
Chapter 4
The Anomalous Potential and Its
Determination

4.1 Outline

The knowledge of the normal potential and related ellipsoidal quantities are not
enough to properly treat the problem of relating different types of geodetic heights.

To do that we need a muchmore precise knowledge of the geoid, i.e. of the gravity
potential W , than that supplied by the ellipsoid, which leaves out the “last 100 m”
of the geoid undulation. To do that we need to learn how to model the difference
betweenWP andUP, namely the anomalous potential TP. How this can be derived by a
suitable fusion of different data sources, like surface gravity, satellite tracking, digital
terrain models and oceanic mean dynamic heights, is certainly one of the main tasks
of Physical Geodesy, requiring a good knowledge of some chapters of mathematics.
We shall account here after of one of the main procedures along which the task is
performed nowadays. We shall not go deeply into the mathematical background, but
for the theorem of Runge-Krarup. The proof of the theorem, even in the simplified
form provided here, needs not to be fully understood, however its consequences and
implications need to be clearly visualized and kept in mind by the reader.

Although other approaches are present in geodetic literature, all of themneed to go
through two fundamental steps: the first is linearization of the relations expressing
the observables as functionals of the potential, the second is to remove from our
unknown T pieces that approximate its longwavelength behaviour as well as its short
wavelength behaviour, controlled by the so called topographic signal. Such concepts
are properly developed in the chapter. The rest is basically collocation theory as a
technique to solve the relevant boundary value problem left for the residual part of T .

4.2 The Anomalous Potential

We define the anomalous potential T (P) as

T (P) = W (P) −U (P) . (4.1)
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Let us immediately observe that, since we have placed the polar axis of E along
the rotation axis of the Earth, the centrifugal potential Vc (P) (see (3.9)) contained in
both W (P) and U (P) is the same; therefore (see (3.12) and (3.58))

T (P) = VN (P) − Ve (P) . (4.2)

Hence, since Ve (P) is harmonic outside E and even inside, for a depth of thousands
of kilometers, from (4.2) and recalling (3.20) we find that T satisfies the Poisson
equation

�T (P) = −4πGρ (P) ; (4.3)

in particular T (P) is harmonic outside the masses.
Now let us remark as an empirical fact that, at the level of the topographic layer,

the following relations of maximum order of magnitude hold
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� 2 · 10−5 ,

|g − γ|
γ

� 10−4 . (4.4)

This implies that T can be usefully considered as a quantity small of the first
order, when we have to linearize functionals of W . However we have to underline
that, if we try to go inside the masses, the behaviour of W and U (continued as a
harmonic function) diverge one from the other (see Sansò and Sideris 2013), so that

|g − γ|
γ

� 4 · 10−3 at 20 km depth ,

|g − γ|
γ

� 2 · 10−2 at 100 km depth .

It follows that, some 20/30 km below the Earth surface, the significance of T (P)

is lost and one should not use any more the actual normal potential to approximate
W (P).

Having characterized the order of magnitude of T close to the masses, let us look
now at its behaviour at infinity, i.e. for r tending to ∞. From (4.2) and recalling
(3.19) and (3.68), one has

T (P) = W (P) −U (P) = VN (P) − Ve (P) =
=
[
μ

r
+ O

(
1

r3

)]

−
[
μ

r
+ O

(
1

r3

)]

= O
(
1

r3

)

. (4.5)

Notice that the above asymptotic relation comes from our choice to have the
same value of μ = GM for the actual and normal potential, to put the origin at the
barycentre of the masses, also coinciding with the centre of the ellipsoid E , and to
make the z axis coinciding with the rotation axis of the Earth as well as with the
polar axis of E .
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A consequence of (4.5) is that, outside any Brillouin sphere of radius R, one can
write the series expansion

T (P) =
+∞
∑

n=2

n
∑

m=−n

Tnm

(
R

r

)n+1

Ynm (σ) . (4.6)

Note that Tnm have the samedimensions as T , while in the literature, e.g. Sansò and
Sideris (2013), we often find non dimensional T nd

nm , related to the present coefficients

by T nd
nm = ( μ

R

)−1
Tnm . Here R is any radius close to the mean Earth radius.

In (4.6) the first two degrees, O ( 1r
)

and O ( 1
r2
)

, are missing, complying with the
asymptotic behaviour (4.5).

Let us recall as well here that, paralleling (3.54), the coefficients Tnm are functions
of the chosen value for R because

Tnm = 1

4π

∫

T (R,σ) Ynm (σ) dσ . (4.7)

Now if we take any other sphere with radius R′ > R, we have obviously

T
(

R′,σ
) =

+∞
∑

n=2

n
∑

m=−n

Tnm

(
R

R′

)n+1

Ynm (σ) ; (4.8)

on the other hand, T
(

R′,σ
)

will have as well its own harmonic coefficients T ′
nm such

that

T
(

R′,σ
) =

+∞
∑

n=2

n
∑

m=−n

T ′
nmYnm (σ) . (4.9)

Comparing (4.8) and (4.9), one finds

T ′
nm =

(
R

R′

)n+1

Tnm . (4.10)

Formula (4.10) represents the upward continuation of the harmonic coefficients
of T from the sphere SR to the sphere SR′ ; as we can see, the upward continued
coefficients T ′

nm become exponentially smaller than the corresponding Tnm as the
degree increases. This corresponds to a smoothing of T as a function of σ, going
from T (R,σ) to T

(

R′,σ
)

.
However the converse is also true, namely if we start from the outer sphere SR′

and its coefficients T ′
nm and we want to derive the coefficients Tnm , i.e. the potential

T , we will have an exponential increase of T ′
nm , namely

Tnm =
(
R′

R

)n+1

T ′
nm . (4.11)
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So if we have an imperfect knowledge of T ′
nm , namely

T ′
0nm = T ′

nm + εnm , (4.12)

and we try to use the erroneous T ′
0nm to derive T̂nm through (4.11), we get

T̂nm =
(
R′

R

)n+1

T ′
nm +

(
R′

R

)n+1

εnm = Tnm +
(
R′

R

)n+1

εnm . (4.13)

As we can see, T̂nm are equal to the true Tnm plus an error exponentially amplified.
For instance, if εnm are just random errors, uncorrelated, with constant variance

σ2 (εnm) = σ2
ε ,

as it happens if T0
(

R′,σ
)

is equal to T
(

R′,σ
)

plus a white noise on the sphere SR′ ,
the error contaminating our estimate T̂

(

R′,σ
)

is

δT (R,σ) =
N
∑

n=2

n
∑

m=−n

(
R′

R

)n+1

εnmYnm (σ) . (4.14)

When the summation in (4.14) goes up to infinity, δT becomes an awkward
random variable, with infinite variance, because, recalling (3.42)

n
∑

m=−n

Y 2
nm (σ) = (2n + 1) Pn (1) = (2n + 1) ,

we find

σ2 (δT ) =
N
∑

n=2

(
R′

R

)2n+2

(2n + 1) σ2
ε −−−→

N→∞ +∞ . (4.15)

This shows that, if we try to make a downward continuation from the sphere SR′

to the sphere SR , we can expect a lot of fuzzy numbers because of the increasing
variability of errors with the degree. In fact it is well known that, even assuming
that we know exactly T ′

nm , there are potentials that are harmonic outside SR′ but not
down to SR , so that formula (4.11) cannot be meaningfully applied (seeMoritz 1980,
Sansò and Venuti 2010).

Note that the determination of T is an essential tool to be able to perform the
transformation between several types of geodetic heights, so we have at least to be
aware of how it is done, to handle the necessary calculations involving T .

The determination of T , starting from the historical approach of Stokes (1849),
has always been done by building a model T̂ which is harmonic in a domain larger
than �, i.e. harmonic even inside the masses down to some reference surface S0, for
instance an internal sphere SR0 also called a Bjerhammar sphere. Since then T̂ seems
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to be a kind of downward continuation of T inside the masses, which is not, it is
necessary to clarify the situation by illustrating a cornerstone of Physical Geodesy,
namely the Runge-Krarup theorem.

4.3 The Runge-Krarup Theorem: A Mathematical
Intermezzo

This is essentially a theorem saying that if we have a closed surface S, with � the
exterior of S, and another internal surface S0, with �0 the exterior of S0, such that
� ⊂ �0, then any function harmonic in � can be approximated as well as we like
by a function harmonic in �0.

When we want to obtain a result of “approximation”, we need to specify what
this term means for us, i.e. we have to fix some topology for the space of functions
harmonic in�. This can be done, as it was done by Krarup, in very general terms, but
here we shall content ourselves to use the space mostly applied in geodetic literature,
namely the space functions harmonic in � and such that their trace on S is in L2 (S),
i.e.

u ∈ H (�) ⇒ �u = 0 in � ,

∫

S

u2dS < +∞ . (4.16)

Such a space is a Hilbert space with scalar product

〈u, v〉H =
∫

u v dS (4.17)

and with the norm derived by (4.17). So uN → u, i.e. uN approximates u as well as
we like, inH means

lim
N→∞

∫

(uN − u)2 dS = 0 . (4.18)

Similarly we can define the space H0 = H (�0) as

u0 ∈ H0 ⇒ �u0 = 0 in �0 ,

∫

S0

u20 dS < +∞ . (4.19)

We note that ∀u0 ∈ H0 we can define a function u0� which is the restriction of u0
to� (remember the� ⊂ �0), i.e. we can define a restriction operatorR� : H0 → H
such that

u0� = R�u0 ⇒ u0� (P) ≡ u0 (P) , ∀P ∈ � . (4.20)

With the help of R� we can give the theorem a synthetic form.
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Theorem 4.1 (Runge-Krarup)1 The set of functions

U0 ≡ {R�u0 , u0 ∈ H0} (4.21)

is densely embedded inH.

This exactlymeans that ∀u ∈ Hwe can find u0N ∈ H0 such that u − R�u0N → 0
in H. Since H is a Hilbert space, the above is equivalent to saying that there is no
element v �= 0 ∈ H which is orthogonal to U0, i.e.

∀u0 ∈ H , 〈v,R�u0〉H = 0 ⇒ v = 0 . (4.22)

We sketch here a proof without too many pretenses of rigorousness.
Take

u0 (P) = 1

�PQ
, Q ∈ B0 (interior of S0) ;

it is obvious that u0 ∈ H0, ∀Q ∈ B0. But then if v ∈ H is such that

V v (Q) = 〈v,
1

�PQ
〉H =

∫

S

v (P)

�PQ
dSP = 0 ∀Q ∈ B0 ,

we have that the single layer potential V v (Q) has to be zero in B0. Since V v (Q)

is harmonic in both B (interior of S) and �, and B0 is an open set contained in B,
V v (Q) ≡ 0 in B by the unique continuation property; namely, two functions u, v

harmonic in some set B, that are equal in an open subset B0 of B, have to coincide
in the whole of B (Sansò and Sideris 2013). Indeed V v (Q) and 0 are precisely in the
above situation.

On the other hand, imposing some regularity hypothesis on the surface S, it is
known that a single layer with an L2 (S) surface density is continuous throughout
all ofR3. This implies that V v (Q) ≡ 0 on S too. But then V v (Q) is harmonic in �,
continuous in � and zero on its boundary S, i.e. it has to be zero everywhere in �

by the well known maximum principle, i.e. (see Sansò and Sideris 2013)

max
Q∈�

V v (Q) = max
Q∈S V v (Q) , min

Q∈�

V v (Q) = min
Q∈S V

v (Q) .

Since, as for any single layer (MacMillan 1958),

v (Q) = 1

2π

{
∂V v (Q)

∂n+
− ∂V v (Q)

∂n−

}

,

1Note: on historical ground Runge proved a similar theorem for analytic functions; the theoremwas
extended to harmonic functions by T. Krarup.
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with n± indicating the external/internal limit of the derivative along the normal to S,
we find that v ≡ 0 and the theorem is proved.

Note that in the theorem S0 is any closed surface with an open interior domain
B0. Now take a sequence Sk of such surfaces, internal one to the other and shrinking
to some point that we take as the origin O, so that

Bk ⊃ Bk+1 or �k+1 ⊂ �k . (4.23)

If we consider the corresponding Hilbert spaces Hk , we have indeed

uk+1 ∈ Hk+1 , R�k uk+1 ∈ Hk , R�R�k uk+1 = R�uk+1 ∈ H ,

so that
R�Hk+1 ⊂ R�Hk ⊂ · · · ⊂ H , (4.24)

each embedding being dense inH. If we take the intersection

+∞
⋂

k=0

R�Hk = R�Ḣ ,

we get the restriction to � of all the functions that are harmonic outside the origin,

u ∈ Ḣ ⇒ �u = 0 ∀P �= O .

Ḣ has not aHilbert space structure, but this is not important to us.More interesting
is that, if we take the sequence of solid spherical harmonics

Snm (r,σ) =
{(

R

r

)n+1

Ynm (σ)

}

,

we have indeed Snm ∈ Ḣ and so any finite linear combination of {Snm} is also in Ḣ,
namely

u ∈ HF ≡
{

N
∑

n=0

n
∑

m=−n

anm

(
R

r

)n+1

Ynm (σ)

}

⇒ u ∈ Ḣ .

In particular, what is of utmost importance for us is the following corollary of the
Runge-Krarup theorem.

Corollary The subspace R�HF is densely embedded intoH (�) ≡ H.

This is rather obvious because writing the elements of HF in the form

u ∈ HF ⇒ u =
N
∑

n=0

n
∑

m=−n

a′
nm

(
R

r

)n+1

Ynm (σ) , (4.25)
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for some finite N , we see that, ∀ε > 0,

R�ε
HF ⊂ H (�ε) (4.26)

(�ε ≡ {r ≥ ε}) ,

the embedding being dense, because

{(
R

r

)n+1

Ynm (σ)

}

is an orthogonal, complete

sequence inH (�ε). But then, for ε sufficiently small so that �ε ⊃ �, we get

R�R�ε
HF = R�HF ⊂ R�H (�ε) ⊂ H , (4.27)

each embedding being dense into the next.

Remark The neat result of the above mathematical discussion is that, given any
potential T ∈ H (�), we can find a T̂M ∈ HF that approximates T better than a
prefixed level ε, or said in another way

∀T ∈ H (�) , ∀ε > 0; ∃Nε,
{

T̂nm; n ≤ Nε

} ⇒ ∥
∥T − T̂M

∥
∥
H < ε

with

T̂M =
Nε∑

n=2

n
∑

m=−n

T̂nm

(
R

r

)n+1

Ynm (σ) , (4.28)

for some fixed Bjerhammar radius R. A finite sum of the type (4.28) is called a global
model of the anomalous potential.

It is clear from the above discussion that a global model T̂M is not a downward
continuation of T ; in addition there are many T̂M satisfying the same approximation
level.

Actually we use validated models up to degree 2159 (e.g. EGM2008 Pavlis et al.
2012, 2013 or EIGEN-6C4 Förste et al. 2014, Shako et al. 2014), which have a
resolution of about 10 km on the Earth surface. The use of these models however
does imply calculations with about 4.6 · 106 coefficients Tnm , which is feasible but
computationally heavy. Even more, if we wanted to reach the resolution of 1 km on
S, we should use a model with 100 times coefficients than the above, what seems not
particularly economical from the computational point of view.

So in our description on how to represent T , we shall always include a component
of the type global model, but we shall leave to other methods a representation of the
high resolution particulars of this potential.
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4.4 Optimal Degree of Global Models, or Smoothing
by Truncation

The decision to represent T by a global model T̂M leaves open the question of the
degree N up to which T̂M should be developed and of which method should be
employed to estimate the specific coefficients T̂nm .

As for the second point, we could say that T̂nm are obtained by solving a specific
boundary value problem, as it will be illustrated into the the next sections, while the
first point will be discussed here.

In any event we assume that we have a tool that from some data is producing
estimates

T̂nm = Tnm + εnm , (4.29)

where εnm are the estimation errors and Eq. (4.29) refers to some suitable radius R.
We call power of the degree n (or full power degree variances) the index

Cn (T ) =
n
∑

m=−n

T 2
nm (4.30)

and degree variances (we shall explain this term in the next section)

σ2
n (T ) = Cn (T )

2n + 1
. (4.31)

Let us note that the quantity

1

4π

∫

T 2 (R,σ) dσ =
+∞
∑

n=2

Cn (T ) < +∞ (4.32)

has to be finite, implying thatCn (T ) → 0 for n → ∞. Among others, this constitutes
a necessary condition to be imposed on R. For instance, for EGM2008 R is close to
be equal to a, the equatorial radius. Indeed we do not know exactly Cn (T ), but we
can have a guess of them, Ĉn (T ) = Cn

(

T̂
)

, by using T̂nm . To be more precise, one

could observe that the estimator Ĉn (T ) =
n
∑

m=−n

T̂ 2
nm is biased and E

{

Ĉn (T )
} =

Cn (T ) +
n
∑

m=−n

σ2 (εnm); but then, if we assume to know σ2 (εnm), we can easily

construct the unbiased estimator Cn (T ) = Ĉn (T ) −
n
∑

m=−n

σ2 (εnm).

It happens that by inspecting the plot of Ĉn (T ), for example computed from the
EGM2008 coefficients (see Fig. 4.1), one can derive an empirical law for them (see
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Fig. 4.1 The empirical full power degree variances of EGM2008

discussion in Sansó and Sideris 2013, Sect. 3.8). Older but evergreen models of Cn

are also available, like those of Kaula (1966, 2000) and Tscherning and Rapp (1974).
Therefore we could say that, although we do not know the exact Tnm , we have a

law for Cn (T ). This helps us to define the mean square omission error at degree N ,
i.e.

OE2
N =

+∞
∑

n=N+1

Cn (T ) ; (4.33)

this is the error that we commit if instead of T we use just its development up to
degree N . In fact if we split T (at the level of the sphere SR) into

T =
N
∑

n=2

n
∑

m=−n

Tnm Ynm (σ) +
+∞
∑

n=N+1

n
∑

m=−n

Tnm Ynm (σ) = T(N ) + T (N ) , (4.34)

we see that, thanks to the orthogonality property of spherical harmonics, see (3.47),

1

4π

∫
[

T − T(N )

]2
dσ = 1

4π

∫
[

T (N )
]2
dσ =

+∞
∑

n=N+1

Cn (T ) = OE2
N . (4.35)

We note as well thatOEN is a decreasing function of N and it has to tend to 0 for
N → ∞, because of condition (4.32).
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Now we observe that, recalling (4.29), one has

e (T ) = T − T̂M = T(N ) − T̂M + T (N ) =

=
N
∑

n=2

n
∑

m=−n

εnm Ynm (σ) +
+∞
∑

n=N+1

Tnm Ynm (σ) . (4.36)

The mean square error of e (T ) over the unit sphere is then

1

4π

∫

e2 (T ) dσ =
N
∑

n=2

n
∑

m=−n

ε2nm + OE2
N .

As we can see, this is still a random variable because it depends on ε2nm ; so we
can reasonably define a total error E2

N as

E2
N = E

{
1

4π

∫

e2 (T ) dσ

}

=
N
∑

n=2

n
∑

m=−n

σ2 (εnm) + OE2
N . (4.37)

This is the total (mean square) error that we expect by substituting T with T̂M . As
we can see, it is in part due to the propagation of the estimation errors εnm , in part to
the omission of the coefficients by truncating at degree N . The first term in (4.37) is
called commission error

CE2
N =

N
∑

n=2

n
∑

m=−n

σ2 (εnm) . (4.38)

As we said, it represents the effect of the estimation errors, up to degree N , which
ultimately descend from the presence of measurement noise in the original data that
have allowed to estimate the Tnm coefficients.

The terms

σ2
n (ε) =

n
∑

m=−n

σ2 (εnm) (4.39)

are called error degree variances and we have

CE2
N =

N
∑

n=2

σ2
n (ε) . (4.40)

As it is obvious, CE2
N is an increasing function of N and if for instance σ2 (εnm) =

σ2
0, as it happens when εnm are just white noise, then σ2

n (ε) = (2n + 1) σ2
0 and indeed

CE2
N → ∞ when N → ∞. This however is not the general case.
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Fig. 4.2 The typical shape of OE2
N , CE2

N and E2
N

Yet E2
N as the sum of CE2

N and OE2
N will have a typical behaviour as shown in

see Fig. 4.2, namely E2
N will have a minimum at the degree N where the commission

and omission errors cross. N is indeed our optimal choice for N , because the total
error is minimum at this degree.

We note that the above condition implies

σ2
N

(ε) = CN (T ) ; (4.41)

for instance, if σ2 (εnm) = σ2
0, then σ2

N
(ε) = (

2N + 1
)

σ2
0 and the optimal criterion

is

σ2
0 = CN (T )

(

2N + 1
) = σ2

N
(T ) .

This solves the posed problem. As a realistic example in Fig. 4.3 let us display the
plot of potential error degree variances of a satellite model, when both the estimate
of T̂nm is unregularized and it is conditioned by using Cn (T ) (see next section). As
we can see, the optimal N in this case is around N = 250.
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Fig. 4.3 Estimated error degree variances of amodel from theESA-GOCEmissionwith andwithout
regularization, respectively in black and gray Brockmann et al. (2014), [Brockmann, personal
communication, 2015]. The dash line shows the EGM2008 degree variances

4.5 Collocation Theory, or Smoothing by Prior Information

As in the previous section, we assume to know T0nm = Tnm + εnm up to some degree
N , as well as the full power degree variances (4.30) and σ2

n (T ). For the moment let
us assume further on that εnm are independent from one another.

We want to state a criterion to estimate T̂nm that exploits, beyond the “observa-
tions” {T0nm}, also the prior knowledge given by (4.30). In collocation theory this is
done by establishing the minimum principle

{

T̂nm
} = ArgMin

{
N
∑

n=2

n
∑

m=−n

(

T0nm − T̂nm
)2

σ2 (εnm)
+

N
∑

n=2

n
∑

m=−n

T̂ 2
nm

σ2
n (T )

}

. (4.42)

Aswe can see, this is composed by a first quadratic functional that is essentially the
same sum of squares as in least squares theory, while the second part of the functional
has the purpose of stabilizing the solution as in Tikhonov theory. We observe also
that this second functional would be the natural extension of least squares if we
interpreted the prior information in terms of pseudo-observation equations

T0nm = 0 + ηnm ∀m , n > N

E {ηnm} = 0 , σ2 (ηnm) = σ2
n (T ) .
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This is also typical of a Bayesian interpretation in which every variable is stochas-
tic by assumption.

All in all the principle (4.42) has an obvious, but significant, solution

⎧

⎨

⎩

T̂nm = σ2
n (T )

σ2
n (T ) + σ2 (εnm)

T0nm (∀m , n ≤ N )

T̂nm = 0 (∀m , n > N )

. (4.43)

As we can see, the analogy to the Wiener-Kolmogorov filter is very strong (Sansó
and Sideris 2013, Sect. 5.4).

Also here we truncate the estimated model at degree N , because there is no
interaction between T̂nm (n > N ) and the observations. The coefficients of degree
n ≤ N are rescaled and not just equal to T0nm . In particular at low degrees where
we expect σ2

n (T ) � σ2 (εnm), we have T̂nm ∼ T0nm , while for high degrees, where
σ2
n (T ) → 0 and σ2 (εnm) might even tend to a constant or in any way is expected to

go zero much slower than σ2
n (T ), we have that T̂nm → 0 much faster than T0nm .

Remark There are significant examples inwhich T0nm are directly derived from space
observations. In these cases a stochastic model with independent estimation errors
is too unrealistic; on the contrary the εnm have a fully populated covariance matrix
Cε. So if we reorganize Tnm in a vector T with some ordering and we introduce the
diagonal matrix

K = diag
{

σ2
n (T )

}

,

meaning that σ2 (Tnm) = σ2
n (T ), (m = −n, . . . , 0, . . . , n), the principle (4.42) is

extended to
min

{

T̂
T
K−1 T̂ + (

T 0 − T̂
)T

C−1
ε

(

T 0 − T̂
)}

. (4.44)

The variation equation of (4.44) is

(

K−1 + C−1
ε

)

T̂ = C−1
ε T 0

and its solution is given by

T̂ = K (K + Cε)
−1 T 0 .

Such a formula is particularly nice because we do not need to invert two times
the large matrix Cε.

Anyway, what we have done up to now is basically to show how to filter a global
model,where the coefficients themselves are considered as observations.On the other
hand, we need a more general tool to treat the estimation of T̂ from a general set of
observations; this is particularly important because the main sources of information
on T come from gravity measurements and not from coefficients.
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So to generalize the above discussion, we assume now to have a set of observations

m0i = Mi (T ) + ηi i = 1, 2, . . . , M , (4.45)

where Mi (T ) are linear functionals of T , namely numbers that linearly depend on
T . We shall see in the next section how to write Mi (T ) for the main observables
available.

We want to directly estimate T̂ (P) at any point P in the harmonicity domain of
T̂ , recalling that by using the Runge-Krarup theorem T̂ is taken as harmonic down
to a Bjerhammar sphere,

T̂ = μ

R

+∞
∑

n=2

n
∑

m=−n

T̂nm

(
R

r

)n+1

Ynm (σ) =

= μ

R

+∞
∑

n=2

n
∑

m=−n

T̂nm Snm (r,σ) .

The new optimization principle then becomes

min

{
M
∑

i=1

[

m0i − Mi
(

T̂
)]2

σ2
ηi

+
+∞
∑

n=2

n
∑

m=−n

T̂ 2
nm

σ2
n (T )

}

. (4.46)

Leaving the proofs e.g. to the text Sansó and Sideris (2013, Sect. 5.5), we directly
report here the solution of the principle (4.46). This can be obtained in terms of the
so called covariance functions, hereafter defined

C (P,Q) =
+∞
∑

n=2

n
∑

m=−n

σ2
n (T ) Snm (rP,σP) Snm

(

rQ,σQ
)

, (4.47)

C (P, Mi ) =
+∞
∑

n=2

n
∑

m=−n

σ2
n (T ) Snm (rP,σP) Mi

(

Snm
(

rQ,σQ
))

, (4.48)

C (Mk, Mi ) =
+∞
∑

n=2

n
∑

m=−n

σ2
n (T ) Mk (Snm (rP,σP)) Mi

(

Snm
(

rQ,σQ
))

. (4.49)

The optimal solution is then obtained by the formula

T̂ (P) =
M
∑

i,k=1

C (P, Mi )
{

C (Mi , Mk) + σ2
ηi
δik
}(−1)

m0k . (4.50)

An important feature of the theory is that one can also compute the variance of
the estimation error of T̂ (P), namely
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E2 (P) = C (P,P) −
M
∑

i,k=1

C (P, Mi )
{

C (Mi , Mk) + σ2
ηi
δik
}(−1)

C (P, Mk) . (4.51)

We cannot go here into the intricacy of the full estimation process and of its
numerical implementation. However we shall make some comment on the use of
(4.50) in a local area and on the remove-restore principle.

Remark (Collocation in a local refinement environment)
Assumewehave global data sets, like satellite tracking or satellite gravitymissions

or just gravity observations all over the surface S; assume that we have solved the
problem of estimating a globalmodel T̂M from such global data sets, with a resolution
regulated by its maximum degree. Now we have more observations, written as in
(4.45), concentrated in a local area and we want to improve our knowledge of T in
that area.

As a first operation we can remove the global information putting

m0i = Mi (TM + δT ) + ηi = Mi (TM) + Mi (δT ) + ηi , (4.52)

computing Mi (TM) and removing it fromm0i . We are left nowwith the unknown δT
that represents the local behaviour of T . Before estimating δT with a formula like
(4.50), it is usually convenient to further smooth the data by exploiting the information
coming from a local Digital Terrain Model (DTM). In fact the fine variations of the
topography produce a quite significant potential with an important content of high
frequency. This is done by what is called the residual terrain correction and its
potential δTtc. In fact in general we have a much higher resolution in the knowledge
of the topography than for other gravity measurements. This correction is called
residual because we know that the long wavelength effect of topography is already
captured by the model TM . So in δTtc we have to put the effect of the masses between
the actual terrain and a smoothed version of it. This is usually done by discretizing
the masses in prisms (Fig. 4.4).

So we now rewrite (4.52) as

δm0i = m0i − Mi (TM) = Mi (δTtc) + Mi

(

δT
)

+ ηi , (4.53)

where Mi (δTtc) is computed and removed from the known term (Sansò and Sideris
2013, Sect. 4.4). We are finally left with an unknown δT , where long and short
wavelengths have been removed or de-potentiated. It is now to δT that a collocation
solution is applied. At the end we restore all the terms and T̂ is estimated in the area
where we have added new measurements by the formula

T̂ = T̂M + δTtc + δT . (4.54)
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Fig. 4.4 Geometry of the terrain correction, i.e. potential generated by prisms including the masses
between the actual topography S and a smoothed topography S̃

4.6 On the Relation Between Potential and the Surface
Gravimetric Observables

Let us remark first of all that W (P), and whence T (P), is related to several spatial
observables that we shall not discuss in the present context, because this would
require to enter into subjects of satellite dynamics that are far away from the main
purpose of the book.

We shall mention however that due to the structure of satellite observation equa-
tions and the significant smoothing of T (P) at satellite altitudes, it comes natural
that the processing of spatial geodesy data gives as an output the estimate of the
harmonic coefficients {Tnm} of T up to some maximum degree N . At present, with
the data of the CHAMP, GRACE and GOCE missions, N can be taken to be as high
as N = 300.

Given that, we come to the main observables on the surface of the Earth, that
provide the major information on the gravity field.

4.6.1 Gravimetry

In principle gravimetry, in its absolute version, provides the measurement of the
modulus of the gravity vector on continental areas.

In addition to absolute gravimeters, we have relative gravimeters that can observe
the difference of gravity between two points. The old spring gravimeter schematized
in Fig. 4.5a is nowadays substituted by superconducting gravimeters, see Fig. 4.5b,
which are in principle able of measuring g with an accuracy of 1 μGal (10−6 Gal).
Such relative measurements are arranged in networks constituted by closed loops,
which, thanks to their redundancy, allow to estimate various biases in the observa-
tions.

All in all, also correcting the time variable part of g, we end up with a set of points
{Pi } (gravity stations), where we know

g (P) = |g (P)| = |γ (P) + ∇T (P)| . (4.55)
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Fig. 4.5 The principle of
measurement of gravity, a
spring gravimeter (not in use
any more), b
superconducting gravimeter

The final accuracy with which we know g (P) can be deemed to be somewhere
between 0.1 and 0.01 mGal, which is certainly suitable for geodetic purposes. The
actual data set at BureauGravimétrique International (BGI) comprises some 106 data,
on continental areas,with a significant variability of points density. In particular South
America, Africa and Antarctica are rather poorly covered by gravity observations.

Let us note explicitly that although nowadays gravity measurements are accom-
panied by the 3D ellipsoidal coordinates of P, given with sufficient accuracy by
GPS observations, this is not the case for the largest part of the data existing in the
BGI archives, where Pi have known horizontal coordinates but unknown ellipsoidal
height h.

This imposes a particular manipulation of the equations, during linearization,
which is characteristic of Physical Geodesy. We only mention that beyond conti-
nental gravity measurements, we have a marine gravity data set of direct gravity
observations. This however is much less dense than the first and its accuracy is much
lower (between 1 and 5 mGal). Furthermore, on oceans we have the more important
data set of radar altimetry that we shall discuss hereafter.

Finally we have as well gravity data from aerogravimetry, in part on land and in
part on sea; however it is only recently that such data have an accuracy below the
mGal level and in any way we can think that they have been processed to provide
grids of gravity values on the surface.

4.6.2 Levelling Combined with Gravimetry

Levelling is a kind of classical geodetic measurement, that is schematized in Fig. 4.6
for one of its constitutive steps. As we can see from the figure, the typical reading of a
step of levelling is δL , which represents the projection of the vector rAB = rB − rA
in the vertical direction n at the midpoint M between A and B, namely

δL = n · rAB = −gM

gM
· rAB . (4.56)
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Fig. 4.6 The elementary operation of levelling with two vertical rods and two readings LA, LB
from the middle in horizontal directions; the observation is δL = LA − LB

Such a measurement can be combined with the value of gravity at M, providing

gMδL = −gM · rAB = −∇W (M) · rAB ∼= WA − WB = −δW . (4.57)

The last step in (4.57) is justified by the fact that in each levelling station the
distance between A and B is typically between 100 and 200 m, so that rAB can be
considered to have an infinitesimal length, on a planetary scale.

We shall discuss in a dedicated chapter the levelling operations and their analytical
formulation. Here we are interested in the fact that by adding the relation (4.57) along
levelling lines, we can arrive to connect all the points of a certain region to an origin
point P0, which ideally could be placed on the geoid. This means that all over the
surface of the continents we could arrive to know

W (P) = W0 +
P∫

P0

dW = W0 −
P∫

P0

g δL . (4.58)

For several reasons, including the fact that it is difficult to state that P0 is on the
geoid, even if it is placed at a tide gauge, we could say that W (P) is know, but for
an additive constant. Even more such a constant is certainly different for different
patches connected to different origins. So for the moment we shall overlook the
problem of determining such constants, that will be treated in the last chapter of the
book, and we shall assume that we know W (P) at any point on land.
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4.6.3 Radar-Altimetry on the Oceans

As already illustrated in Sect. 3.6, a radar-altimeter measures the height of a satellite
on the ocean. The position of the radar-altimeter in space is known byGPS tracking at
centimetric level; subtracting the former from the latter,we are leftwith the ellipsoidal
height of the sea.

The footprint of the radar beam is regulated with a diameter between 100 and
1000 m, in such a way as to average the wave motion. Tides and barometric effects
are modelled and subtracted from the observed height of the sea, so that by averaging
in time we arrive at the (quasi) stationary sea surface. This one, in turn, is the sum of
the geoid and the mean dynamic ocean topography η, which is related to geostrophic
currents and provided by oceanographic models.

All together, one has the observation equation for H0, i.e.

H0 = hR − (N + ηt ) + ν , (4.59)

with ν the observation noise, ηt the time dependent dynamic ocean topography, N
the geoid undulation, hR the ellipsoidal height of the radar-altimeter, see Fig. 4.7.

All the terms in (4.59), but for the unavoidable measurement error ν and the geoid
N , are known or modelled. Hence (4.59) can be used to provide estimates of N over
the ocean.

Fig. 4.7 Geometry of radar-altimetric observations: E ellipsoid, G geoid, N geoid undulation, ηt
dynamic ocean topography, hR ellipsoidal height of the radar-altimeter, H0 radar-altimeter obser-
vation
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Summarizing, and with a certain degree of abstraction, we could say that the main
observables of Physical Geodesy can provide

on continents: W (P) , g (P) (4.60)

on oceans: N (Pe) . (4.61)

We recall that in (4.60) we know the horizontal coordinates (λ,ϕ) of P, but usually
not its ellipsoidal height; in (4.61) Pe is on the ellipsoid and its (λ,ϕ) coordinates
are known. However, note that from N one has also the third coordinate, namely
(λ,ϕ, N ) of the point PG . So, recalling that on the geoid W (P) has the known value
W0, one could substitute (4.61) with the relation

W (PG) = W0 , (4.62)

where PG has known ellipsoidal coordinates.
As a closing remark of the section, we recall again that further important sources

of information on the gravity field are space geodetic methods, providing global
models up to some degree N (nowadays we have N ∼= 300), and digital terrain
models, basically used at a local level to smooth the gravity field by residual terrain
corrections.

To put together all this information is not an easy task; at a conceptual level, this is
done by the so called Geodetic Boundary Value Problem theory that we shall review
in the next section, especially with the purpose of providing the linearized version
of the Eqs. (4.60) and (4.62), where the unknown field is not any more W (P), but
the anomalous potential T (P).

4.7 The Geodetic Boundary Value Problem (GBVP)

In principle (4.60) and (4.62) can be put together, to formulate the following BVP:

to find W (P) = V (P) + 1

2
ω2ρ2, with V (P) regular harmonic in �, the exterior

of surface S,
⎧

⎨

⎩

�V = 0 in �

V = O
(
1

r

)

r → ∞ ; (4.63)

the surface S is composed by two patches, that we call L and O and correspond
respectively to Land and Ocean,

S = L ∪ O .

The surface O is geometrically known

r ∈ O ⇒ r = (λ,ϕ, N ) , N = N (λ,ϕ) (4.64)
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and on O we know that the potential is constant, i.e.

W (P) = W0 (P ∈ O) ; (4.65)

on the contrary, the surface L is unknown

r ∈ L ⇒ r = (λ,ϕ, h) , h = h (λ,ϕ) (unknown) (4.66)

but on L both the gravimetric quantities are known, i.e.
{

W (P) = W [λ,ϕ, h (λ,ϕ)] = W0 (λ,ϕ)

g (P) = |∇W [λ,ϕ, h (λ,ϕ)]| = g0 (λ,ϕ)
. (4.67)

As such, this BVP can be classified as:

• a BVP for the Laplace operator in a space of regular harmonic functions (see
(4.63)),

• a partially fixed boundary (see (4.64)) Dirichlet problem (see (4.65)),
• a partially free boundary (see (4.66)), mixed Dirichlet-Oblique Derivative (see
(4.67)), because ∇W is not pointing towards the normal of S, non linear problem,
because the second equation in (4.67) is highly non linear in the unknownsW and
h (λ,ϕ).

This is the GBVP in its most general form, or to be more precise, in its most
general scalar form, as opposed to a vector form, previously stated in literature,
where on L instead of knowing (λP,ϕP) it is considered as known the direction of g
in an Earth-fixed reference frame. This vector form, though interesting, is certainly
less realistic than the scalar one, because the data set of directions

n (P) = −g (P)

g (P)

is essentially very poor and globally not very accurate. This is whywe have chosen to
directly present here the scalar GBVP. To the knowledge of the authors, this problem
has never been rigorously analyzed in such a general formulation.

In any event, we shall go here to a linearization and a further simplification of the
problem, conducting it to a formwhich is actually used to derive numerical solutions.
We follow here the general approach introduced by Krarup (2006), although wewant
to mention as well Molodensky et al. (1962), Heiskanen andMoritz (1967) and Heck
(1991). To this purpose, we notice that the problem has to be linearized with respect
to all its unknowns, which here are the potential W (P) as well as the height hP of S
corresponding to the land L . As for W (P), it is only natural to put

W (P) = U (P) + T (P) , (4.68)

with T (P) the variational unknown, and we shall put as well

h (P) = h̃ (P) + ζ (P) , P ∈ L , (4.69)
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where ζ (P), the variation of h̃ (P), is called the generalized height anomaly; gener-
alized because we shall reserve the name of proper height anomaly to a particular
choice, that will be made in the sequel, for h̃ (P).

In any way we recall that T
W = O (10−5

)

, so to keep in balance the linearization

process we have also to put a constraint on h̃, in such a way that ζ
R = O (10−5

)

, with
R the mean radius of the Earth, say 6371 km. This restricts the a-priori values of
ζ (P) to be of the order of 100 m; such a choice is by the way consistent with the
values of N (P), which are the counterparts of ζ (P) on the oceanic area.

We observe that the problem is indeed already linear for the Laplace equation in
�, because

�T = 0 , P ∈ � ;

however such a relation is of little use because � is not yet specified. In fact � has
to be substituted by an approximate �̃, with a boundary S̃ that includes

{

h = h̃
}

on
L . For reasons that will be clearer later, instead of the actual known surface of O ,
we prefer in any way to make S̃ to coincide with the ellipsoid E on the oceanic area.
This is consistent with our previous discussion on orders of magnitude. In any way
we notice that in doing so we modify the domain of harmonicity of the true T (P),
yet, on account of the Runge-Krarup theorem, this does not prevent us from having
an excellent approximation of T (P), neglecting only quadratic terms in the range
10−9 ÷ 10−10 of the potential. So we have an �̃ that is defined as the exterior of

S̃ ≡ {

h = h̃ on L ; h = 0 on O
} ≡ S̃L ∪ S̃O . (4.70)

Naturally, to guarantee that S̃ is a closed surface, one has to force h̃ to go to zero
on the coast lines. Therefore on S̃O we can write

W (Pe) ∼= W (P) + g (Pe) N ∼= W (P) + γ (Pe) N =
= W0 + γN ≡ U (Pe) + T (Pe) = U0 + T (Pe) ,

with Pe ∈ S̃O , P ∈ O . Recalling that W0 = U0, from the previous relation we derive
the boundary condition for S̃O

T (Pe) = γ (Pe) N (Pe) Pe ∈ S̃O , (4.71)

where the right hand side is known according to (4.64).
Coming to the land part S̃L , we have, considering the two points P ∈ S and P̃ ∈ S̃L ,

along the same normal ν, at a distance ζ apart,

W (P) = U (P) + T (P) ∼= U
(

P̃
)− γ ζ̃ + T

(

P̃
)

. (4.72)

Introducing the known potential anomaly

DW = W (P) −U
(

P̃
)

, (4.73)
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we write (4.72) as

ζ̃ = T
(

P̃
)− DW

γ
; (4.74)

this is known as the generalized Bruns relation. Notice that we use the non standard
notation DW and (here below) Dg to designateW and g anomalies and to distinguish
them from �W and �g that correspond to a particular choice of S̃ and will be
introduced later on.

Moreover, we have

g (P) = |∇U (P) + ∇T (P)| ∼=
∼= γ (P) + eγ · ∇T

(

P̃
) ∼=

∼= γ
(

P̃
)+ γ′ζ + eγ · ∇T

(

P̃
) ; (4.75)

here we have introduced the notation

eγ = γ

γ
, γ′ = ∂γ

∂h
.

Considering that on S̃ (see Sansò and Sideris 2013, Sect. 15.2)

eγ
∼= −ν

with an accuracy of 5 · 10−6, and introducing, similarly to (4.73), the gravity anomaly

Dg = g (P) − γ
(

P̃
)

, (4.76)

we can write (4.75) in the form

− ν · ∇T + γ′ζ̃ ≡ −T ′ + γ′ζ̃ = Dg . (4.77)

Finally, using (4.74) in (4.77) and reordering, we get the fundamental equation of
Physical Geodesy

− T ′ (P̃
)+ γ′

γ
T
(

P̃
) = Dg + γ′

γ
DW P̃ ∈ S̃L . (4.78)

Putting everything together, we find the linearized form of the scalar GBVP,
namely

⎧

⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

�T = 0 in �̃

T = γ N on S̃O

−T ′ + γ′

γ
T = Dg + γ′

γ
DW on S̃L

T = O
(
1

r

)

. (4.79)
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A first simplification of (4.79) is to fix explicitly the choice of h̃. One possible
useful choice, though not the only one, is to use the traditional condition

DW = W (P) −U
(

P̃
) = 0 .

Such a condition gives h̃ as the solution of the implicit function equation

U
[

σ, h̃ (σ)
] = W (σ, hσ) ⇒ h̃ = h̃ (σ) , σ = (λ,ϕ) . (4.80)

With this choice, we shall denote

h̃ = h∗ , (4.81)

also called normal height, that we shall study in depth in the next chapter. Under
such a choice, the corresponding

ζ = h − h∗ = T (P∗)
γ

(4.82)

is the proper height anomaly and (4.82) is the proper Bruns relation. One can prove
empirically that in factO (|ζ|) = 100 m, which was one of the a-priori conditions to
accept h̃ as a suitable approximation of h.

We note as well that when P is on the geoid, as it happens in O , then

W (σ, hσ) = W0 = U0 = U (σ, 0) ;

in other words h∗ = 0 and
ζσ ≡ Nσ , (P ∈ O) .

Another quantity that gets fixed by the choice (4.81) is the gravity anomaly that
now is denoted as

Dg = g (σ, hσ) − γ
(

σ, h∗
σ

) ≡ �g (σ) , (4.83)

also called free air gravity anomaly. Notice that � in (4.83) has no relation with the
Laplace operator.

The surface
S∗ ≡ {

h = h∗} = S∗
L ∪ S∗

O (4.84)

is called the Marussi telluroid (Marussi 1985); as we see, this is naturally a closed
surface and this explains why we have chosen to use S∗

O ⊂ E as the approximate
surface in the O region. In fact if we had chosen S∗

O ≡ SO , which is possible because
SO is known, we would have for S∗ a surface broken along the coast lines and this
is not acceptable as boundary in a Boundary Value Problem.
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In this way (4.79) becomes

⎧

⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

�T = 0 in �̃

T = γ N on S∗
O

−T ′ + γ′

γ
T = �g on S∗

L

T = O
(
1

r

)

. (4.85)

The solution of this problem is significantly complicated by the shape of the
telluroid S∗

L , which mimics the geometry of the actual Earth surface in land areas,
with irregular mountains as high as 10−3 R. In addition an important role is played
by the geometry of the coasts, that separate S∗

O from S∗
L . So a further simplification

is achieved by modifying the boundary condition on O , bringing it to the same form
as that on L .

Without going into details, we only mention that, after a model up to some degree
200-300 is subtracted from T (see Rapp 1993), one goes locally from T (P) to�g (P)

by a slight generalization of the collocation theory outlined in Sect. 4.5.
More precisely when we subtract from T (P) a global model, e.g. up to degree

200, we theoretically obtain on O a signal containing only wavelengths below about
100 km. The covariance function of such a signal is decaying much faster than the
original one and so a good prediction of �g from T can be done in O even ignoring
land data. By forming block averages, e.g. 5′ × 5′ and using all available altimetric
data, properly manipulated to eliminate biases (cross-over analysis), we finally arrive
to determine a �g field uniformly accurate at the level of about 2 mGal (see Sansò
and Sideris 2013, Chaps. 6 and 9).

So the GBVP gets the form

⎧

⎨

⎩

�T = 0 in �̃

−T ′ + γ′

γ
T = �g on S∗ ; (4.86)

in (4.86) T is for the moment just a regular harmonic function in �̃.
Yet, with the new formulation we have introduced an important structural change

into the problem. In fact, in contrast to (4.85), the solution of (4.86) is “almost” non
unique. This can be better appreciated passing to the so called spherical approx-
imation of (4.86), which consists in changing the boundary operator (but not the
boundary S∗) into

− ∂

∂h
+

∂γ

∂h
γ

· ∼= − ∂

∂r
+

∂γ

∂r
γ

·



4.7 The Geodetic Boundary Value Problem (GBVP) 77

and taking γ = μ

r2
, so that (4.86) becomes

{
�T = 0 in �̃

−∂T

∂r
− 2

r
T = �g on S∗ . (4.87)

This is known as the simple Molodensky problem; would S∗ be taken as a sphere,
this becomes the Stokes problem, that we shall solve explicitly as an example below.

The theory of the simple Molodensky problem is contained in a few propositions
(see Sansò and Sideris 2013, Sect. 15.4):

• first extend the definition of the (spherical approximation of) the gravity anomaly
to the whole �̃, written in the form

− r
∂T

∂r
− 2T = r �gsph ≡ u ; (4.88)

• verify by a direct computation that r
∂T

∂r
= r · ∇T is harmonic throughout �̃, so

that u = r �gsph is a harmonic function too in �̃;
• to derive the (regular) harmonic u in �̃, given its boundary values

u0 = r �gsph
∣
∣
S̃ , (4.89)

is to solve the Dirichlet problem; this is very well known (see Sansò and Sideris
2013) to have a unique solution, for instance, if the boundary S̃ is a Lipschitz
surface (basically it admits conical points but not cusps) and u0 ∈ L2

(

S̃
)

, i.e.
∫

S̃

u20 (P) dSP < +∞;

• let R be any Brillouin radius, so that T and u are both harmonic in � = {

r ≥ R
}

;
let

T =
+∞
∑

n=0

n
∑

m=−n

T nm

(

R

r

)n+1

Ynm (σ)

u =
+∞
∑

n=0

n
∑

m=−n

unm

(

R

r

)n+1

Ynm (σ)

, (4.90)

then by a direct computation of (4.88) one finds the “spatial” relation

(n − 1) T nm = unm , (|m| ≤ n ; n = 0, 1, . . . ) ; (4.91)
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• Equation (4.91) implies that if u is derived from (4.88) then u1m = 0

(m = −1, 0, 1), i.e. u has no terms of the type
1
∑

m=−1

c1m

(

R

r

)2

Y1m (σ) in its

asymptotic expansion at infinity; we observe as well that if by any chance u is such
that u00 = 0, then we would have T 00 = 0 too, so that the asymptotic behaviour
of T would be

T = O
(
1

r3

)

, (4.92)

as it was in our original definition of the anomalous potential;
• on the other hand, since

δT =
1
∑

m=−1

c1m

(

R

r

)2

Y1m (σ) (4.93)

is a function of r , homogeneous of degree −2, whatever are constants c1−1, c1 0,
c1 1, we see that δT is such that

r δT ′ + 2 δT ≡ 0 ;

since δT is also obviously harmonic, outside the origin, we have that δT represents
a null space of our BVP (4.87); this means that in any way a component like δT
of T will never be fixed by the data;

• since in the end we want to find a solution T satisfying the traditional relation
(4.92), we decide that the arbitrary δT should be fixed by the condition

δT ≡ 0 ,

that we know to be equivalent to placing the barycentre of T at the origin (or better
placing the barycentre ofU so as to coincide with that ofW ); furthermore we shall
make some operation on the data u0 = r �gsph

∣
∣
S̃ , so that u00 = 0 implying also

that T 00 = 0, i.e. (4.92) holds true (see Sansò and Sideris 2013);
• if we do not want to put restrictions directly on u0, we can change it by introducing
four unknown constants, namely substituting the boundary condition u|S = u0
with

u|S = u0 + a
R

r

∣
∣
∣
∣
∣
S

+
1
∑

m=−1

b1m

(

R

r

)2

Y1m (σ)

∣
∣
∣
∣
∣
∣
S

(4.94)

and determining a, b1m (m = −1, 0, 1) in such a way that

u00 = 0 (to implyT 00 = 0)
u1m = 0 (to produce a boundary function u0

that is r times a spherical gravity anomaly);
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one can prove that such conditions can always be satisfied by suitable constants
∀u0 ∈ L2 (S) (see Sansò and Sideris 2013);

• finallywederiveT = T (r,σ)by integrating radially (4.88) and taking into account

that u = O
(
1

r3

)

, so that the closed expression is found

T (r,σ) = 1

r2

+∞∫

r

s u (s,σ) ds ; (4.95)

one can directly prove that such a T satisfies (4.88), that it is a harmonic function
and that it satisfies (4.92).

Summarizing, we have recalled the line showing that the simple Molodensky
problem, modified as

⎧

⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

�T = 0 in �̃

−r T ′ − 2 T = u0 − a
R

r
−

1
∑

m=−1

b1m

(

R

r

)2

Y1m (σ) on S∗

T = O
(
1

r3

)

, (4.96)

has one and only one solution {T, a, b1−1, b1 0, b1 1} whatever is the known term
u0 ∈ L2 (S∗), i.e. �g ∈ L2 (S∗).

Once this is achieved, one can return to the original problem (4.86), that now we
rewrite as

⎧

⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

�T = 0 in �̃

T ′ + γ′

γ
T = �g + a

R

r2
+

1
∑

m=−1

b1m

(

R
2

r3

)

Y1m (σ) on S∗

T = O
(
1

r3

)

, (4.97)

and prove, by a perturbative argument, that (4.97) has a unique solution; however we
are now obliged to put constraints on the inclination of the normal to S∗ with respect
to the radial direction er to guarantee the convergence of the perturbative process.
Yet, a satisfactory result is obtained if we admit to a-priori know a model up to a
maximum degree N , so that we can reduce our solution u to satisfy the asymptotic
relation

u = O
(

1

r N+2

)

. (4.98)
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The theorem is the following (see Sansò and Sideris 2013, Sect. 15.4): if we
know a model of T complete up to degree and order 20, then a unique solution to the
Molodensky problem exists if the inclination of S∗ with respect to er never exceeds
60◦.

Fortunately, nowadays satellite geodesy is able, by analyzing data of low satellites,
to provide the knowledge of the first 20 degrees of T with very high accuracy, in fact
with an error of the order of 1 mm in terms of geoid. Such a knowledge has been
pushed up to degree 200 with an error of about 2 cm, as we shall comment later on
in Chap.7.

As promised, we develop now the explicit solution of (4.96) when S∗ is taken as
a sphere, i.e. of the Stokes problem.

Example (Stokes theory)
Assume S∗ is just a sphere with radius R0; we want to solve the corresponding

B.V.P. (4.96), which is of the simple Molodensky type.
Given our hypothesis, we expect T to be expandable into the spherical harmonic

series

T =
+∞
∑

n=0

n
∑

m=−n

Tnm

(
R0

r

)n+1

Ynm (σ) ; (4.99)

this automatically satisfies the harmonicity condition. On the other hand we have,
on the boundary,

u0 (σ) = R0 �g (σ) = R0

+∞
∑

n=0

n
∑

m=−n

�gnmYnm (σ) .

Since in this case we can take R = R0, we see that the known term in the second
equation of (4.96) can be written as

u0 = R0

+∞
∑

n=2

n
∑

m=−n

�gnmYnm (σ) ,

if we make the choice

a = R0 �g00 , b1m = R0 �g1m ,

so that u00 = u1m ≡ 0, (m = −1, 0, 1). But in this case we know that T00 = 0 and,
also, we can choose T1m = 0 to satisfy the third equation of (4.96). Then for n > 1,
we can use (4.91), i.e.

(n − 1) Tnm = unm = R0 �gnm .
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Returning to the representation of T , we get

T (P) =
+∞
∑

n=2

n
∑

m=−n

R0

n − 1
�gnm

(
R0

rP

)n+1

Ynm (σP) ;

Now we can remember that

�gnm = 1

4π

∫

�g
(

σQ
)

Ynm
(

σQ
)

dσQ ,

so that the previous relation can be written as

T (P) = 1

4π

∫

�g
(

σQ
)

[+∞
∑

n=2

R0

n − 1

(
R0

rP

)n+1 n
∑

m=−n

Ynm (σP) Ynm
(

σQ
)

]

dσQ =

= R0

4π

∫

�g
(

σQ
)

+∞
∑

n=2

2n + 1

n − 1
Pn
(

cosψPQ
)
(
R0

rP

)n+1

dσQ .

The series can be added in a closed form, obtaining the so called Stokes function
(see Sansò and Sideris 2013, Sect. 3.4)

S
(

R0, rP,ψPQ
) = 2R0

�PQ
+ R0

rP
− 3R �PQ

r2P
− R2

r2P
cosψPQ ·

·
[

5 + 3 log
rP − R0 cosψPQ + �PQ

2rP

]

,

with
�PQ = [

R2
0 + r2P − 2R0 rP cosψ

] 1
2 .

So the solution of the Stokes problem is written in integral form as

T (P) = R0

4π

∫

S
(

R0, rP,ψPQ
)

�g
(

σQ
)

dσQ .

Let us remark that the GBVP theory, beyond providing a basis for the numerical
determination of high degree anomalous models, is in itself one of the foundations
of Physical Geodesy because it can specify what is the minimal information that can
provide a stable solution T (P), under realistic conditions.

As claimed before, the solution of the GBVP is provided in terms of a finite
sum of spherical harmonics of the type (4.99), truncated at a maximum degree N ,
which is called a global model of the anomalous potential. At present the most
important of such models is EGM2008, which is complete up to degree and order
2159. The original data have been processed in such a way as to cover the Earth with
a 5′ × 5′ grid of area mean gravity anomalies; this corresponds to 9,331,200 values
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from which the model, described by 4,665,595 coefficients, is derived (see Sansò
and Sideris 2013, Part II, Chap. 6). Another widely used global model, complete
up to degree and order 2159, is EIGEN-6C4 that additionally includes GOCE data,
though using the same EGM2008 5′ × 5′ grid of area mean gravity anomalies over
continents. In 2020, it is foreseen the release of an updated version of EGM2008,
called EGM2020, which will benefit from new data sources and procedures.

The overall error of the model, in terms of geoid, evaluated as a mean square
estimation error over the whole Earth sphere, is considered to range around 5 cm;
however the geographic distribution of the error, reflecting in particular areas of poor
coverage of data and mountainous areas, shows that local error r.m.s. can amount up
to 1 m.

The resolution of the model indeed cannot be better than the resolution of the
input data, which in the average is around 10 km; this is reflected in the maximum
degree 2159 chosen.

Indeed one might wonder whether, by using higher resolution data, one could
improve the knowledge of the anomalous potential, at least locally. This is the case,
although we cannot enter into details in this context; we rather send to literature,
e.g. Sansò and Sideris (2013). Here we report only that an improved result can be
obtained by first finely tuning the effect of local topographic masses on T (separately
accounting for it) and then by applying a kind of local solver operator borrowed from
random field prediction theory, for instance a collocation algorithm as recalled in
Sect. 4.6, or some other equivalent techniques. What we fix here, about this more
complex theory, is that there is a local solving operator SA that acts on the improved
data set {�g} in an area A, capable of producing a local anomalous potential

T = SA (�g) (4.100)

that provides an approximation of the true T at the level of 2–3 cm in geoid, depending
on the data available, the roughness of the surface (telluroid) and the roughness of
the field �g in A.
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