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Chapter 1
Endophytic Fungi: Biodiversity, Ecological 
Significance, and Potential Industrial 
Applications

Kusam Lata Rana, Divjot Kour, Imran Sheikh, Anu Dhiman, Neelam Yadav, 
Ajar Nath Yadav, Ali A. Rastegari, Karan Singh, and Anil Kumar Saxena

Abstract Endophytic fungi are abundant and have been reported from all tissues 
such as roots, stems, leaves, flowers, and fruits. In recent years, research into the 
beneficial use of endophytic fungi has increased worldwide. In this chapter, we 
critically review the production of a wide range of secondary metabolites, bioactive 
compounds from fungal endophytes that are a potential alternative source of sec-
ondary plant metabolites and natural producers of high-demand drugs. One of the 
major areas in endophytic research that holds both economic and environmental 
potential is bioremediation. During their life span, microbes adapt fast to environ-
mental pollutants and remediate their surrounding microenvironment. In the last 
two decades, bioremediation has arisen as a suitable alternative for remediating 
large polluted sites. Endophytic fungi producing ligninolytic enzymes have possible 
biotechnological applications in lignocellulosic biorefineries. This chapter high-
lights the recent progress that has been made in screening endophytic fungi for the 
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production and commercialization of certain biologically active compounds of 
 fungal endophytic origin.

1.1  Introduction

Microbes such as fungi, bacteria, cyanobacteria, and actinomycetes belonging to a 
class of plant symbionts residing within plant tissue are referred to as “endophytes” 
(De Bary 1866). From the germination of seeds to the development of fruits, endo-
phytic microorganisms are associated with different parts of the plant, such as the 
spermosphere (in seeds), rhizosphere (roots), caulosphere (in stems), phylloplane 
(in leaves), anthosphere (in flowers), and laimosphere and carposphere (in fruits) 
(Clay and Holah 1999). To adapt to abiotic and biotic stress factors, endophytic 
microbes produce bioactive substances (Guo et al. 2008). The associations of endo-
phytic microbes with plants, and in many cases their tolerance to biotic stress fac-
tors, have correlated with fungal natural products or biologically active metabolites, 
such as enzymes, phytohormones, nutrients, and minerals, and also enhance the 
resistance of the host against herbivores, insects, disease, drought, phytopathogens, 
and variations in temperature and salinity (Breen 1994; Brem and Leuchtmann 
2001; Schulz et al. 2002). Endophytic microbes enhance the resistance of plants to 
abiotic stress factors such as increasing drought tolerance, high temperature, low 
temperature, low pH, high salinity, and the presence of heavy metals in the soil 
(Jalgaonwala et al. 2017). On the other hand, plants provide a protective environ-
ment for the growth and multiplication of endophytic microbes, protection from 
aridness, and longevity via seed transmission to the next generation of host (Khan 
et al. 2015). One widespread phenomenon in nature is the symbiotic association 
between fungus and plant.

Initial information about fungal endophytes was found during the year 1904, 
from endophytes isolated from the seeds of darnel ryegrass (Bezerra et al. 2012; 
Freeman 1904). Endophytic fungi are a diverse and useful group of microorganisms 
reported to colonize plants in different parts of world, such as the Arctic (Fisher 
et al. 1995) and Antarctic (Rosa et al. 2009), and in geothermal lands (Redman et al. 
2002), deserts (Bashyal et al. 2005), oceans (Wang et al. 2006b), rainforests (Strobel 
2002), mangrove swamps (Lin et al. 2008b), and coastal forests (Suryanarayanan 
et al. 2005). Various secondary metabolites, for instance, alkaloids, cyclohexanes, 
flavonoids, hydrocarbons, quinines, and terpenes, have been reported to be synthe-
sized by fungal endophytes and have various biological properties including antimi-
crobial, antioxidant, antidiabetic, anticancer, antihypercholesterolemic, and 
antiproliferative activities and cytotoxicity, and they are used in biofuel manufactur-
ing (Fernandes et  al. 2015; Naik and Krishnamurthy 2010; Ruma et  al. 2013). 
Endophytic fungi produce various kinds of extracellular enzymes, i.e., hydrolases, 
lyases, oxidoreductases, and (Traving et  al. 2015). In another study, endophytic 
microbes producing enzymes could help to initiate the symbiotic process (Hallmann 
et al. 1997). Fungal endophytes have been reported to produce hydrolytic enzymes 
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such as cellulase, lipoidase, pectinase, proteinase, and phenol oxidase so as to 
overcome the defense response against the host (Krishnamurthy and Naik 2017; 
Naik et al. 2009; Oses et al. 2006). Various organic compounds, for instance, cel-
lulose, glucose, hemicelluloses, keratin, lignin, lipids, oligosaccharides, pectin, and 
proteins, have been reported to be degraded by the endophytic fungi (Kudanga and 
Mwenje 2005; Tomita 2003). Endophytic microbes have been reported in almost all 
plant studies (Suman et al. 2016; Verma et al. 2013, 2014a, 2015a). This chapter 
describes the biodiversity of endophytic fungi from diverse plants, producing wide 
groups of extracellular hydrolytic enzymes, bioactive compounds, and secondary 
metabolites useful for plant growth and soil health for  sustainable agriculture, 
for environment bioremediation, and for different processes in industry.

1.2  Biodiversity and Distribution of Fungal Endophytes

 Recently, a greater progress has been made in fungal endophytic research. Fungal 
endophytes have been found to colonize land plants everywhere on earth. They have 
been isolated from boreal forests, tropical climates, diverse xeric environments, 
extreme arctic environments, ferns, gymnosperms, and angiosperms (Mohali et al. 
2005; Selim et  al. 2017; Šraj-Kržič et  al. 2006; Suryanarayanan et  al. 2000). 
Endophytic fungi play an important role in protecting their host from attack by 
phytopathogens and also facilitate the solubilization of the macronutrients phospho-
rus, potassium, and zinc; the fixation of atmospheric nitrogen; and the production of 
various hydrolytic enzymes, ammonia, siderophore, and hydrogen cyanide (HCN) 
(Maheshwari 2011; Rana et al. 2016a, b, 2017; Verma et al. 2015b, c, 2016a, b).

From a review of the diverse research on endophytic fungi diversity, it can be 
concluded that reported fungi belong to diverse phyla including Ascomycota, 
Basidiomycota, and Mucoromycota (Fig. 1.1a). Figure 1.1b presents the  biodiversity 
and abundance of endophytic fungi reported from chick pea, common pea, maize, 
pigeon pea, rice, soybean, tomato, and wheat. Figure 1.1c presents the relative dis-
tribution and biodiversity of endophytic fungi reported from different host plants, 
showing the common and host-specific endophytic fungi. Figure 1.1d is a Venn dia-
gram showing the endophytic fungal diversity of leguminous and nonleguminous 
crops. There are many reports of the microbiomes as niche-specific diversity caused 
by diverse environmental conditions, including low temperature (Yadav 2015; 
Yadav et al. 2015a, b, 2016, 2017c), high temperature (Kumar et al. 2014; Sahay 
et  al. 2017), salinity (Yadav et  al. 2015c, 2018a), drought (Verma et  al. 2014a, 
2016b), pH (Verma et  al. 2013), and multiple extreme conditions (Saxena et  al. 
2016; Verma et al. 2017; Yadav et al. 2015c, 2018b). Suman et al. (2016) reported 
niche-specific endophytic microbes from 17 different host plants. Table 1.1 presents 
the biodiversity of endophytic fungi reported from these diverse host plants.

Impullitti and Malvick (2013) reported fungal endophytes such as Alternaria  
sp., Cladosporium sp., Davidella sp., Diaporthe sp., Epicoccum sp., Fusarium sp., 
Phialophora sp., Phoma sp., Phomopsis sp., Plectosphaerella sp., Trichoderma sp., 
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Fig. 1.1 (a) Phylogenetic tree shows the relationship among different groups of endophytic fungi 
isolated from different host plants. (b) Abundance of endophytic fungi belonging to diverse phyla 
isolated from different host plants. (c) Diversity and distribution of endophytic fungi of different 
crops. (d) Venn diagram showing niche-specific microbes reported from leguminous and nonlegumi-
nous crops. Wheat (Triticum aestivum): (Colla et al. 2015; Comby et al. 2017; Fisher and Petrini 
1992; Keyser et al. 2016; Köhl et al. 2015; Larran et al. 2002, 2007, 2018; Ofek-Lalzar et al. 2016; 
Sieber et al. 1988; Spagnoletti et al. 2017; Wakelin et al. 2004); rice (Oryza sativa): (Naik et al. 2009; 
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Fig. 1.1 (continued) Potshangbam et al. 2017; Tian et al. 2004; Wang et al. 2016; Yuan et al. 2010); 
tomato (Solanum lycopersicum): (Bogner et al. 2016; Chadha et al. 2015; Larran et al. 2001; Tian 
et al. 2014); maize (Zea mays): (Amin 2013; Köhl et al. 2015; Nassar et al. 2005; Pan et al. 2008; 
Potshangbam et  al. 2017; Renuka and Ramanujam 2016; Saunders and Kohn 2008; Xing et  al. 
2018); chickpea (Cicer arietinum): (Narayan et al. 2017; Singh and Gaur 2017); soybean (Glycine 
max): (de Souza Leite et al. 2013; Fernandes et al. 2015; Hamayun et al. 2017; Impullitti and Malvick 
2013; Khan et al. 2011b, 2012b; Rothen et al. 2017; Tenguria and Firodiya 2013; Yang et al. 2014, 
2018; Zhao et al. 2018); common bean (Phaseolus vulgaris): (dos Santos et al. 2016; Gonzaga et al. 
2015; Marcenaro and Valkonen 2016; Parsa et al. 2016; Pierre et al. 2016); pigeon pea (Cajanus 
cajan): (Gao et al. 2011, 2012; Zhao et al. 2012, 2013, 2014)
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Fig. 1.1 (continued)
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and Verticillium sp. in soybean plants; these were found by using culture-dependent 
and culture-independent methods. Tenguria and Firodiya (2013) isolated endo-
phytic fungi, including Acremonium sp., Alternaria alternate, Aspergillus sp., 
Colletotrichum sp., Emericella nidulans, Fusarium sp., Penicillium sp., and Phoma 
sp. from leaves of fresh Glycine max collected from the central region of Madhya 
Pradesh, India. Fernandes et al. (2015) reported the diversity of fungal endophytes 
in the leaves and roots of G. max (dos Santos Souza and dos Santos 2017). In that 
study, Ampelomyces sp., Cladosporium cladosporioides, Colletotrichum gloeospo-
rioides, Diaporthe helianthi, Guignardia mangiferae, and Phoma sp. were isolated 
from the leaves, and the dominance of Fusarium oxysporum, Fusarium solani, and 
Fusarium sp. was greater in the roots (Fernandes et al. 2015). Hamayun et al. (2017) 
reported Porostereum spadiceum AGH786 as a novel gibberellin (GA)-synthesizing 
fungal endophyte that promoted the growth of soybeans and was capable of produc-
ing six types of GAs (Onofre et al. 2013).

Larran et  al. (2007) isolated Alternaria alternata, Cladosporium herbarum, 
Epicoccum nigrum, Cryptococcus sp., Rhodotorula rubra, Penicillium sp., and 
Fusarium graminearum with the highest colonization frequency from wheat (dos 
Santos Souza and dos Santos 2017). Amin (2013) isolated Acremonium sp., 
Aspergillus sp., Botryodiplodia sp., Fusarium sp., Penicillium sp., and Trichoderma 
sp. from the roots of Zea mays (Azevedo et al. 2000). Chadha et al. (2015) isolated 
endophytic fungi identified as Aspergillus niger, Aspergillus sp., A. versicolor, 
Chaetomium globosum, Fusarium fusarioides, F. moniliforme, F. oxysporum, F. 
semitectum, F. solani, Mucor hiemalis, Mucor sp., and Trichoderma pseudokoningii 
from the roots of tomato, and further screened for different plant growth-promoting 
attributes. All the isolates showed that they were capable of solubilizing phospho-
rus, 7 showed siderophore production, 4produced HCN, and 3 produced ammonia. 
The production of indole acetic acid (IAA) was found to be highest in Fusarium 
fusarioides. Renuka and Ramanujam (2016) determined Acremonium zeae, 
Coprinopsis cinerea, Fusarium fujikuroi, Gibberella moniliformis, Nemania sp., 

Fig. 1.1 (continued)

1 Endophytic Fungi: Biodiversity, Ecological Significance, and Potential Industrial…



8

Ta
bl

e 
1.

1 
B

io
di

ve
rs

ity
 o

f 
en

do
ph

yt
ic

 f
un

gi
 is

ol
at

ed
 f

ro
m

 d
iv

er
se

 h
os

t p
la

nt
s 

w
or

ld
w

id
e

H
os

t p
la

nt
E

nd
op

hy
tic

 f
un

gi
R

ef
er

en
ce

T
hu

ja
 p

li
ca

ta
X

yl
ar

ia
A

dn
an

 e
t a

l. 
(2

01
8)

E
re

m
op

hi
la

 lo
ng

if
ol

ia
, 

E
re

m
op

hi
la

 m
ac

ul
at

a
A

lt
er

na
ri

a,
 P

re
us

si
a

Z
af

er
an

lo
o 

et
 a

l. 
(2

01
8)

O
xa

li
s 

co
rn

ic
ul

at
a

A
sp

er
gi

ll
us

, F
us

ar
iu

m
B

ila
l e

t a
l. 

(2
01

8)
Po

pu
lu

s 
tr

ic
ho

ca
rp

a
C

la
do

sp
or

iu
m

, P
en

ic
il

li
um

, T
ri

ch
od

er
m

a
H

ua
ng

 e
t a

l. 
(2

01
8)

A
lt

er
na

ri
a,

 A
sp

er
gi

ll
us

, B
oe

re
m

ia
, C

ha
et

om
iu

m
, C

ha
et

os
ph

ae
ro

ne
m

a,
 C

la
do

sp
or

iu
m

, C
ur

vu
la

ri
a,

 
F

us
ar

iu
m

, P
ae

ci
lo

m
yc

es
, P

en
ic

il
li

um
, P

er
ic

on
ia

, P
ho

m
a,

 P
hy

ll
os

ti
ct

a,
 P

le
os

po
ra

le
s,

 P
re

us
si

a,
 

P
se

ud
od

ip
lo

di
a,

 P
se

ud
op

it
ho

m
yc

es
, P

ur
pu

re
oc

il
li

um
, R

hi
zo

pu
s,

 S
ch

iz
ot

he
ci

um
, T

al
ar

om
yc

es
, 

Tr
ic

ho
de

rm
a,

 T
ru

nc
at

el
la

Pi
et

er
se

 e
t a

l. 
(2

01
8)

C
al

ot
ro

pi
s 

pr
oc

er
a

A
cr

em
on

iu
m

, A
cr

em
on

iu
m

, C
er

co
sp

or
a,

 C
la

do
sp

or
iu

m
, C

ol
le

to
tr

ic
hu

m
, C

ur
vu

la
ri

a,
 D

ip
lo

di
na

, 
G

lo
m

er
el

la
, M

ic
ro

as
cu

s,
 P

ha
eo

ra
m

ul
ar

ia
, R

ho
do

to
ru

la
, X

yl
ar

ia
N

as
ci

m
en

to
 e

t a
l. 

(2
01

5)
P

in
us

 w
al

li
ch

ia
na

A
lt

er
na

ri
a,

 A
nt

ho
st

om
el

la
, A

sp
er

gi
ll

us
, C

ad
op

ho
ra

, C
la

do
sp

or
iu

m
, C

oc
hl

io
bo

lu
s,

 C
on

io
ch

ae
ta

, 
C

on
io

th
yr

iu
m

, E
pi

co
cc

um
, F

im
et

ar
ie

ll
a,

 F
us

ar
iu

m
, G

eo
py

xi
s,

 L
ec

yt
ho

ph
or

a,
 L

ep
to

sp
ha

er
ia

, 
L

op
hi

os
to

m
a,

 L
op

ho
de

rm
iu

m
, M

ic
ro

di
pl

od
ia

, N
eu

ro
sp

or
a,

 N
ig

ro
sp

or
a,

 P
ar

ac
on

io
th

yr
iu

m
, 

Pe
ni

ci
ll

iu
m

, P
es

ta
lo

ti
op

si
s,

 P
ho

m
a,

 P
ho

m
op

si
s,

 P
re

us
si

a,
 P

se
ud

op
le

ct
an

ia
, R

ac
hi

cl
ad

os
po

ri
um

, 
R

os
el

li
ni

a,
 S

cl
er

os
ta

go
no

sp
or

a,
 S

or
da

ri
a,

 S
po

ro
rm

ie
ll

a,
 T

he
rr

ya
, T

ri
ch

ar
in

a,
 T

ri
ch

od
er

m
a,

 
T

hi
el

av
ia

, T
ri

ti
ra

ch
iu

m
, T

ru
nc

at
el

la
, X

yl
ar

ia

Q
ad

ri
 e

t a
l. 

(2
01

4)

B
ra

ss
ic

a 
na

pu
s

A
cr

em
on

iu
m

, A
lt

er
na

ri
a,

 A
rt

hr
in

iu
m

, A
sp

er
gi

ll
us

, A
ur

eo
ba

si
di

um
, B

ot
ry

ti
s,

 C
ha

et
om

iu
m

, 
C

lo
no

st
ac

hy
s,

 C
ry

pt
oc

oc
cu

s,
 D

io
sz

eg
ia

, D
ot

hi
de

a,
 D

ot
hi

or
el

la
, E

pi
co

cc
um

, F
us

ar
iu

m
, 

G
ui

gn
ar

di
a,

 H
yp

ox
yl

on
, L

ep
to

sp
ha

er
ia

, M
ac

ro
ph

om
in

a,
 N

ig
ro

sp
or

a,
 P

en
ic

il
li

um
, P

er
ic

on
ia

, 
P

ho
m

a,
 R

hi
zo

ct
on

ia
, R

hi
zo

pu
s,

 S
im

pl
ic

il
li

um
, S

po
ri

di
ob

ol
us

, S
po

ro
bo

lo
m

yc
es

Z
ha

ng
 e

t a
l. 

(2
01

4)

Ta
xu

s 
x 

m
ed

ia
A

lt
er

na
ri

a,
 C

ol
le

to
tr

ic
hu

m
, G

ib
be

re
ll

a,
 G

lo
m

er
el

la
, G

ui
gn

ar
di

a,
 N

ig
ro

sp
or

a,
 P

ho
m

a,
 P

ho
m

op
si

s
X

io
ng

 e
t a

l. 
(2

01
3)

St
el

le
ra

 c
ha

m
ae

ja
sm

e
A

cr
em

on
iu

m
, A

lt
er

na
ri

a,
 A

po
ro

sp
or

a,
 A

sc
oc

hy
ta

, A
sp

er
gi

ll
us

, B
io

ne
ct

ri
a,

 B
ot

ry
ot

in
ia

, 
C

ad
op

ho
ra

, C
ol

le
to

tr
ic

hu
m

, D
ot

hi
or

el
la

, E
m

er
ic

el
lo

ps
is

, E
uc

as
ph

ae
ri

a,
 E

up
en

ic
il

li
um

, 
F

us
ar

iu
m

, G
eo

m
yc

es
, I

ly
on

ec
tr

ia
, L

ep
to

sp
ha

er
ia

, M
uc

or
, N

ec
tr

ia
, N

eo
ne

ct
ri

a,
 P

ae
ci

lo
m

yc
es

, 
Pa

ra
ph

om
a,

 P
en

ic
il

li
um

, S
ch

iz
op

hy
ll

um
, S

cy
ta

li
di

um
, S

or
da

ri
a,

 S
po

ro
rm

ie
ll

a

Ji
n 

et
 a

l. 
(2

01
3)

Pa
na

x 
gi

ns
en

g
A

sp
er

gi
ll

us
, C

la
do

sp
or

iu
m

, E
ng

yo
do

nt
iu

m
, F

us
ar

iu
m

, P
en

ic
il

li
um

, P
le

ct
os

ph
ae

re
ll

a,
 V

er
ti

ci
ll

iu
m

W
u 

et
 a

l. 
(2

01
3)

K. L. Rana et al.



9

K
ig

el
ia

 a
fr

ic
an

a
A

lt
er

na
ri

a,
 A

sp
er

gi
ll

us
, B

ot
ry

od
ip

lo
di

a,
 C

ha
et

om
iu

m
, C

ol
le

to
tr

ic
hu

m
, C

ur
vu

la
ri

a,
 D

re
ch

sl
er

a,
 

F
us

ar
iu

m
, M

uc
or

, N
ig

ro
sp

or
a,

 N
od

ul
is

po
ri

um
, P

en
ic

il
li

um
, P

es
ta

lo
ti

op
si

s,
 P

ho
m

a,
 P

ho
m

op
si

s,
 

R
hi

zo
pu

s,
 T

ri
ch

od
er

m
a

M
ah

es
w

ar
i a

nd
 

R
aj

ag
op

al
 (

20
13

)

Ja
tr

op
ha

 c
ur

ca
s

A
lt

er
na

ri
a,

 C
ha

et
om

iu
m

, C
ol

le
to

tr
ic

hu
m

, F
us

ar
iu

m
, G

ui
gn

ar
di

a,
 N

ig
ro

sp
or

a
K

um
ar

 a
nd

 K
au

sh
ik

 
(2

01
3)

G
ly

ci
ne

 m
ax

A
lt

er
na

ri
a,

 A
m

pe
lo

m
yc

es
, A

nn
ul

oh
yp

ox
yl

on
, A

rt
hr

in
iu

m
, C

er
co

sp
or

a,
 C

ha
et

om
iu

m
, 

C
la

do
sp

or
iu

m
, C

oc
hl

io
bo

lu
s,

 C
ol

le
to

tr
ic

hu
m

, C
ur

vu
la

ri
a,

 D
av

id
ie

ll
a,

 D
ia

po
rt

he
, D

id
ym

el
la

, 
E

pi
co

cc
um

, E
ut

yp
el

la
, F

us
ar

iu
m

, G
ib

be
re

ll
a,

 G
ui

gn
ar

di
a,

 L
ep

to
sp

or
a,

 M
ag

na
po

rt
he

, 
M

yr
ot

he
ci

um
, N

ec
tr

ia
, N

eo
fu

si
co

cc
um

, N
ig

ro
sp

or
a,

 O
ph

io
gn

om
on

ia
, P

ar
ac

on
io

th
yr

iu
m

, 
P

ha
eo

sp
ha

er
io

ps
is

, P
ho

m
a,

 P
ho

m
op

si
s,

 R
ho

do
to

ru
la

, S
po

ro
bo

lo
m

yc
es

, S
te

m
ph

yl
iu

m
, X

yl
ar

ia

de
 S

ou
za

 L
ei

te
 e

t a
l. 

(2
01

3)

C
an

na
bi

s 
sa

ti
va

A
sp

er
gi

ll
us

, C
ha

et
om

iu
m

, E
up

en
ic

il
li

um
, P

en
ic

il
li

um
K

us
ar

i P
 e

t a
l. 

(2
01

3a
)

Vi
ti

s 
vi

ni
fe

ra
A

bs
id

ia
, A

lt
er

na
ri

a,
 A

sp
er

gi
ll

us
, A

ur
eo

ba
si

di
um

, B
ot

ry
ti

s,
 C

la
do

sp
or

iu
m

, E
pi

co
cc

um
, F

us
ar

iu
m

, 
M

or
ti

er
el

la
, M

uc
or

, P
en

ic
il

li
um

, P
it

ho
m

yc
es

, R
hi

zo
pu

s,
 T

ri
ch

od
er

m
a,

 U
m

be
lo

ps
is

, Z
yg

or
hy

nc
hu

s
Pa

nc
he

r 
et

 a
l. 

(2
01

2)

Tr
ic

hi
li

a 
el

eg
an

s
C

or
dy

ce
ps

, D
ia

po
rt

he
, P

ho
m

op
si

s
R

ho
de

n 
et

 a
l. 

(2
01

2)
Ti

no
sp

or
a 

si
ne

ns
is

A
cr

em
on

iu
m

, A
lt

er
na

ri
a,

 A
sp

er
gi

ll
us

, B
ot

ry
os

ph
ae

ri
a,

 B
ot

ry
ti

s,
 C

la
do

sp
or

iu
m

, C
ha

et
om

iu
m

, 
C

ol
le

to
tr

ic
hu

m
, C

ur
vu

la
ri

a,
 D

re
ch

sl
er

a,
 E

m
er

ic
el

la
, F

us
ar

iu
m

, G
ui

gn
ar

di
a,

 H
um

ic
ol

a,
 M

on
il

ia
, 

N
ig

ro
sp

or
a,

 P
en

ic
il

li
um

, P
se

ud
of

us
ic

oc
cu

m
, T

ri
ch

od
er

m
a,

 V
er

on
ae

a

M
is

hr
a 

et
 a

l. 
(2

01
2)

St
ry

ph
no

de
nd

ro
n 

ad
st

ri
ng

en
s

A
lt

er
na

ri
a,

 A
rt

hr
ob

ot
ry

s,
 A

sp
er

gi
ll

us
, B

ot
ry

os
ph

ae
ri

a,
 C

la
do

sp
or

iu
m

, C
ol

le
to

tr
ic

hu
m

, 
C

on
io

ch
ae

ta
, C

yt
os

po
ra

, D
ia

po
rt

he
, G

ui
gn

ar
di

a,
 F

im
et

ar
ie

ll
a,

 M
as

sa
ri

na
, M

us
co

do
r,

 
N

eo
fu

si
co

cc
um

, N
ig

ro
sp

or
a,

 P
ar

ac
on

io
th

yr
iu

m
, P

en
ic

il
li

um
, P

es
ta

lo
ti

op
si

s,
 P

ho
m

op
si

s,
 P

re
us

si
a,

 
P

se
ud

of
us

ic
oc

cu
m

, S
or

da
ri

a,
 S

po
ro

rm
ie

ll
a,

 T
ri

ch
od

er
m

a,
 X

yl
ar

ia

C
ar

va
lh

o 
et

 a
l. 

(2
01

2)

Sa
pi

nd
us

 s
ap

on
ar

ia
A

lt
er

na
ri

a,
 C

oc
hl

io
bo

lu
s,

 C
ur

vu
la

ri
a,

 D
ia

po
rt

he
, P

ho
m

a,
 P

ho
m

op
si

s
G

ar
cí

a 
et

 a
l. 

(2
01

2)
R

ey
no

ut
ri

a 
ja

po
ni

ca
A

lt
er

na
ri

a,
 A

rt
hr

in
iu

m
, B

io
ne

ct
ri

a,
 C

ol
le

to
tr

ic
hu

m
, D

id
ym

el
la

, G
lo

m
er

el
la

, N
ig

ro
sp

or
a,

 
Pe

st
al

ot
io

ps
is

, P
ho

m
a,

 P
ho

m
op

si
s,

 P
hy

ll
os

ti
ct

a,
 S

ep
to

ri
a,

 X
yl

ar
ia

K
ur

os
e 

et
 a

l. 
(2

01
2)

P
ip

er
 h

is
pi

du
m

A
lt

er
na

ri
a,

 B
ip

ol
ar

is
, C

ol
le

to
tr

ic
hu

m
, G

lo
m

er
el

la
, G

ui
gn

ar
di

a,
 L

as
io

di
pl

od
ia

, M
ar

as
m

iu
s,

 
P

hl
eb

ia
, P

ho
m

a,
 P

ho
m

op
si

s,
 S

ch
iz

op
hy

ll
um

O
rl

an
de

lli
 e

t a
l. 

(2
01

2)
P

ic
ea

 a
bi

es
A

ce
ph

al
a,

 C
ha

la
ra

, C
is

te
ll

a,
 C

la
do

sp
or

iu
m

, E
nt

om
oc

or
ti

ci
um

, F
om

it
op

si
s,

 L
op

ho
de

rm
iu

m
, 

M
ol

li
si

a,
 M

yc
en

a,
 N

eo
ne

ct
ri

a,
 O

ph
io

st
om

a,
 P

ha
ci

di
op

yc
ni

s,
 P

ha
ci

di
um

, P
hi

al
oc

ep
ha

la
, 

R
hi

zo
sc

yp
hu

s,
 R

hi
zo

sp
ha

er
a,

 S
ar

ea
, S

cl
er

oc
on

id
io

m
a,

 S
ir

oc
oc

cu
s,

 V
al

sa
, X

yl
om

el
as

m
a,

 Z
al

er
io

n

K
ou

ko
l e

t a
l. 

(2
01

2)

(c
on

tin
ue

d)

1 Endophytic Fungi: Biodiversity, Ecological Significance, and Potential Industrial…



10

Ta
bl

e 
1.

1 
(c

on
tin

ue
d)

O
pu

nt
ia

 fi
cu

s-
in

di
ca

A
cr

em
on

iu
m

, A
sp

er
gi

ll
us

, C
la

do
sp

or
iu

m
, F

us
ar

iu
m

, M
on

od
ic

ty
s,

 N
ig

ro
sp

or
a,

 P
en

ic
il

li
um

, 
Pe

st
al

ot
io

ps
is

, P
ho

m
a,

 P
ho

m
op

si
s,

 T
et

ra
pl

oa
, X

yl
ar

ia
B

ez
er

ra
 e

t a
l. 

(2
01

2)

N
yc

ta
nt

he
s 

ar
bo

r-
tr

is
ti

s
A

cr
em

on
iu

m
, A

lt
er

na
ri

a,
 A

sp
er

gi
ll

us
, C

ha
et

om
iu

m
, C

la
do

sp
or

iu
m

, C
ol

le
to

tr
ic

hu
m

, D
re

ch
sl

er
a,

 
H

um
ic

ol
a,

 F
us

ar
iu

m
, N

ig
ro

sp
or

a,
 P

en
ic

il
li

um
, P

ho
m

op
si

s,
 R

hi
zo

ct
on

ia
G

on
d 

et
 a

l. 
(2

01
2)

G
in

kg
o 

bi
lo

ba
A

lt
er

na
ri

a,
 C

la
do

sp
or

iu
m

, C
ol

le
to

tr
ic

hu
m

, F
us

ar
iu

m
, P

es
ta

lo
ti

op
si

s,
 P

ey
ro

ne
ll

ae
a,

 P
ho

m
a,

 
P

ho
m

op
si

s,
 P

hy
ll

os
ti

ct
a

T
ho

ng
sa

nd
ee

 e
t a

l. 
(2

01
2)

E
ch

in
ac

ea
 p

ur
pu

re
a

C
er

at
ob

as
id

iu
m

, C
la

do
sp

or
iu

m
, C

ol
le

to
tr

ic
hu

m
, F

us
ar

iu
m

, G
lo

m
er

el
la

, M
yc

ol
ep

to
di

sc
us

R
os

a 
et

 a
l. 

(2
01

2)
C

in
na

m
om

um
 

ca
m

ph
or

a
A

lt
er

na
ri

a,
 A

rt
hr

in
iu

m
, A

rt
hr

ob
ot

ry
s,

 A
sp

er
gi

ll
us

, C
ha

et
om

iu
m

, C
ha

et
op

ho
m

a,
 C

la
do

sp
or

iu
m

, 
C

ur
vu

la
ri

a,
 D

re
ch

sl
er

a,
 G

li
om

as
ti

x,
 H

um
ic

ol
a,

 N
ig

ro
sp

or
a,

 P
en

ic
il

li
um

, P
er

ic
on

ia
, 

Pe
st

al
ot

io
ps

is
, P

ha
ci

di
um

, P
ho

m
op

si
s,

 P
hy

ll
os

ti
ct

a,
 S

ta
ch

yb
ot

ry
s,

 T
ri

ch
od

er
m

a

K
ha

rw
ar

 e
t a

l. 
(2

01
2)

A
ce

r 
ta

ta
ri

cu
m

 s
ub

sp
. 

gi
nn

al
a

A
lt

er
na

ri
a,

 C
la

do
sp

or
iu

m
, E

pi
co

cc
um

, F
us

ar
iu

m
, N

eu
ro

sp
or

a,
 P

en
ic

il
li

um
, P

ho
m

a,
 P

ho
m

op
si

s,
 

Tr
ic

ho
de

rm
a

Q
i e

t a
l. 

(2
01

2)

Ty
lo

ph
or

a 
in

di
ca

A
lt

er
na

ri
a,

 C
ha

et
om

iu
m

, C
ol

le
to

tr
ic

hu
m

, N
ig

ro
sp

or
a,

 T
hi

el
av

ia
Ta

m
ur

a 
et

 a
l. 

(2
01

1)
Ta

xu
s 

gl
ob

os
a

A
lt

er
na

ri
a,

 A
sp

er
gi

ll
us

, A
nn

ul
oh

yp
ox

yl
on

, C
er

co
ph

or
a,

 C
oc

hl
io

bo
lu

s,
 C

ol
le

to
tr

ic
hu

m
, C

on
op

le
a,

 
C

op
ri

ne
ll

us
, D

al
di

ni
a,

 H
yp

oc
re

a,
 H

yp
ox

yl
on

, L
ec

yt
ho

ph
or

a,
 L

et
en

dr
ae

a,
 M

as
sa

ri
na

, N
ig

ro
sp

or
a,

 
Pe

ni
ci

ll
iu

m
, P

hi
al

op
ho

ro
ph

om
a,

 P
ho

m
a,

 P
ol

yp
or

us
, S

po
ro

rm
ia

, T
ra

m
et

es
, T

ri
ch

op
ha

ea
, X

yl
ar

ia
, 

X
yl

om
el

as
m

a

R
iv

er
a-

O
rd

uñ
a 

et
 a

l. 
(2

01
1)

So
la

nu
m

 c
er

nu
um

A
rt

hr
ob

ot
ry

s,
 B

ip
ol

ar
is

, B
ot

ry
os

ph
ae

ri
a,

 C
an

di
da

, C
er

co
sp

or
a,

 C
ol

le
to

tr
ic

hu
m

, C
op

ri
ne

ll
us

, 
C

ry
pt

oc
oc

cu
s,

 C
ur

vu
la

ri
a,

 D
ia

tr
yp

el
la

, E
de

ni
a,

 E
ut

yp
el

la
, F

us
ar

iu
m

, G
lo

m
er

el
la

, L
ep

to
sp

ha
er

ia
, 

M
uc

or
, P

et
ri

el
la

, P
ho

m
a,

 M
ey

er
oz

ym
a,

 F
la

vo
do

n,
 H

ap
al

op
il

us
, H

oh
en

bu
eh

el
ia

, K
w

on
ie

ll
a,

 
O

ud
em

an
si

el
la

, P
ha

ne
ro

ch
ae

te
, P

hl
eb

ia
, P

hl
eb

io
ps

is
, S

ch
iz

op
hy

ll
um

V
ie

ir
a 

et
 a

l. 
(2

01
1)

L
ip

pi
a 

si
do

id
es

A
lt

er
na

ri
a,

 C
ol

le
to

tr
ic

hu
m

, C
or

yn
es

po
ra

, C
ur

vu
la

ri
a,

 D
re

ch
sl

er
a,

 F
us

ar
iu

m
, G

ui
gn

ar
di

a,
 

M
ic

ro
as

cu
s,

 P
ae

ci
lo

m
yc

es
, P

er
ic

on
ia

, P
ho

m
a,

 P
ho

m
op

si
s

de
 S

iq
ue

ir
a 

et
 a

l. 
(2

01
1)

L
ed

um
 p

al
us

tr
e

A
rt

hr
in

iu
m

, F
us

ar
iu

m
, L

ec
yt

ho
ph

or
a,

 P
en

ic
il

li
um

, S
or

da
ri

a,
 S

ph
ae

ri
ot

hy
ri

um
Te

je
sv

i e
t a

l. 
(2

01
1)

D
en

dr
ob

iu
m

 
th

yr
si

flo
ru

m
A

lt
er

na
ri

a,
 C

ol
le

to
tr

ic
hu

m
, E

pi
co

cc
um

, F
us

ar
iu

m
, G

lo
m

er
el

la
, L

ep
to

sp
ha

er
ul

in
a,

 P
es

ta
lo

ti
op

si
s,

 
P

ho
m

a,
 R

hi
zo

pu
s,

 X
yl

ar
ia

X
in

g 
et

 a
l. 

(2
01

1)

D
en

dr
ob

iu
m

 
de

vo
ni

an
um

A
cr

em
on

iu
m

, A
rt

hr
in

iu
m

, C
la

do
sp

or
iu

m
, F

us
ar

iu
m

, G
lo

m
er

el
la

, L
ep

to
sp

ha
er

ul
in

a,
 P

ho
m

a,
 

Pe
st

al
ot

io
ps

is
, R

hi
zo

pu
s,

 T
ri

ch
od

er
m

a,
 X

yl
ar

ia
X

in
g 

et
 a

l. 
(2

01
1)

H
os

t p
la

nt
E

nd
op

hy
tic

 f
un

gi
R

ef
er

en
ce

K. L. Rana et al.



11

A
qu

il
ar

ia
 s

in
en

si
s

C
ha

et
om

iu
m

, C
la

do
sp

or
iu

m
, C

on
io

th
yr

iu
m

, E
pi

co
cc

um
, F

us
ar

iu
m

, H
yp

oc
re

a,
 L

as
io

di
pl

od
ia

, 
L

ep
to

sp
ha

er
ul

in
a,

 P
ar

ac
on

io
th

yr
iu

m
, P

ha
eo

ac
re

m
on

iu
m

, P
ho

m
a,

 P
ic

hi
a,

 R
hi

zo
m

uc
or

, X
yl

ar
ia

C
ui

 e
t a

l. 
(2

01
1)

T
he

ob
ro

m
a 

ca
ca

o
A

cr
em

on
iu

m
, A

rt
hr

in
iu

m
, A

sp
er

gi
ll

us
, C

lo
no

st
ac

hy
s,

 C
ol

le
to

tr
ic

hu
m

, C
on

io
th

yr
iu

m
, C

ur
vu

la
ri

a,
 

C
yl

in
dr

oc
la

di
um

, F
us

ar
iu

m
, G

li
oc

la
di

um
, L

as
io

di
pl

od
ia

, M
yr

ot
he

ci
um

, P
ae

ci
lo

m
yc

es
, 

Pe
ni

ci
ll

iu
m

, P
es

ta
lo

ti
op

si
s,

 P
ho

m
a,

 S
ep

to
ri

a,
 T

al
ar

om
yc

es
, T

ol
yp

oc
la

di
um

, T
ri

ch
od

er
m

a,
 

Ve
rt

ic
il

li
um

H
an

ad
a 

et
 a

l. 
(2

01
0)

D
en

dr
ob

iu
m

 
lo

dd
ig

es
ii

A
cr

em
on

iu
m

, A
lt

er
na

ri
a,

 A
m

pe
lo

m
yc

es
, B

io
ne

ct
ri

a,
 C

er
co

ph
or

a,
 C

ha
et

om
el

la
, C

la
do

sp
or

iu
m

, 
C

ol
le

to
tr

ic
hu

m
, D

av
id

ie
ll

a,
 F

us
ar

iu
m

, L
as

io
di

pl
od

ia
, N

ig
ro

sp
or

a,
 P

ar
ac

on
io

th
yr

iu
m

, 
P

yr
en

oc
ha

et
a,

 S
ir

od
es

m
iu

m
, V

er
ti

ci
ll

iu
m

, X
yl

ar
ia

C
he

n 
et

 a
l. 

(2
01

0)

C
ol

ob
an

th
us

 q
ui

te
ns

is
A

sp
er

gi
ll

us
, C

ad
op

ho
ra

, D
av

id
ie

ll
a,

 E
nt

ro
ph

os
po

ra
, F

us
ar

iu
m

, G
eo

m
yc

es
, G

yo
er

ffy
el

la
, 

M
ic

ro
do

ch
iu

m
, M

yc
oc

en
tr

os
po

ra
, P

ha
eo

sp
ha

er
ia

R
os

a 
et

 a
l. 

(2
01

0)

D
ra

ca
en

a 
ca

m
bo

di
an

a,
 

A
qu

il
ar

ia
 s

in
en

si
s

B
ot

ry
os

ph
ae

ri
a,

 C
al

ca
ri

sp
or

iu
m

, C
ep

ha
lo

sp
or

iu
m

, C
ol

le
to

tr
ic

hu
m

, F
us

ar
iu

m
, G

eo
tr

ic
hu

m
, 

G
on

yt
ri

ch
um

, G
ui

gn
ar

di
a,

 M
or

ti
er

el
la

, R
hi

no
cl

ad
ie

ll
a,

 M
yc

el
ia

, P
le

os
po

ra
G

on
g 

an
d 

G
uo

 
(2

00
9)

A
rt

em
is

ia
A

lt
er

na
ri

a,
 C

ol
le

to
tr

ic
hu

m
, P

ho
m

op
si

s,
 X

yl
ar

ia
H

ua
ng

 e
t a

l. 
(2

00
9)

M
ed

ic
in

al
 p

la
nt

s
A

lt
er

na
ri

a,
 C

ol
le

to
tr

ic
hu

m
, P

ho
m

a,
 P

ho
m

op
si

s,
 X

yl
ar

ia
le

s
H

ua
ng

 e
t a

l. 
(2

00
8)

A
eg

le
 m

ar
m

el
os

A
lt

er
na

ri
a,

 A
sp

er
gi

ll
us

, C
ha

et
om

iu
m

, C
ur

vu
la

ri
a,

 D
re

ch
sl

er
a,

 E
m

er
ic

el
la

, F
us

ar
iu

m
, N

ig
ro

sp
or

a,
 

R
hi

zo
ct

on
ia

, S
te

ne
ll

a
G

on
d 

et
 a

l. 
(2

00
7)

1 Endophytic Fungi: Biodiversity, Ecological Significance, and Potential Industrial…



12

Penicillium sp., Cladosporium oxysporum, Rigidoporus vinctus, Colletotrichum 
boninense, Sarocladium zeae, Epicoccum sorghinum, Curvularia lunata, 
Scopulariopsis gracilis, and Colletotrichum gloeosporioides from the leaf, stem, 
and root fragments of different varieties of maize. Wang et al. (2016) isolated endo-
phytic fungal and bacterial strains from sprouts, stems, and roots simultaneously in 
rice plants. Aspergillus, Cryptococcus, Eurotium, Fusarium, Penicillium, Septoria, 
and Wallemia were the most frequently detected genera in rice plants. The dominant 
fungal genera, including Aspergillus, Penicillium, and Trichosporon, coexisted in 
the stems and roots. Furthermore, Cryptococcus, Fusarium, Penicillium, Pesta-
lotiopsis, and Verticillium were detected in the sprouts, stems, and roots simultane-
ously. Xing et al. (2018) isolated Alternaria alternata, Aspergillus flavus, A. niger, 
Bipolaris zeicola, Chaetomium murorum, Cladosporium sphaerospermum, 
Fusarium proliferatum, F. verticillioides, Penicillium aurantiogriseum, P. oxalicum, 
P. polonicum, Sarocladium zeae, and Trichoderma gamsii from maize seeds.

1.3  Biotechnological Applications of Endophytic Fungi

Over the past several decades, endophytic fungi separated from numerous plant 
sources have been recognized as valuable sources of natural products for agronomy, 
industry, and biomedical development, and also produce extracellular hydrolase 
enzymes, such as pectinases, cellulases, lipases, amylases, laccases, xylanase, and 
proteases, as one of the resistance mechanisms against pathogenic organisms and 
for gaining nutrition from the host. From medicinal plants, endophytic fungi synthe-
sizing hydrolytic enzymes have been reported (Khan et  al. 2017; Saxena et  al. 
2015a; Sunitha et al. 2013; Yadav et al. 2012). Extracellular enzymes target various 
macromolecules, e.g., lignin, proteins, carbohydrates, sugar-based polymers, to 
break them down into simpler ones. The production of extracellular enzymes has 
been measured qualitatively and quantitatively, from using agar plate-based to 
applying advanced spectrophotometric methods (Yadav et al. 2017a, b).

1.3.1  Bioresources of Hydrolytic Enzymes

Endophytic microorganisms are well known, as they spend the whole of their life 
cycle inhabiting the inside of tissues in host plants without causing them any obvi-
ous harm (Bezerra et al. 2012; Kaul et al. 2013; Tan and Zou 2001; Yadav et al. 
2016). The endophytic microbes guard their host plants against attack by other 
microbes, insects, and herbivore animals, furthermore providing other benefits, for 
instance, the production of numerous plant growth regulators, enzymes, and other 
chemical compounds (Azevedo et al. 2000; Bezerra et al. 2012). In addition, these 
endophytic microbes have also been reported to produce diverse metabolites, 
including alkaloids, flavonoids, isocoumarin derivatives, peptides, phenolic acids, 
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phenols, quinones, steroids, and terpenoids (Rana et al. 2016b; Yadav et al. 2015). 
In recent times, fungal endophytes have become responsive, as they are an appropri-
ate reserve for the degradation of polycyclic aromatic hydrocarbons, which are well 
known as a toxic class of environmental contaminants (Bezerra et  al. 2012; Dai 
et al. 2010). Additionally, endophytes are also known for the production of various 
extracellular enzymes, such as cellulases, esterases, lipases, pectinases, proteases, 
and xylanases, which play an important role in protecting themselves from the 
defense response of the host or in attaining nourishment from the soil (Bezerra et al. 
2012; Suto et al. 2002). Therefore, endophytes are an enormous source of naturally 
active products that are of marked significance to the agricultural, industrial, and 
medical sectors (Hazalin et al. 2012). The major industries that utilize microbial 
enzymes include biomaterials, cellulose, cosmetics, detergents, energy, fine chemi-
cals, food, leather, paper, pharmaceuticals, and textiles, (Bezerra et al. 2012; Suto 
et  al. 2002; Yadav et  al. 2015). Table  1.2 shows the diversity and abundance of 
diverse extracellular hydrolytic enzyme production by different groups of endo-
phytic fungi reported from diverse host plants worldwide.

1.3.1.1  Cellulases

Cellulases are basically the enzymes that catalyze cellulolysis, which involves the 
degradation of the cellulose and certain related polysaccharides. Certain bacteria, 
fungi, and protozoans are known to synthesize the enzyme (Singh 2006). Different 
types of cellulases are known that differ from each other structurally and mecha-
nistically, and these include endocellulases, exocellulases, also known as cello-
biohydrolases, cellobiases or beta-glucosidases, oxidative cellulases, cellulose 
phos phorylases. Cellulases from microbes find diverse applications such as use 
with a supplement of hemicellulases, pectinases, ligninases, and associated 
enzymes (Adav and Sze 2014). In addition to lignocellulosic bioenergy, cellulase 
are important in the agricultural, animal feed, brewing, food, laundry, paper and 
pulp, textile, and wine industries (Adav and Sze 2014; Bhat and Bhat 1997; 
Mandels 1985; Ryu and Mandels 1980). The most commonly studied cellulolytic 
fungi include the species of Aspergillus, Humicola, Penicillium, and Trichoderma 
(Sukumaran et al. 2005).

Peng and Chen (2007), obtained 141 isolates of fungal endophytes from the 
stems of seven oleaginous plant species. These isolates belonged to genera includ-
ing Cephalosporium, Microsphaeropsis, Nigrospora, Phomopsis, and Sclerocystis. 
The oil content of these isolates ranged from 21.3% to 35.0% of dry cell weight. 
Further, the strains also produced cellulase in addition to microbial oil when cul-
tured on solid-state medium consisting of steam-exploded wheat straw, wheat bran, 
and water. The yield of cellulase ranged from 0.31 to 0.69 filter paper unit per gram 
of initial dry substrate. Bezerra et al. (2012) isolated 44 isolates of fungal endo-
phytes from Opuntia ficus-indica and assessed their ability to synthesize hydrolytic 
enzymes such as cellulases, pectinases, proteases, and xylanases. The cellulase 
 producers were identified as Acremonium terricola, Aspergillus japonicas, 
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Table 1.2 Production of hydrolytic extracellular enzymes from fungal endophytes

Fungal endophyte Enzyme Plant host References

Colletrotrichum, Fusarium, Phoma, 
Penicillium

Asparaginase Cymbopogon 
citratus, 
Murraya koenigii

Chow and Ting 
(2015)

Aspergillus Amylase Khan et al. (2017)
Pochonia chlamydosporia Protease Escudero et al. 

(2016)
Colletotrichum gloeosporioides Amylase, 

chitinase, 
protease

Camellia 
sinensis

Rabha et al. 
(2014)

Acremonium, Alternaria, Aspergillus, 
Chaetomium, Cladosporium, 
Colletotrichum, Cylindrocephalum, 
Discosia, Drechslera, Fusarium, 
Fusicoccum, Mycelia sterilia, 
Myrothecium, Nigrospora sphaerica, 
Paecilomyces, Pestalotiopsis, Phoma, 
Phyllosticta, Talaromyces emersonii, 
Xylaria

Amylase, 
cellulase, 
laccase, lipase, 
pectinase, 
protease

Alpinia 
calcarata, Bixa 
orellana, 
Calophyllum 
inophyllum, 
Catharanthus 
roseus

Sunitha et al. 
(2013)

Aspergillus, Bisporus, Chaetomium, 
Cladosporium, Colletotrichum, 
Curvularia, Fusarium, Rhizoctonia

Amylase, 
cellulose, 
lipase, protease

Azadirachta 
indica, Citrus 
limon, 
Gossypium, 
Magnolia

Patil et al. (2015)

Cladosporium cladosporioides, 
Colletotrichum carssipes, C. falcatum, 
C. gloeosporioides, Curvularia 
brachyspira, Drechslera hawaiiensis, 
Lasiodiplodia theobromae, Nigrospora 
sphaerica, Phyllosticta, Xylariales

Amylase, 
cellulase, 
laccase, lipase, 
protease

Adhatoda vasica, 
Coleus 
aromaticus, 
Costus igneus, 
Lawsonia 
inermis

Amirita et al. 
(2012)

Amanita muscaria, Boletus luridus, 
Hydnum rufescens, Lactariusa 
cerrimus, Piceirhiza bicolorata, 
Piloderma byssinum, P. fallax, 
Russulachloroides, Suillusluteus luteus

Protease Sporocarp Nygren et al. 
(2007)

Colletotrichum sp., Fusarium solani, 
Macrophomina phaseolina, Nigrospora 
sphaerica

Amylase, 
cellulase, 
protease

Catharanthus 
roseus

Ayob and 
Simarani (2016)

Acremonium curvulum, Aspergillus 
niger, Cochliobolus lunatus, 
Gibberella baccata, Myrmecridium 
schulzeri, Myrothecium verrucaria, 
Penicillium commune, Phoma 
putaminum, Pithomyces atro-olivaceus, 
Trichoderma piluliferum

Cellulase, 
lipase, 
protease, 
xylanase

Bauhinia 
forficata

Bezerra et al. 
(2015)

Alternaria alternate, Penicillium 
chrysogenum

Amylase, 
cellulase

Asclepias sinaica Fouda et al. 
(2015)

(continued)
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Cladosporium cladosporioides, Fusarium lateritium, Nigrospora sphaerica, 
Penicillium aurantiogriseum, P. glandicola, Pestalotiopsis guepini, and Xylaria sp.

Cabezas et  al. (2012) isolated 100 fungal endophytes from Espeletia sp. and 
estimated their cellulolytic potential. The research showed that only four isolates 
could synthesize cellulases, of which Penicillium glabrum displayed the highest 
cellulolytic activity, with the highest CMCase, exoglucanase, and β-glucosidase 
enzyme activities of 44.5 U/ml, 48.3 U/ml, and 0.45 U/ml respectively. Syed et al. 
(2013) identified the endophytic fungus Penicillium sp. CPF2 (NFCCI 2862). 
Different substrates were assessed for optimal synthesis of cellulase by CPF2. The 
best activities for FPase (1.2 IU/ml), endocellulase (19 IU/ml), xylanase (40 IU/ml), 
and β-glucosidase (2.8 IU/ml) with a protein content of 0.86 mg/ml were detected 
when cellulose (1.5 % w/v) was used in association with peptone (0.2 % w/v) in the 
growth medium. Optimal temperature and pH for the extracellular cellulase produc-
tion were 28 °C and 5.5 °C respectively. Onofre et al. (2013) evaluated the pro-
duction of cellulases by endophytic fungi, Fusarium oxysporum isolated from 
Baccharis dracunculifolia. The results showed that after 55 days of fermentation, 
the  maximum peak of enzyme production with a yield of 55.21 ± 10.54 IU/g of 
fermented substrate was at pH 5.96.

Patil et  al. (2015) screened Aspergillus sp., Bisporus sp., Chaetomium sp., 
Cladosporium sp., Colletotrichum sp., Curvularia sp., Fusarium sp., and Rhizoctonia 
sp., isolated from seven medicinal plants and screened both qualitatively and quan-
titatively for the synthesis of hydrolytic extracellular enzymes, such as amylases, 
cellulases, lipases, and proteases. The study revealed that Aspergillus sp., Bisporus 
sp., Cladosporium sp., and Colletotrichum sp. showed cellulase production qualita-
tively, whereas quantitatively, Rhizoctonia sp. produced maximum cellulase of 
about 0.3 U/ml. However, other isolates, including Bisporus sp., Chaetomium sp., 
and Fusarium sp., exhibited moderate to low activity. Toghueo et al. (2017) reported 
the fungal endophytes from Cameroonian medicinal plants and screened for their 
extracellular cellulase activity. The two assays, enzyme and plate-clearing, were 
used for the screening of effective cellulolytic fungal endophytes. Penicillium sp., 
and P. chermesimum were the most effective producers.

Table 1.2 (continued)

Fungal endophyte Enzyme Plant host References

Aspergillus terreus L-aspar- aginase Sueada monoica Kalyanasundaram 
et al. (2015)

Hebelomaincarnatulum, Laccaria 
bicolor, Phialocephala fortinii, 
Umbelopsis isabellina

Protease Mayerhofer et al. 
(2015)

Hormonema sp., Neofusicoccum 
luteum, Neofusicoccum australe, 
Ulocladium sp.

Laccase Eucalyptus Fillat et al. (2016)

Acremonium sp., Alternaria sp., 
Aspergillus sp., Fusarium sp., 
Pestalotiopsis sp.

Amylase, 
cellulase, lipase

Acanthus 
ilicifolius, 
Acrostichum 
aureum

Maria et al. (2005)
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1.3.1.2  Xylanase

Xylanases are glycosidases comprising endo-1,4-b-xylanaseand β-xylosidase and 
catalyzing the endohydrolysis of 1,4-b- D-xylosidic linkages in xylan (Collins et al. 
2005; Thomas et  al. 2017). These enzymes basically cause the hydrolysis of the 
xylan present in the hemicelluloses of plants and convert them into monomeric sug-
ars; this function is not performed alone, but rather with the assistance of certain 
other hydrolytic enzymes, for instance, acetyl xylan esterase, α-L- arabinofuranosi-
dase, α-glucuronidase, and phenolic acid, including ferulic and p-coumaric acid 
esterase (Collins et al. 2005; Thomas et al. 2017). The chief substrate of xylanases 
is xylan, which is the key structural polysaccharide of plant cells and the second 
most abundant polysaccharide in nature, accounting for approximately one third of 
all renewable organic carbon on earth (Collins et al. 2005; Prade 1996). Xylanases 
possess numerous applications in the food, de-inking, biofuels, baking, animal feed, 
and paper and pulp industries (Kumar et al. 2017a; Polizeli et al. 2005; Singh et al. 
2016; Suman et al. 2015; Thomas et al. 2017). In the baking industry, xylanases 
improve the strength of the gluten and ultimately the superiority of the bread as they 
are capable of absorbing water and collaborating with gluten (Butt et al. 2008; Gray 
and Bemiller 2003; Harris and Ramalingam 2010; Nuyens et al. 2001). Xylanases 
are also used with other enzymes to improve the yield of juices from fruit and veg-
etables; the firmness of fruit pulp; and the regaining of aromas, edible dyes, essential 
oils, hydrolysis substances, mineral salts, etc. (Polizeli et al. 2005). These enzymes 
have been repoprted from different microorganisms such as algae, arthropods, bac-
teria, fungi, gastropods, and protozoa (Collins et al. 2005). 

Wipusaree et al. (2011) isolated 54 endophytic fungi from the Thai medicinal 
plant, Croton oblongifolius Roxb, and screened the isolates for xylanase production. 
In primary screening, xylanase activity was found in 30 isolates by growing them on 
solid xylan agar plates. After secondary screening for xylanase activity in xylan 
liquid culture, the isolate with the highest xylanase production, identified as 
Alternaria alternata, was selected for further evaluation. The study revealed this 
xylanase to be monomeric, possessing molecular weight of 54.8 kDa. It showed a 
broadly similar substrate affinity to other xylanases, with a Km of 2.37 mg/ml, and 
was thermostable up to 40 °C. The enzyme was also shown to be inhibited to some 
extent by all tested divalent metal cations, but especially by Hg2+ and Cu2+. Sorgatto 
et  al. (2012) characterized xylanase synthesized by the endophytic fungus 
Aspergillus terreus, isolated from Memora peregrine. The research revealed an opti-
mal temperature of 55 °C and a pH value of 4.5. The enzyme was thermotolerant at 
45 °C and 50 °C, with a half-life of 55 and 36 min respectively. Tasia and Melliawati 
(2017) found Acremonium sp. and a member of the class Coelomycetes to be xyla-
nase producers. The study by Marques et al. (2018) also reported Acremonium sp., 
Botryosphaeria sp., Chaetomium sp., Cladosporium cladosporioides, Colletotrichum 
crassipes, Coniella petrakii, Coniothyrium minitans, Myrothecium gramineum, 
Paecilomyces sp., Phomopsis stipata, Saccharicola sp., Trichoderma viridae, and 
Ustilaginoidea sp. to be xylanase producers.
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1.3.1.3  Lipase

Lipases belong to serine hydrolases and do not require any cofactors. They are 
involved in diverse conversion reactions, such as transesterification, inter esterifica-
tion, esterification, aminolysis, alcoholysis, and acidolysis (Gopinath et al. 2013; 
Panjiar et al. 2017; Savitha et al. 2007; Yadav et al. 2017a). Triacylglycerol acyl 
hydrolases are lipases that are involved in the hydrolysis of fats and oils (Gopinath 
et al. 2013; Singh and Mukhopadhyay 2012). Lipases are of great importance to the 
food industry. Phospholipases are being used in treating egg yolk, which is useful 
for the processing of baby foods, custard, dressings, and mayonnaise; for dough 
preparation; and for sauces, such as Hollandaise, Béarnaise, and Café de Paris 
(Aravindan et  al. 2007; Reimerdes et  al. 2004). Lipase-modified butter fat has 
extensive applications in different food processes (Aravindan et  al. 2007; Uhlig 
1998). Chocolates with cocoa butter substitutes, bread, structured lipids such as 
human milk fat replacers, low calorie health oils, and nutraceuticals are some of 
lipase-mediated food products available (Aravindan et al. 2007). The addition of 
lipases to noodles results in appreciably softer textural characteristics (Undurraga 
et  al. 2001). Furthermore, lipases are also used to increase the flavor content of 
bakery products (Ray 2012).

Lipases are produced by bacteria, yeasts, protozoans, molds, and even viruses 
are known to encode genes for lipases (Abrunhosa et al. 2013; Anbu et al. 2011; 
Ginalska et al. 2004). The production of lipases has been demonstrated in ascomy-
cetes and coelomycetes (Gopinath et al. 2013). Lipolytic activity has been shown in 
Rhizopus sp., Penicillium sp., Mucor sp., Lipomyces starkeyi, Humicola lanuginose, 
Cunninghamella verticillata, Candida rugosa, Acremonium strictum, and 
Aspergillus sp. (Tsujisaka et al. 1973; Jacobsen et al. 1990; Petrović et al. 1990; 
Sztajer and Maliszewska 1989). Microbial lipases are of commercial importance 
because of the broader availability, greater stability, and low production costs com-
pared with plant and animal lipases.

Torres et  al. (2003) rendered a mycelium-bound lipase from Rhizopus oryzae 
that catalyzed the esterification of fatty acids in iso-octane. The enzyme was active 
over the entire pH range studied, from pH 3 to pH 8, but maximal activity was 
obtained at pH 4 and pH 7. The study by Costa-Silva et  al. (2011) deals with 
improvement in the production and stabilization of lipases from the endophytic 
fungi Cercospora kikuchii isolated from Tithonia diversifolia. Amirita et al. (2012) 
reported Colletotrichum falcatum, Curvularia brachyspora, Curvularia vermifor-
mis, Drechslera hawaiiensis, and Phyllosticta sp. to be producers of lipase enzymes 
from different medicinal plants. Panuthai et al. (2012) screened 65 endophytic fun-
gal isolates for the production of lipases, of which only 10 were found to produce 
extracellular lipases, with Fusarium oxysporum, isolated from the leaves of Croton 
oblongifolius Roxb. (Plao yai), yielding the highest level. The enriched lipase 
showed optimal activity at 30 °C and pH 8, and was reasonably stable up to 40 °C 
and at a pH of 8.0–12. Venkatesagowda et al. (2012) isolated species of Trichoderma, 
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Stachybotrys, Sclerotinia, Rhizopus, Phyllosticta, Phomopsis, Phoma, Pestalotiopsis, 
Penicillium, Mucor, Lasiodiplodia, Fusarium, Drechslera, Curvularia, Colleto-
trichum, Cladosporium, Chalaropsis, Aspergillus, and Alternaria, showing strong 
lipolytic activity. Sunitha et  al. (2013) isolated lipase-producing Acremonium 
 implicatum, Alternaria sp., Aspergillus niger, Chaetomium sp., Colletotrichum fal-
catum, C. gleosporoides, C. truncatum, Cylindrocephalum sp., Drechslera sp., 
Fusarium oxysporum, Isaria sp., Mycelia streilia sp., Penicillium sp., Pestalotiopsis 
sp., Phoma sp., Phomopsis longicolla, and Xylaria sp. from Alpinia calcarata, 
Bixa orellana, Calophyllum inophyllum, and Catharanthus roseus. Fareed et  al. 
(2017) revealed Aspergillus calidoustus, A. fumigates, Microsporum gypseum, 
Penicillium marneffei, P. viridicatum, and Trichophyton tonsurans to be lipase 
producers.

1.3.1.4  β-glucosidase

Periconia sp. produce a thermotolerant β-glucosidase. This enzyme shows high 
activity toward cellobiose and carboxymethylcellulose. β-glucosidase hydro-
lyzes rice straw into simple sugars. Hydrolytic enzymes have the potential to 
convert lignocellulosic biomass to biofuels and chemicals (Harnpicharnchai 
et al. 2009). The major decomposers of lignocelluloses are fungi, which play an 
essential role in the cycling of carbon and other nutrients. Exo- and endogluca-
nases, exo- and endoxylanases, β-xylosidases, and β-glycosidase are the main 
hydrolytic enzymes involved in the degradation of lignocelluloses (Van Dyk and 
Pletschke 2012).

1.3.1.5  Tannases

Tannases comprise two classes of enzymes, tannin acyl hydrolases and ellagitannin 
acyl hydrolases, also called ellagitannases. Tannin acyl hydrolases are used in the 
beverage, food, leather, and pharmaceutical industries (González et  al. 2017). 
Vegetable and animal tissues are easily available sources of tannases; however, on 
an industrial scale, microbial sources are preferred. Tannases have been obtained 
from fungi, including Aspergillus sp., Paecilomyces variotii, and Penicillium sp. 
(Battestin and Macedo 2007; González et al. 2017). There are some reports of tan-
nase production by endophytic fungi. Cavalcanti et  al. (2017) isolated 16 endo-
phytic fungal strains and screened them for the production of tannases. All the 
isolates produced tannases, with Aspergillus fumigatus and A. niger being the high-
est producers. The study revealed that the optimal temperature and pH of enzymes 
from the two strains were 30 °C and 4.0 respectively.
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1.3.1.6  Pectinases

Pectinase is an enzyme that actually breaks down pectin, which is a polysaccharide 
found in plant cell walls. This enzyme has shown a robust rise on the market and has 
also held a leading position amongst commercially produced industrial enzymes 
(Garg et al. 2016). In the industrial sector, this enzyme plays an important role in 
decreasing viscosity and improving yield (Garg et  al. 2016; Makky and Yusoff 
2015). In the processing of citrus juice, the enzyme helps to eliminate the cloudiness 
of the juice and stabilize it (Braddock 1981; Garg et al. 2016).

In wine processing, pectinases are used to promote filtration, increase the juice 
yield, and strengthen the flavor and color (Chaudhri and Suneetha 2012; Garg et al. 
2016). Additionally, in biorefineries, pectinases used to hydrolyze pectin are present 
in agro-industrial waste (Biz et al. 2014; Garg et al. 2016). The agro-waste is con-
verted into simple sugars and bioethanol, or could also be used as fermentable sug-
ars (Alshammari et  al. 2011; Garg et  al. 2016). The fermentation of tea can be 
speeded up by breaking down the pectin present in the cell walls of tea leaves (Garg 
et al. 2016). Further, pectinases are used in textile processing, the extraction of veg-
etable oil, the processing of animal feed, the biobleaching of kraft pulp, and the 
recycling of wastepaper (Garg et al. 2016). The most important sources of pectin-
ases include bacteria, fungi, and plants, and recently microbial pectinases have been 
gaining a lot of attention.

Sunitha et al. (2013) reported Acremonium implicatum, Aspergillus fumigatus, 
Colletotrichum gleosporoides, Coniothyrium sp., Cylindrocephalum sp., Drechslera 
sp., Fusarium chlamydosporum, F. oxysporum, Fusicoccum sp., Nigrospora 
sphaerica, Paecilomyces variotii, Pestalotiopsis disseminata, Phoma sp., Pyllosticta 
sp., Talaromyces emersonii, and Xylaria sp. to be pectinase producers isolated from 
Alpinia calcarata, Bixa orellana, Calophyllum inophyllum, and Catharanthus 
roseus. Fouda et al. (2015) isolated pectinase producers, including Alternaria alter-
nata, Penicillium chrysogenum, and the third fungal strain, described as sterile 
hyphae from the medicinal plant of Asclepias sinaica. Heidarizadeh et al. (2018) 
produced pectinases from Piriformospora indica. After 6 days, the maximum dry 
cell weight was 10.21 g/L, the growth yield was about 0.65 g/g, the specific growth 
rate 0.56 day−1, and pectinase activity was found to be 10.47 U/mL on pectin- 
containing medium (P+). In another case of pectin-free medium (P−), all parameters 
were kept lower than for P+ medium. It was found in the study that the synthesis of 
pectinase on P+ was 2.7 times greater than on the P− medium (Maheshwari 2011). 
About 5 and 50 °C are the ultimate pH and temperature required for polygalacturo-
nase activity respectively (Kirti and Reddy 2013; Singh 2006). Indeed, this is the 
leading note of synthesis of pectinase by Piriformospora indica; the optimal pH of 
enzyme was additionally submitted and noted as a would-be contender for immi-
nent use in the fruit juice industries (Bezerra et  al. 2012; Mercado-Blanco et  al. 
2016). Uzma et al. (2016) reported Aspergillus sp., Cladosporium sp., Colletotrichum 
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sp., Fusarium sp., Mucor sp., Mycelia sterilia, Penicillium sp., Phoma sp., 
Phomopsis sp., and Rhizopus sp. and found that these fungal species exhibited pec-
tinase production attributes (Kaul et al. 2013; Kirti and Reddy 2013).

1.3.1.7  Phytases

Phytases, or myoinositol hexakisphosphate phosphohydrolase, are phytate- 
degrading enzymes. Phytases catalyze the hydrolysis of phytic acid to inositol phos-
phates, myoinositol, and inorganic phosphate (Gontia-Mishra and Tiwari 2013; 
Kaur et al. 2017; Kumar et al. 2016, 2017b; Mitchell et al. 1997). Phytases have 
been gaining a lot of interest and have become a center of focus for scientists and 
entrepreneurs in the fields of nutrition, environmental protection, and biotechnology 
(Yadav 2018; Yadav et al. 2017b, d). In plants, these enzymes are usually expressed 
during seed germination, bring about the degradation of the phytate, provide the 
growing seedling with orthophosphate, and lower inositol polyphosphates, free 
myoinositol, and previously bound cations, including Ca2+, K+, Mg2+, and Zn2+, and 
hence provide nutrition for plant growth (Gontia-Mishra and Tiwari 2013; Reddy 
et al. 1989). In animals, phytases play a role in the maintenance of the cell's meta-
bolic reservoirs of inositol hexaphosphate and other inositol polyphosphates. 
Phytases have many applications. The activity of some yeasts and fungi is generally 
regarded as safe for consumption by humans and animals, for example, Saccharo-
myces cerevisiae (Gontia-Mishra and Tiwari 2013; Nayini 1984) could be used as a 
probiotic in a range of food formulations to improve the utilization of phosphate. 
Phytases can also be utilized in bakery products, especially in the bread- making 
process (Gontia-Mishra and Tiwari 2013; Haros et al. 2001). The addition of phy-
tase is known to reduce the phytate content in dough and shorten the fermentation 
time. Further, it improves the bread shape, volume, and softness of the crumb. More 
phytases are also added in the fractionation of cereal bran, the absorption of iron, 
and in animal nutrition. In fact, numerous microbial phytases are already on the 
market and expansively used as animal feed supplements, for instance, phytase 
from Aspergillus ficuum as Natuphos, A. niger as Allzyme, A. awamori as Finase 
and Avizyme, A. oryzae as AMAFERM, SP, SF, TP, and Phyzyme, and Peniophora 
lycii as Ronozyme, Roxazyme, and Bio-Feed phytase (Gontia-Mishra and Tiwari 
2013). Additionally, phytases are utilized in feed for fish, poultry, and pigs, as bio-
fertilizers, in paper manufacturing, and in the wet milling of maize (Gontia-Mishra 
and Tiwari 2013). Although phytases have been described in plants, animals, and in 
a range of bacteria, filamentous fungi, and yeasts, here we concentrate primarily on 
those from endophytic fungi (Venugopalan and Srivastava 2015).

Marlida et  al. (2010) obtained 34 isolates of fungal endophytes and screened 
them for phytase synthesis. Renuka and Ramanujam (2016) reported that phytase 
production could be achieved only in Fusarium verticillioides and Rhizoctonia sp., 
which were also best induced by phytic acid and rice bran compared with other 
inducers in the submerged fermentation medium used. The phytases produced by 
Fusarium verticillioides and Rhizoctonia sp. showed optimal pH of 5.0 and 4.0 
respectively. Phytase from F. verticillioides showed an optimal temperature of 50 °C 
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and stability up to 60 °C, optimal pH at 5.0 and pH stability at 2.5–6.0. Mehdipour- 
Moghaddam et  al. (2010) isolated Azospirillum strains from rice and wheat and 
screened the strains for cellulase, pectinase, and phytase activity. The study revealed 
that the Azospirillum strain isolated from rice showed considerably greater phytase 
activity  than that isolated from wheat. In fact, to our knowledge, this is the first 
study to report phytase activity and its zymogram for Azospirillum with different 
activity profiles exhibited by various isolates.

1.3.1.8  Ligninolytic Enzymes

White rot fungi are the most efficient ligninolytic organisms described to date. 
Owing to the extracellular nonspecific and nonstereoselective enzyme system in 
white rot fungi, the ability to degrade lignin is more efficient (Barr and Aust 1994). 
Recently, some microorganisms isolated from the hardwood forests of Zimbabwe 
(Tekere et  al. 2001), Tunisia (Dhouib et  al. 2005), Spain (Barrasa et  al. 2009), 
Northern China (Sun et al. 2011a), and Norway (Kim et al. 2015) have been reported 
in the production of ligninolytic enzymes. For the study of lignin-degrading enzymes 
in endophytes, different substrates such as ABTS (2,2’-azinobis-3- ethylbenzo-
thiazoline- 6-sulfonic acid), naphthol, and Poly R-478 have been isolated from liv-
ing plants (Fillat et al. 2016; Oses et al. 2006; Sun et al. 2011a). From tree species 
Drimys winteri and Prumnopitys andina, endophytic fungi producing lignocellulo-
lytic enzymes have been isolated. In D. winteri, Bjerkandera sp. and Mycelia ster-
ilia (Dw-2) were identified, whereas in P. andina, an unidentified basidiomycete 
(Pa-1) and also M. sterilia (Pa-2) were recognized (Oses et al. 2006). Rodriguez 
et al. (2009) reported in the forest region that a basidiomycete and a deuteromycete 
use a combination of enzymes, 1,4-b-D-glucan cellobiohydrolases, endo-1,4-b-D- 
glucanases, and 1,4-b-D-glucosidase, which break glycoside linkages between 
B-D-xylopyranosyl and glucopyranosyl residues, thus promoting the biodegrada-
tion of wood.

The endophytic community of Acer truncatum, the main woody tree species of 
northern Chinese forests, was investigated, with 17 isolates belonging to the taxa 
Alternaria alternata, A. arborescens, Ascochytopsis vignae, Coniothyrium oliva-
ceum, Diaporthe sp. 2, Drechslera biseptata, Glomerella miyabeana, Gnomoniella 
sp. 1, Leptosphaeria sp. 1, Melanconis sp. 1, Melanconis sp. 2, Microsphaeropsis 
arundinis, Paraconiothyrium brasiliense, Phoma sp. 4, P. glomerata, Sirococcus 
clavigignenti-juglandacearum, and Coelomycetes sp. reported to oxidize the sub-
strate naphthol (Sun et al. 2011a). The medicinal plants Adhatoda vasica, Costus 
igneus, Coleus aromaticus, and Lawsonia inermis were collected from 
Sathyamangalam, Tamil Nadu (India) for the isolation of endophytic fungi and 
screened for the synthesis of laccase enzyme (Kaul et al. 2013; Vasundhara et al. 
2016; Venugopalan and Srivastava 2015). The fungal isolates were grown on GYP 
agar medium amended with 1-naphthol. Out of 12 different species, only two endo-
phytes, Xylaria sp. and Curvularia brachyspora, were positive in naphthol (Amirita 
et  al. 2012). From the medicinal plants Alpinia calcarata Roscoe, Calophyllum 
 inophyllum L, Bixa orellana L, and Catharanthus roseus, 50 strains of fungal 
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 endophyte were isolated. Very few endophytic strains, Phomopsis longicolla 
(Bo13), Discosia sp. (Ci5), Fusicoccum sp. (Ac26), and Chaetomium sp., were able 
to produce laccase, i.e., showed oxidation of naphthol (Sunitha et al. 2013).

A total of 127 strains of fungal endophytes were isolated from Eucalyptus globu-
lus trees of Spain: Cantabria, Asturias 128 (AS), Seville, (SE), Extremadura (EX), 
and Toledo (TO). Out of 127 strains of endophytic fungi, 21 showed positive ABTS 
oxidation in an agar plate medium containing ABTS. Hormonema sp., Pringsheimia 
smilacis, Ulocladium sp., Neofusicoccum luteum, and N. australe in liquid medium 
confirmed laccase production. Copper sulfate and ethanol were examined as induc-
ers for increasing the production of laccase. Pringsheimia smilacis belonging to the 
family Dothioraceae were reported for the first time for the production of laccase 
(Bezerra et al. 2012; Fillat et al. 2016). Trametes sp. I-62 was optimized for the 
production of laccase and was applied to solve problems associated with pulp 
bleaching. Maximal laccase activity was obtained on the addition of wheat straw 
and copper sulfate in combination as inducers (Martin-Sampedro et  al. 2013). 
Ligninolytic fungi were collected in Huejutla and characterized as having laccase 
activity as part of their fundamental enzymatic pool to mineralize lignin. Out of the 
100 fungal isolates, 60 had laccase activity, indicating that the isolated fungi have 
great biotechnological potential (Ramírez et al. 2012).

Two isolates of Fusarium proliferatum from different global locations and eco-
logical sites were reported to display similar abilities to degrade natural lignin from 
wheat (14C-MWL) and synthetic polymers (Anderson et al. 2005). Shi et al. (2004) 
demonstrated that the fungal endophyte Phomopsis sp. almost decays straw by 
degrading lignin. In another study, laccase and peroxide synthesized by fungal 
endophytes contributed reliably to the decomposition of litter lignin (Dai et  al. 
2010; Krishnamurthy and Naik 2017). Various researchers have observed the lac-
case activity of fungal endophytes in liquid medium: Phomopsis liquidambari 
(Diaporthaceae), Xylaria sp. (Xylariaceae), Fusarium sp., F. proliferatum 
(Nectriaceae), Chaetomium sp., C. globosum (Chaetomiaceae), Podospora anse-
rina (Lasiosphaeriaceae), Colletotrichum gloeosporioides (Glomerellaceae), 
Trichoderma harzianum (Hypocreaceae), Botryosphaeria sp., Neofusicoccum 
 australe, N. luteum, Botryosphaeria rhodina (Lasiodiplodia theobromae), 
Botryosphaeria obtuse, B. dothidea, B. ribis (Botryosphaeriaceae), Monotospora 
sp. (Hysteriaceae), and Hormonema sp. (Dothioraceae) (Anderson et  al. 2005; 
Durand et al. 2013; El-Zayat 2008; Fillat et al. 2016; Muthezhilan et al. 2014; Sara 
et al. 2016; Srivastava et al. 2013; Urairuj et al. 2003; Wang J et al. 2006a; Xie and 
Dai 2015).

1.3.2  Bioresources for Secondary Metabolites

It is evident that numerous important compounds in the pharmaceutical and agron-
omy industries are synthesized by endophytes (Arora and Ramawat 2017). 
Numerous vital medicines have been acquired from plants, for instance, camptoth-
ecin, quinine, Taxol, vincristine, and vinblastine (Ramawat et al. 2009), whereas 
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more than 8500 bioactive metabolites with fungi as a source are well-known (Arora 
and Ramawat 2017; Demain and Sanchez 2009; Goyal et al. 2016). With the fungal 
endophyte Taxomyces andreanae, research into fungal endophytes was initiated, 
synthesizing certain bioactive molecules such as Taxol (Nicoletti and Fiorentino 
2015). There are numerous tasks that have been encountered to synthesize these 
commercialized bioactive molecules (Arora and Ramawat 2017; Kusari and 
Spiteller 2011). In Oryza sativa, Fusarium oxysporum was reported to cause foolish 
seedling disease, as the fungus was also reported to produce gibberellin (Arora and 
Ramawat 2017). Further, for the synthesis of secondary metabolites, the bio- 
transformation process has been efficaciously realized using endophytes (Pimentel 
et al. 2011; Wang and Dai 2011). The process of chemical variation of any sub-
stance is referred to as bio-transformation in a biological system (Arora and 
Ramawat 2017; Wang and Dai 2011). The changes or transformation in the basic 
molecule result in a further effective active compound, e.g., semisynthetic com-
pounds established from Taxol and podophyllotoxin have a supplementary effect to 
the basic molecule (Arora and Ramawat 2017; Ramawat et al. 2009). Figure 1.2 
presents the chemical structures of secondary metabolites produced by different 
groups of endophytic fungi. Table 1.3 shows the diversity and abundance of diverse 
bioactive compound or secondary metabolite production by different groups of 
endophytic fungi reported from diverse host plants worldwide.

1.3.2.1  Azadirachtin

Azadirachtin is a recognized insecticide found in three species of the neem tree, 
Azadirachta indica A. Juss., A. excelsa Jacobs, and A. siamensis Valeton (Verma 
et al. 2014b). Azadirachtin is a highly oxygenated tetranortriterpenoid (Verma et al. 
2014b). It contains 16 stereogenic centers, 7 of which are fully replaced (Ley et al. 
1993). It takes about 16 years for its first structural interpretation and improvements 
(Butterworth et al. 1972) and 25 years for its chemical synthesis (Veitch et al. 2007a) 
to take place. Azadirachtin has been synthesized chemically from a common inter-
mediate “epoxide-2”; this molecule alone has the potential as an intermediate to 
synthesize compounds from all three groups of limonoids: azadirachtin, azadirach-
tol, and meliacarpin from the neem tree (Kusari et al. 2012; Veitch et al. 2007b, c). 
Inside the cellular metabolism, azadirachtin is designed via the “iso-prenoid path-
way” (IPP) (Kraus et al. 1985). Azadirachtin acts as an antifeedant, insect growth 
regulator, and sterilant in insects (Jennifer Mordue et al. 1998). Azadirachtin func-
tions at a cellular level by disrupting protein synthesis, more precisely at the molec-
ular level by altering the transcription and translation of protein expressed during 
rapid protein synthesis (Nisbet 2000). Azadirachtin has several structurally related 
isomers. Azadirachtin A and its several congeners have significant biological activ-
ity, specifically insecticidal and nematicidal (Klenk et al. 1986). To enable the syn-
thesis of potential bioactive compounds, some novel biotechnological approaches 
have been used, such as callus culture (Krishnamurthy and Naik 2017; Prakash et al. 
2002; Rafiq and Dahot 2010), cell culture (Jarvis et al. 1997), and hairy root culture 
of neem plants (Pimentel et al. 2011; Satdive et al. 2007).
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Fig. 1.2 Structures of compounds presenting several novel bioactive secondary metabolites iso-
lated from fungal endophytes
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1.3.2.2  Camptothecin

Camptothecin (CPT) is a quinoline alkaloid mainly isolated from Camptotheca acu-
minata, a deciduous tree native to China and Tibet (Kumara et al. 2014). The bark 
of the tree was extensively used in traditional Chinese medicine (Wall et al. 1966). 
Later, camptothecin was discovered in several other species belonging to the fami-
lies Icacinaceae, Rubiaceae, Apocynaceae, and Loganiaceae, with the maximum 

Fig. 1.2 (continued)
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Fig. 1.2 (continued)

concentration described in Nothapodytes nimmoniana (0.3% by dry weight from its 
bark) (Govindachari and Viswanathan 1972; Kumara et al. 2014). The biosynthetic 
pathway of CPT in plants is simply moderately categorized (Yamazaki et al. 2003, 
2004). Further, Sun et  al. (2011b) cloned and categorized three putative genes 
involved in CPT biosynthesis; namely, geraniol-10-hydroxylase, secologanin 
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Table 1.3 Production of bioactive compounds  by endophytic fungi

Bioactive compounds Host endophytic fungi References

Antibacterial

Altenuisol Alternaria sp. Samif01 Tian et al. (2017)
Bacteriocins Bacillus subtilis Sansinenea and Ortiz (2011)
Chaetoglobosin A Chaetomium globosum Dissanayake et al. (2016)
Naphthaquinone Chloridium sp. Kharwar et al. (2009)
Polyketide citrinin Penicillium janthinellum Marinho et al. (2005)
Polyketide citrinin Penicillium janthinellum Marinho et al. (2005)
Phenols, flavonoids Pestalotiopsis neglecta Sharma et al. (2016)
Ambuic acid derivative Pestalotiopsis sp. Ding et al. (2008)
Phomodione (43) Phoma pinodella Hoffman et al. (2008)
Dicerandrol C (24) Phomopsis longicolla Erbert et al. (2012)
Solanioic acid Rhizoctonia solani Ratnaweera et al. (2015b)
Infectopyrones A and B Stemphylium sp. Zhou et al. (2014)
Ethanolic extract Trichoderma stromaticum Ratnaweera et al. (2015b)
Ophiobolin P Ulocladium sp. Wang et al. (2013)
Helvolic acid Xylaria sp. Ratnaweera et al. (2014)
Anticancer

Vinblastine Alternaria Guo et al. (1998)
Capsaicin Alternaria alternata Clark and Lee (2016).
Resveratrol Aspergillus niger Liu et al. (2016)
Baccatin III Diaporthe phaseolorum, Li et al. (2015)
Secoemestrin D Emericella sp. Xu et al. (2013
Camptothecin Entrophospora infrequens Puri et al. (2005)
Asparaginase Eurotium sp. Jalgaonwala and Mahajan (2014)
Vincristine Fusarium oxysporum Kumar et al. (2013)
Vincristine Fusarium oxysporum Zhang et al. (2000)
Camptothecin Fusarium solani Shweta et al. (2010)
Camptothecin Fusarium solani Shweta et al. (2010)
10-hydroxycamptothecin Fusarium solani Shweta et al. (2010)
9-methoxycamptothecin Fusarium solani Shweta et al. (2010)
Torreyanic acid Pestalotiopsis microspora Lee et al. (1996)
Torreyanic acid Pestalotiopsis microspore Lee et al. (1996)
Podophyllotoxin Phialocephala fortinii Eyberger et al. (2006)
Podophyllotoxin Phialocephala fortinii Eyberger et al. (2006)
Taxol (paclitaxel) Taxomyces andreanae Kusari et al. (2014)
Antifungal

Leucinostatin A Acremonium sp. Strobel et al. (1997)
Asperamide A, B Aspergillus niger Zhang et al. (2007)
Bacillomycin Bacillus amyloliquefaciens Aranda et al. (2005)
Bacilysocin Bacillus subtilis Tamehiro et al. (2002)
Gliotoxin Chaetomium globosum Li et al. (2011)
Cryptocandin Cryptosporiopsis quercina Strobel et al. (1999)

(continued)
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Table 1.3 (continued)

Bioactive compounds Host endophytic fungi References

Cryptocin Cryptosporiopsis quercina Li and Strobel (2001)
Cryptocandin Cryptosporiopsis quercina Strobel et al. (1999)
Cytosporone B Dothiorella sp. Xu et al. (2005)
Enfumafungin Hormonema sp. Aly et al. (2011)
Microsphaerophthalide A Microsphaeropsis arundinis Sommart et al. (2012)
Sclerin Microsphaeropsis arundinis Sommart et al. (2012)
Ambuic acid Monochaetia sp. Li et al. (2001)
Myxodiol A Myxotrichum sp. Yuan et al. (2013)
Solanapyrone C Nigrospora sp. YB-141 Wu et al. (2009)
Pinazaphilones A and B Penicillium sp. Liu et al. (2015)
Quinazoline alkaloid Penicillium vinaceum Zheng et al. (2012)
Jesterone Pestalotiopsis jester Li and Strobel (2001)
Pestaloside Pestalotiopsis microspore Lee et al. (1995)
Ambuic acid Pestalotiopsis sp. Li et al. (2001)
b-sitosterol Phoma sp. Wang et al. (2012)
Cytochalasin N Phomopsis sp. Fu et al. (2011)
Phomenone Xylaria sp. Silva et al. (2010)
Antimicrobial

Altenusin Alternaria sp. Kjer et al. (2009)
Altersolanol A Ampelomyces sp. Aly et al. (2008)
Deoxypodophyllotoxin Aspergillus fumigatus Kusari et al. (2009)
Cephalosol Cephalosporium acremonium Zhang et al. (2008)
Javanicin Chloridium sp. Kharwar et al. (2009)
Methanol Colletotrichum sp. Arivudainambi et al. (2011)
Cytonic acid Cytonaema sp. Guo et al. (2000)
Cytonic acid B Cytonaema sp. Li et al. (2007b)
Eupenicinicols Eupenicillium sp. Li et al. (2014)
Equisetin Fusarium sp. Ratnaweera et al. (2015a)
Gliotoxin Hypocrea virens Ratnaweera et al. (2016)
Bisdethiobis gliotoxin Hypocrea virens Ratnaweera et al. (2016)
Botralin Microsphaeropsis olivacea Li et al. (2007b)
Graphislactone A Microsphaeropsis olivacea Li et al. (2007b)
Ulocladol Microsphaeropsis olivacea Li et al. (2007b)
Isocaryophyllene Muscodor sutura Kudalkar et al. (2012)
Octadecylmorpholine Muscodor tigerii Saxena et al. (2015b)
Phomol Phomopsis sp Weber et al. (2004)
Antioxidant

Campothecin Entrophospora Puri et al. (2005)
3-epi-dihydroaltenuene Alternaria sp. Tian et al. (2017)
Pestacin and isopestacin Pestalotiopsis microspora Harper et al. (2003)
Isopestacin Pestalotiopsis microspora Strobel et al. (2002)
Pestacin Pestalotiopsis microspora Strobel et al. (2002)

(continued)
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Table 1.3 (continued)

Bioactive compounds Host endophytic fungi References

Antitumor

Naptha-y-pyrone Aspergillus niger Zhang and Qi-Yong (2007)
Cytochalasins Rhinocladiella sp. Wagenaar et al. (2000)
Cytochalasins Xylaria sp. Wagenaar et al. (2000)
Antiviral

Podophyllotoxin Alternaria sp. Eyberger et al. (2006)
Cytonic acid A Cytonaema sp. Guo et al. (2000)
Pestalol A–E Pestalotiopsis sp. Sun et al. (2014)
Cytotoxic

Cordyheptapeptides C–E Acremonium persicinium Chen et al. (2012)
Desmethyldiaportinol Ampelomyces sp. Aly et al. (2008)
8-O-methylversicolorin Aspergillus versicolor Dou et al. (2014)
Xanthoquinodin Chaetomium elatum Chen et al. (2013)
Coniothiepinol A Coniochaeta sp. Wang et al. (2010a)
Conioxepinol B Coniochaeta sp. Wang et al. (2010b)
Myxotrichin A Myxotrichum sp. Yuan et al. (2013)
Myxotrichin D Myxotrichum sp. Yuan et al. (2013)
Terricollene A Neurospora terricola Zhang et al. (2009a)
Ginsenocin Penicillium melinii Zheng et al. (2013)
Penicillenols A1 and B1 Penicillium sp. Lin et al. (2008a)
Torreyanic acid Pestalotiopsis microspora Lee et al. (1996)
Phaeosphaerin A Phaeosphaeria sp. Li et al. (2012a)
Preussochrome C Preussia africana Zhang et al. (2012)
Atrichodermone A, B, C Trichoderma atroviride Zhou et al. (2017)
Immunosuppressive

Subglutinol A and B Fusarium subglutinans Lee et al. (1995)
Periconicins Fusarium subglutinans Kim et al. (2004)
Insecticidal

Azadirachtin A Eupenicillium parvum Kusari et al. (2012)
Azadirachtin Eupenicillium parvum Kusari et al. (2012)
Nodulisporic acid A Nodulisporium sp Ondeyka et al. (1997)
1,3-oxazinane Geotrichum sp. AL4 Li et al. (2007a)
4-hydroxybenzoic acid Fusarium oxysporum Bogner et al. (2017)

synthase, and strictosidine synthase from C. acuminata. In recent times, an effort 
was made to unravel the CPT biosynthetic gene from a CPT-producing endophytic 
fungus, Fusarium solani, isolated from C. acuminata (Kusari et al. 2011; Kaul et al. 
2013; Kumara et  al. 2014). However, the endophyte was revealed to synthesize 
CPT. Kusari et al. (2011) suggested that the endophyte might be using the host STR 
to synthesize CPT. However, as Sudhakar et al. (2013) debated, this proposition is 
unbelievable, because the endophyte was able to produce CPT in axenic cultures for 
numerous generations in the absence of the host tissue, where evidently the fungus 
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cannot access the host STR. Anticancer drugs isolated from endophytic fungi 
include camptothecin, which is a potent anti-neoplastic agent isolated from  
C.  acuminata Decaisne (Nyssaceae) from China (Premjanu and Jayanthy 2012; 
Wall et al. 1966).

1.3.2.3  Taxol

Paclitaxel, a greatly functionalized diterpenoid, occurs in Taxus plants (Suffness 
1995). Derivatives of paclitaxel signify a leading group of anticancer agents that 
were earlier reported to be synthesized by endophytes (Kumara et  al. 2014). In 
plants, the synthesis of Taxol occurs by the involvement of three genes, namely, ts 
(involved in the formation of the taxane skeleton), dbat (involved in baccatin-III 
formation), and bapt (involved in phenylpropanoyl side chain formation at C-13) 
(Xiong et al. 2013). Zhang P et al. (2009b) reported the gene 10-deacetylbaccatin- 
III-10-O-acetyl transferase to be accountable for the biosynthesis of Taxol in the 
endophyte Cladosporium cladosporioides MD213 isolated from Taxus media (yew 
species). In recent times, Xiong et al. (2013) revealed that in three Taxol-synthesizing 
endophytes isolated from Anglojap Yew, or T. media, the fungus resulted in positive 
successes for the three key genes, ts, dbat, and bapt. The fungus Taxomyces andre-
anae, an endophyte isolated from T. brevifolia, was found to produce Taxol (Stierle 
et al. 1993), subsequently drawing the attention of microbiologists to endophytes. 
Each plant is a repository of one or more fungal endophytes, and one endophytic 
species may possess several to a few hundred strains (Huang et al. 2007; Strobel and 
Daisy 2003). In recent years, the biosynthetic potential of endophytic fungi has 
gained more significance. It is thus imperative to study the complex relationship of 
endophytes with existing endophytes, host plants, insect pests, and other definitive 
herbivores, which standardizes the ability of endophytes to synthesize compounds 
similar to their hosts (Kusari et al. 2013b). Aegle marmelos, an extensively used 
medicinal plant, shelters Taxol-producing fungi (Gangadevi and Muthumary 2008). 
Taxol is an important and expensive anticancer drug generally used in clinics. The 
endophytic fungus Bartalinia robillardoides (strain AMB-9) produces 187.6 l g/l of 
Taxol. This confirms that the fungus can be genetically upgraded to increase the 
synthesis of Taxol. Taxanes such as Taxol are plentifully synthesized by members of 
the coniferous family Taxaceae (Wang and Dai 2011). It was found that a number of 
fungal endophytes isolated from yew trees (Taxus spp., Taxaceae) produce Taxol 
under in vitro conditions (Zhou et al. 2010).

1.3.2.4  Gibberellic Acid and Indole Acetic Acid

The biosynthetic pathway of gibberellic acid (GA) is compared with other secondary 
metabolites (Kumara et al. 2014). In plants, the conversion of GGDP to active GA 
requires the presence of three terpene synthases, two 450s, and a soluble 20 DDS. 
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Compared with the fungus, the synthesis is made by only one bifunctional terpene 
cyclase (copalyl synthase/kaurene synthase) and by P450s. These results suggest 
that the biosynthetic pathways in plants and fungi might have evolved independently 
(Bömke and Tudzynski 2009; Kumara et al. 2014). GA production has also been 
reported from the endophytic fungus F. proliferatum, isolated from orchid roots. 
Research has specified that this fungus obtained the genes for GA biosynthesis from 
higher plants by horizontal gene transfer. Endophytic microorganisms have been 
found to produce phytohormones such as GA, abscisic acid, auxins, cytokinins, and 
ethylene (Kaul et al. 2013).

Hamayun et al. (2009b) isolated Cladosporium sphaerospermum from the roots 
of G. max (L.), which indicated the presence of bioactive GA3, GA4, and GA7. The 
endophytes isolated from medicinal plants have been found to encourage plant 
growth and development. Waqas et al. (2012) studied the endophytic fungi Phoma 
glomerata and Penicillium sp. in the promotion of shoot growth, related vegetative 
growth, and other characteristics of GA-deficient dwarf mutant Waito-C and 
Dongjin-byeo rice. Therefore, if cultured endophytes were to produce the same rare 
and important bioactive compounds as their host plants, this would diminish the 
harvesting of slow-growing rare plants, and also help to restore the world’s biodi-
versity (Waqas et al. 2012). Jerry (1994) revealed that during seed germination, the 
symbiotically associated endophytic fungi degrade cuticle cellulose and make car-
bon available to seedlings, which improves seed germination, vigor, and 
 establishment. Endophytes have the ability to produce plant growth regulators and 
thereby promote seed germination in crop plants (Bhagobaty and Joshi 2009). Plant 
growth promotion is the major contribution of fungal symbiosis (Hassan et  al. 
2013). However, fungal endophytes enhance plant growth by the production of 
ammonia and plant hormones, particularly IAA (Bal et al. 2013). IAA acts as a plant 
growth promoter that enhances both cell elongation and cell division, and is essen-
tial for plant tissue differentiation (Taghavi et al. 2009). The ability of soil microor-
ganisms to become involved in the production of IAA in culture plates and in soil 
has been recorded (Spaepen and Vanderleyden 2011). The endophytic microorgan-
isms isolated from various plants have shown a high IAA production level com-
pared with those isolated from root-free soil (Spaepen et al. 2007). Owing to the 
impact of IAA on the plant tissues, the ability of fungal endophytes to produce IAA 
has provoked a great response (Hamayun et al. 2010). Only a few fungi linked with 
plants have been stated to synthesize gibberellin (Kawaide 2006; Vandenbussche 
et al. 2007), for instance, Cladosporium sphaerospermum and Penicillium citrinum 
(Hamayun et al. 2009b; Khan et al. 2008). Hamayun et al. (2010) examined gib-
berellin production and the growth-promoting potential of a fungal strain belonging 
to Cladosporium sp. isolated from the roots of the cucumber. Khan et al. (2008) 
isolated P. citrinum, which showed growth promotion activity in dune plants owing 
to the presence of bioactive gibberellins in the filtrate of the fungi (Khan et al. 2008). 
Hasan (2002) revealed the growth promotion activity of endophytic Phoma her-
barum and Chrysosporium pseudomerdarium in the soybean and proved that some 
endophytes are host-specific. Ahmad et al. (2010) studied the plant growth-promot-
ing activity and stress resistance capability of endophytic Penicillium sp. and 
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Aspergillus sp., which were shown to produce physiologically active gibberellins. 
Many fungal endophytes, such as Neurospora crassa (Rademacher 1994), Sesamum 
indicum (Choi et al. 2005), Penicillium citrinum (Khan et al. 2008), Scolecobasidium 
tshawytschae (Hamayun et  al. 2009b), Arthrinium phaeospermum (Khan et  al. 
2009a), Chrysosporium pseudomerdarium (Hamayun et al. 2009a), Cladosporium 
sphaerospermum (Hamayun et  al. 2009c), Cladosporium sp. (Hamayun et  al. 
2009c), Gliomastix murorum (Khan et al. 2009b), Fusarium fujikuroi, Sphaceloma 
manihoticola (Shweta et  al. 2010), Phaeosphaeria sp. (Kawaide 2006), 
Phaeosphaeria sp., Penicillium sp. (Hamayun et al. 2010), Aspergillus fumigatus 
(Khan et al. 2011a), Exophiala sp. (Khan et al. 2011b), and P. funiculosum (Khan 
et al. 2011b), have been reported to be gibberellin producers. Hasan (2002) demon-
strated gibberellin production with molds such as Aspergillus flavus, A. niger, 
Penicillium corylophilum, P. cyclopium, P. funiculosum, and Rhizopus stolonifera.

1.3.2.5  Siderophores

Endophytes help plants to take up solubilized phosphate (Wakelin et  al. 2004), 
enhancing hyphal growth and mycorrhizal colonization (Will and Sylvia 1990), and 
by producing siderophores (iron-chelating molecules that increase the availability 
of phosphate to plants) (Costa and Loper 1994). Endophytic bacteria were found to 
be responsible for the allelopathic effects on maize observed with these plants, caus-
ing reduced plant emergence and plant height (Sturz et al. 1997). Dutta et al. (2008) 
reported improvement of plant growth and disease suppression in pea plants co- 
inoculated with fluorescent pseudomonads and Rhizobium. Hung et al. (2007) stud-
ied the effect of endophytes on soybean growth and development, and proved them 
to have a positive influence on root weight. Plant growth-promoting endophytic 
bacteria influence seed germination, root and hypocotyl growth and increase seed-
ling vigor. Root endophytes in the cortical parenchymatous tissue of vetiver were 
used for the enhancement of essential oil metabolism (Del Giudice et  al. 2008). 
Harish et al. (2009) studied the effect of the bio-formulations of consortial combina-
tions of the rhizobacteria Pseudomonas fluorescens (Pf1) and endophytic Bacillus 
sp. (EPB22), which enhanced the yield of bananas. One of the bacterial endophytes, 
B. subtilis HC8, isolated from hogweed, Heracleum sosnowskyi, found the potential 
to stimulate plant growth and the biological control of foot and root rot diseases in 
tomato (Malfanova et al. 2011).

In field experiments, inoculation with endophytic bacteria resulted in sugarcane 
plants that were more superior in terms of plant height and shoot counts. Conventional 
manipulation of soil microorganisms has been practiced for decades. For example, 
sewage and manure applications for the enhancement of soil fertility dramatically 
affect autochthonous communities of soil biota (Biswas et al. 2018). The practice of 
monoculture is in itself instrumental in altering soil microbial populations at the 
field level. Thus, it may be possible to influence plant endophytic populations by 
seed bacterization, by soil inoculation, and by identifying the genetic (bacterial) 
component responsible for their beneficial effects. Endophytic microbes have merit 
over rhizospheric bacteria, as they deliver fixed nitrogen straight to the host plant 
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tissue and are able to fix nitrogen more competently than free-living bacteria 
because of the lower oxygen pressure in the interior of plants than in soil. Jha et al. 
(2013) explored the potential of endophytic association with plants in agricultural 
sustainability in particular and yield enhancement in general. The potential of bio-
fertilizers was formulated using endophytic bacteria for the enhanced production of 
bananas in a sustained way (Ngamau et al. 2014).

1.3.3  Pharmaceutically Important Bioactive Compounds

Throughout the year, natural products from microorganisms, plants, or animals play 
a key role in the search for novel drugs. These naturally derived products are non-
toxic and inexpensive, and have been exploited for human use. The biggest store of 
bioactive compounds is fungal endophytes. Alexander Fleming, in 1928, discovered 
the first bioactive compound from Penicillium notatum, i.e., penicillin. During the 
1990s one of the most useful anticancer drugs was paclitaxel. An endophyte of  
T. brevifolia, Taxomyces andreanae was reported to produce the drug paclitaxel. 
Later research suggested lateral gene transfer from host to fungus (Stierle et  al. 
1993). The fungal endophyte Fusarium was reported to produce subglutinol A and 
diterpene pyrones, providing immunosuppressive activity. The endophyte was 
 isolated from the stem of Tripterygium wilfordii (Strobel and Pliam 1997). 
Isobenzofuranone as isopestacin, obtained from the fungal endophyte Pestalotiopsis 
microspora, possesses antifungal and antioxidant activity (Strobel et  al. 2002). 
Antimicrobial activity of fungal endophytes was screened against the pathogenic 
organisms Staphylococcus aureus, Candida albicans, and Cryptococcus neo-
formans. Fungal endophytes were isolated from the leaves and branches of five 
different species of Garcinia plants. The fungal endophytes Phomopsis sp. and 
Botryo sphaeria sp. showed antibacterial activity against Staphylococcus aureus. 
Botryosphaeria sp. also showed antifungal activity against M. gypseum. The results 
specify that the endophytic fungus of Garcinia plants are a potential source of anti-
microbial compounds (Phongpaichit et al. 2006).

Endophytic fungi can be isolated from the bark of Juglans mandshurica. On the 
basis of the internal transcribed spacer sequence and morphological identification, 
the fungal endophyte belongs to Deuteromycotina, Hyphomycetes, Moniliales, and 
Trichoderma longibrachiatum. The fermentation of fungus FSN006 provides a pos-
sible mechanism for producing anticancer drugs with lower toxicity and greater 
efficiency (Li et al. 2009). The crude extract of the endophytic fungus Pichia guil-
liermondii was separated using bioassay-guided fractionation. Helvolic acid exhib-
ited strong, broad-spectrum, antimicrobial activity (Zhao et al. 2010). Developments 
in screening technologies have received much attention; thus, fungal endophytes are 
an outstanding source of biologically active compounds with applications in 
 medicine and agriculture (Aly et al. 2011). A large number of bioactive compounds 
produced by fungal endophytes are alkaloids, steroids, terpenoids, peptides, polyk-
etones, flavonoids, quinols, phenols, xanthones, chinones, isocoumarins, benzopy-
ranones, tetralones, cytochalasines, perylene derivatives, furandiones, depsipeptides, 
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and enniatins (Elfita et  al. 2011) Tenguria et  al. (2011) reported that endophytic 
fungi of Tinospora crispa (L.) was a probable candidate for the synthesis of bioac-
tive compounds. Plasmodium species cause the most acute diseases in human 
beings, and even death. Hypericin isolated from fungal endophytes of medicinal 
plants possess antimicrobial activity against Staphylococcus sp., Klebsiella pneu-
moniae, Pseudomonas aeroginosa, Salmonella enteric, and Escherichia coli (Kusari 
and Spiteller 2012).

Khan et  al. (2012a) reported five fungal endophytes isolated from Capsicum 
annuum, Cucumis sativus, and G. max roots. Using phylogenetic analysis, the iso-
late was found to belong to Paraconiothyrium sp. and produce the phytotoxic com-
pound ascotoxin characterized using gas chromatography-mass spectrometry and 
the nuclear magnetic resonance technique. On seed germination of Echinochloa 
crus-galli and Lactuca sativa, 100% inhibitory effects were shown by ascotoxin. 
The buds and leaf of Malabar Embelia, found in peninsular India, were subjected to 
the isolation of fungal endophytes. Four different fungal endophytes were identi-
fied, Cladosporium cladosporiodes, Penicillium sp., Aspergillus niger, and 
Alternaria sp., and were characterized for phytochemical analysis and antibacterial 
activity against Pseudomonas aeuroginosa, Bacillus subtilis, and Shigella flexneri. 
The four different fungal endophytes exhibited the presence of phytochemicals at 
different concentrations: cardiac glycoside, flavonoids, phenols, tannins, terpenoids, 
cardenolides, and saponins. Endophytic microbes are a great source of bioactive 
compounds to satisfy the demands of the pharmaceutical and medical industries 
(Chandrappa et al. 2013). Pinellia ternata is used as a traditional medicine for anti- 
emetic and sedative effects, and as an antitussive and analgesic. Su et al. (2014) 
isolated 193 endophytic microbes from Chinese medicinal plants, Camptotheca 
cuminata Decne, Gastrodia elata Blume, and Pinellia ternata. On the basis of 
 morphological and rDNA sequences, the fungal isolates belong to Ascomycota, 
Basidiomycota, and Mucoromycotina. Endophytes produce various types of com-
pounds, for instance, essential oils, azadirachtins, terpenes, flavonoids, lignins, 
cytochalasins, steroids, and alkaloids (Nicoletti and Fiorentino 2015).

1.3.4  Lignocellulosic Biorefineries: Biofuel Production

One of the main renewable materials on earth is wood. The cell walls of wood are 
composed of cellulose microfibrils covered with hemicelluloses and lignin hemicel-
lulose matrices (Higuchi 2012). In 1813, Swiss botanist, A. P. de Candolle, men-
tioned lignin for the first time. About 20–30% of the dry weight of wood is made up 
of lignin (Abdel-Raheem and Shearer 2002). It is covalently linked to hemicellulose 
and confers mechanical strength to the cell wall (Chabannes et al. 2001). Owing to 
the chemical complexity and recalcitrant properties of lignin, very few microbes are 
able to degrade it (Guillén et al. 2005). In biorefinery processes, such as the produc-
tion of ethanol and cellulose-based papers, the degradation of lignin is a central 
issue (Cañas and Camarero 2010).
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An array of extracellular oxidative enzymes are produced by white-rot fungi 
(basidiomycetes), as they are the main wood rotters that synergistically and profi-
ciently degrade lignin. Ligninolytic enzymes include lignin peroxidases (LiPs), 
manganese peroxidases (MnPs), versatile peroxidases, and laccases (Wong 2009). 
On the basis of macroscopic features, wood-rotting basidiomycetes are categorized 
into white-rot and brown-rot fungi (Schwarze et al. 2000). In the mid-1980s, LiP 
and MnP were discovered in P. chrysosporium and termed true ligninases because 
of their high redox potential (Evans et al. 1994). Pleurotus eryngii were reported to 
produce versatile peroxidase that showed catalytic properties similar to LiP and 
MnP (Ruiz-Dueñas et al. 1999). Other extracellular enzymes involved in wood lig-
nin degradation are oxidases generating H2O2, aryl-alcohol oxidase (AAO), glyoxal 
oxidase, aryl-alcohol dehydrogenases (AAD), and quinone reductases (QR) (Guillén 
et al. 1997; Gutierrez et al. 1994).

Laccases have been known for many years to play a variety of roles, including 
production of pigments, fruit body morphogenesis, lignification of cell walls, and 
detoxification in plants, fungi, and insects (Mayer and Staples 2002). The prelimi-
nary steps in the biodegradation of lignin must be extracellular. LiP is also called a 
ligninase. First discovered in Phanerochaete chrysosporium, this enzyme is a heme 
peroxidase with a remarkably high redox potential and low optimal pH (Tien 1987). 
Laccase enzymes are copper-containing oxidases that mostly oxidize only those 
lignin model compounds with a free phenolic group, forming phenoxy radicals 
(Bourbonnais and Paice 1990). The most common laccase-producing endophytic 
fungi are Chaetomium sp., C. globosum, Podospora anserina, Botryosphaeria sp., 
and Neofusicoccum austral (Fillat et al. 2016; Sara et al. 2016).

Laccase enzymes produced by endophytic fungi have extensive substrate speci-
ficity and generally act on small organic substrates, such as polyphenols, methoxy- 
substituted phenols, and aromatic amines. Fungal laccases are used in paper 
manufacture for delignification, bioremediation of phenolic compounds, and bio-
bleaching (Kunamneni et al. 2008). Exoglucanases, endoglucanases, β-glycosidase, 
exoxylanases and endoxylanases, and β-xylosidases are the main hydrolytic 
enzymes involved in lignocellulose degradation (Van Dyk and Pletschke 2012). For 
complete degradation of lignocellulose materials, laccases, MnP and LiP (oxidative 
enzymes), and additional hemicelluloses (e.g., acetyl esterase, b-glucuronidase, 
endo-1, 4-β-mannanase, and α-galactosidase) and oxidoreductases (aryl-alcohol 
oxidase, glucose-1-oxidase, glyoxal oxidase, and pyranose-2-oxidase) are neces-
sary (Correa et al. 2014).

1.3.5  Endophytic Fungi in Bioremediation

Bioremediation is a process used to treat contaminated media, including water, soil, 
and subsurface material, by varying the conditions of the environment to stimulate 
the growth of microorganisms (fungi or bacteria) and degrade the target pollutants 
into simpler compounds. Biological treatment of the contaminated site is the least 
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expensive method (Barranco et  al. 2012). To optimize the conditions for the 
microorganisms, additional nutrients, vitamins, minerals, and pH buffers are added. 
The prime goal of bioremediation is to create an optimal environment for the 
microbes to degrade pollutants. Although it is a cost-effective option, it is a very 
slow process, sometimes taking weeks to months for results to appear. Technologies 
can be generally classified as in situ or ex situ. In situ bioremediation involves treat-
ing the contaminated material at the site, whereas ex situ involves the removal of the 
contaminated material to be treated elsewhere.

To restrain the growth of endophytes, the plant synthesizes a range of toxic 
metabolites and endophytes over a period of co-evolution, progressively establish-
ing a genetic system as a tolerant mechanism by generating exoenzymes and 
mycotoxins (Mucciarelli et al. 2007; Pinto et al. 2000). Fungal endophytes synthe-
sizing the enzymes degrade the macromolecules into simpler compounds, includ-
ing amylases, lipases, pectinase, cellulase, proteinase, phenol oxidase, and lignin 
catabolic enzymes (Oses et al. 2006; Tan and Zou 2001; Zikmundova et al. 2002). 
In general, fungal endophytes have been stated to have the ability to use various 
organic compounds, such as glucose, oligosaccharides, cellulose, hemicelluloses, 
lignin, keratin, pectin, lipids, and proteins, allowing the degradation of structural 
components into simpler forms (Kudanga and Mwenje 2005; Tomita 2003; Urairuj 
et al. 2003).

One of the methodologies in which green plants are used for the process of bio-
remediation is referred to as phytoremediation. It has been documented to be a 
promising technology for the in situ remediation of contaminated soils. Numerous 
studies have demonstrated that endophytes produce various enzymes for the degra-
dation of organic contaminants and reduce both the phytotoxicity and evapotranspi-
ration of volatile contaminants (Li et al. 2012b). Soleimani et al. (2010) reported the 
infection of Festuca pratensis and Festuca arundinacea, two grass species, by two 
endophytic fungi, Neotyphodium coenophialum and Neotyphodium uncinatum, 
increasing the ability of the plants to accumulate more Cd in roots and shoots and 
decreasing stress in the plants in addition to increasing the production of biomass. 
Rabie (2005) reported the phytoremediation efficiency of wheat, mung beans, and 
eggplant grown in soil contaminated with hydrocarbons. He concluded that the 
plants provided a larger sink for the contaminants, because they were better able to 
survive and grow, leading to the significance of treatment with arbuscular mycor-
rhizal fungi.

Since the industrial revolution, there has been a widespread rise in the discharge 
of waste into the environment, which is mostly collected in soil and water, com-
prises heavy metals, and generates distressing conditions for human life and aquatic 
biota. Heavy metals are metals with relatively high densities, atomic weights, or 
atomic numbers. Some heavy metals are either vital nutrients, such as iron, cobalt, 
and zinc, or comparatively harmless, such as ruthenium, silver, and indium, but in 
higher amounts or definite forms they can be toxic. Cadmium, mercury, and lead are 
reported to be highly poisonous heavy metals. Salem et  al. (2000) reported that 
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arsenic, cadmium, chromium, copper, lead, mercury, nickel, selenium, silver, zinc, 
etc., are not only cytotoxic, but also carcinogenic and mutagenic (Ahluwalia and 
Goyal 2007). In heavy metal-polluted habitats, microorganisms are known to 
change different detoxifying mechanisms, such as biosorption, bioaccumulation, 
biotransformation, and biomineralization (Gadd 2000; Lim et  al. 2003; Malik 
2004).

One of the biological processes in which chemical changes on compounds take 
place is referred to as biotransformation. The endophytic fungus Phomopsis sp. 
(VA-35), obtained from Viguiera arenaria, was reported to biotransform the tetra-
hydrofuran lignan, (-)-grandisin, into a new compound, 3,4-dimethyl-2-(4'-
hydroxy- 3',5'-dimethoxyphenyl)-5-methoxy-tetrahydrofuran (Verza et al. 2009). 
In another study, endophytic fungi Fusarium sambucinum, Plectosporium tabaci-
num, Gliocladium cibotii, and Chaetosphaeria sp., isolated from the roots and 
shoots of Aphelandra tetragona, were capable of transforming the benzoxazi-
nones 2- benzoxazolinone (BOA) and 2-hydroxy-1,4-benzoxazin-3-one (HBOA). 
Aminophenol was formed as a key intermediate during the metabolic pathway for 
HBOA and BOA degradation (Zikmundova et  al. 2002). On the basis of 18S 
rRNA gene sequencing, Lasiodiplodia theobromae isolated from the leaves of 
Boswellia ovalifoliolata, an endemic medicinal plant from the Tirumala Hills, 
was reported to show resistance to all four heavy metals, Co, Cd, Cu, and Zn, up 
to 600 ppm (Sani et al. 2017).

1.3.6  Endophytic Fungi in Agriculture

A lot of research into fungal endophytes is underway, which signifies that they are 
the most important source of biocontrol agents. They have a considerable effect on 
the physiological actions of their host plants. Further, various environmental fac-
tors, including rainfall and humidity, may have an influence on the occurrence of 
some fungal endophytic species (Khiralla et  al. 2017; Petrini 1991; Selvanathan 
et al. 2011). According to Schaechter (2012), endophytic fungi have frequently been 
categorized into two major groups, including clavicipitaceous endophytes, which 
are known to infect some grasses, and nonclavicipitaceous endophytes. The 
Clavicipitaceae family of fungi include free-living and symbiotic species in associa-
tion with insects and fungi or grasses, rushes, and sedges (Bacon and White 2000; 
Khiralla et al. 2017). Many of its members produce alkaloids, which are toxic to 
animals and humans, whereas nonclavicipitaceous endophytic fungi, mainly in 
association with leaves of tropical trees, have been discovered to play an important 
role in defending the host from abiotic stress, fungal pathogens, and an increase in 
the biomass (Fröhlich and Hyde 1999; Gamboa and Bayman 2001; Khiralla et al. 
2017; Yadav and Yadav 2018; Yadav 2019)

Endophytic fungi play vital roles in host plants, protecting them from stress 
 conditions, making nutrients, such as phosphorus, potassium, and many more, 
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available, producing auxins, cytokinins, gibberellins, siderophores, ammonia, HCN, 
and diverse hydrolytic enzymes, and ultimately promoting the growth of host plants. 
A number of studies suggest that inoculating crops with endophytic fungi might 
improve growth by diverse plant growth-promoting traits and might also mitigate 
the effect of stress conditions. Khan et al. (2011b) demonstrated the role of a newly 
isolated endophytic fungus, Penicillium funiculosum, with diverse plant growth- 
promoting attributes in G. max growing under salinity stress. The study revealed 
that the fungus ameliorated the effect of salinity stress. Kedar et al. (2014) studied 
the growth promotion potential of Phoma sp. isolated from Tinospora cordifolia 
and Calotropis procera for maize. The fungal endophytes were found to enhance 
growth in inoculated maize plants compared with non-inoculated plants. In the 
study by Rinu et al. (2014), Trichoderma gamsii isolated from the lateral roots of 
lentil with multifarious plant growth-promoting attributes showed its potential in 
plant growth promotion conducted under greenhouse conditions using two cereals 
and two legumes, suggesting its potential to be developed as a bioformulation for 
application under a mountain ecosystem. Yuan et al. (2017) studied the effect of 
Penicillium simplicissimum, Leptosphaeria sp., Talaromyces flavus, and Acremonium 
sp. isolated from cotton roots with wilt disease caused by the defoliating Verticillium 
dahliae (Vd080). The study demonstrated that all treatments considerably reduced 
disease incidence and the disease index. The results clearly signified that these 
endophytes not only delayed, but also led to a reduction in, wilt symptoms in 
cotton.

In the study by Asaf et al. (2018), Aspergillus flavus CHS1, an endophytic fun-
gus, isolated from the roots of Chenopodium album with multiple growth- promoting 
activities, was assayed for its ability to promote the growth of mutant Waito-C rice. 
The results revealed an increase in chlorophyll content, root–shoot length, and bio-
mass production. Furthermore, the strain was used to evaluate its potential to 
improve the growth of soybean under salinity stress. Dastogeer et al. (2018) evalu-
ated whether the colonization of two fungal endophytes isolated from wild Nicotiana 
species from areas of drought-prone northern Australia, and a plant virus, yellowtail 
flower mild mottle virus, could improve water stress tolerance in N. benthamiana 
plants. Inoculation with the fungal strains and the virus considerably increased the 
tolerance of the plants to water stress. Inoculation with the fungal strains alone 
resulted in an increase in the relative water content, soluble sugar, soluble protein, 
proline content, plant biomass, and enzymatic activity, and a decrease in the produc-
tion of reactive oxygen species and electrical conductivity. Furthermore, there was 
noteworthy upregulation of numerous genes that had previously been identified as 
drought-induced. The influence of the virus was similar to that of the fungi in terms 
of increasing the plant osmolytes, antioxidant enzyme activity, and gene expression. 
Fungal endophytic communities associated with plants play a vital role in balancing 
the ecosystem and in enhancing the growth of hosts. They have been shown to be 
potent biocontrol agents; furthermore, they produce a large number of fungal 
metabolites that could protect the host from disease, insects, and mammalian herbi-
vores. They have been known to increase the tolerance of their host to abiotic stress. 
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Thus, fungal endophytes are gaining greater attention and are of greater interest to 
chemists, ecologists, and microbiologists as a treasure of biological resources, 
because of their diverse vital roles in the ecosystem.

1.4  Future Prospects and Conclusion

For the previous two and half decades, the scientific community has been aware of 
the effective role of fungal endophytes in agriculture, ecology, biotechnology, and 
industry. Fungal endophytes are also an alternative to existing industrial processes 
of transformation of lignocellulosic biomass, possessing great potential for applica-
tion in the lignocellulosic industry. The ability of hydrolytic enzymes to synthesize 
can be employed in enzyme fermentation industries. New techniques with advanced 
sensitivity are required for enzyme quantification, such as fluorescence spectro-
photometry, near-infrared-, and Fourier-transform infrared-based methods. The 
consequences of enzymes generating endophytes with distinctive consideration of 
remediating environmental pollutants, such as metals, polyaromatic hydrocarbons, 
and polychlorinated hydrocarbons, have been understated at the very minimum. 
Production of secondary metabolites of interest to the pharmaceutical industry is a 
very attractive field of research using biotechnological methods. The integration of 
genetic manipulation technology to progress the research to recognize the regula-
tory gene/s of numerous biosynthesis pathways of metabolite construction can lead 
to an increase in growth production of the compounds to be used for human welfare. 
The participation of fungal endophytes in the cycling of nutrients has significant 
consequences for living organisms and human health. For future research, there are 
still many areas that need to be explored, including new technologies and new crops 
with endophytes. Modern techniques of molecular biology, involving metagenomes, 
proteomes, and transcriptomes, will help to define the characteristics of endophytes 
and to find novel products for industrial development. The future of research into 
endophytes is bright, as demand for pharmaceutical products and agricultural pro-
duce is increasing day by day with an ever-increasing population.
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