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Foreword

Gravity provides the natural orientation in our living environment. The walls of
houses are vertical; floors are horizontal disregarding the few avant-garde coun-
terexamples of modern architecture. The two elementary tools are thereby plumb
and level. Heights are the central measure in this context. They tell us in which
direction water would move, from A to B or from B to A. Points located on one and
the same level surface should ideally possess the same value of height. All of this is
elementary and rather familiar.

These concepts gain high complexity, however, if they need to be applied on
scales beyond our immediate surroundings, when their application refers to a
province or even a country. As an example, let us take the control of the water
system in a low-land country such as the Netherlands. Large parts of the
Netherlands are below sea level. How to ensure that water is managed in a steady,
precise and most of all, safe manner using a system of thousands of canals? This
reminds us of the pivotal function which all these scenic windmills once had.

Heights and the question of higher and lower gain a scientific dimension when
dealing with global height systems and sea level. How to compare heights in
Europe with those in America or Australia? Before the background of climate
change, it is a great challenge to identify tiny signals of sea-level rise or fall in a
dynamic system with winds, surges, ocean tides, plate tectonics and land uplift.
Already, more than 120 years ago, some leading European geodesists tried to
compare mean sea level at tide gauges of all the seas adjacent to Europe. The
comparison of the heights of tide gauges thousands of kilometres apart by means of
precision levelling used to be and still is a great challenge. Various disturbances
tend to blur the results. In the seventies of the last century, oceanographers and
geodesists were arguing about the slope of mean sea level along the east coast of
North America. Geodetic levelling showed sea level to slope downwards towards
the equator, while oceanographers argued for an upward slope. Only recently with
the help of global satellite positioning and modern satellite gravimetry, the con-
troversy could be resolved. Regrettably for geodesists, oceanographers were right.
Global mean sea surface, i.e. the ocean surface without exterior influences such as
tides, winds and atmospheric pressure, almost coincides with a level surface, with
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the geoid. The deviations, referred to as sea surface topography, are typically less
than one metre with maximum values in the centres of the major ocean current
systems. Now, modern geodetic space techniques start to open the door for a
worldwide comparison and monitoring of sea level relative to the geoid.

All these rather worldly considerations are concerned with the role of heights in
practice and research. But what are the theoretical foundations of heights and height
systems? Surprisingly, no book exists so far, covering all relevant elements together
and in a concise form. Now, Fernando Sansó, Mirko Reguzzoni and Riccardo
Barzaghi, all from the Politecnico di Milano, fill this gap with their book “Geodetic
Heights”. Chapters 1–5 cover the theoretical foundations: coordinate systems in
three dimensions, the theory of the gravity field, gravity quantities relevant for
height computation together with the relevant functional models and geodetic
coordinates, i.e. coordinate systems related to the Earth’s gravity field. Chapters 6
and 7 cover the actual observation models as well as the definition of local and
global height systems. Already in the past, the geodesy group of the Politecnico
greatly influenced the debate on the theoretical principles of geodetic heights. With
the present book, the authors give the reader a comprehensive introduction into the
essentials of modern height systems.

Munich, Germany
September 2018

Reiner Rummel
Professor Emeritus

Astronomical and Physical Geodesy
Technical University Munich

vi Foreword



Contents

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2 General Coordinates in R3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.1 Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.2 Definitions and Reminds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.3 Relevant Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.3.1 Cartesian Coordinates . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.3.2 Spherical Coordinates . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.3.3 Ellipsoidal Coordinates . . . . . . . . . . . . . . . . . . . . . . . . . . 21

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3 The Earth Gravity Field: Basics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
3.1 Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
3.2 Basic Definitions of Gravity and Gravity Potential . . . . . . . . . . . . 29
3.3 Plumb Lines and Equipotential Surfaces . . . . . . . . . . . . . . . . . . . 33
3.4 The Gravity Field Outside a Brillouin Sphere . . . . . . . . . . . . . . . . 35
3.5 The Normal Gravity Field . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
3.6 Definition of the Geoid . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

4 The Anomalous Potential and Its Determination . . . . . . . . . . . . . . . 51
4.1 Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
4.2 The Anomalous Potential . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
4.3 The Runge-Krarup Theorem: A Mathematical Intermezzo . . . . . . . 55
4.4 Optimal Degree of Global Models, or Smoothing

by Truncation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
4.5 Collocation Theory, or Smoothing by Prior Information . . . . . . . . 63

vii



4.6 On the Relation Between Potential and the Surface
Gravimetric Observables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
4.6.1 Gravimetry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
4.6.2 Levelling Combined with Gravimetry . . . . . . . . . . . . . . . . 68
4.6.3 Radar-Altimetry on the Oceans . . . . . . . . . . . . . . . . . . . . . 70

4.7 The Geodetic Boundary Value Problem (GBVP) . . . . . . . . . . . . . 71
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

5 Geodetic Coordinate Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
5.1 Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
5.2 On the Continuation of Gravity into the Topographic Layer . . . . . 86
5.3 The Hotine-Marussi Triad K;U;Wð Þ . . . . . . . . . . . . . . . . . . . . . . 89
5.4 The Helmert Triad K;U;Hð Þ . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
5.5 The Molodensky Triad ‚;u; h�ð Þ . . . . . . . . . . . . . . . . . . . . . . . . . 102
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

6 The Relation Between Levelling, Geodetic and Other
Unholonomic Heights . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
6.1 Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
6.2 The Observation Equation of DL in Terms of Dynamic

Heights . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
6.3 The Observation Equation of DL in Terms of Normal

Heights . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
6.4 The Observation Equation of DL in Terms of Orthometric

Heights . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
6.5 Levelling and Normal Orthometric Heights: An Unholonomic

Coordinate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
6.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

7 The Height Datum Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
7.1 Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
7.2 Formulation of the Global Unification of the Height Datum . . . . . 119
7.3 On the Solution of the Unification Problem by a Suitable

Global Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
7.4 On Local Solutions of the Height Datum Problem . . . . . . . . . . . . 128
7.5 An Example: The Italian Case . . . . . . . . . . . . . . . . . . . . . . . . . . . 132
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139

viii Contents



Chapter 1
Introduction

A height is a coordinate in R3, used in a certain subset of our space, particularly in
the framework of physical sciences of the Earth, to discriminate higher from lower
points, in some sense to be specifically stated by the type of the height chosen.

So first of all a height, as a coordinate for a subset of points inR3, is one coordinate
in a triple and it makes little sense to define it without specifying the other two.
Second, we need to restrict the physical purpose for which a height will be considered
in this monograph.

We shall do that by a counterexample and then by stipulating a criterion to identify
what kind of “heights” we are interested in, namely geodetic heights. For instance
the height of a point on or above the Earth surface could be defined as the air pressure
at that point, in a triple completed by two cartographic coordinates, in a specific area
of the Earth. Such a concept of height is in fact used in atmospheric sciences to
simplify the equations of the dynamics of the atmosphere, and even in common life
in mountain excursions. However we rule out this concept, because we know that
such a coordinate can significantly change from hour to hour at the same point, fixed
with respect to the solid Earth. So we shall agree that we want to study heights that
do not change in time, at least they do not change significantly over a time span in
which the Earth can be considered as a stationary body.

One could object that the Earth undergoes not only slow geological movements,
but also periodical deformations, for instance the body tides due to the attraction of
the Sun and theMoon, that are in the range of 1m and have amain semidiurnal period.
Such effects will be considered as perturbations, globally known and subtracted to all
the physical quantities considered in this work, so that we shall refer to an idealized
static image of the Earth.

After these preliminary remarks, it is time to go the heart of the question, namely
in which sense we intend to discriminate higher from lower points. This is primarily
related to the gravity field and its direction. Locally, this is first of all related to our
physiological sensations. A man standing on the ground defines the direction of the
vertical and subsequently a small area under his feet, when they are kept orthogonal
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2 1 Introduction

to the body axis, is horizontal. So a human body is itself a local gravity sensor;
certainly not the only one! A short pendulum can be used to define the direction
of the vertical at a point in space, also a small quantity of water, still in a bucket
will define a horizontal plane at its centre and so forth. The vertical direction, that
we shall identify by a unit vector n(P), is in the opposite direction of that of the
gravity attraction, and once we know how to materialize it we can connect points
that are close one to the other in the vertical direction. In this way starting from
point, e.g. on the Earth surface, we can generate a line upward and in fact, assuming
we are able to enter into the body of the Earth, also downward. This is a line of the
vertical or plumb line; if we do the same at all points in the region of interest, we
generate a family of lines, also referred to as the congruence of vertical lines. They
have the property that at every point they are tangent to the direction of the vertical.
It is a fundamental theorem, consequence of the famous theorem of existence and
uniqueness of solutions of ordinary differential systems, that in the region of our
interest, where the gravity attraction field never goes to zero and it is at least Hölder
continuous, these lines can never intersect, nor even be tangent to one another at any
point. In other words, in our region, through any point P there passes one and only
one line of the vertical.

Once the congruence of vertical lines is established, one can also consider the
family of surfaces that admit plumb lines as orthogonal trajectories. It turns out that
these are equipotential surfaces of the gravity field, as we shall see later on, and as
such they cannot intersect too. Moreover, always in the range of some kilometers
up and down, it happens that the equipotentials are closed surfaces and therefore
they are contained one into the other. Plumb lines and equipotentials are the two
main ingredients of the geometry of the gravity field, which has been investigated
in depth in the 50ies, 60ies and 70ies of the 20th century (Bomford 1952, Marussi
1985, Hotine 1969, Krarup 2006, Heiskanen and Moritz 1967, Grafarend 1975, just
to mention a few). We shall use only some of these results, to be presented later on
in the text.

We need now to better specify what is the region of our interest, where we want
to establish and use geodetic height coordinates. Indeed this region has to include
the surface of the Earth S; in particular we want coordinates which are good for all
of S, a layer of points above and a layer below it. The reason why we want to cover
the whole of S is because in the era of Global Navigation Satellite System (GNSS)
measurements we are able to connect any point on the Earth surface by observations
that need to be modelled by a unique coordinate system. The reason we limit the
region by layers, say of ±30km width, is twofold. When we go far away from S
in the upper direction, there is a quite substantial change of the geometry of the
gravity field. For instance equipotentials at a distance of about 42,000km from the
barycenter become open surfaces (see Sansò and Sideris 2013, Sect. 1.9). This is
basically the reason why the potential cannot be used as a height coordinate at least
throughout the whole space. So 30km above S is a good layer for both Geodesy
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Fig. 1.1 A portion of the Earth surface S with part of the region of interest close to it; equipotential
surfaces (E1 E2 E3 E4) and lines of the vertical (L1 L2 L3 L4)

and sciences of the lower atmosphere.1 As for the layer below S one can observe
that this depth is sufficient to include important isostatic compensation surfaces, like
the Moho, which are traditionally discussed in the framework of Geodesy, as well
as the region where most of crustal geophysical phenomena have a seat. When we
go deeper we might incur into a more irregular behaviour of the gravity field and
at the same time we have an increasingly poor knowledge of the distribution of the
masses, which is the origin of the gravity field (Lambeck 1988; Anderson 2007). In
the figure below we summarize in a pictorial form what we said above for a portion
of our region of interest (Fig. 1.1).

It is worth underlining that given the properties of equipotential, i.e. horizontal,
surfaces, they are naturally ordered from below to above, considering that also the
plumb lines that they cross orthogonally have a natural positive verse inherited from
the vertical unit vector n(P).

We are ready now to give a first definition of what we can consider a geodetic
height, that we call here generally as q3, the third coordinate in a triple (q1, q2, q3).
As all regular coordinates, q3 will have a coordinate line �3 with a tangent unit vector
e3(P) attached at any point P on it; we say that q3 is a geodetic height if the relation

n(P) · e3(P) ≥ k > 0 (1.1)

1Note: indeed Geodesy is also interested in satellite dynamics even for very high satellites, yet at
that altitude not all the coordinates discussed in this book are of particular significance: whence the
reason to limit our discussion to a bounded region.
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is satisfied for all points in the region of interest and for some fixed, positive k. The
meaning of (1.1) is that when we move along �3 in the positive sense, that we call
upward, we expect to cross horizontal surfaces which are monotonously above one
to the other.

To be more specific, since we do not like to use a coordinate whose lines cross
the horizontal surface at a small angle, we could say that we expect that �3, i.e.
e3(P), is almost orthogonal to the equipotential passing by P. In practice we shall
treat situations in which the constant k of (1.1) is

k = 1 − ε ε = O(10−2) ,

i.e. n and e3 form at most an angle of one or few degrees.
In this monograph we shall consider mainly four types of heights, that we name

as orthometric, ellipsoidal, normal and orthonormal (or normal orthometric as they
are called in literature), plus some variants. The focus of the book is on two issues:
to find the relations between one system of coordinates and the other, which, as we
shall see, implies a fine knowledge of the actual gravity field of the Earth; to find the
relation between various heights and the quantities that are observable by geodetic
techniques.

In this respect a last remark is in order; we often speak of a height system and by
that wemean that not onlywe have amathematical definition of the coordinate but we
have also defined a reference system for it, which is essential to find the connection
between this height and the observable quantities. This completely parallels what
happens with all types of coordinates in Geodesy. In particular we fix a height system
when, given a certain geometry of the coordinate lines and of the corresponding
coordinate surfaces, one particular surface is chosen to which the value of q3 = 0
is assigned. For instance in ellipsoidal coordinates the generating ellipsoid E is the
height datum for ellipsoidal heights. Most of the other coordinate systems however
try to use as reference for the height coordinate one particular equipotential surface
of the gravity field. This is traditionally called the geoid and its choice, in the family
of equipotentials, will necessarily occupy us in the book. In fact such a choice is
not univocal and a lot of confusion has been generated by the practical custom of
different nations to choose their own particular reference surface.

Nowadays with the important improvement in the knowledge of the global gravity
field coming from spacemissions likeGRACE (Tapley andReigber 2001) andGOCE
(Drinkwater et al. 2003), the time has come to make a precise choice defining one
common height datum for the whole planet (Ihde et al. 2017).

While preparing the final issue of the book the authors have become aware of the
existence of the work by Eremeev and Yurkina (1974). We would like to underline
the notable closeness of that work to the actual spirit of this book, although the tools
employed today take advantage of 50 years of geodetic research.
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Chapter 2
General Coordinates inR3

2.1 Outline

In this chapter we recall the basic definitions of coordinate systems in R3 and the
related geometric concepts.

For the sake of completeness let us specify that when we talk aboutR3, we mean
the classical Cartesian space where vectors are arrows, the modulus is the length of
the arrow and the scalar product between two vectors is the usual product of their
modulus times the cosine of the angle between the two.

Among other things, we have then that the shift between two points P and P′ =
P + δP can be identified with a vector δr = δP and we know how to compute its
modulus, |δr|. This will be used in the chapter.

The chapter then focuses on orthogonal coordinate systems and the most basic
examples of coordinates used in Geodesy, namely Cartesian, spherical and ellip-
soidal, are presented, studied as well as the transformations between them.

2.2 Definitions and Reminds

A coordinate system on (a subset of) R3 is a triple of functions of the point P
{q1(P), q2(P), q3(P)} that we shall arrange in an algebraic vector:

q(P) =
∣
∣
∣
∣
∣
∣

q1(P)

q2(P)

q3(P)

∣
∣
∣
∣
∣
∣

, (2.1)

such that the correspondence between q and P is biunivocal on (a subset of) R3,
apart maybe from an exceptional subset of points which is explicitly excluded.

The above basic property of q(P) is typically complemented with some regularity
hypothesis, that usually is that the functions qi (P) have a continuous gradient, namely
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8 2 General Coordinates in R3

that q(P) is a diffeomorphism. For the sake of completeness, we remind that ∇qi (P)

is by definition an R3 vector, when it exists, such that

δqi (P) = qi (P + δP) − qi (P) = ∇qi (P) · δr + o(|δr|) (2.2)

an expression this which is meaningful thanks to the remark done in Sect. 2.1. We
shall make the hypothesis that for every P inR3, or in the subset of our interest,

Span{∇qi (P), i = 1, 2, 3} ≡ R3 (2.3)

i.e. {∇qi (P)} is a basis inR3 (1).
This implies that |∇qi | �= 0 for ∀P, ∀i ; furthermore if we define the Jacobian

operator R3 → R3 by

J (P)dr =
∣
∣
∣
∣
∣
∣

∇q1(P)T dr
∇q2(P)T dr
∇q3(P)T dr

∣
∣
∣
∣
∣
∣

=
∣
∣
∣
∣
∣
∣

∇q1 · dr
∇q2 · dr
∇q3 · dr

∣
∣
∣
∣
∣
∣

= dq(P) [dr] (2.4)

we see that J has to be invertible, ∀P, since

Jdr = 0 ⇒ ∇qi · dr = 0 ⇒ dr = 0 .

Given the system {qi } we can define three coordinate surfaces {Si } as

Si = {P; qi (P) = const} . (2.5)

Through every point P0 pass three coordinate surfaces Si = {P; qi (P) = qi (P0)}
and we see that ∇qi (P0) are orthogonal to such surfaces. In fact take for instance S1;
if t is a unit vector tangent to S1 at P0, then

t = lim
ε→0

δr
ε

(ε = |δr|)

where P0 + δP = P0 + δr ∈ S1. But then

∇q1(P0) · t = lim
ε→0

1

ε
[∇q1(P0) · δr] = lim

ε→0

1

ε
[δq1 − o(ε)] = − lim

ε→0

o(ε)

ε
= 0

because δq1 = q1(P0 + δP) − q1(P0) = 0, by (2.5). Similarly it happens for S2, S3.

1Note: Let us remind that in a linear vector space X, the Span{xi , i = 1, 2, . . . , N } is just the linear
subspace generated by the linear combinations {∑N

i=1 λi xi , λi ∈ R, ∀i}; when the space becomes
infinite dimensional, the Span{xi , i = 1, 2, . . . } is just the subspace of all such finite dimensional
linear combinations.
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The intersection of two coordinate surfaces is a line, called coordinate line. Let
us consider

�q1 ≡ �1 = {S2 ∩ S3} ;

since �1 ⊂ S2, q2 does not change along �1 and the same happens for q3. So �1 is
the line along which only q1 varies, while q2, q3 remain constant; for this reason we
have also denoted �1 as �q1 .

The same holds for all three combinations of indexes (note that Sk ∩ S j ≡
S j ∩ Sk). Now let P0 ≡ {q01, q02, q03} ∈ �1; then the parametric form of �1 is

�1 ≡ {r (q1, q02, q03)} .

Passing to the first order differential formula one has

d1r = r (q01 + dq1, q02, q03) − r (q01, q02, q03) = ∂r
∂q1

(P0) dq1 .

This generalizes to

di r = ∂r
∂qi

(P0) dqi , (2.6)

which shows that the three vectors

gi (P0) = ∂r
∂qi

(P0) i = 1, 2, 3 (2.7)

are tangent to the three coordinate lines.
Moreover one has for any dr

dr =
3

∑

i=1

di r =
3

∑

i=1

gidqi , (2.8)

which is nothing but the theorem of the total differential.
If we arrange {gi } in a matrix

H = [

g1, g2, g3

]

, (2.9)

which is also a linear operator R3 → R3 such that

dr = H
∣
∣
∣
∣
∣
∣

dq1
dq2
dq3

∣
∣
∣
∣
∣
∣

= Hdq , (2.10)
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we can draw a very interesting conclusion. In fact, recalling (2.4), one can write

dr = Hdq = HJdr , (2.11)

and such a relation holds ∀dr .
Therefore one has

HJ = I , (2.12)

namely
H = J−1 , (2.13)

which we know to exist thanks to a previous remark. The conclusion is at once that
alsoH is a regular operator with a regular inverse. Hence we see that

gi = ∣
∣gi

∣
∣ �= 0 (2.14)

and {gi (P0) ; i = 1, 2, 3} is a basis of R3, ∀P0. This means that the three gi (P0)
are always linearly independent, i.e. that �i is never tangent to Si . Note that this
allows to define the Cartan frame of unit vectors {e1, e2, e3} (Grafarend 1975), that
are respectively tangent to �i , by

ei = gi

gi
. (2.15)

Another remarkable consequence of (2.12) is that, since ∀k

HJgk =
3

∑

i=1

gi∇qT
i gk =

3
∑

i=1

gi

(∇qi · gk

) ≡ gk ,

we must also have
∇qi · gk = δik , (2.16)

namely {∇qi }, {gi } are complementary bases or, in other words, they form together
a biorthogonal system.

Some of the above entities are represented in Fig. 2.1.
Another fundamental geometric entity that descends from (2.10) is the metric

tensor, which is intimately related to the modulus of dr . In fact we have

|dr|2 = dqTHTHdq =
3

∑

i,k=1

dqi dqk gi · gk ; (2.17)

the matrix G
G ≡ {

gi · gk

} = HTH (2.18)
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Fig. 2.1 The coordinate lines �i and the coordinate surfaces Si at P0; the Cartan frame {e1, e2, e3}
and ∇q3 ⊥ S3

is by definition the metric tensor inR3 with respect to the coordinate system (2.18).
As it is obvious from the definition (2.18), G is a symmetric positive definite matrix.
Among other things, the metric tensor supplies the relation between the two bases
{gi }, {∇qi }.

In fact (2.12), also recalling (2.4) and (2.10), can be rewritten as

HJ =
3

∑

i=1

gi∇qT
i = I = J THT =

3
∑

i=1

∇qi gT
i , (2.19)

giving

gk =
3

∑

i=1

∇qi gT
i gk =

3
∑

i=1

∇qi Gik (2.20)

or

∇qi =
3

∑

i=1

G(−1)
ik gk . (2.21)

Notice that, sinceH is invertible, G has to be invertible too; whence the correctness
of (2.21).

Fortunately in Geodesy we mainly need, as purely geometric coordinates, only
systems which are orthogonal, thus simplifying many useful formulas. As a defini-
tion, a system of coordinates is orthogonal when the three coordinate lines, meeting
at any point P, cross orthogonally each other. This implies that the vectors gi , which
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are tangent to �i , are also orthogonal to one another. As a consequence the metric
tensor becomes diagonal, namely

Gik = gi · gk = g2
i δik . (2.22)

In this case the inverse matrix, G−1, is diagonal too and (2.21) becomes

∇qi =
3

∑

k=1

g−2
i δik gk = gi

g2i
= ei

gi
. (2.23)

So the basis {∇qi } is just parallel to {gi } and the triad of the Cartan frame {ei } is
parallel to the two and orthonormal.

One of the useful results of this relation is that the differential operator, ∇, has a
quite simple representation in this case. In fact, by applying the chain rule, we find
that ∀F continuously differentiable

∇F =
3

∑

i=1

∂F

∂qi
∇qi =

3
∑

i=1

ei
gi

∂F

∂qi
;

this implies that

∇ =
3

∑

i=1

ei
gi

∂

∂qi
. (2.24)

Also for later reference, we note here that in curvilinear coordinates the expression
of the Laplace operator,

� = ∇ · ∇ ,

becomes then

� = 1

G

3
∑

j=1

∂

∂q j

[

G

g2j

∂

∂q j

]

(G = g1 g2 g3) . (2.25)

A proof can be found in Sansò and Sideris (2013, Chap.1, A3).

2.3 Relevant Examples

In this section we apply the general concepts presented in Sect. 2.2 to three families
of R3 coordinates, namely Cartesian, spherical and ellipsoidal since all of them are
useful, and used, in Geodesy.
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2.3.1 Cartesian Coordinates

They are characterized by a triad of unit vectors,
(

ex , ey, ez
)

, orthogonal one to the
other, issuing from a certain point O (origin) of the space R3 (see Fig. 2.2).

Given any point P inR3, we obtain the three coordinates (x, y, z) by orthogonal
projection of P on the three axis, so obtaining Px , Py , Pz in Fig. 2.2. Then the linear
coordinates of these three points on the three axes are exactly our coordinates.

It is immediate to verify that

x = r · ex , y = r · ey , z = r · ez (2.26)

and then
r = xex + yey + zez . (2.27)

Note that the notions of orthogonality and scalar product can be safely used on
account of a remark at the beginning of Sect. 2.1.

Differentiating (2.27) and considering that ex , ey , ez are constant vectors, we get

dr = dxex + dyey + dzez , (2.28)

Fig. 2.2 The geometric
construction of Cartesian
coordinates
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that compared with (2.8) gives at once

g1 = e1 = ex , g2 = e2 = ey , g3 = e3 = ez . (2.29)

Accordingly we have too

gi = 1 , Gik = gi · gk = δik ,

so that the ordinary Pythagorean relation is reconstructed

dr2 = dx2 + dy2 + dz2 . (2.30)

Therefore gradient and Laplacian operators in Cartesian coordinates take the form

∇ = ex
∂

∂x
+ ey

∂

∂y
+ ez

∂

∂z
, (2.31)

� = ∂2

∂x2
+ ∂2

∂y2
+ ∂2

∂z2
. (2.32)

Since the item is so much in use in Geodesy, we shall dwell a little on the problem
of deriving the transformation from a Cartesian system to another. We assume that
in both systems the same unit length is used. Looking at Fig. 2.3 we see first that the
vector relation holds

r = t + s . (2.33)

We write (2.33) in terms of components as

xex + yey + zez = tx ex + tyey + tzez + ξeξ + ηeη + ζeζ . (2.34)

Taking the scalar product of (2.34) with ex , ey , ez respectively, we obtain the
matrix relation

∣
∣
∣
∣
∣
∣

x
y
z

∣
∣
∣
∣
∣
∣

=
∣
∣
∣
∣
∣
∣

tx
ty
tz

∣
∣
∣
∣
∣
∣

+
⎡

⎣

ex · eξ ex · eη ex · eζ

ey · eξ ey · eη ey · eζ

ez · eξ ez · eη ez · eζ

⎤

⎦

∣
∣
∣
∣
∣
∣

ξ
η
ζ

∣
∣
∣
∣
∣
∣

. (2.35)

It is clear that the vector
∣
∣
∣
∣
∣
∣

tx
ty
tz

∣
∣
∣
∣
∣
∣
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Fig. 2.3 The geometry of a roto-translation

represents the translation of the origin from O to O′, while the matrix

U =
⎡

⎣

ex · eξ ex · eη ex · eζ

ey · eξ ey · eη ey · eζ

ez · eξ ez · eη ez · eζ

⎤

⎦ , (2.36)

represents the rotation between the triad
(

eξ, eη, eζ

)

and the triad
(

ex , ey, ez
)

. By
exchanging (ξ, η, ζ) with (x, y, z), we find the inverse rotation, i.e. the matrix

U−1 =
⎡

⎣

eξ · ex eξ · ey eξ · ez
eη · ex eη · ey eη · ez
eζ · ex eζ · ey eζ · ez

⎤

⎦ . (2.37)

We observe that the matrix (2.37) is also the transpose of U so that

UTU ≡ U−1U ≡ I , (2.38)

namely U is an orthogonal matrix. This also reflects the fact that a rotation does not
change the length of vectors; in fact

⎡

⎣U

∣
∣
∣
∣
∣
∣

ξ
η
ζ

∣
∣
∣
∣
∣
∣

⎤

⎦

T ⎡

⎣U

∣
∣
∣
∣
∣
∣

ξ
η
ζ

∣
∣
∣
∣
∣
∣

⎤

⎦ = [ ξ η ζ ]UTU

∣
∣
∣
∣
∣
∣

ξ
η
ζ

∣
∣
∣
∣
∣
∣

= ξ2 + η2 + ζ2 . (2.39)
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As it is well known, a rotation in R3 can always be defined by three angles,
however instead of finding a general form of U , we prefer here to report it for the
case that the rotation is infinitesimal. In such a case, in fact, we know that U should
be close to the identity matrix, i.e. we can put

U = I + K , (2.40)

with K an infinitesimal matrix. But then, by imposing (2.38) and neglecting the
second order term KT K , we get

K + KT = 0 , (2.41)

namely K is an infinitesimal anti-symmetric matrix

K =
⎡

⎣

0 α β
−α 0 γ
−β −γ 0

⎤

⎦ . (2.42)

So the infinitesimal rotation can be written as

U

∣
∣
∣
∣
∣
∣

ξ
η
ζ

∣
∣
∣
∣
∣
∣

=
∣
∣
∣
∣
∣
∣

ξ
η
ζ

∣
∣
∣
∣
∣
∣

+ K

∣
∣
∣
∣
∣
∣

ξ
η
ζ

∣
∣
∣
∣
∣
∣

. (2.43)

A final remark is that, by comparison of the components, one realizes that the
components of

K

∣
∣
∣
∣
∣
∣

ξ
η
ζ

∣
∣
∣
∣
∣
∣

are the same as those of the vector ω ∧ s, where

{

s = ξex + ηey + ζez
ω = −γex + βey + −αez

. (2.44)

2.3.2 Spherical Coordinates

Instead of building spherical coordinates autonomously, we prefer to pass through a
Cartesian system so that we shall define together the Cartesian system

(

ex , ey, ez
)

and the attached spherical coordinate system.
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Fig. 2.4 The geometric of a spherical coordinate system;
(

eλ, eϕ, er
)

Cartan frame at P

So we start from
(

ex , ey, ez
)

and, given any point P, we first define the coordinate
r , which is the distance of P from the origin O. Then we consider the angle between
the position vector r and ez and we call it the spherical colatitude, ϑs . Associated to
this angle is the definition of spherical latitude ϕs (see Fig. 2.4),

ϕs = π

2
− ϑs . (2.45)

Finally we consider the plane containing r and ez and the plane containing ex and
ez ; the dyhedral angle between the two is the spherical longitude λs (see Fig. 2.4).

The triple (λs,ϕs, r) is the system of spherical coordinates of the point P. The
plane of ex , ey is called the equatorial plane, the axis z the polar axis.

Looking at Fig. 2.4, one realizes that the line �λ, with ϕs = const, r = const, is the
circle p, called parallel, through P with centre on the z axis and contained in a plane
parallel to the equatorial plane. The longitude λs has conventionally the range

0 ≤ λs < 360◦ (or 2π) . (2.46)
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The line �ϕ, with λs = const, r = const, calledmeridian, is half a circlem through P
with center O, contained in the plane of r and ez , called meridian plane. The latitude
has conventionally the range

− 90◦ ≤ ϕs ≤ 90◦
(

−π

2
≤ ϕs ≤ π

2

)

. (2.47)

The line �r , with λs = const, ϕs = const, is the half line that joins the origin O
with P. The radial distance r has conventionally the range

0 ≤ r < +∞ . (2.48)

The coordinate surfaces are respectively:

Sλ = the meridian plane;
Sϕ = the cone with axis z projecting P from O (vertex);
Sr = the sphere of radius r .

It is clear that this coordinate system is singular; in fact all the points of the z axis
correspond to all the values of λs ; moreover the origin, r = 0, corresponds to all the
possible values of λs and ϕs .

A close look at Fig. 2.4 yields, by elementary geometry, the relation between
spherical and Cartesian coordinates, namely

r ∼
∣
∣
∣
∣
∣
∣

x
y
z

∣
∣
∣
∣
∣
∣

= r

∣
∣
∣
∣
∣
∣

cosϕs cosλs

cosϕs sin λs

sinϕs

∣
∣
∣
∣
∣
∣

. (2.49)

With the symbol∼wemean the components of the vector in the Cartesian system.
Such a relation is easily inverted by

⎧

⎪⎪⎨

⎪⎪⎩

λs = atan (y, x)

ϕs = arctg
z

√

x2 + y2

r = √

x2 + y2 + z2

, (2.50)

where by atan (y, x) we mean

atan (y, x) =
⎧

⎨

⎩

arctg
y

x
x ≥ 0

π + arctg
y

x
x < 0

. (2.51)

Note that, since arctg t ranges over
(− π

2 , π
2

)

, the second of (2.50) provides the
correct values for the spherical latitude.
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From (2.49) we can compute

gλ = ∂r
∂λ

= ∂x

∂λ
ex + ∂y

∂λ
ey + ∂z

∂λ
ez ∼ r cosϕs

∣
∣
∣
∣
∣
∣

− sin λs

cosλs

0

∣
∣
∣
∣
∣
∣

, (2.52)

so that

gλ = r cosϕs , eλ ∼
∣
∣
∣
∣
∣
∣

− sin λs

cosλs

0

∣
∣
∣
∣
∣
∣

. (2.53)

Similarly

gϕ ∼ r

∣
∣
∣
∣
∣
∣

− sinϕs cosλs

− sinϕs sin λs

cosϕs

∣
∣
∣
∣
∣
∣

(2.54)

gϕ = r , eϕ ∼
∣
∣
∣
∣
∣
∣

− sinϕs cosλs

− sinϕs sin λs

cosϕs

∣
∣
∣
∣
∣
∣

(2.55)

and

gr ∼
∣
∣
∣
∣
∣
∣

cosϕs cosλs

cosϕs sin λs

sinϕs

∣
∣
∣
∣
∣
∣

(2.56)

gr = 1 , er ∼
∣
∣
∣
∣
∣
∣

cosϕs cosλs

cosϕs sin λs

sinϕs

∣
∣
∣
∣
∣
∣

(2.57)

It is immediate to verify that

eλ · eϕ = eλ · er = eϕ · er = 0 (2.58)

so that the spherical coordinate system turns out to be orthogonal.
From the above relations we then derive the shape of the metric, namely

ds2 = r2 cos2 ϕ dλ2 + r2 dϕ2 + dr2 . (2.59)

The shape of the gradient operator in spherical coordinates is a direct consequence
of the above and of (2.24), namely

∇ = 1

r cosϕ
eλ

∂

∂λ
+ 1

r
eϕ

∂

∂ϕ
+ er

∂

∂r
. (2.60)
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The shape of Laplacian is also easily derived from (2.25), although it could be
usefully computed, as an exercise, by using the following differentiation table

⎧

⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

∂eλ

∂λ
= − cosϕ er + sinϕ eϕ

∂eλ

∂ϕ
= 0

∂eλ

∂r
= 0

, (2.61)

⎧

⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

∂eϕ

∂λ
= − sinϕ eλ

∂eϕ

∂ϕ
= −er

∂eϕ

∂r
= 0

, (2.62)

⎧

⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

∂er
∂λ

= cosϕ eλ

∂er
∂ϕ

= eϕ

∂er
∂r

= 0

. (2.63)

In any event the result is
(

G = r2 cosϕ
)

, so that

� = 1

r2 cosϕs

∂

∂λ

r2 cosϕs

r2 cos2 ϕs

∂

∂λ
+

+ 1

r2 cosϕs

∂

∂r

r2 cosϕs

r2
∂

∂ϕ
+

+ 1

r2 cosϕs

∂

∂r
r2 cosϕs

∂

∂r
=

= ∂2

∂r2
+ 2

r

∂

∂r
+ 1

r2

(
∂2

∂ϕ2
− tg ϕs

∂

∂ϕ
+ 1

r2 cos2 ϕs

∂2

∂λ2

)

. (2.64)

Concluding we recall that the angular part of (2.64), namely the term in brackets,
is called in literature the Laplace-Beltrami operator

�σ = ∂2

∂ϕ2
− tgϕs

∂

∂ϕ
+ 1

r2 cos2 ϕs

∂2

∂λ2
. (2.65)

Indeed if we use the colatitude ϑs instead of the latitude ϕs , (2.60) and (2.64)
become
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⎧

⎪⎪⎨

⎪⎪⎩

∇ = 1

r sin ϑs
eλ

∂

∂λ
+ 1

r
eϑ

∂

∂ϑ
+ er

∂

∂r

� = ∂2

∂r2
+ 2

r

∂

∂r
+ 1

r2

(
∂2

∂ϑ2
+ cotg ϑs

∂

∂ϑ
+ 1

r2 sin2 ϑs

∂2

∂λ2

) . (2.66)

2.3.3 Ellipsoidal Coordinates

This type of coordinates is particularly important in Geodesy because there is an
equipotential surface of the gravity field which is in a relative distance of the order
of 10−5 from an oblate ellipsoid, the same on which we base our system. Yet, here
we shall look at ellipsoidal coordinates from a purely geometric point of view.

Our starting point is an oblate ellipsoid E with a certain system attached to it. The
z axis is along the minor axis of E and it is also its symmetry axis. The origin of
the Cartesian system is placed at the centre of E , so that the ex , ey plane, called the
equatorial plane, cuts E along a circle, the equator, with maximum radius equal to a,
while the z axis cuts E at two points, at distance b from the origin, called respectively
the north and the south pole. If we cut E with planes parallel to the equatorial plane,
in a distance smaller or equal to b from it, we obtain circles, with the centre on the z
axis, called parallels. If we cut E with planes containing the z axis, we obtain ellipses,
equal to one another due to the cylindrical (rotational) symmetry around z; each half
ellipse (Fig. 2.5) is called a meridian and its half plane, with border z, is a meridian
plane.

Now consider the space outside E and a layer internal to E of points P at a distance
from the surface smaller than the minimum curvature radius of E ; all these points P
have a unique orthogonal projection Pe on E , i.e. the segment PeP is aligned with the
normal ν of E al Pe.

Another characterization of Pe is that it is the point on E at minimum distance
from P. We shall identify later the points in space that do not satisfy this property.

Now we define the longitude λ of P as the dyhedral angle between the (ex , ez)
plane (this is fixed conventionally once and for all) and the half plane containing the
z axis and P; we explicitly mention that such a plane, that we call meridian, contains
as well the normal ν to E at Pe. The longitude λ, as for the spherical case, spans the
interval

0 ≤ λ < 360◦ (≡ 2π) .

Now consider the normal to E passing through P; such a line belongs to the
meridian plane and crosses the equatorial plane at some point P0 (see Fig. 2.5). The
angle between ν and the equatorial plane is called latitude ϕ of P. Also the latitude,
similarly to the spherical case, spans the range

(

−π

2
≡

)

− 90◦ ≤ ϕs ≤ 90◦
(

≡ π

2

)

.
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Fig. 2.5 The geometry of the reference ellisoid E: a,b semimajor and semiminor axes, λ longitude,
ϕ latitude, h = PeP ellipsoidal height, p parallel, m meridian,

(

eλ, eϕ,ν
)

Cartan frame on E , eρ

radial unit vector in the equatorial plane

Sometimes, we rather consider the colatitude ϑ of P defined as

ϑ = π

2
− ϕ ,

namely the angle between ν and ez . Indeed ϑ sweeps the interval

0 ≤ ϑ ≤ 180◦ (≡ π) ,

while ϕ runs from 90◦ to −90◦, i.e. from the north to the south pole.
Finally we consider the distance PeP and we define the third coordinate, the

ellipsoidal height h, as such a distance for all P outside E , or the distance changed
of sign for points P internal to E .

Our first purpose now is to find the transformation between the ellipsoidal triad
(λ,ϕ, h) and (x, y, z) and its inverse. For this purpose we exploit the fact that E has
a cylindrical symmetry. Then, after posing

x2 + y2 = ρ2 ,
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Fig. 2.6 The surface E cut by a meridian semiplane

we can study the couple of coordinates (ρ, z) in relation to (ϕ, h); once the trans-
formation is written, we simply recall that

∣
∣
∣
∣

x
y

∣
∣
∣
∣
= ρ

∣
∣
∣
∣

cosλ
sin λ

∣
∣
∣
∣

(2.67)

and the 3D transformation is found, because

r = z (ϕ, h) ez + ρ (ϕ, h) eρ = z (ϕ, h) ez + ρ (ϕ, h)
(

cosλex + sin λey
)

.

So, inspecting Fig. 2.6, we see first that the ellipse E of the figure has equation

ρ2

a2
+ z2

b2
= 1 . (2.68)

We recall the definition of first eccentricity of E , namely the parameter e derived
from

e2 = a2 − b2

a2
= 1 − b2

a2
; (2.69)

from (2.69) we see as well that

b2

a2
= 1 − e2 .
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So multiplying (2.68) by b2, we find

(

1 − e2
)

ρ2 + z2 = b2 . (2.70)

Let the point Pe correspond to the latitude ϕ and assume we move it along the
ellipse by an infinitesimal vector with components (dρ, dz) so thatϕ goes toϕ + dϕ.
Since we are on the ellipse, the differential of the left hand side of (2.70) has to be
zero,

(

1 − e2
)

ρ dρ + z dz = 0 . (2.71)

Indeed, calling eρ, ez the unit vectors along the two axes, dρ eρ + dz ez is tangent
to E in Pe; but then (2.71) shows that the vector

(

1 − e2
)

ρ eρ + z ez is orthogonal
to the tangent, i.e. it is directed as the normal ν. This however implies that

tgϕ = z
(

1 − e2
)

ρ
. (2.72)

Substituting z = (

1 − e2
)

tgϕρ in (2.70), we get

ρ2 = b2
(

1 − e2
)

1

1 − (

1 − e2
)

tg2ϕ
= a2 cos2 ϕ

cos2 ϕ + (

1 − e2
)

sin2 ϕ
;

simplifying and extracting the square root, yields

ρ = a cosϕ
√

1 − e2 sin2 ϕ
. (2.73)

Putting (2.72), (2.73) together, we find

∣
∣
∣
∣

ρ
z

∣
∣
∣
∣
= N

∣
∣
∣
∣

cosϕ
(

1 − e2
)

sinϕ

∣
∣
∣
∣

(2.74)

(

N = a
√

1 − e2 sin2 ϕ

)

.

The Eqs. (2.74) are the parametric equations of E , expressed as functions of the
parameter ϕ; so (ρ, z) of this formula refer to the point Pe.

Noting that PeP is hν and observing that ν = cosϕ eρ + sinϕ ez by definition of
ϕ, we see that

∣
∣
∣
∣

ρ
z

∣
∣
∣
∣
P

=
∣
∣
∣
∣

(N + h) cosϕ
[(

1 − e2
)N + h

]

sinϕ

∣
∣
∣
∣

. (2.75)
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So exploiting (2.67), we finally get

∣
∣
∣
∣
∣
∣

x
y
z

∣
∣
∣
∣
∣
∣
P

=
∣
∣
∣
∣
∣
∣

(N + h) cosϕ cosλ
(N + h) cosϕ sin λ

[(

1 − e2
)N + h

]

sinϕ

∣
∣
∣
∣
∣
∣

, (2.76)

which is the sought transformation, (λ,ϕ, h) → (x, y, z).
The inverse transformation is somewhat more intricate, however we have a closed

algorithm providing it upon the definition of an intermediate angular variable ψ,

tgψ = 1√
1 − e2

z

ρ
(2.77)

(

ρ2 = x2 + y2
)

.

With the help of (2.77) one finds

⎧

⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

λ = atan (y, x)

ϕ = arctg
z + (

e′)2 b sin3 ψ

ρ − e2a cos3 ψ

h = ρ

cosϕ
− N (ϕ)

; (2.78)

note that in the first of (2.78) we have used atan ( , ) defined by (2.51), while in the
second equation we have a true arctg because ϕ is always between −90◦ and 90◦;
moreover we have employed here the second eccentricity e′ defined by

(

e′)2 = a2 − b2

b2
. (2.79)

A proof of (2.78) is cumbersome and not reported here.
We are now in a position to determine the two triads

(

gλ, gϕ, gh

)

,
(

eλ, eϕ, eh
)

in
terms of their Cartesian components. For this purpose we first prepare the differential
formulas

∂

∂ϕ
N (ϕ) cosϕ = −M sinϕ ,

(

1 − e2
) ∂

∂ϕ
N (ϕ) sinϕ = M cosϕ ,

M ≡
(

1 − e2
)

a
[

1 − e2 sin2 ϕ
] 3

2

(2.80)
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and then we easily compute

gλ = ∂r
∂λ

∼ (N + h) cosϕ

∣
∣
∣
∣
∣
∣

− sin λ
cosλ
0

∣
∣
∣
∣
∣
∣

gλ = (N + h) cosϕ (2.81)

eλ =
∣
∣
∣
∣
∣
∣

− sin λ
cosλ
0

∣
∣
∣
∣
∣
∣

;

gϕ = ∂r
∂ϕ

∼ (M + h)

∣
∣
∣
∣
∣
∣

− sinϕ cosλ
− sinϕ sin λ

cosϕ

∣
∣
∣
∣
∣
∣

gϕ = M + h (2.82)

eϕ =
∣
∣
∣
∣
∣
∣

− sinϕ cosλ
− sinϕ sin λ

cosϕ

∣
∣
∣
∣
∣
∣

;

gh = ∂r
∂h

∼
∣
∣
∣
∣
∣
∣

cosϕ cosλ
cosϕ sin λ

sinϕ

∣
∣
∣
∣
∣
∣

gh = 1 (2.83)

eh =
∣
∣
∣
∣
∣
∣

cosϕ cosλ
cosϕ sin λ

sinϕ

∣
∣
∣
∣
∣
∣

.

From the above formulas, it immediately descends that (λ,ϕ, h) is an orthogonal
system of coordinates, because

eλ · eϕ = eλ · eh = eϕ · eh = 0 .

Therefore the metric form in these coordinates is given by

ds2 = (N + h)2 cos2 ϕ dλ2 + (M + h)2 dϕ2 + dh2 (2.84)

and the gradient operator is

∇ = eλ

(N + h) cosϕ

∂

∂λ
+ eϕ

(M + h)

∂

∂ϕ
+ ν

∂

∂h
. (2.85)

The Laplacian, that can indeed be expressed in (λ,ϕ, h) coordinates, is however
not useful because computations of the gravity field referred to the ellipsoid E are
usually done in a different system of ellipsoidal coordinates, which is maybe less
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intuitive from the geometric point of view, but enjoys the notable property of sepa-
rating the variables of the Laplacian itself (see Heiskanen and Moritz 1967, Sansò
and Sideris 2013).

As for the geometric meaning of the two quantities N , M, let us observe that if
we move P along its meridian (λ = const, h = const) with a latitude variation dϕ,
from (2.80) and (2.84) we see that

ds

dϕ
=

√

ds2

dϕ2
=

√

(M + h)2 sin2 ϕ + (M + h)2 cos2 ϕ = M + h , (2.86)

implying thatM + h is in fact the curvature radius of themeridian passing through P.
Similarly the second relation of (2.81), that gives the radius of the parallel p

through P, tells us also that N + h is the curvature radius of the normal section
(i.e. section of the surface h = const, with a plane containing ν) tangent to the
parallel and orthogonal to the meridian.

Fig. 2.7 E reference ellipsoid; ν normal at P; OP radius of the parallel; ns normal section tangent
to p and orthogonal to m at P
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The quantityN is also quoted in literature as the grand normal of the ellipsoid E
at Pe and it represents as well the distance of Pe from the z axis along the normal ν,
as one can see from (2.75), taking ϕ = const and imposing ρ = 0.

Note that it holds M ≤ N for any ϕ.
The above statements are represented in Fig. 2.7.
Finally let us recall that our ellipsoidal coordinates have been defined by means

of an orthogonal projection of point P on E . Observe that by setting z = 0 in (2.75),
one finds that P0 (see Fig. 2.7) has a distance from the z axis ρ0 = e2N cosϕ; then
one has for every ϕ �= 0

P0P = N (

1 − e2
)

< M < N .

Therefore all the points of the segment P0P are in a distance smaller than the two
radius of curvature at P and therefore they project orthogonally on P. This one-to-
one correspondence breaks down at P0, which for symmetry reason is projected on
both, P and its symmetric image on the southern hemiellipsoid. Since the maximum
of ρ0 is achieved at ϕ = 0 and it is equal to ρ0 = e2a, we may conclude that all
points internal to E have a unique orthogonal projection, if we add the requirement
of minimum distance, with the only exception of points on the equatorial disk

{

ρ0 ≤ e2a , z = 0
}

.
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Chapter 3
The Earth Gravity Field: Basics

3.1 Outline

In this chapter we try to outline the main concepts used to estimate and describe the
gravity field. The aim is to show the interplay between the geometry of the field,
represented in terms of equipotential surfaces and plumb lines, and the mathemati-
cal relations that connect observable gravity values to the gravity potential. This is
especially done in a linearized form, after a normal potential is defined, based on the
ellipsoidal geometry, and used as reference function in the subsequent linearization.

In particular the knowledge of the gravity potential will prove to be essential to
set up the transformation equation between different coordinate systems, as it will
be done in Chap. 5.

3.2 Basic Definitions of Gravity and Gravity Potential

A massive, extended body B, with mass density ρ (Q), considered in an inertial
frame, exerts on a proof mass m, placed at point P, a force given by Newton’s law

FN = −Gm
∫

B

rQP
r3QP

ρ (Q) dBQ ; (3.1)

G is the universal gravitational constant. Since FN is just proportional to the proof
mass m, if we divide the former by it we obtain a field of accelerations, the shape of
which depends only on the mass distribution.

Therefore we define the gravitational (Newtonian) field gN as

FN

m
= gN = −G

∫

B

rQP
r3QP

ρ (Q) dBQ . (3.2)
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Note that rQP is the vector going from Q to P and that such formulas retain
their meaning, wherever is P, outside or inside B, under some reasonable regularity
conditions on ρ (Q); for instance this holds if ρ (Q) is measurable and bounded, as it
is the true density of the masses in the Earth.

Let us immediately note that, due to the well known differential identity

∇P
1

rQP
= − rQP

r3QP
(3.3)

one gets from (3.2)

gN (P) = ∇P

⎛
⎝G

∫

B

ρ (Q)

rQP
dBQ

⎞
⎠ , (3.4)

meaning that gN is a potential field, i.e.

gN (P) = ∇PVN (P) , VN (P) = G
∫

B

ρ (Q)

rQP
dBQ . (3.5)

The function VN (P) is the gravitational potential generating gN.
Now assume that the point P, where is the proof mass m, is sticked to a reference

system (x, y, z) uniformly rotating around the z axis with angular velocity ω, as it
happens on the Earth when P is kept fixed in a terrestrial reference frame. Without
disturbing the more complicated Coriolis theory, we know that in addition to the
gravitational attraction of B, m feels an apparent force, called centrifugal force Fc,

Fc = m ω2ρ eρ ; (3.6)

recall that eρ is the unit radial vector in the equatorial plane and that

ρ eρ = ρ
(
cosλ ex + sin λ ey

) = x ex + y ey . (3.7)

Therefore we can define a gravity field as the acceleration field, in the terrestrial
reference system, given by

g (P) = gN (P) + Fc

m
= gN (P) + gc (P) (3.8)

(
gc (P) = ω2ρ eρ = ω2

(
x ex + y ey

))
.

Since the obvious relation holds

gc (P) = ∇Vc (P) = ∇ 1

2
ω2
(
x2 + y2

) = ∇
(
1

2
ω2ρ2

)
. (3.9)
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we find that also g (P) is a potential field, namely that

g (P) = ∇W = ∇
(
VN (P) + 1

2
ω2ρ2

)
; (3.10)

the function W is called the gravity potential of the Earth.
We recall that a potential field is also irrotational and conservative, namely one

has
∇ ∧ g ≡ 0 (3.11)

as well as ∫

L

g (P) · d�P ≡ 0

for any regular close line. The two facts depend one upon the other Hotine (1969),
Marussi (1985).

One could object that given the physical field g, its potentialW is defined up to an
arbitrary constant. However this ambiguity is cancelled when we choose the version

W (P) = VN (P) + 1

2
ω2ρ2 (3.12)

because VN (P), as a consequence of its definition (3.5), has the unique property that

lim
rP→∞ VN (P) = 0 ; (3.13)

one says that VN (P) is regular at infinity.
Concerning this point, we study already here the asymptotic behaviour of VN (P)

when rP → ∞. Assume rP to be larger than the Brillouin radius

R+ = max
Q∈B rQ

so that
rQ
rP

<
R+
rP

< 1

for every Q in B, then the following elementary relations hold

1∣∣rP − rQ
∣∣ = 1√

r2P + r2Q − 2rPrQ eP · eQ
=

= 1

rP

1√
1 +

(
rQ
rP

)2

− 2

(
rQ
rP

)
eP · eQ
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= 1

rP

[
1 + rQ

rP
eP · eQ + O2

]
(3.14)

where eP = rP
rP

and eQ = rQ
rQ

.

In (3.14) O2 means a second order term in
rQ
rP

. So we can write

VN (P) = G

rP

∫

B

ρ (Q) dBQ + G
eP
r2P

·
∫

B

ρ (Q) rQ eQ dBQ + O3 , (3.15)

where O3 is a third order infinitesimal in
1

rP
.

Noting that ∫

B

ρ (Q) dBQ = M , (3.16)

the mass of the Earth, and that

1

M

∫

B

ρ (Q) rQ eQ dBQ = 1

M

∫

B

ρ (Q) rQ dBQ = b , (3.17)

the barycentre of the Earth masses, (3.15) writes, putting μ = GM ,

VN (P) = μ

rP
+ G

rP
r3P

· b + O3 . (3.18)

We have already seen that choosing z as the rotation axis considerably simplifies
the expression of the centrifugal force (3.6), so now a further clever choice of the
origin of (x, y, z), that we keep fixed from now on, will simplify (3.18); namely we
put the origin O of our reference system at the barycentre of the masses, so that b = 0
and (3.18) becomes

VN (P) = μ

rP
+ O3 . (3.19)

We formulate now a fundamental differential property of VN (P). One can prove
in fact (see Sansò and Sideris 2013) that

�VN (P) = −4πGρ (P) ≡
{−4πGρ (P) �= 0 (inside B)

0 (outside B)
. (3.20)

In particular VN (P) is a harmonic function in �, the space outside the masses.
We note as well that from (3.20) and (3.12) descends the relation

�W = −4πGρ (P) + 2ω2 . (3.21)
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It is important however to underline that while VN is the unique solution of (3.20)
being also regular at infinity, W cannot be considered as “the” solution of (3.21);
(3.21) should always be specified as the sum of VN and the centrifugal potential
1
2 ω2

(
x2 + y2

)
.

3.3 Plumb Lines and Equipotential Surfaces

First of all we define the field of the physical vertical directions.
This is a vector field, n (P), with modulus 1, with the same direction and opposite

verse of g (P), namely

n (P) = −g (P)

g (P)
. (3.22)

The importance of this vector field stems from the fact that there are many geode-
tic instruments capable of materializing the vector n at any point in free-space and
thereforemany geodetic observations refer to it (e.g. zenith distances, levelling incre-
ments, etc.). As a matter of fact, n can also be determined with respect to a celestial
reference system (the system of so called fixed stars) by means of astro-geodetic
observations and then rotated into the terrestrial system. This procedure however is
not very commonly applied due to the length of themeasurement operations (Vanìcek
and Krakiwsky 1986).

Of great importance for us however is the family of force-lines of {n (P)}, namely
the so called plumb lines or vertical lines, that admit n (P) as tangent field. Such
lines can have a cumbersome behaviour when we go a considerable distance out of
the Earth, because there the centrifugal term can become large with respect to the
Newtonian attraction. In fact on the equatorial plane they balance at about 37,700
km from the planet. Yet, in the layer of interest for us, the centrifugal acceleration is
of the order of 3 · 10−3 times the Newtonian gravity, which then dictates the shape
of plumb lines.

Calling {Lv} the family of vertical lines, we note that in our relevant layer they
never cross one another, i.e. through every point P passes one and only one line Lv .

This implies also that along each Lv one can introduce an arc-length parameter that
is always increasing upward, namely in the direction of n (P). The line differential
equation in the intrinsic arc-length parameter s is then

dr (P)

ds
= n (P) . (3.23)

Having defined the family of lines {Lv}, one can consider the family of surfaces

SW = {
P ; W (P) = W

}
, (3.24)
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which are called equipotential surfaces, each corresponding to some constant gravity
potential value W .

The relevant values of W , corresponding to equipotentials close to the Earth
surface, are around W ∼= 6.3710 · 107 m2s−2 plus minus a relative variation of 0.5 ·
10−2. One can prove that the equipotential surfaces are so regular as to admit a normal
field, and that they can never cross one another. Moreover they are closed surfaces
in the topographic layer and so they are naturally ordered from inside to outside the
masses.

The most relevant property of the two families {Lv} and
{
SW
}
is contained in the

following elementary proposition.

Proposition 3.1 Given an equipotential SW , its (exterior) normal field corresponds
to
{
n (P) ; P ∈ SW

}
; so the family {Lv} crosses SW orthogonally.

This is immediate, in fact if P ∈ SW and we move away from P tangentially to
SW , we have indeed dW = 0, because

W (P) = W , P ∈ SW ;

but then the differential relation

dW = g (P) · dr

implies
dr tangent to SW ⇒ dr ⊥ g ; dr ⊥ n ,

i.e. n is normal to SW in P.
Other geometric quantities that describe in a more subtle way the behaviour of

{Lv} and
{
SW
}
are respectively the principal curvature vector c of the line Lv and

the mean curvature C. These are defined as (Hotine 1969)

c (P) = dn
d�

, (3.25)

where � is the arc-length of the plumb line and

C (P) = 1

2

(
1

R1
+ 1

R2

)
, (3.26)

where R1, R2 are the minimum and maximum radius of curvature of the normal
sections of SW at P.

Such quantities are related to the variability of the modulus g (P) in space. In
particular, if we call ∇0 the gradient along the surface SW , one has

c = ∇0g

g
; (3.27)
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on the contrary, taking the derivative of g along Lv , one gets the relation

dg

d�
= −2Cg + 4πGρ − 2ω2 . (3.28)

The Eq. (3.28) holds both inside and outside the masses, where ρ is equal to zero.
The proof of above equations can be found e.g. in (Sansò and Sideris 2013, Part I,
Sect. 1.7).

Before closing the section we need a quantitative assessment of the degree of
parallelism of equipotential surfaces. If we move vertically from a point A on the
equipotential surface SWA to a point A

′ on the equipotential surface SWA+δW , we see
that the rough relation δW = −gAL A holds, where L A denotes the vertical distance
between A and A′. If we repeat the same operation between two other points B, B′
on the same surfaces, we will find δW = −gB LB . These relations imply

LB − L A

L A
= −gB − gA

gA
.

Since the maximum horizontal variation of g (from pole to equator) is of the order
of |δg| ∼ 5 · 10−3 g, we see that we have too |δL| ∼ 5 · 10−3 L . With L up to 2 m,
this lack of parallelism accounts to a global maximum of 1 cm, and can therefore be
neglected. Note however that with L = 100 m, δL = 0.5 m and this is not negligible
anymore. Of course at the level of high mountains the parallelism is lost.

3.4 The Gravity Field Outside a Brillouin Sphere

Let us recall that we have defined a minimal Brillouin sphere as the one centered at
the origin with a radius R+,

R+ = max
P∈B rP ; (3.29)

a Brillouin sphere is a sphere with radius R > R+, so that all the masses generating
the gravity field are at its interior, i.e.

rP
R

≤ R+
R

< 1 , P ∈ B . (3.30)

Given this condition we want to develop a representation of the gravitational part
of the gravity field, namely VN (P), on and outside a Brillouin sphere. This will be
achieved by pushing the reasoning of Sect. 3.2 to a full series representation of the
Newton kernel r−1

QP .
To this purpose we prepare a proposition of purely algebraic nature.
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Proposition 3.2 Consider the function of two variables

G (s, t) = 1√
1 + s2 − 2st

, (3.31)

also called Legendre generating function, in the set

0 ≤ s < 1 ; −1 ≤ t ≤ 1 . (3.32)

G (s, t) is real analytic in s (s < 1), for every fixed t, so that the convergent series

G (s, t) =
+∞∑
n=0

sn Pn (t) (3.33)

holds. It turns out that (Abramowitz and Stegun 1964; Heiskanen and Moritz 1967;
Sansò and Sideris 2013):

• Pn (t) are polynomials of degree n and with the same parity (even or odd) as n,
called Legendre polynomials,

• P0 (t) ≡ 1, P1 (t) ≡ t , and that the higher degree Pn (t) satisfy the recursive rela-
tion

(n + 1) Pn+1 (t) ≡ (2n + 1) t Pn (t) − nPn−1 (t) , (3.34)

• Pn (1) = 1, Pn (−1) = (−1)n and

|Pn (t)| < 1 − 1 < t < 1 , (3.35)

• {Pn (t)} is an orthogonal system in L2 (−1, 1), namely

1∫

−1

Pn (t) Pj (t) dt = 2 δnj

2n + 1
, (3.36)

• {Pn (t)} is complete in L2 (−1, 1), i.e. ∀ f (t) ∈ L2 (−1, 1) the following identity
holds

f (t) =
+∞∑
n=0

2n + 1

n
Pn (t)

1∫

−1

Pn (τ ) f (τ ) dτ ; (3.37)

the convergence of (3.37) is in the L2 (−1, 1) topology, i.e. setting

fN (t) =
N∑

n=0

2n + 1

n
Pn (t)

1∫

−1

Pn (τ ) f (τ ) dτ ,
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one has

lim
N→+∞

1∫

−1

[ f (t) − fN (t)]2 dt = 0 . (3.38)

We exploit now Proposition 3.2 to compute a series representation of VN (P). Note
that, calling

cosψPQ = rP · rQ
rP rQ

,

and assuming that P is on or outside a Brillouin sphere, while Q is in B, the following
relation holds

1

rQP
= 1

rP

1√
1 +

(
rQ
rP

)2

− 2

(
rQ
rP

)
cosψPQ

=

= 1

rP
G

(
rQ
rP

, cosψPQ

)
=

=
+∞∑
n=0

rnQ
rn+1
P

Pn
(
cosψPQ

) ; (3.39)

the series is convergent even uniformly in rQ because

rQ ≤ R+ < R ≤ rP .

By using (3.39) in (3.5) we get

VN (P) = G
+∞∑
n=0

1

rn+1
P

∫

B

rnQ Pn
(
cosψPQ

)
ρ (Q) dBQ . (3.40)

To avoid having terms of different physical dimension for each n, we rewrite
(3.40) in the form

VN (P) = GM

R

+∞∑
n=0

(
R

rP

)n+1
⎛
⎝ 1

M

∫

B

(rQ
R

)n
Pn
(
cosψPQ

)
ρ (Q) dBQ

⎞
⎠ , (3.41)

with M the mass of the Earth. Note that GM
R has the dimension of a gravitational

potential, while all the other terms are a-dimensional.
Now we have to introduce a Lemma that is fundamental for harmonic calculus in

spherically symmetric domains.
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Lemma 3.1 (the summation rule) The following identity holds

Pn
(
cosψPQ

) = 1

2n + 1

n∑
m=−n

Ynm (σP) Ynm
(
σQ
)

(3.42)

(
σP ≡ (λP,ϕP) , σP ≡ (

λQ,ϕQ
))

,

where the functions Ynm (σP), called spherical harmonics of degree n and order m,
are given by

Ynm (σ) = Ynm (λ,ϕ) = Pnm (ϕ)

{
cosmλ (m ≥ 0)
sinmλ (m < 0)

(3.43)

and Pnm (ϕ) are the so called associated normalized Legendre functions, given by

Pnm (ϕ) = (cosϕ)m
[
Dm

t Pn (t)
]
t=sinϕ

√
(2 − δn0)

(2n + 1) (n − m)!
(n + m)! . (3.44)

We list here some properties of the associated Legendre functions and of the
spherical harmonics (proofs can be found in Sansò and Sideris 2013, Sect. 3.4):

• putting t = sinϕ,

Pm−1,m (t) ≡ 0 , Pm,m (t) =
√
2 (2m + 1)

(2m)! (cosϕ)m (3.45)

• Pnm (t) satisfy the following recursive relation

Pn+1,m (t) =
√

(2n + 1) (2n + 3)

(n + 1 − m) (n + 1 + m)
t Pnm (t) +

−
√

(2n + 3)
(
n2 − m2

)
(2n − 1) (n + 1 − m) (n + 1 + m)

Pn−1,m (t) , (3.46)

• {Ynm (σ)} is an orthonormal system in L2 (σ), i.e.

1

4π

∫
Ynm (σ)Y jk (σ) dσ = δnjδmk (3.47)

(dσ = cosϕ dϕ dλ) ,

• {Ynm (σ)} is a complete system in L2 (σ), i.e. ∀ f ∈ L2 (σ) the following identity
holds
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f (t) =
+∞∑
n=0

n∑
m=−n

Ynm (σ)

(
1

4π

∫
Ynm

(
σ′) f

(
σ′) dσ′

)
, (3.48)

the convergence of the series being in the sense of L2 (σ).

Equipped with the above discussion, we can finally obtain the main result of this
section, namely the decomposition of the Newton integral for VN (P) into a series of
functions depending on P only multiplied by integrals on the variable Q ∈ B. In fact,
substituting (3.42) into (3.41) and setting μ = GM , we find

VN (P) = μ

R

+∞∑
n=0

n∑
m=−n

(
R

rP

)n+1 Ynm (σP)

(2n + 1)

⎛
⎝ 1

M

∫

B

ρ (Q)
(rQ
R

)n
Ynm

(
σQ
)
dBQ

⎞
⎠ ≡

≡
+∞∑
n=0

n∑
m=−n

Snm (rP,σP) Vnm , (3.49)

where

Snm (rP,σP) =
(
R

rP

)n+1

Ynm (σP) (3.50)

are called exterior solid spherical harmonics, and

Vnm = 1

2n + 1

μ

R

1

M

∫

B

ρ (Q)
(rQ
R

)n
Ynm

(
σQ
)
dBQ . (3.51)

Let us observe that (3.49) tells us that VN is a linear combination of Snm (r,σ)

and that such functions are linearly independent from one another, as we can see
from (3.47); so, since VN has to be harmonic outside SR , the same must be true for
Snm (r,σ), whence their name.

Remark (Poisson function theory) First of all we note that on the Brillouin sphere,
rP = R, we have

Snm (R,σP) = Ynm (σP) ; (3.52)

since it is easy to prove that Snm (r,σ) are harmonic functions in r > R, we see that
Snm (r,σ) are characterized as the harmonic functions outside the Brillouin sphere
that on it coincide with the spherical harmonics Ynm (σ).

A second remark now is that VN (P) by (3.49) can be represented as

VN (P) =
+∞∑
n=0

n∑
m=−n

Vnm Snm (rP,σP)

and, on the sphere of radius R, one has
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VN (R,σP) =
+∞∑
n=0

n∑
m=−n

Vnm Snm (σP) . (3.53)

Now note that we can take for VN (R,σP) any L2 (σ) function and, recalling
(3.48), we know that the series (3.53) holds with

Vnm = 1

4π

∫
VN

(
R,σ′) Ynm (σ′) dσ′ . (3.54)

This means that assigning the values of VN (P) on the sphere of radius R, we can
find the function, harmonic outside the sphere, that agrees with them on the sphere
(Dirichlet problem).

Said in another way, the harmonic function VN (P) in space is fixed once its values
on a Brillouin sphere are given, irrespectively of what is the internal mass distribution
ρ (Q). In particular one can follow the reverse way to find

VN (r,σ) =
+∞∑
n=0

n∑
m=−n

(
R

rP

)n+1

Ynm (σP)

(
1

4π

∫
VN

(
R,σ′) Ynm (σ′) dσ′

)
=

= 1

4π

∫ +∞∑
n=0

(
R

rP

)n+1

(2n + 1) Pn
(
cosψPQ

)
VN (Q) dσQ =

=
∫

�
(
rP,σP,σQ

)
VN (Q) dσQ , (3.55)

where the sum of the series is the Poisson function, which is explicitly given by

�
(
rP,σP,σQ

) = 1

4π

R
(
r2P − R2

)
r3QP

. (3.56)

3.5 The Normal Gravity Field

This is a purely mathematical field, constructed to provide a suitable approximation
to the actual gravity field of the Earth.

One could think that a good approximation is already obtained by adding the
centrifugal potential to a purely spherical potential, i.e.

WS (P) = μ

rP
+ 1

2
ω2r2P cos

2 ϕP .

This approximation however is known on an experimental basis to be too rough,
implying a relative error in the potential of the order of 10−3. The point is that theEarth
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is not a rigid body, nor a purely elastic one, and its rotation has created a permanent
flattening of its shape, contracting the polar radius and dilating the equatorial radius.

So the approximate shape of the Earth, and then its gravity field, should account
for this ellipsoidal geometry. This geometry in fact is well suited to approximate
equipotential surfaces of W ; it is known that, by a careful choice of the parameters
of an ellipsoid, we can approximate an equipotential with a relative error of the order
of 10−5, which is certainly useful for a subsequent linearization.

The precise definition of normal gravity potential is as follows: let us take an oblate
ellipsoid E , the shape of which is fixed by two parameters, the equatorial radius a
and the eccentricity e; place this E with the centre at the barycentre of the masses
and the polar (short) axis along the rotation axis z; we define then a normal gravity
potential U (P) that is composed by a harmonic part, Ve (P), regular at infinity, and
a centrifugal part Vc (P) = 1

2ω
2ρ2, as the centrifugal potential contained in W (P). E

has to be an equipotential of U (P).
Such a definition is sufficient to uniquely identify Ve (P) and thenU (P) too, apart

from the constant value U0 = U (P)|E . In fact Ve (P) has to satisfy the Dirichlet
problem

⎧⎨
⎩

�Ve = 0 outside E
Ve|E = U0 − 1

2ω
2
(
x2 + y2

) = U0 − 1
2ω

2N 2 cos2 ϕ
Ve → 0 at infinity

. (3.57)

Not only (3.57) has one and only one solution, but even, expressing the problem
in a suitable system of ellipsoidal coordinates, one can find its exact analytic expres-
sion (see Pizzetti 1894, Somigliana 1929, 1930 and Sansò and Sideris 2013 for an
elementary derivation).

Even without writing it, we know in advance that Ve will depend only on h and
ϕ and not on λ; this is due to the obvious cylindrical symmetry of (3.57). Therefore
also U , given by

U (h,ϕ) = Ve (h,ϕ) + 1

2
ω2 (N + h)2 cos2 ϕ , (3.58)

results to be independent from λ.
Now we can define the normal gravity vector as

γ (h,ϕ) = ∇U (h,ϕ) ; (3.59)

we note that since U is not a function of λ, the normal vector γ has no component
on eλ. Moreover, since E is an equipotential of U , then γ is orthogonal to E , more
precisely it has the same direction and opposite verse of ν, the normal to E .

In the sequel we will also need the normal gravity modulus

γ (h,ϕ) = |γ (h,ϕ)| = |∇U (h,ϕ)| . (3.60)
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Table 3.1 Parameters of the
GRS80 ellipsoidal field

μ = GM = 398, 600.5 km3s−2

a = 6, 378.137 km

e2 = 6.69438002290 · 10−3

γ0 = 978.03267715 Gal

Note that we will use Gal = cms−2 as measurement unit for gravity.
We shall also use the notation ñ to indicate the normal vertical unit vector, namely

ñ (h,ϕ) = −γ (h,ϕ)

γ (h,ϕ)
; (3.61)

as it is obvious ñ coincides with ν when h = 0, i.e. on E .
Instead of the closed expression of U and γ, we go here with the traditional

formulas of the International Association of Geodesy (IAG), which expressU and γ
as functions of (λ,ϕ, h), because though approximate, they are quite easily applied
in calculations. Such formulas are developments of potential and gravity in series of
h, truncated to the second order, which guarantees an accuracy at the μGal level in
the topographic layer.

The constants reported in Table 3.1 have been used in the calculations. From these
we obtain the formulas reported in Table 3.2 and expressed in units of Gal’s and km’s.
All numerical constants are referred to the GRS80 reference system (Moritz 1988).

Using the formulas in Table 3.2, one can in particular derive the following relation,
valid up to 6 km, with a relative approximation better than 10−8,

ñ ∼= ν + γeϕ

γ0

h

a
eϕ = ν + 5.30244 · 10−3 sin 2ϕ

h

a
eϕ . (3.62)

Such an equation gives us two important pieces of information that will be used
in the sequel.

With reference to Fig. 3.1, we see that, defining a normal deflection of the vertical
δ̃ as the angle between ñ and ν, one has

δ̃ ∼= |̃n − ν| ∼= γeϕ

γ0

h

a
. (3.63)

So computing δ̃ in the most unfavourable conditions, in the topographic layer,
i.e. with ϕ = 45◦ and h = 6 km, one has

δ̃max ≤ 5 · 10−6 , (3.64)

corresponding to an arc-second.

Also interesting is to estimate the distance PP ′ of the normal vertical, ¯PeP′ in
Fig. 3.1, from the normal to E ; always in the worst case ϕ = 45◦ and h = 6 km, one
has
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Table 3.2 Normal potential and normal gravity formulas (γ in Gals and h in km’s)

γ = gravity modulus

γ (h,ϕ) = γe (ϕ) − γ1 (ϕ) h + γ2 (ϕ) h2

γe (ϕ) = γ0
(
1 + 5.30244 · 10−3 sin2 ϕ − 5.8 · 10−6 sin2 2ϕ

)
γ1 (ϕ) = 0.30877 − 4.5 · 10−4 sin2 ϕ

γ2 (ϕ) = 72 · 10−6

γ = gravity vector (v = vertical component, t = tangent component)

γ (h,ϕ) = v (h,ϕ) ν (ϕ) + t (h,ϕ) eϕ (ϕ)

v = −γ (h,ϕ) + 1

2γ0
τ21 h2

t = τ1 h + τ2 h2

τ1 = −γeϕ

M = − γ0

M
(
5.30244 · 10−3 sin 2ϕ − 11.6 · 10−6 sin 4ϕ

)

τ2 = − 1

2M
(
γ1ϕ + 2

γeϕ

M
)

= − 1

2M
(
4.5 · 10−4 sin 2ϕ + 2τ1

)
(

γeϕ = ∂

∂ϕ
γe (ϕ) , γ1ϕ = ∂

∂ϕ
γ1 (ϕ)

)

U = gravity potential

U (h,ϕ) = U0 − γe (ϕ) h + γ1 (ϕ)
1

2
h2 −

(
γ2 (ϕ) − 1

2

τ21
γ0

)
1

3
h3

Fig. 3.1 The geometry of
normal vertical lines with
respect to the normal to E; ν
normal to E , ñ normal
vertical, δ̃ normal deflection
of the vertical, h = PeP,

L̃v = ˜PeP′
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PP′ =
∣∣∣∣∣∣

h∫

0

δ̃
(
h′) dh′

∣∣∣∣∣∣ = 1

2

γeϕ

γ0

h2

a
< 15 · 10−6 km = 15 mm. (3.65)

Moreover the length L̃v = ¯PeP′ can be compared to h = PeP by the relation

∣∣L̃v − h
∣∣ =

L̃v∫

0

(
cos δ̃ − 1

)
dLv

∼=
h∫

0

1

2
δ̃2 dh

so that, using (3.63) and integrating in dh,

∣∣L̃v − h
∣∣ ≤ 1

6
δ̃2max h = 25 · 10−12 km , (3.66)

which is practically zero in the frame of this text.
All in all we could conclude this discussion on the geometry of normal vertical

lines by claiming that, in practice, normal vertical lines and lines orthogonal to E
can be considered as coincident in the topographic layer.

Remark On the value of U0.
Although we have not given the explicit formula for Ue, and hence for U , in

ellipsoidal coordinates,wewant to state here that such a formula implies the following
relation, holding on E

U0 = μ

ea
arctg

e√
1 − e2

+ 1

3
ω2a2 (3.67)

(μ = GM) .

Furthermore, by examining the asymptotic behaviour of Ve when r → ∞, one can
see that

Ve ∼ μ

r
− μ J2

a2

r3
P2 (cosϑ) + . . . , (3.68)

where the term O
(
1

r2

)
is missing because the origin is placed at the barycentre

implied by the normal field. The point here is that, by tracking orbits of satellites
flying in the potential (3.68), one can estimate μ and μ J2 a2. The value of μ is the
one already presented in Table 3.1. The value of a represents a scale factor for the
whole gravimetric problem and, in any event, it has been conventionally fixed too,
to the value reported in Table 3.1. Notice that the two mentioned values refer to
the reference system GRS80, while today updated values are available, for instance
those supported by the International Earth Rotation and Reference Systems Service
(IERS), see the website www.iers.org. In any case we underline that, in spite of
different arguments that have been raised in literature (see Martinec 1998), for the

www.iers.org
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pure purpose of approximation theory that we pursue here, any value of a that does
not produce an exit from the linearization band is suitable for our computations. In
any case, once μ and a are fixed, from the satellite tracking again one can derive J2
which results, adopting the values of Table 3.1,

J2 = 0.00108263 . (3.69)

Once μ, a, J2 are known, we can find an exact formula relating such quantities to
e2, namely

J2 = e2

3

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩
1 − 4

15

ω2a3

μ

e[(
1 + 3

1 − e2

e2

)
arctg

e√
1 − e2

− 3

√
1 − e2

e

]

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

,

(3.70)
Despite its awful appearance, such a formula can be readily solved iteratively for

e2, once the value of the angular velocity of theEarth is fixed too, e.g. by astrogeodetic
observations, namely

ω = 7.292115 · 10−5 rad s−1 , (3.71)

always referring to the GRS80 system. So now the eccentricity e of the ellipsoid can
be computed too, from observable functionals of the actual gravity field. Once μ,
a, e, ω are known, the value of U0 is fixed by (3.67). U0 is an important constant
because it is used in the definition of the geoid. Just for the sake of completeness, let
us recall as well that with the above constants one can also compute γ0, finding the
value reported in Table 3.1.

3.6 Definition of the Geoid

The geoid, G, is that particular equipotential of the actual gravity field where the
gravity potential W attains the value

W0 = U0 . (3.72)

The ellipsoidal height of a point P on the geoid is called the geoid undulation, NP;
such a function NP = N (σ) is used to represent its shape in ellipsoidal coordinates.
We take as a known fact that all over the Earth

|NP| ≤ 128 m, i.e. 2 · 10−5 a . (3.73)
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Traditionally the geoid was defined to coincide with the mean surface of the
sea, that was believed, once time dependent phenomena like tides, waves, wind
interaction, etc. were averaged on long time lags, to conform to an equipotential of
the gravity field, due to an elementary hydrostatic reasoning.

Nowadays, having the possibility of directly observing the sea surface by satellite
altimetry, it has been realized that, even subtracting the time variable component of
the sea surface, the stationary surface left is significantly deviating from an equipo-
tential surface. This is due to several factors, but one prominent among them is the
presence in the ocean of steady streams, like the Gulf Stream, the Kuroshio, the
circumpolar streams, just to mention a few; such currents in fact, due to the Coriolis
force, generate small “mountains and valleys” on the sea surface. The vertical dis-
tance of this stationary sea surface from the geoid is called by definition the mean
dynamic topography of the sea, ηD, so that the height of the stationary sea on the
ellipsoid, hSS, can be decomposed according to

hSS = N + ηD ; (3.74)

overbars in this formula are expressing long timeaverages.Assumingoceanographers
to be able to properly model ηD, one realizes that (3.74) can be used to derive N on
oceanic areas.

Apart from the game played by geodesists and oceanographers, similar to a dog
biting its tail, we take as a fact, confirmed by physics and data, that when the geoid
G is defined to pass close to tide gauges, ηD is globally bounded to a few meters in
magnitude, say

|ηD| ≤ 2 m . (3.75)

Now we are interested in analyzing how the different terms in (3.74) are changed
when we move the value of a in a range of a few meters.

We aim first at proving that when a point P (ϕ) on the ellipsoid, with equatorial
radius a, at latitude ϕ, is moved to P′ (ϕ), a point on the ellipsoid with equatorial
radius a + δa, at the same latitude ϕ, the shift δr = rPP′ is approximately given by

δr ∼ δa ν . (3.76)

We use (2.74) rearranged in the approximate form

⎧⎪⎪⎨
⎪⎪⎩

ρ = a

[
1 + 1

2
e2 sin2 ϕ

]
sinϕ

z = a

[
1 − e2

(
1 − 1

2
sin2 ϕ

)]
cosϕ

. (3.77)

Remember that the quantities ω2, μ and Y = μ J2 a2 are observable by Satellite
Geodesy and so they are considered known and fixed. On the other hand, by using

(3.70) to the first order in e2, we can put J2 = e2

3
so that we have
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Y = 1

3
μ e2a2 . (3.78)

In (3.78) Y andμ are fixed; so, differentiating, we see that a change δa in a induces
a change in e2 according to

δ
(
e2
)
a = −2e2 δa . (3.79)

Then going back to (3.77) and using (3.79), we get

δρ = δa

[
1 + 1

2
e2 sin2 ϕ

]
sinϕ + 1

2
δ
(
e2
)
a sin3 ϕ =

= δa

[
sinϕ − 1

2
e2 sin3 ϕ

]
,

δz = δa

[
1 − e2

(
1 − 1

2
sin2 ϕ

)]
cosϕ =

= δa

[
cosϕ + e2

(
1 − 1

2
sin2 ϕ

)
cosϕ

]
.

Since
∣∣∣∣12 e2 sin3 ϕ

∣∣∣∣ < 3.5 · 10−3 ,

∣∣∣∣e2
(
1 − 1

2
sin2 ϕ

)
cosϕ

∣∣∣∣ < 6.7 · 10−3 ,

we have, with a relative accuracy of 10−2,

δr = δρ eρ + δz ez ∼= δa ν . (3.80)

We can observe that if we move by a height h along ν we get a point that, leaving
h unchanged as well as ν = ν (a), undergoes the same shift as in (3.80), see Fig. 3.2.

We turn now to the value of U0, by using (3.67) in the approximate form,

U0
∼= μ

a

(
1 − 1

2
e2
)

+ 1

3
ω2 a2 .

Differentiating, using (3.79) and putting
μ

a2
= γ0, we get

δU0 = −γ0 δa

(
1 − 1

2
e2
)

− 1

2
γ0 a δ

(
e2
)+ 2

3
ω2a δa =

= −γ0 δa

(
1 − 3

2
e2 − 2

3

ω2a

γ0

)
.

Since
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Fig. 3.2 The shift δr caused
by a change of equatorial
radius when ϕ, h are kept
constant

3

2
e2 + 2

3

ω2a

γ0
∼ 1.2 · 10−2 ,

we see that at our level of accuracy

δU0
∼= −γ0 δa . (3.81)

When U0 is changed to U0 + δU0, also the geoid will move to the equipotential
surface with potential W0 + δW0 = U0 + δU0. The vertical shift L will then be

L = −δW0

g
.

On the other hand, n and ν can be considered parallel at the level of 10−2 and g
and γ0 are such that

γ0

g
∼ 1 ,

always at the same level. Since clearly

δN = L − δa = −δW0

g
+ δU0

γ0
= −δU0

γ0

(
γ0

g
− 1

)
= δa

(
γ0

g
− 1

)
,

we find δN ∼= 0, with a relative error of the order of 10−2 with respect to δa.
Summarizing and returning to (3.74), we see that when we move a to a + δa the

point on the ellipsoid is raised δa, so hSS will decrease by the same amount, because
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the stationary surface of the ocean is fixed in space. On the other hand N is not
changed, so ζD will change by the same figure, δa.

Since a was a free parameter, at least at the level of a few meters, as discussed
in the previous section, we see that now a can be used to minimize the mean square
value of ζD. This explains why, although irrelevant from the point of view of the
approximation of W by U , a is still “estimated” up to centimeters as in Grafarend
and Ardalan (1999), Burs̆a et al. (2007).

Another useful remark is that the modern definition of geoid, namely (3.72), has
to substitute the old practice of defining a “height” origin by using the equipoten-
tial surface passing through some tide gauge. This practice has indeed generated
different equipotential surfaces as reference for various nations or group of nations.
The unification of the different height datums, reconducting all of them to a unique
geoid, i.e. to a unique reference for geodetic heights, is a problem known as “global
height datum problem”, which the geodetic community is facing nowadays. This
will occupy us in the last chapter of the book.

References

Abramowitz M., Stegun I.A. (1964). Handbook of mathematical functions with formulas, graphs,
and mathematical tables. Dover Publications, New York.

Burs̆a M., Kenyon S., Kouba J., S̆íma Z., Vatrt V., Vítek V., Vojtís̆ková M. (2007). The geopotential
value W0 for specifying the relativistic atomic time scale and a global vertical reference system.
Journal of Geodesy, 81(2):103–110.

Grafarend E.W., Ardalan A.A. (1999). World Geodetic Datum 2000. Journal of Geodesy,
73(11):611–623.

Heiskanen W.A. and Moritz H. (1967). Physical geodesy. Freeman, San Francisco.
Hotine M. (1969). Mathematical geodesy. ESSA Monograph 2, U.S. Department of Commerce,
Washington, DC.

Martinec Z. (1998). Boundary value problems for gravimetric determination of a precise geoid.
LNES-Springer, Berlin.

Marussi A. (1985). Intrinsic geodesy. Springer, Berlin.
Moritz H. (1980). Geodetic Reference System 1980. Bulletin Gèodèsique, 62(3), 348–358.
Pizzetti P. (1894). Sulla espressione della gravità alla superficie del geoide, supposto ellissoidico.
Atti della Reale Accademia dei Lincei, Rendiconti 3:166–172 (in Italian).

Sansò F., Sideris M.G. (2013). Geoid determination: Theory and methods. Lecture Notes in Earth
System Sciences, Vol. 110. Springer-Verlag, Berlin, Heidelberg.

Somigliana C. (1929). Teoria generale del campo gravitazionale dellellissoide di rotazione. Mem-
orie della Società Astronomia Italiana 4:541–599 (in Italian).

Somigliana C. (1930). Sul campo gravitazionale esterno del geoide ellissoidico. Atti della Reale
Accademia dei Lincei, Rendiconti, 6:237–243 (in Italian).

Vanìcek P. and Krakiwsky E.J. (1986). Geodesy: The concepts, 2nd edn. Elsevier, Amsterdam.



Chapter 4
The Anomalous Potential and Its
Determination

4.1 Outline

The knowledge of the normal potential and related ellipsoidal quantities are not
enough to properly treat the problem of relating different types of geodetic heights.

To do that we need a muchmore precise knowledge of the geoid, i.e. of the gravity
potential W , than that supplied by the ellipsoid, which leaves out the “last 100 m”
of the geoid undulation. To do that we need to learn how to model the difference
betweenWP andUP, namely the anomalous potential TP. How this can be derived by a
suitable fusion of different data sources, like surface gravity, satellite tracking, digital
terrain models and oceanic mean dynamic heights, is certainly one of the main tasks
of Physical Geodesy, requiring a good knowledge of some chapters of mathematics.
We shall account here after of one of the main procedures along which the task is
performed nowadays. We shall not go deeply into the mathematical background, but
for the theorem of Runge-Krarup. The proof of the theorem, even in the simplified
form provided here, needs not to be fully understood, however its consequences and
implications need to be clearly visualized and kept in mind by the reader.

Although other approaches are present in geodetic literature, all of themneed to go
through two fundamental steps: the first is linearization of the relations expressing
the observables as functionals of the potential, the second is to remove from our
unknown T pieces that approximate its longwavelength behaviour as well as its short
wavelength behaviour, controlled by the so called topographic signal. Such concepts
are properly developed in the chapter. The rest is basically collocation theory as a
technique to solve the relevant boundary value problem left for the residual part of T .

4.2 The Anomalous Potential

We define the anomalous potential T (P) as

T (P) = W (P) −U (P) . (4.1)
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Let us immediately observe that, since we have placed the polar axis of E along
the rotation axis of the Earth, the centrifugal potential Vc (P) (see (3.9)) contained in
both W (P) and U (P) is the same; therefore (see (3.12) and (3.58))

T (P) = VN (P) − Ve (P) . (4.2)

Hence, since Ve (P) is harmonic outside E and even inside, for a depth of thousands
of kilometers, from (4.2) and recalling (3.20) we find that T satisfies the Poisson
equation

�T (P) = −4πGρ (P) ; (4.3)

in particular T (P) is harmonic outside the masses.
Now let us remark as an empirical fact that, at the level of the topographic layer,

the following relations of maximum order of magnitude hold

∣
∣
∣
∣

T

W

∣
∣
∣
∣
� 2 · 10−5 ,

|g − γ|
γ

� 10−4 . (4.4)

This implies that T can be usefully considered as a quantity small of the first
order, when we have to linearize functionals of W . However we have to underline
that, if we try to go inside the masses, the behaviour of W and U (continued as a
harmonic function) diverge one from the other (see Sansò and Sideris 2013), so that

|g − γ|
γ

� 4 · 10−3 at 20 km depth ,

|g − γ|
γ

� 2 · 10−2 at 100 km depth .

It follows that, some 20/30 km below the Earth surface, the significance of T (P)

is lost and one should not use any more the actual normal potential to approximate
W (P).

Having characterized the order of magnitude of T close to the masses, let us look
now at its behaviour at infinity, i.e. for r tending to ∞. From (4.2) and recalling
(3.19) and (3.68), one has

T (P) = W (P) −U (P) = VN (P) − Ve (P) =
=
[
μ

r
+ O

(
1

r3

)]

−
[
μ

r
+ O

(
1

r3

)]

= O
(
1

r3

)

. (4.5)

Notice that the above asymptotic relation comes from our choice to have the
same value of μ = GM for the actual and normal potential, to put the origin at the
barycentre of the masses, also coinciding with the centre of the ellipsoid E , and to
make the z axis coinciding with the rotation axis of the Earth as well as with the
polar axis of E .
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A consequence of (4.5) is that, outside any Brillouin sphere of radius R, one can
write the series expansion

T (P) =
+∞
∑

n=2

n
∑

m=−n

Tnm

(
R

r

)n+1

Ynm (σ) . (4.6)

Note that Tnm have the samedimensions as T , while in the literature, e.g. Sansò and
Sideris (2013), we often find non dimensional T nd

nm , related to the present coefficients

by T nd
nm = ( μ

R

)−1
Tnm . Here R is any radius close to the mean Earth radius.

In (4.6) the first two degrees, O ( 1r
)

and O ( 1
r2
)

, are missing, complying with the
asymptotic behaviour (4.5).

Let us recall as well here that, paralleling (3.54), the coefficients Tnm are functions
of the chosen value for R because

Tnm = 1

4π

∫

T (R,σ) Ynm (σ) dσ . (4.7)

Now if we take any other sphere with radius R′ > R, we have obviously

T
(

R′,σ
) =

+∞
∑

n=2

n
∑

m=−n

Tnm

(
R

R′

)n+1

Ynm (σ) ; (4.8)

on the other hand, T
(

R′,σ
)

will have as well its own harmonic coefficients T ′
nm such

that

T
(

R′,σ
) =

+∞
∑

n=2

n
∑

m=−n

T ′
nmYnm (σ) . (4.9)

Comparing (4.8) and (4.9), one finds

T ′
nm =

(
R

R′

)n+1

Tnm . (4.10)

Formula (4.10) represents the upward continuation of the harmonic coefficients
of T from the sphere SR to the sphere SR′ ; as we can see, the upward continued
coefficients T ′

nm become exponentially smaller than the corresponding Tnm as the
degree increases. This corresponds to a smoothing of T as a function of σ, going
from T (R,σ) to T

(

R′,σ
)

.
However the converse is also true, namely if we start from the outer sphere SR′

and its coefficients T ′
nm and we want to derive the coefficients Tnm , i.e. the potential

T , we will have an exponential increase of T ′
nm , namely

Tnm =
(
R′

R

)n+1

T ′
nm . (4.11)
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So if we have an imperfect knowledge of T ′
nm , namely

T ′
0nm = T ′

nm + εnm , (4.12)

and we try to use the erroneous T ′
0nm to derive T̂nm through (4.11), we get

T̂nm =
(
R′

R

)n+1

T ′
nm +

(
R′

R

)n+1

εnm = Tnm +
(
R′

R

)n+1

εnm . (4.13)

As we can see, T̂nm are equal to the true Tnm plus an error exponentially amplified.
For instance, if εnm are just random errors, uncorrelated, with constant variance

σ2 (εnm) = σ2
ε ,

as it happens if T0
(

R′,σ
)

is equal to T
(

R′,σ
)

plus a white noise on the sphere SR′ ,
the error contaminating our estimate T̂

(

R′,σ
)

is

δT (R,σ) =
N
∑

n=2

n
∑

m=−n

(
R′

R

)n+1

εnmYnm (σ) . (4.14)

When the summation in (4.14) goes up to infinity, δT becomes an awkward
random variable, with infinite variance, because, recalling (3.42)

n
∑

m=−n

Y 2
nm (σ) = (2n + 1) Pn (1) = (2n + 1) ,

we find

σ2 (δT ) =
N
∑

n=2

(
R′

R

)2n+2

(2n + 1) σ2
ε −−−→

N→∞ +∞ . (4.15)

This shows that, if we try to make a downward continuation from the sphere SR′

to the sphere SR , we can expect a lot of fuzzy numbers because of the increasing
variability of errors with the degree. In fact it is well known that, even assuming
that we know exactly T ′

nm , there are potentials that are harmonic outside SR′ but not
down to SR , so that formula (4.11) cannot be meaningfully applied (seeMoritz 1980,
Sansò and Venuti 2010).

Note that the determination of T is an essential tool to be able to perform the
transformation between several types of geodetic heights, so we have at least to be
aware of how it is done, to handle the necessary calculations involving T .

The determination of T , starting from the historical approach of Stokes (1849),
has always been done by building a model T̂ which is harmonic in a domain larger
than �, i.e. harmonic even inside the masses down to some reference surface S0, for
instance an internal sphere SR0 also called a Bjerhammar sphere. Since then T̂ seems
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to be a kind of downward continuation of T inside the masses, which is not, it is
necessary to clarify the situation by illustrating a cornerstone of Physical Geodesy,
namely the Runge-Krarup theorem.

4.3 The Runge-Krarup Theorem: A Mathematical
Intermezzo

This is essentially a theorem saying that if we have a closed surface S, with � the
exterior of S, and another internal surface S0, with �0 the exterior of S0, such that
� ⊂ �0, then any function harmonic in � can be approximated as well as we like
by a function harmonic in �0.

When we want to obtain a result of “approximation”, we need to specify what
this term means for us, i.e. we have to fix some topology for the space of functions
harmonic in�. This can be done, as it was done by Krarup, in very general terms, but
here we shall content ourselves to use the space mostly applied in geodetic literature,
namely the space functions harmonic in � and such that their trace on S is in L2 (S),
i.e.

u ∈ H (�) ⇒ �u = 0 in � ,

∫

S

u2dS < +∞ . (4.16)

Such a space is a Hilbert space with scalar product

〈u, v〉H =
∫

u v dS (4.17)

and with the norm derived by (4.17). So uN → u, i.e. uN approximates u as well as
we like, inH means

lim
N→∞

∫

(uN − u)2 dS = 0 . (4.18)

Similarly we can define the space H0 = H (�0) as

u0 ∈ H0 ⇒ �u0 = 0 in �0 ,

∫

S0

u20 dS < +∞ . (4.19)

We note that ∀u0 ∈ H0 we can define a function u0� which is the restriction of u0
to� (remember the� ⊂ �0), i.e. we can define a restriction operatorR� : H0 → H
such that

u0� = R�u0 ⇒ u0� (P) ≡ u0 (P) , ∀P ∈ � . (4.20)

With the help of R� we can give the theorem a synthetic form.
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Theorem 4.1 (Runge-Krarup)1 The set of functions

U0 ≡ {R�u0 , u0 ∈ H0} (4.21)

is densely embedded inH.

This exactlymeans that ∀u ∈ Hwe can find u0N ∈ H0 such that u − R�u0N → 0
in H. Since H is a Hilbert space, the above is equivalent to saying that there is no
element v �= 0 ∈ H which is orthogonal to U0, i.e.

∀u0 ∈ H , 〈v,R�u0〉H = 0 ⇒ v = 0 . (4.22)

We sketch here a proof without too many pretenses of rigorousness.
Take

u0 (P) = 1

�PQ
, Q ∈ B0 (interior of S0) ;

it is obvious that u0 ∈ H0, ∀Q ∈ B0. But then if v ∈ H is such that

V v (Q) = 〈v,
1

�PQ
〉H =

∫

S

v (P)

�PQ
dSP = 0 ∀Q ∈ B0 ,

we have that the single layer potential V v (Q) has to be zero in B0. Since V v (Q)

is harmonic in both B (interior of S) and �, and B0 is an open set contained in B,
V v (Q) ≡ 0 in B by the unique continuation property; namely, two functions u, v

harmonic in some set B, that are equal in an open subset B0 of B, have to coincide
in the whole of B (Sansò and Sideris 2013). Indeed V v (Q) and 0 are precisely in the
above situation.

On the other hand, imposing some regularity hypothesis on the surface S, it is
known that a single layer with an L2 (S) surface density is continuous throughout
all ofR3. This implies that V v (Q) ≡ 0 on S too. But then V v (Q) is harmonic in �,
continuous in � and zero on its boundary S, i.e. it has to be zero everywhere in �

by the well known maximum principle, i.e. (see Sansò and Sideris 2013)

max
Q∈�

V v (Q) = max
Q∈S V v (Q) , min

Q∈�

V v (Q) = min
Q∈S V

v (Q) .

Since, as for any single layer (MacMillan 1958),

v (Q) = 1

2π

{
∂V v (Q)

∂n+
− ∂V v (Q)

∂n−

}

,

1Note: on historical ground Runge proved a similar theorem for analytic functions; the theoremwas
extended to harmonic functions by T. Krarup.
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with n± indicating the external/internal limit of the derivative along the normal to S,
we find that v ≡ 0 and the theorem is proved.

Note that in the theorem S0 is any closed surface with an open interior domain
B0. Now take a sequence Sk of such surfaces, internal one to the other and shrinking
to some point that we take as the origin O, so that

Bk ⊃ Bk+1 or �k+1 ⊂ �k . (4.23)

If we consider the corresponding Hilbert spaces Hk , we have indeed

uk+1 ∈ Hk+1 , R�k uk+1 ∈ Hk , R�R�k uk+1 = R�uk+1 ∈ H ,

so that
R�Hk+1 ⊂ R�Hk ⊂ · · · ⊂ H , (4.24)

each embedding being dense inH. If we take the intersection

+∞
⋂

k=0

R�Hk = R�Ḣ ,

we get the restriction to � of all the functions that are harmonic outside the origin,

u ∈ Ḣ ⇒ �u = 0 ∀P �= O .

Ḣ has not aHilbert space structure, but this is not important to us.More interesting
is that, if we take the sequence of solid spherical harmonics

Snm (r,σ) =
{(

R

r

)n+1

Ynm (σ)

}

,

we have indeed Snm ∈ Ḣ and so any finite linear combination of {Snm} is also in Ḣ,
namely

u ∈ HF ≡
{

N
∑

n=0

n
∑

m=−n

anm

(
R

r

)n+1

Ynm (σ)

}

⇒ u ∈ Ḣ .

In particular, what is of utmost importance for us is the following corollary of the
Runge-Krarup theorem.

Corollary The subspace R�HF is densely embedded intoH (�) ≡ H.

This is rather obvious because writing the elements of HF in the form

u ∈ HF ⇒ u =
N
∑

n=0

n
∑

m=−n

a′
nm

(
R

r

)n+1

Ynm (σ) , (4.25)
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for some finite N , we see that, ∀ε > 0,

R�ε
HF ⊂ H (�ε) (4.26)

(�ε ≡ {r ≥ ε}) ,

the embedding being dense, because

{(
R

r

)n+1

Ynm (σ)

}

is an orthogonal, complete

sequence inH (�ε). But then, for ε sufficiently small so that �ε ⊃ �, we get

R�R�ε
HF = R�HF ⊂ R�H (�ε) ⊂ H , (4.27)

each embedding being dense into the next.

Remark The neat result of the above mathematical discussion is that, given any
potential T ∈ H (�), we can find a T̂M ∈ HF that approximates T better than a
prefixed level ε, or said in another way

∀T ∈ H (�) , ∀ε > 0; ∃Nε,
{

T̂nm; n ≤ Nε

} ⇒ ∥
∥T − T̂M

∥
∥
H < ε

with

T̂M =
Nε∑

n=2

n
∑

m=−n

T̂nm

(
R

r

)n+1

Ynm (σ) , (4.28)

for some fixed Bjerhammar radius R. A finite sum of the type (4.28) is called a global
model of the anomalous potential.

It is clear from the above discussion that a global model T̂M is not a downward
continuation of T ; in addition there are many T̂M satisfying the same approximation
level.

Actually we use validated models up to degree 2159 (e.g. EGM2008 Pavlis et al.
2012, 2013 or EIGEN-6C4 Förste et al. 2014, Shako et al. 2014), which have a
resolution of about 10 km on the Earth surface. The use of these models however
does imply calculations with about 4.6 · 106 coefficients Tnm , which is feasible but
computationally heavy. Even more, if we wanted to reach the resolution of 1 km on
S, we should use a model with 100 times coefficients than the above, what seems not
particularly economical from the computational point of view.

So in our description on how to represent T , we shall always include a component
of the type global model, but we shall leave to other methods a representation of the
high resolution particulars of this potential.
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4.4 Optimal Degree of Global Models, or Smoothing
by Truncation

The decision to represent T by a global model T̂M leaves open the question of the
degree N up to which T̂M should be developed and of which method should be
employed to estimate the specific coefficients T̂nm .

As for the second point, we could say that T̂nm are obtained by solving a specific
boundary value problem, as it will be illustrated into the the next sections, while the
first point will be discussed here.

In any event we assume that we have a tool that from some data is producing
estimates

T̂nm = Tnm + εnm , (4.29)

where εnm are the estimation errors and Eq. (4.29) refers to some suitable radius R.
We call power of the degree n (or full power degree variances) the index

Cn (T ) =
n
∑

m=−n

T 2
nm (4.30)

and degree variances (we shall explain this term in the next section)

σ2
n (T ) = Cn (T )

2n + 1
. (4.31)

Let us note that the quantity

1

4π

∫

T 2 (R,σ) dσ =
+∞
∑

n=2

Cn (T ) < +∞ (4.32)

has to be finite, implying thatCn (T ) → 0 for n → ∞. Among others, this constitutes
a necessary condition to be imposed on R. For instance, for EGM2008 R is close to
be equal to a, the equatorial radius. Indeed we do not know exactly Cn (T ), but we
can have a guess of them, Ĉn (T ) = Cn

(

T̂
)

, by using T̂nm . To be more precise, one

could observe that the estimator Ĉn (T ) =
n
∑

m=−n

T̂ 2
nm is biased and E

{

Ĉn (T )
} =

Cn (T ) +
n
∑

m=−n

σ2 (εnm); but then, if we assume to know σ2 (εnm), we can easily

construct the unbiased estimator Cn (T ) = Ĉn (T ) −
n
∑

m=−n

σ2 (εnm).

It happens that by inspecting the plot of Ĉn (T ), for example computed from the
EGM2008 coefficients (see Fig. 4.1), one can derive an empirical law for them (see
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Fig. 4.1 The empirical full power degree variances of EGM2008

discussion in Sansó and Sideris 2013, Sect. 3.8). Older but evergreen models of Cn

are also available, like those of Kaula (1966, 2000) and Tscherning and Rapp (1974).
Therefore we could say that, although we do not know the exact Tnm , we have a

law for Cn (T ). This helps us to define the mean square omission error at degree N ,
i.e.

OE2
N =

+∞
∑

n=N+1

Cn (T ) ; (4.33)

this is the error that we commit if instead of T we use just its development up to
degree N . In fact if we split T (at the level of the sphere SR) into

T =
N
∑

n=2

n
∑

m=−n

Tnm Ynm (σ) +
+∞
∑

n=N+1

n
∑

m=−n

Tnm Ynm (σ) = T(N ) + T (N ) , (4.34)

we see that, thanks to the orthogonality property of spherical harmonics, see (3.47),

1

4π

∫
[

T − T(N )

]2
dσ = 1

4π

∫
[

T (N )
]2
dσ =

+∞
∑

n=N+1

Cn (T ) = OE2
N . (4.35)

We note as well thatOEN is a decreasing function of N and it has to tend to 0 for
N → ∞, because of condition (4.32).
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Now we observe that, recalling (4.29), one has

e (T ) = T − T̂M = T(N ) − T̂M + T (N ) =

=
N
∑

n=2

n
∑

m=−n

εnm Ynm (σ) +
+∞
∑

n=N+1

Tnm Ynm (σ) . (4.36)

The mean square error of e (T ) over the unit sphere is then

1

4π

∫

e2 (T ) dσ =
N
∑

n=2

n
∑

m=−n

ε2nm + OE2
N .

As we can see, this is still a random variable because it depends on ε2nm ; so we
can reasonably define a total error E2

N as

E2
N = E

{
1

4π

∫

e2 (T ) dσ

}

=
N
∑

n=2

n
∑

m=−n

σ2 (εnm) + OE2
N . (4.37)

This is the total (mean square) error that we expect by substituting T with T̂M . As
we can see, it is in part due to the propagation of the estimation errors εnm , in part to
the omission of the coefficients by truncating at degree N . The first term in (4.37) is
called commission error

CE2
N =

N
∑

n=2

n
∑

m=−n

σ2 (εnm) . (4.38)

As we said, it represents the effect of the estimation errors, up to degree N , which
ultimately descend from the presence of measurement noise in the original data that
have allowed to estimate the Tnm coefficients.

The terms

σ2
n (ε) =

n
∑

m=−n

σ2 (εnm) (4.39)

are called error degree variances and we have

CE2
N =

N
∑

n=2

σ2
n (ε) . (4.40)

As it is obvious, CE2
N is an increasing function of N and if for instance σ2 (εnm) =

σ2
0, as it happens when εnm are just white noise, then σ2

n (ε) = (2n + 1) σ2
0 and indeed

CE2
N → ∞ when N → ∞. This however is not the general case.
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Fig. 4.2 The typical shape of OE2
N , CE2

N and E2
N

Yet E2
N as the sum of CE2

N and OE2
N will have a typical behaviour as shown in

see Fig. 4.2, namely E2
N will have a minimum at the degree N where the commission

and omission errors cross. N is indeed our optimal choice for N , because the total
error is minimum at this degree.

We note that the above condition implies

σ2
N

(ε) = CN (T ) ; (4.41)

for instance, if σ2 (εnm) = σ2
0, then σ2

N
(ε) = (

2N + 1
)

σ2
0 and the optimal criterion

is

σ2
0 = CN (T )

(

2N + 1
) = σ2

N
(T ) .

This solves the posed problem. As a realistic example in Fig. 4.3 let us display the
plot of potential error degree variances of a satellite model, when both the estimate
of T̂nm is unregularized and it is conditioned by using Cn (T ) (see next section). As
we can see, the optimal N in this case is around N = 250.
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Fig. 4.3 Estimated error degree variances of amodel from theESA-GOCEmissionwith andwithout
regularization, respectively in black and gray Brockmann et al. (2014), [Brockmann, personal
communication, 2015]. The dash line shows the EGM2008 degree variances

4.5 Collocation Theory, or Smoothing by Prior Information

As in the previous section, we assume to know T0nm = Tnm + εnm up to some degree
N , as well as the full power degree variances (4.30) and σ2

n (T ). For the moment let
us assume further on that εnm are independent from one another.

We want to state a criterion to estimate T̂nm that exploits, beyond the “observa-
tions” {T0nm}, also the prior knowledge given by (4.30). In collocation theory this is
done by establishing the minimum principle

{

T̂nm
} = ArgMin

{
N
∑

n=2

n
∑

m=−n

(

T0nm − T̂nm
)2

σ2 (εnm)
+

N
∑

n=2

n
∑

m=−n

T̂ 2
nm

σ2
n (T )

}

. (4.42)

Aswe can see, this is composed by a first quadratic functional that is essentially the
same sum of squares as in least squares theory, while the second part of the functional
has the purpose of stabilizing the solution as in Tikhonov theory. We observe also
that this second functional would be the natural extension of least squares if we
interpreted the prior information in terms of pseudo-observation equations

T0nm = 0 + ηnm ∀m , n > N

E {ηnm} = 0 , σ2 (ηnm) = σ2
n (T ) .
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This is also typical of a Bayesian interpretation in which every variable is stochas-
tic by assumption.

All in all the principle (4.42) has an obvious, but significant, solution

⎧

⎨

⎩

T̂nm = σ2
n (T )

σ2
n (T ) + σ2 (εnm)

T0nm (∀m , n ≤ N )

T̂nm = 0 (∀m , n > N )

. (4.43)

As we can see, the analogy to the Wiener-Kolmogorov filter is very strong (Sansó
and Sideris 2013, Sect. 5.4).

Also here we truncate the estimated model at degree N , because there is no
interaction between T̂nm (n > N ) and the observations. The coefficients of degree
n ≤ N are rescaled and not just equal to T0nm . In particular at low degrees where
we expect σ2

n (T ) � σ2 (εnm), we have T̂nm ∼ T0nm , while for high degrees, where
σ2
n (T ) → 0 and σ2 (εnm) might even tend to a constant or in any way is expected to

go zero much slower than σ2
n (T ), we have that T̂nm → 0 much faster than T0nm .

Remark There are significant examples inwhich T0nm are directly derived from space
observations. In these cases a stochastic model with independent estimation errors
is too unrealistic; on the contrary the εnm have a fully populated covariance matrix
Cε. So if we reorganize Tnm in a vector T with some ordering and we introduce the
diagonal matrix

K = diag
{

σ2
n (T )

}

,

meaning that σ2 (Tnm) = σ2
n (T ), (m = −n, . . . , 0, . . . , n), the principle (4.42) is

extended to
min

{

T̂
T
K−1 T̂ + (

T 0 − T̂
)T

C−1
ε

(

T 0 − T̂
)}

. (4.44)

The variation equation of (4.44) is

(

K−1 + C−1
ε

)

T̂ = C−1
ε T 0

and its solution is given by

T̂ = K (K + Cε)
−1 T 0 .

Such a formula is particularly nice because we do not need to invert two times
the large matrix Cε.

Anyway, what we have done up to now is basically to show how to filter a global
model,where the coefficients themselves are considered as observations.On the other
hand, we need a more general tool to treat the estimation of T̂ from a general set of
observations; this is particularly important because the main sources of information
on T come from gravity measurements and not from coefficients.
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So to generalize the above discussion, we assume now to have a set of observations

m0i = Mi (T ) + ηi i = 1, 2, . . . , M , (4.45)

where Mi (T ) are linear functionals of T , namely numbers that linearly depend on
T . We shall see in the next section how to write Mi (T ) for the main observables
available.

We want to directly estimate T̂ (P) at any point P in the harmonicity domain of
T̂ , recalling that by using the Runge-Krarup theorem T̂ is taken as harmonic down
to a Bjerhammar sphere,

T̂ = μ

R

+∞
∑

n=2

n
∑

m=−n

T̂nm

(
R

r

)n+1

Ynm (σ) =

= μ

R

+∞
∑

n=2

n
∑

m=−n

T̂nm Snm (r,σ) .

The new optimization principle then becomes

min

{
M
∑

i=1

[

m0i − Mi
(

T̂
)]2

σ2
ηi

+
+∞
∑

n=2

n
∑

m=−n

T̂ 2
nm

σ2
n (T )

}

. (4.46)

Leaving the proofs e.g. to the text Sansó and Sideris (2013, Sect. 5.5), we directly
report here the solution of the principle (4.46). This can be obtained in terms of the
so called covariance functions, hereafter defined

C (P,Q) =
+∞
∑

n=2

n
∑

m=−n

σ2
n (T ) Snm (rP,σP) Snm

(

rQ,σQ
)

, (4.47)

C (P, Mi ) =
+∞
∑

n=2

n
∑

m=−n

σ2
n (T ) Snm (rP,σP) Mi

(

Snm
(

rQ,σQ
))

, (4.48)

C (Mk, Mi ) =
+∞
∑

n=2

n
∑

m=−n

σ2
n (T ) Mk (Snm (rP,σP)) Mi

(

Snm
(

rQ,σQ
))

. (4.49)

The optimal solution is then obtained by the formula

T̂ (P) =
M
∑

i,k=1

C (P, Mi )
{

C (Mi , Mk) + σ2
ηi
δik
}(−1)

m0k . (4.50)

An important feature of the theory is that one can also compute the variance of
the estimation error of T̂ (P), namely
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E2 (P) = C (P,P) −
M
∑

i,k=1

C (P, Mi )
{

C (Mi , Mk) + σ2
ηi
δik
}(−1)

C (P, Mk) . (4.51)

We cannot go here into the intricacy of the full estimation process and of its
numerical implementation. However we shall make some comment on the use of
(4.50) in a local area and on the remove-restore principle.

Remark (Collocation in a local refinement environment)
Assumewehave global data sets, like satellite tracking or satellite gravitymissions

or just gravity observations all over the surface S; assume that we have solved the
problem of estimating a globalmodel T̂M from such global data sets, with a resolution
regulated by its maximum degree. Now we have more observations, written as in
(4.45), concentrated in a local area and we want to improve our knowledge of T in
that area.

As a first operation we can remove the global information putting

m0i = Mi (TM + δT ) + ηi = Mi (TM) + Mi (δT ) + ηi , (4.52)

computing Mi (TM) and removing it fromm0i . We are left nowwith the unknown δT
that represents the local behaviour of T . Before estimating δT with a formula like
(4.50), it is usually convenient to further smooth the data by exploiting the information
coming from a local Digital Terrain Model (DTM). In fact the fine variations of the
topography produce a quite significant potential with an important content of high
frequency. This is done by what is called the residual terrain correction and its
potential δTtc. In fact in general we have a much higher resolution in the knowledge
of the topography than for other gravity measurements. This correction is called
residual because we know that the long wavelength effect of topography is already
captured by the model TM . So in δTtc we have to put the effect of the masses between
the actual terrain and a smoothed version of it. This is usually done by discretizing
the masses in prisms (Fig. 4.4).

So we now rewrite (4.52) as

δm0i = m0i − Mi (TM) = Mi (δTtc) + Mi

(

δT
)

+ ηi , (4.53)

where Mi (δTtc) is computed and removed from the known term (Sansò and Sideris
2013, Sect. 4.4). We are finally left with an unknown δT , where long and short
wavelengths have been removed or de-potentiated. It is now to δT that a collocation
solution is applied. At the end we restore all the terms and T̂ is estimated in the area
where we have added new measurements by the formula

T̂ = T̂M + δTtc + δT . (4.54)
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Fig. 4.4 Geometry of the terrain correction, i.e. potential generated by prisms including the masses
between the actual topography S and a smoothed topography S̃

4.6 On the Relation Between Potential and the Surface
Gravimetric Observables

Let us remark first of all that W (P), and whence T (P), is related to several spatial
observables that we shall not discuss in the present context, because this would
require to enter into subjects of satellite dynamics that are far away from the main
purpose of the book.

We shall mention however that due to the structure of satellite observation equa-
tions and the significant smoothing of T (P) at satellite altitudes, it comes natural
that the processing of spatial geodesy data gives as an output the estimate of the
harmonic coefficients {Tnm} of T up to some maximum degree N . At present, with
the data of the CHAMP, GRACE and GOCE missions, N can be taken to be as high
as N = 300.

Given that, we come to the main observables on the surface of the Earth, that
provide the major information on the gravity field.

4.6.1 Gravimetry

In principle gravimetry, in its absolute version, provides the measurement of the
modulus of the gravity vector on continental areas.

In addition to absolute gravimeters, we have relative gravimeters that can observe
the difference of gravity between two points. The old spring gravimeter schematized
in Fig. 4.5a is nowadays substituted by superconducting gravimeters, see Fig. 4.5b,
which are in principle able of measuring g with an accuracy of 1 μGal (10−6 Gal).
Such relative measurements are arranged in networks constituted by closed loops,
which, thanks to their redundancy, allow to estimate various biases in the observa-
tions.

All in all, also correcting the time variable part of g, we end up with a set of points
{Pi } (gravity stations), where we know

g (P) = |g (P)| = |γ (P) + ∇T (P)| . (4.55)
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Fig. 4.5 The principle of
measurement of gravity, a
spring gravimeter (not in use
any more), b
superconducting gravimeter

The final accuracy with which we know g (P) can be deemed to be somewhere
between 0.1 and 0.01 mGal, which is certainly suitable for geodetic purposes. The
actual data set at BureauGravimétrique International (BGI) comprises some 106 data,
on continental areas,with a significant variability of points density. In particular South
America, Africa and Antarctica are rather poorly covered by gravity observations.

Let us note explicitly that although nowadays gravity measurements are accom-
panied by the 3D ellipsoidal coordinates of P, given with sufficient accuracy by
GPS observations, this is not the case for the largest part of the data existing in the
BGI archives, where Pi have known horizontal coordinates but unknown ellipsoidal
height h.

This imposes a particular manipulation of the equations, during linearization,
which is characteristic of Physical Geodesy. We only mention that beyond conti-
nental gravity measurements, we have a marine gravity data set of direct gravity
observations. This however is much less dense than the first and its accuracy is much
lower (between 1 and 5 mGal). Furthermore, on oceans we have the more important
data set of radar altimetry that we shall discuss hereafter.

Finally we have as well gravity data from aerogravimetry, in part on land and in
part on sea; however it is only recently that such data have an accuracy below the
mGal level and in any way we can think that they have been processed to provide
grids of gravity values on the surface.

4.6.2 Levelling Combined with Gravimetry

Levelling is a kind of classical geodetic measurement, that is schematized in Fig. 4.6
for one of its constitutive steps. As we can see from the figure, the typical reading of a
step of levelling is δL , which represents the projection of the vector rAB = rB − rA
in the vertical direction n at the midpoint M between A and B, namely

δL = n · rAB = −gM

gM
· rAB . (4.56)
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Fig. 4.6 The elementary operation of levelling with two vertical rods and two readings LA, LB
from the middle in horizontal directions; the observation is δL = LA − LB

Such a measurement can be combined with the value of gravity at M, providing

gMδL = −gM · rAB = −∇W (M) · rAB ∼= WA − WB = −δW . (4.57)

The last step in (4.57) is justified by the fact that in each levelling station the
distance between A and B is typically between 100 and 200 m, so that rAB can be
considered to have an infinitesimal length, on a planetary scale.

We shall discuss in a dedicated chapter the levelling operations and their analytical
formulation. Here we are interested in the fact that by adding the relation (4.57) along
levelling lines, we can arrive to connect all the points of a certain region to an origin
point P0, which ideally could be placed on the geoid. This means that all over the
surface of the continents we could arrive to know

W (P) = W0 +
P∫

P0

dW = W0 −
P∫

P0

g δL . (4.58)

For several reasons, including the fact that it is difficult to state that P0 is on the
geoid, even if it is placed at a tide gauge, we could say that W (P) is know, but for
an additive constant. Even more such a constant is certainly different for different
patches connected to different origins. So for the moment we shall overlook the
problem of determining such constants, that will be treated in the last chapter of the
book, and we shall assume that we know W (P) at any point on land.
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4.6.3 Radar-Altimetry on the Oceans

As already illustrated in Sect. 3.6, a radar-altimeter measures the height of a satellite
on the ocean. The position of the radar-altimeter in space is known byGPS tracking at
centimetric level; subtracting the former from the latter,we are leftwith the ellipsoidal
height of the sea.

The footprint of the radar beam is regulated with a diameter between 100 and
1000 m, in such a way as to average the wave motion. Tides and barometric effects
are modelled and subtracted from the observed height of the sea, so that by averaging
in time we arrive at the (quasi) stationary sea surface. This one, in turn, is the sum of
the geoid and the mean dynamic ocean topography η, which is related to geostrophic
currents and provided by oceanographic models.

All together, one has the observation equation for H0, i.e.

H0 = hR − (N + ηt ) + ν , (4.59)

with ν the observation noise, ηt the time dependent dynamic ocean topography, N
the geoid undulation, hR the ellipsoidal height of the radar-altimeter, see Fig. 4.7.

All the terms in (4.59), but for the unavoidable measurement error ν and the geoid
N , are known or modelled. Hence (4.59) can be used to provide estimates of N over
the ocean.

Fig. 4.7 Geometry of radar-altimetric observations: E ellipsoid, G geoid, N geoid undulation, ηt
dynamic ocean topography, hR ellipsoidal height of the radar-altimeter, H0 radar-altimeter obser-
vation
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Summarizing, and with a certain degree of abstraction, we could say that the main
observables of Physical Geodesy can provide

on continents: W (P) , g (P) (4.60)

on oceans: N (Pe) . (4.61)

We recall that in (4.60) we know the horizontal coordinates (λ,ϕ) of P, but usually
not its ellipsoidal height; in (4.61) Pe is on the ellipsoid and its (λ,ϕ) coordinates
are known. However, note that from N one has also the third coordinate, namely
(λ,ϕ, N ) of the point PG . So, recalling that on the geoid W (P) has the known value
W0, one could substitute (4.61) with the relation

W (PG) = W0 , (4.62)

where PG has known ellipsoidal coordinates.
As a closing remark of the section, we recall again that further important sources

of information on the gravity field are space geodetic methods, providing global
models up to some degree N (nowadays we have N ∼= 300), and digital terrain
models, basically used at a local level to smooth the gravity field by residual terrain
corrections.

To put together all this information is not an easy task; at a conceptual level, this is
done by the so called Geodetic Boundary Value Problem theory that we shall review
in the next section, especially with the purpose of providing the linearized version
of the Eqs. (4.60) and (4.62), where the unknown field is not any more W (P), but
the anomalous potential T (P).

4.7 The Geodetic Boundary Value Problem (GBVP)

In principle (4.60) and (4.62) can be put together, to formulate the following BVP:

to find W (P) = V (P) + 1

2
ω2ρ2, with V (P) regular harmonic in �, the exterior

of surface S,
⎧

⎨

⎩

�V = 0 in �

V = O
(
1

r

)

r → ∞ ; (4.63)

the surface S is composed by two patches, that we call L and O and correspond
respectively to Land and Ocean,

S = L ∪ O .

The surface O is geometrically known

r ∈ O ⇒ r = (λ,ϕ, N ) , N = N (λ,ϕ) (4.64)
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and on O we know that the potential is constant, i.e.

W (P) = W0 (P ∈ O) ; (4.65)

on the contrary, the surface L is unknown

r ∈ L ⇒ r = (λ,ϕ, h) , h = h (λ,ϕ) (unknown) (4.66)

but on L both the gravimetric quantities are known, i.e.
{

W (P) = W [λ,ϕ, h (λ,ϕ)] = W0 (λ,ϕ)

g (P) = |∇W [λ,ϕ, h (λ,ϕ)]| = g0 (λ,ϕ)
. (4.67)

As such, this BVP can be classified as:

• a BVP for the Laplace operator in a space of regular harmonic functions (see
(4.63)),

• a partially fixed boundary (see (4.64)) Dirichlet problem (see (4.65)),
• a partially free boundary (see (4.66)), mixed Dirichlet-Oblique Derivative (see
(4.67)), because ∇W is not pointing towards the normal of S, non linear problem,
because the second equation in (4.67) is highly non linear in the unknownsW and
h (λ,ϕ).

This is the GBVP in its most general form, or to be more precise, in its most
general scalar form, as opposed to a vector form, previously stated in literature,
where on L instead of knowing (λP,ϕP) it is considered as known the direction of g
in an Earth-fixed reference frame. This vector form, though interesting, is certainly
less realistic than the scalar one, because the data set of directions

n (P) = −g (P)

g (P)

is essentially very poor and globally not very accurate. This is whywe have chosen to
directly present here the scalar GBVP. To the knowledge of the authors, this problem
has never been rigorously analyzed in such a general formulation.

In any event, we shall go here to a linearization and a further simplification of the
problem, conducting it to a formwhich is actually used to derive numerical solutions.
We follow here the general approach introduced by Krarup (2006), although wewant
to mention as well Molodensky et al. (1962), Heiskanen andMoritz (1967) and Heck
(1991). To this purpose, we notice that the problem has to be linearized with respect
to all its unknowns, which here are the potential W (P) as well as the height hP of S
corresponding to the land L . As for W (P), it is only natural to put

W (P) = U (P) + T (P) , (4.68)

with T (P) the variational unknown, and we shall put as well

h (P) = h̃ (P) + ζ (P) , P ∈ L , (4.69)
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where ζ (P), the variation of h̃ (P), is called the generalized height anomaly; gener-
alized because we shall reserve the name of proper height anomaly to a particular
choice, that will be made in the sequel, for h̃ (P).

In any way we recall that T
W = O (10−5

)

, so to keep in balance the linearization

process we have also to put a constraint on h̃, in such a way that ζ
R = O (10−5

)

, with
R the mean radius of the Earth, say 6371 km. This restricts the a-priori values of
ζ (P) to be of the order of 100 m; such a choice is by the way consistent with the
values of N (P), which are the counterparts of ζ (P) on the oceanic area.

We observe that the problem is indeed already linear for the Laplace equation in
�, because

�T = 0 , P ∈ � ;

however such a relation is of little use because � is not yet specified. In fact � has
to be substituted by an approximate �̃, with a boundary S̃ that includes

{

h = h̃
}

on
L . For reasons that will be clearer later, instead of the actual known surface of O ,
we prefer in any way to make S̃ to coincide with the ellipsoid E on the oceanic area.
This is consistent with our previous discussion on orders of magnitude. In any way
we notice that in doing so we modify the domain of harmonicity of the true T (P),
yet, on account of the Runge-Krarup theorem, this does not prevent us from having
an excellent approximation of T (P), neglecting only quadratic terms in the range
10−9 ÷ 10−10 of the potential. So we have an �̃ that is defined as the exterior of

S̃ ≡ {

h = h̃ on L ; h = 0 on O
} ≡ S̃L ∪ S̃O . (4.70)

Naturally, to guarantee that S̃ is a closed surface, one has to force h̃ to go to zero
on the coast lines. Therefore on S̃O we can write

W (Pe) ∼= W (P) + g (Pe) N ∼= W (P) + γ (Pe) N =
= W0 + γN ≡ U (Pe) + T (Pe) = U0 + T (Pe) ,

with Pe ∈ S̃O , P ∈ O . Recalling that W0 = U0, from the previous relation we derive
the boundary condition for S̃O

T (Pe) = γ (Pe) N (Pe) Pe ∈ S̃O , (4.71)

where the right hand side is known according to (4.64).
Coming to the land part S̃L , we have, considering the two points P ∈ S and P̃ ∈ S̃L ,

along the same normal ν, at a distance ζ apart,

W (P) = U (P) + T (P) ∼= U
(

P̃
)− γ ζ̃ + T

(

P̃
)

. (4.72)

Introducing the known potential anomaly

DW = W (P) −U
(

P̃
)

, (4.73)
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we write (4.72) as

ζ̃ = T
(

P̃
)− DW

γ
; (4.74)

this is known as the generalized Bruns relation. Notice that we use the non standard
notation DW and (here below) Dg to designateW and g anomalies and to distinguish
them from �W and �g that correspond to a particular choice of S̃ and will be
introduced later on.

Moreover, we have

g (P) = |∇U (P) + ∇T (P)| ∼=
∼= γ (P) + eγ · ∇T

(

P̃
) ∼=

∼= γ
(

P̃
)+ γ′ζ + eγ · ∇T

(

P̃
) ; (4.75)

here we have introduced the notation

eγ = γ

γ
, γ′ = ∂γ

∂h
.

Considering that on S̃ (see Sansò and Sideris 2013, Sect. 15.2)

eγ
∼= −ν

with an accuracy of 5 · 10−6, and introducing, similarly to (4.73), the gravity anomaly

Dg = g (P) − γ
(

P̃
)

, (4.76)

we can write (4.75) in the form

− ν · ∇T + γ′ζ̃ ≡ −T ′ + γ′ζ̃ = Dg . (4.77)

Finally, using (4.74) in (4.77) and reordering, we get the fundamental equation of
Physical Geodesy

− T ′ (P̃
)+ γ′

γ
T
(

P̃
) = Dg + γ′

γ
DW P̃ ∈ S̃L . (4.78)

Putting everything together, we find the linearized form of the scalar GBVP,
namely

⎧

⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

�T = 0 in �̃

T = γ N on S̃O

−T ′ + γ′

γ
T = Dg + γ′

γ
DW on S̃L

T = O
(
1

r

)

. (4.79)
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A first simplification of (4.79) is to fix explicitly the choice of h̃. One possible
useful choice, though not the only one, is to use the traditional condition

DW = W (P) −U
(

P̃
) = 0 .

Such a condition gives h̃ as the solution of the implicit function equation

U
[

σ, h̃ (σ)
] = W (σ, hσ) ⇒ h̃ = h̃ (σ) , σ = (λ,ϕ) . (4.80)

With this choice, we shall denote

h̃ = h∗ , (4.81)

also called normal height, that we shall study in depth in the next chapter. Under
such a choice, the corresponding

ζ = h − h∗ = T (P∗)
γ

(4.82)

is the proper height anomaly and (4.82) is the proper Bruns relation. One can prove
empirically that in factO (|ζ|) = 100 m, which was one of the a-priori conditions to
accept h̃ as a suitable approximation of h.

We note as well that when P is on the geoid, as it happens in O , then

W (σ, hσ) = W0 = U0 = U (σ, 0) ;

in other words h∗ = 0 and
ζσ ≡ Nσ , (P ∈ O) .

Another quantity that gets fixed by the choice (4.81) is the gravity anomaly that
now is denoted as

Dg = g (σ, hσ) − γ
(

σ, h∗
σ

) ≡ �g (σ) , (4.83)

also called free air gravity anomaly. Notice that � in (4.83) has no relation with the
Laplace operator.

The surface
S∗ ≡ {

h = h∗} = S∗
L ∪ S∗

O (4.84)

is called the Marussi telluroid (Marussi 1985); as we see, this is naturally a closed
surface and this explains why we have chosen to use S∗

O ⊂ E as the approximate
surface in the O region. In fact if we had chosen S∗

O ≡ SO , which is possible because
SO is known, we would have for S∗ a surface broken along the coast lines and this
is not acceptable as boundary in a Boundary Value Problem.
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In this way (4.79) becomes

⎧

⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

�T = 0 in �̃

T = γ N on S∗
O

−T ′ + γ′

γ
T = �g on S∗

L

T = O
(
1

r

)

. (4.85)

The solution of this problem is significantly complicated by the shape of the
telluroid S∗

L , which mimics the geometry of the actual Earth surface in land areas,
with irregular mountains as high as 10−3 R. In addition an important role is played
by the geometry of the coasts, that separate S∗

O from S∗
L . So a further simplification

is achieved by modifying the boundary condition on O , bringing it to the same form
as that on L .

Without going into details, we only mention that, after a model up to some degree
200-300 is subtracted from T (see Rapp 1993), one goes locally from T (P) to�g (P)

by a slight generalization of the collocation theory outlined in Sect. 4.5.
More precisely when we subtract from T (P) a global model, e.g. up to degree

200, we theoretically obtain on O a signal containing only wavelengths below about
100 km. The covariance function of such a signal is decaying much faster than the
original one and so a good prediction of �g from T can be done in O even ignoring
land data. By forming block averages, e.g. 5′ × 5′ and using all available altimetric
data, properly manipulated to eliminate biases (cross-over analysis), we finally arrive
to determine a �g field uniformly accurate at the level of about 2 mGal (see Sansò
and Sideris 2013, Chaps. 6 and 9).

So the GBVP gets the form

⎧

⎨

⎩

�T = 0 in �̃

−T ′ + γ′

γ
T = �g on S∗ ; (4.86)

in (4.86) T is for the moment just a regular harmonic function in �̃.
Yet, with the new formulation we have introduced an important structural change

into the problem. In fact, in contrast to (4.85), the solution of (4.86) is “almost” non
unique. This can be better appreciated passing to the so called spherical approx-
imation of (4.86), which consists in changing the boundary operator (but not the
boundary S∗) into

− ∂

∂h
+

∂γ

∂h
γ

· ∼= − ∂

∂r
+

∂γ

∂r
γ

·
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and taking γ = μ

r2
, so that (4.86) becomes

{
�T = 0 in �̃

−∂T

∂r
− 2

r
T = �g on S∗ . (4.87)

This is known as the simple Molodensky problem; would S∗ be taken as a sphere,
this becomes the Stokes problem, that we shall solve explicitly as an example below.

The theory of the simple Molodensky problem is contained in a few propositions
(see Sansò and Sideris 2013, Sect. 15.4):

• first extend the definition of the (spherical approximation of) the gravity anomaly
to the whole �̃, written in the form

− r
∂T

∂r
− 2T = r �gsph ≡ u ; (4.88)

• verify by a direct computation that r
∂T

∂r
= r · ∇T is harmonic throughout �̃, so

that u = r �gsph is a harmonic function too in �̃;
• to derive the (regular) harmonic u in �̃, given its boundary values

u0 = r �gsph
∣
∣
S̃ , (4.89)

is to solve the Dirichlet problem; this is very well known (see Sansò and Sideris
2013) to have a unique solution, for instance, if the boundary S̃ is a Lipschitz
surface (basically it admits conical points but not cusps) and u0 ∈ L2

(

S̃
)

, i.e.
∫

S̃

u20 (P) dSP < +∞;

• let R be any Brillouin radius, so that T and u are both harmonic in � = {

r ≥ R
}

;
let

T =
+∞
∑

n=0

n
∑

m=−n

T nm

(

R

r

)n+1

Ynm (σ)

u =
+∞
∑

n=0

n
∑

m=−n

unm

(

R

r

)n+1

Ynm (σ)

, (4.90)

then by a direct computation of (4.88) one finds the “spatial” relation

(n − 1) T nm = unm , (|m| ≤ n ; n = 0, 1, . . . ) ; (4.91)
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• Equation (4.91) implies that if u is derived from (4.88) then u1m = 0

(m = −1, 0, 1), i.e. u has no terms of the type
1
∑

m=−1

c1m

(

R

r

)2

Y1m (σ) in its

asymptotic expansion at infinity; we observe as well that if by any chance u is such
that u00 = 0, then we would have T 00 = 0 too, so that the asymptotic behaviour
of T would be

T = O
(
1

r3

)

, (4.92)

as it was in our original definition of the anomalous potential;
• on the other hand, since

δT =
1
∑

m=−1

c1m

(

R

r

)2

Y1m (σ) (4.93)

is a function of r , homogeneous of degree −2, whatever are constants c1−1, c1 0,
c1 1, we see that δT is such that

r δT ′ + 2 δT ≡ 0 ;

since δT is also obviously harmonic, outside the origin, we have that δT represents
a null space of our BVP (4.87); this means that in any way a component like δT
of T will never be fixed by the data;

• since in the end we want to find a solution T satisfying the traditional relation
(4.92), we decide that the arbitrary δT should be fixed by the condition

δT ≡ 0 ,

that we know to be equivalent to placing the barycentre of T at the origin (or better
placing the barycentre ofU so as to coincide with that ofW ); furthermore we shall
make some operation on the data u0 = r �gsph

∣
∣
S̃ , so that u00 = 0 implying also

that T 00 = 0, i.e. (4.92) holds true (see Sansò and Sideris 2013);
• if we do not want to put restrictions directly on u0, we can change it by introducing
four unknown constants, namely substituting the boundary condition u|S = u0
with

u|S = u0 + a
R

r

∣
∣
∣
∣
∣
S

+
1
∑

m=−1

b1m

(

R

r

)2

Y1m (σ)

∣
∣
∣
∣
∣
∣
S

(4.94)

and determining a, b1m (m = −1, 0, 1) in such a way that

u00 = 0 (to implyT 00 = 0)
u1m = 0 (to produce a boundary function u0

that is r times a spherical gravity anomaly);
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one can prove that such conditions can always be satisfied by suitable constants
∀u0 ∈ L2 (S) (see Sansò and Sideris 2013);

• finallywederiveT = T (r,σ)by integrating radially (4.88) and taking into account

that u = O
(
1

r3

)

, so that the closed expression is found

T (r,σ) = 1

r2

+∞∫

r

s u (s,σ) ds ; (4.95)

one can directly prove that such a T satisfies (4.88), that it is a harmonic function
and that it satisfies (4.92).

Summarizing, we have recalled the line showing that the simple Molodensky
problem, modified as

⎧

⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

�T = 0 in �̃

−r T ′ − 2 T = u0 − a
R

r
−

1
∑

m=−1

b1m

(

R

r

)2

Y1m (σ) on S∗

T = O
(
1

r3

)

, (4.96)

has one and only one solution {T, a, b1−1, b1 0, b1 1} whatever is the known term
u0 ∈ L2 (S∗), i.e. �g ∈ L2 (S∗).

Once this is achieved, one can return to the original problem (4.86), that now we
rewrite as

⎧

⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

�T = 0 in �̃

T ′ + γ′

γ
T = �g + a

R

r2
+

1
∑

m=−1

b1m

(

R
2

r3

)

Y1m (σ) on S∗

T = O
(
1

r3

)

, (4.97)

and prove, by a perturbative argument, that (4.97) has a unique solution; however we
are now obliged to put constraints on the inclination of the normal to S∗ with respect
to the radial direction er to guarantee the convergence of the perturbative process.
Yet, a satisfactory result is obtained if we admit to a-priori know a model up to a
maximum degree N , so that we can reduce our solution u to satisfy the asymptotic
relation

u = O
(

1

r N+2

)

. (4.98)
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The theorem is the following (see Sansò and Sideris 2013, Sect. 15.4): if we
know a model of T complete up to degree and order 20, then a unique solution to the
Molodensky problem exists if the inclination of S∗ with respect to er never exceeds
60◦.

Fortunately, nowadays satellite geodesy is able, by analyzing data of low satellites,
to provide the knowledge of the first 20 degrees of T with very high accuracy, in fact
with an error of the order of 1 mm in terms of geoid. Such a knowledge has been
pushed up to degree 200 with an error of about 2 cm, as we shall comment later on
in Chap.7.

As promised, we develop now the explicit solution of (4.96) when S∗ is taken as
a sphere, i.e. of the Stokes problem.

Example (Stokes theory)
Assume S∗ is just a sphere with radius R0; we want to solve the corresponding

B.V.P. (4.96), which is of the simple Molodensky type.
Given our hypothesis, we expect T to be expandable into the spherical harmonic

series

T =
+∞
∑

n=0

n
∑

m=−n

Tnm

(
R0

r

)n+1

Ynm (σ) ; (4.99)

this automatically satisfies the harmonicity condition. On the other hand we have,
on the boundary,

u0 (σ) = R0 �g (σ) = R0

+∞
∑

n=0

n
∑

m=−n

�gnmYnm (σ) .

Since in this case we can take R = R0, we see that the known term in the second
equation of (4.96) can be written as

u0 = R0

+∞
∑

n=2

n
∑

m=−n

�gnmYnm (σ) ,

if we make the choice

a = R0 �g00 , b1m = R0 �g1m ,

so that u00 = u1m ≡ 0, (m = −1, 0, 1). But in this case we know that T00 = 0 and,
also, we can choose T1m = 0 to satisfy the third equation of (4.96). Then for n > 1,
we can use (4.91), i.e.

(n − 1) Tnm = unm = R0 �gnm .
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Returning to the representation of T , we get

T (P) =
+∞
∑

n=2

n
∑

m=−n

R0

n − 1
�gnm

(
R0

rP

)n+1

Ynm (σP) ;

Now we can remember that

�gnm = 1

4π

∫

�g
(

σQ
)

Ynm
(

σQ
)

dσQ ,

so that the previous relation can be written as

T (P) = 1

4π

∫

�g
(

σQ
)

[+∞
∑

n=2

R0

n − 1

(
R0

rP

)n+1 n
∑

m=−n

Ynm (σP) Ynm
(

σQ
)

]

dσQ =

= R0

4π

∫

�g
(

σQ
)

+∞
∑

n=2

2n + 1

n − 1
Pn
(

cosψPQ
)
(
R0

rP

)n+1

dσQ .

The series can be added in a closed form, obtaining the so called Stokes function
(see Sansò and Sideris 2013, Sect. 3.4)

S
(

R0, rP,ψPQ
) = 2R0

�PQ
+ R0

rP
− 3R �PQ

r2P
− R2

r2P
cosψPQ ·

·
[

5 + 3 log
rP − R0 cosψPQ + �PQ

2rP

]

,

with
�PQ = [

R2
0 + r2P − 2R0 rP cosψ

] 1
2 .

So the solution of the Stokes problem is written in integral form as

T (P) = R0

4π

∫

S
(

R0, rP,ψPQ
)

�g
(

σQ
)

dσQ .

Let us remark that the GBVP theory, beyond providing a basis for the numerical
determination of high degree anomalous models, is in itself one of the foundations
of Physical Geodesy because it can specify what is the minimal information that can
provide a stable solution T (P), under realistic conditions.

As claimed before, the solution of the GBVP is provided in terms of a finite
sum of spherical harmonics of the type (4.99), truncated at a maximum degree N ,
which is called a global model of the anomalous potential. At present the most
important of such models is EGM2008, which is complete up to degree and order
2159. The original data have been processed in such a way as to cover the Earth with
a 5′ × 5′ grid of area mean gravity anomalies; this corresponds to 9,331,200 values
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from which the model, described by 4,665,595 coefficients, is derived (see Sansò
and Sideris 2013, Part II, Chap. 6). Another widely used global model, complete
up to degree and order 2159, is EIGEN-6C4 that additionally includes GOCE data,
though using the same EGM2008 5′ × 5′ grid of area mean gravity anomalies over
continents. In 2020, it is foreseen the release of an updated version of EGM2008,
called EGM2020, which will benefit from new data sources and procedures.

The overall error of the model, in terms of geoid, evaluated as a mean square
estimation error over the whole Earth sphere, is considered to range around 5 cm;
however the geographic distribution of the error, reflecting in particular areas of poor
coverage of data and mountainous areas, shows that local error r.m.s. can amount up
to 1 m.

The resolution of the model indeed cannot be better than the resolution of the
input data, which in the average is around 10 km; this is reflected in the maximum
degree 2159 chosen.

Indeed one might wonder whether, by using higher resolution data, one could
improve the knowledge of the anomalous potential, at least locally. This is the case,
although we cannot enter into details in this context; we rather send to literature,
e.g. Sansò and Sideris (2013). Here we report only that an improved result can be
obtained by first finely tuning the effect of local topographic masses on T (separately
accounting for it) and then by applying a kind of local solver operator borrowed from
random field prediction theory, for instance a collocation algorithm as recalled in
Sect. 4.6, or some other equivalent techniques. What we fix here, about this more
complex theory, is that there is a local solving operator SA that acts on the improved
data set {�g} in an area A, capable of producing a local anomalous potential

T = SA (�g) (4.100)

that provides an approximation of the true T at the level of 2–3 cm in geoid, depending
on the data available, the roughness of the surface (telluroid) and the roughness of
the field �g in A.
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Chapter 5
Geodetic Coordinate Systems

5.1 Outline

In this chapter we return to the concept of coordinates, with a particular focus on
various types of geodetic heights used in the geodetic environment.

We could say that there is a hierarchy of coordinate systems that goes from the
most natural or physical ones, based on quantities related to the gravity field, to those
more geometric, for which the gravity field plays almost no role.

The latter group includes the Cartesian triad, which constitutes the Terrestrial
Reference System, co-rotating, in the mean, with the body of the Earth, with z axis
along the rotation axis and the origin at the barycentre. Another coordinate system
that shares the same characteristics is the terrestrial ellipsoidal coordinate system,
which is centered at the same origin, namely the barycentre, has the polar axis along
the rotation axis, is co-rotating with the Earth at the same mean angular velocity ω
as (x, y, z) and has shape and dimension depending, as discussed in Sect. 3.5, on
global gravimetric quantities like μ and J2. The geometric properties of such systems
have been discussed in Sects. 2.3.1 and 2.3.3, including the transformations of one
into the other, so they will not be re-discussed here. We shall rather concentrate on
the most natural coordinates, like the Hotine-Marussi system, the Helmert system,
theMolodensky system. A particular care will be put in studying the transformations
of such systems into ellipsoidal coordinates.

To achieve this, in particular for the so called orthometric heights, we will need
to continue the potential and the gravity into the layer of the topographic masses.
This can be done only by making some hypotheses on the mass density distribution
and by applying suitable regularizing rules. Fortunately when this is needed only
for the anomalous potential or gravity anomalies, as it is in our case, the result does
not depend much on the error of the density model, so that the method can provide
sensible answers.

It is for this reason that we shall open the chapter with a section on the subject of
the continuation of the gravity field inside the masses.
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5.2 On the Continuation of Gravity into the Topographic
Layer

We have already introduced in Sect. 3.3 the lines of the vertical {Lv} and we have
recalled the relation (3.28) that we repeat here

dg
d�
= −2Cg + 4πGρ − 2ω2 . (5.1)

We observe that, if we assume to know the mean curvature C (P) and the mass
density ρ (P), the Eq. (5.1) can be taken as an ordinary differential equation for g
that could be integrated along Lv from a point P on the surface S, where we assume
to know the value g (P) = gP, down to P0 on the geoid G, so to provide the value gQ
at any point on Lv (see Fig. 5.1).

We shall make two basic assumptions that will allow us to pursue the above
program. Namely, calling � = �Q the curvilinear coordinate along Lv , with origin in
P0 and positive upward, we shall assume that

C (Q) =
1

R + �
, (5.2)

Fig. 5.1 The geometry of Lv and Lh (normal to E) passing through the same point P, between the
surface S and the ellipsoid E
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with R the mean radius of the Earth. A discussion of the error implied by such
a drastic simplification can be found e.g. in Sansó and Sideris (2013, Chap.2,
page 92).

Moreover we shall assume that

ρ (Q) = ρC , (5.3)

with ρC = 2.67 g cm−3, the credited mean value of the density of the crust. We shall
see later on how small (or large) can be the error induced by (5.3).

If we call
q = 4πGρC , p = q − 2ω2 ≅ 0.22274 mGal m−1

the Eq. (5.1) can be integrated, giving

g (Q) ≡ g (�) =
(R + �P)

2

(R + �)
2 gP −

p

3
[
(R + �P)

3

(R + �)
2 − (R + �)] , (5.4)

where indeed gP = g (�P), �P are constants that we assume to know.
We note here that

(
R + �P

R + �
)
2

≥ 1 ,

indicating that in principle the integration could become unstable if we go very deep.
In reality, for �P ≤ 6 km, one has

(
R + �P

R + �
)
2

≤ (1 +
�P

R
)
2

≅ 1 + 2 ⋅ 10−3 ,

meaning that in the topographic layer the instability does not yet manifest itself sensi-
bly. One has to remark as well that the hypothesis (5.2) has also a strong regularizing
effect, because one can prove that C has a high frequency variability too, depending
on the horizontal Laplacian of T . Yet the level of this effect can be considered as
negligible in the present context, as commented in Sansó and Sideris (2013, Chap.2,
page 108). So we are left with the regularized downward continuation formula (5.4)
for g.

Now, note that (5.4) can give us also the continuation of W to any point Q along
Lv . In fact we have, by definition of Lv ,

g = −
dW
d�

so that

W (Q) = W (P) +
P

∫
Q

g d� ,
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the integral being computed along the vertical. With (5.4) and taking Q ≡ P0 ∈ G, so
that W (Q) = W0, we find

W0 = W (P) + gP �P (1 +
�P

R
) −

p

2
�2P −

p

3
�3P

R
. (5.5)

A fast calculation of the order of magnitude of the last three terms in (5.5), divided
by gP to transform them in lengths and fixing �P ≅ 6 km, shows that the first term is
of the order of �P, the second of the order of 3.6 m, the last of the order of 2.5 mm;
this says that for all practical purposes, in the topographic layer, the last term can be
safely neglected.

Finally let us assess the errors committed in continuing g down to the geoid
(�Q = 0) due to a model error in ρ. We assume that, as a maximum value, δρ = 10−1ρ.
Then

δg =
δ p

3
R [(1 +

�P

R
)
3

− 1] ≅ −δ p �P ,

with δ p ∼ 2 ⋅ 10−2 Gal km−1. As we can see, in mountainous areas, where �P > 1 km,
the error in g can be very large, at least for such large errors in ρ. In any circumstance,
in such areas we expect an error at least at the level of several mGal.

A further comment is that we assumed g (P) and �P to be known; however, accord-
ing to our discussion in Sect. 4.6, we can assume that g (P) and W (P) are known;
so (5.5), where both W (P) and W0 are known, can be rather considered as a means
to derive �P, neglecting as we said the last cubic term. In this case an error in �P is
approximately given by

gP δ� − p � δ� −
δ p

2
�2 = 0

or, with a justified simplification,

δ� =
δ p �2

2gP
.

With δ p = 2 ⋅ 10−2 Gal km−1 and gP ≅ 103 Gal, this gives

�P 1 km 2 km 4 km
δ� 1 cm 4 cm 16 cm

,

showing that the error is small, but not completely negligible, especially for high
mountains.

A last point has to be raised before closing the section, namely the Eq. (5.4) is
significantly plagued by a systematic error, because it is derived from (5.1), which
is exact, under the hypothesis (5.2), which is very rough. In interpreting (5.1) an
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error in C multiplies g, i.e. about 106 mGal; if we were able to transform (5.1) into
an equation for a variational quantity like �g, then the error in C would multiply
something of the order of 102 mGal, reducing significantly its impact. This is possible
indeed, as shown in Sansó and Sideris (2013, Part I, Sect. 2.4), because, similarly to
(5.1), one can write the equation for the normal gravity

dγ
d�
= −2C0 γ − 2ω2 , (5.6)

where we have taken into account that the normal vertical lines have the same length
as the ellipsoidal height (cf. (3.66)), so that � ≅ h in this case, and that ρ = 0 for the
normal field outside E . Then subtracting (5.6) from (5.1) and exploiting the appraisal

∣C − C0∣ ≤
10−3

R
, (5.7)

one arrives at the equation (q = 4πGρ)

∂�g

∂�
= −2C0 �g + q , (5.8)

where the hypothesis C0 ∼
1

R + �
produces an error of the order of 10−7 mGal

m−1 ≪ q.

5.3 The Hotine-Marussi Triad (�,�,W)

The two astrogeodetic coordinates � = (�,�), respectively longitude and latitude,
are related to the direction of the vertical n and its Cartesian components in the
geocentric (x, y, z), by the relation

n = −
g

g
=

�������������

cos� cos�
cos� sin�

sin�

�������������

. (5.9)

As n, � can be determined by astrogeodetic observations, that first recover n in a
celestial system and then rotate the vector to reckon its components in the terrestrial
system (for details, see for instance Vanìcek and Krakiwsky 1986). W is just the
gravity potential and it completes the triad.

As already observed in the introduction, the function W (P) cannot be used as
height throughout the whole exterior space. Indeed on the equatorial plane, at a
distance of about seven times the radius of the Earth, W attains a minimum value
and then it starts increasing for r →∞.
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A different question is whether (�,�,W) can constitute a real, unambiguous
coordinate system in our layer of interest. This is true if on the equipotential surfaces
deployed in our relevant region, it never happens that n can become parallel at two
different points; this in fact would mean that two different points have the same
coordinates. This is the same to say that equipotential surfaces in the topographic
layer are convex.

Although it is not impossible to find mass distributions that create non-convex
equipotentials (Bocchio 1981), this seems not to be the case for the Earth. So we
shall assume that in the topographic layer, (�,�,W) constitutes a coordinate system
without singular points, at least in the correspondence (�,�,W) → P; the inverse
correspondence indeed displays the typical singularity of spherical coordinates al-
ready discussed in Sect. 2.3.

One important statement concerns the coordinate line Lw. This in fact is defined
to be the line along which � = �0, � = �0, both being constant, i.e.

Lw ≡ {P ; n (P) = n0} , (5.10)

with n0 = n (P0) and P0 is any point, e.g. on the geoid, on which W = W0. The
point is that, if n0 is orthogonal to the geoid, {W = W0} at P0, the same is not any
more true for points P on which W (P) < W0, because the equipotential surfaces
{W = W ; W < W0} are not parallel to the geoid, as discussed in Sect. 3.3. The
lines Lw are called, according to T. Krarup, isozenithal lines and, as we see, they are
not coinciding with the lines of the vertical Lv . The situation is illustrated in Fig. 5.2.

It is possible to write the differential equation of isozenithal lines by the reasoning
that we sketch hereafter.

We start from (5.9) and we note that, by an elementary differential calculus, when
we move P ≡ {r} by an infinitesimal dr so that g (r) goes into g (r + dr), we have

dn = −
1
g
(I − Pn)dg , (5.11)

Fig. 5.2 The different paths of Lv and Lw through P0
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where Pn dg = n (n ⋅ dg) is the projection of dg on n. Now, when dr is along Lw,
i.e. dr = ew d�, we must have dn = 0. So along Lw

dg = Pn dg (5.12)

has to hold. But (5.12) says that

dg ∥ n . (5.13)

On the other hand

dg = Mdr = Mew d� ,

with M the Marussi tensor (Marussi 1985), i.e. in Cartesian coordinates

M = [
∂2W

∂xi ∂xk
] .

So (5.13) says that

Mew ∥ n

or, also recalling that n = n0 along Lw,

ew ∥ M
−1n ≡ M−1n0 .

So finally the equation of Lw is determined by the tangent field

ew =
dr
d�
=

M−1 (r) n0

∣M−1 (r) n0∣
.

It might be a nice exercise for the reader to verify that, with a purely spherical

potential,WS =
μ

r
, one has n0 = e0r andM =

μ

r3
(I − 3Pr), so thatM

−1 ÷ (I −
3
2
Pr)

and we get then ew = er = e0r ; therefore, in this particular case, Lv ≡ Lw.

Remark 5.1 (Geopotential numbers and dynamic heights)
As it is obvious, W has the counterintuitive behaviour that it decreases when

we move upward. This inconvenience can be eliminated by defining a geopotential
number C as

C (P) = W0 −W (P) , (5.14)

because indeedC (P) increases from lower to higher equipotential surfaces. We note
that when P = P0, a point on the geoid, then W (P0) = W0 and C (P0) = 0.
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We can observe as well that, if we had chosen the alternative definition of geoid as
the equipotential surface passing through a given point P0, e.g. a tide gauge station,
then C (P) would become observable by levelling and gravimetry (see Sect. 4.6),
without knowing W0. Since this is the practice adopted in many countries, we shall
return in the last chapter to this point to explain how to unify the different datums.

Furthermore we can say that both W (P) and C (P) are dimensionally gravity
potentials, namely the square of a velocity. To bring back a potential coordinate to
the dimension of a length, as it seems intuitive for a height coordinate, sometimes a
different coordinate is introduced, called dynamic height and defined by

HD (P) =
C (P)

γ0
=
W0 −W (P)

γ0
, (5.15)

where γ0 is any constant value close to the actual gravity, i.e. to 103 Gal. As γ0,
it could be convenient, for instance, to take the mean value of γ on the ellipsoid,
namely

γ0 = 979.7614249 Gal ,

although any other constant value, close by, would do. As we shall see later, HD so
defined results to be close to other types of heights, particularly to the orthometric
heights.

It has to be remarked that in any way W , C , HD, together with � = (�,�),
share the same geometric behaviour, in particular in relation to isozenithal lines and
coordinate surfaces.

Finally we have to understand how the Hotine-Marussi triad is related to geo-
metrical coordinates. Since (x, y, z) and (λ,ϕ, h) can be just mathematically trans-
formed one into the other, i.e. they are geometrically equivalent, we can study only
the transformation between (�,�,W) and (λ,ϕ, h). The inverse transformation is
obvious, in the sense that if we knowW (P) = W (λ,ϕ, h), then P→ W is given and
� = (�,�) is determined by inverting (5.9), namely

�������������

cos� cos�
cos� sin�

sin�

�������������

=
∇W (P)
∣∇W (P)∣

(5.16)

or

tg� = −
gy

gx

tg� = −
gz
g

.
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So turning to the direct transformation, we have to show how to pass from
(�P,�P,WP) to (λP,ϕP, hP).We continue to assume thatW (P) is a known function
of the ellipsoidal coordinates of P and so T (P) is known too.

We have already introduced in Sect. 4.7 the point P∗, which is characterized by
the fact that it is on the same ellipsoidal normal as P, i.e.

{
λP∗ = λP

ϕP∗ = ϕP
or νP∗ = νP

and it has an ellipsoidal height h∗ such that (4.80) is satisfied, namely

UP∗ = WP . (5.17)

Now we introduce another point P∗′ (see Fig. 5.3), which is characterized by the
conditions

{
λP∗′ = �P

ϕP∗′ = �P
or νP∗′ = nP (5.18)

and
UP∗′ = WP ; (5.19)

as for (5.17), also (5.19) can be used to derive h∗′ = h (P∗′). The couple of Eqs. (5.18)
and (5.19) are known as Marussi mapping and by them the ellipsoidal coordinates
of P∗′ are known.

The key point here is that the vector rP∗′P is of the maximum order of

O(∣rP∗′P∣) = 100 m (5.20)

and for such small vectors one can put

T (P) ≅ T (P∗′) ; (5.21)

in fact, if we take O(∣∇T ∣) = 102 mGal for a shift of 102 m, one has as a maximum
δT

γ
∼ 1 cm, i.e. δT ∼ 10−4 T , which is acceptable.

First of all we notice that

h∗′ ≅ h∗ ;

this is intuitive from Fig. 5.3 and it is confirmed by noting that P∗ and P∗′ have
the same value of U , so δh∗ can be computed by differentiating the last formula in
Table 3.2, truncated to the first order in h. Since U varies only with h and ϕ, the
result is approximately
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Fig. 5.3 The three points P, P∗, P∗′; O(ζ) ∼ O (∣rP∗P∗′ ∣) ∼ 10
2 m; note that P∗, P∗′ lay on the

same equipotential of U (P), so rP∗P∗′ ⋅ νP ≅ 0

δh∗ ≅
−γeϕ h δϕ

γe
;

for a shift of δϕ ∼ 2 ⋅ 10−5, corresponding to ∼ 120 m, and an altitude of 6 km, this
is below the μm and therefore we can forget it.

On the other hand we have as well

ζ (P∗′) =
T (P∗′)
γ (P∗′)

,

which is computable because we know the ellipsoidal coordinates of P∗′; but it is
easy to verify that

ζ (P∗) ≅ ζ (P∗′) ,

also taking (5.21) into account. Therefore we can put

h = h∗ + ζ (P∗) ≅ h∗′ + ζ (P∗′) ,

so that h is now known.
Coming to the horizontal coordinates (λP,ϕP), we have first of all

nP = −
γP +∇T

∣γP +∇T ∣
; (5.22)
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but
∣γP +∇T ∣ ≅ γP + eγ ⋅ ∇T = γP − ñ ⋅ ∇T ,

because eγ =
γP

γP
= −ñP .

On the other hand O(∣ñ − ν ∣) ∼ 5 ⋅ 10−6, which multiplied by ∇T goes down to
the μGal level, so we can say

∣γP +∇T ∣ = γP − ν ⋅ ∇T

and therefore

∣γP +∇T ∣
−1
=

1
γP
(1 +

ν ⋅ ∇T

γP
) . (5.23)

Substituting (5.23) in (5.22) and keeping only first order terms, we get

nP = ñP −
1
γP
[∇T − ν ⋅ (ν ⋅ ∇T )] . (5.24)

The vector

δ = nP − νP (5.25)

is called the vector deflection of the vertical and its modulus δ = ∣δ∣ just deflection
of the vertical, a quantity that being generally small (of the order of 3 ⋅ 10−4 at most)
is approximately equal to the angle between nP and νP.

The vector

δ̃ = ñP − νP , (5.26)

that we already encountered in scalar terms in (3.63), is the normal vector deflection
of the vertical and we know that in the topographic layerO(δ̃) = O (∣δ̃∣) ∼ 5 ⋅ 10−6;

more precisely we know that δ̃ is pointing northward, in the northern hemisphere,
so that

δ̃ ≅
γeϕ

γ0

h

a
eϕ ≅ 5.3 ⋅ 10

−3 sin 2ϕ
h

a
eϕ . (5.27)

It is immediate to verify that computing δ̃ with ϕ = � and h = h∗ does not change
significantly its value, so we consider it a known vector.

So returning to (5.24) we can write, subtracting νP to both members,

δ = δ̃ −
1
γ
(I − Pν)∇T , (5.28)
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with Pν the projector in the ν direction. Note that we do not specify any more where
the termsmultiplying∇T are computed, becausewe know that it makes no difference
whether this is in P, P∗ or P∗′; so we shall assume that they are computed in P∗′,
which is known.

Finally, going back to the definition (5.25) and observing that

nP = νP∗′ = ν (�,�)

while
νP = ν (λ,ϕ) ,

if we put

{
� = λ + δλ
� = ϕ + δϕ

, (5.29)

we see that

δ = ν (�,�) − ν (λ,ϕ) = νλδλ + νϕδϕ .

On the other hand

νλ = cosϕ eλ , νϕ = eϕ ,

so that

δ = cosϕδλ eλ + δϕ eϕ

and (cosϕδλ, δϕ) are respectively the northward and the eastward component of
δ, in geodetic literature also denoted as

{
η = cosϕδλ
ξ = δϕ

. (5.30)

Therefore, returning to (5.28) and taking the scalar product with eλ and eϕ, we
get respectively (see (2.85))

⎧⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎩

eλ ⋅ δ = η = −eλ ⋅ ∇T = −
1

(N + h∗) cosϕ
∂T

∂λ

eϕ ⋅ δ = ξ = δ̃ − eϕ ⋅ ∇T = δ̃ −
1

(M+ h∗)

∂T

∂ϕ

. (5.31)
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The right hand side of (5.31) is known and therefore such a formula gives
(η, ξ), i.e. (δλ, δϕ) and therefore also (λ,ϕ) by (5.29). The transformation between
(�,�,W) and (λ,ϕ, h) is so accomplished, at least in a linear approximation,which
amounts to a linear error in coordinates at most of 1 cm, as we have seen in various
steps. As a remark, we see that the knowledge of the anomalous potential T (P) is
essential to perform our coordinate transformation and it is precisely for this reason
that, even studying a geometric topic like heights, we need to know how to compute
or at least to use T (P). Finally, we observe that the term δ̃ in (5.31) has only recently
been introduced (see Betti et al. (2016)) and, though small, it can produce sensible
effects in long levelling lines in south-north direction at a relevant height h.

5.4 The Helmert Triad (�,�, H)

The couple � = (�,�) is defined by the relation (5.9), as for the Hotine-Marussi
coordinates. The coordinate H , called orthometric height of the point P, is defined
as follows: with reference to Fig. 5.1, we take the line of the vertical through P, Lv ,
and we consider the length of Lv between P and the geoid, i.e. the arc P0P; then

HP = Lv ( P0P) , (5.32)

taken positively outside the geoid and with the minus sign inside the geoid. A fast
comparison shows that HP is precisely equal to the curvilinear coordinate �P defined
in Sect. 5.2.

In spite of its intuitive character, and the fact that for a long time it has been
considered as a “natural” coordinate to describe the observation equations of spirit
levelling (see Chap.6), the orthometric height has some subtle properties that have
made controversial its use in Geodesy.

The first surprising fact is that the lines of the vertical {Lv} are not the coordinate
lines of H . The family {Lv} is used to define H , but its coordinate lines are defined
by the condition on the other two coordinates,

� = �0 (constant) , � = �0 constant ,

namely the lines {LH} coincide again with the family of isozenithals, already seen
in Sect. 5.3. A little thought will show that, if we wanted a coordinate system where
Lv was a coordinate line, we should have chosen a couple of coordinates (�0,�0)
to accompany H orW , that are in fact the astrogeodetic coordinates of the projection
of P on the geoid G, along Lv itself.

Now it is obvious that, if we move along Lv , the arc length d�v is

d�v = dH (5.33)

when we use H , while
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d�v = −
dW
g

(5.34)

when we useW as a parameter. The relations (5.33) and (5.34), especially when they
are written in the form

dW = −g dH , (5.35)

have been already source of controversy because of its imprecise notation. In fact
(5.33) and (5.34) are meant to be valid only along Lv; they are not equalities between
total differentials. Borrowing from an old notation, the relation (5.35), which in
general is wrong, should be written as

dnW = −g dH , (5.36)

meaning that the increment dnW is computed exclusively along Lv . In fact, if we

move r by dr = n dH (recall that n = −
g

g
is always tangent to Lv), we have

dnW = g ⋅ dr = g ⋅ (
g

g
)dH = −g dH ,

confirming the correctness of (5.36). On the contrary, if dr is pointing in any direction
in space, the relation (5.35) cannot be maintained any more, because, if this would
be true, we should have as well

dH = 0 ⇒ dW = 0 ,

namely equipotential surfaces should have a constant orthometric height too. But in
this case

g =
dW
dH

should also be constant on an equipotential surface and this is known to be false on
an empirical ground; on the other hand, even the normal gravity is not constant on the
Earth ellipsoid, which is an equipotential of the normal potential. A deeper analysis
(see Sansò and Vanìcek 2006) can show that the only field for which a relation like

(5.36) is true is that with a purely spherical potential
μ

r
.

Now we have to study the transformation of (�,�, H) into the other geometri-
cal coordinates. As we shall see, to do that we will have to make in any way some
hypothesis on the density of topographic masses, e.g. ρc = 2.67 g cm−3. This intro-
duces an unavoidable systematic error into the relation between HP and the geodetic
observables and therefore into the use of HP itself. In principle we could say that
writing (5.5) in the form
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C (P) = W0 −W (P) = gP HP (1 +
HP

R
) −

p

2
H 2

P (5.37)

allows to compute W (P) from HP and therefore, once (�,�,W) are known, we
can repeat the reasoning of Sect. 5.3 to derive (λ,ϕ, h). This is basically the solution
developed by Helmert and we shall shortly report it in a remark at the end of the
section. Yet, this is too intricate and, more important, subject to larger errors. We
prefer here to go along a way that, exploiting relations between anomalous quantities
only, implies smaller errors.

First, inspecting Fig. 5.1, we shall prove what we call the Operative Lemma of
Orthometric Heights.

The Operative Lemma of Orthometric Heights: with an accuracy of about 1 cm,
or better one can write everywhere on the surface S

hP = HP + NPe . (5.38)

Proof Looking at Fig. 5.1, (5.38) means

PeP = P0P + PeP
′′ ; (5.39)

we prove (5.39) by showing that

 P0P − P
′′P ≅ 0 , (5.40)

at the approximation level of 1 cm.
Treating orders of magnitude, we can assume that δ is constant along Lv , because

it is known (cf. (3.25)) that the variation of δ along Lv is one order of magnitude
smaller than δ itself; moreover we know that δ ≤ 3 ⋅ 10−4.

Then we can write

P′P =
HP

∫
0

cos δ dH ≅ HP (1 −
1
2
δ2)

P′′P′ = P0P
′ sin δ ≅ HP ⋅ δ ⋅ δ = HP δ2 .

Therefore

P′′P ≅ HP + HP
1
2
δ2

and then

 P0P − P
′′P = HP

1
2
δ2 ;
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The above, with HP = 6 km and δ = 3 ⋅ 10−4, attains the value of 0.27 mm, which
is zero at our approximation level.

Now that (5.38) is proved, we have to show how to compute NPe by using anoma-
lous quantities only. We first observe that the fundamental equation of Physical
Geodesy, also recalling Bruns’ relation (4.82), can be written as

−T ′ +
γ′

γ
T = −γ

∂

∂h

T

γ
= −γ

∂

∂h
ζ = �g

or
∂ζ

∂h
= −

�g

γ
. (5.41)

Then, integrating (5.41) between P′′ and P of Fig. 5.1, we get

N − ζP =

P

∫
P′′

�g

γ
dh (5.42)

or, recalling that P′′P ≅ HP,

NP =
T (P)

γ
+

HP

∫
0

�g

γ
dh . (5.43)

If we know T (λ,ϕ, h), we can always compute T (�,�, H) committing an error
of 1 cm at most, so the first term in (5.43) is known.

Now we use the identity

x

∫
0

f (t)dt = x f (x) −

x

∫
0

t f ′ (t)dt ,

to compute the integral in (5.43). We obtain (remember that P′′P ≅ HP)

HP

∫
0

�g

γ
dh = HP

�gP
γ
−

HP

∫
0

h (
�g

γ
)
′

dh . (5.44)

On the other hand, recalling (5.6) and (5.8),

(
�g

γ
)
′

=
γ�g′ − γ′�g

γ2
=
1
γ
(−2C0�g + q) −

�g

γ
(−2C0 − 2

ω2
0

γ
) =

=
q

γ
+

�g

γ

2ω2

γ
. (5.45)
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Now notice that q ∼ 0.2 mGal m−1 and that ∣
�g

γ
∣ < 10−4 while

2ω2 ≅ 10−2 mGal m−1, so that the second term in (5.45) is five orders of magnitude
smaller than the first.

So returning to (5.44), we find

HP

∫
0

�g

γ
dh ≅ HP

�gP
γ
−

HP

∫
0

q
h

γ
dh . (5.46)

An easy computation of orders of magnitude shows that (5.46) can amount up to
a few meters for H = 6 km.

Summarizing we have the solution

NP =
1
γ
(TP +�gPHP) −

HP

∫
0

q
h

γ
dh , (5.47)

which used in (5.38) provides the sought transformation.We note that such a formula,
which is now standard in geodetic literature, gives the direct dependence of NP on
the profile of ρ (Q) along the vertical of P, through the parameter q = 4πGρ.

It is not difficult to see that, by taking ρ = const, a further approximation of (5.47)
gives

NP =
1
γ
(TP +�gPHP −

1
2
q H 2

P) . (5.48)

We conclude this section by a remark on the so called Helmert heights.

Remark As commented before, wewant to return to the relation between HP andWP,
which was originally figured out by Helmert, following his definition of orthometric
height.

This was derived by the following consideration: start with

W0 −W (P) = −
P

∫
P0

dW =
P

∫
P0

g dH ≡ HP
1
HP

HP

∫
0

g dH = HP g , (5.49)

where g is just the average of g along Lv , between P0 and P. ThenHelmert’s reasoning
continues with the computation of g under the hypothesis that ρ = const and that g
linearly depends on H . But we have already performed this calculation, leading to
(5.5), when we disregard the third order term. So we can write

C (P) = W0 −W (P) = gP HP + (
gP
R
−

p

2
) H 2

P
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and then, taking into account that
HP

R
≤ 10−3, we substitute into the second term of

the above formula gP with themean value of the normal gravity, γ0, already computed
in Sect. 5.3, Eq. (5.15).

All that gives

C (P) = W0 −W (P) = gP HP + 0.0424 H
2
P , (5.50)

with g in Gal and HP in km. Eq. (5.50) is exactly what one can find in literature (cf.
Heiskanen and Moritz (1967, Eq. 4.4)).

5.5 The Molodensky Triad (λ,ϕ, h∗)

The coordinates (λ,ϕ) are taken as the ellipsoidal longitude and latitude and their
knowledge implies that of ν, i.e. of the ellipsoidal normal passing through P. The h∗

is the normal height, we have already defined in Sect. 4.7, and its defining equation
is (see (4.80), (4.81))

U (σ, h∗) ≡ W (σ, h) , (5.51)

namely the normal potential at height h∗ along the ellipsoidal normal through P
should be equal to the actual potential at P. The relation between h and h∗ is provided
by the Bruns relation (4.82), i.e.

h = h∗ + ζ = h∗ +
T

γ
. (5.52)

The relation (5.52) derives, as we know, from a linearization and as such it bears
some approximation. In any way, as always, it assumes that we know T in ellip-

soidal coordinates. To be precise, the term
T

γ
in (5.52) should be computed with the

ellipsoidal height fixed at h∗; so (5.52) gives the transformation from h∗ to h. The
inverse transformation can always be derived from (5.52), reversed in the form

h∗ = h −
T

γ
, (5.53)

where now ζ =
T

γ
can be computed at the ellipsoidal height h = hP. In fact, since

according to (5.41) we have

∣ζ (h) − ζ (h∗)∣ ≤

h

∫
h∗

�g

γ
dh ≅
∣�g∣

γ
∣ζ ∣ ,
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we see that, with ∣ζ ∣ = 100 m and ∣�g∣ = 100 mGal,

∣ζ (h) − ζ (h∗)∣ ≤ 1cm .

Would such an accuracy be deemed insufficient, we can always resort to the
defining equation (5.51). For that we can use the last equation in Table 3.2, neglecting

the last term
1
2

τ 2
1

γ0

h2

3
, which divided by γ0 is of the order of magnitude of less than

1 μm even for h = 6 km; this can be put into the form

U0 −U (h
∗) = W0 −W (P) = C (P) = γe (ϕ) h

∗ −
1
2
γ1 (ϕ) h

∗2 +
1
3
γ2 (ϕ) h

∗3 ,

(5.54)
with γ in Gal and h∗ in km.

Indeed, knowing h and so W (P) and C (P), one can solve (5.54) for h∗; yet, to
avoid numerical instabilities, it is convenient to write (5.54) in the form

h∗ =
C (P)

γe (ϕ) −
1
2
γ1 (ϕ) h

∗ +
1
3
γ2 (ϕ) h

∗2
(5.55)

and solve it iteratively, starting with h∗ = 0 at the right hand side.
In case we would like to transform h∗ into H or vice versa, one can combine

(5.38) and (5.52) to get

h∗ = H + N − ζ , (5.56)

where N − ζ can be derived from (5.47) or even (5.48).
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Chapter 6
The Relation Between Levelling, Geodetic
and Other Unholonomic Heights

6.1 Outline

Spirit levelling is a complex geodetic measurement that combines several elementary
steps, already defined in Sect. 4.6 (see also Fig. 4.6), each of them providing a step
increment on a short baseline; such increments are then added along a levelling line,
joining two stations P and Q. In this way, recalling (4.56), we have a measurement
related to the extremes P and Q and to the path connecting them. If we call M a point
running along the line, and with the idea to consider each step as infinitesimal, we
can write

δL = nM · drM , (6.1)

�PQL =
Q∫

P

δL =
Q∫

P

n · dr . (6.2)

Since the approximate relation

δL ∼= dH (6.3)

holds for a single step, for many practical applications the Eq. (6.2) has been con-
sidered as

�PQL = HQ − HP , (6.4)

especially when levelling is restricted to an area of a few kilometers.
However, since dr is in general pointing in an almost horizontal direction and

certainly not along the vertical, the claim δL = dH is false, as proved and illustrated
in Sect. 5.4, so (6.4) is false too; we could say that (6.4) holds with an acceptable
approximation only when the path PQ is at most a few kilometers long. So, as we see,
there is an intimate connection between levelling observations and geodetic heights,
though with some ambiguity that needs to be resolved.
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In Sect. 6.2 we shall first study the relation between �PQL and dynamic heights.
Then in Sect. 6.3 we investigate the normal heights h∗

P, h
∗
Q, showing that, contrary

to the geodetic tradition, the observation equation in terms of h∗ is more natural in
that it requires only the knowledge of the anomalous potential T on the surface. On
the contrary, in Sect. 6.4, studying the relation between �PQL and HP, HQ, we will
show that such observation equation cannot avoid to introduce the knowledge of the
topographic masses density; this is in fact intrinsic into the definition of orthometric
height. Finally in Sect. 6.5 we shall discuss a different type of unholonomic height,
namely the normal orthometric height, that is in fact used by some countries, so
that its relation to �PQL and to other heights needs to be clarified. A final section,
Sect. 6.6, of conclusions follows, with recommendations of practical nature.

6.2 The Observation Equation of �L in Terms of Dynamic
Heights

The definition of dynamic height is (see (5.15))

HD
P = C (P)

γ0

and, as commented in Sect. 5.3, since γ0 is just a constant, it bears the same infor-
mation and geometry as the geopotential number C (P) = W0 − W (P), as well as
the potential W (P) itself.

Recalling (6.1) and (6.2), we start our reasoning from

δL = n · dr = −g

g
· dr = −dW

g
(6.5)

and

�PQL = −
Q∫

P

dW

g
, (6.6)

where the integral is meant to be computed along the levelling line, namely on the
Earth surface.

Equation (6.6) can be further elaborated in the following way

�PQL = − 1

γ0

Q∫

P

γ0

g
dW = − 1

γ0

Q∫

P

(
γ0 − γ + γ − g

g
+ 1

)
dW =
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= W (P) − W (Q)

γ0
+

Q∫

P

γ0 − γ

γ0
δL +

Q∫

P

γ − g

γ0
δL . (6.7)

Now, the difference g − γ is called gravity disturbance δg and it is related to T
by

δg = g (P) − γ (P) = eγ · ∇T ∼= −ν · ∇T = −T ′ ; (6.8)

it is known that O (δg) ∼ O (�g), i.e. O
(

δg

γ0

)
∼ 10−4. Moreover it is

W (P) − W (Q)

γ0
= C (Q) − C (P)

γ0
= HD

Q − HD
P .

So from (6.7) we derive the observation equation

�PQL = HD
Q − HD

P −
Q∫

P

γ − γ0

γ0
δL −

Q∫

P

δg

γ0
δL . (6.9)

A simple evaluation of the orders of magnitude shows that the first integral in the
right hand side of (6.9) can amount up to meters per kilometer of height differences,
while the second integral is at most one order of magnitude smaller.

6.3 The Observation Equation of �L in Terms of Normal
Heights

In this case we return to Eq. (6.1) that we rewrite

δL = n · dr = −g

g
· dr = −dW

g
. (6.10)

Now let us go back to (5.28) and write it in the form

n = ν − 1

γ
(I − Pν) ∇T + δ̃ , (6.11)

where δ̃ is given by (5.27) and I − Pν is the projection on the horizontal plane, which
is orthogonal to ν.

Using (6.11) in (6.10) yields
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δL = ν · dr − 1

γ
∇T · dr + 1

γ
ν · ∇T ν · dr + δ̃ · dr =

= dh − dT

γ
+ T ′

γ
dh + δ̃ · dr . (6.12)

We will elaborate the term

dT

γ
= d

(
T

γ

)
− T d

(
1

γ

)
= dζ + T

∇γ · dr
γ2

. (6.13)

To continue our reasoning on (6.13) we use a simplified version of
∇γ

γ
∼= ∇γ

γ0
,

namely (see Table 3.2 in Sect. 3.5)

∇γ

γ0
∼= −3 · 10−4 ν + 0.8 · 10−6 sin 2ϕ eϕ ,

and observe that

O
(
T

γ

ν · ∇γ

γ

)
∼= O

(
T

γ

γ′

γ

)
∼= 3 · 10−5 ,

O
(
T

γ

|(I − Pν) ∇γ|
γ

)
∼= O

⎛
⎜⎜⎝T

γ

∣∣∣∣ 1R
∂γ

∂ϕ

∣∣∣∣
γ

⎞
⎟⎟⎠ ∼ 10−7 .

So the effect of the horizontal component of the term
T

γ

∇γ

γ
· dr , integrated over

a 100 km line, is at most 1 cm, while the effect of the vertical component is 3�L
cm (�L in km), i.e. with a rise of 6 km along the line it can go up to 18 cm.

Therefore the vertical component of this term should be accounted for, especially
inmountainous areas, while the horizontal one can be neglected. Therefore, returning
to (6.13), we get

dT

γ
∼= dζ + T

γ

γ′

γ
dh ,

which, in (6.12), yields

δL = dh − dζ − T

γ

γ′

γ
dh + T ′

γ
dh + δ̃ · dr =

= d (h − ζ) − 1

γ

(
−T ′ + γ′

γ
T

)
dh + δ̃ · dr =

= dh∗ − �g

γ
dh + δ̃ · dr . (6.14)
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This is the sought observation equation of the levelling increment over one step;
then �PQL has the observation equation

�PQL = h∗
Q − h∗

P −
Q∫

P

�g

γ
dh +

Q∫

P

δ̃ · dr . (6.15)

As promised, all the terms in (6.15) can be computed from surface anomalous
quantities. In particular the term

DC =
Q∫

P

�g

γ
dh ,

also known in literature as dynamic correction, can amount up to 10−4 times the
levelling increment, namely to several dozens of cm if P is by the sea and Q is on a
high mountain.

On the contrary the last term, only recently reported in literature (see Betti et al.
2016),

Q∫

P

δ̃ · dr ∼= 5.3 · 10−3

Q∫

P

sin 2ϕ
h

a
(M + h) dϕ ,

can obviously give a sensible contribution only for a levelling line at altitude and
developing in the north-south direction. For instance a levelling line on the Andes,
60 km long, around ϕ = −45◦, at an altitude of 2 km, will have a correction term
Q∫
P

δ̃ · dr of about 10 cm.

All in all, we have shown that by calling NC, normal correction, the term

NC =
Q∫

P

�g

γ
dh −

Q∫

P

δ̃ · dr , (6.16)

the levelling increment has observation equation

�PQL = h∗
Q − h∗

P − NC , (6.17)

where the last term can be effectively computed by surface quantities. This means,
for instance, that nowadays NC can be computed to a sufficient degree of accuracy
from some global model of T , e.g. from EGM2008; note that, on the contrary, such a
model could not be used to compute quantities inside the masses, where one should
use the methods explained in Sect. 5.2.
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Remark One possible objection to the computability of NC is that in principle the
expression (6.16) should be reckoned along the “true” levelling line, the profile of
which should therefore be known to compute the DC, while the second term is
affected in any circumstance by a negligible error. Yet we can respond that assuming
that the levelling line is known with some 10 m errors in height, what nowadays is
easy to achieve e.g. by Real Time Kinematic GNSS observations, then �g is known
with at most 1 mGal error, implying that DC can be computed with an error of
10−6 �PQL . This is certainly negligible; a similar consideration holds for the term
Q∫
P

δ̃ · dr .

The conclusion of this section is that levelling networks should be compensated,
after the application of normal corrections, directly in terms of normal heights and,
to this aim, the use of global models to compute normal corrections can give accurate
enough results, with particular caution in areas of rough topography.

6.4 The Observation Equation of �L in Terms
of Orthometric Heights

The wanted observation equation is easily derived from (6.16) and (6.17), taking
into account the following elementary relation, which takes advantage of (5.38) and
(5.43),

h∗
Q − h∗

P = hQ − hP − ζQ + ζP =
= (

hQ − NQ
) − (hP − NP) + (

NQ − ζQ
) − (NP − ζP) =

= HQ − HP +
Q∫

Q0

�g

γ
dh −

P∫

P0

�g

γ
dh , (6.18)

where Q0 and P0 are the projections of Q and P, respectively, on the geoid.
Defining the orthometric correction OC as

OC = NC −
Q∫

Q0

�g

γ
dh +

P∫

P0

�g

γ
dh (6.19)

and substituting (6.18) and (6.19) into (6.17), we get

�PQL = HQ − HP − OC . (6.20)
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As we see, contrary to the case of the normal correction, in (6.19) we find that
the orthometric correction cannot be computed without making hypotheses on the
density of topographic masses. In fact, recalling (5.46), we can also write

OC =
Q∫

P

�g

γ
dh − HQ

�gQ

γ
+ HP

�gP

γ
+

HQ∫

0

q
h

γ
dh −

HP∫

0

q
h

γ
dh , (6.21)

where q = 4πGρ. Note that in (6.21) the first integral is along the levelling line,
while the last two are inside the masses.

Since here we are reasoning apart from measurement errors, we could say that
(6.21) can establish an orthometric coordinate system in a certain area if starting
from a point P0 on the geoid, we could reach every point Q in the area, connecting
it to P0 by a levelling line. In this case, noting that P = P0, HP0 = 0, we have from
(6.16) and (6.17)

HQ = �P0QL +
Q∫

P0

�g

γ
dh − HQ

�gQ

γ
+

HQ∫

0

q
h

γ
dh ; (6.22)

this explicit formula is fundamental to understand the next remark.

Remark In geodetic literature it is often written that the relation (5.38)

h = H + N

can be used to assess the accuracy of a gravimetric geoid, by comparing it with the
difference h − H , where h can be obtained by GNSS measurements, while H can
be obtained by levelling.

We claim that the statement is wrong, at least at the level of accuracy of one
centimeter. In fact we know from Sect. 4.7 that surface gravimetric data can provide
only T , from the telluroid upward, and from this the height anomaly can be computed

via Bruns’ relation, ζ = T

γ
; so N can be derived only by making hypotheses on the

topographic masses, e.g. by the (approximate) relation (5.47)

NQ = 1

γ

(
TQ + �gQHQ

) −
HQ∫

0

q
h

γ
dh .

On the other hand the above relation clearly shows that an error ε (q), due to an
error in ρ, would cause in the computation of N an error ε (N ) given by

ε (N ) = −
HQ∫

0

ε (q)
h

γ
dh ,
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while the same error in q would generate in H an error exactly equal in modulus but
opposite in sign, so that the relation (5.38) can continue to hold, despite the fact that
both H and N are affected by errors. As for the order of magnitude of such an error,
one can use the rough appraisal

|ε (N )| = −O

⎛
⎜⎝

HQ∫

0

ε (q)
h

γ
dh

⎞
⎟⎠ ∼ 2πG ε (ρ) H 2

γ0
;

therefore, with an error of 10% in ρ, this would give

|ε (N )| ∼ 10−5H 2 , (H in km) ,

which is 1 cm at H = 1 km, but 4 cm at H = 2 km, and so forth. So we expect that,
in particular in mountainous areas, both H and N might be affected by centimetric
errors without that (5.38) could reveal it.1

We think that the right approach would be to evaluate normal heights directly
from levelling, as explained in Sect. 6.3, and then the height anomalies derived by
some solution T of the GBVP, to be tested with the relation

h = h∗ + ζ ,

where all terms can be observed and computed independently.

6.5 Levelling and Normal Orthometric Heights: An
Unholonomic Coordinate

In a sense an unholonomic coordinate is a contradiction in terms, in that it is not a
function of a point, as we defined it in Sect. 2.2, but rather a function of a point and
a path, as it happens when we make line integrals of non-exact differential forms.

We shall deviate here from the approach of the previous sections and, instead of
starting from the observation equation of δL or �L , we shall rather start from the
other side, namely the definition of normal orthometric heights.

Borrowing for instance from the “Geodetic Glossary” of the National Geodetic
Survey, we define the normal orthometric height, H no, as

H no
Q = 1

γno

Q∫

P0

γ δL , (6.23)

1The authors are aware that while editing the book the same result has been independently published
by (Sjoberg 2018); we are then happy to acknowledge this coincidence, confirming our findings.
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where P0 is an emanation point on the geoid and γno is the mean value of γ along
the ellipsoidal normal, up to H no itself, i.e.

γno = 1

H no
Q

H no
Q∫

0

γ (z) dz . (6.24)

Indeed γno is a function of point and in fact, using the approximate formulas of
Table 3.2, we can even give its explicit form, namely

γno = γe (ϕ) − 1

2
γ1 (ϕ) H no + 1

3
γ2 (ϕ) (H no)

2
. (6.25)

Indeed, as it already happened with Helmert’s definition of orthometric height,
(6.24) is an implicit equation for H no.

On the other hand H no is not a holonomic coordinate because

γ δL = −γ

g
dW (6.26)

is certainly not an exact differential: in fact
γ

g
is not constant on equipotential surfaces.

As a matter of fact, even going from P0 to another point Q0 on the geoid, we are not
sure to find H no

Q0
= 0.

Yet the rationale behind (6.23) as a substitute of HQ, is that, as nicely stated by
B. Heck (private communication), “at least the average variations of gravity due to
latitude and height effect was considered, while the irregular variations of the gravity
field had been neglected”.

The integral in (6.23) is called spheropotential number, C ′, and for it one has

C ′ =
Q∫

P0

γ δL =
Q∫

P0

(γ − g) δL +
Q∫

P0

g δL . (6.27)

On the other hand, as we have already seen in Sect. 6.2, it is

g − γ = eγ · ∇T ∼= −ν · ∇T = −T ′ = δg .

Moreover
g δL = −g · dr = −dW ,

so that (6.27) becomes

C ′ = C +
Q∫

P0

δg δL
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and (6.23) reads

H no = C

γno − 1

γno

Q∫

P0

δg δL . (6.28)

Now consider that, by definition of normal height,

C = W0 − W (h) = U0 −U
(
h∗) = −

h∗∫

0

γ · ν dh ∼=

∼=
h∗∫

0

γ dh = h∗ 1

h∗

h∗∫

0

γ dh ≡ h∗γ∗ ; (6.29)

here we have denoted by γ∗ the mean of γ between 0 and h∗.
We anticipate that δH no = H no − h∗ is certainly smaller than 1 m, therefore we

see from (6.25), keeping only the main term in γ1 which is enough for the present
calculation, that

∣∣γ − γ∗∣∣ � 0.15 Gal km−1 · 10−3 km = 1.5 · 10−3 Gal .

Therefore
C

γno = γ∗

γno h
∗ = h∗ + γ∗ − γno

γno h∗ ,

where the last term is of the order of 1.5 10−7 h∗, i.e. less than 1 mm even for
h∗ = 6 km. So we can put

C

γno ∼ h∗ ,

to find from (6.28)

H no = h∗
Q − 1

γno

Q∫

P0

δg δL . (6.30)

With (6.30) we can verify a posteriori that our guess that H no − h∗ is less than

1m is correct; in fact O
(

Q∫
P0

δg δL

)
∼ 10−4 �L , i.e. 60 cm for �L = 6 km!

On a theoretical ground, (6.30) shows that there cannot be much advantage in
using H no instead of h∗. Yet, for the sake of completeness, let us further develop
(6.30) to find the relation between H no and the levelling observable �P0QL .

Going back to (6.17) and observing that when P0 ∈ G then h∗
P0 = 0, we see that



6.5 Levelling and Normal Orthometric Heights: An Unholonomic Coordinate 115

h∗
Q = �P0QL +

Q∫

P0

�g

γ
dh −

Q∫

P0

δ̃ · dr .

Using this relation in (6.30), we get

H no = �P0QL +
Q∫

P0

�g

γ
dh −

Q∫

P0

δg

γno δL −
Q∫

P0

δ̃ · dr . (6.31)

The integral of
δg

γno δL can indeed be transformed into an integral of
δg

γno dh

because
δg

γno is already of a maximum order of 10−4. Moreover by writing

�g

γ
− δg

γno = �g − δg

γ
+

(
1

γ
− 1

γno

)
δg ∼= γ′

γ

T

γ
− γ − γno

γ

δg

γ
,

we easily verify that the integral in dh of the last term is irrelevant, so that (6.31)
becomes

H no = �P0QL +
Q∫

P0

γ′

γ
ζ dh −

Q∫

P0

δ̃ · dr . (6.32)

A fast evaluation of the orders of magnitude of the correction terms in (6.32)
shows that in general these are smaller than NC or OC; yet the price to pay in using
(6.32) is that the so calculated value does depend on the path between P0 and Q
because H no is unholonomic. A recent study with a precise numerical evaluation of
the effects of using H no in Australia, i.e. a nation that has officially adopted a normal
orthometric height system (Featherstone and Kuhn 2006), can be found in Filmer
et al. (2010).

6.6 Conclusions

Since the matter has a relevant practical impact on the adoption of national height
systems for geodetic purposes, we like to summarize the relevant conclusions that
one can draw from the discussions of the chapters:

1. levellingmeasurements should always be accompanied by corrections that depend
on the height coordinate chosen,

2. to compute corrections we need an approximate position of levelling stations, say
with 10 m accuracy; this is easily achievable by RTK observations that should
always accompany levelling, especially in mountainous areas,
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3. all corrections involving the knowledge of the anomalous potential on the Earth
surface and outside can be computed to a sufficient accuracy by a good global
model of T ; obviously a good local model of T will do a better job,

4. the use of orthometric heights implies the application of the OCwhich depends on
the knowledge of density of topographic masses; since such a detailed knowledge
is usually not available, the OC can be computed only by making hypotheses
on ρ, like ρ = 2.67 g cm−3, which can imply a systematic error up to several
centimeters, especially in mountainous areas,

5. normal heights, with their effectively computable NC, seem to be themost natural
coordinates to compensate levelling networks; moreover they are consistent with
the theory of the GBVP, which is one root of the foundations of Physical Geodesy,

6. the relation
h = H + N

should not be used to assess the accuracy of the estimated geoid at centimetric
level, because H and N can hide errors equal in modulus and opposite in sign up
to several centimeters; rather the relation

h = h∗ + ζ

can be used to assess the accuracy of the quasi-geoid, ζ, with systematic errors
below the centimeter.
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Chapter 7
The Height Datum Problem

7.1 Outline

Normal and orthometric heights are among the most widespread height coordinate
systems in use for geodetic purposes. Yet in principle they can be determined only by
ground gravimetric measurements combined with levelling so that W (P) becomes
available. Nevertheless, what the above measurements can really provide are at most
potential differences,W (P0) − W (P), for instance with respect to an origin point P0
of which however the absolute valueW (P0) is unknown.When P0 is a tide gauge, we

know that we can assume W (P0) ∼ W0 with an error δW0 such that

∣
∣
∣
∣

δW0

γ

∣
∣
∣
∣
< 2m

(cfr. Sect. 4.6); when P0 is a point of known ellipsoidal height, e.g. aGNSSpermanent

station,we can always assume thath∗ ∼= h̃∗ = h − Tb
γ
, whereTb is someglobalmodel

that has been computed with biases and so it has an error which however is almost
surely included in the above range.

In oceanic areas the information from radar altimetry and oceanography can be
transformed into potential and gravity, yet biases seem to be pervasive and we can

only say, after linearization and inversion, that we know �g + γ′

γ
δW , with the bias

δW unknown for large portions of ocean where altimetric tracks can be readjusted
at the crossovers (see Sansò and Sideris 2013, Chap. 9).

All in all we can say that instead of knowing W (P), with known horizontal
coordinates of P, σP = (λP,ϕP), we rather have the information

C̃k (P) = W (P0k) − W (P) = W0k − W (P) , (7.1)

which is valid for an area Ak where levelling on land, or track adjustment on ocean,
are well connected to some origin P0k .

Assuming for the sake of simplicity that P0k is in any way close to the sea surface,
we could say that in Ak we have the approximate potential
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W̃ (P) = W0 − C̃k (P) = W0 − W (P0k) + W (P) ≡ δW0k + W (P) P ∈ Ak ; (7.2)

so δW0k has the meaning of the bias of the known W̃ (P) in the area Ak . Putting
together all the areas Ak , that we assume to cover the whole Earth sphere, we can
represent our data as an approximate potential

W̃ (P) = W (P) + δW (P) , (7.3)

where

δW (P) =
K
∑

k=1

δW0k χk (P) (7.4)

and

χk (P) =
{

1 P ∈ Ak

0 P /∈ Ak
. (7.5)

At this point we do not have anymore the telluroid S∗, i.e. we are not able to
compute h∗

P by solving (4.80), but we can only put

W̃ (P) = W (σ, hσ) + δW (σ) = U
(

σ, h̃∗
σ

)

, (7.6)

so deriving an approximate, or biased, telluroid S̃ = {

h = h̃∗
σ

}

, such that

DW = W − W̃ = −δW (σ) �= 0 . (7.7)

Accordingly, following the same linearization process as in Sect. 4.7 and recalling
(4.78), we arrive at a BVP for the unknown anomalous potential T of the form

⎧

⎪⎪⎨

⎪⎪⎩

�T = 0 in �̃

−T ′ + γ′

γ
T

∣
∣
∣
∣
S̃

= Dg − γ′

γ
δW on S̃

T = O (
1
r3
)

. (7.8)

Notice that Dg = g (P) − γ
(

h̃∗) is as a matter of fact what we can compute from
gravimetry and the known approximate telluroid S̃.

As we can see, (7.8) contains the K unknown parameters {δW0k}, so that we can
arrive to determine T and {δW0k} only by means of additional information; we will
see in the chapter that this can be provided by points P where both h̃∗

P and hP are
known, to be precise at least one point per patch Ak , although knowing more can
indeed improve the accuracy of the solution.

Let us note that, once {δW0k} are known, the potential W (P) can be retrieved by

W (P) = W̃ (P) − δW (P)
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and, since T is also known now without biases, we can return to compute all the
transformations already studied in Chap. 5.

The solution of (7.8) is called the unification of the height datum problem, or
more precisely, of the global height datum problem. In fact, if we consider as “height
datum” the equipotential surface used as origin of orthometric heights, namely the

geoid, we see that
δW (P)

γ
can be interpreted as the separation between S̃, which is

composed by pieces of equipotential surfaces passing through P0k , and the geoid,
where W (P) attains the value W0. So knowing δW0k means also to be able to trans-
form local orthometric heights, referred to the equipotential through P0k , into true
orthometric heights, referred to the geoid.

An important point in the application of the above theory is that, when many
points of known ellipsoidal height are present in the same patch Ak , one is led to use
a least-squares adjustment to best estimate the {δW0k}. However this requires that the
covariance structure of the observations is known. This is particularly complicated
for the oceanic areas where data have undergone a deep transformation process. On
the other hand, we have already observed at the end of Sect. 4.7 that local models of
T are available on continental areas with an overall error r.m.s. at centimetric level in
geoid, in the area A of interest. This introduces the possibility of adjusting δW0k for
limited areas only, particularly continental areas, avoiding the problem of assigning
a stochastic structure to the data in the ocean.

The whole subject of the unification of the height datum is still object of research
and not completely assessed. So, in this chapter we aim at presenting the theory and
evaluating the error budget with the purpose of demonstrating its feasibility. Some
numerical examples, simulated or realistic, are also presented.

7.2 Formulation of the Global Unification of the Height
Datum

As explained in the previous section, this problem is a combination of the solution of
a GBVP with unknown additional parameters, {δW0k}, and a set of additional data,
corresponding to points Pi (at least one per patch Ak ) where the ellipsoidal height
hi = h (Pi) has been observed.

As for the GBVP part, this has already been discussed in Sect. 7.1, leading to
the formulation (7.8). Here we underline only that we know from the discussion of
Sect. 4.7 that a linear solving operator exists, such that (7.8) can be written as

T = S̃
(

Dg − γ′

γ
δW

)

= S̃ (Dg) − S̃
(

γ′

γ
δW

)

; (7.9)

note that here the tilde stems from the fact that we solve with respect to the approx-
imate surface S̃. Let us observe that the operator S̃ is well defined when acting on
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functions in L2σ; this is the case in (7.9), also for the second term in the right hand
side, because δW as a piecewise constant function is certainly in L2σ .

In this section we develop the theory as if the global model S̃ (Dg)would be really
available, given that Dg is the only “observable” quantity at ground level available to
us. Actually this is not the case with existing global models, in particular EGM2008.
In fact space geodetic techniques, especially in the last two decades with the satellite
gravimetry/gradiometry missions CHAMP, GRACE and GOCE, have provided an
independent and direct information on the low degrees of the harmonic coefficients
of T (P); however this issue will be treated separately in the next section.

So we assume to know a biased anomalous potential

Tb (P) = S̃ (Dg) . (7.10)

Subsequently, introducing (7.4) into (7.9), we arrive at the equation

T (P) = Tb (P) −
K
∑

k=1

δW0k S̃
(

γ′

γ
χk

)

, (7.11)

with Tb (P) known by hypothesis; for later use we can put Fk (P) = S̃
(

γ′

γ
χk

)

, so

that (7.11) is rewritten as

T (P) = Tb (P) −
K
∑

k=1

δW0k Fk (P) . (7.12)

Let us consider now the observed {h (Pi)}, Pi ∈ Ak ; recalling (7.2), we can write

W̃ (Pi) = δW0k + W (Pi) = δW0k +U (hi) + T (Pi) Pi ∈ Ak . (7.13)

On the other hand we have, according to (7.6),

W̃ (Pi) = U
(

h̃∗
i

)

(7.14)

and indeed h̃∗
i = h̃∗ (Pi) is known by hypothesis too. The practical situation is that,

if Pi is a geodetic space station, this is connected to the local levelling line, so that
h̃∗
i is directly known. Putting (7.13) and (7.14) together gives

U (hi) −U
(

h̃∗
i

) = −T (Pi) − δW0k ,

which, linearized with respect to hi − h̃∗
i , yields

hi − h̃∗
i = T

γ
+ δW0k

γ
. (7.15)
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Notice that, as customary, in (7.15) we do not write explicitly where to compute
T and γ, because choosing either hi or h̃∗

i , in the right hand side of this relation,
produces only second order variations. Finally, introducing (7.12) into (7.15), we
find

hi − h̃∗
i = Tb (Pi)

γ
− 1

γ

K
∑

j=1

δW0j Fj (Pi) + δW0k

γ
Pi ∈ Ak . (7.16)

As we see if we complement (7.16) with the proper error models for hi, h̃∗
i and

Tb (Pi), we have reduced the solution of our unification problem to that of a least-
squares system.

Note should be taken that the functions Fj (P) are generally small outside Aj,
so (7.16) could become badly conditioned if one of the patches would be void of
points Pi where hi is known, as already stated before. It has to be stressed too that
indeed the system (7.16) should be solved for all Pi in all patches together. This
raises the question of how complicated could be the covariance matrix of (7.16).
Even if one could reasonably assume (though not strictly) the errors of hi and h̃∗

i
to be independent, the same could not be true for the errors in the model Tb (P);
in fact, even if the gravity observations could be considered as being affected by
independent measuring errors, the model is derived by solving the BVP, roughly by
Stokes integration, and so it is expected to have a geographical correlation pattern.
Not to be said, a correlation between the errors of h̃∗

i and Tb, as both are derived from
Dg, should also be taken into account. Yet a simplification of the stochastic model,
even a drastic one, would be acceptable in view of the large number of stations {Pi}
that are generally available for each patch.

Nevertheless the weak point of the approach expressed by (7.16) is in the assump-
tion that Tb (P) is known. As a matter of fact, even the previous Earth models have
always used the knowledge of low degrees coefficients of T (P) from space geode-
tic observations (see for instance the paper by Rapp (1989) concerning the OSU86
model, complete up to degree and order 360). This creates models such that typi-
cally combine unbiased low degrees, derived from satellite observations, with biased
gravity anomalies from ground data.

The problem will be more closely analyzed into the next sections at both local
and global level.

7.3 On the Solution of the Unification Problem
by a Suitable Global Model

The target of the section is to prove, by means of a careful but conservative error
budget analysis, that already today we have global models that directly used in (7.15)
provide us equations with errors below the 5cm level. Since we can use several such
equations for each δW0k , we deem it reasonable to estimate such parameters with



122 7 The Height Datum Problem

errors, in terms of geoid, i.e. of
δW0k

γ
, of very few centimeters, at least in a global

mean square sense. To go along this way we make beforehand two remarks.
The first is that we can free our problem from many mathematical complications

if we can state a priori that all our harmonic functions can be expressed as a sum of
spherical harmonics up to some finite maximum degree M ; in our case M will be
taken at the level of 2159, as the maximum degree of EGM2008.

This choice is justified by the following reasoning. Taking into consideration the
discussion in Sect. 4.4, we start recalling the definition of full power degree variances
Cn, namely

Cn =
n
∑

m=−n

T 2
nm ≡ 1

4π

∫
[

n
∑

m=−n

Tnm Ynm (σ)

]2

dσ . (7.17)

The plot of (7.17) for the EGM2008model has been already displayed in Fig. 4.1.
Because of their quite regular behaviour, Cn can be interpolated by some simple
analytic expression. An exercise of this kind has been done by several authors with
comparable results. The model that one can find in Sansò and Sideris (2013) has
been computed by adapting to the empirical data the function

Cn = Aqn

(n − 1) (n − 2) (n + 4) (n + 17)
. (7.18)

A good matching, using only empirical values up to degree 1800, is obtained with

A =
(μ

R

)2
3.9 · 10−5 , q = 0.999443 .

Other authors (for example Hirt and Kuhn 2012) obtain slightly different values
using all the empirical data; yet this does not change the order of magnitude of our
guess. In fact adding our Cn given by (7.18) from 2160 up to 10000, we have an idea
of the magnitude of the squared norm of the omitted part of T . More precisely we
have the so called omission error, OE (T ), forM = 2159 given by

OE2160 (T ) =
⎧

⎨

⎩

1

4π

∫
[ +∞
∑

n=2160

n
∑

m=−n

Tnm Ynm (σ)

]2

dσ

⎫

⎬

⎭

1
2

=

=
+∞
∑

n=2160

Cn
∼=

10000
∑

n=2160

Cn
∼= 0.6 cm γ , (7.19)

i.e. this omission error in terms of geoid is globally well below the centimeter value.
Indeed it is clear that this does not prevent us to have a value of some centimeters in
some places on the Earth surface; however this seems compatible with the target of
this section.
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So we shall accept the above assumption. Then we claim that, neglecting second
order terms, we have

Dg + γ′

γ
δW

∣
∣
∣
∣
S̃

∼= �g|S∗ , (7.20)

with S∗ the ordinary Marussi telluroid (see (4.80), (4.81)) and S̃ the approximate
telluroid defined by (7.14).

The relation (7.20) is proved by the following calculation

Dg
(

h̃∗)+ γ′

γ
δW

(

h̃∗) = g − γ
(

h̃∗)+ γ′

γ

[

W −U
(

h̃∗)] =

= g − γ
(

h∗)+ γ
(

h∗)− γ
(

h̃∗)+ γ′

γ

[

U
(

h∗)−U
(

h̃∗)] =

= �g
(

h∗)+ γ′ (h∗ − h̃∗)+ γ′

γ

[−γ
(

h∗ − h̃∗)] = �g
(

h∗) .

We would like to acknowledge that this complies with a personal communication
of T. Krarup to one of the authors.

A consequence of this remark is that, since the solution of the GBVP is unique,

solving such a problemwith known term�g on S∗ or with Dg + γ′

γ
DW on S̃ should

give the same result in the linear approximation.Concisely, introducing the two solver
operators S∗ and S̃, the former referring to the GBVP with S∗ as boundary, the latter
to the same problem with S̃ as boundary, we can claim that

T ∼= S∗ (�g) ∼= S̃
(

Dg + γ′

γ
DW

)

. (7.21)

Now we are ready to introduce our simple minded global model T̃ . We started by
observing that we have available satellite-only models combining data from satellite
geodesy of different missions, particularly the models derived by the three gravi-
metric/grodiometric missions CHAMP, GRACE and GOCE (Reigber et al. 2004;
Tapley et al. 2004; Pail et al. 2011). Specifically we shall refer to the GOCO model
TG (Pail et al. 2010; Mayer-Gürr et al. 2015) up to degree and order 200, a level at
which the cumulated error for the estimate of the coefficients becomes larger than
the magnitude of the coefficients themselves, expressed by their degree variances
Cn. So up to degree 200 we follow TG, knowing that

TG = T200 + εG (7.22)

with
1

γ
σ
(

TG) = 1

γ
σ
(

εG
) ∼= 2 cm , (7.23)
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as it results from the estimates of the degree standard deviations provided with
the model. The quantity σ

(

εG
)

in (7.23) is called the commission error CE (εG)
(see (4.40)).

We strengthen again that if we introduce the projection operatorPL that cuts every
harmonic function at the degree L, i.e. for M > L

PL

(
M
∑

n=2

unm

(
R

r

)n+1

Ynm (σ)

)

=
L
∑

n=2

unm

(
R

r

)n+1

Ynm (σ) , (7.24)

then indeed, with L = 200, we have

PL T
G ≡ TG , (7.25)

so that (7.22) more precisely reads

TG = PL T + εG . (7.26)

Moreover the explicit interpretation of (7.23) is

1

γ
σ
(

εG
) = 1

γ

[

E

(
1

4π

∫
(

εG
)2
dσ

)] 1
2

,

where the expectation E is taken on the stochastic structure of εG.
We assume that the information contained in TG is better than the corresponding

informationon the lowdegrees contained in theEGM2008modelTE.On the contrary,
for degrees higher than 200 the only global information (in reality up to degree 2159)
we have is contained in TE, so we will take it as it is. Therefore we propose to create
a kind of “Frankenstein model” according to

T̃ = TG + (I − PL)T
E . (7.27)

We note however that TE has been computed from ground data, at least in the
range of degrees higher than 200, and so it is affected by a bias because it could only
be computed from the observations Dg0 on the approximate telluroid S̃. In other
words

(I − PL)T
E = (I − PL) S̃ (Dg0) . (7.28)

Indeed Dg0 is affected by some noise εg that propagates to the solution

S̃ (Dg0) = S̃ (Dg + εg) = S̃ (Dg) + εE . (7.29)

This εE is what in literature is called the commission error CE (εE) of the model,
and it is clear from our reasoning that εE has a maximum degree equal to 2159 too.
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With such specifications, (7.27) reads

T̃ = PL T + εG + (I − PL) S̃ (Dg) + (I − PL) εE . (7.30)

Also for εE we have estimates that come together with the model TE; the number
cumulating all the errors between degree 200 and 2159 is

CE (εE) = E

[
1

4π

∫
[

(I − PL) εE
]2
dσ

] 1
2

= 3.6 cm . (7.31)

If we write the analogous of (7.30) for T , also taking into account (7.21), we see
that

T = PL T + (I − PL)S∗ (�g) =
= PL T + (I − PL) S̃ (Dg) + (I − PL) S̃

(
γ′

γ
δW

)

. (7.32)

Comparing (7.32) and (7.30), we find the total estimation error of T̃ , namely

T̃ − T = εG + (I − PL) εE − (I − PL) S̃
(

γ′

γ
δW

)

. (7.33)

If we can suppose that εG and εE have zero average, the same is not justified for

(I − PL) S̃
(

γ′

γ
δW

)

, which then assumes the meaning of the bias of T̃ − T , i.e.

b (P) = E
{

T̃ − T
} = − (I − PL) S̃

(
γ′

γ
δW

)

. (7.34)

The construction of our error budget then continues with a majorization of the
mean quadratic value of b (P) over the unit sphere.

Now consider that S̃, the BVP solver, is as a matter of fact a combination of some
kind of regularized downward continuation to the Earth ellipsoid and then a solution
by quadrature with spherical harmonics (Sansò and Sideris 2013, Part II, Chap. 6).
In any event, due to the smallness of the function

γ′

γ
δW ∼= −2

r
δW , (7.35)

(remember that O
(

δW

γ

)

∼= 2 m), we can approximate S̃ as applied to (7.35) by a

simple spherical solver, namely the Stokes integral, which certainly constitutes the
“large part” of S̃ . So we can write (see (4.100))
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b = − (I − PL) S̃
(

γ′

γ
δW

)

∼= 2

R0

M
∑

n=L+1

n
∑

m=−n

R0

n − 1
δWnm Ynm (σ) (7.36)

with R0 the mean Earth radius. From (7.36) we then derive

‖b‖2L2σ =
∥
∥
∥
∥
(I − PL) S̃

(
γ′

γ
δW

)∥
∥
∥
∥

2

L2σ

= 4
M
∑

n=L+1

n
∑

m=−n

δW 2
nm

(n − 1)2
≤

≤ 4

L2

M
∑

n=L+1

n
∑

m=−n

δW 2
nm = 4

L2
‖(I − PL) δW‖2L2σ <

<
4

L2
‖δW‖2L2σ . (7.37)

Now we observe that, owing to its definition (7.4), δW 2 is given by

δW 2 (P) =
K
∑

k=1

δW 2
0k χk (P) ,

so that

‖δW (P)‖2L2σ = 1

4π

∫ K
∑

k=1

δW 2
0k χk (P) dσ =

K
∑

k=1

δW 2
0k

|Ak |
4π

, (7.38)

where we have designated by |Ak | the area of the patch Ak , projected on the unit
sphere. As we see, (7.38) is a kind of weighted average of the δW 2

0k and, since

max

∣
∣
∣
∣

δW0k

γ

∣
∣
∣
∣
≤ 2 m, we could reasonably hypothesize that

1

γ

{
K
∑

k=1

δW 2
0k

|Ak |
4π

} 1
2

≤ 1 m . (7.39)

Using (7.39) in (7.37), we receive

1

γ
‖b‖L2σ <

2

200
· 1 m = 1 cm . (7.40)

Putting (7.23), (7.32) and (7.40) together, we formulate the following error budget

1

γ

{

E
[∥
∥T̃ − T

∥
∥
2

L2σ

]} 1
2 = 1

γ

{

CE2
(

εG
)+ CE2

(

εE
)+ ‖b‖2L2σ

} 1
2 ≤

≤ {4 + 12.96 + 1} 1
2 cm = 4.24 cm . (7.41)
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Let us remark that, if instead of (7.39) we had taken the upper limit of 2m, then
(7.41) would rise to 4.58cm, which is not a very different number.

Let us further observe that certainly our analysis here is not very refined and in
particular the model T̃ on which the error budget has been constructed is not the
optimal that one could calculate. Optimal solutions of the combination of satellite
and existing global models can be found in literature (see for example Pavlis et al.
2012, 2013; Reguzzoni and Sansò 2012; Sansò and Sideris 2013, Part II, Chap. 6;
Gilardoni et al. 2016).

On the other hand, we promised a conservative analysis that has generated the
figure of 5cm to majorize our global error; so we are confident that this is a reliable
upper bound. Since the large part of the index (7.41) is due to CE (εE), we know that
this index has a great geographic variability, reaching the level of 30–40cm in the
Himalayas and in the Andes when εE includes also the first 200 degrees. However
this is not the case in most areas of the globe and we can expect that a figure between
5 and 10cm could be respected by the error in the stations chosen to construct the
system (7.16). Therefore a first proposal is to use T̃ (or a better model) in (7.16), so
that we can write observation equations patch by patch and, hopefully, by averaging

we can resort to an estimate of
δW0k

γ
with a few centimeters error.

A more refined proposal is to use the model T̃ to arrive at a system of equations
similar to (7.16); however we have now to pay attention to split the degrees below
and above 200, as discussed in this section. In this case, from Eqs. (7.15), (7.33) and
(7.36) we could write

hi − h̃∗
i = T̃

γ
+ T − T̃

γ
+ δW0k

γ
=

= T̃

γ
− 1

γ
(I − PL) S̃

(
2

r
δW

)

+ δW0k

γ
=

= T̃

γ
− 2

γ

M
∑

n=L+1

n
∑

m=−n

δWnm

n − 1
Ynm

(

σPi

)+ δW0k

γ
; (7.42)

note that in (7.42) only the deterministic terms are reported, leaving the stochastic
errors aside.

Now considering that

δWnm =
K
∑

j=1

δW0j 〈χj,Ynm〉 =
K
∑

j=1

δW0j χ
j
nm ,

Eq. (7.42) can be rewritten in the form

hi − h̃∗
i = T̃ (Pi)

γ
− 2

γ

K
∑

j=1

δW0j

[
M
∑

n=L+1

n
∑

m=−n

χ
j
nm

n − 1
Ynm

(

σPi

)

]

+ δW0k

γ
, (7.43)
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where the unknown parameters {δW0k} appear explicitly and all the other terms are
either observed or computed.

When all the quantities hi, h̃∗
i and T̃ (Pi) are derived from observations, the

Eq. (7.43) should be complemented with the proper error terms; if we assume that
the errors in hi and h̃∗

i are in the range of millimeters, and therefore negligible, and
recalling (7.33), we can write

hi − h̃∗
i = T̃ (Pi)

γ
− 2

γ

K
∑

j=1

δW0j

[
M
∑

n=L+1

n
∑

m=−n

χ
j
nm

n − 1
Ynm

(

σPi

)

]

+

+ δW0k

γ
+ εG + (I − PL) εE . (7.44)

7.4 On Local Solutions of the Height Datum Problem

We have already mentioned in the previous section that, when we have available a
good model of the anomalous potential, like our T̃ or better, we can safely substitute
it in observation equations of the shape (7.15). This implies neglecting the bias term
(7.36), which has been estimated to globally produce (cfr. (7.38)) a mean square
error between 1 and 2cm, and to accept a stochastic error, εG + (I − PL) εE, with an
overall magnitude of the order of 4cm. Including all the effects into the observation
equation, we arrive at formula (7.44).

However two aspects limit this global approach to the determination of the height
datum, i.e. of the biases {δW0k}, namely that in oceanic areas we have observations
for hi (̃h∗

i = 0 in this case) but this dataset is strongly correlated and the covariance
structure of the error is not really known; moreover biases and stochastic errors can

have a strong geographic signature which could deviate the estimates of
δW0k

γ
, by

one or more decimeters, at least for particular areas.
This is ultimately due to the fact that in such areas T̃ is not a sufficient approx-

imation to T ; however we know that, apart from biases, we are able to compute a
better estimate of T , for instance by using a local collocation solution

T̂loc = T̃ + Tres , (7.45)

for which a typical error-figure in terms of height anomaly could be 1–2cm. We will
call εres the error associated to the estimated residual potential Tres.

We want to examine whether and how we could take advantage of this improved
knowledge to estimate one of the biases for a specific area. In this case we have to
return to (7.44) and use T̂loc instead of T̃ and εres instead of εG + (I − PL) εE, thus
arriving at an observation equation that we rewrite in the form
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hi − h̃∗
i = T̂loc (Pi)
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+ εres,i Pi ∈ Ak . (7.46)

Let us consider one element of the sum in the second term of the right hand side
of (7.46), namely
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M
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2n + 1
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Pn
(

cosψPiQ
)

dσQ (j �= k) . (7.47)

As we see such a term represents the influence of the bias δW0j of the zone Aj in
the area Ak ; when the two are well separated, it is known that the influence function

Fj (P) = 1

2π

∫

Aj

M
∑

n=L+1

2n + 1

n − 1
Pn
(

cosψPiQ
)

dσQ , (7.48)

i.e. the integral onAj of the truncated Stokes function, becomes quite small. However,
if we could simply ignore Fj (P), even when Aj is a neighbour of Ak , then we could
delete the second term in (7.46), which at this point would become an observation
equation for δW0k only, i.e. we would have the possibility of a local determination
of the bias.

Note that what we need now is a pointwise estimate for
∣
∣Fj (P)

∣
∣ and not the

global mean square estimate that has already been found in the previous section.
Unfortunately we do not have a strict proof, but only a guess based on the following
example.

Example Assume Aj is just a spherical cap C� of radius �, then we shall prove that
the following approximate majorization holds

|F (P)| � 2

π

1

L + 1
(7.49)

when P is on the boundary of C�, irrespectively of the value of �.
If we take the origin of the spherical coordinates at the centre of C�, from (4.45)

and using the summation theorem, we have
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F (P) = 1

2π
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Since

(2n + 1)

�∫

0

Pn (cos θ) sin θ dθ =
1∫

cos�

(2n + 1)Pn (t) dt =

=
1∫

cos�

[

P′
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n−1 (t)
]

dt = Pn−1 (cos�) − Pn+1 (cos�) , (7.51)

Eq. (7.50) becomes

F (P) =
M
∑

n=L+1

Pn (cos θP)

n − 1

[

Pn−1 (cos�) − Pn+1 (cos�)
]

. (7.52)

Now we apply a famous asymptotic expression for the Legendre polynomials
(Abramowitz and Stegun 1964) claiming that

Pn (cos θ) =
√

2
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2
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4
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+ O
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n− 3
2
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. (7.53)

In particular (7.53) holds for

θ >
3π

4n + 2
; (7.54)

since we have in mind that n > 200 and� is at least 2◦ or (much) more, the condition
(7.54) is met.

So we proceed noting that
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Since
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the above asymptotic relation can be written as
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So returning to (7.52) and applying (7.53) to Pn (cos θP) too, we find
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As soon as we put P on the boundary of C�, i.e. we take θP = �, we get from
(7.55)

|F (P)| ∼= 2

π
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and (7.49) is proved.

With this example we see that, at least when Aj is a spherical cap and L = 200,
the influence of the bias δW0j at its boundary is

∣
∣
∣
∣

δW0j

γ
F (P)

∣
∣
∣
∣
≤
∣
∣
∣
∣

δW0j

γ

∣
∣
∣
∣
3.2 · 10−3 ,

namely well below the 1cm level, even when
δW0j

γ
= 2 m. Indeed when θP > �,

we expect that F (P) is even smaller, as shown in Fig. 7.1 when � = 5◦.
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Fig. 7.1 Influence function F (θP) for 5◦ ≤ θP ≤ 10◦, in the case of a spherical cap C� with
� = 5◦, L = 200

Based on the guess supported by the above example, we propose that a local bias
δW0k is estimated from the set of observation equations

hi − h̃∗
i = T̂loc (Pi)

γ
+ δW0k

γ
[1 − Fk (Pi)] + εres,i , (7.56)

where Pi are all the points in the area Ak where both hi and h̃∗
i are available.

We close the section by observing that indeed we could have a situation where
several {δW0k} can be estimated together, although they refer to some areas that do
not cover thewhole sphere, with an obviousmodification of the above discussion.We
underline however that in this case it is better that the local estimate of the potential
T̂loc is computed for the above areas together, because only in this case we shall have
a consistent covariance matrix for εres (Reguzzoni and Venuti 2018).

7.5 An Example: The Italian Case

In this paragraph, the local solution of the height datumproblemdiscussed in Sect. 7.4
is applied to the Italian case study. A similar computation has been applied as well
to the determination of the geoid bias in Spain (Reguzzoni et al. 2018).
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As amatter of facts, Italy has three different height systems based on three different
reference tide gauges. The reference tide gauge for the mainland is in Genoa, while
heights in Sicily are referred to the Catania tide gauge and those of Sardinia to
Cagliari. Due to the different dynamic ocean topography in these three reference
stations, inconsistencies at the decimetre level among heights in Italy mainland,
Sicily and Sardinia are expected.

The equation to be used in estimating the local biases is (7.56)which can be further
simplified for the present computation. In fact, in the Italian case presented here, it
can be numerically proved that even considering the complete Eq. (7.16) accounting
for the global unification, the term

1

γ

K
∑

j=1

δW0j Fj (Pi)

is smaller than 1mm. Thus, a fortiori, the corresponding local term in (7.56) can be
disregarded.

So, the equation that will be used in the computation is

hi − h̃∗
i = T̂loc (Pi)

γ
+ δW0k

γ
+ εres,i (7.57)

that can be rewritten as

ζ̃k (Pi) = T̂loc (Pi)

γ
+ bk + εres,i (7.58)

where ζ̃k (Pi) are the biased height anomalies in the k-th area and bk the bias to be
estimated on the same area.

It can be further assumed that T̂loc is estimated as

T̂loc (Pi) = TL (Pi) + TH (Pi) (7.59)

where TL is the prediction of the anomalous potential at point Pi coming from a
satellite gravity model to degree L and TH is the prediction derived from a high
degree model, like e.g. EGM2008, from degree L + 1 to degree H . Although by
considering TH we reintroduce biases through ground gravity data, it can be proved
that the impact on the solution is of the order of some millimetres (Gatti et al. 2013).
Thus, one can say that a feasible solution for the estimate of bk can be obtained by
the observation equation

ζ̃k (Pi) = TL (Pi) + TH (Pi)

γ
+ bk + εres,i (7.60)
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By separating the observations and the unknowns to be estimated, one gets

ζ̃k (Pi) − TL (Pi) + TH (Pi)

γ
+ εres,i = bk . (7.61)

Now, if one considers N points in the K regions, with N ≥ K , a linear system of
N equations and K unknowns can be solved by least squares adjustment, once the
observation error covariance matrix of ε is defined. This matrix has to account for
the dispersion of the errors in the ellipsoidal heights derived from GNSS through
the covariance matrix Ch, the errors in the normal heights derived from levelling
and gravity measurements through Ch̃∗ , the commission errors of the satellite-only
gravity model up to the degree L through CTL , and those in the high resolution model
from degree L + 1 up to degreeH through CTH . Thus, assuming the above described
errors independent from one another, the proper covariance structure to be used in
the adjustment procedure is

Cε = Cζ + CTL + CTH = Ch + Ch̃∗ + CTL + CTH . (7.62)

In the Italian test case the least square problem is set by considering 1,068 points
with known GNSS ellipsoidal heights and levelling derived heights. Among them,
43 points are in Sicily, 48 in Sardinia and the remaining 977 in the Italian mainland.
The heights derived from levelling measurements were obtained by a least squares
adjustment of the observations without any correction accounting for gravity effects
(Betti et al. 2016). GNSS heights are referred to the ETRF2000 reference frame,
epoch 2008.0.

Hence, it must be underlined that in Eq. (7.61) biased geoid undulations Ñk (Pi)
are used (which, as said, are further biased since no gravity corrections have been
applied).

The models components that have been considered in order to evaluate the TL

and the TH terms are the GOCO-03S satellite gravity only model (Mayer-Gürr et al.
2012) and the EGM2008 global geopotential model. TheGOC0-03Smodel basically
combines the ITG-BonnGRACE solutionwith the time-wiseGOCEone (release R3,
that is the third solution based on l year and a half GOCE data). The coefficients are
available at thewebsite of the InternationalCenter forGlobalEarthModels (ICGEM).
Moreover, theGOC0-03Sorder-wise blockdiagonal error covariancematrix has been
considered in the computation, which practically bears the same information as the
full error covariance matrix (Gerlach and Fecher 2012). As for EGM2008 spherical
harmonic coefficients, the error coefficient variances and a global grid of local geoid
error variances are available. Consistently with GNSS data, the coefficients of the
two global models are tide-free, while the levelling data are referred to the mean sea
level at the three tide gauges of Genoa, Catania and Cagliari.

Before computing the left hand side of Eq. (7.61), reference frame transformations
have to be considered.
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The different coordinates have been referred to the most recent frame of the GOCE
model. The Italian GNSS data are given in ETRF2000, epoch 2008.0, while GOCE
data are in ITRF2008, with an unspecified epoch between 2010 and 2011. Transfor-
mations from ETRF2000-2008.0 to ITRF2008-2010/2011 can be performed in three
steps. The EUREF transformation parameters have been applied from ETRF2000-
2008 to ITRF2000-2008 and then the IERS transformation parameters have been
used from ITRF2000-2008 to ITRF2008-2008. Finally, the ITRF2008 coordinates
have been updated to epoch 2010/2011 using the mean velocity of a subset of Italian
GNSS permanent stations (velocities published by IERS). To this aim, theGNSS per-
manent stations of Medicina, Genoa, Torino I, Cagliari, Matera, Padova and Perugia
have been taken into account.

These transformations accounted for a displacement in the horizontal coordinates
of about 50cm and a 1cm change in their heights. It can be proved that the impact
of these shifts is negligible in terms of the bias estimation (Barzaghi et al. 2016).
Similar transformations were not applied to EGM2008 since its reference time is not
available.

Fig. 7.2 The correlation matrix of ε with L = 250
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Another key point in setting up the least squares problem in (7.61) is the definition
of the stochastic model of the observations. This stochastic model, represented in
(7.62), can be evaluated from the available error models. The set of differences
between GNSS and levelling heights are assumed to be as an uncorrelated noise, so
that it can be set

Cζ = σ2
ζ I (7.63)

where I is the identity matrix. The error covariance matrix CTL of the set of poten-
tial values TL predicted in the GNSS-leveling points from GOC0-03S is obtained
by propagation from the given order-wise block diagonal error covariance matrix.
The covariance matrix CTH of the set of potential values TH computed at the same
points from EGM2008, is obtained by propagation from the coefficient error vari-
ances properly rescaled accordingly to the geographical map of local geoid errors
(Gilardoni et al. 2013). The resulting error correlation matrix, with σ2

ζ = 1 cm and
L = 250, is plotted in Fig. 7.2.

Based on this covariance structure, the error in the estimated biases can be com-
puted as a function of the degree L. In the Italian case study, it can be shown that the
errors in the estimated biases of Italy mainland, Sicily and Sardinia are not strongly
affected by the choice of L (Barzaghi et al. 2016) so that L = 250, the full GOC0-03S
model resolution, has been selected in the computation.

Different biases estimates have been then computed using different values of σζ ,
namely 1, 5, 10 and 12cm. The least squares estimate satisfying the null hypothesis
test

H0 : σ2
0 = 1

is the one based on σζ = 12cm, which gives the values for the estimated biases that
are listed in Table 7.1.

This first result is based on some quite strong simplifications and is hence affected
by model errors. Particularly, the use of Ñk (Pi), the biased geoid undulation, instead
of the biased height anomaly ζ̃k (Pi), can induce distortions in the estimated biases.
Nevertheless, the difference between the biases of Italy mainland and Sicily, that is
9.82cm, is significantly close to the values reported by Istituto Geografico Militare,
i.e. 14.1cm. It is to be underlined that this value has been independently estimated
using surveying techniques based on trigonometric levelling trough the Messina
Strait coupled with spirit levelling in Sicily and Calabria to form a close loop across
the two sides of the strait. So, despite the use of somehow improper data, acceptable
results can be obtained by the devised least squares adjustment procedure. Thus, one

Table 7.1 The estimated biases with σζ = 12 cm

Italy mainland (cm) Sicily (cm) Sardinia (cm)

bk 77.22 67.40 97.90

σbk 0.52 2.57 2.72
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comes to a confirmation that the proposed method is effective in estimating the local
biases and can be applied for solving the problem of the height systems unification
at local level.
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components, 96
Dynamic height, 92, 106

E
Equatorial disk, 28
Equipotential surfaces, 33

mean curvature, 34

G
Generalized height anomaly, 73
Geoid, 45

undulation, 45
Geopotential number, 91, 106, 114
Global gravity model, 58

degree variances
full power, 59, 122
single coefficient, 59

error
commission, 61
degree variances, 61
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Gravimetry, 67
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harmonicity, 32
regularity, 31

Gravity
acceleration, 30
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free air, 75
disturbance, 107
potential, 31, 89

bias, 117

H
Height datum problem, 118

global error budget, 126
global solution, 121
influence function, 129, 132
local solution, 128

Italian example, 136
Helmert height, 101
Hilbert space, 55

J
Jacobian operator, 8

L
Laplace-Beltrami operator, 20
Laplace operator, 12, 14, 20, 26
Legendre functions, 38

recursive formulas, 38
Legendre generating function, 36
Legendre polynomials, 36

asymptotic expression, 130
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recursive formula, 36

Levelling, 68, 105
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M
Marussi mapping, 93
Marussi telluroid, 75
Marussi tensor, 91
Mean dynamic topography, 46, 70
Metric tensor, 10, 12
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Newton law, 29
Normal

deflection of the vertical
scalar, 42
vector, 95

gravity
field, 40
modulus, 41
potential, 41
vector, 41
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dynamic correction, 109
normal correction, 109

orthometric height, 112
vertical, 42

O
Orthometric height, 97, 110

operative lemma, 99
orthometric correction, 110

P
Plumb lines, 33

principal curvature vector, 34
Poisson equation, 32, 52
Poisson function, 40
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R
Radar altimetry, 70
Residual terrain correction, 66
Roto-translation, 14
Runge-Krarup theorem, 56

S
Solid spherical harmonics, 39

Span, 8
Spherical distance, 37
Spherical harmonics, 38

completeness, 38
orthogonality, 38
summation rule, 38, 54

Spheropotential number, 113
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