
Chapter 6
The Relation Between Levelling, Geodetic
and Other Unholonomic Heights

6.1 Outline

Spirit levelling is a complex geodetic measurement that combines several elementary
steps, already defined in Sect. 4.6 (see also Fig. 4.6), each of them providing a step
increment on a short baseline; such increments are then added along a levelling line,
joining two stations P and Q. In this way, recalling (4.56), we have a measurement
related to the extremes P and Q and to the path connecting them. If we call M a point
running along the line, and with the idea to consider each step as infinitesimal, we
can write

δL = nM · drM , (6.1)

�PQL =
Q∫

P

δL =
Q∫

P

n · dr . (6.2)

Since the approximate relation

δL ∼= dH (6.3)

holds for a single step, for many practical applications the Eq. (6.2) has been con-
sidered as

�PQL = HQ − HP , (6.4)

especially when levelling is restricted to an area of a few kilometers.
However, since dr is in general pointing in an almost horizontal direction and

certainly not along the vertical, the claim δL = dH is false, as proved and illustrated
in Sect. 5.4, so (6.4) is false too; we could say that (6.4) holds with an acceptable
approximation only when the path PQ is at most a few kilometers long. So, as we see,
there is an intimate connection between levelling observations and geodetic heights,
though with some ambiguity that needs to be resolved.
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In Sect. 6.2 we shall first study the relation between �PQL and dynamic heights.
Then in Sect. 6.3 we investigate the normal heights h∗

P, h
∗
Q, showing that, contrary

to the geodetic tradition, the observation equation in terms of h∗ is more natural in
that it requires only the knowledge of the anomalous potential T on the surface. On
the contrary, in Sect. 6.4, studying the relation between �PQL and HP, HQ, we will
show that such observation equation cannot avoid to introduce the knowledge of the
topographic masses density; this is in fact intrinsic into the definition of orthometric
height. Finally in Sect. 6.5 we shall discuss a different type of unholonomic height,
namely the normal orthometric height, that is in fact used by some countries, so
that its relation to �PQL and to other heights needs to be clarified. A final section,
Sect. 6.6, of conclusions follows, with recommendations of practical nature.

6.2 The Observation Equation of �L in Terms of Dynamic
Heights

The definition of dynamic height is (see (5.15))

HD
P = C (P)

γ0

and, as commented in Sect. 5.3, since γ0 is just a constant, it bears the same infor-
mation and geometry as the geopotential number C (P) = W0 − W (P), as well as
the potential W (P) itself.

Recalling (6.1) and (6.2), we start our reasoning from

δL = n · dr = −g

g
· dr = −dW

g
(6.5)

and

�PQL = −
Q∫

P

dW

g
, (6.6)

where the integral is meant to be computed along the levelling line, namely on the
Earth surface.

Equation (6.6) can be further elaborated in the following way

�PQL = − 1

γ0

Q∫

P

γ0

g
dW = − 1

γ0

Q∫

P

(
γ0 − γ + γ − g

g
+ 1

)
dW =



6.2 The Observation Equation of �L in Terms of Dynamic Heights 107

= W (P) − W (Q)

γ0
+

Q∫

P

γ0 − γ

γ0
δL +

Q∫

P

γ − g

γ0
δL . (6.7)

Now, the difference g − γ is called gravity disturbance δg and it is related to T
by

δg = g (P) − γ (P) = eγ · ∇T ∼= −ν · ∇T = −T ′ ; (6.8)

it is known that O (δg) ∼ O (�g), i.e. O
(

δg

γ0

)
∼ 10−4. Moreover it is

W (P) − W (Q)

γ0
= C (Q) − C (P)

γ0
= HD

Q − HD
P .

So from (6.7) we derive the observation equation

�PQL = HD
Q − HD

P −
Q∫

P

γ − γ0

γ0
δL −

Q∫

P

δg

γ0
δL . (6.9)

A simple evaluation of the orders of magnitude shows that the first integral in the
right hand side of (6.9) can amount up to meters per kilometer of height differences,
while the second integral is at most one order of magnitude smaller.

6.3 The Observation Equation of �L in Terms of Normal
Heights

In this case we return to Eq. (6.1) that we rewrite

δL = n · dr = −g

g
· dr = −dW

g
. (6.10)

Now let us go back to (5.28) and write it in the form

n = ν − 1

γ
(I − Pν) ∇T + δ̃ , (6.11)

where δ̃ is given by (5.27) and I − Pν is the projection on the horizontal plane, which
is orthogonal to ν.

Using (6.11) in (6.10) yields
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δL = ν · dr − 1

γ
∇T · dr + 1

γ
ν · ∇T ν · dr + δ̃ · dr =

= dh − dT

γ
+ T ′

γ
dh + δ̃ · dr . (6.12)

We will elaborate the term

dT

γ
= d

(
T

γ

)
− T d

(
1

γ

)
= dζ + T

∇γ · dr
γ2

. (6.13)

To continue our reasoning on (6.13) we use a simplified version of
∇γ

γ
∼= ∇γ

γ0
,

namely (see Table 3.2 in Sect. 3.5)

∇γ

γ0
∼= −3 · 10−4 ν + 0.8 · 10−6 sin 2ϕ eϕ ,

and observe that

O
(
T

γ

ν · ∇γ

γ

)
∼= O

(
T

γ

γ′

γ

)
∼= 3 · 10−5 ,

O
(
T

γ

|(I − Pν) ∇γ|
γ

)
∼= O

⎛
⎜⎜⎝T

γ

∣∣∣∣ 1R
∂γ

∂ϕ

∣∣∣∣
γ

⎞
⎟⎟⎠ ∼ 10−7 .

So the effect of the horizontal component of the term
T

γ

∇γ

γ
· dr , integrated over

a 100 km line, is at most 1 cm, while the effect of the vertical component is 3�L
cm (�L in km), i.e. with a rise of 6 km along the line it can go up to 18 cm.

Therefore the vertical component of this term should be accounted for, especially
inmountainous areas, while the horizontal one can be neglected. Therefore, returning
to (6.13), we get

dT

γ
∼= dζ + T

γ

γ′

γ
dh ,

which, in (6.12), yields

δL = dh − dζ − T

γ

γ′

γ
dh + T ′

γ
dh + δ̃ · dr =

= d (h − ζ) − 1

γ

(
−T ′ + γ′

γ
T

)
dh + δ̃ · dr =

= dh∗ − �g

γ
dh + δ̃ · dr . (6.14)
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This is the sought observation equation of the levelling increment over one step;
then �PQL has the observation equation

�PQL = h∗
Q − h∗

P −
Q∫

P

�g

γ
dh +

Q∫

P

δ̃ · dr . (6.15)

As promised, all the terms in (6.15) can be computed from surface anomalous
quantities. In particular the term

DC =
Q∫

P

�g

γ
dh ,

also known in literature as dynamic correction, can amount up to 10−4 times the
levelling increment, namely to several dozens of cm if P is by the sea and Q is on a
high mountain.

On the contrary the last term, only recently reported in literature (see Betti et al.
2016),

Q∫

P

δ̃ · dr ∼= 5.3 · 10−3

Q∫

P

sin 2ϕ
h

a
(M + h) dϕ ,

can obviously give a sensible contribution only for a levelling line at altitude and
developing in the north-south direction. For instance a levelling line on the Andes,
60 km long, around ϕ = −45◦, at an altitude of 2 km, will have a correction term
Q∫
P

δ̃ · dr of about 10 cm.

All in all, we have shown that by calling NC, normal correction, the term

NC =
Q∫

P

�g

γ
dh −

Q∫

P

δ̃ · dr , (6.16)

the levelling increment has observation equation

�PQL = h∗
Q − h∗

P − NC , (6.17)

where the last term can be effectively computed by surface quantities. This means,
for instance, that nowadays NC can be computed to a sufficient degree of accuracy
from some global model of T , e.g. from EGM2008; note that, on the contrary, such a
model could not be used to compute quantities inside the masses, where one should
use the methods explained in Sect. 5.2.



110 6 The Relation Between Levelling, Geodetic and Other Unholonomic Heights

Remark One possible objection to the computability of NC is that in principle the
expression (6.16) should be reckoned along the “true” levelling line, the profile of
which should therefore be known to compute the DC, while the second term is
affected in any circumstance by a negligible error. Yet we can respond that assuming
that the levelling line is known with some 10 m errors in height, what nowadays is
easy to achieve e.g. by Real Time Kinematic GNSS observations, then �g is known
with at most 1 mGal error, implying that DC can be computed with an error of
10−6 �PQL . This is certainly negligible; a similar consideration holds for the term
Q∫
P

δ̃ · dr .

The conclusion of this section is that levelling networks should be compensated,
after the application of normal corrections, directly in terms of normal heights and,
to this aim, the use of global models to compute normal corrections can give accurate
enough results, with particular caution in areas of rough topography.

6.4 The Observation Equation of �L in Terms
of Orthometric Heights

The wanted observation equation is easily derived from (6.16) and (6.17), taking
into account the following elementary relation, which takes advantage of (5.38) and
(5.43),

h∗
Q − h∗

P = hQ − hP − ζQ + ζP =
= (

hQ − NQ
) − (hP − NP) + (

NQ − ζQ
) − (NP − ζP) =

= HQ − HP +
Q∫

Q0

�g

γ
dh −

P∫

P0

�g

γ
dh , (6.18)

where Q0 and P0 are the projections of Q and P, respectively, on the geoid.
Defining the orthometric correction OC as

OC = NC −
Q∫

Q0

�g

γ
dh +

P∫

P0

�g

γ
dh (6.19)

and substituting (6.18) and (6.19) into (6.17), we get

�PQL = HQ − HP − OC . (6.20)
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As we see, contrary to the case of the normal correction, in (6.19) we find that
the orthometric correction cannot be computed without making hypotheses on the
density of topographic masses. In fact, recalling (5.46), we can also write

OC =
Q∫

P

�g

γ
dh − HQ

�gQ

γ
+ HP

�gP

γ
+

HQ∫

0

q
h

γ
dh −

HP∫

0

q
h

γ
dh , (6.21)

where q = 4πGρ. Note that in (6.21) the first integral is along the levelling line,
while the last two are inside the masses.

Since here we are reasoning apart from measurement errors, we could say that
(6.21) can establish an orthometric coordinate system in a certain area if starting
from a point P0 on the geoid, we could reach every point Q in the area, connecting
it to P0 by a levelling line. In this case, noting that P = P0, HP0 = 0, we have from
(6.16) and (6.17)

HQ = �P0QL +
Q∫

P0

�g

γ
dh − HQ

�gQ

γ
+

HQ∫

0

q
h

γ
dh ; (6.22)

this explicit formula is fundamental to understand the next remark.

Remark In geodetic literature it is often written that the relation (5.38)

h = H + N

can be used to assess the accuracy of a gravimetric geoid, by comparing it with the
difference h − H , where h can be obtained by GNSS measurements, while H can
be obtained by levelling.

We claim that the statement is wrong, at least at the level of accuracy of one
centimeter. In fact we know from Sect. 4.7 that surface gravimetric data can provide
only T , from the telluroid upward, and from this the height anomaly can be computed

via Bruns’ relation, ζ = T

γ
; so N can be derived only by making hypotheses on the

topographic masses, e.g. by the (approximate) relation (5.47)

NQ = 1

γ

(
TQ + �gQHQ

) −
HQ∫

0

q
h

γ
dh .

On the other hand the above relation clearly shows that an error ε (q), due to an
error in ρ, would cause in the computation of N an error ε (N ) given by

ε (N ) = −
HQ∫

0

ε (q)
h

γ
dh ,
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while the same error in q would generate in H an error exactly equal in modulus but
opposite in sign, so that the relation (5.38) can continue to hold, despite the fact that
both H and N are affected by errors. As for the order of magnitude of such an error,
one can use the rough appraisal

|ε (N )| = −O

⎛
⎜⎝

HQ∫

0

ε (q)
h

γ
dh

⎞
⎟⎠ ∼ 2πG ε (ρ) H 2

γ0
;

therefore, with an error of 10% in ρ, this would give

|ε (N )| ∼ 10−5H 2 , (H in km) ,

which is 1 cm at H = 1 km, but 4 cm at H = 2 km, and so forth. So we expect that,
in particular in mountainous areas, both H and N might be affected by centimetric
errors without that (5.38) could reveal it.1

We think that the right approach would be to evaluate normal heights directly
from levelling, as explained in Sect. 6.3, and then the height anomalies derived by
some solution T of the GBVP, to be tested with the relation

h = h∗ + ζ ,

where all terms can be observed and computed independently.

6.5 Levelling and Normal Orthometric Heights: An
Unholonomic Coordinate

In a sense an unholonomic coordinate is a contradiction in terms, in that it is not a
function of a point, as we defined it in Sect. 2.2, but rather a function of a point and
a path, as it happens when we make line integrals of non-exact differential forms.

We shall deviate here from the approach of the previous sections and, instead of
starting from the observation equation of δL or �L , we shall rather start from the
other side, namely the definition of normal orthometric heights.

Borrowing for instance from the “Geodetic Glossary” of the National Geodetic
Survey, we define the normal orthometric height, H no, as

H no
Q = 1

γno

Q∫

P0

γ δL , (6.23)

1The authors are aware that while editing the book the same result has been independently published
by (Sjoberg 2018); we are then happy to acknowledge this coincidence, confirming our findings.
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where P0 is an emanation point on the geoid and γno is the mean value of γ along
the ellipsoidal normal, up to H no itself, i.e.

γno = 1

H no
Q

H no
Q∫

0

γ (z) dz . (6.24)

Indeed γno is a function of point and in fact, using the approximate formulas of
Table 3.2, we can even give its explicit form, namely

γno = γe (ϕ) − 1

2
γ1 (ϕ) H no + 1

3
γ2 (ϕ) (H no)

2
. (6.25)

Indeed, as it already happened with Helmert’s definition of orthometric height,
(6.24) is an implicit equation for H no.

On the other hand H no is not a holonomic coordinate because

γ δL = −γ

g
dW (6.26)

is certainly not an exact differential: in fact
γ

g
is not constant on equipotential surfaces.

As a matter of fact, even going from P0 to another point Q0 on the geoid, we are not
sure to find H no

Q0
= 0.

Yet the rationale behind (6.23) as a substitute of HQ, is that, as nicely stated by
B. Heck (private communication), “at least the average variations of gravity due to
latitude and height effect was considered, while the irregular variations of the gravity
field had been neglected”.

The integral in (6.23) is called spheropotential number, C ′, and for it one has

C ′ =
Q∫

P0

γ δL =
Q∫

P0

(γ − g) δL +
Q∫

P0

g δL . (6.27)

On the other hand, as we have already seen in Sect. 6.2, it is

g − γ = eγ · ∇T ∼= −ν · ∇T = −T ′ = δg .

Moreover
g δL = −g · dr = −dW ,

so that (6.27) becomes

C ′ = C +
Q∫

P0

δg δL
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and (6.23) reads

H no = C

γno − 1

γno

Q∫

P0

δg δL . (6.28)

Now consider that, by definition of normal height,

C = W0 − W (h) = U0 −U
(
h∗) = −

h∗∫

0

γ · ν dh ∼=

∼=
h∗∫

0

γ dh = h∗ 1

h∗

h∗∫

0

γ dh ≡ h∗γ∗ ; (6.29)

here we have denoted by γ∗ the mean of γ between 0 and h∗.
We anticipate that δH no = H no − h∗ is certainly smaller than 1 m, therefore we

see from (6.25), keeping only the main term in γ1 which is enough for the present
calculation, that

∣∣γ − γ∗∣∣ � 0.15 Gal km−1 · 10−3 km = 1.5 · 10−3 Gal .

Therefore
C

γno = γ∗

γno h
∗ = h∗ + γ∗ − γno

γno h∗ ,

where the last term is of the order of 1.5 10−7 h∗, i.e. less than 1 mm even for
h∗ = 6 km. So we can put

C

γno ∼ h∗ ,

to find from (6.28)

H no = h∗
Q − 1

γno

Q∫

P0

δg δL . (6.30)

With (6.30) we can verify a posteriori that our guess that H no − h∗ is less than

1m is correct; in fact O
(

Q∫
P0

δg δL

)
∼ 10−4 �L , i.e. 60 cm for �L = 6 km!

On a theoretical ground, (6.30) shows that there cannot be much advantage in
using H no instead of h∗. Yet, for the sake of completeness, let us further develop
(6.30) to find the relation between H no and the levelling observable �P0QL .

Going back to (6.17) and observing that when P0 ∈ G then h∗
P0 = 0, we see that
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h∗
Q = �P0QL +

Q∫

P0

�g

γ
dh −

Q∫

P0

δ̃ · dr .

Using this relation in (6.30), we get

H no = �P0QL +
Q∫

P0

�g

γ
dh −

Q∫

P0

δg

γno δL −
Q∫

P0

δ̃ · dr . (6.31)

The integral of
δg

γno δL can indeed be transformed into an integral of
δg

γno dh

because
δg

γno is already of a maximum order of 10−4. Moreover by writing

�g

γ
− δg

γno = �g − δg

γ
+

(
1

γ
− 1

γno

)
δg ∼= γ′

γ

T

γ
− γ − γno

γ

δg

γ
,

we easily verify that the integral in dh of the last term is irrelevant, so that (6.31)
becomes

H no = �P0QL +
Q∫

P0

γ′

γ
ζ dh −

Q∫

P0

δ̃ · dr . (6.32)

A fast evaluation of the orders of magnitude of the correction terms in (6.32)
shows that in general these are smaller than NC or OC; yet the price to pay in using
(6.32) is that the so calculated value does depend on the path between P0 and Q
because H no is unholonomic. A recent study with a precise numerical evaluation of
the effects of using H no in Australia, i.e. a nation that has officially adopted a normal
orthometric height system (Featherstone and Kuhn 2006), can be found in Filmer
et al. (2010).

6.6 Conclusions

Since the matter has a relevant practical impact on the adoption of national height
systems for geodetic purposes, we like to summarize the relevant conclusions that
one can draw from the discussions of the chapters:

1. levellingmeasurements should always be accompanied by corrections that depend
on the height coordinate chosen,

2. to compute corrections we need an approximate position of levelling stations, say
with 10 m accuracy; this is easily achievable by RTK observations that should
always accompany levelling, especially in mountainous areas,
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3. all corrections involving the knowledge of the anomalous potential on the Earth
surface and outside can be computed to a sufficient accuracy by a good global
model of T ; obviously a good local model of T will do a better job,

4. the use of orthometric heights implies the application of the OCwhich depends on
the knowledge of density of topographic masses; since such a detailed knowledge
is usually not available, the OC can be computed only by making hypotheses
on ρ, like ρ = 2.67 g cm−3, which can imply a systematic error up to several
centimeters, especially in mountainous areas,

5. normal heights, with their effectively computable NC, seem to be themost natural
coordinates to compensate levelling networks; moreover they are consistent with
the theory of the GBVP, which is one root of the foundations of Physical Geodesy,

6. the relation
h = H + N

should not be used to assess the accuracy of the estimated geoid at centimetric
level, because H and N can hide errors equal in modulus and opposite in sign up
to several centimeters; rather the relation

h = h∗ + ζ

can be used to assess the accuracy of the quasi-geoid, ζ, with systematic errors
below the centimeter.
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