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Introduction

Mathematical problem solving has long been seen as an important aspect of
mathematics, the teaching of mathematics, and the learning of mathematics. It has
infused mathematics curricula around the world with calls for the teaching of
problem solving as well as the teaching of mathematics through problem solving.
And as such, it has been of interest to mathematics education researchers for as long
as our field has existed. In July of 2016, over 80 researchers gathered at ICME-13 to
expand on this important topic through the presentation of research, critical
reflection, and discourse. The coming together of researchers within TSG 19:
Problem Solving in Mathematics Education resulted in the presentation of 13
extended papers, 28 oral communications, and 18 posters organized on a wide
variety of topic focused on, and stemming from, research into the problem solving.
From the richness of the interaction over those 7 days in Hamburg emerged this
book—consisting of the extended versions of 15 invited papers on a wide variety of
topics, results, and perspectives on mathematical problem solving.

In Part I “Problem Solving Heuristics”, Tjoe revisited Pólya’s framework,
characterizing problem solving phases that appear in individuals’ attempts to solve
problems and focuses on looking backstage as an approach to encourage high
school students to look for different ways to solve problems. Using a mathematics
test as well as interviews, he explores and discusses the extent to which students
were familiar, fluent and flexible in using multiple solution methods. An interesting
finding in Tjoe’s study was that students showed little interest in finding other
solution methods in addition to those that they reported in the test. Tjoe recom-
mends that students explicitly discuss throughout instruction the importance of
finding multiple solution methods to approach any type of problems and teachers
should value and encourage their students to looking back and find different
approaches to solve the same problem.

Likewise, Maciejewski’s contribution invites us to reconceptualise the mathe-
matical problem solving processes to include, what he calls, mathematical foresight
and the importance of future thinking when approaching a problem solving situa-
tion. Maciejewski grounds these ideas in the literature, where he illustrates the
relationships between mathematicians’ work, problem solving (Schoenfeld, Pólya),
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and select psychological work and posits mathematical foresight as a possible lens
to analyse students’ future-oriented thinking and actions to deal with mathematical
situations. In contrasting the mathematicians’ foresight models and that of students
approaches, Maciejewski reports that while mathematicians see two interrelated
components—the sphere of finding the solution and the resolution process or tra-
jectory—students often only see one of these components. That is, students either
see a possible solution to a task without seeing the process or path necessary to
reach that solution, or they see the beginnings of a trajectory without seeing where
this will lead them.

Part II “Problem Solving and Technology” begins with Carreira and Jacinto who
investigate how a middle-grade student engages in a web-based mathematics
competition. Drawing on the notion of humans-with-media they emphasize the
interaction between the solver and the tool in problem solving activities. To doc-
ument the student’s processes, they use a blending framework that accounts for the
problem solving phases (read, analysis, exploration, planning and implementation,
and verification) as well as the explicit students’ use of technology affordances
throughout all phases. Based on the analysis of one case the authors report that the
use of technology affords the student the possibility to engage in different forms of
reasoning, including exploration, manipulation, observation, conjecture, formula-
tion, explanation, and validation.

Similarly, Santos-Trigo also presents a framework for characterizing reasoning
that a problem solver might develop as a result of using digital technology to solve
mathematical problems. In so doing, he illustrates how the affordances of tech-
nology can shape the reconstruction of figures that often are embedded in problem
statements, the transformation of textbook or routine problems into an investigation
task, the graphical representation and exploration of a variation phenomenon or
problem, and the construction and exploration of dynamic configurations to for-
mulate conjectures and ways to support them. Santos-Trigo uses these four problem
types to discuss the importance of building dynamic models of problems, the role of
controlled movement of certain objects, the search and exploration of loci of points
to analyse some variation phenomena, and the use of sliders to visualize patterns
and relationships.

Finally, Amado, Carreira, and Nobre look at ways in which the use of spread-
sheets provides affordances for students to represent and solve word problems. The
chapter begins by addressing both the difficulties that students experience with
algebraic representation and the affordances of spreadsheets to make sense and
represent key information associated with problem statements. The cases presented
in the chapter illustrate different models that students used to solve a word problem.
They conclude that the use of spreadsheets allowed middle school students to think
of a variety of approaches that involves formulas and tables to identify and explore
relations between variables.

Part III “Inquiry and Problem Posing in Mathematics Education” includes two
chapters and begins with Hersant and Choquet’s use of inquiry-based approaches to
engage elementary students in problem solving activities. The chapter includes a
review of how inquiry-based learning and teaching has been interpreted and used in

viii Introduction



both science and mathematics in Europe and elsewhere. They argue that this
approach can be characterized as a student-centred way of teaching in which stu-
dents are encouraged to formulate questions as a way to delve into concepts and
solve problems. In the chapter, they present two case studies, framed through an
inquiry-based approach, that encourages elementary students to pose and discuss
questions during the process of solving specific tasks. Through these cases the
authors point out that the role of the teacher in such an environment will either
foster or limit what students can achieve in this type of approach.

The second paper, by Malaspina, Torres, and Rubio, presents results from a
study that looks closely at problem posing activities during a workshop with 15
high school teachers. The participants were asked to pose a problem at two different
stages of the workshop (pre-problem and post-problem) and these were used to
analyse the teachers’ didactic and problem posing competencies. The authors relied
on what they call an onto-semiotic framework to analyse the posed problems via
epistemic and cognitive configurations. This analysis led the authors to characterize
the participants’ didactic competencies by contrasting the mathematical structures
between the given problem and those they proposed and discussed. The authors
also report on the difficulties participants experienced during the development of the
problem-posing sessions.

Part IV “Assessment of and Through Problem Solving” is comprised of four
chapters beginning with Loh and Lee’s study on grade 7 students use of
metacognitive strategies while solving mathematical tasks. The research design
involves the use of both quantitative and qualitative methods to gather information
about the participants’ metacognitive behaviours. Results identify different stu-
dents’ frequency use of metacognitive strategies with an emphasis on surface
strategies. However, the analysis of the students’ written self-report and interview
led the authors to identify students’ robust use of metacognitive strategies. The
authors suggest that the use of both quantitative and qualitative instruments pro-
vided important insights into the students’ metacognitive behaviours.

Chanudet’s chapter looks at the use of an assessment tool in a problem solving
course that fosters an inquiry approach to learn mathematics. It includes a review of
what an inquiry and problem solving approach might entail and the importance of
designing a tool to assess problem solving competencies. The first part of the study
focuses on the nature of the tasks that participant teachers use to assess students’
problem solving. The second part of the study delves deeper into assessment and
involves first working collaboratively with teachers to design an assessment tool
that involved both summative and formative assessment, and then testing this tool
through an exploratory study into one of these teacher’s practice. Results indicate
that this teacher relied on classroom conversations to assess her students throughout
the course.

Meanwhile, Di Martino and Signorini look at assessment of problem solving
through the use of standardized assessments such as PISA or national tests. The
authors discuss several cases in which students’ answers to specific test items,
although well-supported within the students’ reasoning, do not necessarily lead
them to choose the right answer. The authors also showed that the time limitation to

Introduction ix



complete the test becomes an obstacle for students to show what is behind their
answers and they argue that teachers and researchers should pay attention to the
students’ process involved in working on these types of questions.

The final chapter in this part, by Mendoza Álvarez, Rhoads, and Campbell, is
centred on a quest to develop an efficient tool to assess the mathematical problem
solving abilities necessary for a student to leverage pre-requisite knowledge to be
successful in the STEM fields. Grounded in literature, the authors develop and test
Likert items that link a student’s mathematical problem solving capacity to five key
problem solving domains (sense-making, representing and connecting, reviewing,
justifying, and challenge) and do not require content knowledge beyond secondary
school level algebra.

Part V “The Problem Solving Environment” begins with Koichu and Keller’s
report on the development of online forums to engage students in problem solving
activities. In their chapter, they include examples of problems, the interaction
among three communities (two classroom communities and the research group),
and a narrative on how these communities behave and interact throughout the
development of the forums. The authors characterize how online problem solving
discussions became a routine practice in one community in which its members
valued and engaged in meaningful discussions beyond classroom problem solving
activities. The second community did not activate the use of the forum; but the
interaction of this community with the research group led the participants to
enhance their peer’s interaction within the classroom. The authors also argued that
all three communities evolved, and they characterize stages on how this evolution
took place including the identification of boundaries that appear during the com-
munity interactions.

Meanwhile, Liljedahl’s chapter aims to characterize what a thinking classroom
involves in terms of the type of tasks used to engage students in problem solving
activities, the way teachers give and structure the tasks development, how the
students work in groups including work surfaces (vertical non-permanent surfaces),
how questions are answered, and the assessment of students’ problem solving
performances. Throughout the chapter, the author describes a series of studies that
led him to identify and categorize students learning behaviours in different class-
room environments. He proposes an inventory of classroom norms and practices to
examine how classroom activities are developed; indeed, the inventory is expressed
in terms of 11 questions that researchers/teachers can use to analyse not only what
and how students learn, but also the quality of that learning. Those questions
include: What type of tasks are used, and when and how they are used? Where, and
on what surfaces, do students work on tasks? How the room is organized, both in
general and when students work on tasks? When and how is assessment carried out,
both in general and when students work on tasks? etc. Addressing these questions
provides useful information for researchers/teachers to construct powerful and
cohesive learning environments that foster students’ thinking as well as powerful
and cohesive professional development environments for teachers to explore and
question their practice.
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In the same part, Felmer, Perdomo-Díaz and Reyes present initial results from a
research and professional development program (Activating Problem Solving in
Classrooms, known as ARPA in Spanish) that aims to introduce a problem solving
approach into regular teachers’ instructional practices. The chapter provides a
context to explain the project rationale to focus on problem solving approaches to
help teachers improve their practices and their students’ mathematical competen-
cies. The program includes a series of workshops in which teachers have an
opportunity to work on problems and to think of ways to implement them into
regular classrooms. After 3 years of implementation, the authors report that teachers
have begun to question their practices, to change their beliefs about teaching and
ways to introduce a problem solving approach in their classrooms.

Finally, Ho, Yap, Tay, Leong, Toh, Quek, Toh, and Dindyal present and discuss
results from a project whose aim is to implement a mathematical problem solving
approach in all classrooms in Singapore. They identify the factors that contribute to,
and explain, the success or failure of a school to implement the project. To this end,
they focus on analysing factors such as programs and school levels in terms of
outcomes, inputs, resources, constrains, strategies, and feedback and evaluations.
The authors argue that the sustainability of introducing and maintaining a problem
solving approach in schools can be achieved through the infusion and diffusion of a
school culture that fosters integration between curriculum and school problem
solving practices.

Manuel Santos Trigo
Peter Liljedahl
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Part I
Problem Solving Heuristics



Chapter 1
“Looking Back” to Solve Differently:
Familiarity, Fluency, and Flexibility

Hartono Tjoe

Problem solving clearly plays an important role in mathematics (Duncker, 1945;
Kaiser & Schwarz, 2006; Lesh, 1985; Mason, Burton, & Stacey, 1982), and its
role in mathematics education is equally prominent (Common Core State Standards
Initiative, 2010; NCTM, 2000). Apart from solving unsolved problems, the pro-
fessional practice of research mathematicians also often involves solving, through
different approaches, problems that have been previously solved (Davis & Hersh,
1981; Liljedahl & Sriraman, 2006; Thurston, 1994). A comparable pursuit of mul-
tiple solutions in the classroom experience of K-12 students, however, has seldom
been researched (Santos-Trigo, 1996; Silver, Ghousseini, Gosen, Charalambous, &
Font Strawhun, 2005).

The present study focuses on the second part of Pólya’s (1945) fourth step of
problem solving, namely, “looking back” in order to solve a problem differently. In
particular, it examines the extent to which the practice of “looking back” to solve
differently has been integrated into mathematics instruction in the United States, and
thus, whether this practice is familiar to American students. Mathematical intercon-
nectednesswas analyzed through student fluency andflexibility in supplying different
solution methods. An assessment involving multiple mathematics concepts was uti-
lized to explore the relationship between students’ mathematical understanding and
their awareness of mathematical interconnections.

The following three research questions guided the present study: (a) Based on a
mathematics problem-solving test and interview results, to what extent were students
familiar with the practice of problem solving using multiple solution methods? (b)
Given their familiarity or unfamiliarity with the practice of solving problems using
multiple solution methods, to what extent were the students fluent in understanding,
reproducing, and identifying a particular mathematics topic related to the various
solution methods? and (c) Given their fluency or non-fluency in such a range of

H. Tjoe (B)
The Pennsylvania State University, Berks Campus, 238 Gaige Building, Tulpehocken Road,
P.O. Box 7009, Reading, PA 19610, USA
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4 H. Tjoe

mathematics topics, to what extent were the students flexible inmakingmathematical
connections among the different solution methods and in adjusting to these different
methods?

In the context of the present study, “familiarity” refers to the quality of a topic
being well-known or generally recognizable based on prior mathematical experi-
ence; “fluency” refers to the ability to formulate, demonstrate, and communicate
strong mathematical ideas effortlessly and articulately; and “flexibility” refers to the
willingness to forgo one’s familiar solution method in favor of a novel or unfamil-
iar method either generated by oneself or presented by others (Leikin, 2009; Silver,
1997; Sriraman, 2009; Star & Rittle-Johnson, 2008; Torrance, 1966).

1.1 Conceptual Framework

1.1.1 Problem-Solving Process

Literature in mathematics education indicates that problem solving was one of the
most highly researched topics in the field for several decades (Kilpatrick, 1985;
Lester, 1994; Schoenfeld, 1985). More recently, many issues regarding problem
solving have been discussed in connection with other emerging topics in mathe-
matics education (Felmer, Pehkonen, & Kilpatrick, 2016; Schoenfeld, 2008; Singer,
Ellerton, & Cai, 2015).

The important place of problem solving in school mathematics is natural given
its strategic role in teaching and learning mathematics (Liljedahl, 2016; Owen &
Sweller, 1985). A number of pedagogical approaches have been proposed to incor-
porate the problem-solving experience into everydaymathematics classrooms (Press-
ley, Forrest-Pressley, Elliott-Faust, & Miller, 1985). The topic draws considerable
interest and attention not only from school teachers and educators, but also from
research mathematicians.

Pólya (1945) enumerated four distinct steps in the process of mathematical prob-
lem solving: (a) understanding the problem, (b) devising a plan, (c) carrying out the
plan, and (d) “looking back.”

The first step, understanding the problem, begins with the identification of what
is posed by the problem; that is, problem solvers must determine the nature of the
question being asked (Michener, 1978). To this end, it is important to recognize all
available data in the problem, and to determine and differentiate necessary, suffi-
cient, relevant, redundant, and contradictory conditions amongst the given informa-
tion. Additional facts may be further derived from drawing appropriate figures or
introducing suitable notation.

The second step is devising a plan. A well-devised plan makes the most straight-
forward connection between the data and the unknowns. In addition, it builds on
comparable problem-solving experiences from the past. It is therefore important to
consider analogous problems, some of which may vary in appearance from the prob-
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lem under consideration in several ways, from the structure of the data they present
to the construction of the unknowns (Gick & Holyoak, 1980). Particular techniques
and established results employed in the course of past problem solving may inform
the restatement of problems presently at hand.

Pólya discussed many heuristic strategies for solving mathematics problems
(Schoenfeld, 1979a, b), including drawing pictures, solving simpler, analogous prob-
lems, considering special cases to find general patterns, working backward, and
adopting different points of view.

The third step is to carry out the plan. It is critical to execute each step of the plan
carefully (Garofalo & Lester, 1985), and to verify that each step follows logically.

The fourth step is “looking back.” Arrival at a solution does not necessarily mean
that the process of problem solving has ended. In the first part of Pólya’s fourth
step, problem solvers examine the obtained solution of a problem by checking the
argument along the way, ascertaining in particular an absence of errors in reasoning
(Silver, Leung, & Cai, 1995).

In the second part of Pólya’s fourth step, problem solvers review the solution to
find alternative approaches to solving the same problem. Deriving the obtained result
through the use of alternative approaches can be valuable for future problem solving
(Silver et al., 2005).

Pólya devoted much time to illustrating his model of problem solving with con-
crete exemplars. The model, as a result, gained many enthusiasts from a large audi-
ence. He convinced his readers that the problem-solving processes he analyzed were
not only accessible to research mathematicians, but could also be utilized by broader
audiences.

1.1.2 Problem Solving Using Multiple Solution Methods

Many researchers in mathematics education have comprehensively and systemati-
cally examined Pólya’s model. A review of prior literature reveals, however, that
much of this attention has focused specifically on the first three steps. In fact, many
researchers were particularly attracted by the second step, devising a plan (Schoen-
feld, 1985)—and understandably so, as this is what most classroom practitioners
expect their students to develop and implement while learning mathematics. This
was, after all, the principal reason the model was constructed in the first place.
Nonetheless, Pólya’s (1945) model of problem solving does not end at the third step.

Only a limited number of studies in mathematics education have examined stu-
dents’ use of alternative approaches in problem solving. Despite its importance,
Pólya’s fourth step has received less attention in mathematics education community
than the other three steps from the empirical point of view (Schoenfeld, 1985; Silver,
1985; Tjoe, 2014).

Some researchers in this field have been particularly successful in exploring the
use of mathematical tasks requiring students to solve a single problem via sev-
eral different approaches. These researchers investigated the presence of multiple
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mathematics concepts through the solution of non-standard problems via different
but related solution methods (Leikin & Lev, 2007), through the transformation of
standard problems into non-standard problems (Santos-Trigo, 1998), and through
the recognition of specific attributes within standard problems (Tjoe & de la Torre,
2014).

An understanding of interconnections among different mathematical concepts is
recognized by many mathematicians as a driving force in the appreciation of mathe-
matical beauty (Borwein, Liljedahl, & Zhai, 2014; Davis & Hersh, 1981; Hadamard,
1945; Poincare, 1946). In turn, mathematics teachers, educators, and practitioners in
general agree that knowing how and why mathematics works—and in understand-
ing in particular the connections among many different solutions to a problem as
opposed to superficial memorization of solution procedures—should be viewed as
fundamental to students’ development of mathematical reasoning (Eisenhart et al.,
1993; Hiebert & Lefevre, 1986; Rittle-Johnson & Siegler, 1998).

Clearly, the fourth step of Pólya’s (1945) problem-solving process plays a critical
role in prompting the discovery of a variety of different solution methods. In partic-
ular, the idea of “looking back” to solve differently is closely related to the qualities
of familiarity, fluency, and flexibility.

In the absence of familiarity with problem solving using multiple solution meth-
ods, problem solvers may be less inclined to reflect on the solution process and to
seek more than a single solution method. Without considerable fluency in a range
of mathematical subjects, “looking back” to solve differently is far less likely to
be effective or successful. Similarly, lack of flexibility in switching between differ-
ent solution methods may lead to an unfavorable attitude toward finding alternative
approaches to solve the same problem. The analysis of familiarity, fluency and flex-
ibility might therefore be considered necessary for the fourth step of Pólya’s (1945)
problem-solving process to materialize in an optimal manner.

Many earlier discussions of problem solving via multiple solution methods focus
on a variety of potential benefits of the practice. Silver et al. (2005), for instance,
maintain that students “can learn more from solving one problem in many different
ways than [they] can from solving many different problems, each in only one way”
(p. 288). They particularly advise students interested in mathematics to obtain more
experience in solving problems via multiple solution methods. Silver and colleagues
regard such experience as having “the potential advantage of providing students with
access to a range of representations and solution strategies in a particular instance
that can be useful in future problem-solving encounters” (p. 288). They also consider
the use of multiple solution methods in order to “facilitate connection of a problem
at hand to different elements of knowledge with which a student may be familiar,
thereby strengthening networks of related ideas” (p. 288).

Leikin and Levav-Waynberg (2007) were interested in surveying teachers for their
thoughts about alternative solution methods in problem solving. They interviewed
several high school mathematics teachers in a comparative study of teachers’ beliefs.
Their findings reveal positive attitudes toward the use of multiple solution methods
in problem solving. Most teachers in the study by Leikin and Levav-Waynberg con-
sidered the use of these methods beneficial to fostering student success in problem
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solving. They believed that working with many different approaches accommodated
the learning experiences of students who had pronounced preferences in learning
style. In turn, they reasoned that struggling students could benefit from the pre-
sentation of various approaches, especially with regard to problems having a high
level of difficulty. Such presentations should be applied to problems with complex
approaches requiring sophisticated mathematical knowledge yet which are solvable
using elementary techniques. As one teacher remarked, when presented with differ-
ent solution methods, students should be able to choose the solution method “that is
easiest [for them] to understand” (Leikin & Levav-Waynberg, 2007, p. 363).

Other teachers in the study by Leikin and Levav-Waynberg (2007) valued in par-
ticular the students’ development of mathematical thinking and reasoning as integral
to the establishment of a solid foundation for future academic success. Several teach-
ers acknowledged the significance of students’ awareness of connections between
mathematics topics. Mathematics should be viewed “as a whole”—that is, as a col-
lection of connected, rather than disjoint, ideas (Leikin & Levav-Waynberg, 2007,
p. 363). In general, Leikin and Levav-Waynberg (2007) concluded that these teachers
evinced favorable views of the use of multiple solution methods.

In addition to mathematics education researchers, a number of cognitive psychol-
ogists interested in educational psychology with applications to learning and cogni-
tion have also endorsed employing multiple solution strategies in problem solving.
Collins, Brown, and Newman (1989) discuss the use of multiple perspectives by
means of their “cognitive apprenticeship” approach to instructional method. In their
model, students’ learningprocesseswere considered in light of five teachingmethods:
modeling, coaching, scaffolding, reflection, and articulation. The role of the teacher
in supporting the students’ learning experience gradually decreased as the students
felt more confident in communicating their understanding of the problem-solving
solutions.

Collins et al. (1989) argue that the more approaches and perspectives students
explore, the more effective the implementation of this cognitive-based learning
method will be. Some benefits of this method they found included improved “ap-
prenticeship” through the use of real-world activities and assessments (Collins et al.,
1989). The method also enhanced students’ motivation and engagement in overall
learning (Collins, 1991), greater transfer and retention rates (Resnick, 1989), and
higher-order reasoning (Hogan & Tudge, 1999).

Spiro, Feltovich, Jacobson, and Coulson originated the “cognitive flexibility the-
ory” (Spiro, Feltovich, Jacobson, & Coulson, 1991). Spiro et al. (1991) maintain that
restructuring knowledge through changes in approach makes learning new concepts
more effective. Such adaptations are based on the notion that the human mind can
be trained to be flexible enough to accommodate different situations (Spiro & Jehng,
1990). New information and experiences are processed via the transfer of knowl-
edge and skills, and further constructed to develop new meaning and understanding.
In other words, Spiro and Jehng (1990) assert that learning through different per-
spectives associated with different situations deepens students’ understanding and
learning experiences.
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Tabachneck, Koedinger, and Nathan (1994) also recognized the purpose of adopt-
ing many different solution methods in problem solving. They argue that on its own,
each solution method entails certain disadvantages and weaknesses. In order to over-
come these, Tabachneck et al. (1994) recommend students employ a combination
of different solution methods instead of relying on only one. More specifically, they
emphasize that students could benefit from employing this learning style in mathe-
matical problem solving.

In addition to advocating the use of many different solutionmethods, many cogni-
tive psychologists encourage teaching a coherent interrelation among those solution
methods (Bodemer, Plötzner, Feuerlein, & Spada, 2004; de Jong et al., 1998; Skemp,
1987; Van Someren, Boshuizen, de Jong, & Reimann, 1998). Equally important,
Reeves andWeisberg (1994) suggest showing students many analogical problems or
examples concurrently.

On the whole, cognitive psychologists have taken a positive stance on problem
solving usingmultiple solutionmethods, as havemathematics education researchers.
Despite the benefits of implementing this learning style, some of these discussions
were not without uncertainties.

A few teachers in the study by Silver et al. (2005) discussed issues and concerns in
teaching problem solving via multiple approaches. They included the constraints of
instructional time, limitations involving instructors’ perceptions of student abilities,
the selection and presentation order of solution methods, and uncertainty about the
advantages and disadvantages of reviewing incorrect approaches to problems.

Some teachers in the study by Leikin and Levav-Waynberg (2007) showed gen-
uine concern about students’ learning experiences. They worried that students might
confuse “whether the object of study is to solve the problem, the fact that there is
more than one solution to the problem, or the principles behind the solutions and the
connections between them” (p. 366).

Despite these constraints and concerns, many researchers still felt firmly confi-
dent in their recommendations for teaching problem solving using many different
approaches. Silver et al. (2005) nonetheless point out the possibility that teachers
may possess inadequate mathematical knowledge to effectively employ this instruc-
tion technique. They hypothesized that this might constitute a significant limiting
factor in its overall success as an instructional strategy.

Several empirical findings have been presented to demonstrate students’ learning
outcomes as a result of approaches teaching multiple solution strategies. Große and
Renkl (2006) examined the effects of teaching problem solving using many different
solution methods presented in the form of worked-out examples. Their experiment
involved combinatorics lessons for university-level students. The authors found that
exposing students to the presentation of many different solution methods did in fact
improve their procedural and conceptual understanding.

Rittle-Johnson and Star (2007) analyzed the effect of comparing many different
solution methods upon students’ learning experience. Their experiment involved
algebra lessons for seventh grade students. The researchers found that exposing
students to the practice of comparing and contrasting different solution methods in
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a simultaneous manner improved their procedural understanding more than their
conceptual understanding.

In general, experimental studies, along with their pedagogical recommendations
described earlier, showed that the benefits and potential opportunities of problem
solving using multiple solution methods outweigh the concerns and challenges asso-
ciated with the actual teaching of these methods. The present study examines the
extent to which the practice of problem solving using multiple solution methods
might be effectively presented in an existing classroom routine.

1.2 Methodology

The present study involved nine students (4 female, 5 male, aged 16–18, in grades
11–12) in a highly regarded urban northeastern American high school which has
graduated notable scientists in the past. It is one of the highest ranking among public
high schools with an academic specialization in mathematics and sciences (Vogeli,
2015).

The nine students who participated in the present study received strong recom-
mendations from their mathematics teachers. These students were carefully selected
to be part of the present study with an expectation that they might be significantly
more capable than their peers of not only solving the problems involved in the study,
but also of supplying more than one solution method for each problem.

At the time of the study, these students were enrolled in an Advanced Placement
(AP) Calculus course, a university-level calculus course with topics in differential
and integral calculus typically taken by high school students in the United States
seeking university credit or placement in a university calculus course. These stu-
dents volunteered to take a paper-and-pencil test consisting of three non-standard
mathematics problems (Problems 1, 2, and 3; Tjoe, 2015). The researcher identified
beforehand, as part of the careful selection process of the problems included in the
test, 15 different solution methods associated with the three non-standard mathemat-
ics problems: four solution methods for Problem 1 (P1S1, P1S2, P1S3, and P1S4),
eight solution methods for Problem 2 (P2S1, P2S2, P2S3, P2S4, P2S5, P2S6, P2S7,
P2S8), and three solution methods for Problem 3 (P3S1, P3S2, P3S3; Tjoe, 2015).

On the surface, these three problems appear to depend only on the threemost com-
mon elementary mathematics topics, namely arithmetic, algebra, and geometry. At a
deeper level, they incorporate multiple access points to more advanced mathematics
topics such as trigonometry, calculus, linear algebra, and real analysis. Overall, the
three problems were carefully selected to allow accessibility for average students in
a typical American high school that has adopted the national curriculum in mathe-
matics (Common Core State Standards Initiative, 2010; NCTM, 2000). For instance,
the approaches involved in P1S4, P2S1, and P3S1 can be readily comprehended by
students in regular high school arithmetic, algebra, and geometry courses, respec-
tively, and not exclusively by more advanced students in the specialized high schools
as described by Vogeli (2015).
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The nine students were instructed to creatively solve the three problems using
as many different solution methods as they could without the aid of a calculator
and without any time limitations, and they were specifically instructed to solve the
problems using multiple methods. While this methodology was deliberately and
specifically adopted in order to assess students’ familiarity with the practice of prob-
lem solving using multiple solution methods (Leikin & Lev, 2007), it was well noted
that it departed from the normal assessment procedure with respect to the role of
didactical contract (Hersant, 2011).

After their written responses were checked for accuracy, the students were pre-
sented with their work and the 15 solution methods, and were interviewed individu-
ally. A video recorder was utilized to capture the students’ problem solving processes
as presented in written responses as well as during the individual interviews.

Students’ solution methods were evaluated on the basis of a simple acceptability
scoring system. An acceptability score of 1 indicated that a student successfully
supplied a correct answer by using an approach in a logical manner to solve the
problem; otherwise, an acceptability score of 0was given. Students’ solutionmethods
were also classified based upon the list of 15 different solution methods identified
by the researcher beforehand.

Follow-up interviews were conducted with the nine students who had previously
taken the paper-and-pencil test. The interview was designed to elicit the students’
explanations for their particular solution methods. In addition to questions about
their mathematical background, each of the nine students was asked (a) whether they
were familiar with the practice of “looking back” to solve differently, (b) whether
they understood each of the 15 solution methods, (c) whether they had learned the
content involved in each of the 15 solution methods in their previous mathematics
coursework, and (d) whether in the future they might solve similar problems to the
three tested using any of the 15 solution methods they had considered in reviewing
the test.

Thefirst question assessed students’ familiaritywith the practice of “lookingback”
to solve problems differently. The second and third questions assessed the students’
fluency in diverse mathematical knowledge. The fourth question assessed students’
flexibility in accepting solution methods other than their own. In analyzing these
four questions, the researcher coded the nine students’ responses with the following
scoring system: a score of 1 indicating familiarity with the practice of “looking back”
to solve differently, understanding of a particular solution method, recognition of the
relation of a particular solutionmethod to mathematics courses previously taken, and
likelihood of supplying a different solution method in the future; otherwise, a score
of 0 was assessed.

The results of the test and the student interviews were analyzed to detect simi-
larities or differences in the justifications provided by the other students regarding
their supply of particular solution methods. The responses to the interview questions
were analyzed to determine the students’ familiarity, fluency and flexibility regarding
problem solving using many different solutions.
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1.3 Findings

Nine students participated in the present study. Eight of these students were enrolled
in Grade 12, and one was enrolled in Grade 11. The nine students reported an aver-
age SAT Math Section score of 754, SAT Subject-Math I score of 750, and SAT
Subject-Math II score of 790. The national average scores of SATMath Section, SAT
Subject-Math Level I, and SAT Subject-Math Level II were 516, 605, and 649, all
of which were out of a possible maximum score of 800 (The College Board, 2011a).
One student reported an AmericanMathematics Contest 12 (AMC-12) score of 94.5.
The SAT is a standardized test that universities in the United States generally use in
admission criteria to measure college readiness of prospective students (The College
Board, 2011b), whereas the AMC is a series of mathematics competitions gener-
ally used to determine participants’ eligibility for the International Mathematical
Olympiad (Mathematical Association of America, 2011).

Because they were all recruited from the same high school and because the school
utilized a relatively uniform mathematics curriculum (with the exception of honors
courses), all of the nine students were found to have received formal courses in alge-
bra, geometry, trigonometry, pre-calculus, calculus, and linear algebra throughout
their mathematics education in this particular, specialized high school.

Although they were reminded several times of the unlimited time to solve the
problems using numerous methods, the students generally finished the test in less
than one hour. Six, three, and seven students successfully solved Problems 1, 2, and
3, respectively.

Table 1.1 summarizes the mathematical background of the nine students as well
as the problems each successfully solved. (If a student did not report taking the
SAT Math Section, SAT Subject-Math I, SAT Subject-Math II, or AMC-12, “n/a” is
recorded in Table 1.1 to indicate that the score is not available.)

Table 1.1 Summary of students’ mathematical background and test results

Student Grade
level

SAT Math
Section

SAT
Subject-
Math
I

SAT
Subject-
Math
II

AMC-12 Solved
problems

1 12 770 n/a 800 94.5 1, 2, 3

2 12 780 n/a 800 n/a 1, 2

3 12 770 750 770 n/a 1, 3

4 12 740 n/a 770 n/a 1, 3

5 12 640 n/a n/a n/a 1, 3

6 11 n/a n/a n/a n/a 1, 3

7 12 770 n/a 800 n/a 2

8 12 800 n/a 800 n/a 3

9 12 760 n/a n/a n/a 3
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1.3.1 Familiarity

Only one student (Student 1) solved a problem (Problem 3) using more than one
solution method; the other eight students either failed to solve certain problems
entirely or solved them using only one solution method. Based upon the interview
responses, the nine students were not at all familiar with the practice of “looking
back” to solve differently. There were nine scores of 0 for the first question in the
interview.

The impulsive manner in which the nine students were eager to find the answers
to the three problems suggests, to a certain degree, that they were more accustomed
to contently solving problems using a single, familiar method than they were to
persistently and purposefully looking for alternative solutions. Obtaining a correct
answer to a problem appeared more important to these students than searching for
more efficient or enlightening solution methods. It did not appear to occur to most of
the nine students that problem solving in mathematics might be a recurrent process,
or that exploring alternative solution methods might be beneficial.

When asked whether they could relate the practice of “looking back” to solve
problems differently to their past experiences in learning mathematics, many of them
highlighted their algebra class. Specifically, they referred to the topic of solving sys-
tems of simultaneous linear equations using graphical, substitution, and elimination
methods, among others approaches. Yet, they expressed that tests in this topic, like
any other tests in their mathematics classes, specified explicitly which solutionmeth-
ods were expected in addressing particular problems. There was not much liberty
provided by their instructors with regard to choosing any viable solution method,
including those that students might devise on their own, in solving test problems.
That being said, some students mentioned that their mathematics teachers were gen-
erally more amenable to student-invented solutions in a classroom discussion than
during formal examinations.

Other students offered their impressions that mathematical concepts were sup-
posed to be learned sequentially; that is, they felt that topics in mathematics were
properly viewed as preconditions to further study rather than as interrelated ideas.
They described, for example, the belief that the techniques of algebra are only appli-
cable to classes such as coordinate geometry or calculus when employed in the
process of manipulating variables. They did not recall many classroom discussions
about connecting topics from different mathematics courses, such as how one might
approach calculus problems using concepts from elementary algebra. Essentially,
the nine students in the present study considered their mathematics courses as dis-
connected subjects under the single label of “mathematics.”
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1.3.2 Fluency

The nine students in the present study had achieved top percentiles in standardized
tests and had received a more rigorous mathematics curriculum—including classes
in trigonometry, pre-calculus, and calculus—than one could find in typical public
high schools in the United States. They were also among the students most highly
recommended by their mathematics teachers. As such, they might be considered to
have acquired a high level of mathematical training.

Based on the interview responses, the nine students understood all 15 solution
methods and recognized all 15 solution methods as being related to specific mathe-
matics courses they had previously taken. There were nine scores of 1 for both the
second and third questions in the interview.

In fact, after being presented with the 15 solution methods for the three problems,
within a relatively short period of time, all of the students immediately acknowledged
that they understood all of the methods. They could each replicate the different
solution methods without difficulty during the interview.

Theywere also able to spontaneously and accurately identify specificmathematics
courses in which they were taught content associated with each of the 15 solution
methods. Moreover, they mentioned with confidence that there were no concepts
involved in the 15 solution methods that they had not previously encountered in their
mathematics courses.

They described, for example, how the geometric and algebraic solutions (P1S1 and
P1S2, respectively) to Problem 1 were accessible based on the material they learned
in their algebra course, how the limit-definition-of-derivative solution (P1S3) was
accessible based on material learned in their pre-calculus course, and how the arith-
metic solution (P1S4)was accessible based onmaterial learned in theirmiddle school
mathematics course. For Problem 2, the students confidently related the geometric
solution (P2S1) to their coordinate geometry course, theCauchy-Schwartz-inequality
solution (P2S2) to their pre-calculus course, the contradiction-via-symmetry and
quadratic-equation solutions (P2S3 and P2S5, respectively) to their algebra course,
the vector-dot-product solution (P2S4) to their linear algebra course, the calculus-
in-polar-coordinate and single-variable-calculus solutions (P2S6 and P2S8) to their
calculus course, and the angle-sum-trigonometric-identity solution (P2S7) to their
trigonometry course. In Problem 3, as in the previous two problems (Problems 1
and 2), the nine students easily recognized distinct mathematics concepts from their
geometry course (such as the congruent-diagonals property of a parallelogram, the
characteristics of inscribed angles of a circle, and the sum of internal angles of a
circle) in the three solutions (P3S1, P3S2, and P3S3, respectively).

It was clear that the students were relatively fluent as regards their knowledge
of mathematical content. The results of the interview particularly substantiated the
mathematics background they had reported prior to the interview as well as their
perceptions of their own mathematics skills. Overall, the nine students in the present
study demonstrated an uncommon level of mathematics proficiency compared to
typical high school students in the United States.
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1.3.3 Flexibility

Despite their fluency, the nine students for the most part failed to supply more than
one solution method for each problem contrary to the instructions for the test. Based
on the interview responses, the nine studentswere not at all likely to supply a different
solution method aside from their own preferred solution method. There were nine
scores of 0 for the fourth question in the interview. One clear indicator was observed
in the students’ written work for Problem 2 (which is in essence an algebra problem
but was perceived by the nine students as being a calculus problem).

All nine students in fact identified Problem 2 as a calculus problem: they immedi-
ately operated the differentiation technique to arrive at an answer. One might expect
that the students’ past mathematical experience (especially given that they were
enrolled in an AP Calculus course at the time of the study) had directly influenced
their focus on certain solution methods.

Their fixation on a single solution method became more apparent after they were
presentedwith the 15 solutionmethods for the three problems. The calculus approach
that most students supplied was only one of the eight possible solution methods for
Problem 2. (The other seven solution methods included topics involving elementary
algebra, geometry, trigonometry, and linear algebra.)

The nine students maintained that they would not solve problems similar to Prob-
lem 2 in the future using any of the other seven solutions, even though they had no
difficulty grasping those seven other solution methods. They argued that their calcu-
lus solution was more practical than other solution methods in obtaining the correct
answer. This result demonstrates the fixation effect students revealed in their rigid
association between particular problems and particular solution methods.

Nevertheless, the one student who solved one of the three problems using more
than one solution method might be analyzed differently than the other eight students.
Compared to the others, Student 1 had a greater past mathematical experience: he
had taken the AMC-12 test, he was an active member of the mathematics team in that
particular high school, and he mentioned having seen a mathematical fact similar to
that in Problem 3 in the course of reading a number of mathematics books outside
the confines of his course requirements.

Furthermore, the test results of Student 1 differed substantially from those of the
other eight students both in terms of quantity and quality. Student 1 was the only
student who was able to solve all three problems correctly, and he was the only
student able to produce more than one solution method to a problem.

Student 1 solved Problem 1, an arithmetic problem, using an algebraic solution
(P1S2), whereas the other five students who solved the same problem successfully
did so using an arithmetic solution (P1S4). Student 1 solved Problem 2, an alge-
bra problem, using a polar coordinate substitution approach from calculus (P2S6),
whereas the other two students who solved the same problem successfully did so
using a single variable substitution approach from calculus (P2S8).

Furthermore, Student 1 solvedProblem3, a geometry problem, using twodifferent
solution methods: one used the given facts from the sum of internal angles (P3S3),
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and the other used an extension of the inscribed angle of a circle (P3S2). The former
was the only solution method supplied by the other six students who successfully
solved Problem 3. Student 1 discussed in the interview how he simply attempted
to prove a known fact that he recalled from a mathematics book as he was solving
Problem 3, instead of formulating an answer anew.

To the extent that Student 1 demonstrated the capacity to transform his mathemat-
ical background into a unique test result, such a positive correlation between fluency
andflexibilitywas nonetheless rather unclear in his consideration of solutionmethods
beyond those he presented in his written responses. Despite his clear understanding
of all of the 15 solution methods for the three problems, Student 1 maintained that
if he were to take the test again, he would still supply the same solution methods he
did previously.

As Student 1 asserted that his solution methods resulted in correct answers and
that there was no need for him to consider the other methods, it was clear that the
same fixation effect observed in the case of the other eight students emerged in spite
of Student 1’s distinct combination of mathematical background and test results. In
summary, the emphasis on doing well on mathematics assessments, and on ensur-
ing that each problem was solved correctly irrespective of how it might have been
solved differently appeared, to a certain extent, pervasive and persistent. Despite how
capable the students involved in the present study may be, they nevertheless became
desensitized to the directive to use multiple solution methods. It was evident that
the nine students somehow overlooked the relationship between their mathematical
understanding and their realization ofmathematical interconnectedness in the pursuit
of academic success in mathematics.

1.4 Conclusions and Discussions

The present study reveals, to some extent, that based on a mathematics problem-
solving test and subsequent interview results, the nine studentswere less familiarwith
the practice of problem solving using multiple solution methods at the assessment
level than in the classroom discussion environment. It suggests for the most part
that despite their fluency in understanding, reproducing, and identifying a particular
mathematics topic or course related to specific solution methods, the nine students
were unfamiliar with the practice of “looking back” to solve problems differently. It
also indicates that, regardless of their fluencywith a variety ofmathematics topics, the
nine students were not flexible in making mathematical connections among different
solutions or in adjusting to the different solution methods.

The nine students’ perceived mastery of particular methods and disinterest in
others indicates, to some extent, that pedagogical recommendations or educational
policies that underscore fluency in acquired mathematical concepts and procedures
might not guaranteeflexibility in accepting different solutionmethods. This condition
appears to be exacerbated by the unfamiliarways inwhich problem-solving processes
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might encourage, or even necessitate, students to “look back” to find alternative
approaches to solve the same problem.

Given that it is not generally required or part of any curriculum, mathematics
teachers cannot expect students to demonstrate the importance of the fourth step of
Pólya’s (1945) problem solving process on their own or without additional prompts.
Students in the present study pointed out that student-invented strategies usually only
make their appearance during classroom discussions, not at the assessment level
where it may be more valuable to invite elements such as surprise and creativity.
It is evident from the interviews that, regardless of their mathematical background,
students need early exposure to and constant opportunities to cultivate the practice
of “looking back” to find different solution methods to previously solved problems.

The present study not only identifies that the practice of “looking back” has not
been effectively integrated into mathematics classroom instruction in one of the
most highly-regarded high schools in the United States, but also demonstrates that
non-standard problems have the potential to offer students an appreciation for math-
ematical interconnections. In relation to earlier studies (Leikin & Lev, 2007; Silver
et al., 2005), the present findings show that a more concrete pedagogical framework
(Collins et al., 1989; Skemp, 1987; Spiro et al., 1991) is necessary to effectively
integrate the practice of “looking back” into the current curriculum and classroom
practice in mathematics. Changing the didactical approach to assessing problem
solving in the mathematics classroom consequently requires careful consideration
of different pedagogical frameworks, from one assessment which did not require
multiple solution methods to another that did (Douady & Perrin-Glorian, 1989).

The present study also demonstrates the value of mathematics teachers adept at,
and adaptive to, the identification and examination of the appropriateness and effec-
tiveness of student-invented strategies relating to the solution methods introduced
in their classroom, and to other related mathematics topics outside their classroom.
To this end, it calls attention to the need to train, equip and enable future classroom
instructors teaching rigorous and advanced mathematics courses to place an empha-
sis on illustrating connections between various topics in mathematics. Ill-equipped
classroom instructors may bemore liable to dismiss student-invented strategies when
faced with unfamiliar solution methods (Silver et al., 2005). By accepting accurate
solution methods that they did not explicitly teach in class, and by making connec-
tions between students’ mathematical backgrounds and the content they are currently
teaching, teachers can nurture students’ deeper understanding ofmathematics (Mich-
ener, 1978).

This understanding should therefore be carefully evaluated not only in terms of
how well students might retain their acquired mathematical knowledge, but also in
terms of how far students might form mental connections between new knowledge
and past knowledge. Students need to appreciate that the whole field of mathematics
was not developed in isolation of its parts (Davis & Hersh, 1981) the way it is
presently studied in the elementary and secondary schools, but rather presented as
a gradual progression of ideas that built one result upon another in a consciously
connected manner.
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Furthermore, by revealing many different solution methods, teachers can open up
the possibility for students to consider the idea that topics in mathematics courses
might be viewed on a coherent and interrelated continuum. What happens in algebra
class, for instance, does not have to stay in algebra class;what happens in algebra class
can and should be carried forward to other mathematics classes such as geometry and
calculus. Further studies might be considered to examine a pedagogical framework
integrating the need for problem solving using different solution methods within
mathematics instruction, especially one incorporating students possessing a wider
range of mathematical abilities.
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Chapter 2
Future-Oriented Thinking and Activity
in Mathematical Problem Solving

Wes Maciejewski

2.1 Introduction

Problem solving is a central focus of mathematics education and has been, arguably,
since before mathematics education was a legitimate field of study. The roots of
problem solving as a topic of inquiry are traced to expert mathematicians writing
reflections on their own mathematical work; see, for example (Hadamard, 1945;
Poincaré, 1910).However, it was Polyá’sHow to Solve It (1945) that brought problem
solving into education. Although Polyá did intend for How to Solve It to be an
educational work, it may be of little educational value beyond inspiring teachers to
engage students in problem solving; indeed, How to Solve It predates any rigorous,
modern educational theory. It was subsequent work by other authors that attempted
to operationalize Polyá’s groundwork; see Kilpatrick (1985) and references therein.
Most notable is Schoenfeld’s Mathematical Problem Solving (1985).

The strength of Schoenfeld (1985) is two-fold: (1) it reports the first serious
attempt to teach Polya’s heuristics—to really infuse his students with them; and,
(2) it acknowledges the complexity of authentic problem-solving behaviour and
attempts to incorporate a succinct, empirically-grounded perspective to the field.
The importance of this second point cannot be understated—little subsequent work
has attempted to articulate authentic problem solving activity the same way Schoen-
feld (1985) did. Rather, contemporary problem solving research tends to take Pólya
(1945) and Schoenfeld (1985) as a basis, as if they bookend the entirety of problem
solving. Relying too heavily on these works and not broadening and strengthening
the foundations of problem solving education with further empirical work may be
contributing to an impoverishing of the field; the cause of the conclusion of some
authors that traditional, heuristic and strategy-type problem solving education iso-
lated from the rest of a mathematical education, has largely been ineffective (English
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& Sriraman, 2010; Lester & Cai, 2017; Schoenfeld, 1992; Silver, 1985). In the words
of Lester and Kehle (2003), “Teaching students about problem-solving strategies and
heuristics and phases of problem solving … does little to improve students’ ability
to solve general mathematical problems” (508).

There have been notable attempts to dislodge the field from this equilibrium of
isolated problem solving instruction towards a more authentic mathematical edu-
cation. The two I mention here stem from the acknowledgement that problems are
somehow artificial, connoting a pre-defined starting and ending state, manufactured
for students as applications of material learned separately. The first, mathematical
modelling (Lesh & Zawojewski, 2007), addresses the artificiality of problem solv-
ing. This approach takes the stance that the world is complex and dynamic and
can be, at least partly, understood through mathematical representations. Unlike in
problem-solving situations, the salient mathematics is not predefined in mathemat-
ical modelling; it is as idiosyncratic as the situation and the modeller (Hamilton,
2007).

The second notable attempt at shifting the focus of problem solving is problem
posing (Silver, 1985). This is the practice of having students generate their own prob-
lems from, for example, given data or situations, or as refinements of existing prob-
lems. The reasons for encouraging problem posing in education are manifold (Silver,
1985): through posing, students “own” the problems and are therefore invested in
them; the posed problems shed light on a student’s knowledge, understanding, and
creativity; and problem posing improves dispositions towards mathematics and stu-
dents’ mathematical problem-solving ability. Problem posing is therefore more than
just word play; posing problems deepens students’ mathematical knowledge.

Other authors provide more detailed accounts of the historical development of
mathematical problem solving as a both an educational and research topic (English
& Sriraman, 2010; Kilpatrick, 1985; Lester &Cai, 2017). My intention with the brief
chronology here is to partly highlight that problem solving research has been shaped
by its roots and partly that advances in the field have and will come from departures
from those roots.Much of the effort in attempting to improve students’ problem solv-
ing ability has been on teaching them what mathematicians had identified through
self-reflection as characteristics of effective problem solving. Despite the level of
research activity in problem solving, and the numerous efforts to improve prob-
lem solving throughout K-16 education spanning decades, students seem no better
equipped to solve problems, at least those who are explicitly taught problem solv-
ing strategies and heuristics (Lesh & Zawojewski, 2007; Schoenfeld, 1992). More
contemporary results highlight the need to integrate problem solving throughout the
mathematics curriculum, making it a primary focus, which seems to have a stronger
effect; see the review (Lester & Cai, 2017).

In light of the origins of problem solving research and the equivocal results on
teaching problem solving to students, I suggest that the problem solving researchers
return to observing problem solving in situ and attend to its development. Observing
mathematicians, of all stripes, including learners of mathematics, solving problems
may result in a deeper understanding of authentic problem solving processes in-
action. From this a richer ontological description of mathematical problem solving
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abilities will emerge. A deepened understanding of the development of problem
solving will lead to a richer theory of problem solving, from which implications for
practice may be drawn. That is to say, I claim that mathematics education researchers
do not yet understand authentic mathematical problem solving activity well enough
to make tenable claims for educational practice.

In this spirit, I present here some theoretical and empirically-grounded work that
details a complimentary perspective onmathematical problem solving.Many authors
recognize that knowledge of mathematics or heuristics or strategies is not sufficient
for effective problem solving. In the words of English and Sriraman (2010), “…
knowing when, where, why, and how to use heuristics, strategies, and metacognitive
actions lies at the heart of what it means to understand them. … students need to
knowwhich tools to apply, when to apply them, and how to apply them” (p. 265). The
question arises, howmight a user of mathematics know when/where/why/how to use
these tools? There is not a singular answer to this question. Metacognition, schema
acquisition and activation strategic knowledge, algorithmic knowledge, belief sys-
tems, control, and cognitive resources, for example, are ways inwhich studentsmight
leverage their mathematical experience to solve problems (Mayer, 1982; Schoenfeld,
1985, 1992). I propose another possible answer is that reflecting on a possible future
state of a problemmay inform the solver’s current action. This future-thinking guides
the present action and brings about the eventual solution.

The purpose of this chapter is to present a complementary characterization of
problem solving processes. Whereas traditional approaches—the heuristics of Pólya
(1945) and the resource/heuristics/belief systems/control framework of Schoenfeld
(1985), for example—take a problem in its current state forward into a future state,
the approach presented and employed here, mathematical foresight, casts problem
solving as imagining a future state of a problem and letting this image pull the current
state forward. Imagining what might be may allow a solver to choose how best to
act in the present. Such an idea was present in the writings of Polyá—“What are we
required to do? Let us visualize the final solution we aim at as clearly as possible.
Let us imagine the solution.” (Pólya, 1945, p. 227)—but the subsequent use and
emphasis from his work was on heuristics.

Thus, I present a shift in perspective: Problem solving may not exclusively be
about choosing actions/heuristics/strategies, but may also be about recognizing and
choosing possible future states of the problem and, subsequently, actions to reach
those states. The shift is temporal—this approach to problem solving works in the
future to bring present actions forward.

This chapter has two foci. The first is a review of my recent attempts at character-
izing future-thinking in mathematical situations. This draws on previous empirical
and theoretical work and attempts to position the characterization relative to con-
structs in the psychology literature. The second focus is on presenting results from a
small-scale study that help flesh out the future-thinkingmodel and provide directions
for further investigations.
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2.1.1 A Digression on Terminology

The terms I use here are intentionally departing from more well-established termi-
nology. A mathematical situation is an event in which mathematics is deemed to be
required. This could be a “real world” situation—building a Norman window for a
house, for example—or one that might not exist in the tangible, sensuous world. It
may be encountered by one or more individuals who may or may not all determine
that mathematics is needed. The resolution of such a situation is the use of mathemat-
ics to change the state of the situation and/or how it relates to those who encountered
it to the point that it no longer is deemed to require changing. So, for example, a “word
problem” given to a student in primary school is a mathematical situation. The event
is the student reading the problem; they deem mathematics is required because they
are told it is; and they attempt to resolve the situation by, as is known to occur, writing
out all possible operations relating to the words present in the problem. A group of
mathematicians devising a conjecture over a coffee at a conference is another exam-
ple. I choose to work with the terms situation and resolution to aid myself and the
reader in detaching the ideas present here from the connotations that comewith prob-
lem and solving/solution—“problem” has become understood as artificial, somehow
manufactured for torturing students, whereas “solving/solver/solution” suggests a
neat, textbook like denouement to the problem. In reality, mathematical situations
are seldom like that. They are often quitemessy,withmany failed, incomplete, or non-
rigorous attempts. Additionally, the situation/resolution terms and their detachment
from problem/solving align well with the recommendations to pervade mathematics
education with problem solving (Lesh & Zawojewski, 2007; Lester & Cai, 2017).

2.2 Foresight and Episodic Future Thinking

As previous authors have acknowledged (English & Sriraman, 2010), little is known
in themathematics education literature about how students solve (mathematics) prob-
lems outside the mathematics classroom. I argue that we need not restrict ourselves
to considering “mathematical” problems outside of the classroom; mathematical
problem solving may have analogues in general problem solving domains. There-
fore, I now turn to the question, how do people solve (non-mathematical) problems
encountered in life? This is just as open as the analogous question inmathematics, but
psychologists are gaining traction on it nonetheless. There are, of course, many pos-
sible answers. One approach to solving authentic problems in particular has recently
appeared in the literature and has attracted a high degree of interest: episodic future
thinking (Atance & O’Neill, 2001). To articulate this construct, I first review results
in the psychology of memory.

Memory, according to the prevailing model in psychology (Tulving, 1983), is
of two types: (1) procedural, and (2) declarative. Procedural memories are those
of actions that the actor is unable to consciously explain or verbalize or otherwise
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communicate. For example, being able to walk or ride a bicycle or read a book
chapter. Declarative memories are those that can be recalled and actively communi-
cated. Mathematical knowledge exists in declarative memory—at least I hope yours
does! Declarative memory is further partitioned into semantic and episodic memo-
ries. Semantic memories are those that do not have a personal component—factual
knowledge of theworld, for example, like its period of orbit around the sun—whereas
episodicmemories do. For example, memories of Tulving’s (1983)model ofmemory
may be semantic, as simple recollection of the types of memory and how they relate,
but they also may involve an episodic component, such as a memory of reading
Tulving’s work on a back porch in New Zealand.

When planning a resolution to a task,mathematical or otherwise,memory is drawn
upon. Concerning mathematical problem solving, this is implicitly acknowledged
in, for example, Schoenfeld’s (1985) notion of “control” and “resources” or Pólya’s
(1945) question, “do you know a related problem?”, or the suggestion of Mason,
Burton, and Stacey (2010) to draw on what “I know.” Thinking of a resolution to an
authentic—for now, non-mathematical—task similarly draws onmemory and we are
led to ask, “what type of memory?” Consider the task of going from your office back
home. You know where your house is in relation to your office and solving the task
could be as straight-forward as recalling the sequence of left/right turns you’ll need
to make—a resolution using semantic memory. Or, you might remember travelling
home last week and recall the frustration you felt when sitting in traffic on Queen
Street and decide you’d rather take King Street—a resolution employing an episodic
memory. Further still, you may need to stop at the grocery on your way and you
might imagine the experience of driving to the store, navigating the isles, standing in
the checkout, and then driving home. This third way of resolving a task is somehow
different than the first two and requires further elaboration.

What is happening in imagining the grocery trip is a mental simulation of how
an event might unfold. Episodic memories, of driving and shopping and paying, are
drawn upon to create an episodic memory of an event that has yet to occur. This
fabricated episodic memory then acts to inform actions just as episodic memories of
events actually experienced do (Schacter, 2012; Schacter & Addis, 2007; Schacter
et al., 2012). In a sense, a possible future event is experienced before it occurs.
This is the process of episodic future thinking (Atance & O’Neill, 2001). Episodic
memories of the simulated event are formed and these inform current actions. A
key result to highlight is that there is a common neural structure involved in both
remembering the past and imagining the future; episodic future thinking relies on
the same cognitive structure as remembering past events, the so-called core network
(Buckner & Carroll, 2007; Raichle et al., 2001; Schacter, Addis, & Buckner, 2007).
When imagining future events, it is therefore reasonable to suspect the involvement
of past events in the process of imagining.

The most current results indicate that episodic future thoughts are associated with
more successful task resolution and greater coping ability; see Schacter, Addis, and
Buckner (2008) for a review. These corroborate results from studies on outcome
and process simulations. For example, in Taylor, Pham, Rivkin, and Armor (1998),
students in a psychology course were assigned to one of three conditions: students
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were either trained in and practised (1) imagining achieving a good grade in the
course, (2) imagining what concrete actions would be needed—studying, reading the
text—to achieve a good grade, or (3) a control with no training. Those that imagined
what they would need to do to succeed outperformed the control group. Moreover,
those that only imagined succeeding underperformed both other conditions. Results
like this suggest that future-thinking can be taught and be leveraged for the benefit
of learning.

Most, if not all, of the psychology literature on episodic future thinking consid-
ers only people solving tasks encountered in daily life. The possibility that people
might engage in episodic future thinking in discipline-specific tasks, such as math-
ematical problem solving, has not been explored. Only now is it being considered
and early results are favourable (Maciejewski, 2017; Maciejewski & Barton, 2016;
Maciejewski, Roberts, & Addis, 2016); mathematicians, students and professional
mathematicians alike, employ future-thinking, including episodic future thinking, in
their mathematical work. It seems, then, that the frameworks being developed in the
psychology literature are equally applicable to mathematics education contexts.

Future-thinking aside, extant results and constructs in the mathematics education
literature strongly suggest that mathematicians do engage in episodic future thinking
when working with mathematics. Indeed, if mathematicians have only their concept
images—defined as the “total cognitive structure associated with a mathematical
concept” (Tall & Vinner, 1981)—to rely on when engaging in mathematics, and
if these concept images contain episodic memories, which recent work identifies
that they often do (Maciejewski, 2017), then mathematical activity likely contains
an episodic component. Planning in a mathematical situation, therefore, may be
analogous to planning in general, non-mathematical situations, and may involve
episodic future thinking. The model presented in the next section is an attempt to
understand future-oriented thinking processes in mathematics in this light.

2.2.1 Mathematical Foresight

Upon encountering a mathematical situation, a mathematician—a user of mathemat-
ics—may form an image in their mind about a possible resolution to the situation
and a course of action likely to bring the situation closer to the resolution. In this way
the mathematician is imagining an event that has yet to occur; they are imagining
the future and allowing that image to inform their present actions.

The notion of working a mathematical problem by seeing how it might unfold
into the future seems to sit well with mathematicians. For example,

One phenomenon is certain and I can vouch for its absolute certainty: the sudden and imme-
diate appearance of a solution at the very moment of a sudden awakening. On being very
abruptly awakened by an external noise, a solution long searched for appeared to me at once
without the slightest instant of reflection on my part—the fact was remarkable enough to
have struck me unforgettably—and in a quite different direction from any of those which I
had previously tried to follow. (Hadamard, 1945, p. 8)
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The image that stuck Hadamard was not in the form of so-called “rigorous”
mathematics. Rather, it was a rough image of what could be. This possibility guided
Hadamard’s mathematical work to its ultimate resolution.

Another comes from Poincaré (1910) in his reflections on his processes of discov-
ery in his own mathematical work. The oft-quoted passage is of Poincare receiving
a sudden flash of insight into a problem he had struggled with for over a decade.
This all occurs as Poincare steps onto a bus during a geological expedition. It is the
passage after this that is especially relevant to the current work:

Returned to Caen, I meditated on this result and deduced the consequences. The example of
quadratic forms showedme that theywere Fuchsian functions other than those corresponding
to the hypergeometric series; I saw that I could apply to them the theory of theta-Fuchsian
functions other than those from the hypergeometric series, the ones I then knew. Naturally
I set myself to form all these functions. I made a systematic attack upon them and carried
all the outworks, one after another. There was one however that still held out, whose fall
would involve that of the whole place. But all my efforts only served at first the better to
show me the difficulty, which was indeed something. All this work was perfectly conscious.
(Poincaré, 1910, p. 327)

What Poincaré acknowledges here is that his imagined future state of his research
program informed the actions he could take in the present to make progress. More-
over, he recalls how he could recognize that there were certain keystone problems to
overcome to develop a complete theory.

Though the quotes above are likely embellished, they get at the phenomenon I
am attempting to describe. They also align well with observations of my own mathe-
matical work. Much of my earlier mathematical work was on understanding certain
stochastic processes on graphs—so-called evolutionary graph theory (Nowak, 2006).
In a particular instance, I had been working on calculating the genetic similarity of
individuals thought of as residing on a social graph. This turns out to be a cumbersome
calculation, primarily accessible through simulation. After working on the problem
for some time—and devoting large computational resources to it—I realized that the
calculation ought to be simplified via other, more well-established graph processes.
In particular, thinking of the social graph as an electrical network seemed to make
sense—a loose analogy formed in my mind between genes and electrons. After a
slow, preliminary calculation of the graph depicted in Maciejewski (2012), I knew
a general result would follow—it did (Maciejewski, 2012). Which begs the ques-
tion, how did I know that? Some would say “experience”, but what about experience
allows some users of mathematics to see into the future of a mathematical problem
and not others? Taking a step back, what actually is happening when one sees into
the mathematical future?

These observations and questions have led me and coauthors to model future-
thinking processes inmathematics. The notion ofmathematical foresight (Maciejew-
ski & Barton, 2016) emerged as a viable model, though it is currently evolving. The
strength ofmathematical foresight seems to be as a construct that may aid researchers
in understanding mathematicians’ future thinking processes in a way that avoids the
imprecision and mysticism of notions such as intuition, creativity, and insight, as
discussed previously in Maciejewski and Barton (2016).
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Fig. 2.1 The mathematical foresight model of Maciejewski and Barton (2016)

The mathematical foresight model consists of two main components: the sphere
of resolution and resolution trajectory. The sphere of resolution is the space in which
the resolution to a mathematical situation might reside. It characterizes the type of
resolution and the form it might take. For example, a statement in number theorymay
be deemed by the one who encounters it to require a proof. Another example comes
from mathematical biology where a model is envisioned. The resolution trajectory
is a set of possible actions intended to bring the situation closer to its resolution. This
may not be an exact sequence of steps to follow; often, only an idea of the types of
steps is generated.

These two components of mathematical foresight are summarized in Fig. 2.1. The
sphere of resolution is the, possibly hazy, shape of where the resolution is likely to
reside. The resolution trajectory is a, possibly windy path, narrow at points and wider
in others, connecting the starting state of the situation to the sphere of resolution. As
the mathematician sets out on this trajectory, they encounter possibly many stopping
points at which an action must be decided upon. Seldom is there one and the math-
ematician may use their mathematical foresight to aid in choosing. This choice may
lead the mathematician outside of their initially-imagined resolution trajectory and
subsequent choices may lead them back in. Ultimately, the mathematician arrives at
the resolution, which may or may not reside in the initial sphere of resolution.

The key contribution of this model to improving understanding of the problem
solving process is that the initial image of how a mathematical situation might be
resolved can guide the mathematician in their choices made toward a resolution. In
this way, the mathematician is using an imagined future state of the situation to guide
their current actions.

Having established a workable model of mathematical foresight that seems to
align well with mathematicians’ future-thinking in mathematical situations, we are
left questioning about the genesis of such thinking processes. The mathematicians
we discussed this model with identified it clearly in their own work; indeed, it often
featured centrally. But what might the ontogeny of such thinking be? To address
this, I turn to students—mathematicians in their academic adolescence. It is hoped
that analysing the work of students through a mathematical foresight lens will elab-
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orate the model and provide for a richer description of future-thinking processes in
mathematical activity.

2.2.2 Students Engaging with Mathematical Foresight

To initiate an investigation of the development of mathematical foresight, Bill Barton
and I conducted a study with university students enrolled in a first-year mathematics
course covering basic calculus and linear algebra. The results of that study appeared
initially in unpublished form, as referenced in Maciejewski and Barton (2016). This
section elaborates that report.

2.3 Methods

The data used in this study was gathered in two independent sessions. In the first,
students in a third-year undergraduate mathematics course intended for prospective
teachers were presented with tasks one to three in Fig. 2.2 and asked to write their
approaches to solving each. The second round consisted of a set of interviewswith 11
student volunteers, each enrolled in a first-yearmathematics course covering calculus
and linear algebra and who did not participate in the first round. These students were
given two of Task 1, 2, 4, or 5—task three was excluded from this round of data
gathering, based on the poor responses to the task given by the students in round
one—asked to think about how they would solve the task, and interviewed about
their imagined approaches to a solution. Tasks four and five were created for use in
the second round based on the researchers’ perceived need for tasks that appeared
familiar to the students. The interviews were recorded and transcribed.

The tasks in Fig. 2.2 were created with the intention of encompassing a variety
of mathematical situations, from (1) an applied modelling task where the student is
asked to describe the growth of algae with mathematics, (2) one in which the student
is asked to generate a graph of a function given only properties of the function,
(3) a task from game theory where the student must choose and justify a strategy,
(4) one on the eigenvalues of an inverse linear transformations, and (5) another
asking for the volume of an uncommon shape. Initial student participants were given
a few minutes to describe what they would do with each problem, or how they
saw it, without actually attempting to solve the problem. From this first round of
participant responseswe generated a draft of the framework below. Thiswas achieved
by each author individually identifying features of each solution that were indicative
of foresighting behaviour, and generating a classification for these features. We then
met and created the framework from our separate observations.

Next, we returned to the data and separately re-interpreted it in terms of categories
of the framework.We then met to compare the framework categories we individually
assigned to each student response to check for agreement and to make any necessary
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Fig. 2.2 The tasks used in this study
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revisions. The focus of our attention in the analysis of the first round of data was the
anticipated solution trajectory rather than the shape of the final solution, although
some students did comment on the solution space. The second round of data aided
in supporting our initial framework and generated a more detailed classification of
students’ imagining of the sphere of resolution.

Below is the framework describing students’ initial problem-solving thoughts that
emerged from an analysis of the students’ utterances and inscriptions through the
lens ofmathematical foresight. Recall that there are two components ofmathematical
foresight: forming an image of (i) the resolution to the mathematical situation (the
sphere of resolution), and (ii) a likely path to that resolution (the resolution trajectory).
Both of these can be imagined to varying degrees of clarity. In addition, clarity with
one of these does not necessitate clarity in the other: a student may see the form of
the resolution but be no closer to reaching the resolution. Both of these components
were considered during the analysis of the participant inscriptions and utterances.
Utterances are followed by participant identification marks of the form (Pxxx).

2.4 Results

I consider the sphere of resolution and resolution trajectory separately, in turn.
Though I recognize that these two may not exist as separate entities in the students’
minds, I find I am in need of a way of analyzing these two simultaneously. Until the
methodology has been developed to allow me to do so, I keep the analyses separate.
As discussed subsequently, there is evidence that analyzing these two components
is a valid approach—one can exist less or more developed than the other. After
this initial analysis, possible interactions between students’ images of the sphere of
resolution and resolution trajectory are considered.

I note that the participants’ utterances often contained episodic components, lend-
ing credence to the inclusion of an episodic future thinking perspective. However,
reporting explicitly on those utterances is not the focus of the current work. Rather, I
focus on a refinement of the mathematical foresight model, introducing hierarchical
categories for both the sphere of resolution and resolution trajectory. A focus on the
episodic nature of the participants’ utterances are the focus of Maciejewski et al.
(2016).

2.4.1 Sphere of Resolution

Responses, both written and spoken, indicated that students were often able to imag-
ine a resolution to the mathematical task. We characterize these responses as four
qualitatively distinct categories, arranged according to increasing clarity of the imag-
ined resolution.
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1. No image of the resolution. Student responses in this category had no indication
of a resolution to the mathematical task.

2. A generic image. Responses of this type were general statements concerning the
nature of the resolution to the given task.

For example, some students indicated the resolution to Task 1 is a system of
differential equations but were unable to elaborate. Another participant interpreted
Task 1 as a statistical problem: “Like in Stats or something, we did…I forget what
it’s called but there was like a graph of a variable here, variable there, and you see
the connection between these two factors” (P104). The participant discusses which
factors would be included in the resolution, but does so generically—they say only
that the resolution is a graph with axes labelled, but do not propose a particular shape
of the graph.

Another speculated the solution to Task 1 to be an expression:

So, if I was to like, flesh this out I would write it in terms of ‘n’…it would be an expression
and it would be in terms of initially how many there are. And it would be some kind of
multiple or power maybe. (P101)

Interestingly, one participant determined the solution to Task 5 is a differential
equation: “It’s the one thing I can’t do, writing differential equations. I know what I
have to do, but I don’t know how to do it” (P102). They verbalized that they picked
this form based on how the top of the fluid changes as the fluid drains from the tank,
revealing a dynamic understanding of the task.

3. An incomplete image. Some students indicated particular features of their imag-
ined resolution, which was not completely well-formed.

For example, in addition to imagining a resolution to Task 1 as being a system of
differential equations, some students indicated the system must be periodic.

4. A particular image. Responses in this category are explicit forms for a resolution.

For example, one participant wrote “b(x) � xˆ(1 + (t x c x n))” as a particular
resolution to Task 1. They verbalize their reasoning: “So from my understanding of
the question, what comes to mind is a kind of rate of change over time. So this rate
of change over time is given by something called differentiation. This is also the rate
of change. So, all you do is…I form this equation…then to make a solution, I will
differentiate it” (P108). They then go on to describe the variables present in their
equation and what contribution each makes. This response is worth noting because
the participant appeared to have a vivid image of the resolution to this task, but did
not have a clear idea for the resolution trajectory; they saw where they would end
in the task, but not a clear way to get there. Many of their statements regarding
the inclusion of the variables and constants in their equation were vague and not
necessarily grounded in the task statement.
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2.4.2 Resolution Trajectory

Students’ imagined resolution trajectories were more nuanced than their images of
the spheres of resolution. This is due to resolution trajectories having more degrees
of freedom; trajectories can be imagined with varying degrees of clarity, as was the
case above, but there is more freedom in how the trajectories are imagined. We were
nevertheless able to construct a descriptive framework of the students’ images of
the resolution trajectories, presented below. The levels of the framework each have
varying degrees of clarity and we take higher levels as subsuming lower levels.

1. No indication of a resolution trajectory. Responses of this type had little relevance
to the problem with no indication of anticipated progress.

2. Identifying factors relevant to the resolution. Students at this level are able to
identify information that is given either explicitly or implicitly in the problem
statement that will aid in its solution.

In the Graphing task, many students identified what properties of the function
affect the shape of the graph; e.g. the first derivative conditions lead to where the
graph is increasing/decreasing. Another example comes from a participant engaging
with Task 5. The participant recognizes relevant variables and formulae, but does
not anticipate anything other than a straight-forward calculation: “I’d chuck in the
equation… the volume of the cylinder equation,which is related to the circumference
and length … I’d see how you get the volume as a function of that distance.”

This level is distinguished from level 1 in at least one important regard: the control
exhibited by the student, as in the sense of Schoenfeld (1985). Students identify
relevant factors but also identify factors not relevant either explicitly or by refraining
from writing them.

3. Creating/identifying (mathematical) relationships, between the relevant factors.
At this level, students are able to recognize how relevant factors (ought to) interact
to contribute to a resolution. These interactions may or may not be explicitly
mathematical.

In the Mathematical Game task, many students identified that a strategy must
consider possible actions of the other players.

Another participant—the one mentioned previously—verbalized how they saw
the resolution to Task 5 as a differential equation:

OK. The fuel is the total cylinder volume minus the rate of the volume change with the
given unit of measurement, with said measurement substituted in there. I think. Which I’m
pretty sure that’s what it is, because you have to take into account the total capacity of the
cylinder…And then, because it is a cylinder, it’s not going to be one on one, or a simple
ratio, but it’s changing, with every measurement you go down. So say you’re measuring in
centimetres…one centimetre doesn’t mean that you’re gonna have one litre less fuel unless
the tank has been specifically designed for…like that…but you can’t assume that. So you
actually need to find the rate of the volume change with respect to the unit of measurement
in order to find the total fuel in there. I think. (P102)



34 W. Maciejewski

4. Recognizing consequences of the relationships. Having established how the fac-
tors relate, a student at this level identifies the mathematical consequences of
these relationships.

For example, one student identified algal growth as a relevant factor in the mod-
elling task and chose to represent the relationship between algal concentration and
time as exponential. They thenwrite, “would likely see a curve as conditions approach
the ideal.” The connection between this statement and the exponential relationship
is not entirely clear, but we suspect the student is anticipating a sigmoidal, logistic
relationship, which can involve an exponential function, between algal concentration
and time, with concentration levelling out as saturation is approached.

5. Identifying limitations/strengths/generalizations of the chosen approach.
Responses at this level were exhibited by only one of the participants.

The participant wrote a complete expression for the volume requested in Task 5,
which involved the radius r of the cylinder as a parameter and the length l of the
measuring stick as a variable. He verbalized his process of generating the formula:

The first thing I did was visualize it…because it’s lying on it’s side, it’ll be a uniform height
all the way through so I had to just think of a circle and then multiply it by the length oat the
end. And then I though, how would I work out anything like this? Because, it’s like kinda
annoying. So then I thought, okay, I can think of it as a sector minus a triangle making the
segment. So, it’s in two cases… (P111)

The student then goes into detail on these two cases and how there ought to be
two formulas, one for l < r and the other for l > r. He then realized that this was
irrelevant if the equation was set up in a certain way: “And here it doesn’t matter,
‘cause it’s all squared…so it doesn’t make a difference.” This data sample reveals
the participant had recognized relevant factors for a solution, created mathematical
relationships between them, recognized how these relationships might interact to
generate a formula, and then acknowledged how the formula might be refined. In
this way, this sample demonstrates the hierarchical nature of this categorization.

This participant also responded to Task 4 at the same level of the hierarchy. They
verbalized their entire thinking process:

First, again, I thought about the process that was needed to solve the problem. So…first of
all I had to find the matrix A … then invert it, and then find the eigenvalues of that inverted
matrix…so first I thought, OK, I haven’t done transformations ever, so this is going to be a
bit weird… But then I realized that if I think of it as just a function…[a lengthy and detailed
recollection of their thinking]…I thought, OK, if one goes to two, like this, then a’s going
to be two, so I’ll just call that like 2, b, c, d. And for some reason I assumed that b was zero
at this point, And then I thought about another point, this one here … and then I noticed it
was a triangular matrix so the eigenvalues of this matrix were easy to find. (P111)

This is just excerpt from a longer monologue of the student recalling what they
had thought while considering the task. This participant is a bit of an outlier in that
they were able to construct complete solutions in their minds, replete with details,
upon initial contact with the tasks.
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2.4.3 Discussion of Results from Student Interviews

The results presented here from the two data sources support mathematical fore-
sight as a viable lens for analyzing students’ future-oriented thinking and actions
in mathematical situations. Further, the student data shifted my perspective on how
the mathematical foresight model might be used. The original model (Maciejewski
and Barton, 2016) was informed by reflections of professional mathematicians on
their own practice and considered the sphere of resolution and resolution trajectory
as coexisting, each in a fairly refined state. The student data presented here suggests
three revisions to the model: the sphere of resolution and resolution trajectory (i)
may exist to varying degrees of lucidity, including not existing at all; (ii) may be
decoupled in their development; (iii) are likely dynamic, varying in development as
the relationship between mathematician and mathematical situation evolves.

Point (i) above was the impetus for the creation of the hierarchies presented in
the results section; further studies may help to refine these categories. Concerning
point (ii), there is some indication from the data that a student’s ability to imagine the
resolution or trajectory is related to their ability to imagine the other. So, the more
vivid a participant’s sphere of resolution, the more vivid the resolution trajectory, and
vice versa. Such a relationship is expected, given what is known of the mathematical
foresight of working mathematicians (Maciejewski & Barton, 2016). It should be
noted that even vague images of resolutions to the situation often suggested a way
forward for the participants. The detail may have been lacking, but such images do
seem beneficial. In addition, incomplete images of a sphere of resolution were the
most common among the participants; only one participant demonstrated strength in
imagining both the sphere of resolution and trajectory. The bi-directional relationship
mentioned above did not consistently exist in the student responses. Some could
imagine a particular form of a resolution but had no clear indication of a trajectory.
Others could imagine a trajectory without a clear sphere of resolution. For example,
one student solving Task 5 could not see a possible form for the volume expression,
but suspected it could be arrived at by using the formula for the volume of a cylinder:
“The general form… is an equation…Yep, it’s blank. How I would go about finding
the solution, I’d chuck in the cylinder equation.” They continue by identifying the
length and radius of the tank as being important but are unable to incorporate the
height from the top of the fuel to the top of the cylinder. This is an important point to
make—though a participant’s image of a sphere of resolution often co-emerges with
their image of a resolution trajectory, they may not exist or develop simultaneously.
This lends credence to the characterization of sphere of resolution and resolution
trajectory as separate, yet linked constructs in the mathematical foresight model.
The point here is that the possible vividness of the two components of mathematical
foresight is far more nuanced then originally cast from interviews with practising
mathematicians (Maciejewski & Barton, 2016).

Point (iii) above emerged as a conjecture from the current study. The results pre-
sented here are from snapshots of students’ problem solving activity. What needs to
be explored further is a mathematicians’ evolving relationship with a given mathe-



36 W. Maciejewski

matical situation. With each thought and action, the situation changes for the math-
ematician—they uncover new information and develop insights, culminating in a
resolution. In problem solving terms, there comes a point in developing the solution
that the problem ceases to be a problem in the sense of Schoenfeld (1985). This
dynamic process remains largely undocumented; an exploration of it seems a neces-
sary next step in deepening the mathematics education community’s understanding
of authentic problem solving practices.

2.5 Overall Discussion

Data from participants in the two-round study reported here supported the con-
jecture that students engage in mathematical foresight when encountering a novel
mathematical situation. The data gathered has informed the creation of a framework
that describes students’ initial thinking about a mathematical situation through the
lens of mathematical foresight. This framework has elaborated the initial model for
mathematical foresight as presented in Maciejewski and Barton (2016). The original
mathematical foresight model, as exhibited by mathematicians, sees the two compo-
nents—the sphere of resolution and the resolution trajectory—as coupled: one does
not exist without the other. This was not true for the students who participated in
this present study. Some students were able to see a likely form for a resolution to
a mathematical task but were unable to see a trajectory leading to that resolution.
Others could see how to “set out” but did not necessarily see where theywere headed.

The purpose of this work is not to highlight yet another novelty in the complex
enterprise of problem solving. Indeed, other authors have recently introduced con-
structs similar to aspects ofmathematical foresight, such as implemented anticipation
(Niss, 2010) and anticipatory metacognition (Galbraith, Stillman, & Brown, 2015).
Rather, I wish to argue that the mathematics education community can enrich their
understanding of mathematical problem solving by suspending their reliance on the
de facto foundational texts, returning to the field to further an empirical program,
and to turn to the broader literature on, non-mathematical, problem solving. Such
a shift in perspective might further insights into why previous attempts to teaching
problem solving have gone largely unsuccessful.

The branches of mathematical modelling and problem posing that have stemmed
from mathematical problem solving are very promising for an advancement of the
field. I argue that they should not be viewed as somehow distinct from their roots.
All have common features that ought to be articulated and brought to light so as
to be studied further. Mathematical foresight is one such commonality. In choosing
a model, the mathematician sees the salient features of the situation and chooses
what aspects to include in the model to further insights. When posing a problem,
a mathematician sees which might be interesting for others to consider. And in
solving a problem, the mathematician sees a possible resolution and a way to that
resolution. Having identified this phenomenon of future thinking, we researchers are
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tasked to further articulate and understand it—might we see how it pulls forward our
understanding of mathematical problem solving?
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Part II
Problem Solving and Technology



Chapter 3
A Model of Mathematical Problem
Solving with Technology: The Case
of Marco Solving-and-Expressing Two
Geometry Problems

Susana Carreira and Hélia Jacinto

3.1 Introduction

Innovative and increasingly powerful technological tools are introducing new kinds
of problem-solving situations where mathematics is useful, thus changing the math-
ematical abilities needed outside school. So 21st century youths need to have access
to and develop the skills to use these tools for mathematical learning and, particu-
larly, in problem solving activities (Forgasz, Vale, &Ursini, 2010).While little is still
known about the problem solving that occurs beyond school (English & Sriraman,
2010), further research is recommended to understand the role of digital tools in such
activity (Santos-Trigo & Barrera-Mora, 2007).

This study brings new knowledge about the spontaneous use of digital tools in
solving non-routine mathematical problems by youngsters engaged in an online
problem solving competition. The context inwhich the researchwas conducted is that
of themathematical problem solving competition SUB14®, which is aimed at middle
graders (12–14 years-old) of the southern regions of Portugal. The Qualifying stage
of the competition consists of answering a problem every two weeks, either through
e-mail or an online text editor available on the competition website. Participants
may solve the problems using their preferred methods and tools but are explicitly
required to report on their solving process and must offer a complete explanation of
their reasoning. The inclusive character of this competition makes it accessible to
average-ability students and its rules permit and encourage help seeking from relevant
others at this stage. This context offers the opportunity to study how youngsters are
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using theirmathematical knowledge in problem solving beyond the classroom,where
they are also allowed to choose any technological tool at their disposal to solve the
problems and express their solutions.

Our research aim is to understand theways inwhich the processes ofmathematical
problem solving are reshaped when these youngsters spontaneously resort to digital
technologies. In addressing this purpose, we intend to develop our understanding of
how the use of digital technologies, including everyday and general purpose tools,
is embedded in the process of solving and expressing a solution to a non-routine
mathematical problem. Here, we will limit ourselves to one of the cases selected
in the course of the beyond-school competition SUB14 that served as the basis
for the construction and application of an analytical model of mathematical problem
solvingwith technology.We assume that the case ofMarco, when solving a geometry
problem, offers a valuable report on this model and on its strength in providing new
insights into young students’ use of digital tools in mathematical problem solving.

3.2 Theoretical Background

The prevailing theoreticalmodels on solvingmathematical problems,which conceive
paper and pencil as the predominant tools, do not account for the role of digital
technology. Thus, they do not provide the tools to explain the interaction between
individuals’ technological and mathematical knowledge in their problem solving
activity (Santos-Trigo & Camacho-Machín, 2013).

Our theoretical framework, aiming to address mathematical problem solving with
technology, is built upon the notion of humans-with-media, acknowledging the insep-
arability between the solver and the technological tool whilst solving the problems
and expressing their solutions. The youngsters’ interaction with digital media is seen
from the point of view of placing affordances in the tools. Furthermore, we address
mathematical problem solving with technology by combining two analytical tools:
one accounting for the processes involved in mathematical problem solving, and the
other for the processes taking place with the use of digital tools in digitally-framed
tasks (Jacinto & Carreira, 2017; Jacinto, Carreira, & Mariotti, 2016).

3.2.1 Solving-and-Expressing: An Overall Concept

In addressing the students’ ways of tackling mathematical problems with digital
tools, we consider several theoretical notions and perspectives that offer a theoretical
frame for such activity. Problem solving is here understood as the development of
a productive way of thinking about a challenging situation (Lesh & Zawojewski,
2007) where the solver must adopt a mathematical point of view in order to carry
out mathematization processes. Moreover, it is regarded as a synchronous process of
mathematization and expression of mathematical thinking (Carreira, Jones, Amado,
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Jacinto, &Nobre, 2016), whichmeans that obtaining a solution to a problem is to find
the required answer and to create an explanation for it. Hence the solution phase and
the reporting stage are closely linked aspects of this problem solving-and-expressing
activity. This means that all the material incorporated in the final product, and not
merely the result, is actually part of the solution process (Lesh & Doerr, 2003),
such as the use of color, diagrams, tables, images, along with textual explanations or
descriptions. These descriptive elements carry new knowledge about the situation,
which is fundamental in solving-and-expressing each problem.

In this study, we also adopt the notion of humans-with-media (Borba &Villarreal,
2005) as a core conceptual unit that postulates the inseparability between the subject
and the tool, thus leading to interlace mathematical thinking and expressing with the
representational power of digital technologies. In fact, the introduction of a specific
tool in the system of humans-with-media impels relevant changes in the activity,
according to the type of media that it encloses, thereby resulting that different col-
lectives originate different ways of thinking and knowing (Jacinto & Carreira, 2013,
2017; Villarreal & Borba, 2010).

The interactions taking place within this conceptual unit, i.e., between the indi-
vidual and the digital media whilst solving-and-expressing mathematical problems,
is seen from the point of view of placing affordances in the tools (Chemero, 2003) in
the sense that affordances are both relative to the object and to the subject who real-
izes its advantages. The affordances emerge from the interaction between the agent
and the object, insofar as the perception of the possibility for action and the ability of
the agent are not “specifiable in the absence of specifying the other” (Greeno, 1994,
p. 338). Hence, the recognition of particular features in the tools that are potentially
useful support the individual in solving-and-expressing the problem, thus leading us
to consider the impossibility of separating the solver’s mathematical and technolog-
ical skills (Jacinto et al., 2016).

3.2.2 Developing a Model of Mathematical Problem Solving
with Technology

The development of a new conceptual framework that aims to account for both
components of the problem solving process encompasses the redesign and expan-
sion of well-known theoretical models in order to suggest more efficient ways to
describe the connection between mathematical knowledge and the affordances of
digital tools that solvers bring to their problem solving-and-expressing activity. This
lead us in bringing together two frameworks: one addressing the activity of an indi-
vidual while dealing with a technological task or problem (Martin & Grudziecki,
2006), and another one particularly focused on describing the processes involved in
mathematical problem solving (Schoenfeld, 1985).

The DigEuLit Project (Martin, 2006) proposed a framework on Digital Literacy
in which a set of processes performed in the context of solving a task or prob-
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lem that requires the use of a digital resource were stated. These processes com-
prise: statement—clearly state the problem and the actions likely to be required;
identification—identify the digital resources required to achieve the solution; acces-
sion—locate and obtain those digital resources; evaluation—assess the accuracy
and reliability, and relevance of the digital resources; interpretation—understand
the meaning they convey; organization—organize them in ways that may enable
the solution; integration—bring these resources together in relevant combinations;
analysis—examine them using concepts and models that will enable the solution;
synthesis—recombine them in new ways to achieve the solution; creation—create
new knowledge objects, units of information or digital outputs that contribute to
achieve the solution; communication—interact with others while solving the prob-
lem; dissemination—present the solution to others; reflection—consider the success
of the task performed (Martin & Grudziecki, 2006, p. 257).

Although this set of processes resembles well-knownmodels in mathematics edu-
cation, it is necessary to account for themathematical thinking developed in this activ-
ity. Being successful in mathematical problem solving, as Schoenfeld (1985) sug-
gests, requires considering essential facts and procedures, effective use of resources,
strategies, and actively engaging in mathematical thinking.

Aiming to describe students’ mathematical problem solving performance,
Schoenfeld (1985, pp. 297–298) proposed a model that comprises five stages:
read—time spent “ingesting the problems conditions”; analysis—attempt to fully
understand the problem “sticking rather closely to the conditions or goals” that may
include a selection of ways of approaching the solution; exploration—a “search for
relevant information” that moves away from the context of the problem; planning
and implementation—defining a sequence of actions and carrying them out orderly;
verification—the solver reviews and assesses the solution.

By comparing and relating the processes proposed by Martin and Grudziecki and
the stages identified bySchoenfeld, and by selecting themost prominent actions in the
two frameworks, we reached the following model by merging some of the processes
of digital problem solving and also decomposing some of the stages of mathematical
problem solving (see Table 3.1). Even though these processes are clearly defined and
have distinct boundaries, as acknowledged by the original models, in this combined
model they are flexible enough to be considered in different phases.

3.3 Research Method

As stated above, the overall goal of our research is to understand the processes of
mathematical problem solving by acknowledging the role of digital tools, considering
the problem solving activity carried out by young students within the context of the
competition SUB14.

Following an interpretative stance that involved qualitative techniques for data
collection and analysis (Merriam, 2009), we developed several cases of participants
who usually resort to a variety of technological tools to solve the problems of the com-
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Table 3.1 Processes underlying mathematical problem solving with technology

Mathematical problem solving with
technology (MPST)

Grasp Appropriation of the situation and
the conditions in the problem, and
early ideas on what it involves.
(Reada; Statementb).

Communicate—Interact with
relevant others whilst dealing with
the problem or task.
(Communicatonb).

Notice Initial attempt to comprehend what is
at stake, namely the mathematics that
may be relevant and the digital tools
that may be necessary. (Analysisa;
Identificationb, Accessionb).

Interpret Placing affordances in the
technological resources in pondering
mathematical ways of approaching
the solution. (Analysisa;
Evaluationb, Interpretationb).

Integrate Combining technological and
mathematical resources within an
exploratory approach. (Explorationa;
Organisationb, Integrationb).

Explore Using technological and
mathematical resources to explore
conceptual models that may enable
the solution. (Explorationa;
Analysisb).

Plan Outlining an approach to achieve the
solution based on the analysis of the
conjectures explored. (Planning and
Implementationa; Synthesisb).

Create Carrying out the outlined approach,
recombining resources in new ways
which will enable the solution and
create new knowledge objects, units
of information or other outputs
which will contribute to
solve-and-express the problem.
(Planning and Implementationa;
Creationb).

Verify Engaging in activities to explain or
justify the solution achieved based
on the mathematical and
technological resources.
(Verificationa).

Disseminate Present the solutions or outputs to
relevant others and consider the
success of the problem-solving
process. (Verificationa; Reflectionb,
Disseminationb).

aStage of mathematical problem solving as proposed by Schoenfeld (1985)
bProcess of digital technology problem solving as proposed by Martin & Grudziecki (2006)
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petition and who present detailed explanations of their solutions (Jacinto, 2017). In
this chapter, we confine ourselves to the case of one participant, under the pseudonym
of Marco, who has a preference for geometrical problems in which he is able to use
his digital skills in implementing visual methods (Jacinto & Carreira, 2015) and
resorts to conventional and unconventional tools in developing his approaches to
those geometry problems posed by SUB14 (Jacinto et al., 2016). The case serves the
purpose of illustrating and substantiating some main results from the broader work
that has spanned over several years of data analysis.

The collection of data initially consisted of gathering all the digital solutions
produced by Marco along two yearly editions of the competition. This chapter deals
initially with the analysis of Marco’s solution to the problem “United and Cropped”
(see Sect. 3.4.1), which he developed using GeoGebra. The GeoGebra file allows
disclosing the sequence in which the constructions were performed by means of its
Construction Protocol.

We proceeded to a second stage of our research by observing and video recording
Marco’s work while solving a problem in his home environment, with the consent
of his parents. He was asked to choose one out of three problems posted for this
purpose on the SUB14 website, then solve it by performing as closely as possible
to his usual problem solving activity in the competition, and to explain out loud his
actions and thinking. Marco chose to solve the problem “Decorative Drawing” (see
Sect. 3.4.2) and resorted to several technological tools during the process.

The NVivo software was used in the organization process, for transcribing the
interviews, segmenting and coding data. As for the data analysis we followed an
interpretative perspective considering that providing a holistic description of the case
would encompass the results in light of the proposedMPSTmodel and the theoretical
notions discussed. The following section illustrates the case of Marco-with-media
solving-and-expressing problems within the competition SUB14.

3.4 Data Analysis and Results

Marco is a 13 year-old student enrolled in SUB14 for the second year, who is quite
familiar with a diversity of digital tools. While studying geometric transformations
at school, he learned to use GeoGebra. Marco enjoyed these lessons so much that,
at home, he continued to explore GeoGebra on his own. However, he often uses a
spreadsheet or editing tools in solving-and-expressing the problems of the compe-
tition. Below, we firstly analyze Marco’s processes while solving a mathematical
problem with GeoGebra based on a solution submitted during the qualifying stage
of SUB14. We then report on the processes he engages in while solving another
problem, based on the in-depth interview and observation.
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Consider a sequence of squares of sides 1, 2, 3 ... 4 cm, 
arranged so as to be joined to each other, as shown in the 
figure. Once together, we cut up all the squares along a 
line from the lower left corner of the smaller square to the 
upper right corner of the larger square. What is the area 
above the cut-off line if the sequence has 8 squares?

Don't forget to explain your problem solving process!

Fig. 3.1 Statement of the problem ‘United and Cropped’ from the SUB14 competition

3.4.1 Marco’s Processes in Solving a Mathematical Problem
with Technology Based on the Digital Solution

Replicating the Complete Sequence of Squares
The problem ‘United and Cropped’ is one of the problems that Marco solved when
participating in SUB14 and inwhich he resorted toGeoGebra (Fig. 3.1). The problem
refers to a sequence of squares and presents a figure where only a few elements of
the sequence are shown. It has to do with finding a way of extending the sequence
and find a specific requested area.

Marco submitted a file containing his solution to the problem. He decided to
use GeoGebra to obtain a figure like to the one presented in the problem (grasp)
possibly realizing that he could obtain the sequence of 8 squares by marking their
vertices, and later constructing their sides and, from there, find a way to obtain the
requested area (notice). He seems to have recognized the advantages of combining
two affordances of the GeoGebra graphical view—the axes and the grid. Those
provided and supported a visual and orderly way for the construction of the sequence
of squares, based on the pattern of increment of the sides (interpret).

Marco then plotted each vertex on the rectangular grid, considering its coordinates
according to the dimensions of the sides of each square (Fig. 3.2). Some of the
coordinates that are visible in the Construction Protocol (for example, E and F)
(Fig. 3.3) suggest that Marco was just using the visual location of the point, based on
the grid, to insert each point in an approximate position.Apparently hewas convinced
that he just needed a sketch of the figure rather than its exact geometrical construction
in leading him to a path for the solution.

His next step is the construction of the sides of the squares, where he uses segments
drawing. Next, he constructs a ray from the origin of the axis to the upper vertex
of the sequence and, using the ‘properties of objects’, he changes the color of that
ray to orange. While developing the construction of this element Marco is already
combining technological and mathematical resources, which sets the beginning of
an exploratory approach to the problem (integrate).

The Mathematization: Solving-and-Expressing the Solution
The conceptual model that is apparently starting to be developed will guide Marco
to the solution. He realizes the relevance of the GeoGebra spreadsheet (Fig. 3.3) as
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Fig. 3.2 Construction of the sequence of eight squares with GeoGebra

Fig. 3.3 GeoGebra’s spreadsheet view and excerpt of the Construction Protocol

he chooses to use this tool to deal with the measurements involved in the figure. He
creates a sequential list of the lengths of the sides and inserts them in column A, and
another list containing the area of each corresponding square, which he organizes
in column B (explore). Then he inserts the label “area of 8 Q” (abbreviation of
8 Squares) in cell A14, and turns to the figure to construct the upper side of the
surrounding rectangle that contains the sequence of squares. He directly enters the
total area of the 8 squares in the table and also the area of the surrounding rectangle.
Although such rectangle is not mentioned in the problem, its construction reveals
how Marco is developing his approach to the solution (plan) which is based on the
realization that he can get the requested area by means of the difference between the
area of the 8 squares and the area of a triangle (shown below the cut line), as the cut
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line is a diagonal of the rectangle. Thus the rectangle is a new object of knowledge
and a key element in the mathematization of the situation that Marco uses to solve
and express his solution, both drawing on his knowledge about GeoGebra and his
knowledge about areas of polygons (create).

He proceeds by inserting the label “area above the line” in cell A16 and “area
of half-rectangle” in cell A17. He then calculates the area of the half-rectangle and
inserts it directly in cell B17. Below, he uses other cells to compute the difference
between the area of the rectangle and the area of the 8 squares; he then subtracts this
result to the area of the half-rectangle (verify). Only then he enters in cell B16 the
value 60, which was the answer to the problem.

The file he submitted with the solution to the problem contains the construction of
the sequence of squares and presents several calculations that are intended to explain
and justify his answer, using the GeoGebra spreadsheet view (disseminate).

Although in the digital solution there is no evidence that Marco has sought other
sources of information or help during the solving-and-expressing process, he men-
tioned in his electronic message that he counted on the help of family members
during his activity (communicate). However, with the data available it is not possible
to specify either the type of help that was provided or the stage at which such aid
was relevant to the problem solving-and-expressing process.

The analysis of the Construction Protocol that supports this resolution shows
that despite not having made a geometrically rigorous construction, Marco found
the solution to the problem and presented it clearly. In addition, he identified a
diversity of possibilities of action with GeoGebra although he has freely chosen
to just make use of the indispensable tools to develop a feasible approach to the
problem. This intentional choice of GeoGebra is based on an explicit knowledge of
its affordances, its characteristic mode of multiple views, and embedded tools, but
also on the students’ own aptitude, i.e. on the things he knows, and can actually do
with GeoGebra to solve the problem and express the solution.

The effective use of the tool appears to be related to the fact that the construction
of the sequence of squares infused a visual approach that enabled to bring out an
underlying conceptual model of the problem, which sustained the process of obtain-
ing and presenting the solution. We could also say that the student mainly drew on
the GeoGebra’s affordances to create an acceptable sketch of the figure needed to
represent the givens and goals of the problem. That sketch was then combined with
new elements he inserted in the figure and with the visualization of the required area
as a difference between specific areas that could be computed bymeans of the knowl-
edge on polygons. In fact, there were other options that Marco’s construction would
have allowed to follow and explore, namely the GeoGebra capacity of constructing
general and particular polygons and measuring their areas. This would enable, for
example, making use of the points given by the intersection of the ray with each side
of the squares (which he actually created in his construction). They would permit to
obtain directly in GeoGebra the areas of the pieces of the squares above the cut line.
Therefore, what seems to be more significant is that Marco develops his visual think-
ing through the use of the technology and combines it effectively with his knowledge
related to finding areas.
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Fig. 3.4 Processes of solving-and-expressing the problem ‘United and Cropped’

Summary of the Processes of Solving-and-Expressing with GeoGebra
The processes developed by Marco in solving-and-expressing this problem are sum-
marized in the diagram presented in Fig. 3.4. For each of the processes considered
in the MPST model, the key aspects that characterize them are identified. Those are
then recorded in the diagram, although very succinctly. Since this solution was not
subject to observation, the synthesis concerns the analysis of the file submitted by
Marco, complemented by the analysis of the various stages of his work recorded
in the construction protocol. Although Marco mentioned that he had the support of
family members, it is not possible to specify when this exchange took place, so the
communication process was not included in the diagram.

Another aspect depicted in the diagram above has to do with the flow along the
various processes that took place.As it is apparent in the scheme, this flow is relatively
straightforward and shows a linear progression from the initial appropriation of the
conditions of the problem to the dissemination of its entire solution and attached
products. In the following, we want to reconsider this apparent linearity as we will
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The picture shows a decorative drawing that will be used in the 
construction of a stained glass window. The equilateral triangle 
has a height of 12 cm. The circles are all tangent to the triangle 
and also each small circle is tangent to the large circle. 
Which is the radius of the smaller circle?

Don't forget to explain your problem solving process!

Fig. 3.5 Statement of the problem ‘Decorative Drawing’ chosen by Marco

be addressing data obtained from face-to-face activity and observation of the problem
solving activity performed by Marco.

3.4.2 Marco’s Processes in Solving a Mathematical Problem
with Technology Based on the Observed Activity

In a face-to-face interview, Marco solved one of three problems that he was asked
to choose from, with the request to recall and reproduce what he usually did during
the participation in the competition, Marco began by carefully analyzing the three
‘experimental problems’ posted on the webpage of the competition for this purpose.
He seemed hesitant but ended up choosing the one that he considered to be his
favorite: the problem ‘Decorative drawing’ (Fig. 3.5). When asked about the reasons
for his preference, Marco explained:

Marco: [This one] has more to do with triangles and stuff and it was in the seventh
grade that I had 100 [%] in both tests.

Researcher: In geometry?

Marco: Yes, I studied congruence of triangles and such…

His choice is based on an initial identification of the mathematical topic and
the notions that are apparently needed to solve the problem (geometry, triangles,
congruence of triangles) and, at the same time, reflects his familiarity with those
ideas and even a certain self-confidence to deal with those concepts since he had
obtained excellent grades in this subject in the previous school year (grasp). Although
Marco interacted with the researcher throughout his activity, following the request
to verbalize his thoughts and procedures, at this initial stage he explicitly requested
support for clarifying the meaning of the notion of tangency (communicate).

M: There’s something that I don’t understand. Tangents, the circles are tangent…

R: Tangent. Don’t you know what tangent means? [Marco nods affirmatively] It means
that they just touch in a single point. In this case, they just touch in this point [pointing
to the screen].

Working on Attempts to Develop a Solution
Focusing on the reading of the problem and interacting with the figure presented
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Fig. 3.6 Formulates and
tests 2nd attempt

on the competition website, Marco begins to develop a series of attempts that lead
him to conjecture about the solution. His first ideas were drawn on the fact that the
triangle is equilateral (notice) and made him believe that he would be able to obtain
the desired solution if he would focus on the central circle and from there obtaining
the radius of the smaller circles (interpret).

M: I’m trying. I’m still trying … to see … how to do this. Hmm … since the triangle is
equilateral … if you get to the middle circle maybe you can get to the others … [1st
attempt].

Then, he silently stares at the screen for awhile. The understanding of the situation
begins to develop in close relation with his careful observation of the image. He
rapidly sketches various visual decompositions of the equilateral triangle: sliding his
finger across the screen, he ‘draws’ a bisector of the lower right angle of the triangle
(Fig. 3.6) but continues to think aloud while ‘drawing’ also the bisector of the top
angle (notice/interpret).

M: How shall I say this? It’s like they are divided in halves. From each vertex to themidpoint
of the opposite side, and then I could try to find out… If I could do it … But I’m still
seeing how am I going to do it … [2nd attempt]

His attempts to find a visual method of approaching the problem continue, and
after some time he proposes another analysis of the situation:

M: This measures 12 cm. The middle of the triangle is less than 12, for sure. It could be 4.
If we divide in these parts … [with the forefinger and thumb sets a distance and slides it
3 times covering the height of the triangle]. Yeah, maybe. Because they are tangent…
[Silence]… I can say they have the same length. [3rd attempt]

In spite of some imprecision in the language he uses, the student recognizes that
the centroid of the triangle does not coincidewith themidpoint of its height. In fact, he
conjectures that the radius of the larger circle could be 4 cm, which is obtained from
a visual intuition supported by a rudimentary measurement based on a fixed distance
that he defines with the fingers (Fig. 3.7). Although he concludes that the radius of
the larger circle corresponds to 1/3 of the height of the equilateral triangle, he realizes
that this statement lacks clear justification, but he seems to find no information in
the problem for that (notice/ interpret).

He knows that he has already attempted different approaches, which he feels
that might work to solve the problem but is not totally confident with them. The
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Fig. 3.7 Formulates and
tests 3rd attempt

Fig. 3.8 Formulates and
tests 4th attempt

various approaches consisted of manipulations and mental transformations in the
sense they have not actually been operationalized by Marco beyond the ‘drawing’
with the index finger on the screen. He finally decides to follow a strategy involving
the decomposition of the equilateral triangle in two figures: a smaller triangle at the
top and a trapezoid below (Fig. 3.8). He goes on explaining:

M: If we draw a triangle here… It’s as if this one is an enlargement of that one. If this is
12, then 12 divided by 3, [equals] 4… It means that the radius is 2. Maybe the radius
of the small circle is 2. [4th attempt]

Up to this point, Marco was trying to understand the main ideas involved in the
problem (notice) and, in each hypothesis raised, he was considering the plausibility
of a mathematical way of approaching the solution (interpret). Therefore, in the first
minutes of his activity, there are cycles of notice-interpret, which are successively
refined, and pave the way for the development of a conceptual model that will lead
to the solution. While Marco is thinking aloud and developing a sequence of ideas,
he ‘interacts’ with the figure on the screen by pointing, estimating distances, or by
hiding areas with his hands. The development of a visual method to approach the
solution starts to take shape, in analyzing the possibilities of decomposition of the
figure while simulating transformations such as cut, reorganize or change colors. In
this way, editing the figure looked as an indispensable action to get the solution.

A Visual Approach to Get the Solution
Marco then decides to pursue with his fourth attempt. Using the software Snipping
Tool, he defines a rectangular area on the screen and crops the top of the large triangle
given in the statement, thus obtaining a smaller triangle with a single red circle in its
center. Using a similar process, he creates another file containing the original triangle,
and then inserts the two images on a new window of the MS Paint (integrate). Once
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(a) Pastes in the two images cropped (b) Completing the inferior side of the triangle 

(c) Covers the red circles with yellow (d) Paints the central circle in red

Fig. 3.9 Four steps in the editing process with MS Paint

in the same window (Fig. 3.9a), Marco tries to overlap the two images but, as they
had a solid white background, it was not possible to visually show that one was an
enlargement of the other (explore).

This difficulty leads Marco into a slightly different approach: he decides to trans-
form the large triangle so that it looks similar to the smaller triangle. He goes on,
expanding the work area so that he can accurately draw a line that would make the
bottom side of the smaller figure. In fact, since that figure resulted from a section of
the original triangle, one of the sides was not visible, so he needed to complete it
by drawing one missing segment. So, rather than just a matter of graphics, the need
to draw new elements had a mathematical intentionality (Fig. 3.9b). Then he starts
editing the original triangle by using the ‘eyedropper tool’ in MS Paint to identify
the exact shade of yellow covering the background of the large triangle; he uses it
to change the color of the smaller red circles into the background color so that they
vanish from the figure (Fig. 3.9c). Again using the ‘eyedropper tool’ he captures the
red shade and then paints the large central circle in that red color (Fig. 3.9d).

The editing of the images described above (integrate) is intended to show that
the smaller triangle is, clearly, a reduction of the original triangle (same shape but
different size). So Marco is developing and exploring a conceptual model to explain
the similarity between those two triangles (explore), and this will guide him in pro-
ducing the solution. As in the loop of processes identify-interpret, it was observed
that integration and exploration also occurred in an iterative way, albeit in a short
period of time. Marco studies the best way to demonstrate the similarity of the two
triangles in close relation to the recognition of affordances of the image editing tools
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R: First I tried to find a relationship between the triangle, because 
it is equilateral, and the central circle; then I found a similarity 
between the central circle and the smaller ones; that relation was 
that creating a perpendicular line above the diameter of the green 
circle I could create a smaller triangle next to the figure, and that 
smaller triangle is a reduction of the larger triangle; since it is a 
reduction all I have to do is 12:3 (which is twice the radius of the 
green circle plus the height of the smaller triangle) and I got 4, 
which is the radius of the green circle; as the smaller triangle is a 
reduction of the larger one and its height is 4, to obtain the radius 
of the red circle one must divide 4:3 which is 4/3.

Fig. 3.10 Solution sent by Marco (print screen) with a translation of his written explanation

available and uses them to achieve a transformation that conveys the mathematical
relationship in a visually convincing way. When asked about the reason to such a
careful work on the graphic elements, he replies: “it’s to better show how you could
see that one was an enlargement of the other”. Therefore the graphic treatment is
of central importance in his approach to the problem. In addition to illustrating his
way of thinking, in the most reliable way he finds, the images also become a visual
mathematical argument that must convince those who will evaluate his solution.

Creating and Expressing the Solution
Later, Marco saves the file and opens the OpenOffice spreadsheet. Without resorting
to a notebook or pencil, Marco continues to move between the competition website,
where he has the problem statement, the image editing tools and the spreadsheet
where he starts expressing his solution path (plan). He uses the original image and the
two figures produced in MS Paint to compose his answer in the spreadsheet window
(Fig. 3.10). The figures support his understanding of the problem and show how
Marco visualized the similarity between the triangles. By incorporatingmathematical
ideas, such as similarity and triangle decomposition, Marco achieves a conceptual
model of the problem situation (create).

As he usually does in the competition, he identifies the number of the problem
on the upper left corner of the worksheet, and inserts or pastes the images he has
created and explains in detail his resolution process on the right. Although he reports
only a few of the attempts he actually made, he explains that he found “a similarity
between the central circle and the smaller ones”, hence considering that the small
triangle is a reduction of the larger triangle by a ratio of 12:3 although he does
not prove that similarity. Thus, assuming that the radius of the larger circle is 1/3
of the height of the original triangle, Marco explains that the smaller circle has a
radius that corresponds to 1/3 the height of the smaller triangle, that is, 1/3 of 4.
It is, therefore, while producing a written explanation of the resolution process and
making an analysis of the images he edited that Marco finds, effectively, the solution
to the problem (verify). Contrary to his last hypothesis (“maybe the radius of the
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small circle is 2”), Marco now concludes that the radius of the small circle is actually
4/3.

When he considers his work to be finished,Marco saves the file. Then, he accesses
the competition website to submit his answer using the online form available, where
he uploads the file as an attachment; he fills in his personal data and adds the following
sentence: “Here is the answer to the experimental problem 2” (disseminate). Marco
also points out that ‘nobody’ helped him with the solution, that he enjoyed ‘very
much’ the problem, and that he found it ‘easy’.

Initially, the technological tools assumed a hidden role in the problem solving
activity, sinceMarco only interacted with the screen by visually inspecting the figure
given in the statement. However, this visual approach is later developed through
processes of transformation of the figure with the technological tools that he chose
and with which he shows great familiarity with: he knows how to save the image
from the website and knows how to edit it in a way that becomes relevant to find
the solution to the problem—a new object of knowledge. His success seems to be
anchored in his ability to recognize and make efficient use of various affordances of
such tools to broaden his mathematical thinking and to develop a conceptual model
for the similarity between the two triangles he seeks to compare.

Moreover, this initial activity appears to have a cyclic nature, in which each argu-
ment is formulated as Marco attempts, on the one hand, to assign meaning to the
mathematics that may be useful or relevant to him (notice) and, on the other hand,
to consider mathematical ways to approach the solution (interpret) while interacting
with the figure on the screen. This cyclic activity leads Marco to a final conjec-
ture—”the radius of the small circle is 2”—which is his first guess for the solution
and will trigger subsequent exploration activity. Marco’s ability in finding the solu-
tion to the problem seems to be related to his aptitude in recognizing the affordances
of the selected tools, which broadened his thinking process and ultimately influenced
the expression of that thinking. As he starts to explore his guess, the elaboration of
images in the graphic environment leads Marco to discover the correct similarity
ratio. The use of the spreadsheet supports the combination of objects because it
allows him an easy organization of visual and textual inscriptions, that is, he can
move images freely and can easily format as well as merge cells.

Summary of the Processes of Solving-and-Expressing on the Screen
The processes of solving-and-expressing the problem ‘Decorative drawing’ are sum-
marized and schematically presented in Fig. 3.11. Marco’s activity was entirely per-
formed in the digital environment, moving only between the various programs that
he used. In this second diagram, the flow has some salient differences from the pre-
vious one. Here, several loops or micro-cycles involving some specific processes are
observed. Therefore, the apparent linearity that the first diagram seemed to indicate
is now challenged by a result that is much more complex and less straightforward.
In fact, the MPST model proves able to reveal and capture the processes carried out
and also their linked and combined occurrence throughout the resolution, when the
data available make known the particulars of the in situ and real-time solving-and-
expressing of a mathematical problem with digital technologies.
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Fig. 3.11 Processes of solving-and-expressing the problem ‘Decorative Drawing’
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3.4.3 A Summary of the Processes Involved
in Solving-and-Expressing Mathematical Problems
with Technology

Our MPST model allowed a thorough and detailed description of Marco’s processes
while addressing two SUB14 geometry problems. As both the digital solution and
the observed activity were analyzed, it is now possible to summarize the aspects
that best characterize each of the processes involved in solving-and-expressing those
problems with digital tools, also refining the descriptors presented previously in
Table 3.1.

The student begins his approach to a new problem by reading the statement several
times, in trying to get a sense of the mathematical notions and contents that may be
involved, as well as by assessing his confidence on his ability to reach a solution
based on the easiness he has with the subject or with possible ways of dealing with
the problem (grasp). Sometimes he seeks support, at some point of his activity, by
getting help from familymembers, from searching the Internet, fromhis teacher or, as
it happens in the case of the activity observed, from the researcher (communicating).
Then, there is a process of deepening the understanding of the conditions stated in the
problems, either realizing that it is necessary and possible to construct the sequence
of the 8 squares (in the 1st problem), or realizing some elements in the figures, such
as the fact that the triangle is equilateral (in the 2nd problem) (notice).

While in the first solution the available data suggest that Marco proceeds to the
recognition of certain affordances of the GeoGebra graphical view (interpret), the
second solution offers evidence that this move can be much more complex. As it
turned out, the production of a sequence of arguments and the several attempts
initiated, that eventually led to the formulation of a conjecture about the unknown
value, took place in a back-and-forth between two processes—notice and interpret.
This means that the student realizes that the triangle is equilateral (identify) and
analyzes the central circle so as to reach the smaller ones (interpret); thenfinds several
possibilities of decomposition of the triangle (identify) and with the fingers draws
imaginary bisectors and estimates distances (interpret); finally, he visualizes another
way of decomposing the triangle into two that are similar (identify) and simulates this
decomposition with the finger, formulating a conjecture about a possible solution to
the problem (interpret).

The following processes are aimed at developing the formulated conjectures,
which involves the use of digital tools with a mathematical sense: in the first solution,
Marco uses the grid in GeoGebra’s graphic view to build the extended sequence of
squares, based on the coordinates of its vertices, constructs a ray, and also changes
properties of some objects to highlight them; in the second solution, he uses the
Snipping Tool to create files with the images of the original triangle and a top triangle
resulting from decomposing the large one, then he draws the bottom side of this
new one. In this problem, the integrate process is developed in association with the
explore, i.e. an attempt is made to analyze the possibility of overlapping the two
figures, but as it turned out to be unsuccessful, Marco graphically edits the images
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in order to transform the original triangle and recolor components of that figure
(integrate), therefore visually showing that they are similar (explore). Otherwise, in
the first problem, the analysis of a conceptual model occurs when Marco resorts to
the spreadsheet in GeoGebra and inserts lists with the lengths of the sides of the
squares and their areas (explore).

Then it follows the outline of an approach that leads to the solution from the
conceptual models that were previously developed. In one case, completing the con-
struction of a surrounding rectangle around the complete sequence of squares and
recording its area in the spreadsheet indicates that Marco has found a way to exam-
ine his conjecture. In the other case, it is the abandonment of the editing tools and
the move to the spreadsheet, where Marco normally composes the solutions, which
indicates that the constructed figures already have a purpose (plan).

The next process concerns the development of the planned approach—in a case
getting the difference between the calculated areas, and in the other through the inser-
tion and arrangement of the edited images—during which Marco uses mathematical
and technological knowledge to obtain the solution (create). In this process, certain
elements intentionally created byMarco reveal a techno-mathematical understanding
of the solutions, like the case of the surrounding rectangle or of the transformed tri-
angle to exhibit its similarity to the smaller one. Those are new objects of knowledge
created by Marco to solve-and-express the problem.

The following actions are directly related to the explanation of the solution or
the justification of the reasoning through mathematical arguments supported by the
technological resources (verify). In particular, Marco uses the GeoGebra spreadsheet
to record the sequence of steps taken, so the combination of construction and orga-
nized calculations generates a techno-mathematical solution that ‘self-explains’ the
problem solved. In his other solution, Marco describes in the spreadsheet some of
the attempts he performed and explains how he got the solution, which occurred
precisely when he articulated his mathematical thinking with the edited images.

Finally, the submission of the solutions is done through the online form of the
SUB14 webpage and consists of sending the prepared files, which may contain some
indications to the receivers on how to manage the information that he provides in his
digital materials (disseminate). In the problems that he solved at distance and also in
the case of the problem that Marco solved under the observation of the researcher,
the young man made his report on the help he might had or not, about the degree of
difficulty of the problem, and about whether he had enjoyed to solve it.

3.5 Discussion and Conclusions

The problem solving activity reported in this case illustrates how digital tools stimu-
late altogether the development of mathematical understanding that becomes crucial
for finding and expressing the solution to the problems. It also shows that Marco’s
ability to perceive affordances in the tools is of significant relevance for achieving
success in such activity.
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In the first solution, this student-with-media uses GeoGebra in unconventional
ways (Jacinto et al., 2016): although he recognizes a number of affordances, the
construction is not built to be robust and the spreadsheet is not brought up to compute.
Instead, the grid promotes an almost immediate ‘materialization’ of the squares’
vertices and the construction prompts the development and exploration of a visual
perception, while the spreadsheet allows recording every step of his strategy, which
includes the reasoning and the procedures taken.

The second solution brings forth the relevant role of home-technologies which
are often regarded as deprived of mathematical affordances, but were fundamental
in the development of a mathematical way of approaching the problem.

At some point, in both solutions, Marco-with-media creates new objects not men-
tioned in the problems. The new mathematical meanings that he derives from them
assist him in solving and in expressing the solutions: the enveloping rectangle, in the
first solution, and the transformed triangles, in the second solution. Furthermore, the
constructions, transformations, and the explanations Marco provides are not mere
postscripts added after the solution is found. Those inscriptions are crucial elements
within his work that assume a double role: they simultaneously support the finding
and the reporting of the answer.

The MPST model provides analytical means to inspect and to account for the
processes involved in Marco’s activity, either based on digital documental data or
on the observation of the activity itself. Solving-and-expressing accounts for the
synchronous process of mathematization and expression of mathematical thinking
(Carreira et al., 2016). Marco’s activity reveals his purpose in producing a solution
that is self-explainable, thus, solving-and-expressing-with-technology summarizes
the whole process, from the beginning of his approach to the submission of his
solutions.

Moreover, the MPST model reveals its potential as it accounts for the analysis
of data stemming from multiple sources and characters. This is particularly relevant
since the model allows identifying critical moments in the activity characterized by
multiple sequences of processes, moving forth and back in an iterative way. For
instance, the process of using editing tools to create similar triangles (integrate) lead
to an attempt to overlap the figures (explore), while the analysis of this experience
and the realization of its impossibility leads to using mathematical and technological
resources (integrate) to look for a different way of demonstrating the similarity
(explore).

While the integration ofmathematical and technological resources aims to develop
an exploratory approach, the analysis of such exploration (e.g., manipulation, con-
jecture, computation) may trigger the integration of new resources and, again engage
in an exploration process. Thus, the integration is a key process in the simultaneous
activity of mathematizing and expressing mathematical thinking by means of digital
technologies.

This research may open new avenues on the kinds of mathematical thinking and
problem solving skills that young students are capable of putting forth in challeng-
ing situations beyond school, entangling academic and informal knowledge. On the
one hand, the results obtained demonstrate that technological resources and math-



3 A Model of Mathematical Problem Solving with Technology … 61

ematical resources are equally indispensable to the problem-solving activity with
technologies. On the other hand, they show that the nature of mathematical thinking
developed with technology changes: technology opens up more ways of exploration,
manipulation, observation, conjecture, and explanation.
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Chapter 4
Mathematical Problem Solving
and the Use of Digital Technologies

Manuel Santos-Trigo

4.1 Introduction

4.1.1 Technology in Society and Its Importance in Education

The irruption of digital technologies in society is transforming the way individuals
interact, communicate, and carry out daily activities. People rely on digital technolo-
gies to get access to several online services and information to make daily decisions.
Likewise, the use of technology is also opening new routes for students to learn
disciplinary knowledge. In dealing with mathematical tasks, students, with the use
of technology, have an opportunity of relying on technology affordances to repre-
sent and explore ways to understand mathematical concepts and solve mathematical
problems. Mason (2016) argues that “…something or some situation is a problem
onlywhen someone experiences a state of problematicity, takes on the task ofmaking
sense of the situation, and engages in some sense-making activity” (p. 263). Asking
and pursuing questions, checking examples or considering and exploring some spe-
cial cases, making conjectures, looking for counterexamples, and supporting math-
ematical relations are problem solving strategies and actions that are important for
learners to work on mathematical tasks (Santos-Trigo & Moreno-Armella, 2016).
What then could the use of digital technologies offer to learners in terms of imple-
menting these types of strategies during the process of understanding mathematical
concepts and solving problems? Leung (2011) points out that “a pedagogic reason
for using technology is to empower learners with extended or amplified abilities to
acquire knowledge…technology can empower their cognitive abilities to reason in
novice ways” (p. 327). That is, learners, with the use of technology, can engage in
dynamic explorations of mathematical ideas and enhance their ways of reasoning to
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formulate and support conjectures. Similarly, the use of communication technolo-
gies can facilitate and enrich mathematical discussions within an extended learning
community. Walling (2014) argues that “learning design must be flexible not only
because students are diverse in their needs, interests, aspirations, and abilities but
also because the very nature of the modern world demands it” (p. 14).

Gros (2016) point out that, the use of technology is changing and shaping what we
learn, howwe learn, where and whenwe learn.What types of digital technologies are
helpful and how can students use them to understand mathematics and develop prob-
lem solving competencies? In a technological environment, teachers and students
might rely on different digital technologies and online developments such as Inter-
net, a Dynamic Geometry System (DGS), mobile applications, tablets, Wikipedia,
etc. to represent, explore, expand, analyze, explain, and share their mathematical
ideas, concepts or problems solving approaches.

Using digital technologies in learning environments implies addressing issues
regarding what new pedagogies are needed to frame mathematical working and
learning spaces inwhich learners participate in the construction and usemathematical
knowledge. Gros (2016) states that “technology must enable and accelerate learning
relationships between teachers and students and between students and other “learning
partners” such as peers, mentors and others with similar learning interests” (p. 18).
That is, technologies might expand and enhance students’ ways to share and discuss
mathematical ideas as a part of an extended learning community.

Mathematical tasks and ways to implement them are essential ingredients in structuring
a learning environment for students to engage in mathematical activities. “A challenge in
digital task design is to conceive tasks that can extend and amplify pedagogical features
present in non-digital environments”. (Leung & Baccaglini-Frank, 2017b, p. x)

Gros, Kinshuk, andMaina (2016) argue that for students to deal with the complex-
ity involved in this technological society, they need to develop and exhibit strategies
to solve problems collaboratively, communicate results, and to constantly interact
with peers and other experts. Indeed, with the use of communication tools or mobile
applications students expand individual and self-directed problem solving behaviors
to include collaborative learning through direct and continuous interactionwith peers
and group experts. Gros (2016) point out that the incorporation of digital technolo-
gies in learning scenarios involves discussing the design of mathematical tasks, the
role of teachers and students, and the educational context or learning scenarios to
implement the tasks.

The goal of this chapter is to analyze and discuss ways in which the coordi-
nated and systematic use of several digital technologies provides affordances for
teachers/students to represent dynamically concepts, explore and solve mathemati-
cal problems.

To delve into the representations, strategies and ways of reasoning that emerge
in technology problem solving approaches, four types of tasks are identified and
analyzed in terms of characterizing how technology affordances shape their solution
processes.
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(a) Focusing on figures. This group emphasizes the importance of using DGS in
reconstructing figures that are embedded in problem statements;

(b) Investigation tasks. This group deals with investigation tasks where students are
encouraged to transform initial routine problems that appear in textbooks into
a series of mathematical activities;

(c) A variation task. This group addresses ways to represent and analyze tasks that
involve some variation phenomena inwhich a graphicmodel is achievedwithout
having an explicit algebraic model of the situation; and

(d) Dynamic configurations. This group refers to the construction of dynamic con-
figurations that aim to foster problem posing activities and ways to validate
mathematical relationships.

4.1.2 Learning Environments and the Coordinated Use
of Digital Technologies

In framing and characterizing a digital learning environment it is important to address
and discussways inwhich the coordinated use of several digital technologies not only
offer affordances to represent and explore mathematical tasks; but to also enhance
students’ interaction to continuously share anddiscussways to solve problems.Leung
(2017) states that “teachersmust experience for themselves, as learners, the potentials
and pitfalls of digital tool in the learning of mathematics, thus gain knowledge about
how students can learn mathematics in various digital environments” (p. 6). Thus,
teachers need to work on problems and discuss ways in which technology help them
restructure their teaching practices that pay attention to the type of reasoning that
emerges throughout the problem-solving process.

In the eyes of many digital natives, learning is more than just going to lectures and relying on
textbooks; rather, learning involves engaging in technology-mediated learning activities such
as doing research on the Internet, searching, finding, and analyzing a variety of resources
available in the virtual world and bringing into their own lives (p. x). (Kinshuk & Spector,
2013)

Leung (2011) point out that “when one is faced with a new tool, one has to learn
how to use it and in doing so, gradually realizes the “knowledge potential” that is
embedded in it” (p. 327).

The use of digital technologies, such as a DGS (GeoGebra) and communication
applications, provides the learners with a set of affordances to continuously engage in
exploration, reconstruction, explanation, and communication activities tomake sense
of concepts and to solve mathematical problems. Thus, multiple purposes technolo-
gies such as Internet, tablets or smart phones play an important role in extending
learners’ mathematical discussions beyond formal settings. That is, students can
access online materials, consult encyclopedias (Wikipedia) or share mathematical
ideas via a digital wall (Padlet) and discuss their ideas (through email or online
forums) within a learning community that includes peers, experts and teachers.



66 M. Santos-Trigo

Santos-Trigo, Moreno-Armella, and Camacho-Machín (2016) argue that:

…Representing and exploring mathematical tasks mediated by digital technologies bring in
new challenges for teachers that include the appropriation of the instruments afforded by
these technologies in order to identify and analyze what changes to mathematical contents
and teaching practice are fostered through its use (p. 829).

In addition, Moreno-Armella and Santos-Trigo (2016) state that “the use of medi-
ating instruments, in particular, digital technologies, are never epistemologically
neutral. The ways of approaching a problem depend upon the resources we have at
our reach” (p. 829). That is, the subject’s experience or expertise in using the tool
shapes and permeates how it is used in problem solving approaches. The transit in
learners’ initial use of empirical or visual approaches (via the use of technology) to
eventually construct and present geometric and analytic arguments to support results
appears important throughout all problem-solving activities. Freiman et al. (2009,
p. 128) state that “…the most important advantage of using technology is the diver-
sification of teaching and learning approaches, rediscovery of dynamic aspects of
mathematics, and, especially, learning through communication with others”.

It is argued that the use of technology demands that teachers and students analyze
and discuss what problem solving strategies, concepts, resources and ways of rea-
soning appear important during the construction and exploration of dynamic models
of problems via technology affordances. To this end, it is relevant to discuss how
problem representations and strategies such as moving orderly objects within the
model, quantification and exploration of objects’ attributes, finding and analyzing
objects’ loci; using sliders, and arranging data in tables become important throughout
the learners’ problem solving process.

4.2 A Focus on Problem-Solving Activities

Curriculum and teaching proposals worldwide recognize that problem-solving activ-
ities are essential to frame mathematical learning environments (Törner, Schoenfeld,
&Reiss, 2007). Likewise, themathematical problemsolving research agendahas pro-
vided relevant results and information regarding the importance of tasks or problems,
the researchmethods to elicit and analyze both cognitive andmetacognitive processes
involved in learners’ construction of mathematical knowledge, and the development
of conceptual frameworks to analyze and document the students’ problem solving
competencies (Santos-Trigo, 2014; Silver, 1990). Although mathematical contents
that appear in curriculum proposals might be the same in different countries, the
ways to structure and implement a problem-solving approach to learn those contents
might differ since such implementation is shaped by countries’ cultural and social or
educational traditions. Indeed, Stanic and Kilpatrick (1988) point out that “problem
solving has become a slogan encompassing different views of what education is, of
what schooling is, of what mathematics is, and of why we should teach mathematics
in general and problem solving in particular” (p. 1). Similarly, research agendas in the
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field not only include distinct themes and interpretations of what a problem-solving
approach entails; but have also evolved in terms of the use of research methodologies
(Santos-Trigo, 2014).

The term [problem solving] has served as an umbrella under which radically different types
of research have been conducted. At minimum there should be a facto requirement (now
the exception rather than the rule) that every study or discussion of problem solving be
accompanied by an operational definition of the term and examples of what the author
means. …Great confusion arises when the same term refers to a multitude of sometimes
contradictory and typically underspecified behaviors. (Schoenfeld, 1992, p. 364)

What does it distinguish, then a problem-solving approach to frame a learning
environment for students to construct and use mathematical knowledge? A key prin-
ciple in any problem-solving approach to learn mathematics and to solve problems
is that learners need to conceptualize the discipline as a set of dilemmas that are
important and need to be represented, explored, analyzed, and explained in terms of
mathematical resources (Santos-Trigo, 2014). Mason (2016) recognizes the impor-
tance for students to experience problematicity in dealing with mathematical tasks
and to make use of their own powers and to engage in problem solving approaches.
To this end, learners need to develop and value an inquiring approach to understand
concepts and to solve problems. Santos-Trigo andCamacho-Machín (2016) point out
that an underlying principle in problem solving activities is “to conceptualize learn-
ing as an inquiring process to delve into concepts and problems in order to identify
and explore mathematical relations” (p. 45). Mason, Burton, and Stacy (2010) stated
that an atmosphere of questioning, challenging and reflection is crucial for students
to develop mathematical thinking. Leikin, Koichu, Berman, and Dinur (2017) states
that “The construction of questions is an important way for learners to build con-
ceptual conflict, and the search for answers may begin the process of resolving that
conflict” (p. 67). Thus, posing questions and looking for different ways to pursue
those questions are key activities for learners to learn and use mathematical knowl-
edge. Barbeau (2009) refers to a challenge for learners to delve into mathematical
tasks:

…we will regard a challenge as a question posed deliberately to entice its recipient to
attempt a resolution while at the same time stretching their understanding and knowledge of
some topic…Agood challengewill often involve explanation, questioning and conjecturing,
multiple approaches, evaluation of solutions for effectiveness and elegance, and construction
and evaluation of examples” (p. 5).

4.2.1 On the Use of Technology to Construct and Explore
Dynamic Models

Within a technological learning environment, students might rely on different digital
tools’ affordances as a means, to represent, make sense, analyze and solve mathe-
matical tasks. In this process, it is important to characterize what type of reasoning
learners construct and exhibit throughout their problem-solving approaches. How
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could I construct a dynamic model of a problem? What parameters involved in the
problem representation can be quantified or measured? How can I orderly move
some parameters within the model? How can I determine or visualize the loci of
specific objects when I move some elements within the model? The discussion of
these questions sheds lights on what type of reasoning students might get engaged
with the use of a DGS in problem solving activities.

The long-term commitment students need to make is a willingness to engage in problem-
solving activities and to form habits of mind such as thinking about word meanings, jus-
tifying claims and conjectures, analyzing answers and solution strategies, using alternative
representations, and acquiring a toolkit of problem-solving strategies. (Lester & Cai, 2016,
p. 121)

Likewise, during the students’ development of problem solving experiences it
is important that they share, analyze, and discuss concepts, ideas, solutions as a
part of a learning community and the use of digital technologies allows them to
continuously discuss their ideas with peers and experts in and out of formal settings.
Similarly, learners can consult online materials or learning platforms to recall or
extend conceptual information or to watch an expert presentation via an online video
of the topic in study. As Mishra and Koehler (2006) stated:

… there is no single technological solution that applies for every teacher, every course, or
every view of teaching. Quality teaching requires developing a nuanced understanding of
the complex relationships between technology, content, and pedagogy, and using this under-
standing to develop appropriate, context-specific strategies and representations (p. 1029).

In this perspective, during the process of working on a mathematical task, learn-
ers should always look for different ways to represent and solve a problem and to
examine the extent to which the methods used in solving it can be used in other
tasks. In this context, a task is conceived of as departure point to engage learners
in mathematical reflection and thinking. Santos-Trigo and Reyes-Rodríguez (2016)
discusses the importance for students to think of and discuss several ways to solve a
task that involves an equilateral triangle. The multiple approaches to represent and
solve the task became important for students not only to consider and analyze dif-
ferent concepts and results associated with the equilateral triangle; but to also make
connections among contents that often are studied separately. Lester and Cai (2016)
mention that teachers should provide learning conditions for students to engage in
a variety of problem-solving activities that include: “(1) finding multiple solution
strategies for a given problem, (2) engaging in problem posing and mathematical
explorations, (3) giving reasons for their solutions, and (4) making generalizations”
(p. 13). That is, looking for different ways to solve a task, discussing what concepts
are used, and exploring ways to extendmathematical tasks become an important goal
for learners to pursue in the process of development their problem-solving competen-
cies. This goal is achieved as a part of a learning community that demands that each
member shares and constantly reflects on what he/she contributes to task’s solution.
Blaschke and Hase (2016) pointed out that:

Working together toward a common goal, learners are able to solve problems and reinforce
their knowledge by sharing information and experiences, continuously practicing, and exper-
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imenting by trial and error. They simply help each other along the way. The teacher serves as
coach during the collaboration process, letting learners forge forward together and stepping
in only when absolutely necessary (p. 33).

Santos-Trigo and Moreno-Armella (2016) argue that “[s]earching for alternative
ways to represent and solve problems is a powerful strategy for students to identify
and contrast the role played by concepts and their representations across the whole
problem-solving process” (p. 192). The development of Geometry Dynamic Systems
such as GeoGebra represents a milestone in the study and development of mathe-
matical knowledge. Leung and Bolite-Frant (2015) pointed out that GDS “can be
used in task design to cover a large epistemic spectrum from drawing precise robust
geometrical figures to exploration of new geometric theorems and development of
argumentation discourse” (p. 195). That is, its use provides affordances for learners
to both finding objects’ relationships and properties and arguments to support or
validate them.

4.2.2 Technology Affordances and Mathematical
Explorations

Some problems that involve paper and pencil approaches can be explored and
extended with the use of technology. Schoenfeld (1985, p. 16) asks some college
students to divide a given triangle in two parts of equal area (using a straightedge
and compass) by drawing a parallel line to one of the triangle side. What about if
we remove the parallel line and the use of a straightedge and compass conditions
and approach the problem with the use of GeoGebra? That is, we ask: divide a given
triangle in two regions with same area. The goal is to look for different ways to
find two regions with the same area. In Fig. 4.1, M is constructed as a midpoint of
side AB, point E lies on segment AM and side EG is constructed to be a half of
side AB. Thus, students can see that for any position of point E on segment AM
the area of triangle ECG is always half of the area of triangle ABC. Properties of
the construction validate the solution since triangles ABC and ECG share the same
height with respect to sides AB and EG respectively. Therefore, for any position of
point E on segment AM, then the area of triangle ECG is the same as the sum of
areas of triangles ACE and BCG.

Another way to divide the given triangle is shown in Fig. 4.2, segment ED is
perpendicular to AB and segment DH is parallel to AB, the coordinates of point
Q are the x-coordinate of point E and the area of polygon EBHD as y-coordinate.
Line y � 3.22 (half of the area of triangle ABC) intersects the locus of point Q that
results when point E is moved along side AB at points O and P. Then, when point Q
coincides with point O and P the area of quadrilateral EBHD will be the same as the
sum of the areas of triangles ADE & DHC. The latter approach involves describing
graphically the area variation of polygon EDHB when point E moves along side AB



70 M. Santos-Trigo

Fig. 4.1 Point E moves
along segment AM (M
midpoint of AB) and side EG
is half of side AB, then area
of triangle ECG is half of
area of triangle ABC

Fig. 4.2 Finding the locus
of point Q when point E
moves along segment AB

and to determine the position where polygon EBHD has half of the area of triangle
ABC.

The tool affordances that include drawing a precise model, generating a family
of objects (triangles and polygons), and finding loci of the polygon’s area variation
become important not only to solve the task; but also are essential to identify prop-
erties and arguments to support results. In this case, an open question that involves
dividing a triangle represents an opportunity for students to think of and explore
different ways to divide the figure, and so, several concepts and problem solving
strategies appear during the solution process.

Thus, the use of digital technologies seems to provide a context and an opportunity
for students to activate a variety of concepts and resources during the process of
constructing and exploring different approaches to the task. Freiman, Kadijevich,
Kuntz, Pozdnyakov, and Stedoy (2009) summarizes what the use of technology
might bring to the learning community in terms of extending learning mathematical
discussion beyond classrooms:

• Technology can give access to the resources that cannot be otherwise accessed.
• Technology can provide a free choice of resources based upon the level and the
particular needs.

• Technology can provide dynamic tools of mathematical investigation giving a
chance to modify parameters of an activity in an interactive way.
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• Technology is a valuable tool of communication about mathematics with other
people.

• Technology empowers the people with the instruments, facilitating routine oper-
ations and more sophisticated mindtools (p. 129).

In the same vein, Liljedahl, Santos-Trigo, Malaspina, and Bruder (2016) argue
that the use of technologies demands that students engage in a tool’s appropriation
process to develop an expertise in representing and exploring concepts and problems.

…learners not only need to develop skills and strategies to construct dynamic configuration
of problems; but also ways of relying on the tool’s affordances (quantifying parameters or
objects attributes, generating loci, graphing objects behaviors, using sliders, or dragging
particular elements within the configuration) in order to identify and support mathematical
relations (p. 23).

4.3 Problems as a Departure Point to Engage Students
in Mathematical Thinking

Mathematical problems play an important role in fostering students’ learning and
guiding the development of mathematical knowledge (Leung & Baccaglini-Frank,
2017a). Silver (2016) pointed out that “mathematics problems form the foundation
of students’ opportunities to learn mathematics”. Similarly, Lester and Cai (2016,
p. 122) stated that:

Mathematical tasks provide intellectual environments for students’ learning and the develop-
ment of their mathematical thinking…Regardless of the context, worthwhile tasks should be
intriguing, with a level of challenge that invites speculation and hardwork.Most importantly,
worthwhile mathematical tasks should direct students to investigate important mathematical
ideas and ways of thinking toward the learning goals.

Teachers design, select, adjust and implement mathematical tasks to foster their
students’ development of mathematical thinking. Margolinas (2013) stated that:

Tasks…are themediating tools for teaching and learningmathematics…Tasks generate activ-
ity which affords opportunity to encounter mathematical concepts, ideas, strategies, and also
to use and develop mathematical thinking and modes of enquiry (p. 12).

What types of problems are important for students to work and discuss in problem
solving environment? What does the process of designing or selecting mathematical
tasks entail? How does the use of digital technologies influence the design and selec-
tion of mathematical problems? The discussion of these types of questions implies
also addressing issues regarding choosing, designing and implementing mathemat-
ical tasks in learning scenarios. Selden, Selden, Hauk, and Mason (2000) pointed
out the importance for students to deal with non-routine problems to develop a
robust understanding of mathematical concepts. Working on non-routine problems
requires that students figure out mathematical features associated with the structure



72 M. Santos-Trigo

of the problem, to identify key concepts involved in the problem statement, and to
select and search for resources and strategies needed to explore and eventually solve
the problems. In a technological environment, learners could engage in exploration
activities that involve moving objects, exploring their behaviors, looking for invari-
ance and properties to support conjectures. In this process, they examine concepts
to grasp features associated with the deep structure of the problem (Santos-Trigo &
Camacho-Machín, 2016).

In this context,working on tasks or problems represents an opportunity for learners
to get involved in a continuous investigation that lead them to look for patterns, to
make connections, and to extend initial problems. That is, problems are conceived
of as a departure point for students to engage in mathematical discussions. Likewise,
the way teachers implement the tasks in learning scenarios plays an important role in
the students’ learning of concepts and solving problems. Thus, the type of questions
and the mathematical reflection that students engage in while working on the task
are essential for student to focus on what is important during the solution process.
Lester and Cai (2016) pointed out that:

The learning environment of teaching through problem solving provides a natural setting for
students to present various solutions to their group or class and learn mathematics through
social interactions, meaning negotiation, and reaching shared understanding. Such activities
help students clarify their ideas and acquire different perspectives on the concept or idea they
are learning. Empirically, teaching mathematics through problem solving helps students go
beyond acquiring isolated ideas toward developing increasingly connected and complex
system of knowledge (pp. 119–120).

What should students pay attention to or look at while using technology to solve
mathematical problems? An initial categorization of groups of problems is proposed
in terms of identifying how the tool’s affordances shape the ways of reasoning and
approaching each group solution. This categorization comes from analyzing and
discussing ways in which we have used several digital technologies in problem
solving approaches (Santos-Trigo&Camacho-Machín, 2016). Thus, the presentation
of each category shows, representations, strategies, concepts, and resources that
appear relevant in approaching the problem.

4.4 Towards a Categorization of Mathematical Problems
and the Use of Technology

4.4.1 Problem Statements and Embedded Figures

In paper and pencil approach, someproblems or tasks statements often includefigures
that show objects and data that are important to identify properties or relations to
solve the problem. For example, in the statement: Let ABC be an equilateral triangle
and let P be any point on its circumcircle, for instance, on the shorter arc AB, as
shown in Fig. 4.3… [show] that AP + BP = CP (Melzak, 1983, p. 13), the figure
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Fig. 4.3 Triangle ABC is
equilateral, show that AP +
BP � CP

Fig. 4.4 Inscribing an
equilateral triangle in a given
circle

becomes a referent to identify possible properties and results (similar triangles, cyclic
quadrilateral, etc.) to support or validate the involved relation.

By looking at the figure, one might ask: How can I reconstruct the figure? How
should one draw an equilateral triangle and its circumcircle? Or given a circle, how
should one inscribe an equilateral triangle?With the use ofGeoGebra, these questions
become relevant not only to identify and explore concepts needed to draw the figure,
but also provide an opportunity for learners to connect the problem goal with a series
of mathematical ideas and resources to solve and extend the initial statement. How
can I inscribe an equilateral triangle into a given circle? Figure 4.4 shows a way that
involves choosing a mobile point A on the circle and drawing a circle with center at
A and radius AO (O the center of the given circle). This circle intersects the given
circle at point B and C, then two other circles are drawn with centers at B and C
and radius BO and CO, etc. Then, points A, D & E are the vertices of the inscribed
triangle (Fig. 4.4).

Another approach (Fig. 4.5) to inscribe an equilateral triangle involves selecting
any point A on the circle and drawing line AO (O the center of the circle). Line AO
intersects the circle c at point D. Then, a circle d with center at D and radius DO
is drawn. Points C and B are the intersection points of the circles and then triangle
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Fig. 4.5 inscribing an
equilateral triangle in a given
circle

Fig. 4.6 Focusing on any
equilateral triangle as a
referent to inscribe a similar
triangle in a given circle

ABC is equilateral (Fig. 4.5). This is because line AO is the perpendicular bisector
of CB.

Another approach might focus on drawing any equilateral triangle QRS as a
reference to inscribe a similar triangle into the given circle. Figure 4.6 shows an
equilateral triangle QRS as a reference one, then point A is any point of the given
circle c. From point A two parallel lines to side QR and QS are drawn and from point
T (the intersection of the parallel to QR and the circle) also a parallel to side RS is
drawn. Triangle ATU is equilateral and the locus of point U when point A moves
along the circle is a line. So, the position of point A at which the locus of point U
intersects the circle, is the third needed vertex to determine the inscribed equilateral
triangle.

Yet, another approach to inscribe an equilateral triangle focuses on examining a
simpler case and analyzing the area variation of the inscribed circle. In Fig. 4.7a, point
A is a mobile point on the given circle and triangle ABC is equilateral (its inscribed
circle is a circle with center at the intersection of two perpendicular bisectors and
radius the distance between the center and any vertex). Line m is the graph of y
� area of circle c and point Q has coordinates the x-coordinate of point A and as
y-coordinate the area of the circle that inscribes the equilateral triangle ABC. What
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Fig. 4.7 a What is the locus of point Q when point A is moved along circle c? b When point Q
coincides with point R, the inscribed triangle is the solution

is the locus of point Q when point A is moved along circle c? Figure 4.7a shows that
the locus (that seems to be an ellipse) intersects line m at point R and S. That is,
when point Q coincides with point R, then triangle ABC is the inscribed equilateral
triangle (Fig. 4.7b).

Comment: Pólya (1945) argues that understanding the problem statement is a
crucial stage in the process of solving the problem and it involves identifying rele-
vant concepts and possible relations. The use of technology can help students connect
concepts and delve into the problem understanding process by focusing on the recon-
struction of figures. Indeed, this phase becomes a problem posing activity where
students begin reflecting on how, what order, and properties are important to draw
the figure. In this case, asking about how to inscribe an equilateral triangle becomes
important to think of the use of different concepts and strategies to reconstruct the
figure given in the problem.

4.4.2 Investigations Tasks

A problem statement is conceived of as a departure point for students to look for
mathematical relations and to extend the task. That is, the learners’ goal while inter-
acting with a mathematical task is not only to find its solution; but it is also important
to look for ways in which the initial task can be extended or connected with other
problems. How can a routine or a textbook task be transformed into an investigation
task?Todelve into this question, an adjusted version of a problem that appears inCon-



76 M. Santos-Trigo

Fig. 4.8 Folding a square
sheet

nected Geometry (2000, p. 76) is discussed in terms of identifying problem solving
episodes in which the systematic and coordinated use of digital technologies offers
affordances for learners engage learners in mathematical experiences. Santos-Trigo
and Reyes-Martínez (2018) present what prospective high school teachers exhibited
during the problem solving episodes that involved working on this investigation task.
A complete analysis of the implementation of this task appears in Reyes-Martínez
(2016).

The initial task. Draw a square ABCD and choose an interior point G. Fold each
vertex or corner into make it coincide with point G. Figure 4.8 shows the position
of point G, the folding lines (creases) and a polygonal region that appear when all
four vertices coincides with point G. What happens to the number of sides of the
polygonal region when point P moves inside the square?

(a) Adynamic representation. At the understanding andmaking sense stage of the
statement, it is always important to ask about properties, relations and ways to
represent objects involved in the task (Schoenfeld, 1992; Santos-Trigo, 2007).
What mathematical concepts are important to represent the folding line (seg-
ment)? Is there any type of symmetry involved in the folding process? What
concepts can be used to draw the figure? Is it possible to construct a dynamic
model of the task? These questions might lead the students to identify that
the creases (folding lines) are the perpendicular bisectors of segments that join
the interior point (G) with each square vertex. Indeed, with the use of a slider
(Fig. 4.9), it is possible to identify steps involved in moving each vertex to point
G and to explore what type of polygonal region is formed for different positions
of point G. Likewise, this dynamic representation requires that the problem
solver thinks of the task in terms of mathematical concepts and properties that
can be expressed or represented through the tool’ affordances.

(b) A robust model. Looking at the intersection of two perpendicular bisectors LO
and QN (Fig. 4.10) provides important information to construct a robust model
of the problem. Thus, when segment UI is longer than half of the side of the
square, then the intersection point I is outside of the square and the sides of the
polygonal region would be ON and PQ respectively. This information leads to
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Fig. 4.9 An animated
representation of the task
that shows the creases
movement when each vertex
approaches to point P

Fig. 4.10 Identifying
conditions to construct a
robust model of the task

relate the position of point G and the number of sides of the formed polygonal
regions (Fig. 4.10).

The construction of a robust model of the problem means that point G can freely
be moved inside of square ABCE and for any position of point G there will always
be a be well-defined polygonal region. Figure 4.11 shows that when G is located
outside the “petal region” (the intersection of semicircles with center at midpoint of
each side of the square and radius half of the length of the side) then the polygonal
region will have five sides.

(c) A characterization of the polygonal regions. The exploration of the robust
model of the task provides important information and clues to visualize and
relate the position of point G to the number of sides of the generated polygonal
region. With the use GeoGebra, it is possible to reveal, through coloring, what
polygonal regions share the same numbers of sides. Leung (2008) call spectral
dragging to a heuristic that allows to trace and assign colors to properties of
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Fig. 4.11 The construction
of the robust polygonal
region and identifying
regions where the polygonal
regions hold specific
properties

Fig. 4.12 A relationship
between the position of point
G and the number of sides of
the generated polygonal
region

involved objects. In this case, the colored region identifies the family of polygons
that shares the same number of sides. Figure 4.12 shows that when point G lies
on the red part then the polygonal family that appear on that region will have six
sides and when point G lies on the green part then the polygonal family on that
region will have five sides. Likewise, when point G coincides with the center of
the square polygon becomes a square.
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Fig. 4.13 aExploring the area variation of the polygonal regionwhen pointGmoves along diagonal
AC. b Exploring the area variation of the polygonal region when point G moves on a semicircle AB

In addition, the robust model of the task provides information regarding the
area variation of the family of polygons generated for different position of point
G. Figure 4.13a, b show that when point G is moved along diagonal AC or the semi-
circle AOB the maximum area is reached when point G coincides with the center of
the square in which the region becomes a square.

(d) Extension and generalization. Can the method used to construct the robust
model be extended to explorewhat happens to the polygonal regionwhen the ini-
tial square becomes others regular polygons? Figure 4.14 shows polygons with
different number of sides and the corresponding generated polygonal regions.
Based on the exploration for regular polygons with different number of sides,
some conjectures emerge:

1. When the position of the interior point coincideswith the center of polygon, then
the generated polygonal region is a regular polygon that has the same number
of sides as the initial regular polygon.

2. When the number of sides of the initial regular polygon increases (Fig. 4.14
shows a polygon with 200 sides), then the intersection of the corresponding
perpendicular bisectors (red points) seems to form and ellipse and when point
G is outside of the circle the intersection points generate a hyperbola.

3. When the number of side of the regular polygon tends to infinity, the polygon
tends to be a circle. Figure 4.15 shows a circle with center at point A, D is any
point on the circle, f is the perpendicular bisector of segment DG that intersects
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Fig. 4.14 For a polygonwith 200 sides, the intersection of the corresponding perpendicular bisector
seems to form an ellipse when point G is inside and a hyperbola when point G is outside of the
polygon

Fig. 4.15 For a polygon in
which its number of sides
tends to an infinite number of
sides the intersection of the
perpendicular bisector of
segment GD and AD
generates an ellipse

line AD at point E. Then the locus of point E when point D is moved along the
circle is an ellipse. This is true because segment ED and GE are congruent (E
is on the perpendicular bisector) the radius AD is constant. Then it holds that
d(A, E) + d(E, G) is always constant (definition of an ellipse).

Comment: What concepts are embedded in the task’ representation? How can
they be represented via the DGS affordances? These types of questions are impor-
tant to think of the problem in terms of the tool affordances. Thus, connecting the
folding lines (creases) with the perpendicular bisector was essential to construct the
dynamic model of the task. The exploration of this model provided clues and infor-
mation regarding the polygonal regions behavior. Can the robust model for the square
be extended to other regular polygons? This question leads to focus on how the inter-
section points of the corresponding perpendicular bisectors behaves and to find a
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Fig. 4.16 a A is a movable point and h changes as point A moves. b The locus of point Q describes
the behavior of the length of segment EC (height of triangle BCD)

serendipitous result: The intersection point of the perpendicular bisectors forms or
determines an ellipse when the interior point G lies in the interior of the polygon or
circle and a hyperbola when G is outside the circle.

4.4.3 A Variation Task

With the use of a dynamic geometry system, some problems that involve a phe-
nomenon variation (optimization calculus problems) can be modelled without con-
structing explicitly its algebraic model. That is, the tool’s affordances can help stu-
dents construct a graph representation of the variation phenomenon without express-
ing the involved algebraic model. For example, the task that focuses on examining a
family of inscribed rectangles and asks to identify which element of that family has
a maximum area can be represented and analyzed through a dynamic model.

In Fig. 4.16a, point A is a mobile point on the circle and a rectangle ABCD is
drawn. One way to inscribe the rectangle is to reflect point A with respect to the
x-axis to determine point B, then point B is reflected with respect the y-axis, etc.
At what position of point A does the rectangle ABCD reach the maximum area?
It is observed that when point A is moved along the circle, the diagonal BD has a
constant length (this is because its length is always the diameter of the circle). In
triangle BCD, h is its height and the maximum area of the family of triangles BCD
that is generated when point A is moved is obtained when h gets is maximum value.
Point Q has coordinates the x-coordinate of point A and as a y-coordinate the length
of h. Figure 4.16b shows the locus of point Q when point A moves along the circle.
This leads to conclude that the inscribed rectangle with maximum area is when the
rectangle becomes a square.

Similarly, Fig. 4.17 shows directly the area variation of the rectangle which is the
locus of pointM (whose x-coordinate is the length of side AD and as the y-coordinate
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Fig. 4.17 The locus of point
M that describes the area
variation of the family of
rectangles when point A is
moved on the circle

the area of rectangle ABCD) when point A is moved along the circle. In addition, the
locus of point E (one extreme of segment h) is another interesting curve that learners
might be interested in exploring its properties.

Comment: The study of Calculus problems, that involve analyzing variation
phenomena, emphasizes and focuses mainly on constructing and dealing with an
algebraicmodel.With the use of aDGS is possible to generate the locus that describes
the variation phenomenon without making explicit the algebraic model. The idea is
to relate the variation of one element of the dynamic model with the variation of
the phenomenon in study. In this process, issues regarding the domain to move
elements within the model and the analysis and interpretation of what is generated
(loci properties) become crucial to make sense of relationships and mathematical
results or solutions. This method of visualizing the behavior of an object attribute
relation is also shown in Figs. 4.2, 4.7a, b and 4.13a, b.
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Fig. 4.18 Constructing a
dynamic configuration to
pose questions

4.4.4 The Construction of a Dynamic Configuration
and Problem Posing Activities

In these tasks, the idea is to construct a dynamic configuration based on putting
together some simple mathematical objects such as points, lines, triangles, etc. Then,
the controlled movement of specific elements, within the configuration, becomes
susceptible of being explored and analyzed in terms of properties and mathematical
resources. As a result, some questions or conjectures regarding the behavior of some
objects attributes emerge and the goal is to look for arguments to support and validate
those conjectures or mathematical relations. Figure 4.18 shows a configuration that
includes a line AB, a point C on line AB and the perpendicular g to AB that passes
through C. Point D is any point on the perpendicular g and line h is the parallel to
line AB that passes through point D. Point P and Q are any points on the plane and
Q′ is the symmetric or reflected point of Q with respect to line h. Line Q′P intersects
lines h and AB at E and F respectively and line EQ intersect line AB at G. Based on
this initial configuration, some questions might be posed: What type of triangles are
formed when points P or Q are moved?

The goal is to explore properties and invariants of embedded objects when some
elements are moved within the model. For example, since lines h and f are parallel,
then angles GFQ′ and Q′EH are congruent, similarly, angles HEQ and EGF are
congruent and for symmetry properties angles Q′EH and HEQ are also congruent;
therefore, the family of triangles EFG is always isosceles. What is the locus of point
E when point D is moved along line g? Figure 4.19 shows that the locus seems to be
a hyperbola.

Another variant of this type of task involves using the tool to get information
regarding the objects’ attributes embedded in the task. For example, a dynamic rep-
resentation of a task that involves determining the area of the triangle with vertices
at the orthocentre, the circumcentre, and the centroid of a given triangle ABC leads
to conclude that these three points are collinear and therefore, such area is always
zero. Figure 4.20 shows a dynamic representation where point O, P, and Q are the
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Fig. 4.19 What is the locus
of point Q when point D is
moved along line g?

Fig. 4.20 The orthocentre,
circumcentre and centroid
are collinear

orthocentre, the centroid, and the circumcentre of triangle ABC. It is observed that
O, P and Q are collinear. To prove that points O, P, and Q are collinear it is sufficient
to show that d(O, P) + d(P, Q) � d(O, Q).

Comment: In this type of tasks there is no initial problem or question to solve,
the goal is to assemble a dynamic configuration in which the movement of some
of its elements will lead the student to observe invariance or relation among some
objects’ attributes. In this process, students have an opportunity to engage in problem
posing activities that involve the formulation of conjectures and to look for differ-
ent arguments to validate them. Similarly, with the tool’s affordances, learners can
identify patterns and properties of objects’ attributes and to explore the pertinence or
conditions to define and represent the objects. In this case, the collinearity property
of points O, P and Q leads to conclude there is a degenerated triangle or segment
with area zero.
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4.5 Reflection and Closing Remarks

In the last ten years, the use of technologies has been transforming not only how
people communicate and interact in both their daily life and professional environ-
ments; but individuals also rely on tools and digital developments to access and use
online information. Recently, there have been several publications (Gros et al., 2016;
Hokanson&Gibbons, 2014; Liljedahl et al., 2016; Singer, Ellerton,&Cai, 2015) that
address the need and importance of analyzing what the use of technologies brings
to both the subject content learning and the structure and dynamics of learning sce-
narios. Walling (2014) presents and discusses an instructional design model called
ADDIE (Analyze, Design, Develop, Implement, and Evaluate) to incorporate tablets
(iPads) in learning environment. Throughout this chapter, it is argued that mathe-
matical tasks are the vehicle and a key ingredient to identify, discuss, and analyze
what representations, explorations and ways of reasoning emerge in approaches that
involve the systematic and coordinated use of digital technologies.

Grouping mathematical tasks in terms of identifying questions and strategies
that problem solvers can explore during their interaction with the tasks could help
teachers focus on ways to rely on technology affordances to foster mathematical
thinking. In the first group, a question (how can we inscribe an equilateral triangle in
a given circle?) becomes important to think of concepts and relationships needed to
reconstruct the figure and explore and analyze different solutions. How can I draw the
figure? and in which order should the elements or involved objects be drawn? These
generic questions are important to identify concepts representation and relations to
reconstruct the figure. In addition, the process of reconstructing a figure might lead
the problem solver to engage in problem posing activities that include looking for
different ways to draw the figure.

The secondgroup (investigation tasks) refers to theprocess of transforming routine
or textbook tasks in a series of activities that can foster students’ problem solving
experiences. To this end, the initial analysis of the task involves identifying key
concepts that can be represented dynamically. In this process, it is possible to analyze
how embedded objects in the dynamic model behave and use this information to
construct a robust model. The robustness of the model implies analyzing the domain
of movable points to always generate a consistent representation. For instance, the
animatedmodel (Fig. 4.9) was adjusted to leave out non-convex polygons (Fig. 4.21).
The robust model is examined to detect patterns or invariants associated with the
objects’ attributes behaviors. Then, it is important to discuss the extent to which
the construction of a robust model can be applied to explore what happens to the
generated polygonal regions that are formedwhen considering other regular polygons
(pentagon, hexagon, etc.).

The third group focuses on ways to represent and explore tasks that involve ana-
lyzing variation phenomena. The tool’ affordances offer a possibility of generating
a graphic representation of the variation phenomenon parameters without making
explicit an algebraic model. In general terms, the main idea is to construct a point
that represents a relationship between two parameters, one that describes the position
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Fig. 4.21 Implementing
conditions to always
generate a concave polygon

of movable point (independent variable) and other that represents the variation of the
attribute associated with the variation phenomenon. For example, pointM (Fig. 4.17)
represent a relationship between the length of side AD (x-coordinate) and the area
of rectangle ABCD (y-coordinate). Thus, using the locus command is possible to
generate the graphic variation of the phenomenon (area in this case) that can be
analyzed to explore increasing/decreasing intervals, optimization points, and other
locus’ properties. This approach is important for students to focus on interpreting
involved concepts and later understand meaning and properties of the corresponding
algebraic model.

The fourth group emphasizes the importance of using GeoGebra’s affordances in
problem posing activities. The goal is to rely on simple mathematical objects such as
points, segments, perpendicular bisectors, circles, tangents, triangles, rectangles, etc.
to construct a dynamic configuration and to move some objects within the configura-
tion to observe and analyze the mathematical behaviors of attributes and properties
associated with those objects. What is invariant? What does it change? Is there any
pattern or does the area of a certain family of polygon reaches a maximum value?
etc. are questions that might lead the problem solver to identification of conjectures
and look for ways to support or validate them.

In dealing with the tasks, the use of technology provides affordances for stu-
dents to pay attention to activities that includes reconstructing and examining figures
associated with problem statements, the construction of dynamic models of tasks,
the formulation of conjectures, the quantification of objects or parameters behav-
iors, the search for mathematical arguments and the communication of results. In
this context, learners have an opportunity to expand or enhance not only important
problem solving heuristics (that include the construction of dynamic models, finding
and examining loci of points or objects, using slicers, quantification of parameters,
exploring simpler cases, or assuming the problem as solved, etc.) but also to construct
and incorporate ways of reasoning associated with the use of the tool.

Finally, communication technologies provide affordances to extend mathemati-
cal discussions beyond formal settings (Santos-Trigo, Reyes-Martínez, & Aguilar
Magallón, 2016). In this context, learners can focus their attention to how the use
of GeoGebra expand and introduce new ways to represent, explore and find math-
ematical relations. Reyes-Martínez (2016) uses a digital wall in which students can
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share and exhibit their ideas with peers or experts and each participant, as a part
of the group or learning community, can react, analyze, critique or extend other’s
ideas. As a result, students’ initial ideas and contributions are constantly refined and
they eventually recognize that learningmathematics and developing problem solving
competencies is a constant process that involves both individual and group partici-
pation. In using technologies, an important goal is that learners rely transparently on
technology affordances to work on representing and exploring mathematical tasks
and in discussing with peers and others their mathematical ideas and problem solving
approaches. As Weiser (1991, p. 94) points out “[t]he most profound technologies
are those that disappear. They weave themselves into the fabric of everyday life until
they are indistinguishable from it”.
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Chapter 5
The Spreadsheet Affordances in Solving
Complex Word Problems

Nélia Amado, Susana Carreira, and Sandra Nobre

5.1 Introduction

Solving word problems has long been considered a very important context for the
use and development of students’ algebra knowledge, from elementary to higher
education. Problem solving has also been advocated as a rich learning context for
engaging students in the learning of algebraic methods as well as in promoting alge-
braic reasoning (Blanton & Kaput, 2005; Kaput, 1999; NCTM, 2000; Yerushalmy,
2006). However, research has revealed in several studies (e.g. Stacey & MacGregor,
2000) that many students, while knowing the formal methods of algebra avoid their
use in solving word problems and choose numerical methods instead, that is, they
take on arithmetic reasoning rather than algebraic reasoning. The value ascribed to
the arithmetic methods that students use to find the solutions to problems that could
be solved through the formulation of an equation or set of equations is still a subject
of contention among educators and researchers. For some, the so-called informal
(or non-algebraic) methods, as opposed to the formal algebraic methods (symbol
use and techniques) that students generate for solving word problems, becomes a
barrier to the learning of powerful methods for solving a large class of problems
(Stacey & MacGregor, 2000). Others have claimed that algebraic thinking should
not be reduced to the use of symbols and formal methods, suggesting that informal
methods are relevant formaking sense of problems and represent ameans of reaching
conceptual understanding of the algebraic methods (Johanning, 2004).
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In our research, we are privileging problem solving as an activity that can foster
and anticipate the learning of algebraic methods by emphasizing its meaning and
applicability. In addition, we want to know how the spreadsheet affordances can
help students in dealing with complex word problems as a springboard for their
learning of formal algebra methods. Our focus is on students’ understanding of the
algebraic formalmethods supported by the use of the spreadsheet and its specific form
of operation, which many authors consider useful in making the transition between
arithmetic and algebraic language (e.g. Friedlander, 1998; Haspekian, 2005; Kieran
& Yerushalmy, 2004; Nobre, 2016; Wilson, 2007). For example, the process of
developing relational thinking through the construction of columns that dependent
on other columnsmay encourage the understanding of algebraic conditions; likewise,
solving an equation has its numerical counterpart in the action of inspecting the values
of a table obtained from formulas that represent algebraic conditions. The same holds
for the solution of simultaneous equations, except for the number of formulas and
the type of functional relations that obviously get more complex.

In the existing research (e.g. Ainley, Bills, &Wilson, 2004; Calder, 2010; Dettori,
Garuti, & Lemut, 2001; Rojano, 2002), the spreadsheet has shown to be an appro-
priate instrument to establish functional relations as well as a vehicle to promote
pattern recognition and rule generalization, which may lead students to a deeper
understanding of the algebraic language and methods. In our study, we intend to
know more about the ways in which the affordances of the spreadsheet are signifi-
cant to the success in solving problems entailing many algebraic conditions. One of
the reasons for our interest is the perception that the range of spreadsheet affordances
that are relevant to develop a sound understanding of the fundamentals of solving
systems of simultaneous equations remains to be investigated. For example, we may
note that solving systems of linear equations can be treated as a way of obtaining
the coordinates of a point in which two or more functions intersect. Hence, it results
the importance of bringing the spreadsheet to the dialogue between equations and
functions as both are key concepts in school algebra.

The problems here labeled as ‘complex word problems’ are situations that require
a clear identification of the multiple conditions and variables involved and of the
ways the variables depend on each other; so being, these are not straightforward
start-unknown problems.

We have collected data on how such problems were successfully solved by means
of the spreadsheet by students who had not yet learned the algebraic methods of solv-
ing simultaneous linear equations. Taking into account the focus of our study, we
set the following research question: in what ways are the affordances of the spread-
sheet, particularly its representational possibilities, significant in fostering students’
models of the complex structure of the problem situation?
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5.2 Theoretical Background

5.2.1 Informal Versus Formal Methods in Problem Solving

Some word problems may be categorized as algebraic word problems, in the sense
that they imply finding one or more unknowns and can be solved through its transla-
tion into algebraic equations and subsequent resolution by means of algebraic meth-
ods. If the student has already learned specific formal algebraic methods (such as
solving equations and inequalities, or solving systems of equations, etc.) then much
of the algebraic word problem is (immediately) solved and therefore it becomes a
routine task. However, the research has shown that the success in solving algebraic
word problems does not rely exclusively on themastery of formalmethods, especially
if such methods were learned without conceptual understanding.

The formal methods of algebra are undoubtedly powerful and effective in solving
various problems, leading students directly to the solution and freeing them from
pursuing alternative strategies. However, moving from the informal to the formal
methods is not easy for most students. If little time is spent in the use of informal
strategies and if procedures are rapidly imposed and routinely performed, then stu-
dents are more likely to make mistakes, which they will not be able to identify and/or
correct (Wagner, 1983). In addition, students who typically perform well in formal
procedures often reveal a limited understanding of their meaning and are unable to
deal with problem situations other than the standard ones.

Kieran (2006), alongside the results of other researchers, acknowledges that stu-
dents often prefer to resort to arithmetic methods and reveal difficulty in using alge-
braic equations when solving algebraic word problems. Although, at first glance,
arithmetical thinking may seem to be an obstacle to the development of algebraic
thinking, the fact is that it can also be taken as a valuable source of that development.
In this sense, having problem solving as a learning context to engage students in the
learning of algebraic methods appears as a legitimate option, mainly because word
problems usually allow a variety of approaches and strategies, ranging from informal
to algebraic.

Koedinger, Alibali, andNathan (2008) have found that in an initial stage of algebra
learning students perform better in solving word problems than in solving equations.
This is because they can use their reasoning with quantities and numbers, drawing
on their knowledge of arithmetic without the obligation to manipulate symbolic lan-
guage. That form of reasoning, which is more independent of the use of algebraic
symbolism, can be seen as an opportunity for the emergence of multiple represen-
tations to work on the problem structure and can contribute to a better subsequent
learning of algebraic methods.

Hiebert and Carpenter (1992) also argue that the use of symbolic representations
should not be forced when students are at an early stage of solving a certain type
of algebraic word problems. From their point of view, the work with symbols and
algebraic procedures may naturally follow from experience in solving problems.
Otherwise there is the risk that students develop an incomplete understanding of
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algebra and algebraic methods. Although there are students who are more proficient
with symbolic representations and procedural algebra and who are able to apply
symbols and rules in solving a problem, the learning of any mathematical procedure
must be supported by conceptual knowledge including an understanding of what
symbols and rules mean.

5.2.2 Problem Solving in the Development of Algebraic
Thinking

Algebra involves a specific formof thinking that goes beyond the simplemanipulation
of symbols. Thus, workingwith symbolsmust be enriched so that the study of algebra
is not reduced to rote learning. Problem solving is a context for facilitating the
assigning of meaning to symbols and to the work with symbols. Several researchers
have highlighted the role of problem solving in the development of algebraic thinking
(e.g. Bell, 1996; Mason, 2008). Among other advantages, it has been suggested: the
possibility of leading the students to mentally work on one or more as-yet-unknown
quantities and to focus on the relations between the mathematical objects rather than
on the objects themselves (Windsor, 2010).

Wemay consider that algebraic thinking is a developing form of reasoning, which
instead of requiring a cutwith arithmetic thinking, entails a progress through different
stages. In a first phase, students learn to describe relations in natural language and
begin to deal with generalization. Later, they will be encouraged to use diagrams,
abbreviations, and symbolic notations to express their reasoning. Finally, they will
begin to use algebraic expressions, such as equations, together with tables of values,
graphs, and other formal representations.

Non-routine problems that present real challenges to the students (rather than a
task for the application of a previously learned method) can be seen as opportunities
for the construction of new algebraic knowledge. The problem solving activity allows
the emergence of several strategies that are born from the knowledge they already
havebut itmay also be anopportunity to givemeaning to the subsequent formalization
of the initial processes (Rojano, 1996, Slavitt, 1999). As suggested by Kieran (1996)
and others, algebraic thinking has its roots in the establishing of relations between
quantities and it progresses as different tools, and not only the symbols, are introduced
as a form of structuring a discourse that is inherent to algebra. As such, thinking
algebraically involves knowing various forms of representation, namely symbolic.
But, it also implies flexibility in the transition between modes of representation, as
well as the ability to operate with symbols, in a given context and when appropriate
(Schoenfeld, 2008). From focusing on concrete objects, to the relations between them
and to the ways of representing them, algebraic thinking evolves towards reasoning
about those relations in a general and abstract way.

Recognizing the givens, the unknowns, and the conditions that make the structure
of a problem and representing them appropriately is a key step in using algebra
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for solving problems. As suggested by Dettori et al. (2001), the spreadsheet can be
helpful for algebra learning in that it can support students’ understanding of what
means to solve an equation or a system of equations, even before the formal learning
of those methods.

5.2.3 The Spreadsheet in Algebraic Problem Solving

Using the spreadsheet allows students to explore and obtain a solution to an algebraic
word problem in an informal way. This environment emphasizes the need to identify
all the relevant variables and, in addition, stimulates the search for functional relations
between variables. Translating the conditions of the problem into variable-columns
under appropriate labels enables a tabular representation, which gives a suitable and
clear image of the variables and functional relations involved (Ainley et al., 2004;
Calder, 2010; Dettori et al., 2001).

Solving problems with the spreadsheet favors the establishment of a connection
between the language of formulas, which is distinctive of this digital environment,
and the symbolic algebraic languagewith pencil and paper. The use of the spreadsheet
is also a means to bridge the gap between informal algebraic thinking and the ability
to use algebraic notation to express such thinking, as highlighted in the study by
Carreira, Jones, Amado, Jacinto, and Nobre (2016).

As emphasized by several authors (e.g. Ainley et al., 2004), the spreadsheet is a
powerful tool in mathematical problem solving and particularly in algebraic problem
solving. This digital tool allows using and combining different types of representa-
tions, such as words, numbers and formulas, and the creation of tables and graphs,
besides the insertion of objects produced with other tools, namely an image editor.
One feature that distinguishes the spreadsheet from other digital environments is the
fact that it supports the connection between different registers (numeric, symbolic
and graphical).

Whenhandling a spreadsheet, students have the opportunity to discover and under-
stand the meaning of a cell, a column, and a formula, what it means to drag down
the handle of a cell with a formula, as they automatically receive numerical feedback
from the computer. According to Haspekian (2005), “communicating with a spread-
sheet requires that pupils use an interactive algebra-like language, which focuses
their attention on a rigorous syntax. This is why it is said that spreadsheets help to
translate a problem by means of an algebraic code” (p. 113).

We claim that in the case of algebraic word problems the spreadsheet can help
students find and express relationships between the givens and the unknowns in a
given problem. In addition, it provides forms of control based on instantaneous and
constant numerical feedback, which encourages exploration and prediction (Carreira
et al., 2016; Nobre, 2016).

In solving and expressing the solution of a mathematical problem, the ability to
record and organize information, the clarity in the expression of ideas and the produc-
tion of solid explanations are important abilities. The use of different representations
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is fundamental in the expression of mathematical thinking within problem solving.
However, any representation may be transparent or opaque. This distinction, made
some time ago by Lesh, Behr, and Post (1987), means that a representation may be
more or less obviously attached to the idea that it is meant to stand for, as it tends to
underline a few aspects of the idea while fading others. Zazkis and Liljedahl (2004)
further developed the transparency/opacity of the representations in suggesting that
there is a certain degree of opacity in any mathematical representation. In the case
of the representational register of the spreadsheet, the apparent opacity tends to dis-
sipate as students gain familiarity with the specific syntax of the tool and greater
flexibility in making a connection between their algebraic thinking and their actions
with the spreadsheet.

Moreno-Armella, Hegedus and Kaput (2008) have put forward the idea of co-
action to explain and describe the changes that the use of digital technology brings
into students’ mathematical activity. The idea of co-action is related to the fact that
students are at the same time guiding and being guided by the dynamic and interac-
tive digital environments. In solving a problem with the spreadsheet, the co-action
between the student and the tool begins with the need for structuring the conditions
of the problem in columns or cells that are assigned particular roles. This procedure
allows connecting a set of numbers (in a column, for example) with a single label (or
column heading), which is consistent with an idea of variable, and that action pushes
students’ reflection on the conditions involved in complex algebraic word problems
and helps them to understand the mathematical meaning of variable and function
(Wilson, 2007). The introduction of numerical data in different cells, which may
include the use of formulas, becomes part of establishing the relationships described
in a problem situation. In addition, students can analyze the immediate numerical
feedback provided by the spreadsheet and redirect their actions in a permanent flow
of interactions with the computer. This work, based on the identification and imple-
mentation of functional relations, induces an algebraic organization in the way of
addressing a problem that apparently has a numerical form (Haspekian, 2005). Stu-
dents are then able to inspect their numerical tables in search for the solution to the
given problem.

The affordances of a digital medium are related to the opportunities that the
environment offers to the learning process (Gibson, 1986). We might consider them
as perceived opportunities in line with the intentions of the user. This indicates a
feature of complementarity between the learner and the environment. Therefore, in
the activity of problem solving with the spreadsheet, a very important aspect is the
knowledge that the student has of the tool.

Previous studies about the use of the spreadsheet in the learning of mathematics
(e.g. Ainley et al., 2004; Calder, 2010; Haspekian, 2005) show that this digital tool
stimulates students’ mathematical reasoning. In dealing with a word problem, the
students can make various experiences in a short time. This will enable a stronger
focus on the underlying mathematical ideas rather than on the routine mathematical
calculations. One of the advantages offered by the spreadsheet is the possibility, in
a quick way and whenever necessary, of visualizing the representation of a relation
between cells. This supports students in the recognition, understanding, and expres-
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sion of algebraic relationships they have formulated through the spreadsheet syntax.
Students use spreadsheet-specific calculations in building general rules and often
check their general rule with reference to numbers. In this way, links between alge-
braic symbols and general expressions are established. This idea is corroborated by
thework of Abramovich (1998), which shows that the use of the spreadsheet supports
the transition from computations to algebraic formal language.

The immediate feedback that students receive from the tool gives them freedom
to explore different trials and encourages them to make conjectures. This permanent
reflection about the results obtained leads students into new conjectures and new
questions. We argue that such distinctive processes carried out by the students with
the spreadsheet help them to refine their strategies, broaden their knowledge about
the variables and about the relationships involved, therefore influencing the nature
of their conceptual understanding of the problem structure.

In this chapter, our aim is to look at how the affordances of the spreadsheet allow
the students to use different conceptual models that correspond to several ways of
formulating and solving systems of simultaneous equations.

5.3 Context and Method

In the following, we describe and analyze how different middle school students
express their mathematical thinkingwhen solving a complex algebraic word problem
(Fig. 5.1)with the use of the spreadsheet.Wewill focus on their digital representations
in solving the problem by considering their spreadsheet-based models in relation to
their algebraic thinking and to their problem-driven algebraic models.

The empirical context was a class of 8th grade students (13–14 years old), in a
Portuguese middle-school located in the southern region of the country where the
economic activity is strongly rooted in the primary sector (agriculture and fisheries).
The class had a total of twenty-four students, 10 boys and 14 girls, two of whom
were migrant children from Ukraine. During the school year, problem solving was
implemented as the context for mathematical activity, aiming for the development of

The restaurant Sombrero Style was opened yesterday and I went there for dinner 
with three friends. The maximum capacity of customers – said the manager – is 
100 people. Luckily, I had booked a table for four as when I got there several ta-
bles were already full with four people and one table with three people. While I 
was waiting for the waiter to take us to the table, I counted the 
women and men who were in the restaurant and the number of 
women was exactly twice the number of men. 
What could be the maximum number of people who were al-
ready at the restaurant when I came in?

Fig. 5.1 The opening of the Restaurant “Sombrero Style”



98 N. Amado et al.

algebraic thinking and the learning of formal algebraic methods. In each problem-
solving lesson, the students were given the freedom to choose whether theywanted to
work in groups or individually as part of the established didactical contract. Most of
the students worked in pairs and only very few worked individually. In the class, the
teacher regularly engaged in dialog with the students and asked questions whenever
necessary to monitor, support or challenge students’ reasoning and approaches. The
students had previously gained some experience in solving word problems with a
spreadsheet, in their mathematics classes, from which they acquired the basics of
the spreadsheet functioning. Many of the problems given to the students were cho-
sen among the problems proposed in the web-based competition SUB14 promoted
by the University of Algarve. It is a mathematical problem solving competition of
inclusive nature, addressing 7th and 8th graders and running through the Internet,
which launches a new mathematical problem every two weeks at the competition
website. Some of those problems were solved by the students of the class during
class time and after that each of them had the choice of sending their answers to the
competition through e-mail, if they wished to.

In the classroom, the detailed recording of the students’ processes in the computer
was achieved with the use of the software Camtasia Studio. This software allows
the simultaneous recording of the students’ dialogues and of the computer screen,
therefore capturing all the actions performed on the computer.

All the solutions developed by the students were examined on the basis of (i) the
organization of the tables created in the spreadsheet, and (ii) the choice of independent
variables and consequent decision on dependent variables. This screening of the
solutions led to the identification of three different types. They are discernible by the
kind of strategy adopted in organizing the spreadsheet and the corresponding way of
modelling the simultaneous conditions that were given in the problem.

The analysis of the data was developed in two phases. In the first phase, themodels
and the representations developed by the students in the spreadsheet to obtain the
solutionwere identified.At this stage twomain approaches could be distinguished: (i)
one in which the students constructed two independent tables (each one translating a
set of conditions of the given problem) and which were later compared for the search
of the intersection point (value that was a simultaneous solution of the conditions
translated in each table); (ii) the other inwhich the students constructed only one table
where all the conditions mentioned in the problem were contemplated and where the
search for the simultaneous solution was made in a row of that table. In a second
phase, students’models were analyzed, considering, in particular, their choices for an
independent variable, which made the remaining unknowns depending on that one,
through formulas that represented given conditions.With this analysis, itwas possible
to create schematicmodels of their interpretations of the given situation. Finally, those
models were algebraically expressed as systems of simultaneous equations, with the
aim of detecting the different alternatives involved in the students’ approaches from
the point of view of the use of formal algebraic methods.

Here we will discuss three specific solutions that are, to a certain extent, repre-
sentative of the variety of solutions that have emerged in the classroom.
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Fig. 5.2 An algebraic formulation with a system of equations

5.4 Results

As mentioned before, the students were not yet aware of the formal methods of solv-
ing systems of simultaneous equations. Besides, in middle school, students do not
work with more than two equations and two unknowns. As such, from a symbolic
algebra perspective, the given problem was beyond the students’ knowledge of for-
mal algebraic methods in terms of solving a system of three equations with three
unknowns, as the following (Fig. 5.2).

Without the formal algebra method, students began to use the spreadsheet as a
means for structuring the problem conditions in successive interconnected columns.
They went through the translation, in numbers or formulas, of the relations between
variables, thus obtaining numerical tables. Finally, the students controlled the data
produced by searching the solution that satisfied the conditions imposed as those
were displayed in the spreadsheet. To a certain extent, the representations provided
by the spreadsheet were also a means of verifying the solution to the problem.

5.4.1 Solution 1

A pair of students, Maria and Jessica, started by addressing the condition of the
problem on the number of people seated at tables of 4 (Fig. 5.3). In their model, the
number of tables of 4 people is treated as a variable that changes within the set of
whole numbers (represented as variable-column). Moreover, in the students’ model
of the situation it plays the role of an independent variable, in the sense that other
variables are dependent on this one, such as the number of people sitting at the tables
(therefore the multiples of four). That second set of values was generated in a second
column using the Autofill to produce a linear sequence increasing by 4. Then Jessica
entered a constant-valued column filled with the constant 3, which referred to the
three people that were sat at a particular table of the restaurant. This third column
mostly plays the role of a numerical parameter in the sense that it is a fixed value
regardless of the number of tables in the restaurant or the number of people sitting
in groups of four. Finally, the students created a fourth column to compute the total
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Fig. 5.3 Maria and Jessica’s spreadsheet model
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Fig. 5.4 First part of the model—People organized by tables

number of people sitting at the restaurant by adding the variable “people in groups
of 4” and the parameter “3 more persons”.

The following diagram (Fig. 5.4) illustrates the reasoning undertaken by the stu-
dents in constructing the first table on the spreadsheet (the total of people is repre-
sented by the multiples of 4 plus 3).

Then, the students represented, in a separate spreadsheet table, the condition for
the ratio of men and women in the total of clients, by creating new variable-columns
(number of men, women, and total of individuals). They realized that the number
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Fig. 5.5 Second part of the model—People grouped by gender
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Fig. 5.6 The corresponding algebraic model (Maria and Jessica’s model)

of women had to be an even number, as it was twice the number of men in the
restaurant. This led them to the idea of creating a variable-column filled with the
consecutive even numbers. A column for computing the number of men was then
obtained by dividing the previous one by 2, which yielded the consecutive whole
numbers. Finally, by adding the values of the two columns, a new column generated
the total number of clients in the restaurant. The resulting total is obviously given by
the multiples of 3. This line of reasoning is illustrated by the diagram of Fig. 5.5.

With this approach, the students developed a model based on the separation of
two sets of conditions, each of them generating an output of values that would have
to match at some point. The shaded rows (Fig. 5.5) show that the students carried out
the inspection of the solution by comparing the columns of totals in the two separate
tables (their answer is 87 people in the restaurant, not counting the remaining 4
people that booked a table). The solution of the problem, as their conceptual model
highlights, is therefore the sum of a multiple of 12 with 3.

We may notice an interesting relationship between Maria and Jessica’s model
on the spreadsheet and the corresponding symbolic model (Fig. 5.6). The students
initially separated the conditions in two unconnected tables (two separate equations)
but later, by inspecting the results in the two columns of totals, they made the neces-
sary connection (two simultaneous equations). As a result of the way they expressed
the conditions on the spreadsheet, these students were also able to obtain additional
information about the situation of the problem, namely the number of women and
men already in the restaurant.
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Fig. 5.7 Excerpt of Carolina’s solution in the spreadsheet

5.4.2 Solution 2

Carolina is another student who also organized the conditions by separating them in
two distinct tables, as shown in Fig. 5.7.

In her resolution, the student used simultaneous increasing and descending
sequences. She starts by separating the customers by gender. In a column, she gen-
erates a sequence of whole numbers accounting for the total number of people in the
restaurant. By starting with 98, she takes into account some of the problem givens
although she does not consider the fact that one table for four persons would be still
available. In the next column, she calculates the division of the totals by 3, in order
to get one-third of the totals (the number of men). In another column, she calcu-
lates twice the previous results (the number of women). The diagram of Fig. 5.8 can
illustrate this first part of the model used by Carolina.

In the last three columns, she makes the distribution of customers by tables of 3
and of 4. She used increasing sequences where the successivemultiples of 4 represent
the varying number of people in tables of 4 and since there was only one table with
3 people, the number 3 is repeated along another column. Then she adds the values
in the previous two columns, which yields a column for the total of people. This



5 The Spreadsheet Affordances in Solving Complex … 103

P 
P P 

P 
P 

P P 

P 
…

W 

W 

W 

W 

W 

W 

M 

M 

M 

… …

Fig. 5.8 First part of the Carolina’s model—People organized by gender
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Fig. 5.9 Translation into algebraic language of Carolina’s model on the spreadsheet

second part of Carolina’s model is similar to the first one used by Maria and Jessica
(Fig. 5.4).

To get the solution, Carolina compares the two columns with the totals and she
finds the same number appearing in both columns (the shaded rows), which gives
her the number of people in the restaurant.

In solving the problem, the student uses the idea of proportion to ‘separate’ the
customers by gender, as mentioned in her answer: “Since the number of women is
exactly twice the number of men, it can be said that the total of persons is represented
as 3-thirds, being one third of men, and two thirds of women”. She also uses the
notion of multiples of four to define the number of people sitting at tables of four
and a column with the number 3 to act as a constant standing for the three people
seating in one table.

It is apparent that using the spreadsheet pushed her to identify all the relevant
variables and constants and encouraged the search for dependency relations. In addi-
tion, it led to a strategy that allowed addressing the two conditions involved in the
problem separately, and later making their connection by finding equal outputs in
the two independent tables created. Her reasoning may be translated into algebraic
symbolic language through the system of equations presented in Fig. 5.9.
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Fig. 5.10 Ana’s spreadsheet model

5.4.3 Solution 3

The approach of another student in the class reveals a similar start but it progressed
in a way that prevented the separation of the problem conditions in two tables. In
fact, Ana started by representing the relationship between the number of men and
the number of women and then obtained a column for the total of people (Fig. 5.10).
The student soon concluded that the totals in that column were multiples of 3. Then
she subtracted 3 to the total of persons to account for the fact that only one table had
3 individuals, and then divided the result by 4. Her idea was to have the remaining
people arranged in groups of 4 due to the fact that they were all at tables of 4.
Therefore, in a new cell, Ana entered the title “Number of tables of 4” and bellow
she created a formula that made the division by four of the total number of people
and then dragged the fill handle. This way, she was aiming to find the number of
tables of 4 that were taken in the restaurant. To obtain the solution, she just had to
inspect the values in that column in search for the whole numbers and for the highest
number lower than 100. In her answer to the problem, Ana wrote: “The maximum
number must be 87 before the 4 friends came in; if I had considered the number 99
and added the 4 friends I would get 103 as the total, but the capacity of the restaurant
is 100 people, which means that it is not the solution”.

We may also describe Ana’s conceptual model schematically to better see the
similarities and differences from the previous cases (Fig. 5.11). Although hers is
also a model that involved two steps, it did not require two separate tables and
instead she managed to combine the various problem conditions in a single table. In
fact, Ana expressed the conditions on the spreadsheet by chaining them in successive
compositions.
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Fig. 5.11 People grouped by gender rearranged in groups of four
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Fig. 5.12 Translation into algebraic language of Ana’s model on the spreadsheet

Next, we propose a representation of Ana’s spreadsheet-based model with the
corresponding algebraic language (Fig. 5.12). The symbolic model shows that in
this case the number of persons at the restaurant (minus 3) has to be a multiple of 3;
moreover, the test to reach the solution means finding out the multiples of 3 that are
also divisible by 4. Therefore, the solution belongs to the set of multiples of 12.

5.5 Discussion and Conclusion

Although the students had not yet learned the algebraic representations, namely a sys-
tem of equations with several unknowns, the spreadsheet allowed them to undertake
and explore other approaches, which reflected a variety of representations involving
formulas and tables and consequently a diversity of conceptual models of the given
problem.

The three solutions presented above indicate that the spreadsheet proved to be
useful to solve the problem and that the students recognized it as an appropriate tool
for solving this problem. They also took different approaches; some considered all
the conditions of the problem jointly represented, while others used a strategy of
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separating two sets of conditions and then comparing the numerical values to find a
common value to obtain the solution.

In general, the spreadsheet helped students dealing with a complex word alge-
braic problem that was beyond their mathematical knowledge of algebraic methods,
namely of solving systems of simultaneous equations. One important aspect emerg-
ing from the set of solutions was the fact that students showed a clear notion of the
solution as a value that would need to satisfy simultaneously a set of equations and
conditions. In this sense, we may consider that students gave meaning to the concept
of a solution of simultaneous equations, which is often a difficult idea in initial stages
of the learning of the algebraic method.

By means of sophisticated numerical approaches based on defining numerical
sequences that described functional relations, they were able to make use of variable-
columns, using the specific syntax of the spreadsheet, and create chained relations
between variables. We claim that those affordances of the spreadsheet were fun-
damental in structuring the students’ problem solving approaches and in providing
them a representational system to express the conditions given in the problem. This
conclusion resonates with other studies such as Ainley et al. (2004) and it provides
a clear indicator of how students interpreted the problems in light of their mathe-
matical knowledge and their knowledge of the tool. For example, decisions such as
the ways of defining variable-columns are intrinsically connected to the students’
model on how some variables depend on other variables and to their choice of inde-
pendent and dependent variables. Therefore, the different spreadsheet organizations
appearing in a particular problem are a consequence, among other things, of con-
ceptual choices and constitute a powerful mirror into students’ successful ways of
conceiving the structure of the problem situation. Such decisions can be seen as orig-
inating from the ongoing interaction between the subject and the tool, in a way that
makes it impossible to separate the two. Evidences of such interdependence are quite
clear in students’ problem-solving activity, particularly in their ways of reporting the
reasoning developed while working in the digital medium.

The work with the spreadsheet transforms the nature of students’ mathematical
representations to the extent that those become encapsulated in a medium with very
specific characteristics. The solution of the problem solved with the spreadsheet
arises from the student’s ongoing interaction with the tool; both the student and the
spreadsheet act and react to each other throughout the activity (Moreno-Armella &
Hegedus, 2009). This type of work has significant consequences for the expression
of students’ mathematical thinking, particularly of algebraic thinking, during their
problem solving-and-expressing (Carreira et al., 2016).

The three solutions here analyzed, in terms of their symbolic algebraic counterpart
(the systems of equations that they mirror) highlight that the individual’s interactions
with the spreadsheet can lead to solutions with distinct algebraic features. Algebraic
problems of some complex level seem to be especially useful for bringing out dif-
ferent conceptual models and simultaneously different forms of expression of these
models based on the spreadsheet.

We suggest, following the results by Calder (2010), that different solutions may
take place depending on the level of experience of the students with the spreadsheet,
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on their understandings of the ideas involved, and on their perceptions about the
ways to model the conditions of the problem with the digital tool. The participants
in this study took advantage of the spreadsheet in different ways, using different
mathematical concepts and simultaneously different affordances of the digital tool.

Hegedus (2013) has underlined the idea that technological affordances must
become mathematical affordances and argued that meaningful integration of tech-
nology in the learning environment should be developed through mathematization
of technological affordances. Thus, he pointed out a set of future design princi-
ples (executable representations, co-action, navigation,manipulation and interaction,
variance/invariance, mathematically meaningful shapes and attributes, magnetism,
pulse/vibration, construction and aggregation) that must deserve further attention in
the upcoming research and development efforts. The co-action, one of the character-
istics in the list, is one that we find clearly important to the study of solving algebraic
word problems with the use of a spreadsheet. Examples of co-action, as those pre-
sented in the solutions above, illustrate ways in which the spreadsheet affordances
offer routes to obtain the solution to a problem.

Based on the data collected, we may state that the idea of transforming unknowns
into variables and creating tables that translate functional relations is a mathematiza-
tion of specific affordances of the spreadsheet. One of them is the use of formulas to
create dependency relations between variable-columns. Another is the possibility of
decomposing the set of conditions of a given problem into several tables representing
pieces of the same problem. The comparison between those tables is one of the ways
to obtain the solution, by searching for the value that verifies all the subcomponents
simultaneously (subsystems of equations).

Finally, themanydifferent possibilities of translatingmathematical conditions into
relations between variable-columns suggest that the spreadsheet favors the produc-
tion of diverse conceptual models that are interesting and mathematically powerful.
Such diverse models, when represented by means of the spreadsheet syntax, provide
a rich image not only of the many ways of having a word problem translated into a
set of equations but also of the many ways in which the solution of the simultane-
ous equations may be algebraically obtained, depending on the transformations and
operations you perform in solving it.
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Part III
Inquiry and Problem Posing in

Mathematics Education



Chapter 6
Is an Inquiry-Based Approach Possible
at the Elementary School?

Magali Hersant and Christine Choquet

The value of problem solving to promote mathematical understanding and learning
is recognized equally by mathematicians, teachers’ trainers and teachers. However,
in spite of this agreement to associate mathematical activity with problem solving,
problem solving has hadmultiple and often contradictorymeanings through the years
(Schoenfeld, 1992, p. 337). This subject is regularly approached and questioned on
international colloquiums such as ICME-13.

Santos-Trigo recognizes that “research in problem solving has generated interest-
ing ideas and useful results to frame and discuss paths for students to develop math-
ematical knowledge and problem solving proficiency” (Santos-Trigo, 2013, p. 500).
But he also notices that “it is not clear how teachers implement and assess their stu-
dents’ development of problem solving competencies” (ibid., 2013, p. 500). In this
area, questions about problem posing especially emerge. As generation of new prob-
lems or reformulations of given problems (Silver, 1994) problem posing is epistemo-
logically relevant for teaching and learning mathematics. Indeed, mathematicians,
physicists and epistemologists like Hadamard, Einstein, Popper and Bachelard seem
to agree that posing an interesting problem is more important than solving it. Fol-
lowing Singer, Ellerton, and Cai (2013), we can link problem posing experiences to
“development of abilities, attitudes and creativity, and its interrelation with problem
solving and studies on when and how problem solving sessions should take place”
(Malaspina, 2016, p. 34). Likewise, it provides information about the ways to pose
new problems and about the need for teachers to develop abilities to handle complex
situations in problem solving contexts. So, problem posing seems to be an interesting
topic to both study teaching and learning mathematics.

Inquiry is at the heart of problem posing (Singer et al., 2013). In Europe, over the
last decade, the institutional willingness to promote Inquiry Based Learning (IBL) in
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mathematics revive interest on problem solving and posing to teach and learn math-
ematics at every level of education. But the conditions and constraints which might
favor, or on the contrary hinder, implementation of IBL in mathematics and learning
mathematics with IBL must still be specified. Dorier and Garcia (2013) considered
that teachers play a central role in an institutional system and that attention should
be paid to teachers’ training, especially for primary school. They also mentioned the
importance of the resources that should contained didactical comments.

In this context, we address the question of the possibilities of learning mathe-
matics based on an inquiry approach at French elementary school, as far as most of
elementary school teachers have a weak scientific background and therefore a weak
experience on posing problems. To this end, we propose to study twowell-contrasted
case studies using IBL for mathematics learning in ordinary teaching context and in
didactic engineering context and, within, describe and characterize some conditions
of possibilities of learning mathematics with inquiry at French elementary school.
Taking into account previous studies about inquiry-based learning in mathematics
and its implementation in the classroom, in the European context (Sect. 6.1), we
hypothesize that these conditions are both determined by the problem and by the
activity of the teacher as he supports students’ activity. To characterize the condi-
tions on the problem we introduce the notion of potential of inquiry. To identify
conditions attached to the teachers’ practices we rely on the analyze of the students’
activity with the leaning by problematization framework (Fabre & Orange, 1997).
This theoretical framework is strongly anchored in science epistemology (Popper,
1972; Bachelard, 1970) and in inquiry (Dewey, 1938; Fabre, 2005), aswewill explain
it (Sect. 6.2). Within this framework posing problem is as important as solving it and
problem posing is considered as a way to explore what conditions and possibilities
for problems or situations to engage students in problem posing activities. Indeed,
we can identify within this framework whether teachers’ in-class activity allowed
problem posing and solving for the students.

6.1 Inquiry-Based Learning: An Inquiry Processes That Is
Difficult to Implementation in Classroom

The promotion of a teaching of mathematics by IBL appears as a world move-
ment even if the epistemological outlines and the didactic stakes are to be specified.
Attempts to implement IBL inmathematics aremade and numerous research projects
concerning the inquiry in sciences and in mathematics have been carried out dur-
ing the last 20 years (Erh-Tsung, & Fou-Lai, 2013; Engeln, Euler, & Maaß, 2013;
O’Shea & Leavy, 2013). Our review of literature shows that the definition of IBL
is not stabilized in the field of the international didactics. However, IBL appears
strongly connected with inquiry as we will bring it out. Furthermore, this survey also
highlights difficulties to implement IBL in day-to-day teaching.
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6.1.1 IBL and Inquiry

IBL is anchored at the same time in the investigation and in the construction of
knowledge about reasoning in a critical way, in reference to the philosopher Dewey
(1859–1952) (Linn, Davis, & De Bell, 2004; Rocard et al., 2007). This inquiry pro-
gresses through the interactions between unknown elements, that raise questions, and
known elements that allow to analyze these unknown elements and to form hypothe-
ses or still to connect some elements in already lived experimentations. Thus, an
essential function of IBL is to organize the field of experimentation of the students
and the development of attitudes of learning based on the practice of reflexive activ-
ities like inquiry (Dewey, 2011; Hétier, 2008). The term “inquiry-based learning”
refers to student-centered ways of teaching by posing questions, exploring situations
and developing their own ways towards solutions. It thus reaffirms the link between
inquiry and problem posing (Maaß & Artigue, 2013).

In Europe, an institutional context has intended to promote IBL for teaching and
learning mathematics (Rocard et al., 2007) and several European research projects
have been conducted to help in the development of new practices of mathemat-
ics teaching. We can especially mention the Fibonacci project (2010–2013; led by
the Ecole Normale Supérieure, France and the University of Bayreuth, Germany),
the LEMA project (2008, 2010; 6 European countries) and the PRIMAS project
(2010–2013: 14 universities, 12 European countries) both rooted in the Pedagogical
University of Freiburg.

We notice that the cited above projects put forward the wealth of a work of mod-
elling and then most of the time propose IBL from a modelling context. But we
make assumption that some other kinds of problems can also lead to mathemati-
cal inquiry. In this paper, we illustrate this possibility with a discrete optimization
problem (problem 2).

Outcomes of these projects include propositions of IBL situations that support
the development of mathematics teaching practices and identification of difficulties
of implementation for the teachers. This latter especially draws our attention for our
work.

6.1.2 Difficulties of Implementation

Within PRIMAS project, which objective was the developing of devices of pre-
service and in-service teachers’ training, Dorier and Garcia (2013) identified the
conditions and constraints that might favor, or on the contrary, hinder a large-scale
implementation of inquiry-based mathematics and science education.

In most countries, it seems that teachers find it difficult to choose statements and
to implement in class activities based on inquiry (Dorier & Garcia, 2013; Schoenfeld
& Kilpatrick, 2013). It also seems difficult to define and to distribute the responsibil-
ities between students and the teacher in front of proposed tasks. The teachers do not
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feel at ease with sharing students’ results to compare their productions, with orga-
nizing them into a hierarchy and with implementing mathematical debates (Inoue &
Buczynski, 2011). These difficulties that are related to the process of institutional-
ization (Choquet, 2014) do not seem specific to the IBL. They are well-known about
problem solving.

Having identified and explained these difficulties, research proposed improve-
ments in order to promote and develop IBL in rights conditions leading to students’
learning. First, types of resources (textbooks, websites) are different among countries
and it seems important to propose to teachers’ resources promoting IBL “accompa-
nied by didactical comments on how it can be efficiently implemented in class and
embedded into a device to be used for professional development” (Dorier & Garcia,
2013, p. 849). Second, studies show the central role played by the use of digital
technology in problem solving and in particular in the IBL:

“There is a need to develop or adjust current problem-solving frameworks […] to characterize
the ways of reasoning, including the use of new heuristics, for example, dragging in dynamic
representations, with which students construct learning in a result of using digital tools in
problem-solving approaches” (Santos-Trigo, 2013, p. 500). And it also seems necessary “to
develop methodological tools to observe, analyze, and evaluate group’s problem-solving
behaviors that involve the use of digital technology” (Ibid., p. 500). This use should not be
reduced to the exploration of the problem to establish hypothesis but it has to be a part of all
the resolution’s process of the problem. (Artigue, 2012)

Third, even if curricula in all countries support IBL (Dorier & Garcia, 2013),
the elementary teachers’ mathematical and science competencies include a weak
didactical qualification to implement an IBL approach in their class. That’s why
pre-service and in-service teachers’ training might be increased especially on IBL.

In the French context, institutional aims greatly emphasized the fact that math-
ematics teaching should contribute to the development of students’ inquiry com-
petences. Low scores of French students to PISA problem solving samples, and
disaffection of scientific programs at University are the two main reasons mentioned
to support these injunctions. The mathematics curriculum of primary school (2016)
affirms again the importance of developing problem solving students’ competences,
especially through the resolution of real-word problems. French elementary school
teachers have to teach mathematics and sciences even if they are not specialist in
these matters (Artigue, 2011). There exist strong links between IBL in sciences and
in mathematics education, especially the fact that inquiry is the core of mathemat-
ical and scientific activities (Hersant & Orange-Ravachol, 2015). But, there also
exist differences that make it difficulty to implement and require a specific teachers’
training.

In the following part, taking into account research results presented here, we
present the theoretical framework of learning by problematization (Fabre & Orange,
1997) that allows to envisage mathematical problems solving in terms of inquiry,
which “can spread and produce solutions to [these] problems but also establish neces-
sities to which they are subjected” (Hersant & Orange-Ravachol, 2015, p. 100).
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6.2 Theoretical References and Research Design

We propose to identify conditions of possibilities for learning mathematics with
IBL at the elementary school. To this end, we use the learning by problematization
framework (Fabre & Orange, 1997) and introduce the notion of inquiry potential of
a problem.

6.2.1 Learning by Problematization: A Theoretical
Framework to Analyze Students’ Mathematical Activity

We use this framework to analyze the students’ activity. So, it is important to precise
that posing and constructing problem is here seen from the students’ point of view.
Indeed, even if the teacher posed a question it does not mean that the problem is
posed for the students and least of all that they construct it. But when students make
attempts, formulate sub-problems or conjectures we can say that they at least pose
the problem.

Learning by problematization is a theoretical framework developed by Fabre and
Orange (1997) for the didactic of biology. It is yet well known and used in many
didactics, especially in didactic of mathematics (Hersant, 2010; Grau, 2017). In this
framework, the position and the construction of the problem have a more important
place than its solution. This is connected with the importance of inquiring (Dewey,
1938), posing and constructing problems (Popper, 1972) in sciences.

Taking also into account Bachelard’s epistemology, this framework considers that
knowing is not “knowing that” but “knowing that it cannot be otherwise”. Indeed,
this framework makes a distinction between facts that come under opinions, and
necessities that come under scientific constructions built into a scientific paradigm
(Kuhn, 1962). Therefore, problematization is defined as a multidimensional pro-
cess involving posing, building and solving problem in a dialectic of facts and of
ideas (Orange, 2000). From an epistemological point of view, this above feature of
the problematization process witch deals with scientific activity is also relevant for
mathematics. Let’s refer to mathematicians to explain this specific point. Regarding
themultidimensional process, we can first refer to Poincaré (1905, 1970)who noticed
the strong link between intuition as “an instrument of creation” (p. 37) and logical as
an “instrument of proof” (p. 37). So, from his point of view, intuition plays a key role
in posing and building problem, whereas logical, and especially deduction, mainly
intervenes in solving problem. Moreover, this multidimensional process deals with
an experimental dimension. Perrin who is a mathematician asserts this experimental
dimension of the mathematics (2007) when he explains that “mathematics is also an
experimental science”. For Pòlya (1954, 1965) this experimental dimension under-
lies a similar dialectic of facts and ideas in biology and in mathematics. Indeed, for
him (1965, pp. 110–111), “specific examples” (facts) suggests “new significations”
(ideas) that lead to hypothesis and then proof (Pòlya, 1965, p. 111).
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These distinctions between facts and ideas leadOrange to consider three structures
of thinking summoned up during the search of a problem (Orange, 2000, 2005). The
first one is the empirical register that corresponds to relevant facts for the problem,
established during the search of the problem. The second one deals with the register
of necessities that are established into an “epistemic structure” that Orange calls the
explicative register (Orange, 2000, 2005). We shall explain these registers with an
example. If the problem is to know if 46 is the sum of three consecutive numbers, 45
� 14 + 15 + 16 and 48� 15 + 16 + 17 are relevant facts. Then relating and confronting
these facts, in an “induction” and “more general statement” process (Pólya, 1954),
make it possible to establish necessities: as 14 + 15 + 16� 45 and 15 + 16 + 17� 48,
there is no other possibility to sum three consecutive numbers and to obtain 46; indeed
46 will never be the sum of three consecutive numbers. These latter propositions are
not facts, nor opinions. But they are not only conclusions: they are built necessities.
And building them we ensure that it cannot be otherwise. So, these elements come
under the register of necessities. These necessities are established into a model.
Indeed, to put up these necessities we consider arithmetic domain. But we could
also envision the problem in a functional way (with a discreet function). Then the
necessities will have to dowith surjection function. In away, thismodelmatches with
Piaget’s “epistemic structure”. Orange (2000, 2005) call it the explicative register.
For Scientifics or mathematicians, excepted during paradigm shifts, models are well
shared and known. But, for students who are in process of learning what sciences or
mathematics are, these explicative models are in construction. And we have to take
into account this in-process-building in our analysis of students’ search of problem.
For the previous problem, for example, at the end of the primary schoolmany students
think that 46 cannot be the sum of three consecutive numbers because, even if they try
a lot, they do not find any such sum. Their model corresponds to “naïve empiricism”
(Balacheff, 1987). It is not an acceptable model in mathematics, regarding to proof
criteria but it explains the way they envision the solution of the problem that is in an
empirical model (Hersant, 2010).

The space of constraints and necessities (Orange, 2000, 2005) is away to represent
the construction of the problem. It accounts for tensions between empirical facts and
necessities into an epistemic structure that are realized by one student or a group
of students. The pertinent facts and the tensions established by the students can be
indeed inferred from their productions and the verbal interactions observed in class.
Then these tensions are represented by linking facts and necessities (for examples, see
Fig. 6.1). In these diagrams connections between the elements of the three registers
are not represented by arrows but only by segments. Indeed they indicate no direction,
nor logical or chronological links but mean putting in tense relations.

6.2.2 Inquiry Potential of a Problem

We suppose that conditions of learning by inquiry both depend on the way the
teacher posed the problem—especially the problem’s writing as the setting of the
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Fig. 6.1 Drawing at the scale given by the teacher for problem P0 (left) and for problem P1 (right)

search—and on the activity of the teacher as a help for the inquiry. Therefore, with
respect to the first condition, in the first step of our study we look for the inquiry
potential of the problem. This empowers us to estimate the possibilities, for the
students, to pose and construct the problem from the question posed by the teacher.
To define the inquiry potential of a problem we use the following questions:

(i) is the problem likely to engage students in a research activity for considerable
time?

(ii) in particular, does the problem engage students in making attempts?
(iii) does the problem support the formulation of sub-problems? Of conjectures?

The first and second concern the possibility for the students to explore the prob-
lem and, therefore, to have great conditions to construct it. The third concerns the
construction of the problem as the formulation of sub-problem helps it.

6.2.3 Research Design

We analyze the activity of students who are between 8 and 11 years old while they
try to solve a mathematical problem. To this end, we use a corpus extracted from
previous projects (Choquet, 2014; Hersant, 2010) and take at it a fresh look with
new theoretical tools. The first case study deals with modelling. It focuses on the
learning of the concept of circle—as the set of all points in a plane that are at a
given distance from a fixed point—and of disc—as the set of points that are at a
smaller than or equal distance to a fixed point. It corresponds to an ordinary class-
room situation (Laborde, Perrin-Glorian, & Sierpinska 2005) as the researcher does
not intervene in the choice of the problem nor in its management in the classroom.
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From the teacher’s point of view this situation corresponds to an investigation situa-
tion. The second case study is extracted from a didactic engineering. Its goal was to
overcome a widespread misconception among the young students about the impos-
sibility in mathematics: “it is impossible because I did not succeed in doing it”.
Hersant showed that discreet optimization problems are suitable to overcome this
misconception and therefore proposed a set of didactical situations about discreet
optimization. The design of these situations both relied on the theory of didactical
situations in mathematics (Brousseau, 1997)—importance of a retroactive milieu
and of the didactical contract—and on learning by problematization—importance of
posing and constructing problem and of building necessities. These situations can
also be considered as inquiry situations.

For these both cases, our analyze consists of two steps. The first one deals with
doing a priori analyze and the second with a posteriori one. In the first step, we
determine the inquiry potential of the problem and then, as a minimal investigation
exists, we establish a priori space of constraints and necessities. That means an ideal
space of constraints taking into account students’ knowledge when they have to
solve the problem. In the second step, we confront these results with the students’
productions and the teacher’s intervention. This brings elements on the role of the
teacher in the inquiring process.

To study the possibilities to learn mathematics by inquiring at the elementary
school, wewill look into theway these students construct the problem, that means the
pertinent facts they consider, the necessities they establish and the epistemic structure
they summon up. We will represent this activity with a space of constraints and
necessities. This space will help us to characterize their activity as a problematization
or not. But it will also help us to understand the conditions that permit or not this
problematization.

6.3 First Case Study: Modeling a Situation to Learn About
Disc in an Ordinary Teaching Practice

Let’s consider the two following problems. The first one is part of the French official
instructions. The second one is part of a textbook, it’s the problem that the teacher
chose to submit to his students.

Problem P0: Sophie has to fetch milk from the farm whose yard is shown below. In A and B
are leashed two dogs. In A, Azor has a 6 m long leash; in B, Baltazar has a 5 m long leash.
Can Sophie go to the door of the farm without being bitten?

Problem P1: A pet is leashed to a post. The leash is 8 m long. Draw a picture of the area
where the pet can move.

None of these problems has an immediate answer for a pupil who ignores the
definition of a circle as the set of all points in a plane equidistant from a fixed point.
For both of these problems, we can analyze as follows the inquiry potential.
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6.3.1 Inquiry Potential of the Problem

Concerning the problem P0, the question allows students to easily propose an
answer—that may no be the expected answer (i). Indeed, the wording of the ques-
tion of P0 is non mathematical but the figure introduces the geometric framework
as the posts of both dogs are represented by points. In an inquiry way, as Dewey
describes it, they will make attempts (can Sophie go straight ahead? can she take
this way?) (ii). Students can easily formulate a conjecture (it is possible or not) and
then have to find a way to prove it (iii). Owing to the effect of the didactical contract
(Brousseau, 1997; Hersant & Perrin-Glorian, 2005, Hersant, 2014), they will surely
try to find one. As this task appears as a mathematical one, students know the teacher
will not accept an unjustified answer and, therefore, they won’t themselves accept it
because in the mathematics classroom answers must be justified in accordance with
the epistemological side of the didactical contract (Hersant, 2014). They can identify
sub-problems to increase their understanding of the situation (when she is there, what
happens?). Their tests will certainly lead them to conjecture that the border of the
“unbitten” zone is made of circles (iii). So, this problem is likely to generate doubts
and implication in the task to remove these doubts.

Concerning the problem P1, it is more difficult for students to have an idea of
the expected answer (it is neither «yes because» nor «no, because») (i). Indeed,
the answer matches with staked knowledge that students are supposed to ignore.
This significant difference with the previous problem is due to the wording of the
problem: the students have to «draw a picture of the area» and not to decide to the
possibility of plowing a path. Moreover, counter to the previous problem, this one
is not clearly a mathematical one. Indeed, even if the word “area” is used in the
wording of the problem, the task and the draw accompanying this wording suggest
the expected answer is not mathematical nor geometrical. We can suppose that the
schema (Fig. 6.1, right) is given to help children to imagine the situation but it
hinders the setup of a suitable didactical contract, especially a geometrical contract.
Nevertheless, students can make attempts (the dog can be here, he cannot be there,
etc.) (ii). They can identify sub-problems (can the dog go here?). But they probably
will be satisfied with the identification of some places and will not seek further (iii).

6.3.2 A Priori Space of Constraints and Necessities

Figures 6.2 and 6.3 respectively picture the a priori spaces of constraints and neces-
sities for P0 and P1.

For each problem, students can construct sub-problems and this leads them to do
some tests. These tests allow them to constitute a corpus of possible and impossible
ways either for Sophie or the pet. Indeed, for P0, students use drawing to scale and,
so they can see on their drawing if the circles intersect. Therefore, the discussion
about the number of intersections is moot. These new elements about the problem are
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Fig. 6.2 A priori space of constraints and necessities for P0. “S” means Sophie, “C(A, 6)” means
circle which center is A and which radius is 6; D(A,6) means the disc

Fig. 6.3 A priori space of constraints and necessities for P1. “P” matches with the post
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facts and match with the empirical register. Dually, these empirical elements allow
students to give off necessities of the problem (for example: the pet must go beyond
8 m; he can go everywhere the distance to the post is less than 8 m; he always can
go at 3 m of his post).

These two spaces highlight the necessity to move from a discrete representation
(search for punctual solutions) of the problem to a continuous one (search for all
solutions). This moving is also a crossing from the one-dimensional geometry to a
two-dimensional geometry. For P0, the problem takes charge of this cognitive gap.
Indeed, the two following necessities “Sophie has to walk at least at 6 m from A”
and “Sophie has to walk at least at 5 m from B” only give positions where Sophie is
not bitten. But they do not tell a possible way to the door. So, it does not close the
problem andmaintains the doubt to the possibility to reach the door. This doubt keeps
the necessity to browse all the possibilities in an exhaustive manner. And thereby,
it leads to encounter the move from the discrete to the continuous. The effect of an
epistemological clause of the didactical contract also play a part (Hersant, 2014):
students know that it is a mathematical task and especially a geometrical task (points
are represented on the diagram) and that, therefore, they cannot be satisfied with a
“yes” or “no” answer.

At the opposite, in problem 1, the expected answer is a drawing and the didactical
contract is not clearly a mathematics one (the drawing indicates a drawing pet and
a point) or a geometric representation. The epistemological clause of the contract
cannot play for inducing an exhaustive research and moving from a discrete to a
continuous envision of the problem. Moreover, the situation itself does no generate
many doubts. In other words, the situation does not have the potential to lead the
students to the research of every possibility. In this case the move from the discreet
to the continuous envisions the problem that is not supported by the situation.

6.3.3 Problem P1: Implementation, Students’ Productions
and Sharing

One of the observed teacher turned the problem P0 into the P1. Its realization has
been observed by Choquet (2014) in a 21 students’ classroom at the end of the ele-
mentary school (10–11 years old students). They knew the signification of common
vocabulary associated with a circle (ray, diameter, center, chord). They also knew
how to draw a circle with a compass. But, they did not yet know the mathematical
definition of a circle.

The teacher presents the activity and let students search individually for ten min-
utes. Then they work in small groups during fifteen minutes: each student has to
search the problem and to give a written solution, but students are allowed to speak
about the problem. After the students’ research, the teacher selects three productions
to be collectively discussed for ten minutes. Indeed, five students turn in a blank page
and the productions of the sixteen other students can be split into three categories.
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Fig. 6.4 Productions of students from first category (left), from second category (middle) and from
third category (right)

The first category ties with students who draw the leash and a dog in a vertical
plan (Fig. 6.4, left). They are seven in this case. Their production is closely linked
to the drawing proposed by the teacher in the presentation of the problem (Fig. 6.1,
right). Only one position of the dog is considered; they do not represent any area.
These answers indicate that these students did not achieve to pose the mathematical
problem, nor construct the problem, nor explored the field of possibilities. Indeed,
they probably did not establish any necessity about this problem.Why? They did not
consider the problem as a mathematical one because the statements of the problem
implemented a didactical contract that is beside mathematics. In the second category,
we gather two students who begin to schematize and envision several positions for
the dog (Fig. 6.4, middle). We can suppose that these students lead a mathematical
inquiry but they come up against the difficulty to move from discrete to continuous.
These students most probably do not strike the problem of exhaustiveness of the
answer. Their activity may correspond to our a priori space of constraints (Fig. 6.3).
In the last category, there are seven students who draw the circle that bounds the
zonewithout prior trials (Fig. 6.4, right). The observation suggests that these students
already knew the definition of a circle as the set of all points in a plane that are at a
given distance from a given point. So it is difficult to say that they have posed and
constructed the problem.

Finally, it seems that the students have no approach of inquiry: those who have
well conceptualized the notion of circle already reinvest it, probably without consid-
ering any sub-problems; the others stumbled on the exploration of a one-dimension
problem.

6.3.4 What Can We Learn from This Case?

In this case, we think that the teacher changes the wording of the problem P0 without
enough considering the effects of these modifications on the inquiry potentialities of
the problem. That reveals a critical point for teaching by inquiry at the elementary
school in France: most teachers have a literature Baccalaureate and it is not easy for
them to fashion problems for their students.Moreover, this examplemainly shows the
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limits of using real-world problems to impulse an inquiry process. Indeed, despite of
an attempt of class discussion after group work, most of the students do not identify
the task as a mathematical one. The didactical contract is not clear enough and the
teacher does not intervene to make this contract explicit. So, we can imagine that the
students will not learn about geometry with this problem. Indeed, during the research
phase their activity do not allow them to build up a mathematical problem. Then, the
solution given by the teacher will not be anchored in a problem research. In these
conditions, can we still consider that these students learn by solving problem?

6.4 Second Case Study: Searching the Optimal Solution
in a Discrete Optimization Problem in a Didactic
Engineering

The situation has been designed within the framework of a didactic engineering
involving a researcher (Hersant) and teachers (Hersant, 2010). It refers to the called
“no three in line problem”. The wording of the problem is the following:

Problem 2: How many points can we put at most on this grid without forming any
alignment of three points (see Fig. 6.5)?

6.4.1 Inquiry Potential of the Problem

This situation has been realized in several classes by teachers who all contributed to
the design of the situation; the researcher did not intervene in the class management.
The scenario was the following. First each student has to test possibilities, respecting
constraints of the problem. This is the enumeration phase. As the task demands to
make tests, all the students can do something and start to explore the problem (i and
ii). So, the problem is likely to engage students in search. Moreover, this engagement
in the problem is durable because students take to the game (i).

Fig. 6.5 The grid given to
the students
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If necessary, the teacher takes examples of putting points and asks students if
the case correspond to an alignment. Then students can work by group and start to
construct sub-problems (iii) like: is 7 the best solution? For example, the researcher
often observed the following situation. A student comes against the possibility to
put more than six points on the grid (ii), he is convinced that it is impossible to
put seven points on it. Indeed, in a naïve empirical explicative register, he thinks
mathematical impossibility matches with pragmatic impossibility: “it’s impossible
because I search hard but I do not succeed”. But, when one of his classmate succeed
in putting seven points, he wonders: is seven the solution? how can I be sure? All
the students will not doubt the same, indeed teacher can help them to construct these
sub-problems (iii).

When many students have a solution that they can’t improve, the teacher stops
the research and ask each group to realize a poster with its best or one of its best
solution(s). The solutions of each group are post up on the board and are collectively
examined to check that they respect the no three in line constraint. The best solution(s)
of the class is (are) identified. At this time, the question is to know if it is worth to
keep searching, that means if we can improve the best solution of the class, or not.
Then students are led to construct sub-problems: how can we know if this solution
is the best? Is it possible to put n points on the grid?

So, with this problem, students are engaged in the search, they make attempts and
construct sub-problems. The inquiry potential of the problem is real.

6.4.2 A Priori Space of Constraints and Necessities

The a priori space of constraints and necessities for this problem is the following
(Fig. 6.6).

This figure highlights the empirical facts that can be built up by the students
during the search of the problem, especially the enumeration phase. It also shows
the possible conflict that can exist between an in progress-necessity based on an
empirical conception of the impossible and a fact like “I can put 9 points on the
grid”. These contradictions will lead students to search for necessities and to evolve
their point of view on the problem: searching how to put points on the grid without
any alignment of three points will never bring the solution, the proof of the problem
also needs to mobilize short-cuts and proofs of impossibilities. Especially they will
have to establish the following necessity: there are at most two points on a line (or
on a column). Then, if a ten points solution has been found by some students, then
they will conclude that the solution is ten.



6 Is an Inquiry-Based Approach Possible at the Elementary School? 127

Fig. 6.6 A priori space of constraints and necessities for this problem

6.4.3 Students’ Productions

We propose this problem in several classes of students of 8–11 years old (Hersant,
2010). We will here especially be interested in the first class where the situation has
been tested (8 and 9 years old students). The first hour was dedicated to enumeration
on an arrangement of 4 lines and 4 columns grid. The students found eight points
solutions. The second session was dedicated to an enumeration of five lines and five
columns grid. At the end of this session, students summarize the state of the search
in the class. They formulate the conjectures:

“Our record is 9, but I am sure than we can put 10 on the grid”;

“If we concentrate more, we can put more points on the grid”;

“There are two in each column”.

The third session was devoted to the search of the solution of the problem. For this
we introduce the following question: is it possible to put more than 10 points on the
grid? By introducing this question, our aim was to oblige students to work on short-
cuts necessities. We knew that if the teacher does not take this initiative, students will
keep on enumerating the problem and have no chance to establish necessities. But we
observe during this session that students have difficulties to envision the proposition
«we can at most put two points on a line without forming any alignment of three
points» as a mathematical necessity. Indeed, they envision it only as a theorem in
action (Vergnaud, 1998) stemming from their experience of the enumeration. So only
2 pupils in 16 who expressed their views in an individual productions think that it is



128 M. Hersant and C. Choquet

Fig. 6.7 The box of points

impossible because we can only put 2 points on a line. The other produced arguments
such as the following:

“it’s impossible because Jean said it” (1 in 16 students)

“it’s impossible because we have already well searched and we did not find more” (4 in 16
students)

“because each time we try to add one more point on a 10 points grid there are three in a line”
(3 in 16 students)

“it’s impossible, the grid is to small” or “there are not enough crosses” (6 in 16 view students)

So, we decide to introduce a box of points (see Fig. 6.7) and to ask them «You
disagree about the reason. Now, using this table and without putting any points on
the grid, tell us if it is possible to put more than ten points on the grid». This box of
points involves switching from a geometrical setting (Douady, 1986) to an arithmetic
one. Indeed, thus, implicitly, the question is: can we make n with a sum of 5 terms
small or equal to 2? This helps students without killing the inquiry. It is also a great
support to anchor the proof of the problem in the pupils’ activity.

6.4.4 What Do We Learn from This Case?

This brief analysis of the students’ activity shows that, in this case, students have
posed and constructed the mathematical problem; they have carried out an investi-
gation with the help of the teacher. So, this case study shows that inquiry is possible
at the elementary school in France. It also empowers us to identify some conditions
for its existence. First, it seems that the inquiry potential of the problem plays an
important role. Here, he is mainly due to the doubt generated by the enumeration
phase. Indeed, during this phase each student build certainties that could be desta-
bilized by one of his classmate. Here, the milieu (Brousseau, 1997) of the situation
plays an important role in problem posing. Moreover, the problem is easily identified
as a mathematical problem by the students and it seems to facilitate the process of
inquiry inside the mathematics field as the didactical contract is clear for the stu-
dents. Finally, the engineering process provided the interventions of the teacher in
case of students’ difficulties and these interventions seem to effectively empowered
students’ inquiry.
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6.5 Conclusion

We studied two cases to identify some conditions of possibilities of learning math-
ematics with inquiry in elementary French school. For this, we first characterized
inquiry for learning mathematics as a problem posing and constructing issue that
leads to the establishment of necessities of the problem, according to our framework.
Taking this point of view allows to broaden our vision of inquiry-based learning in
mathematics beyond modeling. Indeed, problem posing activity and establishing
necessities is at the core of mathematics activity, whatever the statement of the prob-
lem is.

Our two cases arewell contrasted considering their objectives of learning. Problem
P1 is inspired from problem P0. Both of them deal with a real world problem and
modelling. They both aim to learn about circle. But, P0 does not lead to investigation
by the students. Problem P2 deals with the meaning of impossible in mathematics
without any ambition about learning curricular knowledge. It nevertheless brings
students to an investigation.

Furthermore, we also highlight that the three problems P0, P1 and P2 have a
different inquiry potential. We can explain these differences in the following way.
Comparing problem P0 and problem P1, we emphasize the importance of designing
the statement of the problem andmaking available didactical comments to teachers as
Dorier and Garcia (2013) proposed it. Indeed, we can suppose that from P0 to P1, we
lost a part of inquiry potential because of the lack of didactical comments associated
to P0. For the problem P2, instead, we can suppose that the didactic engineering
insures the inquiry potential of the problem.

Moreover, important difference between the two cases concerns the possible link
between the effective activity of the students during the search of the problem and
the solution of the problem. In problem P1, we saw that for many students there may
not exist such a link. Therefore, it is very difficult for the teacher to explain it. On the
other hand, for problem P2, these links exist and it is easy for the teacher to highlight
them. Thus, our study shows differences between the way each teacher manages the
students’ research and highlights the crucial role of supporting teachers in students’
inquiry activity, through didactical comments on the management of the situation,
either through their participation in didactic engineering that could contribute to their
professional development.

Finally, which conditions of possibility of inquiry at elementary school can we
identify?Twoof the conditions presented by the second case appear especially impor-
tant. First of all, the design of the situation conducts students to doubt and therefore
enrolls them on inquiry. This property that is related with the potentiality of the prob-
lem seems to play a crucial role. Then, the teacher is able to support the students’
inquiry activity taking into account their questions and introducing new sub-problem.
This allows students to establish the necessities of the problem in direct link with
their own exploration of the problem. Regarding this point, we can suppose that the
teacher’s participation in the modelling of the situation with the researcher have a
significant influence that remains to be determined.



130 M. Hersant and C. Choquet

In conclusion, this study asks us new questions concerning knowledge at stake
in inquiry based learning situations and also teachers’ training to manage problem-
posing and to use resources cautiously.
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Chapter 7
How to Stimulate In-Service Teachers’
Didactic Analysis Competence by Means
of Problem Posing

Uldarico Malaspina, Carlos Torres, and Norma Rubio

7.1 Introduction

Recently, researchers in mathematics education are becoming more interested in
problem posing (Felmer, Pehkonen, &Kilpatrick, 2016; Malaspina, Mallart, & Font,
2015; Singer, Ellerton, & Cai, 2015; Torres & Malaspina, 2018). These scholars
claim that it is very important for teachers to develop problem posing skill by both
modifying given problems aswell as posing them fromconcrete situations. Evidently,
in a problem posing activity, the person’s mathematical knowledge is brought into
play, but if the problem posed is aimed at contributing to the student’s knowledge—or
more specifically, to understanding and solving other more complex problems—then
the teacher’s didactic-mathematical knowledge must also intervene. This aspect is
closely related to the teachers’ didactic analysis competence, which has been broadly
studied within the onto-semiotic approach of cognition and mathematics instruction
(OSA) (Breda, Pino-Fan, & Font, 2017; Rubio, 2012).

In our study, we focus on analyzingwhat representations, strategies, and resources
teachers showedwhile dealingwith tasks that involve problemposing activities (Font,
Planas, & Godino, 2010; Torres & Malaspina, 2018).

Thus,we adopt the lines of research that use problemposing as awindowof oppor-
tunities for students and teachers to understand mathematics, as well as the studies of
specific strategies for problemposing (Kontorovich&Koichu, 2009;Malaspina et al.,
2015; Milinkovié, 2015; Mallart, & Font, 2015). The work shown by 15 in-service
high school mathematics teachers on problem posing is analyzed, and evidences of
the close link between the didactic analysis competence and the problem posing skill
that facilitate learning are discussed.
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In this study, we consider the following research question: How can we use prob-
lem posing activities to stimulate the development of teachers’ didactic analysis
competence? To answer this question, we use the problem posing strategy Episode,
Pre-Problem, Post-Problem (EPP) used in Malaspina et al. (2015). To this end, the
research team relies on tools from the OSA (epistemic and cognitive configura-
tions) to analyze the solutions to the problems and to examine the teachers’ didactic
competence by analyzing pre-problems, whose fundamental aim is to facilitate the
understanding and solution of the problem presented in the class episode.

7.2 Theoretical Framework

7.2.1 Problem Posing and Mathematics Teachers’
Competences

In order to develop and assess students’ mathematical knowledge and skills, instruc-
tional strategies mainly focus on problem solving. We consider that a teacher must
not only have the ability to solve mathematical problems, but also choose, modify
and pose problems with educational purposes, which means to facilitate or delve
into his students’ learning and stimulate their mathematical thinking (Liljedahl,
Santos-Trigo, Malaspina, & Bruder, 2016; Mallart, Font, & Malaspina, 2016; Tichá
& Hošpesová, 2013). The tasks, in which a mathematics teacher analyzes a problem
for the aforementioned educational purposes, imply the development of the didac-
tic analysis competence, which entails reflecting on her/his mathematical practice
of solving and posing problems, and analyzing to which extent it is contributing to
facilitate the understanding and solving of other more complex problems.

It isworthmentioning that there are different positions in terms ofwhat researchers
understand by engaging in problem posing activities. In this research, we adopt
the proposal from Malaspina (2015), according to which problem posing is a pro-
cess through which a new problem is obtained. If the new problem is obtained
by modifying a given problem, it is said that the new problem was obtained by
variation. If the new problem is obtained from a given situation or from a spe-
cific requirement, whether mathematical or didactic, it is said that the new problem
was obtained by elaboration. Malaspina (2015) also considers that problems have
four fundamental elements: information, requirement, context (intra-mathematical
or extra-mathematical) andmathematical environment; in that sense, problem posing
by variation entails quantitative or qualitative modifications of one or more of these
elements in a given problem; and problem posing by elaboration can be done specify-
ing these four elements from the given situation. This approach for problem posing is
complemented by the strategy proposed in Malaspina et al. (2015) to implement it in
workshops with in-service teachers or teachers in training in order to stimulate their
ability to pose problems by variation. In our study, we use this strategy to develop
an empirical research. In such strategy, participants in the problem posing workshop
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are asked to modify the proposed problem in the context of a teacher’s class episode.
In the first phase, participants in the workshop are asked to propose a problem that
helps students understand and solve the problem proposed in the episode; a prob-
lem with such characteristic is called pre-problem. In the second phase, participants
in the workshop are asked to propose a more challenging problem than the one of
the episode; a problem with such characteristic is called post-problem. In each one
of the phases of this strategy, which we will call EPP since it stands for episode,
pre-problem and post-problem; there is individual work, group work—preferably
in pairs—and socialization with all participants in the workshop. The mathemati-
cal activity includes the solution to the posed problems, which contributes to the
interaction between problem solving and problem posing.

In this study, we implemented the EPP strategy in a problem-posing workshop on
affine functions with 15 in-service high school teachers, andwe focused our attention
on pre-problem posing, since it requires didactic criteria from the poser, because it
should have the characteristic to facilitate the understanding and resolution of a pre-
viously given problem (episode problem). We analyze these didactic criteria taking
into consideration the problems posed and solved by the participants, both during
individual work and pair work. We use constructs of the onto-semiotic approach of
cognition and mathematics instruction (OSA), which we explain in the following
section.

7.2.2 Onto-Semiotic Approach of Cognition
and Mathematics Instruction (OSA)

There are different views on the conception of competence in the context of teaching
and learning. For the purposes of this research, we will adopt the point of view
of Tardif (2006), which proposes to define competence as “a complex know how,
supported by the mobilization and effective combination of a variety of internal and
external resources within a family of situations” (p. 22). Knowledge, skills, abilities
and attitudes of each individual are considered among these resources.

We adopt the OSA as theoretical framework because we are interested in doc-
umenting teachers’ competences that they develop when they engage in problem
posing activities. Likewise, we believe it is relevant to use an approach that provides
us with categories to analyze both teachers’ mathematical knowledge and didactic
knowledge.

In the OSA, didactic-mathematical knowledge is understood as knowledge of
mathematics and its teaching, which a mathematics teacher must have to design,
implement and assess the complex processes of mathematics teaching.
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Fig. 7.1 Configuration of primary objects

An important OSA theoretical construct for the analysis of mathematical objects,
such as concepts, procedures, propositions and arguments, are the epistemic and
cognitive configurations, which we explain next.

According toGodino, Batanero and Font (2007), when a person carries out amath-
ematical practice and assesses it, he/she has to activate knowledge and resources of
involved mathematical objects, that is to say: problem situations, languages, propo-
sitions, definitions, procedures and arguments. These elements will be interrelated,
making configurations defined as webs of objects that intervene and emerge from
the systems of practice (Fig. 7.1); such configurations are epistemic (EC) when they
are webs of objects considered from an institutional perspective, and they are cog-
nitive (CC) when they are webs of objects considered from a personal perspective.
Analyzing these configurations allows us to obtain information about the anatomy
of a problem solution.

The research was developed within this framework, drawing attention to the fact
that these elements serve as reference to pose problemswith emphasis on the didactic
point of view. In terms of the framework, a teacher is competent in the analysis of
mathematical practices, objects and processes when that teacher is able to answer
questions such as: what are the meanings of the mathematical object being stud-
ied? what are the configurations of mathematical objects and processes involved
in the solution of problems that are typical of the different meanings of the con-
tents planned in teaching? (Epistemic configurations); what are the configurations of
objects and processes brought into play by students in the solution of the proposed
problems? (Cognitive configurations). In other words, it is about the competence in
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the analysis of mathematical practices involved in the resolution of tasks developed
in the processes of mathematical instruction. In the OSA, mathematical practices are
understood as actions made by a subject in order to solve or to pose a problem or
to do a task, whether discursive-declaratory (indicating knowledge possession) or
operative-procedural (indicating an ability or competence). Both types of practices
are related, so carrying out operative practices efficiently involves putting declaratory
knowledge into action.

In our study, we will consider aspects related to two levels of analysis of mathe-
matical activities (Godino, Giacomone, Batanero, & Font, 2017): with mathematical
and didactic practices, and with configurations of mathematical objects. In the for-
mer, we focus on problem posing and solving, and in the latter, we delve into the
analysis, using the configurations.

7.3 Methodology

In this research, we used a multiple case study with 15 in-service public high school
mathematics teachers who participated in the problem-posing workshop on affine
functions. They did not have previous experiences in problem-posing tasks. Follow-
ing Ponte (2006), our study is exploratory, descriptive and analytical. The units of
analysis were the teachers’ solutions to episode problem and to the problems posed
by them.

In the problem-posing workshop, we used the EPP prompts to stimulate the devel-
opment of the skill to pose pre-problems by varying a given problem. The workshop
sessions included two days sessions working two hours per day. The dynamics were
the following:

First session: the research team gave a very brief presentation on problem posing
approach. Worksheets that included an episode class designed by the research team
were handed out to the participants. The participants were asked to work individually
to solve the episode problem and then to pose a pre-problem. Then, they shared what
they had done individually in pairs. The participants gave back their worksheets
including their individual and pair work, and a pre-problem posed by a couple was
shared collectively.

Second session: Worksheets with the same episode class as the previous session
were handed out so that theywould pose a post-problem, first individually and then in
pairs. After giving back their worksheets, one of the problems was made collective,
and comparative comments were made of the pre- and post-problems posed.
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The methodology of this research has the following phases:

(1) Workshop preparation. By taking into account teachers’ didactic experiences
in teaching the theme of functions in secondary school education, the research
team selected the following episode from a class with students between 14 and
15 years old, in order to present it to the teachers participating in the workshop:

Mr. Torres proposed the following problem to eighth-grade students in a mathematics
class on functions:

In the shop at the corner of my block, each kilogram of potatoes costs 3 PEN. In the
wholesale market, which is far from home, each kilogram of potatoes costs 2 PEN, but
I have to spend 5 PEN in bus tickets to get there and come back.

Will it always bemore convenient to buy potatoes in the market rather than in the shop?
Why?

After a few minutes, some students commented:

Juan: Sure, it will always bemore convenient to buy at the market because it is cheaper
there.

María: Not always… It depends…

Mateo: It will be more convenient to shop at the market if you have to buy more than
8 kilos of potatoes.

In this workshop preparation phase, we also elaborated a configuration of pri-
mary objects based on an expert solution to the problem presented in the episode
carried out by the research team. This expert solution brings out the primary
mathematical objects which could intervene in the solution to episode problem.
The configuration was considered as EC in order to have it as a reference to
analyze it and compare it to the configurations of the participants’ solutions,
which were considered as CC. A pre-problem solution should not need more
than the primary mathematical objects proposed by the expert solution.

(2) The episode is presented to the participants of the workshop, implementing the
EPP strategy. In this phase two types of data are obtained: the solutions to the
problem presented in the episode and the problems (and their solutions) posed
by the participants.

(3) The problems solved and posed by the in-service teachers are analyzed. The
research team examines overall the different solutions to the problem presented
in the episode, examines the solutions to the posed pre-problems and elabo-
rates their corresponding CC. Likewise, the research team elaborated the expert
solutions to the posed pre-problems with their corresponding EC. Then, both
configurations are compared in order to determine if the definitions, procedures,
etc. appearing in the teachers’ solutions imply a higher cognitive demand, or
not, than the problem presented in the episode. We focused our attention on
the pre-problems posed by the participants in the workshop, since they show
aspects from the teachers’ didactic analysis in a better way, in the sense that they
should contribute to the understanding and solving of the problem presented in
the episode. We examined the pre-problems posed individually and compared
themwith the ones they presented after working in pairs, taking in consideration
the posed problem by each of one.
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The EC and CC have been used within research methodologies based on OSA
framework (e.g. Badillo, Font, & Edo, 2015;Malaspina, & Font, 2010), with the
aim of examining the mathematical solutions of pupils. This technique allows
systematically describing the mathematical activity carried out by the in-service
teachers (mathematical practice of solution), themathematical activity of posing
(mathematical practice of posing), and the primary mathematical objects (lan-
guage, problem situation, concepts, propositions, procedures and arguments).
The epistemic and cognitive configurations elaborated by the research team
were validated through the methodology of expert triangulation (OSA special-
ists). Thus, this analysis tool was built by involving researchers from the same
theoretical field in order to have different reflections and points of view when
analyzing the configurations; this is what Lincoln and Guba (1985) refer to as
Member Checking.

7.3.1 Expert Solution and EC of the Episode Problem (ECPe)

The expert solution to the episode problem (Fig. 7.2) ismainly based on the definition
of two functions: f (x) � 3x and g(x) � 2x +5, which express how much x kilograms
of potatoes cost in a convenience store and in the wholesale market, respectively.
The graphs for both functions are drawn in the same system of coordinates, and it is
determined—visually and algebraically—that the amount spent in x kilos of potatoes
is not always less in the wholesale market than in the convenience store.

While elaborating the EC of the solution, the languages used (verbal, sym-
bolic, graphic and tabular representations), the information, requirement, context and
mathematical environment of the problem are explicitly stated. Moreover, the con-
cepts involved (linear function, affine function, expense function, slope, y-intercepts,
graphs of functions, linear inequation) and the emerging proposition: If there are val-
ues of x for which f (x) < g(x), then it is not always more convenient to buy in the
wholesale market. In addition, the procedure is described and the arguments are
explained to support and validate the given proposition, which derives in the conclu-
sion.

7.4 Results

In relation to the teachers’ solutions to the problem shown in the episode above, most
of them do not reveal similar procedures to the ones of the expert solution. The use
of tables prevails, as well as the calculations of the expenses in specific cases. Eight
teachers define the functions of the case, but only two use their graphs. On the other
hand, only two solve an inequation, and only four use the expression not always in
their answer.
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A thorough analysis of the CC of the participants’ solutions reveals important
aspects of their mathematical competence, which we will not explain in detail now.
In relation to the problems posed by the teachers, in general terms, they show the
ability to pose problems by varying a given problem; however, we perceive little con-
sideration to the didactic characteristic such problems should have, like pre-problem,
in the sense of helping students to clarify and solve the e problem presented in the
episode. To make this perception more evident, as explained in the methodology, the
research team has elaborated CCs from the solutions that the teachers presented, and
we also elaborated expert solutions and their ECs to the proposed problems.

We did some comparisons between these configurations (see Fig. 7.3), which
revealed important aspects of the teachers’ didactic competences. Some of them
gave us information that is strongly related to mathematical competences (M), and
others gave us information that is strongly related to the didactic analysis (D).

To illustrate the type of data and the analysis done, we show the following: (1) an
example of the pre-problem posing task; (2) the teacher’s solution to his proposed
problem; (3) the CC of such solution, elaborated by the research team.

Fig. 7.2 Expert solution
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In Fig. 7.4, we present a problem posed by an in-service teacher (we call him T3).

Translation of pre-problem posed by T3 (Fig. 7.4)
Lalo is a boy who makes a living by selling roses, earning 2 PEN each. To
make sure he sells out, he decides to go to a concert of romantic music, where
he has to pay 20 PEN to get in. How many roses will he have to sell to beat his
regular sale, with which he earns 30 PEN daily on average?

In Figure 7.5, we show the teacher’s solution to his posed problem:
According to the methodology presented, the research team elaborated the CC

of this solution (CCPp)—Table 7.2—which was compared to the EC of the episode
problem (ECPe) summarized in Table 7.1.

Analyzing the CC of the solution to this posed pre-problem (Table 7.2), we state
the problem has some good characteristics such as a clear, interesting statement with
an extra-mathematical context and related to the mathematical environment desired
to work with eighth-grade students. Nevertheless, it is evident in the CC that in this
problem posed by T3, and in the solution he proposes himself, are involved concepts,
propositions, procedures and arguments—even though these last ones are not explicit

Fig. 7.3 Diagram to compare configurations

Fig. 7.4 Pre-problem posed by T3
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Translation
Profit Concert ticket

Answer:  26 roses minimum

Let f(x) = profit

x =  amount of roses

1) To break even

2) To earn 30 PEN 

Fig. 7.5 Teacher T3’s solution to his posed problem

in his solution—which require a higher cognitive demand than the problem presented
in the episode.

Another fact that also shows that the problem posing activities reveal little man-
agement of the criteria for didactic analysis is the decision made by teacher T3 and
a colleague while working in pairs. They posed practically the same problem pro-
posed by T3 as pre-problem of the group, even though his colleague (whom we will
call T3A) posed a problem that would be preferable as pre-problem in relation to
the episode problem. According to the CC of the solution shown, carried out by
the research team, the concepts and procedures corresponding to T3A’s problem do
not require a higher cognitive demand in relation to the one required by the episode
problem. However, both the problem from T3, which we just analyzed, and the pre-
problem posed by the couple formed by T3 and T3A do require a higher cognitive
demand.
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Table 7.1 Epistemic configuration of the expert solution (ECPe)

Languages Problem situation

Verbal representations:
Expenses, PEN, kilograms, purchase
x: amount (in kg) of potatoes which we buy
f (x) � 3x: Function that defines expenses in x kg
of potatoes in the convenience store
g(x) � 2x + 5: Function that defines expenses in
x kg of potatoes in the wholesale market
Symbolic representations:
S/3, S/2, f(x) = 3x, g(x) = 2x + 5, g(x) < f(x), →
,…
Graphic representation:

Tabular representation:

Information: Prices of a product in two
places, fixed cost for bus tickets to buy in the
wholesale market
Requirement: Determine the minimum
amount of units that need to be sold to beat a
given income amount.
Comparison of expenses for the same
purchase in two places
Context: Extra-mathematical
Mathematical Environment: Related affine
functions, linear equations.

Concepts

Linear function, affine function, expense
function, slope, Y -intercepts, graphs of
functions, linear inequation

Propositions

If there are values of x for which f (x) < g(x),
then it is not always more convenient to buy
in the wholesale market.

Procedures

Define the x variable with x ≥ 0. Algebraically write the functions for the expenses when buying
x kilos of potatoes in the convenience store and in the market (f and g, respectively). Sketch the
graphs of functions f and g, f (x) ≥ 0 and g(x) ≥ 5, assume f and g are continuous functions.
Compare the images of x according to functions f and g. Solve the linear inequation g(x) < f (x).
Use the tabular representation for comparing correspondent f (x) and g(x) values.

Arguments

Thesis 1: If there are x values where f (x) < g(x), then it is not always more convenient to shop in
the market.
Argument: It is more convenient to buy x kg of potatoes in the market if and only if g(x) < f (x).
Thesis 2: When u and v are real functions of a real variable z. The u graph is below the v graph
for every value of the z variable in a J interval if and only if u(z) < v(z) and z ε J .
Argument: If (p; q) and (p; r) represent, respectively, points A and B of a vertical line in the
Cartesian plane, A is below B if and only if q < r.
Thesis 3: It is not always more convenient to shop in the wholesale market.
Argument: There are points of the f graph that are below the g graph. So, according to Thesis 2,
there are x values where f (x) < g(x). The conclusion is drawn from Thesis 1.
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Table 7.2 Cognitive configuration of the solution to the posed pre-problem (CCPp)

Languages Problem situation

Verbal representations: Profit, ticket, minimum,
amount, loss, average, sales, variable x, amount
of roses sold, function f : profit
Symbolic representations: Amount of roses: 1,
2, 3,…, 13, 28. Profit: 2, 4,…, 26, 56. Ticket: 20.
f (x) � 2x − 20, PEN (S/), �,
Graphic representation:

Tabular representation:

Information: Income for selling a product,
considering a fixed cost. Daily average
income specified.
Requirement: Determine the minimum
amount of units that need to be sold to beat a
given income amount.
Context: Extra-mathematical
Mathematical environment: Related affine
functions, linear equations

Concepts

Linear function, graphs of functions,
X-intercept, strictly increasing function,
income function, profit function, linear
equation, variable, algebraic expression,
minimum whole number of a lower enclosed
set of real numbers.

Propositions

The solution to the equation f (x) � k determines the number of units that need to be sold to
have a profit k. If f (x) � 0, there are no earnings or losses.

Procedures

Define variable x. Write algebraically the profit function (f ) for selling x roses, taking only in
consideration a fixed cost (payment for the concert ticket). Elaborate a table to place the resulting
amounts from substituting variable x for positive whole numbers. Compare the results in the
table, taking into account the number obtained as income. Determine the number of units
required to sell in order to get the given average profit, using the determined function. Graph the
profit function and observe that it is strictly increasing. Conclude that the minimum number
required will be the lowest whole number greater than the number gotten in the previous step.

Arguments

Thesis 1: If f (x) � 0, there are no earnings or losses.
Argument: A positive profit is a “real profit” and a negative profit is a loss.
Thesis 2: If f is a strictly increasing function, q is a given number and u solves the equation
f (x) � q, then the lowest whole number v, greater than u, is the lowest whole number, as long
as f (x) > q for every x ≥ v.

Argument: Since function f is strictly increasing, if v > u then f (v) > f (u) � q. Since v is the
lowest whole number greater than u, any x number, specially a whole number, as long as
x ≥ v > u complies with f (x) > f (u) � q. That is, f (x) > q.
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Fig. 7.6 Pre-problem posed by T3A

The following is the pre-problem posed by T3A:

Translation of the pre-problem posed by T3A (Fig. 7.6)
Juan bought a post-paid cellphone, and the salesperson pointed out that it does
not have a fixed cost, but for every minute he talks, he will have to pay 2 PEN.
Then, his friend Luis also buys a cellphone but with a different payment plan.
The plan involves a monthly payment of 30 PEN, but the cost for every minute
he talks is 0.50 PEN. Howmany minutes do they have to talk so both payments
are the same?

The following is the pre-problem posed by the T3 and T3A couple:

Translation of the pre-problem posed by T3 and T3A (Fig. 7.7)
Lalo is a boy who makes a living selling roses, earning 2 PEN per unit. To
make sure he sells out that day, he decides to go to a romantic music concert,
whose ticket costs 20 PEN.
(a) How many roses should he sell so there is no profit or loss?
(b) Howmany roses should he sell in order to buy a 30-PEN gift for Mother’s

Day?

We observe that the difference between this problem and the one posed by T3
(Fig. 7.4) is very little, even though it is worth mentioning that this one has a slight
greater didactic consideration than the problem from T3, since its requirements are
well separated, and it no longer refers to a minimum sales amount nor an average
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Fig. 7.7 Pre-problem posed by T3 and T3A

daily profit. Either way, solving this problem requires a higher cognitive demand
than solving the episode problem or the problem from T3A.

The EPP strategy considers pair work or small groups precisely to stimulate joint
reflection on the problem posing activity particularly on a pre-problem. This pre-
problem considers didactic aspects, but it is evident that it is necessary to guide that
didactic reflection so it is more fruitful, since similar situations to the ones described
occur in pre-problem posing by other teachers and other teacher couples. We could
state that, by problem posing, the teachers from the sample are more careful with
mathematical aspects than with didactic aspects.

Another example of a pre-problem that requires higher cognitive demand than
the problem presented in the episode is shown in Fig. 7.8. Teacher T5 posed this
problem.

Translation of the pre-problem posed by T5 (Fig. 7.8)
In the convenience store at the corner of my block, each kilogram of potatoes
costs 3 PEN. In the supermarket, which is four blocks away from my house,
there are sales offering to buy 3 kg for the price of 2 kg (this means that, for
each 3 kg of potatoes, you would be paying for 2 kg; the price per kilo is 3
PEN). Will it always be convenient to buy potatoes at the supermarket?

This problem (Fig. 7.8) is perceived as requiring more cognitive demand than
the problem presented in the episode since one has to consider buying a number of
kilograms of potatoes that is multiple of 3. It might be concluded intuitively that it
will always be more convenient to shop in the supermarket, but it is not easy to use
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Fig. 7.8 Pre-problem posed by T5

functions for proper justification, being this the mathematical setting of the problem
presented in the episode.

We conclude that the problemposed does not have the conditions of a pre-problem,
whose main characteristic is to facilitate the understanding and resolution of the
problem given in the episode.

Similarly to what was done in the case of the problem posed by T3, in Fig. 7.9
we present the pre-problem posed together by teachers T5 and T5A as a couple, as
well as their solution:

Translation of the pre-problem posed by T5 (Fig. 7.9)

Fig. 7.9 Problem posed by T5 and T5A
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Luis buys a glass of juice for 1 PEN during break. How much does he spend in
1 week? How much does he spend in 1 month, considering he goes to school
every day of the month?
Solution

f (x) � 1x

� 1 (5days)

� 5

He will spend 5 PEN in a week.

f (x) � 1x

� 1 (20 days)

� 20

He will spend 20 PEN in a month.

In this case, the pre-problem presented by the teachers does not have enough
didactic considerations because it is very simple, to the point that the use of functions
seems forced and that does not contribute to a better understanding and resolution
of the problem proposed in the episode. On the other hand, the language used in
the problem is ambiguous, since it considers monthly and weekly expenses, and the
solution considers 20 days. It is implicitly assumed that a month has four weeks and
that go to school every day of the month means five days a week only. The solution
uses the functional notation inadequately—both mathematically and didactically.

It is worth mentioning that the need to delve into didactic reflections became
evident when the teachers participating in the workshop exchanged their opinions
about the posed problems individually and in pairs during the extensive socializa-
tion. Even more so when the research team showed some mathematical objects of
the corresponding epistemic and cognitive configurations and did the comparisons
referred to themathematical objects considered in each problem: language, concepts,
propositions, procedures and arguments.

Generally speaking, we could say that the posed and solved problems reveal some
teachers have mathematical competence, and most of them have serious limitations
in terms of didactic analysis competence in relation to reflecting on their practices
and the mathematical objects involved in such problems. This happens in every case
of the posed pre-problems; for this reason, we consider that it is necessary to polish
the EPP strategy, including a stage of reflection on the mathematical practice of
problem solving and problem posing, which could serve as the basis for teachers to
improve their didactic analysis in relation to problem posing.

7.5 Final Considerations

The analysis of the experience developed, made by the research team using OSA
theoretical constructs, shows the teachers’ difficulties to pose problems taking into
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account didactic considerations, which are revealed in the pre-problems posed by
the teachers in the workshop, following the EPP strategy.

In virtue of the analyses performed and the importance of developing teachers’
didactic analysis competence, particularly when posing mathematical problems that
contribute to facilitate and carry on into their students’ learning, we propose the EPP
strategy for problem posing to be polished, considering a phase (R) of metacognitive
and didactic reflection; therefore, the strategy name would be ERPP. In such phase,
the teachers must elaborate a CC of their solutions to the problem presented in
the episode and—based on it—reflect on their practices. Thus, the new strategy we
propose has four phases: In the first one, a class episode is presented, proposing a
problem and students’ comments on its resolution, which reveal difficulties. In the
second phase, each teacher solves the problem presented in the episode and reflects
on themathematical activity necessary to solve it by using the tool of configuration of
mathematical objects (CC). In the third phase, each teacher poses a problem, called
pre-problem, so that its solution facilitates students’ understanding and solution of
the problem presented in the episode.

In the fourth phase, each teacher poses a problem, called post-problem, whose
characteristic is to have a higher cognitive demand than the problem presented in the
episode.

We have already developed this ERPP strategy in Torres andMalaspina (2018), in
which a phase of familiarization has been incorporated with the tool of configuration
of primary objects, proposed in the OSA.

Thus, based on the study done, we consider that we answer the research question,
proposing the ERPP strategy for mathematical problem posing, which in turn stim-
ulates the development of teachers’ didactic analysis competence, since a metacog-
nitive and didactic reflection phase is considered, supported by the use of the OSA
tools.

Stahnke, Schueler, and Roesken-Winter (2016) present a review of the empiri-
cal research done on mathematics teachers, and it concludes that these researches
show teachers have difficulties to analyze mathematical tasks (and their educational
potential) that their students propose. In order to overcome these difficulties, it is
fundamental for teachers to have the ability to analyze their own mathematical tasks
and, in that sense, we consider this proposal provides a specific means to do so, by
means of a problem posing strategy with a phase of didactic reflection.
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Chapter 8
The Impact of Various Methods
in Evaluating Metacognitive Strategies
in Mathematical Problem Solving

Mei Yoke Loh and Ngan Hoe Lee

8.1 Introduction

Metacognition that is often described as ‘thinking about thinking’, is sometimes con-
sidered as elusive because it is concerned with the internal processing of information
which is extremely difficult to capture through observation of students’ behavior
and analysis of written work. What is presented in written work hardly provides the
insights into students’ decision-making processes which are likely to be metacogni-
tive in nature and such decisions and reasoning may lead to the success or failure
in solving the problem. In addition, it is extremely difficult to differentiate between
cognitive and metacognitive processes as a combination of the different elements of
knowledge of both processes is at work at the same time (Garofalo & Lester, 1985;
Goos & Galbraith, 1996).

Despite the difficulty in collecting data on metacognition, various approaches
have been attempted. Self-reporting seemed to be a technique often associated with
metacognitive studies (Wilson, 2001). While there were concerns that self-reporting
measures may stimulate metacognition, students being their prime witnesses to their
own thinking, there is no better way to find out about their thinking (Solas, 1992;
Jacobse & Harskamp, 2012).

Some self-reporting techniques include survey, reflection log/journal, talk/think
aloud protocol, concurrent probing, and retrospective probing. These self-reporting
techniques could also be broadly classified by format (i.e. paper-pen format versus
verbalization) and data type (i.e. qualitative versus quantitative data). Of these, three
of the most commonly employed self-reporting techniques used in metacognitive
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studies, namely survey inventory (paper-pen and quantitative data), retrospective
self-reporting (paper-pen and qualitative) and qualitative interview (verbalization
and qualitative), were used in this study.

This paper presents the findings on the affordances of three self-reporting tech-
niques, survey inventory, retrospective self-reporting and qualitative interview, used
to collect data on metacognition in mathematical problem solving and how the find-
ings using these approaches impact on data interpretation. The findings aim to estab-
lish greater insights into approaches taken towards instrumentation and data analysis
in research relating to students’ metacognitive practices.

8.2 Definition of Metacognition in Mathematical Problem
Solving

Many researchers (Nietfeld, Cao, & Obsorne, 2005; Schraw & Dennison, 1994;
Schraw & Moshman, 1995) define metacognition as having two main components:
knowledge about cognition and regulation of cognition. Monitoring is considered as
a sub-process of regulation of cognition as it is difficult to classify observed behaviors
under monitoring and regulation separately. Some other researchers (Brown, 1987;
Efklides, 2006; Jacobse & Harskamp, 2012; Pintrich, Wolfers, & Baxter, 2000) have
surfacedmonitoring as a distinct metacognitive process from regulation of cognition.
The latter conceptualization of metacognition is more closely aligned to the Singa-
pore Primary Mathematics Syllabus (Ministry of Education [MOE], 2012) which
this study is based on.

Consequently, metacognition in mathematical problem solving for this current
study is operationalized as consisting of three interdependent components: metacog-
nitive awareness, metacognitive monitoring and metacognitive regulation. The three
components are described as follows:

MetacognitiveAwareness refers to an individual’s awareness of his or her owncog-
nitive and affective resources (Chang & Ang, 1999) in relation to the task. There are
three kinds of metacognitive awareness, namely awareness of declarative knowledge
(knowing what), procedural knowledge (knowing how), and conditional knowledge
(knowing when and why) (Hacker, 1998; Schraw & Moshman, 1995). From this
perspective, students’ metacognitive awareness about the problem and the strategies
or heuristics in problem solving would lead them to devise or select strategies to
solve a mathematics problem.

MetacognitiveMonitoring refers to periodic engagement in understanding the task
performance while executing the cognitive actions (Schraw & Moshman, 1995). It
includes actions that keep track of problem solving activities throughout the phases
of problem solving such as asking one-self questions to stay on task as one work on
the problem.

Metacognitive Regulation refers to decisionsmade after re-evaluation of cognitive
and metacognitive activities throughout the problem solving process (Brown, 1987;
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Efklides, 2006; Pintrich et al., 2000). Metacognitive regulation is a more observable
aspect of metacognition when it results in decision made to existing plans, and/or
monitoring actions, that lead to change in strategic actions based on existing knowl-
edge. However, regulationmay also result in non-actions e.g. student progresses with
plan after checking on workings half-way through executing the plan.

8.3 Theoretical Background of Self-reporting Approaches

As mentioned in Sect. 8.1, this study will examine three of the most commonly
employed self-reporting techniques used in metacognitive studies, namely survey
inventory, retrospective self-reporting and qualitative interview.

8.3.1 Self-reporting Survey Inventory as a Research Method

In the 1990s, as there were few standardized or commercial inventory to measure
metacognitive skills, a number of inventories were developed by different institutions
to examine metacognition processes in mathematics. One of them, the National Cen-
tre for Research on Evaluation, Standards, and Student Testing (CRESST) developed
a new measure on metacognitive and affective processes of children in the context
of a large scale mathematical alternative assessment program, which was believed
to result in higher level thinking or metacognitive skills (O’Neil & Abedi, 1996).
This inventory was a set of self-regulation measures, with the concept of metacog-
nition adapted from Pintrich and De Groot (1990). The inventory consists of plan-
ning, monitoring or self-checking, cognitive strategies and awareness. The construct
‘awareness’ was an added element that was not present in Pintrich and DeGroot’s
framework. It was added as the research team believed that there is no metacognition
without the participant being conscious of it (see also Flavell, 1979). O’Neil and
Brown (1998) used this inventory with 1032 8th grade students to find out if there
was differential effect between open-ended problem and multiple-choice question
on metacognition and affect.

Wilson (1997) conducted a pilot study tofindout key aspects of students’metacog-
nitive thinking as well as assessability of their metacognition. He used multiple
methods for data collection, a questionnaire which included open-ended mathemat-
ics questions and self-reporting of the problem solving processes, an inventory of
metacognitive behavior and an interview to clarify responses after solving a mathe-
matics question. The metacognition inventory was developed as there was no avail-
able questionnaire that assessedmetacognition of children at grade six. The inventory
was based on metacognitive behavior on monitoring one’s thinking about learning,
behavior, abilities and progress; and, monitoring task such as thinking about choice
of strategy, use of strategy and tools. The questionnaire was administered to 15Grade
Six students. Studentswere asked to indicate the frequency ofmetacognitive behavior



158 M. Y. Loh and N. H. Lee

practiced on a Likert scale for the inventory and record what they did as they solved
two mathematics problems. The questionnaire was adapted from the mathematics
questionnaires used by Stacey (1990) and Fortunato, Hecht, Kehr, Tittle and Alvarex
(1991) who designed statements that focused on various stages of problem solving:
planning, monitoring, evaluation and execution of the problem. Five students out of
the 15 students who answered the questionnaire were interviewed immediately after
the implementation of the questionnaire. They were asked to solve another prob-
lem and talk through their thinking strategies when interviewed. The questionnaire
was reported as effective in data collection while the interview did not seem to pro-
vide additional information beyond what was revealed in the questionnaire. Students
seemed to have difficulty reporting on their thinking when asked about the strategies
they used when solving the mathematics problem.

Survey inventory may not be an optimal instrument to measure metacognition but
in research involving large samples, survey inventory was used for pragmatic reasons
as othermore qualitativemethods such as reflective journal and interviewmight be too
time consuming (Sperling, Howard, & Murphy, 2002). Survey inventories are easily
administered and scored and that made them useful large-scale assessment tools. For
the same reason, the survey inventory is chosen as one of the data collection methods
for this study as it involved a large sample.

8.3.2 Written Self-report of Problem Solving Processes
as a Research Method

One of the self-reporting methods is to get students to report concurrently or retro-
spectively during a problem solving session. Students record in writing what they
did in the problem solving process instead of verbalisation in an interview. Wilson
(1997) found self-report in the form of recording what students did as they solved
mathematics problems, a reliable method of data collection when there were other
means to triangulate the data such as interviews and survey inventory. This finding
was also supported by other researchers (Cohen&Manion, 1994; Schoenfeld, 1985).

Pugalee (2001) in his study used a different method of self-report. Heworkedwith
twenty 9th graders enrolled in an Algebra I course to find out whether students’ writ-
ten description of their problem solving processes showed evidence of metacognitive
behavior. Each student solved 6 mathematics problems, one problem per day over
6 days. They recorded every thought that came to their mind while solving the prob-
lem. The writing demonstrated the existence of a metacognitive framework which
is comparable to that of Garofalo and Lester’s (1985) metacognitive framework:
orientation, organization, execution and verification.

While writing appears to function as a vehicle in finding out the metacognitive
behavior that are crucial to metacognition in mathematical problem solving, it is
noteworthy that quality written response is highly dependent on students’ linguistic
skills (Thorpe & Satterly, 1990) and willingness to write in detail. Therefore, written
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response might not represent the actual thinking (Chi, Bassok, Lewis, Reimann, &
Glaser, 1989). With all these limitations in mind, the written descriptions would be
interpreted with caution in this study.

8.3.3 Qualitative Interview as a Research Method

Ericsson and Simon (1980) developed three dimensions to verbalization: talk/think
aloud, concurrent probing and retrospective probing. Subsequently, other researchers
followed with similar classifications (Genest & Turk, 1981; Ginsburg, Kossan,
Schwartz, & Swanson, 1983). Ericsson and Simon (1980) defined the three dimen-
sions as follows:

(a) talk/think aloud: students verbalize their thinking with undirected probing con-
current to working on a task. The information reported is that which engaged
the student’s attention during the problem solving process;

(b) concurrent probing: students report on specific aspects that researchers are inter-
ested in during problem solving;

(c) retrospect probing: students are prompted to recall after problem solving and
then report on specific aspects that are of interest to the researchers.

While interviewsmay provide valuable in-depth information, there are limitations
to the above methods. Clarke (1992) believed that verbalization would interfere with
what it sought tomonitor. Itmight have stimulatedmetacognition rather thanprovided
data on cognition andmetacognition (Wilson, 1997).Webb,Campbell, Schwartz, and
Sechrest (1966) also claimed that probing intrudes into the students’ thinking and
may in the process of measuring, direct or change the thinking strategies and thus
reconstruct atypical responses that would not otherwise have occurred.

Wilson (1998) attempted an unconventional interview method termed as ‘multi-
method interviews’ which integrated oral Likert-type responses, self-assessment,
observation and think aloud technique. It was used to find out what metacognitive
and cognitive actions 30 Australian elementary school students employed during
problem solving. Action cards with action statements describing the cognitive or
metacognitive actions were used to encourage description of their thinking processes
during problem solving. The problem solving process was video-taped. During the
interview, the video of the problem solving attempt was replayed. Students could
change the action cards to better describe their thinking during problem solving
process when they reviewed the video. The interview seemed less disruptive to the
problem solving process. However, such changes might not truly reflect the actual
process as they were highly dependent on students’ memory of the entire process.
Besides, the use of action cards might have suggested actions for the students while
performing a task so theymight affect themetacognitive processes. Students appeared
to regularly evaluate their progress during problem solving. The most frequently
reported action statement was, “I checked my answer as I was working.”
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The validity of verbal methods of data collection in the area of thinking processes
has been questioned. Articulation of elements of thinking may not represent actual
thinking processes and information gathered may be incomplete. Also, it is believed
that females excel in verbal ability in the general population (Moccoby & Jacklin,
1974) and thismay point towards gender biasness in such amethodology that requires
language skill to accurately or elaborately describe various thinking processes.

Schoenfeld (1985) addressed the questions on incompleteness and environmental
influence, such as stress due to working under observation during interview or when
using pair protocol method. He argued that students working in pairs were likely to
produce more verbalization than working individually as both explain and defend
their decisions. However, at the same time, such verbalization may also influence the
thinking of the other and stimulate metacognitive activity. Furthermore, the verbal-
ized thoughts do not represent the approach taken by each student when working on
the task alone.

Having considered the above limitations from literature review, administration
of qualitative interview has to be done with care. One main concern researchers
raised is that in the process of the interview, students might be stimulated to be more
metacognitive.

Besides the manner in which an interview is conducted, another perennial ques-
tion to ask when interviews play a large part in the data collection process is ‘how
many interviews are sufficient?’ To this question, different researchers have differ-
ent answers but most agree on one point, that is, there is no formula for calculating
the appropriate number of interviews for every study (Adler & Adler, 2012). Most
researchers advise looking at the purpose of the interview (Back, 2012), and it is
important that the data collected yield sufficient convincing evidence that lead to
appropriate inferences and conclusion. For mixed qualitative methods, a small num-
ber of interviews suffice (Crouch & McKenzie, 2006). Flick (2012) suggested an
alternative perspective on sampling. If a study involved comparison of a few vari-
ables, there should be at least two cases from each cell of the grid in the comparative
structure. The number of interviews for this studywas based on the recommendations
in the above literature.

8.4 Problem Solving Metacognitive Framework (PSM)

For this study, a framework for metacognition involved during mathematical prob-
lem solving was developed in an attempt to better describe the possible metacog-
nitive strategies occurred while solving mathematics problems. Many frameworks
that described metacognition in mathematical problem solving tended to describe
metacognitive strategies according to the phases or stages of problem solving (Garo-
falo&Lester, 1985; Pólya, 1957; Schoenfeld, 1982; Schraw&Dennison, 1994). Sim-
ilarly, the framework developed for this study is called ‘Problem SolvingMetacogni-
tive’ framework (PSM) and it is two-dimensional. Types of metacognitive strategies
are defined by phases and levels. For phases of metacognitive strategies, definitions
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Fig. 8.1 PSM framework

were adapted from well-established work developed by Garofalo and Lester (1985),
Pólya (1957) and Schraw and Dennison (1994).

In terms of describing the depth (level) of metacognitive strategies, it was lack-
ing in literature. The learning approaches identified by Biggs (1987) were taken
into account when developing the PSM framework. While metacognitive activities
involving any of the three components of metacognition (i.e. metacognitive aware-
ness, monitoring and regulation) could occur at any of the four phases of the prob-
lem solving process, such activities are linked more specifically to different levels of
metacognitive strategies. Researchers (Brown, 1987; Flavell, 1979) have suggested
that metacognitive awareness precedes monitoring and regulation skills and Schoen-
feld (1985) has suggested that students who are better with self-regulating are better
problem solvers. Therefore, metacognitive strategies that are related to metacogni-
tive awareness are classified as Surface Strategies while those related to monitoring
and regulation are considered Deep and Achieving Strategies respectively. Thus the
three levels of strategies are assumed to be hierarchical in nature unlike phases. For
example, ‘reading over the text a number of times to understand and identify the
important points’ is a Surface strategy as it is related to metacognitive awareness
while a strategy such as ‘trying to use the information given in the problem to get
more information so as to better understand the problem’ is considered an Achiev-
ing strategy as it required elements of monitoring and regulating as well. Figure 8.1
below shows the PSM framework for the study. More details on the development of
the PSM framework is found in Loh (2015).

Descriptors for each phase of the PSM framework is shown in Table 8.1 and the
descriptors for each level of the PSM framework is shown in Table 8.2.

8.5 Research Questions

The research question for this study is:
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Table 8.1 Phases of metacognitive strategies in problem solving

Phase 1: Understanding

Strategic behavior to assess and understand a problem:
(a) Comprehension strategies
(b) Analysis of information and conditions
(c) Assessment of familiarity of the problem
(d) Initial and subsequent representation
(e) Assessment of level of difficulty

Phase 2: Planning

Choice of approach, heuristics and plan to solve the problem.

Phase 3: Execution

Strategic behavior to assess:
(a) Execution of plan (e.g. computation, procedure)
(b) Progress
(c) Trade-off decisions (e.g. speed vs. accuracy, degree of elegance)

Phase 4: Reflection

Evaluation of decisions made on:
(a) Processes involved during understanding, planning and execution phases
(b) Product (e.g. answers and procedure, reasonableness of answers)

Table 8.2 Levels of Metacognitive Strategies in Problem Solving

Level 1: Surface Strategy

The strategies that reflect the basic essentials of the task requirement such as reading
instructions, applying procedural and factual knowledge, and speed in completing task.

Level 2: Deep Strategy

The strategies that reflect sense making in terms of the relationship between different concepts
and skills, prior relevant knowledge, and including checking for accuracy and reasonableness in
working, procedures and answers.

Level 3: Achieving Strategy

The strategies that reflect on the efficiency in solving a mathematics problem; working beyond
what is given and derive at new information to solve the mathematics problem.

What are the affordances of self-reporting methods used to collect data on types of metacog-
nitive strategies students employed during mathematical problem solving based on the PSM
framework?

A mathematics problem in this study takes a broad-based definition of a mathe-
matics question which a problem solver does not have a direct or immediate path to
a solution. This has a similar definition in National Council of Teachers of Mathe-
matics (2000) that states “problem solving means engaging in a task for which the
solution method is not known in advance”.
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8.6 Methodology

The research design adopted is one of mixed method. Integration of quantitative
and qualitative approaches took place at the research question, data collection and
data analysis stages. The quantitative data from the survey inventory provided the
frequency count for each type of metacognitive strategies in the PSM framework.
The qualitative data from the retrospective self-reports was coded and transformed
to frequency count for each type of metacognitive strategies in the PSM framework.
These two sets of data were triangulated for analysis and reporting. Triangulation
of the frequency data would address the research question quantitatively and sup-
ported by the illustration of the metacognitive strategies exhibited in the problem
solving process from the qualitative descriptions in the retrospective self-report and
qualitative interview which is task-based.

8.6.1 Participants

The current study adopted a convenience sample of 22 classes. There were a total
of 783 Secondary One students (age 13 years old) from five Singapore secondary
schools. Data was collected in the beginning of Secondary One school term before
Secondary One mathematics content was taught. In this way, the results would be a
reflectionof the types ofmetacognitive strategies students,withPrimaryMathematics
education, employed during mathematical problem solving.

8.6.2 Research Methods

Cohen and Manion (1994) suggested that if two measures are used and they agree
leading to ‘convergent validity’, validity is assumed. Based on this argument, the
current study uses a mixed method triangulation approach that draws on both quanti-
tative and qualitative data so that the findings in this study can be stated with greater
confidence than studies based only on one data source as they draw upon several
pieces of data (Lee, 2008; Wilson, 1998; Wong, 1989). The methodology involved
in Wilson’s study (1997) was taken into consideration as it has close resemblance
with the current study that involved survey inventory, self-report on problem solving
processes and student interview.

A survey inventory and a problem solving test consisting of four word problems
with an element of retrospective self-report on the problem solving process were
administered to 783 Secondary One students. Taking into consideration of recom-
mendation by Flick (2012) that interviewees should be selected from various groups
of students for comparison between variables, two students were selected from each
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Table 8.3 Sample of statements from the survey inventory

Statements Source Phase Level

I read over the text a number
of times to understand and
identify the important points.

Wong (1989) Understanding Surface

I try to determine what the
problem required.

O’Neil and Abedi (1996) Planning Surface

I ask myself if I have
considered all options when
solving a problem.

Schraw and Dennison (1994) Execution Achieving

I check that my answers are
reasonable.

MOE (2007) Reflection Deep

class for the task-based interviews. Therefore, a total of 44 students of equal number
of male and female students were interviewed.

Survey Inventory. Items from the survey inventory were adapted and modified
fromvalidated survey inventories (O’Neil&Abedi, 1996; Schraw&Dennison, 1994;
Wilson, 1997, 1998; Wong, 1989). For example, action statements on metacognitive
behaviour fromWilson (1997, 1998) were taken into consideration when crafting the
inventory items. Some of these action statements such as ‘I thought about whether
what I was doing was working’ and ‘I checked my answer as I was working’ that
described themetacognitive behavior during Execution phasewere not found in other
survey inventories and were adapted for the current study. Since this inventory was
used for grade six students, the language used in the behavior statements was also
taken as reference when crafting the survey inventory for current study, given the
age of the students in consideration for this study. In addition to items that were
modified from other validated inventories, some items were developed and added to
the inventory based on the definition of metacognition in the Singapore mathematics
syllabus (MOE, 2007). For example, ‘I check that my answer is reasonable’. The
survey inventory consists of statements that describe variousmetacognitive strategies
involved during problem solving and students were to decide to what extent they
used the strategies in each on the 42 statements on a 5-point Likert scale. The survey
inventory was validated and it demonstrated an overall high reliability (42 items;
α � 0.93). More details on the validation of the survey inventory can be found
in Loh (2015). The survey statements were also classified by phases and levels of
metacognitive strategies. The mean value of each phase and level were tabulated for
comparison and analysis. Some sample statements are shown in Table 8.3.

Problem Solving Test with Retrospective Self -report. Four mathematics problems
were used as a basis for students to self-report retrospectively of the problem solving
processes. The mathematics problems were based on content covered in Primary
Mathematics (MOE, 2012). One of the mathematics problems is as follows:
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Three students, Ali, Sam and Don were given the following problem: 
2A4, 329 and 5B3 are 3-digit numbers. 
When 2A4 is added to 329, it gives 5B3. 
5B3 is divisible by 3.
What is the largest possible value of A? 

  Ali thought A could be 1. 
  Sam thought A was 5. 
Don thought A was 4. 
Who was correct?

2A4
+329
5B3

Themetacognitive strategies identified in the retrospective self-report of the prob-
lem solving test were coded with a set of codes developed based on the items from
the survey inventory (such as those in Table 8.3) so as to facilitate comparison and tri-
angulation. Each metacognitive activity identified in a self-report was coded for both
phase and level. The frequency of codes for each phase and level in each self-report
were tabulated for comparison and analysis. About 11.2% of the self-reports were
coded twice by the researcher and a mathematics educator who has some knowledge
of metacognition in mathematics. The inter-rater reliability index attained at 88.4%.
The rest of the self-reports were coded by the researcher alone. These transcripts
were coded twice by the researcher at intra-rater reliability of 92% as there was no
available coder with the expert knowledge on metacognition and mathematical prob-
lem solving. More details on the coding of the retrospective self-reports is found in
Loh (2015).

Task-based Interview. This task-based interview used one mathematics problem,
similar to those in the problem solving test for retrospective self-report. Each stu-
dent solved the mathematics problem and simultaneously use ‘think aloud’ strategy
to verbalize his/her thoughts. It was deliberate to use concurrent reporting of the
problem solving process in task-based interview so as to provide a different perspec-
tive from retrospective self-report in the problem solving test. With reference from
literature review on studies by Clarke (1992) and Wilson (1997), it is important to
ensure that the interviewer restrains from asking questions when the interviewees
articulate their problem solving process based on a task. Minimizing prompts would
minimize stimulation to their metacognition. However, if the student remained silent
for more than 15 s, the researcher would prompt the student in a neutral manner e.g.
‘keep talking’, ‘don’t keep quiet/silent’, ‘tell me what’s on your mind’, ‘what are
you thinking now?’. These prompts were only used as incitements to sustain think-
ing aloud and would have little or no influence on the thought processes (Ericsson,
2006). The resulting interview protocols were concurrent rather than retrospective in
nature which, hopefully, would be less vulnerable to memory distortion and a closer
representation of their metacognitive activities at the time of the problem solving pro-
cess (Veenman, 2005). This would also provide information on metacognition with a
different perspective from retrospective self-reporting. It would provide a descriptive
picture ofmetacognitive strategies employed by studentswhile solving problem. This
would serve to complement retrospective self-report of problem solving processes
and the survey inventory. The interviews were tape-recorded and selected portions of
the audio recordings were transcribed. The metacognitive strategies identified in the
transcript were also coded with the same set of codes as the retrospective self-report.
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While this set of data could be used for triangulation with the survey inventory and
retrospective self-report, the small number of data as compared to survey inventory
and retrospective self-report would have to be interpreted cautiously. Each metacog-
nitive activity identified in the transcript of the interview was coded for both phase
and level.

The transcripts were coded with the same list of metacognitive activities as those
in the survey inventory and retrospective self-report. The transcripts were coded
twice by the researcher for intra-rater reliability. Coding of the transcripts required
careful analysis especially when description of these activities might be unclear
or disjointed. The mean value of the frequency of student usage of metacognitive
strategies by phases and levels in the transcripts were calculated to triangulate with
those of survey inventory and retrospective self-report.

8.7 Results

Data from two data collection instruments, survey inventory and retrospective self-
report, was used to analyze the frequency of student usage by phases and levels
of metacognitive strategies first. After triangulation and comparison of results from
these two instruments, data from the task-based interviewwould be analyze to support
the findings qualitatively.

8.7.1 Frequency of Student Usage of Metacognitive
Strategies by Phases in Problem Solving

There were two sources of data for analysis. The frequency of codes for each phase
in the retrospective self-report was tabulated and then the phase mean would be cal-
culated. For the survey inventory, the mean value of each phase would be calculated.
Figure 8.2 shows the bar graphs of phase mean with data from survey inventory and
retrospective self-report.

From the survey inventory, the highest frequencyof student usageofmetacognitive
strategies is at Phase 4 (M � 3.71, SD � 0.71), followed by Phase 2 (M � 3.65,
SD � 0.69). Comparatively, students scored lowest in Phase 1 (M � 3.46, SD �
0.59) indicating that students seemed least active in metacognition during Phase 1 of
problem solving. However, it is important to note that the mean values of all the four
phases are relatively closed, in the 3 to 4 range. From the retrospective self-report,
the highest frequency of student usage of metacognitive strategies was at Phase 1 (M
� 2.14), followed by Phase 3 (M � 1.23). Phase 4 (M � 0.08) had the least number
of occurrences of metacognitive strategies.

The results fromboth data source ran contrary to each other. The highest frequency
of student usage of metacognitive strategies occurred at Phase 1 in the retrospective
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Fig. 8.2 Phase mean with data from survey and self-report

self-report but it was at Phase 4 in the survey inventory. On the other hand, the
lowest frequency of student usage of metacognitive strategies occurred at Phase
4 in retrospective self-report but it was at Phase 1 in the survey inventory. The
findings from the survey were similar to that from Wong (1989) who also used
survey inventory as the data collection instrument.

In conclusion, there is a difference in the frequency of student usage for each
phase of metacognitive strategies while solving mathematics problems. However,
there is no clarity at which phase where the highest or lowest frequency of student
usage of metacognitive strategies occurred since the results from the survey and the
self-report do not agree.

8.7.2 Frequency of Student Usage of Metacognitive
Strategies by Levels in Problem Solving

Similar to phases of metacognitive strategies, there were two sources of data for
analysis. For the retrospective self-report, the frequency of codes for each level was
tabulated and then the level mean would be calculated. For the survey inventory, the
mean value of each level would be calculated. The data set used for analysis was the
same as that for phases of metacognitive strategies, N � 783.

Coding of the retrospective self-report was based on matching the identified
metacognitive strategies with the codes regardless of the hierarchical levels i.e. the
statements would be coded literally without presumption of prior metacognitive
activities. For example, the statement ‘I was thinking how to find out if … in an
easier way’ was coded as an Achieving strategy only, even though the student was
likely to also have checked the workings (a Deep strategy). Figure 8.3 shows the
level mean with data from survey inventory and retrospective self-report.

For the retrospective self-report, there were more Deep strategies (M� 2.68) than
Surface (M � 1.25) and Achieving (M � 0.51) strategies. Levels of metacognitive
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Fig. 8.3 Level mean with data from survey inventory and retrospective self-report

strategies being hierarchical in nature could mean that those who practiced deep
strategies also practiced surface strategies. Similarly, those who practiced achieving
strategies would have also practiced surface and deep strategies. However, the other
way was not true.

For the survey inventory, the highest frequency of student usage of metacognitive
strategies is at Surface Level (M � 3.61, SD � 0.49) followed by Achieving Level
(M � 3.55, SD � 0.65), and lastly at Deep Level (M � 3.46, SD � 0.61). Again, the
mean values of all the three levels are relatively closed, in the 3 to 4 range.

Similar to the results for frequency of student usage of metacognitive strategies
by phases, the results by levels from retrospective self-report and survey inventory
did not seem to match. Retrospective self-report showed that more deep strategies
were exhibited in the problem solving process while the survey inventory reported
that students employed more surface strategies.

In conclusion, there is a difference in the frequency of student usage for each
level of metacognitive strategies while solving mathematics problems. However,
there is no clarity at which level the highest or lowest frequency of student usage of
metacognitive strategies occurred since the results from the survey inventory and the
retrospective self-report do not agree.

8.7.3 Data from Task-Based Interview

As part of the methodology in this study, the task-based interview is a qualitative
measure to triangulate and support the quantitative findings from the survey inventory
and retrospective self-report. Figure 8.4 shows the bar graphs of phase and level
means with data from the task-based interview.

The highest frequency of student usage of metacognitive strategies is at Phase 3
(M� 3.03), followed by Phase 1 (M� 2.10). Comparatively, students scored lowest
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Fig. 8.4 Phase and level mean with data from task-based interview

in Phase 4 (M � 0.03) indicating that students seemed least active in metacognitive
processes during Phase 4 of problem solving. The highest frequency of student usage
of metacognitive strategies was at Achieving Level (M � 2.69), followed by Deep
Level (M � 1.59). Surface Level (M � 1.52) had the least number of occurrences of
metacognitive strategies.

As a third measure to triangulate with the results from survey inventory and
retrospective self-report, the results from the interview also do not seem to match in
terms of the frequency of student usage of metacognitive strategies by phases and
levels.

8.8 Discussion

While the survey inventory, retrospective self-report and task-based interview are
familiar instruments used in research on metacognition, they are often used singly
and researchers have expressed concerns in their reliability (Thorpe& Satterly, 1990;
Clarke, 1992; Sperling et al., 2002). This study explores the use of more than one
approach in data collection with the intention to be able to state the findings with
greater confidence as they draw upon several pieces of data. There were two consid-
erations when choosing the data collection instruments: large sample size and enable
analysis of individual student’s metacognitive behaviors. Balancing theoretical and
practical issues is a challenge. Sperling et al. (2002) supported the use of survey
inventory for large sample and qualitative methods might be too time consuming
(Schellings & Van Hout-Wolters, 2011). However, survey inventory only requires
students to response to a set of pre-set statements on Likert scale and does not pro-
vide an avenue for students to describe their thinking individually. An open-ended
approach that enables students to articulate in their own words their thought pro-
cesses pertaining to specific problems would provide data for analyzing individual
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Table 8.4 Frequency of student usage by phases of metacognitive strategies

Instruments Most frequent 2nd most
frequent

3rd most
frequent

Least
frequent

Survey inventory Phase 4 Phase 2 Phase 3 Phase 1

Retrospective
self-report

Phase 1 Phase 3 Phase 2 Phase 4

Task-based
interview

Phase 3 Phase 1 Phase 2 Phase 4

Table 8.5 Frequency of student usage by levels of metacognitive strategies

Instruments Most frequent 2nd most frequent Least frequent

Survey inventory Surface Achieving Deep

Retrospective self-report Deep Surface Achieving

Task-based interview Achieving Deep Surface

student’s metacognitive behaviors, retrospective self-report of problem solving pro-
cesses and task-based interview are such instruments. Self-reporting retrospectively
and concurrently of problem solving processes provided different perspectives of
metacognition during problem solving too. While the study by Wilson (1997) used
such similar mix of approaches, that study had a small sample of fifteen students and
the different approaches were meant to collect more data on students’ metacognition
rather than triangulation between data sets, therefore there was no report on conflict-
ing results from that study. In fact, literature reviewed did not surface any study that
have triangulated data collected through three different instruments.

8.8.1 Triangulation of Data from Three Data Collection
Instrument

The data from the three data collection instruments seemed to offer different results in
terms of most or least frequent student usage of metacognitive strategies by phases
and levels. A summary of the results is showed in Table 8.4 for the frequency of
student usage by phases of metacognitive strategies and Table 8.5 for the frequency
of student usage by levels of metacognitive strategies.

While it seems like the instruments are not reliable tools for data collection in the
current study, from another perspective, it could mean that the nature of each instru-
ment may have drawn different aspects of metacognitive responses from students.
The survey does not have specific mathematics tasks for students to relate to when
responding to the survey items so the responses were based on a general problem
solving situation. This differs from the retrospective self-report and task-based inter-



8 The Impact of Various Methods in Evaluating Metacognitive … 171

Fig. 8.5 An example of a student’s self-report

view that are more closely associated with students’ metacognitive behaviors when
executing a mathematical problem solving task.

Students might have responded to survey items according to social desirability
(Cromley & Azevedo, 2011) rather than what they actually do during problem solv-
ing. For example, mathematics teachers in Singapore might have often reminded
students to ‘check their answers’ before handing in their work but in reality, students
might not have checked the answers thoroughly and the manner of checking might
not involve a metacognitive decision. This could be one of the reasons that the survey
results showed Phase 4 (reflection) with the highest mean value in survey but not so
for retrospective self-report and task-based interview where students worked on the
tasks.

In addition, in terms of phases of metacognitive strategies, it is highly likely that
students are not able to clearly differentiate metacognitive activities by phases in the
survey inventory since they are not concurrently working on a mathematics problem.
Students, for example, might not differentiate ‘attending to instructions carefully’ in
Phase 1 (Understanding) from ‘stop and reread the problem when I get confused’
in Phase 3 (Execution). They might see both actions simply related to reading the
problem and thus, might not accurately reflect the frequency of usage at different
phases. Retrospective self-report and task-based interview, on the other hand, could
better help students to relate to the phases in problem solving as they worked on
an actual problem. This may explain some similarities in findings obtain from these
two instruments. Both have the same least frequent phase while the first two highest
frequent phases were Phase 1 and 3.

When describing the problem solving processes in the retrospective self-reports,
students tended to describe their understanding of the problem (Phase 1) more than
the other phases. The activities relating to Phase 3 and 4 are more evident in the
‘working’. An example of a retrospective self-report that illustrated the above is
shown in Fig. 8.5.

The example in Fig. 8.5 shows that the student deliberately omitted description
of Phase 2, 3 and 4 processes which evidently were in the ‘steps in the working
space’. This is a typical example of a retrospective self-report. As such, metacog-
nitive strategies exhibited in a retrospective self-report was limited to mainly Phase
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Fig. 8.6 An example of a self-report for Question 4 that described only the procedures in working

1 processes. For those who tried to describe the other phases in the retrospective
self-report, many times students ended up describing the ‘workings’ i.e. stating the
procedural steps in words, instead of describing the thinking behind the decisions
madewhen solving a problem.An example that illustrates a typical retrospective self-
report that described the procedural steps in solving a problem is shown in Fig. 8.6.
Nonetheless, overall, retrospective self-report seems to present more accurate data
on phases of metacognitive strategies than survey inventory.

Similarly, as students worked on the mathematics task during the interview,
metacognitive activities during various phases are more explicit as students artic-
ulate their thoughts while solving the problem concurrently. Even when a student
moved back-and-forth between different phases, their articulation would be easily
identified by phases in problem solving. This method is probably even more accurate
in capturing data by phases in problem solving than retrospective self-report which
is still subjected to memory distortion, though it is also true that the ‘think aloud’
strategy during the task-based interview might have prompted students to be more
metacognitive, as reflected by the literature.

In terms of levels of metacognitive strategies, it is still possible for the students
to reflect the metacognitive strategies at each level in a survey inventory without
actually working on a mathematics problem. Returning to the example cited earlier,
similar metacognitive activities (‘attending to instructions carefully’ and ‘stop and
reread the problem when I get confused’) were at the same level (i.e. Surface level)
despite the differences in phases (i.e. Phase 1 and 3). Therefore, a survey would still
be a reasonable instrument for use in the investigation of levels of metacognitive
strategies. On the other hand, as observed in the retrospective self-reports, even a
brief description of a metacognitive activity could be easily identified by phases of
problem solving but it is not true about the depth of the strategy. Figure 8.7 shows
an example of a student’s self-report that explained the situation described.

In trying to understand the problem (Phase 1), the student wrote down notes fol-
lowed by execution of the plan (Phase 3) as the student did the working, labelled and
organized the working. However, the brief statement ‘wrote down notes’ described
an action but the statement itself is insufficient to decipher whether it is a metacog-
nitive strategy at Surface level such as ‘attending to the instructions carefully’ or
Achieving level such as ‘spending time to recall key points’. Sometimes with the
help of the working, it could help to determine the level of metacognitive strategy
while other times it remains vague.
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Fig. 8.7 Example of a student’s self-report on Question 3 problem-solving working

8.9 Conclusion and Implications

The affordances of each data collection instrument would only provide one dimen-
sion of metacognition in mathematical problem solving. For large-scale study, the
survey inventory is an instrument appropriate for use in the investigation of levels
of metacognitive strategies while retrospective self-report and task-based interview
is more appropriate for use in the investigation of phases of metacognitive strate-
gies. Even though the data did not agree with each other, in this case, it would not
imply that there is no ‘convergent validity (Cohen & Manion, 1994) as different
methods measure different dimension of metacognition. For a smaller sample size,
perhaps task-based interview could be used to identify both the phases and levels of
metacognitive strategies.

While it may be argued that if the objective of a study is only on one dimension of
metacognition in mathematical problem solving, just an appropriate data collection
instrument is sufficient. However, the findings may not provide a true picture of each
student’s overall metacognitive behavior.

In conclusion, a single measure would only provide a skew perspective about
metacognition inmathematical problem solving in general. Thus, it would be difficult
to compare various studies, internationally or locally, that used different data col-
lection instruments. Findings from different research studies on participants, tasks,
topics and methodologies varied substantially may not be generalized. There is,
therefore, a need to use multiple approaches to collect data in order to have a good
understanding of metacognition in mathematical problem solving from different per-
spectives before the findings could be generalized.
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Chapter 9
Assessing Inquiry-Based Mathematics
Education with Both a Summative
and Formative Purpose

Maud Chanudet

9.1 Introduction

Posing and solving problems have always been at the core of mathematics. Through-
out history, mathematics has been constructed to answer questions and problems
(Charnay, 1988). Halmos summarizes the place of problems in mathematics by con-
sidering it as a key component of the field: “What mathematics really consists of is
problems and solutions” (1980, p. 519).

Problem solving, as a fundamental element in the construction of mathematics
knowledge, has also been one of the major goals in mathematics education for a
long time. Recently, the increasing interest in inquiry-based mathematics education
(IBME), which broadly considers problem solving, encompasses common goals for
mathematics and sciences education. In many countries, problem solving and IBME
take a central part in the curriculum, as a means to develop specific mathematical
contents and knowledge, but also as a goal in itself. “[Mathematical problem solving]
has infused mathematics curricula around the world with calls for the teaching of
problem solving as well as the teaching of mathematics through problem solving”
(Liljedahl, Santos-Trigo, Malaspina, & Bruder, 2016, p. 1).

This emphasis on problem solving and inquiry in mathematics education con-
stitutes a change in mathematics education goals. As Artigue and Blomhøj (2013)
remind us, there are tensions between the teaching and learning of specific concepts
and techniques, organized according to a curricular progression andmathematics top-
ics (space, numbers, operations, algebra, functions for instance) and the accent put
on inquiry habits of mind and heuristics for problem solving. This approach raises
a major question mark for teachers who struggle to assess such problem solving
abilities and inquiry habits of mind.
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In that sense, new approaches to classroom assessment are needed in order to
give teachers access to students’ thinking and to improve teachers’ assessment skills
(Goos, 2014). Exploring new forms of classroom assessment seems all the more
important as the assessment of students’ learning has an impact on what is taught
and how it is taught (Harlen, 2013). In the case of IBME, specific issues related
to assessment arise: to understand what teachers want students to know and conse-
quently what needs to be assessed, how to assess it, and how to improve students’
problem solving competencies.

Thus, summative and formative functions of assessment pertaining to students’
problem solving competencies remain a primary concern of teachers and the research
community.

9.2 Research Questions and Outline of the Chapter

In this chapter, I partly address these issues in a specific context: the case of a problem
solving centered course given in the canton of Geneva in French-speaking Switzer-
land and calledmathematics development course (MDC). The global objective of my
research is to find out if and howusing an assessment tool such as a grid of criteria, can
be useful for summative assessment, and can also encourage formative assessment
processes and strengthen assessment for learning, in the case of a problem solving
centered course. My research questions are: Is a common assessment tool useful for
teachers to assess students in a summative way? Can a common assessment tool
encourage formative assessment processes during specific problem solving lessons?

The remaining part of the chapter is structured as follows. First, I explain the
context of this special course and present my theoretical framework based on theories
from didactics of mathematics but also on theories from the field of the assessment
of students’ learning. I then expose the results of a survey focusing on the teachers’
perception of MDC and their summative assessment reports on assessing students’
problem solving competencies. After that, I explain how the survey leads me to
work in a collaborative way with two teachers of MDC in order to construct a tool
for mathematics teachers to assess students’ problem solving performances with
both summative and formative purpose. Finally, I present an exploratory study that
analyzes a teacher’s formative assessment practices within theMDC context in order
to understand if and how she develops informal formative assessment and how she
refers to this tool.



9 Assessing Inquiry-Based Mathematics Education … 179

9.3 Theoretical Framework

9.3.1 Problem-Solving

Problem Solving and IBME as Learning Goals
Problem solving can be considered as “a response to a question for which one does
not already know a method by which it can be answered” (Monaghan, Pool, Roper,
& Threlfall, 2009, p. 24). In the French mathematics teaching tradition, problem
solving has been seen for many years as a means to develop specific mathematical
content and knowledge (Brousseau, 1998). It can be used “to attest the appropriation
of mathematical knowledge but also to motivate the need for this knowledge and
make its learning meaningful” (Artigue & Houdement, 2007, p. 368). However, for
the past couple of years, many countries, and especially European countries, have
been emphasizing problem solving in mathematics and inquiry in science education
as a learning goal for its sake. Noticing that young people are less and less interested
inmathematics and sciences, theEuropeanRocard’s report (Rocard, Csermely, Jorde,
Lenzen, Walberg-Henriksson, & Hemmo, 2007) promotes a wider implementation
of inquiry-based mathematics and science education (IBMSE) in classrooms as a
tool to make sciences and mathematics more attractive to students. A lot of European
projects have emerged recently to support the implementation and the development of
IBME inmathematics teaching (Artigue&Blomhøj, 2013). However, this increasing
interest in IBMSEhas not been followedby a concise and commonly shared definition
(Dorier & Garcia, 2013). To summarize, it

refers to a student-centered paradigm of teachingmathematics and science, in which students
are invited to work in ways similar to how mathematicians and scientists work. This means
they have to observe phenomena, ask questions, look for mathematical and scientific ways
of how to answer these questions (like carrying out experiments, systematically controlling
variables, drawing, diagrams, calculating, looking for patterns and relationships, making
conjectures and generalizations), interpret and evaluate their solutions and communicate
and discuss their solutions effectively. (Dorier & Maass, 2014, p. 300)

The generic goal of IBME is to make students work in ways similar to the one of
mathematicians and scientists (Artigue & Blomhøj, 2013; Dorier & Garcia, 2013;
Dorier & Maass, 2014) and to make students familiar with a scientific approach to
solve problems. But as Dorier and Maass say “inquiry based mathematics education
remains quite marginal in day-to-day mathematics teaching” (2014, p. 303) and
implementing IBME in classrooms remains a crucial issue. This difficulty to make
IBME appear in day-to-day teaching can be attributed to multiple reasons: lack of
training for teachers, lack of time, weight of traditions (Dorier & Garcia, 2013).

The Place of IBMSE and Problem Solving in the Mathematics Curriculum
in French-Speaking Switzerland
In French-speaking Switzerland, the shared curriculum for compulsory education
promotes IBMSE in teaching mathematics and sciences. Moreover, in order to stress
the strong link between mathematics and experimental sciences, these subjects are
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included in the same field and have general instructions in common. The shared goal
is to promote students’ scientific processes of thought. As a means to engage stu-
dents in IBME, mathematics teachers are encouraged to focus on problem solving.
In French speaking Switzerland, the implementation of IBME into teaching of math-
ematics is mainly approached through problem solving. It is though not unusual,
as highlighted by Artigue and Blomhøj (2013) to make connections between prob-
lem solving and IBME because “problem solving competences and metacognitive
skills can be interpreted in terms of inquiry habits of mind and related to the five
essential ingredients attached to inquiry” (p. 802). These five ingredients are: valued
outcomes, classroom culture, teacher guidance, type of questions and what students
do.

Mathematics Development Course: A Special Course Aiming at Developing
IBME and Student’s Problem Solving Competencies
Therefore, in the canton of Geneva, theMDC has been created to support the integra-
tion of IBME in class. Themain goal of this course is to improve the students’ problem
solving competencies, as described in the institutional guidelines (cf. Annexe 2, part
I). This annual course is designed for a 45-min period per week and is delivered
to 13–14 year1 old students with a science profile. It is also important to mention
that students do not necessarily have the same mathematics teacher as for the ordi-
nary mathematics courses. Consequently, a teacher of the MDC does not necessarily
know what students have already learnt in ordinary mathematics classes, and what
problems they have already worked with.

Furthermore, according to the institutional guidelines of the MDC (Annexe 2,
parts II and III), teachers have to provide students with specific activities related
to mathematical strategies (analogical reasoning, study all cases, counterexample,
introduction to proof, etc.) in order to establish debate rules and to develop a scientific
approach following the pattern “make trials—conjecture—test—prove”. These two
goals aim to develop a systematic approach to solving problems. In that sense, teach-
ers are invited to propose open-ended problems (Arsac, Germain, &Mante, 1991) to
students, which is, in France and in French speaking Switzerland, a traditional way
of introducing students to IBME (Annexe 2, part IV a). An open-ended problem is a
problem that has a short statement, has no obvious solution and enables students to
find an easy but not sufficient method to solve it. An example of a well-known open-
ended problem is “Howmany diagonals does an n-sided polygon have?” Facing such
a problem, students may use or learn some of the strategies mentioned above. These
goals, establishing debate rules and developing a scientific approach, are described
in a general way in the guidelines and can lead to wonder what these mathematical
intended learning outcomes really are, and if it is possible to define it more precisely.

The Intended Learning Outcomes of MDC
For Hersant (2012), a scientific approach (as the quadruplet “make trials-conjecture-
test-prove”) cannot be considered as a relevant learning goal, especially because
this goal is unclear, non-unique and too ambitious. When focusing on the intended

1Grade 8.
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learning outcomes expressed in the curriculum, according to Hersant (2010) it is
not possible to consider the scientific approach following the pattern of “make tri-
als—conjecture—test—prove” as the only one, especially because the articulation
between the step of tests and the step of proof is problem-specific. She also empha-
sizes that what gives this approach a scientific dimension is not the existence of trials,
conjecture and proof but the articulation among these. She concludes her study with
a last point concerning a possible intended learning outcome of problem solving for
10–11-year-old students. According to her, fundamental mathematics knowledge
about problem solving is the articulation between the facts register and the reasoning
register. Considering a specific problem, the intended learning outcome should be
that students ponder whether solving this problem is possible or impossible, and
why. Their reflection should be related to the link between the existence and the
universality of the solution, in order to give them access to rationality and not only
to empiricism. But these goals are not expressed in the curriculum and even if it was
the case, it is easy to imagine that it would not be easy to implement in day-to-day
practices.

The first goal, developing a scientific approach when solving problems, is not so
obvious and unique, neither is the second. Debate rules can indeed refer to logical
rules (for instance several examples do not prove a proposition, a counterexample
is sufficient to disprove a conjecture, etc.) or to social rules (for instance listen to
the others, etc.). It seems important to distinguish these two kinds of debate rules in
order to make students aware of what are the specific logical rules that constitute the
field of mathematics.

The Adaptation of Polya’s Model in of the Guidelines for MDC
A method of problem solving inspired by Polya (1945) is described within the insti-
tutional guidelines (Annexe 2, part IV b). It is presented both in the curriculum (for
the teachers) and in the students’ theoretical book (for the students). This adaptation
consists of three parts: part 1 (appropriation of thewording) correspondswith Polya’s
model, part 2 (data processing) combines the steps 2–4 from Polya’s model (to devise
a plan, to carry out the plan, to review and extend) and part 3 (communication of
research procedures and results) related to communication has been added. This last
part emphasises that in the curriculum of MDC, communication skills play a major
role.

Even though, in his model, Polya insists on the importance of relying on past
experiences to solve newproblems (Liljedahl et al., 2016), and this not only during the
step process related to devising a plan (Haveyou seen it before?Doyouknowa related
problem?) but also in the last part linked to looking back (Can you use the result,
or the method, for some other problem?), the curriculum does not seem to reflect
this importance when adapting Polya’s model. Yet, this ability to recognize relevant
elements in previously solved problems and to use themwhen solving a new problem
is a key component of problem solving competencies. Julo (2002) claims that students
are competent problem solvers when they succeed in recognizing such common
and relevant elements among problems and that it is central to develop a memory
of previously solved problems, so called problems schemas. But even if this skill
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(referring to previous experiences) is not emphasized in themodel of problem solving
developed in the curriculum, as mentioned above, one of the strategies students
have to learn is analogical reasoning. Using analogical reasoning means that when
facing a new problem we recognize similarities between situations or objects to
transfer properties of solving methods from one to another (Weil-Barais, 1993).
Thus analogical reasoning is close to the skill of referring to previous experiences.

According to research studies, “the identification of problemsolving strategies and
the process of modelling their use in instruction was not sufficient for students to fos-
ter their comprehension of mathematical knowledge and problem solving approach-
es” (Santos-Trigo, 2014, p. 498). The remaining key issue is to identify how teachers
can help students recognise relevant common elements between problems, create
appropriate links among these in order to transfer and apply their knowledge in new
situations. Finally, the explanation of Polya’s model has not been followed by the
expected results (Julo, 2002). In that sense, one can wonder what is really expected
according to the institutional guidelines by proposing this problem solving model
to students. To ask students to solve problems following the steps described in the
model? To give teachers some guidelines to elicit students’ understanding, students’
conceptions? There is no more information in the institutional guidelines for MDC.
In practice, I observed that there are many classes in which teachers ask students to
write down their research according to the three steps adapted from Polya’s model
(appropriation of the wording; data processing; and communication of research pro-
cedures and results). Students start their narration by rephrasing the problem, then
they explain their research and finally they give their conclusion about the problem.
In that sense, this method of problem solving inspired by Polya seems to be a guide
for students to write down their research narrative more than a tool to help them solve
the problem.

Consequently, the guidelines for MDC do not seem to clearly define what is insti-
tutionally expected about students’ problem solving competencies and how teachers
can foster such abilities. Identifying what students have to learn and to know about
problem solving is still a problematic issue. It is also the case in England whereMon-
aghan et al. claim that “expectations around problem solving are less well established
and less secure and would need to be developed” (2009). The identification of the
intended learning outcomes from IBME is by no means obvious, even for teachers,
and the danger is that students might not be aware of what they are supposed to
learn and to know. That is why IBME learning goals should be at the midst of spe-
cific discussions with students in class. Even though such discussions should also be
encouraged during traditional mathematic classes, it is all the more important in the
case of IBME.

Moreover, in MDC, teachers have to improve students’ competencies and at the
same time, assess them very frequently, about one time every four lessons. It raises a
crucial question that is at the core of my research: how to assess and foster students’
problem solving competencies? It leads me to move my attention to assessment of
student’s learning.
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9.3.2 Assessment of Student’s Learning

Formative and Summative Assessment of Student’s Learning
According to Allal (2008b) assessment is summative as soon as a synthesis of the
competencies and knowledge learnt is established by the student at the end of her/his
course. The aim is to confirm that student’s learning is alignedwith system’s intended
outcomes. According to the distinction made by Scriven (1967) and then by Bloom
(1968) between the summative and the formative functions of assessment, Black
and Wiliam (1998) talk about formative assessment as soon as it is possible to get
information, that they call feedback, about the gap between students’ real level and
the one they have to achieve. The notion of feedback is a key component of formative
assessment. Formative assessment contains

all those activities undertaken by teachers, and/or by their students, which provide informa-
tion to be used as feedback to modify the teaching and learning activities. (Black &Wiliam,
1998, pp. 7–8)

However, feedback is considered formative only if the informationgathered is used
to improve performance. The French community, considering formative assessment
in an expanded way, deals instead with the notion of regulation (Mottier Lopez,
2012) that takes into account feedback, but also the adaptation that can be provided
to teaching and learning.

Thedefinitions of summative and formative assessment emphasize that identifying
assessment according towhen it occurs (after a phase of teaching vs.within a teaching
activity for instance) or how it occurs (paper-pencil test vs. worksheet for instance)
seems less relevant than distinguishing assessment according to its function. But
it does not mean that these two principal functions of assessment (summative and
formative) cannot coexist. Thus some researchers (Allal, 2011; Harlen, 2012) argue
that they can coexist in what Earl (2003) calls assessment for learning. That is, the
same assessment activity can serve a summative and a formative purpose.

One the one hand it means that data collected by the teacher can be used to give
students amark, to acknowledge students’ competencies but also to improve learning
and teaching. On the other hand, for Shavelson et al., “formative assessment could
serve summative needs” (2008, p. 298). Nevertheless, Harlen (2012) claims that it
is necessary to be careful when using the same evidence for both, summative and
formative purposes in order to protect the integrity of assessment and ensure that it
has a positive impact on students’ learning.

Criteria and Indicators
Whatever its function, assessment activity implies “the generation, interpretation,
communication and use of data” (Harlen, 2013, p. 7). Data used by teachers to assess
students within IBME aremostly judged “in relation to criteria, in which the standard
of comparison is a description of aspects of performance” (Ibid., p. 7). Criteria are
considered asways to look at the students’ production according to expected qualities
(Gerard, 2010). If the criteria remain at a general level, teachers also need to define
indicators related to each criterion. Indicators, more specific than criteria, make the
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evaluator aware of what she/he should look for in the students’ production. Perhaps
even more than for other mathematics’ topics, defining criteria to assess students’
problem solving competencies is difficult and deserves particular attention.

According toAllal (2008a), using an assessment tool such as a rubric of assessment
criteria may help both: to control the action of the evaluator and to amplify her/his
judgment skill. In that sense, teachers can use a tool to assess students’ problem
solving competencies, which can be a grid of criteria and indicators. Referring to this
tool, teachers can assess students for summative purposesmore efficiently.Moreover,
teachers canget some information about students’ difficulties and then adjust teaching
in order to improve learning. Even though it is necessary for teachers to refer to
criteria and standards to judge the quality of students’ performance, the validity of
assessment is enhanced when the teacher explicitly communicates these elements to
students (Goos, 2014). Nicol and Macfarlane-Dick (2006) identify seven principles
of good feedback practice. One of them is that a “good feedback practice helps clarify
what good performance is (goals, criteria, expected standards)” (2006, p. 205).

Involvement of Students in Their Assessment
Many research studies demonstrate that themore students are involved in their assess-
ment, the more competent they are. In that way, they can assess themselves (self-
assessment), assess a peer and compare each other (peer-assessment) or assess them-
selves and compare it with the teacher’s assessment (co-assessment). “Involving stu-
dents in self-assessment can enhancemetacognitive self-regulation and help students
become familiar with criteria and standards that will be used to judge their perfor-
mance” (Goos, 2014, p. 416). In that sense, a good feedback practice “facilitates the
development of self-assessment (reflection) in learning and encourages teacher and
peer dialogue around learning” (Nicol & Macfarlane-Dick, 2006, p. 205).

It is thus all the more crucial to ensure that students understand the target of their
work and that they grasp what is expected as these elements are among the key com-
ponents of formative assessment (Harlen, 2013). However, it means once again that
“students need to have some understanding of the criteria to apply in assessing their
work” (Harlen, 2013, p. 7). Therefore, specific discussions with the students about
the assessment criteria and the expectations of their learning outcomes should be
encouraged. Indeed, students’ interpretation or understanding of the verbal descrip-
tion of criteria, such as that expressed in a grid of criteria, may differ widely from
the teacher’s interpretation. Having discussions with students about the meaning of
the criteria and about what counts as good performances can prevent these misun-
derstandings (Goos, 2014).

Using a grid of criteria can ensure that the students get more involved in and thus
more responsible for their assessment since they can compare their production with
the expected qualities, and get feedback about what they do and what teachers expect
them to do. This can result in self-assessment, peer-assessment and co-assessment
and help students to play an active role in assessment and to regulate their learning.

From Formal to Informal Assessment
To classify classroom formative assessment, Shavelson et al. (2008) use a continuum
that ranges from formal embedded assessment (teacher plans to obtain information



9 Assessing Inquiry-Based Mathematics Education … 185

about students’ learning) to informal, on the fly, formative assessment (evidence
of students’ learning is obtained within usual activities). It means that formative
assessment does not take a unique form but that it can be planned or not, it can refer
to formal tools to collecting data or not, etc. Adopting this point of view, formative
assessment can be considered as a practice integrated within the learning process
(Lepareur, 2016). Referring to formative assessment in IBME is all the more relevant
that

the practice of formative assessment, through teachers and students collecting data about
learning as it takes place and feeding back information to regulate the teaching and learning
process, is clearly aligned with the goals and practice of inquiry-based learning. (Harlen,
2013, p. 20)

Ruiz-Primo and Furtak focus on informal formative assessment which “can take
place in any student-teacher interaction” (2004, p. 3). Teachers, in order to acquire
information about students’ level, conceptions, skills, etc.,mayuse daily and informal
classroom talks. Such talks are called assessment conversations. In that sense, Black
(2013) considers that any piece of instruction comprises an interaction step in which
the learning plan is implemented and in which the collected evidence has to be used
to develop a learning dialogue.

Duschl (2003) describes three domains that canpromote the assessment of inquiry:
the conceptual domain (reasoning and the use of science concepts), the epistemic
domain (knowledge structures, rules and criteria used to determinewhat counts as key
components of inquiry) and the social domain (representation and communication of
concepts, knowledge, conceptual framework). Ruiz-Primo and Furtak (2004, 2007)
encourage teachers to focus the assessment conversations on these three domains to
enhance formative processes. They characterize teachers’ activity during assessment
conversations according to ESRUcycles, inwhich Emeans eliciting (use of strategies
that allow students to share and make visible or explicit their understanding as com-
pletely as possible), S means student responding, R means recognizing (the teacher
makes a judgment about the differences among students’ responses, explanations,
or mental models so that the critical dimensions relevant for their learning can be
made explicit) and U means using (helping students to achieve a consensus based on
scientific reasoning). In order to guide the identification of the different aspects of
assessment conversations, Ruiz-Primo and Furtak (2007) develop some strategies,
which are relevant to foster informal formative practices in the context of inquiry. I
am using an adaptation of these strategies developed by Gandit (2016), who focuses
more specifically on strategies related to inquiry in mathematics (Table 9.1). These
strategies deal with only one of the three domains that is the epistemic frameworks.
In this grid, T is used for teacher and S for student. Nevertheless, knowing how to
design tasks and organize classrooms discussion in order to elicit students’ math-
ematical concept and knowledge, and how to provide useful feedback that can let
students move forward still remain a main subject of concern for teachers.
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Table 9.1 Grid of analysis of
ESRU cycles

Elicit

T suggests a false answer, idea, concept to make S
reflecting

E1

T asks S to give a proof, to argue E2

T asks S to be more explicit, to clarify his ideas E3

T asks for using well-known procedures E4

T asks S to explain his strategy, what she/he has done E5

Student

S suggests a solution S1

S justifies, explains his method, his reasoning S2

S gives an example, a counter-example S3

S explains how she/he had an idea, how she/he
obtained a conjecture

S4

S questions another student about the topic under
discussion

S5

S questions T S6

S says that she/he does not agree, or that she/he agrees
with T or with another student

S7

S agrees or disagrees with what is said S8

S expresses ignorance or indecision S9

S explains what she/he understood S10

Recognize

T repeats or rephrases a S’s contribution R1

T takes the S’s idea as her/his own R2

T clarifies or gives an answer based upon S’s answers R3

T encourages S to go on with her/his idea R4

T readily offers right answer to a question R5

T answers to a question saying yes/no or right/wrong R6

T agrees, disagrees R7

Use

T suggests S a new activity that can help her/him U1

T promotes argumentation U2

T displays conclusions at the end of the discussion U3

T asks S to go deeper U4

T tries to focus S’s attention on a point that can make
her/him goes on

U5

T explains knowledge, strategies used by S U6

T explains the goal, gives strategies, hints U7

T comments on S’s approach U8

T leaves unanswered a question without consensus U9

Adapted by Gandit (2016)
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9.3.3 The Research Narrative: A Special Means to Assess
and Develop Students’ Problem Solving Competencies

Assessing problem solving remains difficult especially because some of “the chal-
lenges to assessment of problem solving in timed test arise from the fact that assess-
ment of problem solving requires access to evidence of process” (Monaghan et al.,
2009, p. 25). In order to give teachers access to students’ research, thought processes
and proposed solution, the MDC guidelines recommend research narrative (Bonafé,
1993; Bonafé, Sauter, Chevallier, Combes, Deville, Dray, & Robert, 2002; Cheval-
lier, 1992; Sauter, 1998) as a particular means to assess students during MDC (see
Annexe 2, part V, 1). Research narrative can be defined as a new contract between
students and teachers in which students have to explain in writing, the best they can,
how they solved (or tried to solve) the problem, including mistakes, wrong ways,
dead-ends, help they received; and teachers have to assess students on these and
only these points without taking into account whether the students found the right
answer or not. There is below an example (Fig. 9.1) of such a production related to
the following problem: To build a one-storey house of cards you need 2 cards. For
a 2-storey house of cards, 7 cards are required. For a 3-storey house of cards, you
need 15 cards. How many cards does it take to build a 7-storey house of cards? A
30-storey house of cards? A 100-storey house of cards?

1-storey 2-storey 3-storey

With this activity, the fact that students have to explain all the strategies they tried
and all the ideas they had to someone else, presupposes that they are first capable to
do so for themselves. Students must reconstruct their reflection and make a synthesis
of what strategies were effective, which ones were wrong ways or led to dead-ends,
etc. This helps develop their reflection about what solving problems in mathemat-
ics means, about their own problem solving competencies and it can encourage the
development of para-mathematical and proto-mathematical knowledge (Chevallard,
1994). Para-mathematical knowledge refers to auxiliary notions (equation, parame-
ter, demonstration, etc.) which are not explicitly taught and usually not assessed.

Proto-mathematical knowledge is even more implicit than para-mathematical
knowledge. It refers to notions that serve as tools to do mathematics and are deeply
related to the didactical contract and to the classroom culture. For example, when
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Fig. 9.1 A student’s research narrative [We translated a student’s research narrative. The original
one (in French) is given at the end of this text (Annexe 1)]

a student has to factor the algebraic expression 4x2 − 36x , she/he is expected to
answer 4x(x − 9). But if a student answers 4x2 −36x � 4x2 −2(2x · 9)+92 −92 �
(2x − 9)2 − 92 � 2x(2x − 18) it should be considered as a wrong answer even if
it is mathematically correct. Another example of proto-mathematical knowledge is
the notion of pattern. This is not explicitly taught but students need to be able to
recognize it to solve many problems.

On top of that, teachers can explore students’ writing to provide them with “feed-
back giving [them] advice about the strength and weakness of the work and about
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how to improve” (Black, 2013, p. 170). Research narrative as a scheme used princi-
pally for summative assessment can also assume a formative function. Nevertheless,
this choice to assess problem solving by research narrative can raise some issues. It
is, indeed, necessary that students are able to produce clear evidence and communi-
cate efficiently, without which other process capabilities cannot be reliably assessed
(Monaghan et al., 2009).

9.4 First Part of the Research: Teachers’ Point of View
About the Assessment of Students’ Problem Solving
Competencies

9.4.1 Research Design

According to the results from the literature in the field, teaching and assessing prob-
lem solving remain a problematic issue for teachers. In the first part of my research,
I aim to know the teachers’ point of view about the assessment of students’ problem
solving competencies in the particular context of theMDC. In that sense, I submitted
an online survey to teachers currently teaching or having taught this course in the
past few years. It deals with three main topics: the type of problems the teachers give
to the students, the assessment of problem solving competencies and the research
narrative.

Teachers were asked to answer different types of questions: open-ended ques-
tions (for instance “give your two main criteria to choose a problem you will submit
to students”), multiple choice questions (for instance “do you assess students: A.
Individually B. Collectively”) and propositions to order from the most significant
to the least significant (for instance “classify these ten competencies from the most
important for you to develop to the least important”). A group of 100 teachers were
targeted by the survey but only 61 of them gave complete answers. I made a quan-
titative and qualitative analysis based on these 61 responses, depending on the type
of the question.

9.4.2 Results and Discussion

Concerning the types of problems the teachers give to the students, they reported
choosing them mostly on their perception of the degree of openness (50%2) which
implies that the problem is a real problem for students, non-trivial, with no evident
solution and no well-known method to solve it. Another important criterion is the

2For each question, the percentage expressed is the ratio between the number of teachers who
choose this answer and the number of teachers who answered the question.
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conformity between the difficulty of the problem and the students’ supposed level
(34%), and finally the notions and concepts at stake (34%). Most of the respondents
say that in this course they want to develop students’ competencies relative to the
pattern try-conjecture-test-prove, to strategies useful to solve problems, to collabo-
rative work, to communication and to critical thinking (between 70 and 85% for each
one). One can notice that the competencies teachers would like to develop are really
close and limited to the institutional learning outcomes described in the curriculum.

With regard to the assessment of students’ problem solving competencies, the first
interesting point is that most of the teachers assess their students more frequently
than what is institutionally expected (85%). Almost all the teachers refer to using the
research narrative and a grid of criteria to assess students (95%). Thus, referring to a
grid of criteria to assess research narrative seems to be usual teaching practice. For
more than half of the teachers (63%), assessing students in this particular context
implies giving them a grade. Moreover, very few teachers (23%) claim encourag-
ing the involvement of students in their assessment through self-assessment, peer-
assessment or co-assessment, and within these 23%, only one teacher asks students
to refer to the grid of criteria to assess themselves. Even though these results show
that students are not directly involved in their assessment, some teachers declare
that they would like the students to do so. This leads to wonder how teachers make
students aware of what they are supposed to learn and of the criteria applied in
assessing their work. Comparing what teachers say they want students to learn and
what competencies they want to assess, one can see that it is deeply correlated. In
most cases, teachers aim at developing and assessing the same competencies (78%).
In other cases, the expected learning outcomes (what the teachers say they want the
students to learn) and the competencies they want to assess are not aligned. One can
distinguish twomain configurations: competencies teachers say they want to develop
but they do not say they want to assess, and competencies teachers say they want to
assess but they do not want to develop in usual, non-assessed course. The first and
the most representative case concerns the two following objectives: to respect debate
rules and to work in a collaborative way, whereas the second scenario is identified
with regards to the objectives such as to write a research narrative, to communicate
the research or to solve a complex problem.

Concerning the research narrative, teachers think that the main difficulties for
students are related to the narrative aspect of the activity (for instance to describe all
steps, to justify) (40%), to their attitude towards the research (lack of perseverance for
instance) (25%) and to the solving of the problem itself (for instance to use a strategy,
to choose and follow another path) (25%). Almost all the teachers communicate
their criteria of assessment to students either every time or sometimes (91%). The
nature of the criteria that teachers principally transmit to students, refers to narrative
competencies (related to clarity, consistency and comprehensiveness) (61%) and,
though in a smaller proportion, to problem solving competencies (37%). It means
that, for the majority of the students, the assessment of their research narrative deals
more with narration than with problem solving. Nevertheless, it seems necessary
to keep in mind that the main purpose of such an activity is to develop students’
problem solving competencies and not only to develop narrative skills, even if it
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is an important transversal skill which is expected in mathematics. I do not have
information about the way teachers communicate these criteria to students: do they
give students the grid they use to assess themselves? Do they have specific discussion
in class about the intended learning outcomes? To answer these questions, it could be
useful to analyze the usual teachers’ practices and not only the declared ones. On top
of that, teachers say that assessing such open-ended activities is more complicated
than assessing usual students’ mathematical work (52%) and that they suffer from a
lack of tools to assess students’ research narrative (34%).

Finally, it is interesting to notice that teachers do not know their colleagues’
practices. It can be surprising because MDC involves only about 800 students and
55 teachers a year. The small population involved and the specificity of this new
course might lead to believe that teachers work in a collaborative fashion, especially
when they work in the same school, and that they know their colleagues’ practices
well. According to the results, it is far from being the case. It can be problematic,
for example when a student is moving in and out of schools during the school year,
because what is expected from her/him in the course in her/his new class, is not
necessarily the same as in her/his previous class. This lack of common expectations
and common assessment practices is all the more alarming that this course counts as
a major course. It means that the results obtained by a student in this course count
as one of the four marks which are taken into consideration when deciding whether
a student will pass grade 8 and thus be admitted to grade 9 or not.

These results give precious information about the teachers’ point of view on
the assessment of students’ problem solving competencies in MDC. I would like
here to highlight some significant results for the second part of my study. Almost
all teachers use the research narrative to assess students, and referring to a grid of
criteria to assess research narratives seems a usual teaching practice, even if grids of
criteria are personal, and not shared among teachers. Competencies teachers would
like to develop are really close to the institutional learning outcomes described in
the curriculum. Teachers communicate to students some criteria, but these criteria
are mainly relative to narration more than to problem solving. Finally, some teachers
affirm that they lack assessment tools and that even though they are not promoting
students involvement in their assessment, some of them would like to do so. Thus, it
could be interesting to gather common expectations, common criteria about problem
solving competencies in an assessment tool, such as a grid of criteria, which can
promote the involvement in the assessment.
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9.5 Second Part of the Research: A MDC Teacher’s
Informal Formative Assessment Practices

9.5.1 The Development of an Assessment Tool for Both
Summative and Formative Purpose

As a consequence of the results of the first part of the research (lack of common
expectations about MDC, teachers lacking tools to assess students, teachers wanting
to involve students in their assessment), a working group that included two MDC
teachers and myself was created in September 2015. The purpose of this working
group was to give teachers of MDC a common tool to assess students’ problem
solving competencies with both summative and formative purpose and consequently
to ensure common expectations about IBME (from teachers, and more globally from
schools).

To develop this project, we used an existing tool developed by the Geneva team
in the PRIMAS3 project. The team collaborative work led to design a grid of criteria
aiming at assessing research narrative in the context of the MDC. For that purpose,
the team studied grids of criteria teachers used in their classes. They used these
grids to evaluate numerous students’ narrations in order compare criteria and to
highlight the most important ones and to identify the ones that lacked. Thus, they
noticed that the criteria linked to narration competencies were as numerous as those
linked to problem solving competencies. Nevertheless, such an activity can easily
be turned away from its original purpose. Even though it is important to develop
communication skills, it is important to make sure that students do not only focus
their attention on their narration, but also on the problem they have to solve. Asking
students to write out a narration describing their research has to remain a means
to access and develop their problem solving competencies and cannot become a
goal in itself. But many students, especially when they are first confronted with
research narrative, focus their narration on a complete description of what they do
even though it does not deal with relevant mathematics content. Therefore, to prevent
that risk, the Geneva team in the PRIMAS project emphasized criteria related to
problem solving competencies more than those related to narration or presentation.
They have also defined five dimensions: presentation, narration, research, technic and
appropriation, which induce ways to look at students’ production, and criteria related
to each dimension, which describe expected qualities of the production. Keeping in
mind that the grid should be an efficient tool to assess a large set of problems, they
defined these criteria at a very general level. Then, teachers individually have to
adapt the grid to the problem students are working on, to remove some criteria and
to specify indicators related to criteria.

One year later, in order to ensure that these dimensions are relevant and that the
criteria are efficient, exhaustive and well worded to assess students’ problem solving
competencies during MDC, our working group implemented this tool in classrooms.

3Available at http://www.primas-project.eu/fr/index.do.

http://www.primas-project.eu/fr/index.do
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The two teachers of the group used the grid for one year in their own MDC classes.
At the beginning of the school year, they distributed the grid to students who could
use it to compare their work with the expected performances during regular work
but also during tests. It aimed at allowing discussions about criteria and dimensions,
and at enhancing the involvement of students in their assessment. At the same time,
teachers assessed each student’s research narrative using the grid, for the whole year.
The marks and comments students received were based on the grid.

Then, every three weeks on average, depending on their experience, we adjusted
the grid, we clarified terms, we added and removed some criteria. The cycle occurred
several times until we fixed the tool. To summarize the process and all the adaptations
wemade,we simplified the description of some criteria tomake it easier to understand
for the students, we took out some criteria that seemed to be too particular to apply
to most problems and we added new criteria.

Then we worked with the members of another working group who focused on
another course given to the same students, the following year. This course called
scientific approach focuses on modeling, and involves mathematics and sciences.
With this collaborative work, we aimed to ensure common expectations between
these two courses. We modified a dimension, from appropriation to modeling, and
once again we modified some criteria in order this time to emphasize, within a
scientific approach, the steps of trials and conjecture and the articulation among
these.

Finally, we asked some teachers who were not involved in the working group
to use the grid in their classes, in order to ensure that the tool is also efficient in
another school, with other teachers. That is why one teacher in each secondary
school in Geneva (with the exception of one school, so 18 teachers in total) referred
to the grid in order to assess their students. We wanted to collect their opinion after
this experience to ensure that the use of the grid was close to their usual practices,
that the grid was based on relevant dimensions and criteria, and that it could be an
efficient tool to assess in a summative way students’ problem solving competencies.
We asked them to answer five questions, related to the appropriation of the grid,
to the relevance of criteria and dimensions (“Do the five dimensions seem relevant
to you?” for instance), to the way they use the grid with the students and to the
adequacy with their general feeling about the students’ research narratives (“Do the
grades you obtained according to the grid seem aligned with your general feeling
about the students’ research narrative?”).

The analysis of the answers confirms that the grid seems to be a useful tool for
assessing students’ research narratives with a summative purpose. Most teachers
find that the dimensions and the criteria are relevant (83%), and that the grade they
obtained was in alignment with those they would have given without the grid (94%).
We did not modify the grid after this last step in the process and finally the grid of
criteria we obtained is the one given in Table 9.2.
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Table 9.2 Grid of criteria established by the working group

Dimensions Criteria

Presentation Care

Narration Comprehensiveness
Relevance of narration (centered on the research) and structure of the text
(each step has a beginning, a development and a conclusion)
The narration is complete and chronological (all steps are described and in the
right order)

Modeling Appropriation of the problem: rephrase the problem in French and/or express
it with drawings, diagrams, tables
Use pertinent mathematical tools, theories and strategies

Research Follow a lead, have a strategy
Make relevant trials, and try to eliminate randomness
Explain and justify all the conjectures
Expose a valid conjecture or a sufficient number of invalid conjectures
Test (or prove) each conjecture
Conclude each conjecture
Express a global conclusion about the research, question the mathematical
solution relative to the context of the problem

Technic Use properly mathematical tools and theories (units, theorems, etc.)
Introduce new codes, notations

9.5.2 Research Design

The analysis of this collaborative work occurs at two levels related to the two main
functions of assessment: summative and formative.

The summative potential of the grid was studied according to discussions occur-
ring during the meetings with the two other members of the working group. In
summary, discussions regarding an assessment tool support negotiations between
teacher and students about assessment criteria and more generally about the goal
of IBME. According to the teachers, it helps them to better understand what they
want the students to do and to learn. They base some of their feedback concerning
students’ written work on the grid. Thus, both students and teachers, refer to the
same tool to discuss expectations about problem solving competencies.

It is all the more interesting that according to the results of the questionnaire,
most teachers of MDC assess their students according to explicit criteria but only a
small number have specific discussions with the students about their expected per-
formances. Giving teachers and students a common tool to assess and compare their
work with the expected qualities should help encourage such discussions. Another
relevant point is that it is not obvious for students to understand how teachers consider
the criteria and the dimensions to assess their narration. For instance, I observed dur-
ing MDC some specific discussions between the teacher and students about how the
teacher uses the criteria. Students wondered if each criterion had to appear explic-
itly in their narration. Moreover, some students thought that each criterion had to
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appear in their production and in the same order than in the grid. This illustrates
that it is one thing to explain the criteria used to assess their work to the students,
but it is another to explain to them how teachers use it specifically to give them a
grade. Moreover, to emphasize problem solving competencies, teachers choose to
adapt the grading scale during the year. They put more and more weight on research
and technic instead of narration. The analysis of the answers of the 18 teachers who
used the grid with a summative purpose gave us complementary information about
its summative potential (see Sect. 9.5.1).

On top of that, the summative potential of the grid was at the core of a wider
comparative study. The aim of this studywas both, to establish real students’ problem
solving competencies, for all students involved in the MDC in 2016–2017, and to
compare teachers’ summative assessment practices. For the first part, all the students
had to solve the same problem and were assessed with the same tool. It highlighted
students’ strengths and weaknesses in problem solving and in the narration of the
process of solving problems. For the second part, 52 teachers giving this course in
2016–2017 assessed the narration of the same 3 students relative to the same criteria.
It highlighted which dimensions and criteria of the grid led to different notations and
consequently to different interpretations by teachers.

On top of that, I deal in my research with the formative potential of the grid
in order to answer the question: is formative assessment fostered in the context
of frequent summative assessments based on research narrative? To analyze this
formative potential, I need to know how this tool is implemented in classroom, and
how it could become a tool that fosters formative processes.

9.5.3 Methodology

To understand how the grid could be implemented in classroom, and how it could
become a tool that fosters formative processes, I made an exploratory study focusing
on a MDC teacher’s practices. The results of this exploratory study should give me a
first idea about how teachers refer to formative assessment in the particular context
of MDC.

In that sense, I assisted and video-recorded two consecutive sessions of MDC
facilitated by one of the teacher-member of the working group, at the end of the
school year. The nine students of the class were working in four groups (3 groups
of 2 students, 1 group of 3). They were working on two problems related to the
introductionof algebra.At the endof the secondperiod, students had togive a research
narrative about the problems they were working on to the teacher. Consequently, half
of the second session (about 25 min) was devoted to the narration and students were
invited to write down their research process.

These students were using the grid of criteria since the beginning of the school
year. The teacher gave each student a copy of the grid and allowed them to refer to
the grid whenever they wanted. On top of that, every time she assessed students, the
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Table 9.3 An assessment
conversation and
classification according to
ESRU cycles

Assessment conversation Strategy

T: Yes but how did you find this? E5

S: I did a lot of stuff S2

T: But try… what did you do? It’s interesting to
know how you were thinking

R4/E5

S: I did all of this but like everything in reverse S2

T: Yes, so the first step. What did you do at the
first step?

R7/E5

S: 24 minus 7 S2

T: Yes, you did reverse calculations. Yes. It’s a
good idea. Reverse calculation it’s in fact a
path

R2-U6

teacher gave them a copy of the grid with specific comments about their research
narrative relative to each criterion.

According to my theoretical framework, and especially to ESRU cycles (Ruiz-
Primo & Furtak, 2004, 2007), my research questions concerning formative assess-
ment were:

– How did teachers encourage assessment conversations during IBME-centered
courses?

– What kinds of feedback were provided?
– Was this feedback related to the criteria of the grid?

To interpret the data and make it relevant with my theoretical framework, I tran-
scribed all interactions that occurred in class for the two consecutive lessons (about
67 min). I dissected the lesson in assessment conversations. I analyzed all the inter-
actions according to the ESRU-cycles (Ruiz-Primo & Furtak, 2007) and more spe-
cially I reported every strategy used by the teacher related to each activity: eliciting,
recognizing and using (Gandit, 2016) (Table 9.1). I specified for each assessment
conversation the aim of the feedback: if it referred to the strategies used by students;
to the goal of the problem; to mathematical knowledge, concepts and notions; to the
material organization; to the solution or to the guidelines. I paid a special attention
to reporting every reference to the criteria of the grid.

I give in Table 9.3 an example of a partial assessment conversation between a
student and the teacher, and of how I classified each speaking turn according to the
strategies related to ESRU cycles. T is used for teacher and S for student.

In this excerpt, one can see that the teacher tried to make the student explain his
strategy, to make him conscious of what he has done, and gave him feedback about
the validity of his strategy. She helped him to deconstruct, step by step, his reasoning.
It illustrates that the teacher had several iterations with the same student and that the
feedback was in this case about students’ strategy. In addition to a ESRU complete
cycle (E5-S2-R2-U6), there were also two partial cycles (E5-S2-R4 and E5-S2-R7).
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Fig. 9.2 Aims of feedback 5%
43%

27%

8%
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14% goal
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9.5.4 Results and Discussion

There were no less than 21 assessment conversations during the 67 min of the lesson.
Moreover, the teacher had between four and seven assessment conversations with
each group of students (4 with the group 1, 7 with the group 2, 5 with the group
3 and 5 with the group 4). As she had specific assessment conversations with each
student in each group, every student received numerous personal feedback during
the course.

Concerning the aim of the feedback, it wasmainly relative to the strategies used by
the students, and in a smaller proportion, to mathematical knowledge, concepts and
notions involved in the problem or used by the students. In most cases, assessment
conversations were about how to solve the problem, about the validity of strategies
used by the students and about some specific notions, concepts, and knowledge
related to the topic of the problem. Figure 9.2 shows a global view of the proportion
of each aim of the given feedback.

There were 48 cycles, among these, there were only 9 complete cycles (E-S-R-U)
and 39 partial cycles (26 S-R-U cycles, 13 E-S-R cycles). As in the previous example
(E-S-R/E-S-R/E-S-R-U), when the teacher ended a partial cycle with recognizing the
student’s response without using this response, she often elicited again which means
that she used strategies that allow students to share and make visible or explicit their
understanding as completely as possible. But these complete or partial cycles were
not themost representative form of assessment conversations. Indeed, there were 426
steps in all the assessment conversations (all Eliciting, Student’s response, Recogniz-
ing and Using activities taken into account) and only 146 steps constituting partial or
complete cycles (E-S-R, S-R-U or E-S-R-U). The other steps were articulated in dif-
ferent ways, as S-R-S-U-S for instance. Moreover, even if the teacher recognized the
student’s response it did not necessarily imply that she used it. Indeed, the teacher
recognized student’s answer more often than she used her/his answer (she recog-
nized student’s response 127 times, and she used it 77 times). It illustrates that in
the practices of this teacher, assessment conversations can have different structures.
On top of that, one could have thought that the most represented form of assess-
ment conversations would be a cycle, with four interactions E-S-R-U. But in most
cases, assessment conversations articulated several partial cycles and were longer
than only four interactions. On average, there were 13 interactions in an assessment
conversation. Generally, the student did not explain her/his method, her/his strategy
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as explicitly as the teacher would like. Consequently, the teacher elicited again, she
recognized the student’s response and so on, until she knew exactly what the student
has done or thought and that she could give her/him feedback about the validity of
her/his strategy and about what the student had to do.

Concerning the activity of eliciting, the most represented strategy that allows
students to share and make visible or explicit their understanding as completely as
possiblewas E5: the teacher asked a student to explain her/his strategy, in other words
what she/he has done. It means that the teacher mostly asked a student to explain
her/his strategy, the way she/he solved the problem and what she/he has done in
order to acquire information about student’ level, conceptions, skills, difficulties.
It occurred 27 times in 40 times. Other strategies were distributed following pretty
much the same proportion (Fig. 9.3).

Focusing on students’ responses, they mainly suggested a solution, a (partial)
response to the problem the teacher asked them to answer (strategy S1, counted 39
times) and they justified, explained their method, their reasoning and their strategies
(strategy S2, counted 51 times). Students used several different strategies to give the
teacher access to their understanding, to their conceptions.

The teacher frequently recognized students’ responses (127 times during the
course). For that, she mostly agreed or disagreed with what the students explained,
suggested, submitted, and gave them an implicit or an explicit validation or invalida-
tion of their response or of their strategy (the strategy R7 occurs 60 times over 127).
She referred to all strategies described in the grid (Fig. 9.4).
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After recognizing students’ response, the teacher sometimes used their answer to
give student feedback and to do so, she referred to numerous strategies in quite a
balanced proportion (Fig. 9.5). It occurred 77 times.

She promoted argumentation, she displayed conclusions at the end of the discus-
sion, she asked student to go deeper in her/his reflection, she tried to focus student’s
attention on a point that could have make her/him go further, and she explained
knowledge and strategies used by students. Nevertheless, even though the teacher
did not use students’ response every time, she gave them feedback, which could be
implicit, concerning their strategy, their mathematical concepts and notions.

Only six assessment conversations were initiated by the teacher and seventeen
by a student. When a student started asking the teacher to help her/him, the teacher
gave the student an answer and then tried to elicit her/his conceptions, strategy. The
conversation initiated by a student was finally used by the teacher to take information
about student’s thinking.

Moreover, the teacher referred to some criteria of the grid, even if these references
were not explicit. For example, when she said, “you will have to explain everything
that happened during your research, so take as many notes as you can”, she implicitly
referred to the criterion “the narration is complete”. She principally referred to the
criteria relative to the narrative aspects of the research narrative and especially to
the completeness aspect of the narration (10 times). She also referred to the criterion
relative to the introduction of new codes and notations (3 times).

This criterion was particularly important in the problem students had to solve
because the unknown was only represented by a question mark in the problem and
students were referring to this unknown by using another symbol (a letter for most
of them) to deal with it, without explaining what this new symbol referred to.

There were very few references to the grid of criteria with a formative assessment
purpose. It did not seem to be an explicit means to communicate with students about
what is expected from them.
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9.6 Conclusion and Perspectives

The development of problem solving and inquiry in mathematics education calls for
new approaches in classroom assessment. A course as MDC was an interesting con-
text to observe such changes, because of new curriculum goals focusing on problem
solving and IBME, and new assessment approaches based on the research narrative.

The first part of my research about teachers’ point of view shows that problem
solving assessment practices, and especially assessment criteria, are not commonly
shared among teachers. This first part led me to develop, in collaboration with two
teachers, a tool, a grid of criteria,which aimed to give teachers ofMDCacommon tool
to assess students’ problem solving competencieswith both summative and formative
purpose. This tool could be considered as an efficient tool for summative assessment
in the context ofMDC. The second part ofmy study shows that classroom assessment
cannot be reduced to summative assessment, to tasks designed for assessment, or
even to formal formative assessment. The teacher assessed students all the time and
she used classroom conversations to support students’ learning. In that sense she
used strategies to elicit students’ thinking, to recognize their response and to use it.
The feedback she gave to students, aimed to help students identify the gap between
their level and the standards, and situate themselves on the pathway to the solution.
These assessment conversations were an opportunity to discuss the problem solving
goals. Nevertheless, it is not possible to ensure that referring to a grid of criteria
for summative assessment helps teachers develop formative assessment practices,
because in that case, the teacher refers only to two criteria related to narrative aspect,
and not to criteria related to more specific aspects of research. Obviously, as the
research deals only with one teacher’ assessment practices, it could be interesting to
enlarge the study in order to confront the results to other teachers’ practices.

I would like to raise some issues to be addressed. Even though IBME and problem
solving carry more and more weight in mathematics curriculum, the goals are not
so precisely defined and not so practical to implement in classes. The necessity of
defining assessment criteria is nowadays commonly accepted but implies that teach-
ers have specific discussions with students about these criteria in order to make them
familiar with it and to encourage their involvement in assessment. To encourage
formative assessment practices, and more precisely to help teachers develop assess-
ment conversations that enhance informal formative assessment, it seems interesting
to strengthen collaborative work with teachers to characterize strategies that promote
eliciting, recognizing and using students’ learning.

A main difficulty for the researcher remains to identify teachers’ informal forma-
tive assessment practices. Contrary to formal assessment that is easier to pinpoint, for
example a written summative test at the end of a teaching sequence, informal forma-
tive assessment can occur in many occasions during the class. Thus, the researcher
has to be able to recognize when the teacher is gathering information even if it is
usually not accessible to an external observer (Pilet & Horoks, 2015).
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Annexe 1: A Student’s Research Narrative (in French)
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Annexe 2: Programme of Mathematics Development Course
(MDC)

I. Organization
[…] This weekly period is intended to support a teaching that contributes to the
strengthening and development of problem solving strategies and mathematical
situations activities.

II. Programme

• The suggested activities are linked with three main topics:
– Numbers and Operation
– Space and measure
– Function and algebra

• The problem solving strategies are:
– Analogy
– Trial and error—Example/counter-example
– Inductive and deductive reasoning
– Organized study of all cases and exhaustion of solutions
– Introduction to proofs

• These strategies contribute to the development of:
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– Scientific procedures
– The rules of scientific debate

III. Mathematics development course: Introduction
[…] The allocation of an additional period in the curriculum for grade 8 students
with scientific profile, aims to enable these students to learn and become familiar
with this important part of mathematical activity. The aim is not simply to solve
problems “one by one”, but also to discover and systematize problem-solving
methods. In particular, the aim is to place the student in a learning situation
where she/he will have to implement a “scientific approach”, that leads her/him
to the following scheme:

Try–Conjecture–Test–Prove

This part of mathematical activity is required when students are confronted with
the so-called open-ended problems. This places the pupil in the most typical
situation of mathematical activity, that of confronting a problem which enables
her/him to work as a mathematician who is confronted with a problem to which
she/he does not know the solution.

IV. Open Ended Problem

a. According to a definition proposed by a group of researchers at the IREM
of Lyon, an “open-ended problem” has the following characteristics:
• the wording is short
• the wording does not introduce the method or the solution, the solution
must not be reduced to the use or an immediate application of recent
coursework

• the problemmust be situated in a conceptual field that students are familiar
enough with, so that they can easily “take possession” of the situation and
engage in trials, conjectures, draft resolutions, or counter-examples.

b. Solving a problem consists of a series of steps outlined in the official text-
book:
1. Appropriation of the wording: “understanding the problem to identify

its purpose”
At this stage, the teacher must ensure that all students are involved in
the problem.
That is to say that they are able to construct a correct representation of
the data, understand the constraints and the goal to achieve. If necessary,
the teacher answers questions, rephrases or makes the student rephrase
the problem.

2. Data processing: “design a plan”, then “put the plan into action” and
“get back to the solution”.
This stage corresponds to the research and resolution of the problem
itself.A relatively short time slot canbe allocated for individual research,
followed by a second group work time.
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During the individual research phase, the teacher can verify that each
student has actually read the problem, has at least partially assimilated it,
and that, during the group work, she/he will not only follow the ideas of
the one who speaks first. Group work helps to avoid the discouragement
of certain pupils, to stimulate the exchange of ideas among students, to
learn how to collaborate, to listen to each other, to defend their point of
view, to respect each other.

3. Communication of research procedures and results: “Write the
results in a form that anyone can understand and follow the work done”
At this stage, the student must account for all the resolution of the
problem, individual phase and the group work included. Such a written
report gives the teacher the first insight into the student’s research work
and provides an occasion for evaluation. The writing of this report is a
basis for the evaluation and is therefore an important competence for
the student. This is why the practice of “research narrative” has been
chosen as a thread for this course. According to the textbook, a research
narrative is “a comprehensive account of research, including trials and
errors that didn’t lead to a satisfactory result, or wrong conjectures, and
the reasons which lead them to abandon them.”

V. Research narrative

1. Presentation of research narrative
[…] The objectives of this pedagogical practice can evolve throughout the
year. They may initially be:
• to develop students’ curiosity and critical thinking
• to provide a communication tool that facilitates students’ writing
• to put in place the rules of mathematical debate, in particular the
following ones: a counterexample is sufficient to invalidate a statement,
examples that verify a statement are not sufficient to show its validity, an
observation on a drawing is not sufficient to prove that a statement is true

• to allow the teacher to get amuch better knowledge of the procedures
of his pupils.

2. Correction and assessment
Criteria for a good research narrative
The action of narration is not an easy activity, but one can retain some
elements that are to be emphasized and encouraged by the corrector of the
copies.
• Writing style
• The accuracy of the narrative: all ideas, all trials are described thoroughly
• The sincerity of the narrative
Criteria for Good Research
To help students to better understand what is expected, it could be useful to
refer to intermediate assessment means.



9 Assessing Inquiry-Based Mathematics Education … 205

• An assessment of the analysis of a problem by the formulation and expla-
nation of conjectures

• Anassessment of the researchphase: identifying and comparing strategies
• Another assessment of the “research” phase: using hints
• An assessment of the overall attitude
• An assessment of an oral presentation.
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Chapter 10
Beyond the Standardized Assessment
of Mathematical Problem Solving
Competencies: From Products
to Processes

Pietro Di Martino and Giulia Signorini

10.1 Introduction

Many mathematicians recognize problem solving as the heart of mathematics
(Halmos, 1980). At the beginning of the new millennium, addressing what the prob-
lems and challenges involve in mathematics education in Denmark, Niss (2003)
reflected upon a series of educational issues, including the following two:

1. Whichmathematical competencies do students need to develop at different stages
of the education system?

2. How do we measure mathematical competence?

He answered the first question giving the following definition of mathematical
competence:

Mathematical competence thenmeans the ability to understand, judge, do, and usemathemat-
ics in a variety of intra- and extra-mathematical contexts and situations inwhichmathematics
plays or could play a role. (Niss, 2003, pp. 121–122)

Then he proposed a subdivision of mathematical competence into eight sub-
competencies. The second one was posing and solving mathematical problems, that
was defined as follows for what concerns the solving side:

Solving different kinds of mathematical problems (pure or applied, open-ended or closed),
whether posed by others or by oneself, and, if appropriate, in different ways. (Niss, 2003,
pp. 121–122)

The seminal work of Niss will affect the development of the current definition
of mathematical competence, in particular the shared belief within the mathematics
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education community that solving mathematical problems is a crucial aspect in the
development of mathematical competence. Mathematical problem solving has long
been seen as an important aspect of the teaching and learning of mathematics (Lil-
jedahl, Santos-Trigo,Malaspina, &Bruder, 2016) and it has become one of the major
goals of mathematics education at all school levels, and in different school systems.

As underlined in the famous document of the National Council of Teachers of
Mathematics (NCTM,2000), problemsolving plays an important role inmathematics
and should have a prominent role in mathematics education. However, for many
teachers it is not obvious how to meaningfully include problem solving in their
teachingpractice and curriculum.Another non-trivial issue is how to assess1 students’
problem solving competencies.

10.2 The Standardised Assessment in Mathematics

Over the past twenty years the use of standardised tests for the assessment of students’
mathematical competencies has been increasingly spreading in many countries, both
at an international level—with the Programme for International Student Assessment
(PISA) of the Organisation for Economic Co-operation and Development (OECD),
and the Trends in InternationalMathematics and Science Study (TIMSS) of the Inter-
national Association for the Evaluation of Educational Assessment (IEA) and at a
national level (INVALSI in Italy), becoming increasingly significant in the educa-
tional context.

There are several reasons for this worldwide use of standardised assessments:
they assess the outcomes of the teaching/learning process (Pellegrino, 2003) through
numerical results, therefore they allow for an immediate (through questionable) com-
parison of students’ results from different countries. The results of such kind of
assessment are often used to certify the quality of the educational system, assess-
ing whether students have reached the educational standards in a time in which the
school autonomy asks for a greater accountability of outcomes (Kanes, Morgan, &
Tsatsaroni, 2014).

Probably for these reasons, the results of the standardised assessments like TIMSS
and PISA have a strong impact on the educational policies (Carvalho, 2012) and
can influence political choices regarding school reforms (Mangez & Hilgers, 2012;
Pons, 2012). In a way, the external and standardised assessments can affect what
is considered relevant as educational outcome, also affecting teachers’ educational
choices and didactical practices (Nevo, 2001).

As a consequence, in the field of mathematics education there is a growing num-
ber of research papers related to the issue of the impact of external standardised
assessments and their effects. The main lines of discussion concern their political
impact (Kanes et al., 2014), their equity (Boaler, 2003), the instruments they use

1We prefer to use the verb to assess rather than the verb to measure in this context, because we
strongly believe that competences are not measurable for their nature.
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(Wiliam, 2008), the competences they assess (Ekmekci & Carmona, 2014), the reli-
ability of the information that this kind of tests can (and cannot) have (Bodin, 2005).
Researchers seems to focus mainly their interest on the students, attending to the
possible causes of their successes and failures (Wijaya, Van den Heuvel-Panhuizen,
Doorman & Robitzsch, 2014) and on the factors that influence their performance
(Papanastasiou, 2000).

However, as Kanes et al. (2014) underlines, PISA has brought relatively few addi-
tional primary or secondary analyses of the data by national researchers, evaluators
and experts.

10.3 Standardised Assessments and Problem-Solving
Competence

The two most relevant international surveys—TIMSS and PISA—have different
goals. TIMSS is curriculum-based, while PISA is focused on assessing the extent to
which students at the end of compulsory education are able to apply their knowledge
to solve or deal with real-life situations.

Despite their differences, both international surveys pay explicit attention to the
assessment of students’ problem solving competencies. Then again, problem solving
now has a central role in manymathematical curriculums around the world (the focus
of TIMSS), and it is clearly a key-competence for students to have in the modern
society (the focus of PISA).

The TIMSS 2015 mathematics framework (Grønmo, Lindquist, Arora, & Mullis,
2015) recognizes three cognitive domains at grades 4 and 8: knowing, applying and
reasoning. It is quite surprising (and questionable) that problem solving is considered
central to the applying domain with an emphasis on dealing with more familiar and
routine tasks.

A different approach is taken by the Programme for International Student Assess-
ment (PISA) of the OECD. The specific PISA framework is strongly affected by
the seminal work of Niss (2003). Stemming from Niss’s definition, the PISA 2012
mathematics framework (the last PISA survey focused on mathematics) defines the
“mathematical literacy” as:

Mathematical literacy is an individual’s capacity to formulate, employ, and interpret mathe-
matics in a variety of contexts. It includes reasoning mathematically and using mathematical
concepts, procedures, facts and tools to describe, explain and predict phenomena. It assists
individuals to recognise the role that mathematics plays in the world and to make the well-
founded judgments and decisions needed by constructive, engaged and reflective citizens.
(OECD, 2013b, p. 25)

This definition is a reformulation of the previous one (OECD, 2009), elaborated
precisely to give greater emphasis to the role of students as active problem solvers. In
particular, planning strategies for solving problems is one of the seven fundamental
mathematical capabilities developed in the framework and—differently from the
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TIMSS approach, but more in line with the idea of mathematical problem developed
inmathematics education literature—problems are basically identified as non-routine
exercises.

Therefore, comparing the two frameworks, it becomes central to define what
“problem” means. We assume, as has been done within the PISA 2012 framework,
the following definition of problem given by the Gestalt psychologist Karl Duncker,
also mentioned in the PISA 2012 framework and therefore consistent with the kind
of problems used in PISA survey:

A problem arises when a living creature has a goal but does not know how this goal is to be
reached. (Duncker, 1945, p. 1)

In this view, the emergence of a problem is characterized by two interrelated
aspects: the presence of a goal and the non-immediacy of the way to reach it.

Related to this view, Mayer (1990) describes problem solving as a cognitive
process directed at transforming a given situation into a goal situation when no
obvious method of solution is available.

These ideas are included in the PISA framework where the “problem solving
competency” is defined as2:

Problem-solving competency is an individual’s capacity to engage in cognitive processing
to understand and resolve problem situations where a method of solution is not immediately
obvious. It includes the willingness to engage with such situations in order to achieve one’s
potential as a constructive and reflective citizen. (OECD, 2013b, p. 122)

Once again, one key point of the definition is the need of a method of solution
that is not immediately obvious: that is, a problem is characterized as a non-routine
exercise. However, within the PISA framework, we can recognize a questionable
assumption: the definition of problem solving competence refers only to cognitive
aspects, neglecting a great amount of literature in mathematics education about the
role of affective factors in problem solving activity started more than 35 years ago:

The initial hypothesis of this project was that affect played an important role in problem
solving, and that researchers who observed carefully would see the evidence of affect in
both students and teachers. That hypothesis has been confirmed. (McLeod, 1989, p. 251)

The influence of affective factors in problem solving performance appears to be
particularly relevant in standardised tests for at least two reasons.

On the one hand, a strange setting (i.e. different by the usual school setting) for
students work on the test since it is not possible for them to get any clarifications or
help from the teachers.

On the other hand, the time pressure is particularly strong during the tests. We
note that there is a sort of contradiction between the use of problems (intended as
non-routine exercises) in the tests, and the limited time students have to cope with
them. This contradiction is also detected by the PISA framework itself:

2While in PISA 2012 the emphasis was on the assessment of individual problem-solving compe-
tency, in PISA 2015 a specific framework also for the assessment of collaborative problem-solving
skills was added (OECD, 2017).
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The operational problem faced byOECD/PISA is how to assesswhether 15-year-old students
are mathematically literate in terms of their ability to mathematise. Unfortunately, in a timed
assessment this is difficult because for most complex real situations the full process of
proceeding from reality to mathematics and back often involves collaboration and finding
appropriate resources and takes considerable time. (OECD, 2003, p. 28)

These two points, the impossibility of asking for clarification and the time pres-
sure, appear to be particularly critical during the initial school grades.

In this chapter, we want to approach the issue of the assessment of students’
problem solving competencies, discussing the limits, but also exploring the potential
of standardised assessments in giving useful information to the education community
about the levels of students’ problem solving competencies.

We can speak of limits and potential of standardised assessment in giving useful
information on two different fronts: the front of communication and the front of what
information the assessments provide about students’ problem solving competencies.

We have developed our analysis focusing on problems used in the National Stu-
dents Standardised Assessment in Italy called INVALSI. INVALSI essentially shares
the PISA framework: for this reason, herewe discuss the recognized limits and poten-
tial of the PISA survey.

Concerning communication, the PISA regime (Kanes et al., 2014) includes texts
produced for a variety of audiences, in particular reports on the outcomes of the
tests, but, as Doig (2006) remarks, the information provided by the standard summa-
tive reporting methods has little effect on mathematics teachers’ development and
practice.

Concerning what PISA results can detect, surely PISA items often challenge
students to solve interesting non-routine problems, but the structure of the tasks show
several limitations in order to assess the processes involved in the problem solving.
As a matter of fact, from the multiple choice or short answer items, we get practically
no feedback about the students’ methods of solution. This appears to be the main
weakness of standardised assessments of students’ problemsolving competence: they
assess the product (result) without considering the solution process. According to
Duncker’s definition of problem, the assessment of students’ mathematical problem
solving competence should consider both aspects: the product (i.e. assessing whether
the student has reached the goal) and the process (i.e. assessing how the student has
reached the goal).

Within this framework, during the academic year 2013/14, an Italian Project
(called GRA-INVALSI) was designed to explore how to go beyond the students’
results (the product) on the 2013 mathematical national test for grade 2, grade 5,
grade 6 and grade 8, that is to discuss and interpret sources of students’ answers (the
processes) to the different items.

Thus, the focus of this chapter is on: to what extent does the consideration of the
students’ solution processes enrich our understanding of students’ problem solving
competencies and difficulties?

The answer to this question also leads to assessing the potential but, above all,
to analyse the limits of standardised assessments of mathematical problem solving
competence.
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10.4 Research Design

10.4.1 The Context of the Study: The INVALSI Assessment

The INVALSI institute (National Institute for the Assessment of the Educational
and Instructional System) was founded in the early 2000s, as a result of an intense
cultural and political debate on the issue of external evaluation of the Italian edu-
cational system. The current configuration of the INVALSI as an independent part
of the Ministry of Education is the result of a long evolution, lasting from 1999 to
2008, during which the functions of the institute were redefined and expanded, also
because of the recognition of an increasing autonomy of the Italian schools and the
consequent need for an evaluation system able tomonitor and standardise the instruc-
tion offered throughout the national territory, in accordance with what happened in
the international scene as well (OECD, 2013a).

At present, the mission of the INVALSI institute is to evaluate the efficiency
and effectiveness of the Italian education system and to promote, through national
and international evaluation initiatives, the improvement of education levels, and the
culture of school accountability.

With this aim, since 2008, the INVALSI institute develops tests, implementing it
every year in all Italian schools, assessing two subjects: Italian language and math-
ematics. These standardised tests are not administered on a sample basis, but they
involve all Italian students attending grades 2, 5, 6, 8, 10. For each of these grades,
the tests are the same for all schools, regardless of their specific features.3

For each grade, the mathematical problems within the tests are created by math-
ematics teachers of the same school level, according to the official curriculum pro-
moted by the Italian Ministry of Education and essentially sharing the PISA frame-
work (OECD, 2014). Therefore, the items are created trying to involve real problem-
atic situations and following two principal dimensions: contents and processes.

The contents are divided into four categories, in line with the direction taken at the
international level (Mullis, Martin, Ruddock, O’Sullivan, Arora, & Erberber, 2005;
NCTM, 2000) and similarly to the four overarching content categories of PISA
(OECD, 2006): Quantity, Space and Shape, Change and Relationships, Uncertainty
andData. For INVALSI, the four content categories are:Numbers, Space andFigures,
Relations and Functions,4 Data and Forecasts.

Concerning the cognitive processes involved in problem solving, INVALSI rec-
ognizes eight main processes that students should activate while solving the items,
grouped into the same three macro-areas of processes indicated by the PISA 2012
mathematics framework (OECD, 2013b): Formulate, Employ, Interpret. Each item
within the INVALSI tests is linked to the content and the process that it is supposed
to assess, and also each item includes its designed assessment aim in the answer grid.

3This is particularly critical in high school (grade 10), since there are several types of school with
different ministerial mathematical curricula.
4The content category “Relations and Functions” is not present in the grade 2 INVALSI test.
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Once they are designed, the items on each test are preliminarily tested to check
whether they are ambiguous or too difficult to answer (in this case they are deleted);
then the tests are administered in each Italian school by the teachers themselves,
with the exception certain classes—chosen on statistical bases—that constitutes the
national sample for the statistical analyses. For the national sample the tests are
administered and graded in these classes by external examiners.

In the other classes, the tests are corrected by school teachers using a correction
grid provided by the institute. At the end of this correction phase, each school sends
the results to the INVALSI. After a few months, the INVALSI returns to the schools
the statistical data and results concerning the levels of students’ learning. In particular,
data received as feedback from the INVALSI offer the comparison of the results of
the specific school with the national average and with other similar schools similar
for some characteristic (such as numbers of students, social environment, percentage
of non native students).

The INVALSI explicitly claims that tests are not designed to verify the individual
student’s achievement level, but to detect levels of learning in a globalway. Therefore,
the declared aim of the INVALSI is to evaluate the national educational system taken
as a whole, according to the goals fixed by the Italian National Standards, in order to
promote the pursuing of these goals and to improve the quality of the national school
system.Taking this perspective, the INVALSI tests are, on the one hand, an interesting
tool for informing features of learning and for evaluating the national educational
system, withholding some interesting issues for educational research in the direction
of skills assessment. On the other hand, they could provide a useful guide for both
teachers and students, who have the opportunity to compare their teaching standards
and their learning on a national scale. Engaging students in solving challenging
problems and assessing their performance, the INVALSI might have the potential of
promoting a problem-solving approach in the teaching of mathematics.

Nevertheless, the present situation in Italy is critical and needs to be analysed.
INVALSI tests are often viewedwith suspicion and hostility in the schools. As a result
of this situation, on the one hand, the “INVALSI tests” have become a very popular
topic in educational context: teachers, students, parents, experts of education, media
and politicians show different opinions about the role and the action of INVALSI.
Unfortunately, the debate often looks like a “religious war”: radical opinions prevail
and rarely these opinions concern students’ difficulties. This situation gives rise to
many unwanted consequences: strikes are not rare during the test days; there is a
uncontrolled spread of students’ cheating in the tests (Ferrer-Esteban, 2013); and the
more evident effect on the didactical practices is a spreading of the teaching to the
tests phenomenon.
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10.4.2 The Methodology

TheGRA-INVALSIProject, lasted one year; it involved 5 researchers inMathematics
Education and26 teachers (14 primary school teachers and12 lower secondary school
teachers from different schools in Tuscany).

All school teachers participated voluntarily in the Project.
After a first initial meeting where researchers described the goals and the structure

of the Project, the Project was developed according to a 3-phases schema for each
of the four mathematical content categories: Numbers, Space and Figures, Relations
and Functions, Data and Prediction.

The development of this kind of Team was strongly influenced by the idea of
co-learning community introduced by Jaworski and Goodchild (2006). In particular,
we wanted to conduct the analysis and discussions on the basis of different points
of view, trying to fuse these perspectives in order to develop new knowledge and
competences.

Phase 1: a 3-hours joint meeting.
In this phase, the items and the students’ results in the 2013 INVALSI survey

were analysed. After this analysis, at least three items for each school grade (2, 5, 6
and 8) were selected.

The selection of the items was based on various criteria developed on the basis
of the teachers’ opinions: the relevance of the specific mathematical content, the
relevance of the hypothesised processes brought into play, unexpected students’
results in the national survey.

For each selected item, the group of teachers of the corresponding school level
and a researcher developed an a priori analysis, trying to foresee the main difficulties
students would encounter. Based on this a priori analysis, the group decided how to
use the selected items: either in their original version adding the request “Explain
how you reasoned”, or in a newly designed version, in order to test some a priori
hypotheses about students’ processes and difficulties (for example transforming the
item into an open problem; or modifying the words used in the text of the item;
changing or removing a figure of the original text).

Phase 2: two 1-hour classroom sections.
During the second phase, the different versions of the selected items were tested

by the teachers of the corresponding grade level in their schools: 850 students from
39 classes were involved in this phase.

This second phase was divided into two class sections: in the first section, the
teachers involved in the Project proposed the items to their students, without time
constraints. For each item, students were asked to justify their answer. A posteriori,
we noticed that usually students had spent not more than 30 min to elaborate their
answer and provide a justification for a single item.

Students knew that they could ask the teacher for explanations regarding theword-
ing of the item. The teachers took notes of all the students’ requests for clarification.
This point is strictly related to the consideration of the following consolidated result
of the researches about problem solving: many of the difficulties met by students (in
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particular the youngest ones) during problem solving lie in the preliminary phase of
the construction of an adequate representation of the problem situation (Verschaffel,
Greer, & De Corte, 2000).

In the second classroomsection of this phase, the teachers proposed andmoderated
a mathematical discussion—in the sense developed by Bartolini Bussi (1996)—in
order to bring out the different processes used by the students to answer the item and
to discuss the given justifications.

Teachers took notes of the discussion and, at the end of this phase, all the written
productions of the students were collected.

Phase 3: a 3-hours joint meeting.
This second joint meeting occurred one month after the first joint meeting.
For each item, the corresponding group of teachers and researchers analysed the

mathematical discussions, the students’ solutions and the students’ justifications in
order to highlight the variety of processes shown beyond each possible answer and
to identify the main sources of students’ difficulties.

The differences between the a priori analysis, developed in the first phase, and
this last analysis was assessed to highlight the main unexpected outcomes of the
experimentation.

10.5 Results and Discussion

The analysis conducted during the Project allows us to highlight some general lim-
itations of the standardised assessment in the evaluation of the problem solving
competences.

We want to briefly discuss the results obtained regarding “the effects of the time
variable in answering the questions”. These effects were not only quantitative—the
percentage of correct answers in our sample was always greater than the percent-
ages of the national sample (however, we remind the reader that our sample was not
selected on statistical criteria)—but qualitative, and related to the way of approach-
ing the items. These qualitative effects were not only evident, but also particularly
interesting.

In our experimentation, without time limit and pressure, students had the oppor-
tunity to read the text carefully, to use a trial and error approach, to consider all
the answer options, to verify their first choice and, eventually, to change it. And,
sometimes to the surprise of their teachers, they exploited this opportunity.

During the standardised test setting, students do not have this opportunity: they
do not have much time to think, to evaluate all the options or to tinker with their
ideas and eventually answer the question: during the test, with time constraint, if you
believe you have somehow identified the right choice, you will immediately move
to the next question.

During the official test, the time spent (the less the better) in answering is a quality.
Therefore, it is not clear if standardised assessments intend to assess the students’
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Table 10.1 Results of the
national sample—Item D11
(grade 2)

Omissions A B C

3.3% 43.2% 36.2% 17.3%

competence in solving problems or the students’ competence in solving problems
quickly.

A result of our Project in terms of teacher development, we observed that therewas
a progressive growth in teachers’ awareness about the effects of the time constraint
on students’ performance. At first, many of the teachers on the Team believed that
poor problem-solvers were poor solvers regardless of the time variable, but after
analysing the answers given by their students without time pressure some of them
changed their initial beliefs.

In the following section, we will focus on students’ processes (how students
arrive to an answer of a problem), discussing the potential of being aware of such
processes in a meaningful assessment of students’ problem solving competences
(and difficulties).

We will discuss four different examples concerning the four test items—one for
each school grade involved—about the content category Numbers.

10.5.1 Example 1: The Many Different Correct
Answers—The Bus for a School Trip (Grade 2)

One of the items discussed in our group was the following, item D11 from the
INVALSI 2013 survey, for grade 2:

A class made up of 9 males and 10 females, accompanied by Miss Gianna and Miss
Luisa, takes the bus for a school trip. There are two empty seats left. How many seats
are there in the bus for travellers in total?
(A) 19 (B) 21 (C) 23

This item seemed particularly significant to us, especially in consideration of the
results of the national sample (Table 10.1): less than 1 out of 5 Italian grade-2 students
chose the right option.

As we mentioned previously, the INVALSI items their designed assessment aim
was explicit. In this case, the aim of the itemwas: “to identify all relevant data needed
to solve a problem”.

In order to understand why so many students chose options A and B, we proposed
the itemD11 in its original version (adding the request “Explain how you reasoned”)
in three grade 2 classes of three different schools (67 students in total).

As we said, our sample was not selected on a statistical basis, so the quantitative
results are not very indicative. In any case, we believe that the increasing percentage
of correct answers could be partially related to the fact that students knew that they
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had the time they needed to solve the problem, and in particular they knew they had
time to carefully read the text of the problem.

Analysing the explanations for the different answers, there are no big surprises
for the “right” choice C and for the choice A.

In particular, the latter case is almost always related to the well-known approach:
find the digits (9 and 10 in this case), look for isolated key-words (“in total” in this
case) and carry out the corresponding calculation (Sowder, 1989).

As Verschaffel, Greer and De Corte remark, this can be caused by the stereotyped
idea of word problem that the pupils build up ever since the first school years:

Although the numerical tasks are embedded in a context, the stereotyped nature of these
contexts, the lack of lively and interesting information about the contexts, and the nature of
the questions asked at the end of the word problems jointly contribute to children not being
motivated and stimulated to pay attention to, and reflect upon, (the specific aspects of) that
context. (Verschaffel et al., 2000, pp. 68–69)

Vice versa the analysis of the reasons for the choice B is surprising and very
interesting. In most cases students identified and copied in their notes all the data (9
males, 10 females, the 2 teachers and the 2 free seats) but they did not use all the
identified data to calculate the total number of seats on the bus. So on the one hand
they showed to be able to identify all the data in the text, on the other hand they did not
consider all the relevant data to answer the question. Therefore, the key question is:
why didn’t they consider all the data to be relevant in their answer? Fundamentally,
two main reasons emerged from the analysis of students’ justifications:

(i) Many students interpreted “travellers” not as “potential travellers” but as “cur-
rent travellers”. There are two free seats, students in this group identified these
two free seats, but they considered them as not being relevant for the answer
because the question asks about seats for the current travellers, and the current
travellers are 21 (9 male, 10 females and 2 teachers).

(ii) Some students identified all the data in the text but they did not use the data
about the two teachers. Pupils in this group explained that the two free seats
are the seats for teachers. They linked this answer to their real experiences: in
their school trip experiences teachers do not sit in order to monitor students’
behaviour (see Fig. 10.1).

We wonder whether the answer 21 can actually be considered incorrect in these
two cases. We believe that it could not. In both cases (i) and (ii) students showed
to have the competence that the item was designed to assess—i.e. to identify all the
relevant data in the text. Their argumentations highlight how they were assuming a
definition of relevant different from that assumed the test designers, but nevertheless
highly justified.

The answer 21, in the first case, is related to a different meaning attributed to the
word “travellers”; in the second case to pupils’ construction of a representation of
the problem situation based on their experiences.

As Zan (2011) underlines, narrative thinking should not be viewed as an obstacle
to logical thinking, or anyway as a lack of rational thinking.
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Fig. 10.1 “21, because
teachers stand up to check
the situation”

Table 10.2 Results of the
national sample—Item D23
(grade 5)

Omissions A B C D

1.2% 3.8% 43.9% 6.5% 44.6%

10.5.2 Example 2: The Different Sources
of Difficulties—The Number Closest to 100 (Grade 5)

Another item discussed in our group was the following D23 item from the INVALSI
2013 survey for grade 5:

Which of the following numbers is closest to 100?5

(A) 100,010 (B) 100,001 (C) 99,909 (D) 99,990

The explicit aim of this item was: to compare decimal numbers, but it appeared
clear to us that the answer to this item requires more than simple comparison between
decimal numbers, involving the crucial and difficult concept of distance (proximity)
between numbers.

This item appeared to be interesting for many reasons: the significance of the
concept involved, the fact that similar items are used also for grade 6 (therefore the
involved argument is considered significant in the transition between primary and
middle school), the result of the national sample (Table 10.2) that highlights that the
most chosen option is not the correct one.

We proposed the item D23 in its original version, requiring also the justification
for the given answer, to 63 grade 5 students of three different classes. After the
individual resolution phase, a mathematical discussion orchestrated by the teacher
was developed (Bartolini Bussi, 1996).

From a quantitative point of view, we obtained results similar to the national
sample: the most chosen option was D. From a qualitative point of view, significant

5Underscore in the original text. Concerning closed questions of Italian national assessments, only
the items for grade 2 have three answer options, while the items for all other grades have four
options.
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aspects to interpret students’ answers (and difficulties) emerged from the discus-
sions developed in the three classrooms. In particular, we identified three sources of
difficulties related to the choice of incorrect options.

The first one is related to the explicit aim of the item: some students who chose
A, C or D show difficulties in calculations with decimal numbers.

The second one is related to the algorithm to calculate the distance of X from
100. Without the absolute value, this algorithm is not symmetric: if X is greater than
100, I have to calculate X minus 100; if X is lesser than 100, I have to calculate 100
minus X. Some students make the algorithm symmetric: they calculate X minus 100
for each value of X, and—after that—they exclude the negative results (options A
and B).

The third way of proceeding was the most common among the students and it
is particularly interesting. The classroom discussions shed light onto a linguistic
difficulty related to the term “closest”. For many students, the expression “closest to
100”meant “the number does not exceed 100”: “we have not considered the numbers
greater than 100 because ‘the closest to 100’ means that it does not reach 100”.

As Boero, Douek and Ferrari underline:

Some difficulties generally arise from the differences in meanings and functions between
the word component (i.e., the words and structures taken from ordinary language) of math-
ematical registers and the same words and structures as are used in everyday life. (Boero,
Douek, & Ferrari, 2008, p. 265)

In this case, it seems that the students interpret the sentence “the number X is
close to 100” as implying that X precedes 100. This is explicit in the following
words of a student: “we have to exclude 100,010 and 100,001 [the answer options
A and B] because they are over 100, therefore they exceed it and they move away
from it!”. Moreover, in the discussion, the examples that students give to support
their understanding and their use of the term “close to” are related to their everyday
life experiences: “when you are close to the finish line, you are not beyond the finish
line”, “some time ago, my dad said to friends of him that he earns close to 1300 euros.
It doesn’t mean that he earns 1310 euros, but 1290 euros!”, “when you [addressing
to the teacher] told me that my composition is close to being excellent, it means that
my composition is not excellent, it is slightly worse: isn’t it?”.

The discussion and experimentation of item D23 resulted particularly significant
for teachers in our Project. On the one hand, they became aware of the role of
mathematical discussions in highlighting a wide and detailed spectrum of sources
for students’ difficulties, and this awareness allowed teachers to plan and develop
some appropriate and specific interventions. On the other hand, they realized the
weight of linguistic aspects in choosing an answer for item D23.

Given the relevance of the concept “close to” in mathematics, we also discussed
in the Team if there exist any “didactical reasons” for the meaning that many students
gave to it. Some teachers noticed two typical features of the early activities (grade 1)
with the number line drawn on the floor: usually teachers ask students to go forward
on the number line for a fixed number of steps; the number line has an upper limit
(usually the number 20) that pupils obviously never exceed. After this discussion,
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we proposed to a class involved in the experimentation of item D23 the task of re-
formulating the text of the problem in order to overcome the linguistic difficulty
related to the meaning of “close to”.

The result was particularly interesting and related to our discussion: after an
intense debate, the class proposed the following version for item D23: “Which of the
following numbers is closest to 100, going back and forth on the number line?”.

Using this new version of item D23 in three different classrooms, we obtained a
percentage of correct answers of about 90%!

10.5.3 Example 3: The Role of the Text of the Problem—The
Chocolate Box (Grade 6)

An item discussed by the lower secondary school teachers in our group was item
D16 for grade 6:

A box of chocolates contains 15 milk chocolates and 25 dark chocolates. With 100
milk chocolates and 180 dark chocolates, what is the maximum number of boxes with
the same composition of the previous one that we can fill?
(A) 5 (B) 6 (C) 7 (D) 8

The explicit aim of this item was: to find a solution that satisfies the constraints.
More precisely, it is explicitly linked to the competence “to solve easy problems in
all content areas, retaining control both on the solution process and on the results”,
and to the ability “to run the division with remainder between the natural numbers,
to identify multiples and divisors of a number”. To approach and solve the problem
correctly the student should realize (through products or divisions) that the number
of milk chocolates allows to fill six boxes (each with 15 chocolates) with a surplus of
10 chocolates, while the number of dark chocolates allows to fill seven boxes (each
with 25 dark chocolates) with a surplus of 5 chocolates, so the maximum number of
boxes that satisfy the constraints is 6 (answer B). In this final phase the control over
the meaning of the results comes into play, so the reference to the aforementioned
competence “to solve easy problems […] retaining control both on the solution
process and on the results” becomes particularly evident; we note that is also one of
the key elements in the process of problem solving according to the mathematization
cycle by PISA (OECD, 2003).

Weconsider this item tobe interestingbecause it refers to oneof themost important
mathematical competences, directly linked to the problem solving competence, and
also because the results of the item revealed that it was particularly difficult for the
Italian students (Table 10.3).

Concerning the control issue previously mentioned, the percentage of students
who choose (c) appears to be particularly interesting.

In order to understand why so many students chose the incorrect options, we
proposed item D16 in its original version (adding the request “Explain how you
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Table 10.3 Results of the
national sample—Item D16
(grade 6)

Omissions A B C D

5.5% 14.7% 26.6% 31.7% 21.5%

reasoned”) in four grade 6 classes. Then the research group elaborated a modified
version, which was tested in two other classes.

As before, also in this case, from a quantitative point of view, we obtained results
similar to the national sample, with many students choosing answer C as a result of
the division of the total number of chocolates (280) and the number of chocolates
in each box (40). However, from the analysis of the explanations given by some
students, it was clear that they do not ignore the constraints of the problem: in these
cases the most important source of difficulties seems to be not the lack of problem
solving competences or arithmetical abilities, but instead interpreting the text of the
problem.

The text refers to a ‘real’ context, talking about chocolates and boxes to fill. This
choice is very frequent in the first cycle, usually because recalling a concrete context
is thought to be an element that can facilitate the understanding of the problem
itself—referring to the students’ experiences and thus evoking his/her knowledge
of the things of the world—and also increase students’ motivation in solving the
problem. In fact, this choice does not always achieve these effects, and some research
results indicate that the decision to set the problem in a concrete context sometimes
introduces difficulties rather than eliminating them:

Particularly meaningful from a narrative standpoint is therefore that piece of information
that enables the child to grasp the problematic nature of the story and point out the link
existing between the story itself and the posed question.

It might also happen that the pieces of information needed to solve the problem are not
necessarily consistent from a narrative viewpoint, and if they are inconsistent, they will
probably be ignored by those who read in a narrative mode. (Zan, 2011, pp. 294)

In the case of item D16, despite the concrete context, the posed question asks to
respect some constraints that appear artificial (15milk chocolates and 25 dark choco-
lates in each box), especially in light of the consequences that they involve, i.e. the
fact that this way the correct answer involves a surplus/waste of some chocolates. In
this respect, one of the protocols collected during our experimentation is particularly
insightful; the student performs the 15 × 7 and 25 × 7 multiplications and realizes
(correctly) that the first exceeds 100 (the number of the total milk chocolates) by 5
chocolates, while the second is less than 180 (the number of dark chocolates) still
by 5 chocolates, to conclude that it is possible to have another box of chocolates, yet
different by the standard one (Fig. 10.2).

In this case the choice of the option C is conditioned by the artificiality of the
text of the problem: the reasoning explained by the student shows that he is able to
successfully execute themultiplications required and that he has perfectly understood
the question and the problem constraints (so in this sense he fully achieved the
learning objectives that the item was designed to verify), but since he perceives
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Fig. 10.2 “Though there are 5 dark chocolatesmissing, they are replaced by 5 extramilk chocolates
and so the boxes are seven”

Fig. 10.3 “However, 40 [chocolates] exceed, with which you can fill another box, but not with the
same composition”

them as artificial—because with the correct solution there would be many extra
chocolates—he prefers to choose a more meaningful solution.

Another student who participated in this experimentation properly resolved the
problem, but in the endhe felt the need to specify thatwith the extra chocolates another
box can be filled, even if without maintaining the same composition (Fig. 10.3).

The understanding of the text emerges as a crucial point in the resolution of
problems. In this case such understanding seems to be hampered by the fact that the
problem, despite the reality of the given context (chocolates, boxes to be filled), is not
a realistic problem because of the artificial constraints it imposes. The understanding
of problems related to the presence of non-realistic constraints can lead the student
to ignore the constraint he does not understand, or to re-interpret it so that it acquires
meaning for him.

The reformulation proposed by the research group tries to “solve” the artificiality
of the constraints linking them to the shape of the chocolates, that is, by placing the
same problem in a context where the constraint that must be respected is not imposed
artificially and can acquire meaning for the student. The text of the reformulated item
was the following: “Marco works in a bakery, and the owner asked him to prepare
boxes of chocolates for a sale on Sunday. In the bakery there are only boxes that
hold 15 round-based chocolates, and 25 square-based chocolates. Marco counts the
chocolates that are in the store: there are 100 chocolates with a round base and
180 chocolates with a square base. How many boxes can he fill?”. The item was
accompanied by a drawing of the chocolate box (Fig. 10.4).

With this reformulation the number of correct answers increased to almost 50% of
the students, although the mathematical complexity of the problems was equivalent.
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Fig. 10.4 The reformulated item

We also found interesting the fact that some students, recognized the problem as
realistic and after answering the problem, try to complete the story: “We can sell the
remaining chocolates separately”).

We note, however, that the goal of this analytical work on the text is not to reduce
the difficulties in order to increase the number of correct answers, but to separate
out the difficulties due to the interpretation of the problem and its constraints (linked
to the reality) from the difficulties due to low specific mathematical competences.
A distinction that, in a standardised assessment performed through multiple choice
items, is impossible to realize.

10.5.4 Example 4: The Role of Answer Options: Estimating
the Root (Grade 8)

The lower secondary school teachers were interested in the analysis of item D19 for
grade 8:

The number
√
6.4 is approximately equal to:

(A) 3.2 (B) 2.5 (C) 0.8 (D) 8.0

The item brings into play two significant aspects for mathematics education in
middle school (grades 6–8): the definition of square root and the competence of
estimating the value of a square root. The explicit aim of the item is: “To estimate the
value of the square root of a number”. The result of the national sample highlights
that the most chosen option was not the correct one (B), but also that less than 50%
of the sample answers correctly (Table 10.4).

We experimented the itemD19 in four grade 8 classes (87 students), requiring jus-
tification of the answer and orchestrating a classroom discussion after the individual
resolution phase.
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Table 10.4 Results of the
national sample—Item D19
(grade 8)

Omissions A B C D

1.2% 3.8% 43.9% 6.5% 44.6%

Fig. 10.5 Luca’s protocol—Item D19

The first interesting observation is that very few students use words to explain
their choices: in almost all protocols, justifications were simply calculations (see, for
example, Fig. 10.5).

Luca’s protocol is particularly interesting because it shows that Luca knows the
definition of square root of a number and has no difficulties in carrying out cal-
culations with decimal numbers. Nevertheless, Luca chose the wrong option. We
elaborated on two a priori interpretations for Luca’s choice: Luca may have diffi-
culties related to the meaning of “approximately equal” (something similar to the
discussion about the second example) or Luca could have made a careless mistake
when selecting the option. In the discussion, we realized that the latter interpretation
was the correct one.

This example clearly underlines the differences between the goal of a standardised
assessment and the goal of the teacher in assessing students’ mathematical compe-
tences. Standardised assessments have the goal of measuring a certain phenomenon,
and in their framework Luca’s protocol might be seen as a “psychometric noise”;
whereas teachers should use assessments to understand students’ difficulties and
abilities case by case, therefore also being able to interpret noises.

The second observation concerns the loud noise provoked by the presence of
answer options in the item. From the analysis of the students’ protocols it became
clear that the presence of answer options directs the students’ thought processes: just
like Luca, almost all the students develop their solutions starting from the answer
options, calculating the square of the four given numbers and evaluating their distance
from 6.4. If it is true that some of these answer options are related to the common
misconceptions about square root, we wonder if item D19 is actually related to the
competence of estimating a square root. It is not so obvious that students able to give
the right answer are also those able to estimate the square root of 6.4 without seeing
the options to choose from (and also the vice versa is not clear).
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A particularly interesting aspect is that students were aware of this: “The multiple
choices produce confusion, the reasoning is driven by options, not by knowledge”;
“We develop our solution process on the basis of the given options and this affects
our reasoning”.

The discussion of this item confirms that the multiple choice items strongly affect
the students’ approach to the problem and their processes of thoughts, moving away
from the original goals on the basis of which items have been developed.

10.6 Conclusions

The discussed examples highlight several significant aspects in the assessment of
students’ problem solving competences; in particular, the clear limitations of stan-
dardised assessments in assessing this kind of competences.

One first critical aspect is the time constraint: our experimentation confirms that
we have to give students the time to reflect, act, verify and change their mind if we
want to assess their problem solving competences. Trivially, if we want to assess
students’ reasoning, we have to give them the chance (and the time) to reason.

The second main critical point concerns with the attention and consideration of
the students’ thought processes. As a matter of fact, we need to consider the thought
processes behind and beyond a given answer in order to really assess students’
problem solving competences (Boero, 2011).

As shown by the discussed examples, the consideration of students’ reasoning in
problem solving activities, through the request of justifications and the classroom
discussions, gives crucial elements to interpret students’ answers and possible diffi-
culties beyond an incorrect—but also a correct—answer.

On the other hand, the standardised assessments are usually not meant to interpret
the students’ mathematical behaviour, but rather tomeasure, the students’ mathemat-
ical performance. A different aim should be that of researchers, but also of teachers,
who should have the ambition of analysing, interpreting and understanding what is
involved in students’ answers.

As attested by the productive collaboration that took place within the commu-
nity of practice developed in the GRA-INVALSI project, researchers and teachers
can have similar aims in the approach to the results of standardised tests. There-
fore, although the focus of this paper is not on the teachers, we believe that the
results of the Project are interesting also (and especially) for teachers (Di Martino
& Baccaglini-Frank, 2017). In particular, according to the discussed influence of
standardised assessments on teachers’ practices (Bodin, 2005; Nevo, 2001), it is cru-
cial that teachers give the right weight to their students’ results to the standardised
assessment. On the one hand, it is important they are aware of what these results
can and cannot illustrate. On the other hand, we argue the Project and its structure
could describe a model for teachers’ training aimed to develop teachers’ interpreta-
tive knowledge (in the sense defined by Ribeiro, Mellone, & Jacobsen, 2016), and,
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more in general, a critical but constructive approach to the information given by
standardised mathematics tests.
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Chapter 11
Toward Designing and Developing Likert
Items to Assess Mathematical Problem
Solving

James A. Mendoza Álvarez, Kathryn Rhoads, and R. Cavender Campbell

11.1 Introduction

Success in foundational mathematics courses provides critical access to science,
technology, engineering, and mathematics (STEM) careers because foundational
mathematics courses serve as prerequisites for courses in every STEM major (Bryk
& Treisman, 2010; Fike & Fike, 2008; Jarrett, 2000). Whereas mathematicians and
mathematics educators have identified prerequisite skills, procedural knowledge, and
conceptual knowledge needed for courses such as calculus (e.g., Carlson, Oehrtman,
&Engelke, 2010), little is understood about themathematical problem solving (MPS)
capacity studentsmust develop to be successful in learning themathematics central to
their field of study (e.g., Selden, Selden, Hauk, &Mason, 2000). In fact, few efficient
tools exist that can provide information on entry-level university students’ MPS
practices. The Mathematical Problem Solving Item Development (MPSI) Project
aims to develop Likert MPS items that capture a student’s use of MPS. Such a tool
could be used to determine MPS profiles linked to success in mathematics courses
such as college algebra or calculus.

In 1992, Schoenfeld noted that national calls for action in U.S. mathematics
education indicated the “acceptance of the idea that the primary goal of mathematics
instruction should be to have students become competent problem solvers” (p. 335).
Since then, problem solving andmathematical practices continue to play central roles
in standards established for school mathematics in the U.S. (e.g., National Council
of Teachers of Mathematics, 2000; National Governors Association Center for Best
Practices & Council of Chief State School Officers, 2010), but college-level courses
continue to have limited opportunities for MPS (Schoenfeld, 2013).

J. A. M. Álvarez (B) · K. Rhoads,
Arlington, TX, USA
e-mail: james.alvarez@uta.edu

R. C. Campbell
Vienna, WV, USA

© Springer Nature Switzerland AG 2019
P. Liljedahl and M. Santos-Trigo (eds.), Mathematical Problem Solving,
ICME-13 Monographs, https://doi.org/10.1007/978-3-030-10472-6_11

231

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-10472-6_11&domain=pdf
mailto:james.alvarez@uta.edu
https://doi.org/10.1007/978-3-030-10472-6_11


232 J. A. M. Álvarez et al.

As evidenced by U.S. high failure rates in college algebra and calculus, focus-
ing solely on specific knowledge and skills may not be cultivating the mathematical
reasoning or problem-solving capacity students need to progress through the STEM
pipeline at the university level, or it may be that success in these courses does not
distinguish between deep learning and surficial learning (Maciewjeski & Merchant,
2016). However, not only is little understood about the appropriate levels of facility
in MPS needed to progress successfully through gateway mathematics courses, but
also the complex nature of MPS makes it difficult to determine this capacity. Some
researchers have used assessments involving problem posing tasks to determine stu-
dents’ thinking processes and abilities linked to MPS (e.g., Kwek, 2015; Silver &
Cai, 1996; Van Harpen& Presmeg, 2015). Fewwould argue that the best measures of
a student’s MPS capacity involve task-based interviews and review of student work
on problem posing or MPS tasks using detailed rubrics (cf. Dawkins & Epperson,
2014; Oregon Department of Education, 2000; Silver & Cai, 1996). However, these
measures are time consuming and costly (e.g., Pugalee, 2004). With the goal of mit-
igating these costs and time constraints, the MPSI project will develop Likert items
that can be machine scored. Our goal is that the MPSI Likert items can be used to
create an efficient tool that will provide key information about MPS practices for
entry-level university students.

In addition, we aim for theMPSI Likert items to measureMPS skills, independent
of procedural knowledge and conceptual knowledge (beyond a secondary-school
algebra threshold). We are particularly interested in using the items to explore the
MPS skills needed for student success in courses such as college algebra or calcu-
lus. For example, students may possess prerequisite skills, procedural knowledge,
and conceptual knowledge necessary for matriculation in an entry-level university
course, yet not all of these students are successful in such courses. Efficiently captur-
ing students’ MPS practices may provide useful information about MPS thresholds
necessary for success. In addition, once development of the MPSI Likert items is
complete, the items could possibly be used in a variety of settings, such as to assess
student readiness for university-level mathematics or to provide instructors with
information regarding their students’ MPS practices.

In this chapter, we describe the design and development of Likert MPS items
to assess MPS and present current progress toward validating the items and their
possible correlation to course outcomes.We also use the current data to provide initial
interpretations on whether the MPS items being developed are separating MPS from
mathematics content knowledge.Meaningful progress of theMPSI Project may open
new avenues, which currently do not exist, for creating and designing assessments of
MPS that present an efficient way to assess students’ MPS capacity on a large scale.
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11.2 Mathematical Problem Solving in the Research
Literature

The development of Likert MPS items draws upon Lester’s (2013) definition of a
“mathematics problem” and Schoenfeld’s (2014) generalized theoretical perspective.
Campbell’s (2014) systematic analysis of themathematical problem solving research
literature provides a framework, used in the development of the Likert MPS items,
for identifying key aspects of mathematical problem solving we wish to capture in
an MPS assessment tool.

11.2.1 What Is a Mathematics Problem?

Mathematicians and mathematics educators often use Polya’s (1957) early work to
describe the problem-solving process, but their definitions of mathematical problem
solving or what constitutes a mathematics problem may differ widely (e.g. Schoen-
feld, 1992; Wilson, Fernandez, & Hadaway, 1993). We ascribe to Lester’s (2013)
definition that “…a problem is a task for which an individual does not know (imme-
diately) how to get an answer…” (p. 247). Thus, a problem is relative to the solver
(Schoenfeld, 1985).

The development of theMPS items also attends to the developmental appropriate-
ness of the items and incorporates the idea from Yee and Bostic’s (2014) framework,
in which they define a problem as “a developmentally appropriate challenge for
which the participant has a goal but the means for achieving it are not immediately
apparent.” (p. 2).

11.2.2 Theoretical Perspective

In discussing MPS as a research and practice domain in mathematics education,
Santos-Trigo (2014) asserts that problem solving as a research endeavor includes
“analyzing cognitive, social, and affective components that influence and shape the
learners’ development of problem-solving proficiency” (p. 496). In addition, Lester
and Cai (2014) assert that, “During the past 30 years, there have been significant
advances in our understanding of the affective, cognitive, and metacognitive aspects
of problem solving in mathematics” (p. 118).

As a practice domain, Santos-Trigo (2014) includes curriculum development and
design that enhance MPS activities in the classroom and goes further to describe
problem solving activities as those that involve sense-making, using different rep-
resentations, exploration, natural extensions, and emphasis on appropriate language
to discuss results. Lappan and Phillips’ (1998) developed their middle school math-
ematics curriculum (Connected Mathematics) using a set of criteria they developed
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for good or “worthwhile problems.” Cai,Wang,Moyer, and Nie (2011), for example,
found this curriculum to be effective for fostering students’ MPS.

Because our view of a mathematics problem is grounded in the problem solver’s
knowledge rather than an external hierarchical judgement of appropriate challenge,
we viewMPS as a process (cf. Silver, 1985). To explain someone’s success or failure
in a problem-solving attempt, we appeal to Schoenfeld’s (2014) generalized theoreti-
cal perspective fromhis decades of research on essential components ofmathematical
problem solving to any knowledge-rich domain. This success or failure in a MPS
attempt involves one or more of the problem solver’s

a. domain-specific knowledge and resources,
b. access to productive “heuristic” strategies for making progress on challenging

problems in that domain,
c. monitoring and self-regulation (aspects of metacognition), and
d. belief systems regarding that domain and one’s sense of self as thinker in general

and a doer of that domain in particular (…, one’s domain-specific identity).
(p. 405)

This is similar to Jonassen & Tessmer’s description of problem solving as an
activity that involves domain knowledge, structural knowledge, ampliative skills,
and metacognitive skills as well as motivational/attitudinal components and knowl-
edge about self (as cited in Jonassen, 1997, p. 66). Jonassen and Tessmer’s structural
knowledge involves information networking, conceptual networking, and mental
models, which we believe rely on Schoenfeld’s (2014) domain-specific knowledge
and aspects of monitoring and access to productive heuristic strategies. Ampliative
skills refer to constructing/applying arguments, analogizing, and inferencing, which
in our view relate to Schoenfeld’s (2014) resources, productive strategies, and mon-
itoring.

11.2.3 Characterizing Mathematical Problem Solving

Campbell (2014) systematically analyzed research articles in MPS and cataloged
explicitly-stated or implied definitions ofMPS to determine characterizations ofMPS
in published research. His findings stabilized after analyzing 18 articles, and no new
characterizations were required to classify definitions ofMPS for an additional seven
articles. He identified five key characterizations or domains: sense-making/orienting
(e.g. Santos-Trigo, 1998; Schoenfeld, 1988); representing/connecting (e.g. Kieran,
2007;Wilson et al. 1993); challenge/difficulty (e.g. Chapman, 1999; Jonassen, 1997);
reviewing/checking (e.g. Carlson & Bloom, 2005; Garofalo & Lester, 1985); and
justification/defending (e.g. Jonassen, 1997; Szetela & Nicol, 2002). For example,
Schoenfeld (1988) explicitly referred to sense-making as “an act of taking things
apart and seeing what makes them tick” (p. 87), whereas Kieran’s (2007) references
to combining previously learned techniques imply connecting prior knowledge to
problem situations. The domain of challenge/difficulty links to Jonassen’s (1997)
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Table 11.1 MPS domains and Schoenfeld’s (2014) theoretical framework

Theoretical framework MPS domains

Domain-specific knowledge and resources Challenge, representing/connecting,
sense-making

Access to productive “heuristic” strategies for
making progress on challenging problems in that
domain

Representing/connecting

Monitoring and self-regulation (aspects of
metacognition)

Sense-making, reviewing, justifying

Belief systems regarding that domain and one’s
sense of self as thinker in general and a doer of
that domain in particular

All five domains (indirect)

characterization that “problem solving, as an activity, is more complex than the sum
of its component parts” (p. 65), and Garofalo and Lester (1985) included monitoring
and checking as an important aspect of MPS. Finally, Jonassen (1997) indicated that
justifying or defending generated solutions also engages learners in higher-order
problem solving learning.

Campbell (2014) developed definitions for each domain using phrases and con-
cepts from the relevant literature. We refined the definitions to focus on the signifi-
cance of each domain and key aspects of MPS associated with it. Our MPS domain
definitions are:

Sense-making: Identifying key ideas and concepts to understand the underlying
nature of the problem. Attending to the meaning of the problem posed.
Representing/connecting: Reformulating the problem by using a representation not
already used in the problem or connecting the problem to seemingly disjoint prior
knowledge. Using multiple representations or connecting several areas of mathemat-
ics (e.g. geometric and algebraic concepts).
Reviewing: Self-monitoring or assessing progress as problem solving occurs, or
assessing the problem solution (e.g. checking for reasonableness) once the problem-
solving process has concluded.
Justifying: Communicating reasons for the methods and techniques used to arrive
at a solution. Justifying solution method(s) or approach(es).
Challenge: The problem must be challenging enough from the perspective of the
problem solver to engage them in deep thinking or processes toward a goal, “without
an immediate means of reaching the goal” (Wilson et al. 1993, p. 57).

We associate these domains with components of Schoenfeld’s (2014) theoreti-
cal framework (see Table 11.1), recognizing that although we aim to control for
domain-specific knowledge in the MPS items, the degree of challenge, use of repre-
senting/connecting, and success in sense making could be linked to domain knowl-
edge and resources. In addition, although belief systems and affect are important
components in MPS, the domains only indirectly link to this component.
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11.3 MPS Item Development and Design

To capture undergraduate students’ use of the MPS domains, we have developed
an MPS test which includes mathematics problems and associated MPS items. We
describe problems, items, and theMPS test in Sects. 11.3.1 and 11.3.2; details regard-
ing revisions and validation of the items are discussed in Sect. 11.3.3.

11.3.1 Problems and MPS Items

Weaim to assessMPS throughmathematics problems and associated items. Problems
offer students an opportunity to engage inMPS, and the items are designed to provide
information on each of the domains described in Sect. 11.2.3.

11.3.1.1 Problems

We currently use 10 mathematics problems. For example, one problem is Ken’s
Garden:

Ken’s existing garden is 17 feet long and 12 feet wide. He wants to reduce the length and
increase the width by the same amount. He wants his new garden to be approximately half
the size of the current garden, what dimensions are appropriate for Ken’s new garden?

Our intent is to gather information regarding undergraduate students’ MPS sep-
arate from conceptual knowledge and procedural knowledge associated with the
problem solver’s content knowledge and resources. As such, we developed prob-
lems at a secondary-school algebra level so that they are accessible to students in
terms of prior mathematical knowledge and skills, but they require students to use
problem solvingmethods to reach resolution. Students entering college algebra in the
U.S. typically have had at least two years of secondary school algebra or have studied
similar topics in a developmental mathematics program at a community college or
university before enrolling in a college algebra course.

The problem statements are inspired by textbook problems, released items from
high-stakes tests such as the State of Texas Assessments of Academic Readiness
Algebra End-of-Course Exams (Texas Education Agency, 2011) as well as other
sources such as the Partnership for Assessment for Readiness for College andCareers
(PARCC) (Pearson Education, 2010), Algebra II Assessments (Charles A. Dana
Center, 2007), and Smarter Balanced Assessments (2014). Although the conceptual
knowledge and procedural skills should be familiar to the problem solver, the prob-
lems are designed to be consistent with our definition of problem (Lester, 2013). That
is, the problem statements developed aim to create scenarios that require in-depth
use of problem solving so that the associated items may explore a problem solver’s
facility in several MPS domains. To further minimize the effect of students’ knowl-
edge linked to specific algebra topics, the problems target a broad range of algebra
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Table 11.2 Algebra concepts included in problems and format of problems

Problem name Concepts Format of problem
statement

Extreme values Quadratic functions Abstract

Building functions Graphs of basic functions;
transformations of functions

Abstract

Intersecting graphs Graphs of functions Abstract

Fun Golf Quadratic functions Contextual

Cross-country race Rate and linear functions Contextual

Avoiding intersections Graphs of linear and quadratic
functions; transformations of
functions

Abstract

Ken’s garden Quadratic relationship Contextual

Air travel Rate and linear functions Contextual

Intersecting quadratics Graphs of quadratic functions Abstract

Robert’s crew Rate and proportional reasoning Contextual

topics found in the Common Core State Standards (National Governors Association
Center for Best Practices & Council of Chief State School Officers, 2010) and the
Texas Essential Knowledge and Skills (Texas Education Agency, 2012). In addition,
some problems, such as Ken’s Garden, are posed in a particular context, whereas
other problems are posed abstractly. One example of a problem posed abstractly is
Intersecting Graphs:

Give two distinct functions f and g whose graphs intersect at the points
P(−1, −1) and Q(3, 7). Explain how you are sure that your answer is correct.

Specific algebra concepts that can be used to solve the problems and the format
of the problem are listed in Table 11.2.

11.3.1.2 Items

We currently use 54 items associated with the 10 problems. Each item is associated
with one problem, and the items require that participants reflect on their work on
the problems. By design, each item targets primarily one domain. We use a Likert
scale to contrast approaches linked to the MPS domain that the item captures. For
example, Fig. 11.1 shows two items associated with Ken’s Garden. The first item is
designed to capture the sense-making domain, and the second item is designed to
capture the representing/connecting domain.

Answer choices indicate the degree to which a participant believes their approach
is similar to the contrasting approaches given. One of the two approaches is identified
by researchers as indicating a high use of the domain. For example, in Ken’s Garden
Item 1 (which captures sense making), the response “first calculating the area of
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Fig. 11.1 Selected items for “Ken’s Garden” problem (fall 2016 version). Item 1 captures the
sense-making domain. Item 2 captures the representing/connecting domain

Ken’s Garden” represents a lower use of sense-making, whereas the response “first
thinking about the meaning of the word “size” in the problem statement” represents
a higher use of sense-making.

Items were developed by our research team, and we worked to reach agreement
on the intended domain of the item whether the answer choices (posed on a Likert
scale) allowed for an appropriate range of answers. The definitions of the MPS
domains (see Sect. 11.2.3) guided the creation of the Likert items. For example,
one part of the sense-making domain is “Attending to the meaning of the problem
posed.” For item 1 in Fig. 11.1, choice B indicates that the student attended to the
meaning of the problem before making calculations. For the representing/connecting
domain, items capture students’ use of visual representations, such as diagrams and
graphs, rather than symbolic representations. We made this choice because in the
United States, visual representations in MPS are more non-traditional than symbolic
representations in undergraduates’ MPS, yet visual representations can be helpful in
MPS (cf. Eisenberg & Dreyfus, 1991; Presmeg, 2006).

Across all items, high use of the linked domain varies as choice A or choice B
to avoid the possibility of participants deriving a pattern that, say, choice A is the
desired choice for all items. Participants are also given the option “none” and asked
to explain if this option is used. When participants choose the latter, researchers
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Table 11.3 Problems
included on the three versions
of MPST

Problem Name MPST 1 MPST 2 MPST 3

Extreme values ✓

Building functions ✓ ✓

Intersecting graphs ✓

Fun Golf ✓ ✓

Cross-country race ✓ ✓

Avoiding intersections ✓ ✓

Ken’s garden ✓

Air travel ✓ ✓

Intersecting quadratics ✓

Robert’s crew ✓

use these responses to gauge whether the contrasting approaches accurately reflect
participants’ MPS pathways on a given problem linked to a specific domain.

A single problem statement has approximately five to eight associated items that
probe the level of a students’ use of four of the domains—all except challenge—iden-
tified in Sect. 11.2.3. Of the current 54 items, each of the four domains is captured by
11–17 items. The challenge domain is captured by a distinct type of item, explained
in Sect. 11.3.2.

11.3.2 MPS Test

In a single administration, participants complete a two-part survey or test, which
consists of five problems (Part I) and their associated items (Part II). For reference,
we will call the collection of both parts an MPS test (MPST). By design, completion
of an MPST takes no more than one hour. In fall 2016, we used three versions of the
MPST, and each student took one version. Our 10 problems were distributed among
the three versions as shown in Table 11.3.

In Part I, participants are asked to solve the five problems and record their work.
After completing all problems in Part I, participants complete Part II of the MPST.
Part II begins with having the participant rate the difficulty of each problem worked
from “very easy” to “very difficult” (see Fig. 11.2). This information addresses the
challenge domain and provides context for analyzing participant responses on Part
II by attending to whether the participant experienced the problem as “a problem”
as we define it as well as the role of content-specific knowledge and resources from
Schoenfeld’s (2014) theoretical framework.

Participants are also given an example to guide their responses on the 25–35 items
that follow (see Fig. 11.3).

Tests were scored by assigning the response for each item a score from 1 (low) to 6
(high), which correspond to the student’s choice on the Likert scale. Thus, depending
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Fig. 11.2 Rating problem difficulty at the beginning of Part II (MPST 2)

Fig. 11.3 Example provided as guide for answering items in Part II (fall 2016 version)
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Table 11.4 Piloting and revision cycle

Time period Action

Fall 2014—spring 2015 Piloted draft items with secondary mathematics teachers enrolled
in a graduate mathematics program and College Algebra students,
and conducted two think-aloud interviews

Summer 2015 Analysed data, revised existing items, and created new items

Fall 2015 Piloted items at the beginning of the semester with 108 College
Algebra Students (nine course sections, five instructors), 405
Calculus I students (11 course sections, eight instructors),
conducted 18 interviews (11 College Algebra & 7 Calculus), also
administered post-test to 49 College Algebra and 165 Calculus
students. Revision to items before administering post-test were
made based upon student work on the pre-test and student
interviews

Spring 2016 Piloted items in College Algebra, 133 pre-tests and 28 post-tests
(four course sections, three instructors). Analysed student
interviews. Items sent to MPS research experts for review and
feedback. Data analysed by expert in psychometrics

Summer 2016 Revised problems and MPS Items based upon interview data and
expert feedback and analysis

Fall 2016 Piloted revised items with 490 College Algebra students (11 course
sections, six instructors) and 479 Calculus I students (eight course
sections, eight instructors). Conducted ten think-aloud interviews

Spring 2017 Pilot items in College Algebra, expert review of revised items,
psychometric analysis of fall 2016 data, analyse student interviews

on the arrangement of the contrasting choices for an item, the scores of 1 and 6 would
correspond to choices “Only (A)” and “Only (B)” or vice versa.We used these scores
to derive a participant’s average score in sense-making, representing/connecting,
reviewing, and justifying based upon their answers to items linked to the respective
domains on an MPST. Because we scored responses on a scale from 1 to 6, a middle
score is 3.5. We also derived a maximum score from the highest average score across
all domains. The maximum score is a participant’s peak use of at least one of the
domains. That is, a participant who scores low in sense-making, but scores high in
justifyingwill have a highmaximumscore and canbedistinguished fromaparticipant
whose scores in all domains is low.

11.3.3 MPS Item Refinement and Validation

Prior to fall 2016,we created 15mathematics problems andover 100 associated items.
We have since used internal and external review, piloting, and validation processes
to revise and refine our initial problems to develop the current 10 problems and 54
associated items. An overview of our processes is described in Table 11.4.
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11.3.3.1 Past Validation Efforts

Drafts of problems and items began in 2014. Early piloting with practicing secondary
mathematics teachers enrolled in a graduate mathematics education program as well
as pilot testing and interviews with participants in college algebra courses informed
revisions to the problem statements and associated items. These items were then
piloted in a pre-/post-format in fall 2015 and spring 2016 with 256 college algebra
students (108 in fall 2015, 148 in spring 2016) and 405 calculus students (fall 2015).
We conducted task-based interviews with 26 students (19 from college algebra and
7 from calculus). Each interview was up to one hour in length and used a think-aloud
protocol.

As part of the validation process, we analyzed data to compare participants’ MPS
levels as indicated byMPS items and theirMPS behaviors during research interviews
on three of the same problems worked during a pre- or post-MPST and one they had
not seen previously. Each interview was assigned to two researchers to be coded.
We coded verbal and written MPS behaviors in the interviews, using the five MPS
domains as a coding framework (e.g., Miles & Huberman, 1994). The domain of
representing/connecting was coded according to visual representations (written or
mental)—as opposed to symbolic representations—to align with the item design, as
described inSect. 3.1.2. Each researcher independently coded three to five interviews,
then coding was compared and contrasted, and the coding scheme was revised until
we reached agreement.

The frequency of codes and the depth of the behaviors coded were compared to
students’ Likert scores on the MPS items. In cases where interview behaviors and
Likert scores differed,we revisited interview transcripts and students’writtenwork to
seek reasons for the differences (Yin, 2009). This analysis revealed that the language
used in some problems and items needed revision, and we revised accordingly. We
also revised some of the Likert scale options to better align with the practices that
we observed many students using in the interviews.

Through the process of interviewing and triangulating with participant MPS item
responses and participant work, we were working toward validating the MPS items
protecting against both external and internal threats to validity (American Educa-
tional Research Association, American Psychological Association, National Coun-
cil on Measurement in Education, 1999; Fink, 2013). In addition, we consulted with
an expert in psychometrics to investigate the validity and reliability of the items by
statistical methods. Consultation in spring 2016 led to revisions in the format of the
MPST—leading to the current three tests.

To ensure content validity, we sent revised problems and items to subject-matter
experts in MPS for review in spring 2016. Reviewers were asked to comment on the
problems as well as the items. For the problems, reviewers provided feedback on
the clarity of the problem statement, the difficulty level of the problem for college
algebra students, and the potential solution paths. For the items, reviewers provided
feedback on the clarity of the item, the two options that were posed, and whether the
options lent themselves to a Likert scale. Reviewers also commented on the domain
that they believed each item captured. The results of this review helped our research
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Fig. 11.4 Selected items for “Ken’s Garden” problem (Original, fall 2015/spring 2016 version)

team to clarify our interpretations of the domains, revise the language in problems
and items, and omit some problems and items.

For instance, based upon expert feedback, MPST data, and interview data, five
problems and associated problematic MPS items were removed from the pool for
piloting in fall 2016. For example, we found that the “Book Stacks” problem in the
original pool (which could be solved using a system of linear equations) was too
easy for participants (average participant-reported difficulty rating of 2.2 and 1.6 by
College Algebra and Calculus participants, respectively), and the expert reviewers
also remarked that the problem elicited limitedMPS pathways. Anomalies in the data
also indicated that some participants were misunderstanding how to use the Likert
scale provided in the items, and a testing expert identified the placement of the
scale and contrasting options as visually and cognitively problematic and possibly
contributing to the anomalies in the data from fall 2015 and spring 2016. For the
ten remaining problems and 54 associated MPS items, revisions in wording and
presentation were made based upon expert feedback and data analysis. For example,
Fig. 11.4 shows a snapshot of the fall 2015/spring 2016 version of the Ken’s Garden
problem and associated items. This can be compared to Fig. 11.1 which reflects the
changes in thewording of the items and presentation of the rating scale. These revised
problems and MPS items were used to create three versions of the MPSTs used in
fall 2016.

11.3.3.2 Current Validation Efforts

We are currently continuing our validation efforts for the 10 current problems and
three versions of the MPST. The current survey was piloted in fall 2016 with 492
college algebra students and 479 calculus students. We conducted 10 individual,
task-based interviews with college algebra students and are analyzing them in ways



244 J. A. M. Álvarez et al.

similar to the fall 2015 interviews. Initial analysis on two of the interviews shows
alignment between students’ MPS practices and their scores on Likert items (Phan,
2017). The remaining interviews are currently being analyzed in a similar manner.

Graduate students analyzedwritten student work for four of the problems from the
fall 2016 data, with the goal of characterizing solution paths and determiningwhether
the MPS items aligned with typical solutions offered by students. In general, results
showed that most student solutions paths—as indicated by written work—were cap-
tured in the items. Items are being revised in cases where items did not align with
typical solution paths.

We are also considering the mean difficulty scores for each problem on the current
MPSTs to ensure that problems are neither too difficult nor two easy for participants.
These means are discussed further in Sect. 11.4.3.2.

We again consulted with an expert in psychometrics to analyze the three MPSTs
administered in fall 2016. Cronbach’s Alphawas used to assess the internal reliability
of the items in each MPST. MPS domains that had low Alphas on an MPST were
flagged, and we are exploring potential reasons for the low Alphas. For example, the
reviewing items inMPST1had anAlphaof 0.396,whereas forMPST3, the reviewing
items had an Alpha of −0.056. These items are currently being revisited, and we are
seeking potential reasons for the low Alphas as well as the large differences between
the two exams. As part of this interpretation, we also investigated the correlation
between an item and the corrected total of the items measuring the same domain on
each MPST. For example, in MPST 1, the correlation between a student’s average
score on one of the reviewing items for the Intersecting Graphs problem and average
score on all other reviewing items on MPST 1 was 0.035. This low correlation
indicates that this item may be problematic. For each item, we also considered the
Cronbach’s Alpha for the domain, if the item were deleted from the MPST. For
instance, for the same reviewing item from the Intersecting Graphs problem, the
Alpha for the domain if the item was deleted was 0.418, also indicating a potential
problem with the item.

For each MPST, factor analysis was done using principal component analysis to
extract factors. A scree plot and our prediction of four factors (the fourMPS domains)
were used in a Varimax rotation with Kaiser Normalization. Some factors contained
many items from the same MPS domain. For example, in MPST 1, three of the six
justifying items loaded onto the same factor (at or above 0.32). However, the factors
contain some inconsistencies. We are currently investigating the items within each
factor to determine possible similarities and reasons for the grouping, and we plan
to refine the items again to yield factors that align with our four MPS domains. The
current 10 problems and 54 associated items are also under review by experts inMPS
as well as master teachers of upper-secondary and lower-tertiary mathematics, and
we will also use feedback from these experts in revision.

To ensure the construct validity (Kubiszyn & Borich, 2003) of the MPS items,
the course materials used by the college algebra participants are being studied to
determine the extent to which our MPS domains are emphasized or developed in
these materials. In fall 2015, we collected written logs from Rhoads (researcher and
author on this paper) who was the instructor for two sections of College Algebra
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(120 students), indicating the extent to which she emphasized the MPS domains in
lectures and lab. After each class period, Rhoads self-rated MPS domains that were
emphasized and then was interviewed by Campbell (researcher and author on this
paper) regarding how the MPS domains were emphasized during instruction. Class-
room observations documenting instances of theMPS domains were also conducted,
and the class meetings were video-recorded for further analysis to determine which
aspects of a powerful learning environment were present (Engle, 2012; Engle &
Conant, 2002). Because the course is in a relatively standard format and departmen-
talized, the course materials and instruction changed very little in subsequent terms.
For this reason, video-recording of the lectures was not repeated.

Green (2016) and Peters (2017) examined the college algebra course materials
for fall 2015 and spring 2017, respectively. The textbook for the course remained
the same from fall 2016 to spring 2017, and the homework exercises and exam
questions also changed very little. Green (2016) completed an analysis of all home-
work exercises used in fall 2015 in College Algebra and found that only 15% of
the homework exercises elicited any of the MPS domains with most having only a
minimal connection to the MPS domains. Moreover, none of the homework exer-
cises or exam questions fit our definition of a problem (see Sect. 11.1). Peters (2017)
results were similar; she claimed the MPS opportunities in the college algebra cur-
riculum were limited, especially with respect to the domain of justification. Peters
argued, “…students are not exposed to problems that intentionally and purposefully
develop problem solving skills” (2017, p. 37). This corroborates Maciejewski and
Merchant’s (2016) assertion that first-year courses in mathematics primarily empha-
size tasks with low-level cognitive demand.

By examining changes in participant MPS item choices from pre- to post-test,
a modified grounded theory approach is being used to determine whether possible
changes can be linked to features (or lack thereof) of the College Algebra course.
Analysis focuses on construct validity—that is, whether the key areas of emphasis by
the instructor or course materials correlate with participants’ areas of change from
pre- to post-assessment (Kubiszyn & Borich, 2003). If the items themselves provide
reliable information regarding MPS domains, and the instruction lacked emphasis in
a specific domain, but participants demonstrated strong improvement from pre- to
post-scores in the same domain, then such anomalies in the data will also lead to the
further refinement and development of the items. Ongoing analysis and results may
also give rise to additional problems or questions that should be included as MPS
items.

11.4 MPS Item Development Preliminary Results

In this section, we present demographic information on participants and describe
data sources for fall 2015, spring 2016, and fall 2016. Preliminary results from
participant interviews and MPST administrations are presented to explore whether
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Table 11.5 Self-reported racial and ethnic identification of participants

Race or ethnicity College
Alg. (fall
15)

College
Alg. (spring
16)

College
Alg. (fall
16)

Calculus
(fall 15)

Calculus
(fall 16)

Hispanic 25 (23.1%) 45 (30.4%) 172
(35.0%)

95 (23.5%) 115
(24.0%)

White-Not Hispanic 32 (29.6%) 36 (24.3%) 140
(28.5%)

135
(33.3%)

139
(29.0%)

Black-Not Hispanic 22 (20.4%) 25 (16.9%) 58 (11.8%) 31 (7.7%) 39 (8.1%)

Asian 19 (17.6%) 16 (10.8%) 63 (12.8%) 107
(26.4%)

140
(29.2%)

Other 10 (9.3%) 26 (17.6%) 59 (12.0%) 37 (9.1%) 46 (9.6%)

Total 108 148 492 405 479

MPS practices during interviews aligns with MPST domain scores and how MPST
domain scores for the current set of items may be linked to course performance.

11.4.1 Participants

The MPS items have been piloted in College Algebra and Calculus I at a large
(>37,000 students, approximately 25% graduate students) urban university in the
Southwestern U.S. The university student population is 25% Hispanic, 15% African
American, 10% Asian, and 12% international students. Data reported here come
from three semesters of piloting (fall 2015, spring 2016, and fall 2016). Females
comprise 46% of the College Algebra participants (n� 748) and 27% of the Calculus
participants (n � 884). Most students were in the first two years of study at the
university with 18–19 year olds comprising 79 and 77% of the College Algebra
and Calculus groups, respectively. The racial and ethnic composition of the groups
deviated from the overall university composition, especially in Calculus with Asian
students being overrepresented and Black students being underrepresented when
compared to overall representation of these groups at the university (see Table 11.5).
The “other” category in Table 11.5 includes the students who chose not to answer
the question.

When asked to report the last mathematics course completed in high school, 73%
of College Algebra participants and 83% of Calculus participants reported a course at
the level of second-year algebra, pre-calculus, or calculus. If we include high school
statistics courses in the latter, the percentages are 88 and 90% for College Algebra
and Calculus participants, respectively. At the beginning of the semester, more than
80% of participants in each group reported feeling adequately to well-prepared in
high school for their current mathematics courses.



11 Toward Designing and Developing Likert Items to Assess … 247

Participants were enrolled in either College Algebra or Calculus I. The College
Algebra course includes the study of linear, quadratic, polynomial, rational, radical
absolute value, logarithmic, and exponential functions, relations and inequalities;
graphs, basic characteristics, and operations on functions; real and complex zeros of
functions; graphing techniques; and systems of equations and matrices. The course
format follows an Emporium Model where students attend an 80-min lecture once
per week and then are required to attend a computer-based (emporium) lab to work
problems for 160 min per week. The labs are supervised by the instructor for the
course and undergraduate or graduate student lab assistants. The Calculus I course
includes standard topics from differential calculus and basic integral calculus topics
through substitution. Students attend two 80-min lectures or three 50-min lectures per
week, one 50-min recitation where a graduate teaching assistant answers homework
questions, and one 50-min problem-solving lab supervised by their instructor and a
graduate teaching assistant.

11.4.2 Data Sources

At the beginning of the fall 2015 term, College Algebra students in nine sections of
the course (five instructors) were offered extra credit to complete a pre-MPST outside
regular class meetings, whereas Calculus I students in 11 sections of the course (eight
instructors) completed a pre-MPST during a regular class meeting. At the end of the
fall term, students completed a post-MPST. Participants were not required to take
both the pre- and post-tests. In fall 2015, 405 Calculus students and 108 College
Algebra students completed anMPST at least once. Because anMPST contains only
five of the problems from the pool, versions of the MPST varied in order to pilot all
items. Because all course sections did not complete the same problems, the number of
participants completing each problem ranged from 40 to 240. For example, the data
on “Ken’s Garden” Item 2 includes 45 pre-test responses and 21 post-test responses
from College Algebra and 177 pre-test responses and 75 post-test responses from
Calculus I.

As in the fall 2015 term, the spring 2016 pilot of the MPSTs in four sections
(three instructors) of College Algebra took place outside regular class meetings and
participants were awarded extra credit for completing an MPST; 116 participants
completed an MPST at least once. For the fall 2016 pilot, 492 College Algebra
students in 11 sections of the course (six instructors) and 479 Calculus I students in
eight sections of the course (eight instructors) completed at least one MPST. Three
versions of the pre-MPST were administered during a regular class meeting for both
College Algebra and Calculus. As in previous terms, the post-MPST for College
Algebra was administered outside of regular class time, but during regular class time
for the Calculus participants.

Table 11.6 gives an overview of the number of participants in each term. For
the fall 2015 semester, 447 participants completed MPSTs (a pre-MPST, a post-
MPST, or both) including responses to 15 problems and their corresponding items.
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Table 11.6 Number of
participants for each MPST

Fall 2015 Spring
2016

Fall 2016

College algebra
pre-MPST

69 113 492

College algebra
post-MPST

44 28 129

Calculus pre-MPST 378 – 474

Calculus post-MPST 155 – 34

This included 69 pre-MPSTs and 44 post-MPSTs in College Algebra and 378 pre-
MPSTs and 155 post-MPSTs in Calculus. In the spring of 2016, 116 College Algebra
students completed 113 pre-MPSTs and 28 post-MPSTs. For fall 2016, CollegeAlge-
bra participants completed 492 pre-MPSTs and 129 post-MPSTs whereas Calculus
participants completed 474 pre-MPSTs and 34 post-MPSTs.

In addition to collecting participants’ work from the MPSTs, participants com-
pleted a demographic survey that included questions regarding the last course in
mathematics studied in high school, how hard they expect to have to work to do
well in their current mathematics course, planned field of study, and high school
graduation date. Participants’ in both the College Algebra and Calculus groups also
agreed to give the project access to their final course grades.

Based uponwork shown on theMPST, participantswere invited to engage in hour-
long think-aloud task-based interviews, as described in Sect. 11.4.3.1. Although we
based initial invitations on cases where student work shown in Part 1 of the MPST
seemed to conflict with their answers to Part 2 or where the work shown supported
their answers to the items, the interview pool is mostly a convenient sample of
participants willing to be interviewed.

11.4.3 Preliminary Results

The preliminary results described in this section derive from think-aloud interviews
and from fall 2016 MPST data. The think-aloud interviews inform future revisions
by comparing student performance on the MPST (i.e. their MPS domain scores)
to the behaviors exhibited during interviews and looking for possible discrepancies
in interpreting student responses to MPS items. Quantitative data analysis explores
associations between MPS domain scores and course performance to better under-
stand how content-domain knowledge may be influencing MPS domain scores or
performance on particular items.
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Table 11.7 Fall 2015 and
spring 2016 interviews with
coded instances of
sense-making,
representing/connecting,
reviewing, and justifying

Domain Number of interviews

Justifying 7 (27%)

Sense-making 25 (96%)

Representing/connecting 17 (65%)

Reviewing 24 (92%)

11.4.3.1 Results from Interviews

Presently, 26 of the think-aloud interviews have been completely transcribed and
coded by two researchers. The number of interviews with any instance of sense-
making, representing/connecting, reviewing, and justifying coded in the interviews
are shown inTable 11.7. These numbers provide a broad overviewofwhether students
were attending to a particular domain at all during an interview. A closer look at the
quality and depth of students’ use of the domains is further revealing.

In many cases, qualitative data shows that the participant responses to the MPS
items align with their observed problem-solving approaches (see also Gonzales,
2017; Phan, 2017; Turner, 2017). This is particularly true for the sense-making
domain. For example, for Ken’s Garden Item 1 from Fig. 11.4, we anticipated that
a score of 1 or 2 would indicate a low use of sense-making, a score of 3 or 4 would
indicate a moderate use of sense-making, and a score of 5 or 6 would indicate an
extensive use of sense-making. Data for this item from both fall 2015 and fall 2016
align with observed MPS approaches in interviews.

For instance, in fall 2015, for Ken’s Garden Item 1, most participants, in both
Calculus and College Algebra, chose 1 on the Likert scale, which we had linked
to a low-level of sense-making. Although this result initially raised questions about
the validity of the item, further insight for Ken’s Garden Item 1 was provided from
interviews and sense-making items for additional problems on the MPST. In fall
2015, we conducted nine individual interviews with participants in College Algebra
who completed the Ken’s Garden problem. Of these nine participants, six answered
1 or 2 to Ken’s Garden Item 1 (indicating a possible low use of sense-making), and
only one of these six had scored highly on other sense-making items on their MPST.
Interviews supported the data on this item: The participant who had scored highly
on other sense-making items on their MPST showed extensive use of underlining
and frequent references to the original problem statement while working a problem
conveyed a high use of the “taking apart” (Schoenfeld, 1988, p. 87) and putting back
together process of sense-making. The other five participants did not noticeably use
sense-making in their interviews. The three participants that did not choose 1 or 2
on Ken’s Garden Item 1 revealed some instances of sense-making in their interviews
(e.g. rereading the question to find important or noteworthy aspects of the problem).
Hence, although there is one exception, the participant responses to this item seem to
be strongly associated with a participant’s use of sense-making in problem solving
during the think-aloud interviews.
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Fig. 11.5 Ken’s Garden Problem Item 2 (KG Item 2) responses (fall 2015)

In the fall of 2016, each of the ten participants interviewed answered the Ken’s
Garden problem in either the Pre-MPST or the interview (see Fig. 11.1). Their inter-
view responses on this item aligned with their scores on other sense-making items.
Two participants’ written responses to Ken’s Garden Item 1 were not consistent with
other responses on sense-making items. Each selected “mostly B” (coded 5 for this
item) as a response but only averaged 2.6 and 1.0, respectively, for the other sense-
making items. However, their responses did align with their work in the interviews
with each indenting key parts of the problem statement using underlining and arrows
and considering the length and width components of the problem separately. Four
participants’ scores coded as high use or low use on the MPST aligned strongly with
behaviors observed during the interviews. Two scored an average greater than 4.5 in
sense-making, and both selected “Mostly (B)” for the item. The other two participants
scored an average less than 2.0 in sense-making and each indicated “Only (A)” or
“Mostly (A)” as a response. The remaining four interview participants had averages
between 2.0 and 4.5 on sense-making items which should align with a moderate use
of sense-making. Only one of these chose a response other than 3 or 4 (moderate
use) to Ken’s Garden Item 1. In summary, the fall 2016 interview data indicates that
Ken’s Garden Item 1 also seems to be consistent with participants’ sense-making
scores on other problems.

In other cases, qualitative data has revealed instances in which participant
responses to the MPS items differ from their observed problem-solving approaches,
leading us to explorations of interview participants’ trends in particular domains
and identify items that may need revision. One of these is Ken’s Garden Item 2 in
Fig. 11.4, which corresponds to the representing/connecting domain. The results for
Ken’s Garden Item 2, shown in Fig. 11.5, show that for the College Algebra group,
25 of 45 participants answering Ken’s Garden Item 2 on the pretest chose “Mostly
(B)” or “Only (B),” with 21 of whom answered “Only (B).” For comparison, only
75 of 177 Calculus participants chose “Mostly (B)” or “Only (B)” on the pretest.

These results suggested that many students used diagrams, and College Algebra
students may bemore likely than Calculus students to use them. However, interviews
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revealed that although participants may draw a diagram, they do not always use the
diagram in their solution approach. Six of the College Algebra participants, three
of which answered “Only (B)” for this item, were interviewed regarding their work
on this problem. In describing their problem-solving process, only one participant
claimed to use their rectangular diagram in their approach. The other five participants
explained that their processes involved trial and error or using a function or equa-
tion. Although four of these participants had drawn a rectangular diagram, only one
participant described how they used the diagram. Further, in the written work from
all College Algebra responses to the Ken’s Garden problem, there is little evidence
that diagrams were used in solving the problem, beyond the initial drawings. That
is, many participants drew a rectangle and labeled the sides with the original lengths
but made no apparent changes or additions to the drawing in the rest of their work.
This result led us to revise Ken’s Garden Item 2 to attempt to capture more extensive
use of diagrams. (The fall 2016 version of the item is shown in Fig. 11.1.)

Interviews provided a further insight into the representing/connecting domain. An
interview with “Annie” in fall 2015 illustrates that College Algebra participants may
use non-algebraic approaches to problems only when their algebra skills do not sup-
port the solution pathway at hand (Campbell, 2017). Annie was a College Algebra
student in her first year of the university. She had studied precalculus in high school
and earned a B in College Algebra. In Fig. 11.6, we see Annie’s work on her pre-
MPST where she draws a diagram, labels it correctly, but scratches out the algebra
and attempts a trial-and-error tabular-like approach. Her average score in represent-
ing/connecting was 3.33 on the pre-MPST. Later, when interviewed during the ninth
week of the term, her problem-solving pathways relied mostly on computation and
formulas. She then scored a 2.5 in representing/connecting on the post-MPST which
shows a decrease in her average score by almost 1 point overall.

Further, three interview participants claimed that they only resorted to a visual
or other non-algebraic approach when something seems to be going wrong with
their calculations. For example, one College Algebra student described that he rarely
used graphs in his solving process and adding, “But, usually that’s forestalling the
inevitable of settling on an answer I don’t like anyway” (Rhoads, Epperson, &
Campbell, 2017a, p. 134). The qualitative data related to the representing/connecting
domain raises the question of whether students’ experiences in College Algebra are
linked to their propensity towards symbolic approaches.

Interviews also revealed an interesting trend with the domain of justification. As
shown in Table 11.7, only 7 of 26 interviews contained any instance of justification,
and in interviews with instances of justification, an average of only 1.5% of the
transcript was coded as justifying. For an example of an instance coded as justifying,
consider the “Extreme Values” problem in which participants were asked

Given f (x) � − 3
4 x2 + 6, g(x) � −2x2 − 5, and h(x) � 1

4 x2 + 1, is there a number, M,
greater than the largest possible values of f (x), g(x), and h(x)? If there is, what is M? Explain
your reasoning.

An instance coded as justifying occurred when a participant explains that M does
not exist because the graph of h is a parabola and opens “up” (Rhoads, Epperson, &
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Fig. 11.6 Annie’s written
work on the Ken’s Garden
Problem

Campbell, 2017b). The extremely limited use of justifying in interviews leads us to
wonder why this is occurring. Recall that Peters (2017) and Green (2016) also found
few opportunities for justification in the College Algebra curriculum. We further
discuss this potential link in the discussion.

11.4.3.2 Fall 2016 Quantitative Results

Several interesting trends and correlations arose in analysis of fall 2015 and spring
2016 data (cf. Rhoads et al. 2017a). However, because the problems and items were
significantly revised and new data collection methods allowed for more participation
in College Algebra during the fall 2016 data collection cycle, here we report only
quantitative data from fall 2016 on average participant-reported difficulty level of
the problems and to compare domain scores of Calculus participants and College
Algebra participants.

The average participant-reported difficulty ratings for the problems indicate that
problems may be at an appropriate difficulty level for the student population. For
all ten problems used in fall 2016, the average participant-reported difficulty rating,
where 1 indicates “VeryEasy” and 6 corresponds to “VeryDifficult,”was determined.
The pre-test self-reported difficulty rating average scores per problem for College
Algebra participants ranged from 2.95 for the “Fun Golf” problem to 4.95 for the
“Extreme Values” problem whereas pre-test average difficulty scores for Calculus
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Table 11.8 Fall 2016 Pre- and post-MPST average scores by domain—sense-making (SM), rep-
resenting/connecting (RC), reviewing (RV), and justifying (JU)—and maximum (MAX)

SM RC RV JU MAX

College algebra pre (n � 474) 3.675 3.665 3.457 3.678 4.371

College algebra post (n � 122) 3.710 3.611 3.447 3.824 4.361

Calculus pre (n � 492 4.059 3.565 3.559 3.951 4.694

Calculus post (n � 29) 4.257 3.610 3.467 4.332 4.664

participants ranged from 2.65 for the “Fun Golf” problem to 4.00 for the “Intersect-
ing graphs problem. The post-test self-reported difficulty rating average scores per
problem for College Algebra participants ranged from 2.73 for the “Fun Golf” prob-
lem to 3.9 for the “Building Functions” problem whereas post-test average difficulty
scores for Calculus participants ranged from 2.47 for the “Fun Golf” problem to 3.14
for the “Extreme Values” problem. The medians of the average self-reported diffi-
culty ratings on the pre-tests were 3.98 and 3.33 for College Algebra and Calculus,
respectively, whereas the medians of the average self-reported difficulty rating on
the post-tests were 3.54 and 2.93 for College Algebra and Calculus, respectively.
Because there are no extreme scores in these averages (i.e., scores at 2 or below or
5 or above), we hypothesize that the ten problems used in fall 2016 are posed at an
appropriate level of difficulty for the students.

To try to gain a better understanding of how content knowledge and/or coursework
may be affecting students MPS scores, we compared College Algebra participants’
and Calculus participants’ average scores in sense-making, representing/connecting,
reviewing, justifying, and maximum. In Table 11.8, we see the average scores of
each group in each of the MPS domains as well as a maximum score. The pre-MPST
scores for College Algebra participants compared to scores for Calculus participants
were statistically lower (p < 0.05) for all domains except representing/connecting.
For sense-making, justifying, and maximum scores, the statistical significance held
for α � 0.01. The average post-MPST score for the College Algebra participants
was lower than the average pre-MPST score for the Calculus participants in every
domain except representing/connecting. This may suggest Calculus students have
better use of the MPS domains, or it may suggest that Calculus students’ stronger
content knowledge is helping them to use the MPS domains.

We also compared participants’ course grades to their domain scores (see
Table 11.9). The comparison separates successful (ABC) participants—earned
grade of A, B, or C on an A-F grading scale—from unsuccessful (DFW) partici-
pants—earned grade of D or F or W (withdrawn from course). A participant is con-
sidered successful if their earned grade is sufficient for progressing to a subsequent,
higher-level mathematics course. We do not report the success rate comparison for
the Calculus post-MPST due to the small number of posttests (n � 29) we collected;
also, the focus of the MPS items is to eventually obtain MPS capacity information
that can be used by College Algebra and other entry-level college course instructors
and provide baseline information for students at the level of beginning Calculus.
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Table 11.9 Fall 2016 pre- and post-MPST scores in sense-making (SM), representing/connecting
(RC), reviewing (RV), justifying (JU), and maximum (MAX) by performance in course

SM RC RV JU MAX

ABC college algebra pre (n � 230) 3.711 3.666 3.468 3.703 4.388

DFW college algebra pre (n � 242) 3.645 3.66 3.45 3.661 4.356

ABC college algebra post (n � 78) 3.697 3.592 3.391 3.864 4.342

DFW college algebra post (n � 44) 3.734 3.644 3.547 3.755 4.394

ABC calculus pre (n � 300) 4.117 3.581 3.603 3.954 4.697

DFW calculus pre (n � 192) 3.973 3.541 3.492 3.946 4.576

For College Algebra participants, 48% of those taking the pre-MPST earned an
A, B, or C in the course and 63% of those taking the post-MPST earned an A, B, or C.
For the Calculus participants, 60% of those taking the pre-MPST earned anA, B, or C
in the course. When comparing successful participants to unsuccessful participants
within the same course, we found that successful participants in Calculus scored
statistically higher (p < 0.01) in sense-making. However, all other domain score
differences within the same course were not statistically significant. This result is
promising and—assuming that content knowledge is linked to course success—may
suggest that the MPS items are somewhat separate from students’ content knowl-
edge. When comparing the successful participants in College Algebra to successful
participants in Calculus, the scores on the pre-MPST were statistically higher (p
< 0.01) for Calculus participants in all categories except representing/connecting.
The sense-making and justifying scores on the pre-MPST were also statistically
higher (p < 0.01) for participants who were unsuccessful in Calculus compared to
participants who were successful in College Algebra. In other words, successful Col-
lege Algebra students’ MPS was neither as strong as successful Caclulus students’
MPS (in three domains) nor as strong as unsuccessful Calculus students’ MPS (in
two domains). The reasons for this result require further exploration.

11.5 Discussion

Asdiscussed in Sect. 11.3.3, analysis regarding the validity and reliability of the items
in the most recent version is ongoing. However, the preliminary results presented in
Sect. 11.4 give some insight toward the goal of developing MPS items that separate
procedural and conceptual knowledge in algebra from aspects of MPS that can be
used to leverage mathematical knowledge needed to succeed in mathematics.

One of our goals was to create problems at an appropriate difficulty level for
entry-level undergraduates. Creating a problem that students do not readily know
how to solve, evokes use of sense-making, representing/connecting, reviewing, or
justifying, anddraws frombaseline knowledge in the content domain, presents several
challenges as seen in our data. From data gathered on problem difficulty ratings
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in fall 2015 and spring 2016, we eliminated problems from the MPST pool that
students rated too easy or too difficult. In fall 2016, the “Fun Golf” problem had
the lowest average self-reported difficulty score for each group and for each testing
period. However, the lowest score of 2.47 from the Calculus students indicates that,
on average, “Fun Golf” is somewhat less challenging than other problems in the
pool but not overly easy for students (otherwise we would expect a rating of 1–2).
This less-challenging problem has the potential to affect student responses to the
associated MPS items because routine problems do not require engaging in sense-
making, representing/connecting, reviewing, or justifying. However, interviews have
indicated that studentsmay consider this problem easy because it is approachable and
contains many pathways for entry, rather than because it is straightforward. Students
have shown several MPS practices in interviews when working on this problem.
In addition, Pineda (2016) focused on reviewing and representing/connecting when
examining all student work collected in fall 2015 for Fun Golf. She found consistent
patterns between studentwork and student responses for representing/connecting and
reviewing MPS items, and she also found that most students did not use equations
or symbolic methods to approach this problem but rather were more creative in their
MPS approaches. This may suggest this least challenging problem in the set is above
a (unknown) threshold that allows students to engage MPS. For the problems that
participants rated most difficult on average, the concern is that lack of mathematics-
specific content knowledge may be the reason for the rating. However, when students
find a problem extremely difficult, it may not be affecting the item data: In many
of these cases, participants do not attempt the problem and indicate “None” on
the associated items giving the reason “I had no idea how to do this problem.” In
participant interviews, we see some issues related to resources when problems are
too difficult, but we may be seeing a reverse type of phenomenon on the items.
That is, although many College Algebra students show evidence of using multiple
representations to solve the problems, those with a high skill level favor symbolic-
only approaches and their representing/connecting score is low (e.g. the case of
Annie). This also indicates that our goal of minimizing the role of content-specific
skills to bring forth use of the otherMPSdomains is still in progress, and data suggests
it is critically important that problems are at the appropriate level of difficulty for
the students. The expert reviewers for our project are also providing feedback on
difficulty level of the problems.

The representing/connecting scores on the MPS items may be influenced by not
only content-specific knowledge but also the course structures. Green (2016) found
that the College Algebra homework elicited MPS domains only about 15% of the
time. The course lectures, due to their compressed format, emphasized learning
skills and procedures. This may be why we saw, for example in Ken’s Garden Item
2, in written work and interviews, that participants may draw diagrams, but do not
use them in the process of solving the problem. In many cases, if they do draw a
diagram, they will draw it at the beginning and then never refer to it. Again, the
favoring of analytic-only approaches may be either explicitly or implicitly derived
from the course structure. For the Calculus students, their representing/connecting
scores increased from pre- to post-MPST, although this change was not statistically
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significant in fall 2016. We continue to investigate whether their experiences in the
calculus course (e.g. many related rates problems require students to draw diagrams)
bring the heuristic of drawing diagrams or other representations to the forefront and
may influence the rise in representing/connecting scores.

Although we saw a low instance of justifying in the reported interview data,
we see that there is a statistically significant difference between average justifying
domain scores for College Algebra participants compared to Calculus participants.
When comparing the average domain scores on the pre-MPST, which was typically
administered on the first day of class, of successful (ABC) College Algebra students
to unsuccessful (DFW) Calculus students, justifying is one of the two domains for
which there is a statistically significant difference. This may indicate that important
intervention must occur to improve students’ capacity to justify their work in MPS
in either College Algebra or the intermediate course (e.g. precalculus in the United
States) so that successful College Algebra students reach justifying score levels
that compare to those who eventually succeed in Calculus. However, differences in
content-domain knowledge and resources may explain this difference rather than
possible existence a certain justifying threshold score, as currently represented in the
pool of items, needed to succeed in Calculus. Both Green (2016) and Peters (2017)
found that there were few opportunities for justifying in the curriculum.

For the reviewing domain, the average scores on MPS items linked to reviewing
were statistically lower for College Algebra participants compared to Calculus par-
ticipants on the pre-MPST. In addition, when comparing successful College Algebra
students to unsuccessful Calculus students, the Calculus students’ average score is
higher, but not statistically significant. In Table 11.7, we see that 92% (24 of 26) of
the participants used reviewing at least once during the interviews and the relative
use of reviewing is consistent with their average reviewing score on the pre-MPST.
From this data, it may be that reviewing, as measured by the average scores on the
reviewing items on the MPSTs, may not be affected as much by content-domain
knowledge or an increase in procedural skills.

Some may argue that all MPS is sense-making and that in the process of sense-
making to solve a problem—in the sense of Lester (2013)—all the aspects Schoen-
feld’s (2014) theoretical perspective are in play. Preliminary data analysis shows
that sense-making captured by MPS items is consistent with participant work and
interview data. For example, in Ken’s Garden Item 1, the majority of participants did
not claim to address the ambiguity of the Ken’s Garden problem, and this raises the
question of whether it is necessary for them to do so to successfully problem solve.
It could be that addressing this ambiguity is automatic and requires little thought.
However, with one exception, the interview data as well as the data from other
sense-making items does support participants’ responses to the Ken’s Garden Item
1 sense-making question. That is, there is evidence that participants who claimed
to address ambiguity in the Ken’s Garden problem (i.e., chose 5 or 6) also showed
evidence of sense-making elsewhere, whereas participants who chose 1 or 2 for this
item showed limited evidence of sense-making elsewhere.

For the pool of fall 2016 items, sense-making is statistically significant when
comparing pre-MPST scores for Calculus versus College Algebra participants, pre-
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MPST scores for Calculus participants versus post-MPST scores for CollegeAlgebra
participants, successful Calculus participants versus unsuccessful Calculus partici-
pants, and successful College Algebra participants versus unsuccessful Calculus
participants. It may be that pre-MPST sense-making scores for successful Calculus
students is statistically higher than pre-MPST sense-making scores for unsuccessful
Calculus students because the sense-making items are capturing an aspect of prob-
lem solving that is not readily affected by learning or re-learning content-specific
procedures and skills or that those who eventually pass Calculus begin the course
withmore content-domain knowledge and the sense-making items are capturing this.
However, the significantly lower score of successful College Algebra participants in
sense-making compared to unsuccessful Calculus students may suggest that College
Algebra courses or courses that follow College Algebra before Calculus may need
to increase opportunities for students to engage in sense-making.

Provided the MPS items reveal relatively accurate information on MPS, the fact
that pre-MPST scores versus post-MPST scores showed no significant change indi-
cates that perhaps the courses are having little impact on increasing MPS. This is
consistent with findings by Dawkins and Epperson (2014) when investigating prob-
lem solving in calculus.

Amajor limitation in thisworkmaybe that theMPSLikert items cannot give infor-
mation on social or affective components that impact problem solving proficiency
(Santos-Trigo, 2014). At best, we have aspects of indirect measures of these com-
ponents given by information on participant racial and ethnic diversity, past courses,
preparedness, course grade outcomes, and course structures. As seen in Sect. 11.4.1,
the participants come from a highly racially and ethnically diverse group and more
than 73%of the CollegeAlgebra and 83%of the Calculus participants had completed
high school courses at the level of second-year algebra and beyond. Also, more than
80% of the participants in each group reported feeling adequately well-prepared by
past studies. Course structures (e.g. lecture-based format, computer-lab procedural
work) possibly affected participants’ growth in problem solving proficiency, but the
MPS items do not capture that directly. The large number of unsuccessful (D, F, or
withdrawn from course) students in each group is troubling and may have links to
social factors.

The MPS items that we describe do not exist in textbooks, and their development
and refinement involves contrasting approaches within appropriate domains, study-
ing participant work on the items, and interviewing participants as well as expert
review to validate links to the MPS domains and appropriate mathematical represen-
tations. The revised items have been piloted with over 900 participants, and ongoing
analysis indicates consistency among participant work, follow-up interview data,
and intended links to problem solving categories. We continue to triangulate student
work, quantitative data, and qualitative data to refine problems and their associated
items. The interaction between the low success rates in College Algebra (only 48%
of fall 2016 participants earned an A, B, or C) and outcomes on theMPSTs continues
to be explored as well as additional issues in item development that may also rest in
the nuances of constructing items that distinguish sense-making from representing
and connecting or reviewing from justifying.
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The Problem Solving Environment



Chapter 12
Creating and Sustaining Online Problem
Solving Forums: Two Perspectives

Boris Koichu and Nelly Keller

12.1 Introduction

Mathematical problem solving in asynchronous or synchronous online discussion
forums has gained increasing attention during the last decade. Many studies (e.g.,
Lachmy, Amir, Azmon, Elran, & Kesner 2012; Lazakidou & Retalis, 2010; Lin,
2011; Nason & Woodruff, 2003; Stahl, 2009; Stahl & Rosé, 2011; Tarja-Ritta &
Järvelä, 2005) have shown that online discussions enable students tomeaningfully use
their mathematical knowledge, enhance self-regulation skills and support knowledge
construction. It has been documented that sometimes students in such environments
actively participated in solving complex problems for 2–3 weeks almost without
teacher interventions (e.g., Moss & Beatty, 2006) and that some of those students
who tended to be silent in classroom discussions could actively participate in online
discussions (Schwarz & Asterhan, 2011).

Schwarz and Asterhan (2011) attribute the affordances of online discussions to
their unique traits, such as fostering divergent rather than linear interactions, enabling
flexible time schedules of participation in the discussions over relatively long periods,
and encouraging explicit and accurate expression of the ideas in writing. Koichu
(2018, 2015a, 2015b) argues that affordances of an online problem-solving forum
stem from its fundamental characteristic of being a choice-affluent environment, that
is, an environment, inwhich the students are empowered tomake informed choices of
a challenge to be dealtwith, awayof dealingwith the challenge, amodeof interaction,
an extent of collaboration, and an agent to learn from. Furthermore, Koichu (2018,
2015a) presented an example suggesting that online discussions are particularly rich
with the opportunities to enact three types of problem-solving resources: individual
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resources, shared resources having the potential to create an effect of group synergy
(in themeaning specified inClark, James,&Montelle, 2014) and resources stipulated
by possible interactions of the members of the group with a source of knowledge
about the solution, such as an internet resource, a textbook or a peer problem solver
who acts as if she has solved the problem.

Stimulated by the above-mentioned findings and ideas, we designed a special
learning environment comprising of a combination of problem-solving lessons in a
classroom and out-of-classroom problem solving supported by online asynchronous
discussion forums in social networks. We did so within a research project entitled
“Heuristic and engagement aspects of learning through long-termcollaborativemath-
ematical problem solving.”1 Our experience in this project taught us that creating and
sustaining online problem-solving forums is a truly challenging enterprise (Keller &
Koichu, 2017; Koichu & Keller, 2017). Furthermore, we observed that past studies
are informative about how the forums function at the mature stages of their develop-
ment, that is, when the students are accustomed to participate in online discussions.
Little is known about how to create the forums and bring them to maturation. The
goal of this chapter is to fill in this lacuna, by presenting and theorizing our more suc-
cessful and less successful attempts to create and sustain online forums as a platform
for collaborative mathematical problem solving that can complement and extend
classroom problem solving. The chapter is based on the evidence collected during
one school year in two Israeli 10th grade mathematics classes (15–16 year old) and
on interactions between the teachers of these classes with the research group of the
project.

In this context, we explore the following research question: How do the classroom
communities and the research group develop in interaction? In particular, what facili-
tates or hinders the implementation of online problem solving activities designed in a
partnership between the research group andmathematics teachers of the participating
classes?

12.2 Conceptual Framework

The conceptual apparatus of our study combines elements of two theoretical per-
spectives, the Theory of Diffusion of Innovation (Rogers, 2003) and the Community
of Practice framework (Wenger, 2010). The former perspective puts forward indi-
vidual decision-making in the struggle to adopt or reject an innovation (in our case,
an online problem-solving forum) under multi-directional influences. The latter per-
spective puts forward boundary interactions among the participating communities as
a driving force for their development.

1Selected findings of the project are reported in Keller and Koichu (2017), Koichu (2018, 2015a,
2015b), Koichu and Keller (2017), Lachmy and Koichu (2014).
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12.2.1 Theory of Diffusion of Innovations2

Rogers (2003) defines innovation as “an idea, practice, or object that is perceived
as new by an individual or other unit of adoption. It matters little, so far as human
behavior is concerned, whether or not an idea is ‘objectively’ new as measured by the
lapse of time since its first use or discovery” (p. 11). In our case, the idea of stretching
the boundaries of a classroom by means of an online problem-solving forum was
an innovation because it was new to the students and the teachers. Roger’s (2003)
Theory of Diffusion of Innovations (TDI) meticulously characterizes the innovation-
decision process, in which individuals decide whether to accept an innovation or not.
In particular, Rogers distinguishes five stages of the process: knowledge, persuasion,
decision, implementation and confirmation.

At the knowledge stage, potential innovation adopters are exposed to the inno-
vation’s existence and obtain some information about how it functions. Sometimes
individuals become aware of an innovation by accident, and sometimes they actively
look for it in order to fulfil particular needs. It is also possible that the needs are
formed as a result of one’s exposure to an innovation. In the context of our study, the
knowledge stage is described by focusing on how students were informed about the
possibility to use social networks for collaborative problem solving, that is, to use
them beyond their usual use for chatting on non-mathematical matters.

At the persuasion stage, an individual forms a favorable or unfavorable attitude
towards an innovation. This stage presumes affective involvement with the innova-
tion. In particular, the individuals may mentally apply the new idea to their present
or anticipated future situation. They seek to answer such questions as “what are the
innovation’s advantages and disadvantages in my situation?”, and seek the answer
mostly from their near-peers, whose opinions based on their personal engagement
with an innovation, are the most convincing. There is a discrepancy between forming
a favorable attitude towards an innovation and an actual decision to adopt it. Adop-
tion of an innovation can be influenced by a cue-to-action, an event that crystallizes
an attitude into overt behavioral change. Accordingly, the description of the persua-
sion stage in our study is based on the data on the students’ initial attitudes towards
the use of social network for problem solving and their expectations. These became
articulated during either specially designed or unforeseen events that occurred at the
beginning of the project.

At the decision stage, an individual adopts (i.e., makes full use) or rejects an inno-
vation. Any decision is not final however. The rejection can occur even after a prior
decision to adopt; Rogers calls this phenomenon discontinuance. The theory distin-
guishes between active rejection and passive rejection. The former type of rejection
consists of considering adoption of the innovation and then deciding not to adopt it.
The latter one consists of never “really” considering the use of the innovation. The
decision stage frequently includes a small-scope trial. The actual sequencing of the
three stages presented so far can alter. Namely, both knowledge–persuasion–decision
and knowledge–decision–persuasion sequences are possible. Evidence for inferring

2This sub-section is a slightly modified version of a section in Koichu and Keller (2017).
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conclusions about the students’ decisions came from their actual systematic appear-
ance (or its lack) at the forums.

At the implementation stage, those individualswho decided to adopt an innovation
put it into systematic use. Even though the decision has been made, the adopters may
still feel a certain degree of uncertainty about the consequences of the innovation. In
addition, problems of how exactly to use the innovation may emerge. Sometimes the
adopters change or modify (in Rogers’ terms, re-invent) the innovation at this stage.
The implementation stage can be lengthy, but it ends when the idea that has once
been innovative becomes institutionalized and regularized in the adopters’ normal
functioning. In our case, we characterize this stage by describing how the norms of
participating in the forums has been established and gradually modified.

Finally, at the confirmation stage, an individual constantly seeks reinforcement
for the decision to adopt or reject an innovation that has already been made. Because
of positive or negative messages about the innovation, the decision can be reversed.
Rogers points out that the change agents (i.e., those who influenced one’s decision
to adopt an innovation) have responsibility of providing supportive messages to
the individuals who have previously adopted the innovation. Because of our focus
on creating problem-solving forums and bringing them to maturation, this stage is
indicated but not characterized in detail in this chapter.

12.2.2 Communities of Practice Perspective

Wenger (2010) asserts that a Community of Practice (CoP) can be viewed as a
relatively simple social learning system, and a complex learning systemcanbeviewed
as a network of interrelated CoPs. He further notes that, in relation to the whole
system, each CoP is engaged in its own practice production. Consequently, each
CoP has boundaries defined by its practices, local engagement, local discourses
and power relationships. Furthermore, characterizing a CoP includes attending to
patterns of interaction and partnership among its members, who may have different
roles, different types of expertise and contribute differently in performing a jointly
approached task.

In the context of collaborative learning and problem solving in a group,Wit (2007)
distinguishes between two main modes of partnership, positive interdependence and
negative interdependence. Positive interdependence refers to the extent by which
one group member’s successful performance directly promotes the interests of fel-
low group members. By contrast, negative interdependence refers to the extent by
which successful performance of one group member entails a loss by other group
members. At the first glance, positive interdependence suits the CoP perspective
whereas negative interdependence contradicts it. A deeper look reveals however that
the mixture of positive and negative interdependences can serve as a driving force
for productive group work (Wit, 2007). Namely, positive interdependence is a mech-
anism underlying collaborative effort when a group deals with a problem, which
solution requires labor division and complementary contributions. Negative interde-



12 Creating and Sustaining Online Problem Solving Forums … 267

pendence is a mechanism underlying the motivation of the group members to act in
a self-interest way in order to get a fair share of costs and benefits out of the group
work. That is, negative interdependence may hinder collaboration, but may as much
be an impetus for maximizing individual contributions in service of the common
goal and for negotiating the conflicting interests in order to improve collaboration.

As to across-communities communications, Wenger (2010) argues that these are
“not necessarily peaceful or collaborative” (p. 183). The communities may merge,
split, compete, complement each other, and even disappear because of boundary
interactions defined as experiences of being exposed to foreign competencies, norms
and practices. At the same time, the boundaries can also be a locus of productive
meetings of different perspectives and reciprocal learning. According to Wenger
(2010), one condition for boundary interactions to be productive is the existence of
a shared history of learning. In his words:

Without a shared history of learning, boundaries are places of potential misunderstanding
arising from different enterprises, commitments, values, repertoires, and perspectives. In
this sense, practices are like mini-cultures, and even common words and objects are not
guaranteed to have continuity of meaning across a boundary. (Wenger, 2010, p. 183)

Solomon, Eriksen, Smestad, Rodal, & Bjerke (2017) present an additional con-
dition for productive boundary interactions. They explored two intersecting but
somewhat conflicting CoPs, a theory-oriented university education program and a
practice-oriented program of early school placement, in which the same group of
elementary school teachers simultaneously took place. Solomon et al. (2017) found
that the boundary interactions between the CoPs were not particularly productive
when teacher-mentors, who belonged to the school CoP, appeared to demand the
alignment with the practices of their community without consideration of what the
students learned in the university CoP. More productive boundary interactions were
documented when the mentors provided advice but the alignment was not demanded
so that the students had room for experimentation.

To summarize, the analyses in terms of the TDI and in terms of the CoP per-
spective complement each other in our study in the following way. The TDI enables
us to characterize the process of incorporating online forums in the mathematics
study as a dynamic innovation-decision process, in which individuals having differ-
ent incentives decide whether and how to participate in the new for them learning
activity. The CoP perspective enables us to look at characteristics of the classroom
and the research communities as well as at the boundary interactions between them,
with special attention to conflicting interactions that might facilitate or impede the
development of collaborative problem solving in the project.

12.3 An Overview of the Project

Asmentioned, a research project in the context of which we experimented with com-
bining classroomand online problem solvingwas entitled “Heuristic and engagement
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aspects of learning through long-term collaborative mathematical problem solving”.
The main goal of this project was to produce a model of learning through mathe-
matical problem solving, which would be attentive to cognitive, socio-affective and
contextual aspects of this activity.

Presentation of the model is beyond the scope and focus of this chapter (see
Koichu, 2018, for its exploratory version). For our current concerns, it is sufficient
to mention that the explored in the project learning through problem solving was of
participatory nature, in themeaning specified byCobb (2000). To recall, Cobb argued
that individual students’ mathematics activity and their social learning practices
complement each other. Namely, he argued that students contribute to evolving social
practices of studying mathematics by reorganizing their individual mathematical
activities and, conversely, these reorganizations are constrained by their participation
in the evolving social practices.

12.3.1 The Project’s Pedagogical Idea and Participants

The project’s pedagogical idea was to extend the boundaries of a classroom by using
online forums. We planned that each participating class would be engaged in the
following activity at least three times during a school year. The students cope with
a series of preparatory tasks during a 90-min lesson, and then they are offered an
especially challenging geometry problem at the end of the lesson. Following the
lesson, they engage, for 4–10 days, in solving the problem from home in a closed
(that is, available only to the students of a participating class and the members of
the research group) online forum.3 The students use the online forum by means of
uploading pictures of their hand-made drafts, openly sharing their problem-solving
ideas and responding to ideas of the fellow participants.

Next, we planned that the teachers would refrain from structuring and orches-
trating the students’ performance, as it is frequently done in lessons when a given
problemmust be solved before the bell rings (e.g., Lampert, 1986, 1990; Stein, Engle,
Smith, & Hughes, 2008). They instead would encourage the students’ participation.
When the forum becomes non-active because the students have eventually solved the
problem and uploaded their solutions or, alternatively, because they give up or prefer
presenting their solutions in a classroom, a concluding 90-min lesson is conducted
in a classroom in order to get closure. The lesson consists of a series of whole-class
and small-group discussions, during which the students share their experiences with
the problem and present their solutions.

The described idea appeared to be appealing to several mathematics teachers, who
appreciated it for several reasons, butmainly as an extra learning opportunity for their
students. Two experienced mathematics teachers (hereafter, NK and AP) and two of
their 10th grade classes took part in the first year of the project (2013–2014); five

3Our initial plan was to use Facebook and Moodle as technological platforms of the project. In
practice, we quickly switched to Google+ and then added WhatsApp following the student choice.
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more teachers (hereafter, AH, ES, RN, AG and LA) and their corresponding five
classes joined the project during its second year (2014–2015). Mathematics in all
participating classes was studied for five hours a week, in accordance with the Israeli
high-level curriculum (see Movshovitz-Hadar, 2018, for details). For the concerns
of this chapter, it is enough to mention that the geometry part of the curriculum
(two hours a week) included the topics “triangle congruency”, “triangle similarity,”
“quadrilaterals”, “circles” and “areas” and that the study of all the topics included
dealing with challenging proving tasks.

In linewith Cobb’s (2000) recommendations for conducting teaching experiments
in collaboration with teachers, all aspects of the project were continuously discussed,
either prospectively or reflectively, in weekly meetings of the research group. At
different stages of the project, the group consisted from six to 10 members having
M.Sc. or Ph.D. degree inmathematics education. It included the participating teachers
and 3–5 additional members who assumed the roles of facilitators and researchers.
In addition to the weekly meetings, each teacher was in contact (by means of email,
telephone and one-on-one meetings) with an additional member of the group who
was responsible for technological support and documentation of the activity. It is in
place to mention here (this point is elaborated below) that special effort was made
in order to establish equal partnership rather than mentor-trainee relationships in all
teacher-researcher pairs as well as in the group as a whole.

12.3.2 Data Collection

Forty-two meetings of the research group were audiotaped (about 100 h) and, in
addition, documented in the protocols of the meetings (more than 100 pages). The
documents produced by the group and all relevant email exchange were stored. In
addition, each member of the group, including the teachers, was required to keep
a diary. The diaries were for writing anything their authors deemed important for
the project, including their thoughts and feelings in relation to the project’s events.
Among other uses, the diaries became an indispensable source of information about
potentially important to the project events that otherwise could not be documented,
such as: regular lessons preceding or following the lessons of the project, meetings
with the students outside the classroom, occasional conversations between the mem-
bers of the research group etc. The diaries were stored in shared Google Drive space
of the group and were available for reading and commenting by the members.

As mentioned, we focus in this chapter on two 10th grade classes and on an
online problem-solving forum that has gradually became active in one of the classes.
The data on these classes and the forum were collected from videotaped lessons
(14 lessons in two participating classes were videotaped during 2013–14), the afore-
mentioned diaries, the content of the forum (more than 3000 posts) and the student
interviews (10 out of 42 students were interviewed about their experiences in the
project).
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12.3.3 Data Analysis

We address the chosen research question by presenting three research narratives and
an aggregated summary consisting of characteristics of the research group and two
participating classes as CoP. In a way, the summary serves as a prelude to the narra-
tives and the narratives serve as an empirical backup of some of the characteristics
indicated (but not elaborated) in the summary.

The summary was produced by means of a general inductive approach (Thomas,
2006). Thomas (2006) argue that this approach enables researchers “(1) to condense
extensive and varied raw text data into a brief, summary format, (2) to establish clear
links between the research objectives and the summary findings derived from the
raw data and to ensure that these links are both transparent (able to be demonstrated
to others) and defensible (justifiable given the objectives of the research), and (3) to
develop a model or theory about the underlying structure of experiences or processes
that are evident in the text data” (p. 238).

Practically speaking, we, the authors of this chapter (hereafter, BK and NK; BK
was a principle investigator, andNKwas a teacher of the first participating class and a
researcher), organized the data from different sources in portfolios for each CoP. We
browsed eachportfolio for excerpts representing events thatwere suggestive about the
phases and characteristics indicated in Diffusion of Innovations and the Community
of Practice Perspective sections (e.g., a particular lesson, meeting or conversation
with the students). We then thoroughly studied, by means of reading, re-reading
and interpreting, the chosen excerpts in order to distil brief characterizations of each
community of interest. For example, aggregative summaries of goals and practices of
the research group (see Table 12.1) were formulated based on agendas of 42meetings
of the group as reflected in the protocols ofmeetings. The summaries of discourse and
power relationships were formulated as our (BK and NK) generalized reflections on
themeetings, based on ourmemories, whichwere refreshed and backed up by careful
listening of the audiotapes. Aggregated characteristics of the NK and AP classes
were formulated in a similar manner based on appropriate data sources, including
videotaped lessons and teaching diaries. Parts of the aggregated summary concerning
the AP class were discussed with him and refined. Admittedly, the summary as a
whole is rather silent about the across-communities interactions. Those are elaborated
in the research narratives.

The research narratives concern the developmental aspects of the project. They
were produced in accordance with the narrative inquiry tradition. We choose to
adhere to this tradition because we, BK and NK, had been active members of the pro-
cesses under exploration, and since the data included many field texts produced by us
as well as by other project participants. As Clandinin andCaine (2008) explain, “Nar-
rative inquiry ismarked by its emphasis on relational engagement between researcher
and research participants” (p. 542). Furthermore, they indicate that inquiring into the
researchers’ own stories of experience and living alongside participants are indis-
pensable stages of narrative inquiry on the way of producing narratives/stories “rep-
resenting lived and told experiences of participants and researchers” (p. 545).
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Table 12.1 Characteristics of three CoP of interest

Research group NK’s class AP’s class

Goals − To answer a set of
predefined research
questions and explore
the emerging ones
− Sub-goals: to create
and maintain an on-line
knowledge base of the
project; to
develop/choose
mathematics problems
to be used in the
project; to
develop/refine
data-collection tools; to
serve as a scene for
discussions

− To meaningfully
study
curriculum-prescribed
mathematics, with
particular attention to
engaging all students in
collaborative problem
solving
− To get prepared for a
matriculation exam
consisting of
challenging
mathematics problems

− To meaningfully
study
curriculum-prescribed
mathematics, with
particular attention to
individual practicing of
problem-solving
methods
− To get prepared for a
matriculation exam
consisting of
challenging
mathematics problems

Practices − Planning the project
events
− Discussing events
and issues presented by
the individual members
− Producing
documents (e.g., lesson
plans, “to-do” lists,
guidelines,
presentations)

− Individual and
small-group problem
solving
− Participating in
teacher-orchestrated
problem-solving
discussions
− Asking the teacher
and answering her
questions
− Doing homework
− Participating in
online problem-solving
activities

− Mostly individual
and occasionally
small-group problem
solving
− Listening to the
teacher’s explanations
− Asking the teacher
and answering his
questions
− Occasional doing
homework

Participants and
roles

Teacher-researchers
(NK and AP),
facilitators and
researchers responsible
for parts of the project
(IK, YB, and OM),
project coordinator and
researcher (RL),
principle investigator
(BK)

NK, a math teacher; 17
students who had
different preparation
levels and different
aspirations in
mathematics study. All
students were involved
in the same practices in
the classroom (see the
previous row), about
half of the class were
active participants of
the forums

AP, a math teacher; 25
students who had
different preparation
levels and different
aspirations in
mathematics study. All
students were involved
in the same practices
(see the previous row)

(continued)



272 B. Koichu and N. Keller

Table 12.1 (continued)

Research group NK’s class AP’s class

Discourse Whole-group
discussion of issues
among the group
members; discussions
of particular issues in
sub-groups

− Teacher-centered
discussions of
individual and group
problem-solving
contributions
− Discussions among
the students

Teacher-centered
discussions of
individual
problem-solving
contributions

Inter-
dependence

Mostly positive.
Occasional tensions
between individual and
collective interests
(e.g., which issues to
discuss and resolve
first and how)

Mostly positive (i.e.,
problem-solving
success of a peer is
praised). Occurrences
of negative
interdependence in a
struggle for the NK
attention and for the
leadership among the
peers

Mostly neutral.
Occurrences of
negative
interdependence in a
struggle for the AP
attention

Power
relationships

BK sometimes acts as a
leader, and sometimes
as a fellow member.
Each group member
leads the development
of a particular aspect of
the project. The
decisions are attempted
to be made by
consensus. When
disagreements emerge
in relation to classroom
issues (e.g., which
problem to choose), the
teachers’ voices are
decisive

NK acts as a leader and
facilitator. She
orchestrates the
lessons. Most of the
students accept the
NK’s lead and
participate
At the forums, NK acts
mostly as an observer
of the student
problem-solving
attempts and
occasionally
encourages
participation

AP acts as a leader and
facilitator. He
orchestrates the
lessons. Most of the
students accept the
AP’s lead and
participate

Practically speaking, we focused on the most vivid in our memories stories within
the project that in our view might have opened the window into “behind the scene”
events related to establishing and sustaining an online problem-solving forum and
gradual changes in classroom problem-solving norms. The narrative about AP’s class
was discussed with him and refined.

12.4 Aggregated Characterization of Three CoP

Table 12.1 presents aggregated characterizations of the research group and of the NK
and AP’s classes as CoPs. The data underlying the table (see above) were collected
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during the first year of the project; the table is organized in a way that highlights
similarities and differences between the CoPs.

The first row of Table 12.1 implies that the goals of three CoPs were related
and compatible. This is because they all could have been reached if and only if
the core activity of the project—student mathematical problem solving—would be
sufficiently rich. Indeed, the richer the problem-solving episodes in the classrooms
and on the forum were, the richer data set and the better answer to the research
question could havebeenproduced.Conversely, themore relevant factors the research
group identified and took into account when planning the lessons and choosing the
problems for the forum, the better opportunities the students had for developing their
problem-solving skills and learning through problem solving.

Of note is that NK and AP played multiple roles in the project, by being the
leaders of their classroom communities and simultaneously active members of the
researchgroup. In this capacity, they essentially shaped the groupworking agenda and
practices. NK and AP were committed to their students’ success and to the project’s
success, but in somewhat different ways. As a rule, AP thoroughly followed the
devised by the research group lesson plans, and NK used to reconsider the agreed
plans (see Sect. 12.5.3).

In addition, Table 12.1 suggests that NK’s and AP’s classes had some features of
an idealized mathematics community that Bielaczyc and Collins (1999) referred to
as Lampert’s mathematics classroom. To recall, Lampert’s lessons (Lampert, 1986,
1990) usually started with a problem posed to the students, on which they worked
alone or in small groups. Then the class discussed different ideas and solutions. The
role of the teacher was to orchestrate the discussion by choosing certain student
ideas and revoicing them. This lesson scheme was realized in both classes. However,
student work in small groups was more featured in NK’s than in AP’s class.

12.5 Three Narratives

In contrast to the aggregated summaries presented in the previous section, the nar-
ratives presented in this section highlight the dynamic and dialectic aspects of the
project. As explained in Sect. 12.3, the narratives are about the development of the
participating classes and of the research group while acting in interaction.

12.5.1 The First Narrative: Evolution of the NK Class

The main events at the knowledge phase of the project in NK’s class consisted of:
(1) a conversation between NK and BK following BK’s observation of one of NK’s
lessons; (2) a conversation between NK and her students. The first conversation
resulted in NK’s decision to take part in the project. NK decided so mainly because
the idea to stretch the boundaries of a classroom by means of an online forum
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Nine-Square Problem: There is a net of nine congruent squares 
(see the drawing). Prove that the two angles denoted in the draw-
ing are equal. 

Fig. 12.1 The Nine-Square Problem

resonated well with her constant need to enrich her teaching repertoire and create
new learning opportunities for her students.

In Rogers’ terms, NK acted as a venturesome innovator whowas able to copewith
high degree of uncertainty about an innovation, and BK acted as a change agent. In
her conversationwith the students, NK acted as a change agent, and the students were
potential innovation-adopters to be persuaded. NK argued that developing problem-
solving skills was a strong benefit of participating in the project, and appealed to
the students’ curiosity to try something new and be a part of an interesting initiative.
The students’ reaction to the information about the project was favorable, though
not exactly for the reasons that NK had presented. We know (from the interviews)
that some students perceived the forum as an opportunity to improve their problem-
solving skills, whereas some other students saw in the forum a way to overcome
restrictions for the use of social networks imposed by their parents, and some other
students – a way to get better prepared to the matriculation exam.

The first mathematical problem of the project, the Nine-Square Problem (see
Fig. 12.1), was carefully chosen by the research group, including AP and NK.

Nine-Square Problem is representative of most of the problems of the project
(see Appendix for additional examples). In particular, it had the following features:
its solutions required theoretical knowledge studied in the NK and AP classrooms
close to the day of opening the forums (namely, theorems on triangle similarity); it
had several solutions, and it was of the type that Koichu, Berman and Moore (2006)
tagged as ostensibly familiar problems. Namely, the problem looked similarly to
problems the students were familiar with from classwork and homework. As such,
the problem “invited” the students to approach it bymeans ofmathematical ideas that
workedwell in the past. For example, the studentsmight think of including the angles,
which equality should be proved, into a pair of triangles and attempt proving their
congruence byfinding some equal elements.However, these ideaswere insufficient in
order to solve the problem; something else (e.g., some clever auxiliary constructions)
should have been invented. Two auxiliary constructions representing two ways of
solving the problem are presented in Fig. 12.2.

Three students worked on theNine Square Problemwhen it was uploaded by IK to
the Google+ forum. Their three-hour-long brainstorming session was unsuccessful.
As a result, the forum was non-active during the next two days. This situation was
discussed in a telephone conversation between NK and BK, and we decided that
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Fig. 12.2 Two auxiliary construction for solving the Nine-Square Problem

it would be appropriate to inquire the students about the reasons for the lack of
participation in an informal setting. The day after that NK met the students in the
schoolyard and asked: “why haven’t you solved the problem? It is not that difficult”.
The students showed NK their hand-made drafts as evidence that they had tried.
NK asked the students to upload their drafts to the forum and continue solving the
problem together. In Rogers’ terms, this conversation was one of the cues-to-action
that eventually made the forum successful. That evening eight students entered the
forum, cooperated and eventually solved the problem. From the forum:

Rachel: I am still stuck with computing angles. I made an auxiliary construction, an isosce-
les triangle…but from there again arrived at the angles equal 45 degrees.

Emuna: I have an idea. I think that it is possible to use the proportional segments that we
studied at the last lesson. [I mean] the second theorem about triangle similarity.

Tehila: An isosceles triangle is good, and the second theorem is also good.

Rachel: But we should probably compute the angles.

Tehila: No, no, Rachel, focus on the sides and similarity!

Rachel: Wow! It seems me that I solved it. It is pity that we decided not to upload the
solutions. Uff! I’ll show tomorrow in the classroom. Or can I upload?

Rachel indeed solved the problem based on the ideas of Emuna and Tehila. It
may be that Tehila has already solved the problem before Rachel’s announcement,
and that she attempted to help Rachel by providing a hint. By so doing, she acted in
accordance with what had being agreed among the students before the forum began.
Two solutions to the problem, by Tehila and an additional student, who was a silent
observer of the forum,were presented at themathematics lesson following the forum.

By the end of that lesson, NK collected the students’ suggestions as to how to
further run and improve the forum. As mentioned, less than half of NK’s class took
part in the forum at that stage, but the students who did not participate in the forum
also took part in the conversation. Hence, the lesson became an event at which the
early adopters of the innovation (eight students who had already tried the forum)
shared their positive experience with additional potential adopters. Such events are
characteristic of the persuasion stage of the innovation-decision process.
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The students’ suggestions included: to decide in advance at which times they
could virtually meet at the forum in order to maximize simultaneous participation;
to work at the forum in small group that would explore different ideas; to agree
upon common mathematical notation from the beginning in order to make the com-
munication easier. The first suggestion was later implemented, and the rest were
not. Regardless of this, it is noteworthy that the students’ suggestions reflected the
existing in NK’s mathematics lessons practices. That is, it seems us that the students
suggested bringing to the forum what they had valued at their mathematics lessons.

Some of the NK’s students were in position to appreciate the added value of the
forum. From the interview with Emuna:

For the students like me, it is difficult to express ourselves in a classroom, because there are
studentswho understand thematter quicker [than us], and also because there are studentswho
jump and answer every question immediately, regardless whether the answers are correct or
not. When I am at the forum I feel in control. No one can interrupt my talk, and I have time
to think before writing a post, and to post only when I am sure that I want to post. I can ask
for help when I need it, and can just not look at the forum if I have my own idea to develop.
In a classroom, when somebody talks – you hear it even if you don’t want!

Three months later collaborative problem solving at the forum became a well-
established practice in NK’s class. The power relationship at the forum differed
from those at the classroom. In the classroom, NK was an undisputed leader who
orchestrated problem-solving discussions and served as a communication hub. In
particular, she listened to the student suggestions, re-voiced some of them and re-
addressed them to the class for further discussion. The above quote from the interview
with Emuna confirms our impression from the videotaped lessons: as a rule, problem-
solving discussions in the NK class were rather vociferous, and that the students
frequently interrupted each other in the struggle for the NK attention.

The role of a leader was assumed by different students and sometimes by no
one at the forum. Another difference was related to diversity of types of “expertise”
among the students. The presented excerpt from the Nine-Square Problem forum
is illustrative about these observations. In addition, it is illustrative of an additional
phenomenon: whereas in the classroom all students were as a rule engaged in the
same practices andwere expected tomaster allmaterial taught, the forumparticipants
in time developed problem-solving specializations, such as a proposer of new ideas,
a responder, a person who summarizes the proposed ideas, etc.

We also observed the movement of practices from the forum to the lesson at this
stage. The following episode illustrates this phenomenon. NK planned to begin a
regular (i.e., not planned in collaboration with the research group) geometry lesson
by a brief discussion of a theorem about an angle between a chord and a tangent line
(see Fig. 12.3).

Shewrote on the whiteboard the theorem in “given – to be proved” form and asked
the class if anyone had ideas as to how to prove it. She expected that the students
would think on the question in silence for some time, and then she would orchestrate
the discussion by revoicing and extending selected ideas asserted by the students in
a whole-class discussion, as usual. Something unexpected to NK happened. Michal,
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Theorem: If a chord and a tangent line to a circle 
intersect in a point on the circle, the angle between 
the chord and the tangent line equals to the inscribed 
angle defined by the chord and a vertices lying on the 
other side of the circle.

Fig. 12.3 A theorem about an angle between a chord and a tangent line

one of the most active forum participants, suggested: “Let’s solve this together, like
we do at the forum”. NK moved aside and observed.

The class reorganized itself. Some of the students rearranged the tables in order to
sit together in small groups, some others preferred to sit alone. The students divided
the whiteboard into parts, and used it as if they wrote posts at the forum. Namely,
every several minutes one of the students approached the board andwrote something.
There were “posts” entitled “a new attempt” and “theorems that can be used in the
proof”, therewas also a “post” representing some proving plan, a post representing an
unsuccessful attempt and more. There were also comments on the existing “posts”.
For example, one student focused on reading the content of the whiteboard instead
of inventing her own solution. She commented on part of one of the “posts”: “This
point is not justified”. The activity continued autonomously (i.e., without any NK’s
interventions) for about half an hour. It took much more time than NK planned, but
as a result, the students independently found several different proofs of the theorem.

During the first year of participation in the project, the Google+ forum of NK’s
class consisted of nine (instead of the planned three) problem-solving episodes of
100–300 posts each. Additional six problems were chosen by NK and discussed by
the research group only post factum, as materials for the use in additional classes.
More than 95% of the interactions were among the students; the role of NK was
restricted to offering the students challenging problems and making encouraging
remarks. The forum functioned as a platform for collaborative problem solving for
three years until the class graduated in 2016. That is, at some point the forum stopped
being an innovation and became a confirmed routine.

Today NK runs online problem-solving forums in her new classes and constantly
refines the rules of the game. For instance, those students who are interested to early
share their solutions and get feedback can now do so on the separate forum. The
majority of the students learned to appreciate and enjoy the long-term collaborative
work on challenging problems and do not hurry to enter that forum.

In summary, we deem that the forum in the NK class became successful because
of a combination of factors and decisions, as follows:

• the idea of the forum addressed the existing in the classroom community learn-
ing needs, for example, to get prepared to a matriculation exam consisting of
challenging problems;
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• the teacher and some of her students were open to new experiences and can be
characterized, in Rogers’ terms, as venturesome;

• there were productive interactions between the early and the late adopters of the
innovation;

• the existing in the classroom norms related to collaborative problem solving were
supportive for initiating the forum, and the developed in the forum practices of
sharing half-baked ideas and freely switching the modes of interactions were rein-
forced in regular mathematics lessons;

• cue-to-action events, some of which were planned and the others were unforeseen,
occurred at the right time;

• the students were involved (along with NK and the research group) in establishing
the rules of the game;

• the rules of the game were constantly adapted to the students’ learning needs and
choices.

12.5.2 The Second Narrative: Evolution of the AP Class

The beginning of the project in AP’s class appeared to be different, even though
the main events of the knowledge stage (i.e., a conversation between AP and BK
following an observation of one of the AP lessons and a conversation between AP
and his students in the classroom) occurred in the same manner as in the NK class.
Moreover, the students’ initial reaction to AP’s invitation to take part in an online
problem-solving forumwas similar to that of the NK students—it was unequivocally
favorable. In practice, however, the forum did not become active when the first and
then the second problem had been offered. There were students who occasionally
entered the forum, did not find there any activity, and after uploading one or two
posts lost the interest.

Like NK, AP discussed the situation at the research group (see Sect. 12.5.3 for
details) and talked with the students for several times. The students expressed their
understanding of the importance of the forum and their intension to participate, but
the forum did not revive. It seems that the AP students exercised what Rogers called
passive rejection of an innovation. Interestingly, what worked well at the persuasion
stage in the NK class did not work at all in the AP class. For example, only few of the
AP’s students persisted when solving the regular homework, so NK’s pivotal request
“upload your drafts to the forum and work together” (see Sect. 12.5.1) could not be
implemented because the students just did not have drafts to share.

We discussed the situation in two meetings of the research group. During the
first meeting, we talked about pros and cons of different technological platforms and
considered if it was worthwhile to switch from one platform to another.We discussed
whether it was worthwhile to give the students formal credit for participation in the
forum (e.g., some bonus grades) or make the participation compulsory. An additional
suggestion was to make the forum multi-functional and place on it materials for
preparation for the tests and homework assignments so that the students would be
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accustomed to systematically enter the forum. One more suggestion was to revive
the forum by simulating it at one of the mathematics lessons (see Sect. 12.5.1 for an
example of such a lesson).

The turning point occurred at the next meeting. AP took the lead. He analyzed
the situation acting in two roles, a teacher and a researcher. The discussion revealed
that for different reasons some of the above suggestions could not be implemented,
and some other could only give a fainted ray of hope for improvement. For AP and
the rest of the group the conversation became a productive boundary interaction:
circumstances and considerations of one CoP (i.e., AP’s class) were confronted with
circumstances and considerations of another CoP (i.e., the research group). APmade
the conclusion that so far the discussion focused on the extraneous reasons for the
lack of activity at the forum. From the protocol of the meeting:

AP: Today I think that the problem is in some classroom norms that hinder the forum.

RL: Indeed, the forum apparently reflects some processes in the classroom.

AP: Nothing happens in the forum, and it is a sort of reflection of what’s going on in the
class. This was unforeseen… I thought that my lessons provided a good foundation
for the forum. Of course, there are extraneous reasons, but all together [extraneous
reasons and some classroom norms] hinder the forum…

BK: I observed your lessons and saw that you offered the students quite difficult problems
and that the students participated and presented ideas. And you as a teacher decided
which ideas to use. As a result, the responsibility for the final solutions was yours. This
is probably because it was not enough time to think about the problems. It also seemed
me that the students were struggling for your attention and that doing homework for
some of them was unimportant.

RL: But it is up to you [AP] to decide whether you want to change the existing norms.

BK: I know from personal experience that this [changing the norms] can be a very compli-
cated process.

AP: I see the forum as an addition to our regular work. I am not ready to devote the precious
lesson time in order to make the students work on the forum. It is not the end in itself
for me.

Eventually, the forum did not worked as planned for AP’s students. However, two
months after the described meetings, AP shared with the research group good news
about positive changes in his lessons’ norms and dynamics. In particular, AP told
the research group that more students wished to get help from the fellow students
rather than from him, and that more students tried to assist their peers when solving
problems.

BK: In your opinion, why did the change occur?

AP: I changed my behavior at the lesson. I forced myself not to respond immediately to the
students’ requests for help, but offered them to keep thinking by themselves or ask for
the assistance from the other students. I had forced myself to talk less at the lessons,
and the changes began after about two lessons.

The story had a continuation when an additional teacher from AP’s school, ES,
joined the project in 2014–2015. ES found himself in a situation similar to AP’s sit-
uation at the beginning of the project. This time AP assumed the role of a facilitator
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and a researcher who worked in pair with ES. AP’s advice took into account his own
experience as well as NK’s experience. However, attempts to enhance online collab-
orative problem solving as an addition to regular mathematics lessons deserved little
response also in the ES class,4 though some classroom norms eventually changed.

In summary, we attribute the lack of response to the idea of stretching the bound-
aries of a classroom by means of online forums in the AP and ES classes to the
following factors:

• teacher-student interactions were more valued than student-student interactions at
the AP and ES regular lessons;

• AP was ready to experiment with a new idea, but did not feel the need to deeply
change his teaching practices;

• the norms of doing homework were underdeveloped in AP and ES’s classes;
• we (the research group) did not succeed in designing effective cue-to-action events,
despite of considerable effort made;

• teachers of the AP and ES’s school delivered to their students a clear message that
any learning activity must be graded. To recall, participation in the forum in the
NK classes was voluntarily for the students and as such, it was detached from any
formal assessment, and we decided (perhaps, mistakenly) that online forumwould
be a free-of-assessment zone also in the AP and ES classes.

We learn from the above story that boundary interactions between a classroom
CoP and a research group CoP can result in productive learning opportunities for
both communities. The story shows that something has changed in the AP class-
room, namely, AP’s ways of orchestrating problem-solving activities. Something
has changed in the research group as well. Namely, we learned that the need to take
into account specific circumstances of a classroom community could override the
need to follow what initially seemed to be a feasible plan.

12.5.3 The Third Narrative: Evolution of the Research Group

Prior to running the first problem of the project in NK’s and AP’ forums, the research
group conducted a series of preparatory meetings. The meetings were devoted to the
following themes:

• developing a shared vocabulary (e.g., we discussed the research proposal and some
research papers about mathematical problem solving in online learning environ-
ments);

4Let us mention here that another problem-solving-related idea worked very well in AP and ES
classes. In brief, these teachers successfully engaged their students in long-term extracurricular
mathematics research in the context of numerical sequences. This enterprise, which lasts for five
consecutive years in their school, is presented elsewhere (Palatnik, 2016; Palatnik & Koichu, 2015,
2017).
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• organizational aspects (e.g., creating an online knowledge base of the project,
creating teacher-researcher pairs and defining the fields of individual responsibil-
ity within the project; collecting the informed consents from the parents of the
students);

• research aspects (e.g., refining the data-collection procedures described in the
proposal);

• technological aspects (e.g., choosing a technological platform for each class in
accordance with the class characteristics);

• mathematical aspects (e.g., which geometry problems to choose and why);
• pedagogical aspects (e.g., how problem solving actually occurs in the participating
classes, how to introduce the project to the students and how to run the forum).

These meetings were productive in many respects, and in particular they seemed
to promote the atmosphere of partnership and positive interdependence among the
members of the group. For instance, at the beginning NK was mostly interested in
mathematical, technological and pedagogical aspects of the project, but in a short
while she became interested also in its research aspects. BK was initially focusing
on the research aspects and considered the rest of the issues as necessary tasks
that needed to be done before “the real work begins”. In a short while, he became
intellectually and emotionally involved in all aspects of the project.

As it frequently happens, the crisis was unforeseen. This is what happened. The
group invested much time and effort in developing a detailed plan of how to prepare
the classes to approaching the first problem on the forum (the Nine-Square Problem,
see Fig. 12.1). The lesson preceding the forum was thoroughly designed with a
special attention to its mathematical and heuristic aspects. Specifically, a sequence
of three challenging tasks was devised. Each task was carefully chosen so that its
method of solution could serve as an indirect hint for the students when solving the
target problem. Two days prior to the lesson and the forum, NK and AP had a long
meeting at which they finalized and coordinated their actions in the classrooms.

AP fully realized the plan. NK drastically changed it at the last moment. From
her diary written the night before the lesson:

NK: I am very excited and concerned. For me, the lesson tomorrow has two goals: (1) the
lesson must look as a regular one for the students. They should be busy enough and
do not pay attention to a video camera and a man behind it. They should not feel that
something unique happens; (2) still, the lesson should promote the emerging in the
class wish to solve challenging problems, to solve them together, and to solve them
even out of school.

I’ve just arrived at the idea as to how to get the students to feel the difference [between
different problem-solving modes] at the lesson. I plan to conduct a lesson consisting
of three parts […] I think that I’ll use this model for many times in the future.

Practically, NK prepared a new working sheet consisting of seven problems. The
first two were relatively easy and preceded by the request “Think and answer”. This
part was for individual work. Problems 3–5 were more difficult and preceded in the
worksheet by the title “Two is better than one! Think and answer in pairs”. The
last two problems were slightly more difficult. This part of the working sheet was
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entitled “The more – the better. Think and answer in small groups.” The Nine Square
Problem was placed at the end of the working sheet. It was entitled “Together we’ll
overcome any difficulty! This is a challenging problem to be solved at the forum”.

To summarize, the main difference between the agreed plan and the plan enacted
by NK was as follows: the agreed plan allowed the teachers to discuss the mathe-
matical ideas that later might be useful on the forum. NK’s plan was less related to
the forum problem mathematically or heuristically, but allowed her to highlight at
the lesson the advantages of collaborative problem solving when the problems were
challenging to the students.

Two previous subsections has described how the story was developed in the par-
ticipating classes. We now present the continuation of the story from the research
group’s perspective. At the next meeting of the group, NK explained that the night
before the lesson she suddenly realized that the agreed plan would not work in her
class. She was not particularly explicit as to what exactly might have gone wrong
in the agreed plan. Anyway, NK’s success was apparent, and the group turned to
analyzing the NK’s forum and the subsequent tasks. An immediate organizational
conclusion was “from now on, let’s leave devising the detailed lesson plans to the
teachers. We should trust their intuitions even if they are unspoken in the group
meetings”.

The reasons of the NK’s decision to change the agreed lesson plan became clear
much later, in the third year of the project. In one of BK and NK’s conversations, NK
deeply reflectedonher personal experienceof being amember of the researchgroup at
the beginningof the project. She explained that in spite of her active participation in all
the discussions, shewished to change the agenda of the group to somepractical issues.
In particular, she repeatedly asked the question “Why should the students cooperate
with us and solve problems together at the forum?” In her view, the question was not
properly discussed by the group. NK felt that she was unable to change the group
working agenda in the direction that was important to her. Specifically, convincing
the students in benefits of collaborative problem solving was more important to
NK than preparing the class mathematically-heuristically for solving a particular
problem, which was the central idea of the lesson plan devised by the group. NK
agreed with the plan because she did not have an alternative idea when the plan
was suggested. As mentioned, an alternative idea came to NK at the last moment.
Being truly committed to the project’s success as well as to her students’ success,
she decided the night before the lesson that she should do what she believed was the
best for her students, even on expanse of violating the agreed plan without noticing
AP and the research group.

In summary, we deem that the presented story enables us to make several points.
First, the story illustrates the Wenger’s (2010) note that boundary interactions
between CoPs are “not necessarily peaceful or collaborative” (p. 183). We know
now that this is true even when the interactions are smooth on the surface. It fur-
ther substantiates the importance of the existence of a shared history of learning for
making the boundary interactions productive (Wenger, 2010) and the importance of
diversification of the modes of boundary interactions (Solomon et al., 2017). Second,
the story illustrates that conflicting boundary interactions can reveal normswithin the
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CoPs that otherwise would remain unnoticed. Furthermore, the conflicting boundary
interactions may serve as an impetus for gradual changing the norms. For instance,
the story revealed to us that there has been the following norm in the research group:
“all decisions should be made collaboratively based on explicit discussions of their
pros and cons”. This, seemingly productive norm, has been gradually complemented
by the following one: “some decisions should be trusted to the specialists in the com-
munity, even if they (the decisions) are not discussed in detail by the group”. In this
way, the group members have more space for individual experimentation within the
project. Speaking practically, we learned not to overestimate the detailed discussions
of the emerging issues and do not think of our decisions as “final” or “optimal”. We
learned instead to make some decisions and move on in the hope to get smarter along
with the further development of the shared history of mutual learning.

12.6 Concluding Remarks

The idea to use online discussion forums and social networks as means for enhanc-
ing collaborative mathematical problem solving has recently become widespread
throughout the world. There are at least two reasons for this. First, it looks just
right to capitalize upon the fact that online activity is an inalienable part of life
of nowadays schoolchildren (Boyd, 2008). Second, very positive cases of collab-
orative online problem solving has been documented in several specially designed
learning environments, such as Knowledge Forum (Moss & Beatty, 2006), Virtual
Math Teams (Stahl, 2009) or threaded discussion asynchronous forums (Wentworth,
2009). Still, the promise of online communication technologies for enhancing math-
ematical problem solving in school is far from being fulfilled, and the gap between
the scope of self-organized non-mathematical activity in social networks and the
scope of mathematical activity in specially organized online learning environment is
enormous.

Based on the premise that special effort should be made in order to incorporate
technology-mediated communication into mathematics education, the present study
enquired what could enhance or impede the development of online problem-solving
forums in school practice when teachers and researchers collaborate in order to make
the forumswork. Of note is that our focus differs from the focus of many past studies,
which have shed light on various affordances of online mathematical forums (e.g.,
Lachmy et al., 2012; Lazakidou & Retalis, 2010; Lin, 2011; Nason & Woodruff,
2003; Tarja-Ritta & Järvelä, 2005), but were rather silent about how to initiate and
sustain them in conjunction with regular mathematics lessons.

The presented stories of two high-school classes and their long-term interactions
with a researchgrouphavedifferent happy ends: in oneof the classroomcommunities,
online problem solving has eventually become a routine practice and a valuable
addition to classroom problem solving. In another classroom community, the forum
did not become active despite considerable effort made, but enduring attempts to
activate it led to enhancement of student-student interactions in the classroom.
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In brief (see the detailed summaries in Sect. 12.5), some of the factors that
enhanced or impeded the incorporation of the forums were related to school condi-
tions, classroomnorms, particular cue-to-action events, and our decisions and actions
as a research group. We have also observed, more than once, the phenomena of dis-
continuance and of passive rejection for which we do not have convincing explana-
tions, despite the extended data set in our possession.

One of the lessons learned from the present study is that theCommunity of Practice
perspective (Wenger, 2010) and theories like the Theory of Diffusion of Innovation
(Rogers, 2003) should be taken seriously. Either aggregative or detailed analysis of
implementation of the project idea is helpful for us as a tool for refining the roadmap
of the project, and we hope that it would be instrumental also in organizing and run-
ning similar projects elsewhere. In addition, we learned that creating conditions for
implementation of an innovative pedagogical idea in a school reality should be given
full attention prior to delving into a pursuit for “traditional” research questions, such
as questions on cognition and affect in mathematical problem solving. Based on the
accumulated experience, we call for reporting and analyzing not only those cases
where problem solving was sufficiently rich, but also those cases where the designed
activities did not work as planned. We conclude by suggesting that systematic atten-
tion to the latter cases may have not only practical, but also theoretical significance
in mathematics education and enrich the existing models of mathematical problem
solving in realistic educational contexts.
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Appendix: Examples of Problems Used in the Project

Trapezoid Problem (from Fraivert, 2016): Let ABCD be a trapezoid (see the draw-
ing). M and N are the midpoints of AB and CD respectively, O is an intersection of
the diagonals AC and BD, and OP is perpendicular to BC. Prove that OP is an angle
bisector of the angle MPN.

TwoCircles Problem (translated from Sharygin&Gordin, 2001, No. 3463): Two
circles with centers M and N are given. Tangent lines are drawn from the center of
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each circle to another circle. The points of intersection of the tangent lines with the
circles define two chords: EF and GH (see the drawing). Prove that EF � GH.

Nested Parallelograms Problem (translated from Sharygin & Gordin, 2001,
No. 565,566): Given is a quadrilateral inscribed in a parallelogram. Prove that the
inscribed quadrilateral is a parallelogram if and only if the intersection point of
its diagonals coincides with the intersection point of the diagonals of the external
parallelogram.
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Chapter 13
Conditions for Supporting Problem
Solving: Vertical Non-permanent
Surfaces

Peter Liljedahl

13.1 Motivation

Mywork on the research presented in this chapter began over 10 years agowhen Iwas
invited to help June, a grade 8 (12–13 year olds) teacher, implement problem solving
in her classroom.At the time, problemsolvingwas becomingmore andmore common
in classrooms and had become an explicit part of the recently revised curriculum.
June had never done problem solving with her students before, but with the shifting
landscape around this idea she felt it was time. June was aware of my interest in
problem solving as well as my willingness to help teachers to start implementing
problem solving in their classrooms, so she reached out to me one day late into the
school year.

June, as it turned out, was neither interested in co-planning nor co-teaching. What
she wanted from me was simply a collection of problems she could try with her
students. I was expecting to have a greater level of involvement in the lesson, but
June was firm on her conditions. We eventually arrived at a compromise whereby
I would supply the appropriate problems for June to use with her grade 8 students,
and June would let me watch her implement them within her classroom.

The first problem I gave her to use was a problem that I had had much success
with students of many different grades.

If 6 cats can kill 6 rats in 6 minutes, how many will be needed to kill 100 rats in 50 minutes?
(Lewis Carroll, cited in Wakeling, 1995, p. 34)

June accepted this problem in good faith and used it the next day. It did not go
well. A mass of hands immediately shot up and June began quickly moving about
the room to answer questions and provide help. Many students gave up almost as
soon as a problem was presented, so June also spent much effort trying to motivate
these students to try. In general, there was some work attempted when June was
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close by and encouraging the students, but as soon as she left the trying stopped.
This continued for the whole 40 min period.

The following day I was back with a new problem. The results were as abysmal
as they had been on the first day. The same was true of the third day. Over the course
of three 40 min classes we had seen little improvement in the students’ efforts to
solve the problem, and no improvements in their abilities to do so. So, June decided
it was time to give up. Her efforts to bring problem solving to her students had been
met with resistance and challenge and resulted in few, if any, rewards.

I wanted to understand why the results had been so poor, so I asked June if I could
stay and observe her and her students in their normal classroom routines. After three
days of observing these routines I began to discern a pattern. That the students were
lacking in effort was immediately obvious, but what took time to manifest was the
realization that what was missing in this classroom was that the students were not
thinking.More problematicwas that June’s teachingwas predicated on an assumption
that the students either could not, or would not, think. The classroom norms (Cobb,
Wood, & Yackel, 1991; Yackel & Rasmussen, 2002) that had been established in
June’s class had resulted in, what I now refer to as, a non-thinking classroom. Once I
realized this I proceeded to visit other mathematics classes—first in the same school
and then in other schools. In each class I saw the same phenomenon—an assumption,
implicit in the teaching, that the students either could not or would not think.

I wanted to better understand this phenomenon of non-thinking and then findways
to change it, to break the pattern of these non-thinking classrooms and build, in their
place, thinking classrooms. In what follows I present three distinct research studies
that are a small part of my journey in pursuit of these goals.

13.2 Study #1: Student Behavior

In order to better understand my experiences in June’s class I conducted a series of
studies, in collaborationwith one ofmy doctoral students, inwhichwe looked closely
at student behaviors across a variety of more traditional mathematics classrooms and
classroom activity settings—doing tasks in class, taking notes, homework, group
work, review, lecture (Liljedahl & Allan, 2013a, b).

Research into these different activity settings began with the use of classroom
videos, field notes, and post observation interviews with students. Using a constant
comparative method (Charmaz, 2006; Glaeser & Strauss, 1967; Patton, 2002; Tay-
lor & Borden, 1984) these data were continually analyzed between observations.
From this analysis, over time, a number of interesting student behaviors began to
emerge within each of these aforementioned classroom activity settings. As clarity
was gained, coding for these, now known, student behaviors in subsequent observa-
tions becomes easier. Over time a form of saturationwas reached as new observations
of these activity settings no longer revealed new behaviors. When this occurred a
taxonomy of student behavior within a certain activity setting had been achieved.
This taxonomy then allowed us to analyze all of the student behaviors during an
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activity setting within one class. In what follows I look specifically at the taxonomy
of student behavior around, what we came to call, the now you try one activity setting
(Liljedahl & Allan, 2013a).

The now you try one activity setting is most often seen in classrooms wherein
the dominant teaching method is direct instruction and is named for the oft use of
now you try one tasks. These are the short tasks that teachers ask students to do
immediately after s/he has done some direct instruction and presented some worked
examples on a specific subtopic of the curriculum (e.g. how to factor a difference of
squares, how to multiply two digit numbers, etc.). Although some teachers use these
tasks for the purpose of students being able to practice the new skill, we found that
the majority of teachers use now you try one tasks for the purpose of students being
able to check their understanding of the new skill.

The cycle of direct instruction followed by a now you try one task is often repeated
several times as the teacher moves through their planned lesson. As such, students
work on them where they are sitting, and with whom they are sitting, during the
direct instruction part of the lesson. Students are given 3–5 min to solve the task
while the teacher moves around the room answering questions or stands at the front
monitoring when student finish the question. When the time has expired the teacher
goes over the solution, sometimes by calling for student input, before moving onto
more direct instruction.

13.2.1 Methodology

Data for what I present here comes from a single lesson on completing the square
as a way to graph quadratic functions being taught in a grade 11 classroom (n �
32). Because saturation had already been achieved and codes were already well
established no video was used. Instead, we simply used the pre-established codes
to annotate observed student behaviour on a supplied seating chart of the classroom
during the now you try one phase of the lesson. Immediately after these observations,
while students began to work on their assigned homework, as well as for a few
minutes after class, we collected very brief interview data from a number of students
selected based on their observed and different behaviours. The interviews were short
(1–4 min) and were audio recorded using a portable digital recorder. For the most
part these interviews consisted of a brief declaration of what we had observed them
doing and one or two questions regarding their reasons for their behaviour. This was
not foreign to the students as I had previously spent several lessons doing similar
research in the same class; although not always in the context of now you try one
problems. In all, data from 15 interviews was collected. Added to this were lengthier
interviews with the teacher before and after the lesson in order to ascertain her goals
for the lesson in general, and the now you try one problems in particular. In the post
interview we shared with her some of the behaviours we had observed as well as
some of the responses the students had given during our brief interviews and asked
her to respond to these vis-à-vis her own goals.
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These data were then analyzed through the lens of the aforementioned taxonomy
of student behaviours that had emerged from the earlier work on the now you try one
activity setting.

13.2.2 Results

From the analysis of these data our previously established taxonomy of five main
student behaviors was confirmed. In what follows we present each of these student
behaviors exemplified with excerpts from these data.

Amotivation
Of the 32 students observed for this study three (all boys) displayed a general lack
of attention towards the lesson. They were generally disengaged and disinterested in
the lesson. Visibly they paid little attention, took no notes, and when they were asked
to try to solve an example on their own they made no attempt to do so, or to seek
help. When asked about their lack of interest they each gave a different explanation.

Frank I don’t get it. [shrugging his shoulders and looking back down at his cell
phone]

Andrew My tutor will help me with this tonight.
Jason I’m just tired today.

When we shared these comments with the teacher after the class she replied that
she was not surprised.

Teacher Frank and Andrew are never engaged. They’re often absent or late and
when they are here they don’t do much. Andrew has a tutor and uses that
as an excuse to not do anything in here … but he is still failing the course.
Jason is always here but he isn’t doing any better.

Ryan and Deci (2002) would refer to these students as amotivated. Amotivation
is a deeper problem that goes well beyond the context that we were focused on. As
such, we initially considered not including these cases in the taxonomy. However, we
decided against this for two reasons—this behavior was seen in almost every class
and its inclusion allows us to account for all of the behaviors seen during the now
you try one context.

Stalling
Four students exhibited a behavior that we came to call stalling. Stalling behavior
are actions that can be seen as legitimate—that are not out of place in a normal
classroom or during the course of a lesson. What made these actions interesting to
us was their timing. As soon as the students were asked to do a question on their
own two students suddenly had to go to the bathroom, one needed to sharpen their
pencil, and one couldn’t find a calculator (even though the question didn’t require
one). When we asked the students about these coincidences they had a variety of
superficial reasons justifying their actions:
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Jessa I had to go. That’s all.
Barry I was waiting until there was a break in the lesson.
Jenny My pencil broke.
Drew Calculators are allowed so I wanted to use one.

When pushed about these reasons, however, two things emerged that were com-
mon to each of these four students. First, all of them expressed that the now you
try one was an unimportant part of the lesson; “like a break”. The reason for this,
they all revealed, was “because in a few minutes the teacher [was] going to provide
the answer”. Taken together, these students were seeing a redundancy between their
efforts to solve the task (had they done so) and the teacher presented solutions. This
redundancy exists only within a context where the purpose of the now you try one
problem is the production of notes.

Faking
There is one final category of non-trying behavior—faking. Two students exhibited
this behavior. These girls had two things in common—they had impeccable notes
and from the front of the classroom they both appeared to be trying to solve the
problem. It was only from our vantage point in the back (and side) of the classroom
that we were able to detect what was really going on. Physically all of their actions
were those of students who were working. Their heads were down and their pencils
were moving. In reality, however, neither of them was actually writing anything on
their paper, even though one of them even made the pretense of erasing a mistake.
When asked about this they both gave the same general answer,

Keesha I don’t want to mess up my notes.

When pushed on this point they both came back with the same answer that the
stallers did—that the teacher will soon provide the solution. However, they added to
this a nuance that the stallers did not mention, and perhaps did not care about.

Jennifer Not only will she give us the answer, she will give us the best answer. This
is the one I want in my notes.

The importance of the best answer, as opposed to just a correct answer, is important
when the goal is to produce perfect notes, a goal that both of these girls clearly shared.

Mimicking
The nine aforementioned students aside, the remaining 23 students all tried, at least
in part, to solve the now you try one problem. Of these, 17 were mimicking. Visibly
these students engaged in the task and tried to solve it. Some made mistakes, some
gave up, but most succeeded in arriving at the correct answer. Successful or not,
what these students all had in common was that they referred to their notes, or
the notes on the board, often. Closer observation and our questioning revealed that
the students in this category were not so much relying on understanding as much
as simply following the solution pattern laid down by the teacher in the example
that she had worked through immediately prior to the now you try one problem.
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The constant referencing to the previously solved problem was symptomatic of the
students’ attempts to map characteristics of the example problem onto the current
task. When asked about this mimicry behavior these students claimed that they were
doing what the teacher wanted them to do.

John This is how we do things in this class. The teacher gives us an example
and we write it down. Then she gives us one to try and we copy what we
did in the example.

Charlotte Isn’t this what we are supposed to be doing?

Whenwe asked the students who had failed to get an answer about what happened
their general response was that the now you try one question “must have been”
different from the example question.

Samantha I got lost somehow. I’m not sure where. I thought I was following the
rules.

For Samantha, like the rest of the students in this category, the “rules” is a solution
pattern to be copied.

Reasoning
The remaining six students demonstrated a behavior of reasoning. These students not
only attempted the problem but progressed through it in a reasoned and reasonable
manner with minimal references to prior examples. This is not to say that the prior
examples did not play a role in their solutions, but as a whole rather than the line by
line copying that themimics performed. Further observation of this group of students,
as they tackled additional problems, confirmed that they had a good understanding of
the mathematical relationships and skills at play. Given this, we asked these students
if the teacher’s examples had in any way contributed to their understanding of the
now you try one problem. For the most part the students indicated that what the
teacher’s examples gave them was a new combination of things that they already
knew.

Kenneth I don’t know. Maybe. … I mean it all makes sense. If anything, maybe the
examples just showed me what kinds of questions are possible.

That is, although they seemed to know all of the pieces they had never thought to
combine their knowledge in this way.

The one exception to this was Ryan, who on several occasions (during the lesson
that was observed for this study as well as others) anticipated the teacher’s next
example or next question. That is, unlike the others in this category, Ryan was able
to combine his knowledge without being shown how to do this.
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Table 13.1 Distribution of
student behaviors

Behavior n %

Amotivation 3 9

Reasoning 6 19

Stalling 4 13

Faking 2 6

Mimicking 17 53

Fig. 13.1 Distribution of
student behaviors

Amotivation 

Reasoning

Stalling

Faking

Mimicking

13.2.3 Discussion

Taken together, the distribution of the five different student behaviors during a now
you try one context within the aforementioned class shows a disturbing trend (see
Table 13.1 and Fig. 13.1).

Having spent time in this particular class before we knew that this teacher made
extensive use of the now you try one problems. As such, prior to our observation we
asked the teacher to explain to us what her intentions were with the tasks and what
she expected the students to do with them.

Teacher Well, I use them to give the students a chance to check their under-
standing of what we had just learned. This way, if they don’t understand
something we can catch it right away.

Researcher And what do the students do with these problems?
Teacher For the most part they do the problems. You’ll see when we are in there

that there are a couple of boys in the back that don’t do them but they
don’t really do anything. Everyone else, though, does them.

The teacher’s expectation is that the students will do these problems as a way to
test their understanding and she believes that, for the most part, this is what they do.
In the post lesson interview she confirmed her expectation.
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Teacher So, as predicted, those three boys in the back didn’t do much. But everyone
else was pretty much on task. I mean, they didn’t all get the problems right,
but they did them. And the ones that made mistakes had a chance to learn
from their mistakes when we went over it.

The data does not agree with either her pre-lesson prediction or her post-lesson
reflection. Of the 29 students in the class that the teacher thought were acting in
alignment with her goals, only six actually were. The other 23 students were stalling,
faking, or mimicking. Their actions were not actually what the teacher thought they
were. That is, 23 out of 29 (79%) students were subverting the intentions of the
teacher, and doing so in ways that the teacher was not aware of. It could be argued
that those students who were mimicking understanding by mapping the solution
process from one problem to another were exhibiting expected behavior, but keep
in mind the words of John and Samantha. From the perspective of the students, they
were not trying to test their understanding. They were copying and following the
rules—neither of which is what the teacher intended.

These findings are consistent with our research in other contexts as well. Across
the board students are finding ways to game the expectations of the teacher in ways
that the teacher is not aware of. Inmany cases these behaviors are centered on proxies
for learning and understanding, such as mimicking, that are not actually conducive
to learning—but appear to be in alignment with the teacher’s goals.

This behavior is consistentwithwhat Fenstermacher (1986, 1994) has come to call
studenting. Initially he used this term to describe the things that students do to help
themselves learn; from paying attention to following instructions, from practicing to
studying, from reviewing to seeking help, from trying to understand to ensuring they
understand, etc. Later, however, he expanded this definition to also include the other
things that students do while in learning situations—things that do not actually help
them to learn.

…things that students do such as ‘psyching out’ teachers, figuring out how to get certain
grades, ‘beating the system’, dealing with boredom so that it is not obvious to teachers, nego-
tiating the best deals on reading and writing assignments, threading the right line between
curricular and extra-curricular activities, and determining what is likely to be on the test and
what is not. (p. 1)

Taken together, the notion of studenting can be used to describe our results and
helps us understand what students do while in a learning situation and expands our
ability to talk about student behavior in classroom activity settings. More specifi-
cally, it gives us a name for the autonomous actions of students that may or may
not be in alignment with the goals of the teacher. As such, studenting extends con-
structs such as the didactic contract (Brousseau, 1997) and classroom norms (Cobb
et al., 1991; Yackel & Cobb, 1996) to encompass a broader spectrum of classroom
behaviors—behaviors that are not predicated on an assumption of intended learning.
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13.3 In Pursuit of Thinking Classrooms

June made extensive use of now you try one in her teaching and, not surprisingly,
her students exhibited many of the studenting behaviors seen in the now you try
one research. Under such norms it was unreasonable to expect that June’s students
were going to be able to spontaneously begin to engage in problem solving. What
was missing for these students was much more than an exposure to problem solving
activities. What was missing was a central focus in mathematics on thinking. The
realization that thinking was absent motivated me to find a way to build, within these
same classrooms, a culture of thinking, both for the student and the teachers. I wanted
to build, what I now call, a thinking classroom—”a classroom that is not only con-
ducive to thinking but also occasions thinking, a space that is inhabited by thinking
individuals as well as individuals thinking collectively, learning together, and con-
structing knowledge and understanding through activity and discussion” (Liljedahl,
2016, p. 364).

My efforts to build and sustain such thinking classrooms has been an ongoing
pursuit for over ten years. My initial effort in this regard was to do an inventory
of classroom norms and practices. To do this I explored the practices of more than
40 classroom mathematics teachers. From this emerged an inventory of 11 discrete
variables that permeatemathematics classroompractice everywhere, from primary to
secondary, and can be used to inventory differences between mathematics classroom
practices (Liljedahl, 2016). These variables are presented here as a set of questions.

1. What type of tasks are used, and when and how they are used?
2. How are these tasks given to students?
3. Do students work on tasks in groups and, if so, how are groups formed?
4. Where, and on what surfaces, do students work on tasks?
5. How the room is organized, both in general and when students work on tasks?
6. How questions are answered when students are working on tasks?
7. How are hints and extensions used while students are working on tasks?
8. How much autonomy do students have while working on tasks?
9. When and how does the teacher levels1 their classroom during or after tasks?
10. When and how do students record notes?
11. When and how is assessment carried out, both in general and when students

work on tasks?

In June’s non-thinking class, for example:

1. Practice tasks were given after she had presented a number of worked examples
(now you try one).

2. Students either copied these from the textbook or from a question written on
the board.

1Levelling (Schoenfeld, 1985) is a term given to the act of closing of, or interrupting, students’ work
on tasks for the purposes of bringing the whole of the class up to a certain level of understanding of
that task. It is most commonly seen when a teacher ends students work on a task by showing how
to solve the task.
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3. Students had the option to self-group to work on the homework assignment
when the lesson portion of the class was done.

4. Students worked at their desks writing in their notebooks.
5. Students sat in rows with the students’ desk facing the board at the front of the

classroom.
6. Students who struggled were helped individually through the solution process,

either part way or all the way.
7. Therewere no hints, only answers, and an extensionwasmerely the next practice

task on the list.
8. Students had little to no autonomy in how they engaged in tasks, usually having

to complete worksheets or questions out of the textbook.
9. When “enough time” had passed June would demonstrate the solution on the

board, sometimes calling on “the class” to tell her how to proceed.
10. Students wrote down what June wrote on the board at the front of the room.
11. Assessment was done through individual quizzes and test.

In my pursuit to foster and sustain thinking classrooms, I set out to explore each of
these variables, on their own and in conjunction with of other variables. There were
two mandates that guided this research. The first was to find practices around each
variable that maximized students starting to thinking or, if already started, sustain
their thinking. The second was that these practices had to be things that teachers
were willing to adopt.

So, with the help of more than 400 teachers I embarked on amassive design-based
research project (Anderson & Shattuck, 2012; Cobb, Confrey, diSessa, Lehrer, &
Schauble, 2003; Design-Based Research Collective, 2003; Norton & McCloskey,
2008). This approach allowed me to vary the practices around each of the variables,
either independently or jointly, and to measure the effectiveness of that method for
building and/or maintaining a thinking classroom. Results fed recursively back into
teaching practice, each time leading either to refining or abandoning what was done
in the previous iteration.

This method, although fruitful in the end, presented two challenges. The first
had to do with the measurement of effectiveness. To do this I used what I came
to call proxies for engagement—observable and measurable (either qualitatively or
quantitatively) student behaviors. At first this included only behaviors that fit the a
priori definition of a thinking classroom. As the research progressed, however, the
list of these proxies grew and changed depending on the variable being studied and
teaching method being used.

The second challenge had to do with the shift in practice needed when it was
determined that a particular teaching method needed to be abandoned. Early results
indicated that small shifts in practice. Did little to shift the behaviors of the class as a
whole. Larger, more substantial shifts were needed. These were sometimes difficult
to conceptualize. In the end, a contrarian approach was adopted. That is, when a
practice around a specific variable needed to be abandoned, the new approach to be
adopted was, as much as possible, the exact opposite to the practice that had shown
to be ineffective for building or maintaining a thinking classroom. When students
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sitting showed to be ineffective, we tried making the students stand. When leveling
to the top failed we tried levelling to the bottom. When answering questions proved
to be ineffective we stopped answering questions. Each of these approaches needed
further refinement through the iterative design-based research approach, but it gave
good starting points for this process.

Over time results began to emerge and a set of practices for each of the aforemen-
tioned variables began to present themselves as most effective. In many cases, these
practices were far from the norms that permeated mathematics teaching for so long.
In what follows, I present the research into variable #4—student work space.2

13.4 Study #2: Student Behavior on a Variety of Work
Spaces

Irrespective of the age students or the mathematics curriculum being presented,
students all over the world sit at a desk or table and write in their notebooks. The
teacher, on the other hand, stands and writes on some sort of vertical surface. These
norms are so pervasive, so entrenched, that they are no longer negotiated. They
have become non-negotiable norms. Even educational research, in its ever-present
pursuit to improve classroom conditions and teaching practice have, for themost part,
neglected to question these norms. Yes, desks and tables are a little nicer now they
were 100 years ago. Blackboards have given way to whiteboards, which eventually
gaveway to “smart” boards. But the basic premise has remained unchanged. Students
sit and teachers stands. Students write on horizontal surfaces and teachers write on
vertical surfaces.

It became obvious early in thiswork that adherence to this normwas not conducive
to the building of a thinking classroom.As such, almost immediately, a new spacewas
explored. Following the contrarian approach established early on, the next space to
test was to have students standing and working a vertical surface. The shift to having
students work on whiteboards and blackboards was then an obvious extension.

In many classrooms where the research was being done, however, there were
not enough whiteboards and blackboards available for all groups to work at. Some
students would have to still be seated in their desks. This led to a phase of experi-
mentation with alternative work surfaces, including poster board or flipchart paper
attached to the walls, and smaller whiteboards laying on desks—with some class-
rooms using all three at the same time. Whenever this occurred there was a general
sense shared between whatever teachers were in the room, as well as myself, that
the vertical whiteboards were superior to any of the other options available to stu-
dents. These observations led to the following comparative study focusing on this
phenomenon.

2For results of the remaining variables see Liljedahl (2018, 2014, 2016).
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13.4.1 Participants

The participants for this study were the students in five high school classrooms; two
grade 12 (n � 31, 30), two grade 11 (n � 32, 31), and one grade 10 (n � 31).3 In
each of these classes students were put into groups of two to four and assigned to
one of five work surfaces to work on while solving a given problem solving task.
Participating in this phase of the researchwere also the five teacherswhose classes the
research took place in. Most high school mathematics teachers teach anywhere from
three to seven different classes. As such, it would have been possible to have gathered
all of these data from the classes of a single teacher. In order to diversify these data,
however, it was decided that data would be gathered from classes belonging to five
different teachers in five different schools.

These teachers were all participating in one of several learning teams which I was
facilitating. Teachers participated in these teams voluntarily with the hope of improv-
ing their practice and their students’ level of engagement. Each of these learning team
consisted of between four and six, two hour meeting, spread over half a school year.
Sessions took teachers through a series of activities, modeled on the most current
results on the building and maintaining of thinking classrooms. Teachers were asked
to implement the activities and teaching methods in their own classrooms between
meetings and report back to the team how it went.

The teachers, whose classrooms these data was collected in, were all new to
the ideas being presented and, other than having individual students occasionally
demonstrate work on the whiteboard at the front of the room, had never used them
for whole class activity.

13.4.2 Data

The students were put into groups of two to four by their classroom teachers and
then each group was randomly assigned to one of five work surfaces: wall mounted
whiteboard, whiteboard laying on top of their desks or table, flipchart paper taped to
the wall, flipchart paper laying on top of their desk or table, and their own notebooks
at their desk or table. Then all groups were assigned the same task to solve. As the
objective of this research is to foster thinking in general, and during problem solving
in particular, a problem solving task was used. For comparison sake, the task that
chosen was the same one used in Jane’s class years earlier.

If 6 cats can kill 6 rats in 6 minutes, how many will be needed to kill 100 rats in 50 minutes?
(Lewis Carroll, cited in Wakeling, 1995, p. 34)

3In Canada grade 12 students are typically 16–18 years of age, grade 11 students 15–18, and grade
10 students 14–17. The age variance is due to a combination of some students fast-tracking to be
a year ahead of their peers and some students repeating or delaying their grade 11 mathematics
course.
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To increase the likelihood that they would work as a group, each group was
provided with only one felt or, in the case of working in a notebook, one pen. To
measure the degree to which the work surface was affecting student thinking proxies
for engagement were established. As mentioned, these proxies were used as a way
to document observable student behaviors to gauge the degree to which the students
are engaging with the assigned task. For the research presented here a variety of
objective and subjective proxies were established.

1. Time to task
This is an objective measure of how much time passed between the task being
given and the first discernable discussion as a group about the task.

2. Time to first mathematical notation
This is an objective measure of how much time passed between the task being
given and the first mathematical notation was made on the work surface.

3. Eagerness to start
This is a subjective measure of how eager a group was to start working on a task.
A score of 0, 1, 2, or 3 was assigned with 0 being assigned for no enthusiasm to
begin and a 3 being assigned if every member of the group were wanting to start.

4. Discussion
This is a subjective measure of how much group discussion there was while
working on a task. A score of 0, 1, 2, or 3 was assigned with 0 being assigned for
no discussion and a 3 being assigned for lots of discussion involving all members
of the group.

5. Participation
This is a subjective measure of how much participation there was from the group
members while working on a task. A score of 0, 1, 2, or 3 was assigned with 0
being assigned if no members of the group was active in working on the task and
a 3 being assigned if all members of the group were participating in the work.

6. Persistence
This is a subjective measure of how persistent a group was while working on a
task. A score of 0, 1, 2, or 3 was assigned with 0 being assigned if the group gave
up immediately when a challenge was encountered and a 3 being assigned if the
group persisted through multiple challenges.

7. Non-linearity of work
This is a subjective measure of how non-linear groups work was. A score of 0,
1, 2, or 3 was assigned with 0 being assigned if the work was orderly and linear
and a 3 being assigned if the work was all over the place.

8. Knowledge mobility
This is a subjectivemeasure of howmuch interaction therewas between groups.A
score of 0, 1, 2, or 3was assignedwith 0 being assigned if therewas no interaction
with another group and a 3 being assigned if there was lots of interaction with
another group or with many other groups.

These measures, like all measures, are value laden. Some (1, 2, 3, 6) were selected
partially from what was observed informally when being in a setting where multiple
work surfaces were being utilized. Others (4, 5, 8) were selected specifically because
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they embody some of what defines a thinking classroom—discussion, participation,
and knowledge mobility. Non-linearity of work comes from the aforementioned
research on non-thinking classrooms which showed that linearity of work is often
correlated with mimicking (Liljedahl & Allan, 2013a).

As mentioned, these data were collected in the five aforementioned classes during
a group problem solving activity. Across the five classes there were 10 groups that
worked on wall mounted whiteboard, 10 that worked on whiteboard laying on top of
their desks or table, 9 that worked on flipchart paper taped to the wall, 9 that worked
on flipchart paper laying on top of their desk or table, and 8 that worked in their
own notebooks at their desks or table. For each group the aforementioned measures
were collected by a team of three to five people: the teacher whose class it was, the
researcher (me), as well a number of observing teachers. These data were recorded
on a visual representation of the classroom and where the groups were located with
no group being measured by more than one person.

13.4.3 Results and Discussion

For the purposes of this chapter it is sufficient to show only the average scores
of this analysis (see Table 13.2). These data confirmed the informal observations.
Groups are more eager to start, there is more discussion, participation, persistence,
and no-linearity when they work on the whiteboards. However, there are nuances
that deserve further attention. First, although there is no significant difference in the
time it takes for the groups to start discussing the problem, there are big differences
between whiteboards and flipchart paper in the time it takes before groups make
their first mathematical notation. This is equally true whether groups are standing or
sitting. This can be attributed to the non-permanent nature of the whiteboards. With
the ease of erasing available to them students risk more and risk sooner. The contrast
to this is the very permanent nature of a felt pen on flipchart paper. For students
working on these surfaces it took a very long time and lots of discussion before they
were willing to risk writing anything down. The notebooks are a familiar surface to
students so this can be discounted with respect to willingness to risk starting.

Although the measures for the whiteboards are far superior to that of the flipchart
paper and notebook for the measures of eagerness to start, discussion, and participa-
tion, it is worth noting that in each of these cases the vertical surface scores higher
than the horizontal one. Given that the maximum score for any of these measures is 3
it is also worth noting that eagerness scored a perfect 3 for those that were standing.
That is, for all 10 cases of groups working at a vertical whiteboard, 10 independent
evaluators gave each of these groups the maximum score. For discussion and partic-
ipation 8 out of the 10 groups received the maximum score. On the same measures
the horizontal whiteboard groups received 3, 3, and 2 maximum scores respectively.
This can be attributed to the fact that sitting, even while working at a whiteboard, still
gives students the opportunity to become anonymous, to hide, and not participate.
Standing doesn’t afford this.
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Table 13.2 Average times and scores on the eight measures

Vertical
whiteboard

Horizontal
whiteboard

Vertical
paper

Horizontal
paper

Note-book

N (groups) 10 10 9 9 8

1. Time to task (s) 12.8 13.2 12.1 14.1 13.0

2. Time to first
notation (s)

20.3 23.5 144.1 126.3 18.2

3. Eagerness 3.0 2.3 1.2 1.0 0.9

4. Discussion 2.8 2.2 1.5 1.1 0.6

5. Participation 2.8 2.1 1.8 1.6 0.9

6. Persistence 2.6 2.6 1.8 1.9 1.9

7. Non-linearity 2.7 2.9 1.0 1.1 0.8

8. Mobility of
knowledge

2.5 1.2 2.0 1.3 1.2

With respect to non-linearity it is clear that the whiteboards, either vertical or
horizontal, allow a greater freedom to explore the problem across the entirety of the
surface. Although the whiteboards provide an ease of erasing that is not afforded
on the flipchart paper, and that this likely contributes to the shorter time to first
notation, ironically, work is rarely erased by the students working on whiteboard
surfaces. It seems that, rather than erasing to make room for more work, the work
space migrates around the whiteboard surface representing the chronological nature
of problem solving. In contrast, the groups working on flipchart paper tended to
not write any work down until they were clear it would contribute to the logical
development of a solution.

Finally, it is worth noting that groups that were standing also were more likely to
engage with other groups that were standing close by. Although not measured, it was
clear that this was more true for the vertical whiteboard groups. There are a number
of reasons for this. Most obvious, vertical surfaces are more visible. However, there
were very few observed instances of groups that were sitting down looking up to see
what the groups that were standing were doing. Likewise, there were no instances
of the students standing looking at the work of the groups that were sitting. Among
those that were standing, there was a lot of interaction between those working on
whiteboards, and almost nonebetween thoseworkingonflipchart paper. Finally, there
was very little interaction between those working on flipchart and those working on
whiteboards. Part of this can be explained by proximity—the whiteboard groups
were clustered on one or two whiteboards while the flipchart people were clustered
elsewhere. But, it also is the case that the whiteboard groups had little reason to
look to the flipchart groups. They worked slower and had little written on their work
surface. This was also true between the flipchart groups—there was little to look at.

In short, and in answer to variable #4—student work space, groups that worked
on vertical non-permanent surfaces demonstrated more thinking classroom behav-
ior—persistence, discussion, participation, and knowledgemobility—than any of the
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Table 13.3 Distribution of participants in VNPS study

Elementary Middle Secondary Totals

Learning team 21 43 41 105

Multi-session workshops 12 28 42 82

Single workshops 35 24 54 113

Totals 68 95 137 300

other type of work surface. Next most conducive was a horizontal whiteboard. The
remaining threewere not only not conducive to promoting thinking classroom behav-
ior, they may actually have inhibited it. From this it is clear that non-permanence
of surfaces is critical for decreasing time to task, as well as improving enthusiasm,
discussion, participation, and persistence. It also increases the non-linearity of work
which mirrors the actual work of thinking groups. Making these non-permanent
surfaces vertical further enhances all of these qualities, as well as fostering inter-
group collaboration, something that is needed to move the class from a collection of
thinking groups to being a thinking classroom.

13.5 Study #3: Teacher Uptake of Vertical Non-permanent
Surfaces

Having this evidence that vertical non-permanent surfaces (VNPS) are so instru-
mental in the fostering of thinking classroom behavior satisfied the first mandate. To
satisfy the second mandate a follow-up study was done with teachers to gauge the
willingness by teachers to take up this practice. In particular, the goal of this follow
up study was to see the degree to which teachers, when presented with the idea of
non-permanent vertical surfaces were keen to implement it within their teaching,
actually tried it, and continued to use it in their teaching.

13.5.1 Participants

Participants for this portion of the study were 300 in-service teachers of mathematic-
s—elementary, middle, and secondary school. They were drawn from three sources
over a four year period: participants in variety of single workshops, participants in a
number of multi-session workshops, and participants in learning teams. The break-
down of participants, according to grade levels, and form of contact is represented
in Table 13.3.

There were a number of teachers who attended a combination of learning teams,
multi-session workshops, and single workshops. In these cases their data was regis-
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tered as belong to the group with the most contact. That is, if they attended a single
workshop, as well as being a member of a learning team, their participation was
registered as being a member of a learning team.

These participants are only a subset of all the teachers that participated in these
learning teams, multi-session workshops, and single workshops. They were selected
at random from each group I worked with by approaching them at the end of the first
(and sometimes only) session and asking them if they would be willing to have me
contact them and, potentially, visit their classrooms.

13.5.2 Data

Data consist primarily of interview data. Each participant was interviewed imme-
diately after a session where they were first introduced to the idea of vertical non-
permanent surfaces, one week later, and six weeks later. These interviews were
brief and, depending on when the interview was, was originally designed to gauge
the degree to which they were committed to trying, or continuing to use vertical
non-permanent surfaces in their teaching and how they were using them. However,
participants wanted to talk about much more than just this. They wanted to dis-
cuss innovations they had made, the ways in which this was changing their teaching
practice as a whole, the reactions of the students and their colleagues, as well as
a variety of other details pertaining to vertical non-permanent surfaces. With time,
these impromptu conversations changed the initial interview questions to begin to
also probe for these more nuanced details. For the purposes of this chapter, however,
these data were analyzed only for the original aforementioned purpose.

In addition to the interview data, there was also field notes from 20 classroom
visits. These visits were implemented for the purposes of checking the fidelity of the
interview data—to see if what teachers are saying is actually what they are doing.
In each case, this proved to be the case. It was clear from these data that teachers
were true to their words with respect to their use of vertical non-permanent surfaces.
However, these visits, like the interviews, offeredmuchmore thanwhatwas expected.
I saw innovations in implementation, observed the enthusiasm of the students, and
witnessed the transformational effect that this was having on the teaching practices
of the participant.

13.5.3 Results and Discussion

In general, almost all of the teachers in this study, who were introduced to the notion
of vertical non-permanent surfaces were determined to try it within their teaching
and were committed to keep doing it, even after six weeks (see Fig. 13.2). This is a
significant uptake rarely seen in the literature. This is likely due, in part, to the ease
with which it is modeled in the various professional development settings. During
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these sessions not only is the methods involved easily demonstrated, but the teachers
immediately feel the impact on themselves as learners when they are put into a group
to work on a vertical non-permanent surface.

An interesting result from this aggregated view is that there were more teachers
using non-permanent vertical surfaces after six weeks than there was after one week.
This has to do with access to these vertical non-permanent surfaces. Many teachers
struggled to find such surfaces. There were some amazing improvisations in this
regard, fromusingwindows, to bringing in a number of non-permanent surfaces, from
shower curtains to glossy wall boards. One teacher even stood her classroom tables
on end to achieve the effect. As time went on teachers were able to convince their
administrators to provide them with enough whiteboards that these improvisations
no longer became necessary. For some teachers, this took more time than others, and
speaks to the delayed uptake for some. However, it also speaks to the persistence
with which many teachers pursued this idea with.

A disaggregated look at these data shows that neither the grade levels being taught
(see Fig. 13.3) or the type of professional development setting in which the idea was
presented (see Fig. 13.4) had any significant impact on the uptake.

Literature on teacher change typically implies that sustained change can only be
achieved through professional development opportunities with multiple sessions and
extended contact. That is, single workshops are not effective mediums for promoting
change (Jasper&Taube, 2004; Stigler&Hiebert, 1999;Little&Horn, 2007;McClain
& Cobb, 2004; Middleton, Sawada, Judson, Bloom, & Turley, 2002; Wenger, 1998;
Lord, 1994). The introduction of vertical non-permanent surfaces as a work space
doesn’t adhere to these claims. There are many possible reasons for this. The first
is that the introduction of non-permanent vertical surfaces was achieved in a single
workshop could be, as mentioned, due to the simple fact that it is a relatively easy
idea for a workshop leader to model, and for workshop participants to experience.
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Forty five minutes of solving problems in groups standing at a whiteboard, coupled
with a whole group discussion on the affordances of recreating this within their own
classrooms is enough to convince teachers to try it. And trying it leads to a successful
implementation. Unlike many other changes that can be made in a teacher’s practice,
vertical non-permanent surfaces (as demonstrated in the first study)waswell received
by students, was easy tomanage at a whole class level, and had an immediate positive
effects on classroom thinking behavior. Together, the ease of modeling coupled with
a successful implementationmeant that vertical non-permanent surfaces did not need
more than a single workshop to change teaching practice.

These possible reasons are supported by the comments of teachers from the inter-
views after week one and week six. The following comments were chosen from the
many collected for their conciseness.

I will never go back to just having students work in their desks.

How do I get more whiteboards?

The principal came into my class, now I’m doing a session for the whole staff on Monday.

My grade-partner is even starting to do it.

The kids love it. Especially the windows.

I had one girl come up and ask when it will be her turn on the windows.

Not only is the implementation of vertical non-permanent surfaces immediately
effective for these teachers, it is also infectious with other teachers quickly latching
on to it and administrators quickly seeing the affordances it offers.

13.6 Conclusions

When June had asked me to help her implement problem solving in her classroom all
she wanted fromme to provide her with some problems. This, as it turns out, was not
enough for her to have success in transforming a fundamentally non-thinking class-
room into a thinking one. The norms that existed in her classroom, which she had
established in her classroom, were working against her. Her students were not accus-
tomed to thinking. They were used to direct instruction, multiple worked examples,
and now you try one tasks. June needed something else, in addition to problem solv-
ing tasks, to help break her students out of this normative and non-thinking behavior.
Had I given June the tool of VNPS along with the problems I provided I am confident
that things would have gone quite differently. The aforementioned results show that
June’s students would have likely taken this on with great enthusiasm, and proceeded
to work on the problems with greater participation and perseverance. Furthermore,
the results show that with very little intervention June would have likely adopted this
tool for use in her classroom.

When I began the research on students’ work space the default was students sitting
in desks—sometimes individually in rows, other times clustered in groups. Themove
from the desks to the vertical workspaces was made not because I saw something
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specifically wrong with students being in desks, but rather through adherence to
the contrarian approach that was adopted early on in the more general research
project. Looking back now at students working in desks, from the perspective of the
affordances that having them stand around a non-permanent vertical surface offers,
I see more clearly the problems that desks introduced into my efforts to build and
maintain thinking classrooms. Primarily, this has to do with anonymity and how
desks allow for, and even promote, this. When students stand around a whiteboards
they are all visible. There is nowhere to hide. When students are in their desks it is
easy for them to become anonymous, hidden, and safe—from participating and from
contributing. It is not that all students want to be hidden, to not participate, but when
the problems gets difficult, when the discussions require more thinking, it is easy for
a student to pull back in their participation when they are sitting. Standing in a group
makes this more difficult. Not only is it immediately visible to the teacher, but it is
also clear to the students who is pulling back. To pull back means to step towards
the center of the room, towards the teacher, towards nothing. There is no anonymity
in this.

But these are the results for only one of the aforementioned 11 variables. Similar
to the result of VNPS there are optimal practices for each of the other 10 variables
that come together into a powerful framework that further transform the classroom,
the role of the teacher, and the activities of students (Liljedahl, 2018, 2016). Taken
together, the 11 practices that emerge out of this framework work together to form a
cohesive and powerful practice for engaging, and sustaining, students thinking—for
build thinking classrooms.
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Chapter 14
The ARPA Experience in Chile: Problem
Solving for Teachers’ Professional
Development

Patricio Felmer, Josefa Perdomo-Díaz, and Cristián Reyes

14.1 Introduction

In the context of a national educational reform and a new curriculum that enhance
the development of mathematical abilities, tremendous opportunities are opening for
Chilean school mathematics development. Some of these opportunities are taken up
by a team ofmathematicians, mathematics educators, mathematics teachers, elemen-
tary teachers, engineers, educational researchers and other professionals who give
life to the ARPA Initiative, where ARPA is the Spanish acronym for Activating Prob-
lem Solving in Classrooms (Activando la Resolución de Problemas en las Aulas).
The ARPA Initiative’s goal is the introduction of problem solving into regular teach-
ers’ practice through teacher professional development strategies, based on teachers
experiencing problem solving in the way students will experience in classroom. The
underlying central goal is having students to experience mathematics in its essence,
giving sense to school mathematics and moving the class attention from teacher to
students, opening the route for developing abilities intertwined with content.

We start this chapter describing the educational context in Chile in which the
ARPA Initiative was born and where it is developing. Then we present the basic
principles under which ARPA is devised and a brief general description of the differ-
ent professional development strategies that are currently part of ARPA. The chapter
continues with a more detailed description of the core strategy, PSClassroom, a
year-long workshop where teachers have opportunities for doing and reflecting on
problem solving and the way to introduce them into classroom. In the second part
of the chapter we describe how the professional development program of ARPA has
evolved during the last years and the researchmade in this context, both for informing
practices and for communicating results to the mathematics education community.
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We conclude the chapter with some things we have learned from practice and describ
the main challenges that the initiative faces for the future.

14.2 The Educational Context in Chile

Chile is undergoing an important educational reform that is transforming structural
aspects of the educational system as a whole, at initial, primary, secondary, voca-
tional and university level. This educational reform comes after years of economic
growth, socio-economic segregation and deregulation in education, student unrest
and unsatisfactory educational results. In particular, in the case of mathematics, the
results of Chilean students in international tests have been practically stagnant at
a low level for the last 10 years (Ministry of Education, 2016). These educational
results do not correspond to results of a country with Chilean economic income, as
it is shown in the publication by the Ministry of Education (2013). For example, the
PISA test in 2015 shows that there is still a long way to go for the country to reach the
average of countries with similar economic income, about 40 points, and even further
to reach the average of countries in the Organization for Economic Cooperation and
Development (OECD), more than 60 points. Moreover, even though Chilean results
in mathematics are at the top of the Latin American region, they have remained
practically constant since 2006, with almost 50% of students at level 1 or below1

(Ministry of Education, 2016).
The reform is encouraged by international recommendations of OECD (2015)

and the overall goal is to improve the quality of education for all students along the
country. Before the reform started, in 2012 a new national curriculum was issued
for primary and secondary school (1–10 grades). In the case of mathematics, this
curriculum introduced an important change in the organization; it was based on
three areas: Abilities, Content and Attitudes (Ministry of Education, 2012). Thus, a
clear distinction between content and abilities in mathematics was drawn, in contrast
with the earlier curricula where abilities were explicit, but blended with content,
letting them be subordinated by the latter. The abilities declared in the new Chilean
curriculum were: problem solving, reasoning and communicating, representing, and
modeling. Among these, problem solving is central for the development of the other
three abilities and is then crucial for the success in the mathematics education of
students.

The unsatisfactory educational results of Chilean students together with the new
curriculum pose enormous challenges to the whole educational system, including
government andministry of education, local county school organizations, educational
foundations,2 school leaders and teachers teaching mathematics. These challenges
are especially critical for teachers, who undertake the most difficult aspects of these

1PISA test defines six level of achievement for students, being level 1 the lowest and level 6 the
highest.
2In Chile, there are many private foundations administering a group of schools.
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challenges and usually take the blame for the poor educational results. Furthermore,
most do not currently have the adequate tools for change. In this context, professional
development programs (PDP) should provide teachers with those tools, but even
though there has been a great variety of PDP during the last years, regularly provided
by the ministry of education, universities, educational foundations and some private
organizations (Sotomayor & Walker, 2009), their effectiveness has not been well
documented. There is currently no study that reports on the impacts of those PDP that
are on offer, in terms of the actual changes in classroom, for teacherswho attend them,
and about the improvements of educational results of students. Without scientific
studies, one may still conjecture from the commented stagnation on educational
results of Chilean students in mathematics during the latest 10 years, that PDP has
not been successful in changing classroom practices and improving student learning.

Consistent with the above, research allows to say that in Chilean mathematics
school classrooms, problem solving has been virtually absent, even though it has been
declared in national curriculum even before the 2012 reform. In a recent study by
Felmer and Perdomo-Díaz (2016), novice high school teachers were observed while
teaching and most of them did not use problem solving strategies. In other studies,
similar conclusionswere drawn byAlfaro andGormaz (2009)when analyzing results
of PISA 2006, by Preiss, Larraín, andValenzuela (2011) from class observations, and
Araya and Dartnell (2009) and Rodríguez, Carreño, Ochsenius, and Muñoz (2015)
with data from various national teacher evaluations.

Since, after all, the educational reform is about educational quality for all students,
the opportunities are there. The structural changes, the increase on the educational
national expenditure, the teachers’ career reform and the various sources of public
funds for professional development open enormous opportunities for development
in all areas of education, in particular in school mathematics. Thus, a great challenge
is posed by the new curriculum, the poor students’ results and the advantages of
the new educational reality: how to make problem solving really happen in school
classroom?

14.3 The ARPA Initiative

With the publication of Pólya’s bookHow to solve it in 1945, problem solving entered
into the arena of schoolmathematics teaching and learning.Nowadays, problem solv-
ing is internationally recognized as an essential component of school mathematics,
and the reasons are rooted in the opportunities it offers students for mathematical
development: establishing reasoned connections amongmathematical elements, pro-
moting skills of examining, representing and applying, and the use of mathematical
thinking such as abstracting, analyzing, guessing, generalizing or synthesizing (Kil-
patrick, Swafford, & Findell, 2009; NCTM, 2000; Niss, 2002). But, as Pólya also
warned, teachers who has not ‘“experienced the tension and triumph of discovery’”
would hardly offer their students problem solving opportunities in classroom (Pólya,
1966).
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That Pólya’s recommendations are not considered in the formation of Chilean
teachers, that pre-service teachers are not experiencing problem solving in their edu-
cation, could be drawn from Chilean students’ results in mathematics and some
few research results. Among these, we mention the studies by Felmer et al. (2015)
and Varas et al. (2008), where evidence is provided of a scarce mathematics forma-
tion and almost no opportunities for problem solving strategies. In this context, the
ARPA Initiative was born, with the main goal of giving the teachers opportunities
to experience problem solving as Pólya proposed, looking for changing classroom
practices and to improve student learning, designing, implementing and evaluating
professional development strategies for teachers teaching mathematics. The starting
point was to design and put in practice of mathematics teacher professional devel-
opment strategies and the fundamental question at this moment was, what are the
characteristics they should have to make them effective?

There is an important amount of research on what characteristics should a PDP
have, in order to be effective in terms of change in the knowledge, skills and practice
of teachers. To place teachers in the role of students, to create networks among the
participants, to propose activities related to other programs or reforms and to carry
out the program on a regular basis and during a long period of time (Borko, 2004;
Desimone, Porter, Garet, Yoon, & Birman, 2002; Garet, Porter, Desimone, Birman,
& Suk Yoon, 2001; Marrongelle, Sztajn, & Smith, 2013). In summary, these findings
suggest that an effective PDP should:

• Privilege work activities in study groups, work with mentors, and create teacher
networks and research projects.

• Contain long-term courses, with long sessions and extended over time.
• Involve collective participation of teachers, in groups of the same school, munic-
ipality or community of schools who all teach in the same course level.

• Include active learning, where teachers are involved in the analysis of teaching
and learning.

• Be consistent with the objectives of the teachers, the school and its managers, the
state and the curriculum.

• Focus on the content, that is, the activity focuses on content and math skills.

Having this knowledge in mind, Felmer and Perdomo-Díaz designed three pro-
fessional development workshops, giving birth to the ARPA Initiative. These work-
shops are: PSAction, PSContent and PSClassroom (Felmer & Perdomo-Díaz, 2017;
Perdomo-Díaz & Felmer, 2017), whose different characteristics will be explained
in the next section. These workshops are based on two basic principles: doing and
reflecting (Borko, 2004; Marrongelle et al., 2013) and this is the reason why they are
called ‘“workshops’” instead of ‘“courses’”, emphasizing their eminently practical
spirit. These workshops have problem solving as articulating axis and they are aimed
at teachers teaching mathematics, with the purpose of installing problem solving and
effective school practices to improve teaching and learning of school mathematics.

As the ARPA Initiative progressed, and along the way as the needs were appearing
and the capability of the team was ready, new workshops have been created, as a
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Table 14.1 ARPA
workshops

ARPA workshop 2013 2014 2015 2016

PSAction x x x x

PSAction II – – x x

PSContent x x x x

PSMonitor – x x x

PSClassroom – x x x

PSClassroom II – – – x

monitor formation workshop PSMonitor, and PSClassroom II and PSAction II for
teachers willing to deepen on their knowledge and skills (Table 14.1).

All workshops in the ARPA initiative are characterized by two instances: problem
solving blocks (doing) and plenary discussions (reflecting). During problem solving
blocks, participants are given problems that they work with their peers in groups,
with the support of a monitor who interacts with the groups through questions. The
monitor provides each group with a problem and they work until solving it; it is
considered that a group has solved a problem when all the members can explain the
solution and the strategies used. When a group solves the problem, the monitor will
provide the groupwith an extension problem, will ask a further question to keep them
working or he/she will give them a new problem. In this way, each group works at
its own pace and the difficulty of the problem is graded by the monitor, according to
the participants’ skills, so that the problem all time is an effectively challenge. This
is the part of doing where teachers experience Pólya’s recommendations.

ARPA’s workshops also offer opportunities for teachers to reflect on their ability
to solve problems, their mathematical knowledge and learning, the strategies used to
solve the problems and emotions they have felt in this task, and on how the monitor
interacts with them, how this may be a model for classroom implementation, and
how actually to implement it.

On the other hand, each ARPA’s workshop is changing in every new instance
according to team learnings, either by scientific research or experience, and it may be
adapted to specials audience to which is aiming in each case (elementary, high school
teachers or post-secondary teacher, city or rural teachers, for example). Flexibility
is a key concept in the ARPA Initiative in its construction, evolution and operation.

14.4 The ARPA’s Workshops

We devote this section to briefly describe three of the main workshops that give
shape to the ARPA Initiative: PSAction, PSContent and PSMonitor. PSClassroom
and its second part PSClassroom II, are the most important in the ARPA Initiative
and we devote the next section for their description. A more complete description of
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PSAction, PSContent and PSClassroom may be found in Felmer and Perdomo-Díaz
(2017) and Perdomo-Díaz, Felmer, Randolph, and González (2017).

PSAction is a workshop of 4–5 h, designed to disseminate the importance of
problem solving in classrooms, to introduce teachers to this idea and to open their
interest in going further. It starts with a short presentation, after which teachers
participate in two problem solving blocks, organized in randomly chosen groups of
three. During these blocks teachers solve problems involving contents from all axes
of the math curriculum. During the last 45 min, a plenary discussion is held, where
the monitor promotes discussion among teachers on the emotions experienced while
solving problems, the strategies used to solve them, the role of themonitor, theway of
interacting with teachers, and finally the possibility of introducing problem solving
in their classrooms, using the work in the workshop as a model. The workshop
concludes with a presentation.

This workshop has been offered many times, at different places along the country
and abroad (Table 14.4). This workshop can be offered to any number of teachers,
with the only restriction is the number of monitors (one for every 21 teachers). We
have had experiences with more than 150 teachers. The interest of some teachers to
participate in the workshop more than once, has motivated the design of PSAction
II, a workshop with similar characteristics regarding problems solving activities, but
with some time devoted to how to implement problem solving in classroom.

The second workshop was devised considering the need of Chilean teachers, spe-
cially, elementary teachers, for strengthening their disciplinary content for teaching.
The PSContent workshop is a 25-hour strategy, with five hours a day during a week.
It aims to create opportunities for teachers to deepen their knowledge of a specific
content, considering elements of common knowledge, specialized knowledge of con-
tent and knowledge of content and teaching (Ball, Thames, & Phelps, 2008). The
mathematical content that is treated in each workshop is chosen based on the needs
of teachers, expressed through surveys, and on what literature and experience reveal
as content with teaching and learning difficulties. PSContent workshops have been
offered in statistics, probability fractions, geometry, numbers and operations, and
arithmetic. Some of these topics have been considered for elementary, middle school
and high school teachers, like geometry, statistics and probability. In the context of
PSContent workshop another workshop was shaped up, this based only on problem
solving, with problems from all axes of the curriculum, whose aim is for teachers to
experience problem solving and to reflect with some deep on the possibility to intro-
duce it in classroom. This version of problem solving workshop has been offered in
two opportunities to kindergarten teachers.

PSContent workshop is intended for 21 teachers leaded by amonitor. It starts with
a presentation where the contents and methodology are announced. Two blocks of
problem solving and a plenary discussion are held in each session. The problems are
articulated based on the disciplinary topic of the workshop, so as to provide instances
in which teachers reflect on their knowledge of the content and its teaching. Only
3–5 key concepts of the topic are considered in each workshop, so to have time to
deepen on them. After problem solving blocks, teachers work in a plenary discussion
consisting in two parts, first a discussion lead by the monitor about the key concepts
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that have been worked out in the problems, and second on the strategies used and
solutions obtained, ending with the identification of the key concepts involved. A
3-4-pages booklet with concepts treated is given three times in the week.

This workshop is offered usually in summer, but it also has a winter edition, and
it has attracted an increasing number of teachers (Table 14.4). The first version of
PSContent took place in January 2013, considering fraction as the focus and taking
into account four key topics: (i) what is a fraction? (ii) common denominator (iii)
subtraction and multiplication and (iv) division. In Perdomo-Díaz et al. (2017), an
analysis of the contributions of the workshop to the development of teacher knowl-
edge, based on one participant teacher case study, is presented.

Another ARPA’s workshop is PSMonitor, devised for the formation of new moni-
tors. Based on an experimental version in 2015, a PSMonitor workshops was devised
during 2016. This workshop has 12 three-hours sessions distributed in 6 weeks. Dur-
ing the first 6 sessions, the emphasis is put on problem solving activities modeling
problem solving in classroom, where participants play the role of students and mon-
itor plays the role of teachers. Discussions on the different stages of these activities
and the role of the monitor follows. The second half of the workshop is devoted to the
various duties a monitor has when leading a PSClassroomworkshop. This workshop
is characterized by doing and reflecting, as all the other workshops of the initiative.

At this point it is convenient state what we understand by problem, since this
notion is at the heart of the initiative:

A problem is a mathematical activity for which the person that face it does not know a
procedure leading to its solution. The person has interest in solving it, he/she considers
it a challenge and he/she feels that he/she can solve it. The activity may be raised in a
mathematical or non-mathematical context.

In theARPAworkshops, there are opportunities for teachers to solve problems and
also to know and reflect on the notion of problem, as applied for them or their students
as problem solvers. During workshops, teachers face problems that are prepared for
them as problem solvers and, when they are solving them, they are asked to forget
their role as teachers and play the role of a genuine problem solver. In PSClassroom
workshop, during the first two sessions, they work on various problems. During the
following six sessions, they first solve the problem that they will propose to their
students as problem solvers, and only later they start to think on their students and
the way they will present the problem to them. In some cases, they have to think in
ways to simplify the problem to make it appropriate for their students.

It is also interesting to give some words on the way teachers are recruited for
the various workshops. In the case of PSAction usually we recruit them by open
invitations, in the contexts of various schools or a county or some other organization.
These workshops are for free for the teachers and, in most cases, also free for insti-
tutions involved in the call. For PSContent workshops, which usually are offered in
the form of summer courses, we recruit teachers by open call. Some teachers pay for
the workshop by themselves, but for most of them payment will be provided by their
school, county or other institution to which they belong. Some limited scholarships
are also given. The case of PSClassroom is the most important, since it is the main
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Table 14.2 Main
characteristics of workshops

ARPA
workshop

Duration
(h)

Span Main goal

PSAction 4–5 1 day PS experience
and diffusion

PSAction II 4–5 1 day PS experience
with classroom
perspective

PSContent 25 1 week Content
through PS

PSMonitor 36 6 weeks Formation of
monitors

PSClassroom 50 1 year PS
introduction in
school

PSClassroom
II

50 1 year Deepening PS
introduction in
school

workshop of the ARPA Initiative and the payment system has to do with the sus-
tainability of the whole initiative. This workshop is organized usually by previous
contacts with school director, educational foundations administrators or state officers
at the level of counties, where interest of teachers and the feasibility of the workshop
is analyzed. These educational authorities will provide the funds for the workshop
and teachers will not pay for it. Moreover, the sessions of the workshop take place
mostly during working hours.

It is important to say, that the Chilean educational system provides through the
state for funds for professional development of teachers. These funds have been
increased during the recent years due to the educational reforms. In the three cases,
teachers receive a certificate of participation at the end of the workshop, but there is
no bonus for them (Table 14.2).

14.5 PSClassroom

As itwasmentioned above, PSClassroomworkshop is the keyworkshop of theARPA
Initiative. Its declared goal is to introduce problem solving in classroomand changing
teaching practices, towards an improvement of student achievements. PSClassroom
is an annual workshop running usually from March to November3 Teachers meet
every month with a monitor, in sessions of 3:15 h, in a number of 21 at most 21 and
15 al least. These monthly sessions have emphasis on problem solving activities at
the beginning of the year and the emphasis is gradually moving to preparing and

3School year in Chile runs from the beginning of March until the middle of December.
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Fig. 14.1 PSClassroom workshop annual program

improving problem solving activities in classroom with students. These activities
are characterized by random groups organization of students, autonomous work of
students in solving a problem and a final plenary discussion, as we will describe later.
We call this activity with a special name, Problem Solving Activity in Classroom
(PSAC),4 to distinguish it from other lectures.

The first two sessions are integrally devoted to problem solving activities with the
aim that teachers experience by themselves the emotions taking place in this task,
so they gain or regain ability to solve problems. Teachers work in various problem
solving blocks in randomly chosen groups and they participate in plenary discussions
whose topics are emotions, strategies and the way the monitor acts. During the
next four sessions, teachers will continue having problems solving activities, but
modeling PSAC, where the interaction between monitor and teachers model the
way the interaction between teacher and student should be. These PSAC modeling
activities are crucial learning opportunities for teachers to get themain characteristics
of this activity that will be carried into classroom with their students (Fig. 14.1).

After the third session, teachers carry out PSAC into their classroom, repeating
them six times along the year. Sessions combine analysis of the experiences occurring
in the earlier PSAC and planning the next one. In sessions teachers analyze video
episodes from co-participants and written reports of the activity. They learn how to
plan questions to ask prior to PSAC, so they properly act in situations that may occur
in classroom. Teachers are intended to learn, together with their students, how to
conduct a productive problem solving lesson and to learn teaching techniques, like
working in groups, questioning, giving students time to work by themselves, make
conjectures, get things wrong and discuss with their peers. Once the basics of PSAC
have been dominated, teachers also learn how to adapt mathematical activities into

4In Spanish, we use ARPA for these activities as the acronym of Problem Solving Activity in
Classroom (Actividad de Resolución de Problemas en el Aula), which coincide with the initiative
name.
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challenging and reachable problems for their own students (Perdomo-Díaz&Felmer,
2017).

PSAC for students is organized in four stages: Delivery, Activation, Consolidation
and Discussion. During delivery, students are organized in random groups, they
receive the problem and start working. Activation starts when the group generates
ideas of how to solve the problem. During this phase the teacher interacts with
students, answering questionswith another question, giving them the responsibility to
go ahead. In some cases, a simplified problem is given and then the original problem
may be returned to, after the group has experienced success with the simplified
version. If a group does not understand the problem, the teacher asks a question;
if a group gets stuck, the teacher asks a question; if a group makes a mistake, the
teacher asks a question. When a group solves the problem, then the consolidation
phase starts. The teacher asks questions to members of the group until either it is
apparent that one of them does not know how to solve the problem, then the teacher
leaves. If the monitor is convinced that all members know how to solve the problem,
then he/she gives an extension, a more sophisticated and challenging version of the
problem. Finally, the entire class engages in a plenary discussion which occurs about
10–15 min before the end of the PSAC. This phase is aligned with the last three steps
described by Smith and Stein (2014).

At the end of PSClassroom workshop, there are still many features of PSAC
to be improved by teachers—especially the plenary discussion and the interplay
between content and student abilities. In order to face these needs and deepen the
advances reached during the first workshop, we have devised a second part, we call
PSClassroom II, and we have run a pilot workshop during 2016.

14.6 Three Years of Professional Development

The process of setting up the ARPA Initiative for teacher professional development
started in 2012 or earlier, with some workshops where teachers solved problems,
but it was in the triennium 2014–2016 where it really started to take form. Before
2014, PSAction and PSContent, even though related did not have the aspiration of
becoming a unity with potential for development the dimension of a program.

14.6.1 Pre-pilot Year (2014)

During 2014, two one-year long professional development experiences were run,
with 19 elementary teachers in one workshop and 6 high school teachers in the other.
At the end of the year, teachers filled out an evaluation questionnaire with reflections
on the workshop, where they narrated aspects of their experience, mostly positive
for them and their students (Perdomo-Díaz & Felmer, 2017). This allowed to write
a first version of a PSClassroom manual for the monitor and material for teachers
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and the main ideas for teacher formation were defined: problem solving for teachers,
peer discussions, implementation of PSAC, video analysis, problem design, etc.

PSAction and PSContent workshops were taking a more definitive shape during
2014 and amanual for themonitorwaswritten for PSAction.As a result of PSContent
workshops in this year, first research results were obtained by Perdomo-Díaz et al.
(2017), where a case study of a teacher that participated in a PSContent workshop
on fractions is reported. The workshop was designed using problems selected using
elements of common knowledge, specialized knowledge of content and knowledge
of content and teaching (Ball et al., 2008). The study presents some insights on how
this type of workshop may contribute to the development of teachers’ knowledge for
teaching fractions.

The activity taken place in 2014 and earlier, the gained experience and the interest
showed by participant teachers allowed to conceive and shape, for the first time, a
whole professional development program that could be developed during the years
to come, with possibilities of having impact in classroom and improving student
learning. Thus, a proposal for an implementation project, increasing the number of
workshops was presented to Conicyt5 national contest of R&D projects. The main
goalwas to set up thePDP, offering the three type ofworkshops during2015 and2016:
8 PSClassroom, 6 PSContent and 4 PSAction, per year. The project also proposed
research on those workshops for studying their effectiveness, considering teachers’
changes in beliefs, change in teaching quality and change in students’ performance.
The project’s strategic goal was to experiment with PDP at a larger scale and to
consolidate the workshops, in preparation for a wider development in the future,
writing monitor and teacher manuals and developing related material, and learning
to deal with team organization, data management, video recording and analysis,
formation of monitors, and logistics aspects.

14.6.2 Pilot Year (2015)

This year the ARPA Initiative was officially born, ARPA for calling the conceived
PDP with a catching name, well expressing the ideas behind, and Initiative instead
of program or project, to allow flexibility in the up-coming scenarios, where more
projects or programs could be part of ARPA.

Starting the year, funding of Fondef ID14I10338 project (2015) was granted,
triggering a sudden and intense initiation process. The most urgent task during the
first three months, that coincided with the beginning of the school year, was to set
up at least the 8 promised PSClassroom workshops, recruiting teachers, setting up
timetables for the 9 sessions, assigning monitors and providing materials. The main
complexity of these actions was the short time and the distance of the four cities of
implementation (Table 14.3). In particular, distances involved required the creation

5Conicyt is the national agency for funding of research and development in all disciplines.
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Table 14.3 Participants in
PSClassroom workshops
during the three years

City 2014 2015 2016

Temuco – 12 8

Concepción – 39 45

Santiago 20 97 88

Valparaíso – 7 19

San Pedro de Atacama – – 7

Copiapó – – 12

Total 20 155 167

of an effective communication system so teachers could communicate with monitors
and monitors could communicate with the project central team.

Research had to be started simultaneously, collecting data in the different regions,
putting an enormous challenge to the newly formed team, with few experience,
both in research and teacher formation. The video-taping process for workshops and
specially for three PSACs along the year for each participant teacher, was also an
incredible logistical challenge. After the first semester, the situation was controlled
and the year ended with a good amount of research data and with a team with
extremely rich pedagogical and logistical experience.

14.6.3 Consolidating Year (2016)

As a result of 2015 experience, the next year was undertaken with greater skills, with
more time for recruiting teachers, allowing the implementation of various organiza-
tional and, specially, pedagogical improvements. Monitors were much better trained
in leading theworkshops, andmaterial for teachers andmonitors were also improved,
starting the year with PSClassroom manuals for all of them, properly distributed.

Regarding PSClassroomworkshop participation, the 8 required by Fondef project
were exceeded, reaching 17 workshops, four more than in 2015. This larger number
was a consequence of the interest of teachers and school leaders for participating in
the workshops. In Table 14.3 we present the number of participants disaggregated
by cities and years.

The PSAction workshops were delivered in a number of cities throughout the
country during 2015 and 2016, involving nearly 2500 teachers over the two years.
This workshops helped in disseminating the ideas of problem solving, in particular in
VI Region,6 with more than 800 teacher participants there, helping to recruit teachers
for PSClassroom workshops in the region, that took place during the second half of
2016. It is interesting to mention also that various PSAction workshops took place
outside Chile, with around 600 teacher participants (Colombia, Dominican Repub-

6Chile is administratively divided in 15 regions. VI Region is located to the South of Santiago.
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Table 14.4 Number of
participants in the three
workshops during 2013–2016

Workshop 2013 2014 2015 2016 2017 Total

PSAction 120 140 1339 1811 – 3410

PSAction II – – 30 25 – 55

PSContent 18 – 80 177 385 660

PSClassroom – 19 125 163 – 307

PSClassroom* – – – 288 – 288

PSClassroom
II

– – – 18 – 18

PSMonitor – – 16 43 – 59

Total 138 159 1590 2525 385 4797

*Teachers participated only the second semester of 2016

lic and El Salvador). PSContent, was offered as summer courses in January 2016
and 2017 in Santiago. These workshops had an increasing number of participants
along the years, with a leap passing from 150 in 2016 to almost 400 in 2017 (see
Table 14.4). The topics of these summer courses were Numbers and Operations,
Arithmetic, Fractions, Geometry, Algebra, various levels of Probabilities and Statis-
tics and Problem Solving itself. In 2016, a winter version of the workshops was
offered, with a participation of nearly 40 teachers.

InTable 14.4, specialmentionneeds to bemadeon thefifth row, that corresponds to
PSClassroomworkshops taken place in VI Region only during the second half of the
year. Regarding research data recollection, 2016 was intense again, but with a team
with much more experience. During this year, data collected in 2015, questionnaires,
video-tapes and written material, were prepared for research and the first research
results were starting to emerge, as it will be presented in the next section.

The three years of professional development described, in the context of the
state funded project, allowed the consolidation of a team with potential for further
development of the ARPA Initiative. This team has added various professionals
such as engineers, a graphic designer and a journalist, and it has consolidated its
research capability with researchers dedicated to this aspect. These three years of
experience allowed for the three strategies, PSAction, PSContent and PSClassroom,
to consolidate, now having well established activities and time span, appropriate
materials and manuals. A workshop for the formation of monitor and PSAction II
and PSClassroom were created.

In the context of a collaboration between University of Chile and University of
O’Higgins in the VI Region, a vast PDP was set up during 2016. A PSMonitor
workshop was delivered in the first semester, with the purpose of preparing monitors
from the region, that were able to run PSClassroom workshops during the second
half of the year, involving almost 300 teachers. The PSClassroom workshop with a
* in Table 14.4 are precisely the workshops that took place in this region.
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Table 14.5 Research design

Teachers Classroom Students

PSAction Beliefs
PS ability

– –

PSContent Beliefs
PS ability

– –

PSClassroom Beliefs
PS ability

Teaching quality
Student opportunities

Beliefs
Perceptions of teachers
Math performance

14.7 Research on the PDP Carried Out by the ARPA
Initiative

Whether the PDP carried out by the ARPA Initiative actually achieves its goal of
improving student achievements and whether each workshop reaches its declared
goal are the core questions of the research carried out during 2015 and 2016, in the
context of Fondef project. In what follows we present an overview of the research
design, some of the obtained results and we report on some ongoing research.

Researchwas designed in order to find changes as a result of the PDP development
along a year. These changes are to be looked in three aspects: teachers, classroom
and students, and in Table 14.5 we summarize what is looked for in each case. Data is
collected through questionnaires, video recording and written production of students
and teachers.

RegardingPSAction andPSContentworkshops,wemention twoongoing research
studies, on emotions and tensions when teachers solve problems in the first session
of the workshops on one hand and on the relationship between the strategies that
teachers develop in solving mathematical problems, the approaches to teaching and
the corresponding level ofmetacognitive awareness after PSContent workshop on the
other hand. Research on all three workshops is still ongoing, in particular collected
data from 2016 has been just incorporated into the analysis. Research results about
PSClassroom workshop is the most advanced and we present it in what follows.

14.7.1 Teachers’ Beliefs Changes

It is well known that teachers’ beliefs are very important when planning, managing
and assessing student learning (Handal, 2003; Sullivan & Wood, 2008; Thompson,
1992). For example, teacher’s conception of mathematics may affect the way how
teachers encourage student to work, andwhat they expect their students have to learn.
To measure the changes in teachers’ beliefs, a specially designed questionnaire was
applied to participants in PSClassroom, at the beginning of the year (March or April)



14 The ARPA Experience in Chile … 325

Table 14.6 Structure of
questionnaire

Questionnaire parts Dimensions

Nature of mathematics Formalist view of mathematics

Inquiry view of mathematics

Mathematics learning Teacher-guided learning

Active learning

Mathematics achievement Mathematics achievement

Problem solving Student-centered PS practices

Teacher-centered PS practices

Self-efficacy in PS

Self-efficacy in teaching PS

Value and importance of PS

and at the end of the year (November). The final sample was composed of 80 teachers
participating in 2015 version of the workshop.

The questionnaire is composed of four parts. The first three parts measure teach-
ers’ beliefs on the nature of mathematics, mathematics learning, and mathematics
achievement, using the TEDS-M questionnaire (Tatto et al., 2013). The fourth part
has been developed by team members as an instrument highlighting mathematic
teachers’ motivational beliefs and practices regarding problem solving, both doing
and teaching. This questionnaire has been independently validated and the documen-
tation is in preparation to be published (Giaconi, Perdomo-Díaz, Cerda, & Saadati,
n.d.). All items in the questionnaire use Likert scales. Table 14.6 presents in more
details the questionnaire structure.

The results on pre/post application of the questionnaire show statistically sig-
nificant changes in teachers’ beliefs about the nature of mathematics in their for-
malist view and beliefs about learning of mathematics in teacher-guided learning
(Cerda et al., 2017). Sample teachers reduced significantly their view that mathe-
matics achievement is a fixed condition, associated with innate abilities, gender or
with a particular ethnic group. These results are consistent with changes found in
teacher-centered problem solving practices dimension, where teachers reported a
lower frequency of such practices after the PSClassroom workshop. Regarding the
other dimensions on problem solving, significant changes were found in student-
centered problem solving practices and self-efficacy in problem solving and self-
efficacy in teaching problem solving also changed after the workshop. Those unmen-
tioned dimensions did not report significant changes.

In another study (Saadati, Cerda, Giaconi, Reyes, & Felmer, n.d.) with the same
questionnaire data, a theoreticalmodel of teachers’ instructional beliefs and its impact
on their practices on problem solving has been constructed. Results showed that
teachers’ formalist view of mathematics affects self-reported teacher-centered prac-
tices while, inquire view of mathematics has a large positive impact on teachers’
self-efficacy beliefs and their beliefs about the value of problem solving, where both
influence teachers’ self-reported student-centered practices. This flow of influence
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improved after participating in the PDP, as the model remained valid. These findings
inform about the importance of self-efficacy beliefs in student-centered practices,
which provides evidence on the key role of teachers’ problem solving abilities in
their teaching. Based on these findings, improvements of workshops design are sug-
gested. In ongoing research, the authors are also interested in measuring the effect
of three ARPA workshops (PSAction, PSContent and PSClassroom) in teachers’
instructional beliefs.

It may be important to point out the questionnaires about beliefs and practices
only collect what teachers self-report on each of the different items. There is no way
to know if what teacher report is a real change or an acquired knowledge during the
workshop. However, it is interesting to mention that along the workshop there is no
lectures or material teachers need to learn, but all knowledge is obtained through
practice and conversations with other teachers and the monitor.

14.7.2 Teachers’ Mathematics Teaching Changes

A study of teachers’ mathematics teaching changes after the participation in the
PSClassroom workshop was made through the video analysis of regular lessons
and PSAC lessons recorded in 2015. One ‘regular’ lesson was video recorded in
March-April and a second was recorded in November, at the end of the workshop.
Additionally, among the six PSAC activities carried out by participant teachers along
the year, the final one, that took place inNovember, was considered for video analysis
also. The video analysiswasmadewith theTRUmath rubric developed bySchoenfeld
(2013), which was selected since it has a clearly defined notion of good teaching that
seemed to align verywellwith the notion of good teaching promoted byPSClassroom
workshop (Darragh, Espinoza, & Peri, n.d.).

The results, on a sample composed of 12 teachers, showed no real difference in
teaching practices pre/post PDP, being consistent with the slow nature of this type of
change, in contrast with the faster changes in beliefs reported above. These results
also highlight the need for the PDP for emphasizing the possibilities of transferring
pedagogical ideas and technics from the PSAC style lessons to regular mathematics
lessons. Furthermore, analysis of the lessons showed ingeneral low levels of cognitive
demand, student agency, and teacher use of questioning for assessment purposes. All
these findings support those of previous investigations within the context of Chile.
In particular, the results are consistent with the study of Felmer et al. (2015). In
contrast, evidence of difference in teaching practice was found between the regular
lessons and those of PSAC lessons, both recorded in November. Higher scores were
found, particularly, in cognitive demand, agency and uses of assessment, three areas
of most need, demonstrating quantifiable improvement. These promising results are
hoped to remain consistent when applied to a larger sample and incorporating the
data from 2016. See Darragh et al. (n.d.) for more details.

Peri, Darragh, and Espinoza (2016) also conducted an analysis of questioning
practices of teachers using the same data described above. Questions of teachers
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were categorized according to: Personal experience, Concept, Solution, Implemen-
tation, Explanation, Justification and Control (Radovic & Preiss, 2010). They found
that the most frequently asked questions were Solution and Control, which is con-
sistent with results obtained by Felmer et al. (2015) and this may be indicating a
generalizable characteristic of Chilean mathematics teaching. An interesting finding
was the decrease in the number of Control-type questions, that could be attributed to
the PSClassroom workshop, because the more engaging nature of PSAC lessons.

14.7.3 Students’ Performance Changes

Changes in students’ performancewere studied through a test consisting of a question
(or exercise) given at the beginning of the year, in March-April, and at the end of the
year, in November, to all students of those teachers in the sample used for studying
teachers’ mathematics teaching. The test was taken individually and the question is
really an exercise, not a problem in the sense defined before, so this study is notmeant
to measure problem solving and other related abilities, but to measure mathematical
knowledge in the traditional sense. The question, that involved equitable distribution,
was adjusted depending on the level of students (1st to 8th grade) and with small
changes in the context to distinguish pre/post problems. For example, for 3rd and
4th grade students, the problems were the following:

Pre-problem. Three boys bought 24 chocolates and share them in equal parts.

Eight girls bought 48 chocolates and share them in equal parts.

Who has more chocolates, one of the boys or one of the girls? Explain your answer.

Post-problem. Three girls buy 27 cakes and share them in equal parts.

Seven boys bought 42 cakes and share them in equal parts.

Who has more cakes, one of the boys or one of the girls? Explain your answer.



328 P. Felmer et al.

In a work in progress, the responses made by students to these questions were
analyzed using a rubric created in the master thesis of Balboa (2015), which con-
sidered three aspects. The type of representation used by the student in solving the
problem: Figurative, Numeric and Verbal; the stages through which the student go
when solving the problem: Work, Answer and Explanation; and the mathematical
concepts involved in solving the problem: Number, Comparison (larger-smaller) and
Distribution (equal sharing). The analyzed data showed that the number of correct
answers and the use of mathematics strategies improved along the year. This differ-
ence remains significant if we exclude from the sample the 43 first grade students,
which may distort the results since they do not read at the beginning of the year.
Another result is that the number of students who answered the question correctly
and with the correct explanation, from only 30 (using mainly numerical representa-
tion) to 175 in the post-problem (using both numerical and figurative representations
in similar proportions).

If we consider that students learn mathematics along the year, regardless of
whether their teachers participate in PSClassroom workshop, the results may not
seem remarkable. However, the available data allows us to compare the work by 3rd
grade students in post-problem with 4th grade students in pre-problem, obtaining a
significant difference in favor of 3rd grade students. In variables Number and Distri-
bution, there are no significant differences, but Comparison is significantly different.
Also in Explanation and Answer the difference is significant and in favor of 3rd
grade students. Moreover, 36.2% of 3rd grade students answered the post-problem
correctly and with correct explanation, whereas only 6.1% of 4th grade students
answered the pre-problem correctly and with correct explanation. We hope to have
a definitive publication of these results when a more complete analysis is performed
and taking into account data from the 2016 students also.

In view of all results obtained so far, it is not possible to obtain conclusions
regarding the effectiveness of the PDP. Still data involves only one year of system-
atic workshops, results are not complete and not all them show improvement. We
have found that teachers’ beliefs, based on their view, changed positively in terms
of their conception of mathematics teaching and learning and on problem solving
ideas. The introduced PSAC allows teachers to have lessons with higher cogni-
tive demand, agency and uses of assessment, however regular lessons did not show
changes. These changes are slower and the PSClassroom may help in this direction.
Students improved their performance in solving problem, but it is not possible to
attribute it to PSClassroom. However, a comparison of 3rd grade student at the end
of the yearwith 4th grade students at the beginning of the year is suggestive. Inclusion
of 2016 data and other future studies are on the way to obtain more solid evidences.

In terms of the ARPA Initiative, in three years of professional development we
have learned to collect data for learning about the effectiveness of the workshops and
for communicating results to researchers. We have a set of instruments and we have
a team able to analyze and write about the collected. In this way, a research program
to go along with development has been started.
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14.8 How Teachers See ARPA Several Months After
Workshops

In another effort to learn about the impact of theARPA Initiativeworkshops regarding
teacher changes and students learning, semi-structured interviews were conducted
to participant teachers of some of the workshops taking place during 2015, about
six months after completion of the PDP. The interviews are important by themselves
but also they may be very useful in triangulating information obtained in classroom
and with student written production. At the moment of preparation of this chapter,
these interviews are in the phase of analysis and research results would appear in the
future.

In this section our purpose is to communicate about experiences of change in
the narratives of teachers. They tell about their experiences during the workshops as
they had the opportunity to reconstruct the expectations, learnings and challenges
they faced, and still face, in trying to implement problem solving as a new way of
developingmathematical thinking in their students. The following textwas composed
by ARPA researcher Luz Valoyes.

Participation in PSAction andPSClassroomseeks for a transformation in teachers’
own abilities to solve mathematical problems. It is well known the terror experienced
towards mathematics by many people, and the participating teachers are not the
exception. The workshops provide space for teachers to confront their own beliefs
about mathematics and their fears about learning, giving them a learning experience
that allows them to question those fears and reaffirm their self-confidence in their
mathematics skills. This experience is told by Edmundo,7 a teacher from the southern
Coyhaique, who at the beginning of the workshop experienced a rebirth of old fears
in relation to mathematics:

Yes, first nervousness, because it was something new, right? eh, but then I realized that, I
was able, then, although there were problems that I was not able to solve, I had, I had … I
had a feeling that, giving them a little more time, I could solve them.

In this way, ARPA workshops become not only a space for didactic learning in
which a new way of developing mathematical thinking is addressed, but also they
constitute opportunities to strengthen positive mathematical identities on the part
of teachers (Nasir, 2002), as subjects capable of advancing complex mathematical
processes and developing them in their students. From the group work and the joint
discussions, teachers find a space to strengthen their mathematical skills, as Claudia,
a teacher from Puerto Montt, tells us:

Yes, I remember… eh, we did some mathematical work, we had to come up with a solution.
And I do not remember what, as well as very specifically what the problem was, but I
remember how we all tried to arrive, and how I realized where I was wrong and how we
tried to understand the others thoughts, so to be able to understand how to get the solution.

Teacher narratives reveal an important feature of ARPA workshops in relation
to their beliefs and how their participation allows them to confront deep-rooted

7All names of teachers are pseudonym.
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beliefs in the educational systems. For example, children are generally thought to be
better at learning mathematics than girls, or that students with Special Educational
Needs (SEN) cannot develop complex mathematical thinking processes. From the
implementation of ARPA workshops, teachers confront these ideas, as can be seen
in the following narratives, where Adriana, a teacher from Rancagua, expresses her
beliefs about women’s problem-solving skills and how the workshop helped her to
transform them:

If we think about females’ abilities to solve problems, my beliefs did change. I think that
women and men alike [are good in math]. Because, look, I have always been trying that my
fourth-grade girls get better grades in mathematics…And during my participation in ARPA
I realized that we all have the same abilities [to solve mathematical problems]; therefore, we
all can solve any problem, so girls can also do it.

Teachers also recognize that ARPA strategies enables and motivates more and
better opportunities for participation in mathematics classes for those students who
have difficulty engaging in mathematical practices because of somemarginality con-
dition. Such is the case of immigrant students, a population that has grown in recent
years in Chile and which generally arrives looking for better living conditions. The
following narrative is expressed by Carla, a teacher in Santiago, who has several
immigrant students in her classroom. It describes the particular case of a Peruvian
student, who has had difficulty integrating into the classroom and learningmathemat-
ics, but ARPA strategies has favored him, not only in terms of his participation, but
also in his process of constructing positive mathematical identities (Martin, 2013):

He has not got along with his classmates because he is a trouble-making. He always wants
to be right. However, in mathematics and particularly during the ARPA classes he does
participate, he raises his hand, he wants to draw. He wants to do everything. I think this is
because he knows I will not say [his answer] is wrong or right. And like, in ARPA we do
not say if [the answer] is right. I may ask them: there would not be another way [to solve
the problem]? Did you check if you got the same number? I do it in that way and that has
helped convince him.

As with all PDPs, teachers also experience challenges to implement the proposed
changes. Such challenges are related to the dynamics of schools, as well as their own
experiences and beliefs. In the narratives of the participant teachers it is possible to
identify these challenges and how they have to face them to enable problem solving
activity with their students as proposed by ARPA. One of the difficulties teachers
point out is curricular constraints to advance the implementation of a strategy such
as problem solving in the perspective proposed by ARPA. Although problem solving
is proposed as one of the skills to be developed during schooling along the country,
teachers struggle between covering content as proposed in the curriculum and text-
books and opening spaces for implementing a proposal that they find beneficial and
whose aims is, precisely, to strengthen this ability. This dilemma is reflected in the
following narrative of David, a teacher from Iquique:

At the end of last year, I worked a little. To the extent that the program and contents allowed
me. With few problems, it did not work … I cannot say that I worked 100% but I tried to
include them in a part of the planning.
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Finally, and related to the above, participant teachers find that time is a factor that
limits the possibilities of implementing the ARPA strategy with their students. Paula,
another teacher from Iquique states that:

So, for example, as weakness could be that, many times it is not enough for everybody. Time
is not enough, because those who are already finished start talking, you give them another
exercise, but, but it is not enough then ‘“prof, you did not get to me’”, ‘“but, let us see it in
the next class’”. Then, time is the problem.

Thus, the successful implementation of ARPA strategies is faced with institu-
tional constraints such as curricular organization, distribution of learning time, school
modes or the mandatory use of certain textbooks that do not allow the development
of other kinds of activities. Likewise, the narratives of participating teachers confirm
the challenges related to their beliefs about their role in students’ learning of mathe-
matics. Although they recognize the benefits of ARPA strategies, they are constantly
debating how to implement a strategy in which they must give up the leading role to
their students. The above narratives are important elements for the strengthening of
the proposal, as well as to measure the impact it has on the daily work of teachers.

14.9 What We Have Learned from Research and Practice

Three years of professional development practice and research results led members
of the team naturally to propose changes in various ideas, concepts and procedures.
To continuously introduce changes to modify what is not working and to deepen
what is working is part of what the ARPA Initiative has as a characteristic: being
flexible in the way to reach the goal.

14.9.1 Small, but Important Issues

When a newPSClassroomworkshops starts, teachers and school leaders are informed
about the workshop, duties, activities and outcome for them and students. However,
experience tells that more information and reflection is badly needed. For this reason,
we have devised an Induction Event.With participation of teachers and school lead-
ers, in this event a presentation of theworkshop, a problem solving block, and enough
time for discussion and reflection is provided. Thus, they will have the opportunity
to ask questions, express doubts and beliefs.

In another direction, practice tells that teachers do not adequately comply with
planning reports before PSAC is implemented. Moreover, these planning reports
are a source of displeasure, demotivation and sometimes annoyance on the part of
teachers. On the other hand, an analysis of the quality of reports shows they are
generally poor and repetitive. For these reasons, in future workshops we strengthen
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the planning instance that takes place during the session, so teachers complete it
during the session, and they do not need to up-load it for review as before.

14.9.2 Tools Used in PSAC

One of the strategies used in PSClassroom to introduce problem solving as a regular
mathematical practice in classrooms, a declared goal of the workshop is PSAC, a
lesson where student experience problem solving. Research results by Darragh et al.
(n.d.) and Espinoza, Darragh, and Peri (2016) show that in a way we have succeeded,
but the same studies show that the good ideas of PSAC are not extended to regular
classes. In order to stimulate these changes, we are introducing a subtle conceptual
change so that PSAC is distinguished from the tools used in it. Thus, with suggestions
during the sessions, we expect teachers start to use tools in othermathematics lessons,
even in other subjects. Among the tools we may identify we have: random group
work; teacher proposes challenging tasks; students start activities in an autonomous
way; teacher interacts with students through questions; teacher asks questions for
students to extend their reasoning; intentional selection of students presenting in
plenary discussion; and teacher encourages dialogue among students. We expect
that this modification in the conceptual plane, will suggest teachers to introduce
changes to improve their regular classes which, as it is known, is a slow process
anyway and depends on many factors.

14.9.3 The Case of Students with Special Educational Needs

During the last years, a national educational program called School Integration Pro-
gram, stimulates the integration of students with special educational needs into regu-
lar schools. This program provides one special education teachers in each classroom
where there are studentswith special educational needs. In thisway, the regular teach-
ers work together with the special education teacher (or should) to provide learning
opportunities for all students. Those special education teachers, participating in this
integration program, often want to participate in our workshops. Our policy is to
accept them in PSAction workshops without restriction, but in PSClassroom we
accept them only if the regular teacher to whom they accompany also participate in
the workshop. During the sessions along the year, they do all activities as all teach-
ers and during the execution of PSAC will share the class with the regular teacher,
managing student work in equal conditions. Students will work in random groups,
including students with special educational needs. During 2016 we have had numer-
ous reports from teachers regarding how positive this modality has been for these
students. One of these reports is published on the ARPA website (see http://arpamat.
cl/?p=383) and other gave rise to an ongoing investigation, in which a student with
special educational needs is being interviewed, their parents and her teachers, to build

http://arpamat.cl/?p=383
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a case study. This situation should be the subject research in the future, because of
the importance it has in the issues of inclusion and integration.

14.10 What Are the Main Challenges for the Future?

The main challenges that the ARPA Initiative is facing are related to scaling and
sustainability, as any PDP that wants to impact in the educational system. Even
though the initiative has not set a goal regarding number of teachers or schools to be
involved in the workshops in a systematic change program, the needs of the system,
the encouraging enthusiasm of some teachers and school leaders, and the suggestion
from research lead the team to look for a consolidation and expansion in the future.

14.10.1 Education of Monitors

One of the main roles in our PDP is played by the monitor, which is the leader
of the workshop and the model to be followed by teachers. The experience with
the expansion of the ARPA Initiative to VI region has shown that the formation of
local monitors, capable of leading the workshops and maintaining the integrity of
ARPA principles, is a complex task that goes well beyond the PSMonitor workshop,
needing a longer formation process. The challenge then is to devise and practice a
monitor education model that adequately balance the need for maintaining integrity,
the regional characteristics and the individualities of the monitors themselves. This
model has to be flexible, it should consider research knowledge and it has to be
developed along practice.

14.10.2 Sustainability of Changes in Schools

The work of the ARPA Initiative with an educational foundation, that run about a
dozen of schools for more than three years, has shown that to give changes sus-
tainability it is necessary to achieve the commitment of the school leaders and to
institutionalize problem solving in the local school curriculum. In collaboration with
this foundation, we are carrying out a project to incorporate in the local school cur-
riculum, the implementation of PSAC on a regular basis. However, this work with a
single foundation cannot be replied similarly with a higher number of schools. The
challenge here is to develop the capacity to create networks with school leaders, for
incorporating problem solving in their local school curriculum, based on the work
with the foundation. The networks and the model have to be very flexible to deal with
the special characteristic of each school and to keep the integrity of the program.
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Both for monitor education and sustainability of school changes, research will
be need for informing about the advances and suitability of the models and for
communicating with researchers.

14.11 As a Way of Conclusion

This chapter has been devoted to describe the adventure of the ARPA Initiative
as a research and development program. Our purpose has been to let the research
community to know about this initiative and to call the attention on some important
issueswe have encountered on theway regarding professional development, problem
solving and its installations in schools.Most of the ideaswe are using in setting up our
workshops are known, problem solving itself is the main activity of mathematicians
and in education it has been more than 80 years, but perhaps originality have to be
found in the way of putting them together to make up a professional development
initiative, the way it is developed and the place where it takes place.

To conclude we would like to state some general guiding ideas we have taken into
account or we have learned about in putting in practice the ARPA Initiative during
the last five years:

• While centrality of problem solving in mathematics is obvious, its centrality in
school mathematics has a long way to go.

• This centrality in schoolmathematics cannot be reached if teachers are not problem
solvers.

• The introduction of problem solving in classrooms may provide teachers with
valuable tools for improving their regular teaching.

• Problem solving may be the basis of a professional development program hav-
ing teachers to solve problems and, in parallel, introducing problem solving in
classroom.

• Any professional development program having the goal of changing school prac-
tices for improving students learning with success should have the aspiration of
scaling up.

• Scaling up a program requires the creation of models for replication that have
simultaneously consider different realities and a way to keep its integrity.

• Provoking changes in school practices with success creates the need of sustaining
them along time.

But themost important guiding idea for theARPA Initiative, above all the previous
ones, is flexibility. There are no two equal teachers, classes, communities, schools,
towns, cities, etc., so any program aspiring to scale up should be extremely flexible,
in their methods, workshops, team, etc.
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Chapter 15
Understanding the Sustainability
of a Teaching Innovation for Problem
Solving: A Systems Approach

Ho Weng Kin, Romina Ann S. Yap, Tay Eng Guan, Leong Yew Hoong,
Toh Tin Lam, Quek Khiok Seng, Toh Pee Choon, and Jaguthsing Dindyal

15.1 Introduction

As early as the 1990s, the central theme of the primary and secondary mathematics
curriculum in Singapore is Mathematics Problem Solving. In particular, the syl-
labi document published by the Ministry of Education identifies that Mathematics
Problem Solving as the central theme because it presents an opportunity for “acqui-
sition and application of mathematics concepts and skills in a wide range of situ-
ations, including non-routine, open-ended and real-world problems” (MOE, 2007,
p. 3). International comparative studies like PISA (Program for International Student
Assessment) and TIMSS (Trends in International Mathematics and Science Study)
have revealed that Singapore has achieved a high level of competence inmathematics
in schools. Despite this relative success of Singapore mathematics instruction, stud-
ies have also noted a relatively weaker performance of students in solving unfamiliar
problems (Kaur, 2009). Since the overarching aim of the Singapore mathematics cur-
riculum at all levels of schooling is the development of Problem Solving (PS) ability,
continued research in the development of PS in school mathematics is important to
support classroom practice or inform curricular policy with research-based evidence
better.

As to a practicable direction for PS research, Schoenfeld (2007) called for a con-
certed effort to translate decades of theory building about PS intoworkable classroom
practices:

That body of research—for details and summary, see Lester (1994) and Schoenfeld (1985,
1992)—was robust and has stood the test of time. It represented significant progress on issues
of problem solving, but it also left some very important issues unresolved. … The theory
had been worked out; all that needed to be done was the (hard and unglamorous) work of
following through in practical terms. (Schoenfeld, 2007, p. 539)
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This was a reasonable direction in the Singapore context since numerous local
studies (see for example Foong, 2009; Foong, Yap, & Koay, 1996) also attested to
how PS was mostly theoretical talk but not common as classroom enactments.

We identified threemajor steps needed to realize the hard andunglamorousworkof
making PS instruction a staple in Singapore classrooms: (1) initialization of PS as an
essential part of the mathematics curriculum in a school at a foundational year level;
(2) infusion of PS as an embedded regular curricular and pedagogical practice across
all year levels in the school; and (3) diffusion of this innovation from this school to
the full range of schools in Singapore. Guided by the principles of design experiment
(Middleton, Gorard, Taylor, & Bannan-Ritland, 2006), we embarked on theMProSE
(Mathematical Problem Solving for Everyone) project. Focusing on the initialization
step and the creation and trialing of a teaching innovation for PS, MProSE produced
a redesign of the curriculum, assessment and teacher development structures for
schools. Successful implementation was carried out in a high performing school
called the initial school. The PS curriculum and the research outcomes of MProSE
were reported extensively in Leong et al. (2011) and Leong, Tay, Toh, Quek, and
Dindyal (2011).

A second project, MProSE: Infusion and Diffusion (MInD), launched in 2011
focused on the next two steps towards making PS instruction ubiquitous in Singapore
classrooms. Built on MProSE’s success in the initial school, MInD aimed to diffuse
or scale up the innovation to schools catering for students across the ability spectrum.
To that end, four mainstream schools (A, B, C andD) participated. Thesemainstream
schools have some differences. ‘A’ is a high-performing mixed-gender school that
runs an Integrated Programme, i.e., unlike in other secondary schools in Singapore,
students in School A do not sit for the common ‘O’ level examination at the end
of Year 10 that determines if students proceed to take Year 11 and 12. Instead,
students in ‘A’ take a six-year program (Year 7 to Year 12) and will only sit for
commonAdvancedLevel examinations at the endofYear 12. ‘B’ is an all-girls school,
while ‘C’ and ‘D’ are mixed-gender schools. Based on Ordinary Level examination
results, ‘B’, ‘C’ and ‘D’ were consistently ranked in the top, lower and middle-
tier (respectively). The MProSE design was adapted for use in these schools and
implemented in the 2012–2015 period. After MInD ended, schools continued the
PS teaching innovations that the project espoused. (From here onwards, we refer to
this set of teaching innovations as “MInD” for convenience.) Upon follow-up, we
found that MInD continued to thrive in all but one school. Adapted in ways relevant
to ‘A’, ‘B’ and ‘C’, MInD became integral in teaching and learning mathematics.
But this was not so for ‘D’, where MInD became confined to an enrichment program
exhibited various “ailments”.

Backed up by the positive feedback that all partner schools have expressed (see
Leong et al., 2014), we believe that MInD is a promising innovation for realizing
the ideals of positioning PS at the heart of school mathematics in every classroom.
Further scaling-up MInD is something worth investing in. However, it would be
prudent first to gain a better understanding of what sustained MInD in ‘A’, ‘B’ and
‘C’, but not ‘D’.
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This chapter aims to find out what are the crucial factors that affect sustainabil-
ity of MInD as a teaching innovation across the various school systems. Existing
research works carried out in diverse fields such as engineering and health-care, set
out to identify those factors influence or inhibit sustainability of professional train-
ing, quality improvement or school-based health programs (Han & Weiss, 2005;
Scheirer & Dearing, 2011; Shediac-Rizkallah & Bone, 1998; van Dyk & Pretorius,
2014; Vaughn, Klingner, & Hughes, 2000). One common theme threading through
these works is the application of “Systems Thinking” as a way of understanding
and studying program sustainability. Cognizant that systems approach is scientific
method widely used in many different disciplines, we choose a more specific variant
of the systems approach described in Berger and Brunswic (1981) that is best suited
for analyzing educational contexts—Berger and Brunswic’s systems approach has
also been used in Gupta and Gupta (2013). In particular, we apply systems approach
to compartmentalize and visualize the various components and interactions involved
in studying the sustainment of MInD. We build a model for understanding how
sustainability of MInD in mainstream schools is facilitated or impeded. We then
demonstrate the usefulness of the model as attested by experiences of ‘A’, ‘B’, ‘C’
and ‘D’. Finally, we discuss how the model may be used as a diagnostic tool for
initiatives that propagate teaching innovations in PS.

15.2 Sustainability and the Systems Approach

For the past decade, research-based instructional innovations implemented in schools
represent concerted efforts of collaboration between education authorities, schools
and education-researchers. Most of these are research projects financially supported
by state or institutional research grants or other sources of funding external to the
school system that are no longer available after the research project is completed.
Hence, program sustainability in the sense expressed by Han and Weiss (2005) is a
legitimate concern, i.e., will there be continued implementation of an instructional
innovation that stays faithful to its core design principles even after the withdrawal
of the resources used to support initial training and implementation? As it is, Hogan
and Gopinathan (2008) stated that

instructional innovation is technically difficult and emotionally demanding, institutionally
challenging, and risky for both teachers and schools since innovations often fail, and hard
to sustain, and hard to scale-up. (p. 375)

These difficulties and challenges are to be expected since the modus operandi of
these research-based instructional innovations manifests at three levels (see Florian,
2000;Gersten,Chard,&Baker, 2000;Huberman&Miles, 1984;Klingner,Arguelles,
Hughes, & Vaughan, 2001; Vaughn et al., 2000): (1) Policy level—the identification
of an educational policy advocated at the level of the district or country. (2) School
level—the school’s implementation of certain teaching innovations in response to the
identified policy. (3) Program level—the teaching innovation itself, i.e., its design
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Table 15.1 Generic components of a system based on Berger and Brunswic (1981)

Component General description of component

Product (P) Outcomes that result from the activities that take place.

Input (I) Entities that are fed into the system and operated upon; these
may be inputs of the previous situation that might include the
system itself.

Resources (R) Entities other than the input that are utilized to ensure the
operation of the system.

Constraints (C) Internal and external conditions imposed on the system,
general conditions governing the institutional, social, cultural,
economic environments. Note that the terminology of
“Constraints” in Systems Approach is used in a neutral sense,
and hence does not carry a negative connotation.

Strategy (S) Organization of various components under given constraints to
achieve optimal output.

Feedback & evaluation (FE) The return flow of information back into the system.

principles, the necessary professional training, the intended learning outcomes, etc.,
as proposed by researchers.

To formulate the desired conceptual framework for program sustainability of
instructional innovations, we use the metaphor of a system to represent the complex
network of relations that exist between various agents. Here we follow the systems
approach a lá Berger and Brunswic (1981): a system is defined by its components,
and by their interrelationships. Table 15.1 lists the generic components of a system
together with their general descriptions.

15.3 A Systems Model of Program Sustainability for MInD

In this section we follow Berger and Brunswic (1981) closely in giving a systemic
description of program sustainability of MInD in a mainstream school: first the
ProgramLevel, and then the School Level. Suffice to say at this point that Singapore’s
Ministry of Education already recognized PS as the central theme in the Singapore
mathematics curriculum since the MInD project clearly aligns with this policy, we
omit Policy Level articulation here. To build the desired system, evidence found in
the teachers’ reports in the project schools concerning MInD at the end of its first
year of implementation is used. These reports are presented as chapters in Leong
et al. (2014).
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15.3.1 Program Level

The ProgramProduct (PP) comprises of both students and teachers involved in the PS
lessons. PS students become effective mathematics problem solvers by internalizing
Pólya’s PS paradigm, i.e., the four-stage Pólya’s (1957) PS model: Understanding
the Problem, Devise a Plan, Carry out the Plan, Check and Extend, and by using PS
heuristics in their PS endeavours. Thus, with regards to the PS students, the product
comprises episodes of visible success, i.e., a sense of ‘success’ that is visible (that is,
observable achievements or benefits) to teachers (Tirosh, Tsamir,&Levenson, 2015),
change in the students’ PS behaviour, i.e., changes in PS competency, PS disposition,
and beliefs. PS teachers experience changes in competency in PS and teaching PS,
and make adaptations appropriate to the school setting while maintaining program
fidelity of MInD. The body of Product, comprising the preceding items, is given in
the box on the right side of the systems diagram in Fig. 15.1. The items on the left
side of the systems diagram concern Program Input and are labelled (PI1) and (PI2);
we shall come to Program Input later.

Within the body of Product, there are dependence relations between some of the
outcomes (see PP1, 2 and 3 in Fig. 15.1). We picked up a particular episode of visible
success in one of the four project schools:

Most students gave feedback that they enjoyed the lessons as they stimulated their thinking.
The skills they learnt helped them with other mathematical problems. (Leong et al., 2014,
Chap. 5, p. 89)

In Fig. 15.1, we use (X)→ (Y) to denote (Y) depends on (X). For example, (PP1)
→ (PP2) indicates that (PP2) depends on (PP1).More precisely, visible success, such
as this one, resulted in students finding PS skills learnt in the PS module meaningful,

Fig. 15.1 Product and Input of a sustainable MInD (program level)
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and this in turn brought about a positive change in the students’ attitude towards PS.
Repeated episodes of visible success improved the students’ PS behavior.

Concerning the teacher-related outcomes, one of the schools reported having

students who recognised that competence in mathematics did not only mean getting the
correct solution, but rather, it also meant understanding and grasping the mathematical pro-
cesses, and strategies involved as they attempted to solve these problems. … [I]t made us
growmore confident about howMProSE can truly equip our students with essential skills for
the 21st century. We [the PS teachers] thus took to preparing for the second implementation
of MProSE… (Leong et al., 2014, Chap. 4, p. 74)

which is an instance of the dependency relation (PP1) → (PP3). Note that visible
success, labelled as (PP1), amongst others plays a crucial role. Graph-theoretically,
it is a source of the directed graph of Product—there are no incoming edges from
vertices (PP2) and (PP3). Within the Product component, visible success reinforces
both the changes in students’ PS behavior and teachers’ competency in PS and
teaching PS. Because of its reinforcing role, one anticipates that a decline or absence
of visible success will eventually lead to a decline in students’ PS behaviour and
teachers’ competencies in PS and teaching PS, which in turn will affect the Input.

We now describe the Program Input (PI) component. The systems approach
informs us that part of the input inevitably consists of the Product (P) of the system
from the previous state: the PS competencies of the students and teachers are fed back
as inputs as MInD progresses. In Fig. 15.1, we represent this Product-Input feedback
with a thick arrow. The Input is determined partly by the level of the students’ Math-
ematics Content Knowledge, and partly by the level of the teachers’ Mathematics
Content Knowledge and Mathematical Pedagogical Content Knowledge.1

From the set-up given in Fig. 15.1, we now turn to the ‘engine’ that operates on
the given Input in order to yield the Product. One asks: Which entities are at play
in the ‘engine’ part of this system? The systems approach answers this question by
considering three components: the Resources, the Constraints, and the Strategies (see
also Table 15.1 for their definitions).

ProgramResources (PR) constitutes of three subcomponents. The first component
is the MInD curriculum package which included 10 lessons, detailed lesson-plans,
Mathematics PracticalWorksheets and Assessment rubrics (see appendices in Leong
et al., 2014; Toh, Quek, Leong, Dindyal, & Tay, 2011). The second component is
all the time expended—for the students the length of the PS lesson, for teachers the
actual classroom time, PS lesson preparation time and PS team meeting, the time
spentwith school leaders (Head ofDepartment and principal) is part of theResources.
The third component is a Continual Professional Development package is available
to ensure the continual training for new PS teachers. This training package equips
PS teachers with PS terminologies, Pólya stages, Schoenfeld’s (1985) framework,
and the practical aspects of facilitating a PS lesson.

1Mathematics Pedagogical Content Knowledge refers to the “distinct body of instruction-related
and student-related mathematical knowledge and skills—the knowledge that makes mathematics
accessible to students” (Baumert et al., 2010, p. 142).
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To understand the Program Constraints (PC), i.e., those conditions that are
imposed on the system which are pertinent at the program level, it is helpful to
understand this teaching innovation as conceptualized and designed by the project
team to be implemented within a set of design parameters. These design parameters
of MInD were set a priori. They were based on theoretical considerations developed
as part of the process of a design experimentation guided by the intention of realizing
the ideal of strengthening the place of PS at the heart of school mathematics. These
design parameters are as follows (see Quek, Dindyal, Toh, Leong, & Tay, 2011 for
details):

1. Place in the curriculum: The teaching of PS as espoused by the project must be
part of the school’s mainstream mathematics curriculum.

2. Model of mathematical problem solving: The model that will be used for PS will
be Pólya’s (1957) four-stage model consisting of Understanding the problem,
Devising a plan, Carrying out a plan, and Checking and expanding. The use of
the model will also be integrated with knowledge of Schoenfeld’s (1985) PS
framework which identify a solver’s cognitive resources, beliefs, heuristics and
metacognitive control as factors upon which a solver’s success depended on.

3. Teacher autonomy: There must be investment in building teachers’ capacity in
PS and skill in teach PS. Teachers in school will ultimately teach the module
themselves.

4. Infusion into regular mathematics content: Problem solving skills and habits
learnt in the module must be infused into other mathematics modules to prevent
atrophy.

5. Assessment of PS: PS should be a valued component in the school’s assessment.

Given these design parameters, we identify the following key programmatic con-
straints. The first constraint was the design parameter (2) that bore upon the PS
teachers to adhere to the Pólya’s model of PS and Schoenfeld’s framework con-
cerning Heuristics and Control. The second constraint was that PS teachers were
obliged to teach the PS module during the normal curriculum time as specified in
design parameter (4). The third constraint is to grade the students’ PS competencies
as guided by design parameters (1) and (5) respectively. Lastly design parameter (3)
is concerned with the teacher’s capacity in PS, and thus a crucial constraint to take
into consideration is the fourth constraint of teacher’s minimum capacity of PS and
teaching PS (Fig. 15.2).

Strategies are methods which are employed to work within the given constraints
and resources of the system to achieve optimal product. Strategies executed at the
program level is denoted by PST. The first strategy invokes artefacts. Artefacts refer
to certain ‘hardware’ designed to enable processes to take place. (a) In the delivery
of the 10 PS lessons, PS teachers used Mathematics Practical Worksheets to scaffold
students’ movement through the Pólya’s PS stages (Understand the Problem-Devise
a Plan-Carry out the Plan-Check and Extend). By filling out a Mathematics Practical
Worksheet, students cultivated a habit of solving an unseen problem via these four
stages. (b) Assessment rubrics are provided in the MInD package for teachers to
grade students’ PS work. (c) Physical props and auxiliary materials can be used
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Fig. 15.2 Components of resources, constraints and strategies

to enhance learning experience. The second strategy makes use of student set-up.
Student set-up refers to the physical set-up during the PS lesson. Each problem is
solved in pairs in order to work on a larger resource of MCK with the additional
awareness that such a PS team cannot have more than three members to reduce the
chance of ‘free riding’. The third strategy involves teacher facilitation. PS teachers
facilitate the PS endeavors closely by monitoring the PS processes in each group,
and intervening whenever necessary without giving away the solution directly.

We now turn to the component of Feedback and Evaluation (FE). From Product,
we evaluate and feedback into the engine. As a result, strategies may change and
resources may be re-deployed, given that little can be done to change the given con-
straints. During the PS lessons, students’ PS behavior was exhibited through ongoing
verbal and non-verbal responses between the students and the teacher, and among
students themselves. Their PS behavior provided formative feedback to PS teachers.
Such formative feedback then changed the style of teacher facilitation. Feedback
and evaluation also included teachers’ modification, adaption and invention (which
remained faithful to the design principles) with the aim of improving the quality
of the PS lessons. For example, teachers made physical props and manipulatives,
re-designed parts of the Mathematics Practical Worksheet, made new problems that
tie in better with the year level’s mathematics syllabus, and changed the venue,
time-duration and schedule of the PS lessons.

15.3.2 School Level

As Owston (2007) conveyed, “innovation benefits from leadership and a supportive
organizational environment” (p. 62). Hence, it is important to study the sustainability
ofMInDat the School Level. In Fig. 15.3we illustrate the relation between the School
Level and the MInD Program Level. We elaborate on the School Level components
as follows.
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We begin with the Product component (SP) first. Similar to the Program Level,
visible success is a very influential form of Product. The Focus Group Discussion
carried out with the initial school in whichMProSE was a success provided evidence
about the importance of visible success:

The initial school maintained the PSmodule as an examinable 9 lessonmodule in its modular
curriculum. The module was also endorsed by their parent university as well as the Ministry
of Education: “We have this curriculum review by [the university] as well as MOE… three
or four years once. So I mean, recently, they went through our materials once, they saw this
problem solving so they are also very encouraged by it. And they also hope to see it being
infused in other modules as well. So I think, with this documented, yah, it should be staying
for quite some time, you see, because this accreditation process is very important for us,
especially we don’t follow the mainstream syllabus.” (Focus Group Discussion data from
initial school)

In other words, the benefits of the innovative program must be seen by the school
leaders and the policy makers so that resources can be subsequently channeled into
keep the program alive.

Repeated episodes of achievement at the School Level would bring about deliver-
ables that were aligned with the school vision and mission, short-term and long-term
goals and their related Key Performance Indicators. One of the project schools, for
instance, set the vision of developing students’ character and capacity for life-long
learning so that they are ready for the 21st century. This school recalled that it bought-
in the ideals ofMInD because whatMInD proposes to produce aligns with the school
goals:

… we thought that it [MInD] could help us prepare out students for the 21st century by
offering much more than what was promised in the theory. Its approach was strongly aligned
with our school’s holistic goals of character development and nurturing creative problem
solvers and self-directed learners, preparing students to better face challenging problems in
life and serving the community through problem solving. (Leong et al., 2014, Chap. 4, p. 62)

After the first round of implementation of MInD, positive changes in students’ PS
competency occurred, and these changes were seen to align with the school’s vision
and thus further reinforced the trust this school put into the teaching innovation:

[MInD] can develop character and build lifelong skills and appreciation for mathematics.
(Leong et al., 2014, Chap. 4, p. 73)

Visible success also resulted in an increase in professionally developed teachers
who are prepared to teach students ready for the 21st century; specific to the MInD
program, this translated to the outcome of PS teachersmodelling as effective problem
solvers and displaying competency in facilitating PS lessons. As for the students,
visible success correspondingly yielded positive students’ growth, e.g., enhanced
mathematical abilities.

The Input at School Level (SI) comprises leaders’ competency, teachers’ com-
petency, and students’ competency. Here we refer to the general competencies (e.g.,
academic, administrative, etc.) associated to the respective roles of school leaders
(Principal and Heads of Department), teachers and students.
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School Level Resource (SR) refers to the financial, physical, human and time
resources available to the school.

There are four types of Constraints at the School Level (SC), which we now
describe in turn. School’s vision, mission and goals: The top-management team set
the school’s vision, mission and laid down the short-term and long-term goals. Com-
peting use of resources: Limited resources had to be shared among several programs
and activities taking place simultaneously in the school. Staff movement: Internal and
external movement of staff would take place constantly. Physical constraints include
class size in a PS lesson (about 40 for each project school), physical setting, e.g.,
typical classrooms in Singapore schools are non-air-conditioned, hot and humid; in
addition, long school hours often precede PS lessons, and so students feel tired and
uncomfortable even before the start of the PS lesson.

The School deploy Strategies (SST) in the form of different programs in order to
realize the goals set by the school and to produce the stated Product. In Fig. 15.3,
the reader may wish to note that MInD may well be one of the many programs that
are running simultaneously in the school.

Feedback and evaluation at the School Level (SFE) refer to information flowing
back from the Product to the Input and the ‘Engine’. Unlike the Program Level, the
school leader when responding to the feedback and evaluation can make changes to
alter certain constraints. Here, we focus on the internal information that arose from
data collected from activities taking place in the school, meetings with teachers,
lesson observations, and so on.

15.3.3 Interaction Between Program Level and School Level

Here we use the term ‘transversality’ to mean the ‘criss-crossing’ relations among
different levels of the same system (see Berger & Brunswic, 1981, p. 24). Between
the components operating at different levels, dependence relations act as channels
for flow of information, activities, resources, etc.

Elsewhere in the literature of educational research (Kozma, 2003), the levels of
program, school and policy are given different labels, namely, micro level (program),
meso level (school) andmacro level (policy: community, national, global). Following
Kozma (2003), School Level subsumes Program Level in the sense that MInD, when
implemented by a school, sits inside the School Level system as one of the many
programs adopted by the school; it is to be viewed as a school strategy that aims to
achieve the goals set by the school.

The Program Strategies employed by MInD generates visible success (see PP1
in Fig. 15.3) which is a critical vertex connecting the ‘Engine’ to Product, and also
the sole source vertex of the Product component. Visible success of MInD yielded
observable improvement in the students’ PS behavior and the teachers’ competency
in PS and its facilitation. As a School Strategy, MInD’s Program Product contributes
towards the School Product. The overall positive changes in students and teachers
becomeSchool visible success (seeSP1 inFig. 15.3),which is translated into concrete
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deliverables aligned with the school’s goals. Elaborating on the point, consider one
of the project schools. Prior to the implementation of MInD, this school already
recognized that “[t]he 21st century knowledge-based society calls for mathematics
education to train learners to be flexible, creative, confident and good team players
who are able to solve new problems and deal with ambiguities” (Leong et al., 2014,
Chap. 4, p. 61). After the students from this project school attended the PS module,
they took an MInD Practical Test in which the average achievement of the students
exceeded 80%. In thewords of theHead ofDepartment ofmathematics of that school,

We found these results encouraging since the [MInD] rubric placed premium on students’
thinking processes and their efforts to extend their thinking through the Pólya’s fourth stage.
Thus, their performance in [MInD] reflected how students were beginning to develop more
holistically by moving away from exam-oriented learning. (Leong et al., 2014, Chap. 4,
p. 65)

The students’ good performance, together with positive changes in students’ PS
behaviors, constitutes School Level visible success, and these affirmed the school
leaders that the deliverables generated byMInD indeedmet the school’s goal within a
short time—a form of School Level FE from Product to Constraints. School leaders’
decisions directly influenced Competitive use of resources and Physical constraints
favoring MInD. Initially, the PS module was run after school hours and thus PS was
not run within the school curriculum (refer to PC2 in Fig. 15.3). But as a direct result
of the School Level intervention, the PS module was allocated normal curriculum
time the next year. Hence this change brought about the positive consequence of
students and teachers not needing to stay back for extra hours after school. This
time efficiency then produced more Program Level visible successes, and eventually
more School Level visible successes. The flow becomes self-reinforcing and self-
sustaining. In summary, our model (see Fig. 15.3) gives a systemic characterization
of program sustainability forMInD: the systemmust operate in such away to produce
a significant level of visible success, at both the Program and School Levels, in order
to secure continuous commitment and support from the School leadership, and thus
achieving a self-sustaining and perpetual flow of processes and information between
various components.

15.4 Method

We report on the qualitative feedback given by PS teachers and subject leaders of the
Schools A, B, C and D at the end of the MInD project. All four mainstream schools
submitted their detailed documentations of MInD’s operation log after the project
ended. To complement data from the written documents, the project team also con-
ducted FocusGroupDiscussions. FocusGroupDiscussions collected at the early part
of 2015 served as main field data. The Focus Group Discussions guiding questions
covered teachers’ personal beliefs about PS and teaching of PS, teachers’ portrait of
a PS lesson, ingredients for successful PS lessons and sustainment of MInD. Each
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Focus Group Discussion, lasting 1.5–2 h, was facilitated by at least two researchers
and videotaped with permission. The videos were all transcribed and analyzed by
two researchers independently to surface relevant issues and implications towards
answering the infusion and diffusion research questions of the MInD project, as well
as finding out about the participants’ perception regarding the factors contributing to
the sustainability of MInD. The Focus Group Discussions conducted in the January
2015 were attended only by ‘A’, ‘B’ and ‘C’ but not ‘D’. A separate Focus Group
Discussion with ‘D’ was conducted in November 2016 and the data coded by two
independent researchers. With these Focus Group Discussion data, we analyze pro-
gram sustainability of MInD via the systems model previously derived. We report
that ‘A’, ‘B’ and ‘C’ conformed to the program sustainability as described by the
model; on the other hand ‘D’ displayed certain symptoms of faltering sustainability
as diagnosed by the model.

15.5 Summary of Data and Findings

We begin by comparing, at the School level, the implementation of MInD across all
the four schools, namely, A, B, C and D. Table 15.2 makes such a comparison in
terms of the interactions taking place between the components:

We now compare the implementation of MInD, at Program level, for these same
schools. Table 15.3 displays this comparison, again, in terms of the interactions
between the various components.

With regards to the implementation at Program level, we provide additional details
below.

• All four schools in the discussion kept the PSmodule that taught the students about
PS and introduced Pólya’s PS model.

• ‘A’ and ‘B’ reduced the number of lessons to 7 and 6 respectively, while ‘C’
modified the module to 8 lessons. The modifications were made to align with their
tight schemes of work. In ‘D’, the school leaders moved the PS lessons out of the
main curriculum time into an enrichment lesson after school hours.

• The language of PS (understand the problem, heuristics, being stuck, etc.) perme-
ated into many other mathematics lessons in ‘A’, ‘B’ and ‘C’. ‘B’: “And we also
come out with an explicit way of maths language for our teachers so that for every
problem that you do in class, you will do the same, ‘how do you understand the
problem’, ‘what is given’, so we have a language for the teacher to help them to
facilitate as a way for PS, as a whole curriculum be it in the syllabus or MProSE”
(Focus Group Discussion data from ‘B’).

• ‘A’ suggested that teachers in pre-service training should learn how to teach PS:
‘It will be definitely useful if fresh teachers start in this knowledge already.”
(Interview record taken from Focus Group Discussion with School A)

• ‘A’ and ‘B’ reported that their teachers work on solving new problems themselves.
‘A’: “Besides the teacher teaching this, we also included the PS sessions in the
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protected time for the teachers to meet. It is to create and inculcate the culture of
PS among the teachers. So we have it once every term, problems will be posted to
teachers for them to try it out using the problems solving strategies” (Focus Group
Discussion data from ‘A’).

• ‘B’ worked with the researchers to redesign 3 units in the mathematics curriculum
to include PS as a pedagogical approach. The redesigned units are called Replace-
ment Units or RU’s. “And because we have done it in Secondary 1 as a whole
module and in Secondary 2 we do the RU, the Replacement Unit. So when we
teach the topic with the MProSE problem, either in the beginning, in the middle
or towards the end also. So it’s an infusion of MProSE. So they still keep in touch
with it” (Focus Group Discussion data from ‘B’).

• Assessment of PS competency remained an important feature of MInD for ‘A’,
‘B’ and ‘C’. For ‘D’, although the students were assessed using the Assessment
Rubrics in the MInD curriculum package, the PS teachers decided not to count the
PS marks towards the final grade for Mathematics since they managed to teach 8
out of the 10 lessons.

• Modifications were made to the types and difficulty of the problems.
• In ‘D’, PS teachers observed that students were quickly engaged in solving prob-
lems that were couched in real-life contexts, e.g., Jug Problem, Russian Roulette
Problem. However, when it came to Problems that involved abstract mathematical
definition, e.g. Nice Numbers, the students gave up after one or two attempts. In
response to this situation, ‘D’ decided to remove these “abstract” problems from
the list of problems in the MInD Curriculum Package.

• ‘A’, ‘B’ and ‘C’ used props and videos to support the PS module. ‘B’: “Because
in terms of interest, they do not understand why they must go and pour jugs, why
I must open lockers … So we came out with props, … we use videos. So we use
props for the kids to understand the whole process. And to help them to be more
interested and engaged.” (Focus Group Discussion data from ‘B’). ‘A’ concurred:
“So props is a good idea. Because during the open house we did it like a props
like that. ‘Jumping Frog Problem’. They are very happy. They are able [to] see the
generalization, some even can move up quite close to step 4 [Check and Extend].
They manage to see the whole thing is a quadratic equation rather than manually
moving [the] frog.” (Focus Group Discussion data from ‘A’). In contrast, although
the students in ‘D’ were very active in applying the heuristic of “Act It Out”, no
props or videos were used to support the teaching of PS lessons.

In summary, the data suggest that the PSmodulewas stable andwell-implemented
in ‘A’, ‘B’ and ‘C’ based on the five design parameters. ‘A’, ‘B’ and ‘C’ have sup-
ported the module with teacher development materials and teachers’ personal work
on PS. The language of PS was infused into different levels and topics of the school
mathematics curriculum. Notably, ‘C’ had used a PS approach to revamp some of its
hard-to-teach topics. There was a time lapse of about one year between the submis-
sion of detailed documents and the conduct of Focus Group Discussion in ‘D’. The
Focus Group Discussion informed us that ‘D’ had started to deviate in their imple-
mentation of MInD from two of the design parameters: (i) PS in normal curriculum
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time: The new school leadership moved the PS lessons out of the normal curriculum
time into an enrichment lesson slot outside school hours, and (ii) Assessment: The PS
team decided not to include the PS scores of the students into their final mathematics
grade. These two fundamental deviations alerted us that ‘D’ was starting to display
symptoms of an “ailing” MInD.

15.6 Discussion

Zooming out from the details presented in the previous section, we now make sense
of program sustainability of MInD at a higher vantage point by taking a systemic
perspective offered by theSystemsModel inFig. 15.3. The ideal state of sustainability
forMInD occurs when there is an unobstructed and self-sustaining flow of processes,
information and activities that relate various components at both the Program and
School Levels. The Systems Model we have constructed highlights visible success
as the salient part of the Product both at the Program and the School Level. Visible
success at the Program Level brings about positive changes to both the students’ and
teachers’ competencies with regards to PS and the facilitation of PS lessons. Visible
success at the School Level produces deliverables that are aligned with the school’s
vision, mission and goals, professionally developed teachers and students’ growth.
The flows which originate from the source of visible success to the respective parts
of Products must maintain a healthy rate in order that a significant level of positive
feedback and evaluation returns to the Input and the ‘Engine’ components. From
the data collected from the project schools, we distil a set of the factors that would
contribute towards a long-term sustainment of MInD as a teaching innovation.

School specific factors include the support by school leaders, and the autonomy
enjoyed by the school teachers in implementing teaching innovations. Regarding
support given by the school leaders, we note that schools that enjoy strong support
by knowledgeable school leaders who believe that PS is the mainstay in the math-
ematics curriculum and are committed to running MInD, even when it requires a
heavy investment of resources under real school constraints, are likely to operate a
sustainable MInD.

Knowledgeable and supportive school leadership can be instrumental in making a program
a priority within the school, as reflected in the time, resources, incentives, and training
allocated for the program as well as the expectation of accountability. (Kam, Greenberg, &
Walls, 2003)

Importantly, leaders gain knowledge from external and internal sources. Exter-
nally, they are directed by current educational directives exerted by state authorities
and by new educational trends taking place worldwide. Internally, they observe vis-
ible success contributed by the positive outcomes of teaching innovations currently
taking place in the school. Principals, Head of Department and PS teachers in ‘A’,
‘B’ and ‘C’ kept on communicating about the program effectiveness of MInD in
equipping students with the life-skill of creative problem solving because they saw
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the ongoing episodes of visible success in the PS classrooms as well as in the grade
improvement in national examinations. Such successes must be made clearly visible
to the school leaders to convince them that MInD is actively yielding concrete deliv-
erables that are aligned with the school vision, mission and goals. In this respect, the
Head of Department played the role of a mediator between the Principal and the PS
teachers. Because the decisions made by the school’s top management can facilitate
or impede the operations of MInD, keeping the school leaders committed through
constant positive feedback and evaluation is of paramount importance. Therefore,
the core of the leadership in the Mathematics Department must be relatively stable
to ensure a long-term commitment to PS as the way to teach and learn mathemat-
ics. Huberman andMiles (1984) and Sindelar, Shearer, Yendol-Hoppey, and Liebert,
(2006) alreadywarned us of the “second-wave” crisis, i.e., the first wave occurs when
the innovation practice commences, and the second wave is the result of when teach-
ers who demonstrated success with the innovation are promoted to higher positions,
thus leaving a vacuum characterized by an absence of those ‘enforcer’ teachers for
the teaching innovation. ‘D’ suffered from this second wave when its previous Math-
ematics Head of Department was promoted because of her contribution in running
MProSE.

Concerning autonomy and flexibility, we can see that schools that enjoy a high
degree of autonomy and flexibility in planning and implementing MInD are the ones
that are likely to sustain. However, the trust given by the Principal can easily dissolve
if there are no consistent visible successes emerging as a direct result of teaching
innovation. The school culture developed in ‘A’, ‘B’ and ‘C’ attested to existing find-
ings that those schools with shared vision and cultures of communications and shared
decision-making, and schools that involved teachers in the design or modification of
the innovation are more likely to sustain innovations (Florian, 2000; Huberman &
Miles, 1984).

Program specific factors also come into the picture. Firstly, teachers’ and stu-
dents’ attribution toward MInD. Klingner et al. (2001) said that innovations which
were smaller in scope and those which placed fewer demands on the teachers were
more likely to take root and be sustained. Innovations that required toomany changes
in the current functioning of the school were less successful than more proscribed
innovations. MInD is a teaching innovation that is certainly complex, technically
demanding and emotionally taxing. In order to ensure the sustainability of MInD,
teachers’ attribution towards MInD is critical: teachers must believe in the value
of PS. This belief is affirmed in two ways: (i) teachers observe program effective-
ness of MInD by witnessing episodes of visible success demonstrated in students’
PS endeavors, and (ii) teachers’ self-efficacy in PS strengthen their confidence in
teaching PS.

Secondly, feasibility of implementation plays a big part in the sustainability of
MInD as a teaching innovation. Schools ‘A’, ‘B’ and ‘C’ adopted suitable teaching
strategies such as using Mathematics Practical Worksheet to scaffold students in
learning Pólya’s stages and Schoenfeld’s framework as well as to help teachers man-
age the facilitation of large number of discussion pairs. Feasibility of implementation
of PS lessons is increased by suitable modification, adaptations and inventions made
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by PS teachers themselves. However, such modifications must remain faithful to the
design parameters of MInD. ‘D’ also made changes by removing the abstract prob-
lems and retaining only problems with real-life contexts. This modification restricted
the variety of problems that students experienced, and hence deprived them of the
chance of handling abstract mathematical definitions—the understanding of which
forms a crucial experience in learning mathematics.

The third program specific factor is time. The Focus Group Discussions revealed
that time resource (see SR4 and PR2 in Fig. 15.3) is the most crucial factor to be
taken into consideration, given that there is a multitude of activities and programs
in the school that are competing for resources (see SC2 in Fig. 15.3). Much as they
believed in the idea of infusing PS into day-to-day mathematics lessons within main
curriculum time, PS teachers in ‘D’were hard-pressed for time to ‘cover’ the syllabus
stipulated by the examination board. Successful and sustainable implementation of
MInD in ‘C’ exploited the concept of ‘Replacement Units’, where difficult-to-teach
topics were identified by teachers and with the help of the MInD team the usual units
of lessons for those topics were replaced by units specially designed with the PS
parameters in mind (see Leong et al., 2016). In this way, ‘C’ was able to optimize
time their advantage in the sense that the difficult topic could be taught and learnt
through PS within normal curriculum time.

Lastly, teacher training with regard to PS is a key program specific factor. Since
the production of visible success is crucial as a feedback to the school leaders, high-
quality teacher facilitation must occur in the PS classroom. During the implemen-
tation phase, the MInD project team was providing the expert advice and support,
but during the sustaining phase, the PS teachers must continue to maintain their
competency in PS and teaching of PS. Continual Professional Development at the
Program Level must be in constant operation, where (i) mathematics teachers have
regular meetings where PS is practiced, talked about and its pedagogy shared, and
(ii) new teachers are professionally developed to be trained PS teachers. If needed,
external consultancy provided by theMInD team could be engaged to provide timely
training for new PS teachers. Additionally, project school have also suggested that
the methods courses for pre-service teacher training conducted at the teacher train-
ing institute in Singapore should include PS facilitation (in the sense of MInD) as a
cornerstone course.

15.7 Conclusion

Thedifficulties of implementingMathematical ProblemSolving are real, partly due to
the technical difficulties involved in PS itself, and partly due to the lack of appropriate
literature that can guide teachers effectively to “implement results of the problem-
solving research into their everyday classroom praxis” (Zimmerman, 2016). In Sin-
gapore, we experienced the same difficulty of implementing PS in schools: although
theMinistry of Education placed PS as the central theme of the framework for Math-
ematics Curriculum, there is a lack of widespread classroom practice schools in
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realizing this theme. MProSE, and subsequently MInD, can be seen as forerunners
in terms of implementing a feasible, sustainable and scalable teaching innovation that
promised to realize the lofty goal of teaching and learning PS in Singapore schools.

Although the design parameters built into theMInDwere intended to optimize the
sustainment of MInD in schools, adherence to the parameters is far from sufficient
for guaranteeing its sustainability in actual implementation. Focus Group Discus-
sions which we conducted revealed that while all project schools were on par with
one another in terms of school demographics, resources and infrastructure, the oper-
ation of MInD could be very different. This is perhaps unsurprising—no schools are
identical—each school has its organizational mission, goals, and culture. The task
of characterizing program sustainability of MInD is thus challenging because of its
multi-faceted nature: running a teaching innovation involves activities at the Program
Level as well as the School Level. In this chapter, wemade use of a systems approach
to derive a model to describe how MInD can be implemented in a sustainable way.
We viewed the situation at hand as a system which consists of several components
(Input, Product, Constraints, Resources, Strategies and Feedback-Evaluation) oper-
ating at the Program and School Levels. Our theory proposes that MInD is able to
sustain if and only if the system operates in such a way that it produces a significant
level of visible success, at both Program and School Levels. In this way, it secures
continuous commitment and support from the school leadership, and thus achieves
a self-sustaining and perpetual flow of processes and information between various
components. It might appear that a state of operation which is self-sustaining and
perpetually smooth-flowing is too idealistic and can never be achieved realistically.
However, the authors of this chapter think otherwise. The sustainability of MInD can
be achieved once the project school adopts Problem Solving as its school culture of
teaching and learning mathematics.

We validated the Systems Model by matching it against the data collected (in
the form of detailed documentations and Focus Group Discussions) from the four
project schools. ‘A’, ‘B’ and ‘C’ had institutionalized processes that promote smooth
flow from component to component such that the two main channels of Feedback
and Evaluation from Output to Input and ‘Engine’ are initiated by significant occur-
rences of School and Program Levels visible success. To ensure this smooth flow,
many processes were in place, including effective communication between school
leadership and the PS team, efficient deployment of resources, and establishment
of continual professional development. On the flip side, we also learnt a great deal
from the Focus Group Discussion conducted at ‘D’. Because ‘D’ deviated from the
fundamental design parameters that PS must have a place in normal curriculum time
and that the students must be assessed of their PS competency, MInD was beginning
to show signs of failing. The benefits of PS in teaching and learning mathematics
did not become part of the knowledge, through visible success, that would otherwise
inform the school leaders who could have deployed the limited school resources to
support MInD. In terms of the Systems Model, the flow was slowing down which
led to visible ‘successes’ to diminish. These were not observed by the school leader
owing to lack of poor communication, and all these built up as a vicious cycle of
‘malnourishment’ that further worsened the health of MInD in ‘D’.
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If left unresolved, the problems experienced by ‘D’ in their implementation of
MInD would eventually overcome the efforts of trying to run it as an enrichment
program—the prospects are grim as school leadership support, teacher training and
resources are withdrawn, and the attributions of teachers and students toward PS
deteriorate. It would be helpful if the Systems Model we developed herein could
not only provide a diagnosis of what went wrong but also a prescription of what
actions could be taken to salvage the failing MInD. At this point of writing, we
are inspired by the promise that Replacement Units seem to offer as our experience
in ‘C’ suggests. We saw that Replacement Units could be employed as a strategy
for teaching mathematics through PS within normal curriculum time, with special
focus in teaching difficult-to-teach topics that teachers identified. At this point of
writing, the project team has already re-established contact with ‘D’ to explore the
possibility of discussing the prognosis offered by the Systems Model and of offering
the Replacement Units as a strategy to revive the failing MInD.
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Conclusions

Problem Solving in Mathematics Education has been a perennial topic study group
(TSG) at the International Congress on Mathematics Education meeting. As such, it
has become a place for researchers interested in the topic to gather, present, and
discuss the most recent developments in the field. This book is a collection of some
of the most current research on problem solving and, as with its predecessors,
pushes the academic agenda further with new approaches, methods, and perspec-
tives for not only understanding mathematical problem solving, but also fostering it.

In some cases, the contributions provide new directions for examining old
themes, from the importance of heuristics to the currency of metacognition to the
continued relevance in problem posing. Meanwhile, other contributions push into
new territory to discuss different types of problem solving assessments as well as
the environment necessary to occasion and nurture problem solving activity.
Through all this a number of key outcomes have emerged that promise to continue
to push the field of mathematical problem solving further in the years leading up to
ICME-14.

1. The seminal work of Pólya and Schoenfeld continue to be an important referent
in several chapters. In particular, Pólya’s looking back stage is linked to the
importance for students to always look for different ways to solve and discuss
problems. However, emerging in this book is the antitheses of looking back in
the idea of mathematical foresight as a construct to delve into the students’
future-oriented thinking to solve problems.

2. The use of digital technologies continues to open new avenues to engage stu-
dents in problem solving activities. Of particular interest is how new tech-
nologies can provide new problem solving strategies and ways of reasoning
(such as dynamic modelling, foci tracing, quantifying parameters and attributes,
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using sliders, etc.) that emphasize both visual and empirical approaches. Digital
technologies also affords us the possibility to move beyond the formal setting of
the classroom through, for example, the use of a web-based mathematical
competition.

3. Although problem posing activities are not new to the field of problem solving,
the emergent focus on inquiry is bringing a new framing of problem solving
approaches. Although relevant to both student and teacher, this new framing can
afford teachers access to the problem formulation experience and may help them
to recognize its value for themselves and their students.

4. Assessment continues to be an important area of research within mathematical
problem solving and continues to be pushing towards recognizing the impor-
tance of assessing the problem solving process over the problem solving
product. To this end, specific instruments that can be used to account for, and
assess, students' problem solving behaviors continue to be developed. Emerging
from this work is a reflexive critique of the wide use of standardized test and
their limited ability to measure problem solving.

5. Finally, there is an emergence of research that explicitly looks at the engagement
of students in problem solving—something that, until now, has only been
implicitly addressed through the nature of the problem solving tasks as well as
digital technologies. The emergent research on student engagement pushes well
beyond this, challenging and experimenting with the normative classroom
structures to shed light on what is important to take into account in order to
construct learning environments conducive to occasioning and fostering student
problem solving behaviors.

Taken together, the next few years promise to be an exciting time to be engaged
in mathematical problem solving—as a researcher, as a teacher, and as a learner.
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