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Chapter 12
Fungal Xylanases: Sources, Types, 
and Biotechnological Applications
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Daljeet Singh Dhanjal, Shivika Datta, and Joginder Singh

Abstract  Xylanase is a class of hydrolytic enzymes which cleaves the linear 
polysaccharide, the major constituent of hemicellulose beta-1,4-xylan into xylose. 
The structure of xylanase is complex, repeated linear polymers of xylopyranosyl 
groups at numerous carbon positions with different acidic compounds or sugars. It 
plays a critical physiological role in plant tissue like seed germination, plant defense 
system, and softening of fruits. Among microbial sources, actinomycetes, fungi, 
bacteria, and yeast are the principal sources of xylanases. The chief xylanase pro-
ducers from fungal genera include Aspergillus, Coriolus versicolor, Fusarium, 
Phanerochaete chrysosporium, Trichoderma, and Pichia. The commercialization of 
xylanase into the industry has increased significantly due to wide number of appli-
cations. They are used in paper industries, bio-bleaching of wood pulp, bioprocess-
ing of textiles, food additives to poultry, improvement in the nutritional properties 
of grain feed and silage, extraction of plant oils, starch, and coffee, etc. Solid-state 
fermentation is an effective method for xylanase synthesis, predominantly by fungal 
culture due to the advantages like high productivity at low cost as it produces xyla-
nase by consuming cheap substrate, which serve as the carbon source as a resultant 
total cost of the process decreases. Advancement in recombinant DNA technology 
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led to the selection of xylanase-producing microorganisms which are more likely 
suitable for industrial applications. The advancement in the genetic engineering can 
help us to amend the fungal expression system for hyper-expression of the heterolo-
gous xylanase for production as well as industrial use. Using improved technical 
advancement systems, development of recombinant fungal expression systems by 
genetic approach will help in hyper-expression of xylanases and xylanase families 
for their production management at the industrial level.

12.1  �Introduction

Xylanase (EC 3.2.1.8, beta-xylanase, beta-1,4-xylan xylanohydrolase, xylanohy-
drolase, beta-D-xylanase, 1,4-beta-xylan, endo-1,4-beta-D-xylanase, beta-1,4-
xylanase, endo-1,4-beta-xylanase, endo-1,4-xylanase, endo-(1->4)-beta-xylan 
4-xylanohydrolase) is a class of hydrolytic enzymes which cleaves the linear poly-
saccharide which is the major constituent of hemicellulose beta-1,4-xylan into 
xylose (Talamantes et al. 2016; Vogel 2018). It plays a critical physiological role in 
plant tissue like seed germination, plant defense system, and softening of fruits 
(Saleem et al. 2008). It is second most abundant natural polysaccharide consisting 
mainly of D-xylose as its monomeric unit commonly present in the middle lamellae 
and cell wall of plant cells (Saulnier et al. 2007; Caffall and Mohnen 2009). The 
major chain of xylan is composed of β-xylopyranose residues which covers differ-
ent groups of noncellulosic polysaccharides of small monosaccharide units such as 
L-arabinose, D-galactose, D-glucuronic acid, D-galacturonic acid, D-glucose, 
D-mannose, D-xylose, etc. (de Vries and Visser 2001; Menon et al. 2010; Segato 
et al. 2014). Because of the complex chemical structure and heterogeneity of plant 
xylan, the complete degradation requires different hydrolytic enzymes having 
diverse mode of action and specificities. Thus, it explains the reason for arsenal 
production of polymer-degrading proteins (Motta et al. 2013).

The xylanolytic enzyme system which hydrolyzes the xylan comprises dif-
ferent hydrolytic enzymes like α-arabinofuranosidase (α-L-arabinofuranosidase, 
E.C.3.2.1.55), acetylxylan esterase (E.C.3.1.1.72), α-glucuronidase (α-glucosiduronase, 
E.C.3.2.1.139), β-xylosidase (xylan-1,4-β-xylosidase, E.C.3.2.1.37), and endoxyla-
nase (endo-1,4-β-xylanase, E.C.3.2.1.8) (Rahman et al. 2003; Selvarajan and Veena 
2017). These diverse enzymes act in cooperation for the conversion of xylan to con-
stituent sugar molecules (Hu et al. 2011; Su et al. 2013). Out of all xylanases, endoxyla-
nases are considered to be of extreme importance as they are directly involved in the 
cleaving of glycosidic bonds and liberation of small stretches of xylooligosaccharides 
(Dey and Roy 2018). Reliable with their side group substitutions and structural chem-
istry, xylanase seems to be intertwined, covalently linked, and interspersed at many 
points with the superimposing sheath of lignin by hydrogen bonding (Zhang 2008; 
Youssefian and Rahbar 2015). Xylanases are not restricted to plants; they also can be 
found in majority of the species of crustaceans, snails, insects, protozoans, marine 
algae, etc. (Kumar et al. 2016a, b; Chakdar et al. 2016). Among microbial sources, 
actinomycetes, fungi, bacteria, and yeast are the principal sources of xylanases (Juturu 
and Wu 2012).
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Table 12.1  Characteristics of some xylanase-producing microorganisms (bacteria and fungi)

Microorganisms Optimal pH
Optimal 
temperature (°C) References

Acidobacterium capsulatum 5 65 Inagaki et al. (1998)
Acrophialophora nainiana 5 50 Ximenes et al. (1999)
Acrophialophora nainiana 7 55 Martínez-Anaya and Jiménez 

(1998)
Acrophialophora nainiana 7.0 55 Salles et al. (2000)
Aspergillus aculeatus 4.0, 5.0 50, 50, 70 Fujimoto et al. (1995)
Aspergillus awamori 4.0–5.5 45–55 Kormelink et al. (1993)
Aspergillus fischeri 6 60 Raj and Chandra (1996)
Aspergillus fumigatus 8.5 55 Puls et al. (1999)
Aspergillus kawachii 5.5, 4.5 60, 55, 50 Ito et al. (1992)
Aspergillus lentulus 5.3 50 Kaushik et al. (2014)
Aspergillus nidulans 6 56 Salles et al. (2000)
Aspergillus nidulans 5.5, 6.0 56, 62 Fernandez-Espinar et al. 

(1994)
Aspergillus nidulans KK-99 ND 8.0 55 Taneja et al. (2002)
Aspergillus niger 7.5 60 Ahmad et al. (2013)
Aspergillus oryzae 4–6 50 Szendefy et al. (2006)
Aspergillus oryzae 5 60 Fernandez-Espinar et al. (1994)
Aspergillus oryzae 6 50 Kitamoto et al. (1999)
Aspergillus sojae 5.0,5.5 50 Kimura et al. (1995)
Aspergillus sp. 26 5.0 50 Khanna et al. (1995)
Aspergillus sydowii 2–12 30 Nair et al. (2008)
Aspergillus sydowii 4 50 Ghosh and Nanda (1994)
Aspergillus terreus 4.5 45 Kimura et al. (1995)
Aspergillus terreus 6 50 Moreira et al. (2013)
Aspergillus terreus 7 50 Ghanem et al. (2000)
Aspergillus terreus 4.5 45 Ghareib and El Dein (1992)
Aspergillus versicolor 6 55 Carmona et al. (1998)
Aureobasidium pullulans 4.4 54 Li et al. (1993)
Bacillus circulans 6–7 80 Dhillon et al. (2000)
Bacillus licheniformis 7.5 50 Liu et al. (2012)
Bacillus pumilus 8.0 37 Battan et al. (2007)
Bacillus sp. 6.0 75 Bataillon et al. (2000)
Chaetomium cellulolyticum 6.5 50 Baraznenok et al. (1999)
Chaetomium cellulolyticum 5.0–7.0 50 Baraznenok et al. (1999)
Cryptococcus albidus 5 25 Morosoli et al. (1987)
Cryptococcus sp. 2.0 40 Iefuji et al. (1996)

(continued)

The characteristics of various xylanase-producing bacteria and fungi are 
mentioned in Table 12.1. From the past few decades, the commercialization of xyla-
nase into the industry has increased significantly due to wide number of applica-
tions. They are used in paper industries, bio-bleaching of wood pulp, bioprocessing 
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Table 12.1  (continued)

Microorganisms Optimal pH
Optimal 
temperature (°C) References

Fusarium oxysporum F3 6.0 60, 55 Christakopoulos et al. (1996)
Geobacillus stearothermophilus 6 60 Bibi et al. (2014)
H. grisea var. thermoidea 5.5 70 Monti et al. (1991)
Myceliophthora sp. 6 75 Chadha et al. (2004)
Paecilomyces variotii 5 60 Cesar and Mrša (1996)
Paenibacillus terrae HPL-003 4–11 55 Song et al. (2014)
Penicillium brasilianum IBT 
20888

ND ND Jørgensen et al. (2003)

Penicillium capsulatum 22 3.8 48 Ryan et al. (2003)
Penicillium oxalicum 9 55 Dwivedi et al. (2009)
Penicillium sp.40 2.0 50 Kimura et al. (2000)
Promicromonospora sp. MARS 8 65 Kumar et al. (2011)

Schizophyllum commune 5.5 50 Kolenová et al. (2005)
Streptomyces sp. 6.0–8.0 55–60 Georis et al. (2000)
Thermoascus aurantiacus 4.0–5.0 70–75 Kalogeris et al. (1998)
Thermomyces lanuginosus 6.5 65 Ziaie-Shirkolaee et al. (2008)
Thermomyces lanuginosus 6.0–6.5 70 Singh et al. (2000)
Thermotoga maritima MSB8 6.5 55 Winterhalter and Liebl (1995)
Trichoderma harzianum 5.0 50 Tan et al. (1985)
Trichosporon cutaneum SL 409 6.5 50 Liu et al. (1998)

of textiles, food additives to poultry, improvement in the nutritional properties of 
grain feed and silage, extraction of plant oils, starch, and coffee, etc. (Yadav 2015; 
Motta et al. 2013; Goswami and Rawat 2015). Apart from these wider applications, 
xylanases also have potential for application in bakery processes and fruit juice 
processing units (Butt et al. 2008; Harris and Ramalingam 2010). The production of 
xylanase levels in filamentous fungi is very much higher than those found in actino-
mycetes, bacteria, and yeasts as they secrete xylanase directly into the medium 
without any processes by eliminating the need for cell disruption (Sepahy et  al. 
2011). Filamentous fungi also produce auxiliary enzymes which are essential for 
the degradation/debranching of substituted xylans (Nair and Shashidhar 2008; 
Brink and Vries 2011). The objective of this chapter is to discuss the various types 
and sources of xylanases, their industrial applications, and factors affecting the pro-
duction of xylanases.

12.2  �Types of Xylanases

Xylanases have been broadly classified in at least three ways: the crystal structure 
(Jeffries 1996), product profile or the substrate specificity and kinetic properties 
(Motta et al. 2013), and based on the isoelectric point and molecular weight (Wong 
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et  al. 1988). The acceptable system for the classification of xylanases is simply 
based on the comparison of the catalytic domains and its primary structure. 
According to the CAZy database (http://www.cazy.org), xylanases (EC3.2.1.8) are 
linked to glycoside hydrolase (GH) families 5, 7, 8, 9, 10, 11, 12, 16, 26, 30, 43, 44, 
51, and 62. Out of these, xylanases GH 10 and 11 are the two families which were 
extensively studied. GH family 10 comprises endo-1,3-β-xylanases and endo-1,4-β-
xylanases (Motta et al. 2013). These members of the family possess the ability to 
hydrolyze the aryl β-glycosides at the aglyconc bond within xylobiose and xylotri-
ose (Heo et al. 2004; Qing and Wyman 2011). On the basis of amino acid similarity 
index, xylanases are classified under glycoside hydrolases into families 10 and 11. 
It has been documented that GH10 xylanases have low pI and molecular weight 
≥30  kDa, whereas GH11 xylanases have high pI and molecular weight 20  kDa 
approximately. Moreover, enhanced activity of these enzymes is observed on small 
stretches of xylooligosaccharides, thus indicating the presence of small substrate-
binding site (Henrissat 1991; Gallardo et al. 2004; Murphy et al. 2011; Mathur et al. 
2015). Family 11 is made up of xylanases and stated to be “true xylanases” as they 
are highly active on substrate having d-xylose (Liu and Kokare 2017). Among all 
xylanases, endoxylanases are considered to be of extreme importance as they are 
directly involved in hydrolyzing of glycosidic bond and liberating small stretches of 
xylooligosaccharides (Collins et al. 2005a). Bacillus species have been reported to 
secrete large amount of extracellular xylanase (Beg et al. 2001), along with filamen-
tous fungi like Aspergillus, Penicillium, and Trichoderma which also secretes large 
amount of extracellular xylanases accompanied by cellulolytic enzymes (Kohli 
et al. 2001; Polizeli et al. 2005; Wong and Saddler 1992).

12.3  �Xylanase Structure

Xylanases are ubiquitous in nature; they are reported from rumen bacteria, terres-
trial bacteria, crustaceans, snails, marine algae, insects, germinating seeds, rumen 
bacteria, protozoa, and fungi (Walia et  al. 2015). The structure of xylanases is 
assumed to be 8 TIM-barrel fold of 8 parallel α strands of 32.5 kDa polypeptide 
chain forming cylinder-like structure followed by eight main α helices (Natesh et al. 
1999). The structure of xylanase is complex, repeated linear polymers of xylopy-
ranosyl groups at numerous carbon positions with different acidic compounds or 
sugars. The efficient and complete hydrolysis of the polymer needs an array of dif-
ferent enzymes with diverse mode of action and specificity (Segato et  al. 2014). 
Endo-1,4-b D-xylanase (E.C. 3.2.1.8) haphazardly cleaves the xylan backbone, and 
xylosidases degrade the monomers of the xylose. α-L-arabinofuranosidases play an 
important role in the removal of the side groups, and the phenolic and acetyl side 
branches were removed by acetylxylan esterases, and they act on complex polymer 
(Drzewiecki et al. 2010; Takahashi et al. 2013). The conversion of xylan into its 
constituent sugar is supported by all these enzymes, and such kind of multifunc-
tional system is commonly found in actinomycetes (Walia et  al. 2015), bacteria 
(Azeri et al. 2010), and fungal species (Driss et al. 2011) (Fig. 12.1).

12  Fungal Xylanases: Sources, Types, and Biotechnological Applications
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12.4  �Fungal Xylanases

Advancement in research on fungus that utilizes xylan, and on its substituted 
enzyme systems involved, is becoming more and more relevant in economic and 
ecological terms. Xylanases are synthesized by both thermophiles and mesophiles 
(Smith et  al. 1991). The chief xylanase producers from fungal genera includes 
Aspergillus, Penicillium, Fusarium, Trichoderma, and Pichia (Yadav et al. 2018; 
Kavya and Padmavathi 2009; Sakthiselvan et al. 2014). White-rot fungi have been 
reported to synthesize extracellular xylanase which can act on broad range of hemi-
cellulose materials such as the following: Coriolus versicolor synthesize mixture of 
xylanolytic enzyme and Phanerochaete chrysosporium synthesize α-glucuronidase 
in large amount (Castanares et al. 1995; El-Nasser et al. 1997). Among the meso-
philic fungi, Trichoderma and Aspergillus are the two genera which are preeminent 
in xylanase production (Shah and Madamwar 2005; Alvarez-Zúñiga et al. 2017). In 
the past few decades, lots of steps and effort have been put to isolate extremophilic 
and thermophilic xylanase-producing bacteria of high stability (Monti et al. 2003; 
Bruins et al. 2001; Rizzatti et al. 2001; Maheshwari et al. 2000; Puchart et al. 1999; 
Niehaus et al. 1999; Andrade et al. 1999; Kalogeris et al. 1998). Various species of 
thermophilic fungi have been reported which include Thermoascus aurantiacus, 
Thermomyces lanuginosus, Talaromyces emersonii, Talaromyces byssochlamydoi-
des, Paecilomyces variotii, Melanocarpus albomyces, Humicola grisea, Humicola 
lanuginosa, Humicola insolens, and Chaetomium thermophile (Ishihara et al. 1997; 
Polizeli et al. 2005; Li et al. 2011; Saxena et al. 2016).

All these species of xylanase-producing fungus retain temperature between 
60 °C and 80 °C and are highly stable (Amir et al. 2013). Even the enzyme produced 
by archaea and eubacteria is stable at high temperature, but the amount of enzyme 
is comparatively low in comparison to fungi (Nigam 2013). Generally, the xylanase 
is more in fungal culture to that of bacteria and yeast. These are mostly glycoproteins 

Fig. 12.1  Conversion of xylan into its constituent sugar (xylose) by xylanase enzyme (Biochem 
draw 12.0)
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and highly active at pH (4.5 to 6.5). They have molecular weight ranging from 6 to 
38 kDa and exist in multiple forms (Chakdar et al. 2016). Although it has been also 
reported that the degree of structural homology is similar in endoxylanases of ther-
mophiles and mesophiles (Collins et al. 2005b; Meruelo et al. 2012). Various authors 
put forth the reason behind the high stability of xylanases in thermophiles is mainly 
due to the presence of N-terminal proline which changes reduction in conforma-
tional freedom, extra disulfide bridges, salt bridges, and presence of hydrophobic 
sides (Wang et al. 2014; Panja et al. 2015). Later on, Hakulinen et al. (2003) studied 
that the thermal stability of xylanases is strictly based on the higher Thr/Ser ratio 
and the number of charged residues which results in enhance polar interactions.

From fungal kingdom, the genus Aspergillus is considered to be the potent pro-
ducer of both β-D-xylosidase and xylanase enzyme, and moreover it has been well-
characterized (Knob et al. 2010; Chakdar et al. 2016). These filamentous fungi are 
of industrial importance as synthesized xylanases are extracellular in nature. 
Additionally, fungal species have high yield in contrast to bacteria and yeast (Motta 
et al. 2013; Patel and Savanth 2015). On exploring xylan-degrading enzyme, many 
new enzymes with unique characteristics for microbes were discovered which 
attained the attention of industries for various applications (Nigam 2013; Anbu 
et al. 2017). Thermophilic fungi, unique microbes which are able to survive at high 
temperature, are generally associated with heaps of agricultural and forestry prod-
ucts. The colonization and distribution of thermostable fungal population present 
in the compost largely depend on a variety of degrading enzymes as fungal strains 
perform the enhanced function in lignocellulose waste on xylan present in it 
(Maheshwari et  al. 2000; Singh et  al. 2016a). Each enzyme has its specialized 
function as well as biological importance (Ali et al. 2017). Xylanases produced by 
thermophilic fungi which are active at alkaline pH have found their application in 
paper and pulp industry during bleaching process and eliminating the need of chlo-
rine; as a result, the process is becoming eco-friendly (Raghukumar et al. 2004; 
Medeiros et al. 2007; Harris and Ramalingam 2010; Gangwar et al. 2014; Kumar 
et al. 2016a, b).

12.5  �Xylanase Production

Two methods, i.e., solid-state and submerged fermentation, are most commonly 
used for the production of xylanases. It has been observed that production of enzyme 
is relatively high in solid-state fermentation (SSF) in comparison with submerged 
fermentation (Suman et al. 2015; Alberton et al. 2009; Ling Ho and Heng 2015). 
Therefore, in recent years, SSF has gained more attention by researcher because of 
commercial and engineering advantages (Subramaniyam and Vimala 2012). SSF 
can be executed on various lignocellulosic wastes like corncob, ragi bran, rice bran, 
soya bran, and wheat bran and have been found effective substrate for xylanase 
production (Kavya and Padmavathi 2009; Soccol et  al. 2017). Thus, SSF is an 
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effective method for xylanase synthesis, predominantly by fungal culture due to the 
advantages like high productivity at low cost as it produces xylanase by consuming 
cheap substrate, which serves as the carbon source as a resultant total cost of the 
process decreases (Harris and Ramalingam 2010; Walia et al. 2017). Therefore, in 
order to reduce the cost of xylanase synthesis, lignocellulosic waste can be used as 
substrate instead of pure xylans (Goyal et al. 2008; Motta et al. 2013).

12.6  �Application of Xylanases

From the past few decades, the biotechnological and commercial use of xylanase 
enzymes has increased remarkably. The major applications of xylanases are in food 
industries, paper industries, feed industries, biofuel production, and pharmaceutical 
industries (Singh et al. 2016b; Yadav et al. 2015a, b; Pedersen et al. 2015; Ahlawat 
et al. 2007). Xylanases are also commercially produced in developed countries such 
as the USA, Canada, Denmark, the Republic of Ireland, Germany, Finland, and 
Japan (Bajpai 2014). The commonly used microorganisms used for this purpose 
include Humicola insolens, Aspergillus niger, and Trichoderma spp. (Polizeli et al. 
2005; Harris and Ramalingam 2010). In the future, it might be used for the biodeg-
radation of organic (Shukla et al. 2016; Kumar et al. 2017; Singh et al. 2017a, b, 
Kaur et al. 2017) and inorganic contaminants (Kumar et al. 2015a; Mishra et al. 
2016; Singh et al. 2016b; Kumar et al. 2016a, Kumar et al. 2016b) such as pesticides 
(Kumar et  al. 2013, 2014b) heavy metal, etc. (Kumar et  al. 2014c. Kumar et  al. 
2015b). However, no study is reported till date. Before 1980, it was used in the 
preparation of the feeds for animals. Nowadays, xylanase along with cellulose and 
pectinase accounts for more than 20% of enzyme market worldwide (Choct 2006; 
M’hamdi et al. 2014; Sahay et al. 2017). Presently, some industries have put forth 
their interest in the development of various efficient enzymatic processes which 
could replace acid hydrolysis treatment of hemicellulose-containing material (Hu 
et al. 2011). The major application of xylanases in industries and their uses were 
described in Table 12.2.

Due to biotechnological potential of xylanase, it has aroused the great interest in 
the industrial sector like ethanol and xylitol synthesis in paper and cellulose indus-
try and liquid fuel, cellular protein, and chemical production in food industry (Yadav 
et al. 2017a, b, c, d; Kulkarni et al. 1999; Guimaraes et al. 2013). Most of the agri-
cultural waste comprises of cellulose and hemicellulose which needs to be con-
verted in constituent sugar (Anwar et al. 2014; Saini et al. 2015). Waste synthesized 
by agro-industry and food industry is available in staggered amount all over the 
world and is becoming the health hazard (Kanimozhi and Nagalakshmi 2014). In 
order to utilize the waste, we require strategic planning and chemicals for hydrolyz-
ing the constituent (Paritosh et al. 2017). Due to xylan being the major polymer in 
the plant structure, xylanases and microbes producing xylanase enzyme can be 
adapted for processing of food, paper pulp, sugar, ethanol, and agro-industries 
(Sridevi et al. 2016; Walia et al. 2017).

S. Singh et al.



413

For the production of ethanol, first delignification of the lignocellulose biomass 
is required, followed by the hydrolysis of cellulose and hemicellulose polymer to 
monosaccharide sugar (Lee et al. 2014; Kumar and Sharma 2017). Hydrolysis can 
be conducted either by acid treatment at elevated temperature or action of enzyme. 
If the acid hydrolysis procedure is assessed in context to cost, it becomes expen-
sive because of energy consumption and equipment (Woiciechowski et al. 2002; 
Timung et  al. 2016; Amin et  al. 2017). The lignocellulosic biomass comprises 
complex constituent that requires action of various enzymes like β-glucosidases, 

Table 12.2  Commercial production of different xylanases with their trade name and industrial 
applications

Trademark/name Company/supplier name Application and uses
Country of 
origin

Allzyme PT Alltech Feed industry America
Amano 90 Amano Pharmaceutical 

industry
Japan

Biofeed Novo Nordisk Feed industry Denmark
Biofeed Plus Novo Nordisk Feed industry Denmark
Bleachzyme F Bicon Paper industry India
Cartazyme Sandoz Charlotte, N.C. Paper industry Switzerland
Ceremix Novo Nordisk Food industry Denmark
Ecopulp AlkoRajamaki Paper industry Finland
Ecopulp Rohn Enzyme 0Y, 

Primalco
Paper industry Finland

Ecosane Biotec Feed industry Thailand
Ecozyme Thomas Swan Paper industry UK
Enzekoxylanase Enzyme Development Feed industry USA
Gamazyme X4000L Gamma Chemie GmbH Brewing industry Germany
Grindazym GP 5000 Danisco Ingredients Feed industry Denmark
Grindazym GP e GV Danisco Ingredients Feed industry India
GS-35, HS70 Iogen Paper industry Canada
Irgazyme 40 Nalco-Genencor, Ciba Paper industry Geigy
Multifect XL Genencor Food industry Netherlands
Pulpzyme, Sanzyme 
PX

Novozymes Paper industry Denmark

Alpelase F Sankyo Paper industry Japan
Sanzyme X Sankyo Food industry Japan
Sternzym HC 46 Stern-Enzym Feed industry Mexico
Optipulp L-8000 Solvay Interox Food industry USA
Rholase 7118 Rohm Food industry Germany
Solvay pentonase Solvay Enzymes Food industry Canada
VAI Xylanase Voest Alpine Paper industry Austria
Xylanase Meito Sankyo Research Nagoya, Japan
Xylanase250 Hankyo Bioindustry Co. 

Ltd
Baking industry Japan
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β-xylosidases, endoglucanases, and xylanases in synergistic manner for proper 
hydrolysis (Yeoman et al. 2010; Hu et al. 2011). Xylanase also has the application 
in paper and pulp industry for bleaching of kraft pulp (Azeri et al. 2010). Generally, 
xylanase documented till date is found to be effective at neutral pH 6 and tempera-
ture 50 °C (Chakdar et al. 2016). In enzyme associated with pulp bleaching pro-
cess, the temperature and pH of incoming pulp are high, thus making the 
thermostable alkaline xylanase the enzyme of interest (Kumar et al. 2014a; Cunha 
et al. 2018a). Moreover, usage of xylanase in paper industry during bleaching pro-
cesses decreased the usage of chemicals and gives enhanced brightness to paper 
(Sharma et al. 2017).

For various processes like juice clarification, extraction of coffee, plant oils, and 
starch requires the amalgam of pectinase, xylanase, and other enzymes (Goswami 
and Rawat 2015; Tallapragada and Venkatesh 2017). Xylanases have various poten-
tials in various industries like paper, animal, food, and biofuel industries (Beg et al. 
2001; Polizeli et al. 2005; Harris and Ramalingam 2010). During the formulation of 
feed, xylanase along with amylase, glucanase, and pectinase decreases the feed vis-
cosity and elevates the nutrient adsorption. Generally, the nutrients are liberated by 
hydrolyzing the nondegradable fibers by enzyme, or they liberate the enzyme 
arrested by fibers (Mathlouthi et al. 2002).

In the last few decades, xylanolytic enzymes have also attained their importance 
in bread-making industry (Butt et al. 2008), in which non-starch and starch hydro-
lyzing enzyme is predominantly used for improving the bread quality. Xylanases 
have been reported to enhance tolerance of dough to diverse flour quality parame-
ters as well as the amendment in processing methods (Ahmad et al. 2014; Cunha 
et al. 2018b). They make the dough softer, decrease the work supplies, and increase 
the quantity of leavened pan bread (Jaekel et al. 2012). These xylanolytic complexes 
have their role in textile industries for plant fiber processing in case of linen and 
hessian (Polizeli et al. 2005). Thus, the overall scenario favors and depicts that fun-
gal xylanases have great potential and industrial advantages and in association with 
other enzymes can aid in gaining profit for industries (Walia et al. 2017; Kumar 
et al. 2018).

12.7  �Cloning of Fungal Xylanase Genes

Advancement in recombinant DNA technology led to the selection of xylanase-
producing bacteria which are more likely suitable for industrial applications (Singh 
et al. 2016b). The key challenge for this technology includes the production of xyl-
anolytic systems and upgrading of fermentation characteristic of bacterial and fun-
gal species by inserting genes for xylosidase and xylanase (Knob et  al. 2014; 
Kapilan and Arasaratnam 2017). Filamentous fungi come in the category of xyla-
nase producers which show both homologous and heterologous gene expression. 
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Their promoter region expresses the enzymes with high yields. It’s not possible to 
attain particular enzyme in its pure form (Ahmed et al. 2009; Mustafa et al. 2016). 
Therefore, such technology can be applied to achieve such purposes. The genes 
coded for xylanases have been cloned in heterologous and homologous hosts with 
the intention to overproduce the enzyme and change its property to be best suited for 
industrial applications (Lambertz et al. 2014; Walia et al. 2017). Various genes have 
been cloned and expressed to enhance the production of enzymes, their specificity, 
substrate utilization, and other industrial applications. E. coli has been selected 
worldwide for heterologous or homologous expression of recombinant proteins and 
gene cloning in xylanase-producing organisms (Adrio and Demain 2014; Chakdar 
et al. 2016). This is due to its widespread cloning vectors, ease of DNA cloning, 
secretion of homologous proteins, and overproduction of recombinant proteins 
directly into the natural hosts. They are used since long times for production of 
recombinant enzymes either extracellularly or intracellularly (Walia et  al. 2017). 
The major drawback of using E.coli as expression vector is that some of the proteins 
are not secreted efficiently (Rosano and Ceccarelli 2014).

However, E.coli has been found as virtuous host for recombinant protein for 
cloning xylanase genes and can be further used to carry out its gene structure 
(Reeves et al. 2000). Other microbes such as S. cerevisiae and P. pastoris are also 
used to secrete high amount of xylanase production in batch mode medium at low 
cost (Damaso et al. 2003; Shang et al. 2017). Due to high-expression characteristics, 
they both emerge as excellent host under its own promoters. One of the major draw-
backs of both the species is its use in large-scale production and health hazards of 
methanol (Motta et al. 2013; Walia et al. 2017).

Usage of xylanases for various roles largely depends on the kinetics, pH stability, 
and optimum temperature (Liao et al. 2015). The recombinant xylanases synthe-
sized by fungal and yeast strains have been reported to show equivalent or enhanced 
properties than the native enzymes. Thermostable enzymes are employed in the 
various processes in the industry, but propagation of thermostable microbes is found 
to be ineffective at large scale because of extreme fermentation conditions (Damaso 
et al. 2003; Kumar et al. 2016a, b). It has been reported that T. reesei and P. pastoris 
express the thermostable xylanase at a high level (Mellitzer et al. 2012; Huang et al. 
2012). In the same way, anaerobic microbes also show the expression of xylanase 
and thus can be used in the fermentation industry. There are chances for unraveling 
the new strains of fungi which can produce recombinant xylanases (Motta et  al. 
2013; Nigam 2013).

Moreover, the advancement in the genetic engineering can help us to amend the 
fungal expression system for hyper-expression of the heterologous xylanase for pro-
duction as well as industrial use. Sometimes, overexpression of recombinant pro-
teins led to site-direct mutagenesis using recombinant technology (Kim et al. 2012; 
Lambertz et al. 2014). Lists of various fungal species along with their cloning vec-
tors and hosts are depicted in Table 12.3.
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12.8  �Conclusions and Future Prospects

Xylanases have extensive range of application in various industries such as paper, 
pulp, animal feed, pharmaceutical, and pulp industries. Due to its varying properties 
of hydrolysis and low toxicity, they are also used in food industry. It also reduces load 
of chemical additives and emulsifiers in food industry. The current review shows that 
production of xylanases in large-scale production is still a challenging task. New 
approaches, such as consensus polymerase chain reaction screening of genome 
sequencing, functional approaches, and study of extremophilic enzymes, will further 
add new prospects to understand the other applications of the xylanase. There is also 
possibility of isolating new fungal species for producing recombinant xylanases. 
Using improved technical advancement systems, development of recombinant fungal 
expression systems by genetic approach will help in hyper-expression of xylanases 
and xylanase families for their production management at the industrial level.
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