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Chapter 3
Toward a Model of Auditory-Visual Speech 
Intelligibility

Ken W. Grant and Joshua G. W. Bernstein

Abstract  A significant proportion of speech communication occurs when speakers 
and listeners are within face-to-face proximity of one other. In noisy and reverberant 
environments with multiple sound sources, auditory-visual (AV) speech communi-
cation takes on increased importance because it offers the best chance for successful 
communication. This chapter reviews AV processing for speech understanding by 
normal-hearing individuals. Auditory, visual, and AV factors that influence intelligi-
bility, such as the speech spectral regions that are most important for AV speech 
recognition, complementary and redundant auditory and visual speech information, 
AV integration efficiency, the time window for auditory (across spectrum) and AV 
(cross-modality) integration, and the modulation coherence between auditory and 
visual speech signals are each discussed. The knowledge gained from understand-
ing the benefits and limitations of visual speech information as it applies to AV 
speech perception is used to propose a signal-based model of AV speech intelligibility. 
It is hoped that the development and refinement of quantitative models of AV speech 
intelligibility will increase our understanding of the multimodal processes that 
function every day to aid speech communication, as well guide advances in future 
generation hearing aids and cochlear implants for individuals with sensorineural 
hearing loss.
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3.1  �Introduction

3.1.1  �The Importance of Signal-Based Models of Speech 
Intelligibility

There can be little doubt of the importance of speech and language skills for cognitive 
and social development and for the communication of ideas, thoughts, and emo-
tions. For the better part of a century, researchers have been working to develop 
models of speech perception and language processing, in large part due to the work 
at AT&T (Bell Laboratories) in the early 1900s. Driven by the development of the 
telephone and the need for high-quality speech transmission, the research team at 
Bell Laboratories developed a variety of methods for measuring speech intelligibil-
ity and user reactions to the phone. Among the many important discoveries stem-
ming from this work was a characterization of how the signal-to-noise ratio (SNR), 
loudness, spectral balance, and distortion each impact speech intelligibility. Because 
of the expensive costs associated with test development and conducting laboratory 
and field experiments with human listeners, French and Steinberg (1947) and 
Fletcher and Gault (1950) began to work on methods for predicting the average 
speech quality of a given communication system as a means of testing new systems 
before they were put into the field. This work culminated in what became known as 
the articulation index (AI; American National Standards Institute [ANSI] 1969), 
which was designed to characterize a device, whether it be a phone, hearing aid, 
or any sound-transmitting system, based solely on the physical characteristics of the 
signal output and the environmental noise at the listener’s ear.

3.1.2  �The Overlooked Problem of Auditory-Visual Speech 
Intelligibility

Since its development, numerous extensions and simplifications of the AI or alter-
native metrics based on similar ideas have been proposed to predict speech intelli-
gibility performance in different types of background noise (e.g., steady-state and 
modulated noise), reverberant environments, and for listeners with hearing impair-
ment (speech intelligibility index [SII], ANSI 1997; speech transmission index 
[STI], Steeneken and Houtgast 2002). Despite the various iterations of these indices 
throughout the years, one of the most fundamental facts of human speech commu-
nication has been barely examined, namely, that human communication involves 
auditory-visual (AV) face-to-face input and not just auditory input. It is estimated 
that well over half of active speech communication takes place in contexts where 
visual speech cues are available to the listener (Walden et al. 2004). Yet, the predic-
tion of intelligibility for AV speech inputs is woefully underdeveloped. The AI and 
SII ANSI standards did include a nod to AV speech recognition, but visual cues 
were treated simply as an additive factor to the basic auditory predictions and failed 
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to understand the intricate manner in which auditory and visual speech cues interact. 
The goals of this chapter are to illuminate the factors that would necessarily be an 
important part of any AV speech-intelligibility model and to suggest solutions that 
are consistent with the original goals of the AI. In addition to being able to accu-
rately predict AV speech intelligibility under a wide variety of noise and reverbera-
tion conditions, a practical model should be based on physical measurements of the 
signal and environment alone to allow for the evaluation of potential benefits of new 
hearing technologies and algorithms without relying on exhaustive human-subjects 
testing. (Ideally, any auditory or AV model of speech intelligibility would also con-
sider individual differences in dimensions such as hearing acuity, visual acuity, and 
cognitive ability; however, accounting for individual differences falls outside the 
scope of this chapter.) In delineating the factors involved in the development of such 
a model, this chapter will revisit some of the same issues that had to be addressed 
during the development of the original auditory-only (A-only) AI. This will include 
(1) impact of noise and distortion, (2) spectral balance or frequency weighting, (3) 
integration across spectral channels and across modality, and (4) synchrony between 
auditory and visual signals.

With few exceptions, listeners are able to improve their speech-recognition per-
formance by combining visual cues (from lipreading; also known as speechreading) 
and audition (e.g., Sumby and Pollack 1954; Grant et  al. 1998). Benefits due to 
speechreading, especially in reverberant or noisy environments, can be quite substan-
tial for most listeners, often allowing near-perfect comprehension of otherwise unin-
telligible speech (Grant et al. 1985; Summerfield 1992). Understanding how these 
large benefits come about is critical because the speech cues that must be relayed to 
maximize speech understanding in adverse situations are likely to be dramatically 
different when the listener has access to visual (speechread) cues in addition to 
acoustic speech information. As discussed, this is the case when considering normal-
hearing (NH) listeners in adverse noisy listening environments, hearing-impaired 
(HI) listeners, or signal-processing strategies for hearing aids and advanced auditory 
prosthetics such as cochlear implants.

Consider the following scenario (see Fig. 3.1). A speech signal composed of both 
visual and acoustic information is presented. The listener-observer extracts signal-
related segmental (i.e., phonemes and syllables) and suprasegmental (i.e., words 
and phrases) cues from each modality, integrates these cues, and applies top-down 
semantic and syntactic constraints in an effort to interpret the message before 
making a response. The basic components—bottom-up signal-related cue extrac-
tion, integration, and top-down linguistic processes—are common to most speech-
perception theories (e.g., Liberman et al. 1967; Studdert-Kennedy 1974). The major 
distinction drawn here from A-only theories of speech perception is that in an AV 
communication environment, cues from the visual modality must be considered, 
and the integration of auditory and visual cues, both within and across modalities, 
must be evaluated (Massaro 1987). From this perspective, consider an individual 
whose AV recognition of words and sentences is less than perfect. To evaluate the 
exact nature of the communication problem, it is necessary to determine whether 
the deficit is due to poor reception of auditory or visual cues, difficulty in integrating 
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auditory and visual cues, difficulty in applying linguistic and contextual constraints, 
cognitive limitations such as reduced working-memory capacity or reduced atten-
tion, or a combination of these factors. If the problem is determined to be primarily 
difficulty in receiving auditory or visual cues, signal-processing strategies to 
enhance the relevant cues and improve the SNR may be used. If, on the other hand, 
the problem is determined to be difficulty in integrating auditory and visual cues or 
difficulty in applying top-down language-processing rules, then training and prac-
tice techniques may be the better rehabilitation strategy. Simply knowing the indi-
vidual’s AV sentence- or word-recognition performance is not sufficient for 
determining a plan for rehabilitation.

Based on the simple framework displayed in Fig. 3.1, three questions must be 
addressed in order to predict speech intelligibility. (1) What are the most important 
cues for AV speech recognition that can be extracted from acoustic and visual speech 
signals? (2) How should one measure an individual’s ability to integrate auditory and 
visual cues separate and apart from their ability to recognize syllables, words, and 
sentences? (3) What are the most important non-signal-related “top-down” processes 
that contribute to individual variability in AV speech recognition? Because the top-
down influences on speech recognition are quite influential, early models of speech 
intelligibility and most models of AV speech intelligibility and integration limit the 
types of speech materials used to include mostly nonsense syllables (French and 
Steinberg 1947; Fletcher 1953). By imposing this limitation on the types of speech 
signals considered, the focus of the model becomes “bottom-up” and highly depen-
dent on the signal, room, and any equipment (e.g., radio, phone) that resides in the 
transmission path between the speaker and listener.
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Fig. 3.1  A schematic of the predominant sources of individual variability in auditory-only 
(A-only) and auditory-visual (AV) speech processing. Processing starts with the common assump-
tion of sensory independence during the early stages of processing. The integration module as a 
potential source of individual variability uses a model of optimal AV processing
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Figure 3.2A shows a typical outcome for A-only (dashed lines) and AV (solid 
lines) speech recognition of low-context sentences (red curves) and consonants 
(black curves) for NH young adults (after Grant and Braida 1991; Grant and Walden 
1996). For both sets of speech materials, performance was substantially better in the 
AV condition. At a SNR of −15 dB, the auditory signal was just audible, with per-
formance at zero percent correct for sentences and at chance level for consonants 
(i.e., 1/18 response options). AV keyword recognition scores at a SNR of −15 dB 
were roughly 10% correct for sentences. For consonant materials, however, the AV 
scores at −15 dB SNR were near 40% correct. As will be discussed below in 
Sect. 3.1.3, this can be explained by the fact that although speechreading alone can 
barely support word recognition, it can convey very accurate information about 
certain aspects of speech.

The original ANSI (1969) standard for calculating the AI included an overly 
simplistic graphical solution to predict the presumed benefit to intelligibility when 
visual speech cues are present (Fig. 3.2B). In the revised version of the AI known as 
the SII (ANSI 1997), the effective benefit of visual cues was formalized by a simple 
two-part equation, essentially mimicking the curve shown in the ANSI (1969) stan-
dard. An unmistakable conclusion one can draw from Fig. 3.2B is that the addition 
of visual cues to speech intelligibility was treated as an effective addition to the AI 
and that the same AV prediction would be made for a given level of A-only perfor-
mance regardless of the particular spectral characteristics of the speech signal and 
noise. In other words, the importance of different spectral regions for A-only intel-
ligibility was assumed to be the same for AV intelligibility.

We now know this assumption to be incorrect. HI listeners show dramatic ben-
efits from speechreading in cases with very little residual auditory function (Erber 
1972; Drullman and Smoorenburg 1997). Studies of NH listeners have allowed us to 
understand this phenomenon. When speechreading is combined with low-frequency, 
low-intelligibility auditory speech cues, the resulting benefits are enormous. Grant 
et al. (1985) found that even presenting a sparse acoustic representation of the speech 

Fig. 3.2  (A) Impact of noise on A-only (dashed lines) and AV (solid lines) speech perception for 
sentence recognition (red curves) and consonant recognition (black curves). (B) Relationship 
between calculated articulation index (AI) and “effective” AI when auditory cues are combined 
with speechreading (from American National Standards Institute [ANSI] 1969)
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cues located at these low frequencies was sufficient to generate large speechreading 
benefits on the order of 50 or more percentage points. Adding low-frequency speech 
signals dramatically sped up the ability to track connected discourse (by repeating 
back verbatim text read aloud), from 41 words per minute (wpm) for speechreading 
alone up to 86 wpm for AV speech (tracking rates for full bandwidth speech were 
108 wpm). Similarly, Rosen et al. (1981) showed that presenting only the acoustic 
voice-pitch information provided an 83% improvement in the rate of discourse track-
ing over speechreading alone. These extremely large increases in the ability to track 
AV speech when the low-frequency acoustic signals produced zero percent intelligi-
bility by themselves indicate that AV intelligibility does not completely depend on 
A-only intelligibility as suggested by the AI and SII. Instead, an accurate prediction 
of AV intelligibility requires an understanding of the information provided by the 
auditory and visual signals. In particular, Grant and Walden (1996) showed that the 
addition of visual cues enhances auditory speech perception for low-frequency stim-
uli much more than for high-frequency stimuli. As will be discussed in Sect. 3.1.3, 
this is because the visual signal and low-frequency auditory signals provide comple-
mentary information. The visual signal facilitates the differentiation of visible speech 
features generated at the lips (e.g., /ba/ vs. /ga/), whereas the low-frequency auditory 
signal facilitates the differentiation of invisible speech features generated in the back 
of the throat or at the larynx (i.e., /ba/ vs. /pa/).

In cases where A-only speech intelligibility is impacted by hearing loss and not 
just environmental conditions, the importance of speechreading in everyday com-
munication settings increases. Furthermore, when auditory and visual speech cues 
are integrated successfully, the improvement to speech intelligibility can be so large 
that the benefit from speechreading can even outweigh the benefit from a hearing 
aid. Walden et al. (2001) reported consonant-recognition data from 25 adults (mean 
age 66  years) with an acquired moderate-to-severe high-frequency sensorineural 
hearing loss. The benefit of visual cues compared with unaided listening was 
roughly 40 percentage points, whereas the benefit of amplification was only 30 
percentage points. (Although this experiment was conducted with older hearing-aid 
technology, the benefits of amplification for speech understanding in quiet are 
mostly unaffected by newer technological advances.) A small additional benefit was 
observed when hearing aids were combined with speechreading, although ceiling 
effects likely obscured some of the benefits from combining amplification and 
speechreading. The small difference between aided and unaided AV scores could 
conceivably contribute to the listener’s notion that the hearing aids were not that 
beneficial under typical AV conditions. In another example where the presence of 
visual speech might obscure the benefits of newer hearing-aid technologies, direc-
tional microphones for improving the SNR are a key feature of almost all modern 
hearing aids. When evaluated without visual cues, this feature can provide a sub-
stantial improvement in SNR (3–5 dB in indoor environments and 4–8 dB in out-
door environments; Killion et al. 1998). However, when evaluated with visual cues, 
the perceived and objective benefit of directional microphones can be greatly 
reduced (Wu and Bentler 2010). Thus, even if an advantageous hearing-aid feature 
is developed that proves to be very useful in an A-only listening situation, it is not 
guaranteed to be equally beneficial (or even noticed) in an AV listening situation.
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In summary, the studies of Grant et al. (1985), Grant and Walden (1996), and 
Walden et al. (2001) demonstrate two important concepts. First, the advantages for 
speech understanding provided by integrating auditory and visual speech cues are 
determined by a complex interaction among auditory and visual speech information 
as well as several important top-down influences. This means that AV speech-
reception performance cannot be predicted from A-only speech-reception perfor-
mance without an understanding of the information relayed by each modality and 
some assessment of information redundancy and complementarity. Second, the 
effects of hearing loss and hearing aids might be very different under AV and A-only 
conditions. The most commonly used hearing-aid fitting algorithms are based on 
maximizing model-predicted A-only speech intelligibility (e.g., Byrne et al. 2001). 
The fact that AV speech perception is likely to depend on hearing loss and hearing-aid 
features differently than A-only speech perception highlights the need for an AV 
model of speech intelligibility.

Because of the importance of visual cues for speech communication and the fact 
that speechreading and auditory cues interact in a nonadditive manner, studies mea-
suring the contribution of these cues to speech perception and theories of AV speech 
perception have become more common in the literature (see Summerfield 1987; 
Massaro 1998 for reviews). Furthermore, despite the obvious importance of speech 
communication for maintaining the health and fitness of elderly persons, little is 
known about the combined effects of hearing loss, visual acuity, and aging on AV 
speech recognition, making the task of developing an AV version of the AI that 
much more difficult. However, for the purposes of this chapter and in the spirit of 
the original AI, the first step of accurately modeling AV speech recognition for a NH 
population is the current focus, leaving aside for now the more complex questions 
related to sensory impairment and individual variability (hearing loss, aging, visual 
acuity, and cognitive decline).

3.1.3  �Speech-Feature Complementarity and the Relative 
Importance of Different Spectral Regions

How can an acoustic signal that generates near zero intelligibility on its own so 
dramatically improve speechreading performance? An important clue to under-
standing this synergy comes from research that has carefully analyzed the pattern of 
particular errors that listeners make in speech-recognition tests (Grant and Walden 
1996). These analyses show that some of most reliable information relayed by 
speechreading are surface features of the lips and tip of the tongue that help to dif-
ferentiate between certain consonants. For example, by speechreading alone, it is 
very easy to tell the difference between /bɑ/, /gɑ/, and /dɑ/, even though these tokens 
would often be confused in the case of A-only speech processing in a noisy situation 
or by listeners with hearing loss. In contrast, speechreading provides very little 
information regarding speech contrasts generated at the larynx. For example, visual 
representations of /bɑ/, /pɑ/, and/mɑ/ are often confused with one another. Although 
not usually enough to support high levels of intelligibility, being able to accurately 
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recognize these visual categories of contrast greatly reduces the number of possible 
choices when making a response. When combined with the right kind of comple-
mentary acoustic information, the integration of auditory and visual speech cues can 
lead to very high levels of speech intelligibility.

To illustrate the complementary nature of auditory and visual speech cues, it is 
useful to discuss the relative contributions of the speech signals in terms of their 
articulatory and phonetic distinctive features (voicing [e.g., /bɑ/ vs. /pɑ/], manner of 
articulation [e.g., /bɑ/ vs. /mɑ/] and place of articulation [e.g., /bɑ/vs. /gɑ/]). Briefly, 
place of articulation refers to the location within the vocal tract where the airflow 
has been maximally restricted. For example, the primary place of constriction for 
the consonant /mɑ/ is the lips. Place-of-articulation cues are often clearly visible in 
terms of lip and tongue-tip position. Acoustically, these dynamic high-frequency 
speech cues associated with the second and third formant transitions are considered 
to be fragile and easily corrupted by noise or hearing loss (Kewley-Port 1983; Reetz 
and Jongman 2011). Voicing cues mainly reflect the presence or absence of wave-
form periodicity or vocal-fold vibration. Taking place in the larynx, these cues are 
not visibly apparent. Acoustically, voicing is well represented in the low frequencies 
of speech and is marked by attributes such as voice-onset time and the trajectory of 
the first formant immediately following the consonant release (Reetz and Jongman 
2011). Manner of articulation refers to the way the speech articulators interact 
when producing speech. For example, for the consonant /s/, the tip of the tongue 
forms a narrow constriction with the alveolar ridge (gum line) just behind the teeth. 
The result of this constriction is a turbulent airflow that serves as the primary source 
of the sound, making /s/ a fricative. These three broad phonetic and articulatory 
features are not orthogonal, although each sound in English can be uniquely identi-
fied by a combination of place, manner, and voicing (e.g., /bɑ/ is classified as a 
voiced, bilabial, plosive; /sɑ/ is classified as a voiceless, alveolar, fricative).

Figure 3.3 illustrates how auditory and visual information interact across these 
three types of consonant feature. Each panel shows the percentage correct in identi-
fying a particular consonant feature under A-only and AV conditions (Grant and 
Walden 1996). Figure 3.3C shows that place-of-articulation information is readily 
available to the speechreader, is not affected by noise, and does not need auditory 
place cues to reach ceiling performance. In contrast, voicing information (Fig. 3.3A) 
is determined entirely by auditory cues with very little contribution from the visual 
speech signal. Figure 3.3B shows the results for manner of articulation and, at first 
glance, suggests that visual information is helpful for making consonantal manner 
determinations and combines with auditory cues as they become available with 
improving SNR. However, further analysis (not shown) suggests that this is due 
to the high degree of redundancy between place and manner cues for consonant 
identification. In other words, the score observed for manner information by 
speechreading alone is what one would predict by chance given 100% correct 
transmission-of-place information. Thus, for these consonant materials, speechread-
ing contributes almost exclusively to the reception of place information.

Grant and Walden (1996) also provided insight into how the complementarity of 
speech features (Fig. 3.3) translates into a complex interaction between speechreading 
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benefit and the spectral content of the speech signal. The AI makes the basic assumption 
that better A-only speech-reception performance will also result in better AV perfor-
mance (Fig. 3.2B). In contrast, when Grant and Walden examined the speechread-
ing benefit for filtered bands of speech, they found that the AV speech scores did not 
increase monotonically with A-only performance. Instead, speechreading benefit 
varied substantially depending on the filter bandwidth and center frequency, even 
for frequency bands that generated equal A-only performance. Twelve bandpass-
filter conditions were chosen to carefully control the A-only AI prediction while 
varying the bandwidth and center frequency of the filter. Figure 3.4A shows the 
results, with the A-only conditions (solid bars) arranged in ascending order based on 
percentage- correct consonant-identification scores. The AV speech-reception 
scores were only weakly correlated with A-only performance, demonstrating clear 
nonmonotonicity between A-only and AV speech recognition. The relationship 
between AV benefit and spectral region is clearly exemplified in the comparison 
between filter conditions 1 and 6. Whereas filter condition 6 (containing high-fre-
quency speech information) yielded a substantially higher A-only speech score, AV 
performance was substantially better in condition 1 (containing only low-frequency 
speech information). This pattern was observed repeatedly across filter-band condi-
tions (e.g., compare conditions 7 and 9 and conditions 10 and 12). (It should be 
noted that this same pattern of results holds whether the difference between AV and 

Fig. 3.3  A-only and AV 
feature transmission for 
consonant identification 
(Grant and Walden 1996). 
The information contained 
in the visual signal is 
derived by comparing 
A-only and AV 
performance for each 
feature. Visual cues 
contribute almost zero 
information regarding 
voicing (A), some manner 
information (B), and near 
perfect place-of-
articulation information 
(C)
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A-only speech scores are measured in terms of percentage correct or as relative 
benefit, taking into account how close to ceiling performance the A-only score might 
be; Sumby and Pollack 1954).

The results in Fig. 3.4A show that AV intelligibility was greater when the audible 
acoustic speech spectrum was dominated by low-frequency energy than when it was 
dominated by high-frequency energy. This suggests that the frequencies that are 
most important for speech understanding are very different under A-only conditions 
(mid-to-high frequencies; ANSI 1969) than under AV conditions (low frequencies). 
To investigate why low-frequency auditory information is so highly complementary 
with visual speechreading cues, Grant and Walden (1996) examined the relationship 
between an information analysis of consonant features (Miller and Nicely 1955) 
and the frequency dependence of the speechreading benefit (Fig. 3.4B). This analy-
sis clearly showed that the magnitude of the AI benefit due to the addition of visual 
cues was strongly correlated with the amount of voicing and manner of information 
transmitted for a given frequency band. Low-frequency conditions (e.g., bands 1, 2, 
3, 7, and 10) transmitted a great deal of voicing and manner information relative to 
the total amount of information contained in each band and generated the largest AI 
benefit. The reverse was true for high-frequency conditions (e.g., bands 6, 9, and 12). 
Comparable analyses of the visual-only (V-only) condition confirmed that the low-
frequency auditory bands were essentially complementary with speechreading while 
the high-frequency bands were mostly redundant with speechreading. In other words, 

Fig. 3.4  (A) Consonant recognition scores for A-only and AV filtered speech. Horizontal gray 
band between 30 and 40% correct reflects the range of speechreading-only scores. Ellipses high-
light two conditions (filter bands 1 and 6) representing a narrow low-frequency and a high-
frequency band, respectively. Note that although A-only performance is significantly greater for 
band 6 than for band 1, the AV score for high-frequency band 6 is much less than that for band 1, 
demonstrating nonmonotonicity between A-only and AV performance. (B) Visual benefit as pre-
dicted by the proportion of voicing plus manner-of-articulation information relative to the total 
amount of transmitted information for the 12 bandpass-filtered conditions tested. The greatest AV 
benefit occurs for filtered speech with a high concentration of low-frequency energy and a high 
relative transmission rate for voicing and manner information. From Grant and Walden (1996)
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the reason that visual speech cues provided such a large benefit when the auditory 
signal was limited to low frequencies is because voicing (and manner) information 
available at low frequencies was highly complementary to the place information 
provided by the visual signal. In contrast, the visual signal provided much less addi-
tional benefit for high-frequency stimuli because both modalities contributed largely 
redundant place information.

3.1.4  �Auditory-Visual Integration Efficiency

The integration of the auditory and visual modalities of speech information requires 
a neural process that combines the two inputs and hence could be susceptible to 
individual differences in integration efficiency (see Fig.  3.1). In fact, it is often 
assumed that if a particular stimulus condition demonstrates a large visual benefit to 
speech intelligibility, then the listener must have been able to integrate auditory and 
visual information with a high degree of efficiency (Sommers et al. 2005). However, 
as just demonstrated, the processes involved in integrating auditory and visual infor-
mation efficiently and the amount of AV benefit obtained compared to A-only or 
V-only intelligibility are distinctly different processes. As shown in Fig. 3.4, the 
amount of AV benefit observed is much more closely related to the spectral region 
of the acoustic speech signal than to the A-only or V-only recognition scores. Thus, 
the fact that one acoustic condition shows a much larger visual benefit than another 
could be because it provides access to very different auditory information and not 
necessarily because there is a problem integrating information across modalities. 
Stated another way, the fact that filter-band condition 6 demonstrated far less benefit 
than filter-band condition 1 (Fig. 3.4A) does not mean that AV integration was less 
efficient for filter-band 6. The question of integration efficiency can be specifically 
examined using a class of models of AV integration for consonant identification 
developed by Massaro (1987) and Braida (1991). These models take as input confu-
sion matrices that describe the speech information contained in separate auditory 
and visual speech signals (or for separate frequency bands of auditory speech sig-
nals). They then make an AV prediction based on the mutual information contained 
in the V-only and A-only conditions. Grant et  al. (2007) applied the modeling 
approach of Braida (1991), defining integration efficiency in terms of the ratio 
between the model prediction and the actual AV performance (or performance for 
combinations of auditory frequency bands). NH listeners were found to have nearly 
perfect integration efficiency both within and across modalities. HI listeners were 
found to have slightly reduced efficiency (although not significantly so) for combining 
auditory and visual speech information but significantly reduced efficiency for com-
bining auditory speech information across frequency bands. Similarly, Tye-Murray 
et al. (2007) found that HI adults do not exhibit a reduced ability to integrate audi-
tory and visual speech information relative to their age-matched, NH counterparts. 
Thus, HI listeners demonstrate greater difficulty integrating acoustic bands across 
the spectrum than they do integrating auditory and visual cues.
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3.1.5  �Auditory-Visual Asynchrony

Although the AV integration models of Massaro (1987) and Braida (1991) (and 
more generally of Alais and Burr, Chap. 2) can successfully account for the role of 
feature complementarity and redundancy in predicting AV speech intelligibility 
using probabilistic approaches such as fuzzy logic, multidimensional scaling, or 
maximum likelihood estimation, they each share an important shortcoming that pre-
vents their wider application in the tradition of AI, SII, or STI models. To apply any 
of these models to the problem of AV integration, the uncertainty contributed by 
each separate modality regarding the identity of a given speech token or speech 
feature must be determined. In tests of nonsense-syllable identification, confusion 
matrices for A-only and V-only (at a minimum) must be obtained before any predic-
tions of bimodal processing can take place (Massaro 1987; Braida 1991). Because 
these models as applied to speech identification require an abstraction of the auditory 
and visual speech information to phoneme labels before they are integrated, they cannot 
achieve what the AI methodology can accomplish by making speech-intelligibility 
predictions based on the physical properties of the speech signals alone.

Some clues for how one might accomplish the goal of a signal-based prediction 
of AV speech perception come from a number of studies that have examined how 
the temporal relationship between auditory and visual speech signals affects AV 
integration (see Fig. 3.5A). Studies have shown that AV integration does not require 
precise temporal alignment between A-only and V-only stimuli (e.g., McGrath and 
Summerfield 1985; Massaro et al. 1996). However, these studies also demonstrated 

Fig. 3.5  (A) Average AV keyword intelligibility (low-context IEEE sentences) as a function of AV 
asynchrony. There is a substantial plateau region between approximately −50 ms (audio leading) 
to +200 ms (audio lagging) where intelligibility scores are high relative to the A-alone (horizontal 
solid line) or V-alone (horizontal dashed line) conditions. Error bars are ±1 SD. (B) Average 
A-only sentence intelligibility (Texas Instruments/Massachusetts Institute of Technology [TIMIT] 
sentences; Garofolo et al. 1990, 1993) for synchronous and asynchronous presentations of one-
third octave, widely spaced auditory spectral slits. Unlike the AV condition, peak word-recognition 
performance in the A-only condition occurs when the different bandpass-filtered signals are pre-
sented synchronously and intelligibility falls off precipitously when any asynchrony is introduced 
across the spectral bands. From Grant et al. (2004)
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that the temporal windows of integration (TWI) over which AV interactions can 
successfully occur are very asymmetric, with much greater tolerance found for 
visual-leading than for visual-lagging conditions. For naturally produced “congru-
ent” speech, where the speaker’s articulations and speech sounds are matched, 
auditory-lagging misalignments of up to 200 ms are easily tolerated, whereas visual-
lagging misalignments greater than 20 ms lead to a breakdown in AV integration 
(Grant et al. 2004; Shahin et al. 2017). The asymmetry of the TWI favoring audio 
delays is consistent with the idea that for most speech utterances, the movement of 
the mouth begins before any sound is emitted. It has also been suggested that because 
visual speech information is available to the listener before the acoustic speech sig-
nal, it has the potential to facilitate language processing (e.g., lexical access) by 
allowing initial lexical pruning to proceed before any speech is heard (van Wassenhove 
et al. 2005, 2007). The fact that AV integration takes place over limited and multiple 
time windows suggests that bimodal speech processing is based on neural computa-
tions occurring at an earlier stage than a speech feature-based analysis.

In contrast to the long asymmetric temporal windows associated with AV inte-
gration, the TWI for combining information across acoustic frequency bands is both 
symmetric and narrow (see Fig. 3.5B). One interpretation of these data is that there 
are multiple time intervals over which speech is decoded in the auditory system. 
These include short-range analysis windows (1–40 ms), possibly reflecting various 
aspects of phonetic detail at the articulatory feature level (e.g., voicing); midrange 
analysis windows (40–120 ms), possibly reflecting segmental processing; and long-
range analysis windows (beyond 120 ms), possibly reflecting the importance of pro-
sodic cues, such as stress accent and syllable number, in the perception of running 
speech. The differences observed for cross-spectral (within modality) and cross-
modal integration are important considerations for models of intelligibility as they 
highlight the different timescales associated with processing fine structure (formant 
transitions), syllabicity, and intonation. The different time frames may also impli-
cate cortical asymmetries whereby left auditory areas process primarily short tem-
poral integration windows while the right hemisphere processes information from 
long integration windows (Poeppel 2003). Yet the fact that the auditory and visual 
signals must be at least somewhat temporally coherent (Fig. 3.5A) suggests that a 
model of AV speech perception based on the coherence of auditory and visual signals 
might better represent the underlying process of AV integration than a feature-based 
or intelligibility-based approach.

3.1.6  �Perception of Auditory-Visual Coherence 
and the Enhancement of the Auditory Speech Envelope

Another clue for how the auditory and visual speech signals might temporally inter-
act comes from a set of speech-detection experiments conducted by Grant and Seitz 
(2000) and Grant (2001). The goal of these experiments was to determine whether 
movements of the lips perceived during speechreading could be used to improve the 
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masked detection thresholds of congruent auditory signals. The basic idea used a 
variant of the comodulation masking-release paradigm (Hall et al. 1984), but in this 
coherence-protection paradigm (Gordon 1997, 2000), the audio speech target and 
visible movements of the lips were comodulated while the masker (e.g., speech-
shaped noise) was uncorrelated with the target speech signal. The fact that the 
movements of the lips were coherent with the audio speech envelopes should have 
helped to protect the target speech from being masked and therefore improve detec-
tion thresholds.

From a strictly psychophysical perspective, it is reasonable to assume that the 
correlation between lip movements and acoustic envelope would be useful in detect-
ing speech in noise and, further, that the greatest synergistic effects would be seen 
for sentences with the highest correlations. This is exactly what was found in studies 
by Grant and Seitz (2000) and Grant (2001). These studies showed a significant 
masking release for detecting spoken sentences (1–3 dB depending on the particular 
sentence) when simultaneous and congruent visual speech information was pro-
vided along with the wideband acoustic speech signal (Fig. 3.6, AVWB). Incongruent 
speech (not shown) had no effect and resulted in the same threshold as the A-only 
condition. Finally, knowing prior to each trial (by orthography; AVO) the content of 
the specific sentence to be detected had a mild positive influence (roughly 0.5 dB 
masking release) and was independent of which particular sentence was presented.

Critically, Grant (2001) showed that the degree of AV masking protection was 
related to the degree to which the auditory and visual signal envelopes were corre-
lated. Figure 3.7 shows the time-intensity waveform, amplitude envelopes, and area 
of mouth opening for the sentence “Watch the log float in the wide river” (similar 
relationships can be seen for almost any AV sentence with only minor variations in 
the results). The traces in Fig. 3.7A represent the envelope extracted from wideband 
(WB) speech and from the speech filtered into three different spectral bands repre-

Fig. 3.6  Difference in 
A-only and AV masked 
detection thresholds 
(masking protection) for 
spoken filtered sentences 
(Grant 2001). AVF1, AV 
visual presentation of 
speech filtered between 
100 and 800 Hz; AVF2, AV 
presentation of speech 
filtered between 800 and 
2200 Hz; AVWB, AV 
presentation of wideband 
speech (100–8500 Hz); 
AVO, auditory presentation 
of wideband speech 
preceded by visual 
orthography. Error bars 
show +1 SD
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senting the first (F1), second (F2), and third (F3) speech formants. These envelopes 
were clearly comodulated with the area of mouth opening extracted from the video 
image (Fig. 3.7B). However, the degree of correlation was largest for the acoustic 
envelopes derived from the higher frequency regions (F2 and F3) than for the 
F1 envelope. Grant (2001) found that WB speech or speech filtered into the F2 
(800–2200 Hz) region also produced substantially more masking protection (about 
2 dB on average) than for speech filtered into the F1 (100–800 Hz) region (less than 
1 dB; Fig. 3.6, AVF2, AVF1). Thus, as long as the speech signal contained energy in 
the F2 region associated with place of articulation, the addition of synchronized 
visual information from the face of the speaker provided significant masking protec-
tion and lower detection thresholds. Overall, these results showed that listeners used 
the visible modulations of the lips and jaw during speechreading to make auditory 
detection easier by informing them about the probable spectrotemporal structure of 
a near-threshold acoustic speech signal, especially with peak energy in the F2 fre-
quency range.

The temporal coherence of the acoustic and visual signals and the fact that the 
brain can make use of this temporal coherence to more easily detect the acoustic 
signal offer the possibility of analyzing the acoustic and visual signals within a 
single common mechanism of time-intensity envelope processing (see Lee, Maddox, 
and Bizley, Chap. 4). The fact that the modulation envelopes for speech of mid- to 
high-frequency auditory channels and the slowly time-varying visual kinematics of 

Fig. 3.7  (A) Waveform and amplitude envelopes extracted from wideband (WB) speech and from 
bandpass-filtered speech with filters centered at the F1 (100–800 Hz), F2 (800–2200 Hz), and F3 
(2200–8500 Hz) formant regions. RMS, root-mean-square. (B) Amplitude envelope of the kine-
matic lip movements over time during speech production. The correlation between acoustic enve-
lope and visual movement (area of mouth opening) was greatest for the envelope in the F2 region 
(0.65) and weakest in the F1 region (0.49). From Grant (2001)
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the speaker’s face (e.g., area of mouth opening over time) are strongly correlated 
with one another provides a mechanism for combining the auditory and visual 
inputs directly at the physical signal level without requiring lengthy and costly 
behavioral experimentation. Section 3.2 describes efforts toward the development 
of a signal-based model of AV speech perception that makes predictions based on 
(1) the coherence between the auditory and visual signals over long temporal win-
dows of integration, (2) greater AV benefit relative to A-only speech recognition at 
poorer SNRs, and (3) greater correlation between visual kinematics and the acoustic 
envelopes in the higher speech frequencies.

3.2  �Modeling Auditory-Visual Speech Intelligibility

A model of AV speech perception based on the temporal coherence of the auditory 
and visual modalities necessarily requires an analysis of the temporal modulations 
of speech across the frequency spectrum. In this regard, the model would share 
many characteristics of the STI (Steeneken and Houtgast 2002), a model that takes 
into account the degree of modulation degradation as a result of noise, reverbera-
tion, or hearing loss. By considering the dynamics of the visual speech signal as 
additional modulation channels that can be used to reduce some of the deleterious 
effects of noise and reverberation, this approach can be easily expanded to include 
the influence of speechreading on speech intelligibility.

Grant et  al. (2008, 2013) described a signal-based AV speech-intelligibility 
model that considered both auditory and visual dynamic inputs, combining them at 
the level of the speech envelopes to generate a prediction of AV speech intelligibility 
in noise. The basic premise was that the brain can use the visual input signals to help 
reconstruct the temporal modulations inherent in the “clean” auditory signal (minus 
noise or reverberation) based on a priori knowledge of the relationship between 
facial kinematics and the temporal envelopes of the audio speech signal. This 
approach was inspired by the engineering applications of Girin et al. (2001) and 
Berthommier (2004) showing that a video signal of the talker’s face could be used 
to enhance a noise-corrupted audio speech signal.

Grant et al. (2008, 2013) used a biologically inspired auditory spectrotemporal 
modulation index (STMI) model (Elhilali et  al. 2003) to make A-only and AV 
speech-intelligibility predictions. Like the STI, the STMI bases its predictions on 
analysis of the critical modulations present in the speech signal. However, the STMI 
includes an additional dimension, spectral modulation, which is critical to the pre-
diction of the effects of spectral smearing caused, for example, by the reduced fre-
quency selectivity associated with hearing loss (Bernstein et al. 2013). The model 
(Fig. 3.8) consisted of three main stages: (1) a “peripheral” stage that processed 
the acoustic waveform into frequency bands and derived the envelope in each band, 
(2) a “cortical” stage that processed the resulting envelopes to derive the modulation 
spectra, and (3) an “evaluation” phase that compared the resulting spectrotemporal 
modulation profile of speech presented in noise with the profile associated with 
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clean speech (“comparison to speech templates” in Fig. 3.8). To extend the STMI 
model to include visual modulation channels, the model also included an “AV 
enhancement” component that cleaned up the noisy acoustic speech envelopes 
based on a priori knowledge about the relationship between the auditory and visual 
stimuli.

An example of the output of the peripheral stage of the model for an acoustic 
speech signal presented in speech-shaped noise is shown in Fig. 3.9A. Each individual 
curve represents a different SNR condition. As the SNR increased, the correlation 
between the envelope of the speech-plus-noise signal and the clean (speech-in-quiet) 
signal in each spectral band became greater, ultimately reaching a correlation coeffi-
cient of 1.0 (no noise or reverberation). These correlations were reflected in the output 
of the STMI model: with increasing SNR, as the spectral and temporal modulations of 
the speech-plus-noise envelopes began to resemble the modulations in the “clean” 
speech envelope, the model predicted an increase in speech intelligibility (Fig. 3.10). 
To model AV interaction, the visual enhancement was carried out based on dynamic 
measurements of the two-dimensional positions of 14 reference points on the talk-
er’s face made using an OPTOTRAK camera (Fig. 3.8, video data). The 28 resulting 
visual waveforms (x- and y-coordinates for each transmitter), along with the speech-
in-noise envelopes from each frequency channel (cochlear filter), were input as pre-
dictor variables into a linear-regression model to predict the clean-speech envelope 
in each of 136 peripheral frequency bands.

Fig. 3.8  Schematic of the expanded AV-spectrotemporal modulation index (STMI) model show-
ing the inclusion of visual speech-movement envelopes to enhance the outputs of each auditory 
channel. The enhanced AV envelope channels were then processed by the cortical model and com-
pared with “clean” speech templates to make the final AV speech-intelligibility estimate. SNR 
signal-to-noise ratio
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Figure 3.9B shows the correlations between the enhanced speech envelopes 
(based on the speech-in-noise envelope for each channel and the visual inputs) and 
the clean-speech envelopes. As in Fig. 3.9A, the correlations generally increased 
with increasing SNR because the speech-in-noise envelopes became more like the 
clean-speech envelopes. However, for the AV model, the correlation with the SNR 

Fig. 3.9  (A) Correlation between clean and noisy acoustic speech envelopes for 136 peripheral 
auditory channels with center frequencies between 125 and 8000  Hz. The speech materials 
consisted of spoken IEEE sentences. The parameter is the SNR for the A-only speech signal. 
(B) Same as (A) except that the speech envelopes were enhanced using visual speech kinematics 
derived from 14 optical sensors positioned around the lips, cheeks, and chin of the speaker. From 
Grant et al. (2013)

Fig. 3.10  Predicted AV (solid line) and A-only (dashed line) intelligibility based on the visually 
enhanced STMI model. Circles, intelligibility data measured in normal-hearing listeners Error bars 
are ±1 SD from model estimates for a list of IEEE sentences processed at each SNR tested
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was considerably higher, especially for low-SNR conditions, than in the A-only 
case (Fig. 3.9A). This is because the visual speech motion information also contrib-
uted to the prediction of the speech envelope. In fact, the AV correlations never 
decreased below the A-only values obtained for an SNR of approximately −6 dB. At 
very low SNRs (i.e., −12 and −18 dB), the speech-in-noise acoustic envelopes con-
tained virtually no target speech information, and the prediction was based purely 
on the visual inputs. Thus, the predicted speech intelligibility was never poorer than 
that based on the visual channels alone.

By comparing the two panels in Fig. 3.9, it can be seen that the model accounted 
for the frequency dependence of the AV enhancement similar to what has been 
observed in perceptual studies (e.g., Grant and Walden 1996). At low frequencies, 
there was a relatively small difference between the correlations for A-only speech 
(Fig. 3.9A) and the correlations for AV speech (Fig. 3.9B), meaning that the model 
showed relatively little visual enhancement to the auditory envelopes when the 
low-frequency auditory information was corrupted. This is because the visual sig-
nal was relatively uninformative (complementary information) about acoustic 
speech information in this frequency region. In contrast, at high frequencies where 
the visual signal was predictive of the auditory envelope (redundant information), 
the visual signal more dramatically enhanced the resulting correlation, meaning 
that the model showed a large enhancement when high-frequency auditory infor-
mation was corrupted.

Once the noisy-speech envelopes were enhanced using the temporal dynamics of 
the visual speech signal to more closely resemble the clean auditory speech enve-
lopes, the cortical and evaluation stages of the model were carried out just as if the 
envelopes had been generated in the purely acoustic domain but now predicted a 
higher level of speech intelligibility because the peripheral envelopes more closely 
resembled clean speech. Figure 3.10 plots the model-predicted speech-intelligibility 
scores (solid and dashed curves) against the speech-intelligibility scores for sen-
tence materials presented to NH adults (closed and open circles) in speech-shaped 
noise. The model captured the increase in intelligibility provided by the visual sig-
nal as well as the diminishing visual benefit associated with higher SNRs.

The key advantage of this signal-based approach to modeling AV speech intelli-
gibility is that it could successfully account for important aspects of AV speech 
perception (cf. Sect. 3.1) that traditional models cannot achieve. Although Fig. 3.10 
shows that this model captured some of the key features of the relationship between 
AV benefit and SNR, this is not the same as demonstrating that the model represents 
an improvement in the ability to predict AV speech intelligibility. In fact, the AI and 
SII models also predict a contribution of the visual component decreasing with SNR 
(Fig. 3.2). What this model accomplished beyond the traditional models is (1) the 
ability to predict AV speech intelligibility based on physical measurements of the 
speech and noise signal (like the AI, SII, and STI) without requiring a feature-based 
analysis of auditory- and visual-cue redundancy or an information analysis of 
A-only and V-only consonant confusions; and (2) an ability to account for spectral 
interactions when predicting AV speech perception (Fig. 3.9). The model also has 
the potential to account for AV synchrony effects, although that was not investigated 
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here. Specifically, the imperviousness of the AV benefit to temporal misalignment 
(Fig.  3.5) could be modeled by computing a cross-correlation and choosing the 
delay in each channel that produces the maximum cross-correlation, while adhering 
to the characteristics of the AV temporal integration window.

3.3  �Future Challenges

3.3.1  �Complex Auditory Backgrounds

All the AV speech-intelligibility phenomena and modeling (cf. Sects. 3.1 and 3.2) 
deal with the simple case of NH listeners presented with speech in stationary back-
ground noise or filtered speech. In everyday environments, listening situations are 
much more complex, involving, for example, speech maskers, modulated noise, and 
spatial separation between target and masker. Although standard speech-
intelligibility models (e.g., AI, SII, STI) do not generally address these complex 
factors, even in A-only situations, substantial research has taken place to understand 
how these factors influence speech perception in everyday environments. As a 
result, steps have been taken to incorporate some of these effects into models of 
auditory speech perception. For example, Rhebergen and Versfeld (2005) and 
Rhebergen et al. (2006) modified the SII to allow for predictions of speech intelligi-
bility in modulated-noise backgrounds.

Despite the advances made in understanding the complex factors that influence 
A-only speech perception, relatively little is known about how visual cues interact 
with spatial cues, variability in masker type, or hearing loss. There have been a 
handful of studies investigating some of these interactions. For example, Helfer and 
Freyman (2005) have shown that visual cues can provide an important grouping cue 
for auditory-scene analysis in multitalker settings, with AV coherence providing the 
listener with information to perceptually segregate the speech produced by the tar-
get talker of interest from a concurrent interfering talker. Bernstein and Grant (2009) 
found little interaction between hearing loss and the influence of visual cues for 
speech perception in complex backgrounds. Together, these results suggest that the 
effects of hearing loss and visual benefit can be modeled independently, but the 
interaction between the availability of visual information and the perceptual separa-
tion of concurrent talkers is likely more complex.

3.3.2  �Individual Differences: Hearing Acuity, Visual Acuity, 
and Integration Efficiency

Several attempts have been made to model the effects of hearing impairment on 
speech intelligibility (e.g., Bernstein et  al. 2013; Bruce 2017). In most of these 
attempts, only the effects of reduced audibility have been modeled. Individual 
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differences in spectral and temporal resolution, central auditory processing, and 
cognitive processing (e.g., working memory, speed of processing, attention allocation), 
each known to be important for speech intelligibility and understanding, remain a 
significant challenge (but see Bernstein et al. 2013).

Another area of AV speech perception that would need to be incorporated into any 
comprehensive model involves degradation in the visual domain due to vision loss 
(Hardick et al. 1970). Although typical age-related vision loss does not eliminate the 
visual speech-intelligibility benefit (Hickson et al. 2004), blurred vision can reduce 
the effect (Legault et al. 2010). Evidence from earlier studies suggests that speechread-
ing performance significantly declines with age, especially for those over 70 years 
old (Shoop and Binnie 1979; Middelweerd and Plomp 1987). Although the reasons 
for this decline are not fully understood, it has been suggested that reductions in 
peripheral visual acuity and motion perception associated with aging may play a 
role. Unfortunately, there are very few studies that have examined the relationship 
between overall speechreading ability, individual differences in the transmission of 
visual place-of-articulation information, and visual acuity. Therefore, if the goal is to 
predict AV speech intelligibility as well as individual differences in AV processing 
due to hearing and vision loss, basic tests of auditory and visual function will have to 
be incorporated into the modeling efforts.

Finally, there is the possibility that some individuals are better able than others to 
integrate auditory and visual information. As discussed in Sect. 3.1.4, although 
many of the differences in AV benefit observed by HI listeners can be ascribed to an 
impoverished auditory signal, there was at least some evidence that certain indi-
viduals might also have had a particular deficit in the ability to integrate speech 
information from the two modalities (Grant et al. 2007). To the extent that individ-
ual variability in integration efficiency exists, this factor would also need to be 
included in an individual-specific model of AV speech perception.

3.4  �Summary

Signal-based models of speech perception are critically important for the design and 
evaluation of audio systems and hearing-rehabilitation devices. Models such as the 
AI, SII, and STI have undergone decades of development and scrutiny and are 
mostly successful in predicting average speech intelligibility for acoustic signals 
under a variety of conditions. Yet more than half of speech communication takes 
place in face-to-face situation where the listener is looking at the talker and has 
access to visual speech cues (Walden et  al. 2004). It is clear that the simplistic 
approach in the manner in which that these models predict AV speech intelligibility, 
assuming that the speechreading benefit to auditory speech intelligibility can be 
modeled as a simple additive factor, is incorrect. Thus, these extant models are 
inadequate for predicting AV speech intelligibility for a given audio input signal, 
transducer, and hearing loss.
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Section 3.1 reviewed several important phenomena associated with AV speech 
perception that highlight the complex interaction between these modalities that any 
model would need to take into account. In particular, it was shown that the amount 
of speechreading benefit depends dramatically on the spectral content of the speech 
signal (Grant et al. 1985; Grant and Walden 1996). This interaction can be under-
stood in terms of the complementary or redundant nature of the speech features 
provided by the visual and acoustic speech cues (Grant and Walden 1996). Although 
extant models of speech-feature integration proposed by Massaro (1987) and Braida 
(1991) do a good job predicting AV speech recognition for nonsense syllables, they 
cannot predict sentence or connected discourse performance and require significant 
time and effort to obtain unimodal perceptual confusion-matrix data. Other impor-
tant aspects of AV speech perception that the simple additive models cannot 
account for include a limited tolerance to temporal asynchrony within a range of 
−20 ms (audio leading) to +200 ms (audio lagging) (Grant et al. 2004; Shahin et al. 
2017) and the possibility of individual variability in AV integration efficiency 
(Grant et al. 2007).

Section 3.2 described a signal-based modeling approach to predicting AV speech 
perception. One of the greatest obstacles to developing a model of AV speech per-
ception has been the centuries-old tradition of treating sensory modalities as inde-
pendent receivers of information, combined at an abstract linguistic level. However, 
physiological data showing the existence of multimodal neurons that only fire when 
certain temporal constraints across inputs from different sensory modalities are met 
suggest a different story. In fact, listeners are sensitive to coherence in the modula-
tion of the acoustic envelope and the temporal dynamics of lip movements (Grant 
and Seitz 2000; Grant 2001), providing a clue for how AV speech performance 
might be predicted from the physical properties of the visual and acoustic signals. 
In the model, visual speech motion was used to help reconstruct and enhance cor-
rupted auditory speech-envelope information from different frequency channels 
into envelopes that more closely resemble those from clean speech. This approach 
was shown to be consistent with experimental evidence that the visual signal is best 
able to stand in for corrupted acoustic speech information in the mid-to-high speech 
frequencies associated with F2 and F3 transitions (place-of-articulation informa-
tion). Although work remains to integrate other important known aspects of AV 
speech processing (e.g., tolerance to asynchrony, individual variation in visual or 
hearing acuity, and integration efficiency), this approach represents an important 
step toward the development of a signal-based AV speech-perception model in the 
spirit of the AI, SII, and STI.
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