equilibrium. However, to compensate for
variations in q̄ corrective terms must be added to Tc. Considering a PI regulator, Tc

can be written as

Tc = D + mV

2Hs

ḣ+Kq̄,peq̄ +Kq̄,i

t∫

0

eq̄dt (10)

with eq̄ = q̄ − q̄max . Substituting the above equation into Equation (9) gives an
expression for the rate of change of the error in q̄, i.e.,

ėq̄ = ρV

m

⎛

⎝Kq,peq̄ +Kq̄,i

t∫

0

eq̄dt

⎞

⎠ (11)

To determine the feedback gains, the above equation is Laplace transformed to the
s-domain:

(
s2 − ρV

m
Kq̄,ps − ρV

m
Kq̄,i

)
eq̄(s) = 0 (12)

which yields the following second-order characteristic equation:

s2 + 2ζq̄ωq̄ + ω2
q̄ = 0 (13)
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Combining the two equations yields for the proportional and integral gain:

Kq̄,p = − 2m

ρV
ζq̄ωq̄ and Kq̄,i = − m

ρV
ω2
q̄ (14)

By specifying the damping coefficient, ζq̄ , and natural frequency, ωq̄ , the (dynamics-
dependent) gains can easily be determined.

In a similar manner, a throttle-control law is derived for tracking a maximum
stagnation-point heat flux, approximated by Chapman’s equation:

Q̇ = cQ̇,1√
rN

√
ρ

ρ0

(
V

Vc

)cQ̇,2

(15)

where cQ̇,1 = 1.06584 · 108 W/m3/2 and cQ̇,2 = 3 are constants, rN is a

characteristic radius, ρ0 = 1.225 kg/m3 is the Earth’s atmospheric density at sea
level and Vc is the local circular velocity with respect to the rotating frame. Taking
the time derivative of Equation (15) results in

Q̈ = Q̇

(
cQ̇,2

V̇

V
− ḣ

2Hs

)
= Q̇

(
cQ̇,2

T −D

mV
− ḣ

2Hs

)
(16)

Tc is written as the sum of an equilibrium value, derived from Equation (16), and
the PI compensation terms:

Tc = D + mV

2cQ,2

ḣ

Hs

+KQ̇,peQ̇ +KQ̇,i

t∫

0

eQ̇dt (17)

with eQ̇ = Q̇− Q̇max . Substituting Tc in Equation (16) yields an expression for the
rate of change of the error in heat flux. After Laplace transforming the resulting
equation, and equating it with a second-order characteristic equation similar to
Equation (13), the following proportional and integral gains are obtained:

KQ̇,p = − 2mV

cQ̇,2Q̇
ζQ̇ωQ̇ and KQ̇,i = − mV

cQ̇,2Q̇
ω2
Q̇

(18)

Finally, given the axial acceleration and its time derivative by

na = V̇

g0
⇒ ṅa = V̈

g0
= Ṫ − Ḋ

mg0
− T −D

m2g0
ṁ (19)
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Table 2 Parameter values
for guidance and throttle
control

Parameter Value

ζq 0.7

ωq 0.75 rad/s

ζQ̇ 0.7

ωQ̇ 0.075 rad/s

ζna 0.7

ωna 0.075 rad/s

with g0 the acceleration due to gravity at the equatorial sea level (g0 = 9.798 m/s2

for Earth), Tc is written as

Tc = D + ṁ

m
(Ṫ − Ḋ)+Kn,pena +Kn,i

t∫

0

enadt (20)

with ena = na − namax . For Kn,p and Kn,i it follows:

Kn,p = 2m2g0

ṁ
ζnaωna and Kn,i = m2g0

ṁ
ω2
na

(21)

The applied values for the damping ratio and natural frequency to give a good
response and an acceptable overshoot are summarised in Table 2.

3 Parametric Design and Analysis

Generally, in a sensitivity analysis or a design exploration one wants to cover the
full experimental region with a minimum number of simulations. When no details
on the functional behaviour of the response parameters are available, it is important
to obtain information from the entire design space. Therefore, design points should
be “evenly spread” over the entire region. Without degrading the method, one tends
to reach out to a Monte-Carlo simulation. Because the design space can be sampled
at random and once sufficient runs have been executed, one can get a reliable insight
in the mean performance and associated standard deviation. However, the keyword
here is sufficient. It might take a significant number of runs to obtain statistical
confidence, and if the runs are time consuming to prepare and/or execute a Monte-
Carlo simulation might not be the most efficient approach.

A potential alternative comes from the field of design of experiments,2 where
with a relatively low number of simulations significant insight in the system

2Various alternatives to design of experiments exist, e.g., Latin hypercube sampling [18] or
optimised hypercube sampling [19]. Even though potentially efficient methods, it was decided to
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Table 3 Orthogonal array
L8 with 7 factors (A–G) on
two levels; “−1” represents
the normalised minimum
value and “1” the maximum
one

Design

nr A B C D E F G

1 −1 −1 −1 −1 −1 −1 −1

2 −1 −1 −1 1 1 1 1

3 −1 1 1 −1 −1 1 1

4 −1 1 1 1 1 −1 −1

5 1 −1 1 −1 1 −1 1

6 1 −1 1 1 −1 1 −1

7 1 1 −1 −1 1 1 −1

8 1 1 −1 1 −1 −1 1

performance can be obtained. This methodology was earlier used for screening
experiments and shape optimisation of re-entry test vehicles [20], and would also
be suitable to analyse the reference trajectory of the SSTO space plane. Rather than
executing a full factorial design, i.e., varying one parameter at a time and executing
all combinations, rapidly leads to a large number of simulations,3 it is preferred
to do a so-called fractional factorial design. A good candidate is the Taguchi
method [21, 22], which makes use of orthogonal arrays to define parameter-setting
combinations. Matrix orthogonality, in this context, should be considered in the
combinatorial sense, namely: for any pair of columns all combinations of parameter
levels occur an equal number of times, the so-called balancing property [22]. In the
field of design of experiments, a parameter (a design variable, sensitivity parameter,
uncertainty, etc.) is commonly known as a factor. Similarly, the performance of the
system under study (or, equivalently, the deviation from a set point, a constraint
value, or anything that says something about the system’s behaviour) is called the
response of the system.

Taguchi [21] has derived many orthogonal arrays, most of them based on two-
or three-level factors, which are commonly used in practical applications. As an
example, the so-called L8 array is given in Table 3 (note that the index “8” indicates
the number of rows, or, similarly, the number of designs/experiments). Seven two-
level factors (A through G), with levels −1 (normalised minimum value) and 1
(normalised maximum value) are varied over eight experiments. For columns 1 and
2, the 4 possible combinations of factor levels, i.e., (−1,− 1), (−1,1), (1,− 1) and
(1,1), occur in experiments (1,2), (3,4), (5,6) and (7,8), respectively. Note that in a
full factorial design 27(=128) experiments would be required. It is also mentioned
that the L8 design is non-collapsing.4

use a fully deterministic approach that is simple to implement and allows for a structured variance
analysis of the results.
3Variation of k parameters with two (three) possible values, also called levels, results in a total of
2k (3k) combinations.
4Two design points are said to collapse when one of the design parameters has (almost) no
influence on the function value and the two designs differ only in this parameter. As a consequence
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Although there are many orthogonal arrays available from literature, the selection
of the proper orthogonal array is not trivial. This is particularly true if many factors
are included and there are potential interactions (an interaction between two factors
is said to exist, when a variation in the first factor results in a different variation
of the response for each level of the second factor). Then, the column assignment
can be complicated and it is possible that not all of the factors and interactions can
be studied in one go. The columns that are assigned to interactions are available
from so-called interaction tables [22]. For the array given in Table 3, if one assigns
two factors to columns A and B, then a potential interaction is linked with column
C. Similarly, column A and D are linked to E, whereas B and D are linked to
column F . The particular interaction tables follow from the mathematical derivation
of the corresponding orthogonal array, and is not a trivial process. Discussing the
interactions in detail does not serve a purpose here, so we leave it to the given
references that provide a lot of background information.

A statistical description of a number of N observations of a response can be given
by the mean response, ȳ, and its standard deviation, σ , defined by:

ȳ = 1

N

N∑

j=1

yj = T

N
σ 2 = 1

N − 1

N∑

i=1

(yi − ȳ)2 (22)

where T =
N∑

j=1
yj is the total sum. To identify the relative “strength” of factors to the

total variation of a response, analysis of variance (ANOVA) can be done, simplified
by the fact of using orthogonal arrays [21]. The sum of the squared deviation from
this mean (or the total variation in the set of observations) is represented by the total
sum of squares, ST .

ST =
N∑

i=1

(yi − ȳ)2 =
N∑

i=1

(
y2
i − 2yi ȳ + ȳ2

)
=

N∑

i=1

y2
i − 2ȳ

N∑

i=1

yi +Nȳ2 (23)

Because there is an equal number of experiments nk at each of the levels for one
factor xj when they are varied according to an orthogonal array, it is easy to compute
the factor sum of squares, Sj . The sum of squares Sj for factor xj on levels xj,k is
the sum of all level variations:

Sj = 1

nL

(
N∑

y(x+j )−
N∑

y(x−j )

)2

nk

(24)

this means that effectively the same point is evaluated twice, and for deterministic simulation
models this is not a desirable situation.
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with each sum adding all responses at level k (+1 or −1) together (nk out of the
total of N samples); nL is the number of levels (nL = 2 for the linear variations
considered in this study). This factor sum of squares can be used to assess the
response sensitivity to a particular factor variation by determining the corresponding
relative contribution to ST :

Pj = Sj

ST

∗ 100% (25)

The error sum of squares SE is simply the difference between ST and the sum of all
Sj (j = 1, . . . , k).

An alternative way to study the factor effects is by fitting a response surface
through the data, and by comparing the relative contribution of each of the terms.
For example, to study quadratic effects, a second-order response surface may be
used:

η = β0 +
k∑

i=1

βixi +
k∑

i=1

βiix
2
i +

k−1∑

i=1

k∑

j=i+1

βij xixj (26)

for which the coefficients β can be estimated by minimising a quadratic error crite-
rion, resulting in the well-known method of least squares. Solution of the resulting
problem can conveniently be done by, for instance, singular value decomposition.
In Equation (26), the mean value of the particular response is represented by β0,
whereas the relative values of the other coefficients give the sensitivity of this mean
response to a variation in the individual factors and interactions.

4 Vertical Ascent to Orbit

4.1 Initial Trajectory

At the beginning of this study, an all-up reference trajectory for an SSTO space
plane was not readily available, nor was there an opportunity to use optimisation
software to generate one. Based on experience gained by Marée et al. [23], it is
possible, however, to roughly define a trajectory based on available literature and
then to further refine the trajectory using Taguchi’s orthogonal arrays. This implies
that a sensitivity analysis is executed where the key parameters of the trajectory are
the factors, and the payload mass delivered to orbit or the integrated heat load are
the responses. The outcome of the analysis will be a sub-optimal trajectory for the
given definition of the trajectory parameters.

A trajectory can be defined by specifying the flight-path angle as a function of
altitude. By comparing guidance and optimisation studies by Hattis and Malchow
[14], Powell et al. [15], Van Buren and Mease [8], and Lu [10], it was found that
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the ascent trajectories include a take-off segment consisting of a pull-up manoeuvre
towards a large γ between 25◦ and 30◦ in the subsonic range, and then falls back
to values close to zero not to violate the trajectory constraints and for subsequent
flight acceleration. Van Buren and Mease [8] showed that tracking the trajectory
constraints q̄, na and Q̇ results in a near minimum-fuel trajectory for the applied
vehicle (WCC) and propulsion models. Powell et al. [15] stated that q̄ is the most
stringent constraint, and Lu [10] applied both q̄ and Q̇ as trajectory constraints.
To be in line with literature the three mentioned constraints will be applied and the
importance of each of these constraints will be judged later. Moreover, the trajectory
design will be based on the trajectory discussed by Powell et al. [15]. The design
logic is as follows.

In principle, the WCC flies with full throttle to optimise propulsion-system
performance. By varying φT (under- and overfueling) less or more thrust can
be generated, if required. Constraint tracking could thus be done by varying φT ,
but since the propulsion model has been implemented for φT = 1, the engines
will be throttled directly. A maximum δT of 100% is used, which implies that
the maximum thrust could be higher if overfueling is allowed. The γ -profile is
specified as a function of h and includes segments with constant γc or constant
γ̇c. The commanded γ is input to the gamma-alpha guidance system as discussed in
Sect. 2.3, giving a commanded α.

By trial and error we come to a definition of the segments such that a circular
LEO at 120 km altitude can be reached (see Table 4 for the trajectory segmentation).

Table 4 Initial reference trajectory

Segment ΔT Δmfuel

Nr Guidance law Parameter boundary (sec) (kg)

1 Constant normal load nz,c = 1.5 γ1 = 25.0◦ 14 849

2 Constant flight-path angle rate γ̇c,2 = −0.2◦/s γ2 = 5.0◦ 101 6208

3 Constant flight-path angle rate γ̇c,3 = −0.075◦/s γ3 = 3.5◦ 18 824

4 Constant flight-path angle rate γ̇c,4 = −0.025◦/s γ4 = 1.5◦ 94 3686

5 Constant flight-path angle γc,5 = 1.5◦ M5 = 7.0 114 5049

6 Constant flight-path angle rate γ̇c,6 = −0.025◦/s γ6 = 0.5◦ 61 3041

7 Constant flight-path angle γc,7 = 0.5◦ M7 = 10.0 103 4721

8 Constant flight-path angle rate γ̇c,8 = −0.01◦/s γ8 = 0.25◦ 46 2062

9 Constant flight-path angle γc,9 = 0.25◦ M9 = 14.0 229 10,651

10 Constant flight-path angle rate γ̇c,10 = −0.001◦/s γ10 = 0.12◦ 151 7932

11 Constant flight-path angle γc,11 = 0.12◦ V11 = 7000 m/s 905 19,879

12 Pull-up manoeuvre

Initial αi,12 = 6.0◦ α12 = 0.0◦ 83 767

Transition q̄12 = 2500 N/m2 – – –

Final αf,12 = 0.0◦ – – –

13 Constant angle of attack αc = 0.0◦ γ13 = 0.0◦ 316 0

14 Circularisation hcirc = 120 km hcirc = 120 km 0 7740
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Transition from one segment to the other is triggered by reaching, for instance, a
predefined γ , M or V . The final pull-up manoeuvre is started at V ≈ 7000 m/s, a
value close to values found in the literature, and is performed at δT ,max = 120%.
After reaching a specified q̄ the vehicle is commanded to fly at α = 0◦, which
corresponds with the minimum drag configuration, and the engines are switched
off. A coast phase will bring the vehicle in orbit. Obviously, it will not have the
proper final state since no targeting guidance is used. Powell et al. [15] guarantee
this final state by applying a predictor–corrector guidance system as outer loop. It
determines the proper conditions for starting the final pull-up, such that only minor
corrections have to be applied by the circularisation engine. Since we do not have
a targeting guidance system at our disposal, the final altitude is considered to be
the only final state and circularisation of the target orbit is added as a mass penalty.
This penalty is approximated by Tsiolkovsky’s equation, using Isp = 465 s for the
circularisation engine [15]. After circularising the orbit, γ will be zero and V will
be the local circle velocity at 120 km.

The trajectory represents a trimmed flight in the equatorial plane, starting with
V = 170 m/s. Trim is guaranteed by the canards (M ≤ 0.9) and elevons (M > 0.9).
TVC is not considered for the reference trajectory, although the influence of TVC
on fuel-mass consumption will be studied later. When q̄ is low, i.e., during the final
ascent to orbit, α = 0◦ and trim can be restricted to corrective control by reaction-
control jets. The applied guidance system is the already mentioned gamma-alpha
steering, with constraint tracking by the throttle laws of Sect. 2.3.

The trajectory constraints are q̄max = 95,000 N/m2, Q̇max = 8000 kW/m2 at
the leading edge of the wing (rN = 0.1 m), and na,max due to propulsion and
aerodynamic forces of 1 g0. These values are commonly applied to SSTO space
planes, see the previously mentioned references. The resulting initial reference
trajectory consists of the segments with corresponding parameters and fuel-mass
consumption, as indicated in Table 4.

The resulting trajectory has been visualised in Figure 3, with a total flight time
of tf = 2234 s. It shows that the vehicle first flies along the dynamic-pressure
constraint—although early in the flight this could be improved, provided that the
axial-acceleration constraint is not violated—followed by flying along the heat-
flux constraint, which kicks in at higher velocities. The powered ascent phase is
characterised by a relatively flat trajectory; the major increase in altitude takes place
after the pull-up, with an unpowered coasting phase. The circularisation manoeuvre
is executed when the flight-path angle is zero, which, in this case, is at an altitude
larger than 120 km. This means that effectively first the apogee height is lowered to
120 km, after which the velocity is increased to the local circle velocity.

Before we come to optimising the initial reference trajectory, some remarks must
be made. The final relative velocity is Vf = 6879.4 m/s, a rather large difference
with the local circle velocity (Vc = 7358.2 m/s). A properly selected guidance
scheme might therefore reduce the total required fuel mass. The circularisation
manoeuvre required an inertial ΔV of 479 m/s (Δmfuel = 7740 kg, including
the fuel for lowering the apogee) as compared with ΔV = 162 m/s (Δmfuel =
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Figure 3 The ascent reference trajectory, including the dynamic-pressure constraint of q̄max =
95,000 N/m2 and the heat-flux constraint of Q̇max = 8000 kW/m2. The flight-segment boundaries
are represented by diamonds

2487 kg), mentioned by Powell et al. [15]. The final mass after circularisation is
62,668 kg, which—after subtracting the vehicle’s dry mass—means a maximum
payload of 3700 kg.

Previously, it was stated that the performance of a space plane is marginal at best,
and that small deviations from the nominal design could easily lead to a negative
payload and thus mission failure. Here, however, we could relatively easily find a
successful trajectory with a positive payload, although not as much as the commonly
specified target payload of 7000 kg. The reason may be found in a too optimistic
modelling of the WCC, in the sense that the performance of the propulsion system
is overrated with respect to the vehicle’s dry mass.

During the simulations it was found that the discrete jumps in flight-path
angle commands caused peaks in the commanded angle of attack, especially after
the initial pull-up to γ = 25◦ and the successive commanded flight-path angle
rate. To avoid these peaks—and during the sensitivity analysis sometimes even
instabilities—any γ̇c that is input to the guidance law will first be converted to a
γc and subjected to the guidance law after which the resulting rate command is
constrained to twice its input value.
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4.2 Trajectory Analysis

As can be seen from Table 4, there are 28 parameters that define the trajectory.
However, not all of them are suitable to be varied: (1) the γ -boundary of a segment
preceding a constant-γ segment should in principle be equal to γc to prevent
additional discontinuities, (2) αf of the pull-up should be equal to αc of segment
#13 and zero, because α = 0◦ corresponds with the minimum-drag configuration
which is already optimal, (3) the boundary altitude of the last segment is the (fixed)
target altitude. Omitting these leaves 20 parameters.

Marée et al. [23] discuss the shaping process of an air-breathing first stage and
rocket-powered second stage of a TSTO space plane by varying the important
trajectory parameters according to an orthogonal array. For 13 selected trajectory
parameters, a three-level L36 array taken from [21] was applied. Note that in
principle, an L27 array would have sufficed for 13 factors; however, 9 simulations
were added for the sake of error analysis. The outcome of the sensitivity analysis
was that the payload-to-orbit varied between −1890 and +5820 kg. Analysis of
variance of the payload mass indicated that the contribution of the quadratic terms
was only 0.45%. Unfortunately, no effort was made to assess the influence of
interactions although the results implied that this influence was small.

In line with previous experience with Taguchi’s orthogonal arrays, we will start
the analysis with a two-level array to assess the linear effects of the trajectory
parameters. Nineteen parameters require the L32 array, leaving 12 columns for
interactions. However, if it can indeed be assumed that there are no interactions,
the number of simulations can be reduced if beforehand it can be decided that
some parameters are not so important. On the other hand, we only want to indicate
the potential of this way of trajectory shaping. Therefore, it is decided to use the
L16 array. This means that 15 out of the 19 parameters will be varied. The four
parameters that are discarded are the γ̇c of segments #2, #3, #4 and #10, because the
trajectory shape can also be influenced by the corresponding γ -boundaries.

It can be expected that not all of the combinations of trajectory parameters will
result in actual trajectories all the way up to orbit. This has already been solved by
incorporating the circularisation manoeuvre. The stop criterion for all simulations
will be a zero flight-path angle after the coasting phase. In any case, one burn will
be applied to raise or lower the final altitude and another burn for circularisation,
as was discussed in the previous sub-section. The parameter variations are selected
quite arbitrarily, but should guarantee that the vehicle can reach orbit. They have
been defined as follows.

With the above parameter variations, not all of the trajectories are feasible ones,
though, but this has been done intentionally to show a point later in this section.
Two aspects came to light: three trajectories led to a crash of the vehicle,5 and one
trajectory gave a negative payload mass after circularisation. The latter is explained

5The simulation stops after 3000 s, which is about 700 s more than the flight duration of the
reference trajectory, so not reaching h = 120 km after this time indicates a vehicle “crash”.
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A: nz,c = 1.5 ± 0.15 I : γ̇c,8 = −0.01◦/s ± 0.005◦/s
B: γ1 = 25.0◦ ± 1.0◦ J : γ8 = γc,9 = 0.25◦ ± 0.05◦

C: γ2 = 5.0◦ ± 0.25◦ K: M9 = 14.0 ± 0.5

D: γ3 = 3.5◦ ± 0.25◦ L: γ10 = γc,11 = 0.12◦ ± 0.02◦

E: γ4 = γc,5 = 1.5◦ ± 0.15◦ M: V11 = 7000 m/s ± 50 m/s

F : M5 = 7.0 ± 0.5 N : αi,12 = 6.0◦ ± 0.5◦

G: γ6 = γc,7 = 0.5◦ ± 0.05◦ O: q̄12 = 2500 N/m2 ± 1000 N/m2

H : M7 = 10.0 ± 0.5

as follows. The way the simulation is executed allows the propulsion system to keep
thrusting, even though the fuel mass has depleted. This has been done to widen
the possibilities to reach space and study the main performance effects. Using more
fuel than is available will automatically lead to a negative payload. Keeping the three
crash trajectories in the responses, the variance analysis will be influenced, because
these have a relatively large weight on both payload mass (which will be too high,
because not all fuel would have been used) and integrated heat load (too low, since
the heat flux acting on the vehicle will be significantly lower, which dominates the
longer flight duration). The same is true for a negative payload mass, although this
effect is smaller, because the trajectory is “more feasible” and it concerns only a
single case. It is noted that when relatively more negative payloads are present, the
predictive power of the response surface of the payload reduces. This is attributed to
the larger spread of the responses, which is a form of non-linearity not captured by
the currently considered linear factor variation. (The use of response surfaces will
be explained in more detail later in this section).

For a more robust analysis that would lead to an improvement of the trajectory
it is therefore required to have feasible trajectories with preferably positive payload
masses only. To achieve this the factor variation has to be lowered to 75%. One
should be aware, though, that reducing the factor variation obviously reduces the
payload and integrated heat-load variation. Furthermore, also the factor contribution
to the total variance may change, which would confirm the non-linearity of the
problem.

Executing the 16 simulations resulted in the payload masses as presented in
Table 5. There, also the integrated heat loads are listed. The higher this heat load is,
the higher the mass of the thermal protection system, which would in a proper design
process have a negative impact on the available payload mass. After inspecting the
results it is obvious that the minimum-fuel trajectory corresponds with the minimum
heat-load trajectory, but only in this particular case. Normally, these two responses
are conflicting, as will be shown below. Depending on the maximum allowable value
of the latter, it should be included in any trajectory optimisation process.

Focusing on the payload mass a large variation can be seen, i.e., it ranges from
732 to 6584 kg (the integrated heat load shows less of a variation). This variation
follows a normal distribution, as shown in Figure 4. To assess the relative influence
of the trajectory parameters on the payload mass, a variance analysis is performed
using Equations (22) through (26). In Figure 5, the linear factor contribution to the
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Table 5 Payload mass and
total heat load for sensitivity
analysis (extrema are
highlighted in bold)

mpayload Q mpayload Q

Nr (kg) (MJ/m2) Nr (kg) (MJ/m2)

1 732 11,526 9 1602 11,433

2 4650 8798 10 3291 8818

3 3942 9907 11 1886 9466

4 4574 9447 12 2883 10,694

5 4684 9556 13 3975 10,606

6 5752 9798 14 4206 9395

7 6584 8736 15 4420 8936

8 3117 11,189 16 2713 11,319

0 1000 2000 3000 4000 5000 6000 7000
payload mass (kg)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

cu
m

m
ul

at
iv

e 
pr

ob
ab

ili
ty

 (-
)

discrete data
normal distribution

Figure 4 Cumulative probability distribution of the payload-mass variation: discrete data versus
normal distribution with μ = 3688 kg and σ = 1521 kg

total variance, Equation (24), has been plotted, for both the payload mass and the
total heat load. Since all columns of the orthogonal array were assigned to factors, no
column (or, equivalently, degree of freedom) was left to address the error variance.
Note that any variation due to interactions is confounded with the factor variance,
although the contribution of the interaction will be smaller than the corresponding
main effects. As a result of the analysis with the payload mass as objective, we
find that four factors including possible interactions contribute to about 82% of the
variation in payload mass,6 i.e.,

6Only two factors determine 90% of the variation in integrated heat load, i.e., parameters that
determine the shape of the second part of the trajectory where thermal loading is larger.
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Figure 5 The contributions of the linear terms of variation per factor, in percents of the total
variation, to the payload mass and total heat load

1. the normal load at take-off, factor A (14.8%),
2. the flight-path angle at the end of the initial pull-up, factor B (25.4%),
3. the commanded flight-path angle of segment 9, factor J (22.2%) and
4. the commanded flight-path angle of segment 11, factor L (19.7%).

The contribution of the other factors is smaller, though not negligible, apart from
factors C, D, I and O that have an influence smaller than 1%. Note that only the
relative influence of the factors is given. Since the factors are not equally varied
it cannot be concluded that the trajectory is more sensitive to one factor than to
another. To verify that, the payload mass is plotted as a function of the factors
related to their mean value (Figure 6), i.e., the mean value of the fuel mass at the
minimum level of a factor and the maximum level. Connecting these two values
gives gradient information, and shows which of the factors have had the most impact
on the variance of the responses. For ease of inspection, in Figure 7 the factor-
response gradients of the four largest contributors (A, B, J , L) have been plotted.
From this figure it is clear that the factor that contributes most to the total variation
(B) also has the steepest gradient, but that the factor that comes close (J ) has a
much shallower gradient. Moreover, it is also obvious that a larger value of factor A
has a decrement of the payload mass as result, while for the other three factors an
increase leads to an increment.

The two ways of graphically presenting the results can be of great help while
trying to interpret the results of a sensitivity analysis. In case the factor levels are



328 E. Mooij

-40 -30 -20 -10 0 10 20 30 40
relative variation (%)

2800

3000

3200

3400

3600

3800

4000

4200

4400

4600

pa
yl

oa
d 

m
as

s 
(k

g)
A
B
C
D
E
F
G
H
I
J
K
L
M
N
O

Figure 6 Relative factor influence on the variation of payload mass. The factor variation is
expressed with respect to the corresponding nominal value
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Figure 7 The influence on the payload mass of the four factors that contribute most to the total
variation. The factor values are expressed with respect to their nominal values

given, then the factor contribution to the total variation directly gives the major
factors, and relative differences between the factors are easily found from the bar
graph. On the other hand, in case the factor levels are chosen quite arbitrarily
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studying the response lines can give a lot of extra insight, especially when the factors
are varied over more than two levels. These results can then be used to change
individual factors to try and improve the responses.

To assess the influence of the simulation size on the selected responses and to
have some columns available for interaction analysis to confirm that they can indeed
be ignored, a second batch of simulations is executed with twice the number of runs.
For the 15 factors an L32 array is used with a column assignment of alternating a
factor with an empty column: A, empty, B, empty, C, empty, etc. ANOVA of the
results shows that the contribution of the empty columns (i.e., column interactions)
to the total variation is very small: 0.2% for the payload mass and 1.1% for the
integrated heat load.

An aspect that came forward by comparing the results of the two analyses is
that there are small changes in factor contribution to the total variation, although
they remain small in this particular case. Major factor effects are still major factor
effects, but in case of smaller effects there are some small shifts in the order of
the factor contributions. The conclusion is that major factor effects can always be
extracted from the results, but that the absolute importance cannot be fully assessed.
This means that one cannot label a certain factor with a p% influence on the total
variation. In particular, this holds for minor factor influences.

Concerning the extrema, the maximum-payload trajectory has mpayload =
6353 kg, which is 131 kg less than for the L16, with Q = 9221 MJ/m2, whereas the
minimum heat-load trajectory has Qmin = 8242 MJ/m2 with mpayload = 5367 kg.
As mentioned earlier, the two “optimal” trajectories are definitely not the same,
confirming the conflicting objectives.

Finally, the L16 and L32 analyses resulted in two different means (3688
and 3647 kg) and standard deviations (1521 and 1413 kg) for the payload mass.
Evidently the problem of trajectory (sub)optimisation is a non-linear problem that
emerges when different (but similar) factor combinations are used. Of importance
is, of course, the question whether one mean is better than the other, or whether
the two means differ significantly from one another. One can imagine that a mean
gets more accurate with an increasing number of samples. In that sense, the mean
obtained by the L32 analysis would be better. An even more global question is: are
the two distributions of the payload masses consistent with each other or are they
different? Statistical tests are available that can address these questions in a formal
manner. For instance, the generally accepted two-sample Kolmogorov–Smirnov test
can be applied to continuous distributions to check whether they are consistent or
different, as to find out whether the two sets of orthogonal factor combinations that
are in principle normally distributed result in the same distribution. Carrying out the
test accepts the null hypothesis at the default 5% significance level and confirms that
the distributions are consistent. Apparently, only the number of simulations has an
influence on the mean and variance of a selected response.

Before moving on to finding the optimal payload mass, the earlier results of the
batch with “crash” trajectories are revisited. Figure 8 shows the factor contribution
to not only the payload mass and integrated heat load, but also to the final altitude. It
is stressed that since there are only three crash trajectories with an altitude different
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Figure 8 Factor contributions in percents of the total variation to the payload mass and total heat
load, “crash” trajectories

from hf = 120 km, the variance analysis can only provide a rough indication. But
it can be seen that all three responses are driven by the factors that determine the
first half of the trajectory. Closer inspection may lead to the conclusion that the
vehicle wants to climb too fast, and is therefore having too low dynamic pressure
and thus lift that can counteract the large weight early in the flight. As a result the
vehicle would “sink” back to lower altitudes before it can correct itself, and is then
accelerating at an altitude where the atmospheric density induces a too large drag for
the thrust to compensate. This first flight phase also determines the thermal loading
later during the flight, when the velocity is too large for the given altitude and thus
results in a larger heat flux. In conclusion, this kind of results can be used for failure
analysis, in a similar way that the earlier, feasible results are meant to be used to
study how to increase the payload mass, and/or reduce the integrated heat load. The
fidelity of the ANOVA increases when there is more spread in the results, i.e., when
there are no clustered groups of response values.

Another way of analysing the results is a response-surface approach. When
the first-order response surface7 has been applied, which for the payload mass is
computed, we find, using normalised factors:

mpayload = 3688.1 − 566.3nz,c + 743.1γ1 + 36.6γ2 + 76.7γ3 + 223.0γc,5 +
299.5M5 + 184.1γc,7 + 210.1M7 + 58.8γ̇c,8 + 694.6γc,9+
174.2M9 + 653.1γc,11 + 324.3V11 − 155.9αi,12 − 0.1q̄12

(27)

7A response surface with only linear terms assumes no interactions or higher-order effects in the
response. This may not be true for all ranges of factor variation, but to do so allows for a comparison
with the results of ANOVA. Also, the linear factor variation (minimum and maximum values only)
allows for a fast analysis during conceptual trajectory design.
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Unfortunately, it is not possible to compute the confidence interval for the
coefficients in the response surface, because of the zero degrees of freedom for the
error. Therefore, this surface should only be seen as a means to get an indication of
the extremes in the design region, and not as a final model. Moreover, we included
all factors in the model, whereas in principle those factors with a small contribution
could be omitted. However, maybe also some interaction terms should be included
in the final first-order response surface. Since it is not intended to actually optimise
the trajectory, but merely improve the performance of the WCC to an acceptable
level, a refinement of the response surface is not pursued.

Comparing the coefficients in the response surface with the factor contribution, a
similar relative importance is found, as shown in Figure 6. Computing the maximum
payload mass with Equation (27) is simple:

xopt = (−1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,−1,−1)T

with mpayload,max = 8089 kg. However, it turns out that a verification simulation
with this factor combination results in a payload mass of 7007 kg, which is about
12.5% less. This is not the best of results, yet it does not mean the response surface
cannot be used. Optimising the response surface has still provided those factor
settings that have increased the payload mass with almost 500 kg, compared to the
best value in Table 5. On the other hand, it shows that the response surface has to
be used with caution and it has for sure confirmed the importance of the verification
run. This is particularly true when a hypersurface needs to be estimated with limited
to no excess data points.

In that respect, doing the same calculation with the data obtained from the L32
analysis provides a similar response surface, but with an optimal payload mass of
7748 kg (about 4% lower).8 This is a better result, although the difference is still
around 10%. This may be caused by “curvatures” in the response distribution that
are not properly captured by the response surface. In case the factor variation is
relatively large, this may cause some issues with the predictive power of the surface
in between the data points. To test this hypothesis, the factor ranges are reduced
to 50% of the original values. Running both L16 and L32 analysis, computing the
response surfaces and predicting the optimum yields 6511 kg (L16) and 6418 kg
(L32), for otherwise the same xopt. The verification run gives mpayload = 6270 kg,
which is clearly much closer.

When constructing the response surface for the integrated heat load (data listed
in Table 5 for the L16-batch) and evaluating this for the same xopt that maximises
mpayload , the predicted heat load is 8227 MJ/kg, whereas the verification run results

8A batch with factor variations over three levels, allowing to include quadratic effects, has been
executed using the L81 orthogonal array. This array requires 81 simulations for a maximum of 40
independent factors. With the same column assignment as for the L32-batch, the response surface
gives a maximum payload mass of 7895 kg when both linear and quadratic terms are included, and
7899 kg with only linear terms. This analysis confirms the consistency of the approach and shows
indeed that quadratic terms have a marginal effect for fitting the surface through the data points.



332 E. Mooij

in 8548 MJ/kg. The L32-batch provides an even better prediction, i.e., 8492 MJ/kg.
The objective space for the integrated heat load is apparently much flatter than the
one for the payload mass.

It is noted that the application of a first-order response surface is straightforward,
and may not seem to contribute much to the analysis. However, the same approach
can easily be extended to higher-order response surfaces, for which it is less trivial
which factor combination will give the optimum value. This may be particularly
useful when evaluating the simulation model is CPU-expensive, and the response
surface can assist in finding the correct search direction at minimal computational
cost.

4.3 Sub-Optimal Trajectory

In this sub-section the final reference trajectory will be presented, but only after two
adjustments are made in the final pull-up and circularisation manoeuvre. During
the final pull-up the propulsion system is producing 20% extra thrust. This is
reduced by 10% to come closer to the original propulsion model. Furthermore, the
circularisation manoeuvre is still taking about 6700 kg of fuel, which is rather large
for an actual mission. Therefore, it should be decreased, which can be achieved by
increasing the final pull-up velocity, since there is a one-to-one relationship between
this velocity and the required ΔV . The ΔV for circularisation mentioned by Powell
et al. [15] is 162 m/s. We aim at ΔV ≈ 260 m/s. In that case, the pull-up velocity
should be 7170 m/s. Furthermore, the initial pull-up angle of attack is set to 3.5◦ to
reduce the risk of having trim problems, although this would also reduce the final
altitude for which additional fuel is required to raise this to 120 km. For this new
trajectory, the consumed fuel mass is 68,592 kg, of which 4265 kg is used for the
pull-up, leaving a payload mass of 8517 kg. It might be disputed whether such a
high pull-up velocity is feasible. Since the model seems to be capable of achieving
that velocity, this is not studied any further. The final reference trajectory will be
discussed in more detail below.

To begin the discussion on the reference trajectory, one can observe that the
trajectory constraints are not violated. Note that the na-constraint is not plotted in
Figure 9; this constraint is only briefly active during the initial flight phase, which
would not show in this graph. But, this constraint is an important one as will become
clear later. The q̄-constraint seems only to be followed for a short while. It is obvious
that during the major part of the trajectory, the vehicle climbs only up to an altitude
of about 50 km, whereas V increases from 170 m/s to 7170 m/s. During the powered
pull-up an additional 13 km is gained whereas V remains almost constant. A major
part of the remaining altitude is covered during the coasting phase.

Compared to the initial reference trajectory, the final trajectory shows a much
smoother transition from q̄max-tracking to Q̇max-tracking. As a result, the throttle
control is much smoother as well. Moreover, it is confirmed that after the pull-up at
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Figure 10 Flight-path angle and angle of attack versus time for the final and initial reference
trajectory

the lower αc, the final altitude of 120 km is not reached. An orbit raising is required,
compared to an orbit lowering for the initial trajectory. The pull-up is initiated 100 s,
earlier, but lasts longer due to the lower lift.

The trajectory was specified as a γ -profile. This profile is depicted in the left plot
of Figure 10, where for both the initial and final reference trajectory γ as a function
of time is plotted. Apparent is the large γ during the initial climb, which peaks in
the subsonic flight regime. γ rapidly decreases to very small values in order to lock
on to the trajectory constraints as good as possible. During the subsequent semi-
cruise flight, the vehicle can accelerate while gaining altitude only slowly, such that
after about 1700 s the pull-up velocity is reached. The pull-up shows as an increase
in γ , decreasing again during the (unpowered) coasting phase. At h = 112 km, γ
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Figure 11 Throttle setting and dynamic pressure versus time for the final and initial reference
trajectory

is zero and circularisation takes place. In Figure 10 it can also be seen that major
differences between the initial and final γ -profile can be found at the beginning and
end of the trajectory.

Figure 10, right, plots αc versus t . The angle of attack is high during take-off
(α = 12◦) to provide sufficient lift. It reaches a local minimum in the transonic
region, which is also mentioned by [24]. Briefly, αc increases, but the general trend
is a decreasing angle of attack as a result of an increasing centrifugal relief. The
velocity in the final reference trajectory is higher compared with the initial one at
corresponding flight times, such that α of the final trajectory is generally lower.
Discontinuities can be found whenever a sudden change in γ is commanded. At
t ≈ 1700 s, α is commanded to be 3.5◦ to provide sufficient lift for the final pull-up.
Note the difference between the initial and final reference trajectory.

In Figure 11 (left), δT is plotted versus flight time. The minimum δT for the final
trajectory is about 0.6, whereas for the initial trajectory this was 0.4. The difference
is explained by the two γ -profiles: the final trajectory is a steeper one such that
more of the available propulsion power is used to gain height so the vehicle can
accelerate more while not violating the constraints. After 200 s of flight, δT reaches
it maximum, which means that apparently the vehicle can fly with full power without
violating the q̄-constraint. For the initial trajectory this is not true: δT is smaller than
1 up to t ≈ 750 s, with sharp peaks when a smaller γ is commanded. This means a
decrease in ascent rate so that also the acceleration rate must be decreased.

This reasoning is confirmed by Figure 11 (right), where q̄ is plotted versus
t . It can clearly be seen that the initial trajectory is locked on the q̄-constraint
of 95 kPa for the major part of the first 1000 s of flight, whereas q̄ of the final
trajectory comes close to the constraint value, but does not quite reach it. It was
stated before that flying along q̄max results in a sub-optimal trajectory, which means
that for the final trajectory this is not the case. And still, it is the more fuel-
efficient one. Since the many optimisation studies published in literature all state
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that a flight along the maximum allowable q̄ is optimal, we can only conclude
that despite that fact the current trajectory is only the best available for the given
trajectory segmentation, parameter variations and applied models. It does not imply
that this trajectory cannot be further improved, but for that we may need to refine
the segmentation and extend the number of examined factors. One conclusion is
obvious, and quite straightforward: the Taguchi method cannot replace a numerical
trajectory optimisation method. On the other hand, by doing a Taguchi analysis one
can increase the insight in the influence of the trajectory parameters on a selected
response.

Returning to Figure 11, in the first 200 s of flight δT is not maximal, while still
the dynamic pressure is not at its maximum. In that region, the axial acceleration
constraint is active, preventing the vehicle from accelerating faster to cope with the
increase in altitude. Thus, the vehicle’s initial path is too steep for the air-breathing
propulsion system. This is easily verified if one compares the corresponding γ

profiles for the initial and final reference trajectory. It is interesting to wonder what
would happen if the throttle control is released from the acceleration constraint. In
that case, q̄max is reached but due to the large γ and the relatively high velocity,
the vehicle reaches higher altitudes too soon and it does not have enough climbing
power to maintain the acceleration. Therefore, a strong drop in q̄ is the result, the
vehicle starts descending again and finally crashes. This clearly shows the difference
between a conventional rocket and an air-breathing space plane. Whereas the former
can accelerate fast enough to reach higher altitudes to minimise the drag, the latter
must remain at lower altitudes and accelerate at high q̄ to maximise the performance
of the propulsion system. To conclude these figures, at t ≈ 1700 s the pull-up shows
as δT = 1.1 for the final reference trajectory and a sharp decrease of q̄. The rapid
increment in h and thus decline in ρ result in this decrease.

In Figure 12 (left), Q̇ is plotted as a function of t . It is clear that this constraint is
an important one since a considerable part of the initial trajectory is flown along this
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constraint. For the final one, the vehicle follows the constraint more smoothly, and
therefore does not reach Q̇max before it enters the pull-up. However, the constraint
drives this portion of the flight. It is therefore not sufficient to take only the q̄-
constraint into account as was suggested by Powell et al. [15], but to include Q̇max
as well. The integrated heat load is for both trajectories almost the same, i.e., the
higher velocities of the final trajectory are compensated for by the longer flight time
of the initial trajectory.

Figure 12 (right), finally, shows the deflection angles of the elevons to trim the
vehicle (at subsonic speeds trim is solely guaranteed by the canards; during take-off
(α = 12◦), δc,trim = 5◦). The history shows a minimum near M = 2(t ≈ 100 s) and
exhibits a change in vehicle trim as a result of combined changes in aerodynamic
loading and a shift in the location of the c.o.m. due to fuel consumption, an effect
confirmed by Hattis et al. [24]. There is, of course, a strong relation between α

and δe to compensate for the induced pitch moment. The maximum δe is found
shortly after the local αmax . Considering the fact that δe,max = 20◦, trimming the
vehicle with elevons alone puts a heavy load on them, which does not leave so much
margin for manoeuvring and compensating deviations in αc. For this reason, it is
wise to assess other means of vehicle trim (see Sect. 4.4). Due to the decreasing α,
also δe,trim decreases. The final pull-up results in a deflection of the elevons close
to their limit value. Since this pull-up manoeuvre is not optimal in any sense, we
cannot draw strong conclusions, but state that this manoeuvre should be carefully
examined, since it might create control problems. During the coasting at α = 0◦,
the pitch moment is zero, and thus also δe,trim.

4.4 Thrust-Vector Control Used for Trim

The last topic to be discussed is the already mentioned large trim deflection of the
elevons. Two reasons are apparent to decrease the required deflection angles, i.e., it
leaves a larger margin for manoeuvring and the induced trim drag can be reduced
to save fuel mass. The first reason has already been shown to be a valid one; the
second one is relatively easy to illustrate, although some remarks must be made.

In Figure 13, the drag and lift have been plotted for the final reference trajectory,
including the induced trim drag and lift. Both the trim drag and lift form a substantial
part of the vehicle drag and lift, i.e., up to 50% for the drag and 60% for the
lift (excluding the pull-up manoeuvre). The current reference trajectory has been
defined such that a large part of the external forces is used to increase the altitude of
the space plane. This part consists mainly of the lift force, so it is easy to understand
that for this steep ascent trajectory the lift will not be sufficient if the contribution of
the elevons is removed from the external-force vector. Verifying this notion indeed
results in a crash of the vehicle due to insufficient lift. To avoid the problem of
finding a new reference trajectory for an untrimmed vehicle, the influence of trim
drag is assessed by flying a trimmed trajectory and by putting the trim drag to zero.
It follows that 4044 kg less fuel is required to reach the target orbit, about 45% of the
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Figure 13 Vehicle drag and lift and elevon-trim drag and lift as a function of flight time

payload mass of 8517 kg! Conclusions that can be drawn from these observations
is that in performance analysis, the influence of trim drag and lift should both be
included. Moreover, the trim drag requires quite some extra fuel, which makes it
worthwhile looking for alternatives.

One alternative that can be studied is the use of TVC. Of course, this will make
the propulsion system more complicated (and possibly heavier), but in principle
fuel-mass savings are possible. The thrust is the basis for the acceleration of the
vehicle and contributes to the lift force. When the thrust vector is deflected such
that the vertical component gives rise to a compensating pitch moment, two side
effects are introduced. First, there is larger contribution to the lift force, which may
result in a smaller α and therefore a decrease of the global drag force. Second,
the horizontal thrust component for acceleration becomes smaller, such that it will
take a larger δT (or, equivalently, a longer flight time) to reach the pull-up velocity
and consequently a larger fuel consumption. Obviously, the use of TVC should be
included in the trajectory optimisation process.

Since the WCC flies with maximum throttle for a large part of the current
trajectory, the use of TVC may lead to problems in the sense that there is not
enough accelerating power left. To apply thrust-vector control we need to define
the so-called centre of thrust (c.o.t.), i.e., the location where the resulting thrust
vector is acting on the vehicle. Since there is no information available on the
defined propulsion model, the following is assumed. The actual engine section is
considered to be the cylindrical part of the WCC, recall Figure 1. The cone frustum
nozzle is also part of the propulsion system, since the exhaust-gas expansion is an
indispensable part of the thrust generation. Therefore, the c.o.t. must be located
somewhere on this nozzle. For computational purposes it is assumed that this is at
one third of from the end of the nozzle, i.e., 19.1 m from the moment reference
centre, and, since the engine section is axisymmetric, effectively at the X-axis.
Furthermore, a limit of ±25◦ will be put on the thrust-vector angle, although it
is not implied that this limit is a feasible one.



338 E. Mooij

Table 6 The influence of
TVC on the fuel mass

MTVC mfuel Δmfuel

(%) (kg) (kg)

0 69,350 0

5 68,142 1208

10 67,692 1658

15 67,516 1834

20 67,378 1972

25 67,292 2058

30 67,240 2110

35 67,242 2108

40 67,285 2065

45 67,349 2001

50 67,421 1929

The technical implementation of TVC will not be addressed, nor the influence
of TVC on propulsion-system performance, which—in a worst-case scenario—
could actually render TVC infeasible. The practical implementation of the trim
rule will be that below M = 0.9 the canards are used, and above M = 0.9 a
predefined percentage of the pitch moment is compensated for by the elevons, and
the remaining part by TVC. In case the limit value of the TVC angle is reached, the
remaining moment is also compensated for by the elevons. Since full TVC is not
possible, we will study values of 50% down to 0% of the pitching moment that is in
principle addressed by TVC. In all cases, the WCC reaches the pull-up velocity at
about the same altitude and after almost similar flight times, albeit the elevon-only
trim case takes longer. The results of the simulations in terms of fuel mass and fuel
savings are listed in Table 6.9

From the results it is obvious that the use of TVC can save a substantial amount
of fuel. By assigning 30% of the trim moment to TVC, the total mfuel to reach
the pull-up velocity is reduced by 2110 kg. When the trim parameters are studied,
i.e., δe and thrust elevation εT in Figure 14, we see the difference between the all-
elevon-trim, and 5%-, 15%-, 30%- and 45%-thrust-elevation-trim trajectories. It is
clear that the maximum δe reduces from about 13◦ down to about 8◦. Overall, the
decrease of δe is between 2◦ and 8◦. This reduction is significant and it is evident
that the manoeuvring capability has increased. In the profile of δe some sharp peaks
are observed. Again, these peaks are the result of the crude reference-trajectory
definition. Transition from one γ̇c to another results in discrete jumps in α (see also
Figure 10) and thus δe,trim.

9The use of TVC interacted with the flight-path angle steering loop, Equation (5), and some high-
frequency, small-amplitude oscillations were induced in the commanded angle of attack. This led
to oscillations in the thrust-elevation angle. Without doing a redesign, the gains were set to Kγp =
2.0,Kγ i = 1.8 and Kγd = 0 for the complete trajectory, which solved the problem. However, it
was observed that changing the gains has a noticeable effect on the fuel mass, so in a future design
the gains should be optimised.
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Figure 14 Elevator and thrust-elevation trim deflection versus time for different TVC percentages

Regarding εT ,trim, at activation (M = 0.9) εT ,trim = 17◦ (at 45% TVC). Up to
t ≈ 900 s it decreases to 10◦, with some transitions that are linked with the particular
M-α profile flown. Also in this case, the variations are related to transitions from
one flight segment to the other. Just after t ≈ 900 s, due to the combination of
propulsive efficiency and hypersonic effects a rather sudden decrease in T occurs.
It is obvious that a larger deflection of the thrust vector is required to compensate
for the pitch moment. This can clearly be seen in Figure 14, right. After reaching
deflections close to its maximum of about 20◦, εT ,trim slowly decreases to 6◦ due to
the influence of M and α on the pitch moment.

From the above results it would be easy to conclude that TVC is a good means
to decrease the total fuel mass and to increase the manoeuvrability capability with
the elevons. As was indicated before, the technical aspects of TVC have not been
addressed at all. Doing so might lead to completely different conclusions. Also the
influence of the thrust-vector orientation on the flight mechanics (jet damping) will
have to be studied. However, this coarse performance study has indicated that the
use of TVC should at least be studied in more detail.

5 Concluding Remarks

The simulation and analysis of the powered winged-cone configuration includes
closed-loop guidance based on inverse dynamics for the ascent to orbit. Moreover,
a closed-loop throttle control law to track the trajectory constraints (maximum
dynamic pressure, axial acceleration and heat flux) completes the guidance and
control system. Trim can be guaranteed by using either elevons or thrust-vector
control. The 3-degrees-of-freedom reference trajectory is computed by dividing the
trajectory into a number of flight segments and by specifying the flight-path angle
profile for each of these segments. The trajectory is sub-optimised with respect to
payload mass by treating the segment parameters as design variables and by doing
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a Taguchi analysis. A payload-mass variation between 732 and 6584 kg was found,
which indicates that a proper selection of the trajectory is very important to ensure
mission success. The minimum-fuel trajectory, obtained from the L32-analysis, does
not correspond to the minimum heat-load trajectory, which takes up almost 1000 kg
more fuel. Therefore, the maximum allowable heat load should be included in any
trajectory optimisation process. The relative ease with which trajectories could be
found that could reach orbit seems to indicate that the performance of the propulsion
system is overrated with respect to the vehicle’s dry mass.

Analysis of variance of the results indicated that the influence of interactions,
as well as quadratic effects, is small for this particular design problem of finding
a reference trajectory. Redoing the design with double the number of simulations
by using the L32 instead of the L16 array gave different means (3688 and 3647 kg)
and standard deviations (1521 and 1413 kg) for the selected response, the payload
mass. However, conducting a Kolmogorov–Smirnov test indicates that the two
distributions of the payload masses are consistent. On the other hand, there also
appeared to be a minor shift in factor contribution to the total variation, which means
that major factor effects can be extracted from the results, but that the absolute
importance should be assessed with caution.

The Taguchi method cannot replace a numerical trajectory optimisation method.
However, by doing a Taguchi analysis for a given trajectory segmentation one
can increase the insight in the influence of the trajectory parameters on a selected
response.

Using the elevons for trim results in a relatively large contribution to the drag and
lift. Therefore, for an accurate performance analysis the influence of trim drag and
lift should both be included. Moreover, the trim drag increases the consumed fuel
mass substantially. Using TVC to generate part of the compensating trim moment
results in a significant fuel reduction. However, when major part of the flight is flown
with full throttle the trajectory has to be redesigned (or re-optimised) to compensate
for the loss of accelerating power. The technical feasibility of TVC was not included
in this study.

With the assumptions made for the selected flight-dynamics model, simplified
guidance-system development, and two-level factor variation the results have shown
the potential of the design and analysis method. Next steps in the research could
be, of course, extensions and improvements of each of these aspects. The principal
approach does not have to be changed, though.
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Ascent Trajectory Optimization and
Neighboring Optimal Guidance of
Multistage Launch Vehicles

Guido Palaia, Marco Pallone, Mauro Pontani, and Paolo Teofilatto

Abstract Multistage launch vehicles are employed to place spacecraft and satellites
in their operational orbits. If the rocket aerodynamics and propulsion are modeled
appropriately, optimization of their ascent trajectory consists in determining the
coast duration and the thrust time history that maximize the final mass at injection.
This research derives all the necessary conditions for ascent path optimization
of a multistage launch vehicle. With reference to an existing rocket, the indirect
heuristic method is then applied, for the numerical determination of the overall
ascent trajectory. An effective approach is used with the intent of satisfying the path
constraint related to the maximum dynamical pressure in the atmospheric phase.
Then, the recently introduced, implicit-type variable-time-domain neighboring opti-
mal guidance is applied to the upper stage powered arc, for the purpose of obtaining
the corrective control actions in the presence of nonnominal flight conditions.
The guidance approach at hand, based on the second-order analytical conditions
for optimality, proves to be rather effective (in terms of propellant budget), and
guarantees very accurate orbit injection in spite of perturbations.

1 Introduction

Multistage launch vehicles are commonly employed to place spacecraft in their
operational orbits. Several characteristics, i.e., mass distribution and time variation,
propulsion, and aerodynamics, affect the overall performance of the ascent vehicle
of interest. Thus, it is apparent that accurate modeling is a central issue and an
essential prerequisite for trajectory optimization. This research uses the Scout, a
launch vehicle of reduced size used in the past, as the reference multistage rocket,
because of availability of its basic propulsion and aerodynamics characteristics.
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In general, the numerical solution of aerospace trajectory optimization prob-
lems is not trivial and has been pursued with different approaches in the past.
However, only a relatively small number of publications are concerned with
trajectory optimization of multistage launch vehicles [2, 4, 6, 7, 10, 12, 13, 15–
18, 27, 29, 30, 35]. Calise et al. [4] and Gath and Calise [7] proposed and applied
a hybrid analytic/numerical approach, based on homotopy and starting with the
generation of the optimal solution in a vacuum. They adopted the approximate
linear gravity model, and the same did Lu and Pan [13] and Lu et al. [12],
who applied a multiple-shooting method to optimizing exoatmospheric trajectories
composed of two powered phases separated by a coast arc. Weigel and Well [35]
used a similar indirect, multiple-shooting approach to analyze and optimize the
ascent trajectories of two launch vehicles with splash-down constraints. Miele [17]
developed and applied the indirect multiple-subarc gradient restoration algorithm
to optimizing the two-dimensional ascending trajectory of a three-stage rocket in
the presence of dynamical and control constraints. The previously cited works
[4, 7, 12, 13, 17, 35] make use of indirect algorithms and require a considerable
deal of effort for deriving the analytical conditions for optimality and for the
subsequent programming and debugging. Furthermore, these methods can suffer
from a slow rate of convergence and an excessive dependence on the starting guess.
This difficulty has been occasionally circumvented through homotopy [4, 7, 15], but
this adds further complexity to the solution process. Other papers deal with direct
numerical techniques applied to multistage rocket trajectory optimization. Roh and
Kim [30] used a collocation method for optimizing the performance of a four-stage
rocket, whose two-dimensional trajectory was assumed to be composed of three
thrust phases and a coast arc of specified duration. Collocation was also employed
by Jamilnia and Naghash [10], with the additional task of determining the optimal
staging, and by Martinon et al. [15], for the purpose of validating the numerical
results attained through indirect shooting. The latter paper refers to the Ariane V
launch vehicle and is specifically devoted to investigating singular arcs. Recently,
heuristic techniques have become established as suitable approaches for solving
optimal control problems. Unlike deterministic methods, they do not suffer from
locality of the results and do not require any starting guess. The main disadvantages
of heuristic algorithms are the lack of any convergence proof and the capability
of yielding only a near optimal solution, if a particular representation for control
variables is adopted.

This research is concerned with an approach based on the joint use of swarming
theory and the necessary conditions for optimality. This methodology circumvents
the previously mentioned disadvantages of using heuristic approaches, while retain-
ing their advantageous feature of not requiring any starting guess to generate an
optimal solution. The particle swarm optimization technique, which is used in this
study, is a heuristic population-based optimization method inspired by the natural
motion of bird flocks. The population migrates toward different regions of the search
space, taking advantage of the mechanism of information sharing that affects the
overall swarm dynamics.
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This work considers the optimization of the two-dimensional ascent path of a
four-stage launch vehicle, whose trajectory is composed of the following thrust
phases and coast arcs:

1. first stage propulsion,
2. second stage propulsion,
3. third stage propulsion,
4. coast arc (after the third stage separation), and
5. fourth stage propulsion.

An aerodynamic constraint related to the dynamical pressure must be enforced in
order to preserve the vehicle structural integrity.

Precision of orbit injection, which occurs at burnout of the upper stage, represents
a crucial issue, and potentially affects the subsequent phases of spaceflight, because
corrective maneuvers may be needed if orbit insertion takes place with unsatisfac-
tory accuracy. It is thus apparent that a feedback control law, or, equivalently, a
closed-loop guidance algorithm, is needed for the upper stage, with the final aim
of driving it toward the desired injection conditions, in the presence of deviations
from nominal flight conditions. Traditionally, two different approaches to guidance
exist. Adaptive (or explicit) algorithms stem from the idea of re-defining the flight
trajectory at the beginning of each guidance interval, at which an updated trajectory
(from the current to the target final condition) is computed [3, 32]. Perturbative (or
implicit) algorithms consider the perturbations from a specified nominal trajectory,
and define the feedback control corrections aimed at maintaining the vehicle in the
proximity of the nominal path [9, 11, 33]. Neighboring optimal guidance (NOG) is
a perturbative guidance concept that relies on the analytical second-order optimality
conditions, in order to find the corrective control actions in the neighborhood of the
reference path. This is an optimal trajectory that satisfies the first- and second-order
optimality conditions. In general, the neighboring optimal path originates from a
perturbed state and is associated with the minimization of the second differential of
the objective function. Several time-varying gain matrices, referring to the nominal
trajectory, are defined, computed offline, and stored in the onboard computer. Only
a limited number of works have been devoted to studying neighboring optimal
guidance [1, 5, 8, 31, 36]. A common difficulty encountered in implementing the
NOG consists in the fact that the gain matrices become singular while approaching
the final time. As a result, the real-time correction of the time of flight can lead to
numerical difficulties so relevant to cause the failure of the guidance algorithm.

This work outlines the recently introduced [22–24], general-purpose variable-
time-domain neighboring optimal guidance algorithm (VTD-NOG). Some funda-
mental, original features of VTD-NOG allow overcoming the main difficulties
related to the use of former NOG schemes, in particular the occurrence of
singularities and the lack of an efficient law for the iterative real-time update of the
time of flight. This is achieved by adopting a normalized time domain, which leads
to defining a novel updating law for the time of flight, a new termination criterion,
and a new analytical formulation for the sweep method.
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VTD-NOG is applied to the ascent path of the upper stage of the Scout launch
vehicle, in the presence of nonnominal flight conditions, i.e., errors on the initial
velocity and position at ignition. Monte Carlo simulations are performed with the
intent of testing effectiveness (in terms of propellant required for corrective actions)
and accuracy at injection in spite of perturbations.

In the end, with regard to the launch vehicle of interest, the research that
follows has the main objectives of (i) providing accurate modeling of propulsion
and aerodynamics, (ii) formulating the ascent trajectory optimization problem by
deriving all the necessary conditions for optimality, (iii) determining the optimal
ascent path that maximizes the payload mass while enforcing the aerodynamic
constraint, and (iv) applying VTD-NOG for the upper stage powered arc, in order
to ascertain effectiveness and accuracy at injection, in the presence of nonnominal
flight conditions.

2 Launch Vehicle Modeling

The four-stage rocket that is being considered is the Scout launch vehicle, which
is a rocket designed to place small satellites into low Earth orbit. It has specified
structural, propulsive, and aerodynamic characteristics, and it is represented in
Figure 1.

Figure 1 Scout rocket geometry
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2.1 Mass Distribution and Propulsion

The mass distribution of the launch vehicle can be described in terms of masses of
subrockets: subrocket 1 is the entire rocket with all the four stages, subrocket 2 is the
launch vehicle after separation of the first stage, subrocket 3 is the launch vehicle
after separation of the first two stages, and subrocket 4 is represented by the last
stage only. Let m(i)

0 denote the initial mass of the subrocket i; this mass is composed

of a structural mass m
(i)
S , a propellant mass m

(i)
P , and a payload mass m

(i)
U :

m
(i)
0 = m

(i)
S +m

(i)
P +m

(i)
U (1)

For the first three subrockets m
(i)
U (i=1,2,3) coincides with the initial mass of the

subsequent subrocket (i.e., m
(i)
U = m

(i+1)
0 ). The mass distribution for the Scout

rocket is presented in Table 1. Figure 2 portrays the mass variation [34] due to the
propellant usage for the four stages. The instantaneous propellant mass is obtained
through linear interpolation.

The propulsive characteristic of the launch vehicle can be described in terms of
thrust magnitude T (i), where i is the stage number. The thrust is obtained through a
linear interpolation of the experimental thrust data [34], which are given at discrete
times. Figure 3 portrays the thrust curves for each motor, whose burnout time is tBi .

Table 1 Mass distribution
for the first three subrockets
[34]

i m
(i)
S (kg) m

(i)
P (kg)

1 1736 12,810

2 915 3749

3 346 1173

4 33 281

Figure 2 Propellant mass
for the four stages
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Figure 3 Thrust time
histories for the four stages

Table 2 Aerodynamic surfaces for the first three subrockets

i 1 2 3

S(i) (m2) 1.026 0.487 0.458

2.2 Aerodynamics

As two-dimensional motion is being considered, the aerodynamic force is assumed
to be composed of two terms: lift force L and drag force D. Given the aerodynamic
surface S, the atmospheric density ρ, the speed relative to the Earth atmosphere v,
and the lift and drag coefficients CL and CD , the two components are

L = 1

2
C

(i)
L (α,M)S(i)ρv2 and D = 1

2
C

(i)
D (α,M)S(i)ρv2 (2)

where for each subrocket i the coefficients CL and CD depend on the Mach number
M and the aerodynamic angle of attack α. The aerodynamic surfaces used in the
computation are the cross surfaces and are listed in Table 2.

Aerodynamic modeling is composed of two steps:

1. derivation of drag and lift coefficients at several Mach numbers and angles of
attack, and

2. bivariate cubic spline interpolation of the aerodynamic parameters as functions
of Mach number and angle of attack.

The aerodynamic coefficients (at discrete points) of the Scout rocket were obtained
using the methodology described by Mangiacasale [14], which was applied to the
first three subrockets. The domain for (α,M) is defined as

−10 deg ≤ α ≤ 10 deg

0 ≤ M ≤ 10
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The piecewise bicubic interpolation (performed on a regular grid of points
(αh,Mk)) produces a smooth surface that passes through all the data points and
has continuous partial derivatives. The generic bicubic spline function Cη is defined
over the domain [αh, αh+1] × [Mk,Mk+1]

Cη(α,M) =
3∑

i=0

3∑

j=0

aij (α − αh)
i(M −Mk)

j (3)

with η = L,D. A Matlab routine is employed to determine the values of the
16 coefficients aij that uniquely identify Cη(α,M). After patching all the bicubic
portions, the overall surface is continuous (up to second-order derivatives) over the
entire domain of (α,M).

An example of the aerodynamic interpolation in the supersonic range is portrayed
in Figure 4, where the CD and CL coefficients along with their derivatives are
illustrated. Despite only the supersonic range is shown, the interpolation of the
aerodynamic coefficients and their derivatives yields continuous functions over all
the domain. Over 120 km of altitude, where the fourth stage usually flies, the
atmosphere is rarefied and the aerodynamic forces can be neglected.

3 Ascent Trajectory Optimization

The objective of ascent trajectory optimization is in finding the path that leads
the rocket to reaching a prescribed circular orbit while minimizing propellant
expenditure. The four-stage launch vehicle is modeled as a point mass, in the context
of a two-degree-of-freedom problem.

3.1 Equations of Motion

The rocket motion is described more easily in a rotating (i.e., non-inertial) reference
frame. The Earth centered Earth fixed (ECEF) frame represents a reference system
that rotates with the Earth and has the origin in its center. The ECEF system rotates
with a speed ωE = 7.292115×10−5 sec−1 with respect to an inertial Earth-centered
frame (ECI), denoted with (ĉ1, ĉ2, ĉ3). Both frames share the same origin O. The
unit vector ĉ1 is aligned with the vernal axis and the vector ĉ3 = k̂ points toward the
planet rotation axis and is positive northward. Therefore ωE represents the (vector)
rotation rate of the ECEF frame with respect to the ECI frame. The unit vector î

intersects the Greenwich meridian at all times. The ECEF frame is associated with
(î, ĵ , k̂), which form a right-handed, time-dependent sequence of unit vectors. As
the reference Greenwich meridian rotates with rotation rate ωE , its angular position
(with respect to the ECI frame) is identified by the Greenwich sidereal time θg(t).
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Figure 4 Bivariate cubic spline interpolation of the CD and CL coefficients along with their
derivatives, for the first subrocket in supersonic flight

Moreover, as the entire trajectory lies on the equatorial plane, the flight path angle
γ suffices to identify the velocity direction. The instantaneous position is defined
through r (=|r|) and the geographical longitude ξ . From the inspection of Figure 5,
it is apparent that

v = v[sin γ cos γ ][r̂ Ê]T (4)

The overall aerodynamic force A is conveniently written in the (n̂, v̂, ĥ) frame
(with v̂ aligned with v) as the sum of the lift and drag forces

A = Ln̂−Dv̂ (5)
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Figure 5 (r̂ , Ê) frame,
(n̂, v̂) frame, and related
angles

Omitting the superscript (i), for each subrocket the equations of motion are

ṙ = v sin γ (6)

ξ̇ = v cos γ

r
(7)

γ̇ = T

mv
sinαT +

(v
r
− μE

r2v

)
cos γ + L

mv
+ 2ωE + ω2

Er

v
cos γ (8)

v̇ = T

m
cosαT − μE

r2 sin γ − D

m
+ ω2

Er sin γ (9)

where μE (=398600.4 km3/sec2) is the Earth gravitational parameter and m is the
instantaneous mass of the ascent vehicle. Specifically, for each subrocket i

m(i)(t) = m
(i)
S +m

(i)
U +m

(i)
P (t) (10)

where the time-varying m
(i)
P (t) is portrayed in Figure 2, m(i)

S is reported in Table 1,

m
(i)
U = m

(i+1)
0 = m

(i+1)
P + m

(i+1)
S + m

(i+1)
U (i = 1, 2, 3), and m

(4)
U is the payload

mass.
As the thrust vector is assumed to be coplanar with the position and velocity

vectors r and v, the angle αT suffices to define its direction, which is taken clockwise
from v. The state x is continuous across stage separations, which occur at times tb1,
tb2, and tb3. Finally, the fourth stage trajectory is assumed to be composed of two
phases:

• a coast arc (tb3 ≤ t ≤ tco), where T = 0, and
• a thrust phase (tco ≤ t ≤ tf ), where the time history of T is reported in Figure 3.
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3.2 Formulation of the Problem

Minimizing the propellant needed for a rocket to reach a prescribed final operational
orbit is a typical ascent trajectory optimization problem. This can be solved by
finding the optimal control time history and the optimal thrust and coast durations.

The desired operational orbit is assumed to be circular and equatorial. If RE (=
6378.136 km) denotes the Earth radius, the following conditions at orbit injection
must hold:

rf = RE + 800 km γf = 0 vf =
√

μE

rf
− ωErf (11)

The rocket is launched from an equatorial site and toward the East direction,
with an initial flight path angle of 86 deg. As the final orbit is equatorial as well, the
ascent path lies entirely on the equatorial plane, because any out-of-plane motion
would imply a useless waste of propellant. It is worth remarking that the launch
vehicle dynamics is not affected by the initial location along the equatorial line.
Moreover, the equations of motion (6), (8), and (9) do not depend on ξ , as well as
the final conditions at injection (11). These circumstances imply that the state vector
includes only r , v, and γ , i.e., x (= [r γ v]T ). The control vector includes αT , i.e.,
u = αT .

The initial conditions at liftoff are

ri = RE γi = 86 deg vi = 0 (12)

The initial mass of the launch vehicle corresponds to the configuration with a
payload of 150 kg. As the thrust duration for each of the first three stages is specified
and equal to the nominal thrust duration, minimizing the propellant needed to reach
the final orbit is equivalent to minimizing the thrust duration of the upper stage.
Any propellant mass saving can be regarded as an additional mass available for the
payload (other than the nominal 150 kg). Hence, the objective function is

J = kJ (tf − tco) (13)

where kJ is an arbitrary positive constant.
If q is the dynamic pressure (q = 1

2ρv
2), for the rocket structural integrity the

following constraint must be satisfied at all times:

q|α| ≤ 105 Pa · deg (14)
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3.3 First-Order Necessary Conditions for a Local Extremal

A common approximating assumption for rocket trajectory optimization is the
alignment of the thrust direction with the rocket longitudinal axis. This circumstance
implies that

αT (t) = α (t) (15)

Hence, the optimization problem consists in finding the optimal α(t) such that J is
minimized and q|α| ≤ 105 Pa·deg at any time.

To obtain the necessary conditions for an optimal solution, a Hamiltonian H and
a function of the boundary condition Φ are introduced as

H := λrv sin γ + λγ

T

mv
sinα + λγ

(v
r
− μE

r2v

)
cos γ + λγ

L

mv
+ 2λγ ωE

+ λγ

ω2
Er

v
cos γ + λv

T

m
cosα − λv

μE

r2 sin γ − λv

D

m
+ λvω

2
Er sin γ

(16)

Φ := ν1 (r0 − RE)+ ν2 (γ0 − γi)+ ν3 (v0 − vi)

+ ν4
[
rf − (RE + 800 km)

]+ ν5γf + ν6
[
vf − (vIf − ωErf )

]+ kJ (tf − tco)

(17)
where λ (≡ [λr λγ λv]T ) and ν (≡ [ν1 ν2 ν3 ν4 ν5 ν6]T ) represent, respectively,
the adjoint variable conjugate to the dynamics equations (6)–(9) and to the boundary
conditions (11). The necessary conditions for optimality yield the following adjoint
equations for the costate λ:

λ̇r =−
[
λγ v cos γ

r2
+ 2λγμE cos γ

r3v
+ λγ

v

∂

∂r

(
L

m

)
+ λγ ω

2
E cos γ

v

+ 2λvμE sin γ

r3 − λv

∂

∂r

(
D

m

)
+ λvω

2
E sin γ

] (18)

λ̇γ = −
[
λrv cos γ − λγ v sin γ

r
+ λγμE sin γ

r2v
− λγ ω

2
Er sin γ

v

− λvμE cos γ

r2 + λvω
2
Er cos γ

] (19)

λ̇v =−
{
λr sin γ − λγ T sinα

mv2 + λγ cos γ

r
+ λγμE cos γ

r2v2

+ λγ

[
1

v

∂

∂v

(
L

m

)
− L

mv2

]
− λγ ω

2
Er cos γ

v2
− λv

∂

∂v

(
D

m

)} (20)
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in conjunction with the respective initial conditions

λr,0 = −ν1 λγ,0 = −ν2 λv,0 = −ν3 (21)

and final conditions

λr,f = ν4 λγ,f = ν5 λv,f = ν6 (22)

The lift and drag acceleration derivatives may be rewritten as

∂

∂r

(
η

m

)
= ∂

∂r

( 1
2ρSCηv

2

m

)
= 1

2
Cη

S

m
v2 ∂ρ

∂r
− 1

2
ρ
S

m
v2 ∂Cη

∂r
(23)

∂

∂v

(
η

m

)
= ∂

∂v

( 1
2ρSCηv

2

m

)
= vρSCη

m
+

1
2ρSv

2

mvS

∂Cη

∂M
(24)

where

∂Cη

∂r
= ∂Cη

∂M

∂M

∂r
= −∂Cη

∂M

v

v2
S

∂vS

∂r
(25)

and vS is the sound speed, whereas η = L,D.
Due to the Weierstrass–Erdmann corner conditions [9] the adjoint variables are

continuous across successive subarcs

λ
(j+1)
in = λ

(j)
f in (j = 1, 2, 3, 4) (26)

and the following relation that involves the Hamiltonian at the unknown time tco
must hold:

H
(4)
f in −H

(5)
in + ∂Φ

∂tco
= 0 ⇒ H

(4)
f in −H

(5)
in − kJ = 0 (27)

The final time tf is not specified, hence the following transversality condition must
be satisfied:

∂Φ

∂tf
+H

(5)
f = 0 ⇒ kJ +H

(5)
f in = 0 (28)

The two equality constraints in Equations (27) and (28) can be replaced by a single
equality constraint

H
(4)
f in −H

(5)
in +H

(5)
f in = 0 (29)
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in conjunction with the following inequality constraint:

H
(5)
f in = −kJ < 0 (30)

In addition, the optimal control α∗ can be expressed as a function of the costates
through the Pontryagin minimum principle [28]

α∗ = arg min
α

H (31)

This condition leads to determining the optimal value of α, either equal to the
extremal values (αmin, αmax) or satisfying

∂H

∂α
= 0 =⇒ λγ

T

mv
cosα + λγ

1

mv

∂L

∂α
− λv

T

m
sinα − λv

m

∂D

∂α
= 0 (32)

where

∂η

∂α
= 1

2
ρSV 2 ∂Cη

∂α
(η = L, D) (33)

The analytical conditions for optimality allow transforming the optimal control
problem into a two-point boundary-value problem, where the unknowns are the
initial values of the adjoint variables

(
λr,0 λγ,0 λv,0

)
, as well as the times tco and

tf .

3.4 Method of Solution

For the problem at hand, a particle swarm algorithm (PSO) is run with the aim
of determining a set of 5 unknown parameters that lead the dynamical system to
satisfying the three final conditions stated by Equation (11), and the two conditions
stated by Equations (29) and (30). Satisfying these conditions corresponds to
minimizing the objective function J .

The PSO technique is a population-based method, where the population is
represented by a swarm of N particles. Each particle is associated with a position
vector and with a velocity vector. The initial population is randomly generated
by introducing N particles, whose positions and velocities are (stochastically)
uniformly distributed in the respective search spaces. Each particle represents a
possible solution to the problem, and corresponds to a specific value of the objective
function. The expressions for position and velocity update determine the swarm
evolution toward the location of the globally optimal position, which corresponds to
the globally optimal solution to the problem of interest. The central idea underlying
the method is contained in the formula for velocity updating. This formula includes
three terms with stochastic weights: the first term is the so-called inertial component
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and for each particle is proportional to its velocity in the preceding iteration; the
second component is termed the cognitive component, directed toward the personal
best position, i.e., the best position experienced by the particle; and finally the third
term is the social component, directed toward the global best position, i.e., the best
position yet located by any particle in the swarm. The algorithm terminates when
the maximum number of iterations NIT is reached. The position vector of the best
particle is expected to contain the optimal values of the unknown parameters, which
correspond to the global minimum of J . In the scientific literature, this method has
already been successfully applied to space trajectory optimization problems [19–
21, 25, 26].

The parameter set employed in this problem is represented by the unknown initial
values of the costate variables, as well the unknown coast duration ΔTco and thrust
duration ΔTb4 of the upper stage:

{
λr,0, λγ,0, λv,0,ΔTco,ΔTb4

}

In order to force the dynamical system to satisfying the four equality constraints
stated by Equations (11) and (29) and the inequality constraint stated by Equa-
tion (30), an auxiliary objective function is introduced:

J ′ =p1
(
rf − RE − 800 km

)2 + p2γ
2
f + p3

(
vf −

√
μE

rf
+ ωErf

)2

+ p4

(
H

(4)
f in −H

(5)
in +H

(5)
f in

)2
(34)

where the weights p1, p2, p3, and p4 affect the convergence of the method, and
are set, respectively, to 100, 1, 5, and 1 (by trial-and-error). If the inequality
constraint (30) is violated, a fictitious infinite value to the objective function J ′
is assigned.

In summary, the method of solution is based on the following points:

(a) as stated by Equation (31), the optimal control law α can be expressed as a
function of the costates through the Pontryagin minimum principle. In order to
find, at each time step, the value of α that minimizes the Hamiltonian function
H , the stepwise regula falsi is employed, applied to small intervals (1 degree)
for the angle α. This iterative method is very robust and usually guarantees
a considerably fast convergence rate, which is a fundamental requisite when
solving a computationally expensive problem like the one considered in this
work. The regula falsi algorithm is used in order to identify the roots of
Equation (32), in each subinterval (1 degree) in which the domain of α is
divided. H is then evaluated at these points and its values are compared with
the values of H at the boundaries of each subinterval, leading to the value
of α for which H is minimized. The angle of attack α depends on time in a
domain, whose extremals are always kept within the interval (-10 deg, 10 deg)
while the rocket is in the atmosphere. More precisely, at a generic time t, the
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value of α that minimizes the Hamiltonian function H is sought in the interval
(−(qα)max/q, (qα)max/q), where q is the dynamic pressure and (qα)max is the
maximum allowed value for the product q|α| below which the rocket structural
integrity is preserved;

(b) the state equations (6)–(9) and the adjoint equations (18)–(20) are integrated
numerically up to the final time tf , with initial conditions partially specified
and in part guessed as components of each particle;

(c) the five boundary conditions stated by Equations (11), (29), and (30) (four
equality constraints and a single inequality constraint) are checked.

Enforcement of J ′ (Equation 34), in conjunction with the necessary conditions
developed in the previous section, guarantees both feasibility and optimality.

3.5 Optimal Ascent Trajectory

The optimal ascending trajectory is determined by employing canonical units: the
distance unit (DU) is the Earth radius, whereas the time unit (TU) is such that μE =
1 DU3/TU2. Thus, DU= 6378.136 km and TU= 806.8 sec. The PSO optimizer is
used to find the unknown parameters. All the simulations are performed in the most
favorable dynamical conditions, i.e., equatorial trajectory and launch toward the
East direction.

The swarming optimizer is employed with the following settings: N = 100
(number of particles) and NIT = 300 (number of iterations). It is worth remarking
that the initial values of the Lagrange multipliers can be sought in the interval
[−1, 1], because the instantaneous optimal α∗ is invariant under scaling of all
the adjoints by a positive constant. Hence, the optimal values of the unknown
parameters are sought in the following ranges:

−1 ≤ λr,0 ≤ 1

−1 ≤ λγ,0 ≤ 1

−1 ≤ λv,0 ≤ 1

450 sec ≤ ΔTco ≤ 650 sec

10 sec ≤ ΔTb4 ≤ 32 sec

The time histories of the optimal state, optimal control, and of (q|α|) obtained at
the end of the optimization process are portrayed in Figure 6. The optimal coast and
thrust durations are the following:

ΔTco = 556.40 sec ΔTb4 = 25.81 sec
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Figure 6 Optimal state variables, optimal control, and q|α| time histories

The optimal thrust duration ΔTb4 of the fourth stage is approximately 6 s less than
the nominal thrust duration (32 s), which corresponds to using all the onboard
propellant. This means that the target orbit can be reached by saving 32 kg of
propellant mass. This is equivalent to boarding a payload with a supplementary
mass of 32 kg, in addition to the nominal payload mass (150 kg).
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4 Variable-Time-Domain Neighboring Optimal Guidance

The problem of driving the launch vehicle along the specified (nominal) optimal
path requires defining the corrective actions aimed at compensating nonnominal
flight conditions. This means that a feedback control law, or, equivalently, a closed-
loop guidance algorithm, is to be defined, on the basis of the current state of the
vehicle, evaluated at prescribed sampling times.

The recently introduced [22, 23], iterative variable-time-domain neighboring
optimal guidance (VTD-NOG) uses the optimal trajectory as the reference path,
with the final intent of determining the control correction at each sampling time
{tk}k=0,...,nS

. These are the times at which the displacement between the actual
trajectory, associated with x, and the nominal trajectory, corresponding to x∗, is
evaluated, to yield

dxk = x(tk)− x∗k(tk) (35)

The total number of sampling times, nS , is unspecified, whereas the actual time
interval between two successive sampling times is given and denoted with ΔtS ,
ΔtS = tk+1 − tk . It is apparent that a fundamental ingredient needed to implement
VTD-NOG is the formula for determining the overall time of flight t (k)f at time tk .

This is equivalent to finding the time-to-go
(
t
(k)
f − tk

)
at tk . Section 4.1 addresses

this issue.
As a preliminary step, in the time interval [t0, tf ] a single-stage dynamical system

obeys the vector equation

ẋ = f̃(x,u, ã, t) (36)

where a is a vector of unknown time-independent parameters. Using the dimension-
less normalized time τ defined as

τ := t

tf
⇒ τ0 ≡ 0 ≤ τ ≤ 1 ≡ τf (37)

Equation (36) can be rewritten as

ẋ = f̃(x,u, ã, tf τ ) (38)

Let the dot denote the derivative with respect to τ hence forward in Sect. 4. If a :=[
ãT tf

]T
, the state equations (38) are finally expressed as

ẋ = tf f̃(x,u, ã, tf τ ) =: f(x,u, a, τ ) (39)
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Introduction of the vector a implies the fulfillment of a further necessary condition
[22], which involves the time-varying adjoint variable μ.

4.1 Fundamentals

The fundamental principle that underlies the VTD-NOG scheme consists in finding
the control correction δu(τ ) in the generic interval [τk, τk+1] such that the second
differential of J is minimized

d2J = ∫ 1
τk

⎡

⎣
δx
δu
da

⎤

⎦

T ⎡

⎣
Hxx Hxu Hxa

Hux Huu Hua

Hax Hau Haa

⎤

⎦

⎡

⎣
δx
δu
da

⎤

⎦ dτ

+
⎡

⎣
dxk

dxf

da

⎤

⎦

T ⎡

⎣
Φxkxk

0n×n 0n×p

0n×n Φxf xf
Φxf a

0p×n Φaxf
Φaa

⎤

⎦

⎡

⎣
dxk

dxf

da

⎤

⎦

(40)

while holding the first-order expansions of the state equations and the related final
conditions. Minimizing the objective (40) is equivalent to solving the accessory
optimization problem, defined in the interval [τk, 1]. Solving this problem involves
the linear expansion of the state and costate equations and the related boundary
conditions about the optimal trajectory.

Several analytical developments [22] lead to defining the updating law for the
overall time of flight. This relation, not reported for the sake of brevity, derives
directly from the natural extension of the accessory optimization problem to the
time interval [τk, 1]. Moreover, if dt(k)f denotes the correction on t∗f evaluated at τk ,

then t
(k)
f = t∗f +dt

(k)
f . As the sampling interval ΔtS is specified, the general formula

for τk is

τk =
k−1∑

j=0

ΔtS

t
(j)
f

(41)

The overall number of intervals nS is found at the first occurrence of the following
condition, associated with the termination of VTD-NOG:

nS−1∑

j=0

ΔtS

t
(j)
f

≥ 1 ⇒ τnS
= 1 (42)

The introduction of the normalized time τ is of crucial importance, because all
the gain matrices remain defined in the normalized interval [0,1] and cannot become
singular. Moreover, the limiting values {τk}k=0,...,nS−1 are dynamically calculated at
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Figure 7 Illustrative sketch of the relations between the two time domains

each sampling time using Equation (41), while the sampling instants in the actual
time domain are specified and equally spaced (Figure 7). Also the termination
criterion (42) has a logical, consistent definition, and corresponds to the upper bound
of the interval [0,1], to which τ is constrained.

In general, the definition of a neighboring optimal path requires the numerical
backward integration of the sweep equations [9] in order to determine several time-
varying gain matrices. However, the use of a variable time domain requires finding
new sweep equations [22] for these matrices

˙̂S = −ŜA+ ŜBŜ+
[
ŜDα−1 + WFα−1 + Eα−1

]
mT −WET −WDT Ŝ−C−AT Ŝ

(43)

Ṙ
T = RT BŜ − RT A − RT BWmT (44)

ṁT = −mT A + mT BŜ − mT BWmT − ET − DT Ŝ + DT WmT (45)

Q̇ = −RT BWnT (46)

ṅ = −RT (D + BWα) (47)

α̇ = DT Wα − F − mT BWα − mT D (48)

The gain matrices involved in the sweep method, i.e., S, Ŝ, R, Q, n, m, and α, can
be integrated backward in two steps:

1. in [τsw, 1] the equations of the classical sweep method [9, 22], with the respective
boundary conditions, are used.

2. in [0, τsw] Equations (43)–(48) are used; R, Q, n, m, and α are continuous across
the time τsw, whereas Ŝ is given by Ŝ := S−UV−1UT ; in this work τsw is set to
0.99.
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The analytical developments leading to Equations (43)–(48) are described in full
detail in [22] together with the related boundary conditions, as well as the definitions
of matrices A, B, C, D, E, F, U, V, and W.

In short, adoption of a normalized, variable time domain has the beneficial effect
of (i) deriving the updating law from optimal control theory, (ii) defining a consistent
termination criterion, and (iii) constraining the gain matrices to an interval where
they do not become singular. As a side effect, the modified sweep equations (43)–
(48), more complicated than the usual counterparts (holding for neighboring optimal
paths), must be integrated numerically.

4.2 Preliminary Offline Computations and Algorithm Structure

The implementation of VTD-NOG requires several preliminary computations that
can be completed offline and stored in the onboard computer. First of all, the optimal
trajectory is to be determined, together with the related state, costate, and control
variables, which are assumed as the nominal ones. In the time domain τ these
can be either available analytically or represented as sequences of equally spaced
values, e.g., u∗i = u∗(τi) (i = 0, . . . , nD; τ0 = 0 and τnD

= 1). However, in
the presence of perturbations, VTD-NOG determines the control corrections δu(τ )
in each interval [τk, τk+1], where the values {τk} never coincide with the equally
spaced values {τi} used for u∗i . Hence, regardless of the number of points used to
represent the control correction δu(τ ) in [τk, τk+1], it is apparent that a suitable
interpolation is to be adopted for the control variable u∗ (provided that no analytical
expression is available). In this way, the value of u∗ can be evaluated at any arbitrary
time in the interval 0 ≤ τ ≤ 1. For the same reason also the nominal state x∗
and costate λ∗ need to be interpolated. If a sufficiently large number of points are
selected (e.g., nD = 1001), then piecewise linear interpolation is a suitable option.
The successive step is the analytical derivation of the matrices

{
fx, fu, fa,Hxx,Hxu,Hxλ,Hxa,Hux,Huu,Hua,Huλ,Hax,Hau,Haa,Haλ,

ψxf
,ψx0

,ψa, Φx0x0 , Φx0a, Φxf xf
, Φxf a, Φaxf

, Φaa

}

(49)
Then, they are evaluated along the nominal trajectory and linearly interpolated, as
well as A, B, C, D, E, and F, whose expressions are reported in [24]. Subsequently,
the two-step backward integration of the sweep equations described in Sect. 4.1 is
performed, and yields the gain matrices Ŝ, R, m, Q, n, and α, using also the analytic
expressions of W, U, and V. The linear interpolation of all the matrices not yet
interpolated concludes the preliminary computations.

On the basis of the optimal reference path, at each time τk the VTD-
NOG algorithm determines the time of flight and the control correction. More
specifically, after setting the actual sampling time interval ΔtS , at each τk
(k = 0, . . . , nS − 1; τ0 = 0) the following steps implement the feedback guidance
scheme [22]:
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Figure 8 Block diagram of
VTD-NOG

1. Evaluate δxk .
2. Calculate the correction dt

(k)
f and the updated time of flight t (k)f .

3. Calculate the limiting value τk+1.
4. Evaluate δλk .
5. Integrate numerically the linear differential system for the displacements δx, δλ,

and δμ.
6. Determine the control correction δu(τ ) in [τk, τk+1] by means of the following

relation [22]:

δu = −H−1
uu (Huxδx +Huaδa +Hxλδλ) (50)

7. Points 1–6 are repeated after increasing k by 1, until Equation (42) is satisfied.

Figure 8 portrays a block diagram that illustrates the feedback structure of VTD-
NOG. At each sampling time τk the nominal state x�(τk) is compared with the
actual state x(τk), and the state deviation δxk is evaluated. This enters the NOG core,
where previous steps 2–6 are completed. The time-varying gain matrices, computed
offline and stored onboard, are used in the NOG core as well. The control correction
δu(τ ) is added to the nominal control u�(τ ), and the resulting actual control u(τ ) is
employed to drive the launch vehicle in the interval [τk, τk+1].

5 Guidance of the Upper Stage Ascent Path

The VTD-NOG algorithm is applied to the minimum-propellant ascent path of the
upper stage of the Scout, with the aim of driving the rocket to the target circular
orbit, in the presence of nonnominal flight conditions. Due to perturbations from the
nominal conditions, the actual upper stage ascending path is not a two-dimensional
path as the nominal optimal trajectory, which means that the rocket motion does not
take place entirely on the equatorial plane.
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Figure 9 Reference frames (a), and thrust angles αT and βT (b)

The upper stage motion can be described in a convenient inertial reference frame,
aligned with the sequence of unit vectors (ĉ1, ĉ2, ĉ3) and with center coincident
with the center of the Earth. The upper stage position can be identified by the
following three variables: radius r , absolute longitude ξ , and latitude φ, portrayed
in Figure 9a. The upper stage inertial velocity can be projected into the rotating
reference frame (r̂ , t̂ , n̂), where r̂ is aligned with the position vector r and t̂ is
parallel to the (ĉ1, ĉ2) plane, namely, the equatorial plane. The related components
are denoted with (vr , vt , vn) and termed, respectively, radial, transverse, and normal
velocity component. Hence, the state vector of the rocket is the following:

x := [r ξ φ vr vt vn]T (51)

The upper stage ascending trajectory is controlled by acting on the thrust
direction, defined by the in-plane angle αT and the out-of-plane angle βT , both
illustrated in Figure 9b. The thrust direction T̂ is always aligned with the rocket
longitudinal axis. The control vector is defined as

u := [αT βT ]T (52)

The three-dimensional ascending path of the upper stage is governed by the
following equations:

ṙ = vr (53)

ξ̇ = vt

r cosφ
(54)

φ̇ = vn

r
(55)
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v̇r = −μE

r2
+ v2

t + v2
n

r
+ T

m
sinαT cosβT (56)

v̇t = vt

r
(vn tanφ − vr)+ T

m
cosαT cosβT (57)

v̇n = −v2
t

r
tanφ − vrvn

r
+ T

m
sinβT (58)

Equations (53)–(58) can be written in the form of vector state equations

ẋ = f(x, u, t) (59)

Using Equations (38)–(39) this expression can be rewritten in terms of the normal-
ized time τ , in order to apply VTD-NOG.

5.1 Nominal Path

As the guidance algorithm uses the inertial variables to determine the necessary
control correction at each sampling time, also the nominal state, costate, and control
(which identify the two-dimensional minimum-propellant ascending path) have to
be expressed in terms of inertial variables. According to the Bellman optimality
principle, any subarc of an optimal path is itself optimal. This means that the last
propulsive arc of the minimum-propellant ascending path is an optimal arc. Hence,
a new optimization process, which employs inertial variables, is performed, in order
to find the optimal upper stage ascending path. The optimal arc lies on the equatorial
plane, and it is described in terms of the state variables r, ξ, vr , and vt , while the
latitude φ, the normal velocity vn, and the thrust out-of-plane angle βT are equal to
zero.

The optimization problem aims at finding the optimal thrust time history αT (t),
which leads the rocket to reach its target orbit, given the state at ignition of the fourth
stage:

ri = RE + 798.984 km , vr,i = 0.096 km/sec , vt,i = 5.291 km/sec (60)

The final state variables must satisfy the following conditions:

rf = RE + 800 km , vr,f = 0 , vt,f =
√

μE

rf
(61)

The optimal arc determined through the new optimization process corresponds,
with great accuracy, to the last propulsive arc of the entire optimal ascending path
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Figure 10 Optimal inertial state and control variables

presented in Sect. 3.5. The deviations between the final state variables and the
respective desired values are

Δrf = 0.983 m , Δvrf = −0.012 m/sec , Δvtf = −0.018 m/sec (62)

The optimal inertial state and control variables are portrayed in Figure 10.

5.2 Perturbed Paths

The neighboring optimal guidance algorithm proposed in this work is applied to the
upper stage orbit injection, in the presence of nonnominal flight conditions arising
from errors on the initial conditions. Several Monte Carlo simulations are run, with
the intent of obtaining some useful statistical information on the accuracy of VTD-
NOG, in the presence of the previously mentioned deviations, which are simulated
stochastically.

More specifically, for the initial conditions errors on altitude and declination are
assumed, with Gaussian distributions, zero mean values and standard deviations

r
(σ )
0 = 1.5 km φ

(σ)
0 = 0.009 deg (63)
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Moreover, errors on the three components of velocity are considered, with zero
mean value and standard deviation equal to 10 m/sec, i.e.,

v
(σ)
r0 = 10 m/sec v

(σ)
t0 = 10 m/sec v

(σ)
n0 = 10 m/sec (64)

At the end of VTD-NOG, two statistical quantities are evaluated, i.e., the mean value
and the standard deviation for all the outputs of interest.

A Monte Carlo campaign (MC) is performed, assuming errors on the initial state.
The campaign includes 100 numerical simulations, adopting a time interval Δts =
0.5 sec. Figures 11, 12, 13 depict the state and control variables obtained during
the simulations that form the Monte Carlo campaign. Table 3 reports the statistics
on the errors at injection, where Δχ̄f is the mean value of the displacement from

the desired final value for variable χ , χ(σ)
f is the related standard deviation, t̄f is

the mean value of the time of flight, and t
(σ )
f is its standard deviation. Inspection of

this table reveals that VTD-NOG guarantees orbit injection with very satisfactory
accuracy, in the presence of the previously mentioned nonnominal flight conditions.

As a final remark, the runtime of VTD-NOG on an Intel i5-3570k at 3.40 GHz
does not exceed the nominal time of flight, and this guarantees that NOG can be
implemented in real time.

Figure 11 Altitude and
latitude time histories
obtained in the MC campaign
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Figure 12 Inertial velocity
components time histories
obtained in the MC campaign

6 Concluding Remarks

Multistage launch vehicles have been repeatedly used and are currently employed to
place spacecraft and satellites in their operational orbits. This chapter is focused on
the ascent trajectory optimization and neighboring optimal guidance of multistage
launch vehicles, with special focus on an existing rocket, i.e., the Scout. Accurate
modeling of the rocket aerodynamics and propulsion, on the basis of realistic
or experimental data, represents a prerequisite for path optimization. This work
describes and applies suitable interpolating techniques with this intent. Ascent
trajectory optimization is then addressed through the joint use of the necessary
conditions for optimality, derived for the entire trajectory, and a heuristic technique,
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Figure 13 Thrust angles
time histories obtained in the
MC campaign

Table 3 Statistics on the
final state components and
the time of flight

Statistics

Δr̄f (m) 9.6e−4

r
(σ )
f (m) 1.5e−5

Δφ̄f (deg) −6.7e−9

φ
(σ)
f (deg) 7.1e−8

Δv̄rf (m/sec) −3.5e−5

v
(σ)
rf (m/sec) 2.6e−4

Δv̄tf (m/sec) −5.1e−4

v
(σ)
tf (m/sec) 6.3e−4

Δv̄nf (m/sec) −2.9e−5

v
(σ)
nf (m/sec) 1.7e−4

t̄f (sec) 25.9

t
(σ )
f (sec) 0.2
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i.e., the particle swarm algorithm. The structural constraint related to the dynamic
pressure is enforced at all times during the ascent path. The resulting optimal
trajectory satisfies all the analytical conditions for optimality to an excellent
accuracy. However, in concrete scenarios, precise orbit injection must be guaranteed
also in the presence of nonnominal flight conditions. This circumstance implies
the need of a closed-loop guidance algorithm for the upper stage. This research
outlines and applies the recently introduced, general-purpose variable-time-domain
neighboring optimal guidance algorithm (VTD-NOG), which assumes the optimal
path as the reference trajectory. Some fundamental, original features of VTD-NOG
allow overcoming the main difficulties related to the use of former neighboring
optimal guidance schemes, in particular the occurrence of singularities and the lack
of an efficient law for the iterative real-time update of the time of flight. This is
achieved by adopting a normalized time domain, which leads to defining a novel
updating law for the time of flight, a new termination criterion, and a new analytical
formulation for the sweep method. Errors on position and velocity at ignition of the
upper stage are assumed. A Monte Carlo campaign unequivocally demonstrates that
VTD-NOG applied to the upper stage powered arc guarantees orbit injection with
excellent accuracy, in spite of relevant deviations from nominal flight conditions.
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Abbreviations

λ Positive constant−→
ωb
bi Angular velocity of the small satellite in the body coordinate

system−→
ωo
oi Angular velocity of the orbital coordinate system relative to

the inertial coordinate system
�ω1, �ω2, �ω3 Components of the vector of deviation of the small satellite

angular velocity w.r.t. the required angular velocity−→ωr Required angular velocity
⊗ Multiplication operator for quaternions
A System matrix
B Control matrix−→
B Geomagnetic induction vector−→
Bo = [

Bo
x , B

o
y , B

o
z

]
Geomagnetic induction vector in the orbital coordinate system

e(t) Misalignment of the angular position of the small satellite−→
Gb Angular momentum of satellite−→
h Vector of conjugate variables−→
hb
a Angular momentum of the reaction wheels

J Inertia moments of the small satellite
J̃x , J̃y, J̃z Nominal values of the inertia moments
�Jx, �Jy, �Jz Value of deviations of the satellite moment of inertia
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Kp, Kd Proportional gain and derivative gain
LMI Linear matrix inequalities−→
Mb

e Moment of the external forces in the body coordinate system−→
Mb

c Control moment of the actuators in the body coordinate
system−→

m Magnetic moment of the coils
N Matrix of system noise
P Initial covariance matrix
PD-controller Proportional-derivative controller

�
−→
Q Difference between the current angular position and the

required angular position−→
Qbi Quaternion that sets the current angular position of the satel-

lite in the inertial coordinate system−→
Qbo Quaternion that sets the current angular position of the satel-

lite in the orbital coordinate system−−→
Qbo

∗ Quaternion that is the inverse of
−→
Qbo−→

Qr Desired angular position
�q1, �q2, �q3 Components of the vector part of the quaternion which

describe the deviation of the small satellite current orientation
regarding the desired orientation

Ro
b Direction cosine matrix representing the rotation of the orbital

coordinate system axes regarding the axes of the body coordi-
nate system−→

u Control vector
W ≥ 0, P > 0 Constant matrices−→
X State vector of the dynamical system−→
�X Deviation of the current state vector of the dynamic system

w.r.t. the desired state vector
δx, δy, δz Normalized parametric uncertainties of the satellite inertia

moments

1 Introduction

Currently, small satellites (up to 100 kg) are widely used in the space field
giving the opportunity of solving various scientific and technological tasks with
the lowest expenses. A small satellite has a relatively low cost and short term of
development. Experience of many countries having the program of small satellite
development shows that small satellites can fully replace large satellites when
solving the task of detailed cartographic surveys of the Earth, can solve the task of
fire detection, carry out surveys of disaster zones, and conduct ecological monitoring
and weather observations. In addition, this class of satellites is designed to process
new technologies and conduct experiments in space.
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The main problem of synthesis of attitude determination and control system for
small satellites consists in providing the required accuracy of their orientation since
a small satellite is more influenced by the external disturbances due to its small mass.
In addition, saving energy resources for the use of actuators is a major concern.

Required accuracy of small satellite orientation can be achieved with the help of
high-accuracy attitude determination and control algorithms using the minimal set
of sensors and actuators. This statement defines one area of study considered in this
chapter.

The requirement of saving energy resources in the process of attitude deter-
mination and control system development for small satellites can be fulfilled
through the use of magnetic actuators generating controlling mechanical torque by
interaction with the Earth magnetic field. This statement defines another area of
study considered in this chapter.

As a small satellite prototype, this work considers a nanosatellite on the
basis of CubeSat3U platform with a mass of 4.2 kg and inertia moments
J = [0.04088; 0.04088; 0.1116] kg · m2. The relevant orbit is sun-synchronous
with a height of 560 km.

Three-axis gyro sensor, three-axis magnetic sensor, two-axis sun sensors, three
reaction wheels, and three magnetorquers are the main components of attitude
determination and control system of the small satellite considered.

2 Problem Statement

There are many different theories and techniques of attitude determination and
control for small satellites that are developed by many authors using various types
of sensors and actuators.

An analysis of the topical works shows that the main problem of satellite
attitude determination lies in the fact that all sensors on the satellite operate in
their specific manner and in some cases generate partial or full inaccessibility to
their measurements [1]. Methods for satellite attitude determination such as TRIAD,
QUEST [2, 3], and Kalman filter [4] are based on vector measurements, and Kalman
filter assumes their tuning to obtain the optimal estimation of the satellite attitude
parameters.

A small satellite is more influenced by the external disturbances due to its small
mass [1]. The main sources of the disturbances for the attitude of small satellites are
the torques of external forces [5], however, the disturbances caused by the failures of
sensors and actuators and disturbances caused by the various uncertainties are not
less impacting [6]. The classical control theory [7], linear optimal control theory
[8], and adaptive control theories [9, 10] are applied to compensate perturbations
and provide the necessary attitude control. Recently, the sliding mode control theory
[11] and suboptimal °∞-control theory [12] have become popular for synthesis of
robust control dealing with uncertainties.

Hence, the first purpose of this work is the development of algorithms for the
precise attitude determination of a small satellite in conditions of inaccessibility of
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the full vector of measurement and the development of algorithms of attitude control
of a small satellite, taking into account the external disturbances and disturbances
caused by uncertainties on the inertia moments.

In this work, the mathematical model of Kalman filter and suboptimal °∞-
control theory are used as the basis for the development of precise small satellite
attitude determination algorithms and the relevant robust attitude control.

Nowadays, several schools from many countries carry out their research in
the field of the development of satellite attitude control systems, on the basis of
magnetorquers that are usually called magnetic attitude control systems and use
their results on already launched satellites [13–15]. Magnetorquers are more reliable
and have less energy consumption in comparison with mechanical actuators due to
the absence of mechanical elements. These can be widely used for the achievement
of the required orientation of the satellite.

Classical and modern methods of control system synthesis are used for the
development of control laws of change of magnetic moment for magnetorquers [16–
18].

From the results of applicability analysis of various control synthesis methods
for the magnetic attitude systems, it was determined that when developing linear
control laws for magnetorquers the following peculiarities should be considered:

– Standard methods of linear control systems synthesis can be used for control
synthesis mainly in the short term, due to the nonlinearity of the mathematical
model of the satellite motion controlled by magnetorquers;

– Developing control laws should compensate all impacting external disturbances;
– Developing control laws should provide robustness in the presence of uncer-

tainties provided by change of moments of inertia and the accuracy of the
mathematical model of the Earth magnetic field;

– Great difficulty is in the realization of control laws with variable coefficients of
feedback on-board the satellite;

– For the production of magnetic torque of magnetorquers, electrical currents only
in a definite range can be used; as a consequence, the problems of magnetorquers
saturation can arise, especially when working with large deviations from the
required orientation.

Synthesis methods of nonlinear control laws in comparison with the linear ones
allow to consider a number of the above peculiarities and provide more flexible
control systems.

Hence, the second purpose of this work is the development of a magnetic attitude
control system of small satellites. This takes into account the complexity of the
satellite three-axis orientation, in case of a near-zero angle between the directions
of the magnetic induction vector and the magnetic torque vector of the satellite.
In addition, the variability of the magnetic field and a residual magnetic torque,
significantly impacting the orientation of small satellites, are considered.

In this work, as a result of research of various linear and nonlinear methods
for the control system synthesis, two techniques that can be adopted for the
development of magnetic attitude systems of small satellites were chosen: synthesis
technique of linear control law, on the basis of PD-controller, and synthesis
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techniques of nonlinear control law, on the basis of usage of control theory with
sliding mode. Modification of these control laws using optimization methods and
taking into account peculiarities of the Earth magnetic field allow to achieve a full
controllability of the small satellite.

3 Mathematical Model of Rotational Motion of a Satellite

For the description of satellite motion, several coordinate systems are used: fixed
inertial coordinate system Oxiyizi with the origin at the Earth center of mass; body
coordinate system Cxbybzb with the origin at the satellite center of mass and axes
coincident with the principal central axes of inertia of satellite; orbital coordinate
system Cxoyozo with the origin at the satellite center of mass and the direction
of Cxo axis coincident with the direction of satellite motion, Czo axis directed to
the Earth center from the satellite center of mass and Cyo axis complementing the
system as a right-handed system. The description of orientation of the axes of the
body coordinate system related to the axes of other coordinate systems is performed
using quaternions.

Gravity-gradient torque and residual magnetic torque are considered as the
main external disturbances acting on the satellite. Sun pressure and aerodynamic
disturbances are not considered in virtue of the small middle cross-section of the
satellite.

Dynamic Euler equations are used as the equations of dynamics of the satellite,
and kinematic equations in quaternions are used as the equations of kinematics:

−→̇
ωb

bi = J−1
[
−−→ωb

bi ×
−→
Gb +

−→
Mb

c +
−→
Mb

e

]
, (1)

where J = {Jx, Jy, Jz}—diagonal (3Ø3) matrix of the small satellite inertia tensor;−→
ωb
bi—angular velocity of the small satellite in the body coordinate system;

−→
Gb—

angular momentum of the satellite;
−→
Mb

e —moment of external forces in the body

coordinate system; and
−→
Mb

c —control moment of the actuators.

−→
ωb

bo = 2
−−→
Qbo

∗ ⊗ −−→
Q̇bo, (2)

where
−→
Qbo—quaternion that sets the current angular position of the small satellite

in the orbital coordinate system;
−−→
Qbo

∗—quaternion that is the inverse of
−→
Qbo,−−→

Qbo
∗ = qbo

0 −−→
qbo; and ⊗—the operation of multiplication of quaternions.

−→
ωb
bi =

−→
ωb
bo +

−→
ωb
oi =

−→
ωb
bo + Ro

b

−→
ωo
oi, (3)
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where Ro
b is the direction cosine matrix representing the rotation of the orbital

coordinate system axes with respect to the body coordinate system axes; and−→
ωo
oi = [0 − ω0 0]T is the angular velocity of the orbital coordinate system relative

to an inertial coordinate system.

4 Precise Attitude Determination and Perturbations Tolerant
Control for Small Satellite

4.1 Optimal Estimation of Satellite Attitude Parameters
in Case of Incomplete Vector of Measurements

In this section, we consider the problem of the development of the algorithm for the
estimation of the angular position and angular velocity of the small satellite, on the
basis of the measurements of the sun and magnetic sensors. The satellite is actuated
by the reaction wheels, i.e., the angular momentum has the form:

−→
Gb = J

−→
ωb
bi +

−→
hb
a , (4)

where
−→
hb
a—angular moment of the reaction wheels.

Let us assume that the rotational motion of the small satellite is described by the
system of Eqs. (1) and (2), and the control torque of the reaction wheels has the
form:

−→
Mb

c = −Kω
−→ω −KQ

−→q − ωo
−→
a2 ×−→

h , (5)

where:

−→ω = −→
ωb

bo,
−→
h = −→

hb
a ,
−−→
Qbo = −→

Q,

−→
a2 =

[
2 (q1q2 + q0q3) q2

0 − q2
1 + q2

2 − q2
3 2 (q2q3 − q0q1)

]T

and the value of the coefficients Kq, Kω is determined using the theory of the optimal
synthesis of linear-quadratic regulator.

For an accurate estimation of the angular velocity and the angular position of the
small satellite, in the absence of measurements of the angular velocity sensor, an
algorithm on the basis of Kalman filter is developed. It operates on the basis of the
prediction–correction principle and allows to obtain the optimal estimation of the
angular velocity and the angular position of the small satellite.

Predicted values of angular velocity and angular position of the small satellite
are determined at the first stage of the algorithm by solving the linearized equations
of motion with the initial conditions determined as the output parameters of the
Kalman filter, obtained at the previous time step:

−→̇
x = F

−→
δ , (6)
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where:

−→x =
[−−→
ω̂−
k+1,

−−−→
Q̂−

k+1

]
,

F=
⎡

⎢
⎣

[
J
−→̂
ω×

]
−
[−→̂
ω×

]
J+

[−→
h ×

]
−Kω Kq−2Kω

[−→
ωb
oi×

]
+2

[−→
h ×

] [−→
ωb
oi×

]

1
2I3x3 −

[−→̂
ω×

]

⎤

⎥
⎦ .

At the first stage, it is also determined the current deviation of the estimated state
vector from its true value which is characterized by a covariance matrix P:

P-
k+1 = 2kP

+
k 2T

k +N, (7)

where 2k = eF�T = 1 + F�T + (F�T)2/2 ! . . . . . . . . . . , N—matrix of the system
noise.

That is to say that to obtain the predicted values of the attitude parameters of the
satellite and covariance matrix, it is required that their corrected values are known
at the previous step. This fact is one of the main problems of the implementation of
the Kalman filter. The choice of the optimal initial attitude parameters of the small
satellite and the covariance matrix can improve the convergence and accuracy of the
Kalman filter.

In this work, in order to determine the initial values of the attitude parameters,
the algorithm of rough estimate of the small satellite attitude parameters, on the
basis of sun sensor measurements, is used. The determination of the optimal initial
covariance matrix P and the matrix of the system noise N, that allows to obtain
the least time of convergence of the Kalman filter and the higher accuracy in
determining the satellite attitude parameters, is conducted as a result of a series
of numerical experiments. This allowed to obtain the dependency of Kalman filter
convergence and accuracy on the initial values of matrices P, N.

At the second stage of the algorithm, after receiving the measurement vector−−→
zk+1 from the magnetic and sun sensors, the corrected values of the satellite attitude

parameters
−−→
ω̂−
k+1,

−−−→
Q̂−

k+1 and error covariance matrix P+k+1 are calculated by means
of formulas that are known from the Kalman filter algorithm.

By using the proposed method, the initial angular position, angular velocity, and
covariance matrix were obtained:

−−−−→
Qbo (t0) = [0.9109; 0.1578; -0.2678; 0.2712]◦,
−→
ωb
bi = [0.0899; 0.01003; 0.03005] rad/ sec,

(8)
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P (t0) =

⎡

⎢⎢⎢⎢
⎢⎢⎢
⎣

0.001 0 0 0 0 0
0 0.001 0 0 0 0
0 0 0.001 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

⎤

⎥⎥⎥⎥
⎥⎥⎥
⎦

. (9)

Numerical experiments for deriving the initial satellite attitude parameters are
carried out using the initial values (8) and (9). Results of comparison of the
estimated attitude parameters (red dotted line) of the satellite with their true values
(blue bold line) are shown in Figures 1 and 2.

From Figures 1 and 2, it can be seen that the angular position and the angular
velocity of the small satellite, as estimated by means of the proposed algorithm,
have a small deviation from their true values.

Figure 1 The results of the comparison of the estimated angular position of the satellite with its
true value
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Figure 2 The results of the comparison of the estimated angular velocity of the satellite with its
true value

4.2 Robust Satellite Attitude Control Tolerant to External
Perturbations and Inertia Moment Uncertainties

This section illustrates the methodology of synthesis of satellite robust attitude
control, tolerant to external disturbances and inertia moment uncertainties, using
the theory of suboptimal linear H∞—control.

In this case, the linear system takes the form of equations:

−→̇
x = A

−→
x + B1

−→w + B2
−→
u ,−→

z = C1
−→
x +D11

−→w +D12
−→
u ,−→

y = C2
−→
x +D21

−→w .

(10)

The suboptimal H∞-control problem of parameter γ consists in finding a
controller K∞(s) such that the H∞-norm of the transfer function ‖Twz‖∞ from −→w
Í −→

z is strictly less then γ [19]:

‖Twz‖∞ < γ, (11)

where γ > 1, γ = const.
Solutions of this problem will be called γ -suboptimal controllers.
According to the theory of synthesis of H∞-control for the system (10) with the

conditions (11), the H∞-controller can be determined in the form:
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K∞(s) = Dk + Ck(sI − Ak)
−1Bk, (12)

if the following matrix inequality is satisfied for some X∞ > 0:

⎡

⎣
AT

clX∞ +X∞Acl X∞Bcl CT
cl

BT
clX∞ −γ I DT

cl

Ccl Dcl −γ I

⎤

⎦ < 0, (13)

where:

Acl =
(
A+ B2DkC2 B2Ck

BkC2 Ak

)
, Bcl =

(
B1 + B2DkD21

BkD21

)
,

Ccl = (C1 +D12DkC2,D12Ck) ,Dcl = D11 +D12DkD21.

(14)

Thus, the control synthesis problem is reduced to the solution of inequality (13)
that can be solved using an efficient convex optimization algorithm such as [20].

Taking into account the gravitational and residual magnetic torque as distur-
bances and the reaction wheel torque as control action, the linearized Eqs. (1) and
(2) can be written as:

F
−→̈
p +H

−→̇
p +Q

−→
p = Gd

−→w +Gu
−→
u , (15)

where p = [q1, q2, q3] , −→
u = [−Jrxω̇rx,−Jryω̇ry,−Jrzω̇rz

]
—vector of the

controlling torques of the reaction wheels; and −→w = [
mx,my,mz

]
—vector of the

external disturbances.

F =
⎡

⎣
Jx 0 0
0 Jy 0
0 0 Jz

⎤

⎦ , H =
⎡

⎣
0 0 −ω0

(
Jx + Jz − Jy

)

0 0 0
ω0

(
Jx + Jz − Jy

)
0 0

⎤

⎦ ,

Q =
⎡

⎣
4ω2

0

(
Jy − Jz

)
0 0

0 3ω2
0 (Jz − Jx) 0

0 0 3ω2
0

(
Jy − Jx

)

⎤

⎦ ,Gu =
⎡

⎣
1
2 0 0
0 1

2 0
0 0 1

2

⎤

⎦ ,

Gd =
⎡

⎢
⎣

0 1
2B

o
z − 1

2B
o
y

− 1
2B

o
z 0 1

2B
o
x

1
2B

o
y − 1

2B
o
x 0

⎤

⎥
⎦ ,

(16)

where
−→
Bo =

[
Bo

x , B
o
y , B

o
z

]
—the magnetic induction vector of the magnetic field of

the Earth in the orbital coordinate system.
To simulate the uncertainties of the satellite moments of inertia, we assume that

the finite value of the satellite moments of inertia can be considered as the sum of
their nominal values J̃x , J̃y, J̃z and the disturbances:
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Jx = J̃x +�Jxδx, Jy = J̃y +�Jyδy, Jz = J̃z +�Jzδz, (17)

where �Jx, �Jy, �Jz—the value of the deviations of the satellite moments of inertia;
and δx, δy, δz—normalized parametric uncertainties of the satellite moments of
inertia, δx, δy, δz ≤ 1.

Then, the right side of (15) includes the additional term representing the
disturbances due to the uncertainty of the moments of inertia of the satellite:

F
−→̈
p +H

−→̇
p +Q

−→
p = Gd

−→w + G̃d

−→̃
w +Gu

−→
u , (18)

where F = F0 + LM�MPM , H = H0 + LD�DPD, Q = Q0 + LK�KPK , G̃d =
[LM LD LK ],

−→̃
z = [PMp̈, PDṗ, PKp], and

−→̃
w = −−→̃z .

Reducing the system (18) to the form (10) provided the control synthesis by the
proposed method.

The results of the simulation of the satellite angular motion under the action
of °∞-control, taking into account the external disturbances and the uncertainties
of the moments of inertia, are shown in Figure 3. To evaluate the effectiveness
of the developed robust control, a comparison of the results of its work with the
results obtained for the linear-quadratic regulator (°2-control) is provided. For the
numerical calculations, it is accepted that the value of the variations of the moments
of inertia from their nominal values is �J = [-10 % Jx; 10 % Jy; -10 % Jz] .

Figure 3 shows the graphs of changes of some components of the quaternion,
with respect to the time, under the action of °2-control and robust °∞-control,
taking into account the external gravitational and magnetic disturbances, as well as
the disturbances caused by the inertia moment uncertainties of the satellite (red line)
and the graphs of the changes of some components of the quaternion, with respect
to the time, under the action of °2-control and robust °∞-control, neglecting the
disturbances caused by the inertia moment uncertainties of the satellite (blue line).
As it can be seen from Figure 3, the inertia moment uncertainties almost do not
affect the efficiency of the of °∞-control, in comparison with °2-control.

Figure 3 Change of the component q2 of the quaternion when using the °2-Ë °∞-control
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5 Magnetic Attitude Control System for a Small Satellite

5.1 Magnetic Linear Attitude Control

Magnetorquers are widely used for the attitude control of satellites and their use
is especially beneficial when there are strict constraints on mass, cost, and energy
consumption. However, the accuracy of orientation and maneuverability of satellites
with magnetic attitude systems is relatively smaller than control systems with
mechanical actuators. Control quality in this case can be improved enhancing the
mathematical apparatus of the satellite control.

Magnetic actuators generate control mechanical torque through interaction
between its own magnetic moment −→m = [

mx,my,mz

]
and the Earth magnetic

field [1]:

−→
M

b

c = −→
m ×−→

B , (19)

where
−→
B is the geomagnetic induction vector.

As it can be seen from formula (19), the required satellite attitude can be achieved
by regulating −→m .

In this work, the PD-controller is selected as the basis for development of
the linear magnetic controller in virtue of its simplicity, reliability, and ability to
optimization.

In accordance with the principle of constructing a PD-controller, we will consider
the function of the magnetic moment as [21]:

−→
u = [

mx,my,mz

]
, (20)

−→
u = Kp

−→
e +Kd

d
−→
e

dt
(21)

where Kp, Kd are unknown proportional gain and derivative gain, respectively, and
e(t) is a misalignment of the angular position of the small satellite.

The angular position of the small satellite is given in the form of a quaternion−→
Qbi , then the misalignment with respect to the angular position of the small satellite

is given in the form �
−→
Q = [

q0,�
−→
q
]

as the difference between the current angular
position and the required one. The control signal will take the form:
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−→
u = −

⎛

⎜
⎝

K1
p 0 0 K1

d 0 0
0 K21

p 0 0 K2
d 0

0 0 K3
p 0 0 K3

d

⎞

⎟
⎠

⎡

⎢⎢⎢⎢
⎢⎢⎢
⎣

�q1

�q2

�q3

�ω1

�ω2

�ω3

⎤

⎥⎥⎥⎥
⎥⎥⎥
⎦

=
⎡

⎢
⎣
−K1

p�q1 −K1
d�ω1

−K2
p�q2 −K2

d�ω2

−K3
p�q3 −K3

d�ω3

⎤

⎥
⎦ (22)

where �q1, �q2, �q3 are the components of the quaternion vector part which
describe the deviation of the small satellite current orientation with respect to the
desired orientation; and �ω1, �ω2, �ω3 are the components of the vector of the
deviation of the current angular velocity of the small satellite with respect to the
required angular velocity.

It can be seen from formula (21) that, to include the PD-controller in the control
system, it is necessary to determine the unknown coefficients Kp, Kd [22]. In this
section, in order to determine the coefficients, it is proposed to use two approaches:
an optimal approach based on a quadratic quality criterion and an approach based
on the optimal arrangement of the roots of the characteristic equation of a closed
control system.

The optimal approach based on a quadratic quality criterion implies the determi-
nation of a control that minimizes the functional:

J
(−→
u
) = 1

2

∞∫

0

[−→
�X

T
W
−→
�X +−→

u
T
P
−→
u

]
dt (23)

where
−→
�X—deviation of current state vector of the dynamic system with respect to

the desired state vector,
→
�X = →

X − →
Xm; −→u —control vector; and W ≥ 0, P > 0—

constant matrices.
Optimal problems based on the quadratic quality criterion are solved for linear

systems of the form:

d
−→
X

dt
= A

−→
X + B

−→
u , (24)

where
−→
X —state vector of dynamical system; A—system matrix; and B—control

matrix.
The Hamiltonian for this system is given by:

H = 1

2

(−→
�X

T
W
−→
�X +−→

u
T
P
−→
u

)
+−→

h
T (

A
−→
X + B

−→
u
)
, (25)

where
−→
h —vector of conjugate variables.
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The control −→u is determined through the necessary conditions of optimality:

∂H

∂u
= P

−→
u + BT−→h = 0, (26)

−→
u = −P−1BT−→h . (27)

We define
−→
h in (26) as a linear combination:

−→
h = R

−→
X +−→

h1 . (28)

Differentiating (28), we obtain

−→̇
h = Ṙ

−→
X + R

−→̇
X +−→̇

h1 . (29)

Differential equations for conjugate variables are defined as:

−→̇
h = − ∂H

∂
−→
X

= −W
−→
�X − AT−→h = W

−→
Xm −W

−→
X − AT R

−→
X − AT−→h1 . (30)

Substituting (30) into (29), we obtain

Ṙ
−→
X + R

−→̇
X +−→̇

h 1 −W
−→
Xm +W

−→
X + AT R

−→
X + AT−→h1 = 0. (31)

Substituting (24), (27) into (31), we obtain

(
Ṙ + RA + AT R − RBP−1BT R +W

)−→
X = 0. (32)

and

−→̇
h1 +

(
A− BP−1BT R

)−→
h1 −W

−→
Xm = 0. (33)

The Eq. (32) has a solution when:

Ṙ + RA + AT R − RBP−1BT R +W = 0. (34)

Thus, to determine the control in the form (27):

−→
u = −K

−→
X − P−1BT−→h1 ,

K = P−1BT R.
(35)



Optimization Issues in the Problem of Small Satellite Attitude Determination. . . 387

It is necessary to solve the differential Eqs. (33) and (34) under the boundary

conditions
−→
h1 (tk) = 0, R (tk) = 0.

An approach based on the optimal arrangement of the roots of the characteristic
equation of a closed control system, as the previous approach, is used for linear
systems of the form (24). The task of this approach is to determine the parameter
matrix K of the control law of form:

−→
u = K

−→
X , (36)

such that the roots of the characteristic equation of a closed control system are
located at given points or regions of the complex plane and provide the required
values of such characteristics of the closed system as the time and speed of transient
processes.

In this section, we consider the definition of the parameter matrix of the control
law that ensures the placement of the characteristic equation roots of a closed
system in regions characterized by a system of linear matrix inequalities, called
LMI-regions.

The LMI-region is a subset of the complex plane, which is representable by a
linear matrix inequality with respect to the variables x = Re (z), y = Im (z) [21]:

f (z) < 0. (37)

In accordance with the function f (z) in inequality (37), we can put the block
matrix [7]:

M (A,X) = αY + β ⊗ AY + βT ⊗ (AY )T , (38)

where ⊗—Kronecker product.
Then, the inequality (38) can be rewritten in the form:

M (A, Y ) < 0, Y > 0. (39)

As an example, we give the elementary LMI-region [7], shown in Figure 4, for
which inequalities (37) and (39) are written in the form:

f2(z) =
(

(z+ z) sinϕ (z− z) cosϕ
− (z− z) cosϕ (z+ z) sinϕ

)
, (40)

( (
AY + YAT

)
sinϕ

(
AY − YAT

)
cosϕ

− (
AY − YAT

)
cosϕ

(
AY + YAT

)
sinϕ

)
< 0, Y > 0. (41)

Thus, the problem of determining a control at the form (36) in this approach is
reduced to finding matrices Y = YT > 0 and K satisfying the inequality [7]:
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Figure 4 LMI-region

M (A+ BK, Y ) < 0. (42)

Denoting Z = KY, the last inequality can be written as a linear matrix inequality
with respect to the unknown matrices Y and Z:

M (A, Y )+ β ⊗ BZ + βT ⊗ ZT BT < 0. (43)

After these matrices are found, the desired parameter matrix of the control law is
defined as K = ZY−1 [7].

Results of the numerical modeling of the orbital orientation of the small satellite
using a PD-controller with tuning coefficients based on the two proposed methods
are shown in Figures 5 and 6.

Results of the numerical simulation showed that use of the PD-controller with
the adjustment of the coefficients on the basis of the optimal approach and the
optimal arrangement of the characteristic equation roots of a closed control system
for obtaining the law of the magnetic moment change makes possible to achieve
an almost identical accuracy of the satellite orientation (up to 0.15◦) in the orbital
orientation mode.

5.2 Magnetic Nonlinear Attitude Control

Another important approach in controlling the orientation of a satellite with a
magnetic orientation system is based on nonlinear methods. We will consider a
strategy for controlling the orientation of a satellite on the basis of the theory of
sliding mode control [23].
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Figure 5 Results of the modeling of the orbital orientation of the small satellite using a PD-
controller for determining the magnetic moment when adjusting its coefficients by means of the
optimal linear regulator
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Figure 6 Results of the modeling of the orbital orientation of the small satellite using a PD-
controller for determining the magnetic moment when adjusting its coefficients by means of the
optimal location of the roots of the characteristic equation

We consider the problem of turning the small satellite from an arbitrary angular

position to the required [23]. Let us assume that the desired angular position
−→
Qr, and
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required angular velocities −→ωr and
−→̇
ωr are given. Then, the dynamics and kinematics

equations of the small satellite with respect to the deviation of the current orientation
of the small satellite from the required orientation are given in the transformed form
of (1) and (2):

J
−→̇
ωb
bi +

−→
ωb
bi × J

−→
ωb
bi =

−→
Mb

c +
−→
Mb

e , (44)

−→
�Q̇ = 1

2


(−→
�Q

)−→
�ω, (45)

where
−→
�Q is a quaternion characterizing the deviation of the current angular

position of the small satellite regarding the required angular position,
−→
�ω is a

deviation of the angular velocity of the small satellite regarding the required angular

velocity,
−→
�ω = −→

ωb
bi −−→ωr .




( →
�Q

)
=
[
�q0E + [�q×]

−�qT

]

, (46)

[�q×] =
⎡

⎣
0 −�q3 �q2

�q3 0 −�q1

−�q2 �q1 0

⎤

⎦ . (47)

The synthesis of the control algorithm based on the control theory with sliding
mode consists of two steps [23]:

1. The construction of a surface
−→
S
(−→
�ω,

−→
�Q, t

)
= 0 along which a point should

move characterizing the state of the control system. If this point is on the surface−→
S
(−→
�ω,

−→
�Q, t

)
= 0 when the small satellite moves, the motion of the small

satellite is considered asymptotically stable.
2. The construction of a control providing motion along a given surface.

Usually, the surface is given in the form [23]:

−→
S = −→

�ω +Kq
−→
�q, (48)

where Kq is a constant, Kq > 0.
It must be taken into account that two types of control actions should be obtained

when developing a control based on the control system with a sliding mode. The
first control action −−→

u’eq should provide movement on a given surface, as soon as
the point characterizing the state of the control system reaches the specified surface.

The second control action
→
u′k should provide the point characterizing the state of

the control system attains a given surface:
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−→u = −−→
u’eq +−→uk . (49)

The motion of the system along the given surface is characterized by the
following equations:

−→
S = 0,

−→̇
S = 0. (50)

and

−→u = −−→
u’eq . (51)

Taking into account the equations of the small satellite motion, the second
equation of (50) takes the form:

−→̇
S = −→

�ω̇ + Kq
−→
�q̇ = −→̇

ωb
bi −

−→̇
ωT + 1

2 Kq

(
�q0E +

[−→
�q×

])−→
�ω =

= −I−1
[−→
ωb
bi×

]
I
−→
ωb
bi + I−1−−→u’eq + I−1−−→Mdis −−→̇

ωT

+ 1
2 Kq

(
�q0E +

[−→
�q×

])(−→
ωb
bi −−→ωT

)
= 0.

(52)

Hence, −−→u’eq can be obtained directly from (51):

−−→
u’eq =

[−→
ωb
bi×

]
I
−→
ωb
bi −

−−→
Mdis + I

−→̇
ωT − 1

2
KqI

(
�q0E +

[−→
�q×

])(−→
ωb
bi −−→ωT

)
.

(53)

Until the point characterizing the state of the control system reaches the surface:

−→
S 	= 0,

−→̇
S 	= 0 (54)

and

−→u = −−→
u’eq +−→uk .

As −→uk we use the proportional control law:

−→uk = −λ
−→
S , (55)

where λ is a constant, λ > 0.
Results of the numerical simulations of the orbital orientation of the small

satellite using a sliding control for specifying the law of the change in the magnetic
moment of the small satellite are shown in Figure 7.
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Figure 7 Results of the simulation of the orbital orientation of the small satellite using a sliding
control for determining the magnetic moment

Results of the numerical simulation showed that use of the developed sliding
mode controller makes it possible to achieve accuracy of the orientation of the
satellite up to 0.4◦ in the orbital orientation mode.

Carrying out optimal tuning of the coefficients suitable for determining the
equation of the sliding surface and the proportional control law, a better performance
of the developed nonlinear controller can be achieved.

6 Conclusion

In this chapter, the following main results were obtained:

1. An algorithm for optimal estimation of satellite attitude parameters on the basis
of Kalman filter that uses the measurements of the angular position sensors (sun
sensors and magnetic sensor) is developed.

2. A suboptimal linear °∞-control for the maintenance of small satellite orbital
orientation, under the influence of external gravitational, magnetic disturbances
and disturbances caused by the uncertainties of satellite inertia moments and
actuator faults, is developed.

3. A magnetic linear satellite attitude control is developed by the optimization of
feedback coefficients.

4. A magnetic nonlinear satellite attitude control on the basis of the sliding mode
theory is developed.
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Optimized Packings in Space
Engineering Applications: Part I
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János D. Pintér, Yurij E. Stoian, and Andrey Chugay

Abstract Packing optimization problems have a wide spectrum of real-word
applications, including transportation, logistics, chemical/civil/mechanical/power/
aerospace engineering, shipbuilding, robotics, additive manufacturing, materials
science, mineralogy, molecular geometry, nanotechnology, electronic design
automation, very large system integration, pattern recognition, biology, and
medicine. In space engineering, ever more challenging packing optimization
problems have to be solved, requiring dedicated cutting-edge approaches.

Two chapters in this volume investigate very demanding packing issues that
require advanced solutions. The present chapter provides a bird’s eye view of
challenging packing problems in the space engineering framework, offering some
insight on possible approaches. The specific issue of packing a given collection of
arbitrary polyhedra, with continuous rotations and minimum item-to-item admissi-
ble distance, into a convex container of minimum size, is subsequently analyzed in
depth, discussing an ad hoc mathematical model and a dedicated solution algorithm.
Computational results show the efficiency of the approach proposed. The following
(second) chapter examines a class of packing optimization problems in space with
consideration to balancing conditions.
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1 Introduction

The overall task of packing objects, exploiting the available volume, as much
as possible, has represented for centuries a tough challenge. Hilbert’s eighteenth
problem, consisting in the accommodation of equal spheres, attaining the maximum
density, is one of the well-known examples on this subject. In addition to a
number of theoretical questions that stimulate relevant mathematical speculation,
the compelling need to solve ever more demanding real-world problems has induced
specialists in the operations research and computational geometry fields to tackle
this topic with a more practical slant, see, e.g., Fasano and Pintér [1].

Packing optimization problems arise in a large number of applications, relevant
to transportation, logistics, civil/mechanical/power/aerospace engineering, ship-
building, robotics, additive manufacturing, materials science, mineralogy, chemical
industry, molecular geometry, nanotechnology, electronic design automation, very
large system integration, pattern recognition, modern biology, medicine, and other
areas.

When dealing with these real-world contexts, an overall numerical approach
to obtain high-quality (albeit usually non-proven-optimal) solutions to intricate
packing problems is widely adopted. From this standpoint, a vast literature on multi-
dimensional packing is available, cf. e.g., Cagan et al. [2], Dyckhoff et al. [3], and
Ibaraki et al. [4].

Traditionally, a significant part of the topical research has focused on the
orthogonal placement of rectangles/parallelepipeds into rectangles/parallelepipeds,
e.g., Faroe et al. [5], Fekete and Schepers [6], Fekete et al. [7], Martello et al. [8,
9], and Pisinger [10]. Several recent works also consider different typologies of
packing issues, e.g., Addis et al. [11], Birgin et al. [12], Egeblad et al. [13], Gomes
and Oliveira [14], Scheithauer et al. [15], and Teng et al. [16].

Different classes of two- and three-dimensional packing problems can be
considered, depending on the specific optimization criterion adopted or, for instance,
if the number of containers is fixed and the total load has to be maximized (e.g., in
terms of volume or value), then the relevant model is referred to as a knapsack
problem [17–20]. It is reduced to the single container one, when only one container
is available [21–23]. The issue of loading a set of given objects, while minimizing
the number (or, more in general, the total volume/cost) of containers to utilize, is
referred to as the bin packing problem (c.f. [24, 25]).

Further issues may concern the minimization of the container size, for instance,
in the strip packing problem (c.f. [26–28]), where a single dimension of the
(rectangle/parallelepiped-shaped) domain has to be minimized. The problem of
minimizing the area/volume of a rectangular domain (c.f. [29, 30]) with a number
of applications including manufacturing, logistics, and electronic design (c.f. floor-
planning in very large system integration) is well known. A further example,
concerning the container volume minimization, consists in sphere packing in
optimized spheres [31, 32].
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Significant research work has been carried out to solve a broad range of packing
issues algorithmically, frequently by resorting to general meta-heuristics or by
developing ad hoc heuristics. Consult, e.g., Allen et al. [33], Bennell et al. [34,
35], Bennell and Oliveira [36], Bortfeldt and Gehring [37], Burke et al. [38], Burke
et al. [39], Coffman et al. [40], Dowsland et al. [41], Gehring and Bortfeldt [42],
Gomes and Oliveira [14], Gonçalves and Resende [43], Hopper and Turton [44,
45], López-Camacho et al. [46], Mack et al. [47], Oliveira et al. [48], Pisinger [10],
Ramakrishnan et al. [49], Terashima-Marín et al. [50], Wang et al. [51], and Yeung
and Tang [52]. In parallel, modeling-based approaches have been investigated, e.g.,
Allen et al. [53], Chen et al. [54], Chernov et al. [55], Fasano [56], Fischetti
and Luzzi [57], Hadjiconstantinou and Christofides [58], Kallrath [59], Padberg
[60], and Pisinger and Sigurd [61]. These works refer to the overall context of
mathematical programming, including mixed integer (linear) programming and
mixed integer nonlinear programming.

Several types of complex non-standard packing problems arise in space engi-
neering, both at the design and operational levels, c.f. Daughtrey [62], Fasano [63],
Fasano et al. [64], Fasano and Pintér [65, 66], Fasano and Vola [67], and Takadama
and Shimomura [68]. Exploiting the spacecraft load capacity as much as possible
is needed particularly in the perspective of the demanding exploration programs of
the near future, including lunar outposts, orbiting platforms, and space stations and
forthcoming human missions to Mars.

Generally, concerning logistics and transportation issues, the volume or the mass
of the loaded cargo has to be maximized. Other optimization criteria, however, can
also be stated, depending on the specific missions in question. This is the case, for
instance, of scientific satellites, where the total mass/volume to be loaded is known
a priori, consisting of the necessary on-board equipment. In these circumstances,
optimization criteria, for instance, relevant to the overall spacecraft balancing can
be considered.

Independently from the selected optimization criteria, often very tricky accom-
modation rules have to be taken into account, in compliance with geometrical and
operational conditions, as well as safety or ergonomic requirements, in particular,
when manned missions are dealt with. Tight balancing conditions, deriving from
attitude control specifications, are usually imposed at an overall system level but
can also be stated (e.g., in the case of space modules) for single internal containers,
for instance, racks or bags. The internal space-system geometries are normally very
intricate. As a consequence, in order to exploit the empty volume, as efficiently
as possible, the shape of the available packing domains (or sub-domains) can be
very peculiar. This occurred, for instance, in the case of the European Automated
Transfer Vehicle (ATV, ESA, cf. <www.esa.int/Our_Activities/Human_Spaceflight/
ATV>, see below), conceived in support of the International Space Station Logistics
(ISS, see NASA www.nasa.gov/mission_pages/station). There, indeed, some bags
had curved surfaces to fit the shape of the racks they had to be accommodated in,
determined by the cylindrical form of the carrier.

http://www.esa.int/Our_Activities/Human_Spaceflight/ATV
http://www.nasa.gov/mission_pages/station
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All in all, packing problems in space possess at least some of the following
features: non-trivial shapes of domains and items, possible presence of internal
separation planes or structural elements, balancing conditions, and additional
accommodation rules.

As is well known, packing problems, in general, even when posed in quite an
elementary version (e.g., the placement of simple boxes inside a container box,
without any further conditions) are NP-hard. This encourages packing specialists
to embrace an overall heuristic perspective, intended to search for satisfactory
(i.e., generally sub-optimal, instead of optimal-proven) solutions. Considering the
complexity of packing problems in space applications, this area is no exception.

Furthermore, while in several real-world instances, items can often be assumed
to be rectangular parallelepipeds, without significant loss of information, in space
engineering/transportation/logistics, generally, such an approximation does not
hold, especially when dealing with large and complex items. Similar considerations
can, moreover, be made, regarding the shapes of the available volumes, since
frequently these are not just parallelepipeds and cannot reasonably be approximated
as such. The presence of additional geometric and operational conditions, in general,
makes the packing problem even more challenging.

When handling non-standard packing problems of the aforementioned typology,
characterized in particular by the presence of overall conditions, such as balancing,
the simplistic approach (adopted by several packing algorithms) of placing items
one at a time is inefficient. A global optimization viewpoint is therefore highly
desirable, also in consideration of the outstanding results recently achieved in this
discipline (consult, e.g., [31, 69–86]).

Recently, a modeling-based philosophy (as opposed to a pure algorithmic
one) emphasizing in particular a global optimization approach has been looked
into, in support of packing optimization in space. Dedicated MILP and MINLP
formulations have been presented jointly with heuristic procedures [63].

A basic concept, widely utilized in this specific framework, relates to the tetris-
like items. Such items consist of a set of rectangular parallelepipeds positioned
orthogonally, with respect to an orthogonal reference frame. This frame is called
“local” and each parallelepiped represents a “component.” A dedicated MILP-
model-based heuristic approach has been introduced to solve the problem described
next, c.f. Fasano [63, 87].

A set I of N tetris-like items, together with a (bounded) convex polyhedron D,
is considered, see Figure 1. This is associated with a given orthogonal reference
frame, indicated as the main frame. The general problem is to place items into D,
maximizing the loaded volume, while considering the following positioning rules:

• Each local reference frame has to be positioned orthogonally, with respect to the
main one (orthogonality conditions);

• For each item, each component has to be contained within D ( domain condi-
tions);

• The components of different items cannot overlap (non-intersection conditions).
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Figure 1 Tetris-like item
packing into a convex domain

A number of additional conditions can be taken into account. Primarily, the one
regarding the so-called static balancing, imposing that the overall center of mass
lies within a given convex sub-domain of D. Further packing requirements can be
contemplated, for instance:

• Pre-fixed position and orientation for some items;
• Minimum or maximum distance involving pairs of components (belonging to

different items);
• Presence in D of “forbidden” zones (e.g., due to clearance requirements, or actual

“holes”) and/or separating planes;
• Maximum overall mass loaded;
• Dynamic balancing conditions on the relevant inertia matrix.

In recent years, an overall heuristic approach based on the aforementioned
model (in addition to others concerning further specific packing aspects) found a
successful application. This occurred in support of the five ATV missions, carried
out by the European Space Agency (ESA), in the period 2008–2014 (see ESA
http://www.esa.int). CAST (Cargo Accommodation Support Tool, see [64]) was
the resulting dedicated software environment, developed for the purpose by Thales
Alenia Space, with ESA funding. A modified version of the tool (see [88]) is
currently in use, in support of the ISS Columbus Laboratory on-board stowage
activity (see ESA www.esa.int/Our_Activities/Human_Spaceflight/Columbus). A
brief overview concerning the ATV cargo accommodation problem and the overall
approach adopted (by means of CAST) follows, referring the reader to [64], for a
detailed exposition.

The ATV systems were intended to contribute to the resupply of the ISS, in terms
of propellant (to re-boost the station to the required orbit altitude), payloads (i.e.,
equipment devoted to the on-board experimentation), as well as material both for
the crew and the station on-board activity, in addition to its maintenance. Each ATV
weighed about 20.7 tons at launch and had an overall load capacity of 8 tons. The
overall cargo covered the following categories:

http://www.esa.int
http://www.esa.int/Our_Activities/Human_Spaceflight/Columbus
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• Pressurized cargo (frequently referred to as dry cargo), consisting of objects of
different typologies such as scientific equipment or resupply goods;

• Unpressurized cargo, consisting of fluids;
• Propellant for the re-boost maneuvers and station refueling.

The ATV transportation system was essentially aimed at supporting the ISS
uploading phases, since it performed a destructive re-entry (the only download
activity consisted of trash destruction). Both fluids and cargo items were delivered
on-board the ISS, based on the current Cargo Manifest list, provided by NASA
for every mission. The amount of each fluid type could generally vary within an
admissible range. Some items could, moreover, be rejected, on the basis of a given
priority list. In addition to intricate operational rules, tight (static and dynamic)
balancing conditions were imposed at different levels (ranging from the single
bag to the whole system), giving rise to both linear and nonlinear constraints (see
[64]). As a matter of fact, several three-dimensional packing issues were defined,
encompassing different accommodation scenarios (e.g., placement of items into
bags, bags into racks, and racks into the module rack locations).

CAST is characterized by an overall architecture, based on a mathematical library
that represents the core of the entire optimization framework. Specific subproblems
are solved iteratively by adopting, step by step, the corresponding mathematical
library module, consisting of specific (MILP) models and heuristic algorithms.
Backward iterations are admitted, when the desired solution (at overall/subproblem
level) is not attained, performing a recursive process. The relevant subproblems are
associated with the following library modules:

• Item accommodation (IA);
• Preprocessing assessment (PPA);
• Item-rack correlation (IRC);
• Rack configuration (RC);
• (Overall) Cargo accommodation (CA).

The IA module is employed to accommodate (tetris-like) items into bags, subject
to static balancing conditions. The available volume is moreover assumed to consist
of a convex domain (in general non-box-shaped). This module is based on the
MILP-model-based heuristic approach outlined above.

The PPA module is aimed at providing a fast approximate solution to the whole
problem, in order to attain a preliminary feasibility check. This module serves
also to identify an upper bound, relevant to the overall loadable mass. An MILP
model solves a multiply constrained, multiple continuous knapsack problem with
additional conditions. The set of knapsacks is represented by both tanks (for the
fluids) and racks with given mass capacities. Additional conditions include:

• Specific loading rules for fluids;
• Compatibility/incompatibility between rack and rack location;
• Compatibility/incompatibility (both for unpressurized and pressurized cargo)

between mass and container type;
• The static and dynamic balancing requirements stated at system level.
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The relevant MILP model considers, as a very preliminary approximation, both
the unpressurized and pressurized cargo in the same way as fluid mass.

The IRC module has the scope of obtaining an initial correlation between
integrated bags (by means of the IA module) or pre-integrated bags and the rack
locations. It is based on an MILP model. Multiply constrained, multiple (non-
continuous) knapsack problems with additional conditions are solved. The model
is based on a more sophisticated formulation with respect to the PPA. Items
are considered in terms of distinct (flexible) objects, characterized by their mass
and volumes (their actual dimensions are however still neglected). All conditions
considered by the PPA model, in particular the static and dynamic balancing, are
taken into account. In this case, nonetheless, in order to overcome the difficulties
associated with the nonlinearity deriving from the balancing constraints, the overall
mass loaded is considered as a constant (a first approximation of its value is derived
by the PPA step itself). The error, expressing the difference between the constant
mass estimation and the actual amount loaded by the IRC model, is minimized
iteratively, as necessary. The total loaded mass is maximized only indirectly.
Additionally, the presence of sectors inside the racks is considered, together with
the relevant accommodation rules (the knapsacks here consist of the rack sectors
and rack fronts). Some items may be rejected, if necessary, on the basis of priority
rules.

The RC module has the task of determining the internal/external rack accom-
modation, in compliance with given accommodation rules. Integrated/pre-integrated
bags, drawers, “large” items, and further specific classes of items are accommodated
into the racks or on the rack fronts, on the basis of the designations provided by
the previous IRC stage. All cargo items and bags involved have their actual shapes
and dimensions. The static balancing restrictions, imposed at rack level, are taken
into account. An MILP model solves the related multiply constrained, multiple
knapsack problems with additional conditions. The knapsacks, here, represent the
rack (internal) sectors and the external rack fronts. The additional conditions, at this
stage, consist of:

• Rules for the internal accommodation (e.g., how bags of different types can be
allocated into sectors);

• Mass capacity both at sector and rack-front levels;
• Rules for the external accommodation;
• Static balancing of the whole rack.

Since during the accommodation process (involving the aforementioned sub-
problems) several approximations are introduced, the CA module has the objective
of re-arranging all the partial (so-far obtained) solutions, in order to attain a
satisfactory (albeit in general sub-optimal) ultimate result. The assignment of the
already accommodated racks to rack locations is reconsidered, looking into a final
accommodation, compliant with the given static and dynamic balancing conditions
holding at system level. At this step, errors with respect to the mass loaded in each
rack are allowed. They are minimized by the CA model objective function. If the



402 Y. Stoyan et al.

outcome obtained is acceptable, then (in terms of error tolerance) the final solution is
attained. Otherwise, backward/forward iterations are executed throughout the entire
accommodation process, until an acceptable result is obtained.

The remainder of this chapter is devoted to the accommodation of arbitrary
polyhedra into convex containers of minimum size, as a specific packing problem
of interest in space applications. A further chapter of this volume [89] addresses
packing problems subject to balancing conditions. Both cases are solved by
the established phi-function methodology introduced in [55, 90–93] to handle a
wide range of complex non-regular packing problems. The problem of packing
a collection of non-identical and non-convex polyhedra into a convex container
(in particular, a cuboid, a sphere, a right circular cylinder, and an ellipsoid) of
“minimum size” (e.g., in terms of total volume, homothetic coefficient, or one of the
container metrical characteristics) is discussed hereinafter. It shall be denoted in the
following as the polyhedron layout problem. In the relevant study discussed in this
chapter, continuous rotations and translations of polyhedra are allowed. In addition,
conditions upon minimum allowable distances between polyhedra are taken into
account. An exact mathematical model based on the phi-function technique is
formulated in terms of nonlinear programming. An efficient solution algorithm,
employing a fast starting point algorithm and an innovative compaction procedure is
adopted. Extensive computational results, including a comparative analysis between
new and previously published instances, demonstrate the efficiency of the approach
proposed.

Polyhedron packing problems are, in general, NP-hard: consequently, solution
methodologies generally employ heuristics. Some researchers adopt approaches
based on mathematical modeling and general optimization procedures. In most
works free rotations of 3D objects are not allowed. For example, in [94] the
translation algorithm is used for the packing of pre-oriented convex polytopes. Liu
et al. [95] propose an algorithm, dealing with arbitrarily shaped polyhedra which can
be rotated around each coordinate axis of eight discrete angles. Youn-Kyoung and
Sang [96] show that, for 3D packing problems, a unit-discretization of the rotations,
around each axis, from 0◦ to 360◦, would make the actual computation impossible.

The approach illustrated here is based on the mathematical modeling of geo-
metric relations between objects, leading to continuous NLP formulations [90, 97,
98]. The phi-function technique (e.g. [55, 92]) has, indeed, the scope of providing
an analytic description of objects inside a container, taking into account their
continuous translations and rotations.

In this chapter the quasi-phi-functions concept, as introduced in Stoyan et al.
[91, 93], is applied. It is based on the idea proposed by Kallrath [59] of using
separation planes to model non-overlapping constraints for circles and convex
polygons. The concept of quasi-phi-functions extends the phi-function domain by
introducing auxiliary variables. Their use, as an alternative to phi-functions, allows
for simplified descriptions of non-overlapping constraints, at the expense of a larger
number of variables. The phi- and quasi-phi-functions have been successfully used
to model a variety of packing problems [55, 99, 100], also in space engineering, as
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illustrated by Stoyan and Romanova [92], Stoyan et al. [101], and Stoyan et al. [91,
93]. In this chapter, the approach introduced by Romanova et al. [90] is extended,
in order to tackle the layout problem of arbitrarily shaped polyhedra in convex
containers of various types, by considering different objective functions.

Section 2 states the problem in question. The modeling methodology adopted
to formulate non-overlapping, containment, and relative-distance constraints is
described in Sect. 3. The mathematical model and the solution algorithm are
discussed in Sects. 4 and 5, respectively, while Sect. 6 computational results are
presented.

2 Polyhedron Layout Problem

We consider the layout problem in the following setting. Let 
=
(p) denote a con-
vex container with variable sizes p, 
= {(x, y, z, p) ∈ R3 : 0(x, y, z, p) ≥ 0}, given in
the global coordinate system OXYZ, where 0(x, y, z, p) = min {0s(x, y, z, p), s = 1,
. . . , n
} and 0s(x, y, z, p) is a differentiable function, s = 1, . . . , n
. In particular,
we consider the following types of containers:

A cuboid B = {(x, y, z, l, w, h) ∈ R3| min {x + l, − x + l, y + w, − y + w, z + h,
−z + h} ≥ 0} of variable dimensions l, w, and h, p = (l, w, h);

A sphere S = {(x, y, z, r) ∈ R
3|r2 − x2 − y2 − z2 ≥ 0} of variable radius r, p = (r);

A cylinder C = {(x, y, z, λ) ∈ R
3| min {(λr)2 − x2 − y2,−z + λh, z + λh} ≥ 0}, of

radius λr and height λh, where λ is a variable homothetic coefficient, p = (λ),
with λ = 1, for the original container;

An ellipsoid E =
{
(x, y, z, λ) ∈ R

3
∣∣ λ2 − x2

a2 − y2

b2 − z2

c2 ≥ 0
}

of variable semiaxes

λa, λb, λc, p = (λ), with λ = 1, for the original container.

Remark: Each metrical characteristic of 
 can be a variable by itself, i.e., r and
h—for cylinder, or a, b, c—for ellipsoid.

Let {1, 2, . . . , N} = JN and a set of polyhedra Qq, q ∈ JN , be given.
Each polyhedron Qq can be either non-convex or convex. For the purposes of

this paper, we assume that the mass Mq and center of mass cq of each polyhedron
Qq are known.

With each polyhedron Qq we associate its local coordinate system with the
relevant origin denoted by vq. Assume that each non-convex polyhedron Qq is
represented as a union of convex polyhedra K

q
j , j = 1, . . . ,nq. With each convex

polyhedron K
q
j we associate the local coordinate system of the polyhedron Qq.

Each convex polyhedron K
q
j is defined by its verticespqj

s , s = 1, . . . . , mq
j , in the

local coordinate system of Qq.
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We give here input data that form a non-convex polyhedron Qq by two lists:
List_1 contains the vertex coordinates of all the convex polyhedra K

q
j , j = 1, . . . ,nq,

and List_2 contains the index sets J
q
j , j = 1, . . . ,nq, of the numbers of vertices

(with respect to List_1) that define appropriate convex polyhedra K
q
j , j = 1, . . . ,nq.

We note that List_1 includes all the original vertices of the non-convex polyhedron
and the additional vertices that appear as a result of decomposing the non-convex
polyhedron into convex polyhedral (see [90] for details).

Let Qq =
nq∪
j=1

K
q
j be given. Without loss of generality, we assume that the origin

vq of a polyhedron Qq coincides with the center point of its circumscribed sphere
Sq of radius rq. In order to circumscribe a sphere around a polyhedron we employ
the algorithm described in [102], which computes the smallest enclosing sphere of
a collection of points. We use the library function found at https://github.com/hbf/
miniball, which is sufficiently fast.

The location and orientation of each polyhedron Q are defined by a vector
u = (v, θ ) of its variable placement parameters. Here v = (x, y, z) is a translation
vector, and θ = (θ1, θ2, θ3) is a vector of rotation parameters, where θ1, θ2, and θ3

are Euler angles (https://en.wikipedia.org/wiki/Euler_angles).
A polyhedron rotated through angles θ1, θ2, and θ3 and translated by vector v is

denoted as Q(u) = {t ∈ R3 : t = v + M(θ ) • t0, t0 ∈Q
0}, where u =(v, θ ), Q0 denotes

the non-translated and non-rotated polyhedron Q, and M(θ ) is a rotation matrix of
the form:

M (θ) =
⎛

⎝
μ11 μ12 μ13

μ21 μ22 μ23

μ31 μ32 μ33

⎞

⎠ ,

μ11 = cos θ1 cos θ3 − sin θ1 cos θ2 sin θ3, μ12 = − cos θ1 sin θ3 − sin θ1 cos θ2 cos θ3,

μ13 = sin θ1 sin θ2, μ21 = sin θ1 cos θ3 + cos θ1 cos θ2 sin θ3,

μ22 = − sin θ1 sin θ3 + cos θ1 cos θ2 cos θ3, μ23 = − cos θ1 sin θ2,

μ31 = sin θ2 sin θ3, μ32 = sin θ2 cos θ3, μ33 = cos θ2.

It is possible to define minimum allowable distances between each pair of
polyhedra Qq and Qg, q < g ∈ IN , as well as between a polyhedron Qq, q ∈ IN , and
the boundary of container 
. It means that each polyhedron Qq has to be located no
closer to polyhedron Qg than the given allowable distance and each polyhedron
Qq has to be located inside the container and no closer to the boundary of the
container than the given allowable distance. We note that the minimum allowable

https://github.com/hbf/miniball
https://github.com/hbf/miniball
https://en.wikipedia.org/wiki/Euler_angles
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distance between each pair of convex polyhedra K
q
j ⊂ Qq , j = 1, . . . ,nq, and

K
g
l ⊂ Qg , l = 1, . . . ,ng, q < g ∈ IN , is equal to the given allowable distance

between the original polyhedra Qq and Qg. Moreover, the minimum allowable
distance between each polyhedron K

q
j , q ∈ IN , and the boundary of the container 


is equal to the given allowable distance between the original polyhedron Qq, q ∈ IN ,
and the boundary of container 
. Balance constraints can be taken into account as
the minimum deviation of the mechanical system from a given point.

We consider different types of objective functions that depend on placement
parameters of polyhedra and variable metrical characteristics of container 
, in
particular: minimum volume, minimum of homothetic coefficient, maximum of
packing density, and minimum deviation of the mechanical system from a given
point. Note that the metrical characteristic of 
 can be variable or fixed.

The polyhedron layout problem can be formulated in the form:
Place the set of polyhedra Qq, q ∈ JN , within a convex container 
, taking

into account the geometric and balance constraints, such that the value of a given
objective function will reach its appropriate extremum value.

3 Analytical Description of Placement Constraints

In this section we describe our methodology for the mathematical modeling of
the non-overlapping, containment and distance constraints. In the following, d(a, b)
represents the Euclidean distance between two points a, b ∈ R3.

Let us consider placement constraints that are met in the polyhedron layout
problem:

Let ρqg > 0 denote the minimum allowable distance between two polyhedra Qq

and Qg and ρq > 0 denote the minimum allowable distance between a polyhedron
Qq and the object 
*.

We formulate the placement constraints in the form:

1. dist( Qq,Qg) ≥ ρqg for each q, g ∈ JN with q 	= g,

where dist
(
Qq,Qg

) = min
a∈Qq ,b∈Qg

d (a, b).

It means that each polyhedron Qq has to be located no closer to polyhe-
dron Qg than the given allowed distance ρqg.

2. dist( Qq,
*) ≥ ρq for each q ∈ JN , 
* = R3\ int 
,

where dist
(
Qq,


∗) = min
a∈Qq ,b∈
∗d (a, b) .

This means that each polyhedron Qq has to be located inside the container and
no closer to the boundary of the container than the given allowed distance ρq.

Note that if ρq = 0 and ρq = 0, then we deal with regular non-overlapping
( int Qq ∩ int Qg = ∅) and containment, Qq ⊂ 
 ⇐⇒ int Qq ∩ 
*, constraints.
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In order to describe analytically the relationships between a pair of objects
considered in the placement constraints, we employ the phi-function technique.
Here we use adjusted phi-functions [55] for containment constraints and quasi-phi-
functions [91, 93] for non-overlapping constraints. See Appendix for definitions of
phi-functions and quasi-phi-functions.

3.1 Modeling Non-overlapping Constraints

To construct a quasi-phi-function and an adjusted quasi-phi-function of two non-
convex polyhedra, we will use a quasi-phi-function and an adjusted quasi-phi-
function for each pair of convex polyhedra that together form the original non-
convex polyhedra.

First we consider a quasi-phi-function for a pair of convex polyhedra.
Let A(uA) and B(uB) be two convex polyhedra given by their vertices pA

s ,

s = 1, . . . , mA, and pB
s , s = 1, . . . , mB.

A quasi-phi-function 2
′AB(uA, uB, uP) for convex polyhedra A(uA) and B(uB) can

be defined by the following formula:

2′AB
(uA, uB, uP ) = min

{
2AP (uA, uP ) ,2BP ∗

(uB, uP )
}
, (1)

where 2AP(uA, uP) is a phi-function of A(uA) and half plane P(uP), 2BP ∗
(uB, uP )

is a phi-function of B(uB) and half plane P*(uP) (the complement to P(uP)),
P(uP) = {(x, y, z) : ψP = α · x + β · y + γ · z + μP ≤ 0} is a half-
space, α = sin θ1

P sin θ2
P , β = − cos θ1

P sin θ2
P , γ = cos θ2

P , θ1
P and θ2

P are
appropriate variable Euler angles (under intrinsic rotation θ3

P = 0), uP =(
θ1
P , θ2

P , μP

)
is a vector of variable parameters (auxiliary variables) that define a

plane LAB = {(x, y, z) : ψP = 0} in R3,

2AP (uA, uP ) = min
1≤s≤mA

ψP

(
pA
s

)
, 2BP ∗

(uB, uP ) = min
1≤s≤mB

(
−ψP

(
pB
s

))
.

We use here the important characteristic of a quasi-phi-function: if
2

′AB(uA, uB, uP) ≥ 0 for some uP, then intA(uA) ∩ int B(uB) = ∅(see [91, 93]
for details).

It is known that if two fixed convex objects A and B do not have common
points, then there exists at least one separating plane. Therefore there exists a
vector u∗P of parameters of a plane LAB such that the distance d1 = 2AP

(
uA, u

∗
P

)

from A to LAB equals to the distance d2 = 2BP ∗ (
uB, u

∗
P

)
from B to LAB. Thus

function 2
′AB(uA, uB, uP) reaches its maximum when 2′AB

(
uA, uB, u

∗
P

) = d
∗,

where d* = d1 = d2.
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Figure 2 Separating planes for two fixed convex objects A and B: (a) 2
′AB = d*; (b) 2′AB = d0

1

Figure 2 illustrates two cases when 2
′AB > 0: (a) 2′AB (

u1, u2, u
0
P

) = min
{
d0

1 ,

d0
2

}
= d0

1 ; (b) max
uP

2′AB
(u1, u2, uP ) = 2′AB (

u1, u2, u
∗
P

) = min
{
d∗1 , d

∗
2

}= d∗1 =
d∗2 = d∗.

Let the minimum allowable distance ρAB between two arbitrary convex poly-
hedra A(uA) and B(uB) be given. To describe a distance constraint, dist(A(uA),
B(uB))≥ρAB, we use an adjusted quasi-phi-function for convex polyhedra A(uA) and
B(uB) of the form

$
2′AB

(uA, uB, uP ) = 2′AB
(uA, uB, uP )− 0.5ρAB. (2)

Note that
$
2′AB

(uA, uB, uP ) ≥ 0 implies dist(A, B) ≥ ρAB (see [91, 93] for
details).

A quasi-phi-function of two non-convex polyhedra is composed by quasi-
phi-functions for all pairs of convex polyhedra that together form the original
non-convex polyhedra. By analogy an adjusted quasi-phi-function of two non-
convex polyhedra is constructed.

Before we introduce a quasi-phi-function and an adjusted quasi-phi-function
for a pair of non-convex polyhedra, we renumber a given collection of convex

polyhedra, K
q
j , j = 1, . . . ,nq, q ∈ JN , as a set of n =

N∑

q=1
nq convex polyhedra

Ki, i ∈ {1, 2, . . . , n} = In, using the following rule: Kq
j → Ki, i =

q−1∑

l=0
nl + j,

j = 1, . . . ,nq, q ∈ JN , provided that n0 = 0.
Now we introduce the “gluing” vector a = (a1, , , , an), ai ∈ JN , where

ai = q, if Ki takes part in the composition of a polyhedron Qq, q ∈ JN . Let
In = I1 ∪ I2 ∪ . . . ∪ IN be an ordered partition of In, where Iq = {i ∈ In, ai = q},
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Figure 3 Generation of the “gluing” vector for polyhedra Q1, Q2, and Q3

|Iq| = nq, q ∈ JN . For example, the “gluing” vector for polyhedra Q1 = K1 ∪ K2,
Q2 = K3, and Q3 = K4 ∪ K5 ∪ K6 has the form a = (a1, a2, a3, a4, a5, a6)

=(1, 1, 2, 3, 3, 3) (Figure 3). In the example N = 3 and n =
3∑

q=1
nq = 2+1+3 = 6.

Let Qq = ∪
i∈IqKi and Qg = ∪

j∈IgKj be non-convex polyhedra and q 	= g.

An adjusted quasi-phi-function for non-convex polyhedra Qq(uq) and Qg(ug) has
the form (see [90]):

$

′

qg

(
uq, ug, uqg

) = min
{$
2′

ij

(
uq, ug, u

′
ij

)
, i ∈ I q, j ∈ Ig

}
, (3)

where
$
2′

ij

(
uq, ug, u

′
ij

)
is the adjusted quasi-phi-function and u′ij is a vector of

auxiliary variables for a pair of convex polyhedra Ki(uq) and Kj(ug), i ∈ Iq, j ∈ Ig,

uqg =
(
u′ij , i ∈ I q, j ∈ Ig

)
.

If ρqg=0, then function (3) is a quasi-phi-function 2′
ij

(
uq, ug, u

′
ij

)
for Qq and

Qg.
Let us consider an example of a quasi-phi-function for two polyhedra:

Q1(u1) = K1(u1) and Q2(u2) = K2(u2) ∪ K3(u2) (Figure 4a). A quasi-
phi-function for Q1(u1) and Q2(u2) can be defined in the following form:

′

12 (u1, u2, u12) = min
{
2′

12

(
u1, u2, u

′
12

)
,2′

13

(
u1, u2, u

′
13

)}
,where u12 =
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Figure 4 Illustration to a quasi-phi-function for two polyhedra: (a) polyhedra Q1 and Q2; (b)
separating planes L12 and L13 for two pairs of appropriate convex polyhedra K1 and K2; K1 and K3

(
u′12, u

′
13

)
, 2′

12

(
u1, u2, u

′
12

)
is a quasi-phi-function, u′12 is a vector of auxiliary

variables for a pair of convex polyhedra K1(u1) and K2(u2), 2′
13

(
u1, u2, u

′
13

)
is a

quasi-phi-function, and u′13 is a vector of auxiliary variables for a pair of convex
polyhedra K1(u1) and K3(u2).

Figure 4b illustrates two separating planes L12 and L13 that provide
2′

12

(
u1, u2, u

′
12

)
> 0 and 2′

13

(
u1, u2, u

′
13

)
> 0 that implies 
′

12 (u1, u2, u12) > 0.
Here Lij = {(x, y, z) : ψ ij = 0} is a separating plane for Ki(uq) and Kj(ug), where
ψ ij = αij · x + β ij · y + γ ij · z + μij, αij = sin θ1

ij sin θ2
ij , βij = − cos θ1

ij sin θ2
ij ,

γij = cos θ2
ij , and u′ij =

(
θ1
ij , θ

2
ij , μij

)
, i = 1, j = 2, 3, q = 1, g = 2.

3.2 Modeling Containment Constraints

An adjusted phi-function for a non-convex polyhedron Qq(uq) and the object 
*

can be defined in the form [90]:
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$

q

(
uq, p

) = min
{
$
2i

(
uq, p

)
, i ∈ I q

}
, (4)

where
$
2i

(
uq, p

)
is an adjusted phi-function for a convex polyhedron Ki(uq) and


*, i ∈ Iq. Replacing each adjusted phi-function
$
2i

(
uq, p

)
in (4) by a phi-function

2i(uq, p) for i ∈ Iq, we can get a phi-function 
q(uq, p) for a polyhedron Qq(uq) and
the object 
*.

To describe a containment constraint, Ki(uq) ⊂ 
 ⇐⇒ int Ki(uq) ∩ 
* = ∅,
we use a phi-function for a convex polyhedron Ki(uq) and the object 
*.

Let Ki(uq) be a convex polyhedron, given in its local coordinate system by their

vertices pi
k, k = 1, . . . , mi, where pi

k =
(
pi
xk, p

i
yk, p

i
zk

)
.

A phi-function for Ki(uq) and the object 
* has the form

2i

(
uq, p

) = min
{
0s

(
uq, p

)
, s = 1, . . . , n


}
, (5)

0s

(
uq, p

) = min
{
ϕs

(
pi
k

(
uq

)
, p

)
, k = 1, . . . , mi

}
.

In particular, we use the following phi-functions for containment constraints:
A phi-function for a convex polyhedron Ki(uq) and the object S* = R

3/ int S

2KiS∗
(
uq, r

) = 0
(
uq, r

) = min
{
ϕ
(
pi
k

(
uq

)
, r
)
, k = 1, . . . , mi

}
,

ϕ
(
pi
k

(
uq

)
, r
) = (r)2 − (

pi
kx

(
uq

))2 −
(
pi
ky

(
uq

))2 − (
pi
kz

(
uq

))2
.

A phi-function for a convex polyhedron Ki(uq) and the object C* = R
3/ int C

2KiC∗ (
uq, λ

) = min
{
0s

(
uq, λ

)
, s = 1, 2, 3

}
,

0s

(
uq, λ

) =min
{
ϕs

(
pi
k

(
uq

)
, λ
)
, k = 1, . . . , mi

}
,

ϕ1

(
pi
k

(
uq

)
, λ
)
= (λr)2 −

(
pi
xk

(
uq

))2 −
(
pi
yk

(
uq

))2
,

ϕ2

(
pi
k

(
uq

)
, λ
)
= −pi

zk

(
uq

)+ λh,

ϕ3

(
pi
k

(
uq

)
, λ
)
= pi

zk

(
uq

)+ λh.

A phi-function for a convex polyhedron Ki(uq) and the object B* = R
3/ int B

2KiB∗ (
uq, l, h,w

) = min
{
0s

(
uq, l, h,w

)
, s = 1, . . . , 6

}
,
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0s

(
uq, l, h,w

) = min
{
ϕi
ks

(
uq, l, h,w

)
, k = 1, . . . , mi

}
,

ϕi
k1

(
uq, l, h,w

) = pi
xk

(
uq

)+ l, ϕi
k2

(
uq

) = −pi
xk

(
uq

)+ l,

ϕi
k3

(
uq, l, h,w

) = pi
yk

(
uq

)+ w, ϕi
k4

(
uq, l, h,w

) = −pi
yk

(
uq

)+ w,

ϕi
k5

(
uq, l, h,w

) = pi
zk

(
uq

)+ h, ϕi
k6

(
uq, l, h,w

) = −pi
zk

(
uq

)+ h.

A phi-function for a convex polyhedron Ki(uq) and the object E* = R
3/ int E

2KiE∗ (
uq, λ

) = 0
(
uq, λ

) = min
{
ϕ
(
pi
k

(
uq

)
, λ
)
, k = 1, . . . , mi

}
,

ϕ
(
pi
k

(
uq

)
, λ
) = (λ)2 −

(
pi
kx(uq)

)2

a2 −
(
pi
ky(uq)

)2

b2 −
(
pi
kz(uq)

)2

c2 .

Let the minimum allowable distance ρq between a convex polyhedron Ki(uq) and
the object 
* be given. To describe distance constraint, dist(Ki,
*)≥ρq, we use an
adjusted phi-function for a convex polyhedron Ki(uq) and the object 
* defined by

$
2

Ki

∗ (

uq, p
) = 2i

(
uq, p

)− ρq. (6)

4 Mathematical Model

The vector u ∈ Rσ of all variables can be described as follows: u = (ς, τ ) ∈ Rσ ,
where ς = (p, u1, u2, . . . , uN), p is a vector of variable dimensions of the given
container 
, and uai = (

vai , θai
) = (

xai , yai , zai , θ
1
ai
, θ2

ai
, θ3

ai

)
is the vector of

placement parameters of Ki, i ∈ In, an index ai ∈ {1, 2, . . . , N} is a component of the
“gluing” vector a, defined in Sect. 3 Here τ = (uP1, . . . , uPm) denotes the vector of
all auxiliary variables, where us

P = (
θ1s
P , θ2s

P , μs
P

)
is a vector of auxiliary variables

for the sth pair of convex polyhedra defined in (1), s = 1, . . . , m, m = card (-),

- = {
(i, j) , ai 	= aj , i < j, i, j ∈ In

}
. (7)

The number of the problem variables is derived as σ = |p| + 6N + 3m.
Now a mathematical model of the polyhedron layout problem can be stated in

the form
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extr
u∈W⊂Rσ

F (u), (8)

W =
{
u ∈ Rσ : $2′

ij

(
uai , uaj , u

′
aiaj

)
≥ 0, (i, j) ∈ -,

$
2i

(
p, uai

) ≥ 0, i ∈ In

}
,

(9)

where
$
2′

ij

(
uai , uaj , u

′
aiaj

)
is an adjusted quasi-phi-function defined by (2), ai,

aj ∈ JN , under (i, j) ∈ -, u′aiaj = us
P , s = 1, . . . , m, - is given by (7), for the pair

of polyhedra Ki and Kj, taking into account the minimum allowable distance ρqg > 0,
and

$
2i

(
uai , p

)
is an adjusted phi-function defined by (6) for a polyhedron Ki and

the object 
*, taking into account the minimum allowable distance ρq > 0. If ρqg = 0

and ρq = 0, then we replace the adjusted quasi-phi-function
$
2′

ij

(
uai , uaj , u

′
aiaj

)

by the quasi-phi-function 2′
ij

(
uai , uaj , u

′
aiaj

)
, defined by (1), to enforce the non-

overlapping constraint and the adjusted phi-function
$
2i

(
uai , p

)
by the phi-function

2i

(
uai , p

)
, defined in (5), to enforce the containment constraint.

It should be noted that in order to avoid redundant inequalities in containment

constraints one can use a collection of adjusted phi-functions
$

′h

q

(
uq, p

)
, q ∈ JN ,

for the convex hull of non-convex polyhedra Qq, q ∈ JN , instead of the collection of
adjusted phi-functions

$
2i

(
uai , p

) ≥ 0, i ∈ In, for convex polyhedra Ki, i ∈ In.
Each quasi-phi-function inequality in (9) is presented by a system of inequalities

with analytical functions. Our model (8) and (9) is a non-convex and continuous
nonlinear programming problem and an exact formulation for the polyhedron layout
problem. It contains all globally optimal solutions. It is possible, at least in theory, to
use a global solver for the nonlinear programming problem and to obtain a solution,
which is an optimal layout.

However in practice, the model contains a large number of variables and a huge
number of inequalities. Specifically, the model (8) and (9) involves O(n2) nonlinear
inequalities and O(n2) variables due to the auxiliary variables in quasi-phi-functions,
where n is the number of convex polyhedra. As a result, finding a globally optimal
solution becomes an unrealistic task for the available state of the art NLP-solvers
applied directly to model (8) and (9): for N > 15 starting from a random point and
for N > 30 starting from a feasible point.

In order to search for a “good” locally optimal polyhedron layout within a
reasonable computational time, we propose here an efficient solution algorithm,
which employs a fast starting point algorithm and a compaction procedure. In most
cases the procedure reduces our problem to a sequence of nonlinear programming
subproblems of considerably smaller dimension (O(n)) and a smaller number of
nonlinear inequalities (O(n)).
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5 Solution Algorithm

Our multi-start solution strategy involves the following steps:

1. Generate a set {ς0} of vectors ς0 = (
p0, u0

1, . . . , u
0
N

)
of feasible placement

parameters
(
u0

1, . . . , u
0
N

)
of polyhedra placed into the container 
0 of sizes (p0)

in problem (8) and (9). Various algorithms exist for obtaining a feasible solution
(for example. [99]). We employ here the fast algorithm described in Sect. 5.1.

2. Search for a local extremum of the objective function F(u) in problem (8) and
(9), starting from each point from the set {ς0} obtained at Step 1. To get a local
extremum of problem (8) and (9) we develop a compaction algorithm for rotated
polyhedra described in Sect. 5.2.

3. Choose the best local minimum from those found at Step 2 as the solution of
problem (8) and (9).

The actual search for a local extremum in all optimization procedures (to realize
Steps 1–2) is performed by IPOPT [103], which is available at an open access
noncommercial software depository (https://projects.coin-or.org/Ipopt).

5.1 Feasible Placement Parameters Algorithm (FPPA)

In order to find a vector of starting feasible placement parameters of polyhedra we
apply an algorithm, which is based on the homothetic (scaling) transformation of
objects. The algorithm consists of the following steps:

Step 1 If the container does not have variable metrical characteristics, then for the
purpose of the algorithm we assume that 
 = 
(p), where p = (λ) is a variable
homothetic coefficient.

Step 2 Choose a sufficiently large starting size for a container 
0 =
(p0) to allow
for a placement of all embedding spheres Sρ

q , q ∈ JN , within the container 
0, where
S
ρ
q = Sq ⊕ Sρ is the Minkowski sum of a sphere Sq of radius rq (Figure 5) and a

sphere Sρ of radius ρ = 0.5 max

{
max

q,g∈JN
ρqg, max

q∈JN
ρq

}
, provided that Sq and Sρ

have the same center point.

Step 3 Generate within the container 
0 a set of N randomly chosen center points(
x0
q , y

0
q , z

0
q

)
of Sρ

q , i ∈ Iq.

Step 4 Grow the spheres S
ρ
q of radius β(rq + ρ), q ∈ JN, starting from β = 0 to

the full size (β = 1); the decision variables are: the centers of Sρ
q and a homothetic

coefficient β, where 0 ≤ β ≤ 1 (Figure 6). In order to realize this step we fix p = p0

and, starting from the point v0 = (
x0

1 , y
0
1 , z

0
1, . . . , x

0
N, y0

N, z0
N, β0 = 0

)
, solve the

following NLP subproblem:

https://projects.coin-or.org/Ipopt
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Figure 5 Non-convex polyhedra Qq and appropriate circumscribed spheres Sq

Figure 6 Illustration of the optimization procedure FPPA to search for feasible placement
parameters of convex polyhedra within a sphere, using homothetic transformations

max
v∈Wβ

β, (10)

Wβ =
{
v ∈ R3N+1 : $2SqSg

(v) ≥ 0,
$
2

∗
q(v) ≥ 0, q < g, q, g ∈ JN, 1 − β ≥ 0, β ≥ 0

}
,

(11)

where v = (x1, y1, z1, . . . , xN , yN , zN ,β),

$
2

SqSg
(v) = (

xq − xg
)2 + (

yq − yg
)2 + (

zq − zg
)2 − β2(rq + 2ρ + rg

)2
,

$
2

∗
q(v) is an adjusted phi-function for sphere Sq of radius βrq and the object 
* if 


is a cuboid, a cylinder, a sphere, or a container that is formed by means of the shapes
mentioned, otherwise we apply an adjusted phi-function for the oriented convex hull
Hq of βQq and the object 
*.
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We denote a point of the global maximum of problem (10) and (11) by v∗ =(
x∗1 , y∗1 , z∗1, . . . , x∗N, y∗N, z∗N, β∗ = 1

)
.

Step 5 Form a vector of feasible parameters ς0 =
(
p0, u0

1, . . . , u
0
q, . . . , u

0
N

)
,

assuming that u0
q =

(
x0
q , y

0
q , z

0
q, θ

0
q

)
,
(
x0
q , y

0
q , z

0
q

)
=

(
x∗q , y∗q , z

∗
q

)
, and θ0

q is a

vector of randomly generated rotation parameters of polyhedra Qq,q ∈ JN.
We note that the global solution of problem (10) and (11) always can be found

(since the chosen starting sizes p0 at the first step are sufficiently large).

Step 6 If the container in problem (10) and (11) has variable metrical character-
istics, then go to Step 7, otherwise (see Step 1) we solve the following auxiliary
subproblem, using the COMPOLY algorithm described in Sect. 5.2 and starting

from point ς0 =
(
p0, u0

1, . . . , u
0
q, . . . , u

0
N

)
:

u∗ = (
ς∗, τ ∗

) = arg min λ s.t. u ∈ W ⊂ Rσ , (12)

W =
{
u ∈ Rσ : $2 ′

ij

(
uai , uaj , u

′
aiaj

)
≥ 0, (i, j) ∈ -,

$
2i

(
uai

) ≥ 0, λ ≥ 1, i ∈ In

}
.

(13)

If the global solution of problem (12) and (13) has been found, i.e., λ = 1, then
assume ς0 = ς* and go to Step 7, otherwise ς0 has not been found for problem (8)
and (9) and we stop the algorithm.

Step 7 Return the vector ς0 to generate a starting point u0 = (ς0, τ 0) for a
subsequent search for a local minimum of problem (8) and (9). To search for vector
τ 0 we apply a special optimization procedure, called feasible auxiliary parameters
algorithm (FAPA), described below.

5.2 Compaction Algorithm (COMPOLY)

Since our problem (8) and (9) cannot be solved for N > 30 by direct use of state of the
art NLP-solvers (starting from a feasible point), we propose an iterative compaction
algorithm to search for local minima of the problem.

Our algorithm reduces problem (8) and (9) that has a large number of inequalities
and dimension O(n2) of the feasible set W, described by (9), to a sequence of
nonlinear programming subproblems that have a smaller number of nonlinear
inequalities (O(n)) and dimension O(n).

Let us consider the algorithm in details.
We assume here that spheres S0

q ≡ Sq(0) of radius rq and the center point
vq = (xq, yq, zq), circumscribed around each non-translated and non-rotated non-
convex polyhedron Qq, q ∈ JN , as well as, spheres S0

i ≡ Si(0) of radius ri and
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the center point vci = (xci, yci, zci) circumscribed around each non-translated and
non-rotated convex polyhedron K0

i , i ∈ In, are constructed.
The COMPOLY algorithm is an iterative procedure and involves the following

steps:

Step 1 Let k = 1. Take the vector ςk−1 =
(
pk−1, uk−1

1 , . . . , uk−1
N

)
of feasible

placement parameters of polyhedra Qq, q ∈ JN , within the container 
k − 1.

Step 2 Derive the appropriate vector
(
v
(k−1)
c1 , .., v

(k−1)
cn

)
of center points of spheres

Si

(
u
(k−1)
ai

)
, i ∈ In. With respect to the gluing vector a, the center point vci of Si ⊃Ki

after translation and rotation of initial convex polygon K0
i takes the form v

(k−1)
ci =

vci

(
u
(k−1)
ai

)
= v

(k−1)
ai +M

(
θ
(k−1)
ai

)
· vci .

Step 3 For each sphere Si

(
u
(k−1)
ai

)
we construct a fixed individual container 
k

i ⊃
Si ⊃ Ki with equal half-sides of length ri + ε, i ∈ In, and the center of symmetry

point v(k−1)
ci , assuming ε =

n∑

i=1
ri/n.

Step 4 Move each sphere Si, associated with the convex polyhedron Ki, within the
appropriate fixed individual container 
k

i (found at Step 3). Hence, for each sphere
Si we construct a phi-function 2Si


∗
i for sphere Si and 
k

i

∗ = R3\ int
k
i in the

form:

2Si

k∗
i

(
vai , v

(k−1)
ai

)
= min

{
− xci

(
u(k−1)
ai

)
+ xai + ε,−yci

(
u(k−1)
ai

)
+ yai + ε,

−zci

(
u(k−1)
ai

)
+ zai + ε, xci

(
u(k−1)
ai

)
− xai + ε,

yci

(
u(k−1)
ai

)
− yai + ε, zci

(
u(k−1)
ai

)
− zai + ε

}
.

The inequality 2Si

k∗
i

(
vai , v

(k−1)
ai

)
≥ 0 provides Si ⊂ 
k

i and can be described

by the following inequality system of six linear “ε-constraints”:

− xci

(
u(k−1)
ai

)
+ xai + ε ≥ 0,−yci

(
u(k−1)
ai

)
+ yai + ε ≥ 0,

− zci

(
u(k−1)
ai

)
+ zai + ε ≥ 0, xci

(
u(k−1)
ai

)
− xai + ε ≥ 0,

yci

(
u(k−1)
ai

)
− yai + ε ≥ 0, zci

(
u(k−1)
ai

)
− zai + ε ≥ 0.
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Now we introduce an auxiliary subset 4ε
k of additional “ε-constraints” on the

translation vectors vai =
(
xai , yai , zai

)
, i ∈ In, of convex polyhedra Ki, i ∈ In:

4ε
k =

{
u ∈ Rσ : −xci

(
u(k−1)
ai

)
+ xai + ε ≥ 0,−yci

(
u(k−1)
ai

)
+ yai + ε ≥ 0,

− zci

(
u(k−1)
ai

)
+ zai + ε ≥ 0, xci

(
u(k−1)
ai

)
− xai + ε ≥ 0, yci

(
u(k−1)
ai

)

− yai + ε ≥ 0, zci
(
u(k−1)
ai

)
− zai + ε ≥ 0, i ∈ In

}
.

Then we add the inequality system of 6n additional linear “ε-constraints” that
describe the subset 4ε

k to the inequality system that defines the feasible region Wand
obtain the k-th subregion Wk = W ∩4ε

k.

It should be noted that the inequality system that describes the feasible subregion
Wkin most cases involves O(n2) redundant phi-inequalities.

Step 5 To avoid the redundant phi-inequalities that describe Wkwe form special
index sets -k

1 and -k
2 that involve indexes of all pairs of objects that are associated

with non-redundant non-overlapping and containment constraints, respectively.
To form index set -k

1 we exclude from - (7) indexes of all pairs of convex
polyhedra where individual containers do not intersect each other:

-k
1 =

{
(i, j) ∈ -kS

1 : ϕ
k
i 


k
j

(
v(k−1)
ai

, v(k−1)
aj

)
< 0

}
,

where

-kS
1 =

{
(i, j) ∈ - : $2Sai Saj

(
v(k−1)
ai

, v(k−1)
aj

)
< 0

}
,

ϕ

k

i 

k
j

(
v(k−1)
ai

, v(k−1)
aj

)
= max

{
ϕs
ij

(
v(k−1)
ai

, v(k−1)
aj

)
, s = 1, . . . , 6

}
,

ϕ1
ij

(
v(k−1)
ai

, v(k−1)
aj

)
=
(
x
(k−1)
i − x

(k−1)
j

)
− Rij ,

ϕ2
ij

(
v(k−1)
ai

, v(k−1)
aj

)
=
(
y
(k−1)
i − y

(k−1)
j

)
− Rij ,

ϕ3
ij

(
v(k−1)
ai

, v(k−1)
aj

)
=
(
z
(k−1)
i − z

(k−1)
j

)
− Rij ,
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ϕ4
ij

(
v(k−1)
ai

, v(k−1)
aj

)
= −

(
x
(k−1)
i − x

(k−1)
j

)
− Rij ,

ϕ5
ij

(
v(k−1)
ai

, v(k−1)
aj

)
= −

(
y
(k−1)
i − y

(k−1)
j

)
− Rij ,

ϕ6
ij

(
v(k−1)
ai

, v(k−1)
aj

)
= −

(
z
(k−1)
i − z

(k−1)
j

)
− Rij , Rij =

(
ri + rj

)+ ρij + 2ε,

$
2

Sai Saj
(
v
(k−1)
ai , v

(k−1)
aj

)
is an adjusted phi-function for a pair of spheres Sq and

Sg (ai = q, aj = g), circumscribed around non-convex polyhedra Qq

(
u
(k−1)
q

)
⊃

Ki

(
u
(k−1)
q

)
and Qg

(
u
(k−1)
g

)
⊃ Kj

(
u
(k−1)
g

)
.

We note that if (i, j) /∈ -k
1, then we do not need to check the distance (or

non-overlapping) constraint for the corresponding pair of polyhedra Ki

(
u
(k−1)
ai

)

and Kj

(
u
(k−1)
aj

)
. If ρij = 0, then function ϕ


k
i 


k
j

(
v
(k−1)
ai , v

(k−1)
aj

)
becomes a phi-

function for two oriented parallelepipeds 
i and 
j.
As an example let us consider three polyhedra placed inside the container 
k at

kth iteration of the COMPOLY algorithm (Figure 7).
For the example the index set - defined by (7) has the form: - = {(1, 3), (1, 4),

(1, 5), (1, 6), (2, 3), (2, 4), (2, 5), (2, 6), (3, 5), (3, 6), (4, 5), (4, 6)}. First we define the

index set -kS
1 (Figure 7a): -kS

1 =
{
(i, j) ∈ - : $2Sai Saj

(
v
(k−1)
1 , v

(k−1)
2

)
< 0

}
=

{(1, 3) , (1, 4) , (2, 3) , (2, 4)} . It means that only spheres S
ρ
1 and S

ρ
2 for concave

polyhedra Q1 and Q2 have nonempty intersection, i.e.,
$
2

S1S2
(
v
(k−1)
1 , v

(k−1)
2

)
<

0, and therefore it is sufficient to consider only possible intersection of convex
polyhedra: K1 and K3, K1 and K4, K2 and K3, and K2 and K4.

Ωk

Ω2
k

Ωk

Ω4
k

Ω3
kΩ1

k

S3
ρ

S1
ρ

S2
ρ K2

K6

K5

K3

K4K2

K1 K1

K4

K3

Q3

Q2
Q1

Q3

a b

Figure 7 Construction of the index set -k
1 at the k-th iteration of the COMPOLY algorithm: (a)

step 1; (b) step 2
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Then we form the index set -k
1 (Figure 7b):

-k
1 =

{
(i, j) ∈ -kS

1 : ϕ
k
i 


k
j

(
v(k−1)
ai

, v(k−1)
aj

)
< 0

}
= {(1, 4)} .

It means that only individual containers 
k
1 and 
k

4 for convex polyhedra K1 and

K4 have nonempty intersection, i.e., ϕ
k
1


k
4

(
v
(k−1)
1 , v

(k−1)
2

)
< 0 and therefore we

include in the subproblem only quasi-phi-function for K1 and K4.
To form index set -k

2 we exclude from (9) all phi-inequalities for containment
constraints of convex polyhedra where individual containers do not intersect the set

k∗

ε = R3\ int
k
ε , such that


k
ε =

{
(x, y, z, p) : 0 (x, y, z, p) ≥ 0, f (k−1) (p, ε) ≥ 0

}
.

Thus, -k
2 =

{
i ∈ -kS

2 : $2
k
i 


∗
ε
(
v
(k−1)
ai

)
< 0

}
, where

$
2


k
i 


∗
ε
(
v
(k−1)
ai

)
is an

adjusted phi-function for a polyhedron Ki

(
u
(k−1)
ai

)
and the object 
k∗

ε , -kS
2 =

{
i ∈ In : $2Sai


k∗
ε
(
v
(k−1)
ai

)
< 0

}
,
$
2

Sai 

k∗
ε is an adjusted phi-function for a sphere

Sq, associated with non-convex polyhedron Qq

(
u
(k−1)
q

)
⊃ Ki

(
u
(k−1)
q

)
, and the

object 
∗
ε , ai = q.

We note that if i /∈ -k
2, then we do not need to check the distance or containment

constraint for the polyhedron Ki

(
u
(k−1)
ai

)
and the object 
k

ε .

Step 6 Generate the k-th subproblem on solution subset Wk = W ∩4ε
k with deleted

redundant phi-function inequalities and reduced dimension (O(n)):

minF
(
uwk

)
s.t. uwk

∈ Wk ⊂ Rσ−σk , (14)

Wk =
{
uwk

= (
ς, τwk

) ∈ Rσ−σk : $2 ′
ij

(
uai , uaj

) ≥ 0, (i, j) ∈ -k
1,

$
2i

(
uai , p

) ≥ 0, i ∈ -k
2,2

Si

k∗
i

(
uai

) ≥ 0, i ∈ In, f
(k−1) (p, ε) ≥ 0

}
,

where -k
1 and -k

2 are defined in Step 5, and σk = 3
(
m− card

(
-k

1

))
is the number

of all deleted auxiliary variables meeting in the appropriate redundant phi-function
inequalities, σ − σk = |p| + 6N + card

(
-k

1

)
, card

(
-k

1

)
is (O(n)).

Step 7 Generate a feasible starting point u(k−1) =
(
ς(k−1), τ

(k−1)
wk

)
for problem

(14). Since a vector ς(k − 1) is already defined, we need to find values of the
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vector of auxiliary variables τ
(k−1)
wk

=
(
u
(k−1)1
P , . . . , u

(k−1)s
P , . . . , u

(k−1)m
P

)
for such

s ∈ {1, . . . , m} that (i, j) ∈ -k
1.

To derive a vector uP(k − 1)s we employ the FAPA algorithm. The key idea
of the FAPA algorithm lies in the following: we derive a vector uP(k − 1)s as a

vector of feasible parameters of a separating plane for two spheres Si

(
u
(k−1)
ai

)
and

Sj

(
u
(k−1)
aj

)
if
$
2

SiSj ≥ 0, using simple geometrical calculations; otherwise, we find

a vector u(k−1)s
P , solving the following auxiliary subproblem:

maxα s.t.
(
us
P , α

) ∈ W ′
α, (15)

where

W ′
α =

{(
us
P , α

) ∈ R4 : $2 ′
ij

(
u(k−1)
ai

, u(k−1)
aj

, us
P

)
− α ≥ 0

}
,

α ∈ R1, us
P = (

θ1s
P , θ2s

P , αs
P

)
, with fixed parameters

(
u
(k−1)
ai , u

(k−1)
aj

)
involving in

the appropriate adjusted quasi-phi-function
$
2

′
ij

(
u
(k−1)
ai , u

(k−1)
aj , us

P

)
, ∀(i, j) ∈ -. It

should be noted that α ≥ 0 in (15) provides feasible values of us
P .

Figure 8 illustrates two cases to derive a vector of feasible parameters uP of a
separating plane: (a) for two spheres Si and Sj if intSi ∩ int Sj = ∅; for two convex
polyhedra Ki and Kj if intSi ∩ int Sj 	= ∅ .

For case (a) we use simple geometrical calculations to find uP (Figure 8a); for
case (b) we solve the NLP subproblem (15) to find a nonnegative value of α that
corresponds to the problem of searching for a nonnegative value of a quasi-phi-
function of two convex polyhedra Ki and Kj (Figure 8b).

Figure 8 Deriving a vector of feasible parameters uP: (a) Si ∩ Sj = ∅; (b) intSi ∩ int Sj 	= ∅
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Thus, all adjusted quasi-phi-functions and phi-functions in (14) at the point
u(k − 1) take nonnegative values.

Step 8 Solve subproblem (14), starting from the feasible point u(k − 1)

minF
(
uwk

)
s.t. uwk

∈ Wk ⊂ Rσ−σk (16)

and get a local minimum point u∗wk
= (

ς∗k, τ ∗kwk

)
.

If the point u∗wk
of local minimum of subproblem (16) belongs to the frontier of

an auxiliary subset 4ε
k , i.e., u∗wk

∈ f r4ε
k , then we take ς*k as a starting vector ςk

for the next iteration of the procedure (set k = k + 1 and go to Step 2), otherwise
we stop the optimization procedure.

We claim that the point u* = u*k = (ς*k, τ *k) ∈ Rσ is a point of local minimum of
problem (8) and (9), where τ *k involves τ ∗kwk

and auxiliary variables that are deleted
at the k-th iteration. Note that the σ k previously deleted auxiliary variables can be
redefined by FAPA algorithm. However we do not need to redefine the deleted
auxiliary variables at the last step of the algorithm, since the values of auxiliary
variables have no effect on the value of the objective function, i.e., F

(
u
∗
wk

) =
F
(
u∗k

)
.

Figure 9 shows the diagram of the COMPOLY procedure to solve problem (8)
and (9). We illustrate the procedure of solving a sequence of subproblems, given by
(16), for k = 2,3,4. Note, that feasible starting point u(0) is found by algorithm FPPA.
Each auxiliary (artificial) set 4ε

k , described at Step 4 of the COMPOLY procedure,
is shown as a square with the center point u(k − 1), k = 1,2,3,4.

We take the feasible point u(0), form set 4ε
1 with the center point u(0), solve

subproblem (16) in the subregion W1 = 4ε
1 ∩ W , and get a local minimum point

u∗w1
. The point u∗w1

belongs to the frontier of set 4ε
1; therefore, we form the next

set 4ε
2 with the center point u(1) = u∗w1

and search for a local minimum point u∗w2
of subproblem (16) on subregion W2 = 4ε

2 ∩ W . The point u∗w2
belongs to the

frontier of set 4ε
2; therefore, we form the next set 4ε

3 with the center point u(2) =
u∗w2

and search for a local minimum point u∗w3
of subproblem (16) on subregion

W3 = 4ε
3 ∩W . The point u∗w3

belongs to the interior of set 4ε
3, i.e., u∗w3

∈ int4ε
3;

therefore, we stop our procedure. The point u∗w3
= u* is a point of local minimum of

problem (8) and (9).
Figure 10 illustrates the iterative procedure of packing concave polyhedra related

to the diagram shown in Figure 9.
We note that dist(u∗wk

,u∗wk+1
)≥ε, if u∗wk+1

∈ f r4ε
k , and we take the value of ε that

is considerably greater than the accuracy of IPOPT (10−8). Thus, we can conclude
that the stopping condition of the COMPOLY procedure is always reached in a finite
number of iterations.

If the IPOPT program fails to find a local minimum of subproblem (14), then
we halve the value of ε and start up the COMPOLY procedure. If a local minimum
is found under the half value of ε, then we recover the initial value of epsilon and
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Figure 9 Diagram of the COMPOLY procedure

Figure 10 Arrangements of non-convex polyhedra, corresponding to the sequence of feasible
points u(0), u(1), u(2), u* = u(3)
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continue the COMPOLY procedure for a new feasible starting point, otherwise we
terminate the procedure.

Our algorithm, in most cases, takes consideration of significantly fewer pairs of
polyhedra than m (here m is the number of all pairs of convex polyhedra considered
in problem (8) and (9)), because for each non-convex polyhedron only its “ε-
neighbors” have to be monitored. It should be noted that the algorithm is not efficient
for special cases when all objects are “ε-neighbors.”

Thus the COMPOLY algorithm allows us to reduce problem (8) and (9) with a
large number of inequalities and dimension O(n2) of the feasible set W, described
by (9), to a sequence of subproblems (14) with a smaller number of nonlinear
inequalities and dimension O(n) of solution subset Wk.

Remark: To reduce the dimension of subproblem (16) for large problem instances
(N > 100) we fix the values of auxiliary variables τ

(k−1)
wk

at Step 8.

6 Computational Experiments

We present a number of examples to demonstrate the efficiency of our methodology.
We have run all experiments on an AMD Athlon 64 X2 5200+ computer, program-
ming language C++, Windows 7 OS. For local optimization we use the IPOPT code
(https://projects.coin-or.org/Ipopt) by means of program interface using the default
options. In the following examples ε = 5 for the COMPOLY procedure.

First we compare our results to those given in Stoyan et al. [99, 100]. We search
for locally optimal solutions using the compaction algorithm: (a) starting from a
feasible point generated by FPPA described in Sect. 5.1 and (b) starting from a
feasible point found by the algorithm developed in [99, 100]. We introduce the
comparison in [90].

Example 1 Figure 11 shows the locally optimal placement of the collection of
N = 80 convex polyhedra from [90]. The optimized container has dimensions
and volume: (a) (l

*
, w

*
, h

*
)=(43.4338, 41.8435, 45.0059) and F(u*)=81795.2169,

starting from the feasible point found by FPPA (Figure 11a). Computational time is
46035.78 s; (b) (l

*
, w

*
, h

*
)=(36.3569, 40.8764, 56.2557) and F(u*)=83604.0544,

starting from the feasible point found by the algorithm given in [100] (Figure 11b).
The computational time is 42950.4 s. Improvement of the value of objective function
in comparison to the result given in [100]: (a) 27.88%; (b) 26.29%.

Example 2 Figure 12 shows the locally optimal placement of the collection
of N = 40 non-convex polyhedra from [90]. The optimized container has
dimensions and volume: (a) (l

*
, w

*
, h

*
)=(34.9974, 36.9655, 43.2777) and

F(u*)=55988.4619, starting from the feasible point found by FPPA (Figure 12a);
(b) (l

*
, w

*
, h

*
)=(31.1419, 30.8086, 55.4061) and F(u*)=53158.8838, starting from

the feasible point found by the algorithm given in [99] (Figure 12b). We use three

https://projects.coin-or.org/Ipopt
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Figure 11 Locally optimal placement of polyhedra in Example 1: (a) starting from the feasible
point found by FPPA; (b) starting from the feasible point found by the algorithm given in [100]

Figure 12 Locally optimal placement of polyhedra in Example 2: (a) starting from the feasible
point found by FPPA; (b) starting from the feasible point found by the algorithm given in [99]

starting points, and set the time limit of 10 h. Improvement of the value of objective
function in comparison to the result given in [100]: (a) 15.64%; (b) 19.91%.

Table 1 lists some examples presented in [95]. For each example the minimum
volume of the container found by our method is smaller than the best solution
reported in [95].

To show the effectiveness of the COMPOLY procedure, further tests were
performed. In the example for N = 10 non-convex polyhedra from [90], the
average computational time per one local extremum is: (a) 1380 s without the
use of the COMPOLY procedure; (b) 283 s using the COMPOLY procedure. The
number of variables and inequalities are: (a) 1791 and 7934 without the use of
the COMPOLY procedure; 626 and 3086 using the COMPOLY procedure at the
last iteration. In the example for N = 20 non-convex polyhedra from [90], the
average computational time per local extremum is: (a) 75026.31 s without the
use of the COMPOLY procedure; (b) 4980.74 s using the COMPOLY procedure.
The number of variables and inequalities are: (a) 7471 and 30916 without the use
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Figure 13 Locally optimal placement of polyhedra in Example 3: (a) ρ = 0; (b) ρ = 1.5

of the COMPOLY procedure; 1334 and 8028 using the COMPOLY procedure at
the last iteration. In the example for N = 30 non-convex polyhedra from [90], a
local minimum has not been found within the time limit of 72 h without using of
the COMPOLY procedure. The average computational time per local extremum is
35289.34 s using the COMPOLY procedure. Further results reported in [90] are
provided.

Example 3 We generate a collection of n = 98 convex polyhedra, consisting of
the seven types of polyhedra from Example 1 given in [99]. We include 14 of each
type of polyhedra. Figure 13 shows the locally optimal placement of the collection
of convex polyhedra. The container has dimensions and volume: (a) (l

*
, w

*
, h

*
) =

(30.9324, 28.1897, 26.5064) and F(u*) = 23113.06 with ρ = 0 (Figure 13a). One
starting point is used. Computational time is 147967.3 s; (b) (l

*
, w

*
, h

*
)=(41.3510,

33.0721, 31.7988) and F(u*)=43487.0040 with ρ = 1.5 (Figure 13b). One starting
point is used. Computational time is 48152.79 s.

Example 4 We generate a collection of N = 20 non-convex polyhedra, consisting of
the two types of polyhedra given in [99]. We include ten of each type of polyhedra.
Figure 14 shows the locally optimal placement of the collection of non-convex
polyhedra. The container has dimensions and volume: (a) (l

*
, w

*
, h*) =(26.3522,

23.7514, 24.4055) and F(u*) = 15275.4815 with ρ = 0 (Figure 14a). Two
starting points are used. Computational time is 8729.45 s; (b) (l

*
, w

*
, h

*
)=(26.5890,

26.5239, 36.1706) and F(u*)=25509.2576 with ρ = 1.5. Ten starting points are
used. Computational time is 24696.46 s (Figure 14b).

Now we present our new results.

Example 5 We consider homothetic convex polyhedra of two types: (a) four
vertices; (b) sixteen vertices. Figure 15 shows the locally optimal placement of
collection of: (a) 300 convex polyhedra; (b) 400 convex polyhedra. The con-
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Figure 14 Locally optimal placement of polyhedra in Example 4: (a) ρ = 0; (b) ρ = 1.5

Figure 15 Locally optimal placement of polyhedra in Example 5: (a) n = 300; (b) n = 400

tainer has dimensions and volume: (a) (l
*
, w

*
, h

*
)=(8.3164, 7.9712, 3.5752) and

F(u*)=122.60 (Figure 15a). One starting point is used. Computational time is 14 h;
(b) (l

*
, w

*
, h*)=(132.2662, 139.0069, 127.7707) and F(u*)=2349181.1577 (Figure

15b). One starting point is used. Computational time is 30 h.

Example 6 We consider n = 80 convex polyhedra from [90]. Figure 16a shows the
locally optimal placement of the collection of convex polyhedra. The sphere has
radius: r* = 27.327. Ten starting points are used. Computational time is 43613.42 s.

Example 7 We consider N = 30 non-convex polyhedra from [90]. Figure 16b
shows the locally optimal placement of the collection of non-convex polyhedra. The
sphere has radius: r* = 23.0709. Ten starting points are used. Computational time
is 29491.35 s.

Example 8 We consider n = 80 convex polyhedra from [90]. Figure 17a shows the
locally optimal placement of the collection of convex polyhedra. The cylinder has
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Figure 16 Locally optimal placement of polyhedra: (a) in Example 6; (b) in Example 7

Figure 17 Locally optimal placement of polyhedra: (a) in Example 8; (b) in Example 9

dimensions: r* = 0.25, h* = 17.8744. Ten starting points are used. Computational
time is 43613.42 s.

Example 9 We consider N = 40 non-convex polyhedra from [90]. Figure 17b
shows the locally optimal placement of the collection of non-convex polyhedra.
The ellipsoid has dimensions: a* = 28.3608, b* = 24.8157, and c* = 21.270. Ten
starting points are used. Computational time is 29491.35 s.

Example 10 We consider n = 40 convex polyhedra from [90]. The container is an
intersection of two spheres with centers at points (−10,0,0) and (10,0,0) of identical
variable radius r. Figure 18a shows the locally optimal placement of the collection of
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Figure 18 Locally optimal placement of polyhedra: (a) in Example 10; (b) in Example 11

Figure 19 Locally optimal placement of convex polyhedra in Example 12

convex polyhedra. The value of the objective function is r* = 23.4802. Two starting
points are used. Computational time is 3730.34 s.

Example 11 We consider N = 20 non-convex polyhedra from [90]. The container
is defined in Example 10. Figure 18b shows the locally optimal placement of
the collection of non-convex polyhedra. The value of the objective function is
r* = 26.376. One starting point is used. Computational time is 8658.87 s.

Example 12 We consider n = 98 convex polyhedra from [90] with given weights.
Figure 19 shows the locally optimal placement of the collection of convex polyhe-
dra. The objective is to minimize both radius r of a sphere and deviation d of the
collection of polyhedra from the center point of the sphere: F(u*) = κ1r* + κ2d*,
r* = 18.0409, d* = 0. One starting point is used. Computational time is 26150.23 s.
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7 Conclusions

Two chapters of this volume (written by us, with co-authors) are devoted to packing
problems in space engineering and logistics. The present chapter, representing the
first part of the discussion, introduces the subject from quite a general point of
view, underlining the special features of the context. Packing problems in space
are generally characterized by the presence of complex geometries, relevant both
to the items and the container to deal with, quite often subject to additional
accommodation rules and overall conditions, such as static and dynamic balancing.

As examples of challenging exercises, a recent study, concerning the packing of
tetris-like items into a convex domain, with additional conditions is outlined, as well
as a real-world cargo accommodation issue in space. The underlying contention
of these two chapters is that a modeling-based heuristic approach (as opposed to
pure algorithmic ones) is particularly efficient in this application framework. The
specific problem of packing polyhedra into convex containers of minimum size has
been discussed here in depth, as an issue of interest in the space context (albeit not
specific to it).

Different shapes of containers, such as spheres, cylinders, polytopes, spheroids,
and ellipsoids, with (minimum-size container) optimization objectives and addi-
tional conditions, such as minimum allowable distances, fixed orientations, and
forbidden zones, are investigated.

The concept of quasi-phi-functions has been used to represent non-overlapping
constraints, while phi-functions have been used to deal with containment con-
straints. Adjusted phi-functions and adjusted quasi-phi-functions have further been
used for the analytical description of relative-distance conditions. An exact model
for the specific problem in question has been formulated in terms of continuous
nonlinear programming. An ad hoc solution algorithm involves a fast starting point
strategy and a variant of the COMPOLY procedure to search for “good” locally
optimal extrema reducing the computational costs dramatically. The proposed
approach offers significant improvements to the already existing technology, in
terms of computational effort and solution quality. A similar overall methodology
is adopted to solve packing problems with balancing conditions. This is the topic of
the second part of the present discussion, as presented in the related chapter of this
volume.

Appendix: Phi-Functions and Quasi-Phi-Functions

Phi-Functions

Phi-functions allow us to distinguish among the following three cases: sets A and B
are intersecting so that A and B have common interior points; A and B do not have
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common points; A and B are in contact, i.e., A and B have only common boundary
points.

Let A ⊂ R3 and B ⊂ R3 be two objects. The sizes of objects can change according
to homothetic coefficients (scaling parameters) λA, λB > 0. The position of object
A is defined by a vector of placement parameters (vA, θA), where vA = (xA, yA, zA)
is a translation vector and θA = (

θ1
A, θ

2
A, θ

3
A

)
is a vector of rotation angles. We

denote the vector of variables for the object A by uA = (vA, θA, λA) and the vector
of variables for the object B by uB = (vB, θB, λB). The object A, rotated by angles
θ1
A, θ

2
A, θ

3
A, translated by vector vA, and rescaled by homothetic coefficient λA,will

be denoted by A(uA).

Definition A1 A continuous function 2AB(uA, uB) is called a phi-function for
objects A(uA) and B(uB) if

2AB > 0, if A(uA) ∩ B(uB) = ∅;
2AB = 0, if intA(uA) ∩ int B(uB) = ∅ and frA(uA) ∩ frB(uB) 	= ∅;
2AB < 0, if intA(uA) ∩ int B(uB) 	= ∅;

provided that λA, λBare fixed.
Here frA means the boundary (frontier) and intA means the interior of object A.
Thus, inequality 2AB ≥ 0 represents the non-overlapping relationship

intA(uA) ∩ int B(uB) = ∅ , i.e., 2AB ≥ 0 ⇐⇒ int A(uA) ∩ int B(uB) = ∅ .
We use phi-functions for the description of the containment relation A ⊆ B as

follows: 2AB∗ ≥ 0, where B* = R3\ int B.
We emphasize that according to Definition 1, the phi-function 2AB for a pair of

objects A and B can be constructed by many different formulas [55], and we can
choose the most convenient ones for our optimization algorithms.

We can take into account minimum allowable distance constraints by replacing
the phi-functions in the non-overlapping and containment constraints with adjusted
phi-functions.

Let ρ > 0 be a given minimum allowable distance between objects A(uA) and
B(uB).

Definition A2 A continuous and everywhere defined function
$
2

AB
(uA, uB) is

called an adjusted phi-function for objects A(uA) and B(uB), if

$
2

AB
> 0, if dist(A, B) > ρ;

$
2

AB = 0, if dist(A, B) = ρ;
$
2

AB
< 0, if dist(A, B) < ρ.

Now we can describe the distance constraint for objects A(uA) and B(uB) in the

form:
$
2

AB ≥ 0 ⇐⇒ dist(A,B)≥ρ.
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Quasi-Phi-Functions

We introduce a function 2
′AB(uA, uB, u

′
) that must be defined for all values of uA

and uB. In addition to the placement parameters of objects used with phi-functions,
quasi-phi-functions depend on auxiliary variables u′. These extra variables u′ take
values in some domain U ⊂ Rη. The number and the nature of variables u′ depend
on the shapes of objects A(uA) and B(uB), as well as on the restrictions of a layout
problem.

Definition A3 A continuous function 2
′AB(uA, uB, u

′
) is called a quasi-phi-function

for two objects A(uA) and B(uB) if max
u′∈U2

′AB
(
uA, uB, u

′)
is a phi-function for the

objects.

The main property of a quasi-phi-function is the following:

• if 2
′AB(uA, uB, u

′
) ≥ 0 for some u′, then intA(uA) ∩ int B(uB) = ∅,

where 2
′AB(uA, uB, u

′
) is a quasi-phi-function for two objects A(uA) and B(uB).

Let ρ > 0 be a given minimum allowable distance between objects A(uA) and
B(uB).

Definition A4 Function
$
2′AB (

uA, uB, u
′) is called an adjusted quasi-phi-function

for objects A(uA) and B(uB), if function max
u′

$
2′AB (

uA, uB, u
′) is an adjusted phi-

function for the objects.

We can define the distance constraint for objects A(uA) and B(uB) in the form:
$
2

′AB ≥ 0. The inequality implies dist(A,B)≥ρ.
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Optimized Packings in Space
Engineering Applications: Part II

Yu. Stoyan, I. Grebennik, T. Romanova, and A. Kovalenko

Abstract This chapter, dedicated to a specific packing optimization scenario of
considerable interest in space engineering and logistics, follows a previous one
appearing in this volume [1]. Although it is presented as the second part of the
whole topical discussion proposed, it can be read independently.

The layout optimization, with balancing conditions, of a given set of 3D-objects,
in a container partitioned by horizontal planes into subcontainers, is considered.

We define special combinatorial configurations describing the specific structure
of the problem. A mathematical model, based on the combination of the phi-function
technique and the introduced configurations, is provided. The model takes into
account not only the placement constraints (i.e., nonoverlapping, containment) and
the mechanical characteristics of the system but also the combinatorial features
relevant to the partitions of the set of objects placed inside the subcontainers. The
solution strategy is proposed and the results of numerical experiments are presented.

1 Introduction

Layout instances with balancing conditions belong to the class of NP-hard problems
and are a subject of study in computational geometry and operations research [2, 3],
where the methods adopted for their solution represent quite a recent branch.

The essence of the problem lies in the search for the optimal placement of a
given set of 3D-objects in a container, ensuring the balancing of the system under
consideration.

Y. Stoyan · T. Romanova (�)
Department of Mathematical Modeling and Optimal Design, Institute for Mechanical Engineering
Problems of the National Academy of Sciences of Ukraine, Kharkov, Ukraine
e-mail: tarom27@yahoo.com

I. Grebennik · A. Kovalenko
Department of System Engineering, Kharkov National University of Radio Electronics, Kharkov,
Ukraine

© Springer Nature Switzerland AG 2019
G. Fasano, J. D. Pintér (eds.), Modeling and Optimization
in Space Engineering, Springer Optimization and Its Applications 144,
https://doi.org/10.1007/978-3-030-10501-3_16

439

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-10501-3_16&domain=pdf
mailto:tarom27@yahoo.com
https://doi.org/10.1007/978-3-030-10501-3_16


440 Y. Stoyan et al.

The necessity of taking into account the assigned balancing constraints in opti-
mization layout problems arises in various applied science fields and technologies,
such as, for example, in engineering concerning the design of aircraft, ships,
submarines, devices, and components, in logistics problems (when packing goods
for transportation or storage) [4, 5]. Rocket design and space technology represent
an area of particular interest in this class of problems.

At the initial stages of the layout definition of a spacecraft, it is necessary to
take into account special constraints on static and dynamic characteristics (center of
mass, axial and centrifugal moments of inertia), as described in [6].

In [7–10], the problems of the layout of cylinders in a cylindrical container
with balancing constraints are considered. These publications provide mathematical
models with different objective functions. To solve these problems, heuristic
algorithms, based on the specific features of each mathematical model, are proposed.
Papers [11–13] consider mathematical models and methods for solving the layout
problem of a given set of objects, with balancing conditions.

In [3], the authors study (NP-hard) placement optimization problems, which
cover a wide spectrum of industrial applications, including space engineering. The
present chapter considers mathematical modelling tools and a solution strategy
for placement problems. A class of 2D/3D geometric objects, called phi-objects,
is introduced and considered as mathematical models of real items. The concept
of phi-functions is used to describe nonoverlapping and containment constraints.
A mathematical model of a basic placement issue is constructed as a constrained
optimization problem that takes into account allowable distances between objects.
A solution strategy is proposed. As an example, a placement optimization problem
with balancing conditions arising in space engineering is considered. This consists
in the placement of cylinders and cuboids of given weights and sizes in a parabolic
container, divided by parallel axial circles minimizing the deviation of the system
center of gravity from a given point. The chapter also provides a number of
computational results for 2D and 3D applications.

Paper [13] studies the layout optimization problem, called BLP, of 3D-objects
(solid spheres, straight circular cylinders, spherocylinders, straight regular prisms,
cuboids, and tori) in a container (with cylindrical, parabolic, or truncated conical
shapes) partitioned into sectors by parallel axial circles. The problem takes into
account given minimum and maximum allowable distances between objects, as well
as balancing conditions in terms of equilibrium, moments of inertia, and stability
constraints. A continuous nonlinear programming (NLP) model of the problem
is developed using the phi-function technique. The abovementioned paper also
considers several BLP variants, providing appropriate mathematical models and
solution algorithms, based on nonlinear programming and nonsmooth optimization
methods, as well as the relevant computational analysis. In this work, however, the
assignment of objects to the container sectors is assumed to be established a priori.

The innovative contribution of this chapter relates to the following points:

1. We extend the formulation of the layout optimization problem discussed in
[13]. Our new formulation, called CBLP, takes into account not only placement
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and balancing constraints of the system but also combinatorial features of the
problem. These consist, in particular, in the assignment (no longer established a
priori) of the given items to the system sectors.

2. We investigate the concept of combinatorial configurations to handle the discrete
structure of the CBLP problem.

3. We define mathematical modelling tools for placement constraints, with both
continuous and discrete variables, called D-phi-function and quasi-D-phi-
function.

4. We provide a mathematical model formulation of the CBLP problem that
involves both continuous and discrete variables.

5. We propose a solution strategy that uses the novel algorithm for the combinatorial
configuration generation.

2 Problem Formulation

Let 
 be a container of height H that can take the form of a cuboid, cylinder,
paraboloid of rotation, or truncated cone. The container 
 is defined in the fixed
coordinate system Oxyz, where Oz is the longitudinal axis of symmetry. We
assume that container 
 is divided by horizontal planes into subcontainers 
j,
j ∈ Jm = {1, . . . , m}. We denote distances between circles Sj and Sj + 1 by tj,

j ∈ Jm,
m∑

j=1
tj = H . The center of the base of container 
 is located in the origin of

the coordinate system Oxyz.
Let A = {Ti , i ∈ Jn} be a set of homogeneous 3D-objects given by their metrical

characteristics. Each object Ti of height hi and mass mi is defined in its local
coordinate system Oixiyizi, i ∈ Jn. The location of object Ti inside container 


is defined by vector ui = (vi, zi, θi), where (vi, zi) is a translation vector in the
coordinate system Oxyz, θi is a rotation angle of object Ti in the plane Oixiyi, where
vi = (xi, yi), and the value of zi, i ∈ Jn, is uniquely defined by subcontainer 
j,
j ∈ Jm, in which object Ti will be placed.

In the BLP problem, the requirement for placing objects in specific subcontainers

j, j ∈ Jm, is known a priori. In this study, the issue of the balanced layout of objects
is formulated, considering the generation and selection of a partition of the set A into
nonempty subsets Aj, j ∈ Jm. Here, Aj is a subset of objects which have to be placed
on circle Sj inside subcontainer 
j.

Regarding the placement of object Ti , i ∈ Jn, inside subcontainer 
j the
following constraints are imposed:

zi =
j∑

l=1

tl−1 + hi, (1)

where j ∈ Jm.We consider that t0 = 0 and ∀i ∈ Jn there exists j∗ ∈ Jm: hi ≤ tj∗ .
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Let J j
n ⊆ Jn be a set of indexes of objects which are placed in subcontainer 
j,

j ∈ Jm:

m∪
j=1

J
j
n = Jn, J i

n ∩ J
j
n = ∅, i 	= j ∈ Jm; (2)

kj = |Aj | is the number of objects which are placed in subcontainer 
j, kj > 0,
j ∈ Jm:

m∑

j=1

kj = n. (3)

In addition, the following placement constraints have to be taken into account:

intTi1 ∩ intTi2 = ∅, i1 < i2 ∈ J
j
n , j ∈ Jm, (4)

Ti ⊆ 
j , i ∈ J
j
n , j ∈ Jm, (5)

hj ≤ tj , h
j = max

{
h
j
i , i ∈ J

j
n

}
, j ∈ Jm. (6)

We designate a system, formed as a result of the placement of objects Ti of
the set £ in container 
 by 
A, and a reference frame of 
A by OsXYZ, where
Os = (xs(v), ys(v), zs(v)) is the mass center of 
A:

xs(v) =

n∑

i=1
mixi

M
, ys(v) =

n∑

i=1
miyi

M
, zs =

n∑

i=1
mizi

M
, (7)

M =
n∑

i=1
mi is the mass of system 
A and OsX‖Ox, OsY‖Oy, OsZ‖Oz.

We consider the deviation of the center of mass Os of system 
A from the given
point (x0, y0, z0) as the objective function.

Combinatorial Balanced Layout Problem (CBLP) Define a partition of set A
into nonempty subsets Aj, j ∈ Jm, and the corresponding placement parameters
ui = (vi, zi, θi) of objects Ti , i ∈ Jn, such that the objective function is minimized,
taking into account relations (2)–(6).

We assume that the problem has at least one feasible solution.
N.B Restrictions on the axial and centrifugal moments of the system and

allowable distances between objects may also be given.
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3 Mathematical Model

Now, we define special combinatorial configurations describing the discrete struc-
ture of the CBLP problem. Some basic approaches for mathematical modelling of
optimization problems on combinatorial configurations are described, for instance,
in [14–16].

The possibilities of partitioning set A into nonempty subsets Aj, j ∈ Jm, are
determined by both the number of elements in each subset and the order of the
subsets.

Let us consider the subcontainers and the assumed corresponding sets of objects

Aj, j ∈ Jm. Then, the tuple of natural numbers (k1, k2, . . . , km), such that
m∑

j=1
kj = n,

denotes the number kj of objects associated with each subcontainer 
j.
The number of all such tuples is equal to the number of compositions of the

number n of length m [17], which is (n−1)!
(m−1)!(n−m)! .

We shall derive how it is possible to partition a set A of n objects into m
subcontainers 
j, j ∈ Jm, containing k1, k2, . . . , km items, respectively, with no
ordering condition within each 
j. We denote subsets of objects that are placed
inside corresponding subcontainers 
j by Aj, j ∈ Jm.

Without loss of generality, we will distinguish the objects with the same values
of metrical characteristics, height hi and mass mi (for example, providing them with
different identification numbers).

We order the elements of set A. We assign to each object the number of the
subcontainer into which it is expected to be placed. We get a tuple consisting of n
elements that form a permutation with repetitions from m numbers 1, 2, . . . , m, in
which the first element is repeated k1 times, the second element is repeated k2 times,
..., the last element is repeated km times.

The total number of permutations is equal to:

P (n, k1, k2, . . . , km) = n!
k1! · k2! · · · · · km! . (8)

Therefore, the total number of partitions of n objects into m subcontainers 
j,
provided that each 
j contains at least one object and the order in which objects are
placed inside 
j is not considered, is equal to:

∑

k1+k2+···+km=n

P (n, k1, k2, . . . , km) =
∑

k1+k2+···+km=n

n!
k1! · k2! · · · · · km! (9)

Note that the number of summands in (9) is equal to N =
∣∣∣Cm−1

n−1

∣∣∣ =
(n−1)!

(m−1)!(n−m)! .
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To generate subsets Aj, j ∈ Jm, we introduce a special combinatorial
configuration [18].

Rather complex combinatorial configurations can formally be described and
generated using compositional κ-images of combinatorial sets (κ-sets) introduced
in [19]. A combinatorial set is a set of tuples that are constructed from a finite
set of arbitrary elements (so-called generating elements), according to certain
rules. Permutations, combinations, and binary sequences are examples of classical
combinatorial sets. We describe the concept of κ-sets.

The basic idea of κ-sets generation is introduced in [19]. However, the problem
of generating κ-sets of more complicated combinatorial structure remains an open
problem. One of these special cases is studied in [20].

The problem of generating κ-sets is based on special techniques of generating
basic combinatorial sets. The basic sets can be defined as combinatorial sets with
the given features, i.e., both classical combinatorial sets (e.g., permutations, combi-
nations, compositions, partitions, and n-tuples) and nonclassical combinatorial sets
(e.g., permutations of tuples, compositions of permutations, and permutations with
a prescribed number of cycles). Generation algorithms for basic combinatorial sets
are described, e.g., in [21–25].

A generation strategy for the compositional κ-images of combinatorial sets
(κ-sets).

We denote as CP(n, m) the set of compositions of the number n of length
m (which corresponds to the partition of different objects from set A into m
subcontainers 
j, j ∈ Jm), provided that each subcontainer contains at least one
object and the order of objects inside the subcontainer is not considered, where,

|CP (n,m)| = N =
∣∣∣Cm−1

n−1

∣∣∣.

Let k = (k1, k2, . . . , km) ∈ CP (n,m),
m∑

j=1
kj = n, kj ≥ 1, j ∈ Jm.

We introduce a combinatorial set Q (k) that is a composition image of combina-
torial sets (κ-set) CP(n, m); Ck1

n , Ck2
n1 , Ck3

n2 , . . . , Ckm
nm−1 , generated by sets In0 , In1 ,

In2 , . . . , Inm−1 , where ni = n − k1 − . . . − ki, i ∈ Jm − 1,

In0 = Jn,

In1 = In0\
{
j
n0
1 , j

n0
2 , . . . , j

n0
k1

}
,
(
j
n0
1 , j

n0
2 , . . . , j

n0
k1

)
∈ Ck1

n ,

In2 = In1\
{
j
n1
1 , j

n1
2 , . . . , j

n1
k2

}
,
(
j
n1
1 , j

n1
2 , . . . , j

n1
k2

)
∈ Ck2

n1
,

. . .
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Inm−1 = Inm−2\
{
j
nm−2
1 , j

nm−2
2 , . . . , j

nm−2
km−1

}
,
(
j
nm−2
1 , j

nm−2
2 , . . . , j

nm−2
km−1

)
∈ C

km−1
nm−2 ,

Inm−1 =
{
j
nm−1
1 , j

nm−1
2 , . . . , j

nm−1
km

}
,
(
j
nm−1
1 , j

nm−1
2 , . . . , j

nm−1
km

)
∈ Ckm

nm−1
.

Note that

In0 ∪ In1 ∪ · · · ∪ Inm−1 = Jn = {1, 2, . . . , n} ,

Ins ∩ Int = ∅, s 	= t ∈ J 0
m−1 = {0, 1, . . . , m− 1} .

Each element q (k) ∈ Q (k) can be described in the form:

q (k) = (
q1, . . . , qk1

∣
∣qk1+1, . . . , qk1+k2 |, . . . ,

∣
∣qk1+···+km−1 , . . . , qkm−1+km

)
,

where
(
q1, . . . , qk1

) =
(
j
n0
1 , j

n0
2 , . . . , j

n0
k1

)
∈ C

k1
n ,

(
qk1+1, . . . , qk1+k2

) =
(
j
n1
1 , j

n1
2 , . . . , j

n1
k2

)
∈ Ck2

n1
,

. . .

(
qk1+···+km−1 , . . . , qkm−1+km

) =
(
j
nm−1
1 , j

nm−1
2 , . . . , j

nm−1
km

)
∈ Ckm

nm−1
.

The cardinality of set Q (k) is derived by (9).
An element q (k) of the set Q (k) is said to be a tuple of partition of the set £

into subsets Aj, j ∈ Jm.
Now, we define the vector of the basic variables of the problem ´BLP:

u = (v, z, θ), where v = (v1, . . . , vn) ∈ R2n, θ = (θ1, . . . , θn) ∈ Rn,
vi = (xi, yi) ∈ R2, xi, yi, θi are continuous variables, and z = (z1, . . . , zn) ∈ Rn, zi,
i ∈ Jn, are discrete variables defined by (1).

The values of variables zi, i ∈ Jn, are determined in the order given by elements
q (k) of combinatorial set Q (k):

zqi =
s∑

l=1

tl−1 + hqi , (10)
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where:

s =

⎧
⎪⎪⎨

⎪⎪⎩

1, if i ≤ k1,

2, if k1 < i ≤ k1 + k2,

. . .

m, if k1 + k2 + · · · + km−1 < i ≤ k1 + k2 + · · · + km,

i = 1, 2, .., n, qi ∈ {1, 2, .., n}, q (k) ∈ Q (k) .
Let us formalize placement constraints (4)–(6), using the phi-function technique.
We consider two objects T1 and T2 with variable parameters u1 = (v1, z1, θ1)

∈R3, u2 = (v2, z2, θ2) ∈R3, where v1 = (x1, y1), v2 = (x2, y2), x1, y1, θ1 x2, y2, θ2
are continuous variables and z1, z2 are discrete variables.

By definition [2, 3], a phi-function is a continuous function, therefore we extend
the concept to discrete variables z1, z2.

Definition 1 Function ϒ12(u1, u2) is called a D-phi-function of 3D-objects T1 and
T2 if function ϒ12

(
v1, z

0
1, θ1, v2, z

0
2, θ2

)
is a phi-function 212

(
v1, z

0
1, θ1, v2, z

0
2, θ2

)

of objects T1 and T2 for fixed values z1 = z0
1 and z2 = z0

2.

Definition 2 Function ϒ ′
12 (u1, u2, u12) is called a quasi-D-phi-function of 3D-

objects, T1 and T2 if function ϒ ′
12

(
v1, z

0
1, θ1, v2, z

0
2, θ2, u12

)
is a quasi-phi-function

2′
12

(
v1, z

0
1, θ1, v2, z

0
2, θ2, u12

)
of objects T1 and T2 for fixed values z1 = z0

1 and
z2 = z0

2.

Here, u12 is the vector of auxiliary continuous variables that is used to construct
a quasi-phi-function of objects T1 and T2.

The placement constraints (4)–(6) are described by the system of inequalities
ϒ1(u, τ ) ≥ 0, ϒ∗

2 (u) ≥ 0, where the inequality ϒ1(u, τ ) ≥ 0 describes the
nonoverlapping constraints and the inequality ϒ∗

2 (u) ≥ 0 describes the containment
constraints:

ϒ1 (u, τ ) = min
{
ϒ

j

1 (u, τ ) , j ∈ Jm

}
,

ϒ
j

1 (u, τ ) = min
{
ϒ

j
q1q2

(
uq1, uq2 , uq1q2

)
, q1 < q2 ∈ J

j
n

}
, (11)

τ =
(
uq1q2, q1 < q2 ∈ J

j
n

)
,

ϒ∗
2 (u) = min

{
ϒ
∗j
2 (u), j ∈ Jm

}
, ϒ

∗j
2 (u) = min

{
ϒ∗

qi

(
uqi

)
, qi ∈ J

j
n

}
, (12)

ϒ
j
q1q2

(
uq1, uq2 , uq1q2

)
is the function that describes the nonoverlapping

condition between objects Tq1 and Tq2 , and uq1 = (
xq1 , yq1 , zq1 , θq1

)
, uq2 =(

xq2 , yq2 , zq2 , θq2

)
, ϒ∗

qi

(
uqi

)
is the function that describes the nonoverlapping

condition between objects Tqi and 
∗j = R3/ int 
j.
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Thus, in expressions (11) and (12) for fixed values zq1 and zq2 , we have:

ϒ
j
q1q2

(
uq1, uq2

)
is a phi-function [26] 2TT

q1q2

(
uq1, uq2

)
for objects Tq1 and Tq2 or a

quasi-phi-function [27] 2′TT
q1q2

(
uq1, uq2 , uq1q2

)
for objects Tq1 and Tq2 ; ϒ∗

qi

(
uqi

)
is

a phi-function 2T
∗j
qi

(
uqi

)
for objects Tqi and 
∗j .

If a minimum allowable distance condition between objects is given, adjusted
phi-functions (quasi-phi-functions) are used for the corresponding pairs of objects
[26, 27].

The mathematical model of the CBLP problem can be defined as follows:

F
(
u∗, τ ∗

) = minF (u, τ) s.t. (u, τ ) ∈ W, (13)

W = {
(u, τ ) ∈ Rσ : ϒ1 (u, τ ) ≥ 0, ϒ∗

2 (u) ≥ 0, μ(u) ≥ 0
}
, (14)

where:

F(u) = d = (xs (v, z)− x0)
2 + (ys (v, z)− y0)

2 + (zs − z0)
2

u = (v, z, θ), v = (v1, . . . , vn), θ = (θ1, . . . , θn), vi = (xi, yi), i ∈ Jn,
v = (v1, . . . , vn), θ = (θ1, . . . , θn), vi = (xi, yi), i ∈ Jn, z = (z1, . . . , zn), function

ϒ1(u, τ ) is described by (11) with - = m∪
j=1

-j , -j =
{
(q1, q2) : q1 < q2 ∈ J

j
n

}
,

τ = (τ1, . . . , τs) =
(
uq1q2 , q1 < q2 ∈ J

j
n

)
is a vector of auxiliary variables for

quasi-phi-functions, s = |-|, function ϒ∗
2 (u) is defined by (12), elements of vector

z are given by (10), and μ(u) ≥ 0 describes the given balancing constraints.
For example, problem (13) and (14) for the layout of cylinders in a cylindrical

container takes the form:

min d, s.t.u = (v, z) ∈ W, (15)

where:

v = (x1, y1, . . . , xn, yn) , z = (z1, . . . , zn) ,

d =
[

n∑

i=1

m′
ixi

]2

+
[

n∑

i=1

m′
iyi

]2

+
[

n∑

i=1

m′
izi − z0

]2

,

and the feasible region W is described by the inequality system:
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⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(
xq2 − xq1

)2 + (
yq2 − yq1

)2 − (
rq2 + rq1

)2 ≥ 0,
q1, q2 ∈ -j , j ∈ Jm,

− xqi
2 − yqi

2 +
(
Rz

qi
− rqi

)2 ≥ 0,

qi ∈ -j , j ∈ Jm.

(16)

Note, that m′
i = mi

M
= const , M =

n∑

i=1
mi = const .

The problem of packing cylinders into cylindrical containers, with balancing
conditions, is considered, for instance, in [11, 13].

The CBLP problem can be represented as a mixed integer programming (MIP)
problem, using Boolean variables. However, unlike (13) and (14), this approach
increases the number of discrete variables and therefore increases the dimension of
the CBLP problem.

4 Solution Strategy

The following strategy is used to solve CBLP problems:

1. Generate a subset {q (k)}χ ⊂ Q (k) using the concept of the Nested Combinato-
rial κ-sets.

2. Construct a subset
{
q ′ (k)

}
χ ′ ⊆ {q (k)}χ of tuples that satisfy (6). If

{
q ′ (k)

}
χ ′

=∅, then go to Step 1.
3. Construct a set of feasible starting points

{
u′0
}

for each tuple from the set{
q ′ (k)

}
χ ′ , using the algorithm presented in [13].

4. Search for a local extremum of problem (13) and (14) for each starting point
u′0 ∈ W with respect to q ′ (k) ∈ {

q ′ (k)
}
χ ′ .

5. Choose the best of the local extrema found for all tuples of the set
{
q ′ (k)

}
χ ′ and

feasible starting points
{
u′0
}

as a local optimal solution of problem (13) and (14).

To solve nonlinear programming problems, IPOPT is used, being available as an
open noncommercial resource (https://projects.coin-or.org/Ipopt). IPOPT is based
on the internal point method described in [28].

In order to generate a subset {q (k)}χ ⊂ Q (k), we use the concept of the Nested
Combinatorial κ-sets.

https://projects.coin-or.org/Ipopt
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Concept of the Nested Combinatorial κ-Sets To define a structure of the nested
combinatorial κ-set, we use the κ-level tree.

Let i ∈ J 0
κ = {0, 1, . . . , κ}, where κ is the number of levels of the tree. At each

level of the tree, we have ηi nodes.
And, let

Y01

Y11, Y12, . . . , Y1η1

Y21, Y22, . . . , Y2η2 (17)

. . .

Yκ1, Yκ2, . . . , Yκηκ

be combinatorial sets that correspond to the nodes of the i-th level of the κ-level
tree, i = 0, 1, . . . , κ.

Each combinatorial set Yij of the tree is defined by a finite set β ij of generative
elements of Yij, i = 0, 1, . . . , κ, j = 1, . . . , ηi. We denote the number of elements
of β ij by nij, therefore:

η0 = 1, η1 = n, η2 =
η1∑

j=1

n2j , η3 =
η2∑

j=1

n3j , · · · , ηi =
ηi−1∑

j=1

nij , ηκ =
ηκ−1∑

j=1

nκj .

The core idea of the Nested Combinatorial κ-set is based on relationships
between generative elements β ij of each combinatorial set Yij of i-th level and ele-
ments of combinatorial sets of (i + 1)-th level, using the following correspondence:

β ∈ βij ↔
(
y1, y2, . . . , ynl

) ∈ Yi+1,l , l ∈ {1, . . . , ηi+1} , i ∈ {0, 1, . . . , κ − 1} .
(18)

A nested combinatorial κ-set is a composed combinatorial set produced by means
of the tree structure (17) and correspondence (18) (see [19] for formal definition).

Let us consider an example to make clear the concept. We denote a nested
combinatorial κ-set by Tκ.

Example 1 Let Tκ have a two-level structure (17), where Y01 is a permutation set
P(a,b) generated by β01 = {a, b}; Y11 is a combination set C2

3 (c, d, e) generated by
β11 = {c, d, e}; and Y12 is a permutation set P(g,h) generated by β12 = {g, h} (see
Figure1). Therefore, n01 = 2, n11 = 3, n12 = 2, η0 = 1, η1 = 2.

In order to produce the nested combinatorial set Tκ, we replace the generative
elements a, b in each element of P(a,b) by each element of the combinatorial sets
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Figure 1 Two-level structure
(17) of the nested
combinatorial κ-set Tκ

Y01 =P(a,b)

2
11 3 ( , , )Y C c d e= Y12 =P(g,h)

a b

cd ce de gh hg

gh hg gh hg gh hg cd ce de cd ce de

cdgh cdhg cegh cehg degh dehg ghcd ghce ghde hgcd hgce hgde

P(a,b)
a b

Figure 2 Elements of the combinatorial set Tκ

C2
3 (c, d, e) and P(g,h) consequently, using correspondence (18) (see Figure 2). Ter-

minal nodes of the tree correspond to elements of the combinatorial set Tκ:(cdgh),
(cdhg), (cegh), (cehg), (degh), (dehg), (ghcd), (ghce), (ghde), (hgcd), (hgce), (hgde).

Details of algorithm for generating a nested combinatorial κ-set are represented
in [25].

Now, we consider an example of the algorithm generating q (k).

Example 2 Let the basic sets CP(5, 2), C
k1
5 , C

k2
5−k1

generated by elements
{q1, q2, q3, q4, q5} be given, k1 + k2 = n = 5.
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Since CP (5, 2) = {(
ki1, k

i
2

)} = {(1, 4) , (2, 3) , (3, 2) , (4, 1)}, then we have:

1. k1 = 1, k2 = 4
C

k1
5 = C1

5 = {(q1) , (q2) , (q3) , (q4) , (q5)}
C

k2
5−k1

= C4
4 : {(q2, q3, q4, q5)} , {(q1, q3, q4, q5)} , {(q1, q2, q4, q5)} ,

{(q1, q2, q3, q5)} , {(q1, q2, q3, q4)}
2. k1 = 4, k2 = 1

C
k1
5 = C4

5 =
{
(q1, q2, q3, q4) , (q1, q2, q3, q5) , (q1, q2, q4, q5) ,

(q1, q3, q4, q5), (q2, q3, q4, q5)}
C

k2
5−k1

= C1
1 : {(q5)} , {(q4)} , {(q3)} , {(q2)} , {(q1)}

3. k1 = 2, k2 = 3

C
k1
5 = C2

5 =
{
(q1, q2) , (q1, q3) , (q1, q4) , (q1, q5) , (q2, q3) ,

(q2, q4), (q2, q5), (q3, q4), (q3, q5), (q4, q5)}
C

k2
5−k1

= C3
3 : {(q3, q4, q5)} , {(q2, q4, q5)} , {(q2, q3, q5)} ,

{(q2, q3, q4)}, {(q1, q4, q5)}, {(q1, q3, q5)}, {(q1, q3, q4)},
{(q1, q2, q5)}, {(q1, q2, q4)}, {(q1, q2, q3)}

4. k1 = 3, k2 = 2

C
k1
5 =C3

5 =
{
(q1, q2, q3) , (q1, q2, q4) , (q1, q2, q5) , (q1, q3, q4) , (q1, q3, q5),

(q1, q4, q5), (q2, q3, q4), (q2, q3, q5), (q2, q4, q5), (q3, q4, q5)}
C

k2
5−k1

= C2
2 : {(q4, q5)} , {(q3, q5)} , {(q3, q4)} , {(q2, q5)} , {(q2, q4)} ,

{(q2, q3)}, {(q1, q5)}, {(q1, q4)}, {(q1, q3)}, {(q1, q2)}
Example 3 We show here the κ-set of compositions of two combinations Ck1

5 , Ck2
5−k1

generated by elements {q1, q2, q3, q4, q5}, k1 + k2 = n = 5, using the Gen_κ-set
algorithm and the results of Example 1. Then, κ=1 and Y0 is the set of compositions
CP(5, 2), Y11 = C

k1
5 , Y12 = C

k2
5−k1

. Let us present the structure of the κ-set
constructed in Example 2.

In the set Y01, the first generating element k1 will be replaced with the unique

element of the set Y11, i.e., with the tuple
(
qi1 , qi2 , . . . , qik1

)
∈ C

k1
5 , and element k2

with the tuple
(
qj1 , qj2 , . . . , qjk2

)
∈ C

k2
5 .

We apply the algorithm presented in [25] to generate all elements of the set Q (k)
(see Table 1). According to (9), the number of elements in the set Q (k) is equal to
30.

5 Computational Results

Example 4 We consider the problem (15) and (16) for cylinders Ci, i ∈ Jn that have
to be placed into the cylindrical container 
 with one separation plane (circle) in
order to minimize the deviation of the center of mass of 
A from the given point
(x0, y0, z0). Characteristics of cylinders are given in Table 2.
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Table 1 Data for Example 3
and appropriate elements of
set Q

(
k
)

№ q ∈ Q k q
(
k
) ∈ Q

(
k
)

1 (q1, q2, q3, q4, q5) (1,4) (q1, |q2, q3, q4, q5)
2 (q2, q1, q3, q4, q5) (1,4) (q2, |q1, q3, q4, q5)
3 (q3, q1, q2, q4, q5) (1,4) (q3, |q1, q2, q4, q5)
4 (q4, q1, q2, q3, q5) (1,4) (q4, |q1, q2, q3, q5)
5 (q5, q1, q2, q3, q4) (1,4) (q5, |q1, q2, q3, q4)
6 (q1, q2, q3, q4, q5) (4,1) (q1, q2, q3, q4, |q5)
7 (q1, q2, q3, q5, q4) (4,1) (q1, q2, q3, q5, |q4)
8 (q1, q2, q4, q5, q3) (4,1) (q1, q2, q4, q5, |q3)
9 (q1, q3, q4, q5, q2) (4,1) (q1, q3, q4, q5, |q2)
10 (q2, q3, q4, q5, q1) (4,1) (q2, q3, q4, q5, |q1)
11 (q1, q2, q3, q4, q5) (2,3) (q1, q2, |q3, q4, q5)
12 (q1, q3, q2, q4, q5) (2,3) (q1, q3, |q2, q4, q5)
13 (q1, q4, q2, q3, q5) (2,3) (q1, q4, |q2, q3, q5)
14 (q1, q5, q2, q3, q4) (2,3) (q1, q5, |q2, q3, q4)
15 (q2, q3, q1, q4, q5) (2,3) (q2, q3, |q1, q4, q5)
16 (q2, q4, q1, q3, q5) (2,3) (q2, q4, |q1, q3, q5)
17 (q2, q5, q1, q3, q4) (2,3) (q2, q5, |q1, q3, q4)
18 (q3, q4, q1, q2, q5) (2,3) (q3, q4, |q1, q2, q5)
19 (q3, q5, q1, q2, q4) (2,3) (q3, q5, |q1, q2, q4)
20 (q4, q5, q1, q2, q3) (2,3) (q4, q5, |q1, q2, q3)
21 (q3, q4, q5, q1, q2) (3,2) (q3, q4, q5, |q1, q2)
22 (q2, q4, q5, q1, q3) (3,2) (q2, q4, q5, |q1, q3)
23 (q2, q3, q5, q1, q4) (3,2) (q2, q3, q5, |q1, q4)
24 (q2, q3, q4, q1, q5) (3,2) (q2, q3, q4, |q1, q5)
25 (q1, q4, q5, q2, q3) (3,2) (q1, q4, q5, |q2, q3)
26 (q1, q3, q5, q2, q4) (3,2) (q1, q3, q5, |q2, q4)
27 (q1, q3, q4, q2, q5) (3,2) (q1, q3, q4, |q2, q5)
28 (q1, q2, q5, q3, q4) (3,2) (q1, q2, q5, |q3, q4)
29 (q1, q2, q4, q3, q5) (3,2) (q1, q2, q4, |q3, q5)
30 (q1, q2, q3, q4, q5) (3,2) (q1, q2, q3, |q4, q5)

Table 2 Characteristics of
cylinders in Example 4

C1 C2 C3 C4 C5

mi 4 2 1 3 5
ri 1 0.7 0.45 0.8 0. 9
hi 1.27 1.3 1.57 1.49 1.96

Let m= 2, H = 6, R= 2.5, t1 = 3 be the parameters characterizing our cylindrical
container and (x0, y0, z0) = (0, 0, 3).

The values of the objective function for all n = 30 tuples of the partition q (k) ∈
Q (k) and appropriate compositions k are presented in Table 3.

Figure 3 shows the local optimal placements of cylinders in the two subcontainers
found by our algorithm that correspond to the tuples: (a) q1(k), (b) q18(k) in
Example 4.

The best value of the objective function in Example 4 is 0.0003 that corresponds
to two tuples q1(k) = (1| 2 3 4 5) and q18(k) = (3 4| 1 2 5).
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Table 3 Output data in
Example 4

i q
(
k
) ∈ Q

(
k
)

k Objective function, d

1 (1 |2 3 4 5) (1,4) 0.0003
2 (2 |1 3 4 5) (1,4) 0.1475
3 (3 |1 2 4 5) (1,4) 0.3411
4 (4 |1 2 3 5) (1,4) 0.0339
5 (5 |1 2 3 4) (1,4) 0.0467
6 (1 2 3 4| 5) (4,1) 1.4787
7 (1 2 3 5| 4) (4,1) 2.6115
8 (1 2 4 5| 3) (4,1) 4.0643
9 (1 3 4 5| 2) (4,1) 3.2979
10 (2 3 4 5| 1) (4,1) 2.0051
11 (1 2| 3 4 5) (2,3) 0.1731
12 (1 3| 2 4 5) (2,3) 0.0467
13 (1 4| 2 3 5) (2,3) 0.3795
14 (1 5| 2 3 4) (2,3) 1.0323
15 (2 3| 1 4 5) (2,3) 0.0339
16 (2 4| 1 3 5) (2,3) 0.0467
17 (2 5| 1 3 4) (2,3) 0.3795
18 (3 4| 1 2 5) (2,3) 0.0003
19 (3 5| 1 2 4) (2,3) 0.1731
20 (4 5| 1 2 3) (2,3) 0.6659
21 (3 4 5| 1 2) (3,2) 1.0323
22 (2 4 5| 1 3) (3,2) 1.4787
23 (2 3 5| 1 4) (3,2) 0.6659
24 (2 3 4| 1 5) (3,2) 0.1731
25 (1 4 5| 2 3) (3,2) 2.6115
26 (1 3 5| 2 4) (3,2) 1.4787
27 (1 3 4| 2 5) (3,2) 0.6659
28 (1 2 5| 3 4) (3,2) 2.0051
29 (1 2 4| 3 5) (3,2) 1.0323
30 (1 2 3| 4 5) (3,2) 0.3795

Example 5 Let us consider the problem (13) and (14). Let 
 be a cylindrical
container of height H = 1 and the basis radius R = 0.55. The container has two
separation circles. We assume that t1 = t2 = 0.35. Let m0 = 500 be the mass and
(x0, y0, z0) = (0, 0, 0.5) be the center of mass of the cylindrical container 
.

We consider the collection of 3D-objects of six shapes (Figure 4): A = {Si , i =
1, . . . , 6, Ci, i = 7, . . . , 13, Qi, i= 14...17, SCi, i = 18, ...21, Pi , i = 22, 23, 24c,
K25} with the following characteristics:

{mi, i = 1, .., 25}= {20.944, 15.2681, 27.8764, 20.944, 20.944, 34.5575, 63.7115,
41.8146, 30.4106, 6.28319, 20.1062, 31.4159, 28.4245, 49.9649, 24.8714, 38.6888,
26.2637, 20.7764, 17.2159, 16.8756, 52.8, 52.8, 52.8, 23.1489} are the given masses
of the 3D-objects;

r1 = 0.1, r2 = 0.09, r3 = 0.11, r4 = 0.11, r5 = 0.1, r6 = 0.1 are the radii of
spheres Si , i = 1, . . . , 6;
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Figure 3 Balanced layout of cylinders and relevant item projections on the base of the container
and separation circle corresponding to tuples: (a) q1(k), (b) q18(k) in Example 4

Figure 4 Shapes of objects in Example 5: Si ,Ci, Qi, SCi,Pi, Ki

r7 = 0.1, h7 = 0.11, r8 = 0.13, h8 = 0.12, r9 = 0.11, h9 = 0.11, r10 = 0.11,
h10 = 0.08, r11 = 0.05, h11 = 0.08, r12 = 0.08, h12 = 0.1, r13 = 0.1, h13 = 0.1 are
the radii and half-heights of cylinders Ci, i = 7, . . . , 13;

r14 = 0.08, h14 = 0.07, r15 = 0.09, h15 = 0.075, r16 = 0.07, h16 = 0.06,
r17 = 0.08, h17 = 0.07 are the radii of the generating circles and half-heights of
tori Qi, i= 14...17;

r18 = 0.1, h18 = 0.05, l18 = 0.07, r19 = 0.05, h19 = 0.05, l19 = 0.08, r20 = 0.08,
h20 = 0.05, l20 = 0.06, r21 = 0.08, h21 = 0.04, l21 = 0.07 are the radii, half-
heights of cylinders, and heights of spherical segments for spherocylinders SCi, i =
18, ...21;

wi = 0.11, li = 0.1, hi = 0.12, i = 22, 23, 24 are the half-widths, half-lengths,
and half-heights of cuboids Pi, i = 22, 23, 24;

r25 = 0.09, h25 = 0.11 are the length of the basis side and half-height of the right
hexagonal prism K25.
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Table 4 Output data in Example 5

i q
(
k
) ∈ Q

(
k
)

k Objective function, d

1 (2,3,6,8,10,14,17,21,24|4,7,11,13,18,20,22,23|
1,5,9,12,15,16,19,25)

(9,8,8) 0.002387

2 (3,5,6,7,10,13,17,21|2,4,8,12,14,18,19,22,25|
1,9,11,15,16,20,23,24)

(8,9,8) 0.000269

3 (1,5,10,17,19,21,22,25|2,4,6,9,12,13,14,18|
3,7,8,11,15,16,20,23,24)

(8,8,9) 0.943362 × 10−7
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Figure 5 Local optimal placement of 3D-objects and the relative object projections onto the
separation circles corresponding to tuples: (a) q1(k), (b) q2(k), (c) q3(k) in Example 5

The values of the objective function for three chosen tuples of the partition
q (k) ∈ Q (k) and appropriate compositions k are presented in Table 4.

Figure 5 shows the local optimal placement of 3D-objects in subcontainers and
the relative object projections onto the separation circles corresponding to tuples:
(a) q1(k), (b) q2(k), (c) q3(k) given in Table 4.
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The best values found for the objective function in Example 5 is 0.943362× 10−7

that corresponds to tuple q3(k) = (1,5,10,17,19,21,22,25|2,4,6,9,12,13,14,18|
3,7,8,11,15,16,20,23,24).

6 Concluding Remarks

This chapter discusses the problem of placing 3D-objects into a container, parti-
tioned into sectors by parallel separation planes, minimizing the distance of the
overall center of mass from an assigned position.

The mathematical model formulated for the purpose, on the basis of the phi-
function methodology, is illustrated in detail. It takes into account not only the
geometrical and balancing constraints, but also the combinatorial features relevant
to the assignment of items to sectors.

A solution strategy is provided, which includes the following procedures:
generation of partition tuples, based on combinatorial configurations, construction
of feasible starting points, and local optimization. This approach implements the
multi-start strategy to search for “good” feasible solutions. The results of the
numerical experiments show the efficiency of the proposed approach for the class
of layout problems considered.
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A Catalogue of Parametric Time-Optimal
Transfers for All-Electric GEO Satellites

Francesco Topputo and Simone Ceccherini

Abstract In this chapter a catalogue of time-optimal low-thrust transfers from
arbitrary departure orbits to the geostationary orbit is constructed. This catalogue is
obtained by solving a multitude of optimal control problems with a combination of
simple and multiple shooting techniques, augmented by a multi-dimensional homo-
topy. Modified equinoctial elements are used to describe the satellite dynamics, and
state-of-the-art values for thrust and specific impulse are considered. The ultimate
outcome consists of a synthetic law for transfer time, and thus cost, as function of
the orbit injection parameters and engine figures. This law can be consulted in the
early stages of mission design.

1 Introduction

Geostationary Earth orbit (GEO) satellites for communication have the lion’s
share in the space market. This sector being the most profitable and competitive,
brand-new, efficient technologies are required. Low-thrust propulsion, which is
usually obtained by exploiting solar electric propulsion (SEP) systems, is an
appealing solution because of its high specific impulses. Nowadays, SEP is a mature
technology, and thus novel mission concepts can be envisaged.

All-electric GEO satellites are more efficient because they maximize the payload
mass, or equivalently minimize the mass at launch, by involving a lower fuel
consumption. The first all-electric GEO platform, Boeing 702SP, has been launched
in 2015. However, all-electric satellites suffer from very high transfer times because
of low control accelerations. The growth in signal throughput of GEO satellites
entails also heavier payloads and satellites, which further lower the thrust-to-mass
ratios.
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In principle, modifying the approach to reach the GEO may involve searching
for new transfer orbits. The traditional geostationary transfer orbit (GTO) and low
Earth orbit (LEO) are not the only possible choices anymore. New injection orbits
have been used by Boeing 702SP, i.e., super-synchronous transfer orbit (SSTO) with
apogee radius higher than the standard one, and the GTO+ proposed by ArianeSpace
[2], with a perigee altitude greater than the usual one (250–350 km). The concept of
hybrid transfer (transfers that combine chemical and electric propulsion) involves
subdividing the transfer orbit into a high-thrust and a low-thrust segment, with
variable switching orbits [8, 9, 20].

The literature on low-thrust transfer to GEO is vast [7, 11, 12, 17–19]. Mission
analysis studies to preliminary assess GEO transfers should be based on fast and
reliable tools to evaluate the main trajectory performances, one of which is the
time of flight. Furthermore, evaluating SEP transfers for various injection orbits,
which can also be noncircular, provides the customer with a wide range of solutions.
Consequently, trade-off analyses to design GEO missions can be performed by
comparing launchers capability, i.e., injected mass vs achieved orbit, and transfer
duration.

In this chapter, a number of minimum-time solutions to the GEO are obtained.
These are characterized by having different departure orbits. The optimal control
problem is solved by exploiting the indirect optimization method, whereas the
satellite dynamics is modeled by using modified equinoctial elements (MEE)
[10]. The two-point boundary value problem (TPBVP) is analyzed with SEP
performances for Hall effect thruster class [13], which is characterized by thrust-
to-mass ratio of 10−4–10−3 m/s2 and specific impulse of 1500–2500 s. Single and
multiple shooting methods are properly combined with numerical continuation
methods on thrust and orbital parameters. A database of solutions has been built
and a compact law has been spun off. This law can be used in the early stages of
mission design for fast evaluation of transfer time and, thus, cost.

2 Background

2.1 Dynamics Model

The orbital dynamics is formulated using MEE [10]. If compared to Cartesian
coordinates, MEE guarantee good numerical stability when dealing with low-thrust
transfers [16]. Moreover, when MEE are used, the boundary conditions of orbit-to-
orbit transfers can be expressed as fixed values for some elements of the initial and
final states, rather than nonlinear functions of them.

The relations between MEE (left-hand side) and the classical orbital elements
(right-hand side) are
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p = a
(
1 − e2

)

ex = e cos (ω +
)

ey = e sin (ω +
)

hx = tan (i/2) cos (
)

hy = tan (i/2) sin (
)

L = ω +
+ θ

(1)

where a is the semi-major axis, e the eccentricity, i the orbital inclination, 


the right ascension of the ascending node, ω the argument of perigee, θ the true
anomaly, p is the semilatus rectum, and L the true longitude.

The complete dynamics shall consider the variation of MEE as well as the
variation of satellite mass and control law parameters. Let the augmented state
vector be x = [

p, ex, ey, hx, hy, L,m
]�, where m is the satellite mass. The control,

u, is made up of the thrust throttling factor, f ∈ [0, 1], and the thrust pointing angle
α; u := [α, f ]�.

Accordingly, the equations of motions take the form
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with

υ = 1 + ex cosL+ ey sinL, s2 = 1 + h2
x + h2

y, κ = √
μp

(
υ

p

)2

(4)

The thrust pointing unit vector is

α = [αr, αθ , αh]� (5)
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Table 1 Boundary
conditions for the state vector
(G: Given, F: Free)

p ex ey hx hy L m

t0 G G G G G G G

tf G G G G G F F

where αr , αθ , and αh are the components of the control vector along the radius
vector outwards, in-plane perpendicular to the radius vector, and normal to the
orbital plane in the direction of the angular momentum, respectively. These three
directions define the local vertical-local horizontal (LVLH) frame. In Equation (2),
T is the maximum thrust, Isp the specific impulse, g0 the gravity acceleration at sea
level, and μ the Earth gravitational parameter.

In order to construct a catalogue of time-optimal, all-electric transfers to the
Geostationary orbit, the problem is to find the functions f (t) and α(t), t ∈ [

t0, tf
]

with tf unknown, that plugged into Equation (2) produce solutions satisfying the
boundary conditions. These are qualitatively specified in Table 1: the state is fully
given at t0, while it is partially specified at tf . It is worth observing that specifying
L, and thus the departure point, narrows the search space since, in principle, there
might exist trajectory that slightly outperform those reported hereinafter. However,
in pursuance to standardize the presentation of all-electric solutions to GEO, the
initial true anomaly has been fixed, and in turn the longitude L through Equation (1).

From Table 1, 12 boundary conditions are known. Since the problem will be
solved as a pure TPBVP (i.e., the control will be expressed in terms of seven
states and seven costates), two additional conditions as well as one equation for
tf are needed. These are found by virtue of the optimal control theory. In this work,
the optimal trajectories are found by using low-thrust trajectory optimizer (LT2O),
a tool developed at Politecnico di Milano. This implements a root-finding algo-
rithm with mixed shooting-/multiple-shooting scheme and a variable step explicit
predictor-corrector seventh to eighth order Runge–Kutta integrator [14, 25]. Notice
that eclipses and non-spherical gravity perturbations are not modeled in this context.

2.2 Trajectory Optimization

Indirect optimization methods are the key feature of the problem under investiga-
tion. In minimum-time problems, a solution of Equation (2) minimizes

J =
∫ tf

t0

L dt :=
∫ tf

t0

1 dt (6)

Without any loss of generality, the initial time t0 is set to 0. The Hamiltonian of the
problem is [3]

H = λ�F + L := λLκ + f
T

m
λ�meeBα − λmf

T

Ispg0
+ 1, (7)



A Catalogue of Parametric Time-Optimal Transfers for All-Electric GEO Satellites 463

where λ = [
λ�mee, λm

]�
is the vector of costates, with λmee=

[
λp, λex , λey , λhx , λhy ,

λL]�. The evolution of λ is governed by

λ̇ = G (x, λ, u) := −∂H

∂x
(8)

The boundary conditions for the costate depend on those imposed to the state. At t0
the state is fully given (Table 1), therefore λ(t0) is unknown. At tf , L and m are free
(Table 1), thus

λL

(
tf
) = 0, λm

(
tf
) = 0 (9)

whereas the other five components of λ(tf ) are unknown.
It is now needed to express f (t) and α(t) as functions of x and λ. This is done by

applying the Pontryagin maximum principle [24], which states that f (t) and α(t)

are such that H in Equation (7) is extremized (minimized in this case). Because
f T/m is always semi-positive, minimizing H means choosing a thrust pointing
direction as

α∗ = − B�λmee

||B�λmee||
(10)

Substituting (10) into Equation (7) yields

H = 1 + λLκ − f
T

Ispg0

[

λm + Ispg0

m

λ�meeBB�λmee

||B�λmee||

]

(11)

and therefore the value of f depends upon the sign of

S = λm + Ispg0

m

λ�meeBB�λmee

||B�λmee||
(12)

That is, f = 1 if S > 0 and f = 0 if S < 0 (f is unspecified in case S = 0). The
second term in Equation (12) is always positive. Moreover, it is easy to show that
λm is positive as well: λ̇m = −∂H/∂m < 0 and λm(tf ) = 0 from (9). Therefore,
f ∗ = 1 for all times. Eventually, t∗f is found through the transversality condition
[3], i.e., H(t∗f ) = 0.

2.2.1 Statement of the Problem

Since x0 is fully given, the problem consists in finding {λ∗0, t∗f } such that

[
x(t∗f )
λ(t∗f )

]

= ϕ

([
x0

λ∗0

]
, t0; t∗f

)
(13)
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satisfies the five conditions on x(t∗f ) (Table 1), the two conditions on λ(t∗f ) in
Equation (9) as well as H(t∗f ) = 0. In Equation (13), ϕ is the flow of

[
ẋ

λ̇

]
=
[

F (x, λ)

G (x, λ)

]
(14)

The right-hand side in Equation (14) is the one in Equations (2) and (8) with f ∗ = 1
and α∗ in Equation (10).

2.3 Numerical Implementation

The TPBVP defined in Sect. 2.2.1 is solved numerically using shooting methods. A
multi-dimensional Newton-based gradient method has been implemented in LT20.
The strategy implemented to solve the problem at hand exploits a combination of
single and multiple shooting methods. Moreover, as finding an initial guess for λ∗0
that assures convergence is difficult, a multi-dimensional homotopy (i.e., numerical
continuation) has been used as well.

The objective of the continuation is to approximate, in an efficient way, the trend
of a curve that maps a well-defined quantity, say ε, from a simple problem (ε0) to
the original problem (εf ), called zero path of that mapping. It is highlighted that
the existence of this zero path cannot be guaranteed as it depends on the family
of problems under study. In accordance to the zero path, discrete continuation is
the preferred option as it has been proven effective in optimal trajectory problems
[6, 16, 22]. The advantages of this continuation are in its simplicity and in the fact
that the smoothness of the zero path is not required. In fact, it can be seen as a
predictor-corrector method.

The considered paths for guessing the initial costate vector and the final time are
two: zero-order (ZO) and linear paths. The zero-path predictor method is used for
approximating the guess at the following step (εi+1) in the continuation processes.
In a ZO method, the solution of the ith step (ε∗i ) is the prediction for εi+1. In the
present case

λ0(εi+1) = λ∗0(εi) (15)

The same approach is used when tf is guessed. The continuation parameter, ε, can
be either the maximum thrust value (T ) or a pair of orbital elements (Rp and Ra ,
see Sect. 3), so yielding to an overall three-dimensional continuation.

In [23], it has been shown that thrust continuation in minimum-time problems
with MEE fails because initial costates impose a too-low time of flight. The solved
minimum-time transfer with an improved method led always to an extra orbital
revolution that permitted the homotopic procedure to continue. In [5], it was found
in a heuristic way that tf × T ≈ const for low thrust-to-mass authority.
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To this purpose, a linear continuation path is used to guess tf when thrust
continuation is exploited:

Ti+1 × tf (Ti+1) = Ti × t∗f (Ti) (16)

where t∗f (Ti) is the optimal transfer time when using a thrust magnitude Ti .
Moreover, for low thrust-to-mass ratios and high eccentricities of the starting
orbit, the convergence of TPBVP was found out to be very hard to succeed [22].
Consequently, a linear predictor path has been defined in [22] for guessing the initial
costate vector. For this analysis, the continuation method implemented in LT20 is

λ0(Ti+1) = λ∗0(Ti)+ Ti+1 − Ti

Ti − Ti−1

(
λ∗0(Ti)− λ∗0(Ti−1)

)
, (17)

where two previous (solved) solutions are used (λ∗0(Ti) and λ∗0(Ti−1)). Quadratic or
cubic predictions could also be used but numerical experiments [22] have showed
that they do not bring significant improvements with respect to the results obtained
with the linear approach.

2.4 Search Space for All-Electric GEO Transfers

In Sect. 1, it has been outlined how the low-thrust propulsion paved the way to a
paradigm shift on how to reach the GEO, especially for all-electric satellites. New
injection orbits were used, so widening the trade space in GEO mission analysis. In
this context, a multitude of parametric TPBVP from various starting orbits to GEO
are solved for different initial thrust-to-mass ratios and specific impulses.

The selected starting orbits are defined by the grid in Figure 1, where each point
corresponds to a combination of perigee and apogee radii, Rp and Ra , respectively.
Choosing Rp and Ra sets the semi-major axis and the eccentricity of the starting
orbits through a = (Rp+Ra)/2 and e = (Ra−Rp)/(Ra+RP ). The inclination is set
to 5ř, which is compatible with launches from Kourou. Since the perturbations are
not considered, and so the natural motion is axial-symmetric, both 
 and ω are set
to zero without any loss of generality. All transfers start from the apogee, i.e., θ =
180ř. This stems from both numerical experiment and preliminary considerations
on operations. The numerical values for Rp and Ra are given in the Appendix. It
is convenient to keep in mind the triangular shape of the search space in Figure 1
because the results will be superimposed over this region.



466 F. Topputo and S. Ceccherini

3 Methodology

Each transfer derived from the grid in Figure 1 is analyzed for various accelerations
and specific impulses. The idea lies in combining simple and multiple shooting with
numerical continuation. This is performed by varying the maximum thrust T as well
as Rp and Ra , so resulting in a three-dimensional continuation. Isp is kept constant
during continuations. The regions of interest for T/m0 and Isp are 10−4–10−3 m/s2

and 1500–2500 s, respectively. These correspond to values achievable with current
technology for primary low-thrust propulsion. The procedure implemented to solve
for all combinations of thrust values and departure orbits is described hereinafter.

1. The first step is fixing the specific impulse, say Isp = 2000 s, and selecting an
initial circular orbit close to the GEO region, e.g., the black dot in Figure 2a
(Rp = Ra = 38,492.31 km). Then, the TPBVP is solved for T/m0 = 1 ×
10−3 m/s2 (upper bound). To this purpose, multiple shooting and numerical
continuation on T with ZO predictor for λ0(T ) and tf (T ) is performed starting
from a higher T/m0, e.g., 5 × 10−3 m/s2. Referring to this solution, the initial
guesses for λ0 and tf are random values generated from the standard normal
distribution, with absolute value applied to λm. Figure 3 shows the components
of the thrust direction α in the LVLH frame for T/m0 = 1 × 10−3 m/s2.

Figure 1 Starting orbit search grid for GEO transfers
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GEO altitude

(a)

TPBVP solved

TPBVP under investigation

(b)

Figure 2 Numerical continuation on orbital parameters. (a) Strategy for numerical continuation
on orbital parameters. (b) Strategy to overcome issues of orbital parameters continuation along the
perigee radius

Figure 3 Thrust-direction components in the LVLH frame for T/m0 = 1 × 10−3 m/s2

2. The next step consists in solving TPBVP for orbits that lie on the null-eccentricity
line, red line in Figure 2a. This approach has been selected because solving
problems where the initial orbits are circular has been found easier than those
using elliptic orbits, in agreement with [11, 21]. Solving the null-eccentricity line
is done with homotopy fed by ZO predictor and multiple shooting, with T/m0 =
1 × 10−3 m/s2. The proposed continuation technique uses the initial costate
and transfer time from the previously solved problem as first guess for the next
problem: λ0(ai+1) = λ∗0(ai) and tf (ai+1) = t∗f (ai), with ai = (Rp,i + Ra,i)/2
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ai+1 = (Rp,i+1 + Ra,i+1)/2. This approach is repeated for circular orbits with
radii both greater and lower than the GEO one.

3. Once the solutions on the zero-eccentricity line are obtained, in order to fill the
grid, a continuation along the apogee radius is performed. The perigee radius
is maintained constant, while the apogee radius is increased from bottom to
top, as represented by the blue-dashed arrows in Figure 2a. One important
remark is that the bottom-up approach should be followed arrow by arrow, that
is, from the innermost part (near GEO) to the outer parts of the grid. This
path is necessary to overcome possible convergence problems in solving the
TPBVP when continuing orbits featuring changes in both semi-major axis and
eccentricity. If this condition occurs, based on the idea of grid shooting [22], the
first guessed costate is initialized with the solution of the already-solved optimal
trajectory with the previous perigee, as depicted in Figure 2b.

4. The last step consists in using data of the converged problems at T/m0 =
1 × 10−3 m/s2 to initiate a number of TPBVP until T/m0 = 1 × 10−4 m/s2

is reached. To this end, linear order predictors in Equations (16)–(17) are
used to guess final time and initial costate vector. Moreover, both multiple
and simple shooting are used. Specifically, in [4] it is highlighted that when
multiple shooting and continuation are coupled, the convergence degenerates as
the problems become more difficult (lower T/m0). Properly, a strategy able to
automatically change from multiple to single shooting has been developed and
implemented in LT20.

The time-histories of thrust-direction angles and orbital parameters for a
relevant case are given in Figure 4. This optimal solution has a duration of 241.96
days and performs nearly 354 orbital revolutions. From Figure 5a, it can be seen

(a) (b)

Figure 4 Solution of the TPBVP for a relevant case: T/m0 = 1×10−4 m/s2, Isp = 2000 s, Rp =
6671.00 km, Ra = 42,164.00 km. Azimuth and elevation are the in-plane and out-of-plane angle
between the thrust and αr and αh, respectively. (a) Time-history of thrust azimuth and elevation in
the LVLH reference frame. (b) Time-history of perigee radius, apogee radius, and inclination
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(a) (b)

Figure 5 Thrust-direction components during first and last orbital revolutions of the solution in
Figure 4. (a) First few revolutions. (b) Last few revolutions

that during the first revolutions αθ is always positive, i.e., the semi-major axis
increases, αr is close to zero at the apogee and perigee radii (θ = kπ ), whereas
αh is zero when the true anomaly is in the vicinity of kπ/2. During the time of
last few revolutions (Figure 5b), Figure 5b αθ is negative near the perigee and
positive near the apogee, whereas αr is positive near θ = 3/2π and negative at
θ = π/2. According to these directions, Ra decreases and Rp increases, which
is confirmed by the rightmost trend in Figure 4b.

4 Results

The results obtained with the aforementioned procedure involve solving more than
150 TPBVP for each combination of the parameters, whose ranges are given below

Isp = {1500, 2000, 2500} s
T/m0 ∈

[
1 × 10−4, 1 × 10−3

]
m/s2

Rp ∈ [6671, 60, 000] km
Ra ∈ [6671, 60, 000] km

(18)

Figure 6 outlines time of flight and the initial costate vector components for an initial
thrust-to-mass ratio of 10−4 m/s2 and a specific impulse of 2000 s.

The parametric study of a variety of minimum-time problems in which the initial
orbit, the control acceleration, and the specific impulse vary enables synthesizing a
concise law for a rapid estimation of transfer time. This may be convenient in the
first stages of the mission design. Based on the expression in [15], the curve fitting
function
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Figure 6 Transfer time and initial costate components for T/m0 = 1 × 10−4 m/s2 and Isp =
2000 s, superimposed to the search grid in Figure 1. (a) Time of flight on the search grid. (b)
λp(t0) on the search grid. (c) λex (t0) on the search grid. (d) λey (t0) on the search grid. (e) λhx (t0)

on the search grid. (f) λhy (t0) on the search grid. (g) λL(t0) on the search grid. (h) λm(t0) on the
search grid
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Figure 7 Estimated transfer duration τf vs T/m0 for three representative initial orbits evaluated
with Equation (19)

τf = F

(
T

m0
, Isp

)
:= a

(
T

m0

)b (
Isp

)c + d

(
T

m0

)e

(19)

is proposed for a fast estimation of time-to-GEO. In Equation (19), the duration τf is
in days, whereas T/m0 and Isp are in m/s2 and s, respectively. It is worth specifying
that Equation (19) holds for T/m0 and Isp within the bounds in Equation (18).

The curve fitting coefficients (a, b, c, d, e) are listed in the Appendix
(Tables 2, 3, 4 and 5) for every combination of {Rp,Ra} considered. The quality
with which the model in Equation (19) fits the computed data, or the coefficient of
determination R2, is also given in [15]. This is a value between 0 and 1: the closer
R2 is to 1, the better the data fitting process is, which is the case in the present
fitting. Figure 7 shows the trend of τf vs T/m0 obtained with Equation (19) for
three representative initial orbits and three values of Isp each.

4.1 Launcher Performances

Concerning new injection orbits for all-electric GEO satellites, the knowledge
produced with the catalogue can be coupled with launcher performances. A
simplified model of Ariane 64 payload performances for 5ř inclination injection
orbits has been constructed by combining (1) the data of Ariane 5 ECA payload for
varying apogee altitudes [1], and (2) the Ariane 64 payload performances in GTO
[2]. The mass performances are computed considering the following:
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1. The mass capability of the launcher is computed for a fixed perigee altitude of
250 km and the desired apogee altitude ha through

m̃ = G (ha) , (20)

where G is the best curve to payload capacity vs apogee injection data in [1],
which have been adapted for Ariane 64 payload capability in [2].

2. Then, it has been assumed that the payload mass is delivered with a single
impulsive apogee maneuver, if needed, to achieve the planned perigee altitude,
hp. That maneuver takes into account the structural mass (ms,LV ) of the upper
stage of Ariane 6 and the specific impulse of Vinci engine (Isp,V ) [2]. No gravity
losses have been considered. That procedure is represented by

mpl = F
(
hp, m̃(ha),ms, LV , Isp,V

)
. (21)

In Equation (21) the function F represents the Rocket equation used to study
the maneuver to achieve the desired injection orbit (hp, ha) from the orbit
characterized by hp = 250 km and variable ha .

The map resulting from the combination of the low-thrust database and the
modeled Ariane 6 payload performances is shown in Figure 8 for T/m0 =

120
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Figure 8 Ariane 64 payload performances referred to Equations (20)–(21) (dash-dot lines) and
all-electric transfers times to reach GEO
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10−4 m/s2 and Isp = 2000 s. Superimposing mpl on τf is useful for trade-off
analyses in designing all-electric GEO satellites. For instance, two platforms with
m0 = 5000 kg each and equipped with T = 0.5 N would reach the GEO in
∼240 days, if they had injected onto an orbit identified with Rp = 1× 103 km
and Ra = 30 × 103 km through a shared launch with Ariane 64, according to
Equations (20)–(21).

5 Conclusions

A catalogue of low-thrust transfers to the GEO has been constructed for variable
initial orbit. From a computational point of view, this has been obtained by
combining simple and multiple shooting techniques with a multi-dimensional
homotopy in maximum thrust value and orbital parameters. This analysis is useful
in preliminary mission design, when a rapid estimation of the transfer time for given
engine parameters is needed. The multitude of solutions have been synthesized in a
compact expression, and the coefficients of the curve fittings have been given. This
allows an independent evaluation and use of the catalogue.

Acknowledgements The authors would like to acknowledge Natividad Ramos Morón whose MSc
Thesis inspired the work described in this chapter and Juan Luis Gonzalo for reviewing LT2O and
making it more efficient.

Appendix

Tables 2, 3, 4 and 5 display the curve fitting parameters referred to Equation (19)
and the relative coefficients of determination R2.



Table 2 Table 1 of 4, referring to Equation (19)

Rp (km) Ra (km) a b c d e R2

6671.00 6671.00 −3.991046 −1.000010 −0.843221 0.054904 −0.999969 9.99999999E-01

6671.00 9118.79 −8.181741 −1.034037 −1.022528 0.046174 −1.00494 9.99993407E-01

9118.79 9118.79 −2.916757 −0.999729 −0.872420 0.041737 −0.99994 9.99999999E-01

6671.00 11,566.59 −5.854503 −1.063703 −1.056649 0.040853 −1.00543 9.99995080E-01

9118.79 11,566.59 −0.286098 −1.020437 −0.504813 0.040299 −1.00513 9.99989810E-01

11,566.59 11,566.59 −2.234149 −0.999761 −0.898462 0.033076 −0.99995 9.99999998E-01

6671.00 14,014.38 −0.463467 −1.081282 −0.724548 0.037445 −1.00915 9.99985326E-01

9118.79 14,014.38 −0.758313 −0.944652 −0.639640 0.037357 −0.99438 9.99990847E-01

11,566.59 14,014.38 −14.985666 −0.988839 −1.172638 0.030640 −0.99853 9.99981486E-01

14,014.38 14,014.38 −1.629516 −1.000988 −0.912325 0.026850 −1.00003 9.99999997E-01

6671.00 16,462.17 −0.260781 −1.066490 −0.609559 0.036488 −1.00789 9.99967907E-01

9118.79 16,462.17 −0.328186 −1.012066 −0.604713 0.032999 −1.00274 9.99975314E-01

11,566.59 16,462.17 −8.912786 −1.066689 −1.192966 0.027126 −1.00565 9.99994247E-01

14,014.38 16,462.17 −19.999929 −0.779836 −1.097810 0.026610 −0.98980 9.99849469E-01

16,462.17 16,462.17 −1.306779 −1.000348 −0.934799 0.022118 −1.00000 9.99999993E-01

6671.00 18,909.97 −0.229448 −1.013929 −0.515459 0.039075 −0.99633 9.99971433E-01

9118.79 18,909.97 −19.999997 −0.971001 −1.243398 0.031761 −0.99209 9.99967415E-01

11,566.59 18,909.97 −19.999961 −1.027149 −1.364913 0.026367 −0.99745 9.99948082E-01

14,014.38 18,909.97 −13.807303 −0.972575 −1.290448 0.022350 −1.00132 9.99987921E-01

16,462.17 18,909.97 −19.999877 −1.031859 −1.371524 0.020084 −1.00166 9.99988707E-01

18,909.97 18,909.97 −0.843471 −0.997845 −0.918818 0.018428 −0.99986 9.99999990E-01

6671.00 21,357.76 −19.999995 −1.019445 −1.279931 0.034361 −0.99415 9.99938661E-01

9118.79 21,357.76 −0.111109 −1.040626 −0.405862 0.031672 −1.01088 9.99957078E-01

11,566.59 21,357.76 −19.999997 −1.110769 −1.413072 0.024952 −1.00017 9.99942931E-01

14,014.38 21,357.76 −9.834767 −1.180966 −1.499999 0.022112 −0.99685 9.99799765E-01

16,462.17 21,357.76 −19.999872 −0.954116 −1.347515 0.021912 −0.98333 9.99655834E-01

18,909.97 21,357.76 −0.010915 −1.385625 −0.840951 0.015385 −1.01088 9.99992979E-01

21,357.76 21,357.76 −0.841522 −0.999438 −0.974641 0.015345 −0.99996 9.99999976E-01

6671.00 23,805.55 −19.999992 −1.084119 −1.334473 0.033322 −0.99474 9.99818289E-01

9118.79 23,805.55 −17.169553 −0.981408 −1.266108 0.028825 −0.99237 9.99935195E-01

11,566.59 23,805.55 −19.999981 −0.948089 −1.245729 0.026339 −0.98881 9.99859530E-01

14,014.38 23,805.55 −7.314150 −1.007785 −1.207490 0.021063 −0.99954 9.99993998E-01

16,462.17 23,805.55 −3.616529 −1.350117 −1.500000 0.015988 −1.01918 9.99353989E-01

18,909.97 23,805.55 −13.002576 −1.138722 −1.445269 0.015182 −1.00901 9.99965849E-01

21,357.76 23,805.55 −0.263571 −1.113462 −0.960356 0.013599 −1.00540 9.99996463E-01

23,805.55 23,805.55 −0.529181 −1.003440 −0.962038 0.012832 −1.00013 9.99999948E-01

6671.00 26,253.35 −19.999928 −1.082261 −1.386742 0.032068 −0.99249 9.99873153E-01

9118.79 26,253.35 −19.999999 −1.193243 −1.422892 0.023959 −1.01871 9.99885388E-01

11,566.59 26,253.35 −2.120151 −1.221961 −1.142554 0.019847 −1.02715 9.99961343E-01

14,014.38 26,253.35 −0.072406 −0.996893 −0.520879 0.019962 −1.00480 9.99977076E-01

16,462.17 26,253.35 −10.237115 −1.150737 −1.500000 0.016064 −1.00952 9.99892045E-01

18,909.97 26,253.35 −10.693368 −1.188191 −1.499999 0.013285 −1.01906 9.99310326E-01

21,357.76 26,253.35 −0.881420 −1.315672 −1.359048 0.011627 −1.01785 9.99975526E-01

23,805.55 26,253.35 −4.402509 −1.114956 −1.436880 0.011491 −1.00311 9.99997608E-01

26,253.35 26,253.35 −0.392741 −1.001073 −0.967640 0.010754 −1.00002 9.99999868E-01



Table 3 Table 2 of 4, referring to Equation (19)

Rp (km) Ra (km) a b c d e R2

6671.00 28,701.14 −19.252728 −1.013391 −1.217822 0.032973 −0.98930 9.99751421E-01

9118.79 28,701.14 −0.106716 −0.970614 −0.586964 0.026826 −0.99553 9.99902948E-01

11,566.59 28,701.14 −0.757259 −1.244339 −1.013497 0.018625 −1.03368 9.99925272E-01

14,014.38 28,701.14 −0.189119 −1.001908 −0.787181 0.019803 −0.99669 9.99985573E-01

16,462.17 28,701.14 −17.469488 −1.042063 −1.499997 0.018810 −0.98617 9.99864492E-01

18,909.97 28,701.14 −10.029476 −1.029983 −1.321809 0.014888 −1.00047 9.99979326E-01

21,357.76 28,701.14 −0.105422 −0.749197 −0.168272 0.024730 −0.95022 9.99859194E-01

23,805.55 28,701.14 −0.439287 −1.005902 −0.978352 0.010727 −1.00579 9.99984121E-01

26,253.35 28,701.14 −0.211340 −0.981339 −0.872754 0.009994 −0.99987 9.99998347E-01

28,701.14 28,701.14 −0.552132 −0.987460 −1.054395 0.009010 −0.99992 9.99999608E-01

6671.00 31,148.93 −19.999689 −0.898166 −1.084664 0.038725 −0.96846 9.99374031E-01

9118.79 31,148.93 −19.999962 −1.050101 −1.213991 0.028510 −0.99640 9.99748765E-01

11,566.59 31,148.93 −19.999739 −1.021687 −1.398421 0.023110 −0.99188 9.99878473E-01

14,014.38 31,148.93 −14.945587 −1.089936 −1.499999 0.019257 −0.99640 9.99952072E-01

16,462.17 31,148.93 −5.476535 −1.171533 −1.499994 0.017385 −0.99174 9.99844911E-01

18,909.97 31,148.93 −0.036488 −1.470189 −0.838586 0.006352 −1.12302 9.98134523E-01

21,357.76 31,148.93 −0.106096 −0.891143 −0.343145 0.017727 −0.98351 9.99779042E-01

23,805.55 31,148.93 −20.000000 −0.970824 −1.499001 0.010955 −0.99771 9.99956314E-01

26,253.35 31,148.93 −0.226040 −0.834384 −0.684042 0.009985 −0.99490 9.99992354E-01

28,701.14 31,148.93 −0.088447 −1.058277 −0.895293 0.008266 −1.00155 9.99997828E-01

31,148.93 31,148.93 −0.139364 −1.026937 −0.946550 0.007553 −1.00068 9.99999202E-01

6671.00 33,596.72 −19.996343 −0.965228 −1.211926 0.035499 −0.97271 9.99258600E-01

9118.79 33,596.72 −17.965538 −1.228183 −1.500000 0.023743 −1.00850 9.99722201E-01

11,566.59 33,596.72 −0.141316 −1.181712 −0.603589 0.017381 −1.05613 9.99761018E-01

14,014.38 33,596.72 −14.384997 −1.120162 −1.500000 0.019824 −0.99141 9.99729836E-01

16,462.17 33,596.72 −0.416156 −1.011585 −0.835429 0.016675 −0.99796 9.99983416E-01

18,909.97 33,596.72 −0.033959 −1.134293 −0.579102 0.013011 −1.01627 9.99962495E-01

21,357.76 33,596.72 −0.035516 −1.092315 −0.702629 0.011969 −1.00212 9.99987126E-01

23,805.55 33,596.72 −3.063466 −1.156435 −1.499968 0.010173 −1.00287 9.99988343E-01

26,253.35 33,596.72 −3.199121 −0.698918 −0.935494 0.009697 −0.99302 9.99983348E-01

28,701.14 33,596.72 −0.018023 −1.150781 −0.787328 0.007766 −1.00329 9.99991502E-01

31,148.93 33,596.72 −0.115833 −0.939050 −0.816579 0.007174 −0.99894 9.99997534E-01

33,596.72 33,596.72 −0.136354 −1.023852 −0.984502 0.006433 −1.00070 9.99997219E-01

6671.00 36,044.52 −0.690101 −1.090952 −0.800237 0.029813 −1.00094 9.99565004E-01

9118.79 36,044.52 −19.999951 −1.150750 −1.373473 0.021814 −1.02356 9.99869366E-01

11,566.59 36,044.52 −11.832291 −1.208439 −1.500000 0.023450 −0.98755 9.99117930E-01

14,014.38 36,044.52 −0.026870 −0.993289 −0.503163 0.018408 −0.99972 9.99975308E-01

16,462.17 36,044.52 −19.998362 −0.695534 −1.380771 0.015506 −0.99929 9.99983271E-01

18,909.97 36,044.52 −0.084653 −1.034717 −0.751890 0.013443 −1.00311 9.99974375E-01

21,357.76 36,044.52 −0.040146 −1.120819 −0.700543 0.011501 −1.00666 9.99984798E-01

23,805.55 36,044.52 −0.019509 −1.257495 −0.876000 0.009735 −1.00687 9.99988740E-01

26,253.35 36,044.52 −0.219817 −0.797128 −0.649992 0.009325 −0.99617 9.99983763E-01

28,701.14 36,044.52 −0.135267 −0.809397 −0.665236 0.008011 −0.99638 9.99990460E-01

31,148.93 36,044.52 −5.445805 −1.000406 −1.499672 0.006685 −1.00104 9.99992702E-01

33,596.72 36,044.52 −0.065212 −0.981615 −0.837635 0.006109 −1.00006 9.99995334E-01

36,044.52 36,044.52 −0.024994 −1.042492 −0.783320 0.005598 −1.00171 9.99995162E-01
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Table 4 Table 3 of 4, referring to Equation (19)

Rp (km) Ra (km) a b c d e R2

6671.00 38,492.31 −0.348795 −1.013454 −0.651181 0.030916 −0.99414 9.99554845E-01

9118.79 38,492.31 −16.584450 −1.233690 −1.500000 0.020711 −1.02476 9.99767267E-01

11,566.59 38,492.31 −19.999992 −1.023206 −1.390062 0.023209 −0.98685 9.99721183E-01

14,014.38 38,492.31 −16.679462 −0.919975 −1.499999 0.018136 −0.99584 9.99936159E-01

16,462.17 38,492.31 −19.999938 −1.011070 −1.473319 0.015596 −0.99904 9.99960640E-01

18,909.97 38,492.31 −0.035706 −1.167463 −0.674906 0.011692 −1.02320 9.99939747E-01

21,357.76 38,492.31 −13.290839 −0.786575 −1.200232 0.012082 −0.99616 9.99988709E-01

23,805.55 38,492.31 −2.736925 −1.213461 −1.499922 0.009782 −1.00478 9.99985935E-01

26,253.35 38,492.31 −0.391198 −0.804362 −0.754504 0.009214 −0.99565 9.99984999E-01

28,701.14 38,492.31 −0.703057 −1.267555 −1.499923 0.007409 −1.00255 9.99983187E-01

31,148.93 38,492.31 −1.054701 −0.847843 −1.083561 0.006683 −0.99900 9.99992787E-01

33,596.72 38,492.31 −0.990928 −0.807715 −1.041271 0.006001 −0.99822 9.99994488E-01

36,044.52 38,492.31 −0.066634 −1.152356 −1.092012 0.005321 −1.00229 9.99993246E-01

38,492.31 38,492.31 −3.699864 −0.904451 −1.397947 0.005168 −0.99936 9.99991076E-01

6671.00 40,940.10 −0.035542 −1.083244 −0.402956 0.029418 −1.00349 9.98793426E-01

9118.79 40,940.10 −0.142287 −1.135132 −0.591276 0.021730 −1.03375 9.99666998E-01

11,566.59 40,940.10 −10.567847 −1.219865 −1.499999 0.022208 −0.99167 9.99221130E-01

14,014.38 40,940.10 −0.087181 −0.959339 −0.521021 0.019469 −0.99199 9.99909129E-01

16,462.17 40,940.10 −0.633631 −1.630517 −1.499992 0.007064 −1.10329 9.98420843E-01

18,909.97 40,940.10 −1.815872 −0.674847 −0.466860 0.030907 −0.92755 9.99735803E-01

21,357.76 40,940.10 −4.388515 −0.607448 −0.803780 0.013188 −0.98646 9.99940909E-01

23,805.55 40,940.10 −1.248293 −1.261255 −1.500000 0.009794 −1.00310 9.99908239E-01

26,253.35 40,940.10 −2.940299 −1.132725 −1.499854 0.008520 −1.00263 9.99984399E-01

28,701.14 40,940.10 −19.999788 −0.665353 −1.282104 0.007604 −0.99915 9.99986468E-01

31,148.93 40,940.10 −19.999926 −0.585670 −1.189512 0.006804 −0.99663 9.99990770E-01

33,596.72 40,940.10 −1.956137 −1.081781 −1.499830 0.005790 −1.00128 9.99992553E-01

36,044.52 40,940.10 −0.018358 −1.213477 −0.977251 0.005126 −1.00549 9.99988654E-01

38,492.31 40,940.10 −0.079342 −1.065331 −1.032129 0.004982 −1.00171 9.99992818E-01

40,940.10 40,940.10 −0.152776 −1.076519 −1.164397 0.004837 −1.00180 9.99986525E-01

6671.00 42,164.00 −0.039125 −0.984013 −0.128465 0.040937 −0.99558 9.98529803E-01

9118.79 42,164.00 −0.052329 −1.091262 −0.323109 0.023345 −1.04235 9.98558278E-01

11,566.59 42,164.00 −0.044839 −1.011233 −0.409351 0.023970 −0.98976 9.99544708E-01

14,014.38 42,164.00 0.000000 −0.500000 −1.500000 0.017536 −0.99932 9.98671285E-01

16,462.17 42,164.00 −0.353670 −1.282916 −1.130619 0.014095 −1.01298 9.99933550E-01

18,909.97 42,164.00 −0.025890 −1.227461 −0.617243 0.011893 −1.02595 9.99805536E-01

21,357.76 42,164.00 −0.327134 −0.866326 −0.733690 0.012124 −0.99649 9.99981596E-01

23,805.55 42,164.00 −0.015756 −1.379087 −0.876003 0.008410 −1.02595 9.99940998E-01

26,253.35 42,164.00 −0.252191 −0.753729 −0.638009 0.009341 −0.99383 9.99976682E-01

28,701.14 42,164.00 −0.246522 −0.790721 −0.711171 0.007962 −0.99585 9.99981660E-01

31,148.93 42,164.00 −4.025674 −0.919167 −1.366240 0.006572 −1.00101 9.99987400E-01

33,596.72 42,164.00 −0.126108 −0.904337 −0.851004 0.005952 −0.99936 9.99991369E-01

36,044.52 42,164.00 −0.324140 −1.033721 −1.191696 0.005285 −1.00178 9.99985868E-01

38,492.31 42,164.00 −0.135008 −0.757545 −0.725060 0.005208 −0.99679 9.99989375E-01

40,940.10 42,164.00 −0.006110 −1.452674 −1.149747 0.004708 −1.00465 9.99988154E-01
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Table 5 Table 4 of 4, referring to Equation (19)

Rp (km) Ra (km) a b c d e R2

6671.00 48,082.00 −6.697292 −1.331006 −1.500000 0.026655 −0.99559 9.99054091E-01

9118.79 48,082.00 −19.997043 −1.066198 −1.441095 0.027124 −0.97503 9.99615530E-01

16,462.17 48,082.00 −0.804244 −1.263392 −1.353306 0.013943 −1.00748 9.99968990E-01

23,805.55 48,082.00 −0.086398 −0.997675 −0.670929 0.010393 −1.00184 9.99976974E-01

31,148.93 48,082.00 −0.022853 −1.072941 −0.740816 0.006834 −1.00407 9.99995965E-01

38,492.31 48,082.00 −0.169001 −1.053232 −1.108350 0.005327 −1.00092 9.99993934E-01

42,164.00 48,082.00 −0.027551 −1.072560 −0.856241 0.005003 −1.00176 9.99992933E-01

48,082.00 48,082.00 −0.109343 −0.914173 −0.872699 0.005129 −0.99930 9.99996728E-01

6671.00 54,000.00 −19.999998 −1.120246 −1.441381 0.033669 −0.96501 9.97939149E-01

9118.79 54,000.00 −6.112870 −1.202850 −1.500000 0.024936 −0.98210 9.99314462E-01

16,462.17 54,000.00 −0.144031 −0.912894 −0.568368 0.015927 −0.99646 9.99996747E-01

23,805.55 54,000.00 −0.220075 −1.054398 −0.906094 0.010437 −1.00318 9.99992938E-01

31,148.93 54,000.00 −0.093665 −1.072959 −0.939195 0.007522 −1.00262 9.99997865E-01

38,492.31 54,000.00 −0.112091 −0.986687 −0.923650 0.006123 −0.99983 9.99994383E-01

42,164.00 54,000.00 −3.360923 −0.863195 −1.296165 0.005780 −0.99889 9.99992975E-01

48,082.00 54,000.00 −0.510286 −0.966344 −1.145309 0.005625 −0.99990 9.99997289E-01

54,000.00 54,000.00 −0.118844 −1.033063 −1.008212 0.005968 −0.99987 9.99999268E-01

6671.00 60,000.00 −12.061653 −1.130091 −1.499998 0.032474 −0.96662 9.97296588E-01

9118.79 60,000.00 −16.189659 −1.162350 −1.499999 0.024816 −0.98372 9.99308501E-01

16,462.17 60,000.00 −0.026715 −0.920935 −0.286679 0.017089 −0.99351 9.99991984E-01

23,805.55 60,000.00 −10.673870 −0.896819 −1.316881 0.011159 −0.99889 9.99995773E-01

31,148.93 60,000.00 −0.332560 −1.097507 −1.144686 0.008344 −1.00224 9.99995560E-01

38,492.31 60,000.00 −0.108121 −1.011227 −0.909389 0.007087 −1.00083 9.99987085E-01

42,164.00 60,000.00 −0.008138 −1.258684 −0.855102 0.006491 −1.00500 9.99987349E-01

48,082.00 60,000.00 −2.389354 −1.087228 −1.499799 0.006438 −1.00091 9.99992688E-01

54,000.00 60,000.00 −0.112651 −1.062657 −0.997274 0.006613 −1.00063 9.99997459E-01

60,000.00 60,000.00 −0.416432 −1.008036 −1.108419 0.007092 −0.99957 9.99999416E-01
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