
Chapter 7
The Height Datum Problem

7.1 Outline

Normal and orthometric heights are among the most widespread height coordinate
systems in use for geodetic purposes. Yet in principle they can be determined only by
ground gravimetric measurements combined with levelling so that W (P) becomes
available. Nevertheless, what the above measurements can really provide are at most
potential differences,W (P0) − W (P), for instance with respect to an origin point P0
of which however the absolute valueW (P0) is unknown.When P0 is a tide gauge, we

know that we can assume W (P0) ∼ W0 with an error δW0 such that
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∣

δW0

γ

∣
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∣
< 2m

(cfr. Sect. 4.6); when P0 is a point of known ellipsoidal height, e.g. aGNSSpermanent

station,we can always assume thath∗ ∼= h̃∗ = h − Tb
γ
, whereTb is someglobalmodel

that has been computed with biases and so it has an error which however is almost
surely included in the above range.

In oceanic areas the information from radar altimetry and oceanography can be
transformed into potential and gravity, yet biases seem to be pervasive and we can

only say, after linearization and inversion, that we know �g + γ′

γ
δW , with the bias

δW unknown for large portions of ocean where altimetric tracks can be readjusted
at the crossovers (see Sansò and Sideris 2013, Chap. 9).

All in all we can say that instead of knowing W (P), with known horizontal
coordinates of P, σP = (λP,ϕP), we rather have the information

C̃k (P) = W (P0k) − W (P) = W0k − W (P) , (7.1)

which is valid for an area Ak where levelling on land, or track adjustment on ocean,
are well connected to some origin P0k .

Assuming for the sake of simplicity that P0k is in any way close to the sea surface,
we could say that in Ak we have the approximate potential
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W̃ (P) = W0 − C̃k (P) = W0 − W (P0k) + W (P) ≡ δW0k + W (P) P ∈ Ak ; (7.2)

so δW0k has the meaning of the bias of the known W̃ (P) in the area Ak . Putting
together all the areas Ak , that we assume to cover the whole Earth sphere, we can
represent our data as an approximate potential

W̃ (P) = W (P) + δW (P) , (7.3)

where

δW (P) =
K
∑

k=1

δW0k χk (P) (7.4)

and

χk (P) =
{

1 P ∈ Ak

0 P /∈ Ak
. (7.5)

At this point we do not have anymore the telluroid S∗, i.e. we are not able to
compute h∗

P by solving (4.80), but we can only put

W̃ (P) = W (σ, hσ) + δW (σ) = U
(

σ, h̃∗
σ

)

, (7.6)

so deriving an approximate, or biased, telluroid S̃ = {

h = h̃∗
σ

}

, such that

DW = W − W̃ = −δW (σ) �= 0 . (7.7)

Accordingly, following the same linearization process as in Sect. 4.7 and recalling
(4.78), we arrive at a BVP for the unknown anomalous potential T of the form

⎧

⎪⎪⎨

⎪⎪⎩

�T = 0 in �̃

−T ′ + γ′

γ
T

∣
∣
∣
∣
S̃

= Dg − γ′

γ
δW on S̃

T = O (
1
r3
)

. (7.8)

Notice that Dg = g (P) − γ
(

h̃∗) is as a matter of fact what we can compute from
gravimetry and the known approximate telluroid S̃.

As we can see, (7.8) contains the K unknown parameters {δW0k}, so that we can
arrive to determine T and {δW0k} only by means of additional information; we will
see in the chapter that this can be provided by points P where both h̃∗

P and hP are
known, to be precise at least one point per patch Ak , although knowing more can
indeed improve the accuracy of the solution.

Let us note that, once {δW0k} are known, the potential W (P) can be retrieved by

W (P) = W̃ (P) − δW (P)
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and, since T is also known now without biases, we can return to compute all the
transformations already studied in Chap. 5.

The solution of (7.8) is called the unification of the height datum problem, or
more precisely, of the global height datum problem. In fact, if we consider as “height
datum” the equipotential surface used as origin of orthometric heights, namely the

geoid, we see that
δW (P)

γ
can be interpreted as the separation between S̃, which is

composed by pieces of equipotential surfaces passing through P0k , and the geoid,
where W (P) attains the value W0. So knowing δW0k means also to be able to trans-
form local orthometric heights, referred to the equipotential through P0k , into true
orthometric heights, referred to the geoid.

An important point in the application of the above theory is that, when many
points of known ellipsoidal height are present in the same patch Ak , one is led to use
a least-squares adjustment to best estimate the {δW0k}. However this requires that the
covariance structure of the observations is known. This is particularly complicated
for the oceanic areas where data have undergone a deep transformation process. On
the other hand, we have already observed at the end of Sect. 4.7 that local models of
T are available on continental areas with an overall error r.m.s. at centimetric level in
geoid, in the area A of interest. This introduces the possibility of adjusting δW0k for
limited areas only, particularly continental areas, avoiding the problem of assigning
a stochastic structure to the data in the ocean.

The whole subject of the unification of the height datum is still object of research
and not completely assessed. So, in this chapter we aim at presenting the theory and
evaluating the error budget with the purpose of demonstrating its feasibility. Some
numerical examples, simulated or realistic, are also presented.

7.2 Formulation of the Global Unification of the Height
Datum

As explained in the previous section, this problem is a combination of the solution of
a GBVP with unknown additional parameters, {δW0k}, and a set of additional data,
corresponding to points Pi (at least one per patch Ak ) where the ellipsoidal height
hi = h (Pi) has been observed.

As for the GBVP part, this has already been discussed in Sect. 7.1, leading to
the formulation (7.8). Here we underline only that we know from the discussion of
Sect. 4.7 that a linear solving operator exists, such that (7.8) can be written as

T = S̃
(

Dg − γ′

γ
δW

)

= S̃ (Dg) − S̃
(

γ′

γ
δW

)

; (7.9)

note that here the tilde stems from the fact that we solve with respect to the approx-
imate surface S̃. Let us observe that the operator S̃ is well defined when acting on
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functions in L2σ; this is the case in (7.9), also for the second term in the right hand
side, because δW as a piecewise constant function is certainly in L2σ .

In this section we develop the theory as if the global model S̃ (Dg)would be really
available, given that Dg is the only “observable” quantity at ground level available to
us. Actually this is not the case with existing global models, in particular EGM2008.
In fact space geodetic techniques, especially in the last two decades with the satellite
gravimetry/gradiometry missions CHAMP, GRACE and GOCE, have provided an
independent and direct information on the low degrees of the harmonic coefficients
of T (P); however this issue will be treated separately in the next section.

So we assume to know a biased anomalous potential

Tb (P) = S̃ (Dg) . (7.10)

Subsequently, introducing (7.4) into (7.9), we arrive at the equation

T (P) = Tb (P) −
K
∑

k=1

δW0k S̃
(

γ′

γ
χk

)

, (7.11)

with Tb (P) known by hypothesis; for later use we can put Fk (P) = S̃
(

γ′

γ
χk

)

, so

that (7.11) is rewritten as

T (P) = Tb (P) −
K
∑

k=1

δW0k Fk (P) . (7.12)

Let us consider now the observed {h (Pi)}, Pi ∈ Ak ; recalling (7.2), we can write

W̃ (Pi) = δW0k + W (Pi) = δW0k +U (hi) + T (Pi) Pi ∈ Ak . (7.13)

On the other hand we have, according to (7.6),

W̃ (Pi) = U
(

h̃∗
i

)

(7.14)

and indeed h̃∗
i = h̃∗ (Pi) is known by hypothesis too. The practical situation is that,

if Pi is a geodetic space station, this is connected to the local levelling line, so that
h̃∗
i is directly known. Putting (7.13) and (7.14) together gives

U (hi) −U
(

h̃∗
i

) = −T (Pi) − δW0k ,

which, linearized with respect to hi − h̃∗
i , yields

hi − h̃∗
i = T

γ
+ δW0k

γ
. (7.15)
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Notice that, as customary, in (7.15) we do not write explicitly where to compute
T and γ, because choosing either hi or h̃∗

i , in the right hand side of this relation,
produces only second order variations. Finally, introducing (7.12) into (7.15), we
find

hi − h̃∗
i = Tb (Pi)

γ
− 1

γ

K
∑

j=1

δW0j Fj (Pi) + δW0k

γ
Pi ∈ Ak . (7.16)

As we see if we complement (7.16) with the proper error models for hi, h̃∗
i and

Tb (Pi), we have reduced the solution of our unification problem to that of a least-
squares system.

Note should be taken that the functions Fj (P) are generally small outside Aj,
so (7.16) could become badly conditioned if one of the patches would be void of
points Pi where hi is known, as already stated before. It has to be stressed too that
indeed the system (7.16) should be solved for all Pi in all patches together. This
raises the question of how complicated could be the covariance matrix of (7.16).
Even if one could reasonably assume (though not strictly) the errors of hi and h̃∗

i
to be independent, the same could not be true for the errors in the model Tb (P);
in fact, even if the gravity observations could be considered as being affected by
independent measuring errors, the model is derived by solving the BVP, roughly by
Stokes integration, and so it is expected to have a geographical correlation pattern.
Not to be said, a correlation between the errors of h̃∗

i and Tb, as both are derived from
Dg, should also be taken into account. Yet a simplification of the stochastic model,
even a drastic one, would be acceptable in view of the large number of stations {Pi}
that are generally available for each patch.

Nevertheless the weak point of the approach expressed by (7.16) is in the assump-
tion that Tb (P) is known. As a matter of fact, even the previous Earth models have
always used the knowledge of low degrees coefficients of T (P) from space geode-
tic observations (see for instance the paper by Rapp (1989) concerning the OSU86
model, complete up to degree and order 360). This creates models such that typi-
cally combine unbiased low degrees, derived from satellite observations, with biased
gravity anomalies from ground data.

The problem will be more closely analyzed into the next sections at both local
and global level.

7.3 On the Solution of the Unification Problem
by a Suitable Global Model

The target of the section is to prove, by means of a careful but conservative error
budget analysis, that already today we have global models that directly used in (7.15)
provide us equations with errors below the 5cm level. Since we can use several such
equations for each δW0k , we deem it reasonable to estimate such parameters with
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errors, in terms of geoid, i.e. of
δW0k

γ
, of very few centimeters, at least in a global

mean square sense. To go along this way we make beforehand two remarks.
The first is that we can free our problem from many mathematical complications

if we can state a priori that all our harmonic functions can be expressed as a sum of
spherical harmonics up to some finite maximum degree M ; in our case M will be
taken at the level of 2159, as the maximum degree of EGM2008.

This choice is justified by the following reasoning. Taking into consideration the
discussion in Sect. 4.4, we start recalling the definition of full power degree variances
Cn, namely

Cn =
n
∑

m=−n

T 2
nm ≡ 1

4π

∫
[

n
∑

m=−n

Tnm Ynm (σ)

]2

dσ . (7.17)

The plot of (7.17) for the EGM2008model has been already displayed in Fig. 4.1.
Because of their quite regular behaviour, Cn can be interpolated by some simple
analytic expression. An exercise of this kind has been done by several authors with
comparable results. The model that one can find in Sansò and Sideris (2013) has
been computed by adapting to the empirical data the function

Cn = Aqn

(n − 1) (n − 2) (n + 4) (n + 17)
. (7.18)

A good matching, using only empirical values up to degree 1800, is obtained with

A =
(μ

R

)2
3.9 · 10−5 , q = 0.999443 .

Other authors (for example Hirt and Kuhn 2012) obtain slightly different values
using all the empirical data; yet this does not change the order of magnitude of our
guess. In fact adding our Cn given by (7.18) from 2160 up to 10000, we have an idea
of the magnitude of the squared norm of the omitted part of T . More precisely we
have the so called omission error, OE (T ), forM = 2159 given by

OE2160 (T ) =
⎧

⎨

⎩

1

4π

∫
[ +∞
∑

n=2160

n
∑

m=−n

Tnm Ynm (σ)

]2

dσ

⎫

⎬

⎭

1
2

=

=
+∞
∑

n=2160

Cn
∼=

10000
∑

n=2160

Cn
∼= 0.6 cm γ , (7.19)

i.e. this omission error in terms of geoid is globally well below the centimeter value.
Indeed it is clear that this does not prevent us to have a value of some centimeters in
some places on the Earth surface; however this seems compatible with the target of
this section.
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So we shall accept the above assumption. Then we claim that, neglecting second
order terms, we have

Dg + γ′

γ
δW

∣
∣
∣
∣
S̃

∼= �g|S∗ , (7.20)

with S∗ the ordinary Marussi telluroid (see (4.80), (4.81)) and S̃ the approximate
telluroid defined by (7.14).

The relation (7.20) is proved by the following calculation

Dg
(

h̃∗)+ γ′

γ
δW

(

h̃∗) = g − γ
(

h̃∗)+ γ′

γ

[

W −U
(

h̃∗)] =

= g − γ
(

h∗)+ γ
(

h∗)− γ
(

h̃∗)+ γ′

γ

[

U
(

h∗)−U
(

h̃∗)] =

= �g
(

h∗)+ γ′ (h∗ − h̃∗)+ γ′

γ

[−γ
(

h∗ − h̃∗)] = �g
(

h∗) .

We would like to acknowledge that this complies with a personal communication
of T. Krarup to one of the authors.

A consequence of this remark is that, since the solution of the GBVP is unique,

solving such a problemwith known term�g on S∗ or with Dg + γ′

γ
DW on S̃ should

give the same result in the linear approximation.Concisely, introducing the two solver
operators S∗ and S̃, the former referring to the GBVP with S∗ as boundary, the latter
to the same problem with S̃ as boundary, we can claim that

T ∼= S∗ (�g) ∼= S̃
(

Dg + γ′

γ
DW

)

. (7.21)

Now we are ready to introduce our simple minded global model T̃ . We started by
observing that we have available satellite-only models combining data from satellite
geodesy of different missions, particularly the models derived by the three gravi-
metric/grodiometric missions CHAMP, GRACE and GOCE (Reigber et al. 2004;
Tapley et al. 2004; Pail et al. 2011). Specifically we shall refer to the GOCO model
TG (Pail et al. 2010; Mayer-Gürr et al. 2015) up to degree and order 200, a level at
which the cumulated error for the estimate of the coefficients becomes larger than
the magnitude of the coefficients themselves, expressed by their degree variances
Cn. So up to degree 200 we follow TG, knowing that

TG = T200 + εG (7.22)

with
1

γ
σ
(

TG) = 1

γ
σ
(

εG
) ∼= 2 cm , (7.23)
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as it results from the estimates of the degree standard deviations provided with
the model. The quantity σ

(

εG
)

in (7.23) is called the commission error CE (εG)
(see (4.40)).

We strengthen again that if we introduce the projection operatorPL that cuts every
harmonic function at the degree L, i.e. for M > L

PL

(
M
∑

n=2

unm

(
R

r

)n+1

Ynm (σ)

)

=
L
∑

n=2

unm

(
R

r

)n+1

Ynm (σ) , (7.24)

then indeed, with L = 200, we have

PL T
G ≡ TG , (7.25)

so that (7.22) more precisely reads

TG = PL T + εG . (7.26)

Moreover the explicit interpretation of (7.23) is

1

γ
σ
(

εG
) = 1

γ

[

E

(
1

4π

∫
(

εG
)2
dσ

)] 1
2

,

where the expectation E is taken on the stochastic structure of εG.
We assume that the information contained in TG is better than the corresponding

informationon the lowdegrees contained in theEGM2008modelTE.On the contrary,
for degrees higher than 200 the only global information (in reality up to degree 2159)
we have is contained in TE, so we will take it as it is. Therefore we propose to create
a kind of “Frankenstein model” according to

T̃ = TG + (I − PL)T
E . (7.27)

We note however that TE has been computed from ground data, at least in the
range of degrees higher than 200, and so it is affected by a bias because it could only
be computed from the observations Dg0 on the approximate telluroid S̃. In other
words

(I − PL)T
E = (I − PL) S̃ (Dg0) . (7.28)

Indeed Dg0 is affected by some noise εg that propagates to the solution

S̃ (Dg0) = S̃ (Dg + εg) = S̃ (Dg) + εE . (7.29)

This εE is what in literature is called the commission error CE (εE) of the model,
and it is clear from our reasoning that εE has a maximum degree equal to 2159 too.
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With such specifications, (7.27) reads

T̃ = PL T + εG + (I − PL) S̃ (Dg) + (I − PL) εE . (7.30)

Also for εE we have estimates that come together with the model TE; the number
cumulating all the errors between degree 200 and 2159 is

CE (εE) = E

[
1

4π

∫
[

(I − PL) εE
]2
dσ

] 1
2

= 3.6 cm . (7.31)

If we write the analogous of (7.30) for T , also taking into account (7.21), we see
that

T = PL T + (I − PL)S∗ (�g) =
= PL T + (I − PL) S̃ (Dg) + (I − PL) S̃

(
γ′

γ
δW

)

. (7.32)

Comparing (7.32) and (7.30), we find the total estimation error of T̃ , namely

T̃ − T = εG + (I − PL) εE − (I − PL) S̃
(

γ′

γ
δW

)

. (7.33)

If we can suppose that εG and εE have zero average, the same is not justified for

(I − PL) S̃
(

γ′

γ
δW

)

, which then assumes the meaning of the bias of T̃ − T , i.e.

b (P) = E
{

T̃ − T
} = − (I − PL) S̃

(
γ′

γ
δW

)

. (7.34)

The construction of our error budget then continues with a majorization of the
mean quadratic value of b (P) over the unit sphere.

Now consider that S̃, the BVP solver, is as a matter of fact a combination of some
kind of regularized downward continuation to the Earth ellipsoid and then a solution
by quadrature with spherical harmonics (Sansò and Sideris 2013, Part II, Chap. 6).
In any event, due to the smallness of the function

γ′

γ
δW ∼= −2

r
δW , (7.35)

(remember that O
(

δW

γ

)

∼= 2 m), we can approximate S̃ as applied to (7.35) by a

simple spherical solver, namely the Stokes integral, which certainly constitutes the
“large part” of S̃ . So we can write (see (4.100))
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b = − (I − PL) S̃
(

γ′

γ
δW

)

∼= 2

R0

M
∑

n=L+1

n
∑

m=−n

R0

n − 1
δWnm Ynm (σ) (7.36)

with R0 the mean Earth radius. From (7.36) we then derive

‖b‖2L2σ =
∥
∥
∥
∥
(I − PL) S̃

(
γ′

γ
δW

)∥
∥
∥
∥

2

L2σ

= 4
M
∑

n=L+1

n
∑

m=−n

δW 2
nm

(n − 1)2
≤

≤ 4

L2

M
∑

n=L+1

n
∑

m=−n

δW 2
nm = 4

L2
‖(I − PL) δW‖2L2σ <

<
4

L2
‖δW‖2L2σ . (7.37)

Now we observe that, owing to its definition (7.4), δW 2 is given by

δW 2 (P) =
K
∑

k=1

δW 2
0k χk (P) ,

so that

‖δW (P)‖2L2σ = 1

4π

∫ K
∑

k=1

δW 2
0k χk (P) dσ =

K
∑

k=1

δW 2
0k

|Ak |
4π

, (7.38)

where we have designated by |Ak | the area of the patch Ak , projected on the unit
sphere. As we see, (7.38) is a kind of weighted average of the δW 2

0k and, since

max

∣
∣
∣
∣

δW0k

γ

∣
∣
∣
∣
≤ 2 m, we could reasonably hypothesize that

1

γ

{
K
∑

k=1

δW 2
0k

|Ak |
4π

} 1
2

≤ 1 m . (7.39)

Using (7.39) in (7.37), we receive

1

γ
‖b‖L2σ <

2

200
· 1 m = 1 cm . (7.40)

Putting (7.23), (7.32) and (7.40) together, we formulate the following error budget

1

γ

{

E
[∥
∥T̃ − T

∥
∥
2

L2σ

]} 1
2 = 1

γ

{

CE2
(

εG
)+ CE2

(

εE
)+ ‖b‖2L2σ

} 1
2 ≤

≤ {4 + 12.96 + 1} 1
2 cm = 4.24 cm . (7.41)
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Let us remark that, if instead of (7.39) we had taken the upper limit of 2m, then
(7.41) would rise to 4.58cm, which is not a very different number.

Let us further observe that certainly our analysis here is not very refined and in
particular the model T̃ on which the error budget has been constructed is not the
optimal that one could calculate. Optimal solutions of the combination of satellite
and existing global models can be found in literature (see for example Pavlis et al.
2012, 2013; Reguzzoni and Sansò 2012; Sansò and Sideris 2013, Part II, Chap. 6;
Gilardoni et al. 2016).

On the other hand, we promised a conservative analysis that has generated the
figure of 5cm to majorize our global error; so we are confident that this is a reliable
upper bound. Since the large part of the index (7.41) is due to CE (εE), we know that
this index has a great geographic variability, reaching the level of 30–40cm in the
Himalayas and in the Andes when εE includes also the first 200 degrees. However
this is not the case in most areas of the globe and we can expect that a figure between
5 and 10cm could be respected by the error in the stations chosen to construct the
system (7.16). Therefore a first proposal is to use T̃ (or a better model) in (7.16), so
that we can write observation equations patch by patch and, hopefully, by averaging

we can resort to an estimate of
δW0k

γ
with a few centimeters error.

A more refined proposal is to use the model T̃ to arrive at a system of equations
similar to (7.16); however we have now to pay attention to split the degrees below
and above 200, as discussed in this section. In this case, from Eqs. (7.15), (7.33) and
(7.36) we could write

hi − h̃∗
i = T̃

γ
+ T − T̃

γ
+ δW0k

γ
=

= T̃

γ
− 1

γ
(I − PL) S̃

(
2

r
δW

)

+ δW0k

γ
=

= T̃

γ
− 2

γ

M
∑

n=L+1

n
∑

m=−n

δWnm

n − 1
Ynm

(

σPi

)+ δW0k

γ
; (7.42)

note that in (7.42) only the deterministic terms are reported, leaving the stochastic
errors aside.

Now considering that

δWnm =
K
∑

j=1

δW0j 〈χj,Ynm〉 =
K
∑

j=1

δW0j χ
j
nm ,

Eq. (7.42) can be rewritten in the form

hi − h̃∗
i = T̃ (Pi)

γ
− 2

γ

K
∑

j=1

δW0j

[
M
∑

n=L+1

n
∑

m=−n

χ
j
nm

n − 1
Ynm

(

σPi

)

]

+ δW0k

γ
, (7.43)
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where the unknown parameters {δW0k} appear explicitly and all the other terms are
either observed or computed.

When all the quantities hi, h̃∗
i and T̃ (Pi) are derived from observations, the

Eq. (7.43) should be complemented with the proper error terms; if we assume that
the errors in hi and h̃∗

i are in the range of millimeters, and therefore negligible, and
recalling (7.33), we can write

hi − h̃∗
i = T̃ (Pi)

γ
− 2

γ

K
∑

j=1

δW0j

[
M
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n
∑
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χ
j
nm

n − 1
Ynm

(

σPi

)

]

+

+ δW0k

γ
+ εG + (I − PL) εE . (7.44)

7.4 On Local Solutions of the Height Datum Problem

We have already mentioned in the previous section that, when we have available a
good model of the anomalous potential, like our T̃ or better, we can safely substitute
it in observation equations of the shape (7.15). This implies neglecting the bias term
(7.36), which has been estimated to globally produce (cfr. (7.38)) a mean square
error between 1 and 2cm, and to accept a stochastic error, εG + (I − PL) εE, with an
overall magnitude of the order of 4cm. Including all the effects into the observation
equation, we arrive at formula (7.44).

However two aspects limit this global approach to the determination of the height
datum, i.e. of the biases {δW0k}, namely that in oceanic areas we have observations
for hi (̃h∗

i = 0 in this case) but this dataset is strongly correlated and the covariance
structure of the error is not really known; moreover biases and stochastic errors can

have a strong geographic signature which could deviate the estimates of
δW0k

γ
, by

one or more decimeters, at least for particular areas.
This is ultimately due to the fact that in such areas T̃ is not a sufficient approx-

imation to T ; however we know that, apart from biases, we are able to compute a
better estimate of T , for instance by using a local collocation solution

T̂loc = T̃ + Tres , (7.45)

for which a typical error-figure in terms of height anomaly could be 1–2cm. We will
call εres the error associated to the estimated residual potential Tres.

We want to examine whether and how we could take advantage of this improved
knowledge to estimate one of the biases for a specific area. In this case we have to
return to (7.44) and use T̂loc instead of T̃ and εres instead of εG + (I − PL) εE, thus
arriving at an observation equation that we rewrite in the form
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hi − h̃∗
i = T̂loc (Pi)
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+ εres,i Pi ∈ Ak . (7.46)

Let us consider one element of the sum in the second term of the right hand side
of (7.46), namely

2

γ
δW0j

[
M
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n
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χ
j
nm
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Ynm
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σPi

)
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Pn
(

cosψPiQ
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dσQ (j �= k) . (7.47)

As we see such a term represents the influence of the bias δW0j of the zone Aj in
the area Ak ; when the two are well separated, it is known that the influence function

Fj (P) = 1

2π

∫

Aj

M
∑

n=L+1

2n + 1

n − 1
Pn
(

cosψPiQ
)

dσQ , (7.48)

i.e. the integral onAj of the truncated Stokes function, becomes quite small. However,
if we could simply ignore Fj (P), even when Aj is a neighbour of Ak , then we could
delete the second term in (7.46), which at this point would become an observation
equation for δW0k only, i.e. we would have the possibility of a local determination
of the bias.

Note that what we need now is a pointwise estimate for
∣
∣Fj (P)

∣
∣ and not the

global mean square estimate that has already been found in the previous section.
Unfortunately we do not have a strict proof, but only a guess based on the following
example.

Example Assume Aj is just a spherical cap C� of radius �, then we shall prove that
the following approximate majorization holds

|F (P)| � 2

π

1

L + 1
(7.49)

when P is on the boundary of C�, irrespectively of the value of �.
If we take the origin of the spherical coordinates at the centre of C�, from (4.45)

and using the summation theorem, we have
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F (P) = 1
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Since

(2n + 1)

�∫

0

Pn (cos θ) sin θ dθ =
1∫

cos�

(2n + 1)Pn (t) dt =

=
1∫

cos�

[

P′
n+1 (t) − P′

n−1 (t)
]

dt = Pn−1 (cos�) − Pn+1 (cos�) , (7.51)

Eq. (7.50) becomes

F (P) =
M
∑

n=L+1

Pn (cos θP)

n − 1

[

Pn−1 (cos�) − Pn+1 (cos�)
]

. (7.52)

Now we apply a famous asymptotic expression for the Legendre polynomials
(Abramowitz and Stegun 1964) claiming that

Pn (cos θ) =
√

2

π sin θ · n cos
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2

)

θ − π

4
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+ O
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n− 3
2

)

. (7.53)

In particular (7.53) holds for

θ >
3π

4n + 2
; (7.54)

since we have in mind that n > 200 and� is at least 2◦ or (much) more, the condition
(7.54) is met.

So we proceed noting that
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Since
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,

the above asymptotic relation can be written as
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So returning to (7.52) and applying (7.53) to Pn (cos θP) too, we find
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As soon as we put P on the boundary of C�, i.e. we take θP = �, we get from
(7.55)

|F (P)| ∼= 2
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and (7.49) is proved.

With this example we see that, at least when Aj is a spherical cap and L = 200,
the influence of the bias δW0j at its boundary is

∣
∣
∣
∣

δW0j

γ
F (P)

∣
∣
∣
∣
≤
∣
∣
∣
∣

δW0j

γ

∣
∣
∣
∣
3.2 · 10−3 ,

namely well below the 1cm level, even when
δW0j

γ
= 2 m. Indeed when θP > �,

we expect that F (P) is even smaller, as shown in Fig. 7.1 when � = 5◦.
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Fig. 7.1 Influence function F (θP) for 5◦ ≤ θP ≤ 10◦, in the case of a spherical cap C� with
� = 5◦, L = 200

Based on the guess supported by the above example, we propose that a local bias
δW0k is estimated from the set of observation equations

hi − h̃∗
i = T̂loc (Pi)

γ
+ δW0k

γ
[1 − Fk (Pi)] + εres,i , (7.56)

where Pi are all the points in the area Ak where both hi and h̃∗
i are available.

We close the section by observing that indeed we could have a situation where
several {δW0k} can be estimated together, although they refer to some areas that do
not cover thewhole sphere, with an obviousmodification of the above discussion.We
underline however that in this case it is better that the local estimate of the potential
T̂loc is computed for the above areas together, because only in this case we shall have
a consistent covariance matrix for εres (Reguzzoni and Venuti 2018).

7.5 An Example: The Italian Case

In this paragraph, the local solution of the height datumproblemdiscussed in Sect. 7.4
is applied to the Italian case study. A similar computation has been applied as well
to the determination of the geoid bias in Spain (Reguzzoni et al. 2018).
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As amatter of facts, Italy has three different height systems based on three different
reference tide gauges. The reference tide gauge for the mainland is in Genoa, while
heights in Sicily are referred to the Catania tide gauge and those of Sardinia to
Cagliari. Due to the different dynamic ocean topography in these three reference
stations, inconsistencies at the decimetre level among heights in Italy mainland,
Sicily and Sardinia are expected.

The equation to be used in estimating the local biases is (7.56)which can be further
simplified for the present computation. In fact, in the Italian case presented here, it
can be numerically proved that even considering the complete Eq. (7.16) accounting
for the global unification, the term

1

γ

K
∑

j=1

δW0j Fj (Pi)

is smaller than 1mm. Thus, a fortiori, the corresponding local term in (7.56) can be
disregarded.

So, the equation that will be used in the computation is

hi − h̃∗
i = T̂loc (Pi)

γ
+ δW0k

γ
+ εres,i (7.57)

that can be rewritten as

ζ̃k (Pi) = T̂loc (Pi)

γ
+ bk + εres,i (7.58)

where ζ̃k (Pi) are the biased height anomalies in the k-th area and bk the bias to be
estimated on the same area.

It can be further assumed that T̂loc is estimated as

T̂loc (Pi) = TL (Pi) + TH (Pi) (7.59)

where TL is the prediction of the anomalous potential at point Pi coming from a
satellite gravity model to degree L and TH is the prediction derived from a high
degree model, like e.g. EGM2008, from degree L + 1 to degree H . Although by
considering TH we reintroduce biases through ground gravity data, it can be proved
that the impact on the solution is of the order of some millimetres (Gatti et al. 2013).
Thus, one can say that a feasible solution for the estimate of bk can be obtained by
the observation equation

ζ̃k (Pi) = TL (Pi) + TH (Pi)

γ
+ bk + εres,i (7.60)
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By separating the observations and the unknowns to be estimated, one gets

ζ̃k (Pi) − TL (Pi) + TH (Pi)

γ
+ εres,i = bk . (7.61)

Now, if one considers N points in the K regions, with N ≥ K , a linear system of
N equations and K unknowns can be solved by least squares adjustment, once the
observation error covariance matrix of ε is defined. This matrix has to account for
the dispersion of the errors in the ellipsoidal heights derived from GNSS through
the covariance matrix Ch, the errors in the normal heights derived from levelling
and gravity measurements through Ch̃∗ , the commission errors of the satellite-only
gravity model up to the degree L through CTL , and those in the high resolution model
from degree L + 1 up to degreeH through CTH . Thus, assuming the above described
errors independent from one another, the proper covariance structure to be used in
the adjustment procedure is

Cε = Cζ + CTL + CTH = Ch + Ch̃∗ + CTL + CTH . (7.62)

In the Italian test case the least square problem is set by considering 1,068 points
with known GNSS ellipsoidal heights and levelling derived heights. Among them,
43 points are in Sicily, 48 in Sardinia and the remaining 977 in the Italian mainland.
The heights derived from levelling measurements were obtained by a least squares
adjustment of the observations without any correction accounting for gravity effects
(Betti et al. 2016). GNSS heights are referred to the ETRF2000 reference frame,
epoch 2008.0.

Hence, it must be underlined that in Eq. (7.61) biased geoid undulations Ñk (Pi)
are used (which, as said, are further biased since no gravity corrections have been
applied).

The models components that have been considered in order to evaluate the TL

and the TH terms are the GOCO-03S satellite gravity only model (Mayer-Gürr et al.
2012) and the EGM2008 global geopotential model. TheGOC0-03Smodel basically
combines the ITG-BonnGRACE solutionwith the time-wiseGOCEone (release R3,
that is the third solution based on l year and a half GOCE data). The coefficients are
available at thewebsite of the InternationalCenter forGlobalEarthModels (ICGEM).
Moreover, theGOC0-03Sorder-wise blockdiagonal error covariancematrix has been
considered in the computation, which practically bears the same information as the
full error covariance matrix (Gerlach and Fecher 2012). As for EGM2008 spherical
harmonic coefficients, the error coefficient variances and a global grid of local geoid
error variances are available. Consistently with GNSS data, the coefficients of the
two global models are tide-free, while the levelling data are referred to the mean sea
level at the three tide gauges of Genoa, Catania and Cagliari.

Before computing the left hand side of Eq. (7.61), reference frame transformations
have to be considered.
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The different coordinates have been referred to the most recent frame of the GOCE
model. The Italian GNSS data are given in ETRF2000, epoch 2008.0, while GOCE
data are in ITRF2008, with an unspecified epoch between 2010 and 2011. Transfor-
mations from ETRF2000-2008.0 to ITRF2008-2010/2011 can be performed in three
steps. The EUREF transformation parameters have been applied from ETRF2000-
2008 to ITRF2000-2008 and then the IERS transformation parameters have been
used from ITRF2000-2008 to ITRF2008-2008. Finally, the ITRF2008 coordinates
have been updated to epoch 2010/2011 using the mean velocity of a subset of Italian
GNSS permanent stations (velocities published by IERS). To this aim, theGNSS per-
manent stations of Medicina, Genoa, Torino I, Cagliari, Matera, Padova and Perugia
have been taken into account.

These transformations accounted for a displacement in the horizontal coordinates
of about 50cm and a 1cm change in their heights. It can be proved that the impact
of these shifts is negligible in terms of the bias estimation (Barzaghi et al. 2016).
Similar transformations were not applied to EGM2008 since its reference time is not
available.

Fig. 7.2 The correlation matrix of ε with L = 250
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Another key point in setting up the least squares problem in (7.61) is the definition
of the stochastic model of the observations. This stochastic model, represented in
(7.62), can be evaluated from the available error models. The set of differences
between GNSS and levelling heights are assumed to be as an uncorrelated noise, so
that it can be set

Cζ = σ2
ζ I (7.63)

where I is the identity matrix. The error covariance matrix CTL of the set of poten-
tial values TL predicted in the GNSS-leveling points from GOC0-03S is obtained
by propagation from the given order-wise block diagonal error covariance matrix.
The covariance matrix CTH of the set of potential values TH computed at the same
points from EGM2008, is obtained by propagation from the coefficient error vari-
ances properly rescaled accordingly to the geographical map of local geoid errors
(Gilardoni et al. 2013). The resulting error correlation matrix, with σ2

ζ = 1 cm and
L = 250, is plotted in Fig. 7.2.

Based on this covariance structure, the error in the estimated biases can be com-
puted as a function of the degree L. In the Italian case study, it can be shown that the
errors in the estimated biases of Italy mainland, Sicily and Sardinia are not strongly
affected by the choice of L (Barzaghi et al. 2016) so that L = 250, the full GOC0-03S
model resolution, has been selected in the computation.

Different biases estimates have been then computed using different values of σζ ,
namely 1, 5, 10 and 12cm. The least squares estimate satisfying the null hypothesis
test

H0 : σ2
0 = 1

is the one based on σζ = 12cm, which gives the values for the estimated biases that
are listed in Table 7.1.

This first result is based on some quite strong simplifications and is hence affected
by model errors. Particularly, the use of Ñk (Pi), the biased geoid undulation, instead
of the biased height anomaly ζ̃k (Pi), can induce distortions in the estimated biases.
Nevertheless, the difference between the biases of Italy mainland and Sicily, that is
9.82cm, is significantly close to the values reported by Istituto Geografico Militare,
i.e. 14.1cm. It is to be underlined that this value has been independently estimated
using surveying techniques based on trigonometric levelling trough the Messina
Strait coupled with spirit levelling in Sicily and Calabria to form a close loop across
the two sides of the strait. So, despite the use of somehow improper data, acceptable
results can be obtained by the devised least squares adjustment procedure. Thus, one

Table 7.1 The estimated biases with σζ = 12 cm

Italy mainland (cm) Sicily (cm) Sardinia (cm)

bk 77.22 67.40 97.90

σbk 0.52 2.57 2.72
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comes to a confirmation that the proposed method is effective in estimating the local
biases and can be applied for solving the problem of the height systems unification
at local level.
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